1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Upgrades old-style typeless byval attributes by adding the corresponding 642 /// argument's pointee type. 643 void propagateByValTypes(CallBase *CB); 644 645 /// Converts alignment exponent (i.e. power of two (or zero)) to the 646 /// corresponding alignment to use. If alignment is too large, returns 647 /// a corresponding error code. 648 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 649 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 650 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 651 652 Error parseComdatRecord(ArrayRef<uint64_t> Record); 653 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 654 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 655 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 656 ArrayRef<uint64_t> Record); 657 658 Error parseAttributeBlock(); 659 Error parseAttributeGroupBlock(); 660 Error parseTypeTable(); 661 Error parseTypeTableBody(); 662 Error parseOperandBundleTags(); 663 Error parseSyncScopeNames(); 664 665 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 666 unsigned NameIndex, Triple &TT); 667 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 668 ArrayRef<uint64_t> Record); 669 Error parseValueSymbolTable(uint64_t Offset = 0); 670 Error parseGlobalValueSymbolTable(); 671 Error parseConstants(); 672 Error rememberAndSkipFunctionBodies(); 673 Error rememberAndSkipFunctionBody(); 674 /// Save the positions of the Metadata blocks and skip parsing the blocks. 675 Error rememberAndSkipMetadata(); 676 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 677 Error parseFunctionBody(Function *F); 678 Error globalCleanup(); 679 Error resolveGlobalAndIndirectSymbolInits(); 680 Error parseUseLists(); 681 Error findFunctionInStream( 682 Function *F, 683 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 684 685 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 686 }; 687 688 /// Class to manage reading and parsing function summary index bitcode 689 /// files/sections. 690 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 691 /// The module index built during parsing. 692 ModuleSummaryIndex &TheIndex; 693 694 /// Indicates whether we have encountered a global value summary section 695 /// yet during parsing. 696 bool SeenGlobalValSummary = false; 697 698 /// Indicates whether we have already parsed the VST, used for error checking. 699 bool SeenValueSymbolTable = false; 700 701 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 702 /// Used to enable on-demand parsing of the VST. 703 uint64_t VSTOffset = 0; 704 705 // Map to save ValueId to ValueInfo association that was recorded in the 706 // ValueSymbolTable. It is used after the VST is parsed to convert 707 // call graph edges read from the function summary from referencing 708 // callees by their ValueId to using the ValueInfo instead, which is how 709 // they are recorded in the summary index being built. 710 // We save a GUID which refers to the same global as the ValueInfo, but 711 // ignoring the linkage, i.e. for values other than local linkage they are 712 // identical. 713 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 714 ValueIdToValueInfoMap; 715 716 /// Map populated during module path string table parsing, from the 717 /// module ID to a string reference owned by the index's module 718 /// path string table, used to correlate with combined index 719 /// summary records. 720 DenseMap<uint64_t, StringRef> ModuleIdMap; 721 722 /// Original source file name recorded in a bitcode record. 723 std::string SourceFileName; 724 725 /// The string identifier given to this module by the client, normally the 726 /// path to the bitcode file. 727 StringRef ModulePath; 728 729 /// For per-module summary indexes, the unique numerical identifier given to 730 /// this module by the client. 731 unsigned ModuleId; 732 733 public: 734 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 735 ModuleSummaryIndex &TheIndex, 736 StringRef ModulePath, unsigned ModuleId); 737 738 Error parseModule(); 739 740 private: 741 void setValueGUID(uint64_t ValueID, StringRef ValueName, 742 GlobalValue::LinkageTypes Linkage, 743 StringRef SourceFileName); 744 Error parseValueSymbolTable( 745 uint64_t Offset, 746 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 747 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 748 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 749 bool IsOldProfileFormat, 750 bool HasProfile, 751 bool HasRelBF); 752 Error parseEntireSummary(unsigned ID); 753 Error parseModuleStringTable(); 754 755 std::pair<ValueInfo, GlobalValue::GUID> 756 getValueInfoFromValueId(unsigned ValueId); 757 758 void addThisModule(); 759 ModuleSummaryIndex::ModuleInfo *getThisModule(); 760 }; 761 762 } // end anonymous namespace 763 764 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 765 Error Err) { 766 if (Err) { 767 std::error_code EC; 768 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 769 EC = EIB.convertToErrorCode(); 770 Ctx.emitError(EIB.message()); 771 }); 772 return EC; 773 } 774 return std::error_code(); 775 } 776 777 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 778 StringRef ProducerIdentification, 779 LLVMContext &Context) 780 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 781 ValueList(Context) { 782 this->ProducerIdentification = ProducerIdentification; 783 } 784 785 Error BitcodeReader::materializeForwardReferencedFunctions() { 786 if (WillMaterializeAllForwardRefs) 787 return Error::success(); 788 789 // Prevent recursion. 790 WillMaterializeAllForwardRefs = true; 791 792 while (!BasicBlockFwdRefQueue.empty()) { 793 Function *F = BasicBlockFwdRefQueue.front(); 794 BasicBlockFwdRefQueue.pop_front(); 795 assert(F && "Expected valid function"); 796 if (!BasicBlockFwdRefs.count(F)) 797 // Already materialized. 798 continue; 799 800 // Check for a function that isn't materializable to prevent an infinite 801 // loop. When parsing a blockaddress stored in a global variable, there 802 // isn't a trivial way to check if a function will have a body without a 803 // linear search through FunctionsWithBodies, so just check it here. 804 if (!F->isMaterializable()) 805 return error("Never resolved function from blockaddress"); 806 807 // Try to materialize F. 808 if (Error Err = materialize(F)) 809 return Err; 810 } 811 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 812 813 // Reset state. 814 WillMaterializeAllForwardRefs = false; 815 return Error::success(); 816 } 817 818 //===----------------------------------------------------------------------===// 819 // Helper functions to implement forward reference resolution, etc. 820 //===----------------------------------------------------------------------===// 821 822 static bool hasImplicitComdat(size_t Val) { 823 switch (Val) { 824 default: 825 return false; 826 case 1: // Old WeakAnyLinkage 827 case 4: // Old LinkOnceAnyLinkage 828 case 10: // Old WeakODRLinkage 829 case 11: // Old LinkOnceODRLinkage 830 return true; 831 } 832 } 833 834 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 835 switch (Val) { 836 default: // Map unknown/new linkages to external 837 case 0: 838 return GlobalValue::ExternalLinkage; 839 case 2: 840 return GlobalValue::AppendingLinkage; 841 case 3: 842 return GlobalValue::InternalLinkage; 843 case 5: 844 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 845 case 6: 846 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 847 case 7: 848 return GlobalValue::ExternalWeakLinkage; 849 case 8: 850 return GlobalValue::CommonLinkage; 851 case 9: 852 return GlobalValue::PrivateLinkage; 853 case 12: 854 return GlobalValue::AvailableExternallyLinkage; 855 case 13: 856 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 857 case 14: 858 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 859 case 15: 860 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 861 case 1: // Old value with implicit comdat. 862 case 16: 863 return GlobalValue::WeakAnyLinkage; 864 case 10: // Old value with implicit comdat. 865 case 17: 866 return GlobalValue::WeakODRLinkage; 867 case 4: // Old value with implicit comdat. 868 case 18: 869 return GlobalValue::LinkOnceAnyLinkage; 870 case 11: // Old value with implicit comdat. 871 case 19: 872 return GlobalValue::LinkOnceODRLinkage; 873 } 874 } 875 876 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 877 FunctionSummary::FFlags Flags; 878 Flags.ReadNone = RawFlags & 0x1; 879 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 880 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 881 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 882 Flags.NoInline = (RawFlags >> 4) & 0x1; 883 return Flags; 884 } 885 886 /// Decode the flags for GlobalValue in the summary. 887 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 888 uint64_t Version) { 889 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 890 // like getDecodedLinkage() above. Any future change to the linkage enum and 891 // to getDecodedLinkage() will need to be taken into account here as above. 892 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 893 RawFlags = RawFlags >> 4; 894 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 895 // The Live flag wasn't introduced until version 3. For dead stripping 896 // to work correctly on earlier versions, we must conservatively treat all 897 // values as live. 898 bool Live = (RawFlags & 0x2) || Version < 3; 899 bool Local = (RawFlags & 0x4); 900 bool AutoHide = (RawFlags & 0x8); 901 902 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 903 } 904 905 // Decode the flags for GlobalVariable in the summary 906 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 907 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 908 } 909 910 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 911 switch (Val) { 912 default: // Map unknown visibilities to default. 913 case 0: return GlobalValue::DefaultVisibility; 914 case 1: return GlobalValue::HiddenVisibility; 915 case 2: return GlobalValue::ProtectedVisibility; 916 } 917 } 918 919 static GlobalValue::DLLStorageClassTypes 920 getDecodedDLLStorageClass(unsigned Val) { 921 switch (Val) { 922 default: // Map unknown values to default. 923 case 0: return GlobalValue::DefaultStorageClass; 924 case 1: return GlobalValue::DLLImportStorageClass; 925 case 2: return GlobalValue::DLLExportStorageClass; 926 } 927 } 928 929 static bool getDecodedDSOLocal(unsigned Val) { 930 switch(Val) { 931 default: // Map unknown values to preemptable. 932 case 0: return false; 933 case 1: return true; 934 } 935 } 936 937 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 938 switch (Val) { 939 case 0: return GlobalVariable::NotThreadLocal; 940 default: // Map unknown non-zero value to general dynamic. 941 case 1: return GlobalVariable::GeneralDynamicTLSModel; 942 case 2: return GlobalVariable::LocalDynamicTLSModel; 943 case 3: return GlobalVariable::InitialExecTLSModel; 944 case 4: return GlobalVariable::LocalExecTLSModel; 945 } 946 } 947 948 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 949 switch (Val) { 950 default: // Map unknown to UnnamedAddr::None. 951 case 0: return GlobalVariable::UnnamedAddr::None; 952 case 1: return GlobalVariable::UnnamedAddr::Global; 953 case 2: return GlobalVariable::UnnamedAddr::Local; 954 } 955 } 956 957 static int getDecodedCastOpcode(unsigned Val) { 958 switch (Val) { 959 default: return -1; 960 case bitc::CAST_TRUNC : return Instruction::Trunc; 961 case bitc::CAST_ZEXT : return Instruction::ZExt; 962 case bitc::CAST_SEXT : return Instruction::SExt; 963 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 964 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 965 case bitc::CAST_UITOFP : return Instruction::UIToFP; 966 case bitc::CAST_SITOFP : return Instruction::SIToFP; 967 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 968 case bitc::CAST_FPEXT : return Instruction::FPExt; 969 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 970 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 971 case bitc::CAST_BITCAST : return Instruction::BitCast; 972 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 973 } 974 } 975 976 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 977 bool IsFP = Ty->isFPOrFPVectorTy(); 978 // UnOps are only valid for int/fp or vector of int/fp types 979 if (!IsFP && !Ty->isIntOrIntVectorTy()) 980 return -1; 981 982 switch (Val) { 983 default: 984 return -1; 985 case bitc::UNOP_NEG: 986 return IsFP ? Instruction::FNeg : -1; 987 } 988 } 989 990 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 991 bool IsFP = Ty->isFPOrFPVectorTy(); 992 // BinOps are only valid for int/fp or vector of int/fp types 993 if (!IsFP && !Ty->isIntOrIntVectorTy()) 994 return -1; 995 996 switch (Val) { 997 default: 998 return -1; 999 case bitc::BINOP_ADD: 1000 return IsFP ? Instruction::FAdd : Instruction::Add; 1001 case bitc::BINOP_SUB: 1002 return IsFP ? Instruction::FSub : Instruction::Sub; 1003 case bitc::BINOP_MUL: 1004 return IsFP ? Instruction::FMul : Instruction::Mul; 1005 case bitc::BINOP_UDIV: 1006 return IsFP ? -1 : Instruction::UDiv; 1007 case bitc::BINOP_SDIV: 1008 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1009 case bitc::BINOP_UREM: 1010 return IsFP ? -1 : Instruction::URem; 1011 case bitc::BINOP_SREM: 1012 return IsFP ? Instruction::FRem : Instruction::SRem; 1013 case bitc::BINOP_SHL: 1014 return IsFP ? -1 : Instruction::Shl; 1015 case bitc::BINOP_LSHR: 1016 return IsFP ? -1 : Instruction::LShr; 1017 case bitc::BINOP_ASHR: 1018 return IsFP ? -1 : Instruction::AShr; 1019 case bitc::BINOP_AND: 1020 return IsFP ? -1 : Instruction::And; 1021 case bitc::BINOP_OR: 1022 return IsFP ? -1 : Instruction::Or; 1023 case bitc::BINOP_XOR: 1024 return IsFP ? -1 : Instruction::Xor; 1025 } 1026 } 1027 1028 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1029 switch (Val) { 1030 default: return AtomicRMWInst::BAD_BINOP; 1031 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1032 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1033 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1034 case bitc::RMW_AND: return AtomicRMWInst::And; 1035 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1036 case bitc::RMW_OR: return AtomicRMWInst::Or; 1037 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1038 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1039 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1040 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1041 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1042 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1043 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1044 } 1045 } 1046 1047 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1048 switch (Val) { 1049 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1050 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1051 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1052 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1053 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1054 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1055 default: // Map unknown orderings to sequentially-consistent. 1056 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1057 } 1058 } 1059 1060 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1061 switch (Val) { 1062 default: // Map unknown selection kinds to any. 1063 case bitc::COMDAT_SELECTION_KIND_ANY: 1064 return Comdat::Any; 1065 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1066 return Comdat::ExactMatch; 1067 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1068 return Comdat::Largest; 1069 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1070 return Comdat::NoDuplicates; 1071 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1072 return Comdat::SameSize; 1073 } 1074 } 1075 1076 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1077 FastMathFlags FMF; 1078 if (0 != (Val & bitc::UnsafeAlgebra)) 1079 FMF.setFast(); 1080 if (0 != (Val & bitc::AllowReassoc)) 1081 FMF.setAllowReassoc(); 1082 if (0 != (Val & bitc::NoNaNs)) 1083 FMF.setNoNaNs(); 1084 if (0 != (Val & bitc::NoInfs)) 1085 FMF.setNoInfs(); 1086 if (0 != (Val & bitc::NoSignedZeros)) 1087 FMF.setNoSignedZeros(); 1088 if (0 != (Val & bitc::AllowReciprocal)) 1089 FMF.setAllowReciprocal(); 1090 if (0 != (Val & bitc::AllowContract)) 1091 FMF.setAllowContract(true); 1092 if (0 != (Val & bitc::ApproxFunc)) 1093 FMF.setApproxFunc(); 1094 return FMF; 1095 } 1096 1097 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1098 switch (Val) { 1099 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1100 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1101 } 1102 } 1103 1104 Type *BitcodeReader::getTypeByID(unsigned ID) { 1105 // The type table size is always specified correctly. 1106 if (ID >= TypeList.size()) 1107 return nullptr; 1108 1109 if (Type *Ty = TypeList[ID]) 1110 return Ty; 1111 1112 // If we have a forward reference, the only possible case is when it is to a 1113 // named struct. Just create a placeholder for now. 1114 return TypeList[ID] = createIdentifiedStructType(Context); 1115 } 1116 1117 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1118 StringRef Name) { 1119 auto *Ret = StructType::create(Context, Name); 1120 IdentifiedStructTypes.push_back(Ret); 1121 return Ret; 1122 } 1123 1124 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1125 auto *Ret = StructType::create(Context); 1126 IdentifiedStructTypes.push_back(Ret); 1127 return Ret; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // Functions for parsing blocks from the bitcode file 1132 //===----------------------------------------------------------------------===// 1133 1134 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1135 switch (Val) { 1136 case Attribute::EndAttrKinds: 1137 llvm_unreachable("Synthetic enumerators which should never get here"); 1138 1139 case Attribute::None: return 0; 1140 case Attribute::ZExt: return 1 << 0; 1141 case Attribute::SExt: return 1 << 1; 1142 case Attribute::NoReturn: return 1 << 2; 1143 case Attribute::InReg: return 1 << 3; 1144 case Attribute::StructRet: return 1 << 4; 1145 case Attribute::NoUnwind: return 1 << 5; 1146 case Attribute::NoAlias: return 1 << 6; 1147 case Attribute::ByVal: return 1 << 7; 1148 case Attribute::Nest: return 1 << 8; 1149 case Attribute::ReadNone: return 1 << 9; 1150 case Attribute::ReadOnly: return 1 << 10; 1151 case Attribute::NoInline: return 1 << 11; 1152 case Attribute::AlwaysInline: return 1 << 12; 1153 case Attribute::OptimizeForSize: return 1 << 13; 1154 case Attribute::StackProtect: return 1 << 14; 1155 case Attribute::StackProtectReq: return 1 << 15; 1156 case Attribute::Alignment: return 31 << 16; 1157 case Attribute::NoCapture: return 1 << 21; 1158 case Attribute::NoRedZone: return 1 << 22; 1159 case Attribute::NoImplicitFloat: return 1 << 23; 1160 case Attribute::Naked: return 1 << 24; 1161 case Attribute::InlineHint: return 1 << 25; 1162 case Attribute::StackAlignment: return 7 << 26; 1163 case Attribute::ReturnsTwice: return 1 << 29; 1164 case Attribute::UWTable: return 1 << 30; 1165 case Attribute::NonLazyBind: return 1U << 31; 1166 case Attribute::SanitizeAddress: return 1ULL << 32; 1167 case Attribute::MinSize: return 1ULL << 33; 1168 case Attribute::NoDuplicate: return 1ULL << 34; 1169 case Attribute::StackProtectStrong: return 1ULL << 35; 1170 case Attribute::SanitizeThread: return 1ULL << 36; 1171 case Attribute::SanitizeMemory: return 1ULL << 37; 1172 case Attribute::NoBuiltin: return 1ULL << 38; 1173 case Attribute::Returned: return 1ULL << 39; 1174 case Attribute::Cold: return 1ULL << 40; 1175 case Attribute::Builtin: return 1ULL << 41; 1176 case Attribute::OptimizeNone: return 1ULL << 42; 1177 case Attribute::InAlloca: return 1ULL << 43; 1178 case Attribute::NonNull: return 1ULL << 44; 1179 case Attribute::JumpTable: return 1ULL << 45; 1180 case Attribute::Convergent: return 1ULL << 46; 1181 case Attribute::SafeStack: return 1ULL << 47; 1182 case Attribute::NoRecurse: return 1ULL << 48; 1183 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1184 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1185 case Attribute::SwiftSelf: return 1ULL << 51; 1186 case Attribute::SwiftError: return 1ULL << 52; 1187 case Attribute::WriteOnly: return 1ULL << 53; 1188 case Attribute::Speculatable: return 1ULL << 54; 1189 case Attribute::StrictFP: return 1ULL << 55; 1190 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1191 case Attribute::NoCfCheck: return 1ULL << 57; 1192 case Attribute::OptForFuzzing: return 1ULL << 58; 1193 case Attribute::ShadowCallStack: return 1ULL << 59; 1194 case Attribute::SpeculativeLoadHardening: 1195 return 1ULL << 60; 1196 case Attribute::ImmArg: 1197 return 1ULL << 61; 1198 case Attribute::Dereferenceable: 1199 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1200 break; 1201 case Attribute::DereferenceableOrNull: 1202 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1203 "format"); 1204 break; 1205 case Attribute::ArgMemOnly: 1206 llvm_unreachable("argmemonly attribute not supported in raw format"); 1207 break; 1208 case Attribute::AllocSize: 1209 llvm_unreachable("allocsize not supported in raw format"); 1210 break; 1211 } 1212 llvm_unreachable("Unsupported attribute type"); 1213 } 1214 1215 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1216 if (!Val) return; 1217 1218 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1219 I = Attribute::AttrKind(I + 1)) { 1220 if (I == Attribute::Dereferenceable || 1221 I == Attribute::DereferenceableOrNull || 1222 I == Attribute::ArgMemOnly || 1223 I == Attribute::AllocSize) 1224 continue; 1225 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1226 if (I == Attribute::Alignment) 1227 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1228 else if (I == Attribute::StackAlignment) 1229 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1230 else 1231 B.addAttribute(I); 1232 } 1233 } 1234 } 1235 1236 /// This fills an AttrBuilder object with the LLVM attributes that have 1237 /// been decoded from the given integer. This function must stay in sync with 1238 /// 'encodeLLVMAttributesForBitcode'. 1239 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1240 uint64_t EncodedAttrs) { 1241 // FIXME: Remove in 4.0. 1242 1243 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1244 // the bits above 31 down by 11 bits. 1245 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1246 assert((!Alignment || isPowerOf2_32(Alignment)) && 1247 "Alignment must be a power of two."); 1248 1249 if (Alignment) 1250 B.addAlignmentAttr(Alignment); 1251 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1252 (EncodedAttrs & 0xffff)); 1253 } 1254 1255 Error BitcodeReader::parseAttributeBlock() { 1256 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1257 return error("Invalid record"); 1258 1259 if (!MAttributes.empty()) 1260 return error("Invalid multiple blocks"); 1261 1262 SmallVector<uint64_t, 64> Record; 1263 1264 SmallVector<AttributeList, 8> Attrs; 1265 1266 // Read all the records. 1267 while (true) { 1268 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1269 1270 switch (Entry.Kind) { 1271 case BitstreamEntry::SubBlock: // Handled for us already. 1272 case BitstreamEntry::Error: 1273 return error("Malformed block"); 1274 case BitstreamEntry::EndBlock: 1275 return Error::success(); 1276 case BitstreamEntry::Record: 1277 // The interesting case. 1278 break; 1279 } 1280 1281 // Read a record. 1282 Record.clear(); 1283 switch (Stream.readRecord(Entry.ID, Record)) { 1284 default: // Default behavior: ignore. 1285 break; 1286 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1287 // FIXME: Remove in 4.0. 1288 if (Record.size() & 1) 1289 return error("Invalid record"); 1290 1291 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1292 AttrBuilder B; 1293 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1294 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1295 } 1296 1297 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1298 Attrs.clear(); 1299 break; 1300 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1301 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1302 Attrs.push_back(MAttributeGroups[Record[i]]); 1303 1304 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1305 Attrs.clear(); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Returns Attribute::None on unrecognized codes. 