xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 6e07f16fae605c42014aa4f1f2babf3e7767c95c)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Upgrades old-style typeless byval attributes by adding the corresponding
642   /// argument's pointee type.
643   void propagateByValTypes(CallBase *CB);
644 
645   /// Converts alignment exponent (i.e. power of two (or zero)) to the
646   /// corresponding alignment to use. If alignment is too large, returns
647   /// a corresponding error code.
648   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
649   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
650   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
651 
652   Error parseComdatRecord(ArrayRef<uint64_t> Record);
653   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
654   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
655   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
656                                         ArrayRef<uint64_t> Record);
657 
658   Error parseAttributeBlock();
659   Error parseAttributeGroupBlock();
660   Error parseTypeTable();
661   Error parseTypeTableBody();
662   Error parseOperandBundleTags();
663   Error parseSyncScopeNames();
664 
665   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
666                                 unsigned NameIndex, Triple &TT);
667   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
668                                ArrayRef<uint64_t> Record);
669   Error parseValueSymbolTable(uint64_t Offset = 0);
670   Error parseGlobalValueSymbolTable();
671   Error parseConstants();
672   Error rememberAndSkipFunctionBodies();
673   Error rememberAndSkipFunctionBody();
674   /// Save the positions of the Metadata blocks and skip parsing the blocks.
675   Error rememberAndSkipMetadata();
676   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
677   Error parseFunctionBody(Function *F);
678   Error globalCleanup();
679   Error resolveGlobalAndIndirectSymbolInits();
680   Error parseUseLists();
681   Error findFunctionInStream(
682       Function *F,
683       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
684 
685   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
686 };
687 
688 /// Class to manage reading and parsing function summary index bitcode
689 /// files/sections.
690 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
691   /// The module index built during parsing.
692   ModuleSummaryIndex &TheIndex;
693 
694   /// Indicates whether we have encountered a global value summary section
695   /// yet during parsing.
696   bool SeenGlobalValSummary = false;
697 
698   /// Indicates whether we have already parsed the VST, used for error checking.
699   bool SeenValueSymbolTable = false;
700 
701   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
702   /// Used to enable on-demand parsing of the VST.
703   uint64_t VSTOffset = 0;
704 
705   // Map to save ValueId to ValueInfo association that was recorded in the
706   // ValueSymbolTable. It is used after the VST is parsed to convert
707   // call graph edges read from the function summary from referencing
708   // callees by their ValueId to using the ValueInfo instead, which is how
709   // they are recorded in the summary index being built.
710   // We save a GUID which refers to the same global as the ValueInfo, but
711   // ignoring the linkage, i.e. for values other than local linkage they are
712   // identical.
713   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
714       ValueIdToValueInfoMap;
715 
716   /// Map populated during module path string table parsing, from the
717   /// module ID to a string reference owned by the index's module
718   /// path string table, used to correlate with combined index
719   /// summary records.
720   DenseMap<uint64_t, StringRef> ModuleIdMap;
721 
722   /// Original source file name recorded in a bitcode record.
723   std::string SourceFileName;
724 
725   /// The string identifier given to this module by the client, normally the
726   /// path to the bitcode file.
727   StringRef ModulePath;
728 
729   /// For per-module summary indexes, the unique numerical identifier given to
730   /// this module by the client.
731   unsigned ModuleId;
732 
733 public:
734   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
735                                   ModuleSummaryIndex &TheIndex,
736                                   StringRef ModulePath, unsigned ModuleId);
737 
738   Error parseModule();
739 
740 private:
741   void setValueGUID(uint64_t ValueID, StringRef ValueName,
742                     GlobalValue::LinkageTypes Linkage,
743                     StringRef SourceFileName);
744   Error parseValueSymbolTable(
745       uint64_t Offset,
746       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
747   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
748   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
749                                                     bool IsOldProfileFormat,
750                                                     bool HasProfile,
751                                                     bool HasRelBF);
752   Error parseEntireSummary(unsigned ID);
753   Error parseModuleStringTable();
754 
755   std::pair<ValueInfo, GlobalValue::GUID>
756   getValueInfoFromValueId(unsigned ValueId);
757 
758   void addThisModule();
759   ModuleSummaryIndex::ModuleInfo *getThisModule();
760 };
761 
762 } // end anonymous namespace
763 
764 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
765                                                     Error Err) {
766   if (Err) {
767     std::error_code EC;
768     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
769       EC = EIB.convertToErrorCode();
770       Ctx.emitError(EIB.message());
771     });
772     return EC;
773   }
774   return std::error_code();
775 }
776 
777 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
778                              StringRef ProducerIdentification,
779                              LLVMContext &Context)
780     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
781       ValueList(Context) {
782   this->ProducerIdentification = ProducerIdentification;
783 }
784 
785 Error BitcodeReader::materializeForwardReferencedFunctions() {
786   if (WillMaterializeAllForwardRefs)
787     return Error::success();
788 
789   // Prevent recursion.
790   WillMaterializeAllForwardRefs = true;
791 
792   while (!BasicBlockFwdRefQueue.empty()) {
793     Function *F = BasicBlockFwdRefQueue.front();
794     BasicBlockFwdRefQueue.pop_front();
795     assert(F && "Expected valid function");
796     if (!BasicBlockFwdRefs.count(F))
797       // Already materialized.
798       continue;
799 
800     // Check for a function that isn't materializable to prevent an infinite
801     // loop.  When parsing a blockaddress stored in a global variable, there
802     // isn't a trivial way to check if a function will have a body without a
803     // linear search through FunctionsWithBodies, so just check it here.
804     if (!F->isMaterializable())
805       return error("Never resolved function from blockaddress");
806 
807     // Try to materialize F.
808     if (Error Err = materialize(F))
809       return Err;
810   }
811   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
812 
813   // Reset state.
814   WillMaterializeAllForwardRefs = false;
815   return Error::success();
816 }
817 
818 //===----------------------------------------------------------------------===//
819 //  Helper functions to implement forward reference resolution, etc.
820 //===----------------------------------------------------------------------===//
821 
822 static bool hasImplicitComdat(size_t Val) {
823   switch (Val) {
824   default:
825     return false;
826   case 1:  // Old WeakAnyLinkage
827   case 4:  // Old LinkOnceAnyLinkage
828   case 10: // Old WeakODRLinkage
829   case 11: // Old LinkOnceODRLinkage
830     return true;
831   }
832 }
833 
834 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
835   switch (Val) {
836   default: // Map unknown/new linkages to external
837   case 0:
838     return GlobalValue::ExternalLinkage;
839   case 2:
840     return GlobalValue::AppendingLinkage;
841   case 3:
842     return GlobalValue::InternalLinkage;
843   case 5:
844     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
845   case 6:
846     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
847   case 7:
848     return GlobalValue::ExternalWeakLinkage;
849   case 8:
850     return GlobalValue::CommonLinkage;
851   case 9:
852     return GlobalValue::PrivateLinkage;
853   case 12:
854     return GlobalValue::AvailableExternallyLinkage;
855   case 13:
856     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
857   case 14:
858     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
859   case 15:
860     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
861   case 1: // Old value with implicit comdat.
862   case 16:
863     return GlobalValue::WeakAnyLinkage;
864   case 10: // Old value with implicit comdat.
865   case 17:
866     return GlobalValue::WeakODRLinkage;
867   case 4: // Old value with implicit comdat.
868   case 18:
869     return GlobalValue::LinkOnceAnyLinkage;
870   case 11: // Old value with implicit comdat.
871   case 19:
872     return GlobalValue::LinkOnceODRLinkage;
873   }
874 }
875 
876 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
877   FunctionSummary::FFlags Flags;
878   Flags.ReadNone = RawFlags & 0x1;
879   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
880   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
881   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
882   Flags.NoInline = (RawFlags >> 4) & 0x1;
883   return Flags;
884 }
885 
886 /// Decode the flags for GlobalValue in the summary.
887 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
888                                                             uint64_t Version) {
889   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
890   // like getDecodedLinkage() above. Any future change to the linkage enum and
891   // to getDecodedLinkage() will need to be taken into account here as above.
892   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
893   RawFlags = RawFlags >> 4;
894   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
895   // The Live flag wasn't introduced until version 3. For dead stripping
896   // to work correctly on earlier versions, we must conservatively treat all
897   // values as live.
898   bool Live = (RawFlags & 0x2) || Version < 3;
899   bool Local = (RawFlags & 0x4);
900   bool AutoHide = (RawFlags & 0x8);
901 
902   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
903 }
904 
905 // Decode the flags for GlobalVariable in the summary
906 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
907   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
908 }
909 
910 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
911   switch (Val) {
912   default: // Map unknown visibilities to default.
913   case 0: return GlobalValue::DefaultVisibility;
914   case 1: return GlobalValue::HiddenVisibility;
915   case 2: return GlobalValue::ProtectedVisibility;
916   }
917 }
918 
919 static GlobalValue::DLLStorageClassTypes
920 getDecodedDLLStorageClass(unsigned Val) {
921   switch (Val) {
922   default: // Map unknown values to default.
923   case 0: return GlobalValue::DefaultStorageClass;
924   case 1: return GlobalValue::DLLImportStorageClass;
925   case 2: return GlobalValue::DLLExportStorageClass;
926   }
927 }
928 
929 static bool getDecodedDSOLocal(unsigned Val) {
930   switch(Val) {
931   default: // Map unknown values to preemptable.
932   case 0:  return false;
933   case 1:  return true;
934   }
935 }
936 
937 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
938   switch (Val) {
939     case 0: return GlobalVariable::NotThreadLocal;
940     default: // Map unknown non-zero value to general dynamic.
941     case 1: return GlobalVariable::GeneralDynamicTLSModel;
942     case 2: return GlobalVariable::LocalDynamicTLSModel;
943     case 3: return GlobalVariable::InitialExecTLSModel;
944     case 4: return GlobalVariable::LocalExecTLSModel;
945   }
946 }
947 
948 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
949   switch (Val) {
950     default: // Map unknown to UnnamedAddr::None.
951     case 0: return GlobalVariable::UnnamedAddr::None;
952     case 1: return GlobalVariable::UnnamedAddr::Global;
953     case 2: return GlobalVariable::UnnamedAddr::Local;
954   }
955 }
956 
957 static int getDecodedCastOpcode(unsigned Val) {
958   switch (Val) {
959   default: return -1;
960   case bitc::CAST_TRUNC   : return Instruction::Trunc;
961   case bitc::CAST_ZEXT    : return Instruction::ZExt;
962   case bitc::CAST_SEXT    : return Instruction::SExt;
963   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
964   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
965   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
966   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
967   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
968   case bitc::CAST_FPEXT   : return Instruction::FPExt;
969   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
970   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
971   case bitc::CAST_BITCAST : return Instruction::BitCast;
972   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
973   }
974 }
975 
976 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
977   bool IsFP = Ty->isFPOrFPVectorTy();
978   // UnOps are only valid for int/fp or vector of int/fp types
979   if (!IsFP && !Ty->isIntOrIntVectorTy())
980     return -1;
981 
982   switch (Val) {
983   default:
984     return -1;
985   case bitc::UNOP_NEG:
986     return IsFP ? Instruction::FNeg : -1;
987   }
988 }
989 
990 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
991   bool IsFP = Ty->isFPOrFPVectorTy();
992   // BinOps are only valid for int/fp or vector of int/fp types
993   if (!IsFP && !Ty->isIntOrIntVectorTy())
994     return -1;
995 
996   switch (Val) {
997   default:
998     return -1;
999   case bitc::BINOP_ADD:
1000     return IsFP ? Instruction::FAdd : Instruction::Add;
1001   case bitc::BINOP_SUB:
1002     return IsFP ? Instruction::FSub : Instruction::Sub;
1003   case bitc::BINOP_MUL:
1004     return IsFP ? Instruction::FMul : Instruction::Mul;
1005   case bitc::BINOP_UDIV:
1006     return IsFP ? -1 : Instruction::UDiv;
1007   case bitc::BINOP_SDIV:
1008     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1009   case bitc::BINOP_UREM:
1010     return IsFP ? -1 : Instruction::URem;
1011   case bitc::BINOP_SREM:
1012     return IsFP ? Instruction::FRem : Instruction::SRem;
1013   case bitc::BINOP_SHL:
1014     return IsFP ? -1 : Instruction::Shl;
1015   case bitc::BINOP_LSHR:
1016     return IsFP ? -1 : Instruction::LShr;
1017   case bitc::BINOP_ASHR:
1018     return IsFP ? -1 : Instruction::AShr;
1019   case bitc::BINOP_AND:
1020     return IsFP ? -1 : Instruction::And;
1021   case bitc::BINOP_OR:
1022     return IsFP ? -1 : Instruction::Or;
1023   case bitc::BINOP_XOR:
1024     return IsFP ? -1 : Instruction::Xor;
1025   }
1026 }
1027 
1028 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1029   switch (Val) {
1030   default: return AtomicRMWInst::BAD_BINOP;
1031   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1032   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1033   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1034   case bitc::RMW_AND: return AtomicRMWInst::And;
1035   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1036   case bitc::RMW_OR: return AtomicRMWInst::Or;
1037   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1038   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1039   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1040   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1041   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1042   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1043   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1044   }
1045 }
1046 
1047 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1048   switch (Val) {
1049   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1050   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1051   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1052   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1053   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1054   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1055   default: // Map unknown orderings to sequentially-consistent.
1056   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1057   }
1058 }
1059 
1060 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1061   switch (Val) {
1062   default: // Map unknown selection kinds to any.
1063   case bitc::COMDAT_SELECTION_KIND_ANY:
1064     return Comdat::Any;
1065   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1066     return Comdat::ExactMatch;
1067   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1068     return Comdat::Largest;
1069   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1070     return Comdat::NoDuplicates;
1071   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1072     return Comdat::SameSize;
1073   }
1074 }
1075 
1076 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1077   FastMathFlags FMF;
1078   if (0 != (Val & bitc::UnsafeAlgebra))
1079     FMF.setFast();
1080   if (0 != (Val & bitc::AllowReassoc))
1081     FMF.setAllowReassoc();
1082   if (0 != (Val & bitc::NoNaNs))
1083     FMF.setNoNaNs();
1084   if (0 != (Val & bitc::NoInfs))
1085     FMF.setNoInfs();
1086   if (0 != (Val & bitc::NoSignedZeros))
1087     FMF.setNoSignedZeros();
1088   if (0 != (Val & bitc::AllowReciprocal))
1089     FMF.setAllowReciprocal();
1090   if (0 != (Val & bitc::AllowContract))
1091     FMF.setAllowContract(true);
1092   if (0 != (Val & bitc::ApproxFunc))
1093     FMF.setApproxFunc();
1094   return FMF;
1095 }
1096 
1097 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1098   switch (Val) {
1099   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1100   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1101   }
1102 }
1103 
1104 Type *BitcodeReader::getTypeByID(unsigned ID) {
1105   // The type table size is always specified correctly.
1106   if (ID >= TypeList.size())
1107     return nullptr;
1108 
1109   if (Type *Ty = TypeList[ID])
1110     return Ty;
1111 
1112   // If we have a forward reference, the only possible case is when it is to a
1113   // named struct.  Just create a placeholder for now.
1114   return TypeList[ID] = createIdentifiedStructType(Context);
1115 }
1116 
1117 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1118                                                       StringRef Name) {
1119   auto *Ret = StructType::create(Context, Name);
1120   IdentifiedStructTypes.push_back(Ret);
1121   return Ret;
1122 }
1123 
1124 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1125   auto *Ret = StructType::create(Context);
1126   IdentifiedStructTypes.push_back(Ret);
1127   return Ret;
1128 }
1129 
1130 //===----------------------------------------------------------------------===//
1131 //  Functions for parsing blocks from the bitcode file
1132 //===----------------------------------------------------------------------===//
1133 
1134 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1135   switch (Val) {
1136   case Attribute::EndAttrKinds:
1137     llvm_unreachable("Synthetic enumerators which should never get here");
1138 
1139   case Attribute::None:            return 0;
1140   case Attribute::ZExt:            return 1 << 0;
1141   case Attribute::SExt:            return 1 << 1;
1142   case Attribute::NoReturn:        return 1 << 2;
1143   case Attribute::InReg:           return 1 << 3;
1144   case Attribute::StructRet:       return 1 << 4;
1145   case Attribute::NoUnwind:        return 1 << 5;
1146   case Attribute::NoAlias:         return 1 << 6;
1147   case Attribute::ByVal:           return 1 << 7;
1148   case Attribute::Nest:            return 1 << 8;
1149   case Attribute::ReadNone:        return 1 << 9;
1150   case Attribute::ReadOnly:        return 1 << 10;
1151   case Attribute::NoInline:        return 1 << 11;
1152   case Attribute::AlwaysInline:    return 1 << 12;
1153   case Attribute::OptimizeForSize: return 1 << 13;
1154   case Attribute::StackProtect:    return 1 << 14;
1155   case Attribute::StackProtectReq: return 1 << 15;
1156   case Attribute::Alignment:       return 31 << 16;
1157   case Attribute::NoCapture:       return 1 << 21;
1158   case Attribute::NoRedZone:       return 1 << 22;
1159   case Attribute::NoImplicitFloat: return 1 << 23;
1160   case Attribute::Naked:           return 1 << 24;
1161   case Attribute::InlineHint:      return 1 << 25;
1162   case Attribute::StackAlignment:  return 7 << 26;
1163   case Attribute::ReturnsTwice:    return 1 << 29;
1164   case Attribute::UWTable:         return 1 << 30;
1165   case Attribute::NonLazyBind:     return 1U << 31;
1166   case Attribute::SanitizeAddress: return 1ULL << 32;
1167   case Attribute::MinSize:         return 1ULL << 33;
1168   case Attribute::NoDuplicate:     return 1ULL << 34;
1169   case Attribute::StackProtectStrong: return 1ULL << 35;
1170   case Attribute::SanitizeThread:  return 1ULL << 36;
1171   case Attribute::SanitizeMemory:  return 1ULL << 37;
1172   case Attribute::NoBuiltin:       return 1ULL << 38;
1173   case Attribute::Returned:        return 1ULL << 39;
1174   case Attribute::Cold:            return 1ULL << 40;
1175   case Attribute::Builtin:         return 1ULL << 41;
1176   case Attribute::OptimizeNone:    return 1ULL << 42;
1177   case Attribute::InAlloca:        return 1ULL << 43;
1178   case Attribute::NonNull:         return 1ULL << 44;
1179   case Attribute::JumpTable:       return 1ULL << 45;
1180   case Attribute::Convergent:      return 1ULL << 46;
1181   case Attribute::SafeStack:       return 1ULL << 47;
1182   case Attribute::NoRecurse:       return 1ULL << 48;
1183   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1184   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1185   case Attribute::SwiftSelf:       return 1ULL << 51;
1186   case Attribute::SwiftError:      return 1ULL << 52;
1187   case Attribute::WriteOnly:       return 1ULL << 53;
1188   case Attribute::Speculatable:    return 1ULL << 54;
1189   case Attribute::StrictFP:        return 1ULL << 55;
1190   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1191   case Attribute::NoCfCheck:       return 1ULL << 57;
1192   case Attribute::OptForFuzzing:   return 1ULL << 58;
1193   case Attribute::ShadowCallStack: return 1ULL << 59;
1194   case Attribute::SpeculativeLoadHardening:
1195     return 1ULL << 60;
1196   case Attribute::ImmArg:
1197     return 1ULL << 61;
1198   case Attribute::Dereferenceable:
1199     llvm_unreachable("dereferenceable attribute not supported in raw format");
1200     break;
1201   case Attribute::DereferenceableOrNull:
1202     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1203                      "format");
1204     break;
1205   case Attribute::ArgMemOnly:
1206     llvm_unreachable("argmemonly attribute not supported in raw format");
1207     break;
1208   case Attribute::AllocSize:
1209     llvm_unreachable("allocsize not supported in raw format");
1210     break;
1211   }
1212   llvm_unreachable("Unsupported attribute type");
1213 }
1214 
1215 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1216   if (!Val) return;
1217 
1218   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1219        I = Attribute::AttrKind(I + 1)) {
1220     if (I == Attribute::Dereferenceable ||
1221         I == Attribute::DereferenceableOrNull ||
1222         I == Attribute::ArgMemOnly ||
1223         I == Attribute::AllocSize)
1224       continue;
1225     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1226       if (I == Attribute::Alignment)
1227         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1228       else if (I == Attribute::StackAlignment)
1229         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1230       else
1231         B.addAttribute(I);
1232     }
1233   }
1234 }
1235 
1236 /// This fills an AttrBuilder object with the LLVM attributes that have
1237 /// been decoded from the given integer. This function must stay in sync with
1238 /// 'encodeLLVMAttributesForBitcode'.
1239 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1240                                            uint64_t EncodedAttrs) {
1241   // FIXME: Remove in 4.0.
1242 
1243   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1244   // the bits above 31 down by 11 bits.
1245   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1246   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1247          "Alignment must be a power of two.");
1248 
1249   if (Alignment)
1250     B.addAlignmentAttr(Alignment);
1251   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1252                           (EncodedAttrs & 0xffff));
1253 }
1254 
1255 Error BitcodeReader::parseAttributeBlock() {
1256   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1257     return error("Invalid record");
1258 
1259   if (!MAttributes.empty())
1260     return error("Invalid multiple blocks");
1261 
1262   SmallVector<uint64_t, 64> Record;
1263 
1264   SmallVector<AttributeList, 8> Attrs;
1265 
1266   // Read all the records.
1267   while (true) {
1268     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1269 
1270     switch (Entry.Kind) {
1271     case BitstreamEntry::SubBlock: // Handled for us already.
1272     case BitstreamEntry::Error:
1273       return error("Malformed block");
1274     case BitstreamEntry::EndBlock:
1275       return Error::success();
1276     case BitstreamEntry::Record:
1277       // The interesting case.
1278       break;
1279     }
1280 
1281     // Read a record.
1282     Record.clear();
1283     switch (Stream.readRecord(Entry.ID, Record)) {
1284     default:  // Default behavior: ignore.
1285       break;
1286     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1287       // FIXME: Remove in 4.0.
1288       if (Record.size() & 1)
1289         return error("Invalid record");
1290 
1291       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1292         AttrBuilder B;
1293         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1294         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1295       }
1296 
1297       MAttributes.push_back(AttributeList::get(Context, Attrs));
1298       Attrs.clear();
1299       break;
1300     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1301       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1302         Attrs.push_back(MAttributeGroups[Record[i]]);
1303 
1304       MAttributes.push_back(AttributeList::get(Context, Attrs));
1305       Attrs.clear();
1306       break;
1307     }
1308   }
1309 }
1310 
1311 // Returns Attribute::None on unrecognized codes.
