1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1322 // the bits above 31 down by 11 bits. 1323 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1324 assert((!Alignment || isPowerOf2_32(Alignment)) && 1325 "Alignment must be a power of two."); 1326 1327 if (Alignment) 1328 B.addAlignmentAttr(Alignment); 1329 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1330 (EncodedAttrs & 0xffff)); 1331 } 1332 1333 Error BitcodeReader::parseAttributeBlock() { 1334 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1335 return Err; 1336 1337 if (!MAttributes.empty()) 1338 return error("Invalid multiple blocks"); 1339 1340 SmallVector<uint64_t, 64> Record; 1341 1342 SmallVector<AttributeList, 8> Attrs; 1343 1344 // Read all the records. 1345 while (true) { 1346 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1347 if (!MaybeEntry) 1348 return MaybeEntry.takeError(); 1349 BitstreamEntry Entry = MaybeEntry.get(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return Error::success(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1365 if (!MaybeRecord) 1366 return MaybeRecord.takeError(); 1367 switch (MaybeRecord.get()) { 1368 default: // Default behavior: ignore. 1369 break; 1370 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1371 // Deprecated, but still needed to read old bitcode files. 1372 if (Record.size() & 1) 1373 return error("Invalid record"); 1374 1375 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1376 AttrBuilder B; 1377 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1378 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1379 } 1380 1381 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1382 Attrs.clear(); 1383 break; 1384 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1385 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1386 Attrs.push_back(MAttributeGroups[Record[i]]); 1387 1388 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1389 Attrs.clear(); 1390 break; 1391 } 1392 } 1393 } 1394 1395 // Returns Attribute::None on unrecognized codes. 1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1397 switch (Code) { 1398 default: 1399 return Attribute::None; 1400 case bitc::ATTR_KIND_ALIGNMENT: 1401 return Attribute::Alignment; 1402 case bitc::ATTR_KIND_ALWAYS_INLINE: 1403 return Attribute::AlwaysInline; 1404 case bitc::ATTR_KIND_ARGMEMONLY: 1405 return Attribute::ArgMemOnly; 1406 case bitc::ATTR_KIND_BUILTIN: 1407 return Attribute::Builtin; 1408 case bitc::ATTR_KIND_BY_VAL: 1409 return Attribute::ByVal; 1410 case bitc::ATTR_KIND_IN_ALLOCA: 1411 return Attribute::InAlloca; 1412 case bitc::ATTR_KIND_COLD: 1413 return Attribute::Cold; 1414 case bitc::ATTR_KIND_CONVERGENT: 1415 return Attribute::Convergent; 1416 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1417 return Attribute::InaccessibleMemOnly; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1419 return Attribute::InaccessibleMemOrArgMemOnly; 1420 case bitc::ATTR_KIND_INLINE_HINT: 1421 return Attribute::InlineHint; 1422 case bitc::ATTR_KIND_IN_REG: 1423 return Attribute::InReg; 1424 case bitc::ATTR_KIND_JUMP_TABLE: 1425 return Attribute::JumpTable; 1426 case bitc::ATTR_KIND_MIN_SIZE: 1427 return Attribute::MinSize; 1428 case bitc::ATTR_KIND_NAKED: 1429 return Attribute::Naked; 1430 case bitc::ATTR_KIND_NEST: 1431 return Attribute::Nest; 1432 case bitc::ATTR_KIND_NO_ALIAS: 1433 return Attribute::NoAlias; 1434 case bitc::ATTR_KIND_NO_BUILTIN: 1435 return Attribute::NoBuiltin; 1436 case bitc::ATTR_KIND_NO_CAPTURE: 1437 return Attribute::NoCapture; 1438 case bitc::ATTR_KIND_NO_DUPLICATE: 1439 return Attribute::NoDuplicate; 1440 case bitc::ATTR_KIND_NOFREE: 1441 return Attribute::NoFree; 1442 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1443 return Attribute::NoImplicitFloat; 1444 case bitc::ATTR_KIND_NO_INLINE: 1445 return Attribute::NoInline; 1446 case bitc::ATTR_KIND_NO_RECURSE: 1447 return Attribute::NoRecurse; 1448 case bitc::ATTR_KIND_NO_MERGE: 1449 return Attribute::NoMerge; 1450 case bitc::ATTR_KIND_NON_LAZY_BIND: 1451 return Attribute::NonLazyBind; 1452 case bitc::ATTR_KIND_NON_NULL: 1453 return Attribute::NonNull; 1454 case bitc::ATTR_KIND_DEREFERENCEABLE: 1455 return Attribute::Dereferenceable; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1457 return Attribute::DereferenceableOrNull; 1458 case bitc::ATTR_KIND_ALLOC_SIZE: 1459 return Attribute::AllocSize; 1460 case bitc::ATTR_KIND_NO_RED_ZONE: 1461 return Attribute::NoRedZone; 1462 case bitc::ATTR_KIND_NO_RETURN: 1463 return Attribute::NoReturn; 1464 case bitc::ATTR_KIND_NOSYNC: 1465 return Attribute::NoSync; 1466 case bitc::ATTR_KIND_NOCF_CHECK: 1467 return Attribute::NoCfCheck; 1468 case bitc::ATTR_KIND_NO_UNWIND: 1469 return Attribute::NoUnwind; 1470 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1471 return Attribute::NullPointerIsValid; 1472 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1473 return Attribute::OptForFuzzing; 1474 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1475 return Attribute::OptimizeForSize; 1476 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1477 return Attribute::OptimizeNone; 1478 case bitc::ATTR_KIND_READ_NONE: 1479 return Attribute::ReadNone; 1480 case bitc::ATTR_KIND_READ_ONLY: 1481 return Attribute::ReadOnly; 1482 case bitc::ATTR_KIND_RETURNED: 1483 return Attribute::Returned; 1484 case bitc::ATTR_KIND_RETURNS_TWICE: 1485 return Attribute::ReturnsTwice; 1486 case bitc::ATTR_KIND_S_EXT: 1487 return Attribute::SExt; 1488 case bitc::ATTR_KIND_SPECULATABLE: 1489 return Attribute::Speculatable; 1490 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1491 return Attribute::StackAlignment; 1492 case bitc::ATTR_KIND_STACK_PROTECT: 1493 return Attribute::StackProtect; 1494 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1495 return Attribute::StackProtectReq; 1496 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1497 return Attribute::StackProtectStrong; 1498 case bitc::ATTR_KIND_SAFESTACK: 1499 return Attribute::SafeStack; 1500 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1501 return Attribute::ShadowCallStack; 1502 case bitc::ATTR_KIND_STRICT_FP: 1503 return Attribute::StrictFP; 1504 case bitc::ATTR_KIND_STRUCT_RET: 1505 return Attribute::StructRet; 1506 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1507 return Attribute::SanitizeAddress; 1508 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1509 return Attribute::SanitizeHWAddress; 1510 case bitc::ATTR_KIND_SANITIZE_THREAD: 1511 return Attribute::SanitizeThread; 1512 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1513 return Attribute::SanitizeMemory; 1514 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1515 return Attribute::SpeculativeLoadHardening; 1516 case bitc::ATTR_KIND_SWIFT_ERROR: 1517 return Attribute::SwiftError; 1518 case bitc::ATTR_KIND_SWIFT_SELF: 1519 return Attribute::SwiftSelf; 1520 case bitc::ATTR_KIND_UW_TABLE: 1521 return Attribute::UWTable; 1522 case bitc::ATTR_KIND_WILLRETURN: 1523 return Attribute::WillReturn; 1524 case bitc::ATTR_KIND_WRITEONLY: 1525 return Attribute::WriteOnly; 1526 case bitc::ATTR_KIND_Z_EXT: 1527 return Attribute::ZExt; 1528 case bitc::ATTR_KIND_IMMARG: 1529 return Attribute::ImmArg; 1530 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1531 return Attribute::SanitizeMemTag; 1532 case bitc::ATTR_KIND_PREALLOCATED: 1533 return Attribute::Preallocated; 1534 case bitc::ATTR_KIND_NOUNDEF: 1535 return Attribute::NoUndef; 1536 case bitc::ATTR_KIND_BYREF: 1537 return Attribute::ByRef; 1538 case bitc::ATTR_KIND_MUSTPROGRESS: 1539 return Attribute::MustProgress; 1540 } 1541 } 1542 1543 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1544 MaybeAlign &Alignment) { 1545 // Note: Alignment in bitcode files is incremented by 1, so that zero 1546 // can be used for default alignment. 1547 if (Exponent > Value::MaxAlignmentExponent + 1) 1548 return error("Invalid alignment value"); 1549 Alignment = decodeMaybeAlign(Exponent); 1550 return Error::success(); 1551 } 1552 1553 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1554 *Kind = getAttrFromCode(Code); 1555 if (*Kind == Attribute::None) 1556 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1557 return Error::success(); 1558 } 1559 1560 Error BitcodeReader::parseAttributeGroupBlock() { 1561 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1562 return Err; 1563 1564 if (!MAttributeGroups.empty()) 1565 return error("Invalid multiple blocks"); 1566 1567 SmallVector<uint64_t, 64> Record; 1568 1569 // Read all the records. 1570 while (true) { 1571 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1572 if (!MaybeEntry) 1573 return MaybeEntry.takeError(); 1574 BitstreamEntry Entry = MaybeEntry.get(); 1575 1576 switch (Entry.Kind) { 1577 case BitstreamEntry::SubBlock: // Handled for us already. 1578 case BitstreamEntry::Error: 1579 return error("Malformed block"); 1580 case BitstreamEntry::EndBlock: 1581 return Error::success(); 1582 case BitstreamEntry::Record: 1583 // The interesting case. 1584 break; 1585 } 1586 1587 // Read a record. 1588 Record.clear(); 1589 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1590 if (!MaybeRecord) 1591 return MaybeRecord.takeError(); 1592 switch (MaybeRecord.get()) { 1593 default: // Default behavior: ignore. 1594 break; 1595 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1596 if (Record.size() < 3) 1597 return error("Invalid record"); 1598 1599 uint64_t GrpID = Record[0]; 1600 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1601 1602 AttrBuilder B; 1603 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1604 if (Record[i] == 0) { // Enum attribute 1605 Attribute::AttrKind Kind; 1606 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1607 return Err; 1608 1609 // Upgrade old-style byval attribute to one with a type, even if it's 1610 // nullptr. We will have to insert the real type when we associate 1611 // this AttributeList with a function. 1612 if (Kind == Attribute::ByVal) 1613 B.addByValAttr(nullptr); 1614 else if (Kind == Attribute::StructRet) 1615 B.addStructRetAttr(nullptr); 1616 1617 B.addAttribute(Kind); 1618 } else if (Record[i] == 1) { // Integer attribute 1619 Attribute::AttrKind Kind; 1620 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1621 return Err; 1622 if (Kind == Attribute::Alignment) 1623 B.addAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::StackAlignment) 1625 B.addStackAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::Dereferenceable) 1627 B.addDereferenceableAttr(Record[++i]); 1628 else if (Kind == Attribute::DereferenceableOrNull) 1629 B.addDereferenceableOrNullAttr(Record[++i]); 1630 else if (Kind == Attribute::AllocSize) 1631 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (Kind == Attribute::ByVal) { 1658 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1659 } else if (Kind == Attribute::StructRet) { 1660 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } else if (Kind == Attribute::ByRef) { 1662 B.addByRefAttr(getTypeByID(Record[++i])); 1663 } else if (Kind == Attribute::Preallocated) { 1664 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1665 } 1666 } 1667 } 1668 1669 UpgradeAttributes(B); 1670 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1671 break; 1672 } 1673 } 1674 } 1675 } 1676 1677 Error BitcodeReader::parseTypeTable() { 1678 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1679 return Err; 1680 1681 return parseTypeTableBody(); 1682 } 1683 1684 Error BitcodeReader::parseTypeTableBody() { 1685 if (!TypeList.empty()) 1686 return error("Invalid multiple blocks"); 1687 1688 SmallVector<uint64_t, 64> Record; 1689 unsigned NumRecords = 0; 1690 1691 SmallString<64> TypeName; 1692 1693 // Read all the records for this type table. 1694 while (true) { 1695 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1696 if (!MaybeEntry) 1697 return MaybeEntry.takeError(); 1698 BitstreamEntry Entry = MaybeEntry.get(); 1699 1700 switch (Entry.Kind) { 1701 case BitstreamEntry::SubBlock: // Handled for us already. 1702 case BitstreamEntry::Error: 1703 return error("Malformed block"); 1704 case BitstreamEntry::EndBlock: 1705 if (NumRecords != TypeList.size()) 1706 return error("Malformed block"); 1707 return Error::success(); 1708 case BitstreamEntry::Record: 1709 // The interesting case. 1710 break; 1711 } 1712 1713 // Read a record. 1714 Record.clear(); 1715 Type *ResultTy = nullptr; 1716 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1717 if (!MaybeRecord) 1718 return MaybeRecord.takeError(); 1719 switch (MaybeRecord.get()) { 1720 default: 1721 return error("Invalid value"); 1722 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1723 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1724 // type list. This allows us to reserve space. 1725 if (Record.empty()) 1726 return error("Invalid record"); 1727 TypeList.resize(Record[0]); 1728 continue; 1729 case bitc::TYPE_CODE_VOID: // VOID 1730 ResultTy = Type::getVoidTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_HALF: // HALF 1733 ResultTy = Type::getHalfTy(Context); 1734 break; 1735 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1736 ResultTy = Type::getBFloatTy(Context); 1737 break; 1738 case bitc::TYPE_CODE_FLOAT: // FLOAT 1739 ResultTy = Type::getFloatTy(Context); 1740 break; 1741 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1742 ResultTy = Type::getDoubleTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1745 ResultTy = Type::getX86_FP80Ty(Context); 1746 break; 1747 case bitc::TYPE_CODE_FP128: // FP128 1748 ResultTy = Type::getFP128Ty(Context); 1749 break; 1750 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1751 ResultTy = Type::getPPC_FP128Ty(Context); 1752 break; 1753 case bitc::TYPE_CODE_LABEL: // LABEL 1754 ResultTy = Type::getLabelTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_METADATA: // METADATA 1757 ResultTy = Type::getMetadataTy(Context); 1758 break; 1759 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1760 ResultTy = Type::getX86_MMXTy(Context); 1761 break; 1762 case bitc::TYPE_CODE_TOKEN: // TOKEN 1763 ResultTy = Type::getTokenTy(Context); 1764 break; 1765 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1766 if (Record.empty()) 1767 return error("Invalid record"); 1768 1769 uint64_t NumBits = Record[0]; 1770 if (NumBits < IntegerType::MIN_INT_BITS || 1771 NumBits > IntegerType::MAX_INT_BITS) 1772 return error("Bitwidth for integer type out of range"); 1773 ResultTy = IntegerType::get(Context, NumBits); 1774 break; 1775 } 1776 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1777 // [pointee type, address space] 1778 if (Record.empty()) 1779 return error("Invalid record"); 1780 unsigned AddressSpace = 0; 1781 if (Record.size() == 2) 1782 AddressSpace = Record[1]; 1783 ResultTy = getTypeByID(Record[0]); 1784 if (!ResultTy || 1785 !PointerType::isValidElementType(ResultTy)) 1786 return error("Invalid type"); 1787 ResultTy = PointerType::get(ResultTy, AddressSpace); 1788 break; 1789 } 1790 case bitc::TYPE_CODE_FUNCTION_OLD: { 1791 // Deprecated, but still needed to read old bitcode files. 1792 // FUNCTION: [vararg, attrid, retty, paramty x N] 1793 if (Record.size() < 3) 1794 return error("Invalid record"); 1795 SmallVector<Type*, 8> ArgTys; 1796 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1797 if (Type *T = getTypeByID(Record[i])) 1798 ArgTys.push_back(T); 1799 else 1800 break; 1801 } 1802 1803 ResultTy = getTypeByID(Record[2]); 1804 if (!ResultTy || ArgTys.size() < Record.size()-3) 1805 return error("Invalid type"); 1806 1807 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1808 break; 1809 } 1810 case bitc::TYPE_CODE_FUNCTION: { 1811 // FUNCTION: [vararg, retty, paramty x N] 1812 if (Record.size() < 2) 1813 return error("Invalid record"); 1814 SmallVector<Type*, 8> ArgTys; 1815 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1816 if (Type *T = getTypeByID(Record[i])) { 1817 if (!FunctionType::isValidArgumentType(T)) 1818 return error("Invalid function argument type"); 1819 ArgTys.push_back(T); 1820 } 1821 else 1822 break; 1823 } 1824 1825 ResultTy = getTypeByID(Record[1]); 1826 if (!ResultTy || ArgTys.size() < Record.size()-2) 1827 return error("Invalid type"); 1828 1829 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1830 break; 1831 } 1832 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1833 if (Record.empty()) 1834 return error("Invalid record"); 1835 SmallVector<Type*, 8> EltTys; 1836 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1837 if (Type *T = getTypeByID(Record[i])) 1838 EltTys.push_back(T); 1839 else 1840 break; 1841 } 1842 if (EltTys.size() != Record.size()-1) 1843 return error("Invalid type"); 1844 ResultTy = StructType::get(Context, EltTys, Record[0]); 1845 break; 1846 } 1847 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1848 if (convertToString(Record, 0, TypeName)) 1849 return error("Invalid record"); 1850 continue; 1851 1852 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1853 if (Record.empty()) 1854 return error("Invalid record"); 1855 1856 if (NumRecords >= TypeList.size()) 1857 return error("Invalid TYPE table"); 1858 1859 // Check to see if this was forward referenced, if so fill in the temp. 1860 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1861 if (Res) { 1862 Res->setName(TypeName); 1863 TypeList[NumRecords] = nullptr; 1864 } else // Otherwise, create a new struct. 1865 Res = createIdentifiedStructType(Context, TypeName); 1866 TypeName.clear(); 1867 1868 SmallVector<Type*, 8> EltTys; 1869 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1870 if (Type *T = getTypeByID(Record[i])) 1871 EltTys.push_back(T); 1872 else 1873 break; 1874 } 1875 if (EltTys.size() != Record.size()-1) 1876 return error("Invalid record"); 1877 Res->setBody(EltTys, Record[0]); 1878 ResultTy = Res; 1879 break; 1880 } 1881 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1882 if (Record.size() != 1) 1883 return error("Invalid record"); 1884 1885 if (NumRecords >= TypeList.size()) 1886 return error("Invalid TYPE table"); 1887 1888 // Check to see if this was forward referenced, if so fill in the temp. 1889 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1890 if (Res) { 1891 Res->setName(TypeName); 1892 TypeList[NumRecords] = nullptr; 1893 } else // Otherwise, create a new struct with no body. 1894 Res = createIdentifiedStructType(Context, TypeName); 1895 TypeName.clear(); 1896 ResultTy = Res; 1897 break; 1898 } 1899 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1900 if (Record.size() < 2) 1901 return error("Invalid record"); 1902 ResultTy = getTypeByID(Record[1]); 1903 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1904 return error("Invalid type"); 1905 ResultTy = ArrayType::get(ResultTy, Record[0]); 1906 break; 1907 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1908 // [numelts, eltty, scalable] 1909 if (Record.size() < 2) 1910 return error("Invalid record"); 1911 if (Record[0] == 0) 1912 return error("Invalid vector length"); 1913 ResultTy = getTypeByID(Record[1]); 1914 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1915 return error("Invalid type"); 1916 bool Scalable = Record.size() > 2 ? Record[2] : false; 1917 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1918 break; 1919 } 1920 1921 if (NumRecords >= TypeList.size()) 1922 return error("Invalid TYPE table"); 1923 if (TypeList[NumRecords]) 1924 return error( 1925 "Invalid TYPE table: Only named structs can be forward referenced"); 1926 assert(ResultTy && "Didn't read a type?"); 1927 TypeList[NumRecords++] = ResultTy; 1928 } 1929 } 1930 1931 Error BitcodeReader::parseOperandBundleTags() { 1932 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1933 return Err; 1934 1935 if (!BundleTags.empty()) 1936 return error("Invalid multiple blocks"); 1937 1938 SmallVector<uint64_t, 64> Record; 1939 1940 while (true) { 1941 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1942 if (!MaybeEntry) 1943 return MaybeEntry.takeError(); 1944 BitstreamEntry Entry = MaybeEntry.get(); 1945 1946 switch (Entry.Kind) { 1947 case BitstreamEntry::SubBlock: // Handled for us already. 1948 case BitstreamEntry::Error: 1949 return error("Malformed block"); 1950 case BitstreamEntry::EndBlock: 1951 return Error::success(); 1952 case BitstreamEntry::Record: 1953 // The interesting case. 1954 break; 1955 } 1956 1957 // Tags are implicitly mapped to integers by their order. 1958 1959 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1960 if (!MaybeRecord) 1961 return MaybeRecord.takeError(); 1962 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1963 return error("Invalid record"); 1964 1965 // OPERAND_BUNDLE_TAG: [strchr x N] 1966 BundleTags.emplace_back(); 1967 if (convertToString(Record, 0, BundleTags.back())) 1968 return error("Invalid record"); 1969 Record.clear(); 1970 } 1971 } 1972 1973 Error BitcodeReader::parseSyncScopeNames() { 1974 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1975 return Err; 1976 1977 if (!SSIDs.empty()) 1978 return error("Invalid multiple synchronization scope names blocks"); 1979 1980 SmallVector<uint64_t, 64> Record; 1981 while (true) { 1982 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1983 if (!MaybeEntry) 1984 return MaybeEntry.takeError(); 1985 BitstreamEntry Entry = MaybeEntry.get(); 1986 1987 switch (Entry.Kind) { 1988 case BitstreamEntry::SubBlock: // Handled for us already. 1989 case BitstreamEntry::Error: 1990 return error("Malformed block"); 1991 case BitstreamEntry::EndBlock: 1992 if (SSIDs.empty()) 1993 return error("Invalid empty synchronization scope names block"); 1994 return Error::success(); 1995 case BitstreamEntry::Record: 1996 // The interesting case. 1997 break; 1998 } 1999 2000 // Synchronization scope names are implicitly mapped to synchronization 2001 // scope IDs by their order. 2002 2003 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2004 if (!MaybeRecord) 2005 return MaybeRecord.takeError(); 2006 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2007 return error("Invalid record"); 2008 2009 SmallString<16> SSN; 2010 if (convertToString(Record, 0, SSN)) 2011 return error("Invalid record"); 2012 2013 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2014 Record.clear(); 2015 } 2016 } 2017 2018 /// Associate a value with its name from the given index in the provided record. 2019 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2020 unsigned NameIndex, Triple &TT) { 2021 SmallString<128> ValueName; 2022 if (convertToString(Record, NameIndex, ValueName)) 2023 return error("Invalid record"); 2024 unsigned ValueID = Record[0]; 2025 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2026 return error("Invalid record"); 2027 Value *V = ValueList[ValueID]; 2028 2029 StringRef NameStr(ValueName.data(), ValueName.size()); 2030 if (NameStr.find_first_of(0) != StringRef::npos) 2031 return error("Invalid value name"); 2032 V->setName(NameStr); 2033 auto *GO = dyn_cast<GlobalObject>(V); 2034 if (GO) { 2035 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2036 if (TT.supportsCOMDAT()) 2037 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2038 else 2039 GO->setComdat(nullptr); 2040 } 2041 } 2042 return V; 2043 } 2044 2045 /// Helper to note and return the current location, and jump to the given 2046 /// offset. 2047 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2048 BitstreamCursor &Stream) { 2049 // Save the current parsing location so we can jump back at the end 2050 // of the VST read. 2051 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2052 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2053 return std::move(JumpFailed); 2054 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2055 if (!MaybeEntry) 2056 return MaybeEntry.takeError(); 2057 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2058 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2059 return CurrentBit; 2060 } 2061 2062 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2063 Function *F, 2064 ArrayRef<uint64_t> Record) { 2065 // Note that we subtract 1 here because the offset is relative to one word 2066 // before the start of the identification or module block, which was 2067 // historically always the start of the regular bitcode header. 2068 uint64_t FuncWordOffset = Record[1] - 1; 2069 uint64_t FuncBitOffset = FuncWordOffset * 32; 2070 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2071 // Set the LastFunctionBlockBit to point to the last function block. 2072 // Later when parsing is resumed after function materialization, 2073 // we can simply skip that last function block. 