1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GVMaterializer.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalIndirectSymbol.h" 47 #include "llvm/IR/GlobalObject.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 376 : Stream(std::move(Stream)), Strtab(Strtab) { 377 this->Stream.setBlockInfo(&BlockInfo); 378 } 379 380 BitstreamBlockInfo BlockInfo; 381 BitstreamCursor Stream; 382 StringRef Strtab; 383 384 /// In version 2 of the bitcode we store names of global values and comdats in 385 /// a string table rather than in the VST. 386 bool UseStrtab = false; 387 388 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 389 390 /// If this module uses a string table, pop the reference to the string table 391 /// and return the referenced string and the rest of the record. Otherwise 392 /// just return the record itself. 393 std::pair<StringRef, ArrayRef<uint64_t>> 394 readNameFromStrtab(ArrayRef<uint64_t> Record); 395 396 bool readBlockInfo(); 397 398 // Contains an arbitrary and optional string identifying the bitcode producer 399 std::string ProducerIdentification; 400 401 Error error(const Twine &Message); 402 }; 403 404 Error BitcodeReaderBase::error(const Twine &Message) { 405 std::string FullMsg = Message.str(); 406 if (!ProducerIdentification.empty()) 407 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 408 LLVM_VERSION_STRING "')"; 409 return ::error(FullMsg); 410 } 411 412 Expected<unsigned> 413 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 414 if (Record.size() < 1) 415 return error("Invalid record"); 416 unsigned ModuleVersion = Record[0]; 417 if (ModuleVersion > 2) 418 return error("Invalid value"); 419 UseStrtab = ModuleVersion >= 2; 420 return ModuleVersion; 421 } 422 423 std::pair<StringRef, ArrayRef<uint64_t>> 424 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 425 if (!UseStrtab) 426 return {"", Record}; 427 // Invalid reference. Let the caller complain about the record being empty. 428 if (Record[0] + Record[1] > Strtab.size()) 429 return {"", {}}; 430 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 431 } 432 433 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 434 LLVMContext &Context; 435 Module *TheModule = nullptr; 436 // Next offset to start scanning for lazy parsing of function bodies. 437 uint64_t NextUnreadBit = 0; 438 // Last function offset found in the VST. 439 uint64_t LastFunctionBlockBit = 0; 440 bool SeenValueSymbolTable = false; 441 uint64_t VSTOffset = 0; 442 443 std::vector<std::string> SectionTable; 444 std::vector<std::string> GCTable; 445 446 std::vector<Type*> TypeList; 447 BitcodeReaderValueList ValueList; 448 Optional<MetadataLoader> MDLoader; 449 std::vector<Comdat *> ComdatList; 450 SmallVector<Instruction *, 64> InstructionList; 451 452 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 453 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 454 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 455 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 456 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 457 458 /// The set of attributes by index. Index zero in the file is for null, and 459 /// is thus not represented here. As such all indices are off by one. 460 std::vector<AttributeList> MAttributes; 461 462 /// The set of attribute groups. 463 std::map<unsigned, AttributeList> MAttributeGroups; 464 465 /// While parsing a function body, this is a list of the basic blocks for the 466 /// function. 467 std::vector<BasicBlock*> FunctionBBs; 468 469 // When reading the module header, this list is populated with functions that 470 // have bodies later in the file. 471 std::vector<Function*> FunctionsWithBodies; 472 473 // When intrinsic functions are encountered which require upgrading they are 474 // stored here with their replacement function. 475 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 476 UpdatedIntrinsicMap UpgradedIntrinsics; 477 // Intrinsics which were remangled because of types rename 478 UpdatedIntrinsicMap RemangledIntrinsics; 479 480 // Several operations happen after the module header has been read, but 481 // before function bodies are processed. This keeps track of whether 482 // we've done this yet. 483 bool SeenFirstFunctionBody = false; 484 485 /// When function bodies are initially scanned, this map contains info about 486 /// where to find deferred function body in the stream. 487 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 488 489 /// When Metadata block is initially scanned when parsing the module, we may 490 /// choose to defer parsing of the metadata. This vector contains info about 491 /// which Metadata blocks are deferred. 492 std::vector<uint64_t> DeferredMetadataInfo; 493 494 /// These are basic blocks forward-referenced by block addresses. They are 495 /// inserted lazily into functions when they're loaded. The basic block ID is 496 /// its index into the vector. 497 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 498 std::deque<Function *> BasicBlockFwdRefQueue; 499 500 /// Indicates that we are using a new encoding for instruction operands where 501 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 502 /// instruction number, for a more compact encoding. Some instruction 503 /// operands are not relative to the instruction ID: basic block numbers, and 504 /// types. Once the old style function blocks have been phased out, we would 505 /// not need this flag. 506 bool UseRelativeIDs = false; 507 508 /// True if all functions will be materialized, negating the need to process 509 /// (e.g.) blockaddress forward references. 510 bool WillMaterializeAllForwardRefs = false; 511 512 bool StripDebugInfo = false; 513 TBAAVerifier TBAAVerifyHelper; 514 515 std::vector<std::string> BundleTags; 516 SmallVector<SyncScope::ID, 8> SSIDs; 517 518 public: 519 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 520 StringRef ProducerIdentification, LLVMContext &Context); 521 522 Error materializeForwardReferencedFunctions(); 523 524 Error materialize(GlobalValue *GV) override; 525 Error materializeModule() override; 526 std::vector<StructType *> getIdentifiedStructTypes() const override; 527 528 /// \brief Main interface to parsing a bitcode buffer. 529 /// \returns true if an error occurred. 530 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 531 bool IsImporting = false); 532 533 static uint64_t decodeSignRotatedValue(uint64_t V); 534 535 /// Materialize any deferred Metadata block. 536 Error materializeMetadata() override; 537 538 void setStripDebugInfo() override; 539 540 private: 541 std::vector<StructType *> IdentifiedStructTypes; 542 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 543 StructType *createIdentifiedStructType(LLVMContext &Context); 544 545 Type *getTypeByID(unsigned ID); 546 547 Value *getFnValueByID(unsigned ID, Type *Ty) { 548 if (Ty && Ty->isMetadataTy()) 549 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 550 return ValueList.getValueFwdRef(ID, Ty); 551 } 552 553 Metadata *getFnMetadataByID(unsigned ID) { 554 return MDLoader->getMetadataFwdRefOrLoad(ID); 555 } 556 557 BasicBlock *getBasicBlock(unsigned ID) const { 558 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 559 return FunctionBBs[ID]; 560 } 561 562 AttributeList getAttributes(unsigned i) const { 563 if (i-1 < MAttributes.size()) 564 return MAttributes[i-1]; 565 return AttributeList(); 566 } 567 568 /// Read a value/type pair out of the specified record from slot 'Slot'. 569 /// Increment Slot past the number of slots used in the record. Return true on 570 /// failure. 571 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 572 unsigned InstNum, Value *&ResVal) { 573 if (Slot == Record.size()) return true; 574 unsigned ValNo = (unsigned)Record[Slot++]; 575 // Adjust the ValNo, if it was encoded relative to the InstNum. 576 if (UseRelativeIDs) 577 ValNo = InstNum - ValNo; 578 if (ValNo < InstNum) { 579 // If this is not a forward reference, just return the value we already 580 // have. 581 ResVal = getFnValueByID(ValNo, nullptr); 582 return ResVal == nullptr; 583 } 584 if (Slot == Record.size()) 585 return true; 586 587 unsigned TypeNo = (unsigned)Record[Slot++]; 588 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 589 return ResVal == nullptr; 590 } 591 592 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 593 /// past the number of slots used by the value in the record. Return true if 594 /// there is an error. 595 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 596 unsigned InstNum, Type *Ty, Value *&ResVal) { 597 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 598 return true; 599 // All values currently take a single record slot. 600 ++Slot; 601 return false; 602 } 603 604 /// Like popValue, but does not increment the Slot number. 605 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 606 unsigned InstNum, Type *Ty, Value *&ResVal) { 607 ResVal = getValue(Record, Slot, InstNum, Ty); 608 return ResVal == nullptr; 609 } 610 611 /// Version of getValue that returns ResVal directly, or 0 if there is an 612 /// error. 613 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty) { 615 if (Slot == Record.size()) return nullptr; 616 unsigned ValNo = (unsigned)Record[Slot]; 617 // Adjust the ValNo, if it was encoded relative to the InstNum. 618 if (UseRelativeIDs) 619 ValNo = InstNum - ValNo; 620 return getFnValueByID(ValNo, Ty); 621 } 622 623 /// Like getValue, but decodes signed VBRs. 624 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 625 unsigned InstNum, Type *Ty) { 626 if (Slot == Record.size()) return nullptr; 627 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 628 // Adjust the ValNo, if it was encoded relative to the InstNum. 629 if (UseRelativeIDs) 630 ValNo = InstNum - ValNo; 631 return getFnValueByID(ValNo, Ty); 632 } 633 634 /// Converts alignment exponent (i.e. power of two (or zero)) to the 635 /// corresponding alignment to use. If alignment is too large, returns 636 /// a corresponding error code. 637 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 638 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 639 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 640 641 Error parseComdatRecord(ArrayRef<uint64_t> Record); 642 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 643 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 644 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 645 ArrayRef<uint64_t> Record); 646 647 Error parseAttributeBlock(); 648 Error parseAttributeGroupBlock(); 649 Error parseTypeTable(); 650 Error parseTypeTableBody(); 651 Error parseOperandBundleTags(); 652 Error parseSyncScopeNames(); 653 654 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 655 unsigned NameIndex, Triple &TT); 656 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 657 ArrayRef<uint64_t> Record); 658 Error parseValueSymbolTable(uint64_t Offset = 0); 659 Error parseGlobalValueSymbolTable(); 660 Error parseConstants(); 661 Error rememberAndSkipFunctionBodies(); 662 Error rememberAndSkipFunctionBody(); 663 /// Save the positions of the Metadata blocks and skip parsing the blocks. 664 Error rememberAndSkipMetadata(); 665 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 666 Error parseFunctionBody(Function *F); 667 Error globalCleanup(); 668 Error resolveGlobalAndIndirectSymbolInits(); 669 Error parseUseLists(); 670 Error findFunctionInStream( 671 Function *F, 672 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 673 674 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 675 }; 676 677 /// Class to manage reading and parsing function summary index bitcode 678 /// files/sections. 679 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 680 /// The module index built during parsing. 681 ModuleSummaryIndex &TheIndex; 682 683 /// Indicates whether we have encountered a global value summary section 684 /// yet during parsing. 685 bool SeenGlobalValSummary = false; 686 687 /// Indicates whether we have already parsed the VST, used for error checking. 688 bool SeenValueSymbolTable = false; 689 690 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 691 /// Used to enable on-demand parsing of the VST. 692 uint64_t VSTOffset = 0; 693 694 // Map to save ValueId to ValueInfo association that was recorded in the 695 // ValueSymbolTable. It is used after the VST is parsed to convert 696 // call graph edges read from the function summary from referencing 697 // callees by their ValueId to using the ValueInfo instead, which is how 698 // they are recorded in the summary index being built. 699 // We save a GUID which refers to the same global as the ValueInfo, but 700 // ignoring the linkage, i.e. for values other than local linkage they are 701 // identical. 702 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 703 ValueIdToValueInfoMap; 704 705 /// Map populated during module path string table parsing, from the 706 /// module ID to a string reference owned by the index's module 707 /// path string table, used to correlate with combined index 708 /// summary records. 709 DenseMap<uint64_t, StringRef> ModuleIdMap; 710 711 /// Original source file name recorded in a bitcode record. 712 std::string SourceFileName; 713 714 /// The string identifier given to this module by the client, normally the 715 /// path to the bitcode file. 716 StringRef ModulePath; 717 718 /// For per-module summary indexes, the unique numerical identifier given to 719 /// this module by the client. 720 unsigned ModuleId; 721 722 public: 723 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 724 ModuleSummaryIndex &TheIndex, 725 StringRef ModulePath, unsigned ModuleId); 726 727 Error parseModule(); 728 729 private: 730 void setValueGUID(uint64_t ValueID, StringRef ValueName, 731 GlobalValue::LinkageTypes Linkage, 732 StringRef SourceFileName); 733 Error parseValueSymbolTable( 734 uint64_t Offset, 735 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 736 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 737 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 738 bool IsOldProfileFormat, 739 bool HasProfile); 740 Error parseEntireSummary(unsigned ID); 741 Error parseModuleStringTable(); 742 743 std::pair<ValueInfo, GlobalValue::GUID> 744 getValueInfoFromValueId(unsigned ValueId); 745 746 ModuleSummaryIndex::ModuleInfo *addThisModule(); 747 }; 748 749 } // end anonymous namespace 750 751 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 752 Error Err) { 753 if (Err) { 754 std::error_code EC; 755 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 756 EC = EIB.convertToErrorCode(); 757 Ctx.emitError(EIB.message()); 758 }); 759 return EC; 760 } 761 return std::error_code(); 762 } 763 764 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 765 StringRef ProducerIdentification, 766 LLVMContext &Context) 767 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 768 ValueList(Context) { 769 this->ProducerIdentification = ProducerIdentification; 770 } 771 772 Error BitcodeReader::materializeForwardReferencedFunctions() { 773 if (WillMaterializeAllForwardRefs) 774 return Error::success(); 775 776 // Prevent recursion. 777 WillMaterializeAllForwardRefs = true; 778 779 while (!BasicBlockFwdRefQueue.empty()) { 780 Function *F = BasicBlockFwdRefQueue.front(); 781 BasicBlockFwdRefQueue.pop_front(); 782 assert(F && "Expected valid function"); 783 if (!BasicBlockFwdRefs.count(F)) 784 // Already materialized. 785 continue; 786 787 // Check for a function that isn't materializable to prevent an infinite 788 // loop. When parsing a blockaddress stored in a global variable, there 789 // isn't a trivial way to check if a function will have a body without a 790 // linear search through FunctionsWithBodies, so just check it here. 791 if (!F->isMaterializable()) 792 return error("Never resolved function from blockaddress"); 793 794 // Try to materialize F. 795 if (Error Err = materialize(F)) 796 return Err; 797 } 798 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 799 800 // Reset state. 801 WillMaterializeAllForwardRefs = false; 802 return Error::success(); 803 } 804 805 //===----------------------------------------------------------------------===// 806 // Helper functions to implement forward reference resolution, etc. 807 //===----------------------------------------------------------------------===// 808 809 static bool hasImplicitComdat(size_t Val) { 810 switch (Val) { 811 default: 812 return false; 813 case 1: // Old WeakAnyLinkage 814 case 4: // Old LinkOnceAnyLinkage 815 case 10: // Old WeakODRLinkage 816 case 11: // Old LinkOnceODRLinkage 817 return true; 818 } 819 } 820 821 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 822 switch (Val) { 823 default: // Map unknown/new linkages to external 824 case 0: 825 return GlobalValue::ExternalLinkage; 826 case 2: 827 return GlobalValue::AppendingLinkage; 828 case 3: 829 return GlobalValue::InternalLinkage; 830 case 5: 831 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 832 case 6: 833 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 834 case 7: 835 return GlobalValue::ExternalWeakLinkage; 836 case 8: 837 return GlobalValue::CommonLinkage; 838 case 9: 839 return GlobalValue::PrivateLinkage; 840 case 12: 841 return GlobalValue::AvailableExternallyLinkage; 842 case 13: 843 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 844 case 14: 845 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 846 case 15: 847 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 848 case 1: // Old value with implicit comdat. 849 case 16: 850 return GlobalValue::WeakAnyLinkage; 851 case 10: // Old value with implicit comdat. 852 case 17: 853 return GlobalValue::WeakODRLinkage; 854 case 4: // Old value with implicit comdat. 855 case 18: 856 return GlobalValue::LinkOnceAnyLinkage; 857 case 11: // Old value with implicit comdat. 858 case 19: 859 return GlobalValue::LinkOnceODRLinkage; 860 } 861 } 862 863 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 864 FunctionSummary::FFlags Flags; 865 Flags.ReadNone = RawFlags & 0x1; 866 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 867 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 868 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 869 return Flags; 870 } 871 872 /// Decode the flags for GlobalValue in the summary. 873 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 874 uint64_t Version) { 875 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 876 // like getDecodedLinkage() above. Any future change to the linkage enum and 877 // to getDecodedLinkage() will need to be taken into account here as above. 878 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 879 RawFlags = RawFlags >> 4; 880 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 881 // The Live flag wasn't introduced until version 3. For dead stripping 882 // to work correctly on earlier versions, we must conservatively treat all 883 // values as live. 884 bool Live = (RawFlags & 0x2) || Version < 3; 885 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live); 886 } 887 888 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 889 switch (Val) { 890 default: // Map unknown visibilities to default. 891 case 0: return GlobalValue::DefaultVisibility; 892 case 1: return GlobalValue::HiddenVisibility; 893 case 2: return GlobalValue::ProtectedVisibility; 894 } 895 } 896 897 static GlobalValue::DLLStorageClassTypes 898 getDecodedDLLStorageClass(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown values to default. 901 case 0: return GlobalValue::DefaultStorageClass; 902 case 1: return GlobalValue::DLLImportStorageClass; 903 case 2: return GlobalValue::DLLExportStorageClass; 904 } 905 } 906 907 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 908 switch (Val) { 909 case 0: return GlobalVariable::NotThreadLocal; 910 default: // Map unknown non-zero value to general dynamic. 911 case 1: return GlobalVariable::GeneralDynamicTLSModel; 912 case 2: return GlobalVariable::LocalDynamicTLSModel; 913 case 3: return GlobalVariable::InitialExecTLSModel; 914 case 4: return GlobalVariable::LocalExecTLSModel; 915 } 916 } 917 918 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown to UnnamedAddr::None. 921 case 0: return GlobalVariable::UnnamedAddr::None; 922 case 1: return GlobalVariable::UnnamedAddr::Global; 923 case 2: return GlobalVariable::UnnamedAddr::Local; 924 } 925 } 926 927 static int getDecodedCastOpcode(unsigned Val) { 928 switch (Val) { 929 default: return -1; 930 case bitc::CAST_TRUNC : return Instruction::Trunc; 931 case bitc::CAST_ZEXT : return Instruction::ZExt; 932 case bitc::CAST_SEXT : return Instruction::SExt; 933 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 934 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 935 case bitc::CAST_UITOFP : return Instruction::UIToFP; 936 case bitc::CAST_SITOFP : return Instruction::SIToFP; 937 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 938 case bitc::CAST_FPEXT : return Instruction::FPExt; 939 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 940 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 941 case bitc::CAST_BITCAST : return Instruction::BitCast; 942 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 943 } 944 } 945 946 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 947 bool IsFP = Ty->isFPOrFPVectorTy(); 948 // BinOps are only valid for int/fp or vector of int/fp types 949 if (!IsFP && !Ty->isIntOrIntVectorTy()) 950 return -1; 951 952 switch (Val) { 953 default: 954 return -1; 955 case bitc::BINOP_ADD: 956 return IsFP ? Instruction::FAdd : Instruction::Add; 957 case bitc::BINOP_SUB: 958 return IsFP ? Instruction::FSub : Instruction::Sub; 959 case bitc::BINOP_MUL: 960 return IsFP ? Instruction::FMul : Instruction::Mul; 961 case bitc::BINOP_UDIV: 962 return IsFP ? -1 : Instruction::UDiv; 963 case bitc::BINOP_SDIV: 964 return IsFP ? Instruction::FDiv : Instruction::SDiv; 965 case bitc::BINOP_UREM: 966 return IsFP ? -1 : Instruction::URem; 967 case bitc::BINOP_SREM: 968 return IsFP ? Instruction::FRem : Instruction::SRem; 969 case bitc::BINOP_SHL: 970 return IsFP ? -1 : Instruction::Shl; 971 case bitc::BINOP_LSHR: 972 return IsFP ? -1 : Instruction::LShr; 973 case bitc::BINOP_ASHR: 974 return IsFP ? -1 : Instruction::AShr; 975 case bitc::BINOP_AND: 976 return IsFP ? -1 : Instruction::And; 977 case bitc::BINOP_OR: 978 return IsFP ? -1 : Instruction::Or; 979 case bitc::BINOP_XOR: 980 return IsFP ? -1 : Instruction::Xor; 981 } 982 } 983 984 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 985 switch (Val) { 986 default: return AtomicRMWInst::BAD_BINOP; 987 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 988 case bitc::RMW_ADD: return AtomicRMWInst::Add; 989 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 990 case bitc::RMW_AND: return AtomicRMWInst::And; 991 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 992 case bitc::RMW_OR: return AtomicRMWInst::Or; 993 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 994 case bitc::RMW_MAX: return AtomicRMWInst::Max; 995 case bitc::RMW_MIN: return AtomicRMWInst::Min; 996 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 997 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 998 } 999 } 1000 1001 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1002 switch (Val) { 1003 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1004 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1005 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1006 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1007 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1008 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1009 default: // Map unknown orderings to sequentially-consistent. 