1312 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1313 switch (Code) { 1314 default: 1315 return Attribute::None; 1316 case bitc::ATTR_KIND_ALIGNMENT: 1317 return Attribute::Alignment; 1318 case bitc::ATTR_KIND_ALWAYS_INLINE: 1319 return Attribute::AlwaysInline; 1320 case bitc::ATTR_KIND_ARGMEMONLY: 1321 return Attribute::ArgMemOnly; 1322 case bitc::ATTR_KIND_BUILTIN: 1323 return Attribute::Builtin; 1324 case bitc::ATTR_KIND_BY_VAL: 1325 return Attribute::ByVal; 1326 case bitc::ATTR_KIND_IN_ALLOCA: 1327 return Attribute::InAlloca; 1328 case bitc::ATTR_KIND_COLD: 1329 return Attribute::Cold; 1330 case bitc::ATTR_KIND_CONVERGENT: 1331 return Attribute::Convergent; 1332 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1333 return Attribute::InaccessibleMemOnly; 1334 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1335 return Attribute::InaccessibleMemOrArgMemOnly; 1336 case bitc::ATTR_KIND_INLINE_HINT: 1337 return Attribute::InlineHint; 1338 case bitc::ATTR_KIND_IN_REG: 1339 return Attribute::InReg; 1340 case bitc::ATTR_KIND_JUMP_TABLE: 1341 return Attribute::JumpTable; 1342 case bitc::ATTR_KIND_MIN_SIZE: 1343 return Attribute::MinSize; 1344 case bitc::ATTR_KIND_NAKED: 1345 return Attribute::Naked; 1346 case bitc::ATTR_KIND_NEST: 1347 return Attribute::Nest; 1348 case bitc::ATTR_KIND_NO_ALIAS: 1349 return Attribute::NoAlias; 1350 case bitc::ATTR_KIND_NO_BUILTIN: 1351 return Attribute::NoBuiltin; 1352 case bitc::ATTR_KIND_NO_CAPTURE: 1353 return Attribute::NoCapture; 1354 case bitc::ATTR_KIND_NO_DUPLICATE: 1355 return Attribute::NoDuplicate; 1356 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1357 return Attribute::NoImplicitFloat; 1358 case bitc::ATTR_KIND_NO_INLINE: 1359 return Attribute::NoInline; 1360 case bitc::ATTR_KIND_NO_RECURSE: 1361 return Attribute::NoRecurse; 1362 case bitc::ATTR_KIND_NON_LAZY_BIND: 1363 return Attribute::NonLazyBind; 1364 case bitc::ATTR_KIND_NON_NULL: 1365 return Attribute::NonNull; 1366 case bitc::ATTR_KIND_DEREFERENCEABLE: 1367 return Attribute::Dereferenceable; 1368 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1369 return Attribute::DereferenceableOrNull; 1370 case bitc::ATTR_KIND_ALLOC_SIZE: 1371 return Attribute::AllocSize; 1372 case bitc::ATTR_KIND_NO_RED_ZONE: 1373 return Attribute::NoRedZone; 1374 case bitc::ATTR_KIND_NO_RETURN: 1375 return Attribute::NoReturn; 1376 case bitc::ATTR_KIND_NOCF_CHECK: 1377 return Attribute::NoCfCheck; 1378 case bitc::ATTR_KIND_NO_UNWIND: 1379 return Attribute::NoUnwind; 1380 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1381 return Attribute::OptForFuzzing; 1382 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1383 return Attribute::OptimizeForSize; 1384 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1385 return Attribute::OptimizeNone; 1386 case bitc::ATTR_KIND_READ_NONE: 1387 return Attribute::ReadNone; 1388 case bitc::ATTR_KIND_READ_ONLY: 1389 return Attribute::ReadOnly; 1390 case bitc::ATTR_KIND_RETURNED: 1391 return Attribute::Returned; 1392 case bitc::ATTR_KIND_RETURNS_TWICE: 1393 return Attribute::ReturnsTwice; 1394 case bitc::ATTR_KIND_S_EXT: 1395 return Attribute::SExt; 1396 case bitc::ATTR_KIND_SPECULATABLE: 1397 return Attribute::Speculatable; 1398 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1399 return Attribute::StackAlignment; 1400 case bitc::ATTR_KIND_STACK_PROTECT: 1401 return Attribute::StackProtect; 1402 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1403 return Attribute::StackProtectReq; 1404 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1405 return Attribute::StackProtectStrong; 1406 case bitc::ATTR_KIND_SAFESTACK: 1407 return Attribute::SafeStack; 1408 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1409 return Attribute::ShadowCallStack; 1410 case bitc::ATTR_KIND_STRICT_FP: 1411 return Attribute::StrictFP; 1412 case bitc::ATTR_KIND_STRUCT_RET: 1413 return Attribute::StructRet; 1414 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1415 return Attribute::SanitizeAddress; 1416 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1417 return Attribute::SanitizeHWAddress; 1418 case bitc::ATTR_KIND_SANITIZE_THREAD: 1419 return Attribute::SanitizeThread; 1420 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1421 return Attribute::SanitizeMemory; 1422 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1423 return Attribute::SpeculativeLoadHardening; 1424 case bitc::ATTR_KIND_SWIFT_ERROR: 1425 return Attribute::SwiftError; 1426 case bitc::ATTR_KIND_SWIFT_SELF: 1427 return Attribute::SwiftSelf; 1428 case bitc::ATTR_KIND_UW_TABLE: 1429 return Attribute::UWTable; 1430 case bitc::ATTR_KIND_WRITEONLY: 1431 return Attribute::WriteOnly; 1432 case bitc::ATTR_KIND_Z_EXT: 1433 return Attribute::ZExt; 1434 case bitc::ATTR_KIND_IMMARG: 1435 return Attribute::ImmArg; 1436 } 1437 } 1438 1439 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1440 unsigned &Alignment) { 1441 // Note: Alignment in bitcode files is incremented by 1, so that zero 1442 // can be used for default alignment. 1443 if (Exponent > Value::MaxAlignmentExponent + 1) 1444 return error("Invalid alignment value"); 1445 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1446 return Error::success(); 1447 } 1448 1449 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1450 *Kind = getAttrFromCode(Code); 1451 if (*Kind == Attribute::None) 1452 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1453 return Error::success(); 1454 } 1455 1456 Error BitcodeReader::parseAttributeGroupBlock() { 1457 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1458 return error("Invalid record"); 1459 1460 if (!MAttributeGroups.empty()) 1461 return error("Invalid multiple blocks"); 1462 1463 SmallVector<uint64_t, 64> Record; 1464 1465 // Read all the records. 1466 while (true) { 1467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1468 1469 switch (Entry.Kind) { 1470 case BitstreamEntry::SubBlock: // Handled for us already. 1471 case BitstreamEntry::Error: 1472 return error("Malformed block"); 1473 case BitstreamEntry::EndBlock: 1474 return Error::success(); 1475 case BitstreamEntry::Record: 1476 // The interesting case. 1477 break; 1478 } 1479 1480 // Read a record. 1481 Record.clear(); 1482 switch (Stream.readRecord(Entry.ID, Record)) { 1483 default: // Default behavior: ignore. 1484 break; 1485 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1486 if (Record.size() < 3) 1487 return error("Invalid record"); 1488 1489 uint64_t GrpID = Record[0]; 1490 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1491 1492 AttrBuilder B; 1493 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1494 if (Record[i] == 0) { // Enum attribute 1495 Attribute::AttrKind Kind; 1496 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1497 return Err; 1498 1499 // Upgrade old-style byval attribute to one with a type, even if it's 1500 // nullptr. We will have to insert the real type when we associate 1501 // this AttributeList with a function. 1502 if (Kind == Attribute::ByVal) 1503 B.addByValAttr(nullptr); 1504 1505 B.addAttribute(Kind); 1506 } else if (Record[i] == 1) { // Integer attribute 1507 Attribute::AttrKind Kind; 1508 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1509 return Err; 1510 if (Kind == Attribute::Alignment) 1511 B.addAlignmentAttr(Record[++i]); 1512 else if (Kind == Attribute::StackAlignment) 1513 B.addStackAlignmentAttr(Record[++i]); 1514 else if (Kind == Attribute::Dereferenceable) 1515 B.addDereferenceableAttr(Record[++i]); 1516 else if (Kind == Attribute::DereferenceableOrNull) 1517 B.addDereferenceableOrNullAttr(Record[++i]); 1518 else if (Kind == Attribute::AllocSize) 1519 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1520 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1521 bool HasValue = (Record[i++] == 4); 1522 SmallString<64> KindStr; 1523 SmallString<64> ValStr; 1524 1525 while (Record[i] != 0 && i != e) 1526 KindStr += Record[i++]; 1527 assert(Record[i] == 0 && "Kind string not null terminated"); 1528 1529 if (HasValue) { 1530 // Has a value associated with it. 1531 ++i; // Skip the '0' that terminates the "kind" string. 1532 while (Record[i] != 0 && i != e) 1533 ValStr += Record[i++]; 1534 assert(Record[i] == 0 && "Value string not null terminated"); 1535 } 1536 1537 B.addAttribute(KindStr.str(), ValStr.str()); 1538 } else { 1539 assert((Record[i] == 5 || Record[i] == 6) && 1540 "Invalid attribute group entry"); 1541 bool HasType = Record[i] == 6; 1542 Attribute::AttrKind Kind; 1543 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1544 return Err; 1545 if (Kind == Attribute::ByVal) 1546 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1547 } 1548 } 1549 1550 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1551 break; 1552 } 1553 } 1554 } 1555 } 1556 1557 Error BitcodeReader::parseTypeTable() { 1558 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1559 return error("Invalid record"); 1560 1561 return parseTypeTableBody(); 1562 } 1563 1564 Error BitcodeReader::parseTypeTableBody() { 1565 if (!TypeList.empty()) 1566 return error("Invalid multiple blocks"); 1567 1568 SmallVector<uint64_t, 64> Record; 1569 unsigned NumRecords = 0; 1570 1571 SmallString<64> TypeName; 1572 1573 // Read all the records for this type table. 1574 while (true) { 1575 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1576 1577 switch (Entry.Kind) { 1578 case BitstreamEntry::SubBlock: // Handled for us already. 1579 case BitstreamEntry::Error: 1580 return error("Malformed block"); 1581 case BitstreamEntry::EndBlock: 1582 if (NumRecords != TypeList.size()) 1583 return error("Malformed block"); 1584 return Error::success(); 1585 case BitstreamEntry::Record: 1586 // The interesting case. 1587 break; 1588 } 1589 1590 // Read a record. 1591 Record.clear(); 1592 Type *ResultTy = nullptr; 1593 switch (Stream.readRecord(Entry.ID, Record)) { 1594 default: 1595 return error("Invalid value"); 1596 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1597 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1598 // type list. This allows us to reserve space. 1599 if (Record.size() < 1) 1600 return error("Invalid record"); 1601 TypeList.resize(Record[0]); 1602 continue; 1603 case bitc::TYPE_CODE_VOID: // VOID 1604 ResultTy = Type::getVoidTy(Context); 1605 break; 1606 case bitc::TYPE_CODE_HALF: // HALF 1607 ResultTy = Type::getHalfTy(Context); 1608 break; 1609 case bitc::TYPE_CODE_FLOAT: // FLOAT 1610 ResultTy = Type::getFloatTy(Context); 1611 break; 1612 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1613 ResultTy = Type::getDoubleTy(Context); 1614 break; 1615 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1616 ResultTy = Type::getX86_FP80Ty(Context); 1617 break; 1618 case bitc::TYPE_CODE_FP128: // FP128 1619 ResultTy = Type::getFP128Ty(Context); 1620 break; 1621 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1622 ResultTy = Type::getPPC_FP128Ty(Context); 1623 break; 1624 case bitc::TYPE_CODE_LABEL: // LABEL 1625 ResultTy = Type::getLabelTy(Context); 1626 break; 1627 case bitc::TYPE_CODE_METADATA: // METADATA 1628 ResultTy = Type::getMetadataTy(Context); 1629 break; 1630 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1631 ResultTy = Type::getX86_MMXTy(Context); 1632 break; 1633 case bitc::TYPE_CODE_TOKEN: // TOKEN 1634 ResultTy = Type::getTokenTy(Context); 1635 break; 1636 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1637 if (Record.size() < 1) 1638 return error("Invalid record"); 1639 1640 uint64_t NumBits = Record[0]; 1641 if (NumBits < IntegerType::MIN_INT_BITS || 1642 NumBits > IntegerType::MAX_INT_BITS) 1643 return error("Bitwidth for integer type out of range"); 1644 ResultTy = IntegerType::get(Context, NumBits); 1645 break; 1646 } 1647 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1648 // [pointee type, address space] 1649 if (Record.size() < 1) 1650 return error("Invalid record"); 1651 unsigned AddressSpace = 0; 1652 if (Record.size() == 2) 1653 AddressSpace = Record[1]; 1654 ResultTy = getTypeByID(Record[0]); 1655 if (!ResultTy || 1656 !PointerType::isValidElementType(ResultTy)) 1657 return error("Invalid type"); 1658 ResultTy = PointerType::get(ResultTy, AddressSpace); 1659 break; 1660 } 1661 case bitc::TYPE_CODE_FUNCTION_OLD: { 1662 // FIXME: attrid is dead, remove it in LLVM 4.0 1663 // FUNCTION: [vararg, attrid, retty, paramty x N] 1664 if (Record.size() < 3) 1665 return error("Invalid record"); 1666 SmallVector<Type*, 8> ArgTys; 1667 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1668 if (Type *T = getTypeByID(Record[i])) 1669 ArgTys.push_back(T); 1670 else 1671 break; 1672 } 1673 1674 ResultTy = getTypeByID(Record[2]); 1675 if (!ResultTy || ArgTys.size() < Record.size()-3) 1676 return error("Invalid type"); 1677 1678 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1679 break; 1680 } 1681 case bitc::TYPE_CODE_FUNCTION: { 1682 // FUNCTION: [vararg, retty, paramty x N] 1683 if (Record.size() < 2) 1684 return error("Invalid record"); 1685 SmallVector<Type*, 8> ArgTys; 1686 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1687 if (Type *T = getTypeByID(Record[i])) { 1688 if (!FunctionType::isValidArgumentType(T)) 1689 return error("Invalid function argument type"); 1690 ArgTys.push_back(T); 1691 } 1692 else 1693 break; 1694 } 1695 1696 ResultTy = getTypeByID(Record[1]); 1697 if (!ResultTy || ArgTys.size() < Record.size()-2) 1698 return error("Invalid type"); 1699 1700 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1701 break; 1702 } 1703 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1704 if (Record.size() < 1) 1705 return error("Invalid record"); 1706 SmallVector<Type*, 8> EltTys; 1707 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1708 if (Type *T = getTypeByID(Record[i])) 1709 EltTys.push_back(T); 1710 else 1711 break; 1712 } 1713 if (EltTys.size() != Record.size()-1) 1714 return error("Invalid type"); 1715 ResultTy = StructType::get(Context, EltTys, Record[0]); 1716 break; 1717 } 1718 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1719 if (convertToString(Record, 0, TypeName)) 1720 return error("Invalid record"); 1721 continue; 1722 1723 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1724 if (Record.size() < 1) 1725 return error("Invalid record"); 1726 1727 if (NumRecords >= TypeList.size()) 1728 return error("Invalid TYPE table"); 1729 1730 // Check to see if this was forward referenced, if so fill in the temp. 1731 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1732 if (Res) { 1733 Res->setName(TypeName); 1734 TypeList[NumRecords] = nullptr; 1735 } else // Otherwise, create a new struct. 1736 Res = createIdentifiedStructType(Context, TypeName); 1737 TypeName.clear(); 1738 1739 SmallVector<Type*, 8> EltTys; 1740 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1741 if (Type *T = getTypeByID(Record[i])) 1742 EltTys.push_back(T); 1743 else 1744 break; 1745 } 1746 if (EltTys.size() != Record.size()-1) 1747 return error("Invalid record"); 1748 Res->setBody(EltTys, Record[0]); 1749 ResultTy = Res; 1750 break; 1751 } 1752 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1753 if (Record.size() != 1) 1754 return error("Invalid record"); 1755 1756 if (NumRecords >= TypeList.size()) 1757 return error("Invalid TYPE table"); 1758 1759 // Check to see if this was forward referenced, if so fill in the temp. 1760 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1761 if (Res) { 1762 Res->setName(TypeName); 1763 TypeList[NumRecords] = nullptr; 1764 } else // Otherwise, create a new struct with no body. 1765 Res = createIdentifiedStructType(Context, TypeName); 1766 TypeName.clear(); 1767 ResultTy = Res; 1768 break; 1769 } 1770 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1771 if (Record.size() < 2) 1772 return error("Invalid record"); 1773 ResultTy = getTypeByID(Record[1]); 1774 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1775 return error("Invalid type"); 1776 ResultTy = ArrayType::get(ResultTy, Record[0]); 1777 break; 1778 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1779 // [numelts, eltty, scalable] 1780 if (Record.size() < 2) 1781 return error("Invalid record"); 1782 if (Record[0] == 0) 1783 return error("Invalid vector length"); 1784 ResultTy = getTypeByID(Record[1]); 1785 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1786 return error("Invalid type"); 1787 bool Scalable = Record.size() > 2 ? Record[2] : false; 1788 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1789 break; 1790 } 1791 1792 if (NumRecords >= TypeList.size()) 1793 return error("Invalid TYPE table"); 1794 if (TypeList[NumRecords]) 1795 return error( 1796 "Invalid TYPE table: Only named structs can be forward referenced"); 1797 assert(ResultTy && "Didn't read a type?"); 1798 TypeList[NumRecords++] = ResultTy; 1799 } 1800 } 1801 1802 Error BitcodeReader::parseOperandBundleTags() { 1803 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1804 return error("Invalid record"); 1805 1806 if (!BundleTags.empty()) 1807 return error("Invalid multiple blocks"); 1808 1809 SmallVector<uint64_t, 64> Record; 1810 1811 while (true) { 1812 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1813 1814 switch (Entry.Kind) { 1815 case BitstreamEntry::SubBlock: // Handled for us already. 1816 case BitstreamEntry::Error: 1817 return error("Malformed block"); 1818 case BitstreamEntry::EndBlock: 1819 return Error::success(); 1820 case BitstreamEntry::Record: 1821 // The interesting case. 1822 break; 1823 } 1824 1825 // Tags are implicitly mapped to integers by their order. 1826 1827 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1828 return error("Invalid record"); 1829 1830 // OPERAND_BUNDLE_TAG: [strchr x N] 1831 BundleTags.emplace_back(); 1832 if (convertToString(Record, 0, BundleTags.back())) 1833 return error("Invalid record"); 1834 Record.clear(); 1835 } 1836 } 1837 1838 Error BitcodeReader::parseSyncScopeNames() { 1839 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1840 return error("Invalid record"); 1841 1842 if (!SSIDs.empty()) 1843 return error("Invalid multiple synchronization scope names blocks"); 1844 1845 SmallVector<uint64_t, 64> Record; 1846 while (true) { 1847 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1848 switch (Entry.Kind) { 1849 case BitstreamEntry::SubBlock: // Handled for us already. 1850 case BitstreamEntry::Error: 1851 return error("Malformed block"); 1852 case BitstreamEntry::EndBlock: 1853 if (SSIDs.empty()) 1854 return error("Invalid empty synchronization scope names block"); 1855 return Error::success(); 1856 case BitstreamEntry::Record: 1857 // The interesting case. 1858 break; 1859 } 1860 1861 // Synchronization scope names are implicitly mapped to synchronization 1862 // scope IDs by their order. 1863 1864 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1865 return error("Invalid record"); 1866 1867 SmallString<16> SSN; 1868 if (convertToString(Record, 0, SSN)) 1869 return error("Invalid record"); 1870 1871 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1872 Record.clear(); 1873 } 1874 } 1875 1876 /// Associate a value with its name from the given index in the provided record. 1877 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1878 unsigned NameIndex, Triple &TT) { 1879 SmallString<128> ValueName; 1880 if (convertToString(Record, NameIndex, ValueName)) 1881 return error("Invalid record"); 1882 unsigned ValueID = Record[0]; 1883 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1884 return error("Invalid record"); 1885 Value *V = ValueList[ValueID]; 1886 1887 StringRef NameStr(ValueName.data(), ValueName.size()); 1888 if (NameStr.find_first_of(0) != StringRef::npos) 1889 return error("Invalid value name"); 1890 V->setName(NameStr); 1891 auto *GO = dyn_cast<GlobalObject>(V); 1892 if (GO) { 1893 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1894 if (TT.supportsCOMDAT()) 1895 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1896 else 1897 GO->setComdat(nullptr); 1898 } 1899 } 1900 return V; 1901 } 1902 1903 /// Helper to note and return the current location, and jump to the given 1904 /// offset. 1905 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1906 BitstreamCursor &Stream) { 1907 // Save the current parsing location so we can jump back at the end 1908 // of the VST read. 1909 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1910 Stream.JumpToBit(Offset * 32); 1911 #ifndef NDEBUG 1912 // Do some checking if we are in debug mode. 1913 BitstreamEntry Entry = Stream.advance(); 1914 assert(Entry.Kind == BitstreamEntry::SubBlock); 1915 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1916 #else 1917 // In NDEBUG mode ignore the output so we don't get an unused variable 1918 // warning. 1919 Stream.advance(); 1920 #endif 1921 return CurrentBit; 1922 } 1923 1924 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1925 Function *F, 1926 ArrayRef<uint64_t> Record) { 1927 // Note that we subtract 1 here because the offset is relative to one word 1928 // before the start of the identification or module block, which was 1929 // historically always the start of the regular bitcode header. 1930 uint64_t FuncWordOffset = Record[1] - 1; 1931 uint64_t FuncBitOffset = FuncWordOffset * 32; 1932 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1933 // Set the LastFunctionBlockBit to point to the last function block. 1934 // Later when parsing is resumed after function materialization, 1935 // we can simply skip that last function block. 1936 if (FuncBitOffset > LastFunctionBlockBit) 1937 LastFunctionBlockBit = FuncBitOffset; 1938 } 1939 1940 /// Read a new-style GlobalValue symbol table. 1941 Error BitcodeReader::parseGlobalValueSymbolTable() { 1942 unsigned FuncBitcodeOffsetDelta = 1943 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1944 1945 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1946 return error("Invalid record"); 1947 1948 SmallVector<uint64_t, 64> Record; 1949 while (true) { 1950 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1951 1952 switch (Entry.Kind) { 1953 case BitstreamEntry::SubBlock: 1954 case BitstreamEntry::Error: 1955 return error("Malformed block"); 1956 case BitstreamEntry::EndBlock: 1957 return Error::success(); 1958 case BitstreamEntry::Record: 1959 break; 1960 } 1961 1962 Record.clear(); 1963 switch (Stream.readRecord(Entry.ID, Record)) { 1964 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1965 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1966 cast<Function>(ValueList[Record[0]]), Record); 1967 break; 1968 } 1969 } 1970 } 1971 1972 /// Parse the value symbol table at either the current parsing location or 1973 /// at the given bit offset if provided. 1974 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1975 uint64_t CurrentBit; 1976 // Pass in the Offset to distinguish between calling for the module-level 1977 // VST (where we want to jump to the VST offset) and the function-level 1978 // VST (where we don't). 1979 if (Offset > 0) { 1980 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1981 // If this module uses a string table, read this as a module-level VST. 1982 if (UseStrtab) { 1983 if (Error Err = parseGlobalValueSymbolTable()) 1984 return Err; 1985 Stream.JumpToBit(CurrentBit); 1986 return Error::success(); 1987 } 1988 // Otherwise, the VST will be in a similar format to a function-level VST, 1989 // and will contain symbol names. 1990 } 1991 1992 // Compute the delta between the bitcode indices in the VST (the word offset 1993 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1994 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1995 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1996 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1997 // just before entering the VST subblock because: 1) the EnterSubBlock 1998 // changes the AbbrevID width; 2) the VST block is nested within the same 1999 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2000 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2001 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2002 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2003 unsigned FuncBitcodeOffsetDelta = 2004 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2005 2006 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2007 return error("Invalid record"); 2008 2009 SmallVector<uint64_t, 64> Record; 2010 2011 Triple TT(TheModule->getTargetTriple()); 2012 2013 // Read all the records for this value table. 2014 SmallString<128> ValueName; 2015 2016 while (true) { 2017 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2018 2019 switch (Entry.Kind) { 2020 case BitstreamEntry::SubBlock: // Handled for us already. 2021 case BitstreamEntry::Error: 2022 return error("Malformed block"); 2023 case BitstreamEntry::EndBlock: 2024 if (Offset > 0) 2025 Stream.JumpToBit(CurrentBit); 2026 return Error::success(); 2027 case BitstreamEntry::Record: 2028 // The interesting case. 2029 break; 2030 } 2031 2032 // Read a record. 