2074 if (FuncBitOffset > LastFunctionBlockBit) 2075 LastFunctionBlockBit = FuncBitOffset; 2076 } 2077 2078 /// Read a new-style GlobalValue symbol table. 2079 Error BitcodeReader::parseGlobalValueSymbolTable() { 2080 unsigned FuncBitcodeOffsetDelta = 2081 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2082 2083 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2084 return Err; 2085 2086 SmallVector<uint64_t, 64> Record; 2087 while (true) { 2088 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2089 if (!MaybeEntry) 2090 return MaybeEntry.takeError(); 2091 BitstreamEntry Entry = MaybeEntry.get(); 2092 2093 switch (Entry.Kind) { 2094 case BitstreamEntry::SubBlock: 2095 case BitstreamEntry::Error: 2096 return error("Malformed block"); 2097 case BitstreamEntry::EndBlock: 2098 return Error::success(); 2099 case BitstreamEntry::Record: 2100 break; 2101 } 2102 2103 Record.clear(); 2104 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2105 if (!MaybeRecord) 2106 return MaybeRecord.takeError(); 2107 switch (MaybeRecord.get()) { 2108 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2109 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2110 cast<Function>(ValueList[Record[0]]), Record); 2111 break; 2112 } 2113 } 2114 } 2115 2116 /// Parse the value symbol table at either the current parsing location or 2117 /// at the given bit offset if provided. 2118 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2119 uint64_t CurrentBit; 2120 // Pass in the Offset to distinguish between calling for the module-level 2121 // VST (where we want to jump to the VST offset) and the function-level 2122 // VST (where we don't). 2123 if (Offset > 0) { 2124 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2125 if (!MaybeCurrentBit) 2126 return MaybeCurrentBit.takeError(); 2127 CurrentBit = MaybeCurrentBit.get(); 2128 // If this module uses a string table, read this as a module-level VST. 2129 if (UseStrtab) { 2130 if (Error Err = parseGlobalValueSymbolTable()) 2131 return Err; 2132 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2133 return JumpFailed; 2134 return Error::success(); 2135 } 2136 // Otherwise, the VST will be in a similar format to a function-level VST, 2137 // and will contain symbol names. 2138 } 2139 2140 // Compute the delta between the bitcode indices in the VST (the word offset 2141 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2142 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2143 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2144 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2145 // just before entering the VST subblock because: 1) the EnterSubBlock 2146 // changes the AbbrevID width; 2) the VST block is nested within the same 2147 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2148 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2149 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2150 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2151 unsigned FuncBitcodeOffsetDelta = 2152 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2153 2154 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2155 return Err; 2156 2157 SmallVector<uint64_t, 64> Record; 2158 2159 Triple TT(TheModule->getTargetTriple()); 2160 2161 // Read all the records for this value table. 2162 SmallString<128> ValueName; 2163 2164 while (true) { 2165 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2166 if (!MaybeEntry) 2167 return MaybeEntry.takeError(); 2168 BitstreamEntry Entry = MaybeEntry.get(); 2169 2170 switch (Entry.Kind) { 2171 case BitstreamEntry::SubBlock: // Handled for us already. 2172 case BitstreamEntry::Error: 2173 return error("Malformed block"); 2174 case BitstreamEntry::EndBlock: 2175 if (Offset > 0) 2176 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2177 return JumpFailed; 2178 return Error::success(); 2179 case BitstreamEntry::Record: 2180 // The interesting case. 2181 break; 2182 } 2183 2184 // Read a record. 2185 Record.clear(); 2186 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2187 if (!MaybeRecord) 2188 return MaybeRecord.takeError(); 2189 switch (MaybeRecord.get()) { 2190 default: // Default behavior: unknown type. 2191 break; 2192 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2193 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2194 if (Error Err = ValOrErr.takeError()) 2195 return Err; 2196 ValOrErr.get(); 2197 break; 2198 } 2199 case bitc::VST_CODE_FNENTRY: { 2200 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2201 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2202 if (Error Err = ValOrErr.takeError()) 2203 return Err; 2204 Value *V = ValOrErr.get(); 2205 2206 // Ignore function offsets emitted for aliases of functions in older 2207 // versions of LLVM. 2208 if (auto *F = dyn_cast<Function>(V)) 2209 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2210 break; 2211 } 2212 case bitc::VST_CODE_BBENTRY: { 2213 if (convertToString(Record, 1, ValueName)) 2214 return error("Invalid record"); 2215 BasicBlock *BB = getBasicBlock(Record[0]); 2216 if (!BB) 2217 return error("Invalid record"); 2218 2219 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2220 ValueName.clear(); 2221 break; 2222 } 2223 } 2224 } 2225 } 2226 2227 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2228 /// encoding. 2229 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2230 if ((V & 1) == 0) 2231 return V >> 1; 2232 if (V != 1) 2233 return -(V >> 1); 2234 // There is no such thing as -0 with integers. "-0" really means MININT. 2235 return 1ULL << 63; 2236 } 2237 2238 /// Resolve all of the initializers for global values and aliases that we can. 2239 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2240 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2241 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2242 IndirectSymbolInitWorklist; 2243 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2244 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2245 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2246 2247 GlobalInitWorklist.swap(GlobalInits); 2248 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2249 FunctionPrefixWorklist.swap(FunctionPrefixes); 2250 FunctionPrologueWorklist.swap(FunctionPrologues); 2251 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2252 2253 while (!GlobalInitWorklist.empty()) { 2254 unsigned ValID = GlobalInitWorklist.back().second; 2255 if (ValID >= ValueList.size()) { 2256 // Not ready to resolve this yet, it requires something later in the file. 2257 GlobalInits.push_back(GlobalInitWorklist.back()); 2258 } else { 2259 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2260 GlobalInitWorklist.back().first->setInitializer(C); 2261 else 2262 return error("Expected a constant"); 2263 } 2264 GlobalInitWorklist.pop_back(); 2265 } 2266 2267 while (!IndirectSymbolInitWorklist.empty()) { 2268 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2269 if (ValID >= ValueList.size()) { 2270 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2271 } else { 2272 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2273 if (!C) 2274 return error("Expected a constant"); 2275 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2276 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2277 return error("Alias and aliasee types don't match"); 2278 GIS->setIndirectSymbol(C); 2279 } 2280 IndirectSymbolInitWorklist.pop_back(); 2281 } 2282 2283 while (!FunctionPrefixWorklist.empty()) { 2284 unsigned ValID = FunctionPrefixWorklist.back().second; 2285 if (ValID >= ValueList.size()) { 2286 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2287 } else { 2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2289 FunctionPrefixWorklist.back().first->setPrefixData(C); 2290 else 2291 return error("Expected a constant"); 2292 } 2293 FunctionPrefixWorklist.pop_back(); 2294 } 2295 2296 while (!FunctionPrologueWorklist.empty()) { 2297 unsigned ValID = FunctionPrologueWorklist.back().second; 2298 if (ValID >= ValueList.size()) { 2299 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2300 } else { 2301 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2302 FunctionPrologueWorklist.back().first->setPrologueData(C); 2303 else 2304 return error("Expected a constant"); 2305 } 2306 FunctionPrologueWorklist.pop_back(); 2307 } 2308 2309 while (!FunctionPersonalityFnWorklist.empty()) { 2310 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2311 if (ValID >= ValueList.size()) { 2312 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2313 } else { 2314 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2315 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2316 else 2317 return error("Expected a constant"); 2318 } 2319 FunctionPersonalityFnWorklist.pop_back(); 2320 } 2321 2322 return Error::success(); 2323 } 2324 2325 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2326 SmallVector<uint64_t, 8> Words(Vals.size()); 2327 transform(Vals, Words.begin(), 2328 BitcodeReader::decodeSignRotatedValue); 2329 2330 return APInt(TypeBits, Words); 2331 } 2332 2333 Error BitcodeReader::parseConstants() { 2334 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2335 return Err; 2336 2337 SmallVector<uint64_t, 64> Record; 2338 2339 // Read all the records for this value table. 2340 Type *CurTy = Type::getInt32Ty(Context); 2341 Type *CurFullTy = Type::getInt32Ty(Context); 2342 unsigned NextCstNo = ValueList.size(); 2343 2344 struct DelayedShufTy { 2345 VectorType *OpTy; 2346 VectorType *RTy; 2347 Type *CurFullTy; 2348 uint64_t Op0Idx; 2349 uint64_t Op1Idx; 2350 uint64_t Op2Idx; 2351 unsigned CstNo; 2352 }; 2353 std::vector<DelayedShufTy> DelayedShuffles; 2354 while (true) { 2355 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2356 if (!MaybeEntry) 2357 return MaybeEntry.takeError(); 2358 BitstreamEntry Entry = MaybeEntry.get(); 2359 2360 switch (Entry.Kind) { 2361 case BitstreamEntry::SubBlock: // Handled for us already. 2362 case BitstreamEntry::Error: 2363 return error("Malformed block"); 2364 case BitstreamEntry::EndBlock: 2365 // Once all the constants have been read, go through and resolve forward 2366 // references. 2367 // 2368 // We have to treat shuffles specially because they don't have three 2369 // operands anymore. We need to convert the shuffle mask into an array, 2370 // and we can't convert a forward reference. 2371 for (auto &DelayedShuffle : DelayedShuffles) { 2372 VectorType *OpTy = DelayedShuffle.OpTy; 2373 VectorType *RTy = DelayedShuffle.RTy; 2374 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2375 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2376 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2377 uint64_t CstNo = DelayedShuffle.CstNo; 2378 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2379 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2380 Type *ShufTy = 2381 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2382 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2383 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2384 return error("Invalid shufflevector operands"); 2385 SmallVector<int, 16> Mask; 2386 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2387 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2388 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2389 } 2390 2391 if (NextCstNo != ValueList.size()) 2392 return error("Invalid constant reference"); 2393 2394 ValueList.resolveConstantForwardRefs(); 2395 return Error::success(); 2396 case BitstreamEntry::Record: 2397 // The interesting case. 2398 break; 2399 } 2400 2401 // Read a record. 2402 Record.clear(); 2403 Type *VoidType = Type::getVoidTy(Context); 2404 Value *V = nullptr; 2405 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2406 if (!MaybeBitCode) 2407 return MaybeBitCode.takeError(); 2408 switch (unsigned BitCode = MaybeBitCode.get()) { 2409 default: // Default behavior: unknown constant 2410 case bitc::CST_CODE_UNDEF: // UNDEF 2411 V = UndefValue::get(CurTy); 2412 break; 2413 case bitc::CST_CODE_POISON: // POISON 2414 V = PoisonValue::get(CurTy); 2415 break; 2416 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2417 if (Record.empty()) 2418 return error("Invalid record"); 2419 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2420 return error("Invalid record"); 2421 if (TypeList[Record[0]] == VoidType) 2422 return error("Invalid constant type"); 2423 CurFullTy = TypeList[Record[0]]; 2424 CurTy = flattenPointerTypes(CurFullTy); 2425 continue; // Skip the ValueList manipulation. 2426 case bitc::CST_CODE_NULL: // NULL 2427 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2428 return error("Invalid type for a constant null value"); 2429 V = Constant::getNullValue(CurTy); 2430 break; 2431 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2432 if (!CurTy->isIntegerTy() || Record.empty()) 2433 return error("Invalid record"); 2434 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2435 break; 2436 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2437 if (!CurTy->isIntegerTy() || Record.empty()) 2438 return error("Invalid record"); 2439 2440 APInt VInt = 2441 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2442 V = ConstantInt::get(Context, VInt); 2443 2444 break; 2445 } 2446 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2447 if (Record.empty()) 2448 return error("Invalid record"); 2449 if (CurTy->isHalfTy()) 2450 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2451 APInt(16, (uint16_t)Record[0]))); 2452 else if (CurTy->isBFloatTy()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2454 APInt(16, (uint32_t)Record[0]))); 2455 else if (CurTy->isFloatTy()) 2456 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2457 APInt(32, (uint32_t)Record[0]))); 2458 else if (CurTy->isDoubleTy()) 2459 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2460 APInt(64, Record[0]))); 2461 else if (CurTy->isX86_FP80Ty()) { 2462 // Bits are not stored the same way as a normal i80 APInt, compensate. 2463 uint64_t Rearrange[2]; 2464 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2465 Rearrange[1] = Record[0] >> 48; 2466 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2467 APInt(80, Rearrange))); 2468 } else if (CurTy->isFP128Ty()) 2469 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2470 APInt(128, Record))); 2471 else if (CurTy->isPPC_FP128Ty()) 2472 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2473 APInt(128, Record))); 2474 else 2475 V = UndefValue::get(CurTy); 2476 break; 2477 } 2478 2479 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2480 if (Record.empty()) 2481 return error("Invalid record"); 2482 2483 unsigned Size = Record.size(); 2484 SmallVector<Constant*, 16> Elts; 2485 2486 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2487 for (unsigned i = 0; i != Size; ++i) 2488 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2489 STy->getElementType(i))); 2490 V = ConstantStruct::get(STy, Elts); 2491 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2492 Type *EltTy = ATy->getElementType(); 2493 for (unsigned i = 0; i != Size; ++i) 2494 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2495 V = ConstantArray::get(ATy, Elts); 2496 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2497 Type *EltTy = VTy->getElementType(); 2498 for (unsigned i = 0; i != Size; ++i) 2499 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2500 V = ConstantVector::get(Elts); 2501 } else { 2502 V = UndefValue::get(CurTy); 2503 } 2504 break; 2505 } 2506 case bitc::CST_CODE_STRING: // STRING: [values] 2507 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2508 if (Record.empty()) 2509 return error("Invalid record"); 2510 2511 SmallString<16> Elts(Record.begin(), Record.end()); 2512 V = ConstantDataArray::getString(Context, Elts, 2513 BitCode == bitc::CST_CODE_CSTRING); 2514 break; 2515 } 2516 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2517 if (Record.empty()) 2518 return error("Invalid record"); 2519 2520 Type *EltTy; 2521 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2522 EltTy = Array->getElementType(); 2523 else 2524 EltTy = cast<VectorType>(CurTy)->getElementType(); 2525 if (EltTy->isIntegerTy(8)) { 2526 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2527 if (isa<VectorType>(CurTy)) 2528 V = ConstantDataVector::get(Context, Elts); 2529 else 2530 V = ConstantDataArray::get(Context, Elts); 2531 } else if (EltTy->isIntegerTy(16)) { 2532 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2533 if (isa<VectorType>(CurTy)) 2534 V = ConstantDataVector::get(Context, Elts); 2535 else 2536 V = ConstantDataArray::get(Context, Elts); 2537 } else if (EltTy->isIntegerTy(32)) { 2538 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2539 if (isa<VectorType>(CurTy)) 2540 V = ConstantDataVector::get(Context, Elts); 2541 else 2542 V = ConstantDataArray::get(Context, Elts); 2543 } else if (EltTy->isIntegerTy(64)) { 2544 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2545 if (isa<VectorType>(CurTy)) 2546 V = ConstantDataVector::get(Context, Elts); 2547 else 2548 V = ConstantDataArray::get(Context, Elts); 2549 } else if (EltTy->isHalfTy()) { 2550 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2551 if (isa<VectorType>(CurTy)) 2552 V = ConstantDataVector::getFP(EltTy, Elts); 2553 else 2554 V = ConstantDataArray::getFP(EltTy, Elts); 2555 } else if (EltTy->isBFloatTy()) { 2556 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2557 if (isa<VectorType>(CurTy)) 2558 V = ConstantDataVector::getFP(EltTy, Elts); 2559 else 2560 V = ConstantDataArray::getFP(EltTy, Elts); 2561 } else if (EltTy->isFloatTy()) { 2562 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2563 if (isa<VectorType>(CurTy)) 2564 V = ConstantDataVector::getFP(EltTy, Elts); 2565 else 2566 V = ConstantDataArray::getFP(EltTy, Elts); 2567 } else if (EltTy->isDoubleTy()) { 2568 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2569 if (isa<VectorType>(CurTy)) 2570 V = ConstantDataVector::getFP(EltTy, Elts); 2571 else 2572 V = ConstantDataArray::getFP(EltTy, Elts); 2573 } else { 2574 return error("Invalid type for value"); 2575 } 2576 break; 2577 } 2578 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2579 if (Record.size() < 2) 2580 return error("Invalid record"); 2581 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2582 if (Opc < 0) { 2583 V = UndefValue::get(CurTy); // Unknown unop. 2584 } else { 2585 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2586 unsigned Flags = 0; 2587 V = ConstantExpr::get(Opc, LHS, Flags); 2588 } 2589 break; 2590 } 2591 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2592 if (Record.size() < 3) 2593 return error("Invalid record"); 2594 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2595 if (Opc < 0) { 2596 V = UndefValue::get(CurTy); // Unknown binop. 2597 } else { 2598 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2599 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2600 unsigned Flags = 0; 2601 if (Record.size() >= 4) { 2602 if (Opc == Instruction::Add || 2603 Opc == Instruction::Sub || 2604 Opc == Instruction::Mul || 2605 Opc == Instruction::Shl) { 2606 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2607 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2608 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2609 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2610 } else if (Opc == Instruction::SDiv || 2611 Opc == Instruction::UDiv || 2612 Opc == Instruction::LShr || 2613 Opc == Instruction::AShr) { 2614 if (Record[3] & (1 << bitc::PEO_EXACT)) 2615 Flags |= SDivOperator::IsExact; 2616 } 2617 } 2618 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2619 } 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2623 if (Record.size() < 3) 2624 return error("Invalid record"); 2625 int Opc = getDecodedCastOpcode(Record[0]); 2626 if (Opc < 0) { 2627 V = UndefValue::get(CurTy); // Unknown cast. 2628 } else { 2629 Type *OpTy = getTypeByID(Record[1]); 2630 if (!OpTy) 2631 return error("Invalid record"); 2632 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2633 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2634 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2635 } 2636 break; 2637 } 2638 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2639 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2640 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2641 // operands] 2642 unsigned OpNum = 0; 2643 Type *PointeeType = nullptr; 2644 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2645 Record.size() % 2) 2646 PointeeType = getTypeByID(Record[OpNum++]); 2647 2648 bool InBounds = false; 2649 Optional<unsigned> InRangeIndex; 2650 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2651 uint64_t Op = Record[OpNum++]; 2652 InBounds = Op & 1; 2653 InRangeIndex = Op >> 1; 2654 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2655 InBounds = true; 2656 2657 SmallVector<Constant*, 16> Elts; 2658 Type *Elt0FullTy = nullptr; 2659 while (OpNum != Record.size()) { 2660 if (!Elt0FullTy) 2661 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2662 Type *ElTy = getTypeByID(Record[OpNum++]); 2663 if (!ElTy) 2664 return error("Invalid record"); 2665 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2666 } 2667 2668 if (Elts.size() < 1) 2669 return error("Invalid gep with no operands"); 2670 2671 Type *ImplicitPointeeType = 2672 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2673 if (!PointeeType) 2674 PointeeType = ImplicitPointeeType; 2675 else if (PointeeType != ImplicitPointeeType) 2676 return error("Explicit gep operator type does not match pointee type " 2677 "of pointer operand"); 2678 2679 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2680 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2681 InBounds, InRangeIndex); 2682 break; 2683 } 2684 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2685 if (Record.size() < 3) 2686 return error("Invalid record"); 2687 2688 Type *SelectorTy = Type::getInt1Ty(Context); 2689 2690 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2691 // Get the type from the ValueList before getting a forward ref. 2692 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2693 if (Value *V = ValueList[Record[0]]) 2694 if (SelectorTy != V->getType()) 2695 SelectorTy = VectorType::get(SelectorTy, 2696 VTy->getElementCount()); 2697 2698 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2699 SelectorTy), 2700 ValueList.getConstantFwdRef(Record[1],CurTy), 2701 ValueList.getConstantFwdRef(Record[2],CurTy)); 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_EXTRACTELT 2705 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2706 if (Record.size() < 3) 2707 return error("Invalid record"); 2708 VectorType *OpTy = 2709 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2710 if (!OpTy) 2711 return error("Invalid record"); 2712 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2713 Constant *Op1 = nullptr; 2714 if (Record.size() == 4) { 2715 Type *IdxTy = getTypeByID(Record[2]); 2716 if (!IdxTy) 2717 return error("Invalid record"); 2718 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2719 } else { 2720 // Deprecated, but still needed to read old bitcode files. 2721 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2722 } 2723 if (!Op1) 2724 return error("Invalid record"); 2725 V = ConstantExpr::getExtractElement(Op0, Op1); 2726 break; 2727 } 2728 case bitc::CST_CODE_CE_INSERTELT 2729 : { // CE_INSERTELT: [opval, opval, opty, opval] 2730 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2731 if (Record.size() < 3 || !OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2734 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2735 OpTy->getElementType()); 2736 Constant *Op2 = nullptr; 2737 if (Record.size() == 4) { 2738 Type *IdxTy = getTypeByID(Record[2]); 2739 if (!IdxTy) 2740 return error("Invalid record"); 2741 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2742 } else { 2743 // Deprecated, but still needed to read old bitcode files. 