1312 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1313   switch (Code) {
1314   default:
1315     return Attribute::None;
1316   case bitc::ATTR_KIND_ALIGNMENT:
1317     return Attribute::Alignment;
1318   case bitc::ATTR_KIND_ALWAYS_INLINE:
1319     return Attribute::AlwaysInline;
1320   case bitc::ATTR_KIND_ARGMEMONLY:
1321     return Attribute::ArgMemOnly;
1322   case bitc::ATTR_KIND_BUILTIN:
1323     return Attribute::Builtin;
1324   case bitc::ATTR_KIND_BY_VAL:
1325     return Attribute::ByVal;
1326   case bitc::ATTR_KIND_IN_ALLOCA:
1327     return Attribute::InAlloca;
1328   case bitc::ATTR_KIND_COLD:
1329     return Attribute::Cold;
1330   case bitc::ATTR_KIND_CONVERGENT:
1331     return Attribute::Convergent;
1332   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1333     return Attribute::InaccessibleMemOnly;
1334   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1335     return Attribute::InaccessibleMemOrArgMemOnly;
1336   case bitc::ATTR_KIND_INLINE_HINT:
1337     return Attribute::InlineHint;
1338   case bitc::ATTR_KIND_IN_REG:
1339     return Attribute::InReg;
1340   case bitc::ATTR_KIND_JUMP_TABLE:
1341     return Attribute::JumpTable;
1342   case bitc::ATTR_KIND_MIN_SIZE:
1343     return Attribute::MinSize;
1344   case bitc::ATTR_KIND_NAKED:
1345     return Attribute::Naked;
1346   case bitc::ATTR_KIND_NEST:
1347     return Attribute::Nest;
1348   case bitc::ATTR_KIND_NO_ALIAS:
1349     return Attribute::NoAlias;
1350   case bitc::ATTR_KIND_NO_BUILTIN:
1351     return Attribute::NoBuiltin;
1352   case bitc::ATTR_KIND_NO_CAPTURE:
1353     return Attribute::NoCapture;
1354   case bitc::ATTR_KIND_NO_DUPLICATE:
1355     return Attribute::NoDuplicate;
1356   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1357     return Attribute::NoImplicitFloat;
1358   case bitc::ATTR_KIND_NO_INLINE:
1359     return Attribute::NoInline;
1360   case bitc::ATTR_KIND_NO_RECURSE:
1361     return Attribute::NoRecurse;
1362   case bitc::ATTR_KIND_NON_LAZY_BIND:
1363     return Attribute::NonLazyBind;
1364   case bitc::ATTR_KIND_NON_NULL:
1365     return Attribute::NonNull;
1366   case bitc::ATTR_KIND_DEREFERENCEABLE:
1367     return Attribute::Dereferenceable;
1368   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1369     return Attribute::DereferenceableOrNull;
1370   case bitc::ATTR_KIND_ALLOC_SIZE:
1371     return Attribute::AllocSize;
1372   case bitc::ATTR_KIND_NO_RED_ZONE:
1373     return Attribute::NoRedZone;
1374   case bitc::ATTR_KIND_NO_RETURN:
1375     return Attribute::NoReturn;
1376   case bitc::ATTR_KIND_NOCF_CHECK:
1377     return Attribute::NoCfCheck;
1378   case bitc::ATTR_KIND_NO_UNWIND:
1379     return Attribute::NoUnwind;
1380   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1381     return Attribute::OptForFuzzing;
1382   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1383     return Attribute::OptimizeForSize;
1384   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1385     return Attribute::OptimizeNone;
1386   case bitc::ATTR_KIND_READ_NONE:
1387     return Attribute::ReadNone;
1388   case bitc::ATTR_KIND_READ_ONLY:
1389     return Attribute::ReadOnly;
1390   case bitc::ATTR_KIND_RETURNED:
1391     return Attribute::Returned;
1392   case bitc::ATTR_KIND_RETURNS_TWICE:
1393     return Attribute::ReturnsTwice;
1394   case bitc::ATTR_KIND_S_EXT:
1395     return Attribute::SExt;
1396   case bitc::ATTR_KIND_SPECULATABLE:
1397     return Attribute::Speculatable;
1398   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1399     return Attribute::StackAlignment;
1400   case bitc::ATTR_KIND_STACK_PROTECT:
1401     return Attribute::StackProtect;
1402   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1403     return Attribute::StackProtectReq;
1404   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1405     return Attribute::StackProtectStrong;
1406   case bitc::ATTR_KIND_SAFESTACK:
1407     return Attribute::SafeStack;
1408   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1409     return Attribute::ShadowCallStack;
1410   case bitc::ATTR_KIND_STRICT_FP:
1411     return Attribute::StrictFP;
1412   case bitc::ATTR_KIND_STRUCT_RET:
1413     return Attribute::StructRet;
1414   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1415     return Attribute::SanitizeAddress;
1416   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1417     return Attribute::SanitizeHWAddress;
1418   case bitc::ATTR_KIND_SANITIZE_THREAD:
1419     return Attribute::SanitizeThread;
1420   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1421     return Attribute::SanitizeMemory;
1422   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1423     return Attribute::SpeculativeLoadHardening;
1424   case bitc::ATTR_KIND_SWIFT_ERROR:
1425     return Attribute::SwiftError;
1426   case bitc::ATTR_KIND_SWIFT_SELF:
1427     return Attribute::SwiftSelf;
1428   case bitc::ATTR_KIND_UW_TABLE:
1429     return Attribute::UWTable;
1430   case bitc::ATTR_KIND_WRITEONLY:
1431     return Attribute::WriteOnly;
1432   case bitc::ATTR_KIND_Z_EXT:
1433     return Attribute::ZExt;
1434   case bitc::ATTR_KIND_IMMARG:
1435     return Attribute::ImmArg;
1436   }
1437 }
1438 
1439 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1440                                          unsigned &Alignment) {
1441   // Note: Alignment in bitcode files is incremented by 1, so that zero
1442   // can be used for default alignment.
1443   if (Exponent > Value::MaxAlignmentExponent + 1)
1444     return error("Invalid alignment value");
1445   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1446   return Error::success();
1447 }
1448 
1449 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1450   *Kind = getAttrFromCode(Code);
1451   if (*Kind == Attribute::None)
1452     return error("Unknown attribute kind (" + Twine(Code) + ")");
1453   return Error::success();
1454 }
1455 
1456 Error BitcodeReader::parseAttributeGroupBlock() {
1457   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1458     return error("Invalid record");
1459 
1460   if (!MAttributeGroups.empty())
1461     return error("Invalid multiple blocks");
1462 
1463   SmallVector<uint64_t, 64> Record;
1464 
1465   // Read all the records.
1466   while (true) {
1467     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1468 
1469     switch (Entry.Kind) {
1470     case BitstreamEntry::SubBlock: // Handled for us already.
1471     case BitstreamEntry::Error:
1472       return error("Malformed block");
1473     case BitstreamEntry::EndBlock:
1474       return Error::success();
1475     case BitstreamEntry::Record:
1476       // The interesting case.
1477       break;
1478     }
1479 
1480     // Read a record.
1481     Record.clear();
1482     switch (Stream.readRecord(Entry.ID, Record)) {
1483     default:  // Default behavior: ignore.
1484       break;
1485     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1486       if (Record.size() < 3)
1487         return error("Invalid record");
1488 
1489       uint64_t GrpID = Record[0];
1490       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1491 
1492       AttrBuilder B;
1493       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1494         if (Record[i] == 0) {        // Enum attribute
1495           Attribute::AttrKind Kind;
1496           if (Error Err = parseAttrKind(Record[++i], &Kind))
1497             return Err;
1498 
1499           // Upgrade old-style byval attribute to one with a type, even if it's
1500           // nullptr. We will have to insert the real type when we associate
1501           // this AttributeList with a function.
1502           if (Kind == Attribute::ByVal)
1503             B.addByValAttr(nullptr);
1504 
1505           B.addAttribute(Kind);
1506         } else if (Record[i] == 1) { // Integer attribute
1507           Attribute::AttrKind Kind;
1508           if (Error Err = parseAttrKind(Record[++i], &Kind))
1509             return Err;
1510           if (Kind == Attribute::Alignment)
1511             B.addAlignmentAttr(Record[++i]);
1512           else if (Kind == Attribute::StackAlignment)
1513             B.addStackAlignmentAttr(Record[++i]);
1514           else if (Kind == Attribute::Dereferenceable)
1515             B.addDereferenceableAttr(Record[++i]);
1516           else if (Kind == Attribute::DereferenceableOrNull)
1517             B.addDereferenceableOrNullAttr(Record[++i]);
1518           else if (Kind == Attribute::AllocSize)
1519             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1520         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1521           bool HasValue = (Record[i++] == 4);
1522           SmallString<64> KindStr;
1523           SmallString<64> ValStr;
1524 
1525           while (Record[i] != 0 && i != e)
1526             KindStr += Record[i++];
1527           assert(Record[i] == 0 && "Kind string not null terminated");
1528 
1529           if (HasValue) {
1530             // Has a value associated with it.
1531             ++i; // Skip the '0' that terminates the "kind" string.
1532             while (Record[i] != 0 && i != e)
1533               ValStr += Record[i++];
1534             assert(Record[i] == 0 && "Value string not null terminated");
1535           }
1536 
1537           B.addAttribute(KindStr.str(), ValStr.str());
1538         } else {
1539           assert((Record[i] == 5 || Record[i] == 6) &&
1540                  "Invalid attribute group entry");
1541           bool HasType = Record[i] == 6;
1542           Attribute::AttrKind Kind;
1543           if (Error Err = parseAttrKind(Record[++i], &Kind))
1544             return Err;
1545           if (Kind == Attribute::ByVal)
1546             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1547         }
1548       }
1549 
1550       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1551       break;
1552     }
1553     }
1554   }
1555 }
1556 
1557 Error BitcodeReader::parseTypeTable() {
1558   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1559     return error("Invalid record");
1560 
1561   return parseTypeTableBody();
1562 }
1563 
1564 Error BitcodeReader::parseTypeTableBody() {
1565   if (!TypeList.empty())
1566     return error("Invalid multiple blocks");
1567 
1568   SmallVector<uint64_t, 64> Record;
1569   unsigned NumRecords = 0;
1570 
1571   SmallString<64> TypeName;
1572 
1573   // Read all the records for this type table.
1574   while (true) {
1575     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1576 
1577     switch (Entry.Kind) {
1578     case BitstreamEntry::SubBlock: // Handled for us already.
1579     case BitstreamEntry::Error:
1580       return error("Malformed block");
1581     case BitstreamEntry::EndBlock:
1582       if (NumRecords != TypeList.size())
1583         return error("Malformed block");
1584       return Error::success();
1585     case BitstreamEntry::Record:
1586       // The interesting case.
1587       break;
1588     }
1589 
1590     // Read a record.
1591     Record.clear();
1592     Type *ResultTy = nullptr;
1593     switch (Stream.readRecord(Entry.ID, Record)) {
1594     default:
1595       return error("Invalid value");
1596     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1597       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1598       // type list.  This allows us to reserve space.
1599       if (Record.size() < 1)
1600         return error("Invalid record");
1601       TypeList.resize(Record[0]);
1602       continue;
1603     case bitc::TYPE_CODE_VOID:      // VOID
1604       ResultTy = Type::getVoidTy(Context);
1605       break;
1606     case bitc::TYPE_CODE_HALF:     // HALF
1607       ResultTy = Type::getHalfTy(Context);
1608       break;
1609     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1610       ResultTy = Type::getFloatTy(Context);
1611       break;
1612     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1613       ResultTy = Type::getDoubleTy(Context);
1614       break;
1615     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1616       ResultTy = Type::getX86_FP80Ty(Context);
1617       break;
1618     case bitc::TYPE_CODE_FP128:     // FP128
1619       ResultTy = Type::getFP128Ty(Context);
1620       break;
1621     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1622       ResultTy = Type::getPPC_FP128Ty(Context);
1623       break;
1624     case bitc::TYPE_CODE_LABEL:     // LABEL
1625       ResultTy = Type::getLabelTy(Context);
1626       break;
1627     case bitc::TYPE_CODE_METADATA:  // METADATA
1628       ResultTy = Type::getMetadataTy(Context);
1629       break;
1630     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1631       ResultTy = Type::getX86_MMXTy(Context);
1632       break;
1633     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1634       ResultTy = Type::getTokenTy(Context);
1635       break;
1636     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1637       if (Record.size() < 1)
1638         return error("Invalid record");
1639 
1640       uint64_t NumBits = Record[0];
1641       if (NumBits < IntegerType::MIN_INT_BITS ||
1642           NumBits > IntegerType::MAX_INT_BITS)
1643         return error("Bitwidth for integer type out of range");
1644       ResultTy = IntegerType::get(Context, NumBits);
1645       break;
1646     }
1647     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1648                                     //          [pointee type, address space]
1649       if (Record.size() < 1)
1650         return error("Invalid record");
1651       unsigned AddressSpace = 0;
1652       if (Record.size() == 2)
1653         AddressSpace = Record[1];
1654       ResultTy = getTypeByID(Record[0]);
1655       if (!ResultTy ||
1656           !PointerType::isValidElementType(ResultTy))
1657         return error("Invalid type");
1658       ResultTy = PointerType::get(ResultTy, AddressSpace);
1659       break;
1660     }
1661     case bitc::TYPE_CODE_FUNCTION_OLD: {
1662       // FIXME: attrid is dead, remove it in LLVM 4.0
1663       // FUNCTION: [vararg, attrid, retty, paramty x N]
1664       if (Record.size() < 3)
1665         return error("Invalid record");
1666       SmallVector<Type*, 8> ArgTys;
1667       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1668         if (Type *T = getTypeByID(Record[i]))
1669           ArgTys.push_back(T);
1670         else
1671           break;
1672       }
1673 
1674       ResultTy = getTypeByID(Record[2]);
1675       if (!ResultTy || ArgTys.size() < Record.size()-3)
1676         return error("Invalid type");
1677 
1678       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1679       break;
1680     }
1681     case bitc::TYPE_CODE_FUNCTION: {
1682       // FUNCTION: [vararg, retty, paramty x N]
1683       if (Record.size() < 2)
1684         return error("Invalid record");
1685       SmallVector<Type*, 8> ArgTys;
1686       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1687         if (Type *T = getTypeByID(Record[i])) {
1688           if (!FunctionType::isValidArgumentType(T))
1689             return error("Invalid function argument type");
1690           ArgTys.push_back(T);
1691         }
1692         else
1693           break;
1694       }
1695 
1696       ResultTy = getTypeByID(Record[1]);
1697       if (!ResultTy || ArgTys.size() < Record.size()-2)
1698         return error("Invalid type");
1699 
1700       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1701       break;
1702     }
1703     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1704       if (Record.size() < 1)
1705         return error("Invalid record");
1706       SmallVector<Type*, 8> EltTys;
1707       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1708         if (Type *T = getTypeByID(Record[i]))
1709           EltTys.push_back(T);
1710         else
1711           break;
1712       }
1713       if (EltTys.size() != Record.size()-1)
1714         return error("Invalid type");
1715       ResultTy = StructType::get(Context, EltTys, Record[0]);
1716       break;
1717     }
1718     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1719       if (convertToString(Record, 0, TypeName))
1720         return error("Invalid record");
1721       continue;
1722 
1723     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1724       if (Record.size() < 1)
1725         return error("Invalid record");
1726 
1727       if (NumRecords >= TypeList.size())
1728         return error("Invalid TYPE table");
1729 
1730       // Check to see if this was forward referenced, if so fill in the temp.
1731       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1732       if (Res) {
1733         Res->setName(TypeName);
1734         TypeList[NumRecords] = nullptr;
1735       } else  // Otherwise, create a new struct.
1736         Res = createIdentifiedStructType(Context, TypeName);
1737       TypeName.clear();
1738 
1739       SmallVector<Type*, 8> EltTys;
1740       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1741         if (Type *T = getTypeByID(Record[i]))
1742           EltTys.push_back(T);
1743         else
1744           break;
1745       }
1746       if (EltTys.size() != Record.size()-1)
1747         return error("Invalid record");
1748       Res->setBody(EltTys, Record[0]);
1749       ResultTy = Res;
1750       break;
1751     }
1752     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1753       if (Record.size() != 1)
1754         return error("Invalid record");
1755 
1756       if (NumRecords >= TypeList.size())
1757         return error("Invalid TYPE table");
1758 
1759       // Check to see if this was forward referenced, if so fill in the temp.
1760       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1761       if (Res) {
1762         Res->setName(TypeName);
1763         TypeList[NumRecords] = nullptr;
1764       } else  // Otherwise, create a new struct with no body.
1765         Res = createIdentifiedStructType(Context, TypeName);
1766       TypeName.clear();
1767       ResultTy = Res;
1768       break;
1769     }
1770     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1771       if (Record.size() < 2)
1772         return error("Invalid record");
1773       ResultTy = getTypeByID(Record[1]);
1774       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1775         return error("Invalid type");
1776       ResultTy = ArrayType::get(ResultTy, Record[0]);
1777       break;
1778     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1779                                     //         [numelts, eltty, scalable]
1780       if (Record.size() < 2)
1781         return error("Invalid record");
1782       if (Record[0] == 0)
1783         return error("Invalid vector length");
1784       ResultTy = getTypeByID(Record[1]);
1785       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1786         return error("Invalid type");
1787       bool Scalable = Record.size() > 2 ? Record[2] : false;
1788       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1789       break;
1790     }
1791 
1792     if (NumRecords >= TypeList.size())
1793       return error("Invalid TYPE table");
1794     if (TypeList[NumRecords])
1795       return error(
1796           "Invalid TYPE table: Only named structs can be forward referenced");
1797     assert(ResultTy && "Didn't read a type?");
1798     TypeList[NumRecords++] = ResultTy;
1799   }
1800 }
1801 
1802 Error BitcodeReader::parseOperandBundleTags() {
1803   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1804     return error("Invalid record");
1805 
1806   if (!BundleTags.empty())
1807     return error("Invalid multiple blocks");
1808 
1809   SmallVector<uint64_t, 64> Record;
1810 
1811   while (true) {
1812     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1813 
1814     switch (Entry.Kind) {
1815     case BitstreamEntry::SubBlock: // Handled for us already.
1816     case BitstreamEntry::Error:
1817       return error("Malformed block");
1818     case BitstreamEntry::EndBlock:
1819       return Error::success();
1820     case BitstreamEntry::Record:
1821       // The interesting case.
1822       break;
1823     }
1824 
1825     // Tags are implicitly mapped to integers by their order.
1826 
1827     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1828       return error("Invalid record");
1829 
1830     // OPERAND_BUNDLE_TAG: [strchr x N]
1831     BundleTags.emplace_back();
1832     if (convertToString(Record, 0, BundleTags.back()))
1833       return error("Invalid record");
1834     Record.clear();
1835   }
1836 }
1837 
1838 Error BitcodeReader::parseSyncScopeNames() {
1839   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1840     return error("Invalid record");
1841 
1842   if (!SSIDs.empty())
1843     return error("Invalid multiple synchronization scope names blocks");
1844 
1845   SmallVector<uint64_t, 64> Record;
1846   while (true) {
1847     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1848     switch (Entry.Kind) {
1849     case BitstreamEntry::SubBlock: // Handled for us already.
1850     case BitstreamEntry::Error:
1851       return error("Malformed block");
1852     case BitstreamEntry::EndBlock:
1853       if (SSIDs.empty())
1854         return error("Invalid empty synchronization scope names block");
1855       return Error::success();
1856     case BitstreamEntry::Record:
1857       // The interesting case.
1858       break;
1859     }
1860 
1861     // Synchronization scope names are implicitly mapped to synchronization
1862     // scope IDs by their order.
1863 
1864     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1865       return error("Invalid record");
1866 
1867     SmallString<16> SSN;
1868     if (convertToString(Record, 0, SSN))
1869       return error("Invalid record");
1870 
1871     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1872     Record.clear();
1873   }
1874 }
1875 
1876 /// Associate a value with its name from the given index in the provided record.
1877 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1878                                              unsigned NameIndex, Triple &TT) {
1879   SmallString<128> ValueName;
1880   if (convertToString(Record, NameIndex, ValueName))
1881     return error("Invalid record");
1882   unsigned ValueID = Record[0];
1883   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1884     return error("Invalid record");
1885   Value *V = ValueList[ValueID];
1886 
1887   StringRef NameStr(ValueName.data(), ValueName.size());
1888   if (NameStr.find_first_of(0) != StringRef::npos)
1889     return error("Invalid value name");
1890   V->setName(NameStr);
1891   auto *GO = dyn_cast<GlobalObject>(V);
1892   if (GO) {
1893     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1894       if (TT.supportsCOMDAT())
1895         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1896       else
1897         GO->setComdat(nullptr);
1898     }
1899   }
1900   return V;
1901 }
1902 
1903 /// Helper to note and return the current location, and jump to the given
1904 /// offset.
1905 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1906                                        BitstreamCursor &Stream) {
1907   // Save the current parsing location so we can jump back at the end
1908   // of the VST read.
1909   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1910   Stream.JumpToBit(Offset * 32);
1911 #ifndef NDEBUG
1912   // Do some checking if we are in debug mode.
1913   BitstreamEntry Entry = Stream.advance();
1914   assert(Entry.Kind == BitstreamEntry::SubBlock);
1915   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1916 #else
1917   // In NDEBUG mode ignore the output so we don't get an unused variable
1918   // warning.
1919   Stream.advance();
1920 #endif
1921   return CurrentBit;
1922 }
1923 
1924 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1925                                             Function *F,
1926                                             ArrayRef<uint64_t> Record) {
1927   // Note that we subtract 1 here because the offset is relative to one word
1928   // before the start of the identification or module block, which was
1929   // historically always the start of the regular bitcode header.
1930   uint64_t FuncWordOffset = Record[1] - 1;
1931   uint64_t FuncBitOffset = FuncWordOffset * 32;
1932   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1933   // Set the LastFunctionBlockBit to point to the last function block.
1934   // Later when parsing is resumed after function materialization,
1935   // we can simply skip that last function block.
1936   if (FuncBitOffset > LastFunctionBlockBit)
1937     LastFunctionBlockBit = FuncBitOffset;
1938 }
1939 
1940 /// Read a new-style GlobalValue symbol table.
1941 Error BitcodeReader::parseGlobalValueSymbolTable() {
1942   unsigned FuncBitcodeOffsetDelta =
1943       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1944 
1945   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1946     return error("Invalid record");
1947 
1948   SmallVector<uint64_t, 64> Record;
1949   while (true) {
1950     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1951 
1952     switch (Entry.Kind) {
1953     case BitstreamEntry::SubBlock:
1954     case BitstreamEntry::Error:
1955       return error("Malformed block");
1956     case BitstreamEntry::EndBlock:
1957       return Error::success();
1958     case BitstreamEntry::Record:
1959       break;
1960     }
1961 
1962     Record.clear();
1963     switch (Stream.readRecord(Entry.ID, Record)) {
1964     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1965       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1966                               cast<Function>(ValueList[Record[0]]), Record);
1967       break;
1968     }
1969   }
1970 }
1971 
1972 /// Parse the value symbol table at either the current parsing location or
1973 /// at the given bit offset if provided.