1010 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1011 } 1012 } 1013 1014 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown selection kinds to any. 1017 case bitc::COMDAT_SELECTION_KIND_ANY: 1018 return Comdat::Any; 1019 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1020 return Comdat::ExactMatch; 1021 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1022 return Comdat::Largest; 1023 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1024 return Comdat::NoDuplicates; 1025 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1026 return Comdat::SameSize; 1027 } 1028 } 1029 1030 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1031 FastMathFlags FMF; 1032 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1033 FMF.setUnsafeAlgebra(); 1034 if (0 != (Val & FastMathFlags::NoNaNs)) 1035 FMF.setNoNaNs(); 1036 if (0 != (Val & FastMathFlags::NoInfs)) 1037 FMF.setNoInfs(); 1038 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1039 FMF.setNoSignedZeros(); 1040 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1041 FMF.setAllowReciprocal(); 1042 if (0 != (Val & FastMathFlags::AllowContract)) 1043 FMF.setAllowContract(true); 1044 return FMF; 1045 } 1046 1047 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1048 switch (Val) { 1049 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1050 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1051 } 1052 } 1053 1054 1055 Type *BitcodeReader::getTypeByID(unsigned ID) { 1056 // The type table size is always specified correctly. 1057 if (ID >= TypeList.size()) 1058 return nullptr; 1059 1060 if (Type *Ty = TypeList[ID]) 1061 return Ty; 1062 1063 // If we have a forward reference, the only possible case is when it is to a 1064 // named struct. Just create a placeholder for now. 1065 return TypeList[ID] = createIdentifiedStructType(Context); 1066 } 1067 1068 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1069 StringRef Name) { 1070 auto *Ret = StructType::create(Context, Name); 1071 IdentifiedStructTypes.push_back(Ret); 1072 return Ret; 1073 } 1074 1075 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1076 auto *Ret = StructType::create(Context); 1077 IdentifiedStructTypes.push_back(Ret); 1078 return Ret; 1079 } 1080 1081 //===----------------------------------------------------------------------===// 1082 // Functions for parsing blocks from the bitcode file 1083 //===----------------------------------------------------------------------===// 1084 1085 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1086 switch (Val) { 1087 case Attribute::EndAttrKinds: 1088 llvm_unreachable("Synthetic enumerators which should never get here"); 1089 1090 case Attribute::None: return 0; 1091 case Attribute::ZExt: return 1 << 0; 1092 case Attribute::SExt: return 1 << 1; 1093 case Attribute::NoReturn: return 1 << 2; 1094 case Attribute::InReg: return 1 << 3; 1095 case Attribute::StructRet: return 1 << 4; 1096 case Attribute::NoUnwind: return 1 << 5; 1097 case Attribute::NoAlias: return 1 << 6; 1098 case Attribute::ByVal: return 1 << 7; 1099 case Attribute::Nest: return 1 << 8; 1100 case Attribute::ReadNone: return 1 << 9; 1101 case Attribute::ReadOnly: return 1 << 10; 1102 case Attribute::NoInline: return 1 << 11; 1103 case Attribute::AlwaysInline: return 1 << 12; 1104 case Attribute::OptimizeForSize: return 1 << 13; 1105 case Attribute::StackProtect: return 1 << 14; 1106 case Attribute::StackProtectReq: return 1 << 15; 1107 case Attribute::Alignment: return 31 << 16; 1108 case Attribute::NoCapture: return 1 << 21; 1109 case Attribute::NoRedZone: return 1 << 22; 1110 case Attribute::NoImplicitFloat: return 1 << 23; 1111 case Attribute::Naked: return 1 << 24; 1112 case Attribute::InlineHint: return 1 << 25; 1113 case Attribute::StackAlignment: return 7 << 26; 1114 case Attribute::ReturnsTwice: return 1 << 29; 1115 case Attribute::UWTable: return 1 << 30; 1116 case Attribute::NonLazyBind: return 1U << 31; 1117 case Attribute::SanitizeAddress: return 1ULL << 32; 1118 case Attribute::MinSize: return 1ULL << 33; 1119 case Attribute::NoDuplicate: return 1ULL << 34; 1120 case Attribute::StackProtectStrong: return 1ULL << 35; 1121 case Attribute::SanitizeThread: return 1ULL << 36; 1122 case Attribute::SanitizeMemory: return 1ULL << 37; 1123 case Attribute::NoBuiltin: return 1ULL << 38; 1124 case Attribute::Returned: return 1ULL << 39; 1125 case Attribute::Cold: return 1ULL << 40; 1126 case Attribute::Builtin: return 1ULL << 41; 1127 case Attribute::OptimizeNone: return 1ULL << 42; 1128 case Attribute::InAlloca: return 1ULL << 43; 1129 case Attribute::NonNull: return 1ULL << 44; 1130 case Attribute::JumpTable: return 1ULL << 45; 1131 case Attribute::Convergent: return 1ULL << 46; 1132 case Attribute::SafeStack: return 1ULL << 47; 1133 case Attribute::NoRecurse: return 1ULL << 48; 1134 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1135 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1136 case Attribute::SwiftSelf: return 1ULL << 51; 1137 case Attribute::SwiftError: return 1ULL << 52; 1138 case Attribute::WriteOnly: return 1ULL << 53; 1139 case Attribute::Speculatable: return 1ULL << 54; 1140 case Attribute::Dereferenceable: 1141 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1142 break; 1143 case Attribute::DereferenceableOrNull: 1144 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1145 "format"); 1146 break; 1147 case Attribute::ArgMemOnly: 1148 llvm_unreachable("argmemonly attribute not supported in raw format"); 1149 break; 1150 case Attribute::AllocSize: 1151 llvm_unreachable("allocsize not supported in raw format"); 1152 break; 1153 } 1154 llvm_unreachable("Unsupported attribute type"); 1155 } 1156 1157 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1158 if (!Val) return; 1159 1160 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1161 I = Attribute::AttrKind(I + 1)) { 1162 if (I == Attribute::Dereferenceable || 1163 I == Attribute::DereferenceableOrNull || 1164 I == Attribute::ArgMemOnly || 1165 I == Attribute::AllocSize) 1166 continue; 1167 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1168 if (I == Attribute::Alignment) 1169 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1170 else if (I == Attribute::StackAlignment) 1171 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1172 else 1173 B.addAttribute(I); 1174 } 1175 } 1176 } 1177 1178 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1179 /// been decoded from the given integer. This function must stay in sync with 1180 /// 'encodeLLVMAttributesForBitcode'. 1181 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1182 uint64_t EncodedAttrs) { 1183 // FIXME: Remove in 4.0. 1184 1185 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1186 // the bits above 31 down by 11 bits. 1187 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1188 assert((!Alignment || isPowerOf2_32(Alignment)) && 1189 "Alignment must be a power of two."); 1190 1191 if (Alignment) 1192 B.addAlignmentAttr(Alignment); 1193 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1194 (EncodedAttrs & 0xffff)); 1195 } 1196 1197 Error BitcodeReader::parseAttributeBlock() { 1198 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1199 return error("Invalid record"); 1200 1201 if (!MAttributes.empty()) 1202 return error("Invalid multiple blocks"); 1203 1204 SmallVector<uint64_t, 64> Record; 1205 1206 SmallVector<AttributeList, 8> Attrs; 1207 1208 // Read all the records. 1209 while (true) { 1210 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1211 1212 switch (Entry.Kind) { 1213 case BitstreamEntry::SubBlock: // Handled for us already. 1214 case BitstreamEntry::Error: 1215 return error("Malformed block"); 1216 case BitstreamEntry::EndBlock: 1217 return Error::success(); 1218 case BitstreamEntry::Record: 1219 // The interesting case. 1220 break; 1221 } 1222 1223 // Read a record. 1224 Record.clear(); 1225 switch (Stream.readRecord(Entry.ID, Record)) { 1226 default: // Default behavior: ignore. 1227 break; 1228 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1229 // FIXME: Remove in 4.0. 1230 if (Record.size() & 1) 1231 return error("Invalid record"); 1232 1233 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1234 AttrBuilder B; 1235 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1236 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1237 } 1238 1239 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1240 Attrs.clear(); 1241 break; 1242 } 1243 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1244 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1245 Attrs.push_back(MAttributeGroups[Record[i]]); 1246 1247 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1248 Attrs.clear(); 1249 break; 1250 } 1251 } 1252 } 1253 } 1254 1255 // Returns Attribute::None on unrecognized codes. 1256 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1257 switch (Code) { 1258 default: 1259 return Attribute::None; 1260 case bitc::ATTR_KIND_ALIGNMENT: 1261 return Attribute::Alignment; 1262 case bitc::ATTR_KIND_ALWAYS_INLINE: 1263 return Attribute::AlwaysInline; 1264 case bitc::ATTR_KIND_ARGMEMONLY: 1265 return Attribute::ArgMemOnly; 1266 case bitc::ATTR_KIND_BUILTIN: 1267 return Attribute::Builtin; 1268 case bitc::ATTR_KIND_BY_VAL: 1269 return Attribute::ByVal; 1270 case bitc::ATTR_KIND_IN_ALLOCA: 1271 return Attribute::InAlloca; 1272 case bitc::ATTR_KIND_COLD: 1273 return Attribute::Cold; 1274 case bitc::ATTR_KIND_CONVERGENT: 1275 return Attribute::Convergent; 1276 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1277 return Attribute::InaccessibleMemOnly; 1278 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1279 return Attribute::InaccessibleMemOrArgMemOnly; 1280 case bitc::ATTR_KIND_INLINE_HINT: 1281 return Attribute::InlineHint; 1282 case bitc::ATTR_KIND_IN_REG: 1283 return Attribute::InReg; 1284 case bitc::ATTR_KIND_JUMP_TABLE: 1285 return Attribute::JumpTable; 1286 case bitc::ATTR_KIND_MIN_SIZE: 1287 return Attribute::MinSize; 1288 case bitc::ATTR_KIND_NAKED: 1289 return Attribute::Naked; 1290 case bitc::ATTR_KIND_NEST: 1291 return Attribute::Nest; 1292 case bitc::ATTR_KIND_NO_ALIAS: 1293 return Attribute::NoAlias; 1294 case bitc::ATTR_KIND_NO_BUILTIN: 1295 return Attribute::NoBuiltin; 1296 case bitc::ATTR_KIND_NO_CAPTURE: 1297 return Attribute::NoCapture; 1298 case bitc::ATTR_KIND_NO_DUPLICATE: 1299 return Attribute::NoDuplicate; 1300 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1301 return Attribute::NoImplicitFloat; 1302 case bitc::ATTR_KIND_NO_INLINE: 1303 return Attribute::NoInline; 1304 case bitc::ATTR_KIND_NO_RECURSE: 1305 return Attribute::NoRecurse; 1306 case bitc::ATTR_KIND_NON_LAZY_BIND: 1307 return Attribute::NonLazyBind; 1308 case bitc::ATTR_KIND_NON_NULL: 1309 return Attribute::NonNull; 1310 case bitc::ATTR_KIND_DEREFERENCEABLE: 1311 return Attribute::Dereferenceable; 1312 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1313 return Attribute::DereferenceableOrNull; 1314 case bitc::ATTR_KIND_ALLOC_SIZE: 1315 return Attribute::AllocSize; 1316 case bitc::ATTR_KIND_NO_RED_ZONE: 1317 return Attribute::NoRedZone; 1318 case bitc::ATTR_KIND_NO_RETURN: 1319 return Attribute::NoReturn; 1320 case bitc::ATTR_KIND_NO_UNWIND: 1321 return Attribute::NoUnwind; 1322 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1323 return Attribute::OptimizeForSize; 1324 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1325 return Attribute::OptimizeNone; 1326 case bitc::ATTR_KIND_READ_NONE: 1327 return Attribute::ReadNone; 1328 case bitc::ATTR_KIND_READ_ONLY: 1329 return Attribute::ReadOnly; 1330 case bitc::ATTR_KIND_RETURNED: 1331 return Attribute::Returned; 1332 case bitc::ATTR_KIND_RETURNS_TWICE: 1333 return Attribute::ReturnsTwice; 1334 case bitc::ATTR_KIND_S_EXT: 1335 return Attribute::SExt; 1336 case bitc::ATTR_KIND_SPECULATABLE: 1337 return Attribute::Speculatable; 1338 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1339 return Attribute::StackAlignment; 1340 case bitc::ATTR_KIND_STACK_PROTECT: 1341 return Attribute::StackProtect; 1342 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1343 return Attribute::StackProtectReq; 1344 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1345 return Attribute::StackProtectStrong; 1346 case bitc::ATTR_KIND_SAFESTACK: 1347 return Attribute::SafeStack; 1348 case bitc::ATTR_KIND_STRUCT_RET: 1349 return Attribute::StructRet; 1350 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1351 return Attribute::SanitizeAddress; 1352 case bitc::ATTR_KIND_SANITIZE_THREAD: 1353 return Attribute::SanitizeThread; 1354 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1355 return Attribute::SanitizeMemory; 1356 case bitc::ATTR_KIND_SWIFT_ERROR: 1357 return Attribute::SwiftError; 1358 case bitc::ATTR_KIND_SWIFT_SELF: 1359 return Attribute::SwiftSelf; 1360 case bitc::ATTR_KIND_UW_TABLE: 1361 return Attribute::UWTable; 1362 case bitc::ATTR_KIND_WRITEONLY: 1363 return Attribute::WriteOnly; 1364 case bitc::ATTR_KIND_Z_EXT: 1365 return Attribute::ZExt; 1366 } 1367 } 1368 1369 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1370 unsigned &Alignment) { 1371 // Note: Alignment in bitcode files is incremented by 1, so that zero 1372 // can be used for default alignment. 1373 if (Exponent > Value::MaxAlignmentExponent + 1) 1374 return error("Invalid alignment value"); 1375 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1376 return Error::success(); 1377 } 1378 1379 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1380 *Kind = getAttrFromCode(Code); 1381 if (*Kind == Attribute::None) 1382 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1383 return Error::success(); 1384 } 1385 1386 Error BitcodeReader::parseAttributeGroupBlock() { 1387 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1388 return error("Invalid record"); 1389 1390 if (!MAttributeGroups.empty()) 1391 return error("Invalid multiple blocks"); 1392 1393 SmallVector<uint64_t, 64> Record; 1394 1395 // Read all the records. 1396 while (true) { 1397 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1398 1399 switch (Entry.Kind) { 1400 case BitstreamEntry::SubBlock: // Handled for us already. 1401 case BitstreamEntry::Error: 1402 return error("Malformed block"); 1403 case BitstreamEntry::EndBlock: 1404 return Error::success(); 1405 case BitstreamEntry::Record: 1406 // The interesting case. 1407 break; 1408 } 1409 1410 // Read a record. 1411 Record.clear(); 1412 switch (Stream.readRecord(Entry.ID, Record)) { 1413 default: // Default behavior: ignore. 1414 break; 1415 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1416 if (Record.size() < 3) 1417 return error("Invalid record"); 1418 1419 uint64_t GrpID = Record[0]; 1420 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1421 1422 AttrBuilder B; 1423 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1424 if (Record[i] == 0) { // Enum attribute 1425 Attribute::AttrKind Kind; 1426 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1427 return Err; 1428 1429 B.addAttribute(Kind); 1430 } else if (Record[i] == 1) { // Integer attribute 1431 Attribute::AttrKind Kind; 1432 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1433 return Err; 1434 if (Kind == Attribute::Alignment) 1435 B.addAlignmentAttr(Record[++i]); 1436 else if (Kind == Attribute::StackAlignment) 1437 B.addStackAlignmentAttr(Record[++i]); 1438 else if (Kind == Attribute::Dereferenceable) 1439 B.addDereferenceableAttr(Record[++i]); 1440 else if (Kind == Attribute::DereferenceableOrNull) 1441 B.addDereferenceableOrNullAttr(Record[++i]); 1442 else if (Kind == Attribute::AllocSize) 1443 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1444 } else { // String attribute 1445 assert((Record[i] == 3 || Record[i] == 4) && 1446 "Invalid attribute group entry"); 1447 bool HasValue = (Record[i++] == 4); 1448 SmallString<64> KindStr; 1449 SmallString<64> ValStr; 1450 1451 while (Record[i] != 0 && i != e) 1452 KindStr += Record[i++]; 1453 assert(Record[i] == 0 && "Kind string not null terminated"); 1454 1455 if (HasValue) { 1456 // Has a value associated with it. 1457 ++i; // Skip the '0' that terminates the "kind" string. 1458 while (Record[i] != 0 && i != e) 1459 ValStr += Record[i++]; 1460 assert(Record[i] == 0 && "Value string not null terminated"); 1461 } 1462 1463 B.addAttribute(KindStr.str(), ValStr.str()); 1464 } 1465 } 1466 1467 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1468 break; 1469 } 1470 } 1471 } 1472 } 1473 1474 Error BitcodeReader::parseTypeTable() { 1475 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1476 return error("Invalid record"); 1477 1478 return parseTypeTableBody(); 1479 } 1480 1481 Error BitcodeReader::parseTypeTableBody() { 1482 if (!TypeList.empty()) 1483 return error("Invalid multiple blocks"); 1484 1485 SmallVector<uint64_t, 64> Record; 1486 unsigned NumRecords = 0; 1487 1488 SmallString<64> TypeName; 1489 1490 // Read all the records for this type table. 1491 while (true) { 1492 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1493 1494 switch (Entry.Kind) { 1495 case BitstreamEntry::SubBlock: // Handled for us already. 1496 case BitstreamEntry::Error: 1497 return error("Malformed block"); 1498 case BitstreamEntry::EndBlock: 1499 if (NumRecords != TypeList.size()) 1500 return error("Malformed block"); 1501 return Error::success(); 1502 case BitstreamEntry::Record: 1503 // The interesting case. 1504 break; 1505 } 1506 1507 // Read a record. 1508 Record.clear(); 1509 Type *ResultTy = nullptr; 1510 switch (Stream.readRecord(Entry.ID, Record)) { 1511 default: 1512 return error("Invalid value"); 1513 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1514 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1515 // type list. This allows us to reserve space. 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 TypeList.resize(Record[0]); 1519 continue; 1520 case bitc::TYPE_CODE_VOID: // VOID 1521 ResultTy = Type::getVoidTy(Context); 1522 break; 1523 case bitc::TYPE_CODE_HALF: // HALF 1524 ResultTy = Type::getHalfTy(Context); 1525 break; 1526 case bitc::TYPE_CODE_FLOAT: // FLOAT 1527 ResultTy = Type::getFloatTy(Context); 1528 break; 1529 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1530 ResultTy = Type::getDoubleTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1533 ResultTy = Type::getX86_FP80Ty(Context); 1534 break; 1535 case bitc::TYPE_CODE_FP128: // FP128 1536 ResultTy = Type::getFP128Ty(Context); 1537 break; 1538 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1539 ResultTy = Type::getPPC_FP128Ty(Context); 1540 break; 1541 case bitc::TYPE_CODE_LABEL: // LABEL 1542 ResultTy = Type::getLabelTy(Context); 1543 break; 1544 case bitc::TYPE_CODE_METADATA: // METADATA 1545 ResultTy = Type::getMetadataTy(Context); 1546 break; 1547 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1548 ResultTy = Type::getX86_MMXTy(Context); 1549 break; 1550 case bitc::TYPE_CODE_TOKEN: // TOKEN 1551 ResultTy = Type::getTokenTy(Context); 1552 break; 1553 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1554 if (Record.size() < 1) 1555 return error("Invalid record"); 1556 1557 uint64_t NumBits = Record[0]; 1558 if (NumBits < IntegerType::MIN_INT_BITS || 1559 NumBits > IntegerType::MAX_INT_BITS) 1560 return error("Bitwidth for integer type out of range"); 1561 ResultTy = IntegerType::get(Context, NumBits); 1562 break; 1563 } 1564 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1565 // [pointee type, address space] 1566 if (Record.size() < 1) 1567 return error("Invalid record"); 1568 unsigned AddressSpace = 0; 1569 if (Record.size() == 2) 1570 AddressSpace = Record[1]; 1571 ResultTy = getTypeByID(Record[0]); 1572 if (!ResultTy || 1573 !PointerType::isValidElementType(ResultTy)) 1574 return error("Invalid type"); 1575 ResultTy = PointerType::get(ResultTy, AddressSpace); 1576 break; 1577 } 1578 case bitc::TYPE_CODE_FUNCTION_OLD: { 1579 // FIXME: attrid is dead, remove it in LLVM 4.0 1580 // FUNCTION: [vararg, attrid, retty, paramty x N] 1581 if (Record.size() < 3) 1582 return error("Invalid record"); 1583 SmallVector<Type*, 8> ArgTys; 1584 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1585 if (Type *T = getTypeByID(Record[i])) 1586 ArgTys.push_back(T); 1587 else 1588 break; 1589 } 1590 1591 ResultTy = getTypeByID(Record[2]); 1592 if (!ResultTy || ArgTys.size() < Record.size()-3) 1593 return error("Invalid type"); 1594 1595 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1596 break; 1597 } 1598 case bitc::TYPE_CODE_FUNCTION: { 1599 // FUNCTION: [vararg, retty, paramty x N] 1600 if (Record.size() < 2) 1601 return error("Invalid record"); 1602 SmallVector<Type*, 8> ArgTys; 1603 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1604 if (Type *T = getTypeByID(Record[i])) { 1605 if (!FunctionType::isValidArgumentType(T)) 1606 return error("Invalid function argument type"); 1607 ArgTys.push_back(T); 1608 } 1609 else 1610 break; 1611 } 1612 1613 ResultTy = getTypeByID(Record[1]); 1614 if (!ResultTy || ArgTys.size() < Record.size()-2) 1615 return error("Invalid type"); 1616 1617 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1618 break; 1619 } 1620 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1621 if (Record.size() < 1) 1622 return error("Invalid record"); 1623 SmallVector<Type*, 8> EltTys; 1624 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1625 if (Type *T = getTypeByID(Record[i])) 1626 EltTys.push_back(T); 1627 else 1628 break; 1629 } 1630 if (EltTys.size() != Record.size()-1) 1631 return error("Invalid type"); 1632 ResultTy = StructType::get(Context, EltTys, Record[0]); 1633 break; 1634 } 1635 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1636 if (convertToString(Record, 0, TypeName)) 1637 return error("Invalid record"); 1638 continue; 1639 1640 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1641 if (Record.size() < 1) 1642 return error("Invalid record"); 1643 1644 if (NumRecords >= TypeList.size()) 1645 return error("Invalid TYPE table"); 1646 1647 // Check to see if this was forward referenced, if so fill in the temp. 1648 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1649 if (Res) { 1650 Res->setName(TypeName); 1651 TypeList[NumRecords] = nullptr; 1652 } else // Otherwise, create a new struct. 1653 Res = createIdentifiedStructType(Context, TypeName); 1654 TypeName.clear(); 1655 1656 SmallVector<Type*, 8> EltTys; 1657 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1658 if (Type *T = getTypeByID(Record[i])) 1659 EltTys.push_back(T); 1660 else 1661 break; 1662 } 1663 if (EltTys.size() != Record.size()-1) 1664 return error("Invalid record"); 1665 Res->setBody(EltTys, Record[0]); 1666 ResultTy = Res; 1667 break; 1668 } 1669 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1670 if (Record.size() != 1) 1671 return error("Invalid record"); 1672 1673 if (NumRecords >= TypeList.size()) 1674 return error("Invalid TYPE table"); 1675 1676 // Check to see if this was forward referenced, if so fill in the temp. 1677 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1678 if (Res) { 1679 Res->setName(TypeName); 1680 TypeList[NumRecords] = nullptr; 1681 } else // Otherwise, create a new struct with no body. 1682 Res = createIdentifiedStructType(Context, TypeName); 1683 TypeName.clear(); 1684 ResultTy = Res; 1685 break; 1686 } 1687 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1688 if (Record.size() < 2) 1689 return error("Invalid record"); 1690 ResultTy = getTypeByID(Record[1]); 1691 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1692 return error("Invalid type"); 1693 ResultTy = ArrayType::get(ResultTy, Record[0]); 1694 break; 1695 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1696 if (Record.size() < 2) 1697 return error("Invalid record"); 1698 if (Record[0] == 0) 1699 return error("Invalid vector length"); 1700 ResultTy = getTypeByID(Record[1]); 1701 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1702 return error("Invalid type"); 1703 ResultTy = VectorType::get(ResultTy, Record[0]); 1704 break; 1705 } 1706 1707 if (NumRecords >= TypeList.size()) 1708 return error("Invalid TYPE table"); 1709 if (TypeList[NumRecords]) 1710 return error( 1711 "Invalid TYPE table: Only named structs can be forward referenced"); 1712 assert(ResultTy && "Didn't read a type?"); 1713 TypeList[NumRecords++] = ResultTy; 1714 } 1715 } 1716 1717 Error BitcodeReader::parseOperandBundleTags() { 1718 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1719 return error("Invalid record"); 1720 1721 if (!BundleTags.empty()) 1722 return error("Invalid multiple blocks"); 1723 1724 SmallVector<uint64_t, 64> Record; 1725 1726 while (true) { 1727 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1728 1729 switch (Entry.Kind) { 1730 case BitstreamEntry::SubBlock: // Handled for us already. 