1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 #include <utility> 41 42 using namespace llvm; 43 44 static cl::opt<bool> PrintSummaryGUIDs( 45 "print-summary-global-ids", cl::init(false), cl::Hidden, 46 cl::desc( 47 "Print the global id for each value when reading the module summary")); 48 49 namespace { 50 enum { 51 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 52 }; 53 54 class BitcodeReaderValueList { 55 std::vector<WeakVH> ValuePtrs; 56 57 /// As we resolve forward-referenced constants, we add information about them 58 /// to this vector. This allows us to resolve them in bulk instead of 59 /// resolving each reference at a time. See the code in 60 /// ResolveConstantForwardRefs for more information about this. 61 /// 62 /// The key of this vector is the placeholder constant, the value is the slot 63 /// number that holds the resolved value. 64 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 65 ResolveConstantsTy ResolveConstants; 66 LLVMContext &Context; 67 public: 68 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 69 ~BitcodeReaderValueList() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 } 72 73 // vector compatibility methods 74 unsigned size() const { return ValuePtrs.size(); } 75 void resize(unsigned N) { ValuePtrs.resize(N); } 76 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 77 78 void clear() { 79 assert(ResolveConstants.empty() && "Constants not resolved?"); 80 ValuePtrs.clear(); 81 } 82 83 Value *operator[](unsigned i) const { 84 assert(i < ValuePtrs.size()); 85 return ValuePtrs[i]; 86 } 87 88 Value *back() const { return ValuePtrs.back(); } 89 void pop_back() { ValuePtrs.pop_back(); } 90 bool empty() const { return ValuePtrs.empty(); } 91 void shrinkTo(unsigned N) { 92 assert(N <= size() && "Invalid shrinkTo request!"); 93 ValuePtrs.resize(N); 94 } 95 96 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 97 Value *getValueFwdRef(unsigned Idx, Type *Ty); 98 99 void assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMetadataList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 112 /// Array of metadata references. 113 /// 114 /// Don't use std::vector here. Some versions of libc++ copy (instead of 115 /// move) on resize, and TrackingMDRef is very expensive to copy. 116 SmallVector<TrackingMDRef, 1> MetadataPtrs; 117 118 /// Structures for resolving old type refs. 119 struct { 120 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 121 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 122 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 123 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 124 } OldTypeRefs; 125 126 LLVMContext &Context; 127 public: 128 BitcodeReaderMetadataList(LLVMContext &C) 129 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 130 131 // vector compatibility methods 132 unsigned size() const { return MetadataPtrs.size(); } 133 void resize(unsigned N) { MetadataPtrs.resize(N); } 134 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 135 void clear() { MetadataPtrs.clear(); } 136 Metadata *back() const { return MetadataPtrs.back(); } 137 void pop_back() { MetadataPtrs.pop_back(); } 138 bool empty() const { return MetadataPtrs.empty(); } 139 140 Metadata *operator[](unsigned i) const { 141 assert(i < MetadataPtrs.size()); 142 return MetadataPtrs[i]; 143 } 144 145 Metadata *lookup(unsigned I) const { 146 if (I < MetadataPtrs.size()) 147 return MetadataPtrs[I]; 148 return nullptr; 149 } 150 151 void shrinkTo(unsigned N) { 152 assert(N <= size() && "Invalid shrinkTo request!"); 153 assert(!AnyFwdRefs && "Unexpected forward refs"); 154 MetadataPtrs.resize(N); 155 } 156 157 /// Return the given metadata, creating a replaceable forward reference if 158 /// necessary. 159 Metadata *getMetadataFwdRef(unsigned Idx); 160 161 /// Return the the given metadata only if it is fully resolved. 162 /// 163 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 164 /// would give \c false. 165 Metadata *getMetadataIfResolved(unsigned Idx); 166 167 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 168 void assignValue(Metadata *MD, unsigned Idx); 169 void tryToResolveCycles(); 170 bool hasFwdRefs() const { return AnyFwdRefs; } 171 172 /// Upgrade a type that had an MDString reference. 173 void addTypeRef(MDString &UUID, DICompositeType &CT); 174 175 /// Upgrade a type that had an MDString reference. 176 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 177 178 /// Upgrade a type ref array that may have MDString references. 179 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 180 181 private: 182 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 183 }; 184 185 class BitcodeReader : public GVMaterializer { 186 LLVMContext &Context; 187 Module *TheModule = nullptr; 188 std::unique_ptr<MemoryBuffer> Buffer; 189 std::unique_ptr<BitstreamReader> StreamFile; 190 BitstreamCursor Stream; 191 // Next offset to start scanning for lazy parsing of function bodies. 192 uint64_t NextUnreadBit = 0; 193 // Last function offset found in the VST. 194 uint64_t LastFunctionBlockBit = 0; 195 bool SeenValueSymbolTable = false; 196 uint64_t VSTOffset = 0; 197 // Contains an arbitrary and optional string identifying the bitcode producer 198 std::string ProducerIdentification; 199 200 std::vector<Type*> TypeList; 201 BitcodeReaderValueList ValueList; 202 BitcodeReaderMetadataList MetadataList; 203 std::vector<Comdat *> ComdatList; 204 SmallVector<Instruction *, 64> InstructionList; 205 206 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 207 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 210 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 211 212 SmallVector<Instruction*, 64> InstsWithTBAATag; 213 214 bool HasSeenOldLoopTags = false; 215 216 /// The set of attributes by index. Index zero in the file is for null, and 217 /// is thus not represented here. As such all indices are off by one. 218 std::vector<AttributeSet> MAttributes; 219 220 /// The set of attribute groups. 221 std::map<unsigned, AttributeSet> MAttributeGroups; 222 223 /// While parsing a function body, this is a list of the basic blocks for the 224 /// function. 225 std::vector<BasicBlock*> FunctionBBs; 226 227 // When reading the module header, this list is populated with functions that 228 // have bodies later in the file. 229 std::vector<Function*> FunctionsWithBodies; 230 231 // When intrinsic functions are encountered which require upgrading they are 232 // stored here with their replacement function. 233 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 234 UpgradedIntrinsicMap UpgradedIntrinsics; 235 236 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 237 DenseMap<unsigned, unsigned> MDKindMap; 238 239 // Several operations happen after the module header has been read, but 240 // before function bodies are processed. This keeps track of whether 241 // we've done this yet. 242 bool SeenFirstFunctionBody = false; 243 244 /// When function bodies are initially scanned, this map contains info about 245 /// where to find deferred function body in the stream. 246 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 247 248 /// When Metadata block is initially scanned when parsing the module, we may 249 /// choose to defer parsing of the metadata. This vector contains info about 250 /// which Metadata blocks are deferred. 251 std::vector<uint64_t> DeferredMetadataInfo; 252 253 /// These are basic blocks forward-referenced by block addresses. They are 254 /// inserted lazily into functions when they're loaded. The basic block ID is 255 /// its index into the vector. 256 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 257 std::deque<Function *> BasicBlockFwdRefQueue; 258 259 /// Indicates that we are using a new encoding for instruction operands where 260 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 261 /// instruction number, for a more compact encoding. Some instruction 262 /// operands are not relative to the instruction ID: basic block numbers, and 263 /// types. Once the old style function blocks have been phased out, we would 264 /// not need this flag. 265 bool UseRelativeIDs = false; 266 267 /// True if all functions will be materialized, negating the need to process 268 /// (e.g.) blockaddress forward references. 269 bool WillMaterializeAllForwardRefs = false; 270 271 /// True if any Metadata block has been materialized. 272 bool IsMetadataMaterialized = false; 273 274 bool StripDebugInfo = false; 275 276 /// Functions that need to be matched with subprograms when upgrading old 277 /// metadata. 278 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 279 280 std::vector<std::string> BundleTags; 281 282 public: 283 std::error_code error(BitcodeError E, const Twine &Message); 284 std::error_code error(BitcodeError E); 285 std::error_code error(const Twine &Message); 286 287 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 288 BitcodeReader(LLVMContext &Context); 289 ~BitcodeReader() override { freeState(); } 290 291 std::error_code materializeForwardReferencedFunctions(); 292 293 void freeState(); 294 295 void releaseBuffer(); 296 297 std::error_code materialize(GlobalValue *GV) override; 298 std::error_code materializeModule() override; 299 std::vector<StructType *> getIdentifiedStructTypes() const override; 300 301 /// \brief Main interface to parsing a bitcode buffer. 302 /// \returns true if an error occurred. 303 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 304 Module *M, 305 bool ShouldLazyLoadMetadata = false); 306 307 /// \brief Cheap mechanism to just extract module triple 308 /// \returns true if an error occurred. 309 ErrorOr<std::string> parseTriple(); 310 311 /// Cheap mechanism to just extract the identification block out of bitcode. 312 ErrorOr<std::string> parseIdentificationBlock(); 313 314 static uint64_t decodeSignRotatedValue(uint64_t V); 315 316 /// Materialize any deferred Metadata block. 317 std::error_code materializeMetadata() override; 318 319 void setStripDebugInfo() override; 320 321 private: 322 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 323 // ProducerIdentification data member, and do some basic enforcement on the 324 // "epoch" encoded in the bitcode. 325 std::error_code parseBitcodeVersion(); 326 327 std::vector<StructType *> IdentifiedStructTypes; 328 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 329 StructType *createIdentifiedStructType(LLVMContext &Context); 330 331 Type *getTypeByID(unsigned ID); 332 Value *getFnValueByID(unsigned ID, Type *Ty) { 333 if (Ty && Ty->isMetadataTy()) 334 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 335 return ValueList.getValueFwdRef(ID, Ty); 336 } 337 Metadata *getFnMetadataByID(unsigned ID) { 338 return MetadataList.getMetadataFwdRef(ID); 339 } 340 BasicBlock *getBasicBlock(unsigned ID) const { 341 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 342 return FunctionBBs[ID]; 343 } 344 AttributeSet getAttributes(unsigned i) const { 345 if (i-1 < MAttributes.size()) 346 return MAttributes[i-1]; 347 return AttributeSet(); 348 } 349 350 /// Read a value/type pair out of the specified record from slot 'Slot'. 351 /// Increment Slot past the number of slots used in the record. Return true on 352 /// failure. 353 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 354 unsigned InstNum, Value *&ResVal) { 355 if (Slot == Record.size()) return true; 356 unsigned ValNo = (unsigned)Record[Slot++]; 357 // Adjust the ValNo, if it was encoded relative to the InstNum. 358 if (UseRelativeIDs) 359 ValNo = InstNum - ValNo; 360 if (ValNo < InstNum) { 361 // If this is not a forward reference, just return the value we already 362 // have. 363 ResVal = getFnValueByID(ValNo, nullptr); 364 return ResVal == nullptr; 365 } 366 if (Slot == Record.size()) 367 return true; 368 369 unsigned TypeNo = (unsigned)Record[Slot++]; 370 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 371 return ResVal == nullptr; 372 } 373 374 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 375 /// past the number of slots used by the value in the record. Return true if 376 /// there is an error. 377 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 378 unsigned InstNum, Type *Ty, Value *&ResVal) { 379 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 380 return true; 381 // All values currently take a single record slot. 382 ++Slot; 383 return false; 384 } 385 386 /// Like popValue, but does not increment the Slot number. 387 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 388 unsigned InstNum, Type *Ty, Value *&ResVal) { 389 ResVal = getValue(Record, Slot, InstNum, Ty); 390 return ResVal == nullptr; 391 } 392 393 /// Version of getValue that returns ResVal directly, or 0 if there is an 394 /// error. 395 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 396 unsigned InstNum, Type *Ty) { 397 if (Slot == Record.size()) return nullptr; 398 unsigned ValNo = (unsigned)Record[Slot]; 399 // Adjust the ValNo, if it was encoded relative to the InstNum. 400 if (UseRelativeIDs) 401 ValNo = InstNum - ValNo; 402 return getFnValueByID(ValNo, Ty); 403 } 404 405 /// Like getValue, but decodes signed VBRs. 406 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 407 unsigned InstNum, Type *Ty) { 408 if (Slot == Record.size()) return nullptr; 409 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 410 // Adjust the ValNo, if it was encoded relative to the InstNum. 411 if (UseRelativeIDs) 412 ValNo = InstNum - ValNo; 413 return getFnValueByID(ValNo, Ty); 414 } 415 416 /// Converts alignment exponent (i.e. power of two (or zero)) to the 417 /// corresponding alignment to use. If alignment is too large, returns 418 /// a corresponding error code. 419 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 420 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 421 std::error_code parseModule(uint64_t ResumeBit, 422 bool ShouldLazyLoadMetadata = false); 423 std::error_code parseAttributeBlock(); 424 std::error_code parseAttributeGroupBlock(); 425 std::error_code parseTypeTable(); 426 std::error_code parseTypeTableBody(); 427 std::error_code parseOperandBundleTags(); 428 429 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 430 unsigned NameIndex, Triple &TT); 431 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 432 std::error_code parseConstants(); 433 std::error_code rememberAndSkipFunctionBodies(); 434 std::error_code rememberAndSkipFunctionBody(); 435 /// Save the positions of the Metadata blocks and skip parsing the blocks. 436 std::error_code rememberAndSkipMetadata(); 437 std::error_code parseFunctionBody(Function *F); 438 std::error_code globalCleanup(); 439 std::error_code resolveGlobalAndIndirectSymbolInits(); 440 std::error_code parseMetadata(bool ModuleLevel = false); 441 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 442 StringRef Blob, 443 unsigned &NextMetadataNo); 444 std::error_code parseMetadataKinds(); 445 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 446 std::error_code parseMetadataAttachment(Function &F); 447 ErrorOr<std::string> parseModuleTriple(); 448 std::error_code parseUseLists(); 449 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 450 std::error_code initStreamFromBuffer(); 451 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 452 std::error_code findFunctionInStream( 453 Function *F, 454 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 455 }; 456 457 /// Class to manage reading and parsing function summary index bitcode 458 /// files/sections. 459 class ModuleSummaryIndexBitcodeReader { 460 DiagnosticHandlerFunction DiagnosticHandler; 461 462 /// Eventually points to the module index built during parsing. 463 ModuleSummaryIndex *TheIndex = nullptr; 464 465 std::unique_ptr<MemoryBuffer> Buffer; 466 std::unique_ptr<BitstreamReader> StreamFile; 467 BitstreamCursor Stream; 468 469 /// Used to indicate whether caller only wants to check for the presence 470 /// of the global value summary bitcode section. All blocks are skipped, 471 /// but the SeenGlobalValSummary boolean is set. 472 bool CheckGlobalValSummaryPresenceOnly = false; 473 474 /// Indicates whether we have encountered a global value summary section 475 /// yet during parsing, used when checking if file contains global value 476 /// summary section. 477 bool SeenGlobalValSummary = false; 478 479 /// Indicates whether we have already parsed the VST, used for error checking. 480 bool SeenValueSymbolTable = false; 481 482 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 483 /// Used to enable on-demand parsing of the VST. 484 uint64_t VSTOffset = 0; 485 486 // Map to save ValueId to GUID association that was recorded in the 487 // ValueSymbolTable. It is used after the VST is parsed to convert 488 // call graph edges read from the function summary from referencing 489 // callees by their ValueId to using the GUID instead, which is how 490 // they are recorded in the summary index being built. 491 // We save a second GUID which is the same as the first one, but ignoring the 492 // linkage, i.e. for value other than local linkage they are identical. 493 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 494 ValueIdToCallGraphGUIDMap; 495 496 /// Map populated during module path string table parsing, from the 497 /// module ID to a string reference owned by the index's module 498 /// path string table, used to correlate with combined index 499 /// summary records. 500 DenseMap<uint64_t, StringRef> ModuleIdMap; 501 502 /// Original source file name recorded in a bitcode record. 503 std::string SourceFileName; 504 505 public: 506 std::error_code error(BitcodeError E, const Twine &Message); 507 std::error_code error(BitcodeError E); 508 std::error_code error(const Twine &Message); 509 510 ModuleSummaryIndexBitcodeReader( 511 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 512 bool CheckGlobalValSummaryPresenceOnly = false); 513 ModuleSummaryIndexBitcodeReader( 514 DiagnosticHandlerFunction DiagnosticHandler, 515 bool CheckGlobalValSummaryPresenceOnly = false); 516 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 517 518 void freeState(); 519 520 void releaseBuffer(); 521 522 /// Check if the parser has encountered a summary section. 523 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 524 525 /// \brief Main interface to parsing a bitcode buffer. 526 /// \returns true if an error occurred. 527 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 528 ModuleSummaryIndex *I); 529 530 private: 531 std::error_code parseModule(); 532 std::error_code parseValueSymbolTable( 533 uint64_t Offset, 534 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 535 std::error_code parseEntireSummary(); 536 std::error_code parseModuleStringTable(); 537 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 538 std::error_code initStreamFromBuffer(); 539 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 540 std::pair<GlobalValue::GUID, GlobalValue::GUID> 541 getGUIDFromValueId(unsigned ValueId); 542 }; 543 } // end anonymous namespace 544 545 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 546 DiagnosticSeverity Severity, 547 const Twine &Msg) 548 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 549 550 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 551 552 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 553 std::error_code EC, const Twine &Message) { 554 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 555 DiagnosticHandler(DI); 556 return EC; 557 } 558 559 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 560 std::error_code EC) { 561 return error(DiagnosticHandler, EC, EC.message()); 562 } 563 564 static std::error_code error(LLVMContext &Context, std::error_code EC, 565 const Twine &Message) { 566 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 567 Message); 568 } 569 570 static std::error_code error(LLVMContext &Context, std::error_code EC) { 571 return error(Context, EC, EC.message()); 572 } 573 574 static std::error_code error(LLVMContext &Context, const Twine &Message) { 575 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 576 Message); 577 } 578 579 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 580 if (!ProducerIdentification.empty()) { 581 return ::error(Context, make_error_code(E), 582 Message + " (Producer: '" + ProducerIdentification + 583 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 584 } 585 return ::error(Context, make_error_code(E), Message); 586 } 587 588 std::error_code BitcodeReader::error(const Twine &Message) { 589 if (!ProducerIdentification.empty()) { 590 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 591 Message + " (Producer: '" + ProducerIdentification + 592 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 593 } 594 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 595 Message); 596 } 597 598 std::error_code BitcodeReader::error(BitcodeError E) { 599 return ::error(Context, make_error_code(E)); 600 } 601 602 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 603 : Context(Context), Buffer(Buffer), ValueList(Context), 604 MetadataList(Context) {} 605 606 BitcodeReader::BitcodeReader(LLVMContext &Context) 607 : Context(Context), Buffer(nullptr), ValueList(Context), 608 MetadataList(Context) {} 609 610 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 611 if (WillMaterializeAllForwardRefs) 612 return std::error_code(); 613 614 // Prevent recursion. 615 WillMaterializeAllForwardRefs = true; 616 617 while (!BasicBlockFwdRefQueue.empty()) { 618 Function *F = BasicBlockFwdRefQueue.front(); 619 BasicBlockFwdRefQueue.pop_front(); 620 assert(F && "Expected valid function"); 621 if (!BasicBlockFwdRefs.count(F)) 622 // Already materialized. 623 continue; 624 625 // Check for a function that isn't materializable to prevent an infinite 626 // loop. When parsing a blockaddress stored in a global variable, there 627 // isn't a trivial way to check if a function will have a body without a 628 // linear search through FunctionsWithBodies, so just check it here. 629 if (!F->isMaterializable()) 630 return error("Never resolved function from blockaddress"); 631 632 // Try to materialize F. 633 if (std::error_code EC = materialize(F)) 634 return EC; 635 } 636 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 637 638 // Reset state. 639 WillMaterializeAllForwardRefs = false; 640 return std::error_code(); 641 } 642 643 void BitcodeReader::freeState() { 644 Buffer = nullptr; 645 std::vector<Type*>().swap(TypeList); 646 ValueList.clear(); 647 MetadataList.clear(); 648 std::vector<Comdat *>().swap(ComdatList); 649 650 std::vector<AttributeSet>().swap(MAttributes); 651 std::vector<BasicBlock*>().swap(FunctionBBs); 652 std::vector<Function*>().swap(FunctionsWithBodies); 653 DeferredFunctionInfo.clear(); 654 DeferredMetadataInfo.clear(); 655 MDKindMap.clear(); 656 657 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 658 BasicBlockFwdRefQueue.clear(); 659 } 660 661 //===----------------------------------------------------------------------===// 662 // Helper functions to implement forward reference resolution, etc. 663 //===----------------------------------------------------------------------===// 664 665 /// Convert a string from a record into an std::string, return true on failure. 666 template <typename StrTy> 667 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 668 StrTy &Result) { 669 if (Idx > Record.size()) 670 return true; 671 672 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 673 Result += (char)Record[i]; 674 return false; 675 } 676 677 static bool hasImplicitComdat(size_t Val) { 678 switch (Val) { 679 default: 680 return false; 681 case 1: // Old WeakAnyLinkage 682 case 4: // Old LinkOnceAnyLinkage 683 case 10: // Old WeakODRLinkage 684 case 11: // Old LinkOnceODRLinkage 685 return true; 686 } 687 } 688 689 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 690 switch (Val) { 691 default: // Map unknown/new linkages to external 692 case 0: 693 return GlobalValue::ExternalLinkage; 694 case 2: 695 return GlobalValue::AppendingLinkage; 696 case 3: 697 return GlobalValue::InternalLinkage; 698 case 5: 699 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 700 case 6: 701 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 702 case 7: 703 return GlobalValue::ExternalWeakLinkage; 704 case 8: 705 return GlobalValue::CommonLinkage; 706 case 9: 707 return GlobalValue::PrivateLinkage; 708 case 12: 709 return GlobalValue::AvailableExternallyLinkage; 710 case 13: 711 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 712 case 14: 713 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 714 case 15: 715 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 716 case 1: // Old value with implicit comdat. 717 case 16: 718 return GlobalValue::WeakAnyLinkage; 719 case 10: // Old value with implicit comdat. 720 case 17: 721 return GlobalValue::WeakODRLinkage; 722 case 4: // Old value with implicit comdat. 723 case 18: 724 return GlobalValue::LinkOnceAnyLinkage; 725 case 11: // Old value with implicit comdat. 726 case 19: 727 return GlobalValue::LinkOnceODRLinkage; 728 } 729 } 730 731 // Decode the flags for GlobalValue in the summary 732 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 733 uint64_t Version) { 734 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 735 // like getDecodedLinkage() above. Any future change to the linkage enum and 736 // to getDecodedLinkage() will need to be taken into account here as above. 737 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 738 RawFlags = RawFlags >> 4; 739 auto HasSection = RawFlags & 0x1; // bool 740 return GlobalValueSummary::GVFlags(Linkage, HasSection); 741 } 742 743 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 744 switch (Val) { 745 default: // Map unknown visibilities to default. 746 case 0: return GlobalValue::DefaultVisibility; 747 case 1: return GlobalValue::HiddenVisibility; 748 case 2: return GlobalValue::ProtectedVisibility; 749 } 750 } 751 752 static GlobalValue::DLLStorageClassTypes 753 getDecodedDLLStorageClass(unsigned Val) { 754 switch (Val) { 755 default: // Map unknown values to default. 756 case 0: return GlobalValue::DefaultStorageClass; 757 case 1: return GlobalValue::DLLImportStorageClass; 758 case 2: return GlobalValue::DLLExportStorageClass; 759 } 760 } 761 762 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 763 switch (Val) { 764 case 0: return GlobalVariable::NotThreadLocal; 765 default: // Map unknown non-zero value to general dynamic. 