2744 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2745 } 2746 if (!Op2) 2747 return error("Invalid record"); 2748 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2749 break; 2750 } 2751 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2752 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2753 if (Record.size() < 3 || !OpTy) 2754 return error("Invalid record"); 2755 DelayedShuffles.push_back( 2756 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2757 ++NextCstNo; 2758 continue; 2759 } 2760 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2761 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2762 VectorType *OpTy = 2763 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2764 if (Record.size() < 4 || !RTy || !OpTy) 2765 return error("Invalid record"); 2766 DelayedShuffles.push_back( 2767 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2768 ++NextCstNo; 2769 continue; 2770 } 2771 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2772 if (Record.size() < 4) 2773 return error("Invalid record"); 2774 Type *OpTy = getTypeByID(Record[0]); 2775 if (!OpTy) 2776 return error("Invalid record"); 2777 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2778 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2779 2780 if (OpTy->isFPOrFPVectorTy()) 2781 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2782 else 2783 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2784 break; 2785 } 2786 // This maintains backward compatibility, pre-asm dialect keywords. 2787 // Deprecated, but still needed to read old bitcode files. 2788 case bitc::CST_CODE_INLINEASM_OLD: { 2789 if (Record.size() < 2) 2790 return error("Invalid record"); 2791 std::string AsmStr, ConstrStr; 2792 bool HasSideEffects = Record[0] & 1; 2793 bool IsAlignStack = Record[0] >> 1; 2794 unsigned AsmStrSize = Record[1]; 2795 if (2+AsmStrSize >= Record.size()) 2796 return error("Invalid record"); 2797 unsigned ConstStrSize = Record[2+AsmStrSize]; 2798 if (3+AsmStrSize+ConstStrSize > Record.size()) 2799 return error("Invalid record"); 2800 2801 for (unsigned i = 0; i != AsmStrSize; ++i) 2802 AsmStr += (char)Record[2+i]; 2803 for (unsigned i = 0; i != ConstStrSize; ++i) 2804 ConstrStr += (char)Record[3+AsmStrSize+i]; 2805 UpgradeInlineAsmString(&AsmStr); 2806 V = InlineAsm::get( 2807 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2808 ConstrStr, HasSideEffects, IsAlignStack); 2809 break; 2810 } 2811 // This version adds support for the asm dialect keywords (e.g., 2812 // inteldialect). 2813 case bitc::CST_CODE_INLINEASM: { 2814 if (Record.size() < 2) 2815 return error("Invalid record"); 2816 std::string AsmStr, ConstrStr; 2817 bool HasSideEffects = Record[0] & 1; 2818 bool IsAlignStack = (Record[0] >> 1) & 1; 2819 unsigned AsmDialect = Record[0] >> 2; 2820 unsigned AsmStrSize = Record[1]; 2821 if (2+AsmStrSize >= Record.size()) 2822 return error("Invalid record"); 2823 unsigned ConstStrSize = Record[2+AsmStrSize]; 2824 if (3+AsmStrSize+ConstStrSize > Record.size()) 2825 return error("Invalid record"); 2826 2827 for (unsigned i = 0; i != AsmStrSize; ++i) 2828 AsmStr += (char)Record[2+i]; 2829 for (unsigned i = 0; i != ConstStrSize; ++i) 2830 ConstrStr += (char)Record[3+AsmStrSize+i]; 2831 UpgradeInlineAsmString(&AsmStr); 2832 V = InlineAsm::get( 2833 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2834 ConstrStr, HasSideEffects, IsAlignStack, 2835 InlineAsm::AsmDialect(AsmDialect)); 2836 break; 2837 } 2838 case bitc::CST_CODE_BLOCKADDRESS:{ 2839 if (Record.size() < 3) 2840 return error("Invalid record"); 2841 Type *FnTy = getTypeByID(Record[0]); 2842 if (!FnTy) 2843 return error("Invalid record"); 2844 Function *Fn = 2845 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2846 if (!Fn) 2847 return error("Invalid record"); 2848 2849 // If the function is already parsed we can insert the block address right 2850 // away. 2851 BasicBlock *BB; 2852 unsigned BBID = Record[2]; 2853 if (!BBID) 2854 // Invalid reference to entry block. 2855 return error("Invalid ID"); 2856 if (!Fn->empty()) { 2857 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2858 for (size_t I = 0, E = BBID; I != E; ++I) { 2859 if (BBI == BBE) 2860 return error("Invalid ID"); 2861 ++BBI; 2862 } 2863 BB = &*BBI; 2864 } else { 2865 // Otherwise insert a placeholder and remember it so it can be inserted 2866 // when the function is parsed. 2867 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2868 if (FwdBBs.empty()) 2869 BasicBlockFwdRefQueue.push_back(Fn); 2870 if (FwdBBs.size() < BBID + 1) 2871 FwdBBs.resize(BBID + 1); 2872 if (!FwdBBs[BBID]) 2873 FwdBBs[BBID] = BasicBlock::Create(Context); 2874 BB = FwdBBs[BBID]; 2875 } 2876 V = BlockAddress::get(Fn, BB); 2877 break; 2878 } 2879 } 2880 2881 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2882 "Incorrect fully structured type provided for Constant"); 2883 ValueList.assignValue(V, NextCstNo, CurFullTy); 2884 ++NextCstNo; 2885 } 2886 } 2887 2888 Error BitcodeReader::parseUseLists() { 2889 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2890 return Err; 2891 2892 // Read all the records. 2893 SmallVector<uint64_t, 64> Record; 2894 2895 while (true) { 2896 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2897 if (!MaybeEntry) 2898 return MaybeEntry.takeError(); 2899 BitstreamEntry Entry = MaybeEntry.get(); 2900 2901 switch (Entry.Kind) { 2902 case BitstreamEntry::SubBlock: // Handled for us already. 2903 case BitstreamEntry::Error: 2904 return error("Malformed block"); 2905 case BitstreamEntry::EndBlock: 2906 return Error::success(); 2907 case BitstreamEntry::Record: 2908 // The interesting case. 2909 break; 2910 } 2911 2912 // Read a use list record. 2913 Record.clear(); 2914 bool IsBB = false; 2915 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2916 if (!MaybeRecord) 2917 return MaybeRecord.takeError(); 2918 switch (MaybeRecord.get()) { 2919 default: // Default behavior: unknown type. 2920 break; 2921 case bitc::USELIST_CODE_BB: 2922 IsBB = true; 2923 LLVM_FALLTHROUGH; 2924 case bitc::USELIST_CODE_DEFAULT: { 2925 unsigned RecordLength = Record.size(); 2926 if (RecordLength < 3) 2927 // Records should have at least an ID and two indexes. 2928 return error("Invalid record"); 2929 unsigned ID = Record.back(); 2930 Record.pop_back(); 2931 2932 Value *V; 2933 if (IsBB) { 2934 assert(ID < FunctionBBs.size() && "Basic block not found"); 2935 V = FunctionBBs[ID]; 2936 } else 2937 V = ValueList[ID]; 2938 unsigned NumUses = 0; 2939 SmallDenseMap<const Use *, unsigned, 16> Order; 2940 for (const Use &U : V->materialized_uses()) { 2941 if (++NumUses > Record.size()) 2942 break; 2943 Order[&U] = Record[NumUses - 1]; 2944 } 2945 if (Order.size() != Record.size() || NumUses > Record.size()) 2946 // Mismatches can happen if the functions are being materialized lazily 2947 // (out-of-order), or a value has been upgraded. 2948 break; 2949 2950 V->sortUseList([&](const Use &L, const Use &R) { 2951 return Order.lookup(&L) < Order.lookup(&R); 2952 }); 2953 break; 2954 } 2955 } 2956 } 2957 } 2958 2959 /// When we see the block for metadata, remember where it is and then skip it. 2960 /// This lets us lazily deserialize the metadata. 2961 Error BitcodeReader::rememberAndSkipMetadata() { 2962 // Save the current stream state. 2963 uint64_t CurBit = Stream.GetCurrentBitNo(); 2964 DeferredMetadataInfo.push_back(CurBit); 2965 2966 // Skip over the block for now. 2967 if (Error Err = Stream.SkipBlock()) 2968 return Err; 2969 return Error::success(); 2970 } 2971 2972 Error BitcodeReader::materializeMetadata() { 2973 for (uint64_t BitPos : DeferredMetadataInfo) { 2974 // Move the bit stream to the saved position. 2975 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2976 return JumpFailed; 2977 if (Error Err = MDLoader->parseModuleMetadata()) 2978 return Err; 2979 } 2980 2981 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2982 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 2983 // multiple times. 2984 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 2985 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2986 NamedMDNode *LinkerOpts = 2987 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2988 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2989 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2990 } 2991 } 2992 2993 DeferredMetadataInfo.clear(); 2994 return Error::success(); 2995 } 2996 2997 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2998 2999 /// When we see the block for a function body, remember where it is and then 3000 /// skip it. This lets us lazily deserialize the functions. 3001 Error BitcodeReader::rememberAndSkipFunctionBody() { 3002 // Get the function we are talking about. 3003 if (FunctionsWithBodies.empty()) 3004 return error("Insufficient function protos"); 3005 3006 Function *Fn = FunctionsWithBodies.back(); 3007 FunctionsWithBodies.pop_back(); 3008 3009 // Save the current stream state. 3010 uint64_t CurBit = Stream.GetCurrentBitNo(); 3011 assert( 3012 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3013 "Mismatch between VST and scanned function offsets"); 3014 DeferredFunctionInfo[Fn] = CurBit; 3015 3016 // Skip over the function block for now. 3017 if (Error Err = Stream.SkipBlock()) 3018 return Err; 3019 return Error::success(); 3020 } 3021 3022 Error BitcodeReader::globalCleanup() { 3023 // Patch the initializers for globals and aliases up. 3024 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3025 return Err; 3026 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3027 return error("Malformed global initializer set"); 3028 3029 // Look for intrinsic functions which need to be upgraded at some point 3030 // and functions that need to have their function attributes upgraded. 3031 for (Function &F : *TheModule) { 3032 MDLoader->upgradeDebugIntrinsics(F); 3033 Function *NewFn; 3034 if (UpgradeIntrinsicFunction(&F, NewFn)) 3035 UpgradedIntrinsics[&F] = NewFn; 3036 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3037 // Some types could be renamed during loading if several modules are 3038 // loaded in the same LLVMContext (LTO scenario). In this case we should 3039 // remangle intrinsics names as well. 3040 RemangledIntrinsics[&F] = Remangled.getValue(); 3041 // Look for functions that rely on old function attribute behavior. 3042 UpgradeFunctionAttributes(F); 3043 } 3044 3045 // Look for global variables which need to be renamed. 3046 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3047 for (GlobalVariable &GV : TheModule->globals()) 3048 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3049 UpgradedVariables.emplace_back(&GV, Upgraded); 3050 for (auto &Pair : UpgradedVariables) { 3051 Pair.first->eraseFromParent(); 3052 TheModule->getGlobalList().push_back(Pair.second); 3053 } 3054 3055 // Force deallocation of memory for these vectors to favor the client that 3056 // want lazy deserialization. 3057 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3058 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3059 IndirectSymbolInits); 3060 return Error::success(); 3061 } 3062 3063 /// Support for lazy parsing of function bodies. This is required if we 3064 /// either have an old bitcode file without a VST forward declaration record, 3065 /// or if we have an anonymous function being materialized, since anonymous 3066 /// functions do not have a name and are therefore not in the VST. 3067 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3068 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3069 return JumpFailed; 3070 3071 if (Stream.AtEndOfStream()) 3072 return error("Could not find function in stream"); 3073 3074 if (!SeenFirstFunctionBody) 3075 return error("Trying to materialize functions before seeing function blocks"); 3076 3077 // An old bitcode file with the symbol table at the end would have 3078 // finished the parse greedily. 3079 assert(SeenValueSymbolTable); 3080 3081 SmallVector<uint64_t, 64> Record; 3082 3083 while (true) { 3084 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3085 if (!MaybeEntry) 3086 return MaybeEntry.takeError(); 3087 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3088 3089 switch (Entry.Kind) { 3090 default: 3091 return error("Expect SubBlock"); 3092 case BitstreamEntry::SubBlock: 3093 switch (Entry.ID) { 3094 default: 3095 return error("Expect function block"); 3096 case bitc::FUNCTION_BLOCK_ID: 3097 if (Error Err = rememberAndSkipFunctionBody()) 3098 return Err; 3099 NextUnreadBit = Stream.GetCurrentBitNo(); 3100 return Error::success(); 3101 } 3102 } 3103 } 3104 } 3105 3106 bool BitcodeReaderBase::readBlockInfo() { 3107 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3108 Stream.ReadBlockInfoBlock(); 3109 if (!MaybeNewBlockInfo) 3110 return true; // FIXME Handle the error. 3111 Optional<BitstreamBlockInfo> NewBlockInfo = 3112 std::move(MaybeNewBlockInfo.get()); 3113 if (!NewBlockInfo) 3114 return true; 3115 BlockInfo = std::move(*NewBlockInfo); 3116 return false; 3117 } 3118 3119 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3120 // v1: [selection_kind, name] 3121 // v2: [strtab_offset, strtab_size, selection_kind] 3122 StringRef Name; 3123 std::tie(Name, Record) = readNameFromStrtab(Record); 3124 3125 if (Record.empty()) 3126 return error("Invalid record"); 3127 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3128 std::string OldFormatName; 3129 if (!UseStrtab) { 3130 if (Record.size() < 2) 3131 return error("Invalid record"); 3132 unsigned ComdatNameSize = Record[1]; 3133 OldFormatName.reserve(ComdatNameSize); 3134 for (unsigned i = 0; i != ComdatNameSize; ++i) 3135 OldFormatName += (char)Record[2 + i]; 3136 Name = OldFormatName; 3137 } 3138 Comdat *C = TheModule->getOrInsertComdat(Name); 3139 C->setSelectionKind(SK); 3140 ComdatList.push_back(C); 3141 return Error::success(); 3142 } 3143 3144 static void inferDSOLocal(GlobalValue *GV) { 3145 // infer dso_local from linkage and visibility if it is not encoded. 3146 if (GV->hasLocalLinkage() || 3147 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3148 GV->setDSOLocal(true); 3149 } 3150 3151 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3152 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3153 // visibility, threadlocal, unnamed_addr, externally_initialized, 3154 // dllstorageclass, comdat, attributes, preemption specifier, 3155 // partition strtab offset, partition strtab size] (name in VST) 3156 // v2: [strtab_offset, strtab_size, v1] 3157 StringRef Name; 3158 std::tie(Name, Record) = readNameFromStrtab(Record); 3159 3160 if (Record.size() < 6) 3161 return error("Invalid record"); 3162 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3163 Type *Ty = flattenPointerTypes(FullTy); 3164 if (!Ty) 3165 return error("Invalid record"); 3166 bool isConstant = Record[1] & 1; 3167 bool explicitType = Record[1] & 2; 3168 unsigned AddressSpace; 3169 if (explicitType) { 3170 AddressSpace = Record[1] >> 2; 3171 } else { 3172 if (!Ty->isPointerTy()) 3173 return error("Invalid type for value"); 3174 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3175 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3176 } 3177 3178 uint64_t RawLinkage = Record[3]; 3179 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3180 MaybeAlign Alignment; 3181 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3182 return Err; 3183 std::string Section; 3184 if (Record[5]) { 3185 if (Record[5] - 1 >= SectionTable.size()) 3186 return error("Invalid ID"); 3187 Section = SectionTable[Record[5] - 1]; 3188 } 3189 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3190 // Local linkage must have default visibility. 3191 // auto-upgrade `hidden` and `protected` for old bitcode. 3192 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3193 Visibility = getDecodedVisibility(Record[6]); 3194 3195 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3196 if (Record.size() > 7) 3197 TLM = getDecodedThreadLocalMode(Record[7]); 3198 3199 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3200 if (Record.size() > 8) 3201 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3202 3203 bool ExternallyInitialized = false; 3204 if (Record.size() > 9) 3205 ExternallyInitialized = Record[9]; 3206 3207 GlobalVariable *NewGV = 3208 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3209 nullptr, TLM, AddressSpace, ExternallyInitialized); 3210 NewGV->setAlignment(Alignment); 3211 if (!Section.empty()) 3212 NewGV->setSection(Section); 3213 NewGV->setVisibility(Visibility); 3214 NewGV->setUnnamedAddr(UnnamedAddr); 3215 3216 if (Record.size() > 10) 3217 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3218 else 3219 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3220 3221 FullTy = PointerType::get(FullTy, AddressSpace); 3222 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3223 "Incorrect fully specified type for GlobalVariable"); 3224 ValueList.push_back(NewGV, FullTy); 3225 3226 // Remember which value to use for the global initializer. 3227 if (unsigned InitID = Record[2]) 3228 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3229 3230 if (Record.size() > 11) { 3231 if (unsigned ComdatID = Record[11]) { 3232 if (ComdatID > ComdatList.size()) 3233 return error("Invalid global variable comdat ID"); 3234 NewGV->setComdat(ComdatList[ComdatID - 1]); 3235 } 3236 } else if (hasImplicitComdat(RawLinkage)) { 3237 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3238 } 3239 3240 if (Record.size() > 12) { 3241 auto AS = getAttributes(Record[12]).getFnAttributes(); 3242 NewGV->setAttributes(AS); 3243 } 3244 3245 if (Record.size() > 13) { 3246 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3247 } 3248 inferDSOLocal(NewGV); 3249 3250 // Check whether we have enough values to read a partition name. 3251 if (Record.size() > 15) 3252 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3253 3254 return Error::success(); 3255 } 3256 3257 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3258 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3259 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3260 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3261 // v2: [strtab_offset, strtab_size, v1] 3262 StringRef Name; 3263 std::tie(Name, Record) = readNameFromStrtab(Record); 3264 3265 if (Record.size() < 8) 3266 return error("Invalid record"); 3267 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3268 Type *FTy = flattenPointerTypes(FullFTy); 3269 if (!FTy) 3270 return error("Invalid record"); 3271 if (isa<PointerType>(FTy)) 3272 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3273 3274 if (!isa<FunctionType>(FTy)) 3275 return error("Invalid type for value"); 3276 auto CC = static_cast<CallingConv::ID>(Record[1]); 3277 if (CC & ~CallingConv::MaxID) 3278 return error("Invalid calling convention ID"); 3279 3280 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3281 if (Record.size() > 16) 3282 AddrSpace = Record[16]; 3283 3284 Function *Func = 3285 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3286 AddrSpace, Name, TheModule); 3287 3288 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3289 "Incorrect fully specified type provided for function"); 3290 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3291 3292 Func->setCallingConv(CC); 3293 bool isProto = Record[2]; 3294 uint64_t RawLinkage = Record[3]; 3295 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3296 Func->setAttributes(getAttributes(Record[4])); 3297 3298 // Upgrade any old-style byval or sret without a type by propagating the 3299 // argument's pointee type. There should be no opaque pointers where the byval 3300 // type is implicit. 3301 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3302 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3303 if (!Func->hasParamAttribute(i, Kind)) 3304 continue; 3305 3306 Func->removeParamAttr(i, Kind); 3307 3308 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3309 Type *PtrEltTy = getPointerElementFlatType(PTy); 3310 Attribute NewAttr = 3311 Kind == Attribute::ByVal 3312 ? Attribute::getWithByValType(Context, PtrEltTy) 3313 : Attribute::getWithStructRetType(Context, PtrEltTy); 3314 Func->addParamAttr(i, NewAttr); 3315 } 3316 } 3317 3318 MaybeAlign Alignment; 3319 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3320 return Err; 3321 Func->setAlignment(Alignment); 3322 if (Record[6]) { 3323 if (Record[6] - 1 >= SectionTable.size()) 3324 return error("Invalid ID"); 3325 Func->setSection(SectionTable[Record[6] - 1]); 3326 } 3327 // Local linkage must have default visibility. 3328 // auto-upgrade `hidden` and `protected` for old bitcode. 3329 if (!Func->hasLocalLinkage()) 3330 Func->setVisibility(getDecodedVisibility(Record[7])); 3331 if (Record.size() > 8 && Record[8]) { 3332 if (Record[8] - 1 >= GCTable.size()) 3333 return error("Invalid ID"); 3334 Func->setGC(GCTable[Record[8] - 1]); 3335 } 3336 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3337 if (Record.size() > 9) 3338 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3339 Func->setUnnamedAddr(UnnamedAddr); 3340 if (Record.size() > 10 && Record[10] != 0) 3341 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3342 3343 if (Record.size() > 11) 3344 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3345 else 3346 upgradeDLLImportExportLinkage(Func, RawLinkage); 3347 3348 if (Record.size() > 12) { 3349 if (unsigned ComdatID = Record[12]) { 3350 if (ComdatID > ComdatList.size()) 3351 return error("Invalid function comdat ID"); 3352 Func->setComdat(ComdatList[ComdatID - 1]); 3353 } 3354 } else if (hasImplicitComdat(RawLinkage)) { 3355 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3356 } 3357 3358 if (Record.size() > 13 && Record[13] != 0) 3359 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3360 3361 if (Record.size() > 14 && Record[14] != 0) 3362 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3363 3364 if (Record.size() > 15) { 3365 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3366 } 3367 inferDSOLocal(Func); 3368 3369 // Record[16] is the address space number. 3370 3371 // Check whether we have enough values to read a partition name. 3372 if (Record.size() > 18) 3373 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3374 3375 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3376 assert(Func->getType() == flattenPointerTypes(FullTy) && 3377 "Incorrect fully specified type provided for Function"); 3378 ValueList.push_back(Func, FullTy); 3379 3380 // If this is a function with a body, remember the prototype we are 3381 // creating now, so that we can match up the body with them later. 3382 if (!isProto) { 3383 Func->setIsMaterializable(true); 3384 FunctionsWithBodies.push_back(Func); 3385 DeferredFunctionInfo[Func] = 0; 3386 } 3387 return Error::success(); 3388 } 3389 3390 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3391 unsigned BitCode, ArrayRef<uint64_t> Record) { 3392 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3393 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3394 // dllstorageclass, threadlocal, unnamed_addr, 3395 // preemption specifier] (name in VST) 3396 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3397 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3398 // preemption specifier] (name in VST) 3399 // v2: [strtab_offset, strtab_size, v1] 3400 StringRef Name; 3401 std::tie(Name, Record) = readNameFromStrtab(Record); 3402 3403 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3404 if (Record.size() < (3 + (unsigned)NewRecord)) 3405 return error("Invalid record"); 3406 unsigned OpNum = 0; 3407 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3408 Type *Ty = flattenPointerTypes(FullTy); 3409 if (!Ty) 3410 return error("Invalid record"); 3411 3412 unsigned AddrSpace; 3413 if (!NewRecord) { 3414 auto *PTy = dyn_cast<PointerType>(Ty); 3415 if (!PTy) 3416 return error("Invalid type for value"); 3417 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3418 AddrSpace = PTy->getAddressSpace(); 3419 } else { 3420 AddrSpace = Record[OpNum++]; 3421 } 3422 3423 auto Val = Record[OpNum++]; 3424 auto Linkage = Record[OpNum++]; 3425 GlobalIndirectSymbol *NewGA; 3426 if (BitCode == bitc::MODULE_CODE_ALIAS || 3427 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3428 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3429 TheModule); 3430 else 3431 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3432 nullptr, TheModule); 3433 3434 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3435 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3436 // Local linkage must have default visibility. 3437 // auto-upgrade `hidden` and `protected` for old bitcode. 