1731 case BitstreamEntry::Error: 1732 return error("Malformed block"); 1733 case BitstreamEntry::EndBlock: 1734 return Error::success(); 1735 case BitstreamEntry::Record: 1736 // The interesting case. 1737 break; 1738 } 1739 1740 // Tags are implicitly mapped to integers by their order. 1741 1742 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1743 return error("Invalid record"); 1744 1745 // OPERAND_BUNDLE_TAG: [strchr x N] 1746 BundleTags.emplace_back(); 1747 if (convertToString(Record, 0, BundleTags.back())) 1748 return error("Invalid record"); 1749 Record.clear(); 1750 } 1751 } 1752 1753 Error BitcodeReader::parseSyncScopeNames() { 1754 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1755 return error("Invalid record"); 1756 1757 if (!SSIDs.empty()) 1758 return error("Invalid multiple synchronization scope names blocks"); 1759 1760 SmallVector<uint64_t, 64> Record; 1761 while (true) { 1762 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1763 switch (Entry.Kind) { 1764 case BitstreamEntry::SubBlock: // Handled for us already. 1765 case BitstreamEntry::Error: 1766 return error("Malformed block"); 1767 case BitstreamEntry::EndBlock: 1768 if (SSIDs.empty()) 1769 return error("Invalid empty synchronization scope names block"); 1770 return Error::success(); 1771 case BitstreamEntry::Record: 1772 // The interesting case. 1773 break; 1774 } 1775 1776 // Synchronization scope names are implicitly mapped to synchronization 1777 // scope IDs by their order. 1778 1779 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1780 return error("Invalid record"); 1781 1782 SmallString<16> SSN; 1783 if (convertToString(Record, 0, SSN)) 1784 return error("Invalid record"); 1785 1786 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1787 Record.clear(); 1788 } 1789 } 1790 1791 /// Associate a value with its name from the given index in the provided record. 1792 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1793 unsigned NameIndex, Triple &TT) { 1794 SmallString<128> ValueName; 1795 if (convertToString(Record, NameIndex, ValueName)) 1796 return error("Invalid record"); 1797 unsigned ValueID = Record[0]; 1798 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1799 return error("Invalid record"); 1800 Value *V = ValueList[ValueID]; 1801 1802 StringRef NameStr(ValueName.data(), ValueName.size()); 1803 if (NameStr.find_first_of(0) != StringRef::npos) 1804 return error("Invalid value name"); 1805 V->setName(NameStr); 1806 auto *GO = dyn_cast<GlobalObject>(V); 1807 if (GO) { 1808 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1809 if (TT.isOSBinFormatMachO()) 1810 GO->setComdat(nullptr); 1811 else 1812 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1813 } 1814 } 1815 return V; 1816 } 1817 1818 /// Helper to note and return the current location, and jump to the given 1819 /// offset. 1820 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1821 BitstreamCursor &Stream) { 1822 // Save the current parsing location so we can jump back at the end 1823 // of the VST read. 1824 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1825 Stream.JumpToBit(Offset * 32); 1826 #ifndef NDEBUG 1827 // Do some checking if we are in debug mode. 1828 BitstreamEntry Entry = Stream.advance(); 1829 assert(Entry.Kind == BitstreamEntry::SubBlock); 1830 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1831 #else 1832 // In NDEBUG mode ignore the output so we don't get an unused variable 1833 // warning. 1834 Stream.advance(); 1835 #endif 1836 return CurrentBit; 1837 } 1838 1839 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1840 Function *F, 1841 ArrayRef<uint64_t> Record) { 1842 // Note that we subtract 1 here because the offset is relative to one word 1843 // before the start of the identification or module block, which was 1844 // historically always the start of the regular bitcode header. 1845 uint64_t FuncWordOffset = Record[1] - 1; 1846 uint64_t FuncBitOffset = FuncWordOffset * 32; 1847 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1848 // Set the LastFunctionBlockBit to point to the last function block. 1849 // Later when parsing is resumed after function materialization, 1850 // we can simply skip that last function block. 1851 if (FuncBitOffset > LastFunctionBlockBit) 1852 LastFunctionBlockBit = FuncBitOffset; 1853 } 1854 1855 /// Read a new-style GlobalValue symbol table. 1856 Error BitcodeReader::parseGlobalValueSymbolTable() { 1857 unsigned FuncBitcodeOffsetDelta = 1858 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1859 1860 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1861 return error("Invalid record"); 1862 1863 SmallVector<uint64_t, 64> Record; 1864 while (true) { 1865 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1866 1867 switch (Entry.Kind) { 1868 case BitstreamEntry::SubBlock: 1869 case BitstreamEntry::Error: 1870 return error("Malformed block"); 1871 case BitstreamEntry::EndBlock: 1872 return Error::success(); 1873 case BitstreamEntry::Record: 1874 break; 1875 } 1876 1877 Record.clear(); 1878 switch (Stream.readRecord(Entry.ID, Record)) { 1879 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1880 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1881 cast<Function>(ValueList[Record[0]]), Record); 1882 break; 1883 } 1884 } 1885 } 1886 1887 /// Parse the value symbol table at either the current parsing location or 1888 /// at the given bit offset if provided. 1889 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1890 uint64_t CurrentBit; 1891 // Pass in the Offset to distinguish between calling for the module-level 1892 // VST (where we want to jump to the VST offset) and the function-level 1893 // VST (where we don't). 1894 if (Offset > 0) { 1895 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1896 // If this module uses a string table, read this as a module-level VST. 1897 if (UseStrtab) { 1898 if (Error Err = parseGlobalValueSymbolTable()) 1899 return Err; 1900 Stream.JumpToBit(CurrentBit); 1901 return Error::success(); 1902 } 1903 // Otherwise, the VST will be in a similar format to a function-level VST, 1904 // and will contain symbol names. 1905 } 1906 1907 // Compute the delta between the bitcode indices in the VST (the word offset 1908 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1909 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1910 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1911 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1912 // just before entering the VST subblock because: 1) the EnterSubBlock 1913 // changes the AbbrevID width; 2) the VST block is nested within the same 1914 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1915 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1916 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1917 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1918 unsigned FuncBitcodeOffsetDelta = 1919 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1920 1921 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1922 return error("Invalid record"); 1923 1924 SmallVector<uint64_t, 64> Record; 1925 1926 Triple TT(TheModule->getTargetTriple()); 1927 1928 // Read all the records for this value table. 1929 SmallString<128> ValueName; 1930 1931 while (true) { 1932 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1933 1934 switch (Entry.Kind) { 1935 case BitstreamEntry::SubBlock: // Handled for us already. 1936 case BitstreamEntry::Error: 1937 return error("Malformed block"); 1938 case BitstreamEntry::EndBlock: 1939 if (Offset > 0) 1940 Stream.JumpToBit(CurrentBit); 1941 return Error::success(); 1942 case BitstreamEntry::Record: 1943 // The interesting case. 1944 break; 1945 } 1946 1947 // Read a record. 1948 Record.clear(); 1949 switch (Stream.readRecord(Entry.ID, Record)) { 1950 default: // Default behavior: unknown type. 1951 break; 1952 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1953 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1954 if (Error Err = ValOrErr.takeError()) 1955 return Err; 1956 ValOrErr.get(); 1957 break; 1958 } 1959 case bitc::VST_CODE_FNENTRY: { 1960 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1961 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1962 if (Error Err = ValOrErr.takeError()) 1963 return Err; 1964 Value *V = ValOrErr.get(); 1965 1966 // Ignore function offsets emitted for aliases of functions in older 1967 // versions of LLVM. 1968 if (auto *F = dyn_cast<Function>(V)) 1969 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1970 break; 1971 } 1972 case bitc::VST_CODE_BBENTRY: { 1973 if (convertToString(Record, 1, ValueName)) 1974 return error("Invalid record"); 1975 BasicBlock *BB = getBasicBlock(Record[0]); 1976 if (!BB) 1977 return error("Invalid record"); 1978 1979 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1980 ValueName.clear(); 1981 break; 1982 } 1983 } 1984 } 1985 } 1986 1987 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1988 /// encoding. 1989 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1990 if ((V & 1) == 0) 1991 return V >> 1; 1992 if (V != 1) 1993 return -(V >> 1); 1994 // There is no such thing as -0 with integers. "-0" really means MININT. 1995 return 1ULL << 63; 1996 } 1997 1998 /// Resolve all of the initializers for global values and aliases that we can. 1999 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2000 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2001 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2002 IndirectSymbolInitWorklist; 2003 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2004 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2005 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2006 2007 GlobalInitWorklist.swap(GlobalInits); 2008 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2009 FunctionPrefixWorklist.swap(FunctionPrefixes); 2010 FunctionPrologueWorklist.swap(FunctionPrologues); 2011 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2012 2013 while (!GlobalInitWorklist.empty()) { 2014 unsigned ValID = GlobalInitWorklist.back().second; 2015 if (ValID >= ValueList.size()) { 2016 // Not ready to resolve this yet, it requires something later in the file. 2017 GlobalInits.push_back(GlobalInitWorklist.back()); 2018 } else { 2019 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2020 GlobalInitWorklist.back().first->setInitializer(C); 2021 else 2022 return error("Expected a constant"); 2023 } 2024 GlobalInitWorklist.pop_back(); 2025 } 2026 2027 while (!IndirectSymbolInitWorklist.empty()) { 2028 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2029 if (ValID >= ValueList.size()) { 2030 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2031 } else { 2032 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2033 if (!C) 2034 return error("Expected a constant"); 2035 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2036 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2037 return error("Alias and aliasee types don't match"); 2038 GIS->setIndirectSymbol(C); 2039 } 2040 IndirectSymbolInitWorklist.pop_back(); 2041 } 2042 2043 while (!FunctionPrefixWorklist.empty()) { 2044 unsigned ValID = FunctionPrefixWorklist.back().second; 2045 if (ValID >= ValueList.size()) { 2046 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2047 } else { 2048 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2049 FunctionPrefixWorklist.back().first->setPrefixData(C); 2050 else 2051 return error("Expected a constant"); 2052 } 2053 FunctionPrefixWorklist.pop_back(); 2054 } 2055 2056 while (!FunctionPrologueWorklist.empty()) { 2057 unsigned ValID = FunctionPrologueWorklist.back().second; 2058 if (ValID >= ValueList.size()) { 2059 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2060 } else { 2061 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2062 FunctionPrologueWorklist.back().first->setPrologueData(C); 2063 else 2064 return error("Expected a constant"); 2065 } 2066 FunctionPrologueWorklist.pop_back(); 2067 } 2068 2069 while (!FunctionPersonalityFnWorklist.empty()) { 2070 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2071 if (ValID >= ValueList.size()) { 2072 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2073 } else { 2074 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2075 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2076 else 2077 return error("Expected a constant"); 2078 } 2079 FunctionPersonalityFnWorklist.pop_back(); 2080 } 2081 2082 return Error::success(); 2083 } 2084 2085 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2086 SmallVector<uint64_t, 8> Words(Vals.size()); 2087 transform(Vals, Words.begin(), 2088 BitcodeReader::decodeSignRotatedValue); 2089 2090 return APInt(TypeBits, Words); 2091 } 2092 2093 Error BitcodeReader::parseConstants() { 2094 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2095 return error("Invalid record"); 2096 2097 SmallVector<uint64_t, 64> Record; 2098 2099 // Read all the records for this value table. 2100 Type *CurTy = Type::getInt32Ty(Context); 2101 unsigned NextCstNo = ValueList.size(); 2102 2103 while (true) { 2104 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2105 2106 switch (Entry.Kind) { 2107 case BitstreamEntry::SubBlock: // Handled for us already. 2108 case BitstreamEntry::Error: 2109 return error("Malformed block"); 2110 case BitstreamEntry::EndBlock: 2111 if (NextCstNo != ValueList.size()) 2112 return error("Invalid constant reference"); 2113 2114 // Once all the constants have been read, go through and resolve forward 2115 // references. 2116 ValueList.resolveConstantForwardRefs(); 2117 return Error::success(); 2118 case BitstreamEntry::Record: 2119 // The interesting case. 2120 break; 2121 } 2122 2123 // Read a record. 2124 Record.clear(); 2125 Type *VoidType = Type::getVoidTy(Context); 2126 Value *V = nullptr; 2127 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2128 switch (BitCode) { 2129 default: // Default behavior: unknown constant 2130 case bitc::CST_CODE_UNDEF: // UNDEF 2131 V = UndefValue::get(CurTy); 2132 break; 2133 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2134 if (Record.empty()) 2135 return error("Invalid record"); 2136 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2137 return error("Invalid record"); 2138 if (TypeList[Record[0]] == VoidType) 2139 return error("Invalid constant type"); 2140 CurTy = TypeList[Record[0]]; 2141 continue; // Skip the ValueList manipulation. 2142 case bitc::CST_CODE_NULL: // NULL 2143 V = Constant::getNullValue(CurTy); 2144 break; 2145 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2146 if (!CurTy->isIntegerTy() || Record.empty()) 2147 return error("Invalid record"); 2148 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2149 break; 2150 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2151 if (!CurTy->isIntegerTy() || Record.empty()) 2152 return error("Invalid record"); 2153 2154 APInt VInt = 2155 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2156 V = ConstantInt::get(Context, VInt); 2157 2158 break; 2159 } 2160 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2161 if (Record.empty()) 2162 return error("Invalid record"); 2163 if (CurTy->isHalfTy()) 2164 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2165 APInt(16, (uint16_t)Record[0]))); 2166 else if (CurTy->isFloatTy()) 2167 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2168 APInt(32, (uint32_t)Record[0]))); 2169 else if (CurTy->isDoubleTy()) 2170 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2171 APInt(64, Record[0]))); 2172 else if (CurTy->isX86_FP80Ty()) { 2173 // Bits are not stored the same way as a normal i80 APInt, compensate. 2174 uint64_t Rearrange[2]; 2175 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2176 Rearrange[1] = Record[0] >> 48; 2177 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2178 APInt(80, Rearrange))); 2179 } else if (CurTy->isFP128Ty()) 2180 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2181 APInt(128, Record))); 2182 else if (CurTy->isPPC_FP128Ty()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2184 APInt(128, Record))); 2185 else 2186 V = UndefValue::get(CurTy); 2187 break; 2188 } 2189 2190 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2191 if (Record.empty()) 2192 return error("Invalid record"); 2193 2194 unsigned Size = Record.size(); 2195 SmallVector<Constant*, 16> Elts; 2196 2197 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2198 for (unsigned i = 0; i != Size; ++i) 2199 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2200 STy->getElementType(i))); 2201 V = ConstantStruct::get(STy, Elts); 2202 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2203 Type *EltTy = ATy->getElementType(); 2204 for (unsigned i = 0; i != Size; ++i) 2205 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2206 V = ConstantArray::get(ATy, Elts); 2207 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2208 Type *EltTy = VTy->getElementType(); 2209 for (unsigned i = 0; i != Size; ++i) 2210 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2211 V = ConstantVector::get(Elts); 2212 } else { 2213 V = UndefValue::get(CurTy); 2214 } 2215 break; 2216 } 2217 case bitc::CST_CODE_STRING: // STRING: [values] 2218 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2219 if (Record.empty()) 2220 return error("Invalid record"); 2221 2222 SmallString<16> Elts(Record.begin(), Record.end()); 2223 V = ConstantDataArray::getString(Context, Elts, 2224 BitCode == bitc::CST_CODE_CSTRING); 2225 break; 2226 } 2227 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2228 if (Record.empty()) 2229 return error("Invalid record"); 2230 2231 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2232 if (EltTy->isIntegerTy(8)) { 2233 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2234 if (isa<VectorType>(CurTy)) 2235 V = ConstantDataVector::get(Context, Elts); 2236 else 2237 V = ConstantDataArray::get(Context, Elts); 2238 } else if (EltTy->isIntegerTy(16)) { 2239 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2240 if (isa<VectorType>(CurTy)) 2241 V = ConstantDataVector::get(Context, Elts); 2242 else 2243 V = ConstantDataArray::get(Context, Elts); 2244 } else if (EltTy->isIntegerTy(32)) { 2245 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2246 if (isa<VectorType>(CurTy)) 2247 V = ConstantDataVector::get(Context, Elts); 2248 else 2249 V = ConstantDataArray::get(Context, Elts); 2250 } else if (EltTy->isIntegerTy(64)) { 2251 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2252 if (isa<VectorType>(CurTy)) 2253 V = ConstantDataVector::get(Context, Elts); 2254 else 2255 V = ConstantDataArray::get(Context, Elts); 2256 } else if (EltTy->isHalfTy()) { 2257 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2258 if (isa<VectorType>(CurTy)) 2259 V = ConstantDataVector::getFP(Context, Elts); 2260 else 2261 V = ConstantDataArray::getFP(Context, Elts); 2262 } else if (EltTy->isFloatTy()) { 2263 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2264 if (isa<VectorType>(CurTy)) 2265 V = ConstantDataVector::getFP(Context, Elts); 2266 else 2267 V = ConstantDataArray::getFP(Context, Elts); 2268 } else if (EltTy->isDoubleTy()) { 2269 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2270 if (isa<VectorType>(CurTy)) 2271 V = ConstantDataVector::getFP(Context, Elts); 2272 else 2273 V = ConstantDataArray::getFP(Context, Elts); 2274 } else { 2275 return error("Invalid type for value"); 2276 } 2277 break; 2278 } 2279 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2280 if (Record.size() < 3) 2281 return error("Invalid record"); 2282 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2283 if (Opc < 0) { 2284 V = UndefValue::get(CurTy); // Unknown binop. 