1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 bool IsStreamed; 140 uint64_t NextUnreadBit = 0; 141 bool SeenValueSymbolTable = false; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 245 Module *M, 246 bool ShouldLazyLoadMetadata = false); 247 248 /// \brief Cheap mechanism to just extract module triple 249 /// \returns true if an error occurred. 250 ErrorOr<std::string> parseTriple(); 251 252 static uint64_t decodeSignRotatedValue(uint64_t V); 253 254 /// Materialize any deferred Metadata block. 255 std::error_code materializeMetadata() override; 256 257 void setStripDebugInfo() override; 258 259 private: 260 std::vector<StructType *> IdentifiedStructTypes; 261 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 262 StructType *createIdentifiedStructType(LLVMContext &Context); 263 264 Type *getTypeByID(unsigned ID); 265 Value *getFnValueByID(unsigned ID, Type *Ty) { 266 if (Ty && Ty->isMetadataTy()) 267 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 268 return ValueList.getValueFwdRef(ID, Ty); 269 } 270 Metadata *getFnMetadataByID(unsigned ID) { 271 return MDValueList.getValueFwdRef(ID); 272 } 273 BasicBlock *getBasicBlock(unsigned ID) const { 274 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 275 return FunctionBBs[ID]; 276 } 277 AttributeSet getAttributes(unsigned i) const { 278 if (i-1 < MAttributes.size()) 279 return MAttributes[i-1]; 280 return AttributeSet(); 281 } 282 283 /// Read a value/type pair out of the specified record from slot 'Slot'. 284 /// Increment Slot past the number of slots used in the record. Return true on 285 /// failure. 286 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 287 unsigned InstNum, Value *&ResVal) { 288 if (Slot == Record.size()) return true; 289 unsigned ValNo = (unsigned)Record[Slot++]; 290 // Adjust the ValNo, if it was encoded relative to the InstNum. 291 if (UseRelativeIDs) 292 ValNo = InstNum - ValNo; 293 if (ValNo < InstNum) { 294 // If this is not a forward reference, just return the value we already 295 // have. 296 ResVal = getFnValueByID(ValNo, nullptr); 297 return ResVal == nullptr; 298 } 299 if (Slot == Record.size()) 300 return true; 301 302 unsigned TypeNo = (unsigned)Record[Slot++]; 303 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 304 return ResVal == nullptr; 305 } 306 307 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 308 /// past the number of slots used by the value in the record. Return true if 309 /// there is an error. 310 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Type *Ty, Value *&ResVal) { 312 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 313 return true; 314 // All values currently take a single record slot. 315 ++Slot; 316 return false; 317 } 318 319 /// Like popValue, but does not increment the Slot number. 320 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 321 unsigned InstNum, Type *Ty, Value *&ResVal) { 322 ResVal = getValue(Record, Slot, InstNum, Ty); 323 return ResVal == nullptr; 324 } 325 326 /// Version of getValue that returns ResVal directly, or 0 if there is an 327 /// error. 328 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 329 unsigned InstNum, Type *Ty) { 330 if (Slot == Record.size()) return nullptr; 331 unsigned ValNo = (unsigned)Record[Slot]; 332 // Adjust the ValNo, if it was encoded relative to the InstNum. 333 if (UseRelativeIDs) 334 ValNo = InstNum - ValNo; 335 return getFnValueByID(ValNo, Ty); 336 } 337 338 /// Like getValue, but decodes signed VBRs. 339 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty) { 341 if (Slot == Record.size()) return nullptr; 342 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 343 // Adjust the ValNo, if it was encoded relative to the InstNum. 344 if (UseRelativeIDs) 345 ValNo = InstNum - ValNo; 346 return getFnValueByID(ValNo, Ty); 347 } 348 349 /// Converts alignment exponent (i.e. power of two (or zero)) to the 350 /// corresponding alignment to use. If alignment is too large, returns 351 /// a corresponding error code. 352 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 353 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 354 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 355 std::error_code parseAttributeBlock(); 356 std::error_code parseAttributeGroupBlock(); 357 std::error_code parseTypeTable(); 358 std::error_code parseTypeTableBody(); 359 360 std::error_code parseValueSymbolTable(); 361 std::error_code parseConstants(); 362 std::error_code rememberAndSkipFunctionBody(); 363 /// Save the positions of the Metadata blocks and skip parsing the blocks. 364 std::error_code rememberAndSkipMetadata(); 365 std::error_code parseFunctionBody(Function *F); 366 std::error_code globalCleanup(); 367 std::error_code resolveGlobalAndAliasInits(); 368 std::error_code parseMetadata(); 369 std::error_code parseMetadataAttachment(Function &F); 370 ErrorOr<std::string> parseModuleTriple(); 371 std::error_code parseUseLists(); 372 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 373 std::error_code initStreamFromBuffer(); 374 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 375 std::error_code findFunctionInStream( 376 Function *F, 377 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 378 }; 379 } // namespace 380 381 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 382 DiagnosticSeverity Severity, 383 const Twine &Msg) 384 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 385 386 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 387 388 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 389 std::error_code EC, const Twine &Message) { 390 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 391 DiagnosticHandler(DI); 392 return EC; 393 } 394 395 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 396 std::error_code EC) { 397 return error(DiagnosticHandler, EC, EC.message()); 398 } 399 400 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 401 const Twine &Message) { 402 return error(DiagnosticHandler, 403 make_error_code(BitcodeError::CorruptedBitcode), Message); 404 } 405 406 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 407 return ::error(DiagnosticHandler, make_error_code(E), Message); 408 } 409 410 std::error_code BitcodeReader::error(const Twine &Message) { 411 return ::error(DiagnosticHandler, 412 make_error_code(BitcodeError::CorruptedBitcode), Message); 413 } 414 415 std::error_code BitcodeReader::error(BitcodeError E) { 416 return ::error(DiagnosticHandler, make_error_code(E)); 417 } 418 419 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 420 LLVMContext &C) { 421 if (F) 422 return F; 423 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 424 } 425 426 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 427 DiagnosticHandlerFunction DiagnosticHandler) 428 : Context(Context), 429 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 430 Buffer(Buffer), IsStreamed(false), ValueList(Context), 431 MDValueList(Context) {} 432 433 BitcodeReader::BitcodeReader(LLVMContext &Context, 434 DiagnosticHandlerFunction DiagnosticHandler) 435 : Context(Context), 436 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 437 Buffer(nullptr), IsStreamed(true), ValueList(Context), 438 MDValueList(Context) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::freeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// Convert a string from a record into an std::string, return true on failure. 496 template <typename StrTy> 497 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 498 StrTy &Result) { 499 if (Idx > Record.size()) 500 return true; 501 502 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 503 Result += (char)Record[i]; 504 return false; 505 } 506 507 static bool hasImplicitComdat(size_t Val) { 508 switch (Val) { 509 default: 510 return false; 511 case 1: // Old WeakAnyLinkage 512 case 4: // Old LinkOnceAnyLinkage 513 case 10: // Old WeakODRLinkage 514 case 11: // Old LinkOnceODRLinkage 515 return true; 516 } 517 } 518 519 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 520 switch (Val) { 521 default: // Map unknown/new linkages to external 522 case 0: 523 return GlobalValue::ExternalLinkage; 524 case 2: 525 return GlobalValue::AppendingLinkage; 526 case 3: 527 return GlobalValue::InternalLinkage; 528 case 5: 529 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 530 case 6: 531 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 532 case 7: 533 return GlobalValue::ExternalWeakLinkage; 534 case 8: 535 return GlobalValue::CommonLinkage; 536 case 9: 537 return GlobalValue::PrivateLinkage; 538 case 12: 539 return GlobalValue::AvailableExternallyLinkage; 540 case 13: 541 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 542 case 14: 543 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 544 case 15: 545 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 546 case 1: // Old value with implicit comdat. 547 case 16: 548 return GlobalValue::WeakAnyLinkage; 549 case 10: // Old value with implicit comdat. 550 case 17: 551 return GlobalValue::WeakODRLinkage; 552 case 4: // Old value with implicit comdat. 553 case 18: 554 return GlobalValue::LinkOnceAnyLinkage; 555 case 11: // Old value with implicit comdat. 556 case 19: 557 return GlobalValue::LinkOnceODRLinkage; 558 } 559 } 560 561 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 562 switch (Val) { 563 default: // Map unknown visibilities to default. 564 case 0: return GlobalValue::DefaultVisibility; 565 case 1: return GlobalValue::HiddenVisibility; 566 case 2: return GlobalValue::ProtectedVisibility; 567 } 568 } 569 570 static GlobalValue::DLLStorageClassTypes 571 getDecodedDLLStorageClass(unsigned Val) { 572 switch (Val) { 573 default: // Map unknown values to default. 574 case 0: return GlobalValue::DefaultStorageClass; 575 case 1: return GlobalValue::DLLImportStorageClass; 576 case 2: return GlobalValue::DLLExportStorageClass; 577 } 578 } 579 580 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 581 switch (Val) { 582 case 0: return GlobalVariable::NotThreadLocal; 583 default: // Map unknown non-zero value to general dynamic. 584 case 1: return GlobalVariable::GeneralDynamicTLSModel; 585 case 2: return GlobalVariable::LocalDynamicTLSModel; 586 case 3: return GlobalVariable::InitialExecTLSModel; 587 case 4: return GlobalVariable::LocalExecTLSModel; 588 } 589 } 590 591 static int getDecodedCastOpcode(unsigned Val) { 592 switch (Val) { 593 default: return -1; 594 case bitc::CAST_TRUNC : return Instruction::Trunc; 595 case bitc::CAST_ZEXT : return Instruction::ZExt; 596 case bitc::CAST_SEXT : return Instruction::SExt; 597 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 598 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 599 case bitc::CAST_UITOFP : return Instruction::UIToFP; 600 case bitc::CAST_SITOFP : return Instruction::SIToFP; 601 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 602 case bitc::CAST_FPEXT : return Instruction::FPExt; 603 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 604 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 605 case bitc::CAST_BITCAST : return Instruction::BitCast; 606 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 607 } 608 } 609 610 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 611 bool IsFP = Ty->isFPOrFPVectorTy(); 612 // BinOps are only valid for int/fp or vector of int/fp types 613 if (!IsFP && !Ty->isIntOrIntVectorTy()) 614 return -1; 615 616 switch (Val) { 617 default: 618 return -1; 619 case bitc::BINOP_ADD: 620 return IsFP ? Instruction::FAdd : Instruction::Add; 621 case bitc::BINOP_SUB: 622 return IsFP ? Instruction::FSub : Instruction::Sub; 623 case bitc::BINOP_MUL: 624 return IsFP ? Instruction::FMul : Instruction::Mul; 625 case bitc::BINOP_UDIV: 626 return IsFP ? -1 : Instruction::UDiv; 627 case bitc::BINOP_SDIV: 628 return IsFP ? Instruction::FDiv : Instruction::SDiv; 629 case bitc::BINOP_UREM: 630 return IsFP ? -1 : Instruction::URem; 631 case bitc::BINOP_SREM: 632 return IsFP ? Instruction::FRem : Instruction::SRem; 633 case bitc::BINOP_SHL: 634 return IsFP ? -1 : Instruction::Shl; 635 case bitc::BINOP_LSHR: 636 return IsFP ? -1 : Instruction::LShr; 637 case bitc::BINOP_ASHR: 638 return IsFP ? -1 : Instruction::AShr; 639 case bitc::BINOP_AND: 640 return IsFP ? -1 : Instruction::And; 641 case bitc::BINOP_OR: 642 return IsFP ? -1 : Instruction::Or; 643 case bitc::BINOP_XOR: 644 return IsFP ? -1 : Instruction::Xor; 645 } 646 } 647 648 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 649 switch (Val) { 650 default: return AtomicRMWInst::BAD_BINOP; 651 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 652 case bitc::RMW_ADD: return AtomicRMWInst::Add; 653 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 654 case bitc::RMW_AND: return AtomicRMWInst::And; 655 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 656 case bitc::RMW_OR: return AtomicRMWInst::Or; 657 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 658 case bitc::RMW_MAX: return AtomicRMWInst::Max; 659 case bitc::RMW_MIN: return AtomicRMWInst::Min; 660 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 661 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 662 } 663 } 664 665 static AtomicOrdering getDecodedOrdering(unsigned Val) { 666 switch (Val) { 667 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 668 case bitc::ORDERING_UNORDERED: return Unordered; 669 case bitc::ORDERING_MONOTONIC: return Monotonic; 670 case bitc::ORDERING_ACQUIRE: return Acquire; 671 case bitc::ORDERING_RELEASE: return Release; 672 case bitc::ORDERING_ACQREL: return AcquireRelease; 673 default: // Map unknown orderings to sequentially-consistent. 674 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 675 } 676 } 677 678 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 679 switch (Val) { 680 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 681 default: // Map unknown scopes to cross-thread. 682 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 683 } 684 } 685 686 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 687 switch (Val) { 688 default: // Map unknown selection kinds to any. 689 case bitc::COMDAT_SELECTION_KIND_ANY: 690 return Comdat::Any; 691 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 692 return Comdat::ExactMatch; 693 case bitc::COMDAT_SELECTION_KIND_LARGEST: 694 return Comdat::Largest; 695 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 696 return Comdat::NoDuplicates; 697 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 698 return Comdat::SameSize; 699 } 700 } 701 702 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 703 switch (Val) { 704 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 705 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 706 } 707 } 708 709 namespace llvm { 710 namespace { 711 /// \brief A class for maintaining the slot number definition 712 /// as a placeholder for the actual definition for forward constants defs. 713 class ConstantPlaceHolder : public ConstantExpr { 714 void operator=(const ConstantPlaceHolder &) = delete; 715 716 public: 717 // allocate space for exactly one operand 718 void *operator new(size_t s) { return User::operator new(s, 1); } 719 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 720 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 721 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 722 } 723 724 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 725 static bool classof(const Value *V) { 726 return isa<ConstantExpr>(V) && 727 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 728 } 729 730 /// Provide fast operand accessors 731 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 732 }; 733 } 734 735 // FIXME: can we inherit this from ConstantExpr? 736 template <> 737 struct OperandTraits<ConstantPlaceHolder> : 738 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 739 }; 740 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 741 } 742 743 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 744 if (Idx == size()) { 745 push_back(V); 746 return; 747 } 748 749 if (Idx >= size()) 750 resize(Idx+1); 751 752 WeakVH &OldV = ValuePtrs[Idx]; 753 if (!OldV) { 754 OldV = V; 755 return; 756 } 757 758 // Handle constants and non-constants (e.g. instrs) differently for 759 // efficiency. 760 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 761 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 762 OldV = V; 763 } else { 764 // If there was a forward reference to this value, replace it. 765 Value *PrevVal = OldV; 766 OldV->replaceAllUsesWith(V); 767 delete PrevVal; 768 } 769 } 770 771 772 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 773 Type *Ty) { 774 if (Idx >= size()) 775 resize(Idx + 1); 776 777 if (Value *V = ValuePtrs[Idx]) { 778 if (Ty != V->getType()) 779 report_fatal_error("Type mismatch in constant table!"); 780 return cast<Constant>(V); 781 } 782 783 // Create and return a placeholder, which will later be RAUW'd. 784 Constant *C = new ConstantPlaceHolder(Ty, Context); 785 ValuePtrs[Idx] = C; 786 return C; 787 } 788 789 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 790 // Bail out for a clearly invalid value. This would make us call resize(0) 791 if (Idx == UINT_MAX) 792 return nullptr; 793 794 if (Idx >= size()) 795 resize(Idx + 1); 796 797 if (Value *V = ValuePtrs[Idx]) { 798 // If the types don't match, it's invalid. 799 if (Ty && Ty != V->getType()) 800 return nullptr; 801 return V; 802 } 803 804 // No type specified, must be invalid reference. 805 if (!Ty) return nullptr; 806 807 // Create and return a placeholder, which will later be RAUW'd. 808 Value *V = new Argument(Ty); 809 ValuePtrs[Idx] = V; 810 return V; 811 } 812 813 /// Once all constants are read, this method bulk resolves any forward 814 /// references. The idea behind this is that we sometimes get constants (such 815 /// as large arrays) which reference *many* forward ref constants. Replacing 816 /// each of these causes a lot of thrashing when building/reuniquing the 817 /// constant. Instead of doing this, we look at all the uses and rewrite all 818 /// the place holders at once for any constant that uses a placeholder. 819 void BitcodeReaderValueList::resolveConstantForwardRefs() { 820 // Sort the values by-pointer so that they are efficient to look up with a 821 // binary search. 