1974 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1975   uint64_t CurrentBit;
1976   // Pass in the Offset to distinguish between calling for the module-level
1977   // VST (where we want to jump to the VST offset) and the function-level
1978   // VST (where we don't).
1979   if (Offset > 0) {
1980     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1981     // If this module uses a string table, read this as a module-level VST.
1982     if (UseStrtab) {
1983       if (Error Err = parseGlobalValueSymbolTable())
1984         return Err;
1985       Stream.JumpToBit(CurrentBit);
1986       return Error::success();
1987     }
1988     // Otherwise, the VST will be in a similar format to a function-level VST,
1989     // and will contain symbol names.
1990   }
1991 
1992   // Compute the delta between the bitcode indices in the VST (the word offset
1993   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1994   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1995   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1996   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1997   // just before entering the VST subblock because: 1) the EnterSubBlock
1998   // changes the AbbrevID width; 2) the VST block is nested within the same
1999   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2000   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2001   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2002   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2003   unsigned FuncBitcodeOffsetDelta =
2004       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2005 
2006   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2007     return error("Invalid record");
2008 
2009   SmallVector<uint64_t, 64> Record;
2010 
2011   Triple TT(TheModule->getTargetTriple());
2012 
2013   // Read all the records for this value table.
2014   SmallString<128> ValueName;
2015 
2016   while (true) {
2017     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2018 
2019     switch (Entry.Kind) {
2020     case BitstreamEntry::SubBlock: // Handled for us already.
2021     case BitstreamEntry::Error:
2022       return error("Malformed block");
2023     case BitstreamEntry::EndBlock:
2024       if (Offset > 0)
2025         Stream.JumpToBit(CurrentBit);
2026       return Error::success();
2027     case BitstreamEntry::Record:
2028       // The interesting case.
2029       break;
2030     }
2031 
2032     // Read a record.
2033     Record.clear();
2034     switch (Stream.readRecord(Entry.ID, Record)) {
2035     default:  // Default behavior: unknown type.
2036       break;
2037     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2038       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2039       if (Error Err = ValOrErr.takeError())
2040         return Err;
2041       ValOrErr.get();
2042       break;
2043     }
2044     case bitc::VST_CODE_FNENTRY: {
2045       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2046       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2047       if (Error Err = ValOrErr.takeError())
2048         return Err;
2049       Value *V = ValOrErr.get();
2050 
2051       // Ignore function offsets emitted for aliases of functions in older
2052       // versions of LLVM.
2053       if (auto *F = dyn_cast<Function>(V))
2054         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2055       break;
2056     }
2057     case bitc::VST_CODE_BBENTRY: {
2058       if (convertToString(Record, 1, ValueName))
2059         return error("Invalid record");
2060       BasicBlock *BB = getBasicBlock(Record[0]);
2061       if (!BB)
2062         return error("Invalid record");
2063 
2064       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2065       ValueName.clear();
2066       break;
2067     }
2068     }
2069   }
2070 }
2071 
2072 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2073 /// encoding.
2074 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2075   if ((V & 1) == 0)
2076     return V >> 1;
2077   if (V != 1)
2078     return -(V >> 1);
2079   // There is no such thing as -0 with integers.  "-0" really means MININT.
2080   return 1ULL << 63;
2081 }
2082 
2083 /// Resolve all of the initializers for global values and aliases that we can.
2084 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2085   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2086   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2087       IndirectSymbolInitWorklist;
2088   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2089   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2090   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2091 
2092   GlobalInitWorklist.swap(GlobalInits);
2093   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2094   FunctionPrefixWorklist.swap(FunctionPrefixes);
2095   FunctionPrologueWorklist.swap(FunctionPrologues);
2096   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2097 
2098   while (!GlobalInitWorklist.empty()) {
2099     unsigned ValID = GlobalInitWorklist.back().second;
2100     if (ValID >= ValueList.size()) {
2101       // Not ready to resolve this yet, it requires something later in the file.
2102       GlobalInits.push_back(GlobalInitWorklist.back());
2103     } else {
2104       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2105         GlobalInitWorklist.back().first->setInitializer(C);
2106       else
2107         return error("Expected a constant");
2108     }
2109     GlobalInitWorklist.pop_back();
2110   }
2111 
2112   while (!IndirectSymbolInitWorklist.empty()) {
2113     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2114     if (ValID >= ValueList.size()) {
2115       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2116     } else {
2117       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2118       if (!C)
2119         return error("Expected a constant");
2120       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2121       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2122         return error("Alias and aliasee types don't match");
2123       GIS->setIndirectSymbol(C);
2124     }
2125     IndirectSymbolInitWorklist.pop_back();
2126   }
2127 
2128   while (!FunctionPrefixWorklist.empty()) {
2129     unsigned ValID = FunctionPrefixWorklist.back().second;
2130     if (ValID >= ValueList.size()) {
2131       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2132     } else {
2133       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2134         FunctionPrefixWorklist.back().first->setPrefixData(C);
2135       else
2136         return error("Expected a constant");
2137     }
2138     FunctionPrefixWorklist.pop_back();
2139   }
2140 
2141   while (!FunctionPrologueWorklist.empty()) {
2142     unsigned ValID = FunctionPrologueWorklist.back().second;
2143     if (ValID >= ValueList.size()) {
2144       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2145     } else {
2146       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2147         FunctionPrologueWorklist.back().first->setPrologueData(C);
2148       else
2149         return error("Expected a constant");
2150     }
2151     FunctionPrologueWorklist.pop_back();
2152   }
2153 
2154   while (!FunctionPersonalityFnWorklist.empty()) {
2155     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2156     if (ValID >= ValueList.size()) {
2157       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2158     } else {
2159       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2160         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2161       else
2162         return error("Expected a constant");
2163     }
2164     FunctionPersonalityFnWorklist.pop_back();
2165   }
2166 
2167   return Error::success();
2168 }
2169 
2170 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2171   SmallVector<uint64_t, 8> Words(Vals.size());
2172   transform(Vals, Words.begin(),
2173                  BitcodeReader::decodeSignRotatedValue);
2174 
2175   return APInt(TypeBits, Words);
2176 }
2177 
2178 Error BitcodeReader::parseConstants() {
2179   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2180     return error("Invalid record");
2181 
2182   SmallVector<uint64_t, 64> Record;
2183 
2184   // Read all the records for this value table.
2185   Type *CurTy = Type::getInt32Ty(Context);
2186   unsigned NextCstNo = ValueList.size();
2187 
2188   while (true) {
2189     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2190 
2191     switch (Entry.Kind) {
2192     case BitstreamEntry::SubBlock: // Handled for us already.
2193     case BitstreamEntry::Error:
2194       return error("Malformed block");
2195     case BitstreamEntry::EndBlock:
2196       if (NextCstNo != ValueList.size())
2197         return error("Invalid constant reference");
2198 
2199       // Once all the constants have been read, go through and resolve forward
2200       // references.
2201       ValueList.resolveConstantForwardRefs();
2202       return Error::success();
2203     case BitstreamEntry::Record:
2204       // The interesting case.
2205       break;
2206     }
2207 
2208     // Read a record.
2209     Record.clear();
2210     Type *VoidType = Type::getVoidTy(Context);
2211     Value *V = nullptr;
2212     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2213     switch (BitCode) {
2214     default:  // Default behavior: unknown constant
2215     case bitc::CST_CODE_UNDEF:     // UNDEF
2216       V = UndefValue::get(CurTy);
2217       break;
2218     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2219       if (Record.empty())
2220         return error("Invalid record");
2221       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2222         return error("Invalid record");
2223       if (TypeList[Record[0]] == VoidType)
2224         return error("Invalid constant type");
2225       CurTy = TypeList[Record[0]];
2226       continue;  // Skip the ValueList manipulation.
2227     case bitc::CST_CODE_NULL:      // NULL
2228       V = Constant::getNullValue(CurTy);
2229       break;
2230     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2231       if (!CurTy->isIntegerTy() || Record.empty())
2232         return error("Invalid record");
2233       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2234       break;
2235     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2236       if (!CurTy->isIntegerTy() || Record.empty())
2237         return error("Invalid record");
2238 
2239       APInt VInt =
2240           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2241       V = ConstantInt::get(Context, VInt);
2242 
2243       break;
2244     }
2245     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2246       if (Record.empty())
2247         return error("Invalid record");
2248       if (CurTy->isHalfTy())
2249         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2250                                              APInt(16, (uint16_t)Record[0])));
2251       else if (CurTy->isFloatTy())
2252         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2253                                              APInt(32, (uint32_t)Record[0])));
2254       else if (CurTy->isDoubleTy())
2255         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2256                                              APInt(64, Record[0])));
2257       else if (CurTy->isX86_FP80Ty()) {
2258         // Bits are not stored the same way as a normal i80 APInt, compensate.
2259         uint64_t Rearrange[2];
2260         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2261         Rearrange[1] = Record[0] >> 48;
2262         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2263                                              APInt(80, Rearrange)));
2264       } else if (CurTy->isFP128Ty())
2265         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2266                                              APInt(128, Record)));
2267       else if (CurTy->isPPC_FP128Ty())
2268         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2269                                              APInt(128, Record)));
2270       else
2271         V = UndefValue::get(CurTy);
2272       break;
2273     }
2274 
2275     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2276       if (Record.empty())
2277         return error("Invalid record");
2278 
2279       unsigned Size = Record.size();
2280       SmallVector<Constant*, 16> Elts;
2281 
2282       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2283         for (unsigned i = 0; i != Size; ++i)
2284           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2285                                                      STy->getElementType(i)));
2286         V = ConstantStruct::get(STy, Elts);
2287       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2288         Type *EltTy = ATy->getElementType();
2289         for (unsigned i = 0; i != Size; ++i)
2290           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2291         V = ConstantArray::get(ATy, Elts);
2292       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2293         Type *EltTy = VTy->getElementType();
2294         for (unsigned i = 0; i != Size; ++i)
2295           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2296         V = ConstantVector::get(Elts);
2297       } else {
2298         V = UndefValue::get(CurTy);
2299       }
2300       break;
2301     }
2302     case bitc::CST_CODE_STRING:    // STRING: [values]
2303     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2304       if (Record.empty())
2305         return error("Invalid record");
2306 
2307       SmallString<16> Elts(Record.begin(), Record.end());
2308       V = ConstantDataArray::getString(Context, Elts,
2309                                        BitCode == bitc::CST_CODE_CSTRING);
2310       break;
2311     }
2312     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2313       if (Record.empty())
2314         return error("Invalid record");
2315 
2316       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2317       if (EltTy->isIntegerTy(8)) {
2318         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2319         if (isa<VectorType>(CurTy))
2320           V = ConstantDataVector::get(Context, Elts);
2321         else
2322           V = ConstantDataArray::get(Context, Elts);
2323       } else if (EltTy->isIntegerTy(16)) {
2324         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2325         if (isa<VectorType>(CurTy))
2326           V = ConstantDataVector::get(Context, Elts);
2327         else
2328           V = ConstantDataArray::get(Context, Elts);
2329       } else if (EltTy->isIntegerTy(32)) {
2330         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2331         if (isa<VectorType>(CurTy))
2332           V = ConstantDataVector::get(Context, Elts);
2333         else
2334           V = ConstantDataArray::get(Context, Elts);
2335       } else if (EltTy->isIntegerTy(64)) {
2336         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2337         if (isa<VectorType>(CurTy))
2338           V = ConstantDataVector::get(Context, Elts);
2339         else
2340           V = ConstantDataArray::get(Context, Elts);
2341       } else if (EltTy->isHalfTy()) {
2342         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2343         if (isa<VectorType>(CurTy))
2344           V = ConstantDataVector::getFP(Context, Elts);
2345         else
2346           V = ConstantDataArray::getFP(Context, Elts);
2347       } else if (EltTy->isFloatTy()) {
2348         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2349         if (isa<VectorType>(CurTy))
2350           V = ConstantDataVector::getFP(Context, Elts);
2351         else
2352           V = ConstantDataArray::getFP(Context, Elts);
2353       } else if (EltTy->isDoubleTy()) {
2354         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2355         if (isa<VectorType>(CurTy))
2356           V = ConstantDataVector::getFP(Context, Elts);
2357         else
2358           V = ConstantDataArray::getFP(Context, Elts);
2359       } else {
2360         return error("Invalid type for value");
2361       }
2362       break;
2363     }
2364     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2365       if (Record.size() < 2)
2366         return error("Invalid record");
2367       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2368       if (Opc < 0) {
2369         V = UndefValue::get(CurTy);  // Unknown unop.
2370       } else {
2371         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2372         unsigned Flags = 0;
2373         V = ConstantExpr::get(Opc, LHS, Flags);
2374       }
2375       break;
2376     }
2377     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2378       if (Record.size() < 3)
2379         return error("Invalid record");
2380       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2381       if (Opc < 0) {
2382         V = UndefValue::get(CurTy);  // Unknown binop.
2383       } else {
2384         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2385         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2386         unsigned Flags = 0;
2387         if (Record.size() >= 4) {
2388           if (Opc == Instruction::Add ||
2389               Opc == Instruction::Sub ||
2390               Opc == Instruction::Mul ||
2391               Opc == Instruction::Shl) {
2392             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2393               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2394             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2395               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2396           } else if (Opc == Instruction::SDiv ||
2397                      Opc == Instruction::UDiv ||
2398                      Opc == Instruction::LShr ||
2399                      Opc == Instruction::AShr) {
2400             if (Record[3] & (1 << bitc::PEO_EXACT))
2401               Flags |= SDivOperator::IsExact;
2402           }
2403         }
2404         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2405       }
2406       break;
2407     }
2408     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2409       if (Record.size() < 3)
2410         return error("Invalid record");
2411       int Opc = getDecodedCastOpcode(Record[0]);
2412       if (Opc < 0) {
2413         V = UndefValue::get(CurTy);  // Unknown cast.
2414       } else {
2415         Type *OpTy = getTypeByID(Record[1]);
2416         if (!OpTy)
2417           return error("Invalid record");
2418         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2419         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2420         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2421       }
2422       break;
2423     }
2424     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2425     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2426     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2427                                                      // operands]
2428       unsigned OpNum = 0;
2429       Type *PointeeType = nullptr;
2430       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2431           Record.size() % 2)
2432         PointeeType = getTypeByID(Record[OpNum++]);
2433 
2434       bool InBounds = false;
2435       Optional<unsigned> InRangeIndex;
2436       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2437         uint64_t Op = Record[OpNum++];
2438         InBounds = Op & 1;
2439         InRangeIndex = Op >> 1;
2440       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2441         InBounds = true;
2442 
2443       SmallVector<Constant*, 16> Elts;
2444       while (OpNum != Record.size()) {
2445         Type *ElTy = getTypeByID(Record[OpNum++]);
2446         if (!ElTy)
2447           return error("Invalid record");
2448         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2449       }
2450 
2451       if (Elts.size() < 1)
2452         return error("Invalid gep with no operands");
2453 
2454       Type *ImplicitPointeeType =
2455           cast<PointerType>(Elts[0]->getType()->getScalarType())
2456               ->getElementType();
2457       if (!PointeeType)
2458         PointeeType = ImplicitPointeeType;
2459       else if (PointeeType != ImplicitPointeeType)
2460         return error("Explicit gep operator type does not match pointee type "
2461                      "of pointer operand");
2462 
2463       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2464       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2465                                          InBounds, InRangeIndex);
2466       break;
2467     }
2468     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2469       if (Record.size() < 3)
2470         return error("Invalid record");
2471 
2472       Type *SelectorTy = Type::getInt1Ty(Context);
2473 
2474       // The selector might be an i1 or an <n x i1>
2475       // Get the type from the ValueList before getting a forward ref.
2476       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2477         if (Value *V = ValueList[Record[0]])
2478           if (SelectorTy != V->getType())
2479             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2480 
2481       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2482                                                               SelectorTy),
2483                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2484                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2485       break;
2486     }
2487     case bitc::CST_CODE_CE_EXTRACTELT
2488         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2489       if (Record.size() < 3)
2490         return error("Invalid record");
2491       VectorType *OpTy =
2492         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2493       if (!OpTy)
2494         return error("Invalid record");
2495       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2496       Constant *Op1 = nullptr;
2497       if (Record.size() == 4) {
2498         Type *IdxTy = getTypeByID(Record[2]);
2499         if (!IdxTy)
2500           return error("Invalid record");
2501         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2502       } else // TODO: Remove with llvm 4.0
2503         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2504       if (!Op1)
2505         return error("Invalid record");
2506       V = ConstantExpr::getExtractElement(Op0, Op1);
2507       break;
2508     }
2509     case bitc::CST_CODE_CE_INSERTELT
2510         : { // CE_INSERTELT: [opval, opval, opty, opval]
2511       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2512       if (Record.size() < 3 || !OpTy)
2513         return error("Invalid record");
2514       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2515       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2516                                                   OpTy->getElementType());
2517       Constant *Op2 = nullptr;
2518       if (Record.size() == 4) {
2519         Type *IdxTy = getTypeByID(Record[2]);
2520         if (!IdxTy)
2521           return error("Invalid record");
2522         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2523       } else // TODO: Remove with llvm 4.0
2524         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2525       if (!Op2)
2526         return error("Invalid record");
2527       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2528       break;
2529     }
2530     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2531       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2532       if (Record.size() < 3 || !OpTy)
2533         return error("Invalid record");
2534       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2535       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2536       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2537                                                  OpTy->getNumElements());
2538       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2539       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2540       break;
2541     }
2542     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2543       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2544       VectorType *OpTy =
2545         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2546       if (Record.size() < 4 || !RTy || !OpTy)
2547         return error("Invalid record");
2548       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2549       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2550       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2551                                                  RTy->getNumElements());
2552       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2553       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2554       break;
2555     }
2556     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2557       if (Record.size() < 4)
2558         return error("Invalid record");
2559       Type *OpTy = getTypeByID(Record[0]);
2560       if (!OpTy)
2561         return error("Invalid record");
2562       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2563       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2564 
2565       if (OpTy->isFPOrFPVectorTy())
2566         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2567       else
2568         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2569       break;
2570     }
2571     // This maintains backward compatibility, pre-asm dialect keywords.
2572     // FIXME: Remove with the 4.0 release.
2573     case bitc::CST_CODE_INLINEASM_OLD: {
2574       if (Record.size() < 2)
2575         return error("Invalid record");
2576       std::string AsmStr, ConstrStr;
2577       bool HasSideEffects = Record[0] & 1;
2578       bool IsAlignStack = Record[0] >> 1;
2579       unsigned AsmStrSize = Record[1];
2580       if (2+AsmStrSize >= Record.size())
2581         return error("Invalid record");
2582       unsigned ConstStrSize = Record[2+AsmStrSize];
2583       if (3+AsmStrSize+ConstStrSize > Record.size())
2584         return error("Invalid record");
2585 
2586       for (unsigned i = 0; i != AsmStrSize; ++i)
2587         AsmStr += (char)Record[2+i];
2588       for (unsigned i = 0; i != ConstStrSize; ++i)
2589         ConstrStr += (char)Record[3+AsmStrSize+i];
2590       PointerType *PTy = cast<PointerType>(CurTy);
2591       UpgradeInlineAsmString(&AsmStr);
2592       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2593                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2594       break;
2595     }
2596     // This version adds support for the asm dialect keywords (e.g.,
2597     // inteldialect).
2598     case bitc::CST_CODE_INLINEASM: {
2599       if (Record.size() < 2)
2600         return error("Invalid record");
2601       std::string AsmStr, ConstrStr;
2602       bool HasSideEffects = Record[0] & 1;
2603       bool IsAlignStack = (Record[0] >> 1) & 1;
2604       unsigned AsmDialect = Record[0] >> 2;
2605       unsigned AsmStrSize = Record[1];
2606       if (2+AsmStrSize >= Record.size())
2607         return error("Invalid record");
2608       unsigned ConstStrSize = Record[2+AsmStrSize];
2609       if (3+AsmStrSize+ConstStrSize > Record.size())
2610         return error("Invalid record");
2611 
2612       for (unsigned i = 0; i != AsmStrSize; ++i)
2613         AsmStr += (char)Record[2+i];
2614       for (unsigned i = 0; i != ConstStrSize; ++i)
2615         ConstrStr += (char)Record[3+AsmStrSize+i];
2616       PointerType *PTy = cast<PointerType>(CurTy);
2617       UpgradeInlineAsmString(&AsmStr);
2618       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2619                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2620                          InlineAsm::AsmDialect(AsmDialect));
2621       break;
2622     }
2623     case bitc::CST_CODE_BLOCKADDRESS:{
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       Type *FnTy = getTypeByID(Record[0]);
2627       if (!FnTy)
2628         return error("Invalid record");
2629       Function *Fn =
2630         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2631       if (!Fn)
2632         return error("Invalid record");
2633 
2634       // If the function is already parsed we can insert the block address right
2635       // away.
2636       BasicBlock *BB;
2637       unsigned BBID = Record[2];
2638       if (!BBID)
2639         // Invalid reference to entry block.
2640         return error("Invalid ID");
2641       if (!Fn->empty()) {
2642         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2643         for (size_t I = 0, E = BBID; I != E; ++I) {
2644           if (BBI == BBE)
2645             return error("Invalid ID");
2646           ++BBI;
2647         }
2648         BB = &*BBI;
2649       } else {
2650         // Otherwise insert a placeholder and remember it so it can be inserted
2651         // when the function is parsed.
2652         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2653         if (FwdBBs.empty())
2654           BasicBlockFwdRefQueue.push_back(Fn);
2655         if (FwdBBs.size() < BBID + 1)
2656           FwdBBs.resize(BBID + 1);
2657         if (!FwdBBs[BBID])
2658           FwdBBs[BBID] = BasicBlock::Create(Context);
2659         BB = FwdBBs[BBID];
2660       }
2661       V = BlockAddress::get(Fn, BB);
2662       break;
2663     }
2664     }
2665 
2666     ValueList.assignValue(V, NextCstNo);
2667     ++NextCstNo;
2668   }
2669 }
2670 
2671 Error BitcodeReader::parseUseLists() {
2672   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2673     return error("Invalid record");
2674 
2675   // Read all the records.
2676   SmallVector<uint64_t, 64> Record;
2677 
2678   while (true) {
2679     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2680 
2681     switch (Entry.Kind) {
2682     case BitstreamEntry::SubBlock: // Handled for us already.
2683     case BitstreamEntry::Error:
2684       return error("Malformed block");
2685     case BitstreamEntry::EndBlock:
2686       return Error::success();
2687     case BitstreamEntry::Record:
2688       // The interesting case.
2689       break;
2690     }
2691 
2692     // Read a use list record.