2285 } else { 2286 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2287 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2288 unsigned Flags = 0; 2289 if (Record.size() >= 4) { 2290 if (Opc == Instruction::Add || 2291 Opc == Instruction::Sub || 2292 Opc == Instruction::Mul || 2293 Opc == Instruction::Shl) { 2294 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2295 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2296 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2297 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2298 } else if (Opc == Instruction::SDiv || 2299 Opc == Instruction::UDiv || 2300 Opc == Instruction::LShr || 2301 Opc == Instruction::AShr) { 2302 if (Record[3] & (1 << bitc::PEO_EXACT)) 2303 Flags |= SDivOperator::IsExact; 2304 } 2305 } 2306 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2307 } 2308 break; 2309 } 2310 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2311 if (Record.size() < 3) 2312 return error("Invalid record"); 2313 int Opc = getDecodedCastOpcode(Record[0]); 2314 if (Opc < 0) { 2315 V = UndefValue::get(CurTy); // Unknown cast. 2316 } else { 2317 Type *OpTy = getTypeByID(Record[1]); 2318 if (!OpTy) 2319 return error("Invalid record"); 2320 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2321 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2322 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2323 } 2324 break; 2325 } 2326 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2327 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2328 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2329 // operands] 2330 unsigned OpNum = 0; 2331 Type *PointeeType = nullptr; 2332 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2333 Record.size() % 2) 2334 PointeeType = getTypeByID(Record[OpNum++]); 2335 2336 bool InBounds = false; 2337 Optional<unsigned> InRangeIndex; 2338 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2339 uint64_t Op = Record[OpNum++]; 2340 InBounds = Op & 1; 2341 InRangeIndex = Op >> 1; 2342 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2343 InBounds = true; 2344 2345 SmallVector<Constant*, 16> Elts; 2346 while (OpNum != Record.size()) { 2347 Type *ElTy = getTypeByID(Record[OpNum++]); 2348 if (!ElTy) 2349 return error("Invalid record"); 2350 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2351 } 2352 2353 if (PointeeType && 2354 PointeeType != 2355 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2356 ->getElementType()) 2357 return error("Explicit gep operator type does not match pointee type " 2358 "of pointer operand"); 2359 2360 if (Elts.size() < 1) 2361 return error("Invalid gep with no operands"); 2362 2363 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2364 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2365 InBounds, InRangeIndex); 2366 break; 2367 } 2368 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2369 if (Record.size() < 3) 2370 return error("Invalid record"); 2371 2372 Type *SelectorTy = Type::getInt1Ty(Context); 2373 2374 // The selector might be an i1 or an <n x i1> 2375 // Get the type from the ValueList before getting a forward ref. 2376 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2377 if (Value *V = ValueList[Record[0]]) 2378 if (SelectorTy != V->getType()) 2379 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2380 2381 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2382 SelectorTy), 2383 ValueList.getConstantFwdRef(Record[1],CurTy), 2384 ValueList.getConstantFwdRef(Record[2],CurTy)); 2385 break; 2386 } 2387 case bitc::CST_CODE_CE_EXTRACTELT 2388 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2389 if (Record.size() < 3) 2390 return error("Invalid record"); 2391 VectorType *OpTy = 2392 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2393 if (!OpTy) 2394 return error("Invalid record"); 2395 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2396 Constant *Op1 = nullptr; 2397 if (Record.size() == 4) { 2398 Type *IdxTy = getTypeByID(Record[2]); 2399 if (!IdxTy) 2400 return error("Invalid record"); 2401 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2402 } else // TODO: Remove with llvm 4.0 2403 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2404 if (!Op1) 2405 return error("Invalid record"); 2406 V = ConstantExpr::getExtractElement(Op0, Op1); 2407 break; 2408 } 2409 case bitc::CST_CODE_CE_INSERTELT 2410 : { // CE_INSERTELT: [opval, opval, opty, opval] 2411 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2412 if (Record.size() < 3 || !OpTy) 2413 return error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2415 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2416 OpTy->getElementType()); 2417 Constant *Op2 = nullptr; 2418 if (Record.size() == 4) { 2419 Type *IdxTy = getTypeByID(Record[2]); 2420 if (!IdxTy) 2421 return error("Invalid record"); 2422 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2423 } else // TODO: Remove with llvm 4.0 2424 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2425 if (!Op2) 2426 return error("Invalid record"); 2427 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2428 break; 2429 } 2430 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2431 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2432 if (Record.size() < 3 || !OpTy) 2433 return error("Invalid record"); 2434 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2435 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2436 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2437 OpTy->getNumElements()); 2438 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2439 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2440 break; 2441 } 2442 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2443 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2444 VectorType *OpTy = 2445 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2446 if (Record.size() < 4 || !RTy || !OpTy) 2447 return error("Invalid record"); 2448 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2449 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2450 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2451 RTy->getNumElements()); 2452 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2453 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2454 break; 2455 } 2456 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2457 if (Record.size() < 4) 2458 return error("Invalid record"); 2459 Type *OpTy = getTypeByID(Record[0]); 2460 if (!OpTy) 2461 return error("Invalid record"); 2462 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2463 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2464 2465 if (OpTy->isFPOrFPVectorTy()) 2466 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2467 else 2468 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2469 break; 2470 } 2471 // This maintains backward compatibility, pre-asm dialect keywords. 2472 // FIXME: Remove with the 4.0 release. 2473 case bitc::CST_CODE_INLINEASM_OLD: { 2474 if (Record.size() < 2) 2475 return error("Invalid record"); 2476 std::string AsmStr, ConstrStr; 2477 bool HasSideEffects = Record[0] & 1; 2478 bool IsAlignStack = Record[0] >> 1; 2479 unsigned AsmStrSize = Record[1]; 2480 if (2+AsmStrSize >= Record.size()) 2481 return error("Invalid record"); 2482 unsigned ConstStrSize = Record[2+AsmStrSize]; 2483 if (3+AsmStrSize+ConstStrSize > Record.size()) 2484 return error("Invalid record"); 2485 2486 for (unsigned i = 0; i != AsmStrSize; ++i) 2487 AsmStr += (char)Record[2+i]; 2488 for (unsigned i = 0; i != ConstStrSize; ++i) 2489 ConstrStr += (char)Record[3+AsmStrSize+i]; 2490 PointerType *PTy = cast<PointerType>(CurTy); 2491 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2492 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2493 break; 2494 } 2495 // This version adds support for the asm dialect keywords (e.g., 2496 // inteldialect). 2497 case bitc::CST_CODE_INLINEASM: { 2498 if (Record.size() < 2) 2499 return error("Invalid record"); 2500 std::string AsmStr, ConstrStr; 2501 bool HasSideEffects = Record[0] & 1; 2502 bool IsAlignStack = (Record[0] >> 1) & 1; 2503 unsigned AsmDialect = Record[0] >> 2; 2504 unsigned AsmStrSize = Record[1]; 2505 if (2+AsmStrSize >= Record.size()) 2506 return error("Invalid record"); 2507 unsigned ConstStrSize = Record[2+AsmStrSize]; 2508 if (3+AsmStrSize+ConstStrSize > Record.size()) 2509 return error("Invalid record"); 2510 2511 for (unsigned i = 0; i != AsmStrSize; ++i) 2512 AsmStr += (char)Record[2+i]; 2513 for (unsigned i = 0; i != ConstStrSize; ++i) 2514 ConstrStr += (char)Record[3+AsmStrSize+i]; 2515 PointerType *PTy = cast<PointerType>(CurTy); 2516 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2517 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2518 InlineAsm::AsmDialect(AsmDialect)); 2519 break; 2520 } 2521 case bitc::CST_CODE_BLOCKADDRESS:{ 2522 if (Record.size() < 3) 2523 return error("Invalid record"); 2524 Type *FnTy = getTypeByID(Record[0]); 2525 if (!FnTy) 2526 return error("Invalid record"); 2527 Function *Fn = 2528 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2529 if (!Fn) 2530 return error("Invalid record"); 2531 2532 // If the function is already parsed we can insert the block address right 2533 // away. 2534 BasicBlock *BB; 2535 unsigned BBID = Record[2]; 2536 if (!BBID) 2537 // Invalid reference to entry block. 2538 return error("Invalid ID"); 2539 if (!Fn->empty()) { 2540 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2541 for (size_t I = 0, E = BBID; I != E; ++I) { 2542 if (BBI == BBE) 2543 return error("Invalid ID"); 2544 ++BBI; 2545 } 2546 BB = &*BBI; 2547 } else { 2548 // Otherwise insert a placeholder and remember it so it can be inserted 2549 // when the function is parsed. 2550 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2551 if (FwdBBs.empty()) 2552 BasicBlockFwdRefQueue.push_back(Fn); 2553 if (FwdBBs.size() < BBID + 1) 2554 FwdBBs.resize(BBID + 1); 2555 if (!FwdBBs[BBID]) 2556 FwdBBs[BBID] = BasicBlock::Create(Context); 2557 BB = FwdBBs[BBID]; 2558 } 2559 V = BlockAddress::get(Fn, BB); 2560 break; 2561 } 2562 } 2563 2564 ValueList.assignValue(V, NextCstNo); 2565 ++NextCstNo; 2566 } 2567 } 2568 2569 Error BitcodeReader::parseUseLists() { 2570 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2571 return error("Invalid record"); 2572 2573 // Read all the records. 2574 SmallVector<uint64_t, 64> Record; 2575 2576 while (true) { 2577 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2578 2579 switch (Entry.Kind) { 2580 case BitstreamEntry::SubBlock: // Handled for us already. 2581 case BitstreamEntry::Error: 2582 return error("Malformed block"); 2583 case BitstreamEntry::EndBlock: 2584 return Error::success(); 2585 case BitstreamEntry::Record: 2586 // The interesting case. 2587 break; 2588 } 2589 2590 // Read a use list record. 2591 Record.clear(); 2592 bool IsBB = false; 2593 switch (Stream.readRecord(Entry.ID, Record)) { 2594 default: // Default behavior: unknown type. 2595 break; 2596 case bitc::USELIST_CODE_BB: 2597 IsBB = true; 2598 LLVM_FALLTHROUGH; 2599 case bitc::USELIST_CODE_DEFAULT: { 2600 unsigned RecordLength = Record.size(); 2601 if (RecordLength < 3) 2602 // Records should have at least an ID and two indexes. 2603 return error("Invalid record"); 2604 unsigned ID = Record.back(); 2605 Record.pop_back(); 2606 2607 Value *V; 2608 if (IsBB) { 2609 assert(ID < FunctionBBs.size() && "Basic block not found"); 2610 V = FunctionBBs[ID]; 2611 } else 2612 V = ValueList[ID]; 2613 unsigned NumUses = 0; 2614 SmallDenseMap<const Use *, unsigned, 16> Order; 2615 for (const Use &U : V->materialized_uses()) { 2616 if (++NumUses > Record.size()) 2617 break; 2618 Order[&U] = Record[NumUses - 1]; 2619 } 2620 if (Order.size() != Record.size() || NumUses > Record.size()) 2621 // Mismatches can happen if the functions are being materialized lazily 2622 // (out-of-order), or a value has been upgraded. 2623 break; 2624 2625 V->sortUseList([&](const Use &L, const Use &R) { 2626 return Order.lookup(&L) < Order.lookup(&R); 2627 }); 2628 break; 2629 } 2630 } 2631 } 2632 } 2633 2634 /// When we see the block for metadata, remember where it is and then skip it. 2635 /// This lets us lazily deserialize the metadata. 2636 Error BitcodeReader::rememberAndSkipMetadata() { 2637 // Save the current stream state. 2638 uint64_t CurBit = Stream.GetCurrentBitNo(); 2639 DeferredMetadataInfo.push_back(CurBit); 2640 2641 // Skip over the block for now. 2642 if (Stream.SkipBlock()) 2643 return error("Invalid record"); 2644 return Error::success(); 2645 } 2646 2647 Error BitcodeReader::materializeMetadata() { 2648 for (uint64_t BitPos : DeferredMetadataInfo) { 2649 // Move the bit stream to the saved position. 2650 Stream.JumpToBit(BitPos); 2651 if (Error Err = MDLoader->parseModuleMetadata()) 2652 return Err; 2653 } 2654 2655 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2656 // metadata. 2657 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2658 NamedMDNode *LinkerOpts = 2659 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2660 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2661 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2662 } 2663 2664 DeferredMetadataInfo.clear(); 2665 return Error::success(); 2666 } 2667 2668 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2669 2670 /// When we see the block for a function body, remember where it is and then 2671 /// skip it. This lets us lazily deserialize the functions. 2672 Error BitcodeReader::rememberAndSkipFunctionBody() { 2673 // Get the function we are talking about. 2674 if (FunctionsWithBodies.empty()) 2675 return error("Insufficient function protos"); 2676 2677 Function *Fn = FunctionsWithBodies.back(); 2678 FunctionsWithBodies.pop_back(); 2679 2680 // Save the current stream state. 2681 uint64_t CurBit = Stream.GetCurrentBitNo(); 2682 assert( 2683 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2684 "Mismatch between VST and scanned function offsets"); 2685 DeferredFunctionInfo[Fn] = CurBit; 2686 2687 // Skip over the function block for now. 2688 if (Stream.SkipBlock()) 2689 return error("Invalid record"); 2690 return Error::success(); 2691 } 2692 2693 Error BitcodeReader::globalCleanup() { 2694 // Patch the initializers for globals and aliases up. 2695 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2696 return Err; 2697 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2698 return error("Malformed global initializer set"); 2699 2700 // Look for intrinsic functions which need to be upgraded at some point 2701 for (Function &F : *TheModule) { 2702 MDLoader->upgradeDebugIntrinsics(F); 2703 Function *NewFn; 2704 if (UpgradeIntrinsicFunction(&F, NewFn)) 2705 UpgradedIntrinsics[&F] = NewFn; 2706 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2707 // Some types could be renamed during loading if several modules are 2708 // loaded in the same LLVMContext (LTO scenario). In this case we should 2709 // remangle intrinsics names as well. 2710 RemangledIntrinsics[&F] = Remangled.getValue(); 2711 } 2712 2713 // Look for global variables which need to be renamed. 2714 for (GlobalVariable &GV : TheModule->globals()) 2715 UpgradeGlobalVariable(&GV); 2716 2717 // Force deallocation of memory for these vectors to favor the client that 2718 // want lazy deserialization. 2719 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2720 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2721 IndirectSymbolInits); 2722 return Error::success(); 2723 } 2724 2725 /// Support for lazy parsing of function bodies. This is required if we 2726 /// either have an old bitcode file without a VST forward declaration record, 2727 /// or if we have an anonymous function being materialized, since anonymous 2728 /// functions do not have a name and are therefore not in the VST. 2729 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2730 Stream.JumpToBit(NextUnreadBit); 2731 2732 if (Stream.AtEndOfStream()) 2733 return error("Could not find function in stream"); 2734 2735 if (!SeenFirstFunctionBody) 2736 return error("Trying to materialize functions before seeing function blocks"); 2737 2738 // An old bitcode file with the symbol table at the end would have 2739 // finished the parse greedily. 2740 assert(SeenValueSymbolTable); 2741 2742 SmallVector<uint64_t, 64> Record; 2743 2744 while (true) { 2745 BitstreamEntry Entry = Stream.advance(); 2746 switch (Entry.Kind) { 2747 default: 2748 return error("Expect SubBlock"); 2749 case BitstreamEntry::SubBlock: 2750 switch (Entry.ID) { 2751 default: 2752 return error("Expect function block"); 2753 case bitc::FUNCTION_BLOCK_ID: 2754 if (Error Err = rememberAndSkipFunctionBody()) 2755 return Err; 2756 NextUnreadBit = Stream.GetCurrentBitNo(); 2757 return Error::success(); 2758 } 2759 } 2760 } 2761 } 2762 2763 bool BitcodeReaderBase::readBlockInfo() { 2764 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2765 if (!NewBlockInfo) 2766 return true; 2767 BlockInfo = std::move(*NewBlockInfo); 2768 return false; 2769 } 2770 2771 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2772 // v1: [selection_kind, name] 2773 // v2: [strtab_offset, strtab_size, selection_kind] 2774 StringRef Name; 2775 std::tie(Name, Record) = readNameFromStrtab(Record); 2776 2777 if (Record.size() < 1) 2778 return error("Invalid record"); 2779 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2780 std::string OldFormatName; 2781 if (!UseStrtab) { 2782 if (Record.size() < 2) 2783 return error("Invalid record"); 2784 unsigned ComdatNameSize = Record[1]; 2785 OldFormatName.reserve(ComdatNameSize); 2786 for (unsigned i = 0; i != ComdatNameSize; ++i) 2787 OldFormatName += (char)Record[2 + i]; 2788 Name = OldFormatName; 2789 } 2790 Comdat *C = TheModule->getOrInsertComdat(Name); 2791 C->setSelectionKind(SK); 2792 ComdatList.push_back(C); 2793 return Error::success(); 2794 } 2795 2796 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2797 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2798 // visibility, threadlocal, unnamed_addr, externally_initialized, 2799 // dllstorageclass, comdat, attributes] (name in VST) 2800 // v2: [strtab_offset, strtab_size, v1] 2801 StringRef Name; 2802 std::tie(Name, Record) = readNameFromStrtab(Record); 2803 2804 if (Record.size() < 6) 2805 return error("Invalid record"); 2806 Type *Ty = getTypeByID(Record[0]); 2807 if (!Ty) 2808 return error("Invalid record"); 2809 bool isConstant = Record[1] & 1; 2810 bool explicitType = Record[1] & 2; 2811 unsigned AddressSpace; 2812 if (explicitType) { 2813 AddressSpace = Record[1] >> 2; 2814 } else { 2815 if (!Ty->isPointerTy()) 2816 return error("Invalid type for value"); 2817 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2818 Ty = cast<PointerType>(Ty)->getElementType(); 2819 } 2820 2821 uint64_t RawLinkage = Record[3]; 2822 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2823 unsigned Alignment; 2824 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2825 return Err; 2826 std::string Section; 2827 if (Record[5]) { 2828 if (Record[5] - 1 >= SectionTable.size()) 2829 return error("Invalid ID"); 2830 Section = SectionTable[Record[5] - 1]; 2831 } 2832 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2833 // Local linkage must have default visibility. 2834 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2835 // FIXME: Change to an error if non-default in 4.0. 2836 Visibility = getDecodedVisibility(Record[6]); 2837 2838 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2839 if (Record.size() > 7) 2840 TLM = getDecodedThreadLocalMode(Record[7]); 2841 2842 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2843 if (Record.size() > 8) 2844 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2845 2846 bool ExternallyInitialized = false; 2847 if (Record.size() > 9) 2848 ExternallyInitialized = Record[9]; 2849 2850 GlobalVariable *NewGV = 2851 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2852 nullptr, TLM, AddressSpace, ExternallyInitialized); 2853 NewGV->setAlignment(Alignment); 2854 if (!Section.empty()) 2855 NewGV->setSection(Section); 2856 NewGV->setVisibility(Visibility); 2857 NewGV->setUnnamedAddr(UnnamedAddr); 2858 2859 if (Record.size() > 10) 2860 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2861 else 2862 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2863 2864 ValueList.push_back(NewGV); 2865 2866 // Remember which value to use for the global initializer. 2867 if (unsigned InitID = Record[2]) 2868 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2869 2870 if (Record.size() > 11) { 2871 if (unsigned ComdatID = Record[11]) { 2872 if (ComdatID > ComdatList.size()) 2873 return error("Invalid global variable comdat ID"); 2874 NewGV->setComdat(ComdatList[ComdatID - 1]); 2875 } 2876 } else if (hasImplicitComdat(RawLinkage)) { 2877 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2878 } 2879 2880 if (Record.size() > 12) { 2881 auto AS = getAttributes(Record[12]).getFnAttributes(); 2882 NewGV->setAttributes(AS); 2883 } 2884 return Error::success(); 2885 } 2886 2887 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2888 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2889 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2890 // prefixdata] (name in VST) 2891 // v2: [strtab_offset, strtab_size, v1] 2892 StringRef Name; 2893 std::tie(Name, Record) = readNameFromStrtab(Record); 2894 2895 if (Record.size() < 8) 2896 return error("Invalid record"); 2897 Type *Ty = getTypeByID(Record[0]); 2898 if (!Ty) 2899 return error("Invalid record"); 2900 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2901 Ty = PTy->getElementType(); 2902 auto *FTy = dyn_cast<FunctionType>(Ty); 2903 if (!FTy) 2904 return error("Invalid type for value"); 2905 auto CC = static_cast<CallingConv::ID>(Record[1]); 2906 if (CC & ~CallingConv::MaxID) 2907 return error("Invalid calling convention ID"); 2908 2909 Function *Func = 2910 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2911 2912 Func->setCallingConv(CC); 2913 bool isProto = Record[2]; 2914 uint64_t RawLinkage = Record[3]; 2915 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2916 Func->setAttributes(getAttributes(Record[4])); 2917 2918 unsigned Alignment; 2919 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2920 return Err; 2921 Func->setAlignment(Alignment); 2922 if (Record[6]) { 2923 if (Record[6] - 1 >= SectionTable.size()) 2924 return error("Invalid ID"); 2925 Func->setSection(SectionTable[Record[6] - 1]); 2926 } 2927 // Local linkage must have default visibility. 2928 if (!Func->hasLocalLinkage()) 2929 // FIXME: Change to an error if non-default in 4.0. 2930 Func->setVisibility(getDecodedVisibility(Record[7])); 2931 if (Record.size() > 8 && Record[8]) { 2932 if (Record[8] - 1 >= GCTable.size()) 2933 return error("Invalid ID"); 2934 Func->setGC(GCTable[Record[8] - 1]); 2935 } 2936 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2937 if (Record.size() > 9) 2938 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2939 Func->setUnnamedAddr(UnnamedAddr); 2940 if (Record.size() > 10 && Record[10] != 0) 2941 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2942 2943 if (Record.size() > 11) 2944 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2945 else 2946 upgradeDLLImportExportLinkage(Func, RawLinkage); 2947 2948 if (Record.size() > 12) { 2949 if (unsigned ComdatID = Record[12]) { 2950 if (ComdatID > ComdatList.size()) 2951 return error("Invalid function comdat ID"); 2952 Func->setComdat(ComdatList[ComdatID - 1]); 2953 } 2954 } else if (hasImplicitComdat(RawLinkage)) { 2955 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2956 } 2957 2958 if (Record.size() > 13 && Record[13] != 0) 2959 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2960 2961 if (Record.size() > 14 && Record[14] != 0) 2962 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2963 2964 ValueList.push_back(Func); 2965 2966 // If this is a function with a body, remember the prototype we are 2967 // creating now, so that we can match up the body with them later. 2968 if (!isProto) { 2969 Func->setIsMaterializable(true); 2970 FunctionsWithBodies.push_back(Func); 2971 DeferredFunctionInfo[Func] = 0; 2972 } 2973 return Error::success(); 2974 } 2975 2976 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2977 unsigned BitCode, ArrayRef<uint64_t> Record) { 2978 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2979 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2980 // dllstorageclass] (name in VST) 2981 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2982 // visibility, dllstorageclass] (name in VST) 2983 // v2: [strtab_offset, strtab_size, v1] 2984 StringRef Name; 2985 std::tie(Name, Record) = readNameFromStrtab(Record); 2986 2987 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2988 if (Record.size() < (3 + (unsigned)NewRecord)) 2989 return error("Invalid record"); 2990 unsigned OpNum = 0; 2991 Type *Ty = getTypeByID(Record[OpNum++]); 2992 if (!Ty) 2993 return error("Invalid record"); 2994 2995 unsigned AddrSpace; 2996 if (!NewRecord) { 2997 auto *PTy = dyn_cast<PointerType>(Ty); 2998 if (!PTy) 2999 return error("Invalid type for value"); 3000 Ty = PTy->getElementType(); 3001 AddrSpace = PTy->getAddressSpace(); 3002 } else { 3003 AddrSpace = Record[OpNum++]; 3004 } 3005 3006 auto Val = Record[OpNum++]; 3007 auto Linkage = Record[OpNum++]; 3008 GlobalIndirectSymbol *NewGA; 3009 if (BitCode == bitc::MODULE_CODE_ALIAS || 3010 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3011 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3012 TheModule); 3013 else 3014 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3015 nullptr, TheModule); 3016 // Old bitcode files didn't have visibility field. 3017 // Local linkage must have default visibility. 3018 if (OpNum != Record.size()) { 3019 auto VisInd = OpNum++; 3020 if (!NewGA->hasLocalLinkage()) 3021 // FIXME: Change to an error if non-default in 4.0. 3022 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3023 } 3024 if (OpNum != Record.size()) 3025 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3026 else 3027 upgradeDLLImportExportLinkage(NewGA, Linkage); 3028 if (OpNum != Record.size()) 3029 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3030 if (OpNum != Record.size()) 3031 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3032 ValueList.push_back(NewGA); 3033 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3034 return Error::success(); 3035 } 3036 3037 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3038 bool ShouldLazyLoadMetadata) { 3039 if (ResumeBit) 3040 Stream.JumpToBit(ResumeBit); 3041 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3042 return error("Invalid record"); 3043 3044 SmallVector<uint64_t, 64> Record; 3045 3046 // Read all the records for this module. 3047 while (true) { 3048 BitstreamEntry Entry = Stream.advance(); 3049 3050 switch (Entry.Kind) { 3051 case BitstreamEntry::Error: 3052 return error("Malformed block"); 3053 case BitstreamEntry::EndBlock: 3054 return globalCleanup(); 3055 3056 case BitstreamEntry::SubBlock: 3057 switch (Entry.ID) { 3058 default: // Skip unknown content. 