822 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 823 824 SmallVector<Constant*, 64> NewOps; 825 826 while (!ResolveConstants.empty()) { 827 Value *RealVal = operator[](ResolveConstants.back().second); 828 Constant *Placeholder = ResolveConstants.back().first; 829 ResolveConstants.pop_back(); 830 831 // Loop over all users of the placeholder, updating them to reference the 832 // new value. If they reference more than one placeholder, update them all 833 // at once. 834 while (!Placeholder->use_empty()) { 835 auto UI = Placeholder->user_begin(); 836 User *U = *UI; 837 838 // If the using object isn't uniqued, just update the operands. This 839 // handles instructions and initializers for global variables. 840 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 841 UI.getUse().set(RealVal); 842 continue; 843 } 844 845 // Otherwise, we have a constant that uses the placeholder. Replace that 846 // constant with a new constant that has *all* placeholder uses updated. 847 Constant *UserC = cast<Constant>(U); 848 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 849 I != E; ++I) { 850 Value *NewOp; 851 if (!isa<ConstantPlaceHolder>(*I)) { 852 // Not a placeholder reference. 853 NewOp = *I; 854 } else if (*I == Placeholder) { 855 // Common case is that it just references this one placeholder. 856 NewOp = RealVal; 857 } else { 858 // Otherwise, look up the placeholder in ResolveConstants. 859 ResolveConstantsTy::iterator It = 860 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 861 std::pair<Constant*, unsigned>(cast<Constant>(*I), 862 0)); 863 assert(It != ResolveConstants.end() && It->first == *I); 864 NewOp = operator[](It->second); 865 } 866 867 NewOps.push_back(cast<Constant>(NewOp)); 868 } 869 870 // Make the new constant. 871 Constant *NewC; 872 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 873 NewC = ConstantArray::get(UserCA->getType(), NewOps); 874 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 875 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 876 } else if (isa<ConstantVector>(UserC)) { 877 NewC = ConstantVector::get(NewOps); 878 } else { 879 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 880 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 881 } 882 883 UserC->replaceAllUsesWith(NewC); 884 UserC->destroyConstant(); 885 NewOps.clear(); 886 } 887 888 // Update all ValueHandles, they should be the only users at this point. 889 Placeholder->replaceAllUsesWith(RealVal); 890 delete Placeholder; 891 } 892 } 893 894 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 895 if (Idx == size()) { 896 push_back(MD); 897 return; 898 } 899 900 if (Idx >= size()) 901 resize(Idx+1); 902 903 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 904 if (!OldMD) { 905 OldMD.reset(MD); 906 return; 907 } 908 909 // If there was a forward reference to this value, replace it. 910 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 911 PrevMD->replaceAllUsesWith(MD); 912 --NumFwdRefs; 913 } 914 915 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 916 if (Idx >= size()) 917 resize(Idx + 1); 918 919 if (Metadata *MD = MDValuePtrs[Idx]) 920 return MD; 921 922 // Track forward refs to be resolved later. 923 if (AnyFwdRefs) { 924 MinFwdRef = std::min(MinFwdRef, Idx); 925 MaxFwdRef = std::max(MaxFwdRef, Idx); 926 } else { 927 AnyFwdRefs = true; 928 MinFwdRef = MaxFwdRef = Idx; 929 } 930 ++NumFwdRefs; 931 932 // Create and return a placeholder, which will later be RAUW'd. 933 Metadata *MD = MDNode::getTemporary(Context, None).release(); 934 MDValuePtrs[Idx].reset(MD); 935 return MD; 936 } 937 938 void BitcodeReaderMDValueList::tryToResolveCycles() { 939 if (!AnyFwdRefs) 940 // Nothing to do. 941 return; 942 943 if (NumFwdRefs) 944 // Still forward references... can't resolve cycles. 945 return; 946 947 // Resolve any cycles. 948 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 949 auto &MD = MDValuePtrs[I]; 950 auto *N = dyn_cast_or_null<MDNode>(MD); 951 if (!N) 952 continue; 953 954 assert(!N->isTemporary() && "Unexpected forward reference"); 955 N->resolveCycles(); 956 } 957 958 // Make sure we return early again until there's another forward ref. 959 AnyFwdRefs = false; 960 } 961 962 Type *BitcodeReader::getTypeByID(unsigned ID) { 963 // The type table size is always specified correctly. 964 if (ID >= TypeList.size()) 965 return nullptr; 966 967 if (Type *Ty = TypeList[ID]) 968 return Ty; 969 970 // If we have a forward reference, the only possible case is when it is to a 971 // named struct. Just create a placeholder for now. 972 return TypeList[ID] = createIdentifiedStructType(Context); 973 } 974 975 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 976 StringRef Name) { 977 auto *Ret = StructType::create(Context, Name); 978 IdentifiedStructTypes.push_back(Ret); 979 return Ret; 980 } 981 982 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 983 auto *Ret = StructType::create(Context); 984 IdentifiedStructTypes.push_back(Ret); 985 return Ret; 986 } 987 988 989 //===----------------------------------------------------------------------===// 990 // Functions for parsing blocks from the bitcode file 991 //===----------------------------------------------------------------------===// 992 993 994 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 995 /// been decoded from the given integer. This function must stay in sync with 996 /// 'encodeLLVMAttributesForBitcode'. 997 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 998 uint64_t EncodedAttrs) { 999 // FIXME: Remove in 4.0. 1000 1001 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1002 // the bits above 31 down by 11 bits. 1003 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1004 assert((!Alignment || isPowerOf2_32(Alignment)) && 1005 "Alignment must be a power of two."); 1006 1007 if (Alignment) 1008 B.addAlignmentAttr(Alignment); 1009 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1010 (EncodedAttrs & 0xffff)); 1011 } 1012 1013 std::error_code BitcodeReader::parseAttributeBlock() { 1014 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1015 return error("Invalid record"); 1016 1017 if (!MAttributes.empty()) 1018 return error("Invalid multiple blocks"); 1019 1020 SmallVector<uint64_t, 64> Record; 1021 1022 SmallVector<AttributeSet, 8> Attrs; 1023 1024 // Read all the records. 1025 while (1) { 1026 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1027 1028 switch (Entry.Kind) { 1029 case BitstreamEntry::SubBlock: // Handled for us already. 1030 case BitstreamEntry::Error: 1031 return error("Malformed block"); 1032 case BitstreamEntry::EndBlock: 1033 return std::error_code(); 1034 case BitstreamEntry::Record: 1035 // The interesting case. 1036 break; 1037 } 1038 1039 // Read a record. 1040 Record.clear(); 1041 switch (Stream.readRecord(Entry.ID, Record)) { 1042 default: // Default behavior: ignore. 1043 break; 1044 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1045 // FIXME: Remove in 4.0. 1046 if (Record.size() & 1) 1047 return error("Invalid record"); 1048 1049 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1050 AttrBuilder B; 1051 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1052 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1053 } 1054 1055 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1056 Attrs.clear(); 1057 break; 1058 } 1059 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1060 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1061 Attrs.push_back(MAttributeGroups[Record[i]]); 1062 1063 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1064 Attrs.clear(); 1065 break; 1066 } 1067 } 1068 } 1069 } 1070 1071 // Returns Attribute::None on unrecognized codes. 1072 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1073 switch (Code) { 1074 default: 1075 return Attribute::None; 1076 case bitc::ATTR_KIND_ALIGNMENT: 1077 return Attribute::Alignment; 1078 case bitc::ATTR_KIND_ALWAYS_INLINE: 1079 return Attribute::AlwaysInline; 1080 case bitc::ATTR_KIND_BUILTIN: 1081 return Attribute::Builtin; 1082 case bitc::ATTR_KIND_BY_VAL: 1083 return Attribute::ByVal; 1084 case bitc::ATTR_KIND_IN_ALLOCA: 1085 return Attribute::InAlloca; 1086 case bitc::ATTR_KIND_COLD: 1087 return Attribute::Cold; 1088 case bitc::ATTR_KIND_CONVERGENT: 1089 return Attribute::Convergent; 1090 case bitc::ATTR_KIND_INLINE_HINT: 1091 return Attribute::InlineHint; 1092 case bitc::ATTR_KIND_IN_REG: 1093 return Attribute::InReg; 1094 case bitc::ATTR_KIND_JUMP_TABLE: 1095 return Attribute::JumpTable; 1096 case bitc::ATTR_KIND_MIN_SIZE: 1097 return Attribute::MinSize; 1098 case bitc::ATTR_KIND_NAKED: 1099 return Attribute::Naked; 1100 case bitc::ATTR_KIND_NEST: 1101 return Attribute::Nest; 1102 case bitc::ATTR_KIND_NO_ALIAS: 1103 return Attribute::NoAlias; 1104 case bitc::ATTR_KIND_NO_BUILTIN: 1105 return Attribute::NoBuiltin; 1106 case bitc::ATTR_KIND_NO_CAPTURE: 1107 return Attribute::NoCapture; 1108 case bitc::ATTR_KIND_NO_DUPLICATE: 1109 return Attribute::NoDuplicate; 1110 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1111 return Attribute::NoImplicitFloat; 1112 case bitc::ATTR_KIND_NO_INLINE: 1113 return Attribute::NoInline; 1114 case bitc::ATTR_KIND_NON_LAZY_BIND: 1115 return Attribute::NonLazyBind; 1116 case bitc::ATTR_KIND_NON_NULL: 1117 return Attribute::NonNull; 1118 case bitc::ATTR_KIND_DEREFERENCEABLE: 1119 return Attribute::Dereferenceable; 1120 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1121 return Attribute::DereferenceableOrNull; 1122 case bitc::ATTR_KIND_NO_RED_ZONE: 1123 return Attribute::NoRedZone; 1124 case bitc::ATTR_KIND_NO_RETURN: 1125 return Attribute::NoReturn; 1126 case bitc::ATTR_KIND_NO_UNWIND: 1127 return Attribute::NoUnwind; 1128 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1129 return Attribute::OptimizeForSize; 1130 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1131 return Attribute::OptimizeNone; 1132 case bitc::ATTR_KIND_READ_NONE: 1133 return Attribute::ReadNone; 1134 case bitc::ATTR_KIND_READ_ONLY: 1135 return Attribute::ReadOnly; 1136 case bitc::ATTR_KIND_RETURNED: 1137 return Attribute::Returned; 1138 case bitc::ATTR_KIND_RETURNS_TWICE: 1139 return Attribute::ReturnsTwice; 1140 case bitc::ATTR_KIND_S_EXT: 1141 return Attribute::SExt; 1142 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1143 return Attribute::StackAlignment; 1144 case bitc::ATTR_KIND_STACK_PROTECT: 1145 return Attribute::StackProtect; 1146 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1147 return Attribute::StackProtectReq; 1148 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1149 return Attribute::StackProtectStrong; 1150 case bitc::ATTR_KIND_SAFESTACK: 1151 return Attribute::SafeStack; 1152 case bitc::ATTR_KIND_STRUCT_RET: 1153 return Attribute::StructRet; 1154 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1155 return Attribute::SanitizeAddress; 1156 case bitc::ATTR_KIND_SANITIZE_THREAD: 1157 return Attribute::SanitizeThread; 1158 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1159 return Attribute::SanitizeMemory; 1160 case bitc::ATTR_KIND_UW_TABLE: 1161 return Attribute::UWTable; 1162 case bitc::ATTR_KIND_Z_EXT: 1163 return Attribute::ZExt; 1164 } 1165 } 1166 1167 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1168 unsigned &Alignment) { 1169 // Note: Alignment in bitcode files is incremented by 1, so that zero 1170 // can be used for default alignment. 1171 if (Exponent > Value::MaxAlignmentExponent + 1) 1172 return error("Invalid alignment value"); 1173 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1174 return std::error_code(); 1175 } 1176 1177 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1178 Attribute::AttrKind *Kind) { 1179 *Kind = getAttrFromCode(Code); 1180 if (*Kind == Attribute::None) 1181 return error(BitcodeError::CorruptedBitcode, 1182 "Unknown attribute kind (" + Twine(Code) + ")"); 1183 return std::error_code(); 1184 } 1185 1186 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1187 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1188 return error("Invalid record"); 1189 1190 if (!MAttributeGroups.empty()) 1191 return error("Invalid multiple blocks"); 1192 1193 SmallVector<uint64_t, 64> Record; 1194 1195 // Read all the records. 1196 while (1) { 1197 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1198 1199 switch (Entry.Kind) { 1200 case BitstreamEntry::SubBlock: // Handled for us already. 1201 case BitstreamEntry::Error: 1202 return error("Malformed block"); 1203 case BitstreamEntry::EndBlock: 1204 return std::error_code(); 1205 case BitstreamEntry::Record: 1206 // The interesting case. 1207 break; 1208 } 1209 1210 // Read a record. 1211 Record.clear(); 1212 switch (Stream.readRecord(Entry.ID, Record)) { 1213 default: // Default behavior: ignore. 1214 break; 1215 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1216 if (Record.size() < 3) 1217 return error("Invalid record"); 1218 1219 uint64_t GrpID = Record[0]; 1220 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1221 1222 AttrBuilder B; 1223 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1224 if (Record[i] == 0) { // Enum attribute 1225 Attribute::AttrKind Kind; 1226 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1227 return EC; 1228 1229 B.addAttribute(Kind); 1230 } else if (Record[i] == 1) { // Integer attribute 1231 Attribute::AttrKind Kind; 1232 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1233 return EC; 1234 if (Kind == Attribute::Alignment) 1235 B.addAlignmentAttr(Record[++i]); 1236 else if (Kind == Attribute::StackAlignment) 1237 B.addStackAlignmentAttr(Record[++i]); 1238 else if (Kind == Attribute::Dereferenceable) 1239 B.addDereferenceableAttr(Record[++i]); 1240 else if (Kind == Attribute::DereferenceableOrNull) 1241 B.addDereferenceableOrNullAttr(Record[++i]); 1242 } else { // String attribute 1243 assert((Record[i] == 3 || Record[i] == 4) && 1244 "Invalid attribute group entry"); 1245 bool HasValue = (Record[i++] == 4); 1246 SmallString<64> KindStr; 1247 SmallString<64> ValStr; 1248 1249 while (Record[i] != 0 && i != e) 1250 KindStr += Record[i++]; 1251 assert(Record[i] == 0 && "Kind string not null terminated"); 1252 1253 if (HasValue) { 1254 // Has a value associated with it. 1255 ++i; // Skip the '0' that terminates the "kind" string. 1256 while (Record[i] != 0 && i != e) 1257 ValStr += Record[i++]; 1258 assert(Record[i] == 0 && "Value string not null terminated"); 1259 } 1260 1261 B.addAttribute(KindStr.str(), ValStr.str()); 1262 } 1263 } 1264 1265 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1266 break; 1267 } 1268 } 1269 } 1270 } 1271 1272 std::error_code BitcodeReader::parseTypeTable() { 1273 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1274 return error("Invalid record"); 1275 1276 return parseTypeTableBody(); 1277 } 1278 1279 std::error_code BitcodeReader::parseTypeTableBody() { 1280 if (!TypeList.empty()) 1281 return error("Invalid multiple blocks"); 1282 1283 SmallVector<uint64_t, 64> Record; 1284 unsigned NumRecords = 0; 1285 1286 SmallString<64> TypeName; 1287 1288 // Read all the records for this type table. 1289 while (1) { 1290 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1291 1292 switch (Entry.Kind) { 1293 case BitstreamEntry::SubBlock: // Handled for us already. 1294 case BitstreamEntry::Error: 1295 return error("Malformed block"); 1296 case BitstreamEntry::EndBlock: 1297 if (NumRecords != TypeList.size()) 1298 return error("Malformed block"); 1299 return std::error_code(); 1300 case BitstreamEntry::Record: 1301 // The interesting case. 1302 break; 1303 } 1304 1305 // Read a record. 1306 Record.clear(); 1307 Type *ResultTy = nullptr; 1308 switch (Stream.readRecord(Entry.ID, Record)) { 1309 default: 1310 return error("Invalid value"); 1311 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1312 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1313 // type list. This allows us to reserve space. 1314 if (Record.size() < 1) 1315 return error("Invalid record"); 1316 TypeList.resize(Record[0]); 1317 continue; 1318 case bitc::TYPE_CODE_VOID: // VOID 1319 ResultTy = Type::getVoidTy(Context); 1320 break; 1321 case bitc::TYPE_CODE_HALF: // HALF 1322 ResultTy = Type::getHalfTy(Context); 1323 break; 1324 case bitc::TYPE_CODE_FLOAT: // FLOAT 1325 ResultTy = Type::getFloatTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1328 ResultTy = Type::getDoubleTy(Context); 1329 break; 1330 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1331 ResultTy = Type::getX86_FP80Ty(Context); 1332 break; 1333 case bitc::TYPE_CODE_FP128: // FP128 1334 ResultTy = Type::getFP128Ty(Context); 1335 break; 1336 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1337 ResultTy = Type::getPPC_FP128Ty(Context); 1338 break; 1339 case bitc::TYPE_CODE_LABEL: // LABEL 1340 ResultTy = Type::getLabelTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_METADATA: // METADATA 1343 ResultTy = Type::getMetadataTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1346 ResultTy = Type::getX86_MMXTy(Context); 1347 break; 1348 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1349 if (Record.size() < 1) 1350 return error("Invalid record"); 1351 1352 uint64_t NumBits = Record[0]; 1353 if (NumBits < IntegerType::MIN_INT_BITS || 1354 NumBits > IntegerType::MAX_INT_BITS) 1355 return error("Bitwidth for integer type out of range"); 1356 ResultTy = IntegerType::get(Context, NumBits); 1357 break; 1358 } 1359 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1360 // [pointee type, address space] 1361 if (Record.size() < 1) 1362 return error("Invalid record"); 1363 unsigned AddressSpace = 0; 1364 if (Record.size() == 2) 1365 AddressSpace = Record[1]; 1366 ResultTy = getTypeByID(Record[0]); 1367 if (!ResultTy || 1368 !PointerType::isValidElementType(ResultTy)) 1369 return error("Invalid type"); 1370 ResultTy = PointerType::get(ResultTy, AddressSpace); 1371 break; 1372 } 1373 case bitc::TYPE_CODE_FUNCTION_OLD: { 1374 // FIXME: attrid is dead, remove it in LLVM 4.0 1375 // FUNCTION: [vararg, attrid, retty, paramty x N] 1376 if (Record.size() < 3) 1377 return error("Invalid record"); 1378 SmallVector<Type*, 8> ArgTys; 1379 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1380 if (Type *T = getTypeByID(Record[i])) 1381 ArgTys.push_back(T); 1382 else 1383 break; 1384 } 1385 1386 ResultTy = getTypeByID(Record[2]); 1387 if (!ResultTy || ArgTys.size() < Record.size()-3) 1388 return error("Invalid type"); 1389 1390 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1391 break; 1392 } 1393 case bitc::TYPE_CODE_FUNCTION: { 1394 // FUNCTION: [vararg, retty, paramty x N] 1395 if (Record.size() < 2) 1396 return error("Invalid record"); 1397 SmallVector<Type*, 8> ArgTys; 1398 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1399 if (Type *T = getTypeByID(Record[i])) { 1400 if (!FunctionType::isValidArgumentType(T)) 1401 return error("Invalid function argument type"); 1402 ArgTys.push_back(T); 1403 } 1404 else 1405 break; 1406 } 1407 1408 ResultTy = getTypeByID(Record[1]); 1409 if (!ResultTy || ArgTys.size() < Record.size()-2) 1410 return error("Invalid type"); 1411 1412 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1413 break; 1414 } 1415 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1416 if (Record.size() < 1) 1417 return error("Invalid record"); 1418 SmallVector<Type*, 8> EltTys; 1419 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1420 if (Type *T = getTypeByID(Record[i])) 1421 EltTys.push_back(T); 1422 else 1423 break; 1424 } 1425 if (EltTys.size() != Record.size()-1) 1426 return error("Invalid type"); 1427 ResultTy = StructType::get(Context, EltTys, Record[0]); 1428 break; 1429 } 1430 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1431 if (convertToString(Record, 0, TypeName)) 1432 return error("Invalid record"); 1433 continue; 1434 1435 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1436 if (Record.size() < 1) 1437 return error("Invalid record"); 1438 1439 if (NumRecords >= TypeList.size()) 1440 return error("Invalid TYPE table"); 1441 1442 // Check to see if this was forward referenced, if so fill in the temp. 1443 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1444 if (Res) { 1445 Res->setName(TypeName); 1446 TypeList[NumRecords] = nullptr; 1447 } else // Otherwise, create a new struct. 