2693     Record.clear();
2694     bool IsBB = false;
2695     switch (Stream.readRecord(Entry.ID, Record)) {
2696     default:  // Default behavior: unknown type.
2697       break;
2698     case bitc::USELIST_CODE_BB:
2699       IsBB = true;
2700       LLVM_FALLTHROUGH;
2701     case bitc::USELIST_CODE_DEFAULT: {
2702       unsigned RecordLength = Record.size();
2703       if (RecordLength < 3)
2704         // Records should have at least an ID and two indexes.
2705         return error("Invalid record");
2706       unsigned ID = Record.back();
2707       Record.pop_back();
2708 
2709       Value *V;
2710       if (IsBB) {
2711         assert(ID < FunctionBBs.size() && "Basic block not found");
2712         V = FunctionBBs[ID];
2713       } else
2714         V = ValueList[ID];
2715       unsigned NumUses = 0;
2716       SmallDenseMap<const Use *, unsigned, 16> Order;
2717       for (const Use &U : V->materialized_uses()) {
2718         if (++NumUses > Record.size())
2719           break;
2720         Order[&U] = Record[NumUses - 1];
2721       }
2722       if (Order.size() != Record.size() || NumUses > Record.size())
2723         // Mismatches can happen if the functions are being materialized lazily
2724         // (out-of-order), or a value has been upgraded.
2725         break;
2726 
2727       V->sortUseList([&](const Use &L, const Use &R) {
2728         return Order.lookup(&L) < Order.lookup(&R);
2729       });
2730       break;
2731     }
2732     }
2733   }
2734 }
2735 
2736 /// When we see the block for metadata, remember where it is and then skip it.
2737 /// This lets us lazily deserialize the metadata.
2738 Error BitcodeReader::rememberAndSkipMetadata() {
2739   // Save the current stream state.
2740   uint64_t CurBit = Stream.GetCurrentBitNo();
2741   DeferredMetadataInfo.push_back(CurBit);
2742 
2743   // Skip over the block for now.
2744   if (Stream.SkipBlock())
2745     return error("Invalid record");
2746   return Error::success();
2747 }
2748 
2749 Error BitcodeReader::materializeMetadata() {
2750   for (uint64_t BitPos : DeferredMetadataInfo) {
2751     // Move the bit stream to the saved position.
2752     Stream.JumpToBit(BitPos);
2753     if (Error Err = MDLoader->parseModuleMetadata())
2754       return Err;
2755   }
2756 
2757   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2758   // metadata.
2759   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2760     NamedMDNode *LinkerOpts =
2761         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2762     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2763       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2764   }
2765 
2766   DeferredMetadataInfo.clear();
2767   return Error::success();
2768 }
2769 
2770 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2771 
2772 /// When we see the block for a function body, remember where it is and then
2773 /// skip it.  This lets us lazily deserialize the functions.
2774 Error BitcodeReader::rememberAndSkipFunctionBody() {
2775   // Get the function we are talking about.
2776   if (FunctionsWithBodies.empty())
2777     return error("Insufficient function protos");
2778 
2779   Function *Fn = FunctionsWithBodies.back();
2780   FunctionsWithBodies.pop_back();
2781 
2782   // Save the current stream state.
2783   uint64_t CurBit = Stream.GetCurrentBitNo();
2784   assert(
2785       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2786       "Mismatch between VST and scanned function offsets");
2787   DeferredFunctionInfo[Fn] = CurBit;
2788 
2789   // Skip over the function block for now.
2790   if (Stream.SkipBlock())
2791     return error("Invalid record");
2792   return Error::success();
2793 }
2794 
2795 Error BitcodeReader::globalCleanup() {
2796   // Patch the initializers for globals and aliases up.
2797   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2798     return Err;
2799   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2800     return error("Malformed global initializer set");
2801 
2802   // Look for intrinsic functions which need to be upgraded at some point
2803   for (Function &F : *TheModule) {
2804     MDLoader->upgradeDebugIntrinsics(F);
2805     Function *NewFn;
2806     if (UpgradeIntrinsicFunction(&F, NewFn))
2807       UpgradedIntrinsics[&F] = NewFn;
2808     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2809       // Some types could be renamed during loading if several modules are
2810       // loaded in the same LLVMContext (LTO scenario). In this case we should
2811       // remangle intrinsics names as well.
2812       RemangledIntrinsics[&F] = Remangled.getValue();
2813   }
2814 
2815   // Look for global variables which need to be renamed.
2816   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2817   for (GlobalVariable &GV : TheModule->globals())
2818     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2819       UpgradedVariables.emplace_back(&GV, Upgraded);
2820   for (auto &Pair : UpgradedVariables) {
2821     Pair.first->eraseFromParent();
2822     TheModule->getGlobalList().push_back(Pair.second);
2823   }
2824 
2825   // Force deallocation of memory for these vectors to favor the client that
2826   // want lazy deserialization.
2827   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2828   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2829       IndirectSymbolInits);
2830   return Error::success();
2831 }
2832 
2833 /// Support for lazy parsing of function bodies. This is required if we
2834 /// either have an old bitcode file without a VST forward declaration record,
2835 /// or if we have an anonymous function being materialized, since anonymous
2836 /// functions do not have a name and are therefore not in the VST.
2837 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2838   Stream.JumpToBit(NextUnreadBit);
2839 
2840   if (Stream.AtEndOfStream())
2841     return error("Could not find function in stream");
2842 
2843   if (!SeenFirstFunctionBody)
2844     return error("Trying to materialize functions before seeing function blocks");
2845 
2846   // An old bitcode file with the symbol table at the end would have
2847   // finished the parse greedily.
2848   assert(SeenValueSymbolTable);
2849 
2850   SmallVector<uint64_t, 64> Record;
2851 
2852   while (true) {
2853     BitstreamEntry Entry = Stream.advance();
2854     switch (Entry.Kind) {
2855     default:
2856       return error("Expect SubBlock");
2857     case BitstreamEntry::SubBlock:
2858       switch (Entry.ID) {
2859       default:
2860         return error("Expect function block");
2861       case bitc::FUNCTION_BLOCK_ID:
2862         if (Error Err = rememberAndSkipFunctionBody())
2863           return Err;
2864         NextUnreadBit = Stream.GetCurrentBitNo();
2865         return Error::success();
2866       }
2867     }
2868   }
2869 }
2870 
2871 bool BitcodeReaderBase::readBlockInfo() {
2872   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2873   if (!NewBlockInfo)
2874     return true;
2875   BlockInfo = std::move(*NewBlockInfo);
2876   return false;
2877 }
2878 
2879 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2880   // v1: [selection_kind, name]
2881   // v2: [strtab_offset, strtab_size, selection_kind]
2882   StringRef Name;
2883   std::tie(Name, Record) = readNameFromStrtab(Record);
2884 
2885   if (Record.empty())
2886     return error("Invalid record");
2887   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2888   std::string OldFormatName;
2889   if (!UseStrtab) {
2890     if (Record.size() < 2)
2891       return error("Invalid record");
2892     unsigned ComdatNameSize = Record[1];
2893     OldFormatName.reserve(ComdatNameSize);
2894     for (unsigned i = 0; i != ComdatNameSize; ++i)
2895       OldFormatName += (char)Record[2 + i];
2896     Name = OldFormatName;
2897   }
2898   Comdat *C = TheModule->getOrInsertComdat(Name);
2899   C->setSelectionKind(SK);
2900   ComdatList.push_back(C);
2901   return Error::success();
2902 }
2903 
2904 static void inferDSOLocal(GlobalValue *GV) {
2905   // infer dso_local from linkage and visibility if it is not encoded.
2906   if (GV->hasLocalLinkage() ||
2907       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2908     GV->setDSOLocal(true);
2909 }
2910 
2911 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2912   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2913   // visibility, threadlocal, unnamed_addr, externally_initialized,
2914   // dllstorageclass, comdat, attributes, preemption specifier,
2915   // partition strtab offset, partition strtab size] (name in VST)
2916   // v2: [strtab_offset, strtab_size, v1]
2917   StringRef Name;
2918   std::tie(Name, Record) = readNameFromStrtab(Record);
2919 
2920   if (Record.size() < 6)
2921     return error("Invalid record");
2922   Type *Ty = getTypeByID(Record[0]);
2923   if (!Ty)
2924     return error("Invalid record");
2925   bool isConstant = Record[1] & 1;
2926   bool explicitType = Record[1] & 2;
2927   unsigned AddressSpace;
2928   if (explicitType) {
2929     AddressSpace = Record[1] >> 2;
2930   } else {
2931     if (!Ty->isPointerTy())
2932       return error("Invalid type for value");
2933     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2934     Ty = cast<PointerType>(Ty)->getElementType();
2935   }
2936 
2937   uint64_t RawLinkage = Record[3];
2938   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2939   unsigned Alignment;
2940   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2941     return Err;
2942   std::string Section;
2943   if (Record[5]) {
2944     if (Record[5] - 1 >= SectionTable.size())
2945       return error("Invalid ID");
2946     Section = SectionTable[Record[5] - 1];
2947   }
2948   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2949   // Local linkage must have default visibility.
2950   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2951     // FIXME: Change to an error if non-default in 4.0.
2952     Visibility = getDecodedVisibility(Record[6]);
2953 
2954   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2955   if (Record.size() > 7)
2956     TLM = getDecodedThreadLocalMode(Record[7]);
2957 
2958   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2959   if (Record.size() > 8)
2960     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2961 
2962   bool ExternallyInitialized = false;
2963   if (Record.size() > 9)
2964     ExternallyInitialized = Record[9];
2965 
2966   GlobalVariable *NewGV =
2967       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2968                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2969   NewGV->setAlignment(Alignment);
2970   if (!Section.empty())
2971     NewGV->setSection(Section);
2972   NewGV->setVisibility(Visibility);
2973   NewGV->setUnnamedAddr(UnnamedAddr);
2974 
2975   if (Record.size() > 10)
2976     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2977   else
2978     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2979 
2980   ValueList.push_back(NewGV);
2981 
2982   // Remember which value to use for the global initializer.
2983   if (unsigned InitID = Record[2])
2984     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2985 
2986   if (Record.size() > 11) {
2987     if (unsigned ComdatID = Record[11]) {
2988       if (ComdatID > ComdatList.size())
2989         return error("Invalid global variable comdat ID");
2990       NewGV->setComdat(ComdatList[ComdatID - 1]);
2991     }
2992   } else if (hasImplicitComdat(RawLinkage)) {
2993     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2994   }
2995 
2996   if (Record.size() > 12) {
2997     auto AS = getAttributes(Record[12]).getFnAttributes();
2998     NewGV->setAttributes(AS);
2999   }
3000 
3001   if (Record.size() > 13) {
3002     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3003   }
3004   inferDSOLocal(NewGV);
3005 
3006   // Check whether we have enough values to read a partition name.
3007   if (Record.size() > 15)
3008     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3009 
3010   return Error::success();
3011 }
3012 
3013 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3014   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3015   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3016   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3017   // v2: [strtab_offset, strtab_size, v1]
3018   StringRef Name;
3019   std::tie(Name, Record) = readNameFromStrtab(Record);
3020 
3021   if (Record.size() < 8)
3022     return error("Invalid record");
3023   Type *Ty = getTypeByID(Record[0]);
3024   if (!Ty)
3025     return error("Invalid record");
3026   if (auto *PTy = dyn_cast<PointerType>(Ty))
3027     Ty = PTy->getElementType();
3028   auto *FTy = dyn_cast<FunctionType>(Ty);
3029   if (!FTy)
3030     return error("Invalid type for value");
3031   auto CC = static_cast<CallingConv::ID>(Record[1]);
3032   if (CC & ~CallingConv::MaxID)
3033     return error("Invalid calling convention ID");
3034 
3035   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3036   if (Record.size() > 16)
3037     AddrSpace = Record[16];
3038 
3039   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3040                                     AddrSpace, Name, TheModule);
3041 
3042   Func->setCallingConv(CC);
3043   bool isProto = Record[2];
3044   uint64_t RawLinkage = Record[3];
3045   Func->setLinkage(getDecodedLinkage(RawLinkage));
3046   Func->setAttributes(getAttributes(Record[4]));
3047 
3048   // Upgrade any old-style byval without a type by propagating the argument's
3049   // pointee type. There should be no opaque pointers where the byval type is
3050   // implicit.
3051   for (auto &Arg : Func->args()) {
3052     if (Arg.hasByValAttr() && !Arg.getParamByValType()) {
3053       Arg.removeAttr(Attribute::ByVal);
3054       Arg.addAttr(Attribute::getWithByValType(
3055           Context, Arg.getType()->getPointerElementType()));
3056     }
3057   }
3058 
3059   unsigned Alignment;
3060   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3061     return Err;
3062   Func->setAlignment(Alignment);
3063   if (Record[6]) {
3064     if (Record[6] - 1 >= SectionTable.size())
3065       return error("Invalid ID");
3066     Func->setSection(SectionTable[Record[6] - 1]);
3067   }
3068   // Local linkage must have default visibility.
3069   if (!Func->hasLocalLinkage())
3070     // FIXME: Change to an error if non-default in 4.0.
3071     Func->setVisibility(getDecodedVisibility(Record[7]));
3072   if (Record.size() > 8 && Record[8]) {
3073     if (Record[8] - 1 >= GCTable.size())
3074       return error("Invalid ID");
3075     Func->setGC(GCTable[Record[8] - 1]);
3076   }
3077   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3078   if (Record.size() > 9)
3079     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3080   Func->setUnnamedAddr(UnnamedAddr);
3081   if (Record.size() > 10 && Record[10] != 0)
3082     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3083 
3084   if (Record.size() > 11)
3085     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3086   else
3087     upgradeDLLImportExportLinkage(Func, RawLinkage);
3088 
3089   if (Record.size() > 12) {
3090     if (unsigned ComdatID = Record[12]) {
3091       if (ComdatID > ComdatList.size())
3092         return error("Invalid function comdat ID");
3093       Func->setComdat(ComdatList[ComdatID - 1]);
3094     }
3095   } else if (hasImplicitComdat(RawLinkage)) {
3096     Func->setComdat(reinterpret_cast<Comdat *>(1));
3097   }
3098 
3099   if (Record.size() > 13 && Record[13] != 0)
3100     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3101 
3102   if (Record.size() > 14 && Record[14] != 0)
3103     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3104 
3105   if (Record.size() > 15) {
3106     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3107   }
3108   inferDSOLocal(Func);
3109 
3110   // Record[16] is the address space number.
3111 
3112   // Check whether we have enough values to read a partition name.
3113   if (Record.size() > 18)
3114     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3115 
3116   ValueList.push_back(Func);
3117 
3118   // If this is a function with a body, remember the prototype we are
3119   // creating now, so that we can match up the body with them later.
3120   if (!isProto) {
3121     Func->setIsMaterializable(true);
3122     FunctionsWithBodies.push_back(Func);
3123     DeferredFunctionInfo[Func] = 0;
3124   }
3125   return Error::success();
3126 }
3127 
3128 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3129     unsigned BitCode, ArrayRef<uint64_t> Record) {
3130   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3131   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3132   // dllstorageclass, threadlocal, unnamed_addr,
3133   // preemption specifier] (name in VST)
3134   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3135   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3136   // preemption specifier] (name in VST)
3137   // v2: [strtab_offset, strtab_size, v1]
3138   StringRef Name;
3139   std::tie(Name, Record) = readNameFromStrtab(Record);
3140 
3141   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3142   if (Record.size() < (3 + (unsigned)NewRecord))
3143     return error("Invalid record");
3144   unsigned OpNum = 0;
3145   Type *Ty = getTypeByID(Record[OpNum++]);
3146   if (!Ty)
3147     return error("Invalid record");
3148 
3149   unsigned AddrSpace;
3150   if (!NewRecord) {
3151     auto *PTy = dyn_cast<PointerType>(Ty);
3152     if (!PTy)
3153       return error("Invalid type for value");
3154     Ty = PTy->getElementType();
3155     AddrSpace = PTy->getAddressSpace();
3156   } else {
3157     AddrSpace = Record[OpNum++];
3158   }
3159 
3160   auto Val = Record[OpNum++];
3161   auto Linkage = Record[OpNum++];
3162   GlobalIndirectSymbol *NewGA;
3163   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3164       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3165     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3166                                 TheModule);
3167   else
3168     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3169                                 nullptr, TheModule);
3170   // Old bitcode files didn't have visibility field.
3171   // Local linkage must have default visibility.
3172   if (OpNum != Record.size()) {
3173     auto VisInd = OpNum++;
3174     if (!NewGA->hasLocalLinkage())
3175       // FIXME: Change to an error if non-default in 4.0.
3176       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3177   }
3178   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3179       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3180     if (OpNum != Record.size())
3181       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3182     else
3183       upgradeDLLImportExportLinkage(NewGA, Linkage);
3184     if (OpNum != Record.size())
3185       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3186     if (OpNum != Record.size())
3187       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3188   }
3189   if (OpNum != Record.size())
3190     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3191   inferDSOLocal(NewGA);
3192 
3193   // Check whether we have enough values to read a partition name.
3194   if (OpNum + 1 < Record.size()) {
3195     NewGA->setPartition(
3196         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3197     OpNum += 2;
3198   }
3199 
3200   ValueList.push_back(NewGA);
3201   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3202   return Error::success();
3203 }
3204 
3205 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3206                                  bool ShouldLazyLoadMetadata) {
3207   if (ResumeBit)
3208     Stream.JumpToBit(ResumeBit);
3209   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3210     return error("Invalid record");
3211 
3212   SmallVector<uint64_t, 64> Record;
3213 
3214   // Read all the records for this module.
3215   while (true) {
3216     BitstreamEntry Entry = Stream.advance();
3217 
3218     switch (Entry.Kind) {
3219     case BitstreamEntry::Error:
3220       return error("Malformed block");
3221     case BitstreamEntry::EndBlock:
3222       return globalCleanup();
3223 
3224     case BitstreamEntry::SubBlock:
3225       switch (Entry.ID) {
3226       default:  // Skip unknown content.
3227         if (Stream.SkipBlock())
3228           return error("Invalid record");
3229         break;
3230       case bitc::BLOCKINFO_BLOCK_ID:
3231         if (readBlockInfo())
3232           return error("Malformed block");
3233         break;
3234       case bitc::PARAMATTR_BLOCK_ID:
3235         if (Error Err = parseAttributeBlock())
3236           return Err;
3237         break;
3238       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3239         if (Error Err = parseAttributeGroupBlock())
3240           return Err;
3241         break;
3242       case bitc::TYPE_BLOCK_ID_NEW:
3243         if (Error Err = parseTypeTable())
3244           return Err;
3245         break;
3246       case bitc::VALUE_SYMTAB_BLOCK_ID:
3247         if (!SeenValueSymbolTable) {
3248           // Either this is an old form VST without function index and an
3249           // associated VST forward declaration record (which would have caused
3250           // the VST to be jumped to and parsed before it was encountered
3251           // normally in the stream), or there were no function blocks to
3252           // trigger an earlier parsing of the VST.
3253           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3254           if (Error Err = parseValueSymbolTable())
3255             return Err;
3256           SeenValueSymbolTable = true;
3257         } else {
3258           // We must have had a VST forward declaration record, which caused
3259           // the parser to jump to and parse the VST earlier.
3260           assert(VSTOffset > 0);
3261           if (Stream.SkipBlock())
3262             return error("Invalid record");
3263         }
3264         break;
3265       case bitc::CONSTANTS_BLOCK_ID:
3266         if (Error Err = parseConstants())
3267           return Err;
3268         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3269           return Err;
3270         break;
3271       case bitc::METADATA_BLOCK_ID:
3272         if (ShouldLazyLoadMetadata) {
3273           if (Error Err = rememberAndSkipMetadata())
3274             return Err;
3275           break;
3276         }
3277         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3278         if (Error Err = MDLoader->parseModuleMetadata())
3279           return Err;
3280         break;
3281       case bitc::METADATA_KIND_BLOCK_ID:
3282         if (Error Err = MDLoader->parseMetadataKinds())
3283           return Err;
3284         break;
3285       case bitc::FUNCTION_BLOCK_ID:
3286         // If this is the first function body we've seen, reverse the
3287         // FunctionsWithBodies list.
3288         if (!SeenFirstFunctionBody) {
3289           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3290           if (Error Err = globalCleanup())
3291             return Err;
3292           SeenFirstFunctionBody = true;
3293         }
3294 
3295         if (VSTOffset > 0) {
3296           // If we have a VST forward declaration record, make sure we
3297           // parse the VST now if we haven't already. It is needed to
3298           // set up the DeferredFunctionInfo vector for lazy reading.
3299           if (!SeenValueSymbolTable) {
3300             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3301               return Err;
3302             SeenValueSymbolTable = true;
3303             // Fall through so that we record the NextUnreadBit below.
3304             // This is necessary in case we have an anonymous function that
3305             // is later materialized. Since it will not have a VST entry we
3306             // need to fall back to the lazy parse to find its offset.
3307           } else {
3308             // If we have a VST forward declaration record, but have already
3309             // parsed the VST (just above, when the first function body was
3310             // encountered here), then we are resuming the parse after
3311             // materializing functions. The ResumeBit points to the
3312             // start of the last function block recorded in the
3313             // DeferredFunctionInfo map. Skip it.
3314             if (Stream.SkipBlock())
3315               return error("Invalid record");
3316             continue;
3317           }
3318         }
3319 
3320         // Support older bitcode files that did not have the function
3321         // index in the VST, nor a VST forward declaration record, as
3322         // well as anonymous functions that do not have VST entries.
3323         // Build the DeferredFunctionInfo vector on the fly.
3324         if (Error Err = rememberAndSkipFunctionBody())
3325           return Err;
3326 
3327         // Suspend parsing when we reach the function bodies. Subsequent
3328         // materialization calls will resume it when necessary. If the bitcode
3329         // file is old, the symbol table will be at the end instead and will not
3330         // have been seen yet. In this case, just finish the parse now.
3331         if (SeenValueSymbolTable) {
3332           NextUnreadBit = Stream.GetCurrentBitNo();
3333           // After the VST has been parsed, we need to make sure intrinsic name
3334           // are auto-upgraded.
3335           return globalCleanup();
3336         }
3337         break;
3338       case bitc::USELIST_BLOCK_ID:
3339         if (Error Err = parseUseLists())
3340           return Err;
3341         break;
3342       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3343         if (Error Err = parseOperandBundleTags())
3344           return Err;
3345         break;
3346       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3347         if (Error Err = parseSyncScopeNames())
3348           return Err;
3349         break;
3350       }
3351       continue;
3352 
3353     case BitstreamEntry::Record:
3354       // The interesting case.
3355       break;
3356     }
3357 
3358     // Read a record.
3359     auto BitCode = Stream.readRecord(Entry.ID, Record);
3360     switch (BitCode) {
3361     default: break;  // Default behavior, ignore unknown content.