3438 if (OpNum != Record.size()) { 3439 auto VisInd = OpNum++; 3440 if (!NewGA->hasLocalLinkage()) 3441 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3442 } 3443 if (BitCode == bitc::MODULE_CODE_ALIAS || 3444 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3445 if (OpNum != Record.size()) 3446 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3447 else 3448 upgradeDLLImportExportLinkage(NewGA, Linkage); 3449 if (OpNum != Record.size()) 3450 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3451 if (OpNum != Record.size()) 3452 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3453 } 3454 if (OpNum != Record.size()) 3455 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3456 inferDSOLocal(NewGA); 3457 3458 // Check whether we have enough values to read a partition name. 3459 if (OpNum + 1 < Record.size()) { 3460 NewGA->setPartition( 3461 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3462 OpNum += 2; 3463 } 3464 3465 FullTy = PointerType::get(FullTy, AddrSpace); 3466 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3467 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3468 ValueList.push_back(NewGA, FullTy); 3469 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3470 return Error::success(); 3471 } 3472 3473 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3474 bool ShouldLazyLoadMetadata, 3475 DataLayoutCallbackTy DataLayoutCallback) { 3476 if (ResumeBit) { 3477 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3478 return JumpFailed; 3479 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3480 return Err; 3481 3482 SmallVector<uint64_t, 64> Record; 3483 3484 // Parts of bitcode parsing depend on the datalayout. Make sure we 3485 // finalize the datalayout before we run any of that code. 3486 bool ResolvedDataLayout = false; 3487 auto ResolveDataLayout = [&] { 3488 if (ResolvedDataLayout) 3489 return; 3490 3491 // datalayout and triple can't be parsed after this point. 3492 ResolvedDataLayout = true; 3493 3494 // Upgrade data layout string. 3495 std::string DL = llvm::UpgradeDataLayoutString( 3496 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3497 TheModule->setDataLayout(DL); 3498 3499 if (auto LayoutOverride = 3500 DataLayoutCallback(TheModule->getTargetTriple())) 3501 TheModule->setDataLayout(*LayoutOverride); 3502 }; 3503 3504 // Read all the records for this module. 3505 while (true) { 3506 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3507 if (!MaybeEntry) 3508 return MaybeEntry.takeError(); 3509 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3510 3511 switch (Entry.Kind) { 3512 case BitstreamEntry::Error: 3513 return error("Malformed block"); 3514 case BitstreamEntry::EndBlock: 3515 ResolveDataLayout(); 3516 return globalCleanup(); 3517 3518 case BitstreamEntry::SubBlock: 3519 switch (Entry.ID) { 3520 default: // Skip unknown content. 3521 if (Error Err = Stream.SkipBlock()) 3522 return Err; 3523 break; 3524 case bitc::BLOCKINFO_BLOCK_ID: 3525 if (readBlockInfo()) 3526 return error("Malformed block"); 3527 break; 3528 case bitc::PARAMATTR_BLOCK_ID: 3529 if (Error Err = parseAttributeBlock()) 3530 return Err; 3531 break; 3532 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3533 if (Error Err = parseAttributeGroupBlock()) 3534 return Err; 3535 break; 3536 case bitc::TYPE_BLOCK_ID_NEW: 3537 if (Error Err = parseTypeTable()) 3538 return Err; 3539 break; 3540 case bitc::VALUE_SYMTAB_BLOCK_ID: 3541 if (!SeenValueSymbolTable) { 3542 // Either this is an old form VST without function index and an 3543 // associated VST forward declaration record (which would have caused 3544 // the VST to be jumped to and parsed before it was encountered 3545 // normally in the stream), or there were no function blocks to 3546 // trigger an earlier parsing of the VST. 3547 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3548 if (Error Err = parseValueSymbolTable()) 3549 return Err; 3550 SeenValueSymbolTable = true; 3551 } else { 3552 // We must have had a VST forward declaration record, which caused 3553 // the parser to jump to and parse the VST earlier. 3554 assert(VSTOffset > 0); 3555 if (Error Err = Stream.SkipBlock()) 3556 return Err; 3557 } 3558 break; 3559 case bitc::CONSTANTS_BLOCK_ID: 3560 if (Error Err = parseConstants()) 3561 return Err; 3562 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3563 return Err; 3564 break; 3565 case bitc::METADATA_BLOCK_ID: 3566 if (ShouldLazyLoadMetadata) { 3567 if (Error Err = rememberAndSkipMetadata()) 3568 return Err; 3569 break; 3570 } 3571 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3572 if (Error Err = MDLoader->parseModuleMetadata()) 3573 return Err; 3574 break; 3575 case bitc::METADATA_KIND_BLOCK_ID: 3576 if (Error Err = MDLoader->parseMetadataKinds()) 3577 return Err; 3578 break; 3579 case bitc::FUNCTION_BLOCK_ID: 3580 ResolveDataLayout(); 3581 3582 // If this is the first function body we've seen, reverse the 3583 // FunctionsWithBodies list. 3584 if (!SeenFirstFunctionBody) { 3585 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3586 if (Error Err = globalCleanup()) 3587 return Err; 3588 SeenFirstFunctionBody = true; 3589 } 3590 3591 if (VSTOffset > 0) { 3592 // If we have a VST forward declaration record, make sure we 3593 // parse the VST now if we haven't already. It is needed to 3594 // set up the DeferredFunctionInfo vector for lazy reading. 3595 if (!SeenValueSymbolTable) { 3596 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3597 return Err; 3598 SeenValueSymbolTable = true; 3599 // Fall through so that we record the NextUnreadBit below. 3600 // This is necessary in case we have an anonymous function that 3601 // is later materialized. Since it will not have a VST entry we 3602 // need to fall back to the lazy parse to find its offset. 3603 } else { 3604 // If we have a VST forward declaration record, but have already 3605 // parsed the VST (just above, when the first function body was 3606 // encountered here), then we are resuming the parse after 3607 // materializing functions. The ResumeBit points to the 3608 // start of the last function block recorded in the 3609 // DeferredFunctionInfo map. Skip it. 3610 if (Error Err = Stream.SkipBlock()) 3611 return Err; 3612 continue; 3613 } 3614 } 3615 3616 // Support older bitcode files that did not have the function 3617 // index in the VST, nor a VST forward declaration record, as 3618 // well as anonymous functions that do not have VST entries. 3619 // Build the DeferredFunctionInfo vector on the fly. 3620 if (Error Err = rememberAndSkipFunctionBody()) 3621 return Err; 3622 3623 // Suspend parsing when we reach the function bodies. Subsequent 3624 // materialization calls will resume it when necessary. If the bitcode 3625 // file is old, the symbol table will be at the end instead and will not 3626 // have been seen yet. In this case, just finish the parse now. 3627 if (SeenValueSymbolTable) { 3628 NextUnreadBit = Stream.GetCurrentBitNo(); 3629 // After the VST has been parsed, we need to make sure intrinsic name 3630 // are auto-upgraded. 3631 return globalCleanup(); 3632 } 3633 break; 3634 case bitc::USELIST_BLOCK_ID: 3635 if (Error Err = parseUseLists()) 3636 return Err; 3637 break; 3638 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3639 if (Error Err = parseOperandBundleTags()) 3640 return Err; 3641 break; 3642 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3643 if (Error Err = parseSyncScopeNames()) 3644 return Err; 3645 break; 3646 } 3647 continue; 3648 3649 case BitstreamEntry::Record: 3650 // The interesting case. 3651 break; 3652 } 3653 3654 // Read a record. 3655 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3656 if (!MaybeBitCode) 3657 return MaybeBitCode.takeError(); 3658 switch (unsigned BitCode = MaybeBitCode.get()) { 3659 default: break; // Default behavior, ignore unknown content. 3660 case bitc::MODULE_CODE_VERSION: { 3661 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3662 if (!VersionOrErr) 3663 return VersionOrErr.takeError(); 3664 UseRelativeIDs = *VersionOrErr >= 1; 3665 break; 3666 } 3667 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3668 if (ResolvedDataLayout) 3669 return error("target triple too late in module"); 3670 std::string S; 3671 if (convertToString(Record, 0, S)) 3672 return error("Invalid record"); 3673 TheModule->setTargetTriple(S); 3674 break; 3675 } 3676 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3677 if (ResolvedDataLayout) 3678 return error("datalayout too late in module"); 3679 std::string S; 3680 if (convertToString(Record, 0, S)) 3681 return error("Invalid record"); 3682 TheModule->setDataLayout(S); 3683 break; 3684 } 3685 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3686 std::string S; 3687 if (convertToString(Record, 0, S)) 3688 return error("Invalid record"); 3689 TheModule->setModuleInlineAsm(S); 3690 break; 3691 } 3692 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3693 // Deprecated, but still needed to read old bitcode files. 3694 std::string S; 3695 if (convertToString(Record, 0, S)) 3696 return error("Invalid record"); 3697 // Ignore value. 3698 break; 3699 } 3700 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3701 std::string S; 3702 if (convertToString(Record, 0, S)) 3703 return error("Invalid record"); 3704 SectionTable.push_back(S); 3705 break; 3706 } 3707 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3708 std::string S; 3709 if (convertToString(Record, 0, S)) 3710 return error("Invalid record"); 3711 GCTable.push_back(S); 3712 break; 3713 } 3714 case bitc::MODULE_CODE_COMDAT: 3715 if (Error Err = parseComdatRecord(Record)) 3716 return Err; 3717 break; 3718 case bitc::MODULE_CODE_GLOBALVAR: 3719 if (Error Err = parseGlobalVarRecord(Record)) 3720 return Err; 3721 break; 3722 case bitc::MODULE_CODE_FUNCTION: 3723 ResolveDataLayout(); 3724 if (Error Err = parseFunctionRecord(Record)) 3725 return Err; 3726 break; 3727 case bitc::MODULE_CODE_IFUNC: 3728 case bitc::MODULE_CODE_ALIAS: 3729 case bitc::MODULE_CODE_ALIAS_OLD: 3730 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3731 return Err; 3732 break; 3733 /// MODULE_CODE_VSTOFFSET: [offset] 3734 case bitc::MODULE_CODE_VSTOFFSET: 3735 if (Record.empty()) 3736 return error("Invalid record"); 3737 // Note that we subtract 1 here because the offset is relative to one word 3738 // before the start of the identification or module block, which was 3739 // historically always the start of the regular bitcode header. 3740 VSTOffset = Record[0] - 1; 3741 break; 3742 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3743 case bitc::MODULE_CODE_SOURCE_FILENAME: 3744 SmallString<128> ValueName; 3745 if (convertToString(Record, 0, ValueName)) 3746 return error("Invalid record"); 3747 TheModule->setSourceFileName(ValueName); 3748 break; 3749 } 3750 Record.clear(); 3751 } 3752 } 3753 3754 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3755 bool IsImporting, 3756 DataLayoutCallbackTy DataLayoutCallback) { 3757 TheModule = M; 3758 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3759 [&](unsigned ID) { return getTypeByID(ID); }); 3760 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3761 } 3762 3763 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3764 if (!isa<PointerType>(PtrType)) 3765 return error("Load/Store operand is not a pointer type"); 3766 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3767 3768 if (ValType && ValType != ElemType) 3769 return error("Explicit load/store type does not match pointee " 3770 "type of pointer operand"); 3771 if (!PointerType::isLoadableOrStorableType(ElemType)) 3772 return error("Cannot load/store from pointer"); 3773 return Error::success(); 3774 } 3775 3776 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3777 ArrayRef<Type *> ArgsFullTys) { 3778 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3779 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3780 if (!CB->paramHasAttr(i, Kind)) 3781 continue; 3782 3783 CB->removeParamAttr(i, Kind); 3784 3785 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3786 Attribute NewAttr = 3787 Kind == Attribute::ByVal 3788 ? Attribute::getWithByValType(Context, PtrEltTy) 3789 : Attribute::getWithStructRetType(Context, PtrEltTy); 3790 CB->addParamAttr(i, NewAttr); 3791 } 3792 } 3793 } 3794 3795 /// Lazily parse the specified function body block. 3796 Error BitcodeReader::parseFunctionBody(Function *F) { 3797 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3798 return Err; 3799 3800 // Unexpected unresolved metadata when parsing function. 3801 if (MDLoader->hasFwdRefs()) 3802 return error("Invalid function metadata: incoming forward references"); 3803 3804 InstructionList.clear(); 3805 unsigned ModuleValueListSize = ValueList.size(); 3806 unsigned ModuleMDLoaderSize = MDLoader->size(); 3807 3808 // Add all the function arguments to the value table. 3809 unsigned ArgNo = 0; 3810 FunctionType *FullFTy = FunctionTypes[F]; 3811 for (Argument &I : F->args()) { 3812 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3813 "Incorrect fully specified type for Function Argument"); 3814 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3815 } 3816 unsigned NextValueNo = ValueList.size(); 3817 BasicBlock *CurBB = nullptr; 3818 unsigned CurBBNo = 0; 3819 3820 DebugLoc LastLoc; 3821 auto getLastInstruction = [&]() -> Instruction * { 3822 if (CurBB && !CurBB->empty()) 3823 return &CurBB->back(); 3824 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3825 !FunctionBBs[CurBBNo - 1]->empty()) 3826 return &FunctionBBs[CurBBNo - 1]->back(); 3827 return nullptr; 3828 }; 3829 3830 std::vector<OperandBundleDef> OperandBundles; 3831 3832 // Read all the records. 3833 SmallVector<uint64_t, 64> Record; 3834 3835 while (true) { 3836 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3837 if (!MaybeEntry) 3838 return MaybeEntry.takeError(); 3839 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3840 3841 switch (Entry.Kind) { 3842 case BitstreamEntry::Error: 3843 return error("Malformed block"); 3844 case BitstreamEntry::EndBlock: 3845 goto OutOfRecordLoop; 3846 3847 case BitstreamEntry::SubBlock: 3848 switch (Entry.ID) { 3849 default: // Skip unknown content. 3850 if (Error Err = Stream.SkipBlock()) 3851 return Err; 3852 break; 3853 case bitc::CONSTANTS_BLOCK_ID: 3854 if (Error Err = parseConstants()) 3855 return Err; 3856 NextValueNo = ValueList.size(); 3857 break; 3858 case bitc::VALUE_SYMTAB_BLOCK_ID: 3859 if (Error Err = parseValueSymbolTable()) 3860 return Err; 3861 break; 3862 case bitc::METADATA_ATTACHMENT_ID: 3863 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3864 return Err; 3865 break; 3866 case bitc::METADATA_BLOCK_ID: 3867 assert(DeferredMetadataInfo.empty() && 3868 "Must read all module-level metadata before function-level"); 3869 if (Error Err = MDLoader->parseFunctionMetadata()) 3870 return Err; 3871 break; 3872 case bitc::USELIST_BLOCK_ID: 3873 if (Error Err = parseUseLists()) 3874 return Err; 3875 break; 3876 } 3877 continue; 3878 3879 case BitstreamEntry::Record: 3880 // The interesting case. 3881 break; 3882 } 3883 3884 // Read a record. 3885 Record.clear(); 3886 Instruction *I = nullptr; 3887 Type *FullTy = nullptr; 3888 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3889 if (!MaybeBitCode) 3890 return MaybeBitCode.takeError(); 3891 switch (unsigned BitCode = MaybeBitCode.get()) { 3892 default: // Default behavior: reject 3893 return error("Invalid value"); 3894 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3895 if (Record.empty() || Record[0] == 0) 3896 return error("Invalid record"); 3897 // Create all the basic blocks for the function. 3898 FunctionBBs.resize(Record[0]); 3899 3900 // See if anything took the address of blocks in this function. 3901 auto BBFRI = BasicBlockFwdRefs.find(F); 3902 if (BBFRI == BasicBlockFwdRefs.end()) { 3903 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3904 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3905 } else { 3906 auto &BBRefs = BBFRI->second; 3907 // Check for invalid basic block references. 3908 if (BBRefs.size() > FunctionBBs.size()) 3909 return error("Invalid ID"); 3910 assert(!BBRefs.empty() && "Unexpected empty array"); 3911 assert(!BBRefs.front() && "Invalid reference to entry block"); 3912 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3913 ++I) 3914 if (I < RE && BBRefs[I]) { 3915 BBRefs[I]->insertInto(F); 3916 FunctionBBs[I] = BBRefs[I]; 3917 } else { 3918 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3919 } 3920 3921 // Erase from the table. 3922 BasicBlockFwdRefs.erase(BBFRI); 3923 } 3924 3925 CurBB = FunctionBBs[0]; 3926 continue; 3927 } 3928 3929 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3930 // This record indicates that the last instruction is at the same 3931 // location as the previous instruction with a location. 3932 I = getLastInstruction(); 3933 3934 if (!I) 3935 return error("Invalid record"); 3936 I->setDebugLoc(LastLoc); 3937 I = nullptr; 3938 continue; 3939 3940 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3941 I = getLastInstruction(); 3942 if (!I || Record.size() < 4) 3943 return error("Invalid record"); 3944 3945 unsigned Line = Record[0], Col = Record[1]; 3946 unsigned ScopeID = Record[2], IAID = Record[3]; 3947 bool isImplicitCode = Record.size() == 5 && Record[4]; 3948 3949 MDNode *Scope = nullptr, *IA = nullptr; 3950 if (ScopeID) { 3951 Scope = dyn_cast_or_null<MDNode>( 3952 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3953 if (!Scope) 3954 return error("Invalid record"); 3955 } 3956 if (IAID) { 3957 IA = dyn_cast_or_null<MDNode>( 3958 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3959 if (!IA) 3960 return error("Invalid record"); 3961 } 3962 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3963 I->setDebugLoc(LastLoc); 3964 I = nullptr; 3965 continue; 3966 } 3967 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3968 unsigned OpNum = 0; 3969 Value *LHS; 3970 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3971 OpNum+1 > Record.size()) 3972 return error("Invalid record"); 3973 3974 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3975 if (Opc == -1) 3976 return error("Invalid record"); 3977 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3978 InstructionList.push_back(I); 3979 if (OpNum < Record.size()) { 3980 if (isa<FPMathOperator>(I)) { 3981 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3982 if (FMF.any()) 3983 I->setFastMathFlags(FMF); 3984 } 3985 } 3986 break; 3987 } 3988 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3989 unsigned OpNum = 0; 3990 Value *LHS, *RHS; 3991 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3992 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3993 OpNum+1 > Record.size()) 3994 return error("Invalid record"); 3995 3996 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3997 if (Opc == -1) 3998 return error("Invalid record"); 3999 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4000 InstructionList.push_back(I); 4001 if (OpNum < Record.size()) { 4002 if (Opc == Instruction::Add || 4003 Opc == Instruction::Sub || 4004 Opc == Instruction::Mul || 4005 Opc == Instruction::Shl) { 4006 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4007 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4008 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4009 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4010 } else if (Opc == Instruction::SDiv || 4011 Opc == Instruction::UDiv || 4012 Opc == Instruction::LShr || 4013 Opc == Instruction::AShr) { 4014 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4015 cast<BinaryOperator>(I)->setIsExact(true); 4016 } else if (isa<FPMathOperator>(I)) { 4017 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4018 if (FMF.any()) 4019 I->setFastMathFlags(FMF); 4020 } 4021 4022 } 4023 break; 4024 } 4025 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4026 unsigned OpNum = 0; 4027 Value *Op; 4028 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4029 OpNum+2 != Record.size()) 4030 return error("Invalid record"); 4031 4032 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4033 Type *ResTy = flattenPointerTypes(FullTy); 4034 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4035 if (Opc == -1 || !ResTy) 4036 return error("Invalid record"); 4037 Instruction *Temp = nullptr; 4038 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4039 if (Temp) { 4040 InstructionList.push_back(Temp); 4041 assert(CurBB && "No current BB?"); 4042 CurBB->getInstList().push_back(Temp); 4043 } 4044 } else { 4045 auto CastOp = (Instruction::CastOps)Opc; 4046 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4047 return error("Invalid cast"); 4048 I = CastInst::Create(CastOp, Op, ResTy); 4049 } 4050 InstructionList.push_back(I); 4051 break; 4052 } 4053 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4054 case bitc::FUNC_CODE_INST_GEP_OLD: 4055 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4056 unsigned OpNum = 0; 4057 4058 Type *Ty; 4059 bool InBounds; 4060 4061 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4062 InBounds = Record[OpNum++]; 4063 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4064 Ty = flattenPointerTypes(FullTy); 4065 } else { 4066 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4067 Ty = nullptr; 4068 } 4069 4070 Value *BasePtr; 4071 Type *FullBaseTy = nullptr; 4072 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4073 return error("Invalid record"); 4074 4075 if (!Ty) { 4076 std::tie(FullTy, Ty) = 4077 getPointerElementTypes(FullBaseTy->getScalarType()); 4078 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4079 return error( 4080 "Explicit gep type does not match pointee type of pointer operand"); 4081 4082 SmallVector<Value*, 16> GEPIdx; 4083 while (OpNum != Record.size()) { 4084 Value *Op; 4085 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4086 return error("Invalid record"); 4087 GEPIdx.push_back(Op); 4088 } 4089 4090 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4091 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4092 4093 InstructionList.push_back(I); 4094 if (InBounds) 4095 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4096 break; 4097 } 4098 4099 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4100 // EXTRACTVAL: [opty, opval, n x indices] 4101 unsigned OpNum = 0; 4102 Value *Agg; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4104 return error("Invalid record"); 4105 4106 unsigned RecSize = Record.size(); 4107 if (OpNum == RecSize) 4108 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4109 4110 SmallVector<unsigned, 4> EXTRACTVALIdx; 4111 for (; OpNum != RecSize; ++OpNum) { 4112 bool IsArray = FullTy->isArrayTy(); 4113 bool IsStruct = FullTy->isStructTy(); 4114 uint64_t Index = Record[OpNum]; 4115 4116 if (!IsStruct && !IsArray) 4117 return error("EXTRACTVAL: Invalid type"); 4118 if ((unsigned)Index != Index) 4119 return error("Invalid value"); 4120 if (IsStruct && Index >= FullTy->getStructNumElements()) 4121 return error("EXTRACTVAL: Invalid struct index"); 4122 if (IsArray && Index >= FullTy->getArrayNumElements()) 4123 return error("EXTRACTVAL: Invalid array index"); 4124 EXTRACTVALIdx.push_back((unsigned)Index); 4125 4126 if (IsStruct) 4127 FullTy = FullTy->getStructElementType(Index); 4128 else 4129 FullTy = FullTy->getArrayElementType(); 4130 } 4131 4132 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4133 InstructionList.push_back(I); 4134 break; 4135 } 4136 4137 case bitc::FUNC_CODE_INST_INSERTVAL: { 4138 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4139 unsigned OpNum = 0; 4140 Value *Agg; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4142 return error("Invalid record"); 4143 Value *Val; 4144 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4145 return error("Invalid record"); 4146 4147 unsigned RecSize = Record.size(); 4148 if (OpNum == RecSize) 4149 return error("INSERTVAL: Invalid instruction with 0 indices"); 4150 4151 SmallVector<unsigned, 4> INSERTVALIdx; 4152 Type *CurTy = Agg->getType(); 4153 for (; OpNum != RecSize; ++OpNum) { 4154 bool IsArray = CurTy->isArrayTy(); 4155 bool IsStruct = CurTy->isStructTy(); 4156 uint64_t Index = Record[OpNum]; 4157 4158 if (!IsStruct && !IsArray) 4159 return error("INSERTVAL: Invalid type"); 4160 if ((unsigned)Index != Index) 4161 return error("Invalid value"); 4162 if (IsStruct && Index >= CurTy->getStructNumElements()) 4163 return error("INSERTVAL: Invalid struct index"); 4164 if (IsArray && Index >= CurTy->getArrayNumElements()) 4165 return error("INSERTVAL: Invalid array index"); 4166 4167 INSERTVALIdx.push_back((unsigned)Index); 4168 if (IsStruct) 4169 CurTy = CurTy->getStructElementType(Index); 4170 else 4171 CurTy = CurTy->getArrayElementType(); 4172 } 4173 4174 if (CurTy != Val->getType()) 4175 return error("Inserted value type doesn't match aggregate type"); 4176 4177 