2033 Record.clear(); 2034 switch (Stream.readRecord(Entry.ID, Record)) { 2035 default: // Default behavior: unknown type. 2036 break; 2037 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2038 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2039 if (Error Err = ValOrErr.takeError()) 2040 return Err; 2041 ValOrErr.get(); 2042 break; 2043 } 2044 case bitc::VST_CODE_FNENTRY: { 2045 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2046 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2047 if (Error Err = ValOrErr.takeError()) 2048 return Err; 2049 Value *V = ValOrErr.get(); 2050 2051 // Ignore function offsets emitted for aliases of functions in older 2052 // versions of LLVM. 2053 if (auto *F = dyn_cast<Function>(V)) 2054 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2055 break; 2056 } 2057 case bitc::VST_CODE_BBENTRY: { 2058 if (convertToString(Record, 1, ValueName)) 2059 return error("Invalid record"); 2060 BasicBlock *BB = getBasicBlock(Record[0]); 2061 if (!BB) 2062 return error("Invalid record"); 2063 2064 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2065 ValueName.clear(); 2066 break; 2067 } 2068 } 2069 } 2070 } 2071 2072 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2073 /// encoding. 2074 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2075 if ((V & 1) == 0) 2076 return V >> 1; 2077 if (V != 1) 2078 return -(V >> 1); 2079 // There is no such thing as -0 with integers. "-0" really means MININT. 2080 return 1ULL << 63; 2081 } 2082 2083 /// Resolve all of the initializers for global values and aliases that we can. 2084 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2085 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2086 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2087 IndirectSymbolInitWorklist; 2088 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2089 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2090 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2091 2092 GlobalInitWorklist.swap(GlobalInits); 2093 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2094 FunctionPrefixWorklist.swap(FunctionPrefixes); 2095 FunctionPrologueWorklist.swap(FunctionPrologues); 2096 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2097 2098 while (!GlobalInitWorklist.empty()) { 2099 unsigned ValID = GlobalInitWorklist.back().second; 2100 if (ValID >= ValueList.size()) { 2101 // Not ready to resolve this yet, it requires something later in the file. 2102 GlobalInits.push_back(GlobalInitWorklist.back()); 2103 } else { 2104 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2105 GlobalInitWorklist.back().first->setInitializer(C); 2106 else 2107 return error("Expected a constant"); 2108 } 2109 GlobalInitWorklist.pop_back(); 2110 } 2111 2112 while (!IndirectSymbolInitWorklist.empty()) { 2113 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2114 if (ValID >= ValueList.size()) { 2115 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2116 } else { 2117 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2118 if (!C) 2119 return error("Expected a constant"); 2120 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2121 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2122 return error("Alias and aliasee types don't match"); 2123 GIS->setIndirectSymbol(C); 2124 } 2125 IndirectSymbolInitWorklist.pop_back(); 2126 } 2127 2128 while (!FunctionPrefixWorklist.empty()) { 2129 unsigned ValID = FunctionPrefixWorklist.back().second; 2130 if (ValID >= ValueList.size()) { 2131 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2132 } else { 2133 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2134 FunctionPrefixWorklist.back().first->setPrefixData(C); 2135 else 2136 return error("Expected a constant"); 2137 } 2138 FunctionPrefixWorklist.pop_back(); 2139 } 2140 2141 while (!FunctionPrologueWorklist.empty()) { 2142 unsigned ValID = FunctionPrologueWorklist.back().second; 2143 if (ValID >= ValueList.size()) { 2144 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2145 } else { 2146 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2147 FunctionPrologueWorklist.back().first->setPrologueData(C); 2148 else 2149 return error("Expected a constant"); 2150 } 2151 FunctionPrologueWorklist.pop_back(); 2152 } 2153 2154 while (!FunctionPersonalityFnWorklist.empty()) { 2155 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2156 if (ValID >= ValueList.size()) { 2157 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2158 } else { 2159 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2160 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2161 else 2162 return error("Expected a constant"); 2163 } 2164 FunctionPersonalityFnWorklist.pop_back(); 2165 } 2166 2167 return Error::success(); 2168 } 2169 2170 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2171 SmallVector<uint64_t, 8> Words(Vals.size()); 2172 transform(Vals, Words.begin(), 2173 BitcodeReader::decodeSignRotatedValue); 2174 2175 return APInt(TypeBits, Words); 2176 } 2177 2178 Error BitcodeReader::parseConstants() { 2179 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2180 return error("Invalid record"); 2181 2182 SmallVector<uint64_t, 64> Record; 2183 2184 // Read all the records for this value table. 2185 Type *CurTy = Type::getInt32Ty(Context); 2186 unsigned NextCstNo = ValueList.size(); 2187 2188 while (true) { 2189 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2190 2191 switch (Entry.Kind) { 2192 case BitstreamEntry::SubBlock: // Handled for us already. 2193 case BitstreamEntry::Error: 2194 return error("Malformed block"); 2195 case BitstreamEntry::EndBlock: 2196 if (NextCstNo != ValueList.size()) 2197 return error("Invalid constant reference"); 2198 2199 // Once all the constants have been read, go through and resolve forward 2200 // references. 2201 ValueList.resolveConstantForwardRefs(); 2202 return Error::success(); 2203 case BitstreamEntry::Record: 2204 // The interesting case. 2205 break; 2206 } 2207 2208 // Read a record. 2209 Record.clear(); 2210 Type *VoidType = Type::getVoidTy(Context); 2211 Value *V = nullptr; 2212 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2213 switch (BitCode) { 2214 default: // Default behavior: unknown constant 2215 case bitc::CST_CODE_UNDEF: // UNDEF 2216 V = UndefValue::get(CurTy); 2217 break; 2218 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2219 if (Record.empty()) 2220 return error("Invalid record"); 2221 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2222 return error("Invalid record"); 2223 if (TypeList[Record[0]] == VoidType) 2224 return error("Invalid constant type"); 2225 CurTy = TypeList[Record[0]]; 2226 continue; // Skip the ValueList manipulation. 2227 case bitc::CST_CODE_NULL: // NULL 2228 V = Constant::getNullValue(CurTy); 2229 break; 2230 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2231 if (!CurTy->isIntegerTy() || Record.empty()) 2232 return error("Invalid record"); 2233 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2234 break; 2235 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2236 if (!CurTy->isIntegerTy() || Record.empty()) 2237 return error("Invalid record"); 2238 2239 APInt VInt = 2240 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2241 V = ConstantInt::get(Context, VInt); 2242 2243 break; 2244 } 2245 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2246 if (Record.empty()) 2247 return error("Invalid record"); 2248 if (CurTy->isHalfTy()) 2249 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2250 APInt(16, (uint16_t)Record[0]))); 2251 else if (CurTy->isFloatTy()) 2252 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2253 APInt(32, (uint32_t)Record[0]))); 2254 else if (CurTy->isDoubleTy()) 2255 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2256 APInt(64, Record[0]))); 2257 else if (CurTy->isX86_FP80Ty()) { 2258 // Bits are not stored the same way as a normal i80 APInt, compensate. 2259 uint64_t Rearrange[2]; 2260 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2261 Rearrange[1] = Record[0] >> 48; 2262 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2263 APInt(80, Rearrange))); 2264 } else if (CurTy->isFP128Ty()) 2265 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2266 APInt(128, Record))); 2267 else if (CurTy->isPPC_FP128Ty()) 2268 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2269 APInt(128, Record))); 2270 else 2271 V = UndefValue::get(CurTy); 2272 break; 2273 } 2274 2275 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2276 if (Record.empty()) 2277 return error("Invalid record"); 2278 2279 unsigned Size = Record.size(); 2280 SmallVector<Constant*, 16> Elts; 2281 2282 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2283 for (unsigned i = 0; i != Size; ++i) 2284 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2285 STy->getElementType(i))); 2286 V = ConstantStruct::get(STy, Elts); 2287 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2288 Type *EltTy = ATy->getElementType(); 2289 for (unsigned i = 0; i != Size; ++i) 2290 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2291 V = ConstantArray::get(ATy, Elts); 2292 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2293 Type *EltTy = VTy->getElementType(); 2294 for (unsigned i = 0; i != Size; ++i) 2295 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2296 V = ConstantVector::get(Elts); 2297 } else { 2298 V = UndefValue::get(CurTy); 2299 } 2300 break; 2301 } 2302 case bitc::CST_CODE_STRING: // STRING: [values] 2303 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2304 if (Record.empty()) 2305 return error("Invalid record"); 2306 2307 SmallString<16> Elts(Record.begin(), Record.end()); 2308 V = ConstantDataArray::getString(Context, Elts, 2309 BitCode == bitc::CST_CODE_CSTRING); 2310 break; 2311 } 2312 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2313 if (Record.empty()) 2314 return error("Invalid record"); 2315 2316 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2317 if (EltTy->isIntegerTy(8)) { 2318 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2319 if (isa<VectorType>(CurTy)) 2320 V = ConstantDataVector::get(Context, Elts); 2321 else 2322 V = ConstantDataArray::get(Context, Elts); 2323 } else if (EltTy->isIntegerTy(16)) { 2324 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2325 if (isa<VectorType>(CurTy)) 2326 V = ConstantDataVector::get(Context, Elts); 2327 else 2328 V = ConstantDataArray::get(Context, Elts); 2329 } else if (EltTy->isIntegerTy(32)) { 2330 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2331 if (isa<VectorType>(CurTy)) 2332 V = ConstantDataVector::get(Context, Elts); 2333 else 2334 V = ConstantDataArray::get(Context, Elts); 2335 } else if (EltTy->isIntegerTy(64)) { 2336 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2337 if (isa<VectorType>(CurTy)) 2338 V = ConstantDataVector::get(Context, Elts); 2339 else 2340 V = ConstantDataArray::get(Context, Elts); 2341 } else if (EltTy->isHalfTy()) { 2342 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2343 if (isa<VectorType>(CurTy)) 2344 V = ConstantDataVector::getFP(Context, Elts); 2345 else 2346 V = ConstantDataArray::getFP(Context, Elts); 2347 } else if (EltTy->isFloatTy()) { 2348 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2349 if (isa<VectorType>(CurTy)) 2350 V = ConstantDataVector::getFP(Context, Elts); 2351 else 2352 V = ConstantDataArray::getFP(Context, Elts); 2353 } else if (EltTy->isDoubleTy()) { 2354 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2355 if (isa<VectorType>(CurTy)) 2356 V = ConstantDataVector::getFP(Context, Elts); 2357 else 2358 V = ConstantDataArray::getFP(Context, Elts); 2359 } else { 2360 return error("Invalid type for value"); 2361 } 2362 break; 2363 } 2364 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2365 if (Record.size() < 2) 2366 return error("Invalid record"); 2367 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2368 if (Opc < 0) { 2369 V = UndefValue::get(CurTy); // Unknown unop. 2370 } else { 2371 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2372 unsigned Flags = 0; 2373 V = ConstantExpr::get(Opc, LHS, Flags); 2374 } 2375 break; 2376 } 2377 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2378 if (Record.size() < 3) 2379 return error("Invalid record"); 2380 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2381 if (Opc < 0) { 2382 V = UndefValue::get(CurTy); // Unknown binop. 2383 } else { 2384 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2385 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2386 unsigned Flags = 0; 2387 if (Record.size() >= 4) { 2388 if (Opc == Instruction::Add || 2389 Opc == Instruction::Sub || 2390 Opc == Instruction::Mul || 2391 Opc == Instruction::Shl) { 2392 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2393 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2394 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2395 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2396 } else if (Opc == Instruction::SDiv || 2397 Opc == Instruction::UDiv || 2398 Opc == Instruction::LShr || 2399 Opc == Instruction::AShr) { 2400 if (Record[3] & (1 << bitc::PEO_EXACT)) 2401 Flags |= SDivOperator::IsExact; 2402 } 2403 } 2404 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2405 } 2406 break; 2407 } 2408 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2409 if (Record.size() < 3) 2410 return error("Invalid record"); 2411 int Opc = getDecodedCastOpcode(Record[0]); 2412 if (Opc < 0) { 2413 V = UndefValue::get(CurTy); // Unknown cast. 2414 } else { 2415 Type *OpTy = getTypeByID(Record[1]); 2416 if (!OpTy) 2417 return error("Invalid record"); 2418 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2419 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2420 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2421 } 2422 break; 2423 } 2424 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2425 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2426 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2427 // operands] 2428 unsigned OpNum = 0; 2429 Type *PointeeType = nullptr; 2430 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2431 Record.size() % 2) 2432 PointeeType = getTypeByID(Record[OpNum++]); 2433 2434 bool InBounds = false; 2435 Optional<unsigned> InRangeIndex; 2436 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2437 uint64_t Op = Record[OpNum++]; 2438 InBounds = Op & 1; 2439 InRangeIndex = Op >> 1; 2440 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2441 InBounds = true; 2442 2443 SmallVector<Constant*, 16> Elts; 2444 while (OpNum != Record.size()) { 2445 Type *ElTy = getTypeByID(Record[OpNum++]); 2446 if (!ElTy) 2447 return error("Invalid record"); 2448 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2449 } 2450 2451 if (Elts.size() < 1) 2452 return error("Invalid gep with no operands"); 2453 2454 Type *ImplicitPointeeType = 2455 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2456 ->getElementType(); 2457 if (!PointeeType) 2458 PointeeType = ImplicitPointeeType; 2459 else if (PointeeType != ImplicitPointeeType) 2460 return error("Explicit gep operator type does not match pointee type " 2461 "of pointer operand"); 2462 2463 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2464 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2465 InBounds, InRangeIndex); 2466 break; 2467 } 2468 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2469 if (Record.size() < 3) 2470 return error("Invalid record"); 2471 2472 Type *SelectorTy = Type::getInt1Ty(Context); 2473 2474 // The selector might be an i1 or an <n x i1> 2475 // Get the type from the ValueList before getting a forward ref. 2476 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2477 if (Value *V = ValueList[Record[0]]) 2478 if (SelectorTy != V->getType()) 2479 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2480 2481 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2482 SelectorTy), 2483 ValueList.getConstantFwdRef(Record[1],CurTy), 2484 ValueList.getConstantFwdRef(Record[2],CurTy)); 2485 break; 2486 } 2487 case bitc::CST_CODE_CE_EXTRACTELT 2488 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2489 if (Record.size() < 3) 2490 return error("Invalid record"); 2491 VectorType *OpTy = 2492 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2493 if (!OpTy) 2494 return error("Invalid record"); 2495 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2496 Constant *Op1 = nullptr; 2497 if (Record.size() == 4) { 2498 Type *IdxTy = getTypeByID(Record[2]); 2499 if (!IdxTy) 2500 return error("Invalid record"); 2501 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2502 } else // TODO: Remove with llvm 4.0 2503 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2504 if (!Op1) 2505 return error("Invalid record"); 2506 V = ConstantExpr::getExtractElement(Op0, Op1); 2507 break; 2508 } 2509 case bitc::CST_CODE_CE_INSERTELT 2510 : { // CE_INSERTELT: [opval, opval, opty, opval] 2511 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2512 if (Record.size() < 3 || !OpTy) 2513 return error("Invalid record"); 2514 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2515 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2516 OpTy->getElementType()); 2517 Constant *Op2 = nullptr; 2518 if (Record.size() == 4) { 2519 Type *IdxTy = getTypeByID(Record[2]); 2520 if (!IdxTy) 2521 return error("Invalid record"); 2522 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2523 } else // TODO: Remove with llvm 4.0 2524 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2525 if (!Op2) 2526 return error("Invalid record"); 2527 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2528 break; 2529 } 2530 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2531 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2532 if (Record.size() < 3 || !OpTy) 2533 return error("Invalid record"); 2534 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2535 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2536 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2537 OpTy->getNumElements()); 2538 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2539 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2540 break; 2541 } 2542 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2543 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2544 VectorType *OpTy = 2545 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2546 if (Record.size() < 4 || !RTy || !OpTy) 2547 return error("Invalid record"); 2548 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2549 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2550 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2551 RTy->getNumElements()); 2552 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2553 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2554 break; 2555 } 2556 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2557 if (Record.size() < 4) 2558 return error("Invalid record"); 2559 Type *OpTy = getTypeByID(Record[0]); 2560 if (!OpTy) 2561 return error("Invalid record"); 2562 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2563 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2564 2565 if (OpTy->isFPOrFPVectorTy()) 2566 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2567 else 2568 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2569 break; 2570 } 2571 // This maintains backward compatibility, pre-asm dialect keywords. 2572 // FIXME: Remove with the 4.0 release. 2573 case bitc::CST_CODE_INLINEASM_OLD: { 2574 if (Record.size() < 2) 2575 return error("Invalid record"); 2576 std::string AsmStr, ConstrStr; 2577 bool HasSideEffects = Record[0] & 1; 2578 bool IsAlignStack = Record[0] >> 1; 2579 unsigned AsmStrSize = Record[1]; 2580 if (2+AsmStrSize >= Record.size()) 2581 return error("Invalid record"); 2582 unsigned ConstStrSize = Record[2+AsmStrSize]; 2583 if (3+AsmStrSize+ConstStrSize > Record.size()) 2584 return error("Invalid record"); 2585 2586 for (unsigned i = 0; i != AsmStrSize; ++i) 2587 AsmStr += (char)Record[2+i]; 2588 for (unsigned i = 0; i != ConstStrSize; ++i) 2589 ConstrStr += (char)Record[3+AsmStrSize+i]; 2590 PointerType *PTy = cast<PointerType>(CurTy); 2591 UpgradeInlineAsmString(&AsmStr); 2592 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2593 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2594 break; 2595 } 2596 // This version adds support for the asm dialect keywords (e.g., 2597 // inteldialect). 2598 case bitc::CST_CODE_INLINEASM: { 2599 if (Record.size() < 2) 2600 return error("Invalid record"); 2601 std::string AsmStr, ConstrStr; 2602 bool HasSideEffects = Record[0] & 1; 2603 bool IsAlignStack = (Record[0] >> 1) & 1; 2604 unsigned AsmDialect = Record[0] >> 2; 2605 unsigned AsmStrSize = Record[1]; 2606 if (2+AsmStrSize >= Record.size()) 2607 return error("Invalid record"); 2608 unsigned ConstStrSize = Record[2+AsmStrSize]; 2609 if (3+AsmStrSize+ConstStrSize > Record.size()) 2610 return error("Invalid record"); 2611 2612 for (unsigned i = 0; i != AsmStrSize; ++i) 2613 AsmStr += (char)Record[2+i]; 2614 for (unsigned i = 0; i != ConstStrSize; ++i) 2615 ConstrStr += (char)Record[3+AsmStrSize+i]; 2616 PointerType *PTy = cast<PointerType>(CurTy); 2617 UpgradeInlineAsmString(&AsmStr); 2618 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2619 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2620 InlineAsm::AsmDialect(AsmDialect)); 2621 break; 2622 } 2623 case bitc::CST_CODE_BLOCKADDRESS:{ 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 Type *FnTy = getTypeByID(Record[0]); 2627 if (!FnTy) 2628 return error("Invalid record"); 2629 Function *Fn = 2630 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2631 if (!Fn) 2632 return error("Invalid record"); 2633 2634 // If the function is already parsed we can insert the block address right 2635 // away. 2636 BasicBlock *BB; 2637 unsigned BBID = Record[2]; 2638 if (!BBID) 2639 // Invalid reference to entry block. 2640 return error("Invalid ID"); 2641 if (!Fn->empty()) { 2642 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2643 for (size_t I = 0, E = BBID; I != E; ++I) { 2644 if (BBI == BBE) 2645 return error("Invalid ID"); 2646 ++BBI; 2647 } 2648 BB = &*BBI; 2649 } else { 2650 // Otherwise insert a placeholder and remember it so it can be inserted 2651 // when the function is parsed. 2652 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2653 if (FwdBBs.empty()) 2654 BasicBlockFwdRefQueue.push_back(Fn); 2655 if (FwdBBs.size() < BBID + 1) 2656 FwdBBs.resize(BBID + 1); 2657 if (!FwdBBs[BBID]) 2658 FwdBBs[BBID] = BasicBlock::Create(Context); 2659 BB = FwdBBs[BBID]; 2660 } 2661 V = BlockAddress::get(Fn, BB); 2662 break; 2663 } 2664 } 2665 2666 ValueList.assignValue(V, NextCstNo); 2667 ++NextCstNo; 2668 } 2669 } 2670 2671 Error BitcodeReader::parseUseLists() { 2672 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2673 return error("Invalid record"); 2674 2675 // Read all the records. 2676 SmallVector<uint64_t, 64> Record; 2677 2678 while (true) { 2679 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2680 2681 switch (Entry.Kind) { 2682 case BitstreamEntry::SubBlock: // Handled for us already. 2683 case BitstreamEntry::Error: 2684 return error("Malformed block"); 2685 case BitstreamEntry::EndBlock: 2686 return Error::success(); 2687 case BitstreamEntry::Record: 2688 // The interesting case. 2689 break; 2690 } 2691 2692 // Read a use list record. 2693 Record.clear(); 2694 bool IsBB = false; 2695 switch (Stream.readRecord(Entry.ID, Record)) { 2696 default: // Default behavior: unknown type. 2697 break; 2698 case bitc::USELIST_CODE_BB: 2699 IsBB = true; 2700 LLVM_FALLTHROUGH; 2701 case bitc::USELIST_CODE_DEFAULT: { 2702 unsigned RecordLength = Record.size(); 2703 if (RecordLength < 3) 2704 // Records should have at least an ID and two indexes. 2705 return error("Invalid record"); 2706 unsigned ID = Record.back(); 2707 Record.pop_back(); 2708 2709 Value *V; 2710 if (IsBB) { 2711 assert(ID < FunctionBBs.size() && "Basic block not found"); 2712 V = FunctionBBs[ID]; 2713 } else 2714 V = ValueList[ID]; 2715 unsigned NumUses = 0; 2716 SmallDenseMap<const Use *, unsigned, 16> Order; 2717 for (const Use &U : V->materialized_uses()) { 2718 if (++NumUses > Record.size()) 2719 break; 2720 Order[&U] = Record[NumUses - 1]; 2721 } 2722 if (Order.size() != Record.size() || NumUses > Record.size()) 2723 // Mismatches can happen if the functions are being materialized lazily 2724 // (out-of-order), or a value has been upgraded. 