3059 if (Stream.SkipBlock()) 3060 return error("Invalid record"); 3061 break; 3062 case bitc::BLOCKINFO_BLOCK_ID: 3063 if (readBlockInfo()) 3064 return error("Malformed block"); 3065 break; 3066 case bitc::PARAMATTR_BLOCK_ID: 3067 if (Error Err = parseAttributeBlock()) 3068 return Err; 3069 break; 3070 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3071 if (Error Err = parseAttributeGroupBlock()) 3072 return Err; 3073 break; 3074 case bitc::TYPE_BLOCK_ID_NEW: 3075 if (Error Err = parseTypeTable()) 3076 return Err; 3077 break; 3078 case bitc::VALUE_SYMTAB_BLOCK_ID: 3079 if (!SeenValueSymbolTable) { 3080 // Either this is an old form VST without function index and an 3081 // associated VST forward declaration record (which would have caused 3082 // the VST to be jumped to and parsed before it was encountered 3083 // normally in the stream), or there were no function blocks to 3084 // trigger an earlier parsing of the VST. 3085 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3086 if (Error Err = parseValueSymbolTable()) 3087 return Err; 3088 SeenValueSymbolTable = true; 3089 } else { 3090 // We must have had a VST forward declaration record, which caused 3091 // the parser to jump to and parse the VST earlier. 3092 assert(VSTOffset > 0); 3093 if (Stream.SkipBlock()) 3094 return error("Invalid record"); 3095 } 3096 break; 3097 case bitc::CONSTANTS_BLOCK_ID: 3098 if (Error Err = parseConstants()) 3099 return Err; 3100 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3101 return Err; 3102 break; 3103 case bitc::METADATA_BLOCK_ID: 3104 if (ShouldLazyLoadMetadata) { 3105 if (Error Err = rememberAndSkipMetadata()) 3106 return Err; 3107 break; 3108 } 3109 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3110 if (Error Err = MDLoader->parseModuleMetadata()) 3111 return Err; 3112 break; 3113 case bitc::METADATA_KIND_BLOCK_ID: 3114 if (Error Err = MDLoader->parseMetadataKinds()) 3115 return Err; 3116 break; 3117 case bitc::FUNCTION_BLOCK_ID: 3118 // If this is the first function body we've seen, reverse the 3119 // FunctionsWithBodies list. 3120 if (!SeenFirstFunctionBody) { 3121 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3122 if (Error Err = globalCleanup()) 3123 return Err; 3124 SeenFirstFunctionBody = true; 3125 } 3126 3127 if (VSTOffset > 0) { 3128 // If we have a VST forward declaration record, make sure we 3129 // parse the VST now if we haven't already. It is needed to 3130 // set up the DeferredFunctionInfo vector for lazy reading. 3131 if (!SeenValueSymbolTable) { 3132 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3133 return Err; 3134 SeenValueSymbolTable = true; 3135 // Fall through so that we record the NextUnreadBit below. 3136 // This is necessary in case we have an anonymous function that 3137 // is later materialized. Since it will not have a VST entry we 3138 // need to fall back to the lazy parse to find its offset. 3139 } else { 3140 // If we have a VST forward declaration record, but have already 3141 // parsed the VST (just above, when the first function body was 3142 // encountered here), then we are resuming the parse after 3143 // materializing functions. The ResumeBit points to the 3144 // start of the last function block recorded in the 3145 // DeferredFunctionInfo map. Skip it. 3146 if (Stream.SkipBlock()) 3147 return error("Invalid record"); 3148 continue; 3149 } 3150 } 3151 3152 // Support older bitcode files that did not have the function 3153 // index in the VST, nor a VST forward declaration record, as 3154 // well as anonymous functions that do not have VST entries. 3155 // Build the DeferredFunctionInfo vector on the fly. 3156 if (Error Err = rememberAndSkipFunctionBody()) 3157 return Err; 3158 3159 // Suspend parsing when we reach the function bodies. Subsequent 3160 // materialization calls will resume it when necessary. If the bitcode 3161 // file is old, the symbol table will be at the end instead and will not 3162 // have been seen yet. In this case, just finish the parse now. 3163 if (SeenValueSymbolTable) { 3164 NextUnreadBit = Stream.GetCurrentBitNo(); 3165 // After the VST has been parsed, we need to make sure intrinsic name 3166 // are auto-upgraded. 3167 return globalCleanup(); 3168 } 3169 break; 3170 case bitc::USELIST_BLOCK_ID: 3171 if (Error Err = parseUseLists()) 3172 return Err; 3173 break; 3174 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3175 if (Error Err = parseOperandBundleTags()) 3176 return Err; 3177 break; 3178 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3179 if (Error Err = parseSyncScopeNames()) 3180 return Err; 3181 break; 3182 } 3183 continue; 3184 3185 case BitstreamEntry::Record: 3186 // The interesting case. 3187 break; 3188 } 3189 3190 // Read a record. 3191 auto BitCode = Stream.readRecord(Entry.ID, Record); 3192 switch (BitCode) { 3193 default: break; // Default behavior, ignore unknown content. 3194 case bitc::MODULE_CODE_VERSION: { 3195 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3196 if (!VersionOrErr) 3197 return VersionOrErr.takeError(); 3198 UseRelativeIDs = *VersionOrErr >= 1; 3199 break; 3200 } 3201 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3202 std::string S; 3203 if (convertToString(Record, 0, S)) 3204 return error("Invalid record"); 3205 TheModule->setTargetTriple(S); 3206 break; 3207 } 3208 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3209 std::string S; 3210 if (convertToString(Record, 0, S)) 3211 return error("Invalid record"); 3212 TheModule->setDataLayout(S); 3213 break; 3214 } 3215 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3216 std::string S; 3217 if (convertToString(Record, 0, S)) 3218 return error("Invalid record"); 3219 TheModule->setModuleInlineAsm(S); 3220 break; 3221 } 3222 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3223 // FIXME: Remove in 4.0. 3224 std::string S; 3225 if (convertToString(Record, 0, S)) 3226 return error("Invalid record"); 3227 // Ignore value. 3228 break; 3229 } 3230 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3231 std::string S; 3232 if (convertToString(Record, 0, S)) 3233 return error("Invalid record"); 3234 SectionTable.push_back(S); 3235 break; 3236 } 3237 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3238 std::string S; 3239 if (convertToString(Record, 0, S)) 3240 return error("Invalid record"); 3241 GCTable.push_back(S); 3242 break; 3243 } 3244 case bitc::MODULE_CODE_COMDAT: { 3245 if (Error Err = parseComdatRecord(Record)) 3246 return Err; 3247 break; 3248 } 3249 case bitc::MODULE_CODE_GLOBALVAR: { 3250 if (Error Err = parseGlobalVarRecord(Record)) 3251 return Err; 3252 break; 3253 } 3254 case bitc::MODULE_CODE_FUNCTION: { 3255 if (Error Err = parseFunctionRecord(Record)) 3256 return Err; 3257 break; 3258 } 3259 case bitc::MODULE_CODE_IFUNC: 3260 case bitc::MODULE_CODE_ALIAS: 3261 case bitc::MODULE_CODE_ALIAS_OLD: { 3262 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3263 return Err; 3264 break; 3265 } 3266 /// MODULE_CODE_VSTOFFSET: [offset] 3267 case bitc::MODULE_CODE_VSTOFFSET: 3268 if (Record.size() < 1) 3269 return error("Invalid record"); 3270 // Note that we subtract 1 here because the offset is relative to one word 3271 // before the start of the identification or module block, which was 3272 // historically always the start of the regular bitcode header. 3273 VSTOffset = Record[0] - 1; 3274 break; 3275 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3276 case bitc::MODULE_CODE_SOURCE_FILENAME: 3277 SmallString<128> ValueName; 3278 if (convertToString(Record, 0, ValueName)) 3279 return error("Invalid record"); 3280 TheModule->setSourceFileName(ValueName); 3281 break; 3282 } 3283 Record.clear(); 3284 } 3285 } 3286 3287 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3288 bool IsImporting) { 3289 TheModule = M; 3290 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3291 [&](unsigned ID) { return getTypeByID(ID); }); 3292 return parseModule(0, ShouldLazyLoadMetadata); 3293 } 3294 3295 3296 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3297 if (!isa<PointerType>(PtrType)) 3298 return error("Load/Store operand is not a pointer type"); 3299 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3300 3301 if (ValType && ValType != ElemType) 3302 return error("Explicit load/store type does not match pointee " 3303 "type of pointer operand"); 3304 if (!PointerType::isLoadableOrStorableType(ElemType)) 3305 return error("Cannot load/store from pointer"); 3306 return Error::success(); 3307 } 3308 3309 /// Lazily parse the specified function body block. 3310 Error BitcodeReader::parseFunctionBody(Function *F) { 3311 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3312 return error("Invalid record"); 3313 3314 // Unexpected unresolved metadata when parsing function. 3315 if (MDLoader->hasFwdRefs()) 3316 return error("Invalid function metadata: incoming forward references"); 3317 3318 InstructionList.clear(); 3319 unsigned ModuleValueListSize = ValueList.size(); 3320 unsigned ModuleMDLoaderSize = MDLoader->size(); 3321 3322 // Add all the function arguments to the value table. 3323 for (Argument &I : F->args()) 3324 ValueList.push_back(&I); 3325 3326 unsigned NextValueNo = ValueList.size(); 3327 BasicBlock *CurBB = nullptr; 3328 unsigned CurBBNo = 0; 3329 3330 DebugLoc LastLoc; 3331 auto getLastInstruction = [&]() -> Instruction * { 3332 if (CurBB && !CurBB->empty()) 3333 return &CurBB->back(); 3334 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3335 !FunctionBBs[CurBBNo - 1]->empty()) 3336 return &FunctionBBs[CurBBNo - 1]->back(); 3337 return nullptr; 3338 }; 3339 3340 std::vector<OperandBundleDef> OperandBundles; 3341 3342 // Read all the records. 3343 SmallVector<uint64_t, 64> Record; 3344 3345 while (true) { 3346 BitstreamEntry Entry = Stream.advance(); 3347 3348 switch (Entry.Kind) { 3349 case BitstreamEntry::Error: 3350 return error("Malformed block"); 3351 case BitstreamEntry::EndBlock: 3352 goto OutOfRecordLoop; 3353 3354 case BitstreamEntry::SubBlock: 3355 switch (Entry.ID) { 3356 default: // Skip unknown content. 3357 if (Stream.SkipBlock()) 3358 return error("Invalid record"); 3359 break; 3360 case bitc::CONSTANTS_BLOCK_ID: 3361 if (Error Err = parseConstants()) 3362 return Err; 3363 NextValueNo = ValueList.size(); 3364 break; 3365 case bitc::VALUE_SYMTAB_BLOCK_ID: 3366 if (Error Err = parseValueSymbolTable()) 3367 return Err; 3368 break; 3369 case bitc::METADATA_ATTACHMENT_ID: 3370 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3371 return Err; 3372 break; 3373 case bitc::METADATA_BLOCK_ID: 3374 assert(DeferredMetadataInfo.empty() && 3375 "Must read all module-level metadata before function-level"); 3376 if (Error Err = MDLoader->parseFunctionMetadata()) 3377 return Err; 3378 break; 3379 case bitc::USELIST_BLOCK_ID: 3380 if (Error Err = parseUseLists()) 3381 return Err; 3382 break; 3383 } 3384 continue; 3385 3386 case BitstreamEntry::Record: 3387 // The interesting case. 3388 break; 3389 } 3390 3391 // Read a record. 3392 Record.clear(); 3393 Instruction *I = nullptr; 3394 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3395 switch (BitCode) { 3396 default: // Default behavior: reject 3397 return error("Invalid value"); 3398 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3399 if (Record.size() < 1 || Record[0] == 0) 3400 return error("Invalid record"); 3401 // Create all the basic blocks for the function. 3402 FunctionBBs.resize(Record[0]); 3403 3404 // See if anything took the address of blocks in this function. 3405 auto BBFRI = BasicBlockFwdRefs.find(F); 3406 if (BBFRI == BasicBlockFwdRefs.end()) { 3407 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3408 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3409 } else { 3410 auto &BBRefs = BBFRI->second; 3411 // Check for invalid basic block references. 3412 if (BBRefs.size() > FunctionBBs.size()) 3413 return error("Invalid ID"); 3414 assert(!BBRefs.empty() && "Unexpected empty array"); 3415 assert(!BBRefs.front() && "Invalid reference to entry block"); 3416 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3417 ++I) 3418 if (I < RE && BBRefs[I]) { 3419 BBRefs[I]->insertInto(F); 3420 FunctionBBs[I] = BBRefs[I]; 3421 } else { 3422 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3423 } 3424 3425 // Erase from the table. 3426 BasicBlockFwdRefs.erase(BBFRI); 3427 } 3428 3429 CurBB = FunctionBBs[0]; 3430 continue; 3431 } 3432 3433 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3434 // This record indicates that the last instruction is at the same 3435 // location as the previous instruction with a location. 3436 I = getLastInstruction(); 3437 3438 if (!I) 3439 return error("Invalid record"); 3440 I->setDebugLoc(LastLoc); 3441 I = nullptr; 3442 continue; 3443 3444 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3445 I = getLastInstruction(); 3446 if (!I || Record.size() < 4) 3447 return error("Invalid record"); 3448 3449 unsigned Line = Record[0], Col = Record[1]; 3450 unsigned ScopeID = Record[2], IAID = Record[3]; 3451 3452 MDNode *Scope = nullptr, *IA = nullptr; 3453 if (ScopeID) { 3454 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3455 if (!Scope) 3456 return error("Invalid record"); 3457 } 3458 if (IAID) { 3459 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3460 if (!IA) 3461 return error("Invalid record"); 3462 } 3463 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3464 I->setDebugLoc(LastLoc); 3465 I = nullptr; 3466 continue; 3467 } 3468 3469 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3470 unsigned OpNum = 0; 3471 Value *LHS, *RHS; 3472 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3473 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3474 OpNum+1 > Record.size()) 3475 return error("Invalid record"); 3476 3477 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3478 if (Opc == -1) 3479 return error("Invalid record"); 3480 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3481 InstructionList.push_back(I); 3482 if (OpNum < Record.size()) { 3483 if (Opc == Instruction::Add || 3484 Opc == Instruction::Sub || 3485 Opc == Instruction::Mul || 3486 Opc == Instruction::Shl) { 3487 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3488 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3489 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3490 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3491 } else if (Opc == Instruction::SDiv || 3492 Opc == Instruction::UDiv || 3493 Opc == Instruction::LShr || 3494 Opc == Instruction::AShr) { 3495 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3496 cast<BinaryOperator>(I)->setIsExact(true); 3497 } else if (isa<FPMathOperator>(I)) { 3498 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3499 if (FMF.any()) 3500 I->setFastMathFlags(FMF); 3501 } 3502 3503 } 3504 break; 3505 } 3506 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3507 unsigned OpNum = 0; 3508 Value *Op; 3509 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3510 OpNum+2 != Record.size()) 3511 return error("Invalid record"); 3512 3513 Type *ResTy = getTypeByID(Record[OpNum]); 3514 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3515 if (Opc == -1 || !ResTy) 3516 return error("Invalid record"); 3517 Instruction *Temp = nullptr; 3518 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3519 if (Temp) { 3520 InstructionList.push_back(Temp); 3521 CurBB->getInstList().push_back(Temp); 3522 } 3523 } else { 3524 auto CastOp = (Instruction::CastOps)Opc; 3525 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3526 return error("Invalid cast"); 3527 I = CastInst::Create(CastOp, Op, ResTy); 3528 } 3529 InstructionList.push_back(I); 3530 break; 3531 } 3532 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3533 case bitc::FUNC_CODE_INST_GEP_OLD: 3534 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3535 unsigned OpNum = 0; 3536 3537 Type *Ty; 3538 bool InBounds; 3539 3540 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3541 InBounds = Record[OpNum++]; 3542 Ty = getTypeByID(Record[OpNum++]); 3543 } else { 3544 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3545 Ty = nullptr; 3546 } 3547 3548 Value *BasePtr; 3549 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3550 return error("Invalid record"); 3551 3552 if (!Ty) 3553 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3554 ->getElementType(); 3555 else if (Ty != 3556 cast<PointerType>(BasePtr->getType()->getScalarType()) 3557 ->getElementType()) 3558 return error( 3559 "Explicit gep type does not match pointee type of pointer operand"); 3560 3561 SmallVector<Value*, 16> GEPIdx; 3562 while (OpNum != Record.size()) { 3563 Value *Op; 3564 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3565 return error("Invalid record"); 3566 GEPIdx.push_back(Op); 3567 } 3568 3569 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3570 3571 InstructionList.push_back(I); 3572 if (InBounds) 3573 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3574 break; 3575 } 3576 3577 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3578 // EXTRACTVAL: [opty, opval, n x indices] 3579 unsigned OpNum = 0; 3580 Value *Agg; 3581 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3582 return error("Invalid record"); 3583 3584 unsigned RecSize = Record.size(); 3585 if (OpNum == RecSize) 3586 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3587 3588 SmallVector<unsigned, 4> EXTRACTVALIdx; 3589 Type *CurTy = Agg->getType(); 3590 for (; OpNum != RecSize; ++OpNum) { 3591 bool IsArray = CurTy->isArrayTy(); 3592 bool IsStruct = CurTy->isStructTy(); 3593 uint64_t Index = Record[OpNum]; 3594 3595 if (!IsStruct && !IsArray) 3596 return error("EXTRACTVAL: Invalid type"); 3597 if ((unsigned)Index != Index) 3598 return error("Invalid value"); 3599 if (IsStruct && Index >= CurTy->subtypes().size()) 3600 return error("EXTRACTVAL: Invalid struct index"); 3601 if (IsArray && Index >= CurTy->getArrayNumElements()) 3602 return error("EXTRACTVAL: Invalid array index"); 3603 EXTRACTVALIdx.push_back((unsigned)Index); 3604 3605 if (IsStruct) 3606 CurTy = CurTy->subtypes()[Index]; 3607 else 3608 CurTy = CurTy->subtypes()[0]; 3609 } 3610 3611 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3612 InstructionList.push_back(I); 3613 break; 3614 } 3615 3616 case bitc::FUNC_CODE_INST_INSERTVAL: { 3617 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3618 unsigned OpNum = 0; 3619 Value *Agg; 3620 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3621 return error("Invalid record"); 3622 Value *Val; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3624 return error("Invalid record"); 3625 3626 unsigned RecSize = Record.size(); 3627 if (OpNum == RecSize) 3628 return error("INSERTVAL: Invalid instruction with 0 indices"); 3629 3630 SmallVector<unsigned, 4> INSERTVALIdx; 3631 Type *CurTy = Agg->getType(); 3632 for (; OpNum != RecSize; ++OpNum) { 3633 bool IsArray = CurTy->isArrayTy(); 3634 bool IsStruct = CurTy->isStructTy(); 3635 uint64_t Index = Record[OpNum]; 3636 3637 if (!IsStruct && !IsArray) 3638 return error("INSERTVAL: Invalid type"); 3639 if ((unsigned)Index != Index) 3640 return error("Invalid value"); 3641 if (IsStruct && Index >= CurTy->subtypes().size()) 3642 return error("INSERTVAL: Invalid struct index"); 3643 if (IsArray && Index >= CurTy->getArrayNumElements()) 3644 return error("INSERTVAL: Invalid array index"); 3645 3646 INSERTVALIdx.push_back((unsigned)Index); 3647 if (IsStruct) 3648 CurTy = CurTy->subtypes()[Index]; 3649 else 3650 CurTy = CurTy->subtypes()[0]; 3651 } 3652 3653 if (CurTy != Val->getType()) 3654 return error("Inserted value type doesn't match aggregate type"); 3655 3656 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3657 InstructionList.push_back(I); 3658 break; 3659 } 3660 3661 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3662 // obsolete form of select 3663 // handles select i1 ... in old bitcode 3664 unsigned OpNum = 0; 3665 Value *TrueVal, *FalseVal, *Cond; 3666 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3667 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3668 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3669 return error("Invalid record"); 3670 3671 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3672 InstructionList.push_back(I); 3673 break; 3674 } 3675 3676 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3677 // new form of select 3678 // handles select i1 or select [N x i1] 3679 unsigned OpNum = 0; 3680 Value *TrueVal, *FalseVal, *Cond; 3681 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3682 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3683 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3684 return error("Invalid record"); 3685 3686 // select condition can be either i1 or [N x i1] 3687 if (VectorType* vector_type = 3688 dyn_cast<VectorType>(Cond->getType())) { 3689 // expect <n x i1> 3690 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3691 return error("Invalid type for value"); 3692 } else { 3693 // expect i1 3694 if (Cond->getType() != Type::getInt1Ty(Context)) 3695 return error("Invalid type for value"); 3696 } 3697 3698 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3699 InstructionList.push_back(I); 3700 break; 3701 } 3702 3703 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3704 unsigned OpNum = 0; 3705 Value *Vec, *Idx; 3706 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3707 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3708 return error("Invalid record"); 3709 if (!Vec->getType()->isVectorTy()) 3710 return error("Invalid type for value"); 3711 I = ExtractElementInst::Create(Vec, Idx); 3712 InstructionList.push_back(I); 3713 break; 3714 } 3715 3716 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3717 unsigned OpNum = 0; 3718 Value *Vec, *Elt, *Idx; 3719 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3720 return error("Invalid record"); 3721 if (!Vec->getType()->isVectorTy()) 3722 return error("Invalid type for value"); 3723 if (popValue(Record, OpNum, NextValueNo, 3724 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3725 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3726 return error("Invalid record"); 3727 I = InsertElementInst::Create(Vec, Elt, Idx); 3728 InstructionList.push_back(I); 3729 break; 3730 } 3731 3732 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3733 unsigned OpNum = 0; 3734 Value *Vec1, *Vec2, *Mask; 3735 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3736 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3737 return error("Invalid record"); 3738 3739 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3740 return error("Invalid record"); 3741 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3742 return error("Invalid type for value"); 3743 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3744 InstructionList.push_back(I); 3745 break; 3746 } 3747 3748 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3749 // Old form of ICmp/FCmp returning bool 3750 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3751 // both legal on vectors but had different behaviour. 