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4178 InstructionList.push_back(I); 4179 break; 4180 } 4181 4182 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4183 // obsolete form of select 4184 // handles select i1 ... in old bitcode 4185 unsigned OpNum = 0; 4186 Value *TrueVal, *FalseVal, *Cond; 4187 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4188 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4189 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4190 return error("Invalid record"); 4191 4192 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4193 InstructionList.push_back(I); 4194 break; 4195 } 4196 4197 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4198 // new form of select 4199 // handles select i1 or select [N x i1] 4200 unsigned OpNum = 0; 4201 Value *TrueVal, *FalseVal, *Cond; 4202 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4203 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4204 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4205 return error("Invalid record"); 4206 4207 // select condition can be either i1 or [N x i1] 4208 if (VectorType* vector_type = 4209 dyn_cast<VectorType>(Cond->getType())) { 4210 // expect <n x i1> 4211 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4212 return error("Invalid type for value"); 4213 } else { 4214 // expect i1 4215 if (Cond->getType() != Type::getInt1Ty(Context)) 4216 return error("Invalid type for value"); 4217 } 4218 4219 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4220 InstructionList.push_back(I); 4221 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4222 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4223 if (FMF.any()) 4224 I->setFastMathFlags(FMF); 4225 } 4226 break; 4227 } 4228 4229 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4230 unsigned OpNum = 0; 4231 Value *Vec, *Idx; 4232 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4233 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4234 return error("Invalid record"); 4235 if (!Vec->getType()->isVectorTy()) 4236 return error("Invalid type for value"); 4237 I = ExtractElementInst::Create(Vec, Idx); 4238 FullTy = cast<VectorType>(FullTy)->getElementType(); 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 4243 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4244 unsigned OpNum = 0; 4245 Value *Vec, *Elt, *Idx; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4247 return error("Invalid record"); 4248 if (!Vec->getType()->isVectorTy()) 4249 return error("Invalid type for value"); 4250 if (popValue(Record, OpNum, NextValueNo, 4251 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4252 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4253 return error("Invalid record"); 4254 I = InsertElementInst::Create(Vec, Elt, Idx); 4255 InstructionList.push_back(I); 4256 break; 4257 } 4258 4259 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4260 unsigned OpNum = 0; 4261 Value *Vec1, *Vec2, *Mask; 4262 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4263 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4264 return error("Invalid record"); 4265 4266 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4267 return error("Invalid record"); 4268 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4269 return error("Invalid type for value"); 4270 4271 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4272 FullTy = 4273 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4274 cast<VectorType>(Mask->getType())->getElementCount()); 4275 InstructionList.push_back(I); 4276 break; 4277 } 4278 4279 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4280 // Old form of ICmp/FCmp returning bool 4281 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4282 // both legal on vectors but had different behaviour. 4283 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4284 // FCmp/ICmp returning bool or vector of bool 4285 4286 unsigned OpNum = 0; 4287 Value *LHS, *RHS; 4288 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4289 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4290 return error("Invalid record"); 4291 4292 if (OpNum >= Record.size()) 4293 return error( 4294 "Invalid record: operand number exceeded available operands"); 4295 4296 unsigned PredVal = Record[OpNum]; 4297 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4298 FastMathFlags FMF; 4299 if (IsFP && Record.size() > OpNum+1) 4300 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4301 4302 if (OpNum+1 != Record.size()) 4303 return error("Invalid record"); 4304 4305 if (LHS->getType()->isFPOrFPVectorTy()) 4306 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4307 else 4308 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4309 4310 if (FMF.any()) 4311 I->setFastMathFlags(FMF); 4312 InstructionList.push_back(I); 4313 break; 4314 } 4315 4316 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4317 { 4318 unsigned Size = Record.size(); 4319 if (Size == 0) { 4320 I = ReturnInst::Create(Context); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 4325 unsigned OpNum = 0; 4326 Value *Op = nullptr; 4327 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4328 return error("Invalid record"); 4329 if (OpNum != Record.size()) 4330 return error("Invalid record"); 4331 4332 I = ReturnInst::Create(Context, Op); 4333 InstructionList.push_back(I); 4334 break; 4335 } 4336 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4337 if (Record.size() != 1 && Record.size() != 3) 4338 return error("Invalid record"); 4339 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4340 if (!TrueDest) 4341 return error("Invalid record"); 4342 4343 if (Record.size() == 1) { 4344 I = BranchInst::Create(TrueDest); 4345 InstructionList.push_back(I); 4346 } 4347 else { 4348 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4349 Value *Cond = getValue(Record, 2, NextValueNo, 4350 Type::getInt1Ty(Context)); 4351 if (!FalseDest || !Cond) 4352 return error("Invalid record"); 4353 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4354 InstructionList.push_back(I); 4355 } 4356 break; 4357 } 4358 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4359 if (Record.size() != 1 && Record.size() != 2) 4360 return error("Invalid record"); 4361 unsigned Idx = 0; 4362 Value *CleanupPad = 4363 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4364 if (!CleanupPad) 4365 return error("Invalid record"); 4366 BasicBlock *UnwindDest = nullptr; 4367 if (Record.size() == 2) { 4368 UnwindDest = getBasicBlock(Record[Idx++]); 4369 if (!UnwindDest) 4370 return error("Invalid record"); 4371 } 4372 4373 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4378 if (Record.size() != 2) 4379 return error("Invalid record"); 4380 unsigned Idx = 0; 4381 Value *CatchPad = 4382 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4383 if (!CatchPad) 4384 return error("Invalid record"); 4385 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4386 if (!BB) 4387 return error("Invalid record"); 4388 4389 I = CatchReturnInst::Create(CatchPad, BB); 4390 InstructionList.push_back(I); 4391 break; 4392 } 4393 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4394 // We must have, at minimum, the outer scope and the number of arguments. 4395 if (Record.size() < 2) 4396 return error("Invalid record"); 4397 4398 unsigned Idx = 0; 4399 4400 Value *ParentPad = 4401 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4402 4403 unsigned NumHandlers = Record[Idx++]; 4404 4405 SmallVector<BasicBlock *, 2> Handlers; 4406 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4407 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4408 if (!BB) 4409 return error("Invalid record"); 4410 Handlers.push_back(BB); 4411 } 4412 4413 BasicBlock *UnwindDest = nullptr; 4414 if (Idx + 1 == Record.size()) { 4415 UnwindDest = getBasicBlock(Record[Idx++]); 4416 if (!UnwindDest) 4417 return error("Invalid record"); 4418 } 4419 4420 if (Record.size() != Idx) 4421 return error("Invalid record"); 4422 4423 auto *CatchSwitch = 4424 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4425 for (BasicBlock *Handler : Handlers) 4426 CatchSwitch->addHandler(Handler); 4427 I = CatchSwitch; 4428 InstructionList.push_back(I); 4429 break; 4430 } 4431 case bitc::FUNC_CODE_INST_CATCHPAD: 4432 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4433 // We must have, at minimum, the outer scope and the number of arguments. 4434 if (Record.size() < 2) 4435 return error("Invalid record"); 4436 4437 unsigned Idx = 0; 4438 4439 Value *ParentPad = 4440 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4441 4442 unsigned NumArgOperands = Record[Idx++]; 4443 4444 SmallVector<Value *, 2> Args; 4445 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4446 Value *Val; 4447 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4448 return error("Invalid record"); 4449 Args.push_back(Val); 4450 } 4451 4452 if (Record.size() != Idx) 4453 return error("Invalid record"); 4454 4455 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4456 I = CleanupPadInst::Create(ParentPad, Args); 4457 else 4458 I = CatchPadInst::Create(ParentPad, Args); 4459 InstructionList.push_back(I); 4460 break; 4461 } 4462 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4463 // Check magic 4464 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4465 // "New" SwitchInst format with case ranges. The changes to write this 4466 // format were reverted but we still recognize bitcode that uses it. 4467 // Hopefully someday we will have support for case ranges and can use 4468 // this format again. 4469 4470 Type *OpTy = getTypeByID(Record[1]); 4471 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4472 4473 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4474 BasicBlock *Default = getBasicBlock(Record[3]); 4475 if (!OpTy || !Cond || !Default) 4476 return error("Invalid record"); 4477 4478 unsigned NumCases = Record[4]; 4479 4480 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4481 InstructionList.push_back(SI); 4482 4483 unsigned CurIdx = 5; 4484 for (unsigned i = 0; i != NumCases; ++i) { 4485 SmallVector<ConstantInt*, 1> CaseVals; 4486 unsigned NumItems = Record[CurIdx++]; 4487 for (unsigned ci = 0; ci != NumItems; ++ci) { 4488 bool isSingleNumber = Record[CurIdx++]; 4489 4490 APInt Low; 4491 unsigned ActiveWords = 1; 4492 if (ValueBitWidth > 64) 4493 ActiveWords = Record[CurIdx++]; 4494 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4495 ValueBitWidth); 4496 CurIdx += ActiveWords; 4497 4498 if (!isSingleNumber) { 4499 ActiveWords = 1; 4500 if (ValueBitWidth > 64) 4501 ActiveWords = Record[CurIdx++]; 4502 APInt High = readWideAPInt( 4503 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4504 CurIdx += ActiveWords; 4505 4506 // FIXME: It is not clear whether values in the range should be 4507 // compared as signed or unsigned values. The partially 4508 // implemented changes that used this format in the past used 4509 // unsigned comparisons. 4510 for ( ; Low.ule(High); ++Low) 4511 CaseVals.push_back(ConstantInt::get(Context, Low)); 4512 } else 4513 CaseVals.push_back(ConstantInt::get(Context, Low)); 4514 } 4515 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4516 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4517 cve = CaseVals.end(); cvi != cve; ++cvi) 4518 SI->addCase(*cvi, DestBB); 4519 } 4520 I = SI; 4521 break; 4522 } 4523 4524 // Old SwitchInst format without case ranges. 4525 4526 if (Record.size() < 3 || (Record.size() & 1) == 0) 4527 return error("Invalid record"); 4528 Type *OpTy = getTypeByID(Record[0]); 4529 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4530 BasicBlock *Default = getBasicBlock(Record[2]); 4531 if (!OpTy || !Cond || !Default) 4532 return error("Invalid record"); 4533 unsigned NumCases = (Record.size()-3)/2; 4534 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4535 InstructionList.push_back(SI); 4536 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4537 ConstantInt *CaseVal = 4538 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4539 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4540 if (!CaseVal || !DestBB) { 4541 delete SI; 4542 return error("Invalid record"); 4543 } 4544 SI->addCase(CaseVal, DestBB); 4545 } 4546 I = SI; 4547 break; 4548 } 4549 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4550 if (Record.size() < 2) 4551 return error("Invalid record"); 4552 Type *OpTy = getTypeByID(Record[0]); 4553 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4554 if (!OpTy || !Address) 4555 return error("Invalid record"); 4556 unsigned NumDests = Record.size()-2; 4557 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4558 InstructionList.push_back(IBI); 4559 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4560 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4561 IBI->addDestination(DestBB); 4562 } else { 4563 delete IBI; 4564 return error("Invalid record"); 4565 } 4566 } 4567 I = IBI; 4568 break; 4569 } 4570 4571 case bitc::FUNC_CODE_INST_INVOKE: { 4572 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4573 if (Record.size() < 4) 4574 return error("Invalid record"); 4575 unsigned OpNum = 0; 4576 AttributeList PAL = getAttributes(Record[OpNum++]); 4577 unsigned CCInfo = Record[OpNum++]; 4578 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4579 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4580 4581 FunctionType *FTy = nullptr; 4582 FunctionType *FullFTy = nullptr; 4583 if ((CCInfo >> 13) & 1) { 4584 FullFTy = 4585 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4586 if (!FullFTy) 4587 return error("Explicit invoke type is not a function type"); 4588 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4589 } 4590 4591 Value *Callee; 4592 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4593 return error("Invalid record"); 4594 4595 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4596 if (!CalleeTy) 4597 return error("Callee is not a pointer"); 4598 if (!FTy) { 4599 FullFTy = 4600 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4601 if (!FullFTy) 4602 return error("Callee is not of pointer to function type"); 4603 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4604 } else if (getPointerElementFlatType(FullTy) != FTy) 4605 return error("Explicit invoke type does not match pointee type of " 4606 "callee operand"); 4607 if (Record.size() < FTy->getNumParams() + OpNum) 4608 return error("Insufficient operands to call"); 4609 4610 SmallVector<Value*, 16> Ops; 4611 SmallVector<Type *, 16> ArgsFullTys; 4612 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4613 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4614 FTy->getParamType(i))); 4615 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4616 if (!Ops.back()) 4617 return error("Invalid record"); 4618 } 4619 4620 if (!FTy->isVarArg()) { 4621 if (Record.size() != OpNum) 4622 return error("Invalid record"); 4623 } else { 4624 // Read type/value pairs for varargs params. 4625 while (OpNum != Record.size()) { 4626 Value *Op; 4627 Type *FullTy; 4628 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4629 return error("Invalid record"); 4630 Ops.push_back(Op); 4631 ArgsFullTys.push_back(FullTy); 4632 } 4633 } 4634 4635 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4636 OperandBundles); 4637 FullTy = FullFTy->getReturnType(); 4638 OperandBundles.clear(); 4639 InstructionList.push_back(I); 4640 cast<InvokeInst>(I)->setCallingConv( 4641 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4642 cast<InvokeInst>(I)->setAttributes(PAL); 4643 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4644 4645 break; 4646 } 4647 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4648 unsigned Idx = 0; 4649 Value *Val = nullptr; 4650 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4651 return error("Invalid record"); 4652 I = ResumeInst::Create(Val); 4653 InstructionList.push_back(I); 4654 break; 4655 } 4656 case bitc::FUNC_CODE_INST_CALLBR: { 4657 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4658 unsigned OpNum = 0; 4659 AttributeList PAL = getAttributes(Record[OpNum++]); 4660 unsigned CCInfo = Record[OpNum++]; 4661 4662 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4663 unsigned NumIndirectDests = Record[OpNum++]; 4664 SmallVector<BasicBlock *, 16> IndirectDests; 4665 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4666 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4667 4668 FunctionType *FTy = nullptr; 4669 FunctionType *FullFTy = nullptr; 4670 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4671 FullFTy = 4672 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4673 if (!FullFTy) 4674 return error("Explicit call type is not a function type"); 4675 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4676 } 4677 4678 Value *Callee; 4679 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4680 return error("Invalid record"); 4681 4682 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4683 if (!OpTy) 4684 return error("Callee is not a pointer type"); 4685 if (!FTy) { 4686 FullFTy = 4687 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4688 if (!FullFTy) 4689 return error("Callee is not of pointer to function type"); 4690 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4691 } else if (getPointerElementFlatType(FullTy) != FTy) 4692 return error("Explicit call type does not match pointee type of " 4693 "callee operand"); 4694 if (Record.size() < FTy->getNumParams() + OpNum) 4695 return error("Insufficient operands to call"); 4696 4697 SmallVector<Value*, 16> Args; 4698 // Read the fixed params. 4699 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4700 if (FTy->getParamType(i)->isLabelTy()) 4701 Args.push_back(getBasicBlock(Record[OpNum])); 4702 else 4703 Args.push_back(getValue(Record, OpNum, NextValueNo, 4704 FTy->getParamType(i))); 4705 if (!Args.back()) 4706 return error("Invalid record"); 4707 } 4708 4709 // Read type/value pairs for varargs params. 4710 if (!FTy->isVarArg()) { 4711 if (OpNum != Record.size()) 4712 return error("Invalid record"); 4713 } else { 4714 while (OpNum != Record.size()) { 4715 Value *Op; 4716 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4717 return error("Invalid record"); 4718 Args.push_back(Op); 4719 } 4720 } 4721 4722 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4723 OperandBundles); 4724 FullTy = FullFTy->getReturnType(); 4725 OperandBundles.clear(); 4726 InstructionList.push_back(I); 4727 cast<CallBrInst>(I)->setCallingConv( 4728 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4729 cast<CallBrInst>(I)->setAttributes(PAL); 4730 break; 4731 } 4732 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4733 I = new UnreachableInst(Context); 4734 InstructionList.push_back(I); 4735 break; 4736 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4737 if (Record.empty()) 4738 return error("Invalid record"); 4739 // The first record specifies the type. 4740 FullTy = getFullyStructuredTypeByID(Record[0]); 4741 Type *Ty = flattenPointerTypes(FullTy); 4742 if (!Ty) 4743 return error("Invalid record"); 4744 4745 // Phi arguments are pairs of records of [value, basic block]. 4746 // There is an optional final record for fast-math-flags if this phi has a 4747 // floating-point type. 4748 size_t NumArgs = (Record.size() - 1) / 2; 4749 PHINode *PN = PHINode::Create(Ty, NumArgs); 4750 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4751 return error("Invalid record"); 4752 InstructionList.push_back(PN); 4753 4754 for (unsigned i = 0; i != NumArgs; i++) { 4755 Value *V; 4756 // With the new function encoding, it is possible that operands have 4757 // negative IDs (for forward references). Use a signed VBR 4758 // representation to keep the encoding small. 4759 if (UseRelativeIDs) 4760 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4761 else 4762 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4763 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4764 if (!V || !BB) 4765 return error("Invalid record"); 4766 PN->addIncoming(V, BB); 4767 } 4768 I = PN; 4769 4770 // If there are an even number of records, the final record must be FMF. 4771 if (Record.size() % 2 == 0) { 4772 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4773 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4774 if (FMF.any()) 4775 I->setFastMathFlags(FMF); 4776 } 4777 4778 break; 4779 } 4780 4781 case bitc::FUNC_CODE_INST_LANDINGPAD: 4782 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4783 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4784 unsigned Idx = 0; 4785 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4786 if (Record.size() < 3) 4787 return error("Invalid record"); 4788 } else { 4789 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4790 if (Record.size() < 4) 4791 return error("Invalid record"); 4792 } 4793 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4794 Type *Ty = flattenPointerTypes(FullTy); 4795 if (!Ty) 4796 return error("Invalid record"); 4797 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4798 Value *PersFn = nullptr; 4799 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4800 return error("Invalid record"); 4801 4802 if (!F->hasPersonalityFn()) 4803 F->setPersonalityFn(cast<Constant>(PersFn)); 4804 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4805 return error("Personality function mismatch"); 4806 } 4807 4808 bool IsCleanup = !!Record[Idx++]; 4809 unsigned NumClauses = Record[Idx++]; 4810 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4811 LP->setCleanup(IsCleanup); 4812 for (unsigned J = 0; J != NumClauses; ++J) { 4813 LandingPadInst::ClauseType CT = 4814 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4815 Value *Val; 4816 4817 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4818 delete LP; 4819 return error("Invalid record"); 4820 } 4821 4822 assert((CT != LandingPadInst::Catch || 4823 !isa<ArrayType>(Val->getType())) && 4824 "Catch clause has a invalid type!"); 4825 assert((CT != LandingPadInst::Filter || 4826 isa<ArrayType>(Val->getType())) && 4827 "Filter clause has invalid type!"); 4828 LP->addClause(cast<Constant>(Val)); 4829 } 4830 4831 I = LP; 4832 InstructionList.push_back(I); 4833 break; 4834 } 4835 4836 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4837 if (Record.size() != 4) 4838 return error("Invalid record"); 4839 using APV = AllocaPackedValues; 4840 const uint64_t Rec = Record[3]; 4841 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4842 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4843 FullTy = getFullyStructuredTypeByID(Record[0]); 4844 Type *Ty = flattenPointerTypes(FullTy); 4845 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4846 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4847 if (!PTy) 4848 return error("Old-style alloca with a non-pointer type"); 4849 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4850 } 4851 Type *OpTy = getTypeByID(Record[1]); 4852 Value *Size = getFnValueByID(Record[2], OpTy); 4853 MaybeAlign Align; 4854 if (Error Err = 4855 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4856 return Err; 4857 } 4858 if (!Ty || !Size) 4859 return error("Invalid record"); 4860 4861 // FIXME: Make this an optional field. 