766 case 1: return GlobalVariable::GeneralDynamicTLSModel; 767 case 2: return GlobalVariable::LocalDynamicTLSModel; 768 case 3: return GlobalVariable::InitialExecTLSModel; 769 case 4: return GlobalVariable::LocalExecTLSModel; 770 } 771 } 772 773 static int getDecodedCastOpcode(unsigned Val) { 774 switch (Val) { 775 default: return -1; 776 case bitc::CAST_TRUNC : return Instruction::Trunc; 777 case bitc::CAST_ZEXT : return Instruction::ZExt; 778 case bitc::CAST_SEXT : return Instruction::SExt; 779 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 780 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 781 case bitc::CAST_UITOFP : return Instruction::UIToFP; 782 case bitc::CAST_SITOFP : return Instruction::SIToFP; 783 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 784 case bitc::CAST_FPEXT : return Instruction::FPExt; 785 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 786 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 787 case bitc::CAST_BITCAST : return Instruction::BitCast; 788 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 789 } 790 } 791 792 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 793 bool IsFP = Ty->isFPOrFPVectorTy(); 794 // BinOps are only valid for int/fp or vector of int/fp types 795 if (!IsFP && !Ty->isIntOrIntVectorTy()) 796 return -1; 797 798 switch (Val) { 799 default: 800 return -1; 801 case bitc::BINOP_ADD: 802 return IsFP ? Instruction::FAdd : Instruction::Add; 803 case bitc::BINOP_SUB: 804 return IsFP ? Instruction::FSub : Instruction::Sub; 805 case bitc::BINOP_MUL: 806 return IsFP ? Instruction::FMul : Instruction::Mul; 807 case bitc::BINOP_UDIV: 808 return IsFP ? -1 : Instruction::UDiv; 809 case bitc::BINOP_SDIV: 810 return IsFP ? Instruction::FDiv : Instruction::SDiv; 811 case bitc::BINOP_UREM: 812 return IsFP ? -1 : Instruction::URem; 813 case bitc::BINOP_SREM: 814 return IsFP ? Instruction::FRem : Instruction::SRem; 815 case bitc::BINOP_SHL: 816 return IsFP ? -1 : Instruction::Shl; 817 case bitc::BINOP_LSHR: 818 return IsFP ? -1 : Instruction::LShr; 819 case bitc::BINOP_ASHR: 820 return IsFP ? -1 : Instruction::AShr; 821 case bitc::BINOP_AND: 822 return IsFP ? -1 : Instruction::And; 823 case bitc::BINOP_OR: 824 return IsFP ? -1 : Instruction::Or; 825 case bitc::BINOP_XOR: 826 return IsFP ? -1 : Instruction::Xor; 827 } 828 } 829 830 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 831 switch (Val) { 832 default: return AtomicRMWInst::BAD_BINOP; 833 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 834 case bitc::RMW_ADD: return AtomicRMWInst::Add; 835 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 836 case bitc::RMW_AND: return AtomicRMWInst::And; 837 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 838 case bitc::RMW_OR: return AtomicRMWInst::Or; 839 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 840 case bitc::RMW_MAX: return AtomicRMWInst::Max; 841 case bitc::RMW_MIN: return AtomicRMWInst::Min; 842 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 843 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 844 } 845 } 846 847 static AtomicOrdering getDecodedOrdering(unsigned Val) { 848 switch (Val) { 849 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 850 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 851 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 852 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 853 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 854 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 855 default: // Map unknown orderings to sequentially-consistent. 856 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 857 } 858 } 859 860 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 861 switch (Val) { 862 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 863 default: // Map unknown scopes to cross-thread. 864 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 865 } 866 } 867 868 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 869 switch (Val) { 870 default: // Map unknown selection kinds to any. 871 case bitc::COMDAT_SELECTION_KIND_ANY: 872 return Comdat::Any; 873 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 874 return Comdat::ExactMatch; 875 case bitc::COMDAT_SELECTION_KIND_LARGEST: 876 return Comdat::Largest; 877 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 878 return Comdat::NoDuplicates; 879 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 880 return Comdat::SameSize; 881 } 882 } 883 884 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 885 FastMathFlags FMF; 886 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 887 FMF.setUnsafeAlgebra(); 888 if (0 != (Val & FastMathFlags::NoNaNs)) 889 FMF.setNoNaNs(); 890 if (0 != (Val & FastMathFlags::NoInfs)) 891 FMF.setNoInfs(); 892 if (0 != (Val & FastMathFlags::NoSignedZeros)) 893 FMF.setNoSignedZeros(); 894 if (0 != (Val & FastMathFlags::AllowReciprocal)) 895 FMF.setAllowReciprocal(); 896 return FMF; 897 } 898 899 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 900 switch (Val) { 901 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 902 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 903 } 904 } 905 906 namespace llvm { 907 namespace { 908 /// \brief A class for maintaining the slot number definition 909 /// as a placeholder for the actual definition for forward constants defs. 910 class ConstantPlaceHolder : public ConstantExpr { 911 void operator=(const ConstantPlaceHolder &) = delete; 912 913 public: 914 // allocate space for exactly one operand 915 void *operator new(size_t s) { return User::operator new(s, 1); } 916 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 917 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 918 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 919 } 920 921 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 922 static bool classof(const Value *V) { 923 return isa<ConstantExpr>(V) && 924 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 925 } 926 927 /// Provide fast operand accessors 928 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 929 }; 930 } // end anonymous namespace 931 932 // FIXME: can we inherit this from ConstantExpr? 933 template <> 934 struct OperandTraits<ConstantPlaceHolder> : 935 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 936 }; 937 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 938 } // end namespace llvm 939 940 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 941 if (Idx == size()) { 942 push_back(V); 943 return; 944 } 945 946 if (Idx >= size()) 947 resize(Idx+1); 948 949 WeakVH &OldV = ValuePtrs[Idx]; 950 if (!OldV) { 951 OldV = V; 952 return; 953 } 954 955 // Handle constants and non-constants (e.g. instrs) differently for 956 // efficiency. 957 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 958 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 959 OldV = V; 960 } else { 961 // If there was a forward reference to this value, replace it. 962 Value *PrevVal = OldV; 963 OldV->replaceAllUsesWith(V); 964 delete PrevVal; 965 } 966 } 967 968 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 969 Type *Ty) { 970 if (Idx >= size()) 971 resize(Idx + 1); 972 973 if (Value *V = ValuePtrs[Idx]) { 974 if (Ty != V->getType()) 975 report_fatal_error("Type mismatch in constant table!"); 976 return cast<Constant>(V); 977 } 978 979 // Create and return a placeholder, which will later be RAUW'd. 980 Constant *C = new ConstantPlaceHolder(Ty, Context); 981 ValuePtrs[Idx] = C; 982 return C; 983 } 984 985 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 986 // Bail out for a clearly invalid value. This would make us call resize(0) 987 if (Idx == UINT_MAX) 988 return nullptr; 989 990 if (Idx >= size()) 991 resize(Idx + 1); 992 993 if (Value *V = ValuePtrs[Idx]) { 994 // If the types don't match, it's invalid. 995 if (Ty && Ty != V->getType()) 996 return nullptr; 997 return V; 998 } 999 1000 // No type specified, must be invalid reference. 1001 if (!Ty) return nullptr; 1002 1003 // Create and return a placeholder, which will later be RAUW'd. 1004 Value *V = new Argument(Ty); 1005 ValuePtrs[Idx] = V; 1006 return V; 1007 } 1008 1009 /// Once all constants are read, this method bulk resolves any forward 1010 /// references. The idea behind this is that we sometimes get constants (such 1011 /// as large arrays) which reference *many* forward ref constants. Replacing 1012 /// each of these causes a lot of thrashing when building/reuniquing the 1013 /// constant. Instead of doing this, we look at all the uses and rewrite all 1014 /// the place holders at once for any constant that uses a placeholder. 1015 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1016 // Sort the values by-pointer so that they are efficient to look up with a 1017 // binary search. 1018 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1019 1020 SmallVector<Constant*, 64> NewOps; 1021 1022 while (!ResolveConstants.empty()) { 1023 Value *RealVal = operator[](ResolveConstants.back().second); 1024 Constant *Placeholder = ResolveConstants.back().first; 1025 ResolveConstants.pop_back(); 1026 1027 // Loop over all users of the placeholder, updating them to reference the 1028 // new value. If they reference more than one placeholder, update them all 1029 // at once. 1030 while (!Placeholder->use_empty()) { 1031 auto UI = Placeholder->user_begin(); 1032 User *U = *UI; 1033 1034 // If the using object isn't uniqued, just update the operands. This 1035 // handles instructions and initializers for global variables. 1036 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1037 UI.getUse().set(RealVal); 1038 continue; 1039 } 1040 1041 // Otherwise, we have a constant that uses the placeholder. Replace that 1042 // constant with a new constant that has *all* placeholder uses updated. 1043 Constant *UserC = cast<Constant>(U); 1044 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1045 I != E; ++I) { 1046 Value *NewOp; 1047 if (!isa<ConstantPlaceHolder>(*I)) { 1048 // Not a placeholder reference. 1049 NewOp = *I; 1050 } else if (*I == Placeholder) { 1051 // Common case is that it just references this one placeholder. 1052 NewOp = RealVal; 1053 } else { 1054 // Otherwise, look up the placeholder in ResolveConstants. 1055 ResolveConstantsTy::iterator It = 1056 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1057 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1058 0)); 1059 assert(It != ResolveConstants.end() && It->first == *I); 1060 NewOp = operator[](It->second); 1061 } 1062 1063 NewOps.push_back(cast<Constant>(NewOp)); 1064 } 1065 1066 // Make the new constant. 1067 Constant *NewC; 1068 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1069 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1070 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1071 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1072 } else if (isa<ConstantVector>(UserC)) { 1073 NewC = ConstantVector::get(NewOps); 1074 } else { 1075 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1076 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1077 } 1078 1079 UserC->replaceAllUsesWith(NewC); 1080 UserC->destroyConstant(); 1081 NewOps.clear(); 1082 } 1083 1084 // Update all ValueHandles, they should be the only users at this point. 1085 Placeholder->replaceAllUsesWith(RealVal); 1086 delete Placeholder; 1087 } 1088 } 1089 1090 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1091 if (Idx == size()) { 1092 push_back(MD); 1093 return; 1094 } 1095 1096 if (Idx >= size()) 1097 resize(Idx+1); 1098 1099 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1100 if (!OldMD) { 1101 OldMD.reset(MD); 1102 return; 1103 } 1104 1105 // If there was a forward reference to this value, replace it. 1106 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1107 PrevMD->replaceAllUsesWith(MD); 1108 --NumFwdRefs; 1109 } 1110 1111 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1112 if (Idx >= size()) 1113 resize(Idx + 1); 1114 1115 if (Metadata *MD = MetadataPtrs[Idx]) 1116 return MD; 1117 1118 // Track forward refs to be resolved later. 1119 if (AnyFwdRefs) { 1120 MinFwdRef = std::min(MinFwdRef, Idx); 1121 MaxFwdRef = std::max(MaxFwdRef, Idx); 1122 } else { 1123 AnyFwdRefs = true; 1124 MinFwdRef = MaxFwdRef = Idx; 1125 } 1126 ++NumFwdRefs; 1127 1128 // Create and return a placeholder, which will later be RAUW'd. 1129 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1130 MetadataPtrs[Idx].reset(MD); 1131 return MD; 1132 } 1133 1134 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1135 Metadata *MD = lookup(Idx); 1136 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1137 if (!N->isResolved()) 1138 return nullptr; 1139 return MD; 1140 } 1141 1142 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1143 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1144 } 1145 1146 void BitcodeReaderMetadataList::tryToResolveCycles() { 1147 if (NumFwdRefs) 1148 // Still forward references... can't resolve cycles. 1149 return; 1150 1151 bool DidReplaceTypeRefs = false; 1152 1153 // Give up on finding a full definition for any forward decls that remain. 1154 for (const auto &Ref : OldTypeRefs.FwdDecls) 1155 OldTypeRefs.Final.insert(Ref); 1156 OldTypeRefs.FwdDecls.clear(); 1157 1158 // Upgrade from old type ref arrays. In strange cases, this could add to 1159 // OldTypeRefs.Unknown. 1160 for (const auto &Array : OldTypeRefs.Arrays) { 1161 DidReplaceTypeRefs = true; 1162 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1163 } 1164 OldTypeRefs.Arrays.clear(); 1165 1166 // Replace old string-based type refs with the resolved node, if possible. 1167 // If we haven't seen the node, leave it to the verifier to complain about 1168 // the invalid string reference. 1169 for (const auto &Ref : OldTypeRefs.Unknown) { 1170 DidReplaceTypeRefs = true; 1171 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1172 Ref.second->replaceAllUsesWith(CT); 1173 else 1174 Ref.second->replaceAllUsesWith(Ref.first); 1175 } 1176 OldTypeRefs.Unknown.clear(); 1177 1178 // Make sure all the upgraded types are resolved. 1179 if (DidReplaceTypeRefs) { 1180 AnyFwdRefs = true; 1181 MinFwdRef = 0; 1182 MaxFwdRef = MetadataPtrs.size() - 1; 1183 } 1184 1185 if (!AnyFwdRefs) 1186 // Nothing to do. 1187 return; 1188 1189 // Resolve any cycles. 1190 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1191 auto &MD = MetadataPtrs[I]; 1192 auto *N = dyn_cast_or_null<MDNode>(MD); 1193 if (!N) 1194 continue; 1195 1196 assert(!N->isTemporary() && "Unexpected forward reference"); 1197 N->resolveCycles(); 1198 } 1199 1200 // Make sure we return early again until there's another forward ref. 1201 AnyFwdRefs = false; 1202 } 1203 1204 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1205 DICompositeType &CT) { 1206 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1207 if (CT.isForwardDecl()) 1208 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1209 else 1210 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1211 } 1212 1213 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1214 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1215 if (LLVM_LIKELY(!UUID)) 1216 return MaybeUUID; 1217 1218 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1219 return CT; 1220 1221 auto &Ref = OldTypeRefs.Unknown[UUID]; 1222 if (!Ref) 1223 Ref = MDNode::getTemporary(Context, None); 1224 return Ref.get(); 1225 } 1226 1227 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1228 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1229 if (!Tuple || Tuple->isDistinct()) 1230 return MaybeTuple; 1231 1232 // Look through the array immediately if possible. 1233 if (!Tuple->isTemporary()) 1234 return resolveTypeRefArray(Tuple); 1235 1236 // Create and return a placeholder to use for now. Eventually 1237 // resolveTypeRefArrays() will be resolve this forward reference. 1238 OldTypeRefs.Arrays.emplace_back(); 1239 OldTypeRefs.Arrays.back().first.reset(Tuple); 1240 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1241 return OldTypeRefs.Arrays.back().second.get(); 1242 } 1243 1244 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1245 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1246 if (!Tuple || Tuple->isDistinct()) 1247 return MaybeTuple; 1248 1249 // Look through the DITypeRefArray, upgrading each DITypeRef. 1250 SmallVector<Metadata *, 32> Ops; 1251 Ops.reserve(Tuple->getNumOperands()); 1252 for (Metadata *MD : Tuple->operands()) 1253 Ops.push_back(upgradeTypeRef(MD)); 1254 1255 return MDTuple::get(Context, Ops); 1256 } 1257 1258 Type *BitcodeReader::getTypeByID(unsigned ID) { 1259 // The type table size is always specified correctly. 1260 if (ID >= TypeList.size()) 1261 return nullptr; 1262 1263 if (Type *Ty = TypeList[ID]) 1264 return Ty; 1265 1266 // If we have a forward reference, the only possible case is when it is to a 1267 // named struct. Just create a placeholder for now. 1268 return TypeList[ID] = createIdentifiedStructType(Context); 1269 } 1270 1271 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1272 StringRef Name) { 1273 auto *Ret = StructType::create(Context, Name); 1274 IdentifiedStructTypes.push_back(Ret); 1275 return Ret; 1276 } 1277 1278 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1279 auto *Ret = StructType::create(Context); 1280 IdentifiedStructTypes.push_back(Ret); 1281 return Ret; 1282 } 1283 1284 //===----------------------------------------------------------------------===// 1285 // Functions for parsing blocks from the bitcode file 1286 //===----------------------------------------------------------------------===// 1287 1288 1289 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1290 /// been decoded from the given integer. This function must stay in sync with 1291 /// 'encodeLLVMAttributesForBitcode'. 1292 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1293 uint64_t EncodedAttrs) { 1294 // FIXME: Remove in 4.0. 1295 1296 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1297 // the bits above 31 down by 11 bits. 1298 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1299 assert((!Alignment || isPowerOf2_32(Alignment)) && 1300 "Alignment must be a power of two."); 1301 1302 if (Alignment) 1303 B.addAlignmentAttr(Alignment); 1304 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1305 (EncodedAttrs & 0xffff)); 1306 } 1307 1308 std::error_code BitcodeReader::parseAttributeBlock() { 1309 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1310 return error("Invalid record"); 1311 1312 if (!MAttributes.empty()) 1313 return error("Invalid multiple blocks"); 1314 1315 SmallVector<uint64_t, 64> Record; 1316 1317 SmallVector<AttributeSet, 8> Attrs; 1318 1319 // Read all the records. 1320 while (1) { 1321 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1322 1323 switch (Entry.Kind) { 1324 case BitstreamEntry::SubBlock: // Handled for us already. 1325 case BitstreamEntry::Error: 1326 return error("Malformed block"); 1327 case BitstreamEntry::EndBlock: 1328 return std::error_code(); 1329 case BitstreamEntry::Record: 1330 // The interesting case. 1331 break; 1332 } 1333 1334 // Read a record. 1335 Record.clear(); 1336 switch (Stream.readRecord(Entry.ID, Record)) { 1337 default: // Default behavior: ignore. 1338 break; 1339 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1340 // FIXME: Remove in 4.0. 1341 if (Record.size() & 1) 1342 return error("Invalid record"); 1343 1344 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1345 AttrBuilder B; 1346 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1347 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1348 } 1349 1350 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1351 Attrs.clear(); 1352 break; 1353 } 1354 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1355 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1356 Attrs.push_back(MAttributeGroups[Record[i]]); 1357 1358 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1359 Attrs.clear(); 1360 break; 1361 } 1362 } 1363 } 1364 } 1365 1366 // Returns Attribute::None on unrecognized codes. 1367 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1368 switch (Code) { 1369 default: 1370 return Attribute::None; 1371 case bitc::ATTR_KIND_ALIGNMENT: 1372 return Attribute::Alignment; 1373 case bitc::ATTR_KIND_ALWAYS_INLINE: 1374 return Attribute::AlwaysInline; 1375 case bitc::ATTR_KIND_ARGMEMONLY: 1376 return Attribute::ArgMemOnly; 1377 case bitc::ATTR_KIND_BUILTIN: 1378 return Attribute::Builtin; 1379 case bitc::ATTR_KIND_BY_VAL: 1380 return Attribute::ByVal; 1381 case bitc::ATTR_KIND_IN_ALLOCA: 1382 return Attribute::InAlloca; 1383 case bitc::ATTR_KIND_COLD: 1384 return Attribute::Cold; 1385 case bitc::ATTR_KIND_CONVERGENT: 1386 return Attribute::Convergent; 1387 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1388 return Attribute::InaccessibleMemOnly; 1389 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1390 return Attribute::InaccessibleMemOrArgMemOnly; 1391 case bitc::ATTR_KIND_INLINE_HINT: 1392 return Attribute::InlineHint; 1393 case bitc::ATTR_KIND_IN_REG: 1394 return Attribute::InReg; 1395 case bitc::ATTR_KIND_JUMP_TABLE: 1396 return Attribute::JumpTable; 1397 case bitc::ATTR_KIND_MIN_SIZE: 1398 return Attribute::MinSize; 1399 case bitc::ATTR_KIND_NAKED: 1400 return Attribute::Naked; 1401 case bitc::ATTR_KIND_NEST: 1402 return Attribute::Nest; 1403 case bitc::ATTR_KIND_NO_ALIAS: 1404 return Attribute::NoAlias; 1405 case bitc::ATTR_KIND_NO_BUILTIN: 1406 return Attribute::NoBuiltin; 1407 case bitc::ATTR_KIND_NO_CAPTURE: 1408 return Attribute::NoCapture; 1409 case bitc::ATTR_KIND_NO_DUPLICATE: 1410 return Attribute::NoDuplicate; 1411 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1412 return Attribute::NoImplicitFloat; 1413 case bitc::ATTR_KIND_NO_INLINE: 1414 return Attribute::NoInline; 1415 case bitc::ATTR_KIND_NO_RECURSE: 1416 return Attribute::NoRecurse; 1417 case bitc::ATTR_KIND_NON_LAZY_BIND: 1418 return Attribute::NonLazyBind; 1419 case bitc::ATTR_KIND_NON_NULL: 1420 return Attribute::NonNull; 1421 case bitc::ATTR_KIND_DEREFERENCEABLE: 1422 return Attribute::Dereferenceable; 1423 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1424 return Attribute::DereferenceableOrNull; 1425 case bitc::ATTR_KIND_ALLOC_SIZE: 1426 return Attribute::AllocSize; 1427 case bitc::ATTR_KIND_NO_RED_ZONE: 1428 return Attribute::NoRedZone; 1429 case bitc::ATTR_KIND_NO_RETURN: 1430 return Attribute::NoReturn; 1431 case bitc::ATTR_KIND_NO_UNWIND: 1432 return Attribute::NoUnwind; 1433 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1434 return Attribute::OptimizeForSize; 1435 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1436 return Attribute::OptimizeNone; 1437 case bitc::ATTR_KIND_READ_NONE: 1438 return Attribute::ReadNone; 1439 case bitc::ATTR_KIND_READ_ONLY: 1440 return Attribute::ReadOnly; 1441 case bitc::ATTR_KIND_RETURNED: 1442 return Attribute::Returned; 1443 case bitc::ATTR_KIND_RETURNS_TWICE: 1444 return Attribute::ReturnsTwice; 1445 case bitc::ATTR_KIND_S_EXT: 1446 return Attribute::SExt; 1447 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1448 return Attribute::StackAlignment; 1449 case bitc::ATTR_KIND_STACK_PROTECT: 1450 return Attribute::StackProtect; 1451 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1452 return Attribute::StackProtectReq; 1453 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1454 return Attribute::StackProtectStrong; 1455 case bitc::ATTR_KIND_SAFESTACK: 1456 return Attribute::SafeStack; 1457 case bitc::ATTR_KIND_STRUCT_RET: 1458 return Attribute::StructRet; 1459 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1460 return Attribute::SanitizeAddress; 1461 case bitc::ATTR_KIND_SANITIZE_THREAD: 1462 return Attribute::SanitizeThread; 1463 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1464 return Attribute::SanitizeMemory; 1465 case bitc::ATTR_KIND_SWIFT_ERROR: 1466 return Attribute::SwiftError; 1467 case bitc::ATTR_KIND_SWIFT_SELF: 1468 return Attribute::SwiftSelf; 1469 case bitc::ATTR_KIND_UW_TABLE: 1470 return Attribute::UWTable; 1471 case bitc::ATTR_KIND_Z_EXT: 1472 return Attribute::ZExt; 1473 } 1474 } 1475 1476 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1477 unsigned &Alignment) { 1478 // Note: Alignment in bitcode files is incremented by 1, so that zero 1479 // can be used for default alignment. 1480 if (Exponent > Value::MaxAlignmentExponent + 1) 1481 return error("Invalid alignment value"); 1482 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1483 return std::error_code(); 1484 } 1485 1486 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1487 Attribute::AttrKind *Kind) { 1488 *Kind = getAttrFromCode(Code); 1489 if (*Kind == Attribute::None) 1490 return error(BitcodeError::CorruptedBitcode, 1491 "Unknown attribute kind (" + Twine(Code) + ")"); 1492 return std::error_code(); 1493 } 1494 1495 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1496 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1497 return error("Invalid record"); 1498 1499 if (!MAttributeGroups.empty()) 1500 return error("Invalid multiple blocks"); 1501 1502 SmallVector<uint64_t, 64> Record; 1503 1504 // Read all the records. 1505 while (1) { 1506 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1507 1508 switch (Entry.Kind) { 1509 case BitstreamEntry::SubBlock: // Handled for us already. 1510 case BitstreamEntry::Error: 1511 return error("Malformed block"); 1512 case BitstreamEntry::EndBlock: 1513 return std::error_code(); 1514 case BitstreamEntry::Record: 1515 // The interesting case. 1516 break; 1517 } 1518 1519 // Read a record. 1520 Record.clear(); 1521 switch (Stream.readRecord(Entry.ID, Record)) { 1522 default: // Default behavior: ignore. 1523 break; 1524 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1525 if (Record.size() < 3) 1526 return error("Invalid record"); 1527 1528 uint64_t GrpID = Record[0]; 1529 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1530 1531 AttrBuilder B; 1532 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1533 if (Record[i] == 0) { // Enum attribute 1534 Attribute::AttrKind Kind; 1535 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1536 return EC; 1537 1538 B.addAttribute(Kind); 1539 } else if (Record[i] == 1) { // Integer attribute 1540 Attribute::AttrKind Kind; 1541 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1542 return EC; 1543 if (Kind == Attribute::Alignment) 1544 B.addAlignmentAttr(Record[++i]); 1545 else if (Kind == Attribute::StackAlignment) 1546 B.addStackAlignmentAttr(Record[++i]); 1547 else if (Kind == Attribute::Dereferenceable) 1548 B.addDereferenceableAttr(Record[++i]); 1549 else if (Kind == Attribute::DereferenceableOrNull) 1550 B.addDereferenceableOrNullAttr(Record[++i]); 1551 else if (Kind == Attribute::AllocSize) 1552 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1553 } else { // String attribute 1554 assert((Record[i] == 3 || Record[i] == 4) && 1555 "Invalid attribute group entry"); 1556 bool HasValue = (Record[i++] == 4); 1557 SmallString<64> KindStr; 1558 SmallString<64> ValStr; 1559 1560 while (Record[i] != 0 && i != e) 1561 KindStr += Record[i++]; 1562 assert(Record[i] == 0 && "Kind string not null terminated"); 1563 1564 if (HasValue) { 1565 // Has a value associated with it. 1566 ++i; // Skip the '0' that terminates the "kind" string. 1567 while (Record[i] != 0 && i != e) 1568 ValStr += Record[i++]; 1569 assert(Record[i] == 0 && "Value string not null terminated"); 1570 } 1571 1572 B.addAttribute(KindStr.str(), ValStr.str()); 1573 } 1574 } 1575 1576 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1577 break; 1578 } 1579 } 1580 } 1581 } 1582 1583 std::error_code BitcodeReader::parseTypeTable() { 1584 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1585 return error("Invalid record"); 1586 1587 return parseTypeTableBody(); 1588 } 1589 1590 std::error_code BitcodeReader::parseTypeTableBody() { 1591 if (!TypeList.empty()) 1592 return error("Invalid multiple blocks"); 1593 1594 SmallVector<uint64_t, 64> Record; 1595 unsigned NumRecords = 0; 1596 1597 SmallString<64> TypeName; 1598 1599 // Read all the records for this type table. 1600 while (1) { 1601 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1602 1603 switch (Entry.Kind) { 1604 case BitstreamEntry::SubBlock: // Handled for us already. 1605 case BitstreamEntry::Error: 1606 return error("Malformed block"); 1607 case BitstreamEntry::EndBlock: 1608 if (NumRecords != TypeList.size()) 1609 return error("Malformed block"); 1610 return std::error_code(); 1611 case BitstreamEntry::Record: 1612 // The interesting case. 1613 break; 1614 } 1615 1616 // Read a record. 1617 Record.clear(); 1618 Type *ResultTy = nullptr; 1619 switch (Stream.readRecord(Entry.ID, Record)) { 1620 default: 1621 return error("Invalid value"); 1622 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1623 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1624 // type list. This allows us to reserve space. 