1448 Res = createIdentifiedStructType(Context, TypeName); 1449 TypeName.clear(); 1450 1451 SmallVector<Type*, 8> EltTys; 1452 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1453 if (Type *T = getTypeByID(Record[i])) 1454 EltTys.push_back(T); 1455 else 1456 break; 1457 } 1458 if (EltTys.size() != Record.size()-1) 1459 return error("Invalid record"); 1460 Res->setBody(EltTys, Record[0]); 1461 ResultTy = Res; 1462 break; 1463 } 1464 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1465 if (Record.size() != 1) 1466 return error("Invalid record"); 1467 1468 if (NumRecords >= TypeList.size()) 1469 return error("Invalid TYPE table"); 1470 1471 // Check to see if this was forward referenced, if so fill in the temp. 1472 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1473 if (Res) { 1474 Res->setName(TypeName); 1475 TypeList[NumRecords] = nullptr; 1476 } else // Otherwise, create a new struct with no body. 1477 Res = createIdentifiedStructType(Context, TypeName); 1478 TypeName.clear(); 1479 ResultTy = Res; 1480 break; 1481 } 1482 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1483 if (Record.size() < 2) 1484 return error("Invalid record"); 1485 ResultTy = getTypeByID(Record[1]); 1486 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1487 return error("Invalid type"); 1488 ResultTy = ArrayType::get(ResultTy, Record[0]); 1489 break; 1490 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1491 if (Record.size() < 2) 1492 return error("Invalid record"); 1493 if (Record[0] == 0) 1494 return error("Invalid vector length"); 1495 ResultTy = getTypeByID(Record[1]); 1496 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1497 return error("Invalid type"); 1498 ResultTy = VectorType::get(ResultTy, Record[0]); 1499 break; 1500 } 1501 1502 if (NumRecords >= TypeList.size()) 1503 return error("Invalid TYPE table"); 1504 if (TypeList[NumRecords]) 1505 return error( 1506 "Invalid TYPE table: Only named structs can be forward referenced"); 1507 assert(ResultTy && "Didn't read a type?"); 1508 TypeList[NumRecords++] = ResultTy; 1509 } 1510 } 1511 1512 std::error_code BitcodeReader::parseValueSymbolTable() { 1513 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1514 return error("Invalid record"); 1515 1516 SmallVector<uint64_t, 64> Record; 1517 1518 Triple TT(TheModule->getTargetTriple()); 1519 1520 // Read all the records for this value table. 1521 SmallString<128> ValueName; 1522 while (1) { 1523 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1524 1525 switch (Entry.Kind) { 1526 case BitstreamEntry::SubBlock: // Handled for us already. 1527 case BitstreamEntry::Error: 1528 return error("Malformed block"); 1529 case BitstreamEntry::EndBlock: 1530 return std::error_code(); 1531 case BitstreamEntry::Record: 1532 // The interesting case. 1533 break; 1534 } 1535 1536 // Read a record. 1537 Record.clear(); 1538 switch (Stream.readRecord(Entry.ID, Record)) { 1539 default: // Default behavior: unknown type. 1540 break; 1541 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1542 if (convertToString(Record, 1, ValueName)) 1543 return error("Invalid record"); 1544 unsigned ValueID = Record[0]; 1545 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1546 return error("Invalid record"); 1547 Value *V = ValueList[ValueID]; 1548 1549 V->setName(StringRef(ValueName.data(), ValueName.size())); 1550 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1551 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1552 if (TT.isOSBinFormatMachO()) 1553 GO->setComdat(nullptr); 1554 else 1555 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1556 } 1557 } 1558 ValueName.clear(); 1559 break; 1560 } 1561 case bitc::VST_CODE_BBENTRY: { 1562 if (convertToString(Record, 1, ValueName)) 1563 return error("Invalid record"); 1564 BasicBlock *BB = getBasicBlock(Record[0]); 1565 if (!BB) 1566 return error("Invalid record"); 1567 1568 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1569 ValueName.clear(); 1570 break; 1571 } 1572 } 1573 } 1574 } 1575 1576 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1577 1578 std::error_code BitcodeReader::parseMetadata() { 1579 IsMetadataMaterialized = true; 1580 unsigned NextMDValueNo = MDValueList.size(); 1581 1582 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1583 return error("Invalid record"); 1584 1585 SmallVector<uint64_t, 64> Record; 1586 1587 auto getMD = 1588 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1589 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1590 if (ID) 1591 return getMD(ID - 1); 1592 return nullptr; 1593 }; 1594 auto getMDString = [&](unsigned ID) -> MDString *{ 1595 // This requires that the ID is not really a forward reference. In 1596 // particular, the MDString must already have been resolved. 1597 return cast_or_null<MDString>(getMDOrNull(ID)); 1598 }; 1599 1600 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1601 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1602 1603 // Read all the records. 1604 while (1) { 1605 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1606 1607 switch (Entry.Kind) { 1608 case BitstreamEntry::SubBlock: // Handled for us already. 1609 case BitstreamEntry::Error: 1610 return error("Malformed block"); 1611 case BitstreamEntry::EndBlock: 1612 MDValueList.tryToResolveCycles(); 1613 return std::error_code(); 1614 case BitstreamEntry::Record: 1615 // The interesting case. 1616 break; 1617 } 1618 1619 // Read a record. 1620 Record.clear(); 1621 unsigned Code = Stream.readRecord(Entry.ID, Record); 1622 bool IsDistinct = false; 1623 switch (Code) { 1624 default: // Default behavior: ignore. 1625 break; 1626 case bitc::METADATA_NAME: { 1627 // Read name of the named metadata. 1628 SmallString<8> Name(Record.begin(), Record.end()); 1629 Record.clear(); 1630 Code = Stream.ReadCode(); 1631 1632 unsigned NextBitCode = Stream.readRecord(Code, Record); 1633 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1634 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1635 1636 // Read named metadata elements. 1637 unsigned Size = Record.size(); 1638 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1639 for (unsigned i = 0; i != Size; ++i) { 1640 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1641 if (!MD) 1642 return error("Invalid record"); 1643 NMD->addOperand(MD); 1644 } 1645 break; 1646 } 1647 case bitc::METADATA_OLD_FN_NODE: { 1648 // FIXME: Remove in 4.0. 1649 // This is a LocalAsMetadata record, the only type of function-local 1650 // metadata. 1651 if (Record.size() % 2 == 1) 1652 return error("Invalid record"); 1653 1654 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1655 // to be legal, but there's no upgrade path. 1656 auto dropRecord = [&] { 1657 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1658 }; 1659 if (Record.size() != 2) { 1660 dropRecord(); 1661 break; 1662 } 1663 1664 Type *Ty = getTypeByID(Record[0]); 1665 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1666 dropRecord(); 1667 break; 1668 } 1669 1670 MDValueList.assignValue( 1671 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1672 NextMDValueNo++); 1673 break; 1674 } 1675 case bitc::METADATA_OLD_NODE: { 1676 // FIXME: Remove in 4.0. 1677 if (Record.size() % 2 == 1) 1678 return error("Invalid record"); 1679 1680 unsigned Size = Record.size(); 1681 SmallVector<Metadata *, 8> Elts; 1682 for (unsigned i = 0; i != Size; i += 2) { 1683 Type *Ty = getTypeByID(Record[i]); 1684 if (!Ty) 1685 return error("Invalid record"); 1686 if (Ty->isMetadataTy()) 1687 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1688 else if (!Ty->isVoidTy()) { 1689 auto *MD = 1690 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1691 assert(isa<ConstantAsMetadata>(MD) && 1692 "Expected non-function-local metadata"); 1693 Elts.push_back(MD); 1694 } else 1695 Elts.push_back(nullptr); 1696 } 1697 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1698 break; 1699 } 1700 case bitc::METADATA_VALUE: { 1701 if (Record.size() != 2) 1702 return error("Invalid record"); 1703 1704 Type *Ty = getTypeByID(Record[0]); 1705 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1706 return error("Invalid record"); 1707 1708 MDValueList.assignValue( 1709 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1710 NextMDValueNo++); 1711 break; 1712 } 1713 case bitc::METADATA_DISTINCT_NODE: 1714 IsDistinct = true; 1715 // fallthrough... 1716 case bitc::METADATA_NODE: { 1717 SmallVector<Metadata *, 8> Elts; 1718 Elts.reserve(Record.size()); 1719 for (unsigned ID : Record) 1720 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1721 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1722 : MDNode::get(Context, Elts), 1723 NextMDValueNo++); 1724 break; 1725 } 1726 case bitc::METADATA_LOCATION: { 1727 if (Record.size() != 5) 1728 return error("Invalid record"); 1729 1730 unsigned Line = Record[1]; 1731 unsigned Column = Record[2]; 1732 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1733 Metadata *InlinedAt = 1734 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1735 MDValueList.assignValue( 1736 GET_OR_DISTINCT(DILocation, Record[0], 1737 (Context, Line, Column, Scope, InlinedAt)), 1738 NextMDValueNo++); 1739 break; 1740 } 1741 case bitc::METADATA_GENERIC_DEBUG: { 1742 if (Record.size() < 4) 1743 return error("Invalid record"); 1744 1745 unsigned Tag = Record[1]; 1746 unsigned Version = Record[2]; 1747 1748 if (Tag >= 1u << 16 || Version != 0) 1749 return error("Invalid record"); 1750 1751 auto *Header = getMDString(Record[3]); 1752 SmallVector<Metadata *, 8> DwarfOps; 1753 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1754 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1755 : nullptr); 1756 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1757 (Context, Tag, Header, DwarfOps)), 1758 NextMDValueNo++); 1759 break; 1760 } 1761 case bitc::METADATA_SUBRANGE: { 1762 if (Record.size() != 3) 1763 return error("Invalid record"); 1764 1765 MDValueList.assignValue( 1766 GET_OR_DISTINCT(DISubrange, Record[0], 1767 (Context, Record[1], unrotateSign(Record[2]))), 1768 NextMDValueNo++); 1769 break; 1770 } 1771 case bitc::METADATA_ENUMERATOR: { 1772 if (Record.size() != 3) 1773 return error("Invalid record"); 1774 1775 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1776 (Context, unrotateSign(Record[1]), 1777 getMDString(Record[2]))), 1778 NextMDValueNo++); 1779 break; 1780 } 1781 case bitc::METADATA_BASIC_TYPE: { 1782 if (Record.size() != 6) 1783 return error("Invalid record"); 1784 1785 MDValueList.assignValue( 1786 GET_OR_DISTINCT(DIBasicType, Record[0], 1787 (Context, Record[1], getMDString(Record[2]), 1788 Record[3], Record[4], Record[5])), 1789 NextMDValueNo++); 1790 break; 1791 } 1792 case bitc::METADATA_DERIVED_TYPE: { 1793 if (Record.size() != 12) 1794 return error("Invalid record"); 1795 1796 MDValueList.assignValue( 1797 GET_OR_DISTINCT(DIDerivedType, Record[0], 1798 (Context, Record[1], getMDString(Record[2]), 1799 getMDOrNull(Record[3]), Record[4], 1800 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1801 Record[7], Record[8], Record[9], Record[10], 1802 getMDOrNull(Record[11]))), 1803 NextMDValueNo++); 1804 break; 1805 } 1806 case bitc::METADATA_COMPOSITE_TYPE: { 1807 if (Record.size() != 16) 1808 return error("Invalid record"); 1809 1810 MDValueList.assignValue( 1811 GET_OR_DISTINCT(DICompositeType, Record[0], 1812 (Context, Record[1], getMDString(Record[2]), 1813 getMDOrNull(Record[3]), Record[4], 1814 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1815 Record[7], Record[8], Record[9], Record[10], 1816 getMDOrNull(Record[11]), Record[12], 1817 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1818 getMDString(Record[15]))), 1819 NextMDValueNo++); 1820 break; 1821 } 1822 case bitc::METADATA_SUBROUTINE_TYPE: { 1823 if (Record.size() != 3) 1824 return error("Invalid record"); 1825 1826 MDValueList.assignValue( 1827 GET_OR_DISTINCT(DISubroutineType, Record[0], 1828 (Context, Record[1], getMDOrNull(Record[2]))), 1829 NextMDValueNo++); 1830 break; 1831 } 1832 case bitc::METADATA_FILE: { 1833 if (Record.size() != 3) 1834 return error("Invalid record"); 1835 1836 MDValueList.assignValue( 1837 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1838 getMDString(Record[2]))), 1839 NextMDValueNo++); 1840 break; 1841 } 1842 case bitc::METADATA_COMPILE_UNIT: { 1843 if (Record.size() < 14 || Record.size() > 15) 1844 return error("Invalid record"); 1845 1846 MDValueList.assignValue( 1847 GET_OR_DISTINCT( 1848 DICompileUnit, Record[0], 1849 (Context, Record[1], getMDOrNull(Record[2]), 1850 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1851 Record[6], getMDString(Record[7]), Record[8], 1852 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1853 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1854 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14])), 1855 NextMDValueNo++); 1856 break; 1857 } 1858 case bitc::METADATA_SUBPROGRAM: { 1859 if (Record.size() != 19) 1860 return error("Invalid record"); 1861 1862 MDValueList.assignValue( 1863 GET_OR_DISTINCT( 1864 DISubprogram, Record[0], 1865 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1866 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1867 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1868 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1869 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1870 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1871 NextMDValueNo++); 1872 break; 1873 } 1874 case bitc::METADATA_LEXICAL_BLOCK: { 1875 if (Record.size() != 5) 1876 return error("Invalid record"); 1877 1878 MDValueList.assignValue( 1879 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1880 (Context, getMDOrNull(Record[1]), 1881 getMDOrNull(Record[2]), Record[3], Record[4])), 1882 NextMDValueNo++); 1883 break; 1884 } 1885 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1886 if (Record.size() != 4) 1887 return error("Invalid record"); 1888 1889 MDValueList.assignValue( 1890 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1891 (Context, getMDOrNull(Record[1]), 1892 getMDOrNull(Record[2]), Record[3])), 1893 NextMDValueNo++); 1894 break; 1895 } 1896 case bitc::METADATA_NAMESPACE: { 1897 if (Record.size() != 5) 1898 return error("Invalid record"); 1899 1900 MDValueList.assignValue( 1901 GET_OR_DISTINCT(DINamespace, Record[0], 1902 (Context, getMDOrNull(Record[1]), 1903 getMDOrNull(Record[2]), getMDString(Record[3]), 1904 Record[4])), 1905 NextMDValueNo++); 1906 break; 1907 } 1908 case bitc::METADATA_TEMPLATE_TYPE: { 1909 if (Record.size() != 3) 1910 return error("Invalid record"); 1911 1912 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1913 Record[0], 1914 (Context, getMDString(Record[1]), 1915 getMDOrNull(Record[2]))), 1916 NextMDValueNo++); 1917 break; 1918 } 1919 case bitc::METADATA_TEMPLATE_VALUE: { 1920 if (Record.size() != 5) 1921 return error("Invalid record"); 1922 1923 MDValueList.assignValue( 1924 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1925 (Context, Record[1], getMDString(Record[2]), 1926 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1927 NextMDValueNo++); 1928 break; 1929 } 1930 case bitc::METADATA_GLOBAL_VAR: { 1931 if (Record.size() != 11) 1932 return error("Invalid record"); 1933 1934 MDValueList.assignValue( 1935 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1936 (Context, getMDOrNull(Record[1]), 1937 getMDString(Record[2]), getMDString(Record[3]), 1938 getMDOrNull(Record[4]), Record[5], 1939 getMDOrNull(Record[6]), Record[7], Record[8], 1940 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1941 NextMDValueNo++); 1942 break; 1943 } 1944 case bitc::METADATA_LOCAL_VAR: { 1945 // 10th field is for the obseleted 'inlinedAt:' field. 