3362     case bitc::MODULE_CODE_VERSION: {
3363       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3364       if (!VersionOrErr)
3365         return VersionOrErr.takeError();
3366       UseRelativeIDs = *VersionOrErr >= 1;
3367       break;
3368     }
3369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3370       std::string S;
3371       if (convertToString(Record, 0, S))
3372         return error("Invalid record");
3373       TheModule->setTargetTriple(S);
3374       break;
3375     }
3376     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3377       std::string S;
3378       if (convertToString(Record, 0, S))
3379         return error("Invalid record");
3380       TheModule->setDataLayout(S);
3381       break;
3382     }
3383     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3384       std::string S;
3385       if (convertToString(Record, 0, S))
3386         return error("Invalid record");
3387       TheModule->setModuleInlineAsm(S);
3388       break;
3389     }
3390     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3391       // FIXME: Remove in 4.0.
3392       std::string S;
3393       if (convertToString(Record, 0, S))
3394         return error("Invalid record");
3395       // Ignore value.
3396       break;
3397     }
3398     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3399       std::string S;
3400       if (convertToString(Record, 0, S))
3401         return error("Invalid record");
3402       SectionTable.push_back(S);
3403       break;
3404     }
3405     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3406       std::string S;
3407       if (convertToString(Record, 0, S))
3408         return error("Invalid record");
3409       GCTable.push_back(S);
3410       break;
3411     }
3412     case bitc::MODULE_CODE_COMDAT:
3413       if (Error Err = parseComdatRecord(Record))
3414         return Err;
3415       break;
3416     case bitc::MODULE_CODE_GLOBALVAR:
3417       if (Error Err = parseGlobalVarRecord(Record))
3418         return Err;
3419       break;
3420     case bitc::MODULE_CODE_FUNCTION:
3421       if (Error Err = parseFunctionRecord(Record))
3422         return Err;
3423       break;
3424     case bitc::MODULE_CODE_IFUNC:
3425     case bitc::MODULE_CODE_ALIAS:
3426     case bitc::MODULE_CODE_ALIAS_OLD:
3427       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3428         return Err;
3429       break;
3430     /// MODULE_CODE_VSTOFFSET: [offset]
3431     case bitc::MODULE_CODE_VSTOFFSET:
3432       if (Record.size() < 1)
3433         return error("Invalid record");
3434       // Note that we subtract 1 here because the offset is relative to one word
3435       // before the start of the identification or module block, which was
3436       // historically always the start of the regular bitcode header.
3437       VSTOffset = Record[0] - 1;
3438       break;
3439     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3440     case bitc::MODULE_CODE_SOURCE_FILENAME:
3441       SmallString<128> ValueName;
3442       if (convertToString(Record, 0, ValueName))
3443         return error("Invalid record");
3444       TheModule->setSourceFileName(ValueName);
3445       break;
3446     }
3447     Record.clear();
3448   }
3449 }
3450 
3451 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3452                                       bool IsImporting) {
3453   TheModule = M;
3454   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3455                             [&](unsigned ID) { return getTypeByID(ID); });
3456   return parseModule(0, ShouldLazyLoadMetadata);
3457 }
3458 
3459 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3460   if (!isa<PointerType>(PtrType))
3461     return error("Load/Store operand is not a pointer type");
3462   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3463 
3464   if (ValType && ValType != ElemType)
3465     return error("Explicit load/store type does not match pointee "
3466                  "type of pointer operand");
3467   if (!PointerType::isLoadableOrStorableType(ElemType))
3468     return error("Cannot load/store from pointer");
3469   return Error::success();
3470 }
3471 
3472 void BitcodeReader::propagateByValTypes(CallBase *CB) {
3473   for (unsigned i = 0; i < CB->getNumArgOperands(); ++i) {
3474     if (CB->paramHasAttr(i, Attribute::ByVal) &&
3475         !CB->getAttribute(i, Attribute::ByVal).getValueAsType()) {
3476       CB->removeParamAttr(i, Attribute::ByVal);
3477       CB->addParamAttr(
3478           i, Attribute::getWithByValType(
3479                  Context,
3480                  CB->getArgOperand(i)->getType()->getPointerElementType()));
3481     }
3482   }
3483 }
3484 
3485 /// Lazily parse the specified function body block.
3486 Error BitcodeReader::parseFunctionBody(Function *F) {
3487   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3488     return error("Invalid record");
3489 
3490   // Unexpected unresolved metadata when parsing function.
3491   if (MDLoader->hasFwdRefs())
3492     return error("Invalid function metadata: incoming forward references");
3493 
3494   InstructionList.clear();
3495   unsigned ModuleValueListSize = ValueList.size();
3496   unsigned ModuleMDLoaderSize = MDLoader->size();
3497 
3498   // Add all the function arguments to the value table.
3499   for (Argument &I : F->args())
3500     ValueList.push_back(&I);
3501 
3502   unsigned NextValueNo = ValueList.size();
3503   BasicBlock *CurBB = nullptr;
3504   unsigned CurBBNo = 0;
3505 
3506   DebugLoc LastLoc;
3507   auto getLastInstruction = [&]() -> Instruction * {
3508     if (CurBB && !CurBB->empty())
3509       return &CurBB->back();
3510     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3511              !FunctionBBs[CurBBNo - 1]->empty())
3512       return &FunctionBBs[CurBBNo - 1]->back();
3513     return nullptr;
3514   };
3515 
3516   std::vector<OperandBundleDef> OperandBundles;
3517 
3518   // Read all the records.
3519   SmallVector<uint64_t, 64> Record;
3520 
3521   while (true) {
3522     BitstreamEntry Entry = Stream.advance();
3523 
3524     switch (Entry.Kind) {
3525     case BitstreamEntry::Error:
3526       return error("Malformed block");
3527     case BitstreamEntry::EndBlock:
3528       goto OutOfRecordLoop;
3529 
3530     case BitstreamEntry::SubBlock:
3531       switch (Entry.ID) {
3532       default:  // Skip unknown content.
3533         if (Stream.SkipBlock())
3534           return error("Invalid record");
3535         break;
3536       case bitc::CONSTANTS_BLOCK_ID:
3537         if (Error Err = parseConstants())
3538           return Err;
3539         NextValueNo = ValueList.size();
3540         break;
3541       case bitc::VALUE_SYMTAB_BLOCK_ID:
3542         if (Error Err = parseValueSymbolTable())
3543           return Err;
3544         break;
3545       case bitc::METADATA_ATTACHMENT_ID:
3546         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3547           return Err;
3548         break;
3549       case bitc::METADATA_BLOCK_ID:
3550         assert(DeferredMetadataInfo.empty() &&
3551                "Must read all module-level metadata before function-level");
3552         if (Error Err = MDLoader->parseFunctionMetadata())
3553           return Err;
3554         break;
3555       case bitc::USELIST_BLOCK_ID:
3556         if (Error Err = parseUseLists())
3557           return Err;
3558         break;
3559       }
3560       continue;
3561 
3562     case BitstreamEntry::Record:
3563       // The interesting case.
3564       break;
3565     }
3566 
3567     // Read a record.
3568     Record.clear();
3569     Instruction *I = nullptr;
3570     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3571     switch (BitCode) {
3572     default: // Default behavior: reject
3573       return error("Invalid value");
3574     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3575       if (Record.size() < 1 || Record[0] == 0)
3576         return error("Invalid record");
3577       // Create all the basic blocks for the function.
3578       FunctionBBs.resize(Record[0]);
3579 
3580       // See if anything took the address of blocks in this function.
3581       auto BBFRI = BasicBlockFwdRefs.find(F);
3582       if (BBFRI == BasicBlockFwdRefs.end()) {
3583         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3584           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3585       } else {
3586         auto &BBRefs = BBFRI->second;
3587         // Check for invalid basic block references.
3588         if (BBRefs.size() > FunctionBBs.size())
3589           return error("Invalid ID");
3590         assert(!BBRefs.empty() && "Unexpected empty array");
3591         assert(!BBRefs.front() && "Invalid reference to entry block");
3592         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3593              ++I)
3594           if (I < RE && BBRefs[I]) {
3595             BBRefs[I]->insertInto(F);
3596             FunctionBBs[I] = BBRefs[I];
3597           } else {
3598             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3599           }
3600 
3601         // Erase from the table.
3602         BasicBlockFwdRefs.erase(BBFRI);
3603       }
3604 
3605       CurBB = FunctionBBs[0];
3606       continue;
3607     }
3608 
3609     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3610       // This record indicates that the last instruction is at the same
3611       // location as the previous instruction with a location.
3612       I = getLastInstruction();
3613 
3614       if (!I)
3615         return error("Invalid record");
3616       I->setDebugLoc(LastLoc);
3617       I = nullptr;
3618       continue;
3619 
3620     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3621       I = getLastInstruction();
3622       if (!I || Record.size() < 4)
3623         return error("Invalid record");
3624 
3625       unsigned Line = Record[0], Col = Record[1];
3626       unsigned ScopeID = Record[2], IAID = Record[3];
3627       bool isImplicitCode = Record.size() == 5 && Record[4];
3628 
3629       MDNode *Scope = nullptr, *IA = nullptr;
3630       if (ScopeID) {
3631         Scope = dyn_cast_or_null<MDNode>(
3632             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3633         if (!Scope)
3634           return error("Invalid record");
3635       }
3636       if (IAID) {
3637         IA = dyn_cast_or_null<MDNode>(
3638             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3639         if (!IA)
3640           return error("Invalid record");
3641       }
3642       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3643       I->setDebugLoc(LastLoc);
3644       I = nullptr;
3645       continue;
3646     }
3647     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3648       unsigned OpNum = 0;
3649       Value *LHS;
3650       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3651           OpNum+1 > Record.size())
3652         return error("Invalid record");
3653 
3654       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3655       if (Opc == -1)
3656         return error("Invalid record");
3657       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3658       InstructionList.push_back(I);
3659       if (OpNum < Record.size()) {
3660         if (isa<FPMathOperator>(I)) {
3661           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3662           if (FMF.any())
3663             I->setFastMathFlags(FMF);
3664         }
3665       }
3666       break;
3667     }
3668     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3669       unsigned OpNum = 0;
3670       Value *LHS, *RHS;
3671       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3672           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3673           OpNum+1 > Record.size())
3674         return error("Invalid record");
3675 
3676       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3677       if (Opc == -1)
3678         return error("Invalid record");
3679       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3680       InstructionList.push_back(I);
3681       if (OpNum < Record.size()) {
3682         if (Opc == Instruction::Add ||
3683             Opc == Instruction::Sub ||
3684             Opc == Instruction::Mul ||
3685             Opc == Instruction::Shl) {
3686           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3687             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3688           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3689             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3690         } else if (Opc == Instruction::SDiv ||
3691                    Opc == Instruction::UDiv ||
3692                    Opc == Instruction::LShr ||
3693                    Opc == Instruction::AShr) {
3694           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3695             cast<BinaryOperator>(I)->setIsExact(true);
3696         } else if (isa<FPMathOperator>(I)) {
3697           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3698           if (FMF.any())
3699             I->setFastMathFlags(FMF);
3700         }
3701 
3702       }
3703       break;
3704     }
3705     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3706       unsigned OpNum = 0;
3707       Value *Op;
3708       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3709           OpNum+2 != Record.size())
3710         return error("Invalid record");
3711 
3712       Type *ResTy = getTypeByID(Record[OpNum]);
3713       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3714       if (Opc == -1 || !ResTy)
3715         return error("Invalid record");
3716       Instruction *Temp = nullptr;
3717       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3718         if (Temp) {
3719           InstructionList.push_back(Temp);
3720           CurBB->getInstList().push_back(Temp);
3721         }
3722       } else {
3723         auto CastOp = (Instruction::CastOps)Opc;
3724         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3725           return error("Invalid cast");
3726         I = CastInst::Create(CastOp, Op, ResTy);
3727       }
3728       InstructionList.push_back(I);
3729       break;
3730     }
3731     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3732     case bitc::FUNC_CODE_INST_GEP_OLD:
3733     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3734       unsigned OpNum = 0;
3735 
3736       Type *Ty;
3737       bool InBounds;
3738 
3739       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3740         InBounds = Record[OpNum++];
3741         Ty = getTypeByID(Record[OpNum++]);
3742       } else {
3743         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3744         Ty = nullptr;
3745       }
3746 
3747       Value *BasePtr;
3748       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3749         return error("Invalid record");
3750 
3751       if (!Ty)
3752         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3753                  ->getElementType();
3754       else if (Ty !=
3755                cast<PointerType>(BasePtr->getType()->getScalarType())
3756                    ->getElementType())
3757         return error(
3758             "Explicit gep type does not match pointee type of pointer operand");
3759 
3760       SmallVector<Value*, 16> GEPIdx;
3761       while (OpNum != Record.size()) {
3762         Value *Op;
3763         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3764           return error("Invalid record");
3765         GEPIdx.push_back(Op);
3766       }
3767 
3768       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3769 
3770       InstructionList.push_back(I);
3771       if (InBounds)
3772         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3773       break;
3774     }
3775 
3776     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3777                                        // EXTRACTVAL: [opty, opval, n x indices]
3778       unsigned OpNum = 0;
3779       Value *Agg;
3780       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3781         return error("Invalid record");
3782 
3783       unsigned RecSize = Record.size();
3784       if (OpNum == RecSize)
3785         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3786 
3787       SmallVector<unsigned, 4> EXTRACTVALIdx;
3788       Type *CurTy = Agg->getType();
3789       for (; OpNum != RecSize; ++OpNum) {
3790         bool IsArray = CurTy->isArrayTy();
3791         bool IsStruct = CurTy->isStructTy();
3792         uint64_t Index = Record[OpNum];
3793 
3794         if (!IsStruct && !IsArray)
3795           return error("EXTRACTVAL: Invalid type");
3796         if ((unsigned)Index != Index)
3797           return error("Invalid value");
3798         if (IsStruct && Index >= CurTy->getStructNumElements())
3799           return error("EXTRACTVAL: Invalid struct index");
3800         if (IsArray && Index >= CurTy->getArrayNumElements())
3801           return error("EXTRACTVAL: Invalid array index");
3802         EXTRACTVALIdx.push_back((unsigned)Index);
3803 
3804         if (IsStruct)
3805           CurTy = CurTy->getStructElementType(Index);
3806         else
3807           CurTy = CurTy->getArrayElementType();
3808       }
3809 
3810       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3811       InstructionList.push_back(I);
3812       break;
3813     }
3814 
3815     case bitc::FUNC_CODE_INST_INSERTVAL: {
3816                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3817       unsigned OpNum = 0;
3818       Value *Agg;
3819       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3820         return error("Invalid record");
3821       Value *Val;
3822       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3823         return error("Invalid record");
3824 
3825       unsigned RecSize = Record.size();
3826       if (OpNum == RecSize)
3827         return error("INSERTVAL: Invalid instruction with 0 indices");
3828 
3829       SmallVector<unsigned, 4> INSERTVALIdx;
3830       Type *CurTy = Agg->getType();
3831       for (; OpNum != RecSize; ++OpNum) {
3832         bool IsArray = CurTy->isArrayTy();
3833         bool IsStruct = CurTy->isStructTy();
3834         uint64_t Index = Record[OpNum];
3835 
3836         if (!IsStruct && !IsArray)
3837           return error("INSERTVAL: Invalid type");
3838         if ((unsigned)Index != Index)
3839           return error("Invalid value");
3840         if (IsStruct && Index >= CurTy->getStructNumElements())
3841           return error("INSERTVAL: Invalid struct index");
3842         if (IsArray && Index >= CurTy->getArrayNumElements())
3843           return error("INSERTVAL: Invalid array index");
3844 
3845         INSERTVALIdx.push_back((unsigned)Index);
3846         if (IsStruct)
3847           CurTy = CurTy->getStructElementType(Index);
3848         else
3849           CurTy = CurTy->getArrayElementType();
3850       }
3851 
3852       if (CurTy != Val->getType())
3853         return error("Inserted value type doesn't match aggregate type");
3854 
3855       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3856       InstructionList.push_back(I);
3857       break;
3858     }
3859 
3860     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3861       // obsolete form of select
3862       // handles select i1 ... in old bitcode
3863       unsigned OpNum = 0;
3864       Value *TrueVal, *FalseVal, *Cond;
3865       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3866           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3867           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3868         return error("Invalid record");
3869 
3870       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3871       InstructionList.push_back(I);
3872       break;
3873     }
3874 
3875     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3876       // new form of select
3877       // handles select i1 or select [N x i1]
3878       unsigned OpNum = 0;
3879       Value *TrueVal, *FalseVal, *Cond;
3880       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3881           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3882           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3883         return error("Invalid record");
3884 
3885       // select condition can be either i1 or [N x i1]
3886       if (VectorType* vector_type =
3887           dyn_cast<VectorType>(Cond->getType())) {
3888         // expect <n x i1>
3889         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3890           return error("Invalid type for value");
3891       } else {
3892         // expect i1
3893         if (Cond->getType() != Type::getInt1Ty(Context))
3894           return error("Invalid type for value");
3895       }
3896 
3897       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3898       InstructionList.push_back(I);
3899       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
3900         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3901         if (FMF.any())
3902           I->setFastMathFlags(FMF);
3903       }
3904       break;
3905     }
3906 
3907     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3908       unsigned OpNum = 0;
3909       Value *Vec, *Idx;
3910       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3911           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3912         return error("Invalid record");
3913       if (!Vec->getType()->isVectorTy())
3914         return error("Invalid type for value");
3915       I = ExtractElementInst::Create(Vec, Idx);
3916       InstructionList.push_back(I);
3917       break;
3918     }
3919 
3920     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3921       unsigned OpNum = 0;
3922       Value *Vec, *Elt, *Idx;
3923       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3924         return error("Invalid record");
3925       if (!Vec->getType()->isVectorTy())
3926         return error("Invalid type for value");
3927       if (popValue(Record, OpNum, NextValueNo,
3928                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3929           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3930         return error("Invalid record");
3931       I = InsertElementInst::Create(Vec, Elt, Idx);
3932       InstructionList.push_back(I);
3933       break;
3934     }
3935 
3936     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3937       unsigned OpNum = 0;
3938       Value *Vec1, *Vec2, *Mask;
3939       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3940           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3941         return error("Invalid record");
3942 
3943       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3944         return error("Invalid record");
3945       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3946         return error("Invalid type for value");
3947       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3948       InstructionList.push_back(I);
3949       break;
3950     }
3951 
3952     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3953       // Old form of ICmp/FCmp returning bool
3954       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3955       // both legal on vectors but had different behaviour.
3956     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3957       // FCmp/ICmp returning bool or vector of bool
3958 
3959       unsigned OpNum = 0;
3960       Value *LHS, *RHS;
3961       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3962           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3963         return error("Invalid record");
3964 
3965       unsigned PredVal = Record[OpNum];
3966       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3967       FastMathFlags FMF;
3968       if (IsFP && Record.size() > OpNum+1)
3969         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3970 
3971       if (OpNum+1 != Record.size())
3972         return error("Invalid record");
3973 
3974       if (LHS->getType()->isFPOrFPVectorTy())
3975         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3976       else
3977         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3978 
3979       if (FMF.any())
3980         I->setFastMathFlags(FMF);
3981       InstructionList.push_back(I);
3982       break;
3983     }
3984 
3985     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3986       {
3987         unsigned Size = Record.size();
3988         if (Size == 0) {
3989           I = ReturnInst::Create(Context);
3990           InstructionList.push_back(I);
3991           break;
3992         }
3993 
3994         unsigned OpNum = 0;
3995         Value *Op = nullptr;
3996         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3997           return error("Invalid record");
3998         if (OpNum != Record.size())
3999           return error("Invalid record");
4000 
4001         I = ReturnInst::Create(Context, Op);
4002         InstructionList.push_back(I);
4003         break;
4004       }
4005     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4006       if (Record.size() != 1 && Record.size() != 3)
4007         return error("Invalid record");
4008       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4009       if (!TrueDest)
4010         return error("Invalid record");
4011 
4012       if (Record.size() == 1) {
4013         I = BranchInst::Create(TrueDest);
4014         InstructionList.push_back(I);
4015       }
4016       else {
4017         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4018         Value *Cond = getValue(Record, 2, NextValueNo,
4019                                Type::getInt1Ty(Context));
4020         if (!FalseDest || !Cond)
4021           return error("Invalid record");
4022         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4023         InstructionList.push_back(I);
4024       }
4025       break;
4026     }
4027     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4028       if (Record.size() != 1 && Record.size() != 2)
4029         return error("Invalid record");
4030       unsigned Idx = 0;
4031       Value *CleanupPad =
4032           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4033       if (!CleanupPad)
4034         return error("Invalid record");
4035       BasicBlock *UnwindDest = nullptr;
4036       if (Record.size() == 2) {
4037         UnwindDest = getBasicBlock(Record[Idx++]);
4038         if (!UnwindDest)
4039           return error("Invalid record");
4040       }
4041 
4042       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4043       InstructionList.push_back(I);
4044       break;
4045     }
4046     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4047       if (Record.size() != 2)
4048         return error("Invalid record");
4049       unsigned Idx = 0;
4050       Value *CatchPad =
4051           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4052       if (!CatchPad)
4053         return error("Invalid record");
4054       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4055       if (!BB)
4056         return error("Invalid record");
4057 
4058       I = CatchReturnInst::Create(CatchPad, BB);
4059       InstructionList.push_back(I);
4060       break;
4061     }
4062     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4063       // We must have, at minimum, the outer scope and the number of arguments.
4064       if (Record.size() < 2)
4065         return error("Invalid record");
4066 
4067       unsigned Idx = 0;
4068 
4069       Value *ParentPad =
4070           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4071 
4072       unsigned NumHandlers = Record[Idx++];
4073 
4074       SmallVector<BasicBlock *, 2> Handlers;
4075       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4076         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4077         if (!BB)
4078           return error("Invalid record");
4079         Handlers.push_back(BB);
4080       }
4081 
4082       BasicBlock *UnwindDest = nullptr;
4083       if (Idx + 1 == Record.size()) {
4084         UnwindDest = getBasicBlock(Record[Idx++]);
4085         if (!UnwindDest)
4086           return error("Invalid record");
4087       }
4088 
4089       if (Record.size() != Idx)
4090         return error("Invalid record");
4091 
4092       auto *CatchSwitch =
4093           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4094       for (BasicBlock *Handler : Handlers)
4095         CatchSwitch->addHandler(Handler);
4096       I = CatchSwitch;
4097       InstructionList.push_back(I);
4098       break;
4099     }
4100     case bitc::FUNC_CODE_INST_CATCHPAD:
4101     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4102       // We must have, at minimum, the outer scope and the number of arguments.