1625 if (Record.size() < 1) 1626 return error("Invalid record"); 1627 TypeList.resize(Record[0]); 1628 continue; 1629 case bitc::TYPE_CODE_VOID: // VOID 1630 ResultTy = Type::getVoidTy(Context); 1631 break; 1632 case bitc::TYPE_CODE_HALF: // HALF 1633 ResultTy = Type::getHalfTy(Context); 1634 break; 1635 case bitc::TYPE_CODE_FLOAT: // FLOAT 1636 ResultTy = Type::getFloatTy(Context); 1637 break; 1638 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1639 ResultTy = Type::getDoubleTy(Context); 1640 break; 1641 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1642 ResultTy = Type::getX86_FP80Ty(Context); 1643 break; 1644 case bitc::TYPE_CODE_FP128: // FP128 1645 ResultTy = Type::getFP128Ty(Context); 1646 break; 1647 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1648 ResultTy = Type::getPPC_FP128Ty(Context); 1649 break; 1650 case bitc::TYPE_CODE_LABEL: // LABEL 1651 ResultTy = Type::getLabelTy(Context); 1652 break; 1653 case bitc::TYPE_CODE_METADATA: // METADATA 1654 ResultTy = Type::getMetadataTy(Context); 1655 break; 1656 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1657 ResultTy = Type::getX86_MMXTy(Context); 1658 break; 1659 case bitc::TYPE_CODE_TOKEN: // TOKEN 1660 ResultTy = Type::getTokenTy(Context); 1661 break; 1662 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1663 if (Record.size() < 1) 1664 return error("Invalid record"); 1665 1666 uint64_t NumBits = Record[0]; 1667 if (NumBits < IntegerType::MIN_INT_BITS || 1668 NumBits > IntegerType::MAX_INT_BITS) 1669 return error("Bitwidth for integer type out of range"); 1670 ResultTy = IntegerType::get(Context, NumBits); 1671 break; 1672 } 1673 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1674 // [pointee type, address space] 1675 if (Record.size() < 1) 1676 return error("Invalid record"); 1677 unsigned AddressSpace = 0; 1678 if (Record.size() == 2) 1679 AddressSpace = Record[1]; 1680 ResultTy = getTypeByID(Record[0]); 1681 if (!ResultTy || 1682 !PointerType::isValidElementType(ResultTy)) 1683 return error("Invalid type"); 1684 ResultTy = PointerType::get(ResultTy, AddressSpace); 1685 break; 1686 } 1687 case bitc::TYPE_CODE_FUNCTION_OLD: { 1688 // FIXME: attrid is dead, remove it in LLVM 4.0 1689 // FUNCTION: [vararg, attrid, retty, paramty x N] 1690 if (Record.size() < 3) 1691 return error("Invalid record"); 1692 SmallVector<Type*, 8> ArgTys; 1693 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1694 if (Type *T = getTypeByID(Record[i])) 1695 ArgTys.push_back(T); 1696 else 1697 break; 1698 } 1699 1700 ResultTy = getTypeByID(Record[2]); 1701 if (!ResultTy || ArgTys.size() < Record.size()-3) 1702 return error("Invalid type"); 1703 1704 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1705 break; 1706 } 1707 case bitc::TYPE_CODE_FUNCTION: { 1708 // FUNCTION: [vararg, retty, paramty x N] 1709 if (Record.size() < 2) 1710 return error("Invalid record"); 1711 SmallVector<Type*, 8> ArgTys; 1712 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1713 if (Type *T = getTypeByID(Record[i])) { 1714 if (!FunctionType::isValidArgumentType(T)) 1715 return error("Invalid function argument type"); 1716 ArgTys.push_back(T); 1717 } 1718 else 1719 break; 1720 } 1721 1722 ResultTy = getTypeByID(Record[1]); 1723 if (!ResultTy || ArgTys.size() < Record.size()-2) 1724 return error("Invalid type"); 1725 1726 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1727 break; 1728 } 1729 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1730 if (Record.size() < 1) 1731 return error("Invalid record"); 1732 SmallVector<Type*, 8> EltTys; 1733 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1734 if (Type *T = getTypeByID(Record[i])) 1735 EltTys.push_back(T); 1736 else 1737 break; 1738 } 1739 if (EltTys.size() != Record.size()-1) 1740 return error("Invalid type"); 1741 ResultTy = StructType::get(Context, EltTys, Record[0]); 1742 break; 1743 } 1744 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1745 if (convertToString(Record, 0, TypeName)) 1746 return error("Invalid record"); 1747 continue; 1748 1749 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1750 if (Record.size() < 1) 1751 return error("Invalid record"); 1752 1753 if (NumRecords >= TypeList.size()) 1754 return error("Invalid TYPE table"); 1755 1756 // Check to see if this was forward referenced, if so fill in the temp. 1757 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1758 if (Res) { 1759 Res->setName(TypeName); 1760 TypeList[NumRecords] = nullptr; 1761 } else // Otherwise, create a new struct. 1762 Res = createIdentifiedStructType(Context, TypeName); 1763 TypeName.clear(); 1764 1765 SmallVector<Type*, 8> EltTys; 1766 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1767 if (Type *T = getTypeByID(Record[i])) 1768 EltTys.push_back(T); 1769 else 1770 break; 1771 } 1772 if (EltTys.size() != Record.size()-1) 1773 return error("Invalid record"); 1774 Res->setBody(EltTys, Record[0]); 1775 ResultTy = Res; 1776 break; 1777 } 1778 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1779 if (Record.size() != 1) 1780 return error("Invalid record"); 1781 1782 if (NumRecords >= TypeList.size()) 1783 return error("Invalid TYPE table"); 1784 1785 // Check to see if this was forward referenced, if so fill in the temp. 1786 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1787 if (Res) { 1788 Res->setName(TypeName); 1789 TypeList[NumRecords] = nullptr; 1790 } else // Otherwise, create a new struct with no body. 1791 Res = createIdentifiedStructType(Context, TypeName); 1792 TypeName.clear(); 1793 ResultTy = Res; 1794 break; 1795 } 1796 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1797 if (Record.size() < 2) 1798 return error("Invalid record"); 1799 ResultTy = getTypeByID(Record[1]); 1800 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1801 return error("Invalid type"); 1802 ResultTy = ArrayType::get(ResultTy, Record[0]); 1803 break; 1804 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1805 if (Record.size() < 2) 1806 return error("Invalid record"); 1807 if (Record[0] == 0) 1808 return error("Invalid vector length"); 1809 ResultTy = getTypeByID(Record[1]); 1810 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1811 return error("Invalid type"); 1812 ResultTy = VectorType::get(ResultTy, Record[0]); 1813 break; 1814 } 1815 1816 if (NumRecords >= TypeList.size()) 1817 return error("Invalid TYPE table"); 1818 if (TypeList[NumRecords]) 1819 return error( 1820 "Invalid TYPE table: Only named structs can be forward referenced"); 1821 assert(ResultTy && "Didn't read a type?"); 1822 TypeList[NumRecords++] = ResultTy; 1823 } 1824 } 1825 1826 std::error_code BitcodeReader::parseOperandBundleTags() { 1827 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1828 return error("Invalid record"); 1829 1830 if (!BundleTags.empty()) 1831 return error("Invalid multiple blocks"); 1832 1833 SmallVector<uint64_t, 64> Record; 1834 1835 while (1) { 1836 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1837 1838 switch (Entry.Kind) { 1839 case BitstreamEntry::SubBlock: // Handled for us already. 1840 case BitstreamEntry::Error: 1841 return error("Malformed block"); 1842 case BitstreamEntry::EndBlock: 1843 return std::error_code(); 1844 case BitstreamEntry::Record: 1845 // The interesting case. 1846 break; 1847 } 1848 1849 // Tags are implicitly mapped to integers by their order. 1850 1851 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1852 return error("Invalid record"); 1853 1854 // OPERAND_BUNDLE_TAG: [strchr x N] 1855 BundleTags.emplace_back(); 1856 if (convertToString(Record, 0, BundleTags.back())) 1857 return error("Invalid record"); 1858 Record.clear(); 1859 } 1860 } 1861 1862 /// Associate a value with its name from the given index in the provided record. 1863 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1864 unsigned NameIndex, Triple &TT) { 1865 SmallString<128> ValueName; 1866 if (convertToString(Record, NameIndex, ValueName)) 1867 return error("Invalid record"); 1868 unsigned ValueID = Record[0]; 1869 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1870 return error("Invalid record"); 1871 Value *V = ValueList[ValueID]; 1872 1873 StringRef NameStr(ValueName.data(), ValueName.size()); 1874 if (NameStr.find_first_of(0) != StringRef::npos) 1875 return error("Invalid value name"); 1876 V->setName(NameStr); 1877 auto *GO = dyn_cast<GlobalObject>(V); 1878 if (GO) { 1879 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1880 if (TT.isOSBinFormatMachO()) 1881 GO->setComdat(nullptr); 1882 else 1883 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1884 } 1885 } 1886 return V; 1887 } 1888 1889 /// Helper to note and return the current location, and jump to the given 1890 /// offset. 1891 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1892 BitstreamCursor &Stream) { 1893 // Save the current parsing location so we can jump back at the end 1894 // of the VST read. 1895 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1896 Stream.JumpToBit(Offset * 32); 1897 #ifndef NDEBUG 1898 // Do some checking if we are in debug mode. 1899 BitstreamEntry Entry = Stream.advance(); 1900 assert(Entry.Kind == BitstreamEntry::SubBlock); 1901 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1902 #else 1903 // In NDEBUG mode ignore the output so we don't get an unused variable 1904 // warning. 1905 Stream.advance(); 1906 #endif 1907 return CurrentBit; 1908 } 1909 1910 /// Parse the value symbol table at either the current parsing location or 1911 /// at the given bit offset if provided. 1912 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1913 uint64_t CurrentBit; 1914 // Pass in the Offset to distinguish between calling for the module-level 1915 // VST (where we want to jump to the VST offset) and the function-level 1916 // VST (where we don't). 1917 if (Offset > 0) 1918 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1919 1920 // Compute the delta between the bitcode indices in the VST (the word offset 1921 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1922 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1923 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1924 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1925 // just before entering the VST subblock because: 1) the EnterSubBlock 1926 // changes the AbbrevID width; 2) the VST block is nested within the same 1927 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1928 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1929 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1930 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1931 unsigned FuncBitcodeOffsetDelta = 1932 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1933 1934 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1935 return error("Invalid record"); 1936 1937 SmallVector<uint64_t, 64> Record; 1938 1939 Triple TT(TheModule->getTargetTriple()); 1940 1941 // Read all the records for this value table. 1942 SmallString<128> ValueName; 1943 while (1) { 1944 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1945 1946 switch (Entry.Kind) { 1947 case BitstreamEntry::SubBlock: // Handled for us already. 1948 case BitstreamEntry::Error: 1949 return error("Malformed block"); 1950 case BitstreamEntry::EndBlock: 1951 if (Offset > 0) 1952 Stream.JumpToBit(CurrentBit); 1953 return std::error_code(); 1954 case BitstreamEntry::Record: 1955 // The interesting case. 1956 break; 1957 } 1958 1959 // Read a record. 1960 Record.clear(); 1961 switch (Stream.readRecord(Entry.ID, Record)) { 1962 default: // Default behavior: unknown type. 1963 break; 1964 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1965 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1966 if (std::error_code EC = ValOrErr.getError()) 1967 return EC; 1968 ValOrErr.get(); 1969 break; 1970 } 1971 case bitc::VST_CODE_FNENTRY: { 1972 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1973 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1974 if (std::error_code EC = ValOrErr.getError()) 1975 return EC; 1976 Value *V = ValOrErr.get(); 1977 1978 auto *GO = dyn_cast<GlobalObject>(V); 1979 if (!GO) { 1980 // If this is an alias, need to get the actual Function object 1981 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1982 auto *GA = dyn_cast<GlobalAlias>(V); 1983 if (GA) 1984 GO = GA->getBaseObject(); 1985 assert(GO); 1986 } 1987 1988 uint64_t FuncWordOffset = Record[1]; 1989 Function *F = dyn_cast<Function>(GO); 1990 assert(F); 1991 uint64_t FuncBitOffset = FuncWordOffset * 32; 1992 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1993 // Set the LastFunctionBlockBit to point to the last function block. 1994 // Later when parsing is resumed after function materialization, 1995 // we can simply skip that last function block. 1996 if (FuncBitOffset > LastFunctionBlockBit) 1997 LastFunctionBlockBit = FuncBitOffset; 1998 break; 1999 } 2000 case bitc::VST_CODE_BBENTRY: { 2001 if (convertToString(Record, 1, ValueName)) 2002 return error("Invalid record"); 2003 BasicBlock *BB = getBasicBlock(Record[0]); 2004 if (!BB) 2005 return error("Invalid record"); 2006 2007 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2008 ValueName.clear(); 2009 break; 2010 } 2011 } 2012 } 2013 } 2014 2015 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2016 std::error_code 2017 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2018 if (Record.size() < 2) 2019 return error("Invalid record"); 2020 2021 unsigned Kind = Record[0]; 2022 SmallString<8> Name(Record.begin() + 1, Record.end()); 2023 2024 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2025 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2026 return error("Conflicting METADATA_KIND records"); 2027 return std::error_code(); 2028 } 2029 2030 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2031 2032 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2033 StringRef Blob, 2034 unsigned &NextMetadataNo) { 2035 // All the MDStrings in the block are emitted together in a single 2036 // record. The strings are concatenated and stored in a blob along with 2037 // their sizes. 2038 if (Record.size() != 2) 2039 return error("Invalid record: metadata strings layout"); 2040 2041 unsigned NumStrings = Record[0]; 2042 unsigned StringsOffset = Record[1]; 2043 if (!NumStrings) 2044 return error("Invalid record: metadata strings with no strings"); 2045 if (StringsOffset > Blob.size()) 2046 return error("Invalid record: metadata strings corrupt offset"); 2047 2048 StringRef Lengths = Blob.slice(0, StringsOffset); 2049 SimpleBitstreamCursor R(*StreamFile); 2050 R.jumpToPointer(Lengths.begin()); 2051 2052 // Ensure that Blob doesn't get invalidated, even if this is reading from 2053 // a StreamingMemoryObject with corrupt data. 2054 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2055 2056 StringRef Strings = Blob.drop_front(StringsOffset); 2057 do { 2058 if (R.AtEndOfStream()) 2059 return error("Invalid record: metadata strings bad length"); 2060 2061 unsigned Size = R.ReadVBR(6); 2062 if (Strings.size() < Size) 2063 return error("Invalid record: metadata strings truncated chars"); 2064 2065 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2066 NextMetadataNo++); 2067 Strings = Strings.drop_front(Size); 2068 } while (--NumStrings); 2069 2070 return std::error_code(); 2071 } 2072 2073 namespace { 2074 class PlaceholderQueue { 2075 // Placeholders would thrash around when moved, so store in a std::deque 2076 // instead of some sort of vector. 2077 std::deque<DistinctMDOperandPlaceholder> PHs; 2078 2079 public: 2080 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2081 void flush(BitcodeReaderMetadataList &MetadataList); 2082 }; 2083 } // end namespace 2084 2085 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2086 PHs.emplace_back(ID); 2087 return PHs.back(); 2088 } 2089 2090 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2091 while (!PHs.empty()) { 2092 PHs.front().replaceUseWith( 2093 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2094 PHs.pop_front(); 2095 } 2096 } 2097 2098 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2099 /// module level metadata. 2100 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2101 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2102 "Must read all module-level metadata before function-level"); 2103 2104 IsMetadataMaterialized = true; 2105 unsigned NextMetadataNo = MetadataList.size(); 2106 2107 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2108 return error("Invalid metadata: fwd refs into function blocks"); 2109 2110 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2111 return error("Invalid record"); 2112 2113 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2114 SmallVector<uint64_t, 64> Record; 2115 2116 PlaceholderQueue Placeholders; 2117 bool IsDistinct; 2118 auto getMD = [&](unsigned ID) -> Metadata * { 2119 if (!IsDistinct) 2120 return MetadataList.getMetadataFwdRef(ID); 2121 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2122 return MD; 2123 return &Placeholders.getPlaceholderOp(ID); 2124 }; 2125 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2126 if (ID) 2127 return getMD(ID - 1); 2128 return nullptr; 2129 }; 2130 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2131 if (ID) 2132 return MetadataList.getMetadataFwdRef(ID - 1); 2133 return nullptr; 2134 }; 2135 auto getMDString = [&](unsigned ID) -> MDString *{ 2136 // This requires that the ID is not really a forward reference. In 2137 // particular, the MDString must already have been resolved. 2138 return cast_or_null<MDString>(getMDOrNull(ID)); 2139 }; 2140 2141 // Support for old type refs. 2142 auto getDITypeRefOrNull = [&](unsigned ID) { 2143 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2144 }; 2145 2146 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2147 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2148 2149 // Read all the records. 2150 while (1) { 2151 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2152 2153 switch (Entry.Kind) { 2154 case BitstreamEntry::SubBlock: // Handled for us already. 2155 case BitstreamEntry::Error: 2156 return error("Malformed block"); 2157 case BitstreamEntry::EndBlock: 2158 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2159 for (auto CU_SP : CUSubprograms) 2160 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2161 for (auto &Op : SPs->operands()) 2162 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2163 SP->replaceOperandWith(7, CU_SP.first); 2164 2165 MetadataList.tryToResolveCycles(); 2166 Placeholders.flush(MetadataList); 2167 return std::error_code(); 2168 case BitstreamEntry::Record: 2169 // The interesting case. 2170 break; 2171 } 2172 2173 // Read a record. 2174 Record.clear(); 2175 StringRef Blob; 2176 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2177 IsDistinct = false; 2178 switch (Code) { 2179 default: // Default behavior: ignore. 2180 break; 2181 case bitc::METADATA_NAME: { 2182 // Read name of the named metadata. 2183 SmallString<8> Name(Record.begin(), Record.end()); 2184 Record.clear(); 2185 Code = Stream.ReadCode(); 2186 2187 unsigned NextBitCode = Stream.readRecord(Code, Record); 2188 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2189 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2190 2191 // Read named metadata elements. 2192 unsigned Size = Record.size(); 2193 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2194 for (unsigned i = 0; i != Size; ++i) { 2195 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2196 if (!MD) 2197 return error("Invalid record"); 2198 NMD->addOperand(MD); 2199 } 2200 break; 2201 } 2202 case bitc::METADATA_OLD_FN_NODE: { 2203 // FIXME: Remove in 4.0. 2204 // This is a LocalAsMetadata record, the only type of function-local 2205 // metadata. 2206 if (Record.size() % 2 == 1) 2207 return error("Invalid record"); 2208 2209 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2210 // to be legal, but there's no upgrade path. 2211 auto dropRecord = [&] { 2212 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2213 }; 2214 if (Record.size() != 2) { 2215 dropRecord(); 2216 break; 2217 } 2218 2219 Type *Ty = getTypeByID(Record[0]); 2220 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2221 dropRecord(); 2222 break; 2223 } 2224 2225 MetadataList.assignValue( 2226 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2227 NextMetadataNo++); 2228 break; 2229 } 2230 case bitc::METADATA_OLD_NODE: { 2231 // FIXME: Remove in 4.0. 2232 if (Record.size() % 2 == 1) 2233 return error("Invalid record"); 2234 2235 unsigned Size = Record.size(); 2236 SmallVector<Metadata *, 8> Elts; 2237 for (unsigned i = 0; i != Size; i += 2) { 2238 Type *Ty = getTypeByID(Record[i]); 2239 if (!Ty) 2240 return error("Invalid record"); 2241 if (Ty->isMetadataTy()) 2242 Elts.push_back(getMD(Record[i + 1])); 2243 else if (!Ty->isVoidTy()) { 2244 auto *MD = 2245 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2246 assert(isa<ConstantAsMetadata>(MD) && 2247 "Expected non-function-local metadata"); 2248 Elts.push_back(MD); 2249 } else 2250 Elts.push_back(nullptr); 2251 } 2252 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2253 break; 2254 } 2255 case bitc::METADATA_VALUE: { 2256 if (Record.size() != 2) 2257 return error("Invalid record"); 2258 2259 Type *Ty = getTypeByID(Record[0]); 2260 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2261 return error("Invalid record"); 2262 2263 MetadataList.assignValue( 2264 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2265 NextMetadataNo++); 2266 break; 2267 } 2268 case bitc::METADATA_DISTINCT_NODE: 2269 IsDistinct = true; 2270 // fallthrough... 2271 case bitc::METADATA_NODE: { 2272 SmallVector<Metadata *, 8> Elts; 2273 Elts.reserve(Record.size()); 2274 for (unsigned ID : Record) 2275 Elts.push_back(getMDOrNull(ID)); 2276 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2277 : MDNode::get(Context, Elts), 2278 NextMetadataNo++); 2279 break; 2280 } 2281 case bitc::METADATA_LOCATION: { 2282 if (Record.size() != 5) 2283 return error("Invalid record"); 2284 2285 IsDistinct = Record[0]; 2286 unsigned Line = Record[1]; 2287 unsigned Column = Record[2]; 2288 Metadata *Scope = getMD(Record[3]); 2289 Metadata *InlinedAt = getMDOrNull(Record[4]); 2290 MetadataList.assignValue( 2291 GET_OR_DISTINCT(DILocation, 2292 (Context, Line, Column, Scope, InlinedAt)), 2293 NextMetadataNo++); 2294 break; 2295 } 2296 case bitc::METADATA_GENERIC_DEBUG: { 2297 if (Record.size() < 4) 2298 return error("Invalid record"); 2299 2300 IsDistinct = Record[0]; 2301 unsigned Tag = Record[1]; 2302 unsigned Version = Record[2]; 2303 2304 if (Tag >= 1u << 16 || Version != 0) 2305 return error("Invalid record"); 2306 2307 auto *Header = getMDString(Record[3]); 2308 SmallVector<Metadata *, 8> DwarfOps; 2309 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2310 DwarfOps.push_back(getMDOrNull(Record[I])); 2311 MetadataList.assignValue( 2312 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2313 NextMetadataNo++); 2314 break; 2315 } 2316 case bitc::METADATA_SUBRANGE: { 2317 if (Record.size() != 3) 2318 return error("Invalid record"); 2319 2320 IsDistinct = Record[0]; 2321 MetadataList.assignValue( 2322 GET_OR_DISTINCT(DISubrange, 2323 (Context, Record[1], unrotateSign(Record[2]))), 2324 NextMetadataNo++); 2325 break; 2326 } 2327 case bitc::METADATA_ENUMERATOR: { 2328 if (Record.size() != 3) 2329 return error("Invalid record"); 2330 2331 IsDistinct = Record[0]; 2332 MetadataList.assignValue( 2333 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2334 getMDString(Record[2]))), 2335 NextMetadataNo++); 2336 break; 2337 } 2338 case bitc::METADATA_BASIC_TYPE: { 2339 if (Record.size() != 6) 2340 return error("Invalid record"); 2341 2342 IsDistinct = Record[0]; 2343 MetadataList.assignValue( 2344 GET_OR_DISTINCT(DIBasicType, 2345 (Context, Record[1], getMDString(Record[2]), 2346 Record[3], Record[4], Record[5])), 2347 NextMetadataNo++); 2348 break; 2349 } 2350 case bitc::METADATA_DERIVED_TYPE: { 2351 if (Record.size() != 12) 2352 return error("Invalid record"); 2353 2354 IsDistinct = Record[0]; 2355 MetadataList.assignValue( 2356 GET_OR_DISTINCT( 2357 DIDerivedType, 2358 (Context, Record[1], getMDString(Record[2]), 2359 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2360 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2361 Record[10], getDITypeRefOrNull(Record[11]))), 2362 NextMetadataNo++); 2363 break; 2364 } 2365 case bitc::METADATA_COMPOSITE_TYPE: { 2366 if (Record.size() != 16) 2367 return error("Invalid record"); 2368 2369 // If we have a UUID and this is not a forward declaration, lookup the 2370 // mapping. 2371 IsDistinct = Record[0] & 0x1; 2372 bool IsNotUsedInTypeRef = Record[0] >= 2; 2373 unsigned Tag = Record[1]; 2374 MDString *Name = getMDString(Record[2]); 2375 Metadata *File = getMDOrNull(Record[3]); 2376 unsigned Line = Record[4]; 2377 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2378 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2379 uint64_t SizeInBits = Record[7]; 2380 uint64_t AlignInBits = Record[8]; 2381 uint64_t OffsetInBits = Record[9]; 2382 unsigned Flags = Record[10]; 2383 Metadata *Elements = getMDOrNull(Record[11]); 2384 unsigned RuntimeLang = Record[12]; 2385 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2386 Metadata *TemplateParams = getMDOrNull(Record[14]); 2387 auto *Identifier = getMDString(Record[15]); 2388 DICompositeType *CT = nullptr; 2389 if (Identifier) 2390 CT = DICompositeType::buildODRType( 2391 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2392 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2393 VTableHolder, TemplateParams); 2394 2395 // Create a node if we didn't get a lazy ODR type. 2396 if (!CT) 2397 CT = GET_OR_DISTINCT(DICompositeType, 2398 (Context, Tag, Name, File, Line, Scope, BaseType, 2399 SizeInBits, AlignInBits, OffsetInBits, Flags, 2400 Elements, RuntimeLang, VTableHolder, 2401 TemplateParams, Identifier)); 2402 if (!IsNotUsedInTypeRef && Identifier) 2403 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2404 2405 MetadataList.assignValue(CT, NextMetadataNo++); 2406 break; 2407 } 2408 case bitc::METADATA_SUBROUTINE_TYPE: { 2409 if (Record.size() != 3) 2410 return error("Invalid record"); 2411 2412 IsDistinct = Record[0] & 0x1; 2413 bool IsOldTypeRefArray = Record[0] < 2; 2414 Metadata *Types = getMDOrNull(Record[2]); 2415 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2416 Types = MetadataList.upgradeTypeRefArray(Types); 2417 2418 MetadataList.assignValue( 2419 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2420 NextMetadataNo++); 2421 break; 2422 } 2423 2424 case bitc::METADATA_MODULE: { 2425 if (Record.size() != 6) 2426 return error("Invalid record"); 2427 2428 IsDistinct = Record[0]; 2429 MetadataList.assignValue( 2430 GET_OR_DISTINCT(DIModule, 2431 (Context, getMDOrNull(Record[1]), 2432 getMDString(Record[2]), getMDString(Record[3]), 2433 getMDString(Record[4]), getMDString(Record[5]))), 2434 NextMetadataNo++); 2435 break; 2436 } 2437 2438 case bitc::METADATA_FILE: { 2439 if (Record.size() != 3) 2440 return error("Invalid record"); 2441 2442 IsDistinct = Record[0]; 2443 MetadataList.assignValue( 2444 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2445 getMDString(Record[2]))), 2446 NextMetadataNo++); 2447 break; 2448 } 2449 case bitc::METADATA_COMPILE_UNIT: { 2450 if (Record.size() < 14 || Record.size() > 16) 2451 return error("Invalid record"); 2452 2453 // Ignore Record[0], which indicates whether this compile unit is 2454 // distinct. It's always distinct. 2455 IsDistinct = true; 2456 auto *CU = DICompileUnit::getDistinct( 2457 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2458 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2459 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2460 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2461 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2462 Record.size() <= 14 ? 0 : Record[14]); 2463 2464 MetadataList.assignValue(CU, NextMetadataNo++); 2465 2466 // Move the Upgrade the list of subprograms. 2467 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2468 CUSubprograms.push_back({CU, SPs}); 2469 break; 2470 } 2471 case bitc::METADATA_SUBPROGRAM: { 2472 if (Record.size() != 18 && Record.size() != 19) 2473 return error("Invalid record"); 2474 2475 IsDistinct = 2476 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2477 // Version 1 has a Function as Record[15]. 2478 // Version 2 has removed Record[15]. 2479 // Version 3 has the Unit as Record[15]. 2480 bool HasUnit = Record[0] >= 2; 2481 if (HasUnit && Record.size() != 19) 2482 return error("Invalid record"); 2483 Metadata *CUorFn = getMDOrNull(Record[15]); 2484 unsigned Offset = Record.size() == 19 ? 1 : 0; 2485 bool HasFn = Offset && !HasUnit; 2486 DISubprogram *SP = GET_OR_DISTINCT( 2487 DISubprogram, 2488 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2489 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2490 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2491 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2492 Record[14], HasUnit ? CUorFn : nullptr, 2493 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2494 getMDOrNull(Record[17 + Offset]))); 2495 MetadataList.assignValue(SP, NextMetadataNo++); 2496 2497 // Upgrade sp->function mapping to function->sp mapping. 