2725 break; 2726 2727 V->sortUseList([&](const Use &L, const Use &R) { 2728 return Order.lookup(&L) < Order.lookup(&R); 2729 }); 2730 break; 2731 } 2732 } 2733 } 2734 } 2735 2736 /// When we see the block for metadata, remember where it is and then skip it. 2737 /// This lets us lazily deserialize the metadata. 2738 Error BitcodeReader::rememberAndSkipMetadata() { 2739 // Save the current stream state. 2740 uint64_t CurBit = Stream.GetCurrentBitNo(); 2741 DeferredMetadataInfo.push_back(CurBit); 2742 2743 // Skip over the block for now. 2744 if (Stream.SkipBlock()) 2745 return error("Invalid record"); 2746 return Error::success(); 2747 } 2748 2749 Error BitcodeReader::materializeMetadata() { 2750 for (uint64_t BitPos : DeferredMetadataInfo) { 2751 // Move the bit stream to the saved position. 2752 Stream.JumpToBit(BitPos); 2753 if (Error Err = MDLoader->parseModuleMetadata()) 2754 return Err; 2755 } 2756 2757 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2758 // metadata. 2759 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2760 NamedMDNode *LinkerOpts = 2761 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2762 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2763 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2764 } 2765 2766 DeferredMetadataInfo.clear(); 2767 return Error::success(); 2768 } 2769 2770 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2771 2772 /// When we see the block for a function body, remember where it is and then 2773 /// skip it. This lets us lazily deserialize the functions. 2774 Error BitcodeReader::rememberAndSkipFunctionBody() { 2775 // Get the function we are talking about. 2776 if (FunctionsWithBodies.empty()) 2777 return error("Insufficient function protos"); 2778 2779 Function *Fn = FunctionsWithBodies.back(); 2780 FunctionsWithBodies.pop_back(); 2781 2782 // Save the current stream state. 2783 uint64_t CurBit = Stream.GetCurrentBitNo(); 2784 assert( 2785 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2786 "Mismatch between VST and scanned function offsets"); 2787 DeferredFunctionInfo[Fn] = CurBit; 2788 2789 // Skip over the function block for now. 2790 if (Stream.SkipBlock()) 2791 return error("Invalid record"); 2792 return Error::success(); 2793 } 2794 2795 Error BitcodeReader::globalCleanup() { 2796 // Patch the initializers for globals and aliases up. 2797 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2798 return Err; 2799 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2800 return error("Malformed global initializer set"); 2801 2802 // Look for intrinsic functions which need to be upgraded at some point 2803 for (Function &F : *TheModule) { 2804 MDLoader->upgradeDebugIntrinsics(F); 2805 Function *NewFn; 2806 if (UpgradeIntrinsicFunction(&F, NewFn)) 2807 UpgradedIntrinsics[&F] = NewFn; 2808 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2809 // Some types could be renamed during loading if several modules are 2810 // loaded in the same LLVMContext (LTO scenario). In this case we should 2811 // remangle intrinsics names as well. 2812 RemangledIntrinsics[&F] = Remangled.getValue(); 2813 } 2814 2815 // Look for global variables which need to be renamed. 2816 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2817 for (GlobalVariable &GV : TheModule->globals()) 2818 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2819 UpgradedVariables.emplace_back(&GV, Upgraded); 2820 for (auto &Pair : UpgradedVariables) { 2821 Pair.first->eraseFromParent(); 2822 TheModule->getGlobalList().push_back(Pair.second); 2823 } 2824 2825 // Force deallocation of memory for these vectors to favor the client that 2826 // want lazy deserialization. 2827 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2828 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2829 IndirectSymbolInits); 2830 return Error::success(); 2831 } 2832 2833 /// Support for lazy parsing of function bodies. This is required if we 2834 /// either have an old bitcode file without a VST forward declaration record, 2835 /// or if we have an anonymous function being materialized, since anonymous 2836 /// functions do not have a name and are therefore not in the VST. 2837 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2838 Stream.JumpToBit(NextUnreadBit); 2839 2840 if (Stream.AtEndOfStream()) 2841 return error("Could not find function in stream"); 2842 2843 if (!SeenFirstFunctionBody) 2844 return error("Trying to materialize functions before seeing function blocks"); 2845 2846 // An old bitcode file with the symbol table at the end would have 2847 // finished the parse greedily. 2848 assert(SeenValueSymbolTable); 2849 2850 SmallVector<uint64_t, 64> Record; 2851 2852 while (true) { 2853 BitstreamEntry Entry = Stream.advance(); 2854 switch (Entry.Kind) { 2855 default: 2856 return error("Expect SubBlock"); 2857 case BitstreamEntry::SubBlock: 2858 switch (Entry.ID) { 2859 default: 2860 return error("Expect function block"); 2861 case bitc::FUNCTION_BLOCK_ID: 2862 if (Error Err = rememberAndSkipFunctionBody()) 2863 return Err; 2864 NextUnreadBit = Stream.GetCurrentBitNo(); 2865 return Error::success(); 2866 } 2867 } 2868 } 2869 } 2870 2871 bool BitcodeReaderBase::readBlockInfo() { 2872 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2873 if (!NewBlockInfo) 2874 return true; 2875 BlockInfo = std::move(*NewBlockInfo); 2876 return false; 2877 } 2878 2879 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2880 // v1: [selection_kind, name] 2881 // v2: [strtab_offset, strtab_size, selection_kind] 2882 StringRef Name; 2883 std::tie(Name, Record) = readNameFromStrtab(Record); 2884 2885 if (Record.empty()) 2886 return error("Invalid record"); 2887 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2888 std::string OldFormatName; 2889 if (!UseStrtab) { 2890 if (Record.size() < 2) 2891 return error("Invalid record"); 2892 unsigned ComdatNameSize = Record[1]; 2893 OldFormatName.reserve(ComdatNameSize); 2894 for (unsigned i = 0; i != ComdatNameSize; ++i) 2895 OldFormatName += (char)Record[2 + i]; 2896 Name = OldFormatName; 2897 } 2898 Comdat *C = TheModule->getOrInsertComdat(Name); 2899 C->setSelectionKind(SK); 2900 ComdatList.push_back(C); 2901 return Error::success(); 2902 } 2903 2904 static void inferDSOLocal(GlobalValue *GV) { 2905 // infer dso_local from linkage and visibility if it is not encoded. 2906 if (GV->hasLocalLinkage() || 2907 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2908 GV->setDSOLocal(true); 2909 } 2910 2911 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2912 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2913 // visibility, threadlocal, unnamed_addr, externally_initialized, 2914 // dllstorageclass, comdat, attributes, preemption specifier, 2915 // partition strtab offset, partition strtab size] (name in VST) 2916 // v2: [strtab_offset, strtab_size, v1] 2917 StringRef Name; 2918 std::tie(Name, Record) = readNameFromStrtab(Record); 2919 2920 if (Record.size() < 6) 2921 return error("Invalid record"); 2922 Type *Ty = getTypeByID(Record[0]); 2923 if (!Ty) 2924 return error("Invalid record"); 2925 bool isConstant = Record[1] & 1; 2926 bool explicitType = Record[1] & 2; 2927 unsigned AddressSpace; 2928 if (explicitType) { 2929 AddressSpace = Record[1] >> 2; 2930 } else { 2931 if (!Ty->isPointerTy()) 2932 return error("Invalid type for value"); 2933 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2934 Ty = cast<PointerType>(Ty)->getElementType(); 2935 } 2936 2937 uint64_t RawLinkage = Record[3]; 2938 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2939 unsigned Alignment; 2940 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2941 return Err; 2942 std::string Section; 2943 if (Record[5]) { 2944 if (Record[5] - 1 >= SectionTable.size()) 2945 return error("Invalid ID"); 2946 Section = SectionTable[Record[5] - 1]; 2947 } 2948 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2949 // Local linkage must have default visibility. 2950 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2951 // FIXME: Change to an error if non-default in 4.0. 2952 Visibility = getDecodedVisibility(Record[6]); 2953 2954 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2955 if (Record.size() > 7) 2956 TLM = getDecodedThreadLocalMode(Record[7]); 2957 2958 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2959 if (Record.size() > 8) 2960 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2961 2962 bool ExternallyInitialized = false; 2963 if (Record.size() > 9) 2964 ExternallyInitialized = Record[9]; 2965 2966 GlobalVariable *NewGV = 2967 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2968 nullptr, TLM, AddressSpace, ExternallyInitialized); 2969 NewGV->setAlignment(Alignment); 2970 if (!Section.empty()) 2971 NewGV->setSection(Section); 2972 NewGV->setVisibility(Visibility); 2973 NewGV->setUnnamedAddr(UnnamedAddr); 2974 2975 if (Record.size() > 10) 2976 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2977 else 2978 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2979 2980 ValueList.push_back(NewGV); 2981 2982 // Remember which value to use for the global initializer. 2983 if (unsigned InitID = Record[2]) 2984 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2985 2986 if (Record.size() > 11) { 2987 if (unsigned ComdatID = Record[11]) { 2988 if (ComdatID > ComdatList.size()) 2989 return error("Invalid global variable comdat ID"); 2990 NewGV->setComdat(ComdatList[ComdatID - 1]); 2991 } 2992 } else if (hasImplicitComdat(RawLinkage)) { 2993 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2994 } 2995 2996 if (Record.size() > 12) { 2997 auto AS = getAttributes(Record[12]).getFnAttributes(); 2998 NewGV->setAttributes(AS); 2999 } 3000 3001 if (Record.size() > 13) { 3002 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3003 } 3004 inferDSOLocal(NewGV); 3005 3006 // Check whether we have enough values to read a partition name. 3007 if (Record.size() > 15) 3008 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3009 3010 return Error::success(); 3011 } 3012 3013 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3014 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3015 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3016 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3017 // v2: [strtab_offset, strtab_size, v1] 3018 StringRef Name; 3019 std::tie(Name, Record) = readNameFromStrtab(Record); 3020 3021 if (Record.size() < 8) 3022 return error("Invalid record"); 3023 Type *Ty = getTypeByID(Record[0]); 3024 if (!Ty) 3025 return error("Invalid record"); 3026 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3027 Ty = PTy->getElementType(); 3028 auto *FTy = dyn_cast<FunctionType>(Ty); 3029 if (!FTy) 3030 return error("Invalid type for value"); 3031 auto CC = static_cast<CallingConv::ID>(Record[1]); 3032 if (CC & ~CallingConv::MaxID) 3033 return error("Invalid calling convention ID"); 3034 3035 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3036 if (Record.size() > 16) 3037 AddrSpace = Record[16]; 3038 3039 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3040 AddrSpace, Name, TheModule); 3041 3042 Func->setCallingConv(CC); 3043 bool isProto = Record[2]; 3044 uint64_t RawLinkage = Record[3]; 3045 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3046 Func->setAttributes(getAttributes(Record[4])); 3047 3048 // Upgrade any old-style byval without a type by propagating the argument's 3049 // pointee type. There should be no opaque pointers where the byval type is 3050 // implicit. 3051 for (auto &Arg : Func->args()) { 3052 if (Arg.hasByValAttr() && !Arg.getParamByValType()) { 3053 Arg.removeAttr(Attribute::ByVal); 3054 Arg.addAttr(Attribute::getWithByValType( 3055 Context, Arg.getType()->getPointerElementType())); 3056 } 3057 } 3058 3059 unsigned Alignment; 3060 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3061 return Err; 3062 Func->setAlignment(Alignment); 3063 if (Record[6]) { 3064 if (Record[6] - 1 >= SectionTable.size()) 3065 return error("Invalid ID"); 3066 Func->setSection(SectionTable[Record[6] - 1]); 3067 } 3068 // Local linkage must have default visibility. 3069 if (!Func->hasLocalLinkage()) 3070 // FIXME: Change to an error if non-default in 4.0. 3071 Func->setVisibility(getDecodedVisibility(Record[7])); 3072 if (Record.size() > 8 && Record[8]) { 3073 if (Record[8] - 1 >= GCTable.size()) 3074 return error("Invalid ID"); 3075 Func->setGC(GCTable[Record[8] - 1]); 3076 } 3077 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3078 if (Record.size() > 9) 3079 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3080 Func->setUnnamedAddr(UnnamedAddr); 3081 if (Record.size() > 10 && Record[10] != 0) 3082 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3083 3084 if (Record.size() > 11) 3085 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3086 else 3087 upgradeDLLImportExportLinkage(Func, RawLinkage); 3088 3089 if (Record.size() > 12) { 3090 if (unsigned ComdatID = Record[12]) { 3091 if (ComdatID > ComdatList.size()) 3092 return error("Invalid function comdat ID"); 3093 Func->setComdat(ComdatList[ComdatID - 1]); 3094 } 3095 } else if (hasImplicitComdat(RawLinkage)) { 3096 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3097 } 3098 3099 if (Record.size() > 13 && Record[13] != 0) 3100 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3101 3102 if (Record.size() > 14 && Record[14] != 0) 3103 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3104 3105 if (Record.size() > 15) { 3106 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3107 } 3108 inferDSOLocal(Func); 3109 3110 // Record[16] is the address space number. 3111 3112 // Check whether we have enough values to read a partition name. 3113 if (Record.size() > 18) 3114 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3115 3116 ValueList.push_back(Func); 3117 3118 // If this is a function with a body, remember the prototype we are 3119 // creating now, so that we can match up the body with them later. 3120 if (!isProto) { 3121 Func->setIsMaterializable(true); 3122 FunctionsWithBodies.push_back(Func); 3123 DeferredFunctionInfo[Func] = 0; 3124 } 3125 return Error::success(); 3126 } 3127 3128 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3129 unsigned BitCode, ArrayRef<uint64_t> Record) { 3130 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3131 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3132 // dllstorageclass, threadlocal, unnamed_addr, 3133 // preemption specifier] (name in VST) 3134 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3135 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3136 // preemption specifier] (name in VST) 3137 // v2: [strtab_offset, strtab_size, v1] 3138 StringRef Name; 3139 std::tie(Name, Record) = readNameFromStrtab(Record); 3140 3141 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3142 if (Record.size() < (3 + (unsigned)NewRecord)) 3143 return error("Invalid record"); 3144 unsigned OpNum = 0; 3145 Type *Ty = getTypeByID(Record[OpNum++]); 3146 if (!Ty) 3147 return error("Invalid record"); 3148 3149 unsigned AddrSpace; 3150 if (!NewRecord) { 3151 auto *PTy = dyn_cast<PointerType>(Ty); 3152 if (!PTy) 3153 return error("Invalid type for value"); 3154 Ty = PTy->getElementType(); 3155 AddrSpace = PTy->getAddressSpace(); 3156 } else { 3157 AddrSpace = Record[OpNum++]; 3158 } 3159 3160 auto Val = Record[OpNum++]; 3161 auto Linkage = Record[OpNum++]; 3162 GlobalIndirectSymbol *NewGA; 3163 if (BitCode == bitc::MODULE_CODE_ALIAS || 3164 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3165 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3166 TheModule); 3167 else 3168 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3169 nullptr, TheModule); 3170 // Old bitcode files didn't have visibility field. 3171 // Local linkage must have default visibility. 3172 if (OpNum != Record.size()) { 3173 auto VisInd = OpNum++; 3174 if (!NewGA->hasLocalLinkage()) 3175 // FIXME: Change to an error if non-default in 4.0. 3176 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3177 } 3178 if (BitCode == bitc::MODULE_CODE_ALIAS || 3179 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3180 if (OpNum != Record.size()) 3181 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3182 else 3183 upgradeDLLImportExportLinkage(NewGA, Linkage); 3184 if (OpNum != Record.size()) 3185 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3186 if (OpNum != Record.size()) 3187 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3188 } 3189 if (OpNum != Record.size()) 3190 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3191 inferDSOLocal(NewGA); 3192 3193 // Check whether we have enough values to read a partition name. 3194 if (OpNum + 1 < Record.size()) { 3195 NewGA->setPartition( 3196 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3197 OpNum += 2; 3198 } 3199 3200 ValueList.push_back(NewGA); 3201 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3202 return Error::success(); 3203 } 3204 3205 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3206 bool ShouldLazyLoadMetadata) { 3207 if (ResumeBit) 3208 Stream.JumpToBit(ResumeBit); 3209 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3210 return error("Invalid record"); 3211 3212 SmallVector<uint64_t, 64> Record; 3213 3214 // Read all the records for this module. 3215 while (true) { 3216 BitstreamEntry Entry = Stream.advance(); 3217 3218 switch (Entry.Kind) { 3219 case BitstreamEntry::Error: 3220 return error("Malformed block"); 3221 case BitstreamEntry::EndBlock: 3222 return globalCleanup(); 3223 3224 case BitstreamEntry::SubBlock: 3225 switch (Entry.ID) { 3226 default: // Skip unknown content. 3227 if (Stream.SkipBlock()) 3228 return error("Invalid record"); 3229 break; 3230 case bitc::BLOCKINFO_BLOCK_ID: 3231 if (readBlockInfo()) 3232 return error("Malformed block"); 3233 break; 3234 case bitc::PARAMATTR_BLOCK_ID: 3235 if (Error Err = parseAttributeBlock()) 3236 return Err; 3237 break; 3238 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3239 if (Error Err = parseAttributeGroupBlock()) 3240 return Err; 3241 break; 3242 case bitc::TYPE_BLOCK_ID_NEW: 3243 if (Error Err = parseTypeTable()) 3244 return Err; 3245 break; 3246 case bitc::VALUE_SYMTAB_BLOCK_ID: 3247 if (!SeenValueSymbolTable) { 3248 // Either this is an old form VST without function index and an 3249 // associated VST forward declaration record (which would have caused 3250 // the VST to be jumped to and parsed before it was encountered 3251 // normally in the stream), or there were no function blocks to 3252 // trigger an earlier parsing of the VST. 3253 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3254 if (Error Err = parseValueSymbolTable()) 3255 return Err; 3256 SeenValueSymbolTable = true; 3257 } else { 3258 // We must have had a VST forward declaration record, which caused 3259 // the parser to jump to and parse the VST earlier. 3260 assert(VSTOffset > 0); 3261 if (Stream.SkipBlock()) 3262 return error("Invalid record"); 3263 } 3264 break; 3265 case bitc::CONSTANTS_BLOCK_ID: 3266 if (Error Err = parseConstants()) 3267 return Err; 3268 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3269 return Err; 3270 break; 3271 case bitc::METADATA_BLOCK_ID: 3272 if (ShouldLazyLoadMetadata) { 3273 if (Error Err = rememberAndSkipMetadata()) 3274 return Err; 3275 break; 3276 } 3277 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3278 if (Error Err = MDLoader->parseModuleMetadata()) 3279 return Err; 3280 break; 3281 case bitc::METADATA_KIND_BLOCK_ID: 3282 if (Error Err = MDLoader->parseMetadataKinds()) 3283 return Err; 3284 break; 3285 case bitc::FUNCTION_BLOCK_ID: 3286 // If this is the first function body we've seen, reverse the 3287 // FunctionsWithBodies list. 3288 if (!SeenFirstFunctionBody) { 3289 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3290 if (Error Err = globalCleanup()) 3291 return Err; 3292 SeenFirstFunctionBody = true; 3293 } 3294 3295 if (VSTOffset > 0) { 3296 // If we have a VST forward declaration record, make sure we 3297 // parse the VST now if we haven't already. It is needed to 3298 // set up the DeferredFunctionInfo vector for lazy reading. 3299 if (!SeenValueSymbolTable) { 3300 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3301 return Err; 3302 SeenValueSymbolTable = true; 3303 // Fall through so that we record the NextUnreadBit below. 3304 // This is necessary in case we have an anonymous function that 3305 // is later materialized. Since it will not have a VST entry we 3306 // need to fall back to the lazy parse to find its offset. 3307 } else { 3308 // If we have a VST forward declaration record, but have already 3309 // parsed the VST (just above, when the first function body was 3310 // encountered here), then we are resuming the parse after 3311 // materializing functions. The ResumeBit points to the 3312 // start of the last function block recorded in the 3313 // DeferredFunctionInfo map. Skip it. 3314 if (Stream.SkipBlock()) 3315 return error("Invalid record"); 3316 continue; 3317 } 3318 } 3319 3320 // Support older bitcode files that did not have the function 3321 // index in the VST, nor a VST forward declaration record, as 3322 // well as anonymous functions that do not have VST entries. 3323 // Build the DeferredFunctionInfo vector on the fly. 3324 if (Error Err = rememberAndSkipFunctionBody()) 3325 return Err; 3326 3327 // Suspend parsing when we reach the function bodies. Subsequent 3328 // materialization calls will resume it when necessary. If the bitcode 3329 // file is old, the symbol table will be at the end instead and will not 3330 // have been seen yet. In this case, just finish the parse now. 3331 if (SeenValueSymbolTable) { 3332 NextUnreadBit = Stream.GetCurrentBitNo(); 3333 // After the VST has been parsed, we need to make sure intrinsic name 3334 // are auto-upgraded. 3335 return globalCleanup(); 3336 } 3337 break; 3338 case bitc::USELIST_BLOCK_ID: 3339 if (Error Err = parseUseLists()) 3340 return Err; 3341 break; 3342 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3343 if (Error Err = parseOperandBundleTags()) 3344 return Err; 3345 break; 3346 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3347 if (Error Err = parseSyncScopeNames()) 3348 return Err; 3349 break; 3350 } 3351 continue; 3352 3353 case BitstreamEntry::Record: 3354 // The interesting case. 3355 break; 3356 } 3357 3358 // Read a record. 3359 auto BitCode = Stream.readRecord(Entry.ID, Record); 3360 switch (BitCode) { 3361 default: break; // Default behavior, ignore unknown content. 3362 case bitc::MODULE_CODE_VERSION: { 3363 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3364 if (!VersionOrErr) 3365 return VersionOrErr.takeError(); 3366 UseRelativeIDs = *VersionOrErr >= 1; 3367 break; 3368 } 3369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3370 std::string S; 3371 if (convertToString(Record, 0, S)) 3372 return error("Invalid record"); 3373 TheModule->setTargetTriple(S); 3374 break; 3375 } 3376 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3377 std::string S; 3378 if (convertToString(Record, 0, S)) 3379 return error("Invalid record"); 3380 TheModule->setDataLayout(S); 3381 break; 3382 } 3383 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3384 std::string S; 3385 if (convertToString(Record, 0, S)) 3386 return error("Invalid record"); 3387 TheModule->setModuleInlineAsm(S); 3388 break; 3389 } 3390 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3391 // FIXME: Remove in 4.0. 3392 std::string S; 3393 if (convertToString(Record, 0, S)) 3394 return error("Invalid record"); 3395 // Ignore value. 3396 break; 3397 } 3398 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3399 std::string S; 3400 if (convertToString(Record, 0, S)) 3401 return error("Invalid record"); 3402 SectionTable.push_back(S); 3403 break; 3404 } 3405 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3406 std::string S; 3407 if (convertToString(Record, 0, S)) 3408 return error("Invalid record"); 3409 GCTable.push_back(S); 3410 break; 3411 } 3412 case bitc::MODULE_CODE_COMDAT: 3413 if (Error Err = parseComdatRecord(Record)) 3414 return Err; 3415 break; 3416 case bitc::MODULE_CODE_GLOBALVAR: 3417 if (Error Err = parseGlobalVarRecord(Record)) 3418 return Err; 3419 break; 3420 case bitc::MODULE_CODE_FUNCTION: 3421 if (Error Err = parseFunctionRecord(Record)) 3422 return Err; 3423 break; 3424 case bitc::MODULE_CODE_IFUNC: 3425 case bitc::MODULE_CODE_ALIAS: 3426 case bitc::MODULE_CODE_ALIAS_OLD: 3427 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3428 return Err; 3429 break; 3430 /// MODULE_CODE_VSTOFFSET: [offset] 3431 case bitc::MODULE_CODE_VSTOFFSET: 3432 if (Record.size() < 1) 3433 return error("Invalid record"); 3434 // Note that we subtract 1 here because the offset is relative to one word 3435 // before the start of the identification or module block, which was 3436 // historically always the start of the regular bitcode header. 