3752 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3753 // FCmp/ICmp returning bool or vector of bool 3754 3755 unsigned OpNum = 0; 3756 Value *LHS, *RHS; 3757 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3758 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3759 return error("Invalid record"); 3760 3761 unsigned PredVal = Record[OpNum]; 3762 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3763 FastMathFlags FMF; 3764 if (IsFP && Record.size() > OpNum+1) 3765 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3766 3767 if (OpNum+1 != Record.size()) 3768 return error("Invalid record"); 3769 3770 if (LHS->getType()->isFPOrFPVectorTy()) 3771 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3772 else 3773 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3774 3775 if (FMF.any()) 3776 I->setFastMathFlags(FMF); 3777 InstructionList.push_back(I); 3778 break; 3779 } 3780 3781 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3782 { 3783 unsigned Size = Record.size(); 3784 if (Size == 0) { 3785 I = ReturnInst::Create(Context); 3786 InstructionList.push_back(I); 3787 break; 3788 } 3789 3790 unsigned OpNum = 0; 3791 Value *Op = nullptr; 3792 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3793 return error("Invalid record"); 3794 if (OpNum != Record.size()) 3795 return error("Invalid record"); 3796 3797 I = ReturnInst::Create(Context, Op); 3798 InstructionList.push_back(I); 3799 break; 3800 } 3801 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3802 if (Record.size() != 1 && Record.size() != 3) 3803 return error("Invalid record"); 3804 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3805 if (!TrueDest) 3806 return error("Invalid record"); 3807 3808 if (Record.size() == 1) { 3809 I = BranchInst::Create(TrueDest); 3810 InstructionList.push_back(I); 3811 } 3812 else { 3813 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3814 Value *Cond = getValue(Record, 2, NextValueNo, 3815 Type::getInt1Ty(Context)); 3816 if (!FalseDest || !Cond) 3817 return error("Invalid record"); 3818 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3819 InstructionList.push_back(I); 3820 } 3821 break; 3822 } 3823 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3824 if (Record.size() != 1 && Record.size() != 2) 3825 return error("Invalid record"); 3826 unsigned Idx = 0; 3827 Value *CleanupPad = 3828 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3829 if (!CleanupPad) 3830 return error("Invalid record"); 3831 BasicBlock *UnwindDest = nullptr; 3832 if (Record.size() == 2) { 3833 UnwindDest = getBasicBlock(Record[Idx++]); 3834 if (!UnwindDest) 3835 return error("Invalid record"); 3836 } 3837 3838 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3839 InstructionList.push_back(I); 3840 break; 3841 } 3842 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3843 if (Record.size() != 2) 3844 return error("Invalid record"); 3845 unsigned Idx = 0; 3846 Value *CatchPad = 3847 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3848 if (!CatchPad) 3849 return error("Invalid record"); 3850 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3851 if (!BB) 3852 return error("Invalid record"); 3853 3854 I = CatchReturnInst::Create(CatchPad, BB); 3855 InstructionList.push_back(I); 3856 break; 3857 } 3858 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3859 // We must have, at minimum, the outer scope and the number of arguments. 3860 if (Record.size() < 2) 3861 return error("Invalid record"); 3862 3863 unsigned Idx = 0; 3864 3865 Value *ParentPad = 3866 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3867 3868 unsigned NumHandlers = Record[Idx++]; 3869 3870 SmallVector<BasicBlock *, 2> Handlers; 3871 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3872 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3873 if (!BB) 3874 return error("Invalid record"); 3875 Handlers.push_back(BB); 3876 } 3877 3878 BasicBlock *UnwindDest = nullptr; 3879 if (Idx + 1 == Record.size()) { 3880 UnwindDest = getBasicBlock(Record[Idx++]); 3881 if (!UnwindDest) 3882 return error("Invalid record"); 3883 } 3884 3885 if (Record.size() != Idx) 3886 return error("Invalid record"); 3887 3888 auto *CatchSwitch = 3889 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3890 for (BasicBlock *Handler : Handlers) 3891 CatchSwitch->addHandler(Handler); 3892 I = CatchSwitch; 3893 InstructionList.push_back(I); 3894 break; 3895 } 3896 case bitc::FUNC_CODE_INST_CATCHPAD: 3897 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3898 // We must have, at minimum, the outer scope and the number of arguments. 3899 if (Record.size() < 2) 3900 return error("Invalid record"); 3901 3902 unsigned Idx = 0; 3903 3904 Value *ParentPad = 3905 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3906 3907 unsigned NumArgOperands = Record[Idx++]; 3908 3909 SmallVector<Value *, 2> Args; 3910 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3911 Value *Val; 3912 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3913 return error("Invalid record"); 3914 Args.push_back(Val); 3915 } 3916 3917 if (Record.size() != Idx) 3918 return error("Invalid record"); 3919 3920 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3921 I = CleanupPadInst::Create(ParentPad, Args); 3922 else 3923 I = CatchPadInst::Create(ParentPad, Args); 3924 InstructionList.push_back(I); 3925 break; 3926 } 3927 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3928 // Check magic 3929 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3930 // "New" SwitchInst format with case ranges. The changes to write this 3931 // format were reverted but we still recognize bitcode that uses it. 3932 // Hopefully someday we will have support for case ranges and can use 3933 // this format again. 3934 3935 Type *OpTy = getTypeByID(Record[1]); 3936 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3937 3938 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3939 BasicBlock *Default = getBasicBlock(Record[3]); 3940 if (!OpTy || !Cond || !Default) 3941 return error("Invalid record"); 3942 3943 unsigned NumCases = Record[4]; 3944 3945 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3946 InstructionList.push_back(SI); 3947 3948 unsigned CurIdx = 5; 3949 for (unsigned i = 0; i != NumCases; ++i) { 3950 SmallVector<ConstantInt*, 1> CaseVals; 3951 unsigned NumItems = Record[CurIdx++]; 3952 for (unsigned ci = 0; ci != NumItems; ++ci) { 3953 bool isSingleNumber = Record[CurIdx++]; 3954 3955 APInt Low; 3956 unsigned ActiveWords = 1; 3957 if (ValueBitWidth > 64) 3958 ActiveWords = Record[CurIdx++]; 3959 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3960 ValueBitWidth); 3961 CurIdx += ActiveWords; 3962 3963 if (!isSingleNumber) { 3964 ActiveWords = 1; 3965 if (ValueBitWidth > 64) 3966 ActiveWords = Record[CurIdx++]; 3967 APInt High = readWideAPInt( 3968 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3969 CurIdx += ActiveWords; 3970 3971 // FIXME: It is not clear whether values in the range should be 3972 // compared as signed or unsigned values. The partially 3973 // implemented changes that used this format in the past used 3974 // unsigned comparisons. 3975 for ( ; Low.ule(High); ++Low) 3976 CaseVals.push_back(ConstantInt::get(Context, Low)); 3977 } else 3978 CaseVals.push_back(ConstantInt::get(Context, Low)); 3979 } 3980 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3981 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3982 cve = CaseVals.end(); cvi != cve; ++cvi) 3983 SI->addCase(*cvi, DestBB); 3984 } 3985 I = SI; 3986 break; 3987 } 3988 3989 // Old SwitchInst format without case ranges. 3990 3991 if (Record.size() < 3 || (Record.size() & 1) == 0) 3992 return error("Invalid record"); 3993 Type *OpTy = getTypeByID(Record[0]); 3994 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3995 BasicBlock *Default = getBasicBlock(Record[2]); 3996 if (!OpTy || !Cond || !Default) 3997 return error("Invalid record"); 3998 unsigned NumCases = (Record.size()-3)/2; 3999 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4000 InstructionList.push_back(SI); 4001 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4002 ConstantInt *CaseVal = 4003 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4004 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4005 if (!CaseVal || !DestBB) { 4006 delete SI; 4007 return error("Invalid record"); 4008 } 4009 SI->addCase(CaseVal, DestBB); 4010 } 4011 I = SI; 4012 break; 4013 } 4014 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4015 if (Record.size() < 2) 4016 return error("Invalid record"); 4017 Type *OpTy = getTypeByID(Record[0]); 4018 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4019 if (!OpTy || !Address) 4020 return error("Invalid record"); 4021 unsigned NumDests = Record.size()-2; 4022 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4023 InstructionList.push_back(IBI); 4024 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4025 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4026 IBI->addDestination(DestBB); 4027 } else { 4028 delete IBI; 4029 return error("Invalid record"); 4030 } 4031 } 4032 I = IBI; 4033 break; 4034 } 4035 4036 case bitc::FUNC_CODE_INST_INVOKE: { 4037 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4038 if (Record.size() < 4) 4039 return error("Invalid record"); 4040 unsigned OpNum = 0; 4041 AttributeList PAL = getAttributes(Record[OpNum++]); 4042 unsigned CCInfo = Record[OpNum++]; 4043 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4044 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4045 4046 FunctionType *FTy = nullptr; 4047 if (CCInfo >> 13 & 1 && 4048 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4049 return error("Explicit invoke type is not a function type"); 4050 4051 Value *Callee; 4052 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4053 return error("Invalid record"); 4054 4055 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4056 if (!CalleeTy) 4057 return error("Callee is not a pointer"); 4058 if (!FTy) { 4059 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4060 if (!FTy) 4061 return error("Callee is not of pointer to function type"); 4062 } else if (CalleeTy->getElementType() != FTy) 4063 return error("Explicit invoke type does not match pointee type of " 4064 "callee operand"); 4065 if (Record.size() < FTy->getNumParams() + OpNum) 4066 return error("Insufficient operands to call"); 4067 4068 SmallVector<Value*, 16> Ops; 4069 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4070 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4071 FTy->getParamType(i))); 4072 if (!Ops.back()) 4073 return error("Invalid record"); 4074 } 4075 4076 if (!FTy->isVarArg()) { 4077 if (Record.size() != OpNum) 4078 return error("Invalid record"); 4079 } else { 4080 // Read type/value pairs for varargs params. 4081 while (OpNum != Record.size()) { 4082 Value *Op; 4083 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4084 return error("Invalid record"); 4085 Ops.push_back(Op); 4086 } 4087 } 4088 4089 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4090 OperandBundles.clear(); 4091 InstructionList.push_back(I); 4092 cast<InvokeInst>(I)->setCallingConv( 4093 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4094 cast<InvokeInst>(I)->setAttributes(PAL); 4095 break; 4096 } 4097 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4098 unsigned Idx = 0; 4099 Value *Val = nullptr; 4100 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4101 return error("Invalid record"); 4102 I = ResumeInst::Create(Val); 4103 InstructionList.push_back(I); 4104 break; 4105 } 4106 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4107 I = new UnreachableInst(Context); 4108 InstructionList.push_back(I); 4109 break; 4110 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4111 if (Record.size() < 1 || ((Record.size()-1)&1)) 4112 return error("Invalid record"); 4113 Type *Ty = getTypeByID(Record[0]); 4114 if (!Ty) 4115 return error("Invalid record"); 4116 4117 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4118 InstructionList.push_back(PN); 4119 4120 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4121 Value *V; 4122 // With the new function encoding, it is possible that operands have 4123 // negative IDs (for forward references). Use a signed VBR 4124 // representation to keep the encoding small. 4125 if (UseRelativeIDs) 4126 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4127 else 4128 V = getValue(Record, 1+i, NextValueNo, Ty); 4129 BasicBlock *BB = getBasicBlock(Record[2+i]); 4130 if (!V || !BB) 4131 return error("Invalid record"); 4132 PN->addIncoming(V, BB); 4133 } 4134 I = PN; 4135 break; 4136 } 4137 4138 case bitc::FUNC_CODE_INST_LANDINGPAD: 4139 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4140 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4141 unsigned Idx = 0; 4142 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4143 if (Record.size() < 3) 4144 return error("Invalid record"); 4145 } else { 4146 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4147 if (Record.size() < 4) 4148 return error("Invalid record"); 4149 } 4150 Type *Ty = getTypeByID(Record[Idx++]); 4151 if (!Ty) 4152 return error("Invalid record"); 4153 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4154 Value *PersFn = nullptr; 4155 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4156 return error("Invalid record"); 4157 4158 if (!F->hasPersonalityFn()) 4159 F->setPersonalityFn(cast<Constant>(PersFn)); 4160 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4161 return error("Personality function mismatch"); 4162 } 4163 4164 bool IsCleanup = !!Record[Idx++]; 4165 unsigned NumClauses = Record[Idx++]; 4166 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4167 LP->setCleanup(IsCleanup); 4168 for (unsigned J = 0; J != NumClauses; ++J) { 4169 LandingPadInst::ClauseType CT = 4170 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4171 Value *Val; 4172 4173 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4174 delete LP; 4175 return error("Invalid record"); 4176 } 4177 4178 assert((CT != LandingPadInst::Catch || 4179 !isa<ArrayType>(Val->getType())) && 4180 "Catch clause has a invalid type!"); 4181 assert((CT != LandingPadInst::Filter || 4182 isa<ArrayType>(Val->getType())) && 4183 "Filter clause has invalid type!"); 4184 LP->addClause(cast<Constant>(Val)); 4185 } 4186 4187 I = LP; 4188 InstructionList.push_back(I); 4189 break; 4190 } 4191 4192 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4193 if (Record.size() != 4) 4194 return error("Invalid record"); 4195 uint64_t AlignRecord = Record[3]; 4196 const uint64_t InAllocaMask = uint64_t(1) << 5; 4197 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4198 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4199 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4200 SwiftErrorMask; 4201 bool InAlloca = AlignRecord & InAllocaMask; 4202 bool SwiftError = AlignRecord & SwiftErrorMask; 4203 Type *Ty = getTypeByID(Record[0]); 4204 if ((AlignRecord & ExplicitTypeMask) == 0) { 4205 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4206 if (!PTy) 4207 return error("Old-style alloca with a non-pointer type"); 4208 Ty = PTy->getElementType(); 4209 } 4210 Type *OpTy = getTypeByID(Record[1]); 4211 Value *Size = getFnValueByID(Record[2], OpTy); 4212 unsigned Align; 4213 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4214 return Err; 4215 } 4216 if (!Ty || !Size) 4217 return error("Invalid record"); 4218 4219 // FIXME: Make this an optional field. 4220 const DataLayout &DL = TheModule->getDataLayout(); 4221 unsigned AS = DL.getAllocaAddrSpace(); 4222 4223 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4224 AI->setUsedWithInAlloca(InAlloca); 4225 AI->setSwiftError(SwiftError); 4226 I = AI; 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4231 unsigned OpNum = 0; 4232 Value *Op; 4233 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4234 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4235 return error("Invalid record"); 4236 4237 Type *Ty = nullptr; 4238 if (OpNum + 3 == Record.size()) 4239 Ty = getTypeByID(Record[OpNum++]); 4240 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4241 return Err; 4242 if (!Ty) 4243 Ty = cast<PointerType>(Op->getType())->getElementType(); 4244 4245 unsigned Align; 4246 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4247 return Err; 4248 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4249 4250 InstructionList.push_back(I); 4251 break; 4252 } 4253 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4254 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4255 unsigned OpNum = 0; 4256 Value *Op; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4258 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4259 return error("Invalid record"); 4260 4261 Type *Ty = nullptr; 4262 if (OpNum + 5 == Record.size()) 4263 Ty = getTypeByID(Record[OpNum++]); 4264 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4265 return Err; 4266 if (!Ty) 4267 Ty = cast<PointerType>(Op->getType())->getElementType(); 4268 4269 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4270 if (Ordering == AtomicOrdering::NotAtomic || 4271 Ordering == AtomicOrdering::Release || 4272 Ordering == AtomicOrdering::AcquireRelease) 4273 return error("Invalid record"); 4274 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4275 return error("Invalid record"); 4276 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4277 4278 unsigned Align; 4279 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4280 return Err; 4281 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4282 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_STORE: 4287 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4288 unsigned OpNum = 0; 4289 Value *Val, *Ptr; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4291 (BitCode == bitc::FUNC_CODE_INST_STORE 4292 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4293 : popValue(Record, OpNum, NextValueNo, 4294 cast<PointerType>(Ptr->getType())->getElementType(), 4295 Val)) || 4296 OpNum + 2 != Record.size()) 4297 return error("Invalid record"); 4298 4299 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4300 return Err; 4301 unsigned Align; 4302 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4303 return Err; 4304 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4305 InstructionList.push_back(I); 4306 break; 4307 } 4308 case bitc::FUNC_CODE_INST_STOREATOMIC: 4309 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4310 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4311 unsigned OpNum = 0; 4312 Value *Val, *Ptr; 4313 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4314 !isa<PointerType>(Ptr->getType()) || 4315 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4316 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4317 : popValue(Record, OpNum, NextValueNo, 4318 cast<PointerType>(Ptr->getType())->getElementType(), 4319 Val)) || 4320 OpNum + 4 != Record.size()) 4321 return error("Invalid record"); 4322 4323 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4324 return Err; 4325 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4326 if (Ordering == AtomicOrdering::NotAtomic || 4327 Ordering == AtomicOrdering::Acquire || 4328 Ordering == AtomicOrdering::AcquireRelease) 4329 return error("Invalid record"); 4330 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4331 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4332 return error("Invalid record"); 4333 4334 unsigned Align; 4335 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4336 return Err; 4337 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4342 case bitc::FUNC_CODE_INST_CMPXCHG: { 4343 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4344 // failureordering?, isweak?] 4345 unsigned OpNum = 0; 4346 Value *Ptr, *Cmp, *New; 4347 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4348 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4349 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4350 : popValue(Record, OpNum, NextValueNo, 4351 cast<PointerType>(Ptr->getType())->getElementType(), 4352 Cmp)) || 4353 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4354 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4355 return error("Invalid record"); 4356 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4357 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4358 SuccessOrdering == AtomicOrdering::Unordered) 4359 return error("Invalid record"); 4360 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4361 4362 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4363 return Err; 4364 AtomicOrdering FailureOrdering; 4365 if (Record.size() < 7) 4366 FailureOrdering = 4367 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4368 else 4369 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4370 4371 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4372 SSID); 4373 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4374 4375 if (Record.size() < 8) { 4376 // Before weak cmpxchgs existed, the instruction simply returned the 4377 // value loaded from memory, so bitcode files from that era will be 4378 // expecting the first component of a modern cmpxchg. 4379 CurBB->getInstList().push_back(I); 4380 I = ExtractValueInst::Create(I, 0); 4381 } else { 4382 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4383 } 4384 4385 InstructionList.push_back(I); 4386 break; 4387 } 4388 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4389 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4390 unsigned OpNum = 0; 4391 Value *Ptr, *Val; 4392 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4393 !isa<PointerType>(Ptr->getType()) || 4394 popValue(Record, OpNum, NextValueNo, 4395 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4396 OpNum+4 != Record.size()) 4397 return error("Invalid record"); 4398 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4399 if (Operation < AtomicRMWInst::FIRST_BINOP || 4400 Operation > AtomicRMWInst::LAST_BINOP) 4401 return error("Invalid record"); 4402 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4403 if (Ordering == AtomicOrdering::NotAtomic || 4404 Ordering == AtomicOrdering::Unordered) 4405 return error("Invalid record"); 4406 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4407 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4408 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4413 if (2 != Record.size()) 4414 return error("Invalid record"); 4415 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4416 if (Ordering == AtomicOrdering::NotAtomic || 4417 Ordering == AtomicOrdering::Unordered || 4418 Ordering == AtomicOrdering::Monotonic) 4419 return error("Invalid record"); 4420 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4421 I = new FenceInst(Context, Ordering, SSID); 4422 InstructionList.push_back(I); 4423 break; 4424 } 4425 case bitc::FUNC_CODE_INST_CALL: { 4426 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4427 if (Record.size() < 3) 4428 return error("Invalid record"); 4429 4430 unsigned OpNum = 0; 4431 AttributeList PAL = getAttributes(Record[OpNum++]); 4432 unsigned CCInfo = Record[OpNum++]; 4433 4434 FastMathFlags FMF; 4435 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4436 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4437 if (!FMF.any()) 4438 return error("Fast math flags indicator set for call with no FMF"); 4439 } 4440 4441 FunctionType *FTy = nullptr; 4442 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4443 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4444 return error("Explicit call type is not a function type"); 4445 4446 Value *Callee; 4447 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4448 return error("Invalid record"); 4449 4450 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4451 if (!OpTy) 4452 return error("Callee is not a pointer type"); 4453 if (!FTy) { 4454 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4455 if (!FTy) 4456 return error("Callee is not of pointer to function type"); 4457 } else if (OpTy->getElementType() != FTy) 4458 return error("Explicit call type does not match pointee type of " 4459 "callee operand"); 4460 if (Record.size() < FTy->getNumParams() + OpNum) 4461 return error("Insufficient operands to call"); 4462 4463 SmallVector<Value*, 16> Args; 4464 // Read the fixed params. 