2498 if (HasFn) { 2499 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2500 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2501 if (F->isMaterializable()) 2502 // Defer until materialized; unmaterialized functions may not have 2503 // metadata. 2504 FunctionsWithSPs[F] = SP; 2505 else if (!F->empty()) 2506 F->setSubprogram(SP); 2507 } 2508 } 2509 break; 2510 } 2511 case bitc::METADATA_LEXICAL_BLOCK: { 2512 if (Record.size() != 5) 2513 return error("Invalid record"); 2514 2515 IsDistinct = Record[0]; 2516 MetadataList.assignValue( 2517 GET_OR_DISTINCT(DILexicalBlock, 2518 (Context, getMDOrNull(Record[1]), 2519 getMDOrNull(Record[2]), Record[3], Record[4])), 2520 NextMetadataNo++); 2521 break; 2522 } 2523 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2524 if (Record.size() != 4) 2525 return error("Invalid record"); 2526 2527 IsDistinct = Record[0]; 2528 MetadataList.assignValue( 2529 GET_OR_DISTINCT(DILexicalBlockFile, 2530 (Context, getMDOrNull(Record[1]), 2531 getMDOrNull(Record[2]), Record[3])), 2532 NextMetadataNo++); 2533 break; 2534 } 2535 case bitc::METADATA_NAMESPACE: { 2536 if (Record.size() != 5) 2537 return error("Invalid record"); 2538 2539 IsDistinct = Record[0]; 2540 MetadataList.assignValue( 2541 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2542 getMDOrNull(Record[2]), 2543 getMDString(Record[3]), Record[4])), 2544 NextMetadataNo++); 2545 break; 2546 } 2547 case bitc::METADATA_MACRO: { 2548 if (Record.size() != 5) 2549 return error("Invalid record"); 2550 2551 IsDistinct = Record[0]; 2552 MetadataList.assignValue( 2553 GET_OR_DISTINCT(DIMacro, 2554 (Context, Record[1], Record[2], 2555 getMDString(Record[3]), getMDString(Record[4]))), 2556 NextMetadataNo++); 2557 break; 2558 } 2559 case bitc::METADATA_MACRO_FILE: { 2560 if (Record.size() != 5) 2561 return error("Invalid record"); 2562 2563 IsDistinct = Record[0]; 2564 MetadataList.assignValue( 2565 GET_OR_DISTINCT(DIMacroFile, 2566 (Context, Record[1], Record[2], 2567 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2568 NextMetadataNo++); 2569 break; 2570 } 2571 case bitc::METADATA_TEMPLATE_TYPE: { 2572 if (Record.size() != 3) 2573 return error("Invalid record"); 2574 2575 IsDistinct = Record[0]; 2576 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2577 (Context, getMDString(Record[1]), 2578 getDITypeRefOrNull(Record[2]))), 2579 NextMetadataNo++); 2580 break; 2581 } 2582 case bitc::METADATA_TEMPLATE_VALUE: { 2583 if (Record.size() != 5) 2584 return error("Invalid record"); 2585 2586 IsDistinct = Record[0]; 2587 MetadataList.assignValue( 2588 GET_OR_DISTINCT(DITemplateValueParameter, 2589 (Context, Record[1], getMDString(Record[2]), 2590 getDITypeRefOrNull(Record[3]), 2591 getMDOrNull(Record[4]))), 2592 NextMetadataNo++); 2593 break; 2594 } 2595 case bitc::METADATA_GLOBAL_VAR: { 2596 if (Record.size() != 11) 2597 return error("Invalid record"); 2598 2599 IsDistinct = Record[0]; 2600 MetadataList.assignValue( 2601 GET_OR_DISTINCT(DIGlobalVariable, 2602 (Context, getMDOrNull(Record[1]), 2603 getMDString(Record[2]), getMDString(Record[3]), 2604 getMDOrNull(Record[4]), Record[5], 2605 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2606 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2607 NextMetadataNo++); 2608 break; 2609 } 2610 case bitc::METADATA_LOCAL_VAR: { 2611 // 10th field is for the obseleted 'inlinedAt:' field. 2612 if (Record.size() < 8 || Record.size() > 10) 2613 return error("Invalid record"); 2614 2615 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2616 // DW_TAG_arg_variable. 2617 IsDistinct = Record[0]; 2618 bool HasTag = Record.size() > 8; 2619 MetadataList.assignValue( 2620 GET_OR_DISTINCT(DILocalVariable, 2621 (Context, getMDOrNull(Record[1 + HasTag]), 2622 getMDString(Record[2 + HasTag]), 2623 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2624 getDITypeRefOrNull(Record[5 + HasTag]), 2625 Record[6 + HasTag], Record[7 + HasTag])), 2626 NextMetadataNo++); 2627 break; 2628 } 2629 case bitc::METADATA_EXPRESSION: { 2630 if (Record.size() < 1) 2631 return error("Invalid record"); 2632 2633 IsDistinct = Record[0]; 2634 MetadataList.assignValue( 2635 GET_OR_DISTINCT(DIExpression, 2636 (Context, makeArrayRef(Record).slice(1))), 2637 NextMetadataNo++); 2638 break; 2639 } 2640 case bitc::METADATA_OBJC_PROPERTY: { 2641 if (Record.size() != 8) 2642 return error("Invalid record"); 2643 2644 IsDistinct = Record[0]; 2645 MetadataList.assignValue( 2646 GET_OR_DISTINCT(DIObjCProperty, 2647 (Context, getMDString(Record[1]), 2648 getMDOrNull(Record[2]), Record[3], 2649 getMDString(Record[4]), getMDString(Record[5]), 2650 Record[6], getDITypeRefOrNull(Record[7]))), 2651 NextMetadataNo++); 2652 break; 2653 } 2654 case bitc::METADATA_IMPORTED_ENTITY: { 2655 if (Record.size() != 6) 2656 return error("Invalid record"); 2657 2658 IsDistinct = Record[0]; 2659 MetadataList.assignValue( 2660 GET_OR_DISTINCT(DIImportedEntity, 2661 (Context, Record[1], getMDOrNull(Record[2]), 2662 getDITypeRefOrNull(Record[3]), Record[4], 2663 getMDString(Record[5]))), 2664 NextMetadataNo++); 2665 break; 2666 } 2667 case bitc::METADATA_STRING_OLD: { 2668 std::string String(Record.begin(), Record.end()); 2669 2670 // Test for upgrading !llvm.loop. 2671 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2672 2673 Metadata *MD = MDString::get(Context, String); 2674 MetadataList.assignValue(MD, NextMetadataNo++); 2675 break; 2676 } 2677 case bitc::METADATA_STRINGS: 2678 if (std::error_code EC = 2679 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2680 return EC; 2681 break; 2682 case bitc::METADATA_KIND: { 2683 // Support older bitcode files that had METADATA_KIND records in a 2684 // block with METADATA_BLOCK_ID. 2685 if (std::error_code EC = parseMetadataKindRecord(Record)) 2686 return EC; 2687 break; 2688 } 2689 } 2690 } 2691 #undef GET_OR_DISTINCT 2692 } 2693 2694 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2695 std::error_code BitcodeReader::parseMetadataKinds() { 2696 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2697 return error("Invalid record"); 2698 2699 SmallVector<uint64_t, 64> Record; 2700 2701 // Read all the records. 2702 while (1) { 2703 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2704 2705 switch (Entry.Kind) { 2706 case BitstreamEntry::SubBlock: // Handled for us already. 2707 case BitstreamEntry::Error: 2708 return error("Malformed block"); 2709 case BitstreamEntry::EndBlock: 2710 return std::error_code(); 2711 case BitstreamEntry::Record: 2712 // The interesting case. 2713 break; 2714 } 2715 2716 // Read a record. 2717 Record.clear(); 2718 unsigned Code = Stream.readRecord(Entry.ID, Record); 2719 switch (Code) { 2720 default: // Default behavior: ignore. 2721 break; 2722 case bitc::METADATA_KIND: { 2723 if (std::error_code EC = parseMetadataKindRecord(Record)) 2724 return EC; 2725 break; 2726 } 2727 } 2728 } 2729 } 2730 2731 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2732 /// encoding. 2733 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2734 if ((V & 1) == 0) 2735 return V >> 1; 2736 if (V != 1) 2737 return -(V >> 1); 2738 // There is no such thing as -0 with integers. "-0" really means MININT. 2739 return 1ULL << 63; 2740 } 2741 2742 /// Resolve all of the initializers for global values and aliases that we can. 2743 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2744 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2745 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2746 IndirectSymbolInitWorklist; 2747 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2748 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2749 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2750 2751 GlobalInitWorklist.swap(GlobalInits); 2752 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2753 FunctionPrefixWorklist.swap(FunctionPrefixes); 2754 FunctionPrologueWorklist.swap(FunctionPrologues); 2755 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2756 2757 while (!GlobalInitWorklist.empty()) { 2758 unsigned ValID = GlobalInitWorklist.back().second; 2759 if (ValID >= ValueList.size()) { 2760 // Not ready to resolve this yet, it requires something later in the file. 2761 GlobalInits.push_back(GlobalInitWorklist.back()); 2762 } else { 2763 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2764 GlobalInitWorklist.back().first->setInitializer(C); 2765 else 2766 return error("Expected a constant"); 2767 } 2768 GlobalInitWorklist.pop_back(); 2769 } 2770 2771 while (!IndirectSymbolInitWorklist.empty()) { 2772 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2773 if (ValID >= ValueList.size()) { 2774 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2775 } else { 2776 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2777 if (!C) 2778 return error("Expected a constant"); 2779 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2780 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2781 return error("Alias and aliasee types don't match"); 2782 GIS->setIndirectSymbol(C); 2783 } 2784 IndirectSymbolInitWorklist.pop_back(); 2785 } 2786 2787 while (!FunctionPrefixWorklist.empty()) { 2788 unsigned ValID = FunctionPrefixWorklist.back().second; 2789 if (ValID >= ValueList.size()) { 2790 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2791 } else { 2792 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2793 FunctionPrefixWorklist.back().first->setPrefixData(C); 2794 else 2795 return error("Expected a constant"); 2796 } 2797 FunctionPrefixWorklist.pop_back(); 2798 } 2799 2800 while (!FunctionPrologueWorklist.empty()) { 2801 unsigned ValID = FunctionPrologueWorklist.back().second; 2802 if (ValID >= ValueList.size()) { 2803 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2804 } else { 2805 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2806 FunctionPrologueWorklist.back().first->setPrologueData(C); 2807 else 2808 return error("Expected a constant"); 2809 } 2810 FunctionPrologueWorklist.pop_back(); 2811 } 2812 2813 while (!FunctionPersonalityFnWorklist.empty()) { 2814 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2815 if (ValID >= ValueList.size()) { 2816 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2817 } else { 2818 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2819 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2820 else 2821 return error("Expected a constant"); 2822 } 2823 FunctionPersonalityFnWorklist.pop_back(); 2824 } 2825 2826 return std::error_code(); 2827 } 2828 2829 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2830 SmallVector<uint64_t, 8> Words(Vals.size()); 2831 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2832 BitcodeReader::decodeSignRotatedValue); 2833 2834 return APInt(TypeBits, Words); 2835 } 2836 2837 std::error_code BitcodeReader::parseConstants() { 2838 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2839 return error("Invalid record"); 2840 2841 SmallVector<uint64_t, 64> Record; 2842 2843 // Read all the records for this value table. 2844 Type *CurTy = Type::getInt32Ty(Context); 2845 unsigned NextCstNo = ValueList.size(); 2846 while (1) { 2847 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2848 2849 switch (Entry.Kind) { 2850 case BitstreamEntry::SubBlock: // Handled for us already. 2851 case BitstreamEntry::Error: 2852 return error("Malformed block"); 2853 case BitstreamEntry::EndBlock: 2854 if (NextCstNo != ValueList.size()) 2855 return error("Invalid constant reference"); 2856 2857 // Once all the constants have been read, go through and resolve forward 2858 // references. 2859 ValueList.resolveConstantForwardRefs(); 2860 return std::error_code(); 2861 case BitstreamEntry::Record: 2862 // The interesting case. 2863 break; 2864 } 2865 2866 // Read a record. 2867 Record.clear(); 2868 Value *V = nullptr; 2869 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2870 switch (BitCode) { 2871 default: // Default behavior: unknown constant 2872 case bitc::CST_CODE_UNDEF: // UNDEF 2873 V = UndefValue::get(CurTy); 2874 break; 2875 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2876 if (Record.empty()) 2877 return error("Invalid record"); 2878 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2879 return error("Invalid record"); 2880 CurTy = TypeList[Record[0]]; 2881 continue; // Skip the ValueList manipulation. 2882 case bitc::CST_CODE_NULL: // NULL 2883 V = Constant::getNullValue(CurTy); 2884 break; 2885 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2886 if (!CurTy->isIntegerTy() || Record.empty()) 2887 return error("Invalid record"); 2888 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2889 break; 2890 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2891 if (!CurTy->isIntegerTy() || Record.empty()) 2892 return error("Invalid record"); 2893 2894 APInt VInt = 2895 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2896 V = ConstantInt::get(Context, VInt); 2897 2898 break; 2899 } 2900 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2901 if (Record.empty()) 2902 return error("Invalid record"); 2903 if (CurTy->isHalfTy()) 2904 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2905 APInt(16, (uint16_t)Record[0]))); 2906 else if (CurTy->isFloatTy()) 2907 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2908 APInt(32, (uint32_t)Record[0]))); 2909 else if (CurTy->isDoubleTy()) 2910 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2911 APInt(64, Record[0]))); 2912 else if (CurTy->isX86_FP80Ty()) { 2913 // Bits are not stored the same way as a normal i80 APInt, compensate. 2914 uint64_t Rearrange[2]; 2915 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2916 Rearrange[1] = Record[0] >> 48; 2917 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2918 APInt(80, Rearrange))); 2919 } else if (CurTy->isFP128Ty()) 2920 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2921 APInt(128, Record))); 2922 else if (CurTy->isPPC_FP128Ty()) 2923 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2924 APInt(128, Record))); 2925 else 2926 V = UndefValue::get(CurTy); 2927 break; 2928 } 2929 2930 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2931 if (Record.empty()) 2932 return error("Invalid record"); 2933 2934 unsigned Size = Record.size(); 2935 SmallVector<Constant*, 16> Elts; 2936 2937 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2938 for (unsigned i = 0; i != Size; ++i) 2939 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2940 STy->getElementType(i))); 2941 V = ConstantStruct::get(STy, Elts); 2942 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2943 Type *EltTy = ATy->getElementType(); 2944 for (unsigned i = 0; i != Size; ++i) 2945 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2946 V = ConstantArray::get(ATy, Elts); 2947 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2948 Type *EltTy = VTy->getElementType(); 2949 for (unsigned i = 0; i != Size; ++i) 2950 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2951 V = ConstantVector::get(Elts); 2952 } else { 2953 V = UndefValue::get(CurTy); 2954 } 2955 break; 2956 } 2957 case bitc::CST_CODE_STRING: // STRING: [values] 2958 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2959 if (Record.empty()) 2960 return error("Invalid record"); 2961 2962 SmallString<16> Elts(Record.begin(), Record.end()); 2963 V = ConstantDataArray::getString(Context, Elts, 2964 BitCode == bitc::CST_CODE_CSTRING); 2965 break; 2966 } 2967 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2968 if (Record.empty()) 2969 return error("Invalid record"); 2970 2971 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2972 if (EltTy->isIntegerTy(8)) { 2973 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2974 if (isa<VectorType>(CurTy)) 2975 V = ConstantDataVector::get(Context, Elts); 2976 else 2977 V = ConstantDataArray::get(Context, Elts); 2978 } else if (EltTy->isIntegerTy(16)) { 2979 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2980 if (isa<VectorType>(CurTy)) 2981 V = ConstantDataVector::get(Context, Elts); 2982 else 2983 V = ConstantDataArray::get(Context, Elts); 2984 } else if (EltTy->isIntegerTy(32)) { 2985 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2986 if (isa<VectorType>(CurTy)) 2987 V = ConstantDataVector::get(Context, Elts); 2988 else 2989 V = ConstantDataArray::get(Context, Elts); 2990 } else if (EltTy->isIntegerTy(64)) { 2991 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2992 if (isa<VectorType>(CurTy)) 2993 V = ConstantDataVector::get(Context, Elts); 2994 else 2995 V = ConstantDataArray::get(Context, Elts); 2996 } else if (EltTy->isHalfTy()) { 2997 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2998 if (isa<VectorType>(CurTy)) 2999 V = ConstantDataVector::getFP(Context, Elts); 3000 else 3001 V = ConstantDataArray::getFP(Context, Elts); 3002 } else if (EltTy->isFloatTy()) { 3003 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3004 if (isa<VectorType>(CurTy)) 3005 V = ConstantDataVector::getFP(Context, Elts); 3006 else 3007 V = ConstantDataArray::getFP(Context, Elts); 3008 } else if (EltTy->isDoubleTy()) { 3009 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3010 if (isa<VectorType>(CurTy)) 3011 V = ConstantDataVector::getFP(Context, Elts); 3012 else 3013 V = ConstantDataArray::getFP(Context, Elts); 3014 } else { 3015 return error("Invalid type for value"); 3016 } 3017 break; 3018 } 3019 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3020 if (Record.size() < 3) 3021 return error("Invalid record"); 3022 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3023 if (Opc < 0) { 3024 V = UndefValue::get(CurTy); // Unknown binop. 3025 } else { 3026 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3027 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3028 unsigned Flags = 0; 3029 if (Record.size() >= 4) { 3030 if (Opc == Instruction::Add || 3031 Opc == Instruction::Sub || 3032 Opc == Instruction::Mul || 3033 Opc == Instruction::Shl) { 3034 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3035 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3036 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3037 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3038 } else if (Opc == Instruction::SDiv || 3039 Opc == Instruction::UDiv || 3040 Opc == Instruction::LShr || 3041 Opc == Instruction::AShr) { 3042 if (Record[3] & (1 << bitc::PEO_EXACT)) 3043 Flags |= SDivOperator::IsExact; 3044 } 3045 } 3046 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3047 } 3048 break; 3049 } 3050 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3051 if (Record.size() < 3) 3052 return error("Invalid record"); 3053 int Opc = getDecodedCastOpcode(Record[0]); 3054 if (Opc < 0) { 3055 V = UndefValue::get(CurTy); // Unknown cast. 3056 } else { 3057 Type *OpTy = getTypeByID(Record[1]); 3058 if (!OpTy) 3059 return error("Invalid record"); 3060 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3061 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3062 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3063 } 3064 break; 3065 } 3066 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3067 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3068 unsigned OpNum = 0; 3069 Type *PointeeType = nullptr; 3070 if (Record.size() % 2) 3071 PointeeType = getTypeByID(Record[OpNum++]); 3072 SmallVector<Constant*, 16> Elts; 3073 while (OpNum != Record.size()) { 3074 Type *ElTy = getTypeByID(Record[OpNum++]); 3075 if (!ElTy) 3076 return error("Invalid record"); 3077 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3078 } 3079 3080 if (PointeeType && 3081 PointeeType != 3082 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3083 ->getElementType()) 3084 return error("Explicit gep operator type does not match pointee type " 3085 "of pointer operand"); 3086 3087 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3088 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3089 BitCode == 3090 bitc::CST_CODE_CE_INBOUNDS_GEP); 3091 break; 3092 } 3093 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3094 if (Record.size() < 3) 3095 return error("Invalid record"); 3096 3097 Type *SelectorTy = Type::getInt1Ty(Context); 3098 3099 // The selector might be an i1 or an <n x i1> 3100 // Get the type from the ValueList before getting a forward ref. 3101 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3102 if (Value *V = ValueList[Record[0]]) 3103 if (SelectorTy != V->getType()) 3104 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3105 3106 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3107 SelectorTy), 3108 ValueList.getConstantFwdRef(Record[1],CurTy), 3109 ValueList.getConstantFwdRef(Record[2],CurTy)); 3110 break; 3111 } 3112 case bitc::CST_CODE_CE_EXTRACTELT 3113 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3114 if (Record.size() < 3) 3115 return error("Invalid record"); 3116 VectorType *OpTy = 3117 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3118 if (!OpTy) 3119 return error("Invalid record"); 3120 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3121 Constant *Op1 = nullptr; 3122 if (Record.size() == 4) { 3123 Type *IdxTy = getTypeByID(Record[2]); 3124 if (!IdxTy) 3125 return error("Invalid record"); 3126 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3127 } else // TODO: Remove with llvm 4.0 3128 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3129 if (!Op1) 3130 return error("Invalid record"); 3131 V = ConstantExpr::getExtractElement(Op0, Op1); 3132 break; 3133 } 3134 case bitc::CST_CODE_CE_INSERTELT 3135 : { // CE_INSERTELT: [opval, opval, opty, opval] 3136 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3137 if (Record.size() < 3 || !OpTy) 3138 return error("Invalid record"); 3139 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3140 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3141 OpTy->getElementType()); 3142 Constant *Op2 = nullptr; 3143 if (Record.size() == 4) { 3144 Type *IdxTy = getTypeByID(Record[2]); 3145 if (!IdxTy) 3146 return error("Invalid record"); 3147 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3148 } else // TODO: Remove with llvm 4.0 3149 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3150 if (!Op2) 3151 return error("Invalid record"); 3152 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3153 break; 3154 } 3155 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3156 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3157 if (Record.size() < 3 || !OpTy) 3158 return error("Invalid record"); 3159 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3160 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3161 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3162 OpTy->getNumElements()); 3163 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3164 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3165 break; 3166 } 3167 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3168 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3169 VectorType *OpTy = 3170 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3171 if (Record.size() < 4 || !RTy || !OpTy) 3172 return error("Invalid record"); 3173 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3174 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3175 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3176 RTy->getNumElements()); 3177 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3178 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3179 break; 3180 } 3181 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3182 if (Record.size() < 4) 3183 return error("Invalid record"); 3184 Type *OpTy = getTypeByID(Record[0]); 3185 if (!OpTy) 3186 return error("Invalid record"); 3187 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3188 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3189 3190 if (OpTy->isFPOrFPVectorTy()) 3191 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3192 else 3193 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3194 break; 3195 } 3196 // This maintains backward compatibility, pre-asm dialect keywords. 3197 // FIXME: Remove with the 4.0 release. 3198 case bitc::CST_CODE_INLINEASM_OLD: { 3199 if (Record.size() < 2) 3200 return error("Invalid record"); 3201 std::string AsmStr, ConstrStr; 3202 bool HasSideEffects = Record[0] & 1; 3203 bool IsAlignStack = Record[0] >> 1; 3204 unsigned AsmStrSize = Record[1]; 3205 if (2+AsmStrSize >= Record.size()) 3206 return error("Invalid record"); 3207 unsigned ConstStrSize = Record[2+AsmStrSize]; 3208 if (3+AsmStrSize+ConstStrSize > Record.size()) 3209 return error("Invalid record"); 3210 3211 for (unsigned i = 0; i != AsmStrSize; ++i) 3212 AsmStr += (char)Record[2+i]; 3213 for (unsigned i = 0; i != ConstStrSize; ++i) 3214 ConstrStr += (char)Record[3+AsmStrSize+i]; 3215 PointerType *PTy = cast<PointerType>(CurTy); 3216 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3217 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3218 break; 3219 } 3220 // This version adds support for the asm dialect keywords (e.g., 3221 // inteldialect). 3222 case bitc::CST_CODE_INLINEASM: { 3223 if (Record.size() < 2) 3224 return error("Invalid record"); 3225 std::string AsmStr, ConstrStr; 3226 bool HasSideEffects = Record[0] & 1; 3227 bool IsAlignStack = (Record[0] >> 1) & 1; 3228 unsigned AsmDialect = Record[0] >> 2; 3229 unsigned AsmStrSize = Record[1]; 3230 if (2+AsmStrSize >= Record.size()) 3231 return error("Invalid record"); 3232 unsigned ConstStrSize = Record[2+AsmStrSize]; 3233 if (3+AsmStrSize+ConstStrSize > Record.size()) 3234 return error("Invalid record"); 3235 3236 for (unsigned i = 0; i != AsmStrSize; ++i) 3237 AsmStr += (char)Record[2+i]; 3238 for (unsigned i = 0; i != ConstStrSize; ++i) 3239 ConstrStr += (char)Record[3+AsmStrSize+i]; 3240 PointerType *PTy = cast<PointerType>(CurTy); 3241 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3242 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3243 InlineAsm::AsmDialect(AsmDialect)); 3244 break; 3245 } 3246 case bitc::CST_CODE_BLOCKADDRESS:{ 3247 if (Record.size() < 3) 3248 return error("Invalid record"); 3249 Type *FnTy = getTypeByID(Record[0]); 3250 if (!FnTy) 3251 return error("Invalid record"); 3252 Function *Fn = 3253 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3254 if (!Fn) 3255 return error("Invalid record"); 3256 3257 // If the function is already parsed we can insert the block address right 3258 // away. 3259 BasicBlock *BB; 3260 unsigned BBID = Record[2]; 3261 if (!BBID) 3262 // Invalid reference to entry block. 3263 return error("Invalid ID"); 3264 if (!Fn->empty()) { 3265 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3266 for (size_t I = 0, E = BBID; I != E; ++I) { 3267 if (BBI == BBE) 3268 return error("Invalid ID"); 3269 ++BBI; 3270 } 3271 BB = &*BBI; 3272 } else { 3273 // Otherwise insert a placeholder and remember it so it can be inserted 3274 // when the function is parsed. 3275 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3276 if (FwdBBs.empty()) 3277 BasicBlockFwdRefQueue.push_back(Fn); 3278 if (FwdBBs.size() < BBID + 1) 3279 FwdBBs.resize(BBID + 1); 3280 if (!FwdBBs[BBID]) 3281 FwdBBs[BBID] = BasicBlock::Create(Context); 3282 BB = FwdBBs[BBID]; 3283 } 3284 V = BlockAddress::get(Fn, BB); 3285 break; 3286 } 3287 } 3288 3289 ValueList.assignValue(V, NextCstNo); 3290 ++NextCstNo; 3291 } 3292 } 3293 3294 std::error_code BitcodeReader::parseUseLists() { 3295 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3296 return error("Invalid record"); 3297 3298 // Read all the records. 3299 SmallVector<uint64_t, 64> Record; 3300 while (1) { 3301 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3302 3303 switch (Entry.Kind) { 3304 case BitstreamEntry::SubBlock: // Handled for us already. 3305 case BitstreamEntry::Error: 3306 return error("Malformed block"); 3307 case BitstreamEntry::EndBlock: 3308 return std::error_code(); 3309 case BitstreamEntry::Record: 3310 // The interesting case. 3311 break; 3312 } 3313 3314 // Read a use list record. 