3437 VSTOffset = Record[0] - 1; 3438 break; 3439 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3440 case bitc::MODULE_CODE_SOURCE_FILENAME: 3441 SmallString<128> ValueName; 3442 if (convertToString(Record, 0, ValueName)) 3443 return error("Invalid record"); 3444 TheModule->setSourceFileName(ValueName); 3445 break; 3446 } 3447 Record.clear(); 3448 } 3449 } 3450 3451 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3452 bool IsImporting) { 3453 TheModule = M; 3454 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3455 [&](unsigned ID) { return getTypeByID(ID); }); 3456 return parseModule(0, ShouldLazyLoadMetadata); 3457 } 3458 3459 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3460 if (!isa<PointerType>(PtrType)) 3461 return error("Load/Store operand is not a pointer type"); 3462 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3463 3464 if (ValType && ValType != ElemType) 3465 return error("Explicit load/store type does not match pointee " 3466 "type of pointer operand"); 3467 if (!PointerType::isLoadableOrStorableType(ElemType)) 3468 return error("Cannot load/store from pointer"); 3469 return Error::success(); 3470 } 3471 3472 void BitcodeReader::propagateByValTypes(CallBase *CB) { 3473 for (unsigned i = 0; i < CB->getNumArgOperands(); ++i) { 3474 if (CB->paramHasAttr(i, Attribute::ByVal) && 3475 !CB->getAttribute(i, Attribute::ByVal).getValueAsType()) { 3476 CB->removeParamAttr(i, Attribute::ByVal); 3477 CB->addParamAttr( 3478 i, Attribute::getWithByValType( 3479 Context, 3480 CB->getArgOperand(i)->getType()->getPointerElementType())); 3481 } 3482 } 3483 } 3484 3485 /// Lazily parse the specified function body block. 3486 Error BitcodeReader::parseFunctionBody(Function *F) { 3487 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3488 return error("Invalid record"); 3489 3490 // Unexpected unresolved metadata when parsing function. 3491 if (MDLoader->hasFwdRefs()) 3492 return error("Invalid function metadata: incoming forward references"); 3493 3494 InstructionList.clear(); 3495 unsigned ModuleValueListSize = ValueList.size(); 3496 unsigned ModuleMDLoaderSize = MDLoader->size(); 3497 3498 // Add all the function arguments to the value table. 3499 for (Argument &I : F->args()) 3500 ValueList.push_back(&I); 3501 3502 unsigned NextValueNo = ValueList.size(); 3503 BasicBlock *CurBB = nullptr; 3504 unsigned CurBBNo = 0; 3505 3506 DebugLoc LastLoc; 3507 auto getLastInstruction = [&]() -> Instruction * { 3508 if (CurBB && !CurBB->empty()) 3509 return &CurBB->back(); 3510 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3511 !FunctionBBs[CurBBNo - 1]->empty()) 3512 return &FunctionBBs[CurBBNo - 1]->back(); 3513 return nullptr; 3514 }; 3515 3516 std::vector<OperandBundleDef> OperandBundles; 3517 3518 // Read all the records. 3519 SmallVector<uint64_t, 64> Record; 3520 3521 while (true) { 3522 BitstreamEntry Entry = Stream.advance(); 3523 3524 switch (Entry.Kind) { 3525 case BitstreamEntry::Error: 3526 return error("Malformed block"); 3527 case BitstreamEntry::EndBlock: 3528 goto OutOfRecordLoop; 3529 3530 case BitstreamEntry::SubBlock: 3531 switch (Entry.ID) { 3532 default: // Skip unknown content. 3533 if (Stream.SkipBlock()) 3534 return error("Invalid record"); 3535 break; 3536 case bitc::CONSTANTS_BLOCK_ID: 3537 if (Error Err = parseConstants()) 3538 return Err; 3539 NextValueNo = ValueList.size(); 3540 break; 3541 case bitc::VALUE_SYMTAB_BLOCK_ID: 3542 if (Error Err = parseValueSymbolTable()) 3543 return Err; 3544 break; 3545 case bitc::METADATA_ATTACHMENT_ID: 3546 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3547 return Err; 3548 break; 3549 case bitc::METADATA_BLOCK_ID: 3550 assert(DeferredMetadataInfo.empty() && 3551 "Must read all module-level metadata before function-level"); 3552 if (Error Err = MDLoader->parseFunctionMetadata()) 3553 return Err; 3554 break; 3555 case bitc::USELIST_BLOCK_ID: 3556 if (Error Err = parseUseLists()) 3557 return Err; 3558 break; 3559 } 3560 continue; 3561 3562 case BitstreamEntry::Record: 3563 // The interesting case. 3564 break; 3565 } 3566 3567 // Read a record. 3568 Record.clear(); 3569 Instruction *I = nullptr; 3570 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3571 switch (BitCode) { 3572 default: // Default behavior: reject 3573 return error("Invalid value"); 3574 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3575 if (Record.size() < 1 || Record[0] == 0) 3576 return error("Invalid record"); 3577 // Create all the basic blocks for the function. 3578 FunctionBBs.resize(Record[0]); 3579 3580 // See if anything took the address of blocks in this function. 3581 auto BBFRI = BasicBlockFwdRefs.find(F); 3582 if (BBFRI == BasicBlockFwdRefs.end()) { 3583 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3584 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3585 } else { 3586 auto &BBRefs = BBFRI->second; 3587 // Check for invalid basic block references. 3588 if (BBRefs.size() > FunctionBBs.size()) 3589 return error("Invalid ID"); 3590 assert(!BBRefs.empty() && "Unexpected empty array"); 3591 assert(!BBRefs.front() && "Invalid reference to entry block"); 3592 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3593 ++I) 3594 if (I < RE && BBRefs[I]) { 3595 BBRefs[I]->insertInto(F); 3596 FunctionBBs[I] = BBRefs[I]; 3597 } else { 3598 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3599 } 3600 3601 // Erase from the table. 3602 BasicBlockFwdRefs.erase(BBFRI); 3603 } 3604 3605 CurBB = FunctionBBs[0]; 3606 continue; 3607 } 3608 3609 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3610 // This record indicates that the last instruction is at the same 3611 // location as the previous instruction with a location. 3612 I = getLastInstruction(); 3613 3614 if (!I) 3615 return error("Invalid record"); 3616 I->setDebugLoc(LastLoc); 3617 I = nullptr; 3618 continue; 3619 3620 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3621 I = getLastInstruction(); 3622 if (!I || Record.size() < 4) 3623 return error("Invalid record"); 3624 3625 unsigned Line = Record[0], Col = Record[1]; 3626 unsigned ScopeID = Record[2], IAID = Record[3]; 3627 bool isImplicitCode = Record.size() == 5 && Record[4]; 3628 3629 MDNode *Scope = nullptr, *IA = nullptr; 3630 if (ScopeID) { 3631 Scope = dyn_cast_or_null<MDNode>( 3632 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3633 if (!Scope) 3634 return error("Invalid record"); 3635 } 3636 if (IAID) { 3637 IA = dyn_cast_or_null<MDNode>( 3638 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3639 if (!IA) 3640 return error("Invalid record"); 3641 } 3642 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3643 I->setDebugLoc(LastLoc); 3644 I = nullptr; 3645 continue; 3646 } 3647 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3648 unsigned OpNum = 0; 3649 Value *LHS; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3651 OpNum+1 > Record.size()) 3652 return error("Invalid record"); 3653 3654 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3655 if (Opc == -1) 3656 return error("Invalid record"); 3657 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3658 InstructionList.push_back(I); 3659 if (OpNum < Record.size()) { 3660 if (isa<FPMathOperator>(I)) { 3661 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3662 if (FMF.any()) 3663 I->setFastMathFlags(FMF); 3664 } 3665 } 3666 break; 3667 } 3668 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3669 unsigned OpNum = 0; 3670 Value *LHS, *RHS; 3671 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3672 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3673 OpNum+1 > Record.size()) 3674 return error("Invalid record"); 3675 3676 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3677 if (Opc == -1) 3678 return error("Invalid record"); 3679 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3680 InstructionList.push_back(I); 3681 if (OpNum < Record.size()) { 3682 if (Opc == Instruction::Add || 3683 Opc == Instruction::Sub || 3684 Opc == Instruction::Mul || 3685 Opc == Instruction::Shl) { 3686 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3687 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3688 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3689 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3690 } else if (Opc == Instruction::SDiv || 3691 Opc == Instruction::UDiv || 3692 Opc == Instruction::LShr || 3693 Opc == Instruction::AShr) { 3694 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3695 cast<BinaryOperator>(I)->setIsExact(true); 3696 } else if (isa<FPMathOperator>(I)) { 3697 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3698 if (FMF.any()) 3699 I->setFastMathFlags(FMF); 3700 } 3701 3702 } 3703 break; 3704 } 3705 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3706 unsigned OpNum = 0; 3707 Value *Op; 3708 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3709 OpNum+2 != Record.size()) 3710 return error("Invalid record"); 3711 3712 Type *ResTy = getTypeByID(Record[OpNum]); 3713 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3714 if (Opc == -1 || !ResTy) 3715 return error("Invalid record"); 3716 Instruction *Temp = nullptr; 3717 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3718 if (Temp) { 3719 InstructionList.push_back(Temp); 3720 CurBB->getInstList().push_back(Temp); 3721 } 3722 } else { 3723 auto CastOp = (Instruction::CastOps)Opc; 3724 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3725 return error("Invalid cast"); 3726 I = CastInst::Create(CastOp, Op, ResTy); 3727 } 3728 InstructionList.push_back(I); 3729 break; 3730 } 3731 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3732 case bitc::FUNC_CODE_INST_GEP_OLD: 3733 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3734 unsigned OpNum = 0; 3735 3736 Type *Ty; 3737 bool InBounds; 3738 3739 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3740 InBounds = Record[OpNum++]; 3741 Ty = getTypeByID(Record[OpNum++]); 3742 } else { 3743 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3744 Ty = nullptr; 3745 } 3746 3747 Value *BasePtr; 3748 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3749 return error("Invalid record"); 3750 3751 if (!Ty) 3752 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3753 ->getElementType(); 3754 else if (Ty != 3755 cast<PointerType>(BasePtr->getType()->getScalarType()) 3756 ->getElementType()) 3757 return error( 3758 "Explicit gep type does not match pointee type of pointer operand"); 3759 3760 SmallVector<Value*, 16> GEPIdx; 3761 while (OpNum != Record.size()) { 3762 Value *Op; 3763 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3764 return error("Invalid record"); 3765 GEPIdx.push_back(Op); 3766 } 3767 3768 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3769 3770 InstructionList.push_back(I); 3771 if (InBounds) 3772 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3773 break; 3774 } 3775 3776 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3777 // EXTRACTVAL: [opty, opval, n x indices] 3778 unsigned OpNum = 0; 3779 Value *Agg; 3780 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3781 return error("Invalid record"); 3782 3783 unsigned RecSize = Record.size(); 3784 if (OpNum == RecSize) 3785 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3786 3787 SmallVector<unsigned, 4> EXTRACTVALIdx; 3788 Type *CurTy = Agg->getType(); 3789 for (; OpNum != RecSize; ++OpNum) { 3790 bool IsArray = CurTy->isArrayTy(); 3791 bool IsStruct = CurTy->isStructTy(); 3792 uint64_t Index = Record[OpNum]; 3793 3794 if (!IsStruct && !IsArray) 3795 return error("EXTRACTVAL: Invalid type"); 3796 if ((unsigned)Index != Index) 3797 return error("Invalid value"); 3798 if (IsStruct && Index >= CurTy->getStructNumElements()) 3799 return error("EXTRACTVAL: Invalid struct index"); 3800 if (IsArray && Index >= CurTy->getArrayNumElements()) 3801 return error("EXTRACTVAL: Invalid array index"); 3802 EXTRACTVALIdx.push_back((unsigned)Index); 3803 3804 if (IsStruct) 3805 CurTy = CurTy->getStructElementType(Index); 3806 else 3807 CurTy = CurTy->getArrayElementType(); 3808 } 3809 3810 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3811 InstructionList.push_back(I); 3812 break; 3813 } 3814 3815 case bitc::FUNC_CODE_INST_INSERTVAL: { 3816 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3817 unsigned OpNum = 0; 3818 Value *Agg; 3819 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3820 return error("Invalid record"); 3821 Value *Val; 3822 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3823 return error("Invalid record"); 3824 3825 unsigned RecSize = Record.size(); 3826 if (OpNum == RecSize) 3827 return error("INSERTVAL: Invalid instruction with 0 indices"); 3828 3829 SmallVector<unsigned, 4> INSERTVALIdx; 3830 Type *CurTy = Agg->getType(); 3831 for (; OpNum != RecSize; ++OpNum) { 3832 bool IsArray = CurTy->isArrayTy(); 3833 bool IsStruct = CurTy->isStructTy(); 3834 uint64_t Index = Record[OpNum]; 3835 3836 if (!IsStruct && !IsArray) 3837 return error("INSERTVAL: Invalid type"); 3838 if ((unsigned)Index != Index) 3839 return error("Invalid value"); 3840 if (IsStruct && Index >= CurTy->getStructNumElements()) 3841 return error("INSERTVAL: Invalid struct index"); 3842 if (IsArray && Index >= CurTy->getArrayNumElements()) 3843 return error("INSERTVAL: Invalid array index"); 3844 3845 INSERTVALIdx.push_back((unsigned)Index); 3846 if (IsStruct) 3847 CurTy = CurTy->getStructElementType(Index); 3848 else 3849 CurTy = CurTy->getArrayElementType(); 3850 } 3851 3852 if (CurTy != Val->getType()) 3853 return error("Inserted value type doesn't match aggregate type"); 3854 3855 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3856 InstructionList.push_back(I); 3857 break; 3858 } 3859 3860 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3861 // obsolete form of select 3862 // handles select i1 ... in old bitcode 3863 unsigned OpNum = 0; 3864 Value *TrueVal, *FalseVal, *Cond; 3865 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3866 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3867 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3868 return error("Invalid record"); 3869 3870 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3871 InstructionList.push_back(I); 3872 break; 3873 } 3874 3875 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3876 // new form of select 3877 // handles select i1 or select [N x i1] 3878 unsigned OpNum = 0; 3879 Value *TrueVal, *FalseVal, *Cond; 3880 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3881 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3882 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3883 return error("Invalid record"); 3884 3885 // select condition can be either i1 or [N x i1] 3886 if (VectorType* vector_type = 3887 dyn_cast<VectorType>(Cond->getType())) { 3888 // expect <n x i1> 3889 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3890 return error("Invalid type for value"); 3891 } else { 3892 // expect i1 3893 if (Cond->getType() != Type::getInt1Ty(Context)) 3894 return error("Invalid type for value"); 3895 } 3896 3897 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3898 InstructionList.push_back(I); 3899 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 3900 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3901 if (FMF.any()) 3902 I->setFastMathFlags(FMF); 3903 } 3904 break; 3905 } 3906 3907 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3908 unsigned OpNum = 0; 3909 Value *Vec, *Idx; 3910 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3911 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3912 return error("Invalid record"); 3913 if (!Vec->getType()->isVectorTy()) 3914 return error("Invalid type for value"); 3915 I = ExtractElementInst::Create(Vec, Idx); 3916 InstructionList.push_back(I); 3917 break; 3918 } 3919 3920 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3921 unsigned OpNum = 0; 3922 Value *Vec, *Elt, *Idx; 3923 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3924 return error("Invalid record"); 3925 if (!Vec->getType()->isVectorTy()) 3926 return error("Invalid type for value"); 3927 if (popValue(Record, OpNum, NextValueNo, 3928 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3929 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3930 return error("Invalid record"); 3931 I = InsertElementInst::Create(Vec, Elt, Idx); 3932 InstructionList.push_back(I); 3933 break; 3934 } 3935 3936 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3937 unsigned OpNum = 0; 3938 Value *Vec1, *Vec2, *Mask; 3939 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3940 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3941 return error("Invalid record"); 3942 3943 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3944 return error("Invalid record"); 3945 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3946 return error("Invalid type for value"); 3947 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3948 InstructionList.push_back(I); 3949 break; 3950 } 3951 3952 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3953 // Old form of ICmp/FCmp returning bool 3954 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3955 // both legal on vectors but had different behaviour. 3956 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3957 // FCmp/ICmp returning bool or vector of bool 3958 3959 unsigned OpNum = 0; 3960 Value *LHS, *RHS; 3961 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3962 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3963 return error("Invalid record"); 3964 3965 unsigned PredVal = Record[OpNum]; 3966 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3967 FastMathFlags FMF; 3968 if (IsFP && Record.size() > OpNum+1) 3969 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3970 3971 if (OpNum+1 != Record.size()) 3972 return error("Invalid record"); 3973 3974 if (LHS->getType()->isFPOrFPVectorTy()) 3975 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3976 else 3977 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3978 3979 if (FMF.any()) 3980 I->setFastMathFlags(FMF); 3981 InstructionList.push_back(I); 3982 break; 3983 } 3984 3985 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3986 { 3987 unsigned Size = Record.size(); 3988 if (Size == 0) { 3989 I = ReturnInst::Create(Context); 3990 InstructionList.push_back(I); 3991 break; 3992 } 3993 3994 unsigned OpNum = 0; 3995 Value *Op = nullptr; 3996 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3997 return error("Invalid record"); 3998 if (OpNum != Record.size()) 3999 return error("Invalid record"); 4000 4001 I = ReturnInst::Create(Context, Op); 4002 InstructionList.push_back(I); 4003 break; 4004 } 4005 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4006 if (Record.size() != 1 && Record.size() != 3) 4007 return error("Invalid record"); 4008 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4009 if (!TrueDest) 4010 return error("Invalid record"); 4011 4012 if (Record.size() == 1) { 4013 I = BranchInst::Create(TrueDest); 4014 InstructionList.push_back(I); 4015 } 4016 else { 4017 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4018 Value *Cond = getValue(Record, 2, NextValueNo, 4019 Type::getInt1Ty(Context)); 4020 if (!FalseDest || !Cond) 4021 return error("Invalid record"); 4022 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4023 InstructionList.push_back(I); 4024 } 4025 break; 4026 } 4027 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4028 if (Record.size() != 1 && Record.size() != 2) 4029 return error("Invalid record"); 4030 unsigned Idx = 0; 4031 Value *CleanupPad = 4032 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4033 if (!CleanupPad) 4034 return error("Invalid record"); 4035 BasicBlock *UnwindDest = nullptr; 4036 if (Record.size() == 2) { 4037 UnwindDest = getBasicBlock(Record[Idx++]); 4038 if (!UnwindDest) 4039 return error("Invalid record"); 4040 } 4041 4042 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4043 InstructionList.push_back(I); 4044 break; 4045 } 4046 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4047 if (Record.size() != 2) 4048 return error("Invalid record"); 4049 unsigned Idx = 0; 4050 Value *CatchPad = 4051 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4052 if (!CatchPad) 4053 return error("Invalid record"); 4054 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4055 if (!BB) 4056 return error("Invalid record"); 4057 4058 I = CatchReturnInst::Create(CatchPad, BB); 4059 InstructionList.push_back(I); 4060 break; 4061 } 4062 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4063 // We must have, at minimum, the outer scope and the number of arguments. 4064 if (Record.size() < 2) 4065 return error("Invalid record"); 4066 4067 unsigned Idx = 0; 4068 4069 Value *ParentPad = 4070 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4071 4072 unsigned NumHandlers = Record[Idx++]; 4073 4074 SmallVector<BasicBlock *, 2> Handlers; 4075 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4076 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4077 if (!BB) 4078 return error("Invalid record"); 4079 Handlers.push_back(BB); 4080 } 4081 4082 BasicBlock *UnwindDest = nullptr; 4083 if (Idx + 1 == Record.size()) { 4084 UnwindDest = getBasicBlock(Record[Idx++]); 4085 if (!UnwindDest) 4086 return error("Invalid record"); 4087 } 4088 4089 if (Record.size() != Idx) 4090 return error("Invalid record"); 4091 4092 auto *CatchSwitch = 4093 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4094 for (BasicBlock *Handler : Handlers) 4095 CatchSwitch->addHandler(Handler); 4096 I = CatchSwitch; 4097 InstructionList.push_back(I); 4098 break; 4099 } 4100 case bitc::FUNC_CODE_INST_CATCHPAD: 4101 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4102 // We must have, at minimum, the outer scope and the number of arguments. 4103 if (Record.size() < 2) 4104 return error("Invalid record"); 4105 4106 unsigned Idx = 0; 4107 4108 Value *ParentPad = 4109 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4110 4111 unsigned NumArgOperands = Record[Idx++]; 4112 4113 SmallVector<Value *, 2> Args; 4114 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4115 Value *Val; 4116 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4117 return error("Invalid record"); 4118 Args.push_back(Val); 4119 } 4120 4121 if (Record.size() != Idx) 4122 return error("Invalid record"); 4123 4124 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4125 I = CleanupPadInst::Create(ParentPad, Args); 4126 else 4127 I = CatchPadInst::Create(ParentPad, Args); 4128 InstructionList.push_back(I); 4129 break; 4130 } 4131 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4132 // Check magic 4133 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4134 // "New" SwitchInst format with case ranges. The changes to write this 4135 // format were reverted but we still recognize bitcode that uses it. 4136 // Hopefully someday we will have support for case ranges and can use 4137 // this format again. 4138 4139 Type *OpTy = getTypeByID(Record[1]); 4140 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4141 4142 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4143 BasicBlock *Default = getBasicBlock(Record[3]); 4144 if (!OpTy || !Cond || !Default) 4145 return error("Invalid record"); 4146 4147 unsigned NumCases = Record[4]; 4148 4149 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4150 InstructionList.push_back(SI); 4151 4152 unsigned CurIdx = 5; 4153 for (unsigned i = 0; i != NumCases; ++i) { 4154 SmallVector<ConstantInt*, 1> CaseVals; 4155 unsigned NumItems = Record[CurIdx++]; 4156 for (unsigned ci = 0; ci != NumItems; ++ci) { 4157 bool isSingleNumber = Record[CurIdx++]; 4158 4159 APInt Low; 4160 unsigned ActiveWords = 1; 4161 if (ValueBitWidth > 64) 4162 ActiveWords = Record[CurIdx++]; 4163 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4164 ValueBitWidth); 4165 CurIdx += ActiveWords; 4166 4167 if (!isSingleNumber) { 4168 ActiveWords = 1; 4169 if (ValueBitWidth > 64) 4170 ActiveWords = Record[CurIdx++]; 4171 APInt High = readWideAPInt( 4172 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4173 CurIdx += ActiveWords; 4174 4175 // FIXME: It is not clear whether values in the range should be 4176 // compared as signed or unsigned values. The partially 4177 // implemented changes that used this format in the past used 4178 // unsigned comparisons. 