1946 if (Record.size() != 9 && Record.size() != 10) 1947 return error("Invalid record"); 1948 1949 MDValueList.assignValue( 1950 GET_OR_DISTINCT(DILocalVariable, Record[0], 1951 (Context, Record[1], getMDOrNull(Record[2]), 1952 getMDString(Record[3]), getMDOrNull(Record[4]), 1953 Record[5], getMDOrNull(Record[6]), Record[7], 1954 Record[8])), 1955 NextMDValueNo++); 1956 break; 1957 } 1958 case bitc::METADATA_EXPRESSION: { 1959 if (Record.size() < 1) 1960 return error("Invalid record"); 1961 1962 MDValueList.assignValue( 1963 GET_OR_DISTINCT(DIExpression, Record[0], 1964 (Context, makeArrayRef(Record).slice(1))), 1965 NextMDValueNo++); 1966 break; 1967 } 1968 case bitc::METADATA_OBJC_PROPERTY: { 1969 if (Record.size() != 8) 1970 return error("Invalid record"); 1971 1972 MDValueList.assignValue( 1973 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1974 (Context, getMDString(Record[1]), 1975 getMDOrNull(Record[2]), Record[3], 1976 getMDString(Record[4]), getMDString(Record[5]), 1977 Record[6], getMDOrNull(Record[7]))), 1978 NextMDValueNo++); 1979 break; 1980 } 1981 case bitc::METADATA_IMPORTED_ENTITY: { 1982 if (Record.size() != 6) 1983 return error("Invalid record"); 1984 1985 MDValueList.assignValue( 1986 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1987 (Context, Record[1], getMDOrNull(Record[2]), 1988 getMDOrNull(Record[3]), Record[4], 1989 getMDString(Record[5]))), 1990 NextMDValueNo++); 1991 break; 1992 } 1993 case bitc::METADATA_STRING: { 1994 std::string String(Record.begin(), Record.end()); 1995 llvm::UpgradeMDStringConstant(String); 1996 Metadata *MD = MDString::get(Context, String); 1997 MDValueList.assignValue(MD, NextMDValueNo++); 1998 break; 1999 } 2000 case bitc::METADATA_KIND: { 2001 if (Record.size() < 2) 2002 return error("Invalid record"); 2003 2004 unsigned Kind = Record[0]; 2005 SmallString<8> Name(Record.begin()+1, Record.end()); 2006 2007 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2008 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2009 return error("Conflicting METADATA_KIND records"); 2010 break; 2011 } 2012 } 2013 } 2014 #undef GET_OR_DISTINCT 2015 } 2016 2017 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2018 /// encoding. 2019 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2020 if ((V & 1) == 0) 2021 return V >> 1; 2022 if (V != 1) 2023 return -(V >> 1); 2024 // There is no such thing as -0 with integers. "-0" really means MININT. 2025 return 1ULL << 63; 2026 } 2027 2028 /// Resolve all of the initializers for global values and aliases that we can. 2029 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2030 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2031 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2032 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2033 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2034 2035 GlobalInitWorklist.swap(GlobalInits); 2036 AliasInitWorklist.swap(AliasInits); 2037 FunctionPrefixWorklist.swap(FunctionPrefixes); 2038 FunctionPrologueWorklist.swap(FunctionPrologues); 2039 2040 while (!GlobalInitWorklist.empty()) { 2041 unsigned ValID = GlobalInitWorklist.back().second; 2042 if (ValID >= ValueList.size()) { 2043 // Not ready to resolve this yet, it requires something later in the file. 2044 GlobalInits.push_back(GlobalInitWorklist.back()); 2045 } else { 2046 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2047 GlobalInitWorklist.back().first->setInitializer(C); 2048 else 2049 return error("Expected a constant"); 2050 } 2051 GlobalInitWorklist.pop_back(); 2052 } 2053 2054 while (!AliasInitWorklist.empty()) { 2055 unsigned ValID = AliasInitWorklist.back().second; 2056 if (ValID >= ValueList.size()) { 2057 AliasInits.push_back(AliasInitWorklist.back()); 2058 } else { 2059 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2060 if (!C) 2061 return error("Expected a constant"); 2062 GlobalAlias *Alias = AliasInitWorklist.back().first; 2063 if (C->getType() != Alias->getType()) 2064 return error("Alias and aliasee types don't match"); 2065 Alias->setAliasee(C); 2066 } 2067 AliasInitWorklist.pop_back(); 2068 } 2069 2070 while (!FunctionPrefixWorklist.empty()) { 2071 unsigned ValID = FunctionPrefixWorklist.back().second; 2072 if (ValID >= ValueList.size()) { 2073 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2074 } else { 2075 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2076 FunctionPrefixWorklist.back().first->setPrefixData(C); 2077 else 2078 return error("Expected a constant"); 2079 } 2080 FunctionPrefixWorklist.pop_back(); 2081 } 2082 2083 while (!FunctionPrologueWorklist.empty()) { 2084 unsigned ValID = FunctionPrologueWorklist.back().second; 2085 if (ValID >= ValueList.size()) { 2086 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2087 } else { 2088 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2089 FunctionPrologueWorklist.back().first->setPrologueData(C); 2090 else 2091 return error("Expected a constant"); 2092 } 2093 FunctionPrologueWorklist.pop_back(); 2094 } 2095 2096 return std::error_code(); 2097 } 2098 2099 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2100 SmallVector<uint64_t, 8> Words(Vals.size()); 2101 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2102 BitcodeReader::decodeSignRotatedValue); 2103 2104 return APInt(TypeBits, Words); 2105 } 2106 2107 std::error_code BitcodeReader::parseConstants() { 2108 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2109 return error("Invalid record"); 2110 2111 SmallVector<uint64_t, 64> Record; 2112 2113 // Read all the records for this value table. 2114 Type *CurTy = Type::getInt32Ty(Context); 2115 unsigned NextCstNo = ValueList.size(); 2116 while (1) { 2117 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2118 2119 switch (Entry.Kind) { 2120 case BitstreamEntry::SubBlock: // Handled for us already. 2121 case BitstreamEntry::Error: 2122 return error("Malformed block"); 2123 case BitstreamEntry::EndBlock: 2124 if (NextCstNo != ValueList.size()) 2125 return error("Invalid ronstant reference"); 2126 2127 // Once all the constants have been read, go through and resolve forward 2128 // references. 2129 ValueList.resolveConstantForwardRefs(); 2130 return std::error_code(); 2131 case BitstreamEntry::Record: 2132 // The interesting case. 2133 break; 2134 } 2135 2136 // Read a record. 2137 Record.clear(); 2138 Value *V = nullptr; 2139 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2140 switch (BitCode) { 2141 default: // Default behavior: unknown constant 2142 case bitc::CST_CODE_UNDEF: // UNDEF 2143 V = UndefValue::get(CurTy); 2144 break; 2145 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2146 if (Record.empty()) 2147 return error("Invalid record"); 2148 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2149 return error("Invalid record"); 2150 CurTy = TypeList[Record[0]]; 2151 continue; // Skip the ValueList manipulation. 2152 case bitc::CST_CODE_NULL: // NULL 2153 V = Constant::getNullValue(CurTy); 2154 break; 2155 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2156 if (!CurTy->isIntegerTy() || Record.empty()) 2157 return error("Invalid record"); 2158 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2159 break; 2160 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2161 if (!CurTy->isIntegerTy() || Record.empty()) 2162 return error("Invalid record"); 2163 2164 APInt VInt = 2165 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2166 V = ConstantInt::get(Context, VInt); 2167 2168 break; 2169 } 2170 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2171 if (Record.empty()) 2172 return error("Invalid record"); 2173 if (CurTy->isHalfTy()) 2174 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2175 APInt(16, (uint16_t)Record[0]))); 2176 else if (CurTy->isFloatTy()) 2177 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2178 APInt(32, (uint32_t)Record[0]))); 2179 else if (CurTy->isDoubleTy()) 2180 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2181 APInt(64, Record[0]))); 2182 else if (CurTy->isX86_FP80Ty()) { 2183 // Bits are not stored the same way as a normal i80 APInt, compensate. 2184 uint64_t Rearrange[2]; 2185 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2186 Rearrange[1] = Record[0] >> 48; 2187 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2188 APInt(80, Rearrange))); 2189 } else if (CurTy->isFP128Ty()) 2190 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2191 APInt(128, Record))); 2192 else if (CurTy->isPPC_FP128Ty()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2194 APInt(128, Record))); 2195 else 2196 V = UndefValue::get(CurTy); 2197 break; 2198 } 2199 2200 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2201 if (Record.empty()) 2202 return error("Invalid record"); 2203 2204 unsigned Size = Record.size(); 2205 SmallVector<Constant*, 16> Elts; 2206 2207 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2208 for (unsigned i = 0; i != Size; ++i) 2209 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2210 STy->getElementType(i))); 2211 V = ConstantStruct::get(STy, Elts); 2212 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2213 Type *EltTy = ATy->getElementType(); 2214 for (unsigned i = 0; i != Size; ++i) 2215 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2216 V = ConstantArray::get(ATy, Elts); 2217 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2218 Type *EltTy = VTy->getElementType(); 2219 for (unsigned i = 0; i != Size; ++i) 2220 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2221 V = ConstantVector::get(Elts); 2222 } else { 2223 V = UndefValue::get(CurTy); 2224 } 2225 break; 2226 } 2227 case bitc::CST_CODE_STRING: // STRING: [values] 2228 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2229 if (Record.empty()) 2230 return error("Invalid record"); 2231 2232 SmallString<16> Elts(Record.begin(), Record.end()); 2233 V = ConstantDataArray::getString(Context, Elts, 2234 BitCode == bitc::CST_CODE_CSTRING); 2235 break; 2236 } 2237 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2238 if (Record.empty()) 2239 return error("Invalid record"); 2240 2241 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2242 unsigned Size = Record.size(); 2243 2244 if (EltTy->isIntegerTy(8)) { 2245 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2246 if (isa<VectorType>(CurTy)) 2247 V = ConstantDataVector::get(Context, Elts); 2248 else 2249 V = ConstantDataArray::get(Context, Elts); 2250 } else if (EltTy->isIntegerTy(16)) { 2251 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2252 if (isa<VectorType>(CurTy)) 2253 V = ConstantDataVector::get(Context, Elts); 2254 else 2255 V = ConstantDataArray::get(Context, Elts); 2256 } else if (EltTy->isIntegerTy(32)) { 2257 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2258 if (isa<VectorType>(CurTy)) 2259 V = ConstantDataVector::get(Context, Elts); 2260 else 2261 V = ConstantDataArray::get(Context, Elts); 2262 } else if (EltTy->isIntegerTy(64)) { 2263 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2264 if (isa<VectorType>(CurTy)) 2265 V = ConstantDataVector::get(Context, Elts); 2266 else 2267 V = ConstantDataArray::get(Context, Elts); 2268 } else if (EltTy->isFloatTy()) { 2269 SmallVector<float, 16> Elts(Size); 2270 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isDoubleTy()) { 2276 SmallVector<double, 16> Elts(Size); 2277 std::transform(Record.begin(), Record.end(), Elts.begin(), 2278 BitsToDouble); 2279 if (isa<VectorType>(CurTy)) 2280 V = ConstantDataVector::get(Context, Elts); 2281 else 2282 V = ConstantDataArray::get(Context, Elts); 2283 } else { 2284 return error("Invalid type for value"); 2285 } 2286 break; 2287 } 2288 2289 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2290 if (Record.size() < 3) 2291 return error("Invalid record"); 2292 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2293 if (Opc < 0) { 2294 V = UndefValue::get(CurTy); // Unknown binop. 2295 } else { 2296 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2297 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2298 unsigned Flags = 0; 2299 if (Record.size() >= 4) { 2300 if (Opc == Instruction::Add || 2301 Opc == Instruction::Sub || 2302 Opc == Instruction::Mul || 2303 Opc == Instruction::Shl) { 2304 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2305 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2306 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2307 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2308 } else if (Opc == Instruction::SDiv || 2309 Opc == Instruction::UDiv || 2310 Opc == Instruction::LShr || 2311 Opc == Instruction::AShr) { 2312 if (Record[3] & (1 << bitc::PEO_EXACT)) 2313 Flags |= SDivOperator::IsExact; 2314 } 2315 } 2316 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2317 } 2318 break; 2319 } 2320 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2321 if (Record.size() < 3) 2322 return error("Invalid record"); 2323 int Opc = getDecodedCastOpcode(Record[0]); 2324 if (Opc < 0) { 2325 V = UndefValue::get(CurTy); // Unknown cast. 2326 } else { 2327 Type *OpTy = getTypeByID(Record[1]); 2328 if (!OpTy) 2329 return error("Invalid record"); 2330 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2331 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2332 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2333 } 2334 break; 2335 } 2336 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2337 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2338 unsigned OpNum = 0; 2339 Type *PointeeType = nullptr; 2340 if (Record.size() % 2) 2341 PointeeType = getTypeByID(Record[OpNum++]); 2342 SmallVector<Constant*, 16> Elts; 2343 while (OpNum != Record.size()) { 2344 Type *ElTy = getTypeByID(Record[OpNum++]); 2345 if (!ElTy) 2346 return error("Invalid record"); 2347 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2348 } 2349 2350 if (PointeeType && 2351 PointeeType != 2352 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2353 ->getElementType()) 2354 return error("Explicit gep operator type does not match pointee type " 2355 "of pointer operand"); 2356 2357 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2358 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2359 BitCode == 2360 bitc::CST_CODE_CE_INBOUNDS_GEP); 2361 break; 2362 } 2363 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2364 if (Record.size() < 3) 2365 return error("Invalid record"); 2366 2367 Type *SelectorTy = Type::getInt1Ty(Context); 2368 2369 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2370 // vector. Otherwise, it must be a single bit. 2371 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2372 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2373 VTy->getNumElements()); 2374 2375 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2376 SelectorTy), 2377 ValueList.getConstantFwdRef(Record[1],CurTy), 2378 ValueList.getConstantFwdRef(Record[2],CurTy)); 2379 break; 2380 } 2381 case bitc::CST_CODE_CE_EXTRACTELT 2382 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2383 if (Record.size() < 3) 2384 return error("Invalid record"); 2385 VectorType *OpTy = 2386 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2387 if (!OpTy) 2388 return error("Invalid record"); 2389 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2390 Constant *Op1 = nullptr; 2391 if (Record.size() == 4) { 2392 Type *IdxTy = getTypeByID(Record[2]); 2393 if (!IdxTy) 2394 return error("Invalid record"); 2395 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2396 } else // TODO: Remove with llvm 4.0 2397 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2398 if (!Op1) 2399 return error("Invalid record"); 2400 V = ConstantExpr::getExtractElement(Op0, Op1); 2401 break; 2402 } 2403 case bitc::CST_CODE_CE_INSERTELT 2404 : { // CE_INSERTELT: [opval, opval, opty, opval] 2405 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2406 if (Record.size() < 3 || !OpTy) 2407 return error("Invalid record"); 2408 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2409 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2410 OpTy->getElementType()); 2411 Constant *Op2 = nullptr; 2412 if (Record.size() == 4) { 2413 Type *IdxTy = getTypeByID(Record[2]); 2414 if (!IdxTy) 2415 return error("Invalid record"); 2416 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2417 } else // TODO: Remove with llvm 4.0 2418 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2419 if (!Op2) 2420 return error("Invalid record"); 2421 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2422 break; 2423 } 2424 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2425 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2426 if (Record.size() < 3 || !OpTy) 2427 return error("Invalid record"); 2428 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2429 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2430 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2431 OpTy->getNumElements()); 2432 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2433 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2434 break; 2435 } 2436 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2437 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2438 VectorType *OpTy = 2439 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2440 if (Record.size() < 4 || !RTy || !OpTy) 2441 return error("Invalid record"); 2442 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2443 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2444 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2445 RTy->getNumElements()); 2446 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2447 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2448 break; 2449 } 2450 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2451 if (Record.size() < 4) 2452 return error("Invalid record"); 2453 Type *OpTy = getTypeByID(Record[0]); 2454 if (!OpTy) 2455 return error("Invalid record"); 2456 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2457 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2458 2459 if (OpTy->isFPOrFPVectorTy()) 2460 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2461 else 2462 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2463 break; 2464 } 2465 // This maintains backward compatibility, pre-asm dialect keywords. 2466 // FIXME: Remove with the 4.0 release. 2467 case bitc::CST_CODE_INLINEASM_OLD: { 2468 if (Record.size() < 2) 2469 return error("Invalid record"); 2470 std::string AsmStr, ConstrStr; 2471 bool HasSideEffects = Record[0] & 1; 2472 bool IsAlignStack = Record[0] >> 1; 2473 unsigned AsmStrSize = Record[1]; 2474 if (2+AsmStrSize >= Record.size()) 2475 return error("Invalid record"); 2476 unsigned ConstStrSize = Record[2+AsmStrSize]; 2477 if (3+AsmStrSize+ConstStrSize > Record.size()) 2478 return error("Invalid record"); 2479 2480 for (unsigned i = 0; i != AsmStrSize; ++i) 2481 AsmStr += (char)Record[2+i]; 2482 for (unsigned i = 0; i != ConstStrSize; ++i) 2483 ConstrStr += (char)Record[3+AsmStrSize+i]; 2484 PointerType *PTy = cast<PointerType>(CurTy); 2485 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2486 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2487 break; 2488 } 2489 // This version adds support for the asm dialect keywords (e.g., 2490 // inteldialect). 