3315 Record.clear(); 3316 bool IsBB = false; 3317 switch (Stream.readRecord(Entry.ID, Record)) { 3318 default: // Default behavior: unknown type. 3319 break; 3320 case bitc::USELIST_CODE_BB: 3321 IsBB = true; 3322 // fallthrough 3323 case bitc::USELIST_CODE_DEFAULT: { 3324 unsigned RecordLength = Record.size(); 3325 if (RecordLength < 3) 3326 // Records should have at least an ID and two indexes. 3327 return error("Invalid record"); 3328 unsigned ID = Record.back(); 3329 Record.pop_back(); 3330 3331 Value *V; 3332 if (IsBB) { 3333 assert(ID < FunctionBBs.size() && "Basic block not found"); 3334 V = FunctionBBs[ID]; 3335 } else 3336 V = ValueList[ID]; 3337 unsigned NumUses = 0; 3338 SmallDenseMap<const Use *, unsigned, 16> Order; 3339 for (const Use &U : V->materialized_uses()) { 3340 if (++NumUses > Record.size()) 3341 break; 3342 Order[&U] = Record[NumUses - 1]; 3343 } 3344 if (Order.size() != Record.size() || NumUses > Record.size()) 3345 // Mismatches can happen if the functions are being materialized lazily 3346 // (out-of-order), or a value has been upgraded. 3347 break; 3348 3349 V->sortUseList([&](const Use &L, const Use &R) { 3350 return Order.lookup(&L) < Order.lookup(&R); 3351 }); 3352 break; 3353 } 3354 } 3355 } 3356 } 3357 3358 /// When we see the block for metadata, remember where it is and then skip it. 3359 /// This lets us lazily deserialize the metadata. 3360 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3361 // Save the current stream state. 3362 uint64_t CurBit = Stream.GetCurrentBitNo(); 3363 DeferredMetadataInfo.push_back(CurBit); 3364 3365 // Skip over the block for now. 3366 if (Stream.SkipBlock()) 3367 return error("Invalid record"); 3368 return std::error_code(); 3369 } 3370 3371 std::error_code BitcodeReader::materializeMetadata() { 3372 for (uint64_t BitPos : DeferredMetadataInfo) { 3373 // Move the bit stream to the saved position. 3374 Stream.JumpToBit(BitPos); 3375 if (std::error_code EC = parseMetadata(true)) 3376 return EC; 3377 } 3378 DeferredMetadataInfo.clear(); 3379 return std::error_code(); 3380 } 3381 3382 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3383 3384 /// When we see the block for a function body, remember where it is and then 3385 /// skip it. This lets us lazily deserialize the functions. 3386 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3387 // Get the function we are talking about. 3388 if (FunctionsWithBodies.empty()) 3389 return error("Insufficient function protos"); 3390 3391 Function *Fn = FunctionsWithBodies.back(); 3392 FunctionsWithBodies.pop_back(); 3393 3394 // Save the current stream state. 3395 uint64_t CurBit = Stream.GetCurrentBitNo(); 3396 assert( 3397 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3398 "Mismatch between VST and scanned function offsets"); 3399 DeferredFunctionInfo[Fn] = CurBit; 3400 3401 // Skip over the function block for now. 3402 if (Stream.SkipBlock()) 3403 return error("Invalid record"); 3404 return std::error_code(); 3405 } 3406 3407 std::error_code BitcodeReader::globalCleanup() { 3408 // Patch the initializers for globals and aliases up. 3409 resolveGlobalAndIndirectSymbolInits(); 3410 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3411 return error("Malformed global initializer set"); 3412 3413 // Look for intrinsic functions which need to be upgraded at some point 3414 for (Function &F : *TheModule) { 3415 Function *NewFn; 3416 if (UpgradeIntrinsicFunction(&F, NewFn)) 3417 UpgradedIntrinsics[&F] = NewFn; 3418 } 3419 3420 // Look for global variables which need to be renamed. 3421 for (GlobalVariable &GV : TheModule->globals()) 3422 UpgradeGlobalVariable(&GV); 3423 3424 // Force deallocation of memory for these vectors to favor the client that 3425 // want lazy deserialization. 3426 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3427 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3428 IndirectSymbolInits); 3429 return std::error_code(); 3430 } 3431 3432 /// Support for lazy parsing of function bodies. This is required if we 3433 /// either have an old bitcode file without a VST forward declaration record, 3434 /// or if we have an anonymous function being materialized, since anonymous 3435 /// functions do not have a name and are therefore not in the VST. 3436 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3437 Stream.JumpToBit(NextUnreadBit); 3438 3439 if (Stream.AtEndOfStream()) 3440 return error("Could not find function in stream"); 3441 3442 if (!SeenFirstFunctionBody) 3443 return error("Trying to materialize functions before seeing function blocks"); 3444 3445 // An old bitcode file with the symbol table at the end would have 3446 // finished the parse greedily. 3447 assert(SeenValueSymbolTable); 3448 3449 SmallVector<uint64_t, 64> Record; 3450 3451 while (1) { 3452 BitstreamEntry Entry = Stream.advance(); 3453 switch (Entry.Kind) { 3454 default: 3455 return error("Expect SubBlock"); 3456 case BitstreamEntry::SubBlock: 3457 switch (Entry.ID) { 3458 default: 3459 return error("Expect function block"); 3460 case bitc::FUNCTION_BLOCK_ID: 3461 if (std::error_code EC = rememberAndSkipFunctionBody()) 3462 return EC; 3463 NextUnreadBit = Stream.GetCurrentBitNo(); 3464 return std::error_code(); 3465 } 3466 } 3467 } 3468 } 3469 3470 std::error_code BitcodeReader::parseBitcodeVersion() { 3471 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3472 return error("Invalid record"); 3473 3474 // Read all the records. 3475 SmallVector<uint64_t, 64> Record; 3476 while (1) { 3477 BitstreamEntry Entry = Stream.advance(); 3478 3479 switch (Entry.Kind) { 3480 default: 3481 case BitstreamEntry::Error: 3482 return error("Malformed block"); 3483 case BitstreamEntry::EndBlock: 3484 return std::error_code(); 3485 case BitstreamEntry::Record: 3486 // The interesting case. 3487 break; 3488 } 3489 3490 // Read a record. 3491 Record.clear(); 3492 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3493 switch (BitCode) { 3494 default: // Default behavior: reject 3495 return error("Invalid value"); 3496 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3497 // N] 3498 convertToString(Record, 0, ProducerIdentification); 3499 break; 3500 } 3501 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3502 unsigned epoch = (unsigned)Record[0]; 3503 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3504 return error( 3505 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3506 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3507 } 3508 } 3509 } 3510 } 3511 } 3512 3513 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3514 bool ShouldLazyLoadMetadata) { 3515 if (ResumeBit) 3516 Stream.JumpToBit(ResumeBit); 3517 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3518 return error("Invalid record"); 3519 3520 SmallVector<uint64_t, 64> Record; 3521 std::vector<std::string> SectionTable; 3522 std::vector<std::string> GCTable; 3523 3524 // Read all the records for this module. 3525 while (1) { 3526 BitstreamEntry Entry = Stream.advance(); 3527 3528 switch (Entry.Kind) { 3529 case BitstreamEntry::Error: 3530 return error("Malformed block"); 3531 case BitstreamEntry::EndBlock: 3532 return globalCleanup(); 3533 3534 case BitstreamEntry::SubBlock: 3535 switch (Entry.ID) { 3536 default: // Skip unknown content. 3537 if (Stream.SkipBlock()) 3538 return error("Invalid record"); 3539 break; 3540 case bitc::BLOCKINFO_BLOCK_ID: 3541 if (Stream.ReadBlockInfoBlock()) 3542 return error("Malformed block"); 3543 break; 3544 case bitc::PARAMATTR_BLOCK_ID: 3545 if (std::error_code EC = parseAttributeBlock()) 3546 return EC; 3547 break; 3548 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3549 if (std::error_code EC = parseAttributeGroupBlock()) 3550 return EC; 3551 break; 3552 case bitc::TYPE_BLOCK_ID_NEW: 3553 if (std::error_code EC = parseTypeTable()) 3554 return EC; 3555 break; 3556 case bitc::VALUE_SYMTAB_BLOCK_ID: 3557 if (!SeenValueSymbolTable) { 3558 // Either this is an old form VST without function index and an 3559 // associated VST forward declaration record (which would have caused 3560 // the VST to be jumped to and parsed before it was encountered 3561 // normally in the stream), or there were no function blocks to 3562 // trigger an earlier parsing of the VST. 3563 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3564 if (std::error_code EC = parseValueSymbolTable()) 3565 return EC; 3566 SeenValueSymbolTable = true; 3567 } else { 3568 // We must have had a VST forward declaration record, which caused 3569 // the parser to jump to and parse the VST earlier. 3570 assert(VSTOffset > 0); 3571 if (Stream.SkipBlock()) 3572 return error("Invalid record"); 3573 } 3574 break; 3575 case bitc::CONSTANTS_BLOCK_ID: 3576 if (std::error_code EC = parseConstants()) 3577 return EC; 3578 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3579 return EC; 3580 break; 3581 case bitc::METADATA_BLOCK_ID: 3582 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3583 if (std::error_code EC = rememberAndSkipMetadata()) 3584 return EC; 3585 break; 3586 } 3587 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3588 if (std::error_code EC = parseMetadata(true)) 3589 return EC; 3590 break; 3591 case bitc::METADATA_KIND_BLOCK_ID: 3592 if (std::error_code EC = parseMetadataKinds()) 3593 return EC; 3594 break; 3595 case bitc::FUNCTION_BLOCK_ID: 3596 // If this is the first function body we've seen, reverse the 3597 // FunctionsWithBodies list. 3598 if (!SeenFirstFunctionBody) { 3599 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3600 if (std::error_code EC = globalCleanup()) 3601 return EC; 3602 SeenFirstFunctionBody = true; 3603 } 3604 3605 if (VSTOffset > 0) { 3606 // If we have a VST forward declaration record, make sure we 3607 // parse the VST now if we haven't already. It is needed to 3608 // set up the DeferredFunctionInfo vector for lazy reading. 3609 if (!SeenValueSymbolTable) { 3610 if (std::error_code EC = 3611 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3612 return EC; 3613 SeenValueSymbolTable = true; 3614 // Fall through so that we record the NextUnreadBit below. 3615 // This is necessary in case we have an anonymous function that 3616 // is later materialized. Since it will not have a VST entry we 3617 // need to fall back to the lazy parse to find its offset. 3618 } else { 3619 // If we have a VST forward declaration record, but have already 3620 // parsed the VST (just above, when the first function body was 3621 // encountered here), then we are resuming the parse after 3622 // materializing functions. The ResumeBit points to the 3623 // start of the last function block recorded in the 3624 // DeferredFunctionInfo map. Skip it. 3625 if (Stream.SkipBlock()) 3626 return error("Invalid record"); 3627 continue; 3628 } 3629 } 3630 3631 // Support older bitcode files that did not have the function 3632 // index in the VST, nor a VST forward declaration record, as 3633 // well as anonymous functions that do not have VST entries. 3634 // Build the DeferredFunctionInfo vector on the fly. 3635 if (std::error_code EC = rememberAndSkipFunctionBody()) 3636 return EC; 3637 3638 // Suspend parsing when we reach the function bodies. Subsequent 3639 // materialization calls will resume it when necessary. If the bitcode 3640 // file is old, the symbol table will be at the end instead and will not 3641 // have been seen yet. In this case, just finish the parse now. 3642 if (SeenValueSymbolTable) { 3643 NextUnreadBit = Stream.GetCurrentBitNo(); 3644 return std::error_code(); 3645 } 3646 break; 3647 case bitc::USELIST_BLOCK_ID: 3648 if (std::error_code EC = parseUseLists()) 3649 return EC; 3650 break; 3651 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3652 if (std::error_code EC = parseOperandBundleTags()) 3653 return EC; 3654 break; 3655 } 3656 continue; 3657 3658 case BitstreamEntry::Record: 3659 // The interesting case. 3660 break; 3661 } 3662 3663 // Read a record. 3664 auto BitCode = Stream.readRecord(Entry.ID, Record); 3665 switch (BitCode) { 3666 default: break; // Default behavior, ignore unknown content. 3667 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3668 if (Record.size() < 1) 3669 return error("Invalid record"); 3670 // Only version #0 and #1 are supported so far. 3671 unsigned module_version = Record[0]; 3672 switch (module_version) { 3673 default: 3674 return error("Invalid value"); 3675 case 0: 3676 UseRelativeIDs = false; 3677 break; 3678 case 1: 3679 UseRelativeIDs = true; 3680 break; 3681 } 3682 break; 3683 } 3684 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3685 std::string S; 3686 if (convertToString(Record, 0, S)) 3687 return error("Invalid record"); 3688 TheModule->setTargetTriple(S); 3689 break; 3690 } 3691 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3692 std::string S; 3693 if (convertToString(Record, 0, S)) 3694 return error("Invalid record"); 3695 TheModule->setDataLayout(S); 3696 break; 3697 } 3698 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3699 std::string S; 3700 if (convertToString(Record, 0, S)) 3701 return error("Invalid record"); 3702 TheModule->setModuleInlineAsm(S); 3703 break; 3704 } 3705 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3706 // FIXME: Remove in 4.0. 3707 std::string S; 3708 if (convertToString(Record, 0, S)) 3709 return error("Invalid record"); 3710 // Ignore value. 3711 break; 3712 } 3713 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3714 std::string S; 3715 if (convertToString(Record, 0, S)) 3716 return error("Invalid record"); 3717 SectionTable.push_back(S); 3718 break; 3719 } 3720 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3721 std::string S; 3722 if (convertToString(Record, 0, S)) 3723 return error("Invalid record"); 3724 GCTable.push_back(S); 3725 break; 3726 } 3727 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3728 if (Record.size() < 2) 3729 return error("Invalid record"); 3730 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3731 unsigned ComdatNameSize = Record[1]; 3732 std::string ComdatName; 3733 ComdatName.reserve(ComdatNameSize); 3734 for (unsigned i = 0; i != ComdatNameSize; ++i) 3735 ComdatName += (char)Record[2 + i]; 3736 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3737 C->setSelectionKind(SK); 3738 ComdatList.push_back(C); 3739 break; 3740 } 3741 // GLOBALVAR: [pointer type, isconst, initid, 3742 // linkage, alignment, section, visibility, threadlocal, 3743 // unnamed_addr, externally_initialized, dllstorageclass, 3744 // comdat] 3745 case bitc::MODULE_CODE_GLOBALVAR: { 3746 if (Record.size() < 6) 3747 return error("Invalid record"); 3748 Type *Ty = getTypeByID(Record[0]); 3749 if (!Ty) 3750 return error("Invalid record"); 3751 bool isConstant = Record[1] & 1; 3752 bool explicitType = Record[1] & 2; 3753 unsigned AddressSpace; 3754 if (explicitType) { 3755 AddressSpace = Record[1] >> 2; 3756 } else { 3757 if (!Ty->isPointerTy()) 3758 return error("Invalid type for value"); 3759 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3760 Ty = cast<PointerType>(Ty)->getElementType(); 3761 } 3762 3763 uint64_t RawLinkage = Record[3]; 3764 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3765 unsigned Alignment; 3766 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3767 return EC; 3768 std::string Section; 3769 if (Record[5]) { 3770 if (Record[5]-1 >= SectionTable.size()) 3771 return error("Invalid ID"); 3772 Section = SectionTable[Record[5]-1]; 3773 } 3774 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3775 // Local linkage must have default visibility. 3776 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3777 // FIXME: Change to an error if non-default in 4.0. 3778 Visibility = getDecodedVisibility(Record[6]); 3779 3780 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3781 if (Record.size() > 7) 3782 TLM = getDecodedThreadLocalMode(Record[7]); 3783 3784 bool UnnamedAddr = false; 3785 if (Record.size() > 8) 3786 UnnamedAddr = Record[8]; 3787 3788 bool ExternallyInitialized = false; 3789 if (Record.size() > 9) 3790 ExternallyInitialized = Record[9]; 3791 3792 GlobalVariable *NewGV = 3793 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3794 TLM, AddressSpace, ExternallyInitialized); 3795 NewGV->setAlignment(Alignment); 3796 if (!Section.empty()) 3797 NewGV->setSection(Section); 3798 NewGV->setVisibility(Visibility); 3799 NewGV->setUnnamedAddr(UnnamedAddr); 3800 3801 if (Record.size() > 10) 3802 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3803 else 3804 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3805 3806 ValueList.push_back(NewGV); 3807 3808 // Remember which value to use for the global initializer. 3809 if (unsigned InitID = Record[2]) 3810 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3811 3812 if (Record.size() > 11) { 3813 if (unsigned ComdatID = Record[11]) { 3814 if (ComdatID > ComdatList.size()) 3815 return error("Invalid global variable comdat ID"); 3816 NewGV->setComdat(ComdatList[ComdatID - 1]); 3817 } 3818 } else if (hasImplicitComdat(RawLinkage)) { 3819 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3820 } 3821 break; 3822 } 3823 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3824 // alignment, section, visibility, gc, unnamed_addr, 3825 // prologuedata, dllstorageclass, comdat, prefixdata] 3826 case bitc::MODULE_CODE_FUNCTION: { 3827 if (Record.size() < 8) 3828 return error("Invalid record"); 3829 Type *Ty = getTypeByID(Record[0]); 3830 if (!Ty) 3831 return error("Invalid record"); 3832 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3833 Ty = PTy->getElementType(); 3834 auto *FTy = dyn_cast<FunctionType>(Ty); 3835 if (!FTy) 3836 return error("Invalid type for value"); 3837 auto CC = static_cast<CallingConv::ID>(Record[1]); 3838 if (CC & ~CallingConv::MaxID) 3839 return error("Invalid calling convention ID"); 3840 3841 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3842 "", TheModule); 3843 3844 Func->setCallingConv(CC); 3845 bool isProto = Record[2]; 3846 uint64_t RawLinkage = Record[3]; 3847 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3848 Func->setAttributes(getAttributes(Record[4])); 3849 3850 unsigned Alignment; 3851 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3852 return EC; 3853 Func->setAlignment(Alignment); 3854 if (Record[6]) { 3855 if (Record[6]-1 >= SectionTable.size()) 3856 return error("Invalid ID"); 3857 Func->setSection(SectionTable[Record[6]-1]); 3858 } 3859 // Local linkage must have default visibility. 3860 if (!Func->hasLocalLinkage()) 3861 // FIXME: Change to an error if non-default in 4.0. 3862 Func->setVisibility(getDecodedVisibility(Record[7])); 3863 if (Record.size() > 8 && Record[8]) { 3864 if (Record[8]-1 >= GCTable.size()) 3865 return error("Invalid ID"); 3866 Func->setGC(GCTable[Record[8] - 1]); 3867 } 3868 bool UnnamedAddr = false; 3869 if (Record.size() > 9) 3870 UnnamedAddr = Record[9]; 3871 Func->setUnnamedAddr(UnnamedAddr); 3872 if (Record.size() > 10 && Record[10] != 0) 3873 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3874 3875 if (Record.size() > 11) 3876 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3877 else 3878 upgradeDLLImportExportLinkage(Func, RawLinkage); 3879 3880 if (Record.size() > 12) { 3881 if (unsigned ComdatID = Record[12]) { 3882 if (ComdatID > ComdatList.size()) 3883 return error("Invalid function comdat ID"); 3884 Func->setComdat(ComdatList[ComdatID - 1]); 3885 } 3886 } else if (hasImplicitComdat(RawLinkage)) { 3887 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3888 } 3889 3890 if (Record.size() > 13 && Record[13] != 0) 3891 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3892 3893 if (Record.size() > 14 && Record[14] != 0) 3894 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3895 3896 ValueList.push_back(Func); 3897 3898 // If this is a function with a body, remember the prototype we are 3899 // creating now, so that we can match up the body with them later. 3900 if (!isProto) { 3901 Func->setIsMaterializable(true); 3902 FunctionsWithBodies.push_back(Func); 3903 DeferredFunctionInfo[Func] = 0; 3904 } 3905 break; 3906 } 3907 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3908 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3909 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3910 case bitc::MODULE_CODE_IFUNC: 3911 case bitc::MODULE_CODE_ALIAS: 3912 case bitc::MODULE_CODE_ALIAS_OLD: { 3913 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3914 if (Record.size() < (3 + (unsigned)NewRecord)) 3915 return error("Invalid record"); 3916 unsigned OpNum = 0; 3917 Type *Ty = getTypeByID(Record[OpNum++]); 3918 if (!Ty) 3919 return error("Invalid record"); 3920 3921 unsigned AddrSpace; 3922 if (!NewRecord) { 3923 auto *PTy = dyn_cast<PointerType>(Ty); 3924 if (!PTy) 3925 return error("Invalid type for value"); 3926 Ty = PTy->getElementType(); 3927 AddrSpace = PTy->getAddressSpace(); 3928 } else { 3929 AddrSpace = Record[OpNum++]; 3930 } 3931 3932 auto Val = Record[OpNum++]; 3933 auto Linkage = Record[OpNum++]; 3934 GlobalIndirectSymbol *NewGA; 3935 if (BitCode == bitc::MODULE_CODE_ALIAS || 3936 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3937 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3938 "", TheModule); 3939 else 3940 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3941 "", nullptr, TheModule); 3942 // Old bitcode files didn't have visibility field. 3943 // Local linkage must have default visibility. 3944 if (OpNum != Record.size()) { 3945 auto VisInd = OpNum++; 3946 if (!NewGA->hasLocalLinkage()) 3947 // FIXME: Change to an error if non-default in 4.0. 3948 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3949 } 3950 if (OpNum != Record.size()) 3951 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3952 else 3953 upgradeDLLImportExportLinkage(NewGA, Linkage); 3954 if (OpNum != Record.size()) 3955 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3956 if (OpNum != Record.size()) 3957 NewGA->setUnnamedAddr(Record[OpNum++]); 3958 ValueList.push_back(NewGA); 3959 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3960 break; 3961 } 3962 /// MODULE_CODE_PURGEVALS: [numvals] 3963 case bitc::MODULE_CODE_PURGEVALS: 3964 // Trim down the value list to the specified size. 3965 if (Record.size() < 1 || Record[0] > ValueList.size()) 3966 return error("Invalid record"); 3967 ValueList.shrinkTo(Record[0]); 3968 break; 3969 /// MODULE_CODE_VSTOFFSET: [offset] 3970 case bitc::MODULE_CODE_VSTOFFSET: 3971 if (Record.size() < 1) 3972 return error("Invalid record"); 3973 VSTOffset = Record[0]; 3974 break; 3975 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3976 case bitc::MODULE_CODE_SOURCE_FILENAME: 3977 SmallString<128> ValueName; 3978 if (convertToString(Record, 0, ValueName)) 3979 return error("Invalid record"); 3980 TheModule->setSourceFileName(ValueName); 3981 break; 3982 } 3983 Record.clear(); 3984 } 3985 } 3986 3987 /// Helper to read the header common to all bitcode files. 3988 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3989 // Sniff for the signature. 3990 if (Stream.Read(8) != 'B' || 3991 Stream.Read(8) != 'C' || 3992 Stream.Read(4) != 0x0 || 3993 Stream.Read(4) != 0xC || 3994 Stream.Read(4) != 0xE || 3995 Stream.Read(4) != 0xD) 3996 return false; 3997 return true; 3998 } 3999 4000 std::error_code 4001 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4002 Module *M, bool ShouldLazyLoadMetadata) { 4003 TheModule = M; 4004 4005 if (std::error_code EC = initStream(std::move(Streamer))) 4006 return EC; 4007 4008 // Sniff for the signature. 4009 if (!hasValidBitcodeHeader(Stream)) 4010 return error("Invalid bitcode signature"); 4011 4012 // We expect a number of well-defined blocks, though we don't necessarily 4013 // need to understand them all. 4014 while (1) { 4015 if (Stream.AtEndOfStream()) { 4016 // We didn't really read a proper Module. 4017 return error("Malformed IR file"); 4018 } 4019 4020 BitstreamEntry Entry = 4021 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4022 4023 if (Entry.Kind != BitstreamEntry::SubBlock) 4024 return error("Malformed block"); 4025 4026 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4027 parseBitcodeVersion(); 4028 continue; 4029 } 4030 4031 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4032 return parseModule(0, ShouldLazyLoadMetadata); 4033 4034 if (Stream.SkipBlock()) 4035 return error("Invalid record"); 4036 } 4037 } 4038 4039 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4040 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4041 return error("Invalid record"); 4042 4043 SmallVector<uint64_t, 64> Record; 4044 4045 std::string Triple; 4046 // Read all the records for this module. 4047 while (1) { 4048 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4049 4050 switch (Entry.Kind) { 4051 case BitstreamEntry::SubBlock: // Handled for us already. 4052 case BitstreamEntry::Error: 4053 return error("Malformed block"); 4054 case BitstreamEntry::EndBlock: 4055 return Triple; 4056 case BitstreamEntry::Record: 4057 // The interesting case. 4058 break; 4059 } 4060 4061 // Read a record. 4062 switch (Stream.readRecord(Entry.ID, Record)) { 4063 default: break; // Default behavior, ignore unknown content. 4064 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4065 std::string S; 4066 if (convertToString(Record, 0, S)) 4067 return error("Invalid record"); 4068 Triple = S; 4069 break; 4070 } 4071 } 4072 Record.clear(); 4073 } 4074 llvm_unreachable("Exit infinite loop"); 4075 } 4076 4077 ErrorOr<std::string> BitcodeReader::parseTriple() { 4078 if (std::error_code EC = initStream(nullptr)) 4079 return EC; 4080 4081 // Sniff for the signature. 4082 if (!hasValidBitcodeHeader(Stream)) 4083 return error("Invalid bitcode signature"); 4084 4085 // We expect a number of well-defined blocks, though we don't necessarily 4086 // need to understand them all. 4087 while (1) { 4088 BitstreamEntry Entry = Stream.advance(); 4089 4090 switch (Entry.Kind) { 4091 case BitstreamEntry::Error: 4092 return error("Malformed block"); 4093 case BitstreamEntry::EndBlock: 4094 return std::error_code(); 4095 4096 case BitstreamEntry::SubBlock: 4097 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4098 return parseModuleTriple(); 4099 4100 // Ignore other sub-blocks. 4101 if (Stream.SkipBlock()) 4102 return error("Malformed block"); 4103 continue; 4104 4105 case BitstreamEntry::Record: 4106 Stream.skipRecord(Entry.ID); 4107 continue; 4108 } 4109 } 4110 } 4111 4112 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4113 if (std::error_code EC = initStream(nullptr)) 4114 return EC; 4115 4116 // Sniff for the signature. 4117 if (!hasValidBitcodeHeader(Stream)) 4118 return error("Invalid bitcode signature"); 4119 4120 // We expect a number of well-defined blocks, though we don't necessarily 4121 // need to understand them all. 4122 while (1) { 4123 BitstreamEntry Entry = Stream.advance(); 4124 switch (Entry.Kind) { 4125 case BitstreamEntry::Error: 4126 return error("Malformed block"); 4127 case BitstreamEntry::EndBlock: 4128 return std::error_code(); 4129 4130 case BitstreamEntry::SubBlock: 4131 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4132 if (std::error_code EC = parseBitcodeVersion()) 4133 return EC; 4134 return ProducerIdentification; 4135 } 4136 // Ignore other sub-blocks. 4137 if (Stream.SkipBlock()) 4138 return error("Malformed block"); 4139 continue; 4140 case BitstreamEntry::Record: 4141 Stream.skipRecord(Entry.ID); 4142 continue; 4143 } 4144 } 4145 } 4146 4147 /// Parse metadata attachments. 4148 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4149 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4150 return error("Invalid record"); 4151 4152 SmallVector<uint64_t, 64> Record; 4153 while (1) { 4154 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4155 4156 switch (Entry.Kind) { 4157 case BitstreamEntry::SubBlock: // Handled for us already. 4158 case BitstreamEntry::Error: 4159 return error("Malformed block"); 4160 case BitstreamEntry::EndBlock: 4161 return std::error_code(); 4162 case BitstreamEntry::Record: 4163 // The interesting case. 4164 break; 4165 } 4166 4167 // Read a metadata attachment record. 