4179 for ( ; Low.ule(High); ++Low) 4180 CaseVals.push_back(ConstantInt::get(Context, Low)); 4181 } else 4182 CaseVals.push_back(ConstantInt::get(Context, Low)); 4183 } 4184 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4185 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4186 cve = CaseVals.end(); cvi != cve; ++cvi) 4187 SI->addCase(*cvi, DestBB); 4188 } 4189 I = SI; 4190 break; 4191 } 4192 4193 // Old SwitchInst format without case ranges. 4194 4195 if (Record.size() < 3 || (Record.size() & 1) == 0) 4196 return error("Invalid record"); 4197 Type *OpTy = getTypeByID(Record[0]); 4198 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4199 BasicBlock *Default = getBasicBlock(Record[2]); 4200 if (!OpTy || !Cond || !Default) 4201 return error("Invalid record"); 4202 unsigned NumCases = (Record.size()-3)/2; 4203 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4204 InstructionList.push_back(SI); 4205 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4206 ConstantInt *CaseVal = 4207 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4208 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4209 if (!CaseVal || !DestBB) { 4210 delete SI; 4211 return error("Invalid record"); 4212 } 4213 SI->addCase(CaseVal, DestBB); 4214 } 4215 I = SI; 4216 break; 4217 } 4218 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4219 if (Record.size() < 2) 4220 return error("Invalid record"); 4221 Type *OpTy = getTypeByID(Record[0]); 4222 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4223 if (!OpTy || !Address) 4224 return error("Invalid record"); 4225 unsigned NumDests = Record.size()-2; 4226 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4227 InstructionList.push_back(IBI); 4228 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4229 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4230 IBI->addDestination(DestBB); 4231 } else { 4232 delete IBI; 4233 return error("Invalid record"); 4234 } 4235 } 4236 I = IBI; 4237 break; 4238 } 4239 4240 case bitc::FUNC_CODE_INST_INVOKE: { 4241 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4242 if (Record.size() < 4) 4243 return error("Invalid record"); 4244 unsigned OpNum = 0; 4245 AttributeList PAL = getAttributes(Record[OpNum++]); 4246 unsigned CCInfo = Record[OpNum++]; 4247 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4248 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4249 4250 FunctionType *FTy = nullptr; 4251 if (CCInfo >> 13 & 1 && 4252 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4253 return error("Explicit invoke type is not a function type"); 4254 4255 Value *Callee; 4256 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4257 return error("Invalid record"); 4258 4259 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4260 if (!CalleeTy) 4261 return error("Callee is not a pointer"); 4262 if (!FTy) { 4263 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4264 if (!FTy) 4265 return error("Callee is not of pointer to function type"); 4266 } else if (CalleeTy->getElementType() != FTy) 4267 return error("Explicit invoke type does not match pointee type of " 4268 "callee operand"); 4269 if (Record.size() < FTy->getNumParams() + OpNum) 4270 return error("Insufficient operands to call"); 4271 4272 SmallVector<Value*, 16> Ops; 4273 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4274 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4275 FTy->getParamType(i))); 4276 if (!Ops.back()) 4277 return error("Invalid record"); 4278 } 4279 4280 if (!FTy->isVarArg()) { 4281 if (Record.size() != OpNum) 4282 return error("Invalid record"); 4283 } else { 4284 // Read type/value pairs for varargs params. 4285 while (OpNum != Record.size()) { 4286 Value *Op; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4288 return error("Invalid record"); 4289 Ops.push_back(Op); 4290 } 4291 } 4292 4293 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4294 OperandBundles); 4295 OperandBundles.clear(); 4296 InstructionList.push_back(I); 4297 cast<InvokeInst>(I)->setCallingConv( 4298 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4299 cast<InvokeInst>(I)->setAttributes(PAL); 4300 propagateByValTypes(cast<CallBase>(I)); 4301 4302 break; 4303 } 4304 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4305 unsigned Idx = 0; 4306 Value *Val = nullptr; 4307 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4308 return error("Invalid record"); 4309 I = ResumeInst::Create(Val); 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 case bitc::FUNC_CODE_INST_CALLBR: { 4314 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4315 unsigned OpNum = 0; 4316 AttributeList PAL = getAttributes(Record[OpNum++]); 4317 unsigned CCInfo = Record[OpNum++]; 4318 4319 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4320 unsigned NumIndirectDests = Record[OpNum++]; 4321 SmallVector<BasicBlock *, 16> IndirectDests; 4322 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4323 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4324 4325 FunctionType *FTy = nullptr; 4326 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4327 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4328 return error("Explicit call type is not a function type"); 4329 4330 Value *Callee; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4332 return error("Invalid record"); 4333 4334 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4335 if (!OpTy) 4336 return error("Callee is not a pointer type"); 4337 if (!FTy) { 4338 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4339 if (!FTy) 4340 return error("Callee is not of pointer to function type"); 4341 } else if (OpTy->getElementType() != FTy) 4342 return error("Explicit call type does not match pointee type of " 4343 "callee operand"); 4344 if (Record.size() < FTy->getNumParams() + OpNum) 4345 return error("Insufficient operands to call"); 4346 4347 SmallVector<Value*, 16> Args; 4348 // Read the fixed params. 4349 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4350 if (FTy->getParamType(i)->isLabelTy()) 4351 Args.push_back(getBasicBlock(Record[OpNum])); 4352 else 4353 Args.push_back(getValue(Record, OpNum, NextValueNo, 4354 FTy->getParamType(i))); 4355 if (!Args.back()) 4356 return error("Invalid record"); 4357 } 4358 4359 // Read type/value pairs for varargs params. 4360 if (!FTy->isVarArg()) { 4361 if (OpNum != Record.size()) 4362 return error("Invalid record"); 4363 } else { 4364 while (OpNum != Record.size()) { 4365 Value *Op; 4366 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4367 return error("Invalid record"); 4368 Args.push_back(Op); 4369 } 4370 } 4371 4372 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4373 OperandBundles); 4374 OperandBundles.clear(); 4375 InstructionList.push_back(I); 4376 cast<CallBrInst>(I)->setCallingConv( 4377 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4378 cast<CallBrInst>(I)->setAttributes(PAL); 4379 break; 4380 } 4381 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4382 I = new UnreachableInst(Context); 4383 InstructionList.push_back(I); 4384 break; 4385 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4386 if (Record.size() < 1 || ((Record.size()-1)&1)) 4387 return error("Invalid record"); 4388 Type *Ty = getTypeByID(Record[0]); 4389 if (!Ty) 4390 return error("Invalid record"); 4391 4392 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4393 InstructionList.push_back(PN); 4394 4395 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4396 Value *V; 4397 // With the new function encoding, it is possible that operands have 4398 // negative IDs (for forward references). Use a signed VBR 4399 // representation to keep the encoding small. 4400 if (UseRelativeIDs) 4401 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4402 else 4403 V = getValue(Record, 1+i, NextValueNo, Ty); 4404 BasicBlock *BB = getBasicBlock(Record[2+i]); 4405 if (!V || !BB) 4406 return error("Invalid record"); 4407 PN->addIncoming(V, BB); 4408 } 4409 I = PN; 4410 break; 4411 } 4412 4413 case bitc::FUNC_CODE_INST_LANDINGPAD: 4414 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4415 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4416 unsigned Idx = 0; 4417 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4418 if (Record.size() < 3) 4419 return error("Invalid record"); 4420 } else { 4421 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4422 if (Record.size() < 4) 4423 return error("Invalid record"); 4424 } 4425 Type *Ty = getTypeByID(Record[Idx++]); 4426 if (!Ty) 4427 return error("Invalid record"); 4428 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4429 Value *PersFn = nullptr; 4430 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4431 return error("Invalid record"); 4432 4433 if (!F->hasPersonalityFn()) 4434 F->setPersonalityFn(cast<Constant>(PersFn)); 4435 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4436 return error("Personality function mismatch"); 4437 } 4438 4439 bool IsCleanup = !!Record[Idx++]; 4440 unsigned NumClauses = Record[Idx++]; 4441 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4442 LP->setCleanup(IsCleanup); 4443 for (unsigned J = 0; J != NumClauses; ++J) { 4444 LandingPadInst::ClauseType CT = 4445 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4446 Value *Val; 4447 4448 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4449 delete LP; 4450 return error("Invalid record"); 4451 } 4452 4453 assert((CT != LandingPadInst::Catch || 4454 !isa<ArrayType>(Val->getType())) && 4455 "Catch clause has a invalid type!"); 4456 assert((CT != LandingPadInst::Filter || 4457 isa<ArrayType>(Val->getType())) && 4458 "Filter clause has invalid type!"); 4459 LP->addClause(cast<Constant>(Val)); 4460 } 4461 4462 I = LP; 4463 InstructionList.push_back(I); 4464 break; 4465 } 4466 4467 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4468 if (Record.size() != 4) 4469 return error("Invalid record"); 4470 uint64_t AlignRecord = Record[3]; 4471 const uint64_t InAllocaMask = uint64_t(1) << 5; 4472 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4473 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4474 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4475 SwiftErrorMask; 4476 bool InAlloca = AlignRecord & InAllocaMask; 4477 bool SwiftError = AlignRecord & SwiftErrorMask; 4478 Type *Ty = getTypeByID(Record[0]); 4479 if ((AlignRecord & ExplicitTypeMask) == 0) { 4480 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4481 if (!PTy) 4482 return error("Old-style alloca with a non-pointer type"); 4483 Ty = PTy->getElementType(); 4484 } 4485 Type *OpTy = getTypeByID(Record[1]); 4486 Value *Size = getFnValueByID(Record[2], OpTy); 4487 unsigned Align; 4488 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4489 return Err; 4490 } 4491 if (!Ty || !Size) 4492 return error("Invalid record"); 4493 4494 // FIXME: Make this an optional field. 4495 const DataLayout &DL = TheModule->getDataLayout(); 4496 unsigned AS = DL.getAllocaAddrSpace(); 4497 4498 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4499 AI->setUsedWithInAlloca(InAlloca); 4500 AI->setSwiftError(SwiftError); 4501 I = AI; 4502 InstructionList.push_back(I); 4503 break; 4504 } 4505 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4506 unsigned OpNum = 0; 4507 Value *Op; 4508 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4509 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4510 return error("Invalid record"); 4511 4512 Type *Ty = nullptr; 4513 if (OpNum + 3 == Record.size()) 4514 Ty = getTypeByID(Record[OpNum++]); 4515 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4516 return Err; 4517 if (!Ty) 4518 Ty = cast<PointerType>(Op->getType())->getElementType(); 4519 4520 unsigned Align; 4521 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4522 return Err; 4523 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4524 4525 InstructionList.push_back(I); 4526 break; 4527 } 4528 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4529 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4530 unsigned OpNum = 0; 4531 Value *Op; 4532 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4533 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4534 return error("Invalid record"); 4535 4536 Type *Ty = nullptr; 4537 if (OpNum + 5 == Record.size()) 4538 Ty = getTypeByID(Record[OpNum++]); 4539 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4540 return Err; 4541 if (!Ty) 4542 Ty = cast<PointerType>(Op->getType())->getElementType(); 4543 4544 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4545 if (Ordering == AtomicOrdering::NotAtomic || 4546 Ordering == AtomicOrdering::Release || 4547 Ordering == AtomicOrdering::AcquireRelease) 4548 return error("Invalid record"); 4549 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4550 return error("Invalid record"); 4551 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4552 4553 unsigned Align; 4554 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4555 return Err; 4556 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4557 4558 InstructionList.push_back(I); 4559 break; 4560 } 4561 case bitc::FUNC_CODE_INST_STORE: 4562 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4563 unsigned OpNum = 0; 4564 Value *Val, *Ptr; 4565 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4566 (BitCode == bitc::FUNC_CODE_INST_STORE 4567 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4568 : popValue(Record, OpNum, NextValueNo, 4569 cast<PointerType>(Ptr->getType())->getElementType(), 4570 Val)) || 4571 OpNum + 2 != Record.size()) 4572 return error("Invalid record"); 4573 4574 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4575 return Err; 4576 unsigned Align; 4577 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4578 return Err; 4579 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4580 InstructionList.push_back(I); 4581 break; 4582 } 4583 case bitc::FUNC_CODE_INST_STOREATOMIC: 4584 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4585 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4586 unsigned OpNum = 0; 4587 Value *Val, *Ptr; 4588 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4589 !isa<PointerType>(Ptr->getType()) || 4590 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4591 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4592 : popValue(Record, OpNum, NextValueNo, 4593 cast<PointerType>(Ptr->getType())->getElementType(), 4594 Val)) || 4595 OpNum + 4 != Record.size()) 4596 return error("Invalid record"); 4597 4598 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4599 return Err; 4600 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4601 if (Ordering == AtomicOrdering::NotAtomic || 4602 Ordering == AtomicOrdering::Acquire || 4603 Ordering == AtomicOrdering::AcquireRelease) 4604 return error("Invalid record"); 4605 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4606 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4607 return error("Invalid record"); 4608 4609 unsigned Align; 4610 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4611 return Err; 4612 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4613 InstructionList.push_back(I); 4614 break; 4615 } 4616 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4617 case bitc::FUNC_CODE_INST_CMPXCHG: { 4618 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4619 // failureordering?, isweak?] 4620 unsigned OpNum = 0; 4621 Value *Ptr, *Cmp, *New; 4622 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4623 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4624 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4625 : popValue(Record, OpNum, NextValueNo, 4626 cast<PointerType>(Ptr->getType())->getElementType(), 4627 Cmp)) || 4628 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4629 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4630 return error("Invalid record"); 4631 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4632 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4633 SuccessOrdering == AtomicOrdering::Unordered) 4634 return error("Invalid record"); 4635 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4636 4637 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4638 return Err; 4639 AtomicOrdering FailureOrdering; 4640 if (Record.size() < 7) 4641 FailureOrdering = 4642 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4643 else 4644 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4645 4646 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4647 SSID); 4648 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4649 4650 if (Record.size() < 8) { 4651 // Before weak cmpxchgs existed, the instruction simply returned the 4652 // value loaded from memory, so bitcode files from that era will be 4653 // expecting the first component of a modern cmpxchg. 4654 CurBB->getInstList().push_back(I); 4655 I = ExtractValueInst::Create(I, 0); 4656 } else { 4657 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4658 } 4659 4660 InstructionList.push_back(I); 4661 break; 4662 } 4663 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4664 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4665 unsigned OpNum = 0; 4666 Value *Ptr, *Val; 4667 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4668 !isa<PointerType>(Ptr->getType()) || 4669 popValue(Record, OpNum, NextValueNo, 4670 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4671 OpNum+4 != Record.size()) 4672 return error("Invalid record"); 4673 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4674 if (Operation < AtomicRMWInst::FIRST_BINOP || 4675 Operation > AtomicRMWInst::LAST_BINOP) 4676 return error("Invalid record"); 4677 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4678 if (Ordering == AtomicOrdering::NotAtomic || 4679 Ordering == AtomicOrdering::Unordered) 4680 return error("Invalid record"); 4681 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4682 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4683 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4684 InstructionList.push_back(I); 4685 break; 4686 } 4687 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4688 if (2 != Record.size()) 4689 return error("Invalid record"); 4690 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4691 if (Ordering == AtomicOrdering::NotAtomic || 4692 Ordering == AtomicOrdering::Unordered || 4693 Ordering == AtomicOrdering::Monotonic) 4694 return error("Invalid record"); 4695 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4696 I = new FenceInst(Context, Ordering, SSID); 4697 InstructionList.push_back(I); 4698 break; 4699 } 4700 case bitc::FUNC_CODE_INST_CALL: { 4701 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4702 if (Record.size() < 3) 4703 return error("Invalid record"); 4704 4705 unsigned OpNum = 0; 4706 AttributeList PAL = getAttributes(Record[OpNum++]); 4707 unsigned CCInfo = Record[OpNum++]; 4708 4709 FastMathFlags FMF; 4710 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4711 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4712 if (!FMF.any()) 4713 return error("Fast math flags indicator set for call with no FMF"); 4714 } 4715 4716 FunctionType *FTy = nullptr; 4717 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4718 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4719 return error("Explicit call type is not a function type"); 4720 4721 Value *Callee; 4722 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4723 return error("Invalid record"); 4724 4725 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4726 if (!OpTy) 4727 return error("Callee is not a pointer type"); 4728 if (!FTy) { 4729 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4730 if (!FTy) 4731 return error("Callee is not of pointer to function type"); 4732 } else if (OpTy->getElementType() != FTy) 4733 return error("Explicit call type does not match pointee type of " 4734 "callee operand"); 4735 if (Record.size() < FTy->getNumParams() + OpNum) 4736 return error("Insufficient operands to call"); 4737 4738 SmallVector<Value*, 16> Args; 4739 // Read the fixed params. 4740 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4741 if (FTy->getParamType(i)->isLabelTy()) 4742 Args.push_back(getBasicBlock(Record[OpNum])); 4743 else 4744 Args.push_back(getValue(Record, OpNum, NextValueNo, 4745 FTy->getParamType(i))); 4746 if (!Args.back()) 4747 return error("Invalid record"); 4748 } 4749 4750 // Read type/value pairs for varargs params. 4751 if (!FTy->isVarArg()) { 4752 if (OpNum != Record.size()) 4753 return error("Invalid record"); 4754 } else { 4755 while (OpNum != Record.size()) { 4756 Value *Op; 4757 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4758 return error("Invalid record"); 4759 Args.push_back(Op); 4760 } 4761 } 4762 4763 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4764 OperandBundles.clear(); 4765 InstructionList.push_back(I); 4766 cast<CallInst>(I)->setCallingConv( 4767 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4768 CallInst::TailCallKind TCK = CallInst::TCK_None; 4769 if (CCInfo & 1 << bitc::CALL_TAIL) 4770 TCK = CallInst::TCK_Tail; 4771 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4772 TCK = CallInst::TCK_MustTail; 4773 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4774 TCK = CallInst::TCK_NoTail; 4775 cast<CallInst>(I)->setTailCallKind(TCK); 4776 cast<CallInst>(I)->setAttributes(PAL); 4777 propagateByValTypes(cast<CallBase>(I)); 4778 if (FMF.any()) { 4779 if (!isa<FPMathOperator>(I)) 4780 return error("Fast-math-flags specified for call without " 4781 "floating-point scalar or vector return type"); 4782 I->setFastMathFlags(FMF); 4783 } 4784 break; 4785 } 4786 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4787 if (Record.size() < 3) 4788 return error("Invalid record"); 4789 Type *OpTy = getTypeByID(Record[0]); 4790 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4791 Type *ResTy = getTypeByID(Record[2]); 4792 if (!OpTy || !Op || !ResTy) 4793 return error("Invalid record"); 4794 I = new VAArgInst(Op, ResTy); 4795 InstructionList.push_back(I); 4796 break; 4797 } 4798 4799 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4800 // A call or an invoke can be optionally prefixed with some variable 4801 // number of operand bundle blocks. These blocks are read into 4802 // OperandBundles and consumed at the next call or invoke instruction. 4803 4804 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4805 return error("Invalid record"); 4806 4807 std::vector<Value *> Inputs; 4808 4809 unsigned OpNum = 1; 4810 while (OpNum != Record.size()) { 4811 Value *Op; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4813 return error("Invalid record"); 4814 Inputs.push_back(Op); 4815 } 4816 4817 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4818 continue; 4819 } 4820 } 4821 4822 // Add instruction to end of current BB. If there is no current BB, reject 4823 // this file. 4824 if (!CurBB) { 4825 I->deleteValue(); 4826 return error("Invalid instruction with no BB"); 4827 } 4828 if (!OperandBundles.empty()) { 4829 I->deleteValue(); 4830 return error("Operand bundles found with no consumer"); 4831 } 4832 CurBB->getInstList().push_back(I); 4833 4834 // If this was a terminator instruction, move to the next block. 4835 if (I->isTerminator()) { 4836 ++CurBBNo; 4837 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4838 } 4839 4840 // Non-void values get registered in the value table for future use. 4841 if (I && !I->getType()->isVoidTy()) 4842 ValueList.assignValue(I, NextValueNo++); 4843 } 4844 4845 OutOfRecordLoop: 4846 4847 if (!OperandBundles.empty()) 4848 return error("Operand bundles found with no consumer"); 4849 4850 // Check the function list for unresolved values. 4851 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4852 if (!A->getParent()) { 4853 // We found at least one unresolved value. Nuke them all to avoid leaks. 4854 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4855 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4856 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4857 delete A; 4858 } 4859 } 4860 return error("Never resolved value found in function"); 4861 } 4862 } 4863 4864 // Unexpected unresolved metadata about to be dropped. 4865 if (MDLoader->hasFwdRefs()) 4866 return error("Invalid function metadata: outgoing forward refs"); 4867 4868 // Trim the value list down to the size it was before we parsed this function. 4869 ValueList.shrinkTo(ModuleValueListSize); 4870 MDLoader->shrinkTo(ModuleMDLoaderSize); 4871 std::vector<BasicBlock*>().swap(FunctionBBs); 4872 return Error::success(); 4873 } 4874 4875 /// Find the function body in the bitcode stream 4876 Error BitcodeReader::findFunctionInStream( 4877 Function *F, 4878 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4879 while (DeferredFunctionInfoIterator->second == 0) { 4880 // This is the fallback handling for the old format bitcode that 4881 // didn't contain the function index in the VST, or when we have 4882 // an anonymous function which would not have a VST entry. 