4465 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4466 if (FTy->getParamType(i)->isLabelTy()) 4467 Args.push_back(getBasicBlock(Record[OpNum])); 4468 else 4469 Args.push_back(getValue(Record, OpNum, NextValueNo, 4470 FTy->getParamType(i))); 4471 if (!Args.back()) 4472 return error("Invalid record"); 4473 } 4474 4475 // Read type/value pairs for varargs params. 4476 if (!FTy->isVarArg()) { 4477 if (OpNum != Record.size()) 4478 return error("Invalid record"); 4479 } else { 4480 while (OpNum != Record.size()) { 4481 Value *Op; 4482 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4483 return error("Invalid record"); 4484 Args.push_back(Op); 4485 } 4486 } 4487 4488 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4489 OperandBundles.clear(); 4490 InstructionList.push_back(I); 4491 cast<CallInst>(I)->setCallingConv( 4492 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4493 CallInst::TailCallKind TCK = CallInst::TCK_None; 4494 if (CCInfo & 1 << bitc::CALL_TAIL) 4495 TCK = CallInst::TCK_Tail; 4496 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4497 TCK = CallInst::TCK_MustTail; 4498 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4499 TCK = CallInst::TCK_NoTail; 4500 cast<CallInst>(I)->setTailCallKind(TCK); 4501 cast<CallInst>(I)->setAttributes(PAL); 4502 if (FMF.any()) { 4503 if (!isa<FPMathOperator>(I)) 4504 return error("Fast-math-flags specified for call without " 4505 "floating-point scalar or vector return type"); 4506 I->setFastMathFlags(FMF); 4507 } 4508 break; 4509 } 4510 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4511 if (Record.size() < 3) 4512 return error("Invalid record"); 4513 Type *OpTy = getTypeByID(Record[0]); 4514 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4515 Type *ResTy = getTypeByID(Record[2]); 4516 if (!OpTy || !Op || !ResTy) 4517 return error("Invalid record"); 4518 I = new VAArgInst(Op, ResTy); 4519 InstructionList.push_back(I); 4520 break; 4521 } 4522 4523 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4524 // A call or an invoke can be optionally prefixed with some variable 4525 // number of operand bundle blocks. These blocks are read into 4526 // OperandBundles and consumed at the next call or invoke instruction. 4527 4528 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4529 return error("Invalid record"); 4530 4531 std::vector<Value *> Inputs; 4532 4533 unsigned OpNum = 1; 4534 while (OpNum != Record.size()) { 4535 Value *Op; 4536 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4537 return error("Invalid record"); 4538 Inputs.push_back(Op); 4539 } 4540 4541 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4542 continue; 4543 } 4544 } 4545 4546 // Add instruction to end of current BB. If there is no current BB, reject 4547 // this file. 4548 if (!CurBB) { 4549 I->deleteValue(); 4550 return error("Invalid instruction with no BB"); 4551 } 4552 if (!OperandBundles.empty()) { 4553 I->deleteValue(); 4554 return error("Operand bundles found with no consumer"); 4555 } 4556 CurBB->getInstList().push_back(I); 4557 4558 // If this was a terminator instruction, move to the next block. 4559 if (isa<TerminatorInst>(I)) { 4560 ++CurBBNo; 4561 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4562 } 4563 4564 // Non-void values get registered in the value table for future use. 4565 if (I && !I->getType()->isVoidTy()) 4566 ValueList.assignValue(I, NextValueNo++); 4567 } 4568 4569 OutOfRecordLoop: 4570 4571 if (!OperandBundles.empty()) 4572 return error("Operand bundles found with no consumer"); 4573 4574 // Check the function list for unresolved values. 4575 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4576 if (!A->getParent()) { 4577 // We found at least one unresolved value. Nuke them all to avoid leaks. 4578 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4579 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4580 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4581 delete A; 4582 } 4583 } 4584 return error("Never resolved value found in function"); 4585 } 4586 } 4587 4588 // Unexpected unresolved metadata about to be dropped. 4589 if (MDLoader->hasFwdRefs()) 4590 return error("Invalid function metadata: outgoing forward refs"); 4591 4592 // Trim the value list down to the size it was before we parsed this function. 4593 ValueList.shrinkTo(ModuleValueListSize); 4594 MDLoader->shrinkTo(ModuleMDLoaderSize); 4595 std::vector<BasicBlock*>().swap(FunctionBBs); 4596 return Error::success(); 4597 } 4598 4599 /// Find the function body in the bitcode stream 4600 Error BitcodeReader::findFunctionInStream( 4601 Function *F, 4602 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4603 while (DeferredFunctionInfoIterator->second == 0) { 4604 // This is the fallback handling for the old format bitcode that 4605 // didn't contain the function index in the VST, or when we have 4606 // an anonymous function which would not have a VST entry. 4607 // Assert that we have one of those two cases. 4608 assert(VSTOffset == 0 || !F->hasName()); 4609 // Parse the next body in the stream and set its position in the 4610 // DeferredFunctionInfo map. 4611 if (Error Err = rememberAndSkipFunctionBodies()) 4612 return Err; 4613 } 4614 return Error::success(); 4615 } 4616 4617 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4618 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4619 return SyncScope::ID(Val); 4620 if (Val >= SSIDs.size()) 4621 return SyncScope::System; // Map unknown synchronization scopes to system. 4622 return SSIDs[Val]; 4623 } 4624 4625 //===----------------------------------------------------------------------===// 4626 // GVMaterializer implementation 4627 //===----------------------------------------------------------------------===// 4628 4629 Error BitcodeReader::materialize(GlobalValue *GV) { 4630 Function *F = dyn_cast<Function>(GV); 4631 // If it's not a function or is already material, ignore the request. 4632 if (!F || !F->isMaterializable()) 4633 return Error::success(); 4634 4635 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4636 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4637 // If its position is recorded as 0, its body is somewhere in the stream 4638 // but we haven't seen it yet. 4639 if (DFII->second == 0) 4640 if (Error Err = findFunctionInStream(F, DFII)) 4641 return Err; 4642 4643 // Materialize metadata before parsing any function bodies. 4644 if (Error Err = materializeMetadata()) 4645 return Err; 4646 4647 // Move the bit stream to the saved position of the deferred function body. 4648 Stream.JumpToBit(DFII->second); 4649 4650 if (Error Err = parseFunctionBody(F)) 4651 return Err; 4652 F->setIsMaterializable(false); 4653 4654 if (StripDebugInfo) 4655 stripDebugInfo(*F); 4656 4657 // Upgrade any old intrinsic calls in the function. 4658 for (auto &I : UpgradedIntrinsics) { 4659 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4660 UI != UE;) { 4661 User *U = *UI; 4662 ++UI; 4663 if (CallInst *CI = dyn_cast<CallInst>(U)) 4664 UpgradeIntrinsicCall(CI, I.second); 4665 } 4666 } 4667 4668 // Update calls to the remangled intrinsics 4669 for (auto &I : RemangledIntrinsics) 4670 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4671 UI != UE;) 4672 // Don't expect any other users than call sites 4673 CallSite(*UI++).setCalledFunction(I.second); 4674 4675 // Finish fn->subprogram upgrade for materialized functions. 4676 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4677 F->setSubprogram(SP); 4678 4679 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4680 if (!MDLoader->isStrippingTBAA()) { 4681 for (auto &I : instructions(F)) { 4682 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4683 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4684 continue; 4685 MDLoader->setStripTBAA(true); 4686 stripTBAA(F->getParent()); 4687 } 4688 } 4689 4690 // Bring in any functions that this function forward-referenced via 4691 // blockaddresses. 4692 return materializeForwardReferencedFunctions(); 4693 } 4694 4695 Error BitcodeReader::materializeModule() { 4696 if (Error Err = materializeMetadata()) 4697 return Err; 4698 4699 // Promise to materialize all forward references. 4700 WillMaterializeAllForwardRefs = true; 4701 4702 // Iterate over the module, deserializing any functions that are still on 4703 // disk. 4704 for (Function &F : *TheModule) { 4705 if (Error Err = materialize(&F)) 4706 return Err; 4707 } 4708 // At this point, if there are any function bodies, parse the rest of 4709 // the bits in the module past the last function block we have recorded 4710 // through either lazy scanning or the VST. 4711 if (LastFunctionBlockBit || NextUnreadBit) 4712 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4713 ? LastFunctionBlockBit 4714 : NextUnreadBit)) 4715 return Err; 4716 4717 // Check that all block address forward references got resolved (as we 4718 // promised above). 4719 if (!BasicBlockFwdRefs.empty()) 4720 return error("Never resolved function from blockaddress"); 4721 4722 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4723 // delete the old functions to clean up. We can't do this unless the entire 4724 // module is materialized because there could always be another function body 4725 // with calls to the old function. 4726 for (auto &I : UpgradedIntrinsics) { 4727 for (auto *U : I.first->users()) { 4728 if (CallInst *CI = dyn_cast<CallInst>(U)) 4729 UpgradeIntrinsicCall(CI, I.second); 4730 } 4731 if (!I.first->use_empty()) 4732 I.first->replaceAllUsesWith(I.second); 4733 I.first->eraseFromParent(); 4734 } 4735 UpgradedIntrinsics.clear(); 4736 // Do the same for remangled intrinsics 4737 for (auto &I : RemangledIntrinsics) { 4738 I.first->replaceAllUsesWith(I.second); 4739 I.first->eraseFromParent(); 4740 } 4741 RemangledIntrinsics.clear(); 4742 4743 UpgradeDebugInfo(*TheModule); 4744 4745 UpgradeModuleFlags(*TheModule); 4746 return Error::success(); 4747 } 4748 4749 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4750 return IdentifiedStructTypes; 4751 } 4752 4753 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4754 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4755 StringRef ModulePath, unsigned ModuleId) 4756 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4757 ModulePath(ModulePath), ModuleId(ModuleId) {} 4758 4759 ModuleSummaryIndex::ModuleInfo * 4760 ModuleSummaryIndexBitcodeReader::addThisModule() { 4761 return TheIndex.addModule(ModulePath, ModuleId); 4762 } 4763 4764 std::pair<ValueInfo, GlobalValue::GUID> 4765 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4766 auto VGI = ValueIdToValueInfoMap[ValueId]; 4767 assert(VGI.first); 4768 return VGI; 4769 } 4770 4771 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4772 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4773 StringRef SourceFileName) { 4774 std::string GlobalId = 4775 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4776 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4777 auto OriginalNameID = ValueGUID; 4778 if (GlobalValue::isLocalLinkage(Linkage)) 4779 OriginalNameID = GlobalValue::getGUID(ValueName); 4780 if (PrintSummaryGUIDs) 4781 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4782 << ValueName << "\n"; 4783 ValueIdToValueInfoMap[ValueID] = 4784 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4785 } 4786 4787 // Specialized value symbol table parser used when reading module index 4788 // blocks where we don't actually create global values. The parsed information 4789 // is saved in the bitcode reader for use when later parsing summaries. 4790 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4791 uint64_t Offset, 4792 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4793 // With a strtab the VST is not required to parse the summary. 4794 if (UseStrtab) 4795 return Error::success(); 4796 4797 assert(Offset > 0 && "Expected non-zero VST offset"); 4798 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4799 4800 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4801 return error("Invalid record"); 4802 4803 SmallVector<uint64_t, 64> Record; 4804 4805 // Read all the records for this value table. 4806 SmallString<128> ValueName; 4807 4808 while (true) { 4809 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4810 4811 switch (Entry.Kind) { 4812 case BitstreamEntry::SubBlock: // Handled for us already. 4813 case BitstreamEntry::Error: 4814 return error("Malformed block"); 4815 case BitstreamEntry::EndBlock: 4816 // Done parsing VST, jump back to wherever we came from. 4817 Stream.JumpToBit(CurrentBit); 4818 return Error::success(); 4819 case BitstreamEntry::Record: 4820 // The interesting case. 4821 break; 4822 } 4823 4824 // Read a record. 4825 Record.clear(); 4826 switch (Stream.readRecord(Entry.ID, Record)) { 4827 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4828 break; 4829 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4830 if (convertToString(Record, 1, ValueName)) 4831 return error("Invalid record"); 4832 unsigned ValueID = Record[0]; 4833 assert(!SourceFileName.empty()); 4834 auto VLI = ValueIdToLinkageMap.find(ValueID); 4835 assert(VLI != ValueIdToLinkageMap.end() && 4836 "No linkage found for VST entry?"); 4837 auto Linkage = VLI->second; 4838 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4839 ValueName.clear(); 4840 break; 4841 } 4842 case bitc::VST_CODE_FNENTRY: { 4843 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4844 if (convertToString(Record, 2, ValueName)) 4845 return error("Invalid record"); 4846 unsigned ValueID = Record[0]; 4847 assert(!SourceFileName.empty()); 4848 auto VLI = ValueIdToLinkageMap.find(ValueID); 4849 assert(VLI != ValueIdToLinkageMap.end() && 4850 "No linkage found for VST entry?"); 4851 auto Linkage = VLI->second; 4852 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4853 ValueName.clear(); 4854 break; 4855 } 4856 case bitc::VST_CODE_COMBINED_ENTRY: { 4857 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4858 unsigned ValueID = Record[0]; 4859 GlobalValue::GUID RefGUID = Record[1]; 4860 // The "original name", which is the second value of the pair will be 4861 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4862 ValueIdToValueInfoMap[ValueID] = 4863 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4864 break; 4865 } 4866 } 4867 } 4868 } 4869 4870 // Parse just the blocks needed for building the index out of the module. 4871 // At the end of this routine the module Index is populated with a map 4872 // from global value id to GlobalValueSummary objects. 4873 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4874 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4875 return error("Invalid record"); 4876 4877 SmallVector<uint64_t, 64> Record; 4878 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4879 unsigned ValueId = 0; 4880 4881 // Read the index for this module. 4882 while (true) { 4883 BitstreamEntry Entry = Stream.advance(); 4884 4885 switch (Entry.Kind) { 4886 case BitstreamEntry::Error: 4887 return error("Malformed block"); 4888 case BitstreamEntry::EndBlock: 4889 return Error::success(); 4890 4891 case BitstreamEntry::SubBlock: 4892 switch (Entry.ID) { 4893 default: // Skip unknown content. 4894 if (Stream.SkipBlock()) 4895 return error("Invalid record"); 4896 break; 4897 case bitc::BLOCKINFO_BLOCK_ID: 4898 // Need to parse these to get abbrev ids (e.g. for VST) 4899 if (readBlockInfo()) 4900 return error("Malformed block"); 4901 break; 4902 case bitc::VALUE_SYMTAB_BLOCK_ID: 4903 // Should have been parsed earlier via VSTOffset, unless there 4904 // is no summary section. 4905 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4906 !SeenGlobalValSummary) && 4907 "Expected early VST parse via VSTOffset record"); 4908 if (Stream.SkipBlock()) 4909 return error("Invalid record"); 4910 break; 4911 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4912 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4913 assert(!SeenValueSymbolTable && 4914 "Already read VST when parsing summary block?"); 4915 // We might not have a VST if there were no values in the 4916 // summary. An empty summary block generated when we are 4917 // performing ThinLTO compiles so we don't later invoke 4918 // the regular LTO process on them. 4919 if (VSTOffset > 0) { 4920 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4921 return Err; 4922 SeenValueSymbolTable = true; 4923 } 4924 SeenGlobalValSummary = true; 4925 if (Error Err = parseEntireSummary(Entry.ID)) 4926 return Err; 4927 break; 4928 case bitc::MODULE_STRTAB_BLOCK_ID: 4929 if (Error Err = parseModuleStringTable()) 4930 return Err; 4931 break; 4932 } 4933 continue; 4934 4935 case BitstreamEntry::Record: { 4936 Record.clear(); 4937 auto BitCode = Stream.readRecord(Entry.ID, Record); 4938 switch (BitCode) { 4939 default: 4940 break; // Default behavior, ignore unknown content. 4941 case bitc::MODULE_CODE_VERSION: { 4942 if (Error Err = parseVersionRecord(Record).takeError()) 4943 return Err; 4944 break; 4945 } 4946 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4947 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4948 SmallString<128> ValueName; 4949 if (convertToString(Record, 0, ValueName)) 4950 return error("Invalid record"); 4951 SourceFileName = ValueName.c_str(); 4952 break; 4953 } 4954 /// MODULE_CODE_HASH: [5*i32] 4955 case bitc::MODULE_CODE_HASH: { 4956 if (Record.size() != 5) 4957 return error("Invalid hash length " + Twine(Record.size()).str()); 4958 auto &Hash = addThisModule()->second.second; 4959 int Pos = 0; 4960 for (auto &Val : Record) { 4961 assert(!(Val >> 32) && "Unexpected high bits set"); 4962 Hash[Pos++] = Val; 4963 } 4964 break; 4965 } 4966 /// MODULE_CODE_VSTOFFSET: [offset] 4967 case bitc::MODULE_CODE_VSTOFFSET: 4968 if (Record.size() < 1) 4969 return error("Invalid record"); 4970 // Note that we subtract 1 here because the offset is relative to one 4971 // word before the start of the identification or module block, which 4972 // was historically always the start of the regular bitcode header. 4973 VSTOffset = Record[0] - 1; 4974 break; 4975 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4976 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4977 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4978 // v2: [strtab offset, strtab size, v1] 4979 case bitc::MODULE_CODE_GLOBALVAR: 4980 case bitc::MODULE_CODE_FUNCTION: 4981 case bitc::MODULE_CODE_ALIAS: { 4982 StringRef Name; 4983 ArrayRef<uint64_t> GVRecord; 4984 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4985 if (GVRecord.size() <= 3) 4986 return error("Invalid record"); 4987 uint64_t RawLinkage = GVRecord[3]; 4988 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4989 if (!UseStrtab) { 4990 ValueIdToLinkageMap[ValueId++] = Linkage; 4991 break; 4992 } 4993 4994 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4995 break; 4996 } 4997 } 4998 } 4999 continue; 5000 } 5001 } 5002 } 5003 5004 std::vector<ValueInfo> 5005 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5006 std::vector<ValueInfo> Ret; 5007 Ret.reserve(Record.size()); 5008 for (uint64_t RefValueId : Record) 5009 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5010 return Ret; 5011 } 5012 5013 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5014 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5015 std::vector<FunctionSummary::EdgeTy> Ret; 5016 Ret.reserve(Record.size()); 5017 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5018 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5019 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5020 if (IsOldProfileFormat) { 5021 I += 1; // Skip old callsitecount field 5022 if (HasProfile) 5023 I += 1; // Skip old profilecount field 5024 } else if (HasProfile) 5025 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5026 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5027 } 5028 return Ret; 5029 } 5030 5031 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5032 // objects in the index. 5033 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5034 if (Stream.EnterSubBlock(ID)) 5035 return error("Invalid record"); 5036 SmallVector<uint64_t, 64> Record; 5037 5038 // Parse version 5039 { 5040 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5041 if (Entry.Kind != BitstreamEntry::Record) 5042 return error("Invalid Summary Block: record for version expected"); 5043 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5044 return error("Invalid Summary Block: version expected"); 5045 } 5046 const uint64_t Version = Record[0]; 5047 const bool IsOldProfileFormat = Version == 1; 5048 if (Version < 1 || Version > 4) 5049 return error("Invalid summary version " + Twine(Version) + 5050 ", 1, 2, 3 or 4 expected"); 5051 Record.clear(); 5052 5053 // Keep around the last seen summary to be used when we see an optional 5054 // "OriginalName" attachement. 5055 GlobalValueSummary *LastSeenSummary = nullptr; 5056 GlobalValue::GUID LastSeenGUID = 0; 5057 5058 // We can expect to see any number of type ID information records before 5059 // each function summary records; these variables store the information 5060 // collected so far so that it can be used to create the summary object. 5061 std::vector<GlobalValue::GUID> PendingTypeTests; 5062 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5063 PendingTypeCheckedLoadVCalls; 5064 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5065 PendingTypeCheckedLoadConstVCalls; 5066 5067 while (true) { 5068 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5069 5070 switch (Entry.Kind) { 5071 case BitstreamEntry::SubBlock: // Handled for us already. 5072 case BitstreamEntry::Error: 5073 return error("Malformed block"); 5074 case BitstreamEntry::EndBlock: 5075 return Error::success(); 5076 case BitstreamEntry::Record: 5077 // The interesting case. 5078 break; 5079 } 5080 5081 // Read a record. The record format depends on whether this 5082 // is a per-module index or a combined index file. In the per-module 5083 // case the records contain the associated value's ID for correlation 5084 // with VST entries. In the combined index the correlation is done 5085 // via the bitcode offset of the summary records (which were saved 5086 // in the combined index VST entries). The records also contain 5087 // information used for ThinLTO renaming and importing. 5088 Record.clear(); 5089 auto BitCode = Stream.readRecord(Entry.ID, Record); 5090 switch (BitCode) { 5091 default: // Default behavior: ignore. 5092 break; 5093 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5094 uint64_t ValueID = Record[0]; 5095 GlobalValue::GUID RefGUID = Record[1]; 5096 ValueIdToValueInfoMap[ValueID] = 5097 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5098 break; 5099 } 5100 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5101 // numrefs x valueid, n x (valueid)] 5102 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5103 // numrefs x valueid, 5104 // n x (valueid, hotness)] 5105 case bitc::FS_PERMODULE: 5106 case bitc::FS_PERMODULE_PROFILE: { 5107 unsigned ValueID = Record[0]; 5108 uint64_t RawFlags = Record[1]; 5109 unsigned InstCount = Record[2]; 5110 uint64_t RawFunFlags = 0; 5111 unsigned NumRefs = Record[3]; 5112 int RefListStartIndex = 4; 5113 if (Version >= 4) { 5114 RawFunFlags = Record[3]; 5115 NumRefs = Record[4]; 5116 RefListStartIndex = 5; 5117 } 5118 5119 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5120 // The module path string ref set in the summary must be owned by the 5121 // index's module string table. Since we don't have a module path 5122 // string table section in the per-module index, we create a single 5123 // module path string table entry with an empty (0) ID to take 5124 // ownership. 