4168 Record.clear(); 4169 switch (Stream.readRecord(Entry.ID, Record)) { 4170 default: // Default behavior: ignore. 4171 break; 4172 case bitc::METADATA_ATTACHMENT: { 4173 unsigned RecordLength = Record.size(); 4174 if (Record.empty()) 4175 return error("Invalid record"); 4176 if (RecordLength % 2 == 0) { 4177 // A function attachment. 4178 for (unsigned I = 0; I != RecordLength; I += 2) { 4179 auto K = MDKindMap.find(Record[I]); 4180 if (K == MDKindMap.end()) 4181 return error("Invalid ID"); 4182 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4183 if (!MD) 4184 return error("Invalid metadata attachment"); 4185 F.setMetadata(K->second, MD); 4186 } 4187 continue; 4188 } 4189 4190 // An instruction attachment. 4191 Instruction *Inst = InstructionList[Record[0]]; 4192 for (unsigned i = 1; i != RecordLength; i = i+2) { 4193 unsigned Kind = Record[i]; 4194 DenseMap<unsigned, unsigned>::iterator I = 4195 MDKindMap.find(Kind); 4196 if (I == MDKindMap.end()) 4197 return error("Invalid ID"); 4198 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4199 if (isa<LocalAsMetadata>(Node)) 4200 // Drop the attachment. This used to be legal, but there's no 4201 // upgrade path. 4202 break; 4203 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4204 if (!MD) 4205 return error("Invalid metadata attachment"); 4206 4207 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4208 MD = upgradeInstructionLoopAttachment(*MD); 4209 4210 Inst->setMetadata(I->second, MD); 4211 if (I->second == LLVMContext::MD_tbaa) { 4212 InstsWithTBAATag.push_back(Inst); 4213 continue; 4214 } 4215 } 4216 break; 4217 } 4218 } 4219 } 4220 } 4221 4222 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4223 LLVMContext &Context = PtrType->getContext(); 4224 if (!isa<PointerType>(PtrType)) 4225 return error(Context, "Load/Store operand is not a pointer type"); 4226 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4227 4228 if (ValType && ValType != ElemType) 4229 return error(Context, "Explicit load/store type does not match pointee " 4230 "type of pointer operand"); 4231 if (!PointerType::isLoadableOrStorableType(ElemType)) 4232 return error(Context, "Cannot load/store from pointer"); 4233 return std::error_code(); 4234 } 4235 4236 /// Lazily parse the specified function body block. 4237 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4238 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4239 return error("Invalid record"); 4240 4241 // Unexpected unresolved metadata when parsing function. 4242 if (MetadataList.hasFwdRefs()) 4243 return error("Invalid function metadata: incoming forward references"); 4244 4245 InstructionList.clear(); 4246 unsigned ModuleValueListSize = ValueList.size(); 4247 unsigned ModuleMetadataListSize = MetadataList.size(); 4248 4249 // Add all the function arguments to the value table. 4250 for (Argument &I : F->args()) 4251 ValueList.push_back(&I); 4252 4253 unsigned NextValueNo = ValueList.size(); 4254 BasicBlock *CurBB = nullptr; 4255 unsigned CurBBNo = 0; 4256 4257 DebugLoc LastLoc; 4258 auto getLastInstruction = [&]() -> Instruction * { 4259 if (CurBB && !CurBB->empty()) 4260 return &CurBB->back(); 4261 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4262 !FunctionBBs[CurBBNo - 1]->empty()) 4263 return &FunctionBBs[CurBBNo - 1]->back(); 4264 return nullptr; 4265 }; 4266 4267 std::vector<OperandBundleDef> OperandBundles; 4268 4269 // Read all the records. 4270 SmallVector<uint64_t, 64> Record; 4271 while (1) { 4272 BitstreamEntry Entry = Stream.advance(); 4273 4274 switch (Entry.Kind) { 4275 case BitstreamEntry::Error: 4276 return error("Malformed block"); 4277 case BitstreamEntry::EndBlock: 4278 goto OutOfRecordLoop; 4279 4280 case BitstreamEntry::SubBlock: 4281 switch (Entry.ID) { 4282 default: // Skip unknown content. 4283 if (Stream.SkipBlock()) 4284 return error("Invalid record"); 4285 break; 4286 case bitc::CONSTANTS_BLOCK_ID: 4287 if (std::error_code EC = parseConstants()) 4288 return EC; 4289 NextValueNo = ValueList.size(); 4290 break; 4291 case bitc::VALUE_SYMTAB_BLOCK_ID: 4292 if (std::error_code EC = parseValueSymbolTable()) 4293 return EC; 4294 break; 4295 case bitc::METADATA_ATTACHMENT_ID: 4296 if (std::error_code EC = parseMetadataAttachment(*F)) 4297 return EC; 4298 break; 4299 case bitc::METADATA_BLOCK_ID: 4300 if (std::error_code EC = parseMetadata()) 4301 return EC; 4302 break; 4303 case bitc::USELIST_BLOCK_ID: 4304 if (std::error_code EC = parseUseLists()) 4305 return EC; 4306 break; 4307 } 4308 continue; 4309 4310 case BitstreamEntry::Record: 4311 // The interesting case. 4312 break; 4313 } 4314 4315 // Read a record. 4316 Record.clear(); 4317 Instruction *I = nullptr; 4318 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4319 switch (BitCode) { 4320 default: // Default behavior: reject 4321 return error("Invalid value"); 4322 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4323 if (Record.size() < 1 || Record[0] == 0) 4324 return error("Invalid record"); 4325 // Create all the basic blocks for the function. 4326 FunctionBBs.resize(Record[0]); 4327 4328 // See if anything took the address of blocks in this function. 4329 auto BBFRI = BasicBlockFwdRefs.find(F); 4330 if (BBFRI == BasicBlockFwdRefs.end()) { 4331 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4332 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4333 } else { 4334 auto &BBRefs = BBFRI->second; 4335 // Check for invalid basic block references. 4336 if (BBRefs.size() > FunctionBBs.size()) 4337 return error("Invalid ID"); 4338 assert(!BBRefs.empty() && "Unexpected empty array"); 4339 assert(!BBRefs.front() && "Invalid reference to entry block"); 4340 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4341 ++I) 4342 if (I < RE && BBRefs[I]) { 4343 BBRefs[I]->insertInto(F); 4344 FunctionBBs[I] = BBRefs[I]; 4345 } else { 4346 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4347 } 4348 4349 // Erase from the table. 4350 BasicBlockFwdRefs.erase(BBFRI); 4351 } 4352 4353 CurBB = FunctionBBs[0]; 4354 continue; 4355 } 4356 4357 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4358 // This record indicates that the last instruction is at the same 4359 // location as the previous instruction with a location. 4360 I = getLastInstruction(); 4361 4362 if (!I) 4363 return error("Invalid record"); 4364 I->setDebugLoc(LastLoc); 4365 I = nullptr; 4366 continue; 4367 4368 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4369 I = getLastInstruction(); 4370 if (!I || Record.size() < 4) 4371 return error("Invalid record"); 4372 4373 unsigned Line = Record[0], Col = Record[1]; 4374 unsigned ScopeID = Record[2], IAID = Record[3]; 4375 4376 MDNode *Scope = nullptr, *IA = nullptr; 4377 if (ScopeID) { 4378 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4379 if (!Scope) 4380 return error("Invalid record"); 4381 } 4382 if (IAID) { 4383 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4384 if (!IA) 4385 return error("Invalid record"); 4386 } 4387 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4388 I->setDebugLoc(LastLoc); 4389 I = nullptr; 4390 continue; 4391 } 4392 4393 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4394 unsigned OpNum = 0; 4395 Value *LHS, *RHS; 4396 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4397 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4398 OpNum+1 > Record.size()) 4399 return error("Invalid record"); 4400 4401 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4402 if (Opc == -1) 4403 return error("Invalid record"); 4404 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4405 InstructionList.push_back(I); 4406 if (OpNum < Record.size()) { 4407 if (Opc == Instruction::Add || 4408 Opc == Instruction::Sub || 4409 Opc == Instruction::Mul || 4410 Opc == Instruction::Shl) { 4411 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4412 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4413 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4414 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4415 } else if (Opc == Instruction::SDiv || 4416 Opc == Instruction::UDiv || 4417 Opc == Instruction::LShr || 4418 Opc == Instruction::AShr) { 4419 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4420 cast<BinaryOperator>(I)->setIsExact(true); 4421 } else if (isa<FPMathOperator>(I)) { 4422 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4423 if (FMF.any()) 4424 I->setFastMathFlags(FMF); 4425 } 4426 4427 } 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4431 unsigned OpNum = 0; 4432 Value *Op; 4433 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4434 OpNum+2 != Record.size()) 4435 return error("Invalid record"); 4436 4437 Type *ResTy = getTypeByID(Record[OpNum]); 4438 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4439 if (Opc == -1 || !ResTy) 4440 return error("Invalid record"); 4441 Instruction *Temp = nullptr; 4442 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4443 if (Temp) { 4444 InstructionList.push_back(Temp); 4445 CurBB->getInstList().push_back(Temp); 4446 } 4447 } else { 4448 auto CastOp = (Instruction::CastOps)Opc; 4449 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4450 return error("Invalid cast"); 4451 I = CastInst::Create(CastOp, Op, ResTy); 4452 } 4453 InstructionList.push_back(I); 4454 break; 4455 } 4456 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4457 case bitc::FUNC_CODE_INST_GEP_OLD: 4458 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4459 unsigned OpNum = 0; 4460 4461 Type *Ty; 4462 bool InBounds; 4463 4464 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4465 InBounds = Record[OpNum++]; 4466 Ty = getTypeByID(Record[OpNum++]); 4467 } else { 4468 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4469 Ty = nullptr; 4470 } 4471 4472 Value *BasePtr; 4473 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4474 return error("Invalid record"); 4475 4476 if (!Ty) 4477 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4478 ->getElementType(); 4479 else if (Ty != 4480 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4481 ->getElementType()) 4482 return error( 4483 "Explicit gep type does not match pointee type of pointer operand"); 4484 4485 SmallVector<Value*, 16> GEPIdx; 4486 while (OpNum != Record.size()) { 4487 Value *Op; 4488 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4489 return error("Invalid record"); 4490 GEPIdx.push_back(Op); 4491 } 4492 4493 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4494 4495 InstructionList.push_back(I); 4496 if (InBounds) 4497 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4498 break; 4499 } 4500 4501 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4502 // EXTRACTVAL: [opty, opval, n x indices] 4503 unsigned OpNum = 0; 4504 Value *Agg; 4505 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4506 return error("Invalid record"); 4507 4508 unsigned RecSize = Record.size(); 4509 if (OpNum == RecSize) 4510 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4511 4512 SmallVector<unsigned, 4> EXTRACTVALIdx; 4513 Type *CurTy = Agg->getType(); 4514 for (; OpNum != RecSize; ++OpNum) { 4515 bool IsArray = CurTy->isArrayTy(); 4516 bool IsStruct = CurTy->isStructTy(); 4517 uint64_t Index = Record[OpNum]; 4518 4519 if (!IsStruct && !IsArray) 4520 return error("EXTRACTVAL: Invalid type"); 4521 if ((unsigned)Index != Index) 4522 return error("Invalid value"); 4523 if (IsStruct && Index >= CurTy->subtypes().size()) 4524 return error("EXTRACTVAL: Invalid struct index"); 4525 if (IsArray && Index >= CurTy->getArrayNumElements()) 4526 return error("EXTRACTVAL: Invalid array index"); 4527 EXTRACTVALIdx.push_back((unsigned)Index); 4528 4529 if (IsStruct) 4530 CurTy = CurTy->subtypes()[Index]; 4531 else 4532 CurTy = CurTy->subtypes()[0]; 4533 } 4534 4535 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4536 InstructionList.push_back(I); 4537 break; 4538 } 4539 4540 case bitc::FUNC_CODE_INST_INSERTVAL: { 4541 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4542 unsigned OpNum = 0; 4543 Value *Agg; 4544 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4545 return error("Invalid record"); 4546 Value *Val; 4547 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4548 return error("Invalid record"); 4549 4550 unsigned RecSize = Record.size(); 4551 if (OpNum == RecSize) 4552 return error("INSERTVAL: Invalid instruction with 0 indices"); 4553 4554 SmallVector<unsigned, 4> INSERTVALIdx; 4555 Type *CurTy = Agg->getType(); 4556 for (; OpNum != RecSize; ++OpNum) { 4557 bool IsArray = CurTy->isArrayTy(); 4558 bool IsStruct = CurTy->isStructTy(); 4559 uint64_t Index = Record[OpNum]; 4560 4561 if (!IsStruct && !IsArray) 4562 return error("INSERTVAL: Invalid type"); 4563 if ((unsigned)Index != Index) 4564 return error("Invalid value"); 4565 if (IsStruct && Index >= CurTy->subtypes().size()) 4566 return error("INSERTVAL: Invalid struct index"); 4567 if (IsArray && Index >= CurTy->getArrayNumElements()) 4568 return error("INSERTVAL: Invalid array index"); 4569 4570 INSERTVALIdx.push_back((unsigned)Index); 4571 if (IsStruct) 4572 CurTy = CurTy->subtypes()[Index]; 4573 else 4574 CurTy = CurTy->subtypes()[0]; 4575 } 4576 4577 if (CurTy != Val->getType()) 4578 return error("Inserted value type doesn't match aggregate type"); 4579 4580 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4581 InstructionList.push_back(I); 4582 break; 4583 } 4584 4585 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4586 // obsolete form of select 4587 // handles select i1 ... in old bitcode 4588 unsigned OpNum = 0; 4589 Value *TrueVal, *FalseVal, *Cond; 4590 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4591 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4592 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4593 return error("Invalid record"); 4594 4595 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4596 InstructionList.push_back(I); 4597 break; 4598 } 4599 4600 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4601 // new form of select 4602 // handles select i1 or select [N x i1] 4603 unsigned OpNum = 0; 4604 Value *TrueVal, *FalseVal, *Cond; 4605 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4606 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4607 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4608 return error("Invalid record"); 4609 4610 // select condition can be either i1 or [N x i1] 4611 if (VectorType* vector_type = 4612 dyn_cast<VectorType>(Cond->getType())) { 4613 // expect <n x i1> 4614 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4615 return error("Invalid type for value"); 4616 } else { 4617 // expect i1 4618 if (Cond->getType() != Type::getInt1Ty(Context)) 4619 return error("Invalid type for value"); 4620 } 4621 4622 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4623 InstructionList.push_back(I); 4624 break; 4625 } 4626 4627 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4628 unsigned OpNum = 0; 4629 Value *Vec, *Idx; 4630 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4631 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4632 return error("Invalid record"); 4633 if (!Vec->getType()->isVectorTy()) 4634 return error("Invalid type for value"); 4635 I = ExtractElementInst::Create(Vec, Idx); 4636 InstructionList.push_back(I); 4637 break; 4638 } 4639 4640 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4641 unsigned OpNum = 0; 4642 Value *Vec, *Elt, *Idx; 4643 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4644 return error("Invalid record"); 4645 if (!Vec->getType()->isVectorTy()) 4646 return error("Invalid type for value"); 4647 if (popValue(Record, OpNum, NextValueNo, 4648 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4649 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4650 return error("Invalid record"); 4651 I = InsertElementInst::Create(Vec, Elt, Idx); 4652 InstructionList.push_back(I); 4653 break; 4654 } 4655 4656 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4657 unsigned OpNum = 0; 4658 Value *Vec1, *Vec2, *Mask; 4659 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4660 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4661 return error("Invalid record"); 4662 4663 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4664 return error("Invalid record"); 4665 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4666 return error("Invalid type for value"); 4667 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4668 InstructionList.push_back(I); 4669 break; 4670 } 4671 4672 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4673 // Old form of ICmp/FCmp returning bool 4674 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4675 // both legal on vectors but had different behaviour. 4676 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4677 // FCmp/ICmp returning bool or vector of bool 4678 4679 unsigned OpNum = 0; 4680 Value *LHS, *RHS; 4681 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4682 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4683 return error("Invalid record"); 4684 4685 unsigned PredVal = Record[OpNum]; 4686 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4687 FastMathFlags FMF; 4688 if (IsFP && Record.size() > OpNum+1) 4689 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4690 4691 if (OpNum+1 != Record.size()) 4692 return error("Invalid record"); 4693 4694 if (LHS->getType()->isFPOrFPVectorTy()) 4695 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4696 else 4697 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4698 4699 if (FMF.any()) 4700 I->setFastMathFlags(FMF); 4701 InstructionList.push_back(I); 4702 break; 4703 } 4704 4705 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4706 { 4707 unsigned Size = Record.size(); 4708 if (Size == 0) { 4709 I = ReturnInst::Create(Context); 4710 InstructionList.push_back(I); 4711 break; 4712 } 4713 4714 unsigned OpNum = 0; 4715 Value *Op = nullptr; 4716 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4717 return error("Invalid record"); 4718 if (OpNum != Record.size()) 4719 return error("Invalid record"); 4720 4721 I = ReturnInst::Create(Context, Op); 4722 InstructionList.push_back(I); 4723 break; 4724 } 4725 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4726 if (Record.size() != 1 && Record.size() != 3) 4727 return error("Invalid record"); 4728 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4729 if (!TrueDest) 4730 return error("Invalid record"); 4731 4732 if (Record.size() == 1) { 4733 I = BranchInst::Create(TrueDest); 4734 InstructionList.push_back(I); 4735 } 4736 else { 4737 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4738 Value *Cond = getValue(Record, 2, NextValueNo, 4739 Type::getInt1Ty(Context)); 4740 if (!FalseDest || !Cond) 4741 return error("Invalid record"); 4742 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4743 InstructionList.push_back(I); 4744 } 4745 break; 4746 } 4747 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4748 if (Record.size() != 1 && Record.size() != 2) 4749 return error("Invalid record"); 4750 unsigned Idx = 0; 4751 Value *CleanupPad = 4752 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4753 if (!CleanupPad) 4754 return error("Invalid record"); 4755 BasicBlock *UnwindDest = nullptr; 4756 if (Record.size() == 2) { 4757 UnwindDest = getBasicBlock(Record[Idx++]); 4758 if (!UnwindDest) 4759 return error("Invalid record"); 4760 } 4761 4762 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4763 InstructionList.push_back(I); 4764 break; 4765 } 4766 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4767 if (Record.size() != 2) 4768 return error("Invalid record"); 4769 unsigned Idx = 0; 4770 Value *CatchPad = 4771 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4772 if (!CatchPad) 4773 return error("Invalid record"); 4774 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4775 if (!BB) 4776 return error("Invalid record"); 4777 4778 I = CatchReturnInst::Create(CatchPad, BB); 4779 InstructionList.push_back(I); 4780 break; 4781 } 4782 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4783 // We must have, at minimum, the outer scope and the number of arguments. 4784 if (Record.size() < 2) 4785 return error("Invalid record"); 4786 4787 unsigned Idx = 0; 4788 4789 Value *ParentPad = 4790 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4791 4792 unsigned NumHandlers = Record[Idx++]; 4793 4794 SmallVector<BasicBlock *, 2> Handlers; 4795 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4796 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4797 if (!BB) 4798 return error("Invalid record"); 4799 Handlers.push_back(BB); 4800 } 4801 4802 BasicBlock *UnwindDest = nullptr; 4803 if (Idx + 1 == Record.size()) { 4804 UnwindDest = getBasicBlock(Record[Idx++]); 4805 if (!UnwindDest) 4806 return error("Invalid record"); 4807 } 4808 4809 if (Record.size() != Idx) 4810 return error("Invalid record"); 4811 4812 auto *CatchSwitch = 4813 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4814 for (BasicBlock *Handler : Handlers) 4815 CatchSwitch->addHandler(Handler); 4816 I = CatchSwitch; 4817 InstructionList.push_back(I); 4818 break; 4819 } 4820 case bitc::FUNC_CODE_INST_CATCHPAD: 4821 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4822 // We must have, at minimum, the outer scope and the number of arguments. 4823 if (Record.size() < 2) 4824 return error("Invalid record"); 4825 4826 unsigned Idx = 0; 4827 4828 Value *ParentPad = 4829 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4830 4831 unsigned NumArgOperands = Record[Idx++]; 4832 4833 SmallVector<Value *, 2> Args; 4834 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4835 Value *Val; 4836 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4837 return error("Invalid record"); 4838 Args.push_back(Val); 4839 } 4840 4841 if (Record.size() != Idx) 4842 return error("Invalid record"); 4843 4844 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4845 I = CleanupPadInst::Create(ParentPad, Args); 4846 else 4847 I = CatchPadInst::Create(ParentPad, Args); 4848 InstructionList.push_back(I); 4849 break; 4850 } 4851 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4852 // Check magic 4853 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4854 // "New" SwitchInst format with case ranges. The changes to write this 4855 // format were reverted but we still recognize bitcode that uses it. 4856 // Hopefully someday we will have support for case ranges and can use 4857 // this format again. 4858 4859 Type *OpTy = getTypeByID(Record[1]); 4860 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4861 4862 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4863 BasicBlock *Default = getBasicBlock(Record[3]); 4864 if (!OpTy || !Cond || !Default) 4865 return error("Invalid record"); 4866 4867 unsigned NumCases = Record[4]; 4868 4869 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4870 InstructionList.push_back(SI); 4871 4872 unsigned CurIdx = 5; 4873 for (unsigned i = 0; i != NumCases; ++i) { 4874 SmallVector<ConstantInt*, 1> CaseVals; 4875 unsigned NumItems = Record[CurIdx++]; 4876 for (unsigned ci = 0; ci != NumItems; ++ci) { 4877 bool isSingleNumber = Record[CurIdx++]; 4878 4879 APInt Low; 4880 unsigned ActiveWords = 1; 4881 if (ValueBitWidth > 64) 4882 ActiveWords = Record[CurIdx++]; 4883 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4884 ValueBitWidth); 4885 CurIdx += ActiveWords; 4886 4887 if (!isSingleNumber) { 4888 ActiveWords = 1; 4889 if (ValueBitWidth > 64) 4890 ActiveWords = Record[CurIdx++]; 4891 APInt High = readWideAPInt( 4892 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4893 CurIdx += ActiveWords; 4894 4895 // FIXME: It is not clear whether values in the range should be 4896 // compared as signed or unsigned values. The partially 4897 // implemented changes that used this format in the past used 4898 // unsigned comparisons. 4899 for ( ; Low.ule(High); ++Low) 4900 CaseVals.push_back(ConstantInt::get(Context, Low)); 4901 } else 4902 CaseVals.push_back(ConstantInt::get(Context, Low)); 4903 } 4904 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4905 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4906 cve = CaseVals.end(); cvi != cve; ++cvi) 4907 SI->addCase(*cvi, DestBB); 4908 } 4909 I = SI; 4910 break; 4911 } 4912 4913 // Old SwitchInst format without case ranges. 4914 4915 if (Record.size() < 3 || (Record.size() & 1) == 0) 4916 return error("Invalid record"); 4917 Type *OpTy = getTypeByID(Record[0]); 4918 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4919 BasicBlock *Default = getBasicBlock(Record[2]); 4920 if (!OpTy || !Cond || !Default) 4921 return error("Invalid record"); 4922 unsigned NumCases = (Record.size()-3)/2; 4923 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4924 InstructionList.push_back(SI); 4925 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4926 ConstantInt *CaseVal = 4927 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4928 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4929 if (!CaseVal || !DestBB) { 4930 delete SI; 4931 return error("Invalid record"); 4932 } 4933 SI->addCase(CaseVal, DestBB); 4934 } 4935 I = SI; 4936 break; 4937 } 4938 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4939 if (Record.size() < 2) 4940 return error("Invalid record"); 4941 Type *OpTy = getTypeByID(Record[0]); 4942 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4943 if (!OpTy || !Address) 4944 return error("Invalid record"); 4945 unsigned NumDests = Record.size()-2; 4946 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4947 InstructionList.push_back(IBI); 4948 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4949 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4950 IBI->addDestination(DestBB); 4951 } else { 4952 delete IBI; 4953 return error("Invalid record"); 4954 } 4955 } 4956 I = IBI; 4957 break; 4958 } 4959 4960 case bitc::FUNC_CODE_INST_INVOKE: { 4961 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4962 if (Record.size() < 4) 4963 return error("Invalid record"); 4964 unsigned OpNum = 0; 4965 AttributeSet PAL = getAttributes(Record[OpNum++]); 4966 unsigned CCInfo = Record[OpNum++]; 4967 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4968 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4969 4970 FunctionType *FTy = nullptr; 4971 if (CCInfo >> 13 & 1 && 4972 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4973 return error("Explicit invoke type is not a function type"); 4974 4975 Value *Callee; 4976 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4977 return error("Invalid record"); 4978 4979 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4980 if (!CalleeTy) 4981 return error("Callee is not a pointer"); 4982 if (!FTy) { 4983 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4984 if (!FTy) 4985 return error("Callee is not of pointer to function type"); 4986 } else if (CalleeTy->getElementType() != FTy) 4987 return error("Explicit invoke type does not match pointee type of " 4988 "callee operand"); 4989 if (Record.size() < FTy->getNumParams() + OpNum) 4990 return error("Insufficient operands to call"); 4991 4992 SmallVector<Value*, 16> Ops; 4993 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4994 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4995 FTy->getParamType(i))); 4996 if (!Ops.back()) 4997 return error("Invalid record"); 4998 } 4999 5000 if (!FTy->isVarArg()) { 5001 if (Record.size() != OpNum) 5002 return error("Invalid record"); 5003 } else { 5004 // Read type/value pairs for varargs params. 