2491 case bitc::CST_CODE_INLINEASM: { 2492 if (Record.size() < 2) 2493 return error("Invalid record"); 2494 std::string AsmStr, ConstrStr; 2495 bool HasSideEffects = Record[0] & 1; 2496 bool IsAlignStack = (Record[0] >> 1) & 1; 2497 unsigned AsmDialect = Record[0] >> 2; 2498 unsigned AsmStrSize = Record[1]; 2499 if (2+AsmStrSize >= Record.size()) 2500 return error("Invalid record"); 2501 unsigned ConstStrSize = Record[2+AsmStrSize]; 2502 if (3+AsmStrSize+ConstStrSize > Record.size()) 2503 return error("Invalid record"); 2504 2505 for (unsigned i = 0; i != AsmStrSize; ++i) 2506 AsmStr += (char)Record[2+i]; 2507 for (unsigned i = 0; i != ConstStrSize; ++i) 2508 ConstrStr += (char)Record[3+AsmStrSize+i]; 2509 PointerType *PTy = cast<PointerType>(CurTy); 2510 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2511 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2512 InlineAsm::AsmDialect(AsmDialect)); 2513 break; 2514 } 2515 case bitc::CST_CODE_BLOCKADDRESS:{ 2516 if (Record.size() < 3) 2517 return error("Invalid record"); 2518 Type *FnTy = getTypeByID(Record[0]); 2519 if (!FnTy) 2520 return error("Invalid record"); 2521 Function *Fn = 2522 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2523 if (!Fn) 2524 return error("Invalid record"); 2525 2526 // Don't let Fn get dematerialized. 2527 BlockAddressesTaken.insert(Fn); 2528 2529 // If the function is already parsed we can insert the block address right 2530 // away. 2531 BasicBlock *BB; 2532 unsigned BBID = Record[2]; 2533 if (!BBID) 2534 // Invalid reference to entry block. 2535 return error("Invalid ID"); 2536 if (!Fn->empty()) { 2537 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2538 for (size_t I = 0, E = BBID; I != E; ++I) { 2539 if (BBI == BBE) 2540 return error("Invalid ID"); 2541 ++BBI; 2542 } 2543 BB = BBI; 2544 } else { 2545 // Otherwise insert a placeholder and remember it so it can be inserted 2546 // when the function is parsed. 2547 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2548 if (FwdBBs.empty()) 2549 BasicBlockFwdRefQueue.push_back(Fn); 2550 if (FwdBBs.size() < BBID + 1) 2551 FwdBBs.resize(BBID + 1); 2552 if (!FwdBBs[BBID]) 2553 FwdBBs[BBID] = BasicBlock::Create(Context); 2554 BB = FwdBBs[BBID]; 2555 } 2556 V = BlockAddress::get(Fn, BB); 2557 break; 2558 } 2559 } 2560 2561 ValueList.assignValue(V, NextCstNo); 2562 ++NextCstNo; 2563 } 2564 } 2565 2566 std::error_code BitcodeReader::parseUseLists() { 2567 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2568 return error("Invalid record"); 2569 2570 // Read all the records. 2571 SmallVector<uint64_t, 64> Record; 2572 while (1) { 2573 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2574 2575 switch (Entry.Kind) { 2576 case BitstreamEntry::SubBlock: // Handled for us already. 2577 case BitstreamEntry::Error: 2578 return error("Malformed block"); 2579 case BitstreamEntry::EndBlock: 2580 return std::error_code(); 2581 case BitstreamEntry::Record: 2582 // The interesting case. 2583 break; 2584 } 2585 2586 // Read a use list record. 2587 Record.clear(); 2588 bool IsBB = false; 2589 switch (Stream.readRecord(Entry.ID, Record)) { 2590 default: // Default behavior: unknown type. 2591 break; 2592 case bitc::USELIST_CODE_BB: 2593 IsBB = true; 2594 // fallthrough 2595 case bitc::USELIST_CODE_DEFAULT: { 2596 unsigned RecordLength = Record.size(); 2597 if (RecordLength < 3) 2598 // Records should have at least an ID and two indexes. 2599 return error("Invalid record"); 2600 unsigned ID = Record.back(); 2601 Record.pop_back(); 2602 2603 Value *V; 2604 if (IsBB) { 2605 assert(ID < FunctionBBs.size() && "Basic block not found"); 2606 V = FunctionBBs[ID]; 2607 } else 2608 V = ValueList[ID]; 2609 unsigned NumUses = 0; 2610 SmallDenseMap<const Use *, unsigned, 16> Order; 2611 for (const Use &U : V->uses()) { 2612 if (++NumUses > Record.size()) 2613 break; 2614 Order[&U] = Record[NumUses - 1]; 2615 } 2616 if (Order.size() != Record.size() || NumUses > Record.size()) 2617 // Mismatches can happen if the functions are being materialized lazily 2618 // (out-of-order), or a value has been upgraded. 2619 break; 2620 2621 V->sortUseList([&](const Use &L, const Use &R) { 2622 return Order.lookup(&L) < Order.lookup(&R); 2623 }); 2624 break; 2625 } 2626 } 2627 } 2628 } 2629 2630 /// When we see the block for metadata, remember where it is and then skip it. 2631 /// This lets us lazily deserialize the metadata. 2632 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2633 // Save the current stream state. 2634 uint64_t CurBit = Stream.GetCurrentBitNo(); 2635 DeferredMetadataInfo.push_back(CurBit); 2636 2637 // Skip over the block for now. 2638 if (Stream.SkipBlock()) 2639 return error("Invalid record"); 2640 return std::error_code(); 2641 } 2642 2643 std::error_code BitcodeReader::materializeMetadata() { 2644 for (uint64_t BitPos : DeferredMetadataInfo) { 2645 // Move the bit stream to the saved position. 2646 Stream.JumpToBit(BitPos); 2647 if (std::error_code EC = parseMetadata()) 2648 return EC; 2649 } 2650 DeferredMetadataInfo.clear(); 2651 return std::error_code(); 2652 } 2653 2654 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2655 2656 /// When we see the block for a function body, remember where it is and then 2657 /// skip it. This lets us lazily deserialize the functions. 2658 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2659 // Get the function we are talking about. 2660 if (FunctionsWithBodies.empty()) 2661 return error("Insufficient function protos"); 2662 2663 Function *Fn = FunctionsWithBodies.back(); 2664 FunctionsWithBodies.pop_back(); 2665 2666 // Save the current stream state. 2667 uint64_t CurBit = Stream.GetCurrentBitNo(); 2668 DeferredFunctionInfo[Fn] = CurBit; 2669 2670 // Skip over the function block for now. 2671 if (Stream.SkipBlock()) 2672 return error("Invalid record"); 2673 return std::error_code(); 2674 } 2675 2676 std::error_code BitcodeReader::globalCleanup() { 2677 // Patch the initializers for globals and aliases up. 2678 resolveGlobalAndAliasInits(); 2679 if (!GlobalInits.empty() || !AliasInits.empty()) 2680 return error("Malformed global initializer set"); 2681 2682 // Look for intrinsic functions which need to be upgraded at some point 2683 for (Function &F : *TheModule) { 2684 Function *NewFn; 2685 if (UpgradeIntrinsicFunction(&F, NewFn)) 2686 UpgradedIntrinsics.push_back(std::make_pair(&F, NewFn)); 2687 } 2688 2689 // Look for global variables which need to be renamed. 2690 for (GlobalVariable &GV : TheModule->globals()) 2691 UpgradeGlobalVariable(&GV); 2692 2693 // Force deallocation of memory for these vectors to favor the client that 2694 // want lazy deserialization. 2695 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2696 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2697 return std::error_code(); 2698 } 2699 2700 std::error_code BitcodeReader::parseModule(bool Resume, 2701 bool ShouldLazyLoadMetadata) { 2702 if (Resume) 2703 Stream.JumpToBit(NextUnreadBit); 2704 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2705 return error("Invalid record"); 2706 2707 SmallVector<uint64_t, 64> Record; 2708 std::vector<std::string> SectionTable; 2709 std::vector<std::string> GCTable; 2710 2711 // Read all the records for this module. 2712 while (1) { 2713 BitstreamEntry Entry = Stream.advance(); 2714 2715 switch (Entry.Kind) { 2716 case BitstreamEntry::Error: 2717 return error("Malformed block"); 2718 case BitstreamEntry::EndBlock: 2719 return globalCleanup(); 2720 2721 case BitstreamEntry::SubBlock: 2722 switch (Entry.ID) { 2723 default: // Skip unknown content. 2724 if (Stream.SkipBlock()) 2725 return error("Invalid record"); 2726 break; 2727 case bitc::BLOCKINFO_BLOCK_ID: 2728 if (Stream.ReadBlockInfoBlock()) 2729 return error("Malformed block"); 2730 break; 2731 case bitc::PARAMATTR_BLOCK_ID: 2732 if (std::error_code EC = parseAttributeBlock()) 2733 return EC; 2734 break; 2735 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2736 if (std::error_code EC = parseAttributeGroupBlock()) 2737 return EC; 2738 break; 2739 case bitc::TYPE_BLOCK_ID_NEW: 2740 if (std::error_code EC = parseTypeTable()) 2741 return EC; 2742 break; 2743 case bitc::VALUE_SYMTAB_BLOCK_ID: 2744 if (std::error_code EC = parseValueSymbolTable()) 2745 return EC; 2746 SeenValueSymbolTable = true; 2747 break; 2748 case bitc::CONSTANTS_BLOCK_ID: 2749 if (std::error_code EC = parseConstants()) 2750 return EC; 2751 if (std::error_code EC = resolveGlobalAndAliasInits()) 2752 return EC; 2753 break; 2754 case bitc::METADATA_BLOCK_ID: 2755 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2756 if (std::error_code EC = rememberAndSkipMetadata()) 2757 return EC; 2758 break; 2759 } 2760 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2761 if (std::error_code EC = parseMetadata()) 2762 return EC; 2763 break; 2764 case bitc::FUNCTION_BLOCK_ID: 2765 // If this is the first function body we've seen, reverse the 2766 // FunctionsWithBodies list. 2767 if (!SeenFirstFunctionBody) { 2768 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2769 if (std::error_code EC = globalCleanup()) 2770 return EC; 2771 SeenFirstFunctionBody = true; 2772 } 2773 2774 if (std::error_code EC = rememberAndSkipFunctionBody()) 2775 return EC; 2776 // For streaming bitcode, suspend parsing when we reach the function 2777 // bodies. Subsequent materialization calls will resume it when 2778 // necessary. For streaming, the function bodies must be at the end of 2779 // the bitcode. If the bitcode file is old, the symbol table will be 2780 // at the end instead and will not have been seen yet. In this case, 2781 // just finish the parse now. 2782 if (IsStreamed && SeenValueSymbolTable) { 2783 NextUnreadBit = Stream.GetCurrentBitNo(); 2784 return std::error_code(); 2785 } 2786 break; 2787 case bitc::USELIST_BLOCK_ID: 2788 if (std::error_code EC = parseUseLists()) 2789 return EC; 2790 break; 2791 } 2792 continue; 2793 2794 case BitstreamEntry::Record: 2795 // The interesting case. 2796 break; 2797 } 2798 2799 2800 // Read a record. 2801 switch (Stream.readRecord(Entry.ID, Record)) { 2802 default: break; // Default behavior, ignore unknown content. 2803 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2804 if (Record.size() < 1) 2805 return error("Invalid record"); 2806 // Only version #0 and #1 are supported so far. 2807 unsigned module_version = Record[0]; 2808 switch (module_version) { 2809 default: 2810 return error("Invalid value"); 2811 case 0: 2812 UseRelativeIDs = false; 2813 break; 2814 case 1: 2815 UseRelativeIDs = true; 2816 break; 2817 } 2818 break; 2819 } 2820 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2821 std::string S; 2822 if (convertToString(Record, 0, S)) 2823 return error("Invalid record"); 2824 TheModule->setTargetTriple(S); 2825 break; 2826 } 2827 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2828 std::string S; 2829 if (convertToString(Record, 0, S)) 2830 return error("Invalid record"); 2831 TheModule->setDataLayout(S); 2832 break; 2833 } 2834 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2835 std::string S; 2836 if (convertToString(Record, 0, S)) 2837 return error("Invalid record"); 2838 TheModule->setModuleInlineAsm(S); 2839 break; 2840 } 2841 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2842 // FIXME: Remove in 4.0. 2843 std::string S; 2844 if (convertToString(Record, 0, S)) 2845 return error("Invalid record"); 2846 // Ignore value. 2847 break; 2848 } 2849 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2850 std::string S; 2851 if (convertToString(Record, 0, S)) 2852 return error("Invalid record"); 2853 SectionTable.push_back(S); 2854 break; 2855 } 2856 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2857 std::string S; 2858 if (convertToString(Record, 0, S)) 2859 return error("Invalid record"); 2860 GCTable.push_back(S); 2861 break; 2862 } 2863 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2864 if (Record.size() < 2) 2865 return error("Invalid record"); 2866 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2867 unsigned ComdatNameSize = Record[1]; 2868 std::string ComdatName; 2869 ComdatName.reserve(ComdatNameSize); 2870 for (unsigned i = 0; i != ComdatNameSize; ++i) 2871 ComdatName += (char)Record[2 + i]; 2872 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2873 C->setSelectionKind(SK); 2874 ComdatList.push_back(C); 2875 break; 2876 } 2877 // GLOBALVAR: [pointer type, isconst, initid, 2878 // linkage, alignment, section, visibility, threadlocal, 2879 // unnamed_addr, externally_initialized, dllstorageclass, 2880 // comdat] 2881 case bitc::MODULE_CODE_GLOBALVAR: { 2882 if (Record.size() < 6) 2883 return error("Invalid record"); 2884 Type *Ty = getTypeByID(Record[0]); 2885 if (!Ty) 2886 return error("Invalid record"); 2887 bool isConstant = Record[1] & 1; 2888 bool explicitType = Record[1] & 2; 2889 unsigned AddressSpace; 2890 if (explicitType) { 2891 AddressSpace = Record[1] >> 2; 2892 } else { 2893 if (!Ty->isPointerTy()) 2894 return error("Invalid type for value"); 2895 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2896 Ty = cast<PointerType>(Ty)->getElementType(); 2897 } 2898 2899 uint64_t RawLinkage = Record[3]; 2900 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2901 unsigned Alignment; 2902 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2903 return EC; 2904 std::string Section; 2905 if (Record[5]) { 2906 if (Record[5]-1 >= SectionTable.size()) 2907 return error("Invalid ID"); 2908 Section = SectionTable[Record[5]-1]; 2909 } 2910 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2911 // Local linkage must have default visibility. 2912 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2913 // FIXME: Change to an error if non-default in 4.0. 2914 Visibility = getDecodedVisibility(Record[6]); 2915 2916 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2917 if (Record.size() > 7) 2918 TLM = getDecodedThreadLocalMode(Record[7]); 2919 2920 bool UnnamedAddr = false; 2921 if (Record.size() > 8) 2922 UnnamedAddr = Record[8]; 2923 2924 bool ExternallyInitialized = false; 2925 if (Record.size() > 9) 2926 ExternallyInitialized = Record[9]; 2927 2928 GlobalVariable *NewGV = 2929 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2930 TLM, AddressSpace, ExternallyInitialized); 2931 NewGV->setAlignment(Alignment); 2932 if (!Section.empty()) 2933 NewGV->setSection(Section); 2934 NewGV->setVisibility(Visibility); 2935 NewGV->setUnnamedAddr(UnnamedAddr); 2936 2937 if (Record.size() > 10) 2938 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2939 else 2940 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2941 2942 ValueList.push_back(NewGV); 2943 2944 // Remember which value to use for the global initializer. 2945 if (unsigned InitID = Record[2]) 2946 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2947 2948 if (Record.size() > 11) { 2949 if (unsigned ComdatID = Record[11]) { 2950 if (ComdatID > ComdatList.size()) 2951 return error("Invalid global variable comdat ID"); 2952 NewGV->setComdat(ComdatList[ComdatID - 1]); 2953 } 2954 } else if (hasImplicitComdat(RawLinkage)) { 2955 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2956 } 2957 break; 2958 } 2959 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2960 // alignment, section, visibility, gc, unnamed_addr, 2961 // prologuedata, dllstorageclass, comdat, prefixdata] 2962 case bitc::MODULE_CODE_FUNCTION: { 2963 if (Record.size() < 8) 2964 return error("Invalid record"); 2965 Type *Ty = getTypeByID(Record[0]); 2966 if (!Ty) 2967 return error("Invalid record"); 2968 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2969 Ty = PTy->getElementType(); 2970 auto *FTy = dyn_cast<FunctionType>(Ty); 2971 if (!FTy) 2972 return error("Invalid type for value"); 2973 2974 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2975 "", TheModule); 2976 2977 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2978 bool isProto = Record[2]; 2979 uint64_t RawLinkage = Record[3]; 2980 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2981 Func->setAttributes(getAttributes(Record[4])); 2982 2983 unsigned Alignment; 2984 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2985 return EC; 2986 Func->setAlignment(Alignment); 2987 if (Record[6]) { 2988 if (Record[6]-1 >= SectionTable.size()) 2989 return error("Invalid ID"); 2990 Func->setSection(SectionTable[Record[6]-1]); 2991 } 2992 // Local linkage must have default visibility. 2993 if (!Func->hasLocalLinkage()) 2994 // FIXME: Change to an error if non-default in 4.0. 2995 Func->setVisibility(getDecodedVisibility(Record[7])); 2996 if (Record.size() > 8 && Record[8]) { 2997 if (Record[8]-1 >= GCTable.size()) 2998 return error("Invalid ID"); 2999 Func->setGC(GCTable[Record[8]-1].c_str()); 3000 } 3001 bool UnnamedAddr = false; 3002 if (Record.size() > 9) 3003 UnnamedAddr = Record[9]; 3004 Func->setUnnamedAddr(UnnamedAddr); 3005 if (Record.size() > 10 && Record[10] != 0) 3006 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3007 3008 if (Record.size() > 11) 3009 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3010 else 3011 upgradeDLLImportExportLinkage(Func, RawLinkage); 3012 3013 if (Record.size() > 12) { 3014 if (unsigned ComdatID = Record[12]) { 3015 if (ComdatID > ComdatList.size()) 3016 return error("Invalid function comdat ID"); 3017 Func->setComdat(ComdatList[ComdatID - 1]); 3018 } 3019 } else if (hasImplicitComdat(RawLinkage)) { 3020 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3021 } 3022 3023 if (Record.size() > 13 && Record[13] != 0) 3024 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3025 3026 ValueList.push_back(Func); 3027 3028 // If this is a function with a body, remember the prototype we are 3029 // creating now, so that we can match up the body with them later. 3030 if (!isProto) { 3031 Func->setIsMaterializable(true); 3032 FunctionsWithBodies.push_back(Func); 3033 if (IsStreamed) 3034 DeferredFunctionInfo[Func] = 0; 3035 } 3036 break; 3037 } 3038 // ALIAS: [alias type, aliasee val#, linkage] 3039 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3040 case bitc::MODULE_CODE_ALIAS: { 3041 if (Record.size() < 3) 3042 return error("Invalid record"); 3043 Type *Ty = getTypeByID(Record[0]); 3044 if (!Ty) 3045 return error("Invalid record"); 3046 auto *PTy = dyn_cast<PointerType>(Ty); 3047 if (!PTy) 3048 return error("Invalid type for value"); 3049 3050 auto *NewGA = 3051 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3052 // Old bitcode files didn't have visibility field. 3053 // Local linkage must have default visibility. 