4103       if (Record.size() < 2)
4104         return error("Invalid record");
4105 
4106       unsigned Idx = 0;
4107 
4108       Value *ParentPad =
4109           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4110 
4111       unsigned NumArgOperands = Record[Idx++];
4112 
4113       SmallVector<Value *, 2> Args;
4114       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4115         Value *Val;
4116         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4117           return error("Invalid record");
4118         Args.push_back(Val);
4119       }
4120 
4121       if (Record.size() != Idx)
4122         return error("Invalid record");
4123 
4124       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4125         I = CleanupPadInst::Create(ParentPad, Args);
4126       else
4127         I = CatchPadInst::Create(ParentPad, Args);
4128       InstructionList.push_back(I);
4129       break;
4130     }
4131     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4132       // Check magic
4133       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4134         // "New" SwitchInst format with case ranges. The changes to write this
4135         // format were reverted but we still recognize bitcode that uses it.
4136         // Hopefully someday we will have support for case ranges and can use
4137         // this format again.
4138 
4139         Type *OpTy = getTypeByID(Record[1]);
4140         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4141 
4142         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4143         BasicBlock *Default = getBasicBlock(Record[3]);
4144         if (!OpTy || !Cond || !Default)
4145           return error("Invalid record");
4146 
4147         unsigned NumCases = Record[4];
4148 
4149         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4150         InstructionList.push_back(SI);
4151 
4152         unsigned CurIdx = 5;
4153         for (unsigned i = 0; i != NumCases; ++i) {
4154           SmallVector<ConstantInt*, 1> CaseVals;
4155           unsigned NumItems = Record[CurIdx++];
4156           for (unsigned ci = 0; ci != NumItems; ++ci) {
4157             bool isSingleNumber = Record[CurIdx++];
4158 
4159             APInt Low;
4160             unsigned ActiveWords = 1;
4161             if (ValueBitWidth > 64)
4162               ActiveWords = Record[CurIdx++];
4163             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4164                                 ValueBitWidth);
4165             CurIdx += ActiveWords;
4166 
4167             if (!isSingleNumber) {
4168               ActiveWords = 1;
4169               if (ValueBitWidth > 64)
4170                 ActiveWords = Record[CurIdx++];
4171               APInt High = readWideAPInt(
4172                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4173               CurIdx += ActiveWords;
4174 
4175               // FIXME: It is not clear whether values in the range should be
4176               // compared as signed or unsigned values. The partially
4177               // implemented changes that used this format in the past used
4178               // unsigned comparisons.
4179               for ( ; Low.ule(High); ++Low)
4180                 CaseVals.push_back(ConstantInt::get(Context, Low));
4181             } else
4182               CaseVals.push_back(ConstantInt::get(Context, Low));
4183           }
4184           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4185           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4186                  cve = CaseVals.end(); cvi != cve; ++cvi)
4187             SI->addCase(*cvi, DestBB);
4188         }
4189         I = SI;
4190         break;
4191       }
4192 
4193       // Old SwitchInst format without case ranges.
4194 
4195       if (Record.size() < 3 || (Record.size() & 1) == 0)
4196         return error("Invalid record");
4197       Type *OpTy = getTypeByID(Record[0]);
4198       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4199       BasicBlock *Default = getBasicBlock(Record[2]);
4200       if (!OpTy || !Cond || !Default)
4201         return error("Invalid record");
4202       unsigned NumCases = (Record.size()-3)/2;
4203       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4204       InstructionList.push_back(SI);
4205       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4206         ConstantInt *CaseVal =
4207           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4208         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4209         if (!CaseVal || !DestBB) {
4210           delete SI;
4211           return error("Invalid record");
4212         }
4213         SI->addCase(CaseVal, DestBB);
4214       }
4215       I = SI;
4216       break;
4217     }
4218     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4219       if (Record.size() < 2)
4220         return error("Invalid record");
4221       Type *OpTy = getTypeByID(Record[0]);
4222       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4223       if (!OpTy || !Address)
4224         return error("Invalid record");
4225       unsigned NumDests = Record.size()-2;
4226       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4227       InstructionList.push_back(IBI);
4228       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4229         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4230           IBI->addDestination(DestBB);
4231         } else {
4232           delete IBI;
4233           return error("Invalid record");
4234         }
4235       }
4236       I = IBI;
4237       break;
4238     }
4239 
4240     case bitc::FUNC_CODE_INST_INVOKE: {
4241       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4242       if (Record.size() < 4)
4243         return error("Invalid record");
4244       unsigned OpNum = 0;
4245       AttributeList PAL = getAttributes(Record[OpNum++]);
4246       unsigned CCInfo = Record[OpNum++];
4247       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4248       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4249 
4250       FunctionType *FTy = nullptr;
4251       if (CCInfo >> 13 & 1 &&
4252           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4253         return error("Explicit invoke type is not a function type");
4254 
4255       Value *Callee;
4256       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4257         return error("Invalid record");
4258 
4259       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4260       if (!CalleeTy)
4261         return error("Callee is not a pointer");
4262       if (!FTy) {
4263         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4264         if (!FTy)
4265           return error("Callee is not of pointer to function type");
4266       } else if (CalleeTy->getElementType() != FTy)
4267         return error("Explicit invoke type does not match pointee type of "
4268                      "callee operand");
4269       if (Record.size() < FTy->getNumParams() + OpNum)
4270         return error("Insufficient operands to call");
4271 
4272       SmallVector<Value*, 16> Ops;
4273       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4274         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4275                                FTy->getParamType(i)));
4276         if (!Ops.back())
4277           return error("Invalid record");
4278       }
4279 
4280       if (!FTy->isVarArg()) {
4281         if (Record.size() != OpNum)
4282           return error("Invalid record");
4283       } else {
4284         // Read type/value pairs for varargs params.
4285         while (OpNum != Record.size()) {
4286           Value *Op;
4287           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4288             return error("Invalid record");
4289           Ops.push_back(Op);
4290         }
4291       }
4292 
4293       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4294                              OperandBundles);
4295       OperandBundles.clear();
4296       InstructionList.push_back(I);
4297       cast<InvokeInst>(I)->setCallingConv(
4298           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4299       cast<InvokeInst>(I)->setAttributes(PAL);
4300       propagateByValTypes(cast<CallBase>(I));
4301 
4302       break;
4303     }
4304     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4305       unsigned Idx = 0;
4306       Value *Val = nullptr;
4307       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4308         return error("Invalid record");
4309       I = ResumeInst::Create(Val);
4310       InstructionList.push_back(I);
4311       break;
4312     }
4313     case bitc::FUNC_CODE_INST_CALLBR: {
4314       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4315       unsigned OpNum = 0;
4316       AttributeList PAL = getAttributes(Record[OpNum++]);
4317       unsigned CCInfo = Record[OpNum++];
4318 
4319       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4320       unsigned NumIndirectDests = Record[OpNum++];
4321       SmallVector<BasicBlock *, 16> IndirectDests;
4322       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4323         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4324 
4325       FunctionType *FTy = nullptr;
4326       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4327           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4328         return error("Explicit call type is not a function type");
4329 
4330       Value *Callee;
4331       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4332         return error("Invalid record");
4333 
4334       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4335       if (!OpTy)
4336         return error("Callee is not a pointer type");
4337       if (!FTy) {
4338         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4339         if (!FTy)
4340           return error("Callee is not of pointer to function type");
4341       } else if (OpTy->getElementType() != FTy)
4342         return error("Explicit call type does not match pointee type of "
4343                      "callee operand");
4344       if (Record.size() < FTy->getNumParams() + OpNum)
4345         return error("Insufficient operands to call");
4346 
4347       SmallVector<Value*, 16> Args;
4348       // Read the fixed params.
4349       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4350         if (FTy->getParamType(i)->isLabelTy())
4351           Args.push_back(getBasicBlock(Record[OpNum]));
4352         else
4353           Args.push_back(getValue(Record, OpNum, NextValueNo,
4354                                   FTy->getParamType(i)));
4355         if (!Args.back())
4356           return error("Invalid record");
4357       }
4358 
4359       // Read type/value pairs for varargs params.
4360       if (!FTy->isVarArg()) {
4361         if (OpNum != Record.size())
4362           return error("Invalid record");
4363       } else {
4364         while (OpNum != Record.size()) {
4365           Value *Op;
4366           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4367             return error("Invalid record");
4368           Args.push_back(Op);
4369         }
4370       }
4371 
4372       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4373                              OperandBundles);
4374       OperandBundles.clear();
4375       InstructionList.push_back(I);
4376       cast<CallBrInst>(I)->setCallingConv(
4377           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4378       cast<CallBrInst>(I)->setAttributes(PAL);
4379       break;
4380     }
4381     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4382       I = new UnreachableInst(Context);
4383       InstructionList.push_back(I);
4384       break;
4385     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4386       if (Record.size() < 1 || ((Record.size()-1)&1))
4387         return error("Invalid record");
4388       Type *Ty = getTypeByID(Record[0]);
4389       if (!Ty)
4390         return error("Invalid record");
4391 
4392       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4393       InstructionList.push_back(PN);
4394 
4395       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4396         Value *V;
4397         // With the new function encoding, it is possible that operands have
4398         // negative IDs (for forward references).  Use a signed VBR
4399         // representation to keep the encoding small.
4400         if (UseRelativeIDs)
4401           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4402         else
4403           V = getValue(Record, 1+i, NextValueNo, Ty);
4404         BasicBlock *BB = getBasicBlock(Record[2+i]);
4405         if (!V || !BB)
4406           return error("Invalid record");
4407         PN->addIncoming(V, BB);
4408       }
4409       I = PN;
4410       break;
4411     }
4412 
4413     case bitc::FUNC_CODE_INST_LANDINGPAD:
4414     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4415       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4416       unsigned Idx = 0;
4417       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4418         if (Record.size() < 3)
4419           return error("Invalid record");
4420       } else {
4421         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4422         if (Record.size() < 4)
4423           return error("Invalid record");
4424       }
4425       Type *Ty = getTypeByID(Record[Idx++]);
4426       if (!Ty)
4427         return error("Invalid record");
4428       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4429         Value *PersFn = nullptr;
4430         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4431           return error("Invalid record");
4432 
4433         if (!F->hasPersonalityFn())
4434           F->setPersonalityFn(cast<Constant>(PersFn));
4435         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4436           return error("Personality function mismatch");
4437       }
4438 
4439       bool IsCleanup = !!Record[Idx++];
4440       unsigned NumClauses = Record[Idx++];
4441       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4442       LP->setCleanup(IsCleanup);
4443       for (unsigned J = 0; J != NumClauses; ++J) {
4444         LandingPadInst::ClauseType CT =
4445           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4446         Value *Val;
4447 
4448         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4449           delete LP;
4450           return error("Invalid record");
4451         }
4452 
4453         assert((CT != LandingPadInst::Catch ||
4454                 !isa<ArrayType>(Val->getType())) &&
4455                "Catch clause has a invalid type!");
4456         assert((CT != LandingPadInst::Filter ||
4457                 isa<ArrayType>(Val->getType())) &&
4458                "Filter clause has invalid type!");
4459         LP->addClause(cast<Constant>(Val));
4460       }
4461 
4462       I = LP;
4463       InstructionList.push_back(I);
4464       break;
4465     }
4466 
4467     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4468       if (Record.size() != 4)
4469         return error("Invalid record");
4470       uint64_t AlignRecord = Record[3];
4471       const uint64_t InAllocaMask = uint64_t(1) << 5;
4472       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4473       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4474       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4475                                 SwiftErrorMask;
4476       bool InAlloca = AlignRecord & InAllocaMask;
4477       bool SwiftError = AlignRecord & SwiftErrorMask;
4478       Type *Ty = getTypeByID(Record[0]);
4479       if ((AlignRecord & ExplicitTypeMask) == 0) {
4480         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4481         if (!PTy)
4482           return error("Old-style alloca with a non-pointer type");
4483         Ty = PTy->getElementType();
4484       }
4485       Type *OpTy = getTypeByID(Record[1]);
4486       Value *Size = getFnValueByID(Record[2], OpTy);
4487       unsigned Align;
4488       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4489         return Err;
4490       }
4491       if (!Ty || !Size)
4492         return error("Invalid record");
4493 
4494       // FIXME: Make this an optional field.
4495       const DataLayout &DL = TheModule->getDataLayout();
4496       unsigned AS = DL.getAllocaAddrSpace();
4497 
4498       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4499       AI->setUsedWithInAlloca(InAlloca);
4500       AI->setSwiftError(SwiftError);
4501       I = AI;
4502       InstructionList.push_back(I);
4503       break;
4504     }
4505     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4506       unsigned OpNum = 0;
4507       Value *Op;
4508       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4509           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4510         return error("Invalid record");
4511 
4512       Type *Ty = nullptr;
4513       if (OpNum + 3 == Record.size())
4514         Ty = getTypeByID(Record[OpNum++]);
4515       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4516         return Err;
4517       if (!Ty)
4518         Ty = cast<PointerType>(Op->getType())->getElementType();
4519 
4520       unsigned Align;
4521       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4522         return Err;
4523       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4524 
4525       InstructionList.push_back(I);
4526       break;
4527     }
4528     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4529        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4530       unsigned OpNum = 0;
4531       Value *Op;
4532       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4533           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4534         return error("Invalid record");
4535 
4536       Type *Ty = nullptr;
4537       if (OpNum + 5 == Record.size())
4538         Ty = getTypeByID(Record[OpNum++]);
4539       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4540         return Err;
4541       if (!Ty)
4542         Ty = cast<PointerType>(Op->getType())->getElementType();
4543 
4544       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4545       if (Ordering == AtomicOrdering::NotAtomic ||
4546           Ordering == AtomicOrdering::Release ||
4547           Ordering == AtomicOrdering::AcquireRelease)
4548         return error("Invalid record");
4549       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4550         return error("Invalid record");
4551       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4552 
4553       unsigned Align;
4554       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4555         return Err;
4556       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4557 
4558       InstructionList.push_back(I);
4559       break;
4560     }
4561     case bitc::FUNC_CODE_INST_STORE:
4562     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4563       unsigned OpNum = 0;
4564       Value *Val, *Ptr;
4565       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4566           (BitCode == bitc::FUNC_CODE_INST_STORE
4567                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4568                : popValue(Record, OpNum, NextValueNo,
4569                           cast<PointerType>(Ptr->getType())->getElementType(),
4570                           Val)) ||
4571           OpNum + 2 != Record.size())
4572         return error("Invalid record");
4573 
4574       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4575         return Err;
4576       unsigned Align;
4577       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4578         return Err;
4579       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4580       InstructionList.push_back(I);
4581       break;
4582     }
4583     case bitc::FUNC_CODE_INST_STOREATOMIC:
4584     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4585       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4586       unsigned OpNum = 0;
4587       Value *Val, *Ptr;
4588       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4589           !isa<PointerType>(Ptr->getType()) ||
4590           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4591                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4592                : popValue(Record, OpNum, NextValueNo,
4593                           cast<PointerType>(Ptr->getType())->getElementType(),
4594                           Val)) ||
4595           OpNum + 4 != Record.size())
4596         return error("Invalid record");
4597 
4598       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4599         return Err;
4600       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4601       if (Ordering == AtomicOrdering::NotAtomic ||
4602           Ordering == AtomicOrdering::Acquire ||
4603           Ordering == AtomicOrdering::AcquireRelease)
4604         return error("Invalid record");
4605       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4606       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4607         return error("Invalid record");
4608 
4609       unsigned Align;
4610       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4611         return Err;
4612       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4613       InstructionList.push_back(I);
4614       break;
4615     }
4616     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4617     case bitc::FUNC_CODE_INST_CMPXCHG: {
4618       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4619       //          failureordering?, isweak?]
4620       unsigned OpNum = 0;
4621       Value *Ptr, *Cmp, *New;
4622       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4623           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4624                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4625                : popValue(Record, OpNum, NextValueNo,
4626                           cast<PointerType>(Ptr->getType())->getElementType(),
4627                           Cmp)) ||
4628           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4629           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4630         return error("Invalid record");
4631       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4632       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4633           SuccessOrdering == AtomicOrdering::Unordered)
4634         return error("Invalid record");
4635       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4636 
4637       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4638         return Err;
4639       AtomicOrdering FailureOrdering;
4640       if (Record.size() < 7)
4641         FailureOrdering =
4642             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4643       else
4644         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4645 
4646       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4647                                 SSID);
4648       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4649 
4650       if (Record.size() < 8) {
4651         // Before weak cmpxchgs existed, the instruction simply returned the
4652         // value loaded from memory, so bitcode files from that era will be
4653         // expecting the first component of a modern cmpxchg.
4654         CurBB->getInstList().push_back(I);
4655         I = ExtractValueInst::Create(I, 0);
4656       } else {
4657         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4658       }
4659 
4660       InstructionList.push_back(I);
4661       break;
4662     }
4663     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4664       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4665       unsigned OpNum = 0;
4666       Value *Ptr, *Val;
4667       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4668           !isa<PointerType>(Ptr->getType()) ||
4669           popValue(Record, OpNum, NextValueNo,
4670                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4671           OpNum+4 != Record.size())
4672         return error("Invalid record");
4673       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4674       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4675           Operation > AtomicRMWInst::LAST_BINOP)
4676         return error("Invalid record");
4677       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4678       if (Ordering == AtomicOrdering::NotAtomic ||
4679           Ordering == AtomicOrdering::Unordered)
4680         return error("Invalid record");
4681       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4682       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4683       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4684       InstructionList.push_back(I);
4685       break;
4686     }
4687     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4688       if (2 != Record.size())
4689         return error("Invalid record");
4690       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4691       if (Ordering == AtomicOrdering::NotAtomic ||
4692           Ordering == AtomicOrdering::Unordered ||
4693           Ordering == AtomicOrdering::Monotonic)
4694         return error("Invalid record");
4695       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4696       I = new FenceInst(Context, Ordering, SSID);
4697       InstructionList.push_back(I);
4698       break;
4699     }
4700     case bitc::FUNC_CODE_INST_CALL: {
4701       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4702       if (Record.size() < 3)
4703         return error("Invalid record");
4704 
4705       unsigned OpNum = 0;
4706       AttributeList PAL = getAttributes(Record[OpNum++]);
4707       unsigned CCInfo = Record[OpNum++];
4708 
4709       FastMathFlags FMF;
4710       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4711         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4712         if (!FMF.any())
4713           return error("Fast math flags indicator set for call with no FMF");
4714       }
4715 
4716       FunctionType *FTy = nullptr;
4717       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4718           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4719         return error("Explicit call type is not a function type");
4720 
4721       Value *Callee;
4722       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4723         return error("Invalid record");
4724 
4725       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4726       if (!OpTy)
4727         return error("Callee is not a pointer type");
4728       if (!FTy) {
4729         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4730         if (!FTy)
4731           return error("Callee is not of pointer to function type");
4732       } else if (OpTy->getElementType() != FTy)
4733         return error("Explicit call type does not match pointee type of "
4734                      "callee operand");
4735       if (Record.size() < FTy->getNumParams() + OpNum)
4736         return error("Insufficient operands to call");
4737 
4738       SmallVector<Value*, 16> Args;
4739       // Read the fixed params.
4740       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4741         if (FTy->getParamType(i)->isLabelTy())
4742           Args.push_back(getBasicBlock(Record[OpNum]));
4743         else
4744           Args.push_back(getValue(Record, OpNum, NextValueNo,
4745                                   FTy->getParamType(i)));
4746         if (!Args.back())
4747           return error("Invalid record");
4748       }
4749 
4750       // Read type/value pairs for varargs params.
4751       if (!FTy->isVarArg()) {
4752         if (OpNum != Record.size())
4753           return error("Invalid record");
4754       } else {
4755         while (OpNum != Record.size()) {
4756           Value *Op;
4757           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4758             return error("Invalid record");
4759           Args.push_back(Op);
4760         }
4761       }
4762 
4763       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4764       OperandBundles.clear();
4765       InstructionList.push_back(I);
4766       cast<CallInst>(I)->setCallingConv(
4767           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4768       CallInst::TailCallKind TCK = CallInst::TCK_None;
4769       if (CCInfo & 1 << bitc::CALL_TAIL)
4770         TCK = CallInst::TCK_Tail;
4771       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4772         TCK = CallInst::TCK_MustTail;
4773       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4774         TCK = CallInst::TCK_NoTail;
4775       cast<CallInst>(I)->setTailCallKind(TCK);
4776       cast<CallInst>(I)->setAttributes(PAL);
4777       propagateByValTypes(cast<CallBase>(I));
4778       if (FMF.any()) {
4779         if (!isa<FPMathOperator>(I))
4780           return error("Fast-math-flags specified for call without "
4781                        "floating-point scalar or vector return type");
4782         I->setFastMathFlags(FMF);
4783       }
4784       break;
4785     }
4786     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4787       if (Record.size() < 3)
4788         return error("Invalid record");
4789       Type *OpTy = getTypeByID(Record[0]);
4790       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4791       Type *ResTy = getTypeByID(Record[2]);
4792       if (!OpTy || !Op || !ResTy)
4793         return error("Invalid record");
4794       I = new VAArgInst(Op, ResTy);
4795       InstructionList.push_back(I);
4796       break;
4797     }
4798 
4799     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4800       // A call or an invoke can be optionally prefixed with some variable
4801       // number of operand bundle blocks.  These blocks are read into
4802       // OperandBundles and consumed at the next call or invoke instruction.
4803 
4804       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4805         return error("Invalid record");
4806 
4807       std::vector<Value *> Inputs;
4808 
4809       unsigned OpNum = 1;
4810       while (OpNum != Record.size()) {
4811         Value *Op;
4812         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4813           return error("Invalid record");
4814         Inputs.push_back(Op);
4815       }
4816 
4817       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4818       continue;
4819     }
4820     }
4821 
4822     // Add instruction to end of current BB.  If there is no current BB, reject
4823     // this file.
4824     if (!CurBB) {
4825       I->deleteValue();
4826       return error("Invalid instruction with no BB");
4827     }
4828     if (!OperandBundles.empty()) {
4829       I->deleteValue();
4830       return error("Operand bundles found with no consumer");
4831     }
4832     CurBB->getInstList().push_back(I);
4833 
4834     // If this was a terminator instruction, move to the next block.
4835     if (I->isTerminator()) {
4836       ++CurBBNo;
4837       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4838     }
4839 
4840     // Non-void values get registered in the value table for future use.
4841     if (I && !I->getType()->isVoidTy())
4842       ValueList.assignValue(I, NextValueNo++);
4843   }
4844 
4845 OutOfRecordLoop:
4846 
4847   if (!OperandBundles.empty())
4848     return error("Operand bundles found with no consumer");
4849 
4850   // Check the function list for unresolved values.
4851   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4852     if (!A->getParent()) {
4853       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4854       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4855         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4856           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4857           delete A;
4858         }
4859       }
4860       return error("Never resolved value found in function");
4861     }
4862   }
4863 
4864   // Unexpected unresolved metadata about to be dropped.
4865   if (MDLoader->hasFwdRefs())
4866     return error("Invalid function metadata: outgoing forward refs");
4867 
4868   // Trim the value list down to the size it was before we parsed this function.