5005 while (OpNum != Record.size()) { 5006 Value *Op; 5007 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5008 return error("Invalid record"); 5009 Ops.push_back(Op); 5010 } 5011 } 5012 5013 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5014 OperandBundles.clear(); 5015 InstructionList.push_back(I); 5016 cast<InvokeInst>(I)->setCallingConv( 5017 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5018 cast<InvokeInst>(I)->setAttributes(PAL); 5019 break; 5020 } 5021 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5022 unsigned Idx = 0; 5023 Value *Val = nullptr; 5024 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5025 return error("Invalid record"); 5026 I = ResumeInst::Create(Val); 5027 InstructionList.push_back(I); 5028 break; 5029 } 5030 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5031 I = new UnreachableInst(Context); 5032 InstructionList.push_back(I); 5033 break; 5034 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5035 if (Record.size() < 1 || ((Record.size()-1)&1)) 5036 return error("Invalid record"); 5037 Type *Ty = getTypeByID(Record[0]); 5038 if (!Ty) 5039 return error("Invalid record"); 5040 5041 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5042 InstructionList.push_back(PN); 5043 5044 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5045 Value *V; 5046 // With the new function encoding, it is possible that operands have 5047 // negative IDs (for forward references). Use a signed VBR 5048 // representation to keep the encoding small. 5049 if (UseRelativeIDs) 5050 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5051 else 5052 V = getValue(Record, 1+i, NextValueNo, Ty); 5053 BasicBlock *BB = getBasicBlock(Record[2+i]); 5054 if (!V || !BB) 5055 return error("Invalid record"); 5056 PN->addIncoming(V, BB); 5057 } 5058 I = PN; 5059 break; 5060 } 5061 5062 case bitc::FUNC_CODE_INST_LANDINGPAD: 5063 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5064 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5065 unsigned Idx = 0; 5066 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5067 if (Record.size() < 3) 5068 return error("Invalid record"); 5069 } else { 5070 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5071 if (Record.size() < 4) 5072 return error("Invalid record"); 5073 } 5074 Type *Ty = getTypeByID(Record[Idx++]); 5075 if (!Ty) 5076 return error("Invalid record"); 5077 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5078 Value *PersFn = nullptr; 5079 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5080 return error("Invalid record"); 5081 5082 if (!F->hasPersonalityFn()) 5083 F->setPersonalityFn(cast<Constant>(PersFn)); 5084 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5085 return error("Personality function mismatch"); 5086 } 5087 5088 bool IsCleanup = !!Record[Idx++]; 5089 unsigned NumClauses = Record[Idx++]; 5090 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5091 LP->setCleanup(IsCleanup); 5092 for (unsigned J = 0; J != NumClauses; ++J) { 5093 LandingPadInst::ClauseType CT = 5094 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5095 Value *Val; 5096 5097 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5098 delete LP; 5099 return error("Invalid record"); 5100 } 5101 5102 assert((CT != LandingPadInst::Catch || 5103 !isa<ArrayType>(Val->getType())) && 5104 "Catch clause has a invalid type!"); 5105 assert((CT != LandingPadInst::Filter || 5106 isa<ArrayType>(Val->getType())) && 5107 "Filter clause has invalid type!"); 5108 LP->addClause(cast<Constant>(Val)); 5109 } 5110 5111 I = LP; 5112 InstructionList.push_back(I); 5113 break; 5114 } 5115 5116 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5117 if (Record.size() != 4) 5118 return error("Invalid record"); 5119 uint64_t AlignRecord = Record[3]; 5120 const uint64_t InAllocaMask = uint64_t(1) << 5; 5121 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5122 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5123 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5124 SwiftErrorMask; 5125 bool InAlloca = AlignRecord & InAllocaMask; 5126 bool SwiftError = AlignRecord & SwiftErrorMask; 5127 Type *Ty = getTypeByID(Record[0]); 5128 if ((AlignRecord & ExplicitTypeMask) == 0) { 5129 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5130 if (!PTy) 5131 return error("Old-style alloca with a non-pointer type"); 5132 Ty = PTy->getElementType(); 5133 } 5134 Type *OpTy = getTypeByID(Record[1]); 5135 Value *Size = getFnValueByID(Record[2], OpTy); 5136 unsigned Align; 5137 if (std::error_code EC = 5138 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5139 return EC; 5140 } 5141 if (!Ty || !Size) 5142 return error("Invalid record"); 5143 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5144 AI->setUsedWithInAlloca(InAlloca); 5145 AI->setSwiftError(SwiftError); 5146 I = AI; 5147 InstructionList.push_back(I); 5148 break; 5149 } 5150 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5151 unsigned OpNum = 0; 5152 Value *Op; 5153 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5154 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5155 return error("Invalid record"); 5156 5157 Type *Ty = nullptr; 5158 if (OpNum + 3 == Record.size()) 5159 Ty = getTypeByID(Record[OpNum++]); 5160 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5161 return EC; 5162 if (!Ty) 5163 Ty = cast<PointerType>(Op->getType())->getElementType(); 5164 5165 unsigned Align; 5166 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5167 return EC; 5168 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5169 5170 InstructionList.push_back(I); 5171 break; 5172 } 5173 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5174 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5175 unsigned OpNum = 0; 5176 Value *Op; 5177 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5178 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5179 return error("Invalid record"); 5180 5181 Type *Ty = nullptr; 5182 if (OpNum + 5 == Record.size()) 5183 Ty = getTypeByID(Record[OpNum++]); 5184 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5185 return EC; 5186 if (!Ty) 5187 Ty = cast<PointerType>(Op->getType())->getElementType(); 5188 5189 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5190 if (Ordering == AtomicOrdering::NotAtomic || 5191 Ordering == AtomicOrdering::Release || 5192 Ordering == AtomicOrdering::AcquireRelease) 5193 return error("Invalid record"); 5194 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5195 return error("Invalid record"); 5196 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5197 5198 unsigned Align; 5199 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5200 return EC; 5201 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5202 5203 InstructionList.push_back(I); 5204 break; 5205 } 5206 case bitc::FUNC_CODE_INST_STORE: 5207 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5208 unsigned OpNum = 0; 5209 Value *Val, *Ptr; 5210 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5211 (BitCode == bitc::FUNC_CODE_INST_STORE 5212 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5213 : popValue(Record, OpNum, NextValueNo, 5214 cast<PointerType>(Ptr->getType())->getElementType(), 5215 Val)) || 5216 OpNum + 2 != Record.size()) 5217 return error("Invalid record"); 5218 5219 if (std::error_code EC = 5220 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5221 return EC; 5222 unsigned Align; 5223 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5224 return EC; 5225 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5226 InstructionList.push_back(I); 5227 break; 5228 } 5229 case bitc::FUNC_CODE_INST_STOREATOMIC: 5230 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5231 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5232 unsigned OpNum = 0; 5233 Value *Val, *Ptr; 5234 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5235 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5236 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5237 : popValue(Record, OpNum, NextValueNo, 5238 cast<PointerType>(Ptr->getType())->getElementType(), 5239 Val)) || 5240 OpNum + 4 != Record.size()) 5241 return error("Invalid record"); 5242 5243 if (std::error_code EC = 5244 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5245 return EC; 5246 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5247 if (Ordering == AtomicOrdering::NotAtomic || 5248 Ordering == AtomicOrdering::Acquire || 5249 Ordering == AtomicOrdering::AcquireRelease) 5250 return error("Invalid record"); 5251 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5252 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5253 return error("Invalid record"); 5254 5255 unsigned Align; 5256 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5257 return EC; 5258 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5259 InstructionList.push_back(I); 5260 break; 5261 } 5262 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5263 case bitc::FUNC_CODE_INST_CMPXCHG: { 5264 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5265 // failureordering?, isweak?] 5266 unsigned OpNum = 0; 5267 Value *Ptr, *Cmp, *New; 5268 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5269 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5270 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5271 : popValue(Record, OpNum, NextValueNo, 5272 cast<PointerType>(Ptr->getType())->getElementType(), 5273 Cmp)) || 5274 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5275 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5276 return error("Invalid record"); 5277 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5278 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5279 SuccessOrdering == AtomicOrdering::Unordered) 5280 return error("Invalid record"); 5281 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5282 5283 if (std::error_code EC = 5284 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5285 return EC; 5286 AtomicOrdering FailureOrdering; 5287 if (Record.size() < 7) 5288 FailureOrdering = 5289 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5290 else 5291 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5292 5293 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5294 SynchScope); 5295 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5296 5297 if (Record.size() < 8) { 5298 // Before weak cmpxchgs existed, the instruction simply returned the 5299 // value loaded from memory, so bitcode files from that era will be 5300 // expecting the first component of a modern cmpxchg. 5301 CurBB->getInstList().push_back(I); 5302 I = ExtractValueInst::Create(I, 0); 5303 } else { 5304 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5305 } 5306 5307 InstructionList.push_back(I); 5308 break; 5309 } 5310 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5311 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5312 unsigned OpNum = 0; 5313 Value *Ptr, *Val; 5314 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5315 popValue(Record, OpNum, NextValueNo, 5316 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5317 OpNum+4 != Record.size()) 5318 return error("Invalid record"); 5319 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5320 if (Operation < AtomicRMWInst::FIRST_BINOP || 5321 Operation > AtomicRMWInst::LAST_BINOP) 5322 return error("Invalid record"); 5323 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5324 if (Ordering == AtomicOrdering::NotAtomic || 5325 Ordering == AtomicOrdering::Unordered) 5326 return error("Invalid record"); 5327 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5328 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5329 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5330 InstructionList.push_back(I); 5331 break; 5332 } 5333 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5334 if (2 != Record.size()) 5335 return error("Invalid record"); 5336 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5337 if (Ordering == AtomicOrdering::NotAtomic || 5338 Ordering == AtomicOrdering::Unordered || 5339 Ordering == AtomicOrdering::Monotonic) 5340 return error("Invalid record"); 5341 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5342 I = new FenceInst(Context, Ordering, SynchScope); 5343 InstructionList.push_back(I); 5344 break; 5345 } 5346 case bitc::FUNC_CODE_INST_CALL: { 5347 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5348 if (Record.size() < 3) 5349 return error("Invalid record"); 5350 5351 unsigned OpNum = 0; 5352 AttributeSet PAL = getAttributes(Record[OpNum++]); 5353 unsigned CCInfo = Record[OpNum++]; 5354 5355 FastMathFlags FMF; 5356 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5357 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5358 if (!FMF.any()) 5359 return error("Fast math flags indicator set for call with no FMF"); 5360 } 5361 5362 FunctionType *FTy = nullptr; 5363 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5364 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5365 return error("Explicit call type is not a function type"); 5366 5367 Value *Callee; 5368 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5369 return error("Invalid record"); 5370 5371 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5372 if (!OpTy) 5373 return error("Callee is not a pointer type"); 5374 if (!FTy) { 5375 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5376 if (!FTy) 5377 return error("Callee is not of pointer to function type"); 5378 } else if (OpTy->getElementType() != FTy) 5379 return error("Explicit call type does not match pointee type of " 5380 "callee operand"); 5381 if (Record.size() < FTy->getNumParams() + OpNum) 5382 return error("Insufficient operands to call"); 5383 5384 SmallVector<Value*, 16> Args; 5385 // Read the fixed params. 5386 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5387 if (FTy->getParamType(i)->isLabelTy()) 5388 Args.push_back(getBasicBlock(Record[OpNum])); 5389 else 5390 Args.push_back(getValue(Record, OpNum, NextValueNo, 5391 FTy->getParamType(i))); 5392 if (!Args.back()) 5393 return error("Invalid record"); 5394 } 5395 5396 // Read type/value pairs for varargs params. 5397 if (!FTy->isVarArg()) { 5398 if (OpNum != Record.size()) 5399 return error("Invalid record"); 5400 } else { 5401 while (OpNum != Record.size()) { 5402 Value *Op; 5403 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5404 return error("Invalid record"); 5405 Args.push_back(Op); 5406 } 5407 } 5408 5409 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5410 OperandBundles.clear(); 5411 InstructionList.push_back(I); 5412 cast<CallInst>(I)->setCallingConv( 5413 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5414 CallInst::TailCallKind TCK = CallInst::TCK_None; 5415 if (CCInfo & 1 << bitc::CALL_TAIL) 5416 TCK = CallInst::TCK_Tail; 5417 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5418 TCK = CallInst::TCK_MustTail; 5419 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5420 TCK = CallInst::TCK_NoTail; 5421 cast<CallInst>(I)->setTailCallKind(TCK); 5422 cast<CallInst>(I)->setAttributes(PAL); 5423 if (FMF.any()) { 5424 if (!isa<FPMathOperator>(I)) 5425 return error("Fast-math-flags specified for call without " 5426 "floating-point scalar or vector return type"); 5427 I->setFastMathFlags(FMF); 5428 } 5429 break; 5430 } 5431 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5432 if (Record.size() < 3) 5433 return error("Invalid record"); 5434 Type *OpTy = getTypeByID(Record[0]); 5435 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5436 Type *ResTy = getTypeByID(Record[2]); 5437 if (!OpTy || !Op || !ResTy) 5438 return error("Invalid record"); 5439 I = new VAArgInst(Op, ResTy); 5440 InstructionList.push_back(I); 5441 break; 5442 } 5443 5444 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5445 // A call or an invoke can be optionally prefixed with some variable 5446 // number of operand bundle blocks. These blocks are read into 5447 // OperandBundles and consumed at the next call or invoke instruction. 5448 5449 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5450 return error("Invalid record"); 5451 5452 std::vector<Value *> Inputs; 5453 5454 unsigned OpNum = 1; 5455 while (OpNum != Record.size()) { 5456 Value *Op; 5457 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5458 return error("Invalid record"); 5459 Inputs.push_back(Op); 5460 } 5461 5462 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5463 continue; 5464 } 5465 } 5466 5467 // Add instruction to end of current BB. If there is no current BB, reject 5468 // this file. 5469 if (!CurBB) { 5470 delete I; 5471 return error("Invalid instruction with no BB"); 5472 } 5473 if (!OperandBundles.empty()) { 5474 delete I; 5475 return error("Operand bundles found with no consumer"); 5476 } 5477 CurBB->getInstList().push_back(I); 5478 5479 // If this was a terminator instruction, move to the next block. 5480 if (isa<TerminatorInst>(I)) { 5481 ++CurBBNo; 5482 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5483 } 5484 5485 // Non-void values get registered in the value table for future use. 5486 if (I && !I->getType()->isVoidTy()) 5487 ValueList.assignValue(I, NextValueNo++); 5488 } 5489 5490 OutOfRecordLoop: 5491 5492 if (!OperandBundles.empty()) 5493 return error("Operand bundles found with no consumer"); 5494 5495 // Check the function list for unresolved values. 5496 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5497 if (!A->getParent()) { 5498 // We found at least one unresolved value. Nuke them all to avoid leaks. 5499 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5500 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5501 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5502 delete A; 5503 } 5504 } 5505 return error("Never resolved value found in function"); 5506 } 5507 } 5508 5509 // Unexpected unresolved metadata about to be dropped. 5510 if (MetadataList.hasFwdRefs()) 5511 return error("Invalid function metadata: outgoing forward refs"); 5512 5513 // Trim the value list down to the size it was before we parsed this function. 5514 ValueList.shrinkTo(ModuleValueListSize); 5515 MetadataList.shrinkTo(ModuleMetadataListSize); 5516 std::vector<BasicBlock*>().swap(FunctionBBs); 5517 return std::error_code(); 5518 } 5519 5520 /// Find the function body in the bitcode stream 5521 std::error_code BitcodeReader::findFunctionInStream( 5522 Function *F, 5523 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5524 while (DeferredFunctionInfoIterator->second == 0) { 5525 // This is the fallback handling for the old format bitcode that 5526 // didn't contain the function index in the VST, or when we have 5527 // an anonymous function which would not have a VST entry. 5528 // Assert that we have one of those two cases. 5529 assert(VSTOffset == 0 || !F->hasName()); 5530 // Parse the next body in the stream and set its position in the 5531 // DeferredFunctionInfo map. 5532 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5533 return EC; 5534 } 5535 return std::error_code(); 5536 } 5537 5538 //===----------------------------------------------------------------------===// 5539 // GVMaterializer implementation 5540 //===----------------------------------------------------------------------===// 5541 5542 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5543 5544 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5545 Function *F = dyn_cast<Function>(GV); 5546 // If it's not a function or is already material, ignore the request. 5547 if (!F || !F->isMaterializable()) 5548 return std::error_code(); 5549 5550 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5551 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5552 // If its position is recorded as 0, its body is somewhere in the stream 5553 // but we haven't seen it yet. 5554 if (DFII->second == 0) 5555 if (std::error_code EC = findFunctionInStream(F, DFII)) 5556 return EC; 5557 5558 // Materialize metadata before parsing any function bodies. 5559 if (std::error_code EC = materializeMetadata()) 5560 return EC; 5561 5562 // Move the bit stream to the saved position of the deferred function body. 5563 Stream.JumpToBit(DFII->second); 5564 5565 if (std::error_code EC = parseFunctionBody(F)) 5566 return EC; 5567 F->setIsMaterializable(false); 5568 5569 if (StripDebugInfo) 5570 stripDebugInfo(*F); 5571 5572 // Upgrade any old intrinsic calls in the function. 5573 for (auto &I : UpgradedIntrinsics) { 5574 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5575 UI != UE;) { 5576 User *U = *UI; 5577 ++UI; 5578 if (CallInst *CI = dyn_cast<CallInst>(U)) 5579 UpgradeIntrinsicCall(CI, I.second); 5580 } 5581 } 5582 5583 // Finish fn->subprogram upgrade for materialized functions. 5584 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5585 F->setSubprogram(SP); 5586 5587 // Bring in any functions that this function forward-referenced via 5588 // blockaddresses. 5589 return materializeForwardReferencedFunctions(); 5590 } 5591 5592 std::error_code BitcodeReader::materializeModule() { 5593 if (std::error_code EC = materializeMetadata()) 5594 return EC; 5595 5596 // Promise to materialize all forward references. 5597 WillMaterializeAllForwardRefs = true; 5598 5599 // Iterate over the module, deserializing any functions that are still on 5600 // disk. 5601 for (Function &F : *TheModule) { 5602 if (std::error_code EC = materialize(&F)) 5603 return EC; 5604 } 5605 // At this point, if there are any function bodies, parse the rest of 5606 // the bits in the module past the last function block we have recorded 5607 // through either lazy scanning or the VST. 5608 if (LastFunctionBlockBit || NextUnreadBit) 5609 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5610 : NextUnreadBit); 5611 5612 // Check that all block address forward references got resolved (as we 5613 // promised above). 5614 if (!BasicBlockFwdRefs.empty()) 5615 return error("Never resolved function from blockaddress"); 5616 5617 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5618 // to prevent this instructions with TBAA tags should be upgraded first. 5619 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5620 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5621 5622 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5623 // delete the old functions to clean up. We can't do this unless the entire 5624 // module is materialized because there could always be another function body 5625 // with calls to the old function. 5626 for (auto &I : UpgradedIntrinsics) { 5627 for (auto *U : I.first->users()) { 5628 if (CallInst *CI = dyn_cast<CallInst>(U)) 5629 UpgradeIntrinsicCall(CI, I.second); 5630 } 5631 if (!I.first->use_empty()) 5632 I.first->replaceAllUsesWith(I.second); 5633 I.first->eraseFromParent(); 5634 } 5635 UpgradedIntrinsics.clear(); 5636 5637 UpgradeDebugInfo(*TheModule); 5638 5639 UpgradeModuleFlags(*TheModule); 5640 return std::error_code(); 5641 } 5642 5643 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5644 return IdentifiedStructTypes; 5645 } 5646 5647 std::error_code 5648 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5649 if (Streamer) 5650 return initLazyStream(std::move(Streamer)); 5651 return initStreamFromBuffer(); 5652 } 5653 5654 std::error_code BitcodeReader::initStreamFromBuffer() { 5655 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5656 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5657 5658 if (Buffer->getBufferSize() & 3) 5659 return error("Invalid bitcode signature"); 5660 5661 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5662 // The magic number is 0x0B17C0DE stored in little endian. 5663 if (isBitcodeWrapper(BufPtr, BufEnd)) 5664 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5665 return error("Invalid bitcode wrapper header"); 5666 5667 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5668 Stream.init(&*StreamFile); 5669 5670 return std::error_code(); 5671 } 5672 5673 std::error_code 5674 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5675 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5676 // see it. 5677 auto OwnedBytes = 5678 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5679 StreamingMemoryObject &Bytes = *OwnedBytes; 5680 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5681 Stream.init(&*StreamFile); 5682 5683 unsigned char buf[16]; 5684 if (Bytes.readBytes(buf, 16, 0) != 16) 5685 return error("Invalid bitcode signature"); 5686 5687 if (!isBitcode(buf, buf + 16)) 5688 return error("Invalid bitcode signature"); 5689 5690 if (isBitcodeWrapper(buf, buf + 4)) { 5691 const unsigned char *bitcodeStart = buf; 5692 const unsigned char *bitcodeEnd = buf + 16; 5693 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5694 Bytes.dropLeadingBytes(bitcodeStart - buf); 5695 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5696 } 5697 return std::error_code(); 5698 } 5699 5700 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5701 const Twine &Message) { 5702 return ::error(DiagnosticHandler, make_error_code(E), Message); 5703 } 5704 5705 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5706 return ::error(DiagnosticHandler, 5707 make_error_code(BitcodeError::CorruptedBitcode), Message); 5708 } 5709 5710 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5711 return ::error(DiagnosticHandler, make_error_code(E)); 5712 } 5713 5714 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5715 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5716 bool CheckGlobalValSummaryPresenceOnly) 5717 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5718 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5719 5720 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5721 DiagnosticHandlerFunction DiagnosticHandler, 5722 bool CheckGlobalValSummaryPresenceOnly) 5723 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(nullptr), 5724 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5725 5726 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5727 5728 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5729 5730 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5731 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5732 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5733 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5734 return VGI->second; 5735 } 5736 5737 // Specialized value symbol table parser used when reading module index 5738 // blocks where we don't actually create global values. The parsed information 5739 // is saved in the bitcode reader for use when later parsing summaries. 5740 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5741 uint64_t Offset, 5742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5743 assert(Offset > 0 && "Expected non-zero VST offset"); 5744 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5745 5746 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5747 return error("Invalid record"); 5748 5749 SmallVector<uint64_t, 64> Record; 5750 5751 // Read all the records for this value table. 5752 SmallString<128> ValueName; 5753 while (1) { 5754 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5755 5756 switch (Entry.Kind) { 5757 case BitstreamEntry::SubBlock: // Handled for us already. 5758 case BitstreamEntry::Error: 5759 return error("Malformed block"); 5760 case BitstreamEntry::EndBlock: 5761 // Done parsing VST, jump back to wherever we came from. 5762 Stream.JumpToBit(CurrentBit); 5763 return std::error_code(); 5764 case BitstreamEntry::Record: 5765 // The interesting case. 5766 break; 5767 } 5768 5769 // Read a record. 