3054 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3055 // FIXME: Change to an error if non-default in 4.0. 3056 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3057 if (Record.size() > 4) 3058 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3059 else 3060 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3061 if (Record.size() > 5) 3062 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3063 if (Record.size() > 6) 3064 NewGA->setUnnamedAddr(Record[6]); 3065 ValueList.push_back(NewGA); 3066 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3067 break; 3068 } 3069 /// MODULE_CODE_PURGEVALS: [numvals] 3070 case bitc::MODULE_CODE_PURGEVALS: 3071 // Trim down the value list to the specified size. 3072 if (Record.size() < 1 || Record[0] > ValueList.size()) 3073 return error("Invalid record"); 3074 ValueList.shrinkTo(Record[0]); 3075 break; 3076 } 3077 Record.clear(); 3078 } 3079 } 3080 3081 std::error_code 3082 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3083 Module *M, bool ShouldLazyLoadMetadata) { 3084 TheModule = M; 3085 3086 if (std::error_code EC = initStream(std::move(Streamer))) 3087 return EC; 3088 3089 // Sniff for the signature. 3090 if (Stream.Read(8) != 'B' || 3091 Stream.Read(8) != 'C' || 3092 Stream.Read(4) != 0x0 || 3093 Stream.Read(4) != 0xC || 3094 Stream.Read(4) != 0xE || 3095 Stream.Read(4) != 0xD) 3096 return error("Invalid bitcode signature"); 3097 3098 // We expect a number of well-defined blocks, though we don't necessarily 3099 // need to understand them all. 3100 while (1) { 3101 if (Stream.AtEndOfStream()) { 3102 // We didn't really read a proper Module. 3103 return error("Malformed IR file"); 3104 } 3105 3106 BitstreamEntry Entry = 3107 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3108 3109 if (Entry.Kind != BitstreamEntry::SubBlock) 3110 return error("Malformed block"); 3111 3112 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3113 return parseModule(false, ShouldLazyLoadMetadata); 3114 3115 if (Stream.SkipBlock()) 3116 return error("Invalid record"); 3117 } 3118 } 3119 3120 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3121 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3122 return error("Invalid record"); 3123 3124 SmallVector<uint64_t, 64> Record; 3125 3126 std::string Triple; 3127 // Read all the records for this module. 3128 while (1) { 3129 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3130 3131 switch (Entry.Kind) { 3132 case BitstreamEntry::SubBlock: // Handled for us already. 3133 case BitstreamEntry::Error: 3134 return error("Malformed block"); 3135 case BitstreamEntry::EndBlock: 3136 return Triple; 3137 case BitstreamEntry::Record: 3138 // The interesting case. 3139 break; 3140 } 3141 3142 // Read a record. 3143 switch (Stream.readRecord(Entry.ID, Record)) { 3144 default: break; // Default behavior, ignore unknown content. 3145 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3146 std::string S; 3147 if (convertToString(Record, 0, S)) 3148 return error("Invalid record"); 3149 Triple = S; 3150 break; 3151 } 3152 } 3153 Record.clear(); 3154 } 3155 llvm_unreachable("Exit infinite loop"); 3156 } 3157 3158 ErrorOr<std::string> BitcodeReader::parseTriple() { 3159 if (std::error_code EC = initStream(nullptr)) 3160 return EC; 3161 3162 // Sniff for the signature. 3163 if (Stream.Read(8) != 'B' || 3164 Stream.Read(8) != 'C' || 3165 Stream.Read(4) != 0x0 || 3166 Stream.Read(4) != 0xC || 3167 Stream.Read(4) != 0xE || 3168 Stream.Read(4) != 0xD) 3169 return error("Invalid bitcode signature"); 3170 3171 // We expect a number of well-defined blocks, though we don't necessarily 3172 // need to understand them all. 3173 while (1) { 3174 BitstreamEntry Entry = Stream.advance(); 3175 3176 switch (Entry.Kind) { 3177 case BitstreamEntry::Error: 3178 return error("Malformed block"); 3179 case BitstreamEntry::EndBlock: 3180 return std::error_code(); 3181 3182 case BitstreamEntry::SubBlock: 3183 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3184 return parseModuleTriple(); 3185 3186 // Ignore other sub-blocks. 3187 if (Stream.SkipBlock()) 3188 return error("Malformed block"); 3189 continue; 3190 3191 case BitstreamEntry::Record: 3192 Stream.skipRecord(Entry.ID); 3193 continue; 3194 } 3195 } 3196 } 3197 3198 /// Parse metadata attachments. 3199 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3200 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3201 return error("Invalid record"); 3202 3203 SmallVector<uint64_t, 64> Record; 3204 while (1) { 3205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3206 3207 switch (Entry.Kind) { 3208 case BitstreamEntry::SubBlock: // Handled for us already. 3209 case BitstreamEntry::Error: 3210 return error("Malformed block"); 3211 case BitstreamEntry::EndBlock: 3212 return std::error_code(); 3213 case BitstreamEntry::Record: 3214 // The interesting case. 3215 break; 3216 } 3217 3218 // Read a metadata attachment record. 3219 Record.clear(); 3220 switch (Stream.readRecord(Entry.ID, Record)) { 3221 default: // Default behavior: ignore. 3222 break; 3223 case bitc::METADATA_ATTACHMENT: { 3224 unsigned RecordLength = Record.size(); 3225 if (Record.empty()) 3226 return error("Invalid record"); 3227 if (RecordLength % 2 == 0) { 3228 // A function attachment. 3229 for (unsigned I = 0; I != RecordLength; I += 2) { 3230 auto K = MDKindMap.find(Record[I]); 3231 if (K == MDKindMap.end()) 3232 return error("Invalid ID"); 3233 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3234 F.setMetadata(K->second, cast<MDNode>(MD)); 3235 } 3236 continue; 3237 } 3238 3239 // An instruction attachment. 3240 Instruction *Inst = InstructionList[Record[0]]; 3241 for (unsigned i = 1; i != RecordLength; i = i+2) { 3242 unsigned Kind = Record[i]; 3243 DenseMap<unsigned, unsigned>::iterator I = 3244 MDKindMap.find(Kind); 3245 if (I == MDKindMap.end()) 3246 return error("Invalid ID"); 3247 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3248 if (isa<LocalAsMetadata>(Node)) 3249 // Drop the attachment. This used to be legal, but there's no 3250 // upgrade path. 3251 break; 3252 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3253 if (I->second == LLVMContext::MD_tbaa) 3254 InstsWithTBAATag.push_back(Inst); 3255 } 3256 break; 3257 } 3258 } 3259 } 3260 } 3261 3262 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3263 Type *ValType, Type *PtrType) { 3264 if (!isa<PointerType>(PtrType)) 3265 return error(DH, "Load/Store operand is not a pointer type"); 3266 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3267 3268 if (ValType && ValType != ElemType) 3269 return error(DH, "Explicit load/store type does not match pointee type of " 3270 "pointer operand"); 3271 if (!PointerType::isLoadableOrStorableType(ElemType)) 3272 return error(DH, "Cannot load/store from pointer"); 3273 return std::error_code(); 3274 } 3275 3276 /// Lazily parse the specified function body block. 3277 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3278 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3279 return error("Invalid record"); 3280 3281 InstructionList.clear(); 3282 unsigned ModuleValueListSize = ValueList.size(); 3283 unsigned ModuleMDValueListSize = MDValueList.size(); 3284 3285 // Add all the function arguments to the value table. 3286 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3287 ValueList.push_back(I); 3288 3289 unsigned NextValueNo = ValueList.size(); 3290 BasicBlock *CurBB = nullptr; 3291 unsigned CurBBNo = 0; 3292 3293 DebugLoc LastLoc; 3294 auto getLastInstruction = [&]() -> Instruction * { 3295 if (CurBB && !CurBB->empty()) 3296 return &CurBB->back(); 3297 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3298 !FunctionBBs[CurBBNo - 1]->empty()) 3299 return &FunctionBBs[CurBBNo - 1]->back(); 3300 return nullptr; 3301 }; 3302 3303 // Read all the records. 3304 SmallVector<uint64_t, 64> Record; 3305 while (1) { 3306 BitstreamEntry Entry = Stream.advance(); 3307 3308 switch (Entry.Kind) { 3309 case BitstreamEntry::Error: 3310 return error("Malformed block"); 3311 case BitstreamEntry::EndBlock: 3312 goto OutOfRecordLoop; 3313 3314 case BitstreamEntry::SubBlock: 3315 switch (Entry.ID) { 3316 default: // Skip unknown content. 3317 if (Stream.SkipBlock()) 3318 return error("Invalid record"); 3319 break; 3320 case bitc::CONSTANTS_BLOCK_ID: 3321 if (std::error_code EC = parseConstants()) 3322 return EC; 3323 NextValueNo = ValueList.size(); 3324 break; 3325 case bitc::VALUE_SYMTAB_BLOCK_ID: 3326 if (std::error_code EC = parseValueSymbolTable()) 3327 return EC; 3328 break; 3329 case bitc::METADATA_ATTACHMENT_ID: 3330 if (std::error_code EC = parseMetadataAttachment(*F)) 3331 return EC; 3332 break; 3333 case bitc::METADATA_BLOCK_ID: 3334 if (std::error_code EC = parseMetadata()) 3335 return EC; 3336 break; 3337 case bitc::USELIST_BLOCK_ID: 3338 if (std::error_code EC = parseUseLists()) 3339 return EC; 3340 break; 3341 } 3342 continue; 3343 3344 case BitstreamEntry::Record: 3345 // The interesting case. 3346 break; 3347 } 3348 3349 // Read a record. 3350 Record.clear(); 3351 Instruction *I = nullptr; 3352 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3353 switch (BitCode) { 3354 default: // Default behavior: reject 3355 return error("Invalid value"); 3356 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3357 if (Record.size() < 1 || Record[0] == 0) 3358 return error("Invalid record"); 3359 // Create all the basic blocks for the function. 3360 FunctionBBs.resize(Record[0]); 3361 3362 // See if anything took the address of blocks in this function. 3363 auto BBFRI = BasicBlockFwdRefs.find(F); 3364 if (BBFRI == BasicBlockFwdRefs.end()) { 3365 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3366 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3367 } else { 3368 auto &BBRefs = BBFRI->second; 3369 // Check for invalid basic block references. 3370 if (BBRefs.size() > FunctionBBs.size()) 3371 return error("Invalid ID"); 3372 assert(!BBRefs.empty() && "Unexpected empty array"); 3373 assert(!BBRefs.front() && "Invalid reference to entry block"); 3374 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3375 ++I) 3376 if (I < RE && BBRefs[I]) { 3377 BBRefs[I]->insertInto(F); 3378 FunctionBBs[I] = BBRefs[I]; 3379 } else { 3380 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3381 } 3382 3383 // Erase from the table. 3384 BasicBlockFwdRefs.erase(BBFRI); 3385 } 3386 3387 CurBB = FunctionBBs[0]; 3388 continue; 3389 } 3390 3391 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3392 // This record indicates that the last instruction is at the same 3393 // location as the previous instruction with a location. 3394 I = getLastInstruction(); 3395 3396 if (!I) 3397 return error("Invalid record"); 3398 I->setDebugLoc(LastLoc); 3399 I = nullptr; 3400 continue; 3401 3402 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3403 I = getLastInstruction(); 3404 if (!I || Record.size() < 4) 3405 return error("Invalid record"); 3406 3407 unsigned Line = Record[0], Col = Record[1]; 3408 unsigned ScopeID = Record[2], IAID = Record[3]; 3409 3410 MDNode *Scope = nullptr, *IA = nullptr; 3411 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3412 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3413 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3414 I->setDebugLoc(LastLoc); 3415 I = nullptr; 3416 continue; 3417 } 3418 3419 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3420 unsigned OpNum = 0; 3421 Value *LHS, *RHS; 3422 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3423 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3424 OpNum+1 > Record.size()) 3425 return error("Invalid record"); 3426 3427 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3428 if (Opc == -1) 3429 return error("Invalid record"); 3430 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3431 InstructionList.push_back(I); 3432 if (OpNum < Record.size()) { 3433 if (Opc == Instruction::Add || 3434 Opc == Instruction::Sub || 3435 Opc == Instruction::Mul || 3436 Opc == Instruction::Shl) { 3437 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3438 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3439 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3440 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3441 } else if (Opc == Instruction::SDiv || 3442 Opc == Instruction::UDiv || 3443 Opc == Instruction::LShr || 3444 Opc == Instruction::AShr) { 3445 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3446 cast<BinaryOperator>(I)->setIsExact(true); 3447 } else if (isa<FPMathOperator>(I)) { 3448 FastMathFlags FMF; 3449 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3450 FMF.setUnsafeAlgebra(); 3451 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3452 FMF.setNoNaNs(); 3453 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3454 FMF.setNoInfs(); 3455 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3456 FMF.setNoSignedZeros(); 3457 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3458 FMF.setAllowReciprocal(); 3459 if (FMF.any()) 3460 I->setFastMathFlags(FMF); 3461 } 3462 3463 } 3464 break; 3465 } 3466 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3467 unsigned OpNum = 0; 3468 Value *Op; 3469 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3470 OpNum+2 != Record.size()) 3471 return error("Invalid record"); 3472 3473 Type *ResTy = getTypeByID(Record[OpNum]); 3474 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3475 if (Opc == -1 || !ResTy) 3476 return error("Invalid record"); 3477 Instruction *Temp = nullptr; 3478 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3479 if (Temp) { 3480 InstructionList.push_back(Temp); 3481 CurBB->getInstList().push_back(Temp); 3482 } 3483 } else { 3484 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3485 } 3486 InstructionList.push_back(I); 3487 break; 3488 } 3489 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3490 case bitc::FUNC_CODE_INST_GEP_OLD: 3491 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3492 unsigned OpNum = 0; 3493 3494 Type *Ty; 3495 bool InBounds; 3496 3497 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3498 InBounds = Record[OpNum++]; 3499 Ty = getTypeByID(Record[OpNum++]); 3500 } else { 3501 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3502 Ty = nullptr; 3503 } 3504 3505 Value *BasePtr; 3506 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3507 return error("Invalid record"); 3508 3509 if (!Ty) 3510 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3511 ->getElementType(); 3512 else if (Ty != 3513 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3514 ->getElementType()) 3515 return error( 3516 "Explicit gep type does not match pointee type of pointer operand"); 3517 3518 SmallVector<Value*, 16> GEPIdx; 3519 while (OpNum != Record.size()) { 3520 Value *Op; 3521 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3522 return error("Invalid record"); 3523 GEPIdx.push_back(Op); 3524 } 3525 3526 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3527 3528 InstructionList.push_back(I); 3529 if (InBounds) 3530 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3531 break; 3532 } 3533 3534 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3535 // EXTRACTVAL: [opty, opval, n x indices] 3536 unsigned OpNum = 0; 3537 Value *Agg; 3538 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3539 return error("Invalid record"); 3540 3541 unsigned RecSize = Record.size(); 3542 if (OpNum == RecSize) 3543 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3544 3545 SmallVector<unsigned, 4> EXTRACTVALIdx; 3546 Type *CurTy = Agg->getType(); 3547 for (; OpNum != RecSize; ++OpNum) { 3548 bool IsArray = CurTy->isArrayTy(); 3549 bool IsStruct = CurTy->isStructTy(); 3550 uint64_t Index = Record[OpNum]; 3551 3552 if (!IsStruct && !IsArray) 3553 return error("EXTRACTVAL: Invalid type"); 3554 if ((unsigned)Index != Index) 3555 return error("Invalid value"); 3556 if (IsStruct && Index >= CurTy->subtypes().size()) 3557 return error("EXTRACTVAL: Invalid struct index"); 3558 if (IsArray && Index >= CurTy->getArrayNumElements()) 3559 return error("EXTRACTVAL: Invalid array index"); 3560 EXTRACTVALIdx.push_back((unsigned)Index); 3561 3562 if (IsStruct) 3563 CurTy = CurTy->subtypes()[Index]; 3564 else 3565 CurTy = CurTy->subtypes()[0]; 3566 } 3567 3568 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3569 InstructionList.push_back(I); 3570 break; 3571 } 3572 3573 case bitc::FUNC_CODE_INST_INSERTVAL: { 3574 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3575 unsigned OpNum = 0; 3576 Value *Agg; 3577 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3578 return error("Invalid record"); 3579 Value *Val; 3580 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3581 return error("Invalid record"); 3582 3583 unsigned RecSize = Record.size(); 3584 if (OpNum == RecSize) 3585 return error("INSERTVAL: Invalid instruction with 0 indices"); 3586 3587 SmallVector<unsigned, 4> INSERTVALIdx; 3588 Type *CurTy = Agg->getType(); 3589 for (; OpNum != RecSize; ++OpNum) { 3590 bool IsArray = CurTy->isArrayTy(); 3591 bool IsStruct = CurTy->isStructTy(); 3592 uint64_t Index = Record[OpNum]; 3593 3594 if (!IsStruct && !IsArray) 3595 return error("INSERTVAL: Invalid type"); 3596 if ((unsigned)Index != Index) 3597 return error("Invalid value"); 3598 if (IsStruct && Index >= CurTy->subtypes().size()) 3599 return error("INSERTVAL: Invalid struct index"); 3600 if (IsArray && Index >= CurTy->getArrayNumElements()) 3601 return error("INSERTVAL: Invalid array index"); 3602 3603 INSERTVALIdx.push_back((unsigned)Index); 3604 if (IsStruct) 3605 CurTy = CurTy->subtypes()[Index]; 3606 else 3607 CurTy = CurTy->subtypes()[0]; 3608 } 3609 3610 if (CurTy != Val->getType()) 3611 return error("Inserted value type doesn't match aggregate type"); 3612 3613 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3614 InstructionList.push_back(I); 3615 break; 3616 } 3617 3618 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3619 // obsolete form of select 3620 // handles select i1 ... in old bitcode 3621 unsigned OpNum = 0; 3622 Value *TrueVal, *FalseVal, *Cond; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3624 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3625 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3626 return error("Invalid record"); 3627 3628 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3629 InstructionList.push_back(I); 3630 break; 3631 } 3632 3633 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3634 // new form of select 3635 // handles select i1 or select [N x i1] 3636 unsigned OpNum = 0; 3637 Value *TrueVal, *FalseVal, *Cond; 3638 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3639 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3640 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3641 return error("Invalid record"); 3642 3643 // select condition can be either i1 or [N x i1] 3644 if (VectorType* vector_type = 3645 dyn_cast<VectorType>(Cond->getType())) { 3646 // expect <n x i1> 3647 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3648 return error("Invalid type for value"); 3649 } else { 3650 // expect i1 3651 if (Cond->getType() != Type::getInt1Ty(Context)) 3652 return error("Invalid type for value"); 3653 } 3654 3655 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 3660 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3661 unsigned OpNum = 0; 3662 Value *Vec, *Idx; 3663 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3664 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3665 return error("Invalid record"); 3666 if (!Vec->getType()->isVectorTy()) 3667 return error("Invalid type for value"); 3668 I = ExtractElementInst::Create(Vec, Idx); 3669 InstructionList.push_back(I); 3670 break; 3671 } 3672 3673 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3674 unsigned OpNum = 0; 3675 Value *Vec, *Elt, *Idx; 3676 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3677 return error("Invalid record"); 3678 if (!Vec->getType()->isVectorTy()) 3679 return error("Invalid type for value"); 3680 if (popValue(Record, OpNum, NextValueNo, 3681 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3682 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3683 return error("Invalid record"); 3684 I = InsertElementInst::Create(Vec, Elt, Idx); 3685 InstructionList.push_back(I); 3686 break; 3687 } 3688 3689 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3690 unsigned OpNum = 0; 3691 Value *Vec1, *Vec2, *Mask; 3692 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3693 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3694 return error("Invalid record"); 3695 3696 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3697 return error("Invalid record"); 3698 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3699 return error("Invalid type for value"); 3700 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3701 InstructionList.push_back(I); 3702 break; 3703 } 3704 3705 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3706 // Old form of ICmp/FCmp returning bool 3707 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3708 // both legal on vectors but had different behaviour. 