4869   ValueList.shrinkTo(ModuleValueListSize);
4870   MDLoader->shrinkTo(ModuleMDLoaderSize);
4871   std::vector<BasicBlock*>().swap(FunctionBBs);
4872   return Error::success();
4873 }
4874 
4875 /// Find the function body in the bitcode stream
4876 Error BitcodeReader::findFunctionInStream(
4877     Function *F,
4878     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4879   while (DeferredFunctionInfoIterator->second == 0) {
4880     // This is the fallback handling for the old format bitcode that
4881     // didn't contain the function index in the VST, or when we have
4882     // an anonymous function which would not have a VST entry.
4883     // Assert that we have one of those two cases.
4884     assert(VSTOffset == 0 || !F->hasName());
4885     // Parse the next body in the stream and set its position in the
4886     // DeferredFunctionInfo map.
4887     if (Error Err = rememberAndSkipFunctionBodies())
4888       return Err;
4889   }
4890   return Error::success();
4891 }
4892 
4893 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4894   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4895     return SyncScope::ID(Val);
4896   if (Val >= SSIDs.size())
4897     return SyncScope::System; // Map unknown synchronization scopes to system.
4898   return SSIDs[Val];
4899 }
4900 
4901 //===----------------------------------------------------------------------===//
4902 // GVMaterializer implementation
4903 //===----------------------------------------------------------------------===//
4904 
4905 Error BitcodeReader::materialize(GlobalValue *GV) {
4906   Function *F = dyn_cast<Function>(GV);
4907   // If it's not a function or is already material, ignore the request.
4908   if (!F || !F->isMaterializable())
4909     return Error::success();
4910 
4911   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4912   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4913   // If its position is recorded as 0, its body is somewhere in the stream
4914   // but we haven't seen it yet.
4915   if (DFII->second == 0)
4916     if (Error Err = findFunctionInStream(F, DFII))
4917       return Err;
4918 
4919   // Materialize metadata before parsing any function bodies.
4920   if (Error Err = materializeMetadata())
4921     return Err;
4922 
4923   // Move the bit stream to the saved position of the deferred function body.
4924   Stream.JumpToBit(DFII->second);
4925 
4926   if (Error Err = parseFunctionBody(F))
4927     return Err;
4928   F->setIsMaterializable(false);
4929 
4930   if (StripDebugInfo)
4931     stripDebugInfo(*F);
4932 
4933   // Upgrade any old intrinsic calls in the function.
4934   for (auto &I : UpgradedIntrinsics) {
4935     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4936          UI != UE;) {
4937       User *U = *UI;
4938       ++UI;
4939       if (CallInst *CI = dyn_cast<CallInst>(U))
4940         UpgradeIntrinsicCall(CI, I.second);
4941     }
4942   }
4943 
4944   // Update calls to the remangled intrinsics
4945   for (auto &I : RemangledIntrinsics)
4946     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4947          UI != UE;)
4948       // Don't expect any other users than call sites
4949       CallSite(*UI++).setCalledFunction(I.second);
4950 
4951   // Finish fn->subprogram upgrade for materialized functions.
4952   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4953     F->setSubprogram(SP);
4954 
4955   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4956   if (!MDLoader->isStrippingTBAA()) {
4957     for (auto &I : instructions(F)) {
4958       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4959       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4960         continue;
4961       MDLoader->setStripTBAA(true);
4962       stripTBAA(F->getParent());
4963     }
4964   }
4965 
4966   // Bring in any functions that this function forward-referenced via
4967   // blockaddresses.
4968   return materializeForwardReferencedFunctions();
4969 }
4970 
4971 Error BitcodeReader::materializeModule() {
4972   if (Error Err = materializeMetadata())
4973     return Err;
4974 
4975   // Promise to materialize all forward references.
4976   WillMaterializeAllForwardRefs = true;
4977 
4978   // Iterate over the module, deserializing any functions that are still on
4979   // disk.
4980   for (Function &F : *TheModule) {
4981     if (Error Err = materialize(&F))
4982       return Err;
4983   }
4984   // At this point, if there are any function bodies, parse the rest of
4985   // the bits in the module past the last function block we have recorded
4986   // through either lazy scanning or the VST.
4987   if (LastFunctionBlockBit || NextUnreadBit)
4988     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4989                                     ? LastFunctionBlockBit
4990                                     : NextUnreadBit))
4991       return Err;
4992 
4993   // Check that all block address forward references got resolved (as we
4994   // promised above).
4995   if (!BasicBlockFwdRefs.empty())
4996     return error("Never resolved function from blockaddress");
4997 
4998   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4999   // delete the old functions to clean up. We can't do this unless the entire
5000   // module is materialized because there could always be another function body
5001   // with calls to the old function.
5002   for (auto &I : UpgradedIntrinsics) {
5003     for (auto *U : I.first->users()) {
5004       if (CallInst *CI = dyn_cast<CallInst>(U))
5005         UpgradeIntrinsicCall(CI, I.second);
5006     }
5007     if (!I.first->use_empty())
5008       I.first->replaceAllUsesWith(I.second);
5009     I.first->eraseFromParent();
5010   }
5011   UpgradedIntrinsics.clear();
5012   // Do the same for remangled intrinsics
5013   for (auto &I : RemangledIntrinsics) {
5014     I.first->replaceAllUsesWith(I.second);
5015     I.first->eraseFromParent();
5016   }
5017   RemangledIntrinsics.clear();
5018 
5019   UpgradeDebugInfo(*TheModule);
5020 
5021   UpgradeModuleFlags(*TheModule);
5022 
5023   UpgradeRetainReleaseMarker(*TheModule);
5024 
5025   return Error::success();
5026 }
5027 
5028 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5029   return IdentifiedStructTypes;
5030 }
5031 
5032 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5033     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5034     StringRef ModulePath, unsigned ModuleId)
5035     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5036       ModulePath(ModulePath), ModuleId(ModuleId) {}
5037 
5038 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5039   TheIndex.addModule(ModulePath, ModuleId);
5040 }
5041 
5042 ModuleSummaryIndex::ModuleInfo *
5043 ModuleSummaryIndexBitcodeReader::getThisModule() {
5044   return TheIndex.getModule(ModulePath);
5045 }
5046 
5047 std::pair<ValueInfo, GlobalValue::GUID>
5048 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5049   auto VGI = ValueIdToValueInfoMap[ValueId];
5050   assert(VGI.first);
5051   return VGI;
5052 }
5053 
5054 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5055     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5056     StringRef SourceFileName) {
5057   std::string GlobalId =
5058       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5059   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5060   auto OriginalNameID = ValueGUID;
5061   if (GlobalValue::isLocalLinkage(Linkage))
5062     OriginalNameID = GlobalValue::getGUID(ValueName);
5063   if (PrintSummaryGUIDs)
5064     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5065            << ValueName << "\n";
5066 
5067   // UseStrtab is false for legacy summary formats and value names are
5068   // created on stack. In that case we save the name in a string saver in
5069   // the index so that the value name can be recorded.
5070   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5071       TheIndex.getOrInsertValueInfo(
5072           ValueGUID,
5073           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5074       OriginalNameID);
5075 }
5076 
5077 // Specialized value symbol table parser used when reading module index
5078 // blocks where we don't actually create global values. The parsed information
5079 // is saved in the bitcode reader for use when later parsing summaries.
5080 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5081     uint64_t Offset,
5082     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5083   // With a strtab the VST is not required to parse the summary.
5084   if (UseStrtab)
5085     return Error::success();
5086 
5087   assert(Offset > 0 && "Expected non-zero VST offset");
5088   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5089 
5090   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5091     return error("Invalid record");
5092 
5093   SmallVector<uint64_t, 64> Record;
5094 
5095   // Read all the records for this value table.
5096   SmallString<128> ValueName;
5097 
5098   while (true) {
5099     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5100 
5101     switch (Entry.Kind) {
5102     case BitstreamEntry::SubBlock: // Handled for us already.
5103     case BitstreamEntry::Error:
5104       return error("Malformed block");
5105     case BitstreamEntry::EndBlock:
5106       // Done parsing VST, jump back to wherever we came from.
5107       Stream.JumpToBit(CurrentBit);
5108       return Error::success();
5109     case BitstreamEntry::Record:
5110       // The interesting case.
5111       break;
5112     }
5113 
5114     // Read a record.
5115     Record.clear();
5116     switch (Stream.readRecord(Entry.ID, Record)) {
5117     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5118       break;
5119     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5120       if (convertToString(Record, 1, ValueName))
5121         return error("Invalid record");
5122       unsigned ValueID = Record[0];
5123       assert(!SourceFileName.empty());
5124       auto VLI = ValueIdToLinkageMap.find(ValueID);
5125       assert(VLI != ValueIdToLinkageMap.end() &&
5126              "No linkage found for VST entry?");
5127       auto Linkage = VLI->second;
5128       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5129       ValueName.clear();
5130       break;
5131     }
5132     case bitc::VST_CODE_FNENTRY: {
5133       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5134       if (convertToString(Record, 2, ValueName))
5135         return error("Invalid record");
5136       unsigned ValueID = Record[0];
5137       assert(!SourceFileName.empty());
5138       auto VLI = ValueIdToLinkageMap.find(ValueID);
5139       assert(VLI != ValueIdToLinkageMap.end() &&
5140              "No linkage found for VST entry?");
5141       auto Linkage = VLI->second;
5142       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5143       ValueName.clear();
5144       break;
5145     }
5146     case bitc::VST_CODE_COMBINED_ENTRY: {
5147       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5148       unsigned ValueID = Record[0];
5149       GlobalValue::GUID RefGUID = Record[1];
5150       // The "original name", which is the second value of the pair will be
5151       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5152       ValueIdToValueInfoMap[ValueID] =
5153           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5154       break;
5155     }
5156     }
5157   }
5158 }
5159 
5160 // Parse just the blocks needed for building the index out of the module.
5161 // At the end of this routine the module Index is populated with a map
5162 // from global value id to GlobalValueSummary objects.
5163 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5164   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5165     return error("Invalid record");
5166 
5167   SmallVector<uint64_t, 64> Record;
5168   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5169   unsigned ValueId = 0;
5170 
5171   // Read the index for this module.
5172   while (true) {
5173     BitstreamEntry Entry = Stream.advance();
5174 
5175     switch (Entry.Kind) {
5176     case BitstreamEntry::Error:
5177       return error("Malformed block");
5178     case BitstreamEntry::EndBlock:
5179       return Error::success();
5180 
5181     case BitstreamEntry::SubBlock:
5182       switch (Entry.ID) {
5183       default: // Skip unknown content.
5184         if (Stream.SkipBlock())
5185           return error("Invalid record");
5186         break;
5187       case bitc::BLOCKINFO_BLOCK_ID:
5188         // Need to parse these to get abbrev ids (e.g. for VST)
5189         if (readBlockInfo())
5190           return error("Malformed block");
5191         break;
5192       case bitc::VALUE_SYMTAB_BLOCK_ID:
5193         // Should have been parsed earlier via VSTOffset, unless there
5194         // is no summary section.
5195         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5196                 !SeenGlobalValSummary) &&
5197                "Expected early VST parse via VSTOffset record");
5198         if (Stream.SkipBlock())
5199           return error("Invalid record");
5200         break;
5201       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5202       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5203         // Add the module if it is a per-module index (has a source file name).
5204         if (!SourceFileName.empty())
5205           addThisModule();
5206         assert(!SeenValueSymbolTable &&
5207                "Already read VST when parsing summary block?");
5208         // We might not have a VST if there were no values in the
5209         // summary. An empty summary block generated when we are
5210         // performing ThinLTO compiles so we don't later invoke
5211         // the regular LTO process on them.
5212         if (VSTOffset > 0) {
5213           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5214             return Err;
5215           SeenValueSymbolTable = true;
5216         }
5217         SeenGlobalValSummary = true;
5218         if (Error Err = parseEntireSummary(Entry.ID))
5219           return Err;
5220         break;
5221       case bitc::MODULE_STRTAB_BLOCK_ID:
5222         if (Error Err = parseModuleStringTable())
5223           return Err;
5224         break;
5225       }
5226       continue;
5227 
5228     case BitstreamEntry::Record: {
5229         Record.clear();
5230         auto BitCode = Stream.readRecord(Entry.ID, Record);
5231         switch (BitCode) {
5232         default:
5233           break; // Default behavior, ignore unknown content.
5234         case bitc::MODULE_CODE_VERSION: {
5235           if (Error Err = parseVersionRecord(Record).takeError())
5236             return Err;
5237           break;
5238         }
5239         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5240         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5241           SmallString<128> ValueName;
5242           if (convertToString(Record, 0, ValueName))
5243             return error("Invalid record");
5244           SourceFileName = ValueName.c_str();
5245           break;
5246         }
5247         /// MODULE_CODE_HASH: [5*i32]
5248         case bitc::MODULE_CODE_HASH: {
5249           if (Record.size() != 5)
5250             return error("Invalid hash length " + Twine(Record.size()).str());
5251           auto &Hash = getThisModule()->second.second;
5252           int Pos = 0;
5253           for (auto &Val : Record) {
5254             assert(!(Val >> 32) && "Unexpected high bits set");
5255             Hash[Pos++] = Val;
5256           }
5257           break;
5258         }
5259         /// MODULE_CODE_VSTOFFSET: [offset]
5260         case bitc::MODULE_CODE_VSTOFFSET:
5261           if (Record.size() < 1)
5262             return error("Invalid record");
5263           // Note that we subtract 1 here because the offset is relative to one
5264           // word before the start of the identification or module block, which
5265           // was historically always the start of the regular bitcode header.
5266           VSTOffset = Record[0] - 1;
5267           break;
5268         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5269         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5270         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5271         // v2: [strtab offset, strtab size, v1]
5272         case bitc::MODULE_CODE_GLOBALVAR:
5273         case bitc::MODULE_CODE_FUNCTION:
5274         case bitc::MODULE_CODE_ALIAS: {
5275           StringRef Name;
5276           ArrayRef<uint64_t> GVRecord;
5277           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5278           if (GVRecord.size() <= 3)
5279             return error("Invalid record");
5280           uint64_t RawLinkage = GVRecord[3];
5281           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5282           if (!UseStrtab) {
5283             ValueIdToLinkageMap[ValueId++] = Linkage;
5284             break;
5285           }
5286 
5287           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5288           break;
5289         }
5290         }
5291       }
5292       continue;
5293     }
5294   }
5295 }
5296 
5297 std::vector<ValueInfo>
5298 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5299   std::vector<ValueInfo> Ret;
5300   Ret.reserve(Record.size());
5301   for (uint64_t RefValueId : Record)
5302     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5303   return Ret;
5304 }
5305 
5306 std::vector<FunctionSummary::EdgeTy>
5307 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5308                                               bool IsOldProfileFormat,
5309                                               bool HasProfile, bool HasRelBF) {
5310   std::vector<FunctionSummary::EdgeTy> Ret;
5311   Ret.reserve(Record.size());
5312   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5313     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5314     uint64_t RelBF = 0;
5315     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5316     if (IsOldProfileFormat) {
5317       I += 1; // Skip old callsitecount field
5318       if (HasProfile)
5319         I += 1; // Skip old profilecount field
5320     } else if (HasProfile)
5321       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5322     else if (HasRelBF)
5323       RelBF = Record[++I];
5324     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5325   }
5326   return Ret;
5327 }
5328 
5329 static void
5330 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5331                                        WholeProgramDevirtResolution &Wpd) {
5332   uint64_t ArgNum = Record[Slot++];
5333   WholeProgramDevirtResolution::ByArg &B =
5334       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5335   Slot += ArgNum;
5336 
5337   B.TheKind =
5338       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5339   B.Info = Record[Slot++];
5340   B.Byte = Record[Slot++];
5341   B.Bit = Record[Slot++];
5342 }
5343 
5344 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5345                                               StringRef Strtab, size_t &Slot,
5346                                               TypeIdSummary &TypeId) {
5347   uint64_t Id = Record[Slot++];
5348   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5349 
5350   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5351   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5352                         static_cast<size_t>(Record[Slot + 1])};
5353   Slot += 2;
5354 
5355   uint64_t ResByArgNum = Record[Slot++];
5356   for (uint64_t I = 0; I != ResByArgNum; ++I)
5357     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5358 }
5359 
5360 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5361                                      StringRef Strtab,
5362                                      ModuleSummaryIndex &TheIndex) {
5363   size_t Slot = 0;
5364   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5365       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5366   Slot += 2;
5367 
5368   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5369   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5370   TypeId.TTRes.AlignLog2 = Record[Slot++];
5371   TypeId.TTRes.SizeM1 = Record[Slot++];
5372   TypeId.TTRes.BitMask = Record[Slot++];
5373   TypeId.TTRes.InlineBits = Record[Slot++];
5374 
5375   while (Slot < Record.size())
5376     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5377 }
5378 
5379 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5380   // Read-only refs are in the end of the refs list.
5381   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5382     Refs[RefNo].setReadOnly();
5383 }
5384 
5385 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5386 // objects in the index.
5387 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5388   if (Stream.EnterSubBlock(ID))
5389     return error("Invalid record");
5390   SmallVector<uint64_t, 64> Record;
5391 
5392   // Parse version
5393   {
5394     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5395     if (Entry.Kind != BitstreamEntry::Record)
5396       return error("Invalid Summary Block: record for version expected");
5397     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5398       return error("Invalid Summary Block: version expected");
5399   }
5400   const uint64_t Version = Record[0];
5401   const bool IsOldProfileFormat = Version == 1;
5402   if (Version < 1 || Version > 6)
5403     return error("Invalid summary version " + Twine(Version) +
5404                  ". Version should be in the range [1-6].");
5405   Record.clear();
5406 
5407   // Keep around the last seen summary to be used when we see an optional
5408   // "OriginalName" attachement.
5409   GlobalValueSummary *LastSeenSummary = nullptr;
5410   GlobalValue::GUID LastSeenGUID = 0;
5411 
5412   // We can expect to see any number of type ID information records before
5413   // each function summary records; these variables store the information
5414   // collected so far so that it can be used to create the summary object.
5415   std::vector<GlobalValue::GUID> PendingTypeTests;
5416   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5417       PendingTypeCheckedLoadVCalls;
5418   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5419       PendingTypeCheckedLoadConstVCalls;
5420 
5421   while (true) {
5422     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5423 
5424     switch (Entry.Kind) {
5425     case BitstreamEntry::SubBlock: // Handled for us already.
5426     case BitstreamEntry::Error:
5427       return error("Malformed block");
5428     case BitstreamEntry::EndBlock:
5429       return Error::success();
5430     case BitstreamEntry::Record:
5431       // The interesting case.
5432       break;
5433     }
5434 
5435     // Read a record. The record format depends on whether this
5436     // is a per-module index or a combined index file. In the per-module
5437     // case the records contain the associated value's ID for correlation
5438     // with VST entries. In the combined index the correlation is done
5439     // via the bitcode offset of the summary records (which were saved
5440     // in the combined index VST entries). The records also contain
5441     // information used for ThinLTO renaming and importing.
5442     Record.clear();
5443     auto BitCode = Stream.readRecord(Entry.ID, Record);
5444     switch (BitCode) {
5445     default: // Default behavior: ignore.
5446       break;
5447     case bitc::FS_FLAGS: {  // [flags]
5448       uint64_t Flags = Record[0];
5449       // Scan flags.
5450       assert(Flags <= 0x1f && "Unexpected bits in flag");
5451 
5452       // 1 bit: WithGlobalValueDeadStripping flag.
5453       // Set on combined index only.
5454       if (Flags & 0x1)
5455         TheIndex.setWithGlobalValueDeadStripping();
5456       // 1 bit: SkipModuleByDistributedBackend flag.
5457       // Set on combined index only.
5458       if (Flags & 0x2)
5459         TheIndex.setSkipModuleByDistributedBackend();
5460       // 1 bit: HasSyntheticEntryCounts flag.
5461       // Set on combined index only.
5462       if (Flags & 0x4)
5463         TheIndex.setHasSyntheticEntryCounts();
5464       // 1 bit: DisableSplitLTOUnit flag.
5465       // Set on per module indexes. It is up to the client to validate
5466       // the consistency of this flag across modules being linked.
5467       if (Flags & 0x8)
5468         TheIndex.setEnableSplitLTOUnit();
5469       // 1 bit: PartiallySplitLTOUnits flag.
5470       // Set on combined index only.
5471       if (Flags & 0x10)
5472         TheIndex.setPartiallySplitLTOUnits();
5473       break;
5474     }
5475     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5476       uint64_t ValueID = Record[0];
5477       GlobalValue::GUID RefGUID = Record[1];
5478       ValueIdToValueInfoMap[ValueID] =
5479           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5480       break;
5481     }
5482     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5483     //                numrefs x valueid, n x (valueid)]
5484     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5485     //                        numrefs x valueid,
5486     //                        n x (valueid, hotness)]
5487     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5488     //                      numrefs x valueid,
5489     //                      n x (valueid, relblockfreq)]
5490     case bitc::FS_PERMODULE:
5491     case bitc::FS_PERMODULE_RELBF:
5492     case bitc::FS_PERMODULE_PROFILE: {
5493       unsigned ValueID = Record[0];
5494       uint64_t RawFlags = Record[1];
5495       unsigned InstCount = Record[2];
5496       uint64_t RawFunFlags = 0;
5497       unsigned NumRefs = Record[3];
5498       unsigned NumImmutableRefs = 0;
5499       int RefListStartIndex = 4;
5500       if (Version >= 4) {
5501         RawFunFlags = Record[3];
5502         NumRefs = Record[4];
5503         RefListStartIndex = 5;
5504         if (Version >= 5) {
5505           NumImmutableRefs = Record[5];
5506           RefListStartIndex = 6;
5507         }
5508       }
5509 
5510       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5511       // The module path string ref set in the summary must be owned by the
5512       // index's module string table. Since we don't have a module path
5513       // string table section in the per-module index, we create a single
5514       // module path string table entry with an empty (0) ID to take
5515       // ownership.
5516       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5517       assert(Record.size() >= RefListStartIndex + NumRefs &&
5518              "Record size inconsistent with number of references");
5519       std::vector<ValueInfo> Refs = makeRefList(
5520           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5521       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5522       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5523       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5524           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5525           IsOldProfileFormat, HasProfile, HasRelBF);
5526       setImmutableRefs(Refs, NumImmutableRefs);
5527       auto FS = llvm::make_unique<FunctionSummary>(
5528           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5529           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5530           std::move(PendingTypeTestAssumeVCalls),
5531           std::move(PendingTypeCheckedLoadVCalls),
5532           std::move(PendingTypeTestAssumeConstVCalls),
5533           std::move(PendingTypeCheckedLoadConstVCalls));
5534       PendingTypeTests.clear();
5535       PendingTypeTestAssumeVCalls.clear();
5536       PendingTypeCheckedLoadVCalls.clear();
5537       PendingTypeTestAssumeConstVCalls.clear();
5538       PendingTypeCheckedLoadConstVCalls.clear();
5539       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5540       FS->setModulePath(getThisModule()->first());
5541       FS->setOriginalName(VIAndOriginalGUID.second);
5542       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5543       break;
5544     }
5545     // FS_ALIAS: [valueid, flags, valueid]
5546     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5547     // they expect all aliasee summaries to be available.