5770 Record.clear(); 5771 switch (Stream.readRecord(Entry.ID, Record)) { 5772 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5773 break; 5774 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5775 if (convertToString(Record, 1, ValueName)) 5776 return error("Invalid record"); 5777 unsigned ValueID = Record[0]; 5778 assert(!SourceFileName.empty()); 5779 auto VLI = ValueIdToLinkageMap.find(ValueID); 5780 assert(VLI != ValueIdToLinkageMap.end() && 5781 "No linkage found for VST entry?"); 5782 auto Linkage = VLI->second; 5783 std::string GlobalId = 5784 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5785 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5786 auto OriginalNameID = ValueGUID; 5787 if (GlobalValue::isLocalLinkage(Linkage)) 5788 OriginalNameID = GlobalValue::getGUID(ValueName); 5789 if (PrintSummaryGUIDs) 5790 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5791 << ValueName << "\n"; 5792 ValueIdToCallGraphGUIDMap[ValueID] = 5793 std::make_pair(ValueGUID, OriginalNameID); 5794 ValueName.clear(); 5795 break; 5796 } 5797 case bitc::VST_CODE_FNENTRY: { 5798 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5799 if (convertToString(Record, 2, ValueName)) 5800 return error("Invalid record"); 5801 unsigned ValueID = Record[0]; 5802 assert(!SourceFileName.empty()); 5803 auto VLI = ValueIdToLinkageMap.find(ValueID); 5804 assert(VLI != ValueIdToLinkageMap.end() && 5805 "No linkage found for VST entry?"); 5806 auto Linkage = VLI->second; 5807 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5808 ValueName, VLI->second, SourceFileName); 5809 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5810 auto OriginalNameID = FunctionGUID; 5811 if (GlobalValue::isLocalLinkage(Linkage)) 5812 OriginalNameID = GlobalValue::getGUID(ValueName); 5813 if (PrintSummaryGUIDs) 5814 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5815 << ValueName << "\n"; 5816 ValueIdToCallGraphGUIDMap[ValueID] = 5817 std::make_pair(FunctionGUID, OriginalNameID); 5818 5819 ValueName.clear(); 5820 break; 5821 } 5822 case bitc::VST_CODE_COMBINED_ENTRY: { 5823 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5824 unsigned ValueID = Record[0]; 5825 GlobalValue::GUID RefGUID = Record[1]; 5826 // The "original name", which is the second value of the pair will be 5827 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5828 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5829 break; 5830 } 5831 } 5832 } 5833 } 5834 5835 // Parse just the blocks needed for building the index out of the module. 5836 // At the end of this routine the module Index is populated with a map 5837 // from global value id to GlobalValueSummary objects. 5838 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5839 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5840 return error("Invalid record"); 5841 5842 SmallVector<uint64_t, 64> Record; 5843 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5844 unsigned ValueId = 0; 5845 5846 // Read the index for this module. 5847 while (1) { 5848 BitstreamEntry Entry = Stream.advance(); 5849 5850 switch (Entry.Kind) { 5851 case BitstreamEntry::Error: 5852 return error("Malformed block"); 5853 case BitstreamEntry::EndBlock: 5854 return std::error_code(); 5855 5856 case BitstreamEntry::SubBlock: 5857 if (CheckGlobalValSummaryPresenceOnly) { 5858 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5859 SeenGlobalValSummary = true; 5860 // No need to parse the rest since we found the summary. 5861 return std::error_code(); 5862 } 5863 if (Stream.SkipBlock()) 5864 return error("Invalid record"); 5865 continue; 5866 } 5867 switch (Entry.ID) { 5868 default: // Skip unknown content. 5869 if (Stream.SkipBlock()) 5870 return error("Invalid record"); 5871 break; 5872 case bitc::BLOCKINFO_BLOCK_ID: 5873 // Need to parse these to get abbrev ids (e.g. for VST) 5874 if (Stream.ReadBlockInfoBlock()) 5875 return error("Malformed block"); 5876 break; 5877 case bitc::VALUE_SYMTAB_BLOCK_ID: 5878 // Should have been parsed earlier via VSTOffset, unless there 5879 // is no summary section. 5880 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5881 !SeenGlobalValSummary) && 5882 "Expected early VST parse via VSTOffset record"); 5883 if (Stream.SkipBlock()) 5884 return error("Invalid record"); 5885 break; 5886 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5887 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5888 assert(!SeenValueSymbolTable && 5889 "Already read VST when parsing summary block?"); 5890 if (std::error_code EC = 5891 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5892 return EC; 5893 SeenValueSymbolTable = true; 5894 SeenGlobalValSummary = true; 5895 if (std::error_code EC = parseEntireSummary()) 5896 return EC; 5897 break; 5898 case bitc::MODULE_STRTAB_BLOCK_ID: 5899 if (std::error_code EC = parseModuleStringTable()) 5900 return EC; 5901 break; 5902 } 5903 continue; 5904 5905 case BitstreamEntry::Record: { 5906 Record.clear(); 5907 auto BitCode = Stream.readRecord(Entry.ID, Record); 5908 switch (BitCode) { 5909 default: 5910 break; // Default behavior, ignore unknown content. 5911 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5912 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5913 SmallString<128> ValueName; 5914 if (convertToString(Record, 0, ValueName)) 5915 return error("Invalid record"); 5916 SourceFileName = ValueName.c_str(); 5917 break; 5918 } 5919 /// MODULE_CODE_HASH: [5*i32] 5920 case bitc::MODULE_CODE_HASH: { 5921 if (Record.size() != 5) 5922 return error("Invalid hash length " + Twine(Record.size()).str()); 5923 if (!TheIndex) 5924 break; 5925 if (TheIndex->modulePaths().empty()) 5926 // Does not have any summary emitted. 5927 break; 5928 if (TheIndex->modulePaths().size() != 1) 5929 return error("Don't expect multiple modules defined?"); 5930 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5931 int Pos = 0; 5932 for (auto &Val : Record) { 5933 assert(!(Val >> 32) && "Unexpected high bits set"); 5934 Hash[Pos++] = Val; 5935 } 5936 break; 5937 } 5938 /// MODULE_CODE_VSTOFFSET: [offset] 5939 case bitc::MODULE_CODE_VSTOFFSET: 5940 if (Record.size() < 1) 5941 return error("Invalid record"); 5942 VSTOffset = Record[0]; 5943 break; 5944 // GLOBALVAR: [pointer type, isconst, initid, 5945 // linkage, alignment, section, visibility, threadlocal, 5946 // unnamed_addr, externally_initialized, dllstorageclass, 5947 // comdat] 5948 case bitc::MODULE_CODE_GLOBALVAR: { 5949 if (Record.size() < 6) 5950 return error("Invalid record"); 5951 uint64_t RawLinkage = Record[3]; 5952 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5953 ValueIdToLinkageMap[ValueId++] = Linkage; 5954 break; 5955 } 5956 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5957 // alignment, section, visibility, gc, unnamed_addr, 5958 // prologuedata, dllstorageclass, comdat, prefixdata] 5959 case bitc::MODULE_CODE_FUNCTION: { 5960 if (Record.size() < 8) 5961 return error("Invalid record"); 5962 uint64_t RawLinkage = Record[3]; 5963 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5964 ValueIdToLinkageMap[ValueId++] = Linkage; 5965 break; 5966 } 5967 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5968 // dllstorageclass] 5969 case bitc::MODULE_CODE_ALIAS: { 5970 if (Record.size() < 6) 5971 return error("Invalid record"); 5972 uint64_t RawLinkage = Record[3]; 5973 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5974 ValueIdToLinkageMap[ValueId++] = Linkage; 5975 break; 5976 } 5977 } 5978 } 5979 continue; 5980 } 5981 } 5982 } 5983 5984 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5985 // objects in the index. 5986 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5987 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5988 return error("Invalid record"); 5989 SmallVector<uint64_t, 64> Record; 5990 5991 // Parse version 5992 { 5993 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5994 if (Entry.Kind != BitstreamEntry::Record) 5995 return error("Invalid Summary Block: record for version expected"); 5996 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5997 return error("Invalid Summary Block: version expected"); 5998 } 5999 const uint64_t Version = Record[0]; 6000 if (Version != 1) 6001 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6002 Record.clear(); 6003 6004 // Keep around the last seen summary to be used when we see an optional 6005 // "OriginalName" attachement. 6006 GlobalValueSummary *LastSeenSummary = nullptr; 6007 bool Combined = false; 6008 while (1) { 6009 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6010 6011 switch (Entry.Kind) { 6012 case BitstreamEntry::SubBlock: // Handled for us already. 6013 case BitstreamEntry::Error: 6014 return error("Malformed block"); 6015 case BitstreamEntry::EndBlock: 6016 // For a per-module index, remove any entries that still have empty 6017 // summaries. The VST parsing creates entries eagerly for all symbols, 6018 // but not all have associated summaries (e.g. it doesn't know how to 6019 // distinguish between VST_CODE_ENTRY for function declarations vs global 6020 // variables with initializers that end up with a summary). Remove those 6021 // entries now so that we don't need to rely on the combined index merger 6022 // to clean them up (especially since that may not run for the first 6023 // module's index if we merge into that). 6024 if (!Combined) 6025 TheIndex->removeEmptySummaryEntries(); 6026 return std::error_code(); 6027 case BitstreamEntry::Record: 6028 // The interesting case. 6029 break; 6030 } 6031 6032 // Read a record. The record format depends on whether this 6033 // is a per-module index or a combined index file. In the per-module 6034 // case the records contain the associated value's ID for correlation 6035 // with VST entries. In the combined index the correlation is done 6036 // via the bitcode offset of the summary records (which were saved 6037 // in the combined index VST entries). The records also contain 6038 // information used for ThinLTO renaming and importing. 6039 Record.clear(); 6040 auto BitCode = Stream.readRecord(Entry.ID, Record); 6041 switch (BitCode) { 6042 default: // Default behavior: ignore. 6043 break; 6044 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6045 // n x (valueid, callsitecount)] 6046 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6047 // numrefs x valueid, 6048 // n x (valueid, callsitecount, profilecount)] 6049 case bitc::FS_PERMODULE: 6050 case bitc::FS_PERMODULE_PROFILE: { 6051 unsigned ValueID = Record[0]; 6052 uint64_t RawFlags = Record[1]; 6053 unsigned InstCount = Record[2]; 6054 unsigned NumRefs = Record[3]; 6055 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6056 std::unique_ptr<FunctionSummary> FS = 6057 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6058 // The module path string ref set in the summary must be owned by the 6059 // index's module string table. Since we don't have a module path 6060 // string table section in the per-module index, we create a single 6061 // module path string table entry with an empty (0) ID to take 6062 // ownership. 6063 FS->setModulePath( 6064 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6065 static int RefListStartIndex = 4; 6066 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6067 assert(Record.size() >= RefListStartIndex + NumRefs && 6068 "Record size inconsistent with number of references"); 6069 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6070 unsigned RefValueId = Record[I]; 6071 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6072 FS->addRefEdge(RefGUID); 6073 } 6074 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6075 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6076 ++I) { 6077 unsigned CalleeValueId = Record[I]; 6078 unsigned CallsiteCount = Record[++I]; 6079 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6080 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6081 FS->addCallGraphEdge(CalleeGUID, 6082 CalleeInfo(CallsiteCount, ProfileCount)); 6083 } 6084 auto GUID = getGUIDFromValueId(ValueID); 6085 FS->setOriginalName(GUID.second); 6086 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6087 break; 6088 } 6089 // FS_ALIAS: [valueid, flags, valueid] 6090 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6091 // they expect all aliasee summaries to be available. 6092 case bitc::FS_ALIAS: { 6093 unsigned ValueID = Record[0]; 6094 uint64_t RawFlags = Record[1]; 6095 unsigned AliaseeID = Record[2]; 6096 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6097 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6098 // The module path string ref set in the summary must be owned by the 6099 // index's module string table. Since we don't have a module path 6100 // string table section in the per-module index, we create a single 6101 // module path string table entry with an empty (0) ID to take 6102 // ownership. 6103 AS->setModulePath( 6104 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6105 6106 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6107 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6108 if (!AliaseeSummary) 6109 return error("Alias expects aliasee summary to be parsed"); 6110 AS->setAliasee(AliaseeSummary); 6111 6112 auto GUID = getGUIDFromValueId(ValueID); 6113 AS->setOriginalName(GUID.second); 6114 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6115 break; 6116 } 6117 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6118 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6119 unsigned ValueID = Record[0]; 6120 uint64_t RawFlags = Record[1]; 6121 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6122 std::unique_ptr<GlobalVarSummary> FS = 6123 llvm::make_unique<GlobalVarSummary>(Flags); 6124 FS->setModulePath( 6125 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6126 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6127 unsigned RefValueId = Record[I]; 6128 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6129 FS->addRefEdge(RefGUID); 6130 } 6131 auto GUID = getGUIDFromValueId(ValueID); 6132 FS->setOriginalName(GUID.second); 6133 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6134 break; 6135 } 6136 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6137 // numrefs x valueid, n x (valueid, callsitecount)] 6138 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6139 // numrefs x valueid, 6140 // n x (valueid, callsitecount, profilecount)] 6141 case bitc::FS_COMBINED: 6142 case bitc::FS_COMBINED_PROFILE: { 6143 unsigned ValueID = Record[0]; 6144 uint64_t ModuleId = Record[1]; 6145 uint64_t RawFlags = Record[2]; 6146 unsigned InstCount = Record[3]; 6147 unsigned NumRefs = Record[4]; 6148 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6149 std::unique_ptr<FunctionSummary> FS = 6150 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6151 LastSeenSummary = FS.get(); 6152 FS->setModulePath(ModuleIdMap[ModuleId]); 6153 static int RefListStartIndex = 5; 6154 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6155 assert(Record.size() >= RefListStartIndex + NumRefs && 6156 "Record size inconsistent with number of references"); 6157 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6158 ++I) { 6159 unsigned RefValueId = Record[I]; 6160 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6161 FS->addRefEdge(RefGUID); 6162 } 6163 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6164 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6165 ++I) { 6166 unsigned CalleeValueId = Record[I]; 6167 unsigned CallsiteCount = Record[++I]; 6168 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6169 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6170 FS->addCallGraphEdge(CalleeGUID, 6171 CalleeInfo(CallsiteCount, ProfileCount)); 6172 } 6173 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6174 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6175 Combined = true; 6176 break; 6177 } 6178 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6179 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6180 // they expect all aliasee summaries to be available. 6181 case bitc::FS_COMBINED_ALIAS: { 6182 unsigned ValueID = Record[0]; 6183 uint64_t ModuleId = Record[1]; 6184 uint64_t RawFlags = Record[2]; 6185 unsigned AliaseeValueId = Record[3]; 6186 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6187 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6188 LastSeenSummary = AS.get(); 6189 AS->setModulePath(ModuleIdMap[ModuleId]); 6190 6191 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6192 auto AliaseeInModule = 6193 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6194 if (!AliaseeInModule) 6195 return error("Alias expects aliasee summary to be parsed"); 6196 AS->setAliasee(AliaseeInModule); 6197 6198 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6199 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6200 Combined = true; 6201 break; 6202 } 6203 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6204 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6205 unsigned ValueID = Record[0]; 6206 uint64_t ModuleId = Record[1]; 6207 uint64_t RawFlags = Record[2]; 6208 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6209 std::unique_ptr<GlobalVarSummary> FS = 6210 llvm::make_unique<GlobalVarSummary>(Flags); 6211 LastSeenSummary = FS.get(); 6212 FS->setModulePath(ModuleIdMap[ModuleId]); 6213 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6214 unsigned RefValueId = Record[I]; 6215 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6216 FS->addRefEdge(RefGUID); 6217 } 6218 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6219 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6220 Combined = true; 6221 break; 6222 } 6223 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6224 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6225 uint64_t OriginalName = Record[0]; 6226 if (!LastSeenSummary) 6227 return error("Name attachment that does not follow a combined record"); 6228 LastSeenSummary->setOriginalName(OriginalName); 6229 // Reset the LastSeenSummary 6230 LastSeenSummary = nullptr; 6231 } 6232 } 6233 } 6234 llvm_unreachable("Exit infinite loop"); 6235 } 6236 6237 // Parse the module string table block into the Index. 6238 // This populates the ModulePathStringTable map in the index. 6239 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6240 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6241 return error("Invalid record"); 6242 6243 SmallVector<uint64_t, 64> Record; 6244 6245 SmallString<128> ModulePath; 6246 ModulePathStringTableTy::iterator LastSeenModulePath; 6247 while (1) { 6248 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6249 6250 switch (Entry.Kind) { 6251 case BitstreamEntry::SubBlock: // Handled for us already. 6252 case BitstreamEntry::Error: 6253 return error("Malformed block"); 6254 case BitstreamEntry::EndBlock: 6255 return std::error_code(); 6256 case BitstreamEntry::Record: 6257 // The interesting case. 6258 break; 6259 } 6260 6261 Record.clear(); 6262 switch (Stream.readRecord(Entry.ID, Record)) { 6263 default: // Default behavior: ignore. 6264 break; 6265 case bitc::MST_CODE_ENTRY: { 6266 // MST_ENTRY: [modid, namechar x N] 6267 uint64_t ModuleId = Record[0]; 6268 6269 if (convertToString(Record, 1, ModulePath)) 6270 return error("Invalid record"); 6271 6272 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6273 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6274 6275 ModulePath.clear(); 6276 break; 6277 } 6278 /// MST_CODE_HASH: [5*i32] 6279 case bitc::MST_CODE_HASH: { 6280 if (Record.size() != 5) 6281 return error("Invalid hash length " + Twine(Record.size()).str()); 6282 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6283 return error("Invalid hash that does not follow a module path"); 6284 int Pos = 0; 6285 for (auto &Val : Record) { 6286 assert(!(Val >> 32) && "Unexpected high bits set"); 6287 LastSeenModulePath->second.second[Pos++] = Val; 6288 } 6289 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6290 LastSeenModulePath = TheIndex->modulePaths().end(); 6291 break; 6292 } 6293 } 6294 } 6295 llvm_unreachable("Exit infinite loop"); 6296 } 6297 6298 // Parse the function info index from the bitcode streamer into the given index. 6299 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6300 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6301 TheIndex = I; 6302 6303 if (std::error_code EC = initStream(std::move(Streamer))) 6304 return EC; 6305 6306 // Sniff for the signature. 6307 if (!hasValidBitcodeHeader(Stream)) 6308 return error("Invalid bitcode signature"); 6309 6310 // We expect a number of well-defined blocks, though we don't necessarily 6311 // need to understand them all. 6312 while (1) { 6313 if (Stream.AtEndOfStream()) { 6314 // We didn't really read a proper Module block. 6315 return error("Malformed block"); 6316 } 6317 6318 BitstreamEntry Entry = 6319 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6320 6321 if (Entry.Kind != BitstreamEntry::SubBlock) 6322 return error("Malformed block"); 6323 6324 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6325 // building the function summary index. 6326 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6327 return parseModule(); 6328 6329 if (Stream.SkipBlock()) 6330 return error("Invalid record"); 6331 } 6332 } 6333 6334 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6335 std::unique_ptr<DataStreamer> Streamer) { 6336 if (Streamer) 6337 return initLazyStream(std::move(Streamer)); 6338 return initStreamFromBuffer(); 6339 } 6340 6341 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6342 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6343 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6344 6345 if (Buffer->getBufferSize() & 3) 6346 return error("Invalid bitcode signature"); 6347 6348 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6349 // The magic number is 0x0B17C0DE stored in little endian. 6350 if (isBitcodeWrapper(BufPtr, BufEnd)) 6351 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6352 return error("Invalid bitcode wrapper header"); 6353 6354 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6355 Stream.init(&*StreamFile); 6356 6357 return std::error_code(); 6358 } 6359 6360 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6361 std::unique_ptr<DataStreamer> Streamer) { 6362 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6363 // see it. 6364 auto OwnedBytes = 6365 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6366 StreamingMemoryObject &Bytes = *OwnedBytes; 6367 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6368 Stream.init(&*StreamFile); 6369 6370 unsigned char buf[16]; 6371 if (Bytes.readBytes(buf, 16, 0) != 16) 6372 return error("Invalid bitcode signature"); 6373 6374 if (!isBitcode(buf, buf + 16)) 6375 return error("Invalid bitcode signature"); 6376 6377 if (isBitcodeWrapper(buf, buf + 4)) { 6378 const unsigned char *bitcodeStart = buf; 6379 const unsigned char *bitcodeEnd = buf + 16; 6380 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6381 Bytes.dropLeadingBytes(bitcodeStart - buf); 6382 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6383 } 6384 return std::error_code(); 6385 } 6386 6387 namespace { 6388 // FIXME: This class is only here to support the transition to llvm::Error. It 6389 // will be removed once this transition is complete. Clients should prefer to 6390 // deal with the Error value directly, rather than converting to error_code. 6391 class BitcodeErrorCategoryType : public std::error_category { 6392 const char *name() const LLVM_NOEXCEPT override { 6393 return "llvm.bitcode"; 6394 } 6395 std::string message(int IE) const override { 6396 BitcodeError E = static_cast<BitcodeError>(IE); 6397 switch (E) { 6398 case BitcodeError::InvalidBitcodeSignature: 6399 return "Invalid bitcode signature"; 6400 case BitcodeError::CorruptedBitcode: 6401 return "Corrupted bitcode"; 6402 } 6403 llvm_unreachable("Unknown error type!"); 6404 } 6405 }; 6406 } // end anonymous namespace 6407 6408 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6409 6410 const std::error_category &llvm::BitcodeErrorCategory() { 6411 return *ErrorCategory; 6412 } 6413 6414 //===----------------------------------------------------------------------===// 6415 // External interface 6416 //===----------------------------------------------------------------------===// 6417 6418 static ErrorOr<std::unique_ptr<Module>> 6419 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6420 BitcodeReader *R, LLVMContext &Context, 6421 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6422 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6423 M->setMaterializer(R); 6424 6425 auto cleanupOnError = [&](std::error_code EC) { 6426 R->releaseBuffer(); // Never take ownership on error. 6427 return EC; 6428 }; 6429 6430 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6431 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6432 ShouldLazyLoadMetadata)) 6433 return cleanupOnError(EC); 6434 6435 if (MaterializeAll) { 6436 // Read in the entire module, and destroy the BitcodeReader. 6437 if (std::error_code EC = M->materializeAll()) 6438 return cleanupOnError(EC); 6439 } else { 6440 // Resolve forward references from blockaddresses. 6441 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6442 return cleanupOnError(EC); 6443 } 6444 return std::move(M); 6445 } 6446 6447 /// \brief Get a lazy one-at-time loading module from bitcode. 6448 /// 6449 /// This isn't always used in a lazy context. In particular, it's also used by 6450 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6451 /// in forward-referenced functions from block address references. 6452 /// 6453 /// \param[in] MaterializeAll Set to \c true if we should materialize 6454 /// everything. 6455 static ErrorOr<std::unique_ptr<Module>> 6456 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6457 LLVMContext &Context, bool MaterializeAll, 6458 bool ShouldLazyLoadMetadata = false) { 6459 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6460 6461 ErrorOr<std::unique_ptr<Module>> Ret = 6462 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6463 MaterializeAll, ShouldLazyLoadMetadata); 6464 if (!Ret) 6465 return Ret; 6466 6467 Buffer.release(); // The BitcodeReader owns it now. 6468 return Ret; 6469 } 6470 6471 ErrorOr<std::unique_ptr<Module>> 6472 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6473 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6474 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6475 ShouldLazyLoadMetadata); 6476 } 6477 6478 ErrorOr<std::unique_ptr<Module>> 6479 llvm::getStreamedBitcodeModule(StringRef Name, 6480 std::unique_ptr<DataStreamer> Streamer, 6481 LLVMContext &Context) { 6482 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6483 BitcodeReader *R = new BitcodeReader(Context); 6484 6485 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6486 false); 6487 } 6488 6489 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6490 LLVMContext &Context) { 6491 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6492 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6493 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6494 // written. We must defer until the Module has been fully materialized. 6495 } 6496 6497 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6498 LLVMContext &Context) { 6499 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6500 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6501 ErrorOr<std::string> Triple = R->parseTriple(); 6502 if (Triple.getError()) 6503 return ""; 6504 return Triple.get(); 6505 } 6506 6507 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6508 LLVMContext &Context) { 6509 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6510 BitcodeReader R(Buf.release(), Context); 6511 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6512 if (ProducerString.getError()) 6513 return ""; 6514 return ProducerString.get(); 6515 } 6516 6517 // Parse the specified bitcode buffer, returning the function info index. 6518 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6519 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6520 DiagnosticHandlerFunction DiagnosticHandler) { 6521 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6522 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6523 6524 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6525 6526 auto cleanupOnError = [&](std::error_code EC) { 6527 R.releaseBuffer(); // Never take ownership on error. 6528 return EC; 6529 }; 6530 6531 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6532 return cleanupOnError(EC); 6533 6534 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6535 return std::move(Index); 6536 } 6537 6538 // Check if the given bitcode buffer contains a global value summary block. 6539 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6540 DiagnosticHandlerFunction DiagnosticHandler) { 6541 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6542 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6543 6544 auto cleanupOnError = [&](std::error_code EC) { 6545 R.releaseBuffer(); // Never take ownership on error. 6546 return false; 6547 }; 6548 6549 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6550 return cleanupOnError(EC); 6551 6552 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6553 return R.foundGlobalValSummary(); 6554 } 6555