3709 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3710 // FCmp/ICmp returning bool or vector of bool 3711 3712 unsigned OpNum = 0; 3713 Value *LHS, *RHS; 3714 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3715 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3716 OpNum+1 != Record.size()) 3717 return error("Invalid record"); 3718 3719 if (LHS->getType()->isFPOrFPVectorTy()) 3720 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3721 else 3722 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3723 InstructionList.push_back(I); 3724 break; 3725 } 3726 3727 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3728 { 3729 unsigned Size = Record.size(); 3730 if (Size == 0) { 3731 I = ReturnInst::Create(Context); 3732 InstructionList.push_back(I); 3733 break; 3734 } 3735 3736 unsigned OpNum = 0; 3737 Value *Op = nullptr; 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3739 return error("Invalid record"); 3740 if (OpNum != Record.size()) 3741 return error("Invalid record"); 3742 3743 I = ReturnInst::Create(Context, Op); 3744 InstructionList.push_back(I); 3745 break; 3746 } 3747 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3748 if (Record.size() != 1 && Record.size() != 3) 3749 return error("Invalid record"); 3750 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3751 if (!TrueDest) 3752 return error("Invalid record"); 3753 3754 if (Record.size() == 1) { 3755 I = BranchInst::Create(TrueDest); 3756 InstructionList.push_back(I); 3757 } 3758 else { 3759 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3760 Value *Cond = getValue(Record, 2, NextValueNo, 3761 Type::getInt1Ty(Context)); 3762 if (!FalseDest || !Cond) 3763 return error("Invalid record"); 3764 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3765 InstructionList.push_back(I); 3766 } 3767 break; 3768 } 3769 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3770 // Check magic 3771 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3772 // "New" SwitchInst format with case ranges. The changes to write this 3773 // format were reverted but we still recognize bitcode that uses it. 3774 // Hopefully someday we will have support for case ranges and can use 3775 // this format again. 3776 3777 Type *OpTy = getTypeByID(Record[1]); 3778 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3779 3780 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3781 BasicBlock *Default = getBasicBlock(Record[3]); 3782 if (!OpTy || !Cond || !Default) 3783 return error("Invalid record"); 3784 3785 unsigned NumCases = Record[4]; 3786 3787 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3788 InstructionList.push_back(SI); 3789 3790 unsigned CurIdx = 5; 3791 for (unsigned i = 0; i != NumCases; ++i) { 3792 SmallVector<ConstantInt*, 1> CaseVals; 3793 unsigned NumItems = Record[CurIdx++]; 3794 for (unsigned ci = 0; ci != NumItems; ++ci) { 3795 bool isSingleNumber = Record[CurIdx++]; 3796 3797 APInt Low; 3798 unsigned ActiveWords = 1; 3799 if (ValueBitWidth > 64) 3800 ActiveWords = Record[CurIdx++]; 3801 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3802 ValueBitWidth); 3803 CurIdx += ActiveWords; 3804 3805 if (!isSingleNumber) { 3806 ActiveWords = 1; 3807 if (ValueBitWidth > 64) 3808 ActiveWords = Record[CurIdx++]; 3809 APInt High = readWideAPInt( 3810 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3811 CurIdx += ActiveWords; 3812 3813 // FIXME: It is not clear whether values in the range should be 3814 // compared as signed or unsigned values. The partially 3815 // implemented changes that used this format in the past used 3816 // unsigned comparisons. 3817 for ( ; Low.ule(High); ++Low) 3818 CaseVals.push_back(ConstantInt::get(Context, Low)); 3819 } else 3820 CaseVals.push_back(ConstantInt::get(Context, Low)); 3821 } 3822 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3823 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3824 cve = CaseVals.end(); cvi != cve; ++cvi) 3825 SI->addCase(*cvi, DestBB); 3826 } 3827 I = SI; 3828 break; 3829 } 3830 3831 // Old SwitchInst format without case ranges. 3832 3833 if (Record.size() < 3 || (Record.size() & 1) == 0) 3834 return error("Invalid record"); 3835 Type *OpTy = getTypeByID(Record[0]); 3836 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3837 BasicBlock *Default = getBasicBlock(Record[2]); 3838 if (!OpTy || !Cond || !Default) 3839 return error("Invalid record"); 3840 unsigned NumCases = (Record.size()-3)/2; 3841 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3842 InstructionList.push_back(SI); 3843 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3844 ConstantInt *CaseVal = 3845 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3846 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3847 if (!CaseVal || !DestBB) { 3848 delete SI; 3849 return error("Invalid record"); 3850 } 3851 SI->addCase(CaseVal, DestBB); 3852 } 3853 I = SI; 3854 break; 3855 } 3856 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3857 if (Record.size() < 2) 3858 return error("Invalid record"); 3859 Type *OpTy = getTypeByID(Record[0]); 3860 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3861 if (!OpTy || !Address) 3862 return error("Invalid record"); 3863 unsigned NumDests = Record.size()-2; 3864 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3865 InstructionList.push_back(IBI); 3866 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3867 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3868 IBI->addDestination(DestBB); 3869 } else { 3870 delete IBI; 3871 return error("Invalid record"); 3872 } 3873 } 3874 I = IBI; 3875 break; 3876 } 3877 3878 case bitc::FUNC_CODE_INST_INVOKE: { 3879 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3880 if (Record.size() < 4) 3881 return error("Invalid record"); 3882 unsigned OpNum = 0; 3883 AttributeSet PAL = getAttributes(Record[OpNum++]); 3884 unsigned CCInfo = Record[OpNum++]; 3885 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3886 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3887 3888 FunctionType *FTy = nullptr; 3889 if (CCInfo >> 13 & 1 && 3890 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3891 return error("Explicit invoke type is not a function type"); 3892 3893 Value *Callee; 3894 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3895 return error("Invalid record"); 3896 3897 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3898 if (!CalleeTy) 3899 return error("Callee is not a pointer"); 3900 if (!FTy) { 3901 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3902 if (!FTy) 3903 return error("Callee is not of pointer to function type"); 3904 } else if (CalleeTy->getElementType() != FTy) 3905 return error("Explicit invoke type does not match pointee type of " 3906 "callee operand"); 3907 if (Record.size() < FTy->getNumParams() + OpNum) 3908 return error("Insufficient operands to call"); 3909 3910 SmallVector<Value*, 16> Ops; 3911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3912 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3913 FTy->getParamType(i))); 3914 if (!Ops.back()) 3915 return error("Invalid record"); 3916 } 3917 3918 if (!FTy->isVarArg()) { 3919 if (Record.size() != OpNum) 3920 return error("Invalid record"); 3921 } else { 3922 // Read type/value pairs for varargs params. 3923 while (OpNum != Record.size()) { 3924 Value *Op; 3925 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3926 return error("Invalid record"); 3927 Ops.push_back(Op); 3928 } 3929 } 3930 3931 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3932 InstructionList.push_back(I); 3933 cast<InvokeInst>(I) 3934 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3935 cast<InvokeInst>(I)->setAttributes(PAL); 3936 break; 3937 } 3938 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3939 unsigned Idx = 0; 3940 Value *Val = nullptr; 3941 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3942 return error("Invalid record"); 3943 I = ResumeInst::Create(Val); 3944 InstructionList.push_back(I); 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3948 I = new UnreachableInst(Context); 3949 InstructionList.push_back(I); 3950 break; 3951 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3952 if (Record.size() < 1 || ((Record.size()-1)&1)) 3953 return error("Invalid record"); 3954 Type *Ty = getTypeByID(Record[0]); 3955 if (!Ty) 3956 return error("Invalid record"); 3957 3958 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3959 InstructionList.push_back(PN); 3960 3961 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3962 Value *V; 3963 // With the new function encoding, it is possible that operands have 3964 // negative IDs (for forward references). Use a signed VBR 3965 // representation to keep the encoding small. 3966 if (UseRelativeIDs) 3967 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3968 else 3969 V = getValue(Record, 1+i, NextValueNo, Ty); 3970 BasicBlock *BB = getBasicBlock(Record[2+i]); 3971 if (!V || !BB) 3972 return error("Invalid record"); 3973 PN->addIncoming(V, BB); 3974 } 3975 I = PN; 3976 break; 3977 } 3978 3979 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3980 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3981 unsigned Idx = 0; 3982 if (Record.size() < 4) 3983 return error("Invalid record"); 3984 Type *Ty = getTypeByID(Record[Idx++]); 3985 if (!Ty) 3986 return error("Invalid record"); 3987 Value *PersFn = nullptr; 3988 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3989 return error("Invalid record"); 3990 3991 bool IsCleanup = !!Record[Idx++]; 3992 unsigned NumClauses = Record[Idx++]; 3993 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3994 LP->setCleanup(IsCleanup); 3995 for (unsigned J = 0; J != NumClauses; ++J) { 3996 LandingPadInst::ClauseType CT = 3997 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3998 Value *Val; 3999 4000 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4001 delete LP; 4002 return error("Invalid record"); 4003 } 4004 4005 assert((CT != LandingPadInst::Catch || 4006 !isa<ArrayType>(Val->getType())) && 4007 "Catch clause has a invalid type!"); 4008 assert((CT != LandingPadInst::Filter || 4009 isa<ArrayType>(Val->getType())) && 4010 "Filter clause has invalid type!"); 4011 LP->addClause(cast<Constant>(Val)); 4012 } 4013 4014 I = LP; 4015 InstructionList.push_back(I); 4016 break; 4017 } 4018 4019 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4020 if (Record.size() != 4) 4021 return error("Invalid record"); 4022 uint64_t AlignRecord = Record[3]; 4023 const uint64_t InAllocaMask = uint64_t(1) << 5; 4024 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4025 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4026 bool InAlloca = AlignRecord & InAllocaMask; 4027 Type *Ty = getTypeByID(Record[0]); 4028 if ((AlignRecord & ExplicitTypeMask) == 0) { 4029 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4030 if (!PTy) 4031 return error("Old-style alloca with a non-pointer type"); 4032 Ty = PTy->getElementType(); 4033 } 4034 Type *OpTy = getTypeByID(Record[1]); 4035 Value *Size = getFnValueByID(Record[2], OpTy); 4036 unsigned Align; 4037 if (std::error_code EC = 4038 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4039 return EC; 4040 } 4041 if (!Ty || !Size) 4042 return error("Invalid record"); 4043 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4044 AI->setUsedWithInAlloca(InAlloca); 4045 I = AI; 4046 InstructionList.push_back(I); 4047 break; 4048 } 4049 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4050 unsigned OpNum = 0; 4051 Value *Op; 4052 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4053 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4054 return error("Invalid record"); 4055 4056 Type *Ty = nullptr; 4057 if (OpNum + 3 == Record.size()) 4058 Ty = getTypeByID(Record[OpNum++]); 4059 if (std::error_code EC = 4060 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4061 return EC; 4062 if (!Ty) 4063 Ty = cast<PointerType>(Op->getType())->getElementType(); 4064 4065 unsigned Align; 4066 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4067 return EC; 4068 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4069 4070 InstructionList.push_back(I); 4071 break; 4072 } 4073 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4074 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4075 unsigned OpNum = 0; 4076 Value *Op; 4077 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4078 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4079 return error("Invalid record"); 4080 4081 Type *Ty = nullptr; 4082 if (OpNum + 5 == Record.size()) 4083 Ty = getTypeByID(Record[OpNum++]); 4084 if (std::error_code EC = 4085 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4086 return EC; 4087 if (!Ty) 4088 Ty = cast<PointerType>(Op->getType())->getElementType(); 4089 4090 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4091 if (Ordering == NotAtomic || Ordering == Release || 4092 Ordering == AcquireRelease) 4093 return error("Invalid record"); 4094 if (Ordering != NotAtomic && Record[OpNum] == 0) 4095 return error("Invalid record"); 4096 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4097 4098 unsigned Align; 4099 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4100 return EC; 4101 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4102 4103 InstructionList.push_back(I); 4104 break; 4105 } 4106 case bitc::FUNC_CODE_INST_STORE: 4107 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4108 unsigned OpNum = 0; 4109 Value *Val, *Ptr; 4110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4111 (BitCode == bitc::FUNC_CODE_INST_STORE 4112 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4113 : popValue(Record, OpNum, NextValueNo, 4114 cast<PointerType>(Ptr->getType())->getElementType(), 4115 Val)) || 4116 OpNum + 2 != Record.size()) 4117 return error("Invalid record"); 4118 4119 if (std::error_code EC = typeCheckLoadStoreInst( 4120 DiagnosticHandler, Val->getType(), Ptr->getType())) 4121 return EC; 4122 unsigned Align; 4123 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4124 return EC; 4125 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4126 InstructionList.push_back(I); 4127 break; 4128 } 4129 case bitc::FUNC_CODE_INST_STOREATOMIC: 4130 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4131 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4132 unsigned OpNum = 0; 4133 Value *Val, *Ptr; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4135 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4136 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4137 : popValue(Record, OpNum, NextValueNo, 4138 cast<PointerType>(Ptr->getType())->getElementType(), 4139 Val)) || 4140 OpNum + 4 != Record.size()) 4141 return error("Invalid record"); 4142 4143 if (std::error_code EC = typeCheckLoadStoreInst( 4144 DiagnosticHandler, Val->getType(), Ptr->getType())) 4145 return EC; 4146 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4147 if (Ordering == NotAtomic || Ordering == Acquire || 4148 Ordering == AcquireRelease) 4149 return error("Invalid record"); 4150 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4151 if (Ordering != NotAtomic && Record[OpNum] == 0) 4152 return error("Invalid record"); 4153 4154 unsigned Align; 4155 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4156 return EC; 4157 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4158 InstructionList.push_back(I); 4159 break; 4160 } 4161 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4162 case bitc::FUNC_CODE_INST_CMPXCHG: { 4163 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4164 // failureordering?, isweak?] 