5548     case bitc::FS_ALIAS: {
5549       unsigned ValueID = Record[0];
5550       uint64_t RawFlags = Record[1];
5551       unsigned AliaseeID = Record[2];
5552       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5553       auto AS = llvm::make_unique<AliasSummary>(Flags);
5554       // The module path string ref set in the summary must be owned by the
5555       // index's module string table. Since we don't have a module path
5556       // string table section in the per-module index, we create a single
5557       // module path string table entry with an empty (0) ID to take
5558       // ownership.
5559       AS->setModulePath(getThisModule()->first());
5560 
5561       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5562       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5563       if (!AliaseeInModule)
5564         return error("Alias expects aliasee summary to be parsed");
5565       AS->setAliasee(AliaseeVI, AliaseeInModule);
5566 
5567       auto GUID = getValueInfoFromValueId(ValueID);
5568       AS->setOriginalName(GUID.second);
5569       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5570       break;
5571     }
5572     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5573     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5574       unsigned ValueID = Record[0];
5575       uint64_t RawFlags = Record[1];
5576       unsigned RefArrayStart = 2;
5577       GlobalVarSummary::GVarFlags GVF;
5578       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5579       if (Version >= 5) {
5580         GVF = getDecodedGVarFlags(Record[2]);
5581         RefArrayStart = 3;
5582       }
5583       std::vector<ValueInfo> Refs =
5584           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5585       auto FS =
5586           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5587       FS->setModulePath(getThisModule()->first());
5588       auto GUID = getValueInfoFromValueId(ValueID);
5589       FS->setOriginalName(GUID.second);
5590       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5591       break;
5592     }
5593     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5594     //               numrefs x valueid, n x (valueid)]
5595     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5596     //                       numrefs x valueid, n x (valueid, hotness)]
5597     case bitc::FS_COMBINED:
5598     case bitc::FS_COMBINED_PROFILE: {
5599       unsigned ValueID = Record[0];
5600       uint64_t ModuleId = Record[1];
5601       uint64_t RawFlags = Record[2];
5602       unsigned InstCount = Record[3];
5603       uint64_t RawFunFlags = 0;
5604       uint64_t EntryCount = 0;
5605       unsigned NumRefs = Record[4];
5606       unsigned NumImmutableRefs = 0;
5607       int RefListStartIndex = 5;
5608 
5609       if (Version >= 4) {
5610         RawFunFlags = Record[4];
5611         RefListStartIndex = 6;
5612         size_t NumRefsIndex = 5;
5613         if (Version >= 5) {
5614           RefListStartIndex = 7;
5615           if (Version >= 6) {
5616             NumRefsIndex = 6;
5617             EntryCount = Record[5];
5618             RefListStartIndex = 8;
5619           }
5620           NumImmutableRefs = Record[RefListStartIndex - 1];
5621         }
5622         NumRefs = Record[NumRefsIndex];
5623       }
5624 
5625       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5626       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5627       assert(Record.size() >= RefListStartIndex + NumRefs &&
5628              "Record size inconsistent with number of references");
5629       std::vector<ValueInfo> Refs = makeRefList(
5630           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5631       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5632       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5633           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5634           IsOldProfileFormat, HasProfile, false);
5635       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5636       setImmutableRefs(Refs, NumImmutableRefs);
5637       auto FS = llvm::make_unique<FunctionSummary>(
5638           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5639           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5640           std::move(PendingTypeTestAssumeVCalls),
5641           std::move(PendingTypeCheckedLoadVCalls),
5642           std::move(PendingTypeTestAssumeConstVCalls),
5643           std::move(PendingTypeCheckedLoadConstVCalls));
5644       PendingTypeTests.clear();
5645       PendingTypeTestAssumeVCalls.clear();
5646       PendingTypeCheckedLoadVCalls.clear();
5647       PendingTypeTestAssumeConstVCalls.clear();
5648       PendingTypeCheckedLoadConstVCalls.clear();
5649       LastSeenSummary = FS.get();
5650       LastSeenGUID = VI.getGUID();
5651       FS->setModulePath(ModuleIdMap[ModuleId]);
5652       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5653       break;
5654     }
5655     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5656     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5657     // they expect all aliasee summaries to be available.
5658     case bitc::FS_COMBINED_ALIAS: {
5659       unsigned ValueID = Record[0];
5660       uint64_t ModuleId = Record[1];
5661       uint64_t RawFlags = Record[2];
5662       unsigned AliaseeValueId = Record[3];
5663       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5664       auto AS = llvm::make_unique<AliasSummary>(Flags);
5665       LastSeenSummary = AS.get();
5666       AS->setModulePath(ModuleIdMap[ModuleId]);
5667 
5668       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
5669       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
5670       AS->setAliasee(AliaseeVI, AliaseeInModule);
5671 
5672       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5673       LastSeenGUID = VI.getGUID();
5674       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5675       break;
5676     }
5677     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5678     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5679       unsigned ValueID = Record[0];
5680       uint64_t ModuleId = Record[1];
5681       uint64_t RawFlags = Record[2];
5682       unsigned RefArrayStart = 3;
5683       GlobalVarSummary::GVarFlags GVF;
5684       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5685       if (Version >= 5) {
5686         GVF = getDecodedGVarFlags(Record[3]);
5687         RefArrayStart = 4;
5688       }
5689       std::vector<ValueInfo> Refs =
5690           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5691       auto FS =
5692           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5693       LastSeenSummary = FS.get();
5694       FS->setModulePath(ModuleIdMap[ModuleId]);
5695       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5696       LastSeenGUID = VI.getGUID();
5697       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5698       break;
5699     }
5700     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5701     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5702       uint64_t OriginalName = Record[0];
5703       if (!LastSeenSummary)
5704         return error("Name attachment that does not follow a combined record");
5705       LastSeenSummary->setOriginalName(OriginalName);
5706       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5707       // Reset the LastSeenSummary
5708       LastSeenSummary = nullptr;
5709       LastSeenGUID = 0;
5710       break;
5711     }
5712     case bitc::FS_TYPE_TESTS:
5713       assert(PendingTypeTests.empty());
5714       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5715                               Record.end());
5716       break;
5717 
5718     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5719       assert(PendingTypeTestAssumeVCalls.empty());
5720       for (unsigned I = 0; I != Record.size(); I += 2)
5721         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5722       break;
5723 
5724     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5725       assert(PendingTypeCheckedLoadVCalls.empty());
5726       for (unsigned I = 0; I != Record.size(); I += 2)
5727         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5728       break;
5729 
5730     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5731       PendingTypeTestAssumeConstVCalls.push_back(
5732           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5733       break;
5734 
5735     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5736       PendingTypeCheckedLoadConstVCalls.push_back(
5737           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5738       break;
5739 
5740     case bitc::FS_CFI_FUNCTION_DEFS: {
5741       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5742       for (unsigned I = 0; I != Record.size(); I += 2)
5743         CfiFunctionDefs.insert(
5744             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5745       break;
5746     }
5747 
5748     case bitc::FS_CFI_FUNCTION_DECLS: {
5749       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5750       for (unsigned I = 0; I != Record.size(); I += 2)
5751         CfiFunctionDecls.insert(
5752             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5753       break;
5754     }
5755 
5756     case bitc::FS_TYPE_ID:
5757       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5758       break;
5759     }
5760   }
5761   llvm_unreachable("Exit infinite loop");
5762 }
5763 
5764 // Parse the  module string table block into the Index.
5765 // This populates the ModulePathStringTable map in the index.
5766 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5767   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5768     return error("Invalid record");
5769 
5770   SmallVector<uint64_t, 64> Record;
5771 
5772   SmallString<128> ModulePath;
5773   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5774 
5775   while (true) {
5776     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5777 
5778     switch (Entry.Kind) {
5779     case BitstreamEntry::SubBlock: // Handled for us already.
5780     case BitstreamEntry::Error:
5781       return error("Malformed block");
5782     case BitstreamEntry::EndBlock:
5783       return Error::success();
5784     case BitstreamEntry::Record:
5785       // The interesting case.
5786       break;
5787     }
5788 
5789     Record.clear();
5790     switch (Stream.readRecord(Entry.ID, Record)) {
5791     default: // Default behavior: ignore.
5792       break;
5793     case bitc::MST_CODE_ENTRY: {
5794       // MST_ENTRY: [modid, namechar x N]
5795       uint64_t ModuleId = Record[0];
5796 
5797       if (convertToString(Record, 1, ModulePath))
5798         return error("Invalid record");
5799 
5800       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5801       ModuleIdMap[ModuleId] = LastSeenModule->first();
5802 
5803       ModulePath.clear();
5804       break;
5805     }
5806     /// MST_CODE_HASH: [5*i32]
5807     case bitc::MST_CODE_HASH: {
5808       if (Record.size() != 5)
5809         return error("Invalid hash length " + Twine(Record.size()).str());
5810       if (!LastSeenModule)
5811         return error("Invalid hash that does not follow a module path");
5812       int Pos = 0;
5813       for (auto &Val : Record) {
5814         assert(!(Val >> 32) && "Unexpected high bits set");
5815         LastSeenModule->second.second[Pos++] = Val;
5816       }
5817       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5818       LastSeenModule = nullptr;
5819       break;
5820     }
5821     }
5822   }
5823   llvm_unreachable("Exit infinite loop");
5824 }
5825 
5826 namespace {
5827 
5828 // FIXME: This class is only here to support the transition to llvm::Error. It
5829 // will be removed once this transition is complete. Clients should prefer to
5830 // deal with the Error value directly, rather than converting to error_code.
5831 class BitcodeErrorCategoryType : public std::error_category {
5832   const char *name() const noexcept override {
5833     return "llvm.bitcode";
5834   }
5835 
5836   std::string message(int IE) const override {
5837     BitcodeError E = static_cast<BitcodeError>(IE);
5838     switch (E) {
5839     case BitcodeError::CorruptedBitcode:
5840       return "Corrupted bitcode";
5841     }
5842     llvm_unreachable("Unknown error type!");
5843   }
5844 };
5845 
5846 } // end anonymous namespace
5847 
5848 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5849 
5850 const std::error_category &llvm::BitcodeErrorCategory() {
5851   return *ErrorCategory;
5852 }
5853 
5854 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5855                                             unsigned Block, unsigned RecordID) {
5856   if (Stream.EnterSubBlock(Block))
5857     return error("Invalid record");
5858 
5859   StringRef Strtab;
5860   while (true) {
5861     BitstreamEntry Entry = Stream.advance();
5862     switch (Entry.Kind) {
5863     case BitstreamEntry::EndBlock:
5864       return Strtab;
5865 
5866     case BitstreamEntry::Error:
5867       return error("Malformed block");
5868 
5869     case BitstreamEntry::SubBlock:
5870       if (Stream.SkipBlock())
5871         return error("Malformed block");
5872       break;
5873 
5874     case BitstreamEntry::Record:
5875       StringRef Blob;
5876       SmallVector<uint64_t, 1> Record;
5877       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5878         Strtab = Blob;
5879       break;
5880     }
5881   }
5882 }
5883 
5884 //===----------------------------------------------------------------------===//
5885 // External interface
5886 //===----------------------------------------------------------------------===//
5887 
5888 Expected<std::vector<BitcodeModule>>
5889 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5890   auto FOrErr = getBitcodeFileContents(Buffer);
5891   if (!FOrErr)
5892     return FOrErr.takeError();
5893   return std::move(FOrErr->Mods);
5894 }
5895 
5896 Expected<BitcodeFileContents>
5897 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5898   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5899   if (!StreamOrErr)
5900     return StreamOrErr.takeError();
5901   BitstreamCursor &Stream = *StreamOrErr;
5902 
5903   BitcodeFileContents F;
5904   while (true) {
5905     uint64_t BCBegin = Stream.getCurrentByteNo();
5906 
5907     // We may be consuming bitcode from a client that leaves garbage at the end
5908     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5909     // the end that there cannot possibly be another module, stop looking.
5910     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5911       return F;
5912 
5913     BitstreamEntry Entry = Stream.advance();
5914     switch (Entry.Kind) {
5915     case BitstreamEntry::EndBlock:
5916     case BitstreamEntry::Error:
5917       return error("Malformed block");
5918 
5919     case BitstreamEntry::SubBlock: {
5920       uint64_t IdentificationBit = -1ull;
5921       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5922         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5923         if (Stream.SkipBlock())
5924           return error("Malformed block");
5925 
5926         Entry = Stream.advance();
5927         if (Entry.Kind != BitstreamEntry::SubBlock ||
5928             Entry.ID != bitc::MODULE_BLOCK_ID)
5929           return error("Malformed block");
5930       }
5931 
5932       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5933         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5934         if (Stream.SkipBlock())
5935           return error("Malformed block");
5936 
5937         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5938                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5939                           Buffer.getBufferIdentifier(), IdentificationBit,
5940                           ModuleBit});
5941         continue;
5942       }
5943 
5944       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5945         Expected<StringRef> Strtab =
5946             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5947         if (!Strtab)
5948           return Strtab.takeError();
5949         // This string table is used by every preceding bitcode module that does
5950         // not have its own string table. A bitcode file may have multiple
5951         // string tables if it was created by binary concatenation, for example
5952         // with "llvm-cat -b".
5953         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5954           if (!I->Strtab.empty())
5955             break;
5956           I->Strtab = *Strtab;
5957         }
5958         // Similarly, the string table is used by every preceding symbol table;
5959         // normally there will be just one unless the bitcode file was created
5960         // by binary concatenation.
5961         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5962           F.StrtabForSymtab = *Strtab;
5963         continue;
5964       }
5965 
5966       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5967         Expected<StringRef> SymtabOrErr =
5968             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5969         if (!SymtabOrErr)
5970           return SymtabOrErr.takeError();
5971 
5972         // We can expect the bitcode file to have multiple symbol tables if it
5973         // was created by binary concatenation. In that case we silently
5974         // ignore any subsequent symbol tables, which is fine because this is a
5975         // low level function. The client is expected to notice that the number
5976         // of modules in the symbol table does not match the number of modules
5977         // in the input file and regenerate the symbol table.
5978         if (F.Symtab.empty())
5979           F.Symtab = *SymtabOrErr;
5980         continue;
5981       }
5982 
5983       if (Stream.SkipBlock())
5984         return error("Malformed block");
5985       continue;
5986     }
5987     case BitstreamEntry::Record:
5988       Stream.skipRecord(Entry.ID);
5989       continue;
5990     }
5991   }
5992 }
5993 
5994 /// Get a lazy one-at-time loading module from bitcode.
5995 ///
5996 /// This isn't always used in a lazy context.  In particular, it's also used by
5997 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5998 /// in forward-referenced functions from block address references.
5999 ///
6000 /// \param[in] MaterializeAll Set to \c true if we should materialize
6001 /// everything.
6002 Expected<std::unique_ptr<Module>>
6003 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6004                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6005   BitstreamCursor Stream(Buffer);
6006 
6007   std::string ProducerIdentification;
6008   if (IdentificationBit != -1ull) {
6009     Stream.JumpToBit(IdentificationBit);
6010     Expected<std::string> ProducerIdentificationOrErr =
6011         readIdentificationBlock(Stream);
6012     if (!ProducerIdentificationOrErr)
6013       return ProducerIdentificationOrErr.takeError();
6014 
6015     ProducerIdentification = *ProducerIdentificationOrErr;
6016   }
6017 
6018   Stream.JumpToBit(ModuleBit);
6019   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6020                               Context);
6021 
6022   std::unique_ptr<Module> M =
6023       llvm::make_unique<Module>(ModuleIdentifier, Context);
6024   M->setMaterializer(R);
6025 
6026   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6027   if (Error Err =
6028           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6029     return std::move(Err);
6030 
6031   if (MaterializeAll) {
6032     // Read in the entire module, and destroy the BitcodeReader.
6033     if (Error Err = M->materializeAll())
6034       return std::move(Err);
6035   } else {
6036     // Resolve forward references from blockaddresses.
6037     if (Error Err = R->materializeForwardReferencedFunctions())
6038       return std::move(Err);
6039   }
6040   return std::move(M);
6041 }
6042 
6043 Expected<std::unique_ptr<Module>>
6044 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6045                              bool IsImporting) {
6046   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6047 }
6048 
6049 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6050 // We don't use ModuleIdentifier here because the client may need to control the
6051 // module path used in the combined summary (e.g. when reading summaries for
6052 // regular LTO modules).
6053 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6054                                  StringRef ModulePath, uint64_t ModuleId) {
6055   BitstreamCursor Stream(Buffer);
6056   Stream.JumpToBit(ModuleBit);
6057 
6058   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6059                                     ModulePath, ModuleId);
6060   return R.parseModule();
6061 }
6062 
6063 // Parse the specified bitcode buffer, returning the function info index.
6064 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6065   BitstreamCursor Stream(Buffer);
6066   Stream.JumpToBit(ModuleBit);
6067 
6068   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6069   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6070                                     ModuleIdentifier, 0);
6071 
6072   if (Error Err = R.parseModule())
6073     return std::move(Err);
6074 
6075   return std::move(Index);
6076 }
6077 
6078 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6079                                                 unsigned ID) {
6080   if (Stream.EnterSubBlock(ID))
6081     return error("Invalid record");
6082   SmallVector<uint64_t, 64> Record;
6083 
6084   while (true) {
6085     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6086 
6087     switch (Entry.Kind) {
6088     case BitstreamEntry::SubBlock: // Handled for us already.
6089     case BitstreamEntry::Error:
6090       return error("Malformed block");
6091     case BitstreamEntry::EndBlock:
6092       // If no flags record found, conservatively return true to mimic
6093       // behavior before this flag was added.
6094       return true;
6095     case BitstreamEntry::Record:
6096       // The interesting case.
6097       break;
6098     }
6099 
6100     // Look for the FS_FLAGS record.
6101     Record.clear();
6102     auto BitCode = Stream.readRecord(Entry.ID, Record);
6103     switch (BitCode) {
6104     default: // Default behavior: ignore.
6105       break;
6106     case bitc::FS_FLAGS: { // [flags]
6107       uint64_t Flags = Record[0];
6108       // Scan flags.
6109       assert(Flags <= 0x1f && "Unexpected bits in flag");
6110 
6111       return Flags & 0x8;
6112     }
6113     }
6114   }
6115   llvm_unreachable("Exit infinite loop");
6116 }
6117 
6118 // Check if the given bitcode buffer contains a global value summary block.
6119 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6120   BitstreamCursor Stream(Buffer);
6121   Stream.JumpToBit(ModuleBit);
6122 
6123   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6124     return error("Invalid record");
6125 
6126   while (true) {
6127     BitstreamEntry Entry = Stream.advance();
6128 
6129     switch (Entry.Kind) {
6130     case BitstreamEntry::Error:
6131       return error("Malformed block");
6132     case BitstreamEntry::EndBlock:
6133       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6134                             /*EnableSplitLTOUnit=*/false};
6135 
6136     case BitstreamEntry::SubBlock:
6137       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6138         Expected<bool> EnableSplitLTOUnit =
6139             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6140         if (!EnableSplitLTOUnit)
6141           return EnableSplitLTOUnit.takeError();
6142         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6143                               *EnableSplitLTOUnit};
6144       }
6145 
6146       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6147         Expected<bool> EnableSplitLTOUnit =
6148             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6149         if (!EnableSplitLTOUnit)
6150           return EnableSplitLTOUnit.takeError();
6151         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6152                               *EnableSplitLTOUnit};
6153       }
6154 
6155       // Ignore other sub-blocks.
6156       if (Stream.SkipBlock())
6157         return error("Malformed block");
6158       continue;
6159 
6160     case BitstreamEntry::Record:
6161       Stream.skipRecord(Entry.ID);
6162       continue;
6163     }
6164   }
6165 }
6166 
6167 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6168   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6169   if (!MsOrErr)
6170     return MsOrErr.takeError();
6171 
6172   if (MsOrErr->size() != 1)
6173     return error("Expected a single module");
6174 
6175   return (*MsOrErr)[0];
6176 }
6177 
6178 Expected<std::unique_ptr<Module>>
6179 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6180                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6181   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6182   if (!BM)
6183     return BM.takeError();
6184 
6185   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6186 }
6187 
6188 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6189     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6190     bool ShouldLazyLoadMetadata, bool IsImporting) {
6191   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6192                                      IsImporting);
6193   if (MOrErr)
6194     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6195   return MOrErr;
6196 }
6197 
6198 Expected<std::unique_ptr<Module>>
6199 BitcodeModule::parseModule(LLVMContext &Context) {
6200   return getModuleImpl(Context, true, false, false);
6201   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6202   // written.  We must defer until the Module has been fully materialized.
6203 }
6204 
6205 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6206                                                          LLVMContext &Context) {
6207   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6208   if (!BM)
6209     return BM.takeError();
6210 
6211   return BM->parseModule(Context);
6212 }
6213 
6214 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6215   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6216   if (!StreamOrErr)
6217     return StreamOrErr.takeError();
6218 
6219   return readTriple(*StreamOrErr);
6220 }
6221 
6222 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6223   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6224   if (!StreamOrErr)
6225     return StreamOrErr.takeError();
6226 
6227   return hasObjCCategory(*StreamOrErr);
6228 }
6229 
6230 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6231   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6232   if (!StreamOrErr)
6233     return StreamOrErr.takeError();
6234 
6235   return readIdentificationCode(*StreamOrErr);
6236 }
6237 
6238 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6239                                    ModuleSummaryIndex &CombinedIndex,
6240                                    uint64_t ModuleId) {
6241   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6242   if (!BM)
6243     return BM.takeError();
6244 
6245   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6246 }
6247 
6248 Expected<std::unique_ptr<ModuleSummaryIndex>>
6249 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6250   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6251   if (!BM)
6252     return BM.takeError();
6253 
6254   return BM->getSummary();
6255 }
6256 
6257 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6258   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6259   if (!BM)
6260     return BM.takeError();
6261 
6262   return BM->getLTOInfo();
6263 }
6264 
6265 Expected<std::unique_ptr<ModuleSummaryIndex>>
6266 llvm::getModuleSummaryIndexForFile(StringRef Path,
6267                                    bool IgnoreEmptyThinLTOIndexFile) {
6268   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6269       MemoryBuffer::getFileOrSTDIN(Path);
6270   if (!FileOrErr)
6271     return errorCodeToError(FileOrErr.getError());
6272   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6273     return nullptr;
6274   return getModuleSummaryIndex(**FileOrErr);
6275 }
6276