4862 const DataLayout &DL = TheModule->getDataLayout(); 4863 unsigned AS = DL.getAllocaAddrSpace(); 4864 4865 SmallPtrSet<Type *, 4> Visited; 4866 if (!Align && !Ty->isSized(&Visited)) 4867 return error("alloca of unsized type"); 4868 if (!Align) 4869 Align = DL.getPrefTypeAlign(Ty); 4870 4871 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4872 AI->setUsedWithInAlloca(InAlloca); 4873 AI->setSwiftError(SwiftError); 4874 I = AI; 4875 FullTy = PointerType::get(FullTy, AS); 4876 InstructionList.push_back(I); 4877 break; 4878 } 4879 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4880 unsigned OpNum = 0; 4881 Value *Op; 4882 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4883 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4884 return error("Invalid record"); 4885 4886 if (!isa<PointerType>(Op->getType())) 4887 return error("Load operand is not a pointer type"); 4888 4889 Type *Ty = nullptr; 4890 if (OpNum + 3 == Record.size()) { 4891 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4892 Ty = flattenPointerTypes(FullTy); 4893 } else 4894 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4895 4896 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4897 return Err; 4898 4899 MaybeAlign Align; 4900 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4901 return Err; 4902 SmallPtrSet<Type *, 4> Visited; 4903 if (!Align && !Ty->isSized(&Visited)) 4904 return error("load of unsized type"); 4905 if (!Align) 4906 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4907 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4912 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4913 unsigned OpNum = 0; 4914 Value *Op; 4915 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4916 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4917 return error("Invalid record"); 4918 4919 if (!isa<PointerType>(Op->getType())) 4920 return error("Load operand is not a pointer type"); 4921 4922 Type *Ty = nullptr; 4923 if (OpNum + 5 == Record.size()) { 4924 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4925 Ty = flattenPointerTypes(FullTy); 4926 } else 4927 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4928 4929 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4930 return Err; 4931 4932 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4933 if (Ordering == AtomicOrdering::NotAtomic || 4934 Ordering == AtomicOrdering::Release || 4935 Ordering == AtomicOrdering::AcquireRelease) 4936 return error("Invalid record"); 4937 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4938 return error("Invalid record"); 4939 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4940 4941 MaybeAlign Align; 4942 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4943 return Err; 4944 if (!Align) 4945 return error("Alignment missing from atomic load"); 4946 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4947 InstructionList.push_back(I); 4948 break; 4949 } 4950 case bitc::FUNC_CODE_INST_STORE: 4951 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4952 unsigned OpNum = 0; 4953 Value *Val, *Ptr; 4954 Type *FullTy; 4955 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4956 (BitCode == bitc::FUNC_CODE_INST_STORE 4957 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4958 : popValue(Record, OpNum, NextValueNo, 4959 getPointerElementFlatType(FullTy), Val)) || 4960 OpNum + 2 != Record.size()) 4961 return error("Invalid record"); 4962 4963 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4964 return Err; 4965 MaybeAlign Align; 4966 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4967 return Err; 4968 SmallPtrSet<Type *, 4> Visited; 4969 if (!Align && !Val->getType()->isSized(&Visited)) 4970 return error("store of unsized type"); 4971 if (!Align) 4972 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4973 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4974 InstructionList.push_back(I); 4975 break; 4976 } 4977 case bitc::FUNC_CODE_INST_STOREATOMIC: 4978 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4979 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4980 unsigned OpNum = 0; 4981 Value *Val, *Ptr; 4982 Type *FullTy; 4983 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4984 !isa<PointerType>(Ptr->getType()) || 4985 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4986 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4987 : popValue(Record, OpNum, NextValueNo, 4988 getPointerElementFlatType(FullTy), Val)) || 4989 OpNum + 4 != Record.size()) 4990 return error("Invalid record"); 4991 4992 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4993 return Err; 4994 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4995 if (Ordering == AtomicOrdering::NotAtomic || 4996 Ordering == AtomicOrdering::Acquire || 4997 Ordering == AtomicOrdering::AcquireRelease) 4998 return error("Invalid record"); 4999 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5000 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5001 return error("Invalid record"); 5002 5003 MaybeAlign Align; 5004 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5005 return Err; 5006 if (!Align) 5007 return error("Alignment missing from atomic store"); 5008 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5009 InstructionList.push_back(I); 5010 break; 5011 } 5012 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5013 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5014 // failure_ordering?, weak?] 5015 const size_t NumRecords = Record.size(); 5016 unsigned OpNum = 0; 5017 Value *Ptr = nullptr; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5019 return error("Invalid record"); 5020 5021 if (!isa<PointerType>(Ptr->getType())) 5022 return error("Cmpxchg operand is not a pointer type"); 5023 5024 Value *Cmp = nullptr; 5025 if (popValue(Record, OpNum, NextValueNo, 5026 getPointerElementFlatType(FullTy), Cmp)) 5027 return error("Invalid record"); 5028 5029 FullTy = cast<PointerType>(FullTy)->getElementType(); 5030 5031 Value *New = nullptr; 5032 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5033 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5034 return error("Invalid record"); 5035 5036 const AtomicOrdering SuccessOrdering = 5037 getDecodedOrdering(Record[OpNum + 1]); 5038 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5039 SuccessOrdering == AtomicOrdering::Unordered) 5040 return error("Invalid record"); 5041 5042 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5043 5044 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5045 return Err; 5046 5047 const AtomicOrdering FailureOrdering = 5048 NumRecords < 7 5049 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5050 : getDecodedOrdering(Record[OpNum + 3]); 5051 5052 const Align Alignment( 5053 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5054 5055 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5056 FailureOrdering, SSID); 5057 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5058 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5059 5060 if (NumRecords < 8) { 5061 // Before weak cmpxchgs existed, the instruction simply returned the 5062 // value loaded from memory, so bitcode files from that era will be 5063 // expecting the first component of a modern cmpxchg. 5064 CurBB->getInstList().push_back(I); 5065 I = ExtractValueInst::Create(I, 0); 5066 FullTy = cast<StructType>(FullTy)->getElementType(0); 5067 } else { 5068 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5069 } 5070 5071 InstructionList.push_back(I); 5072 break; 5073 } 5074 case bitc::FUNC_CODE_INST_CMPXCHG: { 5075 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5076 // failure_ordering, weak] 5077 const size_t NumRecords = Record.size(); 5078 unsigned OpNum = 0; 5079 Value *Ptr = nullptr; 5080 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5081 return error("Invalid record"); 5082 5083 if (!isa<PointerType>(Ptr->getType())) 5084 return error("Cmpxchg operand is not a pointer type"); 5085 5086 Value *Cmp = nullptr; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5088 return error("Invalid record"); 5089 5090 Value *Val = nullptr; 5091 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) || 5092 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5093 return error("Invalid record"); 5094 5095 const AtomicOrdering SuccessOrdering = 5096 getDecodedOrdering(Record[OpNum + 1]); 5097 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5098 SuccessOrdering == AtomicOrdering::Unordered) 5099 return error("Invalid record"); 5100 5101 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5102 5103 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5104 return Err; 5105 5106 const AtomicOrdering FailureOrdering = 5107 getDecodedOrdering(Record[OpNum + 3]); 5108 5109 const Align Alignment( 5110 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5111 5112 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering, 5113 FailureOrdering, SSID); 5114 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5115 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5116 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5117 5118 InstructionList.push_back(I); 5119 break; 5120 } 5121 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5122 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5123 unsigned OpNum = 0; 5124 Value *Ptr, *Val; 5125 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5126 !isa<PointerType>(Ptr->getType()) || 5127 popValue(Record, OpNum, NextValueNo, 5128 getPointerElementFlatType(FullTy), Val) || 5129 OpNum + 4 != Record.size()) 5130 return error("Invalid record"); 5131 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5132 if (Operation < AtomicRMWInst::FIRST_BINOP || 5133 Operation > AtomicRMWInst::LAST_BINOP) 5134 return error("Invalid record"); 5135 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5136 if (Ordering == AtomicOrdering::NotAtomic || 5137 Ordering == AtomicOrdering::Unordered) 5138 return error("Invalid record"); 5139 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5140 Align Alignment( 5141 TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5142 I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 5143 FullTy = getPointerElementFlatType(FullTy); 5144 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5145 InstructionList.push_back(I); 5146 break; 5147 } 5148 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5149 if (2 != Record.size()) 5150 return error("Invalid record"); 5151 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5152 if (Ordering == AtomicOrdering::NotAtomic || 5153 Ordering == AtomicOrdering::Unordered || 5154 Ordering == AtomicOrdering::Monotonic) 5155 return error("Invalid record"); 5156 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5157 I = new FenceInst(Context, Ordering, SSID); 5158 InstructionList.push_back(I); 5159 break; 5160 } 5161 case bitc::FUNC_CODE_INST_CALL: { 5162 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5163 if (Record.size() < 3) 5164 return error("Invalid record"); 5165 5166 unsigned OpNum = 0; 5167 AttributeList PAL = getAttributes(Record[OpNum++]); 5168 unsigned CCInfo = Record[OpNum++]; 5169 5170 FastMathFlags FMF; 5171 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5172 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5173 if (!FMF.any()) 5174 return error("Fast math flags indicator set for call with no FMF"); 5175 } 5176 5177 FunctionType *FTy = nullptr; 5178 FunctionType *FullFTy = nullptr; 5179 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5180 FullFTy = 5181 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5182 if (!FullFTy) 5183 return error("Explicit call type is not a function type"); 5184 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5185 } 5186 5187 Value *Callee; 5188 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5189 return error("Invalid record"); 5190 5191 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5192 if (!OpTy) 5193 return error("Callee is not a pointer type"); 5194 if (!FTy) { 5195 FullFTy = 5196 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5197 if (!FullFTy) 5198 return error("Callee is not of pointer to function type"); 5199 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5200 } else if (getPointerElementFlatType(FullTy) != FTy) 5201 return error("Explicit call type does not match pointee type of " 5202 "callee operand"); 5203 if (Record.size() < FTy->getNumParams() + OpNum) 5204 return error("Insufficient operands to call"); 5205 5206 SmallVector<Value*, 16> Args; 5207 SmallVector<Type*, 16> ArgsFullTys; 5208 // Read the fixed params. 5209 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5210 if (FTy->getParamType(i)->isLabelTy()) 5211 Args.push_back(getBasicBlock(Record[OpNum])); 5212 else 5213 Args.push_back(getValue(Record, OpNum, NextValueNo, 5214 FTy->getParamType(i))); 5215 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5216 if (!Args.back()) 5217 return error("Invalid record"); 5218 } 5219 5220 // Read type/value pairs for varargs params. 5221 if (!FTy->isVarArg()) { 5222 if (OpNum != Record.size()) 5223 return error("Invalid record"); 5224 } else { 5225 while (OpNum != Record.size()) { 5226 Value *Op; 5227 Type *FullTy; 5228 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5229 return error("Invalid record"); 5230 Args.push_back(Op); 5231 ArgsFullTys.push_back(FullTy); 5232 } 5233 } 5234 5235 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5236 FullTy = FullFTy->getReturnType(); 5237 OperandBundles.clear(); 5238 InstructionList.push_back(I); 5239 cast<CallInst>(I)->setCallingConv( 5240 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5241 CallInst::TailCallKind TCK = CallInst::TCK_None; 5242 if (CCInfo & 1 << bitc::CALL_TAIL) 5243 TCK = CallInst::TCK_Tail; 5244 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5245 TCK = CallInst::TCK_MustTail; 5246 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5247 TCK = CallInst::TCK_NoTail; 5248 cast<CallInst>(I)->setTailCallKind(TCK); 5249 cast<CallInst>(I)->setAttributes(PAL); 5250 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5251 if (FMF.any()) { 5252 if (!isa<FPMathOperator>(I)) 5253 return error("Fast-math-flags specified for call without " 5254 "floating-point scalar or vector return type"); 5255 I->setFastMathFlags(FMF); 5256 } 5257 break; 5258 } 5259 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5260 if (Record.size() < 3) 5261 return error("Invalid record"); 5262 Type *OpTy = getTypeByID(Record[0]); 5263 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5264 FullTy = getFullyStructuredTypeByID(Record[2]); 5265 Type *ResTy = flattenPointerTypes(FullTy); 5266 if (!OpTy || !Op || !ResTy) 5267 return error("Invalid record"); 5268 I = new VAArgInst(Op, ResTy); 5269 InstructionList.push_back(I); 5270 break; 5271 } 5272 5273 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5274 // A call or an invoke can be optionally prefixed with some variable 5275 // number of operand bundle blocks. These blocks are read into 5276 // OperandBundles and consumed at the next call or invoke instruction. 5277 5278 if (Record.empty() || Record[0] >= BundleTags.size()) 5279 return error("Invalid record"); 5280 5281 std::vector<Value *> Inputs; 5282 5283 unsigned OpNum = 1; 5284 while (OpNum != Record.size()) { 5285 Value *Op; 5286 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5287 return error("Invalid record"); 5288 Inputs.push_back(Op); 5289 } 5290 5291 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5292 continue; 5293 } 5294 5295 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5296 unsigned OpNum = 0; 5297 Value *Op = nullptr; 5298 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5299 return error("Invalid record"); 5300 if (OpNum != Record.size()) 5301 return error("Invalid record"); 5302 5303 I = new FreezeInst(Op); 5304 InstructionList.push_back(I); 5305 break; 5306 } 5307 } 5308 5309 // Add instruction to end of current BB. If there is no current BB, reject 5310 // this file. 5311 if (!CurBB) { 5312 I->deleteValue(); 5313 return error("Invalid instruction with no BB"); 5314 } 5315 if (!OperandBundles.empty()) { 5316 I->deleteValue(); 5317 return error("Operand bundles found with no consumer"); 5318 } 5319 CurBB->getInstList().push_back(I); 5320 5321 // If this was a terminator instruction, move to the next block. 5322 if (I->isTerminator()) { 5323 ++CurBBNo; 5324 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5325 } 5326 5327 // Non-void values get registered in the value table for future use. 5328 if (!I->getType()->isVoidTy()) { 5329 if (!FullTy) { 5330 FullTy = I->getType(); 5331 assert( 5332 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5333 !isa<ArrayType>(FullTy) && 5334 (!isa<VectorType>(FullTy) || 5335 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5336 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5337 "Structured types must be assigned with corresponding non-opaque " 5338 "pointer type"); 5339 } 5340 5341 assert(I->getType() == flattenPointerTypes(FullTy) && 5342 "Incorrect fully structured type provided for Instruction"); 5343 ValueList.assignValue(I, NextValueNo++, FullTy); 5344 } 5345 } 5346 5347 OutOfRecordLoop: 5348 5349 if (!OperandBundles.empty()) 5350 return error("Operand bundles found with no consumer"); 5351 5352 // Check the function list for unresolved values. 5353 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5354 if (!A->getParent()) { 5355 // We found at least one unresolved value. Nuke them all to avoid leaks. 5356 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5357 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5358 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5359 delete A; 5360 } 5361 } 5362 return error("Never resolved value found in function"); 5363 } 5364 } 5365 5366 // Unexpected unresolved metadata about to be dropped. 5367 if (MDLoader->hasFwdRefs()) 5368 return error("Invalid function metadata: outgoing forward refs"); 5369 5370 // Trim the value list down to the size it was before we parsed this function. 5371 ValueList.shrinkTo(ModuleValueListSize); 5372 MDLoader->shrinkTo(ModuleMDLoaderSize); 5373 std::vector<BasicBlock*>().swap(FunctionBBs); 5374 return Error::success(); 5375 } 5376 5377 /// Find the function body in the bitcode stream 5378 Error BitcodeReader::findFunctionInStream( 5379 Function *F, 5380 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5381 while (DeferredFunctionInfoIterator->second == 0) { 5382 // This is the fallback handling for the old format bitcode that 5383 // didn't contain the function index in the VST, or when we have 5384 // an anonymous function which would not have a VST entry. 5385 // Assert that we have one of those two cases. 5386 assert(VSTOffset == 0 || !F->hasName()); 5387 // Parse the next body in the stream and set its position in the 5388 // DeferredFunctionInfo map. 5389 if (Error Err = rememberAndSkipFunctionBodies()) 5390 return Err; 5391 } 5392 return Error::success(); 5393 } 5394 5395 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5396 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5397 return SyncScope::ID(Val); 5398 if (Val >= SSIDs.size()) 5399 return SyncScope::System; // Map unknown synchronization scopes to system. 5400 return SSIDs[Val]; 5401 } 5402 5403 //===----------------------------------------------------------------------===// 5404 // GVMaterializer implementation 5405 //===----------------------------------------------------------------------===// 5406 5407 Error BitcodeReader::materialize(GlobalValue *GV) { 5408 Function *F = dyn_cast<Function>(GV); 5409 // If it's not a function or is already material, ignore the request. 5410 if (!F || !F->isMaterializable()) 5411 return Error::success(); 5412 5413 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5414 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5415 // If its position is recorded as 0, its body is somewhere in the stream 5416 // but we haven't seen it yet. 5417 if (DFII->second == 0) 5418 if (Error Err = findFunctionInStream(F, DFII)) 5419 return Err; 5420 5421 // Materialize metadata before parsing any function bodies. 5422 if (Error Err = materializeMetadata()) 5423 return Err; 5424 5425 // Move the bit stream to the saved position of the deferred function body. 5426 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5427 return JumpFailed; 5428 if (Error Err = parseFunctionBody(F)) 5429 return Err; 5430 F->setIsMaterializable(false); 5431 5432 if (StripDebugInfo) 5433 stripDebugInfo(*F); 5434 5435 // Upgrade any old intrinsic calls in the function. 5436 for (auto &I : UpgradedIntrinsics) { 5437 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5438 UI != UE;) { 5439 User *U = *UI; 5440 ++UI; 5441 if (CallInst *CI = dyn_cast<CallInst>(U)) 5442 UpgradeIntrinsicCall(CI, I.second); 5443 } 5444 } 5445 5446 // Update calls to the remangled intrinsics 5447 for (auto &I : RemangledIntrinsics) 5448 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5449 UI != UE;) 5450 // Don't expect any other users than call sites 5451 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5452 5453 // Finish fn->subprogram upgrade for materialized functions. 5454 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5455 F->setSubprogram(SP); 5456 5457 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5458 if (!MDLoader->isStrippingTBAA()) { 5459 for (auto &I : instructions(F)) { 5460 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5461 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5462 continue; 5463 MDLoader->setStripTBAA(true); 5464 stripTBAA(F->getParent()); 5465 } 5466 } 5467 5468 // "Upgrade" older incorrect branch weights by dropping them. 5469 for (auto &I : instructions(F)) { 5470 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5471 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5472 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5473 StringRef ProfName = MDS->getString(); 5474 // Check consistency of !prof branch_weights metadata. 5475 if (!ProfName.equals("branch_weights")) 5476 continue; 5477 unsigned ExpectedNumOperands = 0; 5478 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5479 ExpectedNumOperands = BI->getNumSuccessors(); 5480 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5481 ExpectedNumOperands = SI->getNumSuccessors(); 5482 else if (isa<CallInst>(&I)) 5483 ExpectedNumOperands = 1; 5484 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5485 ExpectedNumOperands = IBI->getNumDestinations(); 5486 else if (isa<SelectInst>(&I)) 5487 ExpectedNumOperands = 2; 5488 else 5489 continue; // ignore and continue. 5490 5491 // If branch weight doesn't match, just strip branch weight. 5492 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5493 I.setMetadata(LLVMContext::MD_prof, nullptr); 5494 } 5495 } 5496 } 5497 5498 // Look for functions that rely on old function attribute behavior. 5499 UpgradeFunctionAttributes(*F); 5500 5501 // Bring in any functions that this function forward-referenced via 5502 // blockaddresses. 5503 return materializeForwardReferencedFunctions(); 5504 } 5505 5506 Error BitcodeReader::materializeModule() { 5507 if (Error Err = materializeMetadata()) 5508 return Err; 5509 5510 // Promise to materialize all forward references. 5511 WillMaterializeAllForwardRefs = true; 5512 5513 // Iterate over the module, deserializing any functions that are still on 5514 // disk. 5515 for (Function &F : *TheModule) { 5516 if (Error Err = materialize(&F)) 5517 return Err; 5518 } 5519 // At this point, if there are any function bodies, parse the rest of 5520 // the bits in the module past the last function block we have recorded 5521 // through either lazy scanning or the VST. 5522 if (LastFunctionBlockBit || NextUnreadBit) 5523 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5524 ? LastFunctionBlockBit 5525 : NextUnreadBit)) 5526 return Err; 5527 5528 // Check that all block address forward references got resolved (as we 5529 // promised above). 5530 if (!BasicBlockFwdRefs.empty()) 5531 return error("Never resolved function from blockaddress"); 5532 5533 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5534 // delete the old functions to clean up. We can't do this unless the entire 5535 // module is materialized because there could always be another function body 5536 // with calls to the old function. 5537 for (auto &I : UpgradedIntrinsics) { 5538 for (auto *U : I.first->users()) { 5539 if (CallInst *CI = dyn_cast<CallInst>(U)) 5540 UpgradeIntrinsicCall(CI, I.second); 5541 } 5542 if (!I.first->use_empty()) 5543 I.first->replaceAllUsesWith(I.second); 5544 I.first->eraseFromParent(); 5545 } 5546 UpgradedIntrinsics.clear(); 5547 // Do the same for remangled intrinsics 5548 for (auto &I : RemangledIntrinsics) { 5549 I.first->replaceAllUsesWith(I.second); 5550 I.first->eraseFromParent(); 5551 } 5552 RemangledIntrinsics.clear(); 5553 5554 UpgradeDebugInfo(*TheModule); 5555 5556 UpgradeModuleFlags(*TheModule); 5557 5558 UpgradeARCRuntime(*TheModule); 5559 5560 return Error::success(); 5561 } 5562 5563 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5564 return IdentifiedStructTypes; 5565 } 5566 5567 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5568 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5569 StringRef ModulePath, unsigned ModuleId) 5570 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5571 ModulePath(ModulePath), ModuleId(ModuleId) {} 5572 5573 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5574 TheIndex.addModule(ModulePath, ModuleId); 5575 } 5576 5577 ModuleSummaryIndex::ModuleInfo * 5578 ModuleSummaryIndexBitcodeReader::getThisModule() { 5579 return TheIndex.getModule(ModulePath); 5580 } 5581 5582 std::pair<ValueInfo, GlobalValue::GUID> 5583 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5584 auto VGI = ValueIdToValueInfoMap[ValueId]; 5585 assert(VGI.first); 5586 return VGI; 5587 } 5588 5589 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5590 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5591 StringRef SourceFileName) { 5592 std::string GlobalId = 5593 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5594 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5595 auto OriginalNameID = ValueGUID; 5596 if (GlobalValue::isLocalLinkage(Linkage)) 5597 OriginalNameID = GlobalValue::getGUID(ValueName); 5598 if (PrintSummaryGUIDs) 5599 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5600 << ValueName << "\n"; 5601 5602 // UseStrtab is false for legacy summary formats and value names are 5603 // created on stack. In that case we save the name in a string saver in 5604 // the index so that the value name can be recorded. 