5125 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5126 assert(Record.size() >= RefListStartIndex + NumRefs && 5127 "Record size inconsistent with number of references"); 5128 std::vector<ValueInfo> Refs = makeRefList( 5129 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5130 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5131 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5132 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5133 IsOldProfileFormat, HasProfile); 5134 auto FS = llvm::make_unique<FunctionSummary>( 5135 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5136 std::move(Calls), std::move(PendingTypeTests), 5137 std::move(PendingTypeTestAssumeVCalls), 5138 std::move(PendingTypeCheckedLoadVCalls), 5139 std::move(PendingTypeTestAssumeConstVCalls), 5140 std::move(PendingTypeCheckedLoadConstVCalls)); 5141 PendingTypeTests.clear(); 5142 PendingTypeTestAssumeVCalls.clear(); 5143 PendingTypeCheckedLoadVCalls.clear(); 5144 PendingTypeTestAssumeConstVCalls.clear(); 5145 PendingTypeCheckedLoadConstVCalls.clear(); 5146 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5147 FS->setModulePath(addThisModule()->first()); 5148 FS->setOriginalName(VIAndOriginalGUID.second); 5149 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5150 break; 5151 } 5152 // FS_ALIAS: [valueid, flags, valueid] 5153 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5154 // they expect all aliasee summaries to be available. 5155 case bitc::FS_ALIAS: { 5156 unsigned ValueID = Record[0]; 5157 uint64_t RawFlags = Record[1]; 5158 unsigned AliaseeID = Record[2]; 5159 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5160 auto AS = 5161 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5162 // The module path string ref set in the summary must be owned by the 5163 // index's module string table. Since we don't have a module path 5164 // string table section in the per-module index, we create a single 5165 // module path string table entry with an empty (0) ID to take 5166 // ownership. 5167 AS->setModulePath(addThisModule()->first()); 5168 5169 GlobalValue::GUID AliaseeGUID = 5170 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5171 auto AliaseeInModule = 5172 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5173 if (!AliaseeInModule) 5174 return error("Alias expects aliasee summary to be parsed"); 5175 AS->setAliasee(AliaseeInModule); 5176 5177 auto GUID = getValueInfoFromValueId(ValueID); 5178 AS->setOriginalName(GUID.second); 5179 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5180 break; 5181 } 5182 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5183 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5184 unsigned ValueID = Record[0]; 5185 uint64_t RawFlags = Record[1]; 5186 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5187 std::vector<ValueInfo> Refs = 5188 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5189 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5190 FS->setModulePath(addThisModule()->first()); 5191 auto GUID = getValueInfoFromValueId(ValueID); 5192 FS->setOriginalName(GUID.second); 5193 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5194 break; 5195 } 5196 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5197 // numrefs x valueid, n x (valueid)] 5198 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5199 // numrefs x valueid, n x (valueid, hotness)] 5200 case bitc::FS_COMBINED: 5201 case bitc::FS_COMBINED_PROFILE: { 5202 unsigned ValueID = Record[0]; 5203 uint64_t ModuleId = Record[1]; 5204 uint64_t RawFlags = Record[2]; 5205 unsigned InstCount = Record[3]; 5206 uint64_t RawFunFlags = 0; 5207 unsigned NumRefs = Record[4]; 5208 int RefListStartIndex = 5; 5209 5210 if (Version >= 4) { 5211 RawFunFlags = Record[4]; 5212 NumRefs = Record[5]; 5213 RefListStartIndex = 6; 5214 } 5215 5216 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5217 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5218 assert(Record.size() >= RefListStartIndex + NumRefs && 5219 "Record size inconsistent with number of references"); 5220 std::vector<ValueInfo> Refs = makeRefList( 5221 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5222 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5223 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5224 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5225 IsOldProfileFormat, HasProfile); 5226 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5227 auto FS = llvm::make_unique<FunctionSummary>( 5228 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5229 std::move(Edges), std::move(PendingTypeTests), 5230 std::move(PendingTypeTestAssumeVCalls), 5231 std::move(PendingTypeCheckedLoadVCalls), 5232 std::move(PendingTypeTestAssumeConstVCalls), 5233 std::move(PendingTypeCheckedLoadConstVCalls)); 5234 PendingTypeTests.clear(); 5235 PendingTypeTestAssumeVCalls.clear(); 5236 PendingTypeCheckedLoadVCalls.clear(); 5237 PendingTypeTestAssumeConstVCalls.clear(); 5238 PendingTypeCheckedLoadConstVCalls.clear(); 5239 LastSeenSummary = FS.get(); 5240 LastSeenGUID = VI.getGUID(); 5241 FS->setModulePath(ModuleIdMap[ModuleId]); 5242 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5243 break; 5244 } 5245 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5246 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5247 // they expect all aliasee summaries to be available. 5248 case bitc::FS_COMBINED_ALIAS: { 5249 unsigned ValueID = Record[0]; 5250 uint64_t ModuleId = Record[1]; 5251 uint64_t RawFlags = Record[2]; 5252 unsigned AliaseeValueId = Record[3]; 5253 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5254 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5255 LastSeenSummary = AS.get(); 5256 AS->setModulePath(ModuleIdMap[ModuleId]); 5257 5258 auto AliaseeGUID = 5259 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5260 auto AliaseeInModule = 5261 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5262 if (!AliaseeInModule) 5263 return error("Alias expects aliasee summary to be parsed"); 5264 AS->setAliasee(AliaseeInModule); 5265 5266 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5267 LastSeenGUID = VI.getGUID(); 5268 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5269 break; 5270 } 5271 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5272 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5273 unsigned ValueID = Record[0]; 5274 uint64_t ModuleId = Record[1]; 5275 uint64_t RawFlags = Record[2]; 5276 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5277 std::vector<ValueInfo> Refs = 5278 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5279 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5280 LastSeenSummary = FS.get(); 5281 FS->setModulePath(ModuleIdMap[ModuleId]); 5282 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5283 LastSeenGUID = VI.getGUID(); 5284 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5285 break; 5286 } 5287 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5288 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5289 uint64_t OriginalName = Record[0]; 5290 if (!LastSeenSummary) 5291 return error("Name attachment that does not follow a combined record"); 5292 LastSeenSummary->setOriginalName(OriginalName); 5293 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5294 // Reset the LastSeenSummary 5295 LastSeenSummary = nullptr; 5296 LastSeenGUID = 0; 5297 break; 5298 } 5299 case bitc::FS_TYPE_TESTS: { 5300 assert(PendingTypeTests.empty()); 5301 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5302 Record.end()); 5303 break; 5304 } 5305 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5306 assert(PendingTypeTestAssumeVCalls.empty()); 5307 for (unsigned I = 0; I != Record.size(); I += 2) 5308 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5309 break; 5310 } 5311 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5312 assert(PendingTypeCheckedLoadVCalls.empty()); 5313 for (unsigned I = 0; I != Record.size(); I += 2) 5314 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5315 break; 5316 } 5317 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5318 PendingTypeTestAssumeConstVCalls.push_back( 5319 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5320 break; 5321 } 5322 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5323 PendingTypeCheckedLoadConstVCalls.push_back( 5324 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5325 break; 5326 } 5327 case bitc::FS_CFI_FUNCTION_DEFS: { 5328 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5329 for (unsigned I = 0; I != Record.size(); I += 2) 5330 CfiFunctionDefs.insert( 5331 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5332 break; 5333 } 5334 case bitc::FS_CFI_FUNCTION_DECLS: { 5335 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5336 for (unsigned I = 0; I != Record.size(); I += 2) 5337 CfiFunctionDecls.insert( 5338 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5339 break; 5340 } 5341 } 5342 } 5343 llvm_unreachable("Exit infinite loop"); 5344 } 5345 5346 // Parse the module string table block into the Index. 5347 // This populates the ModulePathStringTable map in the index. 5348 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5349 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5350 return error("Invalid record"); 5351 5352 SmallVector<uint64_t, 64> Record; 5353 5354 SmallString<128> ModulePath; 5355 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5356 5357 while (true) { 5358 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5359 5360 switch (Entry.Kind) { 5361 case BitstreamEntry::SubBlock: // Handled for us already. 5362 case BitstreamEntry::Error: 5363 return error("Malformed block"); 5364 case BitstreamEntry::EndBlock: 5365 return Error::success(); 5366 case BitstreamEntry::Record: 5367 // The interesting case. 5368 break; 5369 } 5370 5371 Record.clear(); 5372 switch (Stream.readRecord(Entry.ID, Record)) { 5373 default: // Default behavior: ignore. 5374 break; 5375 case bitc::MST_CODE_ENTRY: { 5376 // MST_ENTRY: [modid, namechar x N] 5377 uint64_t ModuleId = Record[0]; 5378 5379 if (convertToString(Record, 1, ModulePath)) 5380 return error("Invalid record"); 5381 5382 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5383 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5384 5385 ModulePath.clear(); 5386 break; 5387 } 5388 /// MST_CODE_HASH: [5*i32] 5389 case bitc::MST_CODE_HASH: { 5390 if (Record.size() != 5) 5391 return error("Invalid hash length " + Twine(Record.size()).str()); 5392 if (!LastSeenModule) 5393 return error("Invalid hash that does not follow a module path"); 5394 int Pos = 0; 5395 for (auto &Val : Record) { 5396 assert(!(Val >> 32) && "Unexpected high bits set"); 5397 LastSeenModule->second.second[Pos++] = Val; 5398 } 5399 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5400 LastSeenModule = nullptr; 5401 break; 5402 } 5403 } 5404 } 5405 llvm_unreachable("Exit infinite loop"); 5406 } 5407 5408 namespace { 5409 5410 // FIXME: This class is only here to support the transition to llvm::Error. It 5411 // will be removed once this transition is complete. Clients should prefer to 5412 // deal with the Error value directly, rather than converting to error_code. 5413 class BitcodeErrorCategoryType : public std::error_category { 5414 const char *name() const noexcept override { 5415 return "llvm.bitcode"; 5416 } 5417 std::string message(int IE) const override { 5418 BitcodeError E = static_cast<BitcodeError>(IE); 5419 switch (E) { 5420 case BitcodeError::CorruptedBitcode: 5421 return "Corrupted bitcode"; 5422 } 5423 llvm_unreachable("Unknown error type!"); 5424 } 5425 }; 5426 5427 } // end anonymous namespace 5428 5429 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5430 5431 const std::error_category &llvm::BitcodeErrorCategory() { 5432 return *ErrorCategory; 5433 } 5434 5435 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5436 unsigned Block, unsigned RecordID) { 5437 if (Stream.EnterSubBlock(Block)) 5438 return error("Invalid record"); 5439 5440 StringRef Strtab; 5441 while (1) { 5442 BitstreamEntry Entry = Stream.advance(); 5443 switch (Entry.Kind) { 5444 case BitstreamEntry::EndBlock: 5445 return Strtab; 5446 5447 case BitstreamEntry::Error: 5448 return error("Malformed block"); 5449 5450 case BitstreamEntry::SubBlock: 5451 if (Stream.SkipBlock()) 5452 return error("Malformed block"); 5453 break; 5454 5455 case BitstreamEntry::Record: 5456 StringRef Blob; 5457 SmallVector<uint64_t, 1> Record; 5458 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5459 Strtab = Blob; 5460 break; 5461 } 5462 } 5463 } 5464 5465 //===----------------------------------------------------------------------===// 5466 // External interface 5467 //===----------------------------------------------------------------------===// 5468 5469 Expected<std::vector<BitcodeModule>> 5470 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5471 auto FOrErr = getBitcodeFileContents(Buffer); 5472 if (!FOrErr) 5473 return FOrErr.takeError(); 5474 return std::move(FOrErr->Mods); 5475 } 5476 5477 Expected<BitcodeFileContents> 5478 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5479 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5480 if (!StreamOrErr) 5481 return StreamOrErr.takeError(); 5482 BitstreamCursor &Stream = *StreamOrErr; 5483 5484 BitcodeFileContents F; 5485 while (true) { 5486 uint64_t BCBegin = Stream.getCurrentByteNo(); 5487 5488 // We may be consuming bitcode from a client that leaves garbage at the end 5489 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5490 // the end that there cannot possibly be another module, stop looking. 5491 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5492 return F; 5493 5494 BitstreamEntry Entry = Stream.advance(); 5495 switch (Entry.Kind) { 5496 case BitstreamEntry::EndBlock: 5497 case BitstreamEntry::Error: 5498 return error("Malformed block"); 5499 5500 case BitstreamEntry::SubBlock: { 5501 uint64_t IdentificationBit = -1ull; 5502 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5503 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5504 if (Stream.SkipBlock()) 5505 return error("Malformed block"); 5506 5507 Entry = Stream.advance(); 5508 if (Entry.Kind != BitstreamEntry::SubBlock || 5509 Entry.ID != bitc::MODULE_BLOCK_ID) 5510 return error("Malformed block"); 5511 } 5512 5513 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5514 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5515 if (Stream.SkipBlock()) 5516 return error("Malformed block"); 5517 5518 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5519 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5520 Buffer.getBufferIdentifier(), IdentificationBit, 5521 ModuleBit}); 5522 continue; 5523 } 5524 5525 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5526 Expected<StringRef> Strtab = 5527 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5528 if (!Strtab) 5529 return Strtab.takeError(); 5530 // This string table is used by every preceding bitcode module that does 5531 // not have its own string table. A bitcode file may have multiple 5532 // string tables if it was created by binary concatenation, for example 5533 // with "llvm-cat -b". 5534 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5535 if (!I->Strtab.empty()) 5536 break; 5537 I->Strtab = *Strtab; 5538 } 5539 // Similarly, the string table is used by every preceding symbol table; 5540 // normally there will be just one unless the bitcode file was created 5541 // by binary concatenation. 5542 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5543 F.StrtabForSymtab = *Strtab; 5544 continue; 5545 } 5546 5547 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5548 Expected<StringRef> SymtabOrErr = 5549 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5550 if (!SymtabOrErr) 5551 return SymtabOrErr.takeError(); 5552 5553 // We can expect the bitcode file to have multiple symbol tables if it 5554 // was created by binary concatenation. In that case we silently 5555 // ignore any subsequent symbol tables, which is fine because this is a 5556 // low level function. The client is expected to notice that the number 5557 // of modules in the symbol table does not match the number of modules 5558 // in the input file and regenerate the symbol table. 5559 if (F.Symtab.empty()) 5560 F.Symtab = *SymtabOrErr; 5561 continue; 5562 } 5563 5564 if (Stream.SkipBlock()) 5565 return error("Malformed block"); 5566 continue; 5567 } 5568 case BitstreamEntry::Record: 5569 Stream.skipRecord(Entry.ID); 5570 continue; 5571 } 5572 } 5573 } 5574 5575 /// \brief Get a lazy one-at-time loading module from bitcode. 5576 /// 5577 /// This isn't always used in a lazy context. In particular, it's also used by 5578 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5579 /// in forward-referenced functions from block address references. 5580 /// 5581 /// \param[in] MaterializeAll Set to \c true if we should materialize 5582 /// everything. 5583 Expected<std::unique_ptr<Module>> 5584 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5585 bool ShouldLazyLoadMetadata, bool IsImporting) { 5586 BitstreamCursor Stream(Buffer); 5587 5588 std::string ProducerIdentification; 5589 if (IdentificationBit != -1ull) { 5590 Stream.JumpToBit(IdentificationBit); 5591 Expected<std::string> ProducerIdentificationOrErr = 5592 readIdentificationBlock(Stream); 5593 if (!ProducerIdentificationOrErr) 5594 return ProducerIdentificationOrErr.takeError(); 5595 5596 ProducerIdentification = *ProducerIdentificationOrErr; 5597 } 5598 5599 Stream.JumpToBit(ModuleBit); 5600 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5601 Context); 5602 5603 std::unique_ptr<Module> M = 5604 llvm::make_unique<Module>(ModuleIdentifier, Context); 5605 M->setMaterializer(R); 5606 5607 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5608 if (Error Err = 5609 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5610 return std::move(Err); 5611 5612 if (MaterializeAll) { 5613 // Read in the entire module, and destroy the BitcodeReader. 5614 if (Error Err = M->materializeAll()) 5615 return std::move(Err); 5616 } else { 5617 // Resolve forward references from blockaddresses. 5618 if (Error Err = R->materializeForwardReferencedFunctions()) 5619 return std::move(Err); 5620 } 5621 return std::move(M); 5622 } 5623 5624 Expected<std::unique_ptr<Module>> 5625 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5626 bool IsImporting) { 5627 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5628 } 5629 5630 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5631 // We don't use ModuleIdentifier here because the client may need to control the 5632 // module path used in the combined summary (e.g. when reading summaries for 5633 // regular LTO modules). 5634 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5635 StringRef ModulePath, uint64_t ModuleId) { 5636 BitstreamCursor Stream(Buffer); 5637 Stream.JumpToBit(ModuleBit); 5638 5639 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5640 ModulePath, ModuleId); 5641 return R.parseModule(); 5642 } 5643 5644 // Parse the specified bitcode buffer, returning the function info index. 5645 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5646 BitstreamCursor Stream(Buffer); 5647 Stream.JumpToBit(ModuleBit); 5648 5649 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5650 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5651 ModuleIdentifier, 0); 5652 5653 if (Error Err = R.parseModule()) 5654 return std::move(Err); 5655 5656 return std::move(Index); 5657 } 5658 5659 // Check if the given bitcode buffer contains a global value summary block. 5660 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5661 BitstreamCursor Stream(Buffer); 5662 Stream.JumpToBit(ModuleBit); 5663 5664 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5665 return error("Invalid record"); 5666 5667 while (true) { 5668 BitstreamEntry Entry = Stream.advance(); 5669 5670 switch (Entry.Kind) { 5671 case BitstreamEntry::Error: 5672 return error("Malformed block"); 5673 case BitstreamEntry::EndBlock: 5674 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5675 5676 case BitstreamEntry::SubBlock: 5677 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5678 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5679 5680 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5681 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5682 5683 // Ignore other sub-blocks. 5684 if (Stream.SkipBlock()) 5685 return error("Malformed block"); 5686 continue; 5687 5688 case BitstreamEntry::Record: 5689 Stream.skipRecord(Entry.ID); 5690 continue; 5691 } 5692 } 5693 } 5694 5695 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5696 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5697 if (!MsOrErr) 5698 return MsOrErr.takeError(); 5699 5700 if (MsOrErr->size() != 1) 5701 return error("Expected a single module"); 5702 5703 return (*MsOrErr)[0]; 5704 } 5705 5706 Expected<std::unique_ptr<Module>> 5707 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5708 bool ShouldLazyLoadMetadata, bool IsImporting) { 5709 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5710 if (!BM) 5711 return BM.takeError(); 5712 5713 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5714 } 5715 5716 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5717 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5718 bool ShouldLazyLoadMetadata, bool IsImporting) { 5719 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5720 IsImporting); 5721 if (MOrErr) 5722 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5723 return MOrErr; 5724 } 5725 5726 Expected<std::unique_ptr<Module>> 5727 BitcodeModule::parseModule(LLVMContext &Context) { 5728 return getModuleImpl(Context, true, false, false); 5729 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5730 // written. We must defer until the Module has been fully materialized. 5731 } 5732 5733 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5734 LLVMContext &Context) { 5735 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5736 if (!BM) 5737 return BM.takeError(); 5738 5739 return BM->parseModule(Context); 5740 } 5741 5742 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5743 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5744 if (!StreamOrErr) 5745 return StreamOrErr.takeError(); 5746 5747 return readTriple(*StreamOrErr); 5748 } 5749 5750 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5751 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5752 if (!StreamOrErr) 5753 return StreamOrErr.takeError(); 5754 5755 return hasObjCCategory(*StreamOrErr); 5756 } 5757 5758 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5759 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5760 if (!StreamOrErr) 5761 return StreamOrErr.takeError(); 5762 5763 return readIdentificationCode(*StreamOrErr); 5764 } 5765 5766 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5767 ModuleSummaryIndex &CombinedIndex, 5768 uint64_t ModuleId) { 5769 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5770 if (!BM) 5771 return BM.takeError(); 5772 5773 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5774 } 5775 5776 Expected<std::unique_ptr<ModuleSummaryIndex>> 5777 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5778 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5779 if (!BM) 5780 return BM.takeError(); 5781 5782 return BM->getSummary(); 5783 } 5784 5785 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5786 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5787 if (!BM) 5788 return BM.takeError(); 5789 5790 return BM->getLTOInfo(); 5791 } 5792 5793 Expected<std::unique_ptr<ModuleSummaryIndex>> 5794 llvm::getModuleSummaryIndexForFile(StringRef Path, 5795 bool IgnoreEmptyThinLTOIndexFile) { 5796 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5797 MemoryBuffer::getFileOrSTDIN(Path); 5798 if (!FileOrErr) 5799 return errorCodeToError(FileOrErr.getError()); 5800 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5801 return nullptr; 5802 return getModuleSummaryIndex(**FileOrErr); 5803 } 5804