4165 unsigned OpNum = 0; 4166 Value *Ptr, *Cmp, *New; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4168 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4169 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4170 : popValue(Record, OpNum, NextValueNo, 4171 cast<PointerType>(Ptr->getType())->getElementType(), 4172 Cmp)) || 4173 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4174 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4175 return error("Invalid record"); 4176 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4177 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4178 return error("Invalid record"); 4179 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4180 4181 if (std::error_code EC = typeCheckLoadStoreInst( 4182 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4183 return EC; 4184 AtomicOrdering FailureOrdering; 4185 if (Record.size() < 7) 4186 FailureOrdering = 4187 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4188 else 4189 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4190 4191 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4192 SynchScope); 4193 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4194 4195 if (Record.size() < 8) { 4196 // Before weak cmpxchgs existed, the instruction simply returned the 4197 // value loaded from memory, so bitcode files from that era will be 4198 // expecting the first component of a modern cmpxchg. 4199 CurBB->getInstList().push_back(I); 4200 I = ExtractValueInst::Create(I, 0); 4201 } else { 4202 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4203 } 4204 4205 InstructionList.push_back(I); 4206 break; 4207 } 4208 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4209 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4210 unsigned OpNum = 0; 4211 Value *Ptr, *Val; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4213 popValue(Record, OpNum, NextValueNo, 4214 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4215 OpNum+4 != Record.size()) 4216 return error("Invalid record"); 4217 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4218 if (Operation < AtomicRMWInst::FIRST_BINOP || 4219 Operation > AtomicRMWInst::LAST_BINOP) 4220 return error("Invalid record"); 4221 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4222 if (Ordering == NotAtomic || Ordering == Unordered) 4223 return error("Invalid record"); 4224 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4225 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4226 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4231 if (2 != Record.size()) 4232 return error("Invalid record"); 4233 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4234 if (Ordering == NotAtomic || Ordering == Unordered || 4235 Ordering == Monotonic) 4236 return error("Invalid record"); 4237 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4238 I = new FenceInst(Context, Ordering, SynchScope); 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 case bitc::FUNC_CODE_INST_CALL: { 4243 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4244 if (Record.size() < 3) 4245 return error("Invalid record"); 4246 4247 unsigned OpNum = 0; 4248 AttributeSet PAL = getAttributes(Record[OpNum++]); 4249 unsigned CCInfo = Record[OpNum++]; 4250 4251 FunctionType *FTy = nullptr; 4252 if (CCInfo >> 15 & 1 && 4253 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4254 return error("Explicit call type is not a function type"); 4255 4256 Value *Callee; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4258 return error("Invalid record"); 4259 4260 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4261 if (!OpTy) 4262 return error("Callee is not a pointer type"); 4263 if (!FTy) { 4264 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4265 if (!FTy) 4266 return error("Callee is not of pointer to function type"); 4267 } else if (OpTy->getElementType() != FTy) 4268 return error("Explicit call type does not match pointee type of " 4269 "callee operand"); 4270 if (Record.size() < FTy->getNumParams() + OpNum) 4271 return error("Insufficient operands to call"); 4272 4273 SmallVector<Value*, 16> Args; 4274 // Read the fixed params. 4275 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4276 if (FTy->getParamType(i)->isLabelTy()) 4277 Args.push_back(getBasicBlock(Record[OpNum])); 4278 else 4279 Args.push_back(getValue(Record, OpNum, NextValueNo, 4280 FTy->getParamType(i))); 4281 if (!Args.back()) 4282 return error("Invalid record"); 4283 } 4284 4285 // Read type/value pairs for varargs params. 4286 if (!FTy->isVarArg()) { 4287 if (OpNum != Record.size()) 4288 return error("Invalid record"); 4289 } else { 4290 while (OpNum != Record.size()) { 4291 Value *Op; 4292 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4293 return error("Invalid record"); 4294 Args.push_back(Op); 4295 } 4296 } 4297 4298 I = CallInst::Create(FTy, Callee, Args); 4299 InstructionList.push_back(I); 4300 cast<CallInst>(I)->setCallingConv( 4301 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4302 CallInst::TailCallKind TCK = CallInst::TCK_None; 4303 if (CCInfo & 1) 4304 TCK = CallInst::TCK_Tail; 4305 if (CCInfo & (1 << 14)) 4306 TCK = CallInst::TCK_MustTail; 4307 cast<CallInst>(I)->setTailCallKind(TCK); 4308 cast<CallInst>(I)->setAttributes(PAL); 4309 break; 4310 } 4311 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4312 if (Record.size() < 3) 4313 return error("Invalid record"); 4314 Type *OpTy = getTypeByID(Record[0]); 4315 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4316 Type *ResTy = getTypeByID(Record[2]); 4317 if (!OpTy || !Op || !ResTy) 4318 return error("Invalid record"); 4319 I = new VAArgInst(Op, ResTy); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 } 4324 4325 // Add instruction to end of current BB. If there is no current BB, reject 4326 // this file. 4327 if (!CurBB) { 4328 delete I; 4329 return error("Invalid instruction with no BB"); 4330 } 4331 CurBB->getInstList().push_back(I); 4332 4333 // If this was a terminator instruction, move to the next block. 4334 if (isa<TerminatorInst>(I)) { 4335 ++CurBBNo; 4336 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4337 } 4338 4339 // Non-void values get registered in the value table for future use. 4340 if (I && !I->getType()->isVoidTy()) 4341 ValueList.assignValue(I, NextValueNo++); 4342 } 4343 4344 OutOfRecordLoop: 4345 4346 // Check the function list for unresolved values. 4347 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4348 if (!A->getParent()) { 4349 // We found at least one unresolved value. Nuke them all to avoid leaks. 4350 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4351 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4352 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4353 delete A; 4354 } 4355 } 4356 return error("Never resolved value found in function"); 4357 } 4358 } 4359 4360 // FIXME: Check for unresolved forward-declared metadata references 4361 // and clean up leaks. 4362 4363 // Trim the value list down to the size it was before we parsed this function. 4364 ValueList.shrinkTo(ModuleValueListSize); 4365 MDValueList.shrinkTo(ModuleMDValueListSize); 4366 std::vector<BasicBlock*>().swap(FunctionBBs); 4367 return std::error_code(); 4368 } 4369 4370 /// Find the function body in the bitcode stream 4371 std::error_code BitcodeReader::findFunctionInStream( 4372 Function *F, 4373 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4374 while (DeferredFunctionInfoIterator->second == 0) { 4375 if (Stream.AtEndOfStream()) 4376 return error("Could not find function in stream"); 4377 // ParseModule will parse the next body in the stream and set its 4378 // position in the DeferredFunctionInfo map. 4379 if (std::error_code EC = parseModule(true)) 4380 return EC; 4381 } 4382 return std::error_code(); 4383 } 4384 4385 //===----------------------------------------------------------------------===// 4386 // GVMaterializer implementation 4387 //===----------------------------------------------------------------------===// 4388 4389 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4390 4391 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4392 if (std::error_code EC = materializeMetadata()) 4393 return EC; 4394 4395 Function *F = dyn_cast<Function>(GV); 4396 // If it's not a function or is already material, ignore the request. 4397 if (!F || !F->isMaterializable()) 4398 return std::error_code(); 4399 4400 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4401 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4402 // If its position is recorded as 0, its body is somewhere in the stream 4403 // but we haven't seen it yet. 4404 if (DFII->second == 0 && IsStreamed) 4405 if (std::error_code EC = findFunctionInStream(F, DFII)) 4406 return EC; 4407 4408 // Move the bit stream to the saved position of the deferred function body. 4409 Stream.JumpToBit(DFII->second); 4410 4411 if (std::error_code EC = parseFunctionBody(F)) 4412 return EC; 4413 F->setIsMaterializable(false); 4414 4415 if (StripDebugInfo) 4416 stripDebugInfo(*F); 4417 4418 // Upgrade any old intrinsic calls in the function. 4419 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4420 E = UpgradedIntrinsics.end(); I != E; ++I) { 4421 if (I->first != I->second) { 4422 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4423 UI != UE;) { 4424 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4425 UpgradeIntrinsicCall(CI, I->second); 4426 } 4427 } 4428 } 4429 4430 // Bring in any functions that this function forward-referenced via 4431 // blockaddresses. 4432 return materializeForwardReferencedFunctions(); 4433 } 4434 4435 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4436 const Function *F = dyn_cast<Function>(GV); 4437 if (!F || F->isDeclaration()) 4438 return false; 4439 4440 // Dematerializing F would leave dangling references that wouldn't be 4441 // reconnected on re-materialization. 4442 if (BlockAddressesTaken.count(F)) 4443 return false; 4444 4445 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4446 } 4447 4448 void BitcodeReader::dematerialize(GlobalValue *GV) { 4449 Function *F = dyn_cast<Function>(GV); 4450 // If this function isn't dematerializable, this is a noop. 4451 if (!F || !isDematerializable(F)) 4452 return; 4453 4454 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4455 4456 // Just forget the function body, we can remat it later. 4457 F->dropAllReferences(); 4458 F->setIsMaterializable(true); 4459 } 4460 4461 std::error_code BitcodeReader::materializeModule(Module *M) { 4462 assert(M == TheModule && 4463 "Can only Materialize the Module this BitcodeReader is attached to."); 4464 4465 if (std::error_code EC = materializeMetadata()) 4466 return EC; 4467 4468 // Promise to materialize all forward references. 4469 WillMaterializeAllForwardRefs = true; 4470 4471 // Iterate over the module, deserializing any functions that are still on 4472 // disk. 4473 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4474 F != E; ++F) { 4475 if (std::error_code EC = materialize(F)) 4476 return EC; 4477 } 4478 // At this point, if there are any function bodies, the current bit is 4479 // pointing to the END_BLOCK record after them. Now make sure the rest 4480 // of the bits in the module have been read. 4481 if (NextUnreadBit) 4482 parseModule(true); 4483 4484 // Check that all block address forward references got resolved (as we 4485 // promised above). 4486 if (!BasicBlockFwdRefs.empty()) 4487 return error("Never resolved function from blockaddress"); 4488 4489 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4490 // delete the old functions to clean up. We can't do this unless the entire 4491 // module is materialized because there could always be another function body 4492 // with calls to the old function. 4493 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4494 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4495 if (I->first != I->second) { 4496 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4497 UI != UE;) { 4498 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4499 UpgradeIntrinsicCall(CI, I->second); 4500 } 4501 if (!I->first->use_empty()) 4502 I->first->replaceAllUsesWith(I->second); 4503 I->first->eraseFromParent(); 4504 } 4505 } 4506 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4507 4508 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4509 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4510 4511 UpgradeDebugInfo(*M); 4512 return std::error_code(); 4513 } 4514 4515 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4516 return IdentifiedStructTypes; 4517 } 4518 4519 std::error_code 4520 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4521 if (Streamer) 4522 return initLazyStream(std::move(Streamer)); 4523 return initStreamFromBuffer(); 4524 } 4525 4526 std::error_code BitcodeReader::initStreamFromBuffer() { 4527 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4528 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4529 4530 if (Buffer->getBufferSize() & 3) 4531 return error("Invalid bitcode signature"); 4532 4533 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4534 // The magic number is 0x0B17C0DE stored in little endian. 4535 if (isBitcodeWrapper(BufPtr, BufEnd)) 4536 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4537 return error("Invalid bitcode wrapper header"); 4538 4539 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4540 Stream.init(&*StreamFile); 4541 4542 return std::error_code(); 4543 } 4544 4545 std::error_code 4546 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4547 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4548 // see it. 4549 auto OwnedBytes = 4550 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4551 StreamingMemoryObject &Bytes = *OwnedBytes; 4552 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4553 Stream.init(&*StreamFile); 4554 4555 unsigned char buf[16]; 4556 if (Bytes.readBytes(buf, 16, 0) != 16) 4557 return error("Invalid bitcode signature"); 4558 4559 if (!isBitcode(buf, buf + 16)) 4560 return error("Invalid bitcode signature"); 4561 4562 if (isBitcodeWrapper(buf, buf + 4)) { 4563 const unsigned char *bitcodeStart = buf; 4564 const unsigned char *bitcodeEnd = buf + 16; 4565 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4566 Bytes.dropLeadingBytes(bitcodeStart - buf); 4567 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4568 } 4569 return std::error_code(); 4570 } 4571 4572 namespace { 4573 class BitcodeErrorCategoryType : public std::error_category { 4574 const char *name() const LLVM_NOEXCEPT override { 4575 return "llvm.bitcode"; 4576 } 4577 std::string message(int IE) const override { 4578 BitcodeError E = static_cast<BitcodeError>(IE); 4579 switch (E) { 4580 case BitcodeError::InvalidBitcodeSignature: 4581 return "Invalid bitcode signature"; 4582 case BitcodeError::CorruptedBitcode: 4583 return "Corrupted bitcode"; 4584 } 4585 llvm_unreachable("Unknown error type!"); 4586 } 4587 }; 4588 } 4589 4590 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4591 4592 const std::error_category &llvm::BitcodeErrorCategory() { 4593 return *ErrorCategory; 4594 } 4595 4596 //===----------------------------------------------------------------------===// 4597 // External interface 4598 //===----------------------------------------------------------------------===// 4599 4600 /// \brief Get a lazy one-at-time loading module from bitcode. 4601 /// 4602 /// This isn't always used in a lazy context. In particular, it's also used by 4603 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4604 /// in forward-referenced functions from block address references. 4605 /// 4606 /// \param[in] MaterializeAll Set to \c true if we should materialize 4607 /// everything. 4608 static ErrorOr<std::unique_ptr<Module>> 4609 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4610 LLVMContext &Context, bool MaterializeAll, 4611 DiagnosticHandlerFunction DiagnosticHandler, 4612 bool ShouldLazyLoadMetadata = false) { 4613 std::unique_ptr<Module> M = 4614 make_unique<Module>(Buffer->getBufferIdentifier(), Context); 4615 BitcodeReader *R = 4616 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4617 M->setMaterializer(R); 4618 4619 auto cleanupOnError = [&](std::error_code EC) { 4620 R->releaseBuffer(); // Never take ownership on error. 4621 return EC; 4622 }; 4623 4624 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4625 if (std::error_code EC = 4626 R->parseBitcodeInto(nullptr, M.get(), ShouldLazyLoadMetadata)) 4627 return cleanupOnError(EC); 4628 4629 if (MaterializeAll) { 4630 // Read in the entire module, and destroy the BitcodeReader. 4631 if (std::error_code EC = M->materializeAllPermanently()) 4632 return EC; 4633 } else { 4634 // Resolve forward references from blockaddresses. 4635 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4636 return cleanupOnError(EC); 4637 } 4638 4639 Buffer.release(); // The BitcodeReader owns it now. 4640 return std::move(M); 4641 } 4642 4643 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4644 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4645 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4646 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4647 DiagnosticHandler, ShouldLazyLoadMetadata); 4648 } 4649 4650 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4651 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4652 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4653 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4654 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4655 M->setMaterializer(R); 4656 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get())) 4657 return EC; 4658 return std::move(M); 4659 } 4660 4661 ErrorOr<std::unique_ptr<Module>> 4662 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4663 DiagnosticHandlerFunction DiagnosticHandler) { 4664 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4665 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4666 DiagnosticHandler); 4667 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4668 // written. We must defer until the Module has been fully materialized. 4669 } 4670 4671 std::string 4672 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4673 DiagnosticHandlerFunction DiagnosticHandler) { 4674 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4675 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4676 DiagnosticHandler); 4677 ErrorOr<std::string> Triple = R->parseTriple(); 4678 if (Triple.getError()) 4679 return ""; 4680 return Triple.get(); 4681 } 4682