5605 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5606 TheIndex.getOrInsertValueInfo( 5607 ValueGUID, 5608 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5609 OriginalNameID); 5610 } 5611 5612 // Specialized value symbol table parser used when reading module index 5613 // blocks where we don't actually create global values. The parsed information 5614 // is saved in the bitcode reader for use when later parsing summaries. 5615 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5616 uint64_t Offset, 5617 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5618 // With a strtab the VST is not required to parse the summary. 5619 if (UseStrtab) 5620 return Error::success(); 5621 5622 assert(Offset > 0 && "Expected non-zero VST offset"); 5623 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5624 if (!MaybeCurrentBit) 5625 return MaybeCurrentBit.takeError(); 5626 uint64_t CurrentBit = MaybeCurrentBit.get(); 5627 5628 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5629 return Err; 5630 5631 SmallVector<uint64_t, 64> Record; 5632 5633 // Read all the records for this value table. 5634 SmallString<128> ValueName; 5635 5636 while (true) { 5637 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5638 if (!MaybeEntry) 5639 return MaybeEntry.takeError(); 5640 BitstreamEntry Entry = MaybeEntry.get(); 5641 5642 switch (Entry.Kind) { 5643 case BitstreamEntry::SubBlock: // Handled for us already. 5644 case BitstreamEntry::Error: 5645 return error("Malformed block"); 5646 case BitstreamEntry::EndBlock: 5647 // Done parsing VST, jump back to wherever we came from. 5648 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5649 return JumpFailed; 5650 return Error::success(); 5651 case BitstreamEntry::Record: 5652 // The interesting case. 5653 break; 5654 } 5655 5656 // Read a record. 5657 Record.clear(); 5658 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5659 if (!MaybeRecord) 5660 return MaybeRecord.takeError(); 5661 switch (MaybeRecord.get()) { 5662 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5663 break; 5664 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5665 if (convertToString(Record, 1, ValueName)) 5666 return error("Invalid record"); 5667 unsigned ValueID = Record[0]; 5668 assert(!SourceFileName.empty()); 5669 auto VLI = ValueIdToLinkageMap.find(ValueID); 5670 assert(VLI != ValueIdToLinkageMap.end() && 5671 "No linkage found for VST entry?"); 5672 auto Linkage = VLI->second; 5673 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5674 ValueName.clear(); 5675 break; 5676 } 5677 case bitc::VST_CODE_FNENTRY: { 5678 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5679 if (convertToString(Record, 2, ValueName)) 5680 return error("Invalid record"); 5681 unsigned ValueID = Record[0]; 5682 assert(!SourceFileName.empty()); 5683 auto VLI = ValueIdToLinkageMap.find(ValueID); 5684 assert(VLI != ValueIdToLinkageMap.end() && 5685 "No linkage found for VST entry?"); 5686 auto Linkage = VLI->second; 5687 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5688 ValueName.clear(); 5689 break; 5690 } 5691 case bitc::VST_CODE_COMBINED_ENTRY: { 5692 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5693 unsigned ValueID = Record[0]; 5694 GlobalValue::GUID RefGUID = Record[1]; 5695 // The "original name", which is the second value of the pair will be 5696 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5697 ValueIdToValueInfoMap[ValueID] = 5698 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5699 break; 5700 } 5701 } 5702 } 5703 } 5704 5705 // Parse just the blocks needed for building the index out of the module. 5706 // At the end of this routine the module Index is populated with a map 5707 // from global value id to GlobalValueSummary objects. 5708 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5709 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5710 return Err; 5711 5712 SmallVector<uint64_t, 64> Record; 5713 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5714 unsigned ValueId = 0; 5715 5716 // Read the index for this module. 5717 while (true) { 5718 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5719 if (!MaybeEntry) 5720 return MaybeEntry.takeError(); 5721 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5722 5723 switch (Entry.Kind) { 5724 case BitstreamEntry::Error: 5725 return error("Malformed block"); 5726 case BitstreamEntry::EndBlock: 5727 return Error::success(); 5728 5729 case BitstreamEntry::SubBlock: 5730 switch (Entry.ID) { 5731 default: // Skip unknown content. 5732 if (Error Err = Stream.SkipBlock()) 5733 return Err; 5734 break; 5735 case bitc::BLOCKINFO_BLOCK_ID: 5736 // Need to parse these to get abbrev ids (e.g. for VST) 5737 if (readBlockInfo()) 5738 return error("Malformed block"); 5739 break; 5740 case bitc::VALUE_SYMTAB_BLOCK_ID: 5741 // Should have been parsed earlier via VSTOffset, unless there 5742 // is no summary section. 5743 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5744 !SeenGlobalValSummary) && 5745 "Expected early VST parse via VSTOffset record"); 5746 if (Error Err = Stream.SkipBlock()) 5747 return Err; 5748 break; 5749 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5750 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5751 // Add the module if it is a per-module index (has a source file name). 5752 if (!SourceFileName.empty()) 5753 addThisModule(); 5754 assert(!SeenValueSymbolTable && 5755 "Already read VST when parsing summary block?"); 5756 // We might not have a VST if there were no values in the 5757 // summary. An empty summary block generated when we are 5758 // performing ThinLTO compiles so we don't later invoke 5759 // the regular LTO process on them. 5760 if (VSTOffset > 0) { 5761 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5762 return Err; 5763 SeenValueSymbolTable = true; 5764 } 5765 SeenGlobalValSummary = true; 5766 if (Error Err = parseEntireSummary(Entry.ID)) 5767 return Err; 5768 break; 5769 case bitc::MODULE_STRTAB_BLOCK_ID: 5770 if (Error Err = parseModuleStringTable()) 5771 return Err; 5772 break; 5773 } 5774 continue; 5775 5776 case BitstreamEntry::Record: { 5777 Record.clear(); 5778 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5779 if (!MaybeBitCode) 5780 return MaybeBitCode.takeError(); 5781 switch (MaybeBitCode.get()) { 5782 default: 5783 break; // Default behavior, ignore unknown content. 5784 case bitc::MODULE_CODE_VERSION: { 5785 if (Error Err = parseVersionRecord(Record).takeError()) 5786 return Err; 5787 break; 5788 } 5789 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5790 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5791 SmallString<128> ValueName; 5792 if (convertToString(Record, 0, ValueName)) 5793 return error("Invalid record"); 5794 SourceFileName = ValueName.c_str(); 5795 break; 5796 } 5797 /// MODULE_CODE_HASH: [5*i32] 5798 case bitc::MODULE_CODE_HASH: { 5799 if (Record.size() != 5) 5800 return error("Invalid hash length " + Twine(Record.size()).str()); 5801 auto &Hash = getThisModule()->second.second; 5802 int Pos = 0; 5803 for (auto &Val : Record) { 5804 assert(!(Val >> 32) && "Unexpected high bits set"); 5805 Hash[Pos++] = Val; 5806 } 5807 break; 5808 } 5809 /// MODULE_CODE_VSTOFFSET: [offset] 5810 case bitc::MODULE_CODE_VSTOFFSET: 5811 if (Record.empty()) 5812 return error("Invalid record"); 5813 // Note that we subtract 1 here because the offset is relative to one 5814 // word before the start of the identification or module block, which 5815 // was historically always the start of the regular bitcode header. 5816 VSTOffset = Record[0] - 1; 5817 break; 5818 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5819 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5820 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5821 // v2: [strtab offset, strtab size, v1] 5822 case bitc::MODULE_CODE_GLOBALVAR: 5823 case bitc::MODULE_CODE_FUNCTION: 5824 case bitc::MODULE_CODE_ALIAS: { 5825 StringRef Name; 5826 ArrayRef<uint64_t> GVRecord; 5827 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5828 if (GVRecord.size() <= 3) 5829 return error("Invalid record"); 5830 uint64_t RawLinkage = GVRecord[3]; 5831 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5832 if (!UseStrtab) { 5833 ValueIdToLinkageMap[ValueId++] = Linkage; 5834 break; 5835 } 5836 5837 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5838 break; 5839 } 5840 } 5841 } 5842 continue; 5843 } 5844 } 5845 } 5846 5847 std::vector<ValueInfo> 5848 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5849 std::vector<ValueInfo> Ret; 5850 Ret.reserve(Record.size()); 5851 for (uint64_t RefValueId : Record) 5852 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5853 return Ret; 5854 } 5855 5856 std::vector<FunctionSummary::EdgeTy> 5857 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5858 bool IsOldProfileFormat, 5859 bool HasProfile, bool HasRelBF) { 5860 std::vector<FunctionSummary::EdgeTy> Ret; 5861 Ret.reserve(Record.size()); 5862 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5863 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5864 uint64_t RelBF = 0; 5865 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5866 if (IsOldProfileFormat) { 5867 I += 1; // Skip old callsitecount field 5868 if (HasProfile) 5869 I += 1; // Skip old profilecount field 5870 } else if (HasProfile) 5871 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5872 else if (HasRelBF) 5873 RelBF = Record[++I]; 5874 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5875 } 5876 return Ret; 5877 } 5878 5879 static void 5880 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5881 WholeProgramDevirtResolution &Wpd) { 5882 uint64_t ArgNum = Record[Slot++]; 5883 WholeProgramDevirtResolution::ByArg &B = 5884 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5885 Slot += ArgNum; 5886 5887 B.TheKind = 5888 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5889 B.Info = Record[Slot++]; 5890 B.Byte = Record[Slot++]; 5891 B.Bit = Record[Slot++]; 5892 } 5893 5894 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5895 StringRef Strtab, size_t &Slot, 5896 TypeIdSummary &TypeId) { 5897 uint64_t Id = Record[Slot++]; 5898 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5899 5900 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5901 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5902 static_cast<size_t>(Record[Slot + 1])}; 5903 Slot += 2; 5904 5905 uint64_t ResByArgNum = Record[Slot++]; 5906 for (uint64_t I = 0; I != ResByArgNum; ++I) 5907 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5908 } 5909 5910 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5911 StringRef Strtab, 5912 ModuleSummaryIndex &TheIndex) { 5913 size_t Slot = 0; 5914 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5915 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5916 Slot += 2; 5917 5918 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5919 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5920 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5921 TypeId.TTRes.SizeM1 = Record[Slot++]; 5922 TypeId.TTRes.BitMask = Record[Slot++]; 5923 TypeId.TTRes.InlineBits = Record[Slot++]; 5924 5925 while (Slot < Record.size()) 5926 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5927 } 5928 5929 std::vector<FunctionSummary::ParamAccess> 5930 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5931 auto ReadRange = [&]() { 5932 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5933 BitcodeReader::decodeSignRotatedValue(Record.front())); 5934 Record = Record.drop_front(); 5935 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5936 BitcodeReader::decodeSignRotatedValue(Record.front())); 5937 Record = Record.drop_front(); 5938 ConstantRange Range{Lower, Upper}; 5939 assert(!Range.isFullSet()); 5940 assert(!Range.isUpperSignWrapped()); 5941 return Range; 5942 }; 5943 5944 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5945 while (!Record.empty()) { 5946 PendingParamAccesses.emplace_back(); 5947 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5948 ParamAccess.ParamNo = Record.front(); 5949 Record = Record.drop_front(); 5950 ParamAccess.Use = ReadRange(); 5951 ParamAccess.Calls.resize(Record.front()); 5952 Record = Record.drop_front(); 5953 for (auto &Call : ParamAccess.Calls) { 5954 Call.ParamNo = Record.front(); 5955 Record = Record.drop_front(); 5956 Call.Callee = getValueInfoFromValueId(Record.front()).first; 5957 Record = Record.drop_front(); 5958 Call.Offsets = ReadRange(); 5959 } 5960 } 5961 return PendingParamAccesses; 5962 } 5963 5964 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5965 ArrayRef<uint64_t> Record, size_t &Slot, 5966 TypeIdCompatibleVtableInfo &TypeId) { 5967 uint64_t Offset = Record[Slot++]; 5968 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5969 TypeId.push_back({Offset, Callee}); 5970 } 5971 5972 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5973 ArrayRef<uint64_t> Record) { 5974 size_t Slot = 0; 5975 TypeIdCompatibleVtableInfo &TypeId = 5976 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5977 {Strtab.data() + Record[Slot], 5978 static_cast<size_t>(Record[Slot + 1])}); 5979 Slot += 2; 5980 5981 while (Slot < Record.size()) 5982 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5983 } 5984 5985 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5986 unsigned WOCnt) { 5987 // Readonly and writeonly refs are in the end of the refs list. 5988 assert(ROCnt + WOCnt <= Refs.size()); 5989 unsigned FirstWORef = Refs.size() - WOCnt; 5990 unsigned RefNo = FirstWORef - ROCnt; 5991 for (; RefNo < FirstWORef; ++RefNo) 5992 Refs[RefNo].setReadOnly(); 5993 for (; RefNo < Refs.size(); ++RefNo) 5994 Refs[RefNo].setWriteOnly(); 5995 } 5996 5997 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5998 // objects in the index. 5999 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6000 if (Error Err = Stream.EnterSubBlock(ID)) 6001 return Err; 6002 SmallVector<uint64_t, 64> Record; 6003 6004 // Parse version 6005 { 6006 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6007 if (!MaybeEntry) 6008 return MaybeEntry.takeError(); 6009 BitstreamEntry Entry = MaybeEntry.get(); 6010 6011 if (Entry.Kind != BitstreamEntry::Record) 6012 return error("Invalid Summary Block: record for version expected"); 6013 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6014 if (!MaybeRecord) 6015 return MaybeRecord.takeError(); 6016 if (MaybeRecord.get() != bitc::FS_VERSION) 6017 return error("Invalid Summary Block: version expected"); 6018 } 6019 const uint64_t Version = Record[0]; 6020 const bool IsOldProfileFormat = Version == 1; 6021 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6022 return error("Invalid summary version " + Twine(Version) + 6023 ". Version should be in the range [1-" + 6024 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6025 "]."); 6026 Record.clear(); 6027 6028 // Keep around the last seen summary to be used when we see an optional 6029 // "OriginalName" attachement. 6030 GlobalValueSummary *LastSeenSummary = nullptr; 6031 GlobalValue::GUID LastSeenGUID = 0; 6032 6033 // We can expect to see any number of type ID information records before 6034 // each function summary records; these variables store the information 6035 // collected so far so that it can be used to create the summary object. 6036 std::vector<GlobalValue::GUID> PendingTypeTests; 6037 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6038 PendingTypeCheckedLoadVCalls; 6039 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6040 PendingTypeCheckedLoadConstVCalls; 6041 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6042 6043 while (true) { 6044 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6045 if (!MaybeEntry) 6046 return MaybeEntry.takeError(); 6047 BitstreamEntry Entry = MaybeEntry.get(); 6048 6049 switch (Entry.Kind) { 6050 case BitstreamEntry::SubBlock: // Handled for us already. 6051 case BitstreamEntry::Error: 6052 return error("Malformed block"); 6053 case BitstreamEntry::EndBlock: 6054 return Error::success(); 6055 case BitstreamEntry::Record: 6056 // The interesting case. 6057 break; 6058 } 6059 6060 // Read a record. The record format depends on whether this 6061 // is a per-module index or a combined index file. In the per-module 6062 // case the records contain the associated value's ID for correlation 6063 // with VST entries. In the combined index the correlation is done 6064 // via the bitcode offset of the summary records (which were saved 6065 // in the combined index VST entries). The records also contain 6066 // information used for ThinLTO renaming and importing. 6067 Record.clear(); 6068 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6069 if (!MaybeBitCode) 6070 return MaybeBitCode.takeError(); 6071 switch (unsigned BitCode = MaybeBitCode.get()) { 6072 default: // Default behavior: ignore. 6073 break; 6074 case bitc::FS_FLAGS: { // [flags] 6075 TheIndex.setFlags(Record[0]); 6076 break; 6077 } 6078 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6079 uint64_t ValueID = Record[0]; 6080 GlobalValue::GUID RefGUID = Record[1]; 6081 ValueIdToValueInfoMap[ValueID] = 6082 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6083 break; 6084 } 6085 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6086 // numrefs x valueid, n x (valueid)] 6087 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6088 // numrefs x valueid, 6089 // n x (valueid, hotness)] 6090 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6091 // numrefs x valueid, 6092 // n x (valueid, relblockfreq)] 6093 case bitc::FS_PERMODULE: 6094 case bitc::FS_PERMODULE_RELBF: 6095 case bitc::FS_PERMODULE_PROFILE: { 6096 unsigned ValueID = Record[0]; 6097 uint64_t RawFlags = Record[1]; 6098 unsigned InstCount = Record[2]; 6099 uint64_t RawFunFlags = 0; 6100 unsigned NumRefs = Record[3]; 6101 unsigned NumRORefs = 0, NumWORefs = 0; 6102 int RefListStartIndex = 4; 6103 if (Version >= 4) { 6104 RawFunFlags = Record[3]; 6105 NumRefs = Record[4]; 6106 RefListStartIndex = 5; 6107 if (Version >= 5) { 6108 NumRORefs = Record[5]; 6109 RefListStartIndex = 6; 6110 if (Version >= 7) { 6111 NumWORefs = Record[6]; 6112 RefListStartIndex = 7; 6113 } 6114 } 6115 } 6116 6117 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6118 // The module path string ref set in the summary must be owned by the 6119 // index's module string table. Since we don't have a module path 6120 // string table section in the per-module index, we create a single 6121 // module path string table entry with an empty (0) ID to take 6122 // ownership. 6123 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6124 assert(Record.size() >= RefListStartIndex + NumRefs && 6125 "Record size inconsistent with number of references"); 6126 std::vector<ValueInfo> Refs = makeRefList( 6127 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6128 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6129 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6130 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6131 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6132 IsOldProfileFormat, HasProfile, HasRelBF); 6133 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6134 auto FS = std::make_unique<FunctionSummary>( 6135 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6136 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6137 std::move(PendingTypeTestAssumeVCalls), 6138 std::move(PendingTypeCheckedLoadVCalls), 6139 std::move(PendingTypeTestAssumeConstVCalls), 6140 std::move(PendingTypeCheckedLoadConstVCalls), 6141 std::move(PendingParamAccesses)); 6142 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6143 FS->setModulePath(getThisModule()->first()); 6144 FS->setOriginalName(VIAndOriginalGUID.second); 6145 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6146 break; 6147 } 6148 // FS_ALIAS: [valueid, flags, valueid] 6149 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6150 // they expect all aliasee summaries to be available. 6151 case bitc::FS_ALIAS: { 6152 unsigned ValueID = Record[0]; 6153 uint64_t RawFlags = Record[1]; 6154 unsigned AliaseeID = Record[2]; 6155 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6156 auto AS = std::make_unique<AliasSummary>(Flags); 6157 // The module path string ref set in the summary must be owned by the 6158 // index's module string table. Since we don't have a module path 6159 // string table section in the per-module index, we create a single 6160 // module path string table entry with an empty (0) ID to take 6161 // ownership. 6162 AS->setModulePath(getThisModule()->first()); 6163 6164 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6165 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6166 if (!AliaseeInModule) 6167 return error("Alias expects aliasee summary to be parsed"); 6168 AS->setAliasee(AliaseeVI, AliaseeInModule); 6169 6170 auto GUID = getValueInfoFromValueId(ValueID); 6171 AS->setOriginalName(GUID.second); 6172 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6173 break; 6174 } 6175 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6176 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6177 unsigned ValueID = Record[0]; 6178 uint64_t RawFlags = Record[1]; 6179 unsigned RefArrayStart = 2; 6180 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6181 /* WriteOnly */ false, 6182 /* Constant */ false, 6183 GlobalObject::VCallVisibilityPublic); 6184 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6185 if (Version >= 5) { 6186 GVF = getDecodedGVarFlags(Record[2]); 6187 RefArrayStart = 3; 6188 } 6189 std::vector<ValueInfo> Refs = 6190 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6191 auto FS = 6192 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6193 FS->setModulePath(getThisModule()->first()); 6194 auto GUID = getValueInfoFromValueId(ValueID); 6195 FS->setOriginalName(GUID.second); 6196 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6197 break; 6198 } 6199 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6200 // numrefs, numrefs x valueid, 6201 // n x (valueid, offset)] 6202 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6203 unsigned ValueID = Record[0]; 6204 uint64_t RawFlags = Record[1]; 6205 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6206 unsigned NumRefs = Record[3]; 6207 unsigned RefListStartIndex = 4; 6208 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6209 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6210 std::vector<ValueInfo> Refs = makeRefList( 6211 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6212 VTableFuncList VTableFuncs; 6213 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6214 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6215 uint64_t Offset = Record[++I]; 6216 VTableFuncs.push_back({Callee, Offset}); 6217 } 6218 auto VS = 6219 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6220 VS->setModulePath(getThisModule()->first()); 6221 VS->setVTableFuncs(VTableFuncs); 6222 auto GUID = getValueInfoFromValueId(ValueID); 6223 VS->setOriginalName(GUID.second); 6224 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6225 break; 6226 } 6227 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6228 // numrefs x valueid, n x (valueid)] 6229 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6230 // numrefs x valueid, n x (valueid, hotness)] 6231 case bitc::FS_COMBINED: 6232 case bitc::FS_COMBINED_PROFILE: { 6233 unsigned ValueID = Record[0]; 6234 uint64_t ModuleId = Record[1]; 6235 uint64_t RawFlags = Record[2]; 6236 unsigned InstCount = Record[3]; 6237 uint64_t RawFunFlags = 0; 6238 uint64_t EntryCount = 0; 6239 unsigned NumRefs = Record[4]; 6240 unsigned NumRORefs = 0, NumWORefs = 0; 6241 int RefListStartIndex = 5; 6242 6243 if (Version >= 4) { 6244 RawFunFlags = Record[4]; 6245 RefListStartIndex = 6; 6246 size_t NumRefsIndex = 5; 6247 if (Version >= 5) { 6248 unsigned NumRORefsOffset = 1; 6249 RefListStartIndex = 7; 6250 if (Version >= 6) { 6251 NumRefsIndex = 6; 6252 EntryCount = Record[5]; 6253 RefListStartIndex = 8; 6254 if (Version >= 7) { 6255 RefListStartIndex = 9; 6256 NumWORefs = Record[8]; 6257 NumRORefsOffset = 2; 6258 } 6259 } 6260 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6261 } 6262 NumRefs = Record[NumRefsIndex]; 6263 } 6264 6265 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6266 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6267 assert(Record.size() >= RefListStartIndex + NumRefs && 6268 "Record size inconsistent with number of references"); 6269 std::vector<ValueInfo> Refs = makeRefList( 6270 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6271 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6272 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6273 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6274 IsOldProfileFormat, HasProfile, false); 6275 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6276 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6277 auto FS = std::make_unique<FunctionSummary>( 6278 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6279 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6280 std::move(PendingTypeTestAssumeVCalls), 6281 std::move(PendingTypeCheckedLoadVCalls), 6282 std::move(PendingTypeTestAssumeConstVCalls), 6283 std::move(PendingTypeCheckedLoadConstVCalls), 6284 std::move(PendingParamAccesses)); 6285 LastSeenSummary = FS.get(); 6286 LastSeenGUID = VI.getGUID(); 6287 FS->setModulePath(ModuleIdMap[ModuleId]); 6288 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6289 break; 6290 } 6291 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6292 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6293 // they expect all aliasee summaries to be available. 