4883 // Assert that we have one of those two cases. 4884 assert(VSTOffset == 0 || !F->hasName()); 4885 // Parse the next body in the stream and set its position in the 4886 // DeferredFunctionInfo map. 4887 if (Error Err = rememberAndSkipFunctionBodies()) 4888 return Err; 4889 } 4890 return Error::success(); 4891 } 4892 4893 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4894 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4895 return SyncScope::ID(Val); 4896 if (Val >= SSIDs.size()) 4897 return SyncScope::System; // Map unknown synchronization scopes to system. 4898 return SSIDs[Val]; 4899 } 4900 4901 //===----------------------------------------------------------------------===// 4902 // GVMaterializer implementation 4903 //===----------------------------------------------------------------------===// 4904 4905 Error BitcodeReader::materialize(GlobalValue *GV) { 4906 Function *F = dyn_cast<Function>(GV); 4907 // If it's not a function or is already material, ignore the request. 4908 if (!F || !F->isMaterializable()) 4909 return Error::success(); 4910 4911 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4912 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4913 // If its position is recorded as 0, its body is somewhere in the stream 4914 // but we haven't seen it yet. 4915 if (DFII->second == 0) 4916 if (Error Err = findFunctionInStream(F, DFII)) 4917 return Err; 4918 4919 // Materialize metadata before parsing any function bodies. 4920 if (Error Err = materializeMetadata()) 4921 return Err; 4922 4923 // Move the bit stream to the saved position of the deferred function body. 4924 Stream.JumpToBit(DFII->second); 4925 4926 if (Error Err = parseFunctionBody(F)) 4927 return Err; 4928 F->setIsMaterializable(false); 4929 4930 if (StripDebugInfo) 4931 stripDebugInfo(*F); 4932 4933 // Upgrade any old intrinsic calls in the function. 4934 for (auto &I : UpgradedIntrinsics) { 4935 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4936 UI != UE;) { 4937 User *U = *UI; 4938 ++UI; 4939 if (CallInst *CI = dyn_cast<CallInst>(U)) 4940 UpgradeIntrinsicCall(CI, I.second); 4941 } 4942 } 4943 4944 // Update calls to the remangled intrinsics 4945 for (auto &I : RemangledIntrinsics) 4946 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4947 UI != UE;) 4948 // Don't expect any other users than call sites 4949 CallSite(*UI++).setCalledFunction(I.second); 4950 4951 // Finish fn->subprogram upgrade for materialized functions. 4952 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4953 F->setSubprogram(SP); 4954 4955 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4956 if (!MDLoader->isStrippingTBAA()) { 4957 for (auto &I : instructions(F)) { 4958 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4959 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4960 continue; 4961 MDLoader->setStripTBAA(true); 4962 stripTBAA(F->getParent()); 4963 } 4964 } 4965 4966 // Bring in any functions that this function forward-referenced via 4967 // blockaddresses. 4968 return materializeForwardReferencedFunctions(); 4969 } 4970 4971 Error BitcodeReader::materializeModule() { 4972 if (Error Err = materializeMetadata()) 4973 return Err; 4974 4975 // Promise to materialize all forward references. 4976 WillMaterializeAllForwardRefs = true; 4977 4978 // Iterate over the module, deserializing any functions that are still on 4979 // disk. 4980 for (Function &F : *TheModule) { 4981 if (Error Err = materialize(&F)) 4982 return Err; 4983 } 4984 // At this point, if there are any function bodies, parse the rest of 4985 // the bits in the module past the last function block we have recorded 4986 // through either lazy scanning or the VST. 4987 if (LastFunctionBlockBit || NextUnreadBit) 4988 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4989 ? LastFunctionBlockBit 4990 : NextUnreadBit)) 4991 return Err; 4992 4993 // Check that all block address forward references got resolved (as we 4994 // promised above). 4995 if (!BasicBlockFwdRefs.empty()) 4996 return error("Never resolved function from blockaddress"); 4997 4998 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4999 // delete the old functions to clean up. We can't do this unless the entire 5000 // module is materialized because there could always be another function body 5001 // with calls to the old function. 5002 for (auto &I : UpgradedIntrinsics) { 5003 for (auto *U : I.first->users()) { 5004 if (CallInst *CI = dyn_cast<CallInst>(U)) 5005 UpgradeIntrinsicCall(CI, I.second); 5006 } 5007 if (!I.first->use_empty()) 5008 I.first->replaceAllUsesWith(I.second); 5009 I.first->eraseFromParent(); 5010 } 5011 UpgradedIntrinsics.clear(); 5012 // Do the same for remangled intrinsics 5013 for (auto &I : RemangledIntrinsics) { 5014 I.first->replaceAllUsesWith(I.second); 5015 I.first->eraseFromParent(); 5016 } 5017 RemangledIntrinsics.clear(); 5018 5019 UpgradeDebugInfo(*TheModule); 5020 5021 UpgradeModuleFlags(*TheModule); 5022 5023 UpgradeRetainReleaseMarker(*TheModule); 5024 5025 return Error::success(); 5026 } 5027 5028 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5029 return IdentifiedStructTypes; 5030 } 5031 5032 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5033 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5034 StringRef ModulePath, unsigned ModuleId) 5035 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5036 ModulePath(ModulePath), ModuleId(ModuleId) {} 5037 5038 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5039 TheIndex.addModule(ModulePath, ModuleId); 5040 } 5041 5042 ModuleSummaryIndex::ModuleInfo * 5043 ModuleSummaryIndexBitcodeReader::getThisModule() { 5044 return TheIndex.getModule(ModulePath); 5045 } 5046 5047 std::pair<ValueInfo, GlobalValue::GUID> 5048 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5049 auto VGI = ValueIdToValueInfoMap[ValueId]; 5050 assert(VGI.first); 5051 return VGI; 5052 } 5053 5054 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5055 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5056 StringRef SourceFileName) { 5057 std::string GlobalId = 5058 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5059 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5060 auto OriginalNameID = ValueGUID; 5061 if (GlobalValue::isLocalLinkage(Linkage)) 5062 OriginalNameID = GlobalValue::getGUID(ValueName); 5063 if (PrintSummaryGUIDs) 5064 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5065 << ValueName << "\n"; 5066 5067 // UseStrtab is false for legacy summary formats and value names are 5068 // created on stack. In that case we save the name in a string saver in 5069 // the index so that the value name can be recorded. 5070 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5071 TheIndex.getOrInsertValueInfo( 5072 ValueGUID, 5073 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5074 OriginalNameID); 5075 } 5076 5077 // Specialized value symbol table parser used when reading module index 5078 // blocks where we don't actually create global values. The parsed information 5079 // is saved in the bitcode reader for use when later parsing summaries. 5080 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5081 uint64_t Offset, 5082 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5083 // With a strtab the VST is not required to parse the summary. 5084 if (UseStrtab) 5085 return Error::success(); 5086 5087 assert(Offset > 0 && "Expected non-zero VST offset"); 5088 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5089 5090 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5091 return error("Invalid record"); 5092 5093 SmallVector<uint64_t, 64> Record; 5094 5095 // Read all the records for this value table. 5096 SmallString<128> ValueName; 5097 5098 while (true) { 5099 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5100 5101 switch (Entry.Kind) { 5102 case BitstreamEntry::SubBlock: // Handled for us already. 5103 case BitstreamEntry::Error: 5104 return error("Malformed block"); 5105 case BitstreamEntry::EndBlock: 5106 // Done parsing VST, jump back to wherever we came from. 5107 Stream.JumpToBit(CurrentBit); 5108 return Error::success(); 5109 case BitstreamEntry::Record: 5110 // The interesting case. 5111 break; 5112 } 5113 5114 // Read a record. 5115 Record.clear(); 5116 switch (Stream.readRecord(Entry.ID, Record)) { 5117 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5118 break; 5119 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5120 if (convertToString(Record, 1, ValueName)) 5121 return error("Invalid record"); 5122 unsigned ValueID = Record[0]; 5123 assert(!SourceFileName.empty()); 5124 auto VLI = ValueIdToLinkageMap.find(ValueID); 5125 assert(VLI != ValueIdToLinkageMap.end() && 5126 "No linkage found for VST entry?"); 5127 auto Linkage = VLI->second; 5128 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5129 ValueName.clear(); 5130 break; 5131 } 5132 case bitc::VST_CODE_FNENTRY: { 5133 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5134 if (convertToString(Record, 2, ValueName)) 5135 return error("Invalid record"); 5136 unsigned ValueID = Record[0]; 5137 assert(!SourceFileName.empty()); 5138 auto VLI = ValueIdToLinkageMap.find(ValueID); 5139 assert(VLI != ValueIdToLinkageMap.end() && 5140 "No linkage found for VST entry?"); 5141 auto Linkage = VLI->second; 5142 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5143 ValueName.clear(); 5144 break; 5145 } 5146 case bitc::VST_CODE_COMBINED_ENTRY: { 5147 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5148 unsigned ValueID = Record[0]; 5149 GlobalValue::GUID RefGUID = Record[1]; 5150 // The "original name", which is the second value of the pair will be 5151 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5152 ValueIdToValueInfoMap[ValueID] = 5153 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5154 break; 5155 } 5156 } 5157 } 5158 } 5159 5160 // Parse just the blocks needed for building the index out of the module. 5161 // At the end of this routine the module Index is populated with a map 5162 // from global value id to GlobalValueSummary objects. 5163 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5164 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5165 return error("Invalid record"); 5166 5167 SmallVector<uint64_t, 64> Record; 5168 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5169 unsigned ValueId = 0; 5170 5171 // Read the index for this module. 5172 while (true) { 5173 BitstreamEntry Entry = Stream.advance(); 5174 5175 switch (Entry.Kind) { 5176 case BitstreamEntry::Error: 5177 return error("Malformed block"); 5178 case BitstreamEntry::EndBlock: 5179 return Error::success(); 5180 5181 case BitstreamEntry::SubBlock: 5182 switch (Entry.ID) { 5183 default: // Skip unknown content. 5184 if (Stream.SkipBlock()) 5185 return error("Invalid record"); 5186 break; 5187 case bitc::BLOCKINFO_BLOCK_ID: 5188 // Need to parse these to get abbrev ids (e.g. for VST) 5189 if (readBlockInfo()) 5190 return error("Malformed block"); 5191 break; 5192 case bitc::VALUE_SYMTAB_BLOCK_ID: 5193 // Should have been parsed earlier via VSTOffset, unless there 5194 // is no summary section. 5195 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5196 !SeenGlobalValSummary) && 5197 "Expected early VST parse via VSTOffset record"); 5198 if (Stream.SkipBlock()) 5199 return error("Invalid record"); 5200 break; 5201 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5202 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5203 // Add the module if it is a per-module index (has a source file name). 5204 if (!SourceFileName.empty()) 5205 addThisModule(); 5206 assert(!SeenValueSymbolTable && 5207 "Already read VST when parsing summary block?"); 5208 // We might not have a VST if there were no values in the 5209 // summary. An empty summary block generated when we are 5210 // performing ThinLTO compiles so we don't later invoke 5211 // the regular LTO process on them. 5212 if (VSTOffset > 0) { 5213 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5214 return Err; 5215 SeenValueSymbolTable = true; 5216 } 5217 SeenGlobalValSummary = true; 5218 if (Error Err = parseEntireSummary(Entry.ID)) 5219 return Err; 5220 break; 5221 case bitc::MODULE_STRTAB_BLOCK_ID: 5222 if (Error Err = parseModuleStringTable()) 5223 return Err; 5224 break; 5225 } 5226 continue; 5227 5228 case BitstreamEntry::Record: { 5229 Record.clear(); 5230 auto BitCode = Stream.readRecord(Entry.ID, Record); 5231 switch (BitCode) { 5232 default: 5233 break; // Default behavior, ignore unknown content. 5234 case bitc::MODULE_CODE_VERSION: { 5235 if (Error Err = parseVersionRecord(Record).takeError()) 5236 return Err; 5237 break; 5238 } 5239 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5240 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5241 SmallString<128> ValueName; 5242 if (convertToString(Record, 0, ValueName)) 5243 return error("Invalid record"); 5244 SourceFileName = ValueName.c_str(); 5245 break; 5246 } 5247 /// MODULE_CODE_HASH: [5*i32] 5248 case bitc::MODULE_CODE_HASH: { 5249 if (Record.size() != 5) 5250 return error("Invalid hash length " + Twine(Record.size()).str()); 5251 auto &Hash = getThisModule()->second.second; 5252 int Pos = 0; 5253 for (auto &Val : Record) { 5254 assert(!(Val >> 32) && "Unexpected high bits set"); 5255 Hash[Pos++] = Val; 5256 } 5257 break; 5258 } 5259 /// MODULE_CODE_VSTOFFSET: [offset] 5260 case bitc::MODULE_CODE_VSTOFFSET: 5261 if (Record.size() < 1) 5262 return error("Invalid record"); 5263 // Note that we subtract 1 here because the offset is relative to one 5264 // word before the start of the identification or module block, which 5265 // was historically always the start of the regular bitcode header. 5266 VSTOffset = Record[0] - 1; 5267 break; 5268 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5269 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5270 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5271 // v2: [strtab offset, strtab size, v1] 5272 case bitc::MODULE_CODE_GLOBALVAR: 5273 case bitc::MODULE_CODE_FUNCTION: 5274 case bitc::MODULE_CODE_ALIAS: { 5275 StringRef Name; 5276 ArrayRef<uint64_t> GVRecord; 5277 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5278 if (GVRecord.size() <= 3) 5279 return error("Invalid record"); 5280 uint64_t RawLinkage = GVRecord[3]; 5281 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5282 if (!UseStrtab) { 5283 ValueIdToLinkageMap[ValueId++] = Linkage; 5284 break; 5285 } 5286 5287 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5288 break; 5289 } 5290 } 5291 } 5292 continue; 5293 } 5294 } 5295 } 5296 5297 std::vector<ValueInfo> 5298 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5299 std::vector<ValueInfo> Ret; 5300 Ret.reserve(Record.size()); 5301 for (uint64_t RefValueId : Record) 5302 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5303 return Ret; 5304 } 5305 5306 std::vector<FunctionSummary::EdgeTy> 5307 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5308 bool IsOldProfileFormat, 5309 bool HasProfile, bool HasRelBF) { 5310 std::vector<FunctionSummary::EdgeTy> Ret; 5311 Ret.reserve(Record.size()); 5312 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5313 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5314 uint64_t RelBF = 0; 5315 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5316 if (IsOldProfileFormat) { 5317 I += 1; // Skip old callsitecount field 5318 if (HasProfile) 5319 I += 1; // Skip old profilecount field 5320 } else if (HasProfile) 5321 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5322 else if (HasRelBF) 5323 RelBF = Record[++I]; 5324 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5325 } 5326 return Ret; 5327 } 5328 5329 static void 5330 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5331 WholeProgramDevirtResolution &Wpd) { 5332 uint64_t ArgNum = Record[Slot++]; 5333 WholeProgramDevirtResolution::ByArg &B = 5334 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5335 Slot += ArgNum; 5336 5337 B.TheKind = 5338 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5339 B.Info = Record[Slot++]; 5340 B.Byte = Record[Slot++]; 5341 B.Bit = Record[Slot++]; 5342 } 5343 5344 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5345 StringRef Strtab, size_t &Slot, 5346 TypeIdSummary &TypeId) { 5347 uint64_t Id = Record[Slot++]; 5348 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5349 5350 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5351 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5352 static_cast<size_t>(Record[Slot + 1])}; 5353 Slot += 2; 5354 5355 uint64_t ResByArgNum = Record[Slot++]; 5356 for (uint64_t I = 0; I != ResByArgNum; ++I) 5357 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5358 } 5359 5360 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5361 StringRef Strtab, 5362 ModuleSummaryIndex &TheIndex) { 5363 size_t Slot = 0; 5364 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5365 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5366 Slot += 2; 5367 5368 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5369 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5370 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5371 TypeId.TTRes.SizeM1 = Record[Slot++]; 5372 TypeId.TTRes.BitMask = Record[Slot++]; 5373 TypeId.TTRes.InlineBits = Record[Slot++]; 5374 5375 while (Slot < Record.size()) 5376 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5377 } 5378 5379 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5380 // Read-only refs are in the end of the refs list. 5381 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5382 Refs[RefNo].setReadOnly(); 5383 } 5384 5385 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5386 // objects in the index. 5387 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5388 if (Stream.EnterSubBlock(ID)) 5389 return error("Invalid record"); 5390 SmallVector<uint64_t, 64> Record; 5391 5392 // Parse version 5393 { 5394 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5395 if (Entry.Kind != BitstreamEntry::Record) 5396 return error("Invalid Summary Block: record for version expected"); 5397 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5398 return error("Invalid Summary Block: version expected"); 5399 } 5400 const uint64_t Version = Record[0]; 5401 const bool IsOldProfileFormat = Version == 1; 5402 if (Version < 1 || Version > 6) 5403 return error("Invalid summary version " + Twine(Version) + 5404 ". Version should be in the range [1-6]."); 5405 Record.clear(); 5406 5407 // Keep around the last seen summary to be used when we see an optional 5408 // "OriginalName" attachement. 5409 GlobalValueSummary *LastSeenSummary = nullptr; 5410 GlobalValue::GUID LastSeenGUID = 0; 5411 5412 // We can expect to see any number of type ID information records before 5413 // each function summary records; these variables store the information 5414 // collected so far so that it can be used to create the summary object. 5415 std::vector<GlobalValue::GUID> PendingTypeTests; 5416 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5417 PendingTypeCheckedLoadVCalls; 5418 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5419 PendingTypeCheckedLoadConstVCalls; 5420 5421 while (true) { 5422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5423 5424 switch (Entry.Kind) { 5425 case BitstreamEntry::SubBlock: // Handled for us already. 5426 case BitstreamEntry::Error: 5427 return error("Malformed block"); 5428 case BitstreamEntry::EndBlock: 5429 return Error::success(); 5430 case BitstreamEntry::Record: 5431 // The interesting case. 5432 break; 5433 } 5434 5435 // Read a record. The record format depends on whether this 5436 // is a per-module index or a combined index file. In the per-module 5437 // case the records contain the associated value's ID for correlation 5438 // with VST entries. In the combined index the correlation is done 5439 // via the bitcode offset of the summary records (which were saved 5440 // in the combined index VST entries). The records also contain 5441 // information used for ThinLTO renaming and importing. 5442 Record.clear(); 5443 auto BitCode = Stream.readRecord(Entry.ID, Record); 5444 switch (BitCode) { 5445 default: // Default behavior: ignore. 5446 break; 5447 case bitc::FS_FLAGS: { // [flags] 5448 uint64_t Flags = Record[0]; 5449 // Scan flags. 5450 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5451 5452 // 1 bit: WithGlobalValueDeadStripping flag. 5453 // Set on combined index only. 5454 if (Flags & 0x1) 5455 TheIndex.setWithGlobalValueDeadStripping(); 5456 // 1 bit: SkipModuleByDistributedBackend flag. 5457 // Set on combined index only. 5458 if (Flags & 0x2) 5459 TheIndex.setSkipModuleByDistributedBackend(); 5460 // 1 bit: HasSyntheticEntryCounts flag. 5461 // Set on combined index only. 5462 if (Flags & 0x4) 5463 TheIndex.setHasSyntheticEntryCounts(); 5464 // 1 bit: DisableSplitLTOUnit flag. 5465 // Set on per module indexes. It is up to the client to validate 5466 // the consistency of this flag across modules being linked. 5467 if (Flags & 0x8) 5468 TheIndex.setEnableSplitLTOUnit(); 5469 // 1 bit: PartiallySplitLTOUnits flag. 5470 // Set on combined index only. 5471 if (Flags & 0x10) 5472 TheIndex.setPartiallySplitLTOUnits(); 5473 break; 5474 } 5475 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5476 uint64_t ValueID = Record[0]; 5477 GlobalValue::GUID RefGUID = Record[1]; 5478 ValueIdToValueInfoMap[ValueID] = 5479 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5480 break; 5481 } 5482 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5483 // numrefs x valueid, n x (valueid)] 5484 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5485 // numrefs x valueid, 5486 // n x (valueid, hotness)] 5487 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5488 // numrefs x valueid, 5489 // n x (valueid, relblockfreq)] 5490 case bitc::FS_PERMODULE: 5491 case bitc::FS_PERMODULE_RELBF: 5492 case bitc::FS_PERMODULE_PROFILE: { 5493 unsigned ValueID = Record[0]; 5494 uint64_t RawFlags = Record[1]; 5495 unsigned InstCount = Record[2]; 5496 uint64_t RawFunFlags = 0; 5497 unsigned NumRefs = Record[3]; 5498 unsigned NumImmutableRefs = 0; 5499 int RefListStartIndex = 4; 5500 if (Version >= 4) { 5501 RawFunFlags = Record[3]; 5502 NumRefs = Record[4]; 5503 RefListStartIndex = 5; 5504 if (Version >= 5) { 5505 NumImmutableRefs = Record[5]; 5506 RefListStartIndex = 6; 5507 } 5508 } 5509 5510 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5511 // The module path string ref set in the summary must be owned by the 5512 // index's module string table. Since we don't have a module path 5513 // string table section in the per-module index, we create a single 5514 // module path string table entry with an empty (0) ID to take 5515 // ownership. 5516 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5517 assert(Record.size() >= RefListStartIndex + NumRefs && 5518 "Record size inconsistent with number of references"); 5519 std::vector<ValueInfo> Refs = makeRefList( 5520 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5521 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5522 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5523 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5524 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5525 IsOldProfileFormat, HasProfile, HasRelBF); 5526 setImmutableRefs(Refs, NumImmutableRefs); 5527 auto FS = llvm::make_unique<FunctionSummary>( 5528 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5529 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5530 std::move(PendingTypeTestAssumeVCalls), 5531 std::move(PendingTypeCheckedLoadVCalls), 5532 std::move(PendingTypeTestAssumeConstVCalls), 5533 std::move(PendingTypeCheckedLoadConstVCalls)); 5534 PendingTypeTests.clear(); 5535 PendingTypeTestAssumeVCalls.clear(); 5536 PendingTypeCheckedLoadVCalls.clear(); 5537 PendingTypeTestAssumeConstVCalls.clear(); 5538 PendingTypeCheckedLoadConstVCalls.clear(); 5539 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5540 FS->setModulePath(getThisModule()->first()); 5541 FS->setOriginalName(VIAndOriginalGUID.second); 5542 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5543 break; 5544 } 5545 // FS_ALIAS: [valueid, flags, valueid] 5546 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5547 // they expect all aliasee summaries to be available. 