6294 case bitc::FS_COMBINED_ALIAS: { 6295 unsigned ValueID = Record[0]; 6296 uint64_t ModuleId = Record[1]; 6297 uint64_t RawFlags = Record[2]; 6298 unsigned AliaseeValueId = Record[3]; 6299 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6300 auto AS = std::make_unique<AliasSummary>(Flags); 6301 LastSeenSummary = AS.get(); 6302 AS->setModulePath(ModuleIdMap[ModuleId]); 6303 6304 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6305 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6306 AS->setAliasee(AliaseeVI, AliaseeInModule); 6307 6308 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6309 LastSeenGUID = VI.getGUID(); 6310 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6311 break; 6312 } 6313 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6314 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t ModuleId = Record[1]; 6317 uint64_t RawFlags = Record[2]; 6318 unsigned RefArrayStart = 3; 6319 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6320 /* WriteOnly */ false, 6321 /* Constant */ false, 6322 GlobalObject::VCallVisibilityPublic); 6323 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6324 if (Version >= 5) { 6325 GVF = getDecodedGVarFlags(Record[3]); 6326 RefArrayStart = 4; 6327 } 6328 std::vector<ValueInfo> Refs = 6329 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6330 auto FS = 6331 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6332 LastSeenSummary = FS.get(); 6333 FS->setModulePath(ModuleIdMap[ModuleId]); 6334 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6335 LastSeenGUID = VI.getGUID(); 6336 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6337 break; 6338 } 6339 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6340 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6341 uint64_t OriginalName = Record[0]; 6342 if (!LastSeenSummary) 6343 return error("Name attachment that does not follow a combined record"); 6344 LastSeenSummary->setOriginalName(OriginalName); 6345 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6346 // Reset the LastSeenSummary 6347 LastSeenSummary = nullptr; 6348 LastSeenGUID = 0; 6349 break; 6350 } 6351 case bitc::FS_TYPE_TESTS: 6352 assert(PendingTypeTests.empty()); 6353 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6354 Record.end()); 6355 break; 6356 6357 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6358 assert(PendingTypeTestAssumeVCalls.empty()); 6359 for (unsigned I = 0; I != Record.size(); I += 2) 6360 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6361 break; 6362 6363 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6364 assert(PendingTypeCheckedLoadVCalls.empty()); 6365 for (unsigned I = 0; I != Record.size(); I += 2) 6366 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6367 break; 6368 6369 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6370 PendingTypeTestAssumeConstVCalls.push_back( 6371 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6372 break; 6373 6374 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6375 PendingTypeCheckedLoadConstVCalls.push_back( 6376 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6377 break; 6378 6379 case bitc::FS_CFI_FUNCTION_DEFS: { 6380 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6381 for (unsigned I = 0; I != Record.size(); I += 2) 6382 CfiFunctionDefs.insert( 6383 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6384 break; 6385 } 6386 6387 case bitc::FS_CFI_FUNCTION_DECLS: { 6388 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6389 for (unsigned I = 0; I != Record.size(); I += 2) 6390 CfiFunctionDecls.insert( 6391 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6392 break; 6393 } 6394 6395 case bitc::FS_TYPE_ID: 6396 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6397 break; 6398 6399 case bitc::FS_TYPE_ID_METADATA: 6400 parseTypeIdCompatibleVtableSummaryRecord(Record); 6401 break; 6402 6403 case bitc::FS_BLOCK_COUNT: 6404 TheIndex.addBlockCount(Record[0]); 6405 break; 6406 6407 case bitc::FS_PARAM_ACCESS: { 6408 PendingParamAccesses = parseParamAccesses(Record); 6409 break; 6410 } 6411 } 6412 } 6413 llvm_unreachable("Exit infinite loop"); 6414 } 6415 6416 // Parse the module string table block into the Index. 6417 // This populates the ModulePathStringTable map in the index. 6418 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6419 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6420 return Err; 6421 6422 SmallVector<uint64_t, 64> Record; 6423 6424 SmallString<128> ModulePath; 6425 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6426 6427 while (true) { 6428 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6429 if (!MaybeEntry) 6430 return MaybeEntry.takeError(); 6431 BitstreamEntry Entry = MaybeEntry.get(); 6432 6433 switch (Entry.Kind) { 6434 case BitstreamEntry::SubBlock: // Handled for us already. 6435 case BitstreamEntry::Error: 6436 return error("Malformed block"); 6437 case BitstreamEntry::EndBlock: 6438 return Error::success(); 6439 case BitstreamEntry::Record: 6440 // The interesting case. 6441 break; 6442 } 6443 6444 Record.clear(); 6445 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6446 if (!MaybeRecord) 6447 return MaybeRecord.takeError(); 6448 switch (MaybeRecord.get()) { 6449 default: // Default behavior: ignore. 6450 break; 6451 case bitc::MST_CODE_ENTRY: { 6452 // MST_ENTRY: [modid, namechar x N] 6453 uint64_t ModuleId = Record[0]; 6454 6455 if (convertToString(Record, 1, ModulePath)) 6456 return error("Invalid record"); 6457 6458 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6459 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6460 6461 ModulePath.clear(); 6462 break; 6463 } 6464 /// MST_CODE_HASH: [5*i32] 6465 case bitc::MST_CODE_HASH: { 6466 if (Record.size() != 5) 6467 return error("Invalid hash length " + Twine(Record.size()).str()); 6468 if (!LastSeenModule) 6469 return error("Invalid hash that does not follow a module path"); 6470 int Pos = 0; 6471 for (auto &Val : Record) { 6472 assert(!(Val >> 32) && "Unexpected high bits set"); 6473 LastSeenModule->second.second[Pos++] = Val; 6474 } 6475 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6476 LastSeenModule = nullptr; 6477 break; 6478 } 6479 } 6480 } 6481 llvm_unreachable("Exit infinite loop"); 6482 } 6483 6484 namespace { 6485 6486 // FIXME: This class is only here to support the transition to llvm::Error. It 6487 // will be removed once this transition is complete. Clients should prefer to 6488 // deal with the Error value directly, rather than converting to error_code. 6489 class BitcodeErrorCategoryType : public std::error_category { 6490 const char *name() const noexcept override { 6491 return "llvm.bitcode"; 6492 } 6493 6494 std::string message(int IE) const override { 6495 BitcodeError E = static_cast<BitcodeError>(IE); 6496 switch (E) { 6497 case BitcodeError::CorruptedBitcode: 6498 return "Corrupted bitcode"; 6499 } 6500 llvm_unreachable("Unknown error type!"); 6501 } 6502 }; 6503 6504 } // end anonymous namespace 6505 6506 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6507 6508 const std::error_category &llvm::BitcodeErrorCategory() { 6509 return *ErrorCategory; 6510 } 6511 6512 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6513 unsigned Block, unsigned RecordID) { 6514 if (Error Err = Stream.EnterSubBlock(Block)) 6515 return std::move(Err); 6516 6517 StringRef Strtab; 6518 while (true) { 6519 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6520 if (!MaybeEntry) 6521 return MaybeEntry.takeError(); 6522 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6523 6524 switch (Entry.Kind) { 6525 case BitstreamEntry::EndBlock: 6526 return Strtab; 6527 6528 case BitstreamEntry::Error: 6529 return error("Malformed block"); 6530 6531 case BitstreamEntry::SubBlock: 6532 if (Error Err = Stream.SkipBlock()) 6533 return std::move(Err); 6534 break; 6535 6536 case BitstreamEntry::Record: 6537 StringRef Blob; 6538 SmallVector<uint64_t, 1> Record; 6539 Expected<unsigned> MaybeRecord = 6540 Stream.readRecord(Entry.ID, Record, &Blob); 6541 if (!MaybeRecord) 6542 return MaybeRecord.takeError(); 6543 if (MaybeRecord.get() == RecordID) 6544 Strtab = Blob; 6545 break; 6546 } 6547 } 6548 } 6549 6550 //===----------------------------------------------------------------------===// 6551 // External interface 6552 //===----------------------------------------------------------------------===// 6553 6554 Expected<std::vector<BitcodeModule>> 6555 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6556 auto FOrErr = getBitcodeFileContents(Buffer); 6557 if (!FOrErr) 6558 return FOrErr.takeError(); 6559 return std::move(FOrErr->Mods); 6560 } 6561 6562 Expected<BitcodeFileContents> 6563 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6564 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6565 if (!StreamOrErr) 6566 return StreamOrErr.takeError(); 6567 BitstreamCursor &Stream = *StreamOrErr; 6568 6569 BitcodeFileContents F; 6570 while (true) { 6571 uint64_t BCBegin = Stream.getCurrentByteNo(); 6572 6573 // We may be consuming bitcode from a client that leaves garbage at the end 6574 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6575 // the end that there cannot possibly be another module, stop looking. 6576 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6577 return F; 6578 6579 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6580 if (!MaybeEntry) 6581 return MaybeEntry.takeError(); 6582 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6583 6584 switch (Entry.Kind) { 6585 case BitstreamEntry::EndBlock: 6586 case BitstreamEntry::Error: 6587 return error("Malformed block"); 6588 6589 case BitstreamEntry::SubBlock: { 6590 uint64_t IdentificationBit = -1ull; 6591 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6592 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6593 if (Error Err = Stream.SkipBlock()) 6594 return std::move(Err); 6595 6596 { 6597 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6598 if (!MaybeEntry) 6599 return MaybeEntry.takeError(); 6600 Entry = MaybeEntry.get(); 6601 } 6602 6603 if (Entry.Kind != BitstreamEntry::SubBlock || 6604 Entry.ID != bitc::MODULE_BLOCK_ID) 6605 return error("Malformed block"); 6606 } 6607 6608 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6609 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6610 if (Error Err = Stream.SkipBlock()) 6611 return std::move(Err); 6612 6613 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6614 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6615 Buffer.getBufferIdentifier(), IdentificationBit, 6616 ModuleBit}); 6617 continue; 6618 } 6619 6620 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6621 Expected<StringRef> Strtab = 6622 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6623 if (!Strtab) 6624 return Strtab.takeError(); 6625 // This string table is used by every preceding bitcode module that does 6626 // not have its own string table. A bitcode file may have multiple 6627 // string tables if it was created by binary concatenation, for example 6628 // with "llvm-cat -b". 6629 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6630 if (!I->Strtab.empty()) 6631 break; 6632 I->Strtab = *Strtab; 6633 } 6634 // Similarly, the string table is used by every preceding symbol table; 6635 // normally there will be just one unless the bitcode file was created 6636 // by binary concatenation. 6637 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6638 F.StrtabForSymtab = *Strtab; 6639 continue; 6640 } 6641 6642 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6643 Expected<StringRef> SymtabOrErr = 6644 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6645 if (!SymtabOrErr) 6646 return SymtabOrErr.takeError(); 6647 6648 // We can expect the bitcode file to have multiple symbol tables if it 6649 // was created by binary concatenation. In that case we silently 6650 // ignore any subsequent symbol tables, which is fine because this is a 6651 // low level function. The client is expected to notice that the number 6652 // of modules in the symbol table does not match the number of modules 6653 // in the input file and regenerate the symbol table. 6654 if (F.Symtab.empty()) 6655 F.Symtab = *SymtabOrErr; 6656 continue; 6657 } 6658 6659 if (Error Err = Stream.SkipBlock()) 6660 return std::move(Err); 6661 continue; 6662 } 6663 case BitstreamEntry::Record: 6664 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6665 continue; 6666 else 6667 return StreamFailed.takeError(); 6668 } 6669 } 6670 } 6671 6672 /// Get a lazy one-at-time loading module from bitcode. 6673 /// 6674 /// This isn't always used in a lazy context. In particular, it's also used by 6675 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6676 /// in forward-referenced functions from block address references. 6677 /// 6678 /// \param[in] MaterializeAll Set to \c true if we should materialize 6679 /// everything. 6680 Expected<std::unique_ptr<Module>> 6681 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6682 bool ShouldLazyLoadMetadata, bool IsImporting, 6683 DataLayoutCallbackTy DataLayoutCallback) { 6684 BitstreamCursor Stream(Buffer); 6685 6686 std::string ProducerIdentification; 6687 if (IdentificationBit != -1ull) { 6688 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6689 return std::move(JumpFailed); 6690 Expected<std::string> ProducerIdentificationOrErr = 6691 readIdentificationBlock(Stream); 6692 if (!ProducerIdentificationOrErr) 6693 return ProducerIdentificationOrErr.takeError(); 6694 6695 ProducerIdentification = *ProducerIdentificationOrErr; 6696 } 6697 6698 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6699 return std::move(JumpFailed); 6700 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6701 Context); 6702 6703 std::unique_ptr<Module> M = 6704 std::make_unique<Module>(ModuleIdentifier, Context); 6705 M->setMaterializer(R); 6706 6707 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6708 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6709 IsImporting, DataLayoutCallback)) 6710 return std::move(Err); 6711 6712 if (MaterializeAll) { 6713 // Read in the entire module, and destroy the BitcodeReader. 6714 if (Error Err = M->materializeAll()) 6715 return std::move(Err); 6716 } else { 6717 // Resolve forward references from blockaddresses. 6718 if (Error Err = R->materializeForwardReferencedFunctions()) 6719 return std::move(Err); 6720 } 6721 return std::move(M); 6722 } 6723 6724 Expected<std::unique_ptr<Module>> 6725 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6726 bool IsImporting) { 6727 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6728 [](StringRef) { return None; }); 6729 } 6730 6731 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6732 // We don't use ModuleIdentifier here because the client may need to control the 6733 // module path used in the combined summary (e.g. when reading summaries for 6734 // regular LTO modules). 6735 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6736 StringRef ModulePath, uint64_t ModuleId) { 6737 BitstreamCursor Stream(Buffer); 6738 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6739 return JumpFailed; 6740 6741 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6742 ModulePath, ModuleId); 6743 return R.parseModule(); 6744 } 6745 6746 // Parse the specified bitcode buffer, returning the function info index. 6747 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6748 BitstreamCursor Stream(Buffer); 6749 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6750 return std::move(JumpFailed); 6751 6752 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6753 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6754 ModuleIdentifier, 0); 6755 6756 if (Error Err = R.parseModule()) 6757 return std::move(Err); 6758 6759 return std::move(Index); 6760 } 6761 6762 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6763 unsigned ID) { 6764 if (Error Err = Stream.EnterSubBlock(ID)) 6765 return std::move(Err); 6766 SmallVector<uint64_t, 64> Record; 6767 6768 while (true) { 6769 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6770 if (!MaybeEntry) 6771 return MaybeEntry.takeError(); 6772 BitstreamEntry Entry = MaybeEntry.get(); 6773 6774 switch (Entry.Kind) { 6775 case BitstreamEntry::SubBlock: // Handled for us already. 6776 case BitstreamEntry::Error: 6777 return error("Malformed block"); 6778 case BitstreamEntry::EndBlock: 6779 // If no flags record found, conservatively return true to mimic 6780 // behavior before this flag was added. 6781 return true; 6782 case BitstreamEntry::Record: 6783 // The interesting case. 6784 break; 6785 } 6786 6787 // Look for the FS_FLAGS record. 6788 Record.clear(); 6789 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6790 if (!MaybeBitCode) 6791 return MaybeBitCode.takeError(); 6792 switch (MaybeBitCode.get()) { 6793 default: // Default behavior: ignore. 6794 break; 6795 case bitc::FS_FLAGS: { // [flags] 6796 uint64_t Flags = Record[0]; 6797 // Scan flags. 6798 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6799 6800 return Flags & 0x8; 6801 } 6802 } 6803 } 6804 llvm_unreachable("Exit infinite loop"); 6805 } 6806 6807 // Check if the given bitcode buffer contains a global value summary block. 6808 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6809 BitstreamCursor Stream(Buffer); 6810 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6811 return std::move(JumpFailed); 6812 6813 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6814 return std::move(Err); 6815 6816 while (true) { 6817 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6818 if (!MaybeEntry) 6819 return MaybeEntry.takeError(); 6820 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6821 6822 switch (Entry.Kind) { 6823 case BitstreamEntry::Error: 6824 return error("Malformed block"); 6825 case BitstreamEntry::EndBlock: 6826 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6827 /*EnableSplitLTOUnit=*/false}; 6828 6829 case BitstreamEntry::SubBlock: 6830 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6831 Expected<bool> EnableSplitLTOUnit = 6832 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6833 if (!EnableSplitLTOUnit) 6834 return EnableSplitLTOUnit.takeError(); 6835 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6836 *EnableSplitLTOUnit}; 6837 } 6838 6839 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6840 Expected<bool> EnableSplitLTOUnit = 6841 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6842 if (!EnableSplitLTOUnit) 6843 return EnableSplitLTOUnit.takeError(); 6844 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6845 *EnableSplitLTOUnit}; 6846 } 6847 6848 // Ignore other sub-blocks. 6849 if (Error Err = Stream.SkipBlock()) 6850 return std::move(Err); 6851 continue; 6852 6853 case BitstreamEntry::Record: 6854 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6855 continue; 6856 else 6857 return StreamFailed.takeError(); 6858 } 6859 } 6860 } 6861 6862 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6863 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6864 if (!MsOrErr) 6865 return MsOrErr.takeError(); 6866 6867 if (MsOrErr->size() != 1) 6868 return error("Expected a single module"); 6869 6870 return (*MsOrErr)[0]; 6871 } 6872 6873 Expected<std::unique_ptr<Module>> 6874 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6875 bool ShouldLazyLoadMetadata, bool IsImporting) { 6876 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6877 if (!BM) 6878 return BM.takeError(); 6879 6880 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6881 } 6882 6883 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6884 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6885 bool ShouldLazyLoadMetadata, bool IsImporting) { 6886 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6887 IsImporting); 6888 if (MOrErr) 6889 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6890 return MOrErr; 6891 } 6892 6893 Expected<std::unique_ptr<Module>> 6894 BitcodeModule::parseModule(LLVMContext &Context, 6895 DataLayoutCallbackTy DataLayoutCallback) { 6896 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6897 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6898 // written. We must defer until the Module has been fully materialized. 6899 } 6900 6901 Expected<std::unique_ptr<Module>> 6902 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6903 DataLayoutCallbackTy DataLayoutCallback) { 6904 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6905 if (!BM) 6906 return BM.takeError(); 6907 6908 return BM->parseModule(Context, DataLayoutCallback); 6909 } 6910 6911 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6912 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6913 if (!StreamOrErr) 6914 return StreamOrErr.takeError(); 6915 6916 return readTriple(*StreamOrErr); 6917 } 6918 6919 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6920 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6921 if (!StreamOrErr) 6922 return StreamOrErr.takeError(); 6923 6924 return hasObjCCategory(*StreamOrErr); 6925 } 6926 6927 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6928 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6929 if (!StreamOrErr) 6930 return StreamOrErr.takeError(); 6931 6932 return readIdentificationCode(*StreamOrErr); 6933 } 6934 6935 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6936 ModuleSummaryIndex &CombinedIndex, 6937 uint64_t ModuleId) { 6938 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6939 if (!BM) 6940 return BM.takeError(); 6941 6942 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6943 } 6944 6945 Expected<std::unique_ptr<ModuleSummaryIndex>> 6946 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6947 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6948 if (!BM) 6949 return BM.takeError(); 6950 6951 return BM->getSummary(); 6952 } 6953 6954 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6955 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6956 if (!BM) 6957 return BM.takeError(); 6958 6959 return BM->getLTOInfo(); 6960 } 6961 6962 Expected<std::unique_ptr<ModuleSummaryIndex>> 6963 llvm::getModuleSummaryIndexForFile(StringRef Path, 6964 bool IgnoreEmptyThinLTOIndexFile) { 6965 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6966 MemoryBuffer::getFileOrSTDIN(Path); 6967 if (!FileOrErr) 6968 return errorCodeToError(FileOrErr.getError()); 6969 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6970 return nullptr; 6971 return getModuleSummaryIndex(**FileOrErr); 6972 } 6973