5548 case bitc::FS_ALIAS: { 5549 unsigned ValueID = Record[0]; 5550 uint64_t RawFlags = Record[1]; 5551 unsigned AliaseeID = Record[2]; 5552 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5553 auto AS = llvm::make_unique<AliasSummary>(Flags); 5554 // The module path string ref set in the summary must be owned by the 5555 // index's module string table. Since we don't have a module path 5556 // string table section in the per-module index, we create a single 5557 // module path string table entry with an empty (0) ID to take 5558 // ownership. 5559 AS->setModulePath(getThisModule()->first()); 5560 5561 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5562 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5563 if (!AliaseeInModule) 5564 return error("Alias expects aliasee summary to be parsed"); 5565 AS->setAliasee(AliaseeVI, AliaseeInModule); 5566 5567 auto GUID = getValueInfoFromValueId(ValueID); 5568 AS->setOriginalName(GUID.second); 5569 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5570 break; 5571 } 5572 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5573 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5574 unsigned ValueID = Record[0]; 5575 uint64_t RawFlags = Record[1]; 5576 unsigned RefArrayStart = 2; 5577 GlobalVarSummary::GVarFlags GVF; 5578 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5579 if (Version >= 5) { 5580 GVF = getDecodedGVarFlags(Record[2]); 5581 RefArrayStart = 3; 5582 } 5583 std::vector<ValueInfo> Refs = 5584 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5585 auto FS = 5586 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5587 FS->setModulePath(getThisModule()->first()); 5588 auto GUID = getValueInfoFromValueId(ValueID); 5589 FS->setOriginalName(GUID.second); 5590 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5591 break; 5592 } 5593 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5594 // numrefs x valueid, n x (valueid)] 5595 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5596 // numrefs x valueid, n x (valueid, hotness)] 5597 case bitc::FS_COMBINED: 5598 case bitc::FS_COMBINED_PROFILE: { 5599 unsigned ValueID = Record[0]; 5600 uint64_t ModuleId = Record[1]; 5601 uint64_t RawFlags = Record[2]; 5602 unsigned InstCount = Record[3]; 5603 uint64_t RawFunFlags = 0; 5604 uint64_t EntryCount = 0; 5605 unsigned NumRefs = Record[4]; 5606 unsigned NumImmutableRefs = 0; 5607 int RefListStartIndex = 5; 5608 5609 if (Version >= 4) { 5610 RawFunFlags = Record[4]; 5611 RefListStartIndex = 6; 5612 size_t NumRefsIndex = 5; 5613 if (Version >= 5) { 5614 RefListStartIndex = 7; 5615 if (Version >= 6) { 5616 NumRefsIndex = 6; 5617 EntryCount = Record[5]; 5618 RefListStartIndex = 8; 5619 } 5620 NumImmutableRefs = Record[RefListStartIndex - 1]; 5621 } 5622 NumRefs = Record[NumRefsIndex]; 5623 } 5624 5625 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5626 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5627 assert(Record.size() >= RefListStartIndex + NumRefs && 5628 "Record size inconsistent with number of references"); 5629 std::vector<ValueInfo> Refs = makeRefList( 5630 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5631 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5632 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5633 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5634 IsOldProfileFormat, HasProfile, false); 5635 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5636 setImmutableRefs(Refs, NumImmutableRefs); 5637 auto FS = llvm::make_unique<FunctionSummary>( 5638 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5639 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5640 std::move(PendingTypeTestAssumeVCalls), 5641 std::move(PendingTypeCheckedLoadVCalls), 5642 std::move(PendingTypeTestAssumeConstVCalls), 5643 std::move(PendingTypeCheckedLoadConstVCalls)); 5644 PendingTypeTests.clear(); 5645 PendingTypeTestAssumeVCalls.clear(); 5646 PendingTypeCheckedLoadVCalls.clear(); 5647 PendingTypeTestAssumeConstVCalls.clear(); 5648 PendingTypeCheckedLoadConstVCalls.clear(); 5649 LastSeenSummary = FS.get(); 5650 LastSeenGUID = VI.getGUID(); 5651 FS->setModulePath(ModuleIdMap[ModuleId]); 5652 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5653 break; 5654 } 5655 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5656 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5657 // they expect all aliasee summaries to be available. 5658 case bitc::FS_COMBINED_ALIAS: { 5659 unsigned ValueID = Record[0]; 5660 uint64_t ModuleId = Record[1]; 5661 uint64_t RawFlags = Record[2]; 5662 unsigned AliaseeValueId = Record[3]; 5663 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5664 auto AS = llvm::make_unique<AliasSummary>(Flags); 5665 LastSeenSummary = AS.get(); 5666 AS->setModulePath(ModuleIdMap[ModuleId]); 5667 5668 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5669 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5670 AS->setAliasee(AliaseeVI, AliaseeInModule); 5671 5672 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5673 LastSeenGUID = VI.getGUID(); 5674 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5675 break; 5676 } 5677 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5678 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5679 unsigned ValueID = Record[0]; 5680 uint64_t ModuleId = Record[1]; 5681 uint64_t RawFlags = Record[2]; 5682 unsigned RefArrayStart = 3; 5683 GlobalVarSummary::GVarFlags GVF; 5684 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5685 if (Version >= 5) { 5686 GVF = getDecodedGVarFlags(Record[3]); 5687 RefArrayStart = 4; 5688 } 5689 std::vector<ValueInfo> Refs = 5690 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5691 auto FS = 5692 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5693 LastSeenSummary = FS.get(); 5694 FS->setModulePath(ModuleIdMap[ModuleId]); 5695 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5696 LastSeenGUID = VI.getGUID(); 5697 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5698 break; 5699 } 5700 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5701 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5702 uint64_t OriginalName = Record[0]; 5703 if (!LastSeenSummary) 5704 return error("Name attachment that does not follow a combined record"); 5705 LastSeenSummary->setOriginalName(OriginalName); 5706 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5707 // Reset the LastSeenSummary 5708 LastSeenSummary = nullptr; 5709 LastSeenGUID = 0; 5710 break; 5711 } 5712 case bitc::FS_TYPE_TESTS: 5713 assert(PendingTypeTests.empty()); 5714 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5715 Record.end()); 5716 break; 5717 5718 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5719 assert(PendingTypeTestAssumeVCalls.empty()); 5720 for (unsigned I = 0; I != Record.size(); I += 2) 5721 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5722 break; 5723 5724 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5725 assert(PendingTypeCheckedLoadVCalls.empty()); 5726 for (unsigned I = 0; I != Record.size(); I += 2) 5727 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5728 break; 5729 5730 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5731 PendingTypeTestAssumeConstVCalls.push_back( 5732 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5733 break; 5734 5735 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5736 PendingTypeCheckedLoadConstVCalls.push_back( 5737 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5738 break; 5739 5740 case bitc::FS_CFI_FUNCTION_DEFS: { 5741 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5742 for (unsigned I = 0; I != Record.size(); I += 2) 5743 CfiFunctionDefs.insert( 5744 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5745 break; 5746 } 5747 5748 case bitc::FS_CFI_FUNCTION_DECLS: { 5749 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5750 for (unsigned I = 0; I != Record.size(); I += 2) 5751 CfiFunctionDecls.insert( 5752 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5753 break; 5754 } 5755 5756 case bitc::FS_TYPE_ID: 5757 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5758 break; 5759 } 5760 } 5761 llvm_unreachable("Exit infinite loop"); 5762 } 5763 5764 // Parse the module string table block into the Index. 5765 // This populates the ModulePathStringTable map in the index. 5766 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5767 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5768 return error("Invalid record"); 5769 5770 SmallVector<uint64_t, 64> Record; 5771 5772 SmallString<128> ModulePath; 5773 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5774 5775 while (true) { 5776 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5777 5778 switch (Entry.Kind) { 5779 case BitstreamEntry::SubBlock: // Handled for us already. 5780 case BitstreamEntry::Error: 5781 return error("Malformed block"); 5782 case BitstreamEntry::EndBlock: 5783 return Error::success(); 5784 case BitstreamEntry::Record: 5785 // The interesting case. 5786 break; 5787 } 5788 5789 Record.clear(); 5790 switch (Stream.readRecord(Entry.ID, Record)) { 5791 default: // Default behavior: ignore. 5792 break; 5793 case bitc::MST_CODE_ENTRY: { 5794 // MST_ENTRY: [modid, namechar x N] 5795 uint64_t ModuleId = Record[0]; 5796 5797 if (convertToString(Record, 1, ModulePath)) 5798 return error("Invalid record"); 5799 5800 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5801 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5802 5803 ModulePath.clear(); 5804 break; 5805 } 5806 /// MST_CODE_HASH: [5*i32] 5807 case bitc::MST_CODE_HASH: { 5808 if (Record.size() != 5) 5809 return error("Invalid hash length " + Twine(Record.size()).str()); 5810 if (!LastSeenModule) 5811 return error("Invalid hash that does not follow a module path"); 5812 int Pos = 0; 5813 for (auto &Val : Record) { 5814 assert(!(Val >> 32) && "Unexpected high bits set"); 5815 LastSeenModule->second.second[Pos++] = Val; 5816 } 5817 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5818 LastSeenModule = nullptr; 5819 break; 5820 } 5821 } 5822 } 5823 llvm_unreachable("Exit infinite loop"); 5824 } 5825 5826 namespace { 5827 5828 // FIXME: This class is only here to support the transition to llvm::Error. It 5829 // will be removed once this transition is complete. Clients should prefer to 5830 // deal with the Error value directly, rather than converting to error_code. 5831 class BitcodeErrorCategoryType : public std::error_category { 5832 const char *name() const noexcept override { 5833 return "llvm.bitcode"; 5834 } 5835 5836 std::string message(int IE) const override { 5837 BitcodeError E = static_cast<BitcodeError>(IE); 5838 switch (E) { 5839 case BitcodeError::CorruptedBitcode: 5840 return "Corrupted bitcode"; 5841 } 5842 llvm_unreachable("Unknown error type!"); 5843 } 5844 }; 5845 5846 } // end anonymous namespace 5847 5848 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5849 5850 const std::error_category &llvm::BitcodeErrorCategory() { 5851 return *ErrorCategory; 5852 } 5853 5854 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5855 unsigned Block, unsigned RecordID) { 5856 if (Stream.EnterSubBlock(Block)) 5857 return error("Invalid record"); 5858 5859 StringRef Strtab; 5860 while (true) { 5861 BitstreamEntry Entry = Stream.advance(); 5862 switch (Entry.Kind) { 5863 case BitstreamEntry::EndBlock: 5864 return Strtab; 5865 5866 case BitstreamEntry::Error: 5867 return error("Malformed block"); 5868 5869 case BitstreamEntry::SubBlock: 5870 if (Stream.SkipBlock()) 5871 return error("Malformed block"); 5872 break; 5873 5874 case BitstreamEntry::Record: 5875 StringRef Blob; 5876 SmallVector<uint64_t, 1> Record; 5877 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5878 Strtab = Blob; 5879 break; 5880 } 5881 } 5882 } 5883 5884 //===----------------------------------------------------------------------===// 5885 // External interface 5886 //===----------------------------------------------------------------------===// 5887 5888 Expected<std::vector<BitcodeModule>> 5889 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5890 auto FOrErr = getBitcodeFileContents(Buffer); 5891 if (!FOrErr) 5892 return FOrErr.takeError(); 5893 return std::move(FOrErr->Mods); 5894 } 5895 5896 Expected<BitcodeFileContents> 5897 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5898 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5899 if (!StreamOrErr) 5900 return StreamOrErr.takeError(); 5901 BitstreamCursor &Stream = *StreamOrErr; 5902 5903 BitcodeFileContents F; 5904 while (true) { 5905 uint64_t BCBegin = Stream.getCurrentByteNo(); 5906 5907 // We may be consuming bitcode from a client that leaves garbage at the end 5908 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5909 // the end that there cannot possibly be another module, stop looking. 5910 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5911 return F; 5912 5913 BitstreamEntry Entry = Stream.advance(); 5914 switch (Entry.Kind) { 5915 case BitstreamEntry::EndBlock: 5916 case BitstreamEntry::Error: 5917 return error("Malformed block"); 5918 5919 case BitstreamEntry::SubBlock: { 5920 uint64_t IdentificationBit = -1ull; 5921 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5922 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5923 if (Stream.SkipBlock()) 5924 return error("Malformed block"); 5925 5926 Entry = Stream.advance(); 5927 if (Entry.Kind != BitstreamEntry::SubBlock || 5928 Entry.ID != bitc::MODULE_BLOCK_ID) 5929 return error("Malformed block"); 5930 } 5931 5932 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5933 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5934 if (Stream.SkipBlock()) 5935 return error("Malformed block"); 5936 5937 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5938 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5939 Buffer.getBufferIdentifier(), IdentificationBit, 5940 ModuleBit}); 5941 continue; 5942 } 5943 5944 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5945 Expected<StringRef> Strtab = 5946 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5947 if (!Strtab) 5948 return Strtab.takeError(); 5949 // This string table is used by every preceding bitcode module that does 5950 // not have its own string table. A bitcode file may have multiple 5951 // string tables if it was created by binary concatenation, for example 5952 // with "llvm-cat -b". 5953 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5954 if (!I->Strtab.empty()) 5955 break; 5956 I->Strtab = *Strtab; 5957 } 5958 // Similarly, the string table is used by every preceding symbol table; 5959 // normally there will be just one unless the bitcode file was created 5960 // by binary concatenation. 5961 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5962 F.StrtabForSymtab = *Strtab; 5963 continue; 5964 } 5965 5966 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5967 Expected<StringRef> SymtabOrErr = 5968 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5969 if (!SymtabOrErr) 5970 return SymtabOrErr.takeError(); 5971 5972 // We can expect the bitcode file to have multiple symbol tables if it 5973 // was created by binary concatenation. In that case we silently 5974 // ignore any subsequent symbol tables, which is fine because this is a 5975 // low level function. The client is expected to notice that the number 5976 // of modules in the symbol table does not match the number of modules 5977 // in the input file and regenerate the symbol table. 5978 if (F.Symtab.empty()) 5979 F.Symtab = *SymtabOrErr; 5980 continue; 5981 } 5982 5983 if (Stream.SkipBlock()) 5984 return error("Malformed block"); 5985 continue; 5986 } 5987 case BitstreamEntry::Record: 5988 Stream.skipRecord(Entry.ID); 5989 continue; 5990 } 5991 } 5992 } 5993 5994 /// Get a lazy one-at-time loading module from bitcode. 5995 /// 5996 /// This isn't always used in a lazy context. In particular, it's also used by 5997 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5998 /// in forward-referenced functions from block address references. 5999 /// 6000 /// \param[in] MaterializeAll Set to \c true if we should materialize 6001 /// everything. 6002 Expected<std::unique_ptr<Module>> 6003 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6004 bool ShouldLazyLoadMetadata, bool IsImporting) { 6005 BitstreamCursor Stream(Buffer); 6006 6007 std::string ProducerIdentification; 6008 if (IdentificationBit != -1ull) { 6009 Stream.JumpToBit(IdentificationBit); 6010 Expected<std::string> ProducerIdentificationOrErr = 6011 readIdentificationBlock(Stream); 6012 if (!ProducerIdentificationOrErr) 6013 return ProducerIdentificationOrErr.takeError(); 6014 6015 ProducerIdentification = *ProducerIdentificationOrErr; 6016 } 6017 6018 Stream.JumpToBit(ModuleBit); 6019 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6020 Context); 6021 6022 std::unique_ptr<Module> M = 6023 llvm::make_unique<Module>(ModuleIdentifier, Context); 6024 M->setMaterializer(R); 6025 6026 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6027 if (Error Err = 6028 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6029 return std::move(Err); 6030 6031 if (MaterializeAll) { 6032 // Read in the entire module, and destroy the BitcodeReader. 6033 if (Error Err = M->materializeAll()) 6034 return std::move(Err); 6035 } else { 6036 // Resolve forward references from blockaddresses. 6037 if (Error Err = R->materializeForwardReferencedFunctions()) 6038 return std::move(Err); 6039 } 6040 return std::move(M); 6041 } 6042 6043 Expected<std::unique_ptr<Module>> 6044 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6045 bool IsImporting) { 6046 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6047 } 6048 6049 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6050 // We don't use ModuleIdentifier here because the client may need to control the 6051 // module path used in the combined summary (e.g. when reading summaries for 6052 // regular LTO modules). 6053 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6054 StringRef ModulePath, uint64_t ModuleId) { 6055 BitstreamCursor Stream(Buffer); 6056 Stream.JumpToBit(ModuleBit); 6057 6058 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6059 ModulePath, ModuleId); 6060 return R.parseModule(); 6061 } 6062 6063 // Parse the specified bitcode buffer, returning the function info index. 6064 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6065 BitstreamCursor Stream(Buffer); 6066 Stream.JumpToBit(ModuleBit); 6067 6068 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6069 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6070 ModuleIdentifier, 0); 6071 6072 if (Error Err = R.parseModule()) 6073 return std::move(Err); 6074 6075 return std::move(Index); 6076 } 6077 6078 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6079 unsigned ID) { 6080 if (Stream.EnterSubBlock(ID)) 6081 return error("Invalid record"); 6082 SmallVector<uint64_t, 64> Record; 6083 6084 while (true) { 6085 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6086 6087 switch (Entry.Kind) { 6088 case BitstreamEntry::SubBlock: // Handled for us already. 6089 case BitstreamEntry::Error: 6090 return error("Malformed block"); 6091 case BitstreamEntry::EndBlock: 6092 // If no flags record found, conservatively return true to mimic 6093 // behavior before this flag was added. 6094 return true; 6095 case BitstreamEntry::Record: 6096 // The interesting case. 6097 break; 6098 } 6099 6100 // Look for the FS_FLAGS record. 6101 Record.clear(); 6102 auto BitCode = Stream.readRecord(Entry.ID, Record); 6103 switch (BitCode) { 6104 default: // Default behavior: ignore. 6105 break; 6106 case bitc::FS_FLAGS: { // [flags] 6107 uint64_t Flags = Record[0]; 6108 // Scan flags. 6109 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6110 6111 return Flags & 0x8; 6112 } 6113 } 6114 } 6115 llvm_unreachable("Exit infinite loop"); 6116 } 6117 6118 // Check if the given bitcode buffer contains a global value summary block. 6119 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6120 BitstreamCursor Stream(Buffer); 6121 Stream.JumpToBit(ModuleBit); 6122 6123 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6124 return error("Invalid record"); 6125 6126 while (true) { 6127 BitstreamEntry Entry = Stream.advance(); 6128 6129 switch (Entry.Kind) { 6130 case BitstreamEntry::Error: 6131 return error("Malformed block"); 6132 case BitstreamEntry::EndBlock: 6133 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6134 /*EnableSplitLTOUnit=*/false}; 6135 6136 case BitstreamEntry::SubBlock: 6137 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6138 Expected<bool> EnableSplitLTOUnit = 6139 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6140 if (!EnableSplitLTOUnit) 6141 return EnableSplitLTOUnit.takeError(); 6142 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6143 *EnableSplitLTOUnit}; 6144 } 6145 6146 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6147 Expected<bool> EnableSplitLTOUnit = 6148 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6149 if (!EnableSplitLTOUnit) 6150 return EnableSplitLTOUnit.takeError(); 6151 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6152 *EnableSplitLTOUnit}; 6153 } 6154 6155 // Ignore other sub-blocks. 6156 if (Stream.SkipBlock()) 6157 return error("Malformed block"); 6158 continue; 6159 6160 case BitstreamEntry::Record: 6161 Stream.skipRecord(Entry.ID); 6162 continue; 6163 } 6164 } 6165 } 6166 6167 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6168 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6169 if (!MsOrErr) 6170 return MsOrErr.takeError(); 6171 6172 if (MsOrErr->size() != 1) 6173 return error("Expected a single module"); 6174 6175 return (*MsOrErr)[0]; 6176 } 6177 6178 Expected<std::unique_ptr<Module>> 6179 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6180 bool ShouldLazyLoadMetadata, bool IsImporting) { 6181 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6182 if (!BM) 6183 return BM.takeError(); 6184 6185 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6186 } 6187 6188 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6189 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6190 bool ShouldLazyLoadMetadata, bool IsImporting) { 6191 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6192 IsImporting); 6193 if (MOrErr) 6194 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6195 return MOrErr; 6196 } 6197 6198 Expected<std::unique_ptr<Module>> 6199 BitcodeModule::parseModule(LLVMContext &Context) { 6200 return getModuleImpl(Context, true, false, false); 6201 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6202 // written. We must defer until the Module has been fully materialized. 6203 } 6204 6205 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6206 LLVMContext &Context) { 6207 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6208 if (!BM) 6209 return BM.takeError(); 6210 6211 return BM->parseModule(Context); 6212 } 6213 6214 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6215 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6216 if (!StreamOrErr) 6217 return StreamOrErr.takeError(); 6218 6219 return readTriple(*StreamOrErr); 6220 } 6221 6222 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6223 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6224 if (!StreamOrErr) 6225 return StreamOrErr.takeError(); 6226 6227 return hasObjCCategory(*StreamOrErr); 6228 } 6229 6230 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6231 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6232 if (!StreamOrErr) 6233 return StreamOrErr.takeError(); 6234 6235 return readIdentificationCode(*StreamOrErr); 6236 } 6237 6238 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6239 ModuleSummaryIndex &CombinedIndex, 6240 uint64_t ModuleId) { 6241 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6242 if (!BM) 6243 return BM.takeError(); 6244 6245 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6246 } 6247 6248 Expected<std::unique_ptr<ModuleSummaryIndex>> 6249 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6250 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6251 if (!BM) 6252 return BM.takeError(); 6253 6254 return BM->getSummary(); 6255 } 6256 6257 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6258 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6259 if (!BM) 6260 return BM.takeError(); 6261 6262 return BM->getLTOInfo(); 6263 } 6264 6265 Expected<std::unique_ptr<ModuleSummaryIndex>> 6266 llvm::getModuleSummaryIndexForFile(StringRef Path, 6267 bool IgnoreEmptyThinLTOIndexFile) { 6268 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6269 MemoryBuffer::getFileOrSTDIN(Path); 6270 if (!FileOrErr) 6271 return errorCodeToError(FileOrErr.getError()); 6272 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6273 return nullptr; 6274 return getModuleSummaryIndex(**FileOrErr); 6275 } 6276