xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 6c7a8abf5c78005bd329f389db8d36820bbee819)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/GVMaterializer.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ModuleSummaryIndex.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/DataStream.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ManagedStatic.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <deque>
41 #include <utility>
42 
43 using namespace llvm;
44 
45 static cl::opt<bool> PrintSummaryGUIDs(
46     "print-summary-global-ids", cl::init(false), cl::Hidden,
47     cl::desc(
48         "Print the global id for each value when reading the module summary"));
49 
50 namespace {
51 enum {
52   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
53 };
54 
55 class BitcodeReaderValueList {
56   std::vector<WeakVH> ValuePtrs;
57 
58   /// As we resolve forward-referenced constants, we add information about them
59   /// to this vector.  This allows us to resolve them in bulk instead of
60   /// resolving each reference at a time.  See the code in
61   /// ResolveConstantForwardRefs for more information about this.
62   ///
63   /// The key of this vector is the placeholder constant, the value is the slot
64   /// number that holds the resolved value.
65   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
66   ResolveConstantsTy ResolveConstants;
67   LLVMContext &Context;
68 public:
69   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
70   ~BitcodeReaderValueList() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72   }
73 
74   // vector compatibility methods
75   unsigned size() const { return ValuePtrs.size(); }
76   void resize(unsigned N) { ValuePtrs.resize(N); }
77   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
78 
79   void clear() {
80     assert(ResolveConstants.empty() && "Constants not resolved?");
81     ValuePtrs.clear();
82   }
83 
84   Value *operator[](unsigned i) const {
85     assert(i < ValuePtrs.size());
86     return ValuePtrs[i];
87   }
88 
89   Value *back() const { return ValuePtrs.back(); }
90   void pop_back() { ValuePtrs.pop_back(); }
91   bool empty() const { return ValuePtrs.empty(); }
92   void shrinkTo(unsigned N) {
93     assert(N <= size() && "Invalid shrinkTo request!");
94     ValuePtrs.resize(N);
95   }
96 
97   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
98   Value *getValueFwdRef(unsigned Idx, Type *Ty);
99 
100   void assignValue(Value *V, unsigned Idx);
101 
102   /// Once all constants are read, this method bulk resolves any forward
103   /// references.
104   void resolveConstantForwardRefs();
105 };
106 
107 class BitcodeReaderMetadataList {
108   unsigned NumFwdRefs;
109   bool AnyFwdRefs;
110   unsigned MinFwdRef;
111   unsigned MaxFwdRef;
112 
113   /// Array of metadata references.
114   ///
115   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
116   /// move) on resize, and TrackingMDRef is very expensive to copy.
117   SmallVector<TrackingMDRef, 1> MetadataPtrs;
118 
119   /// Structures for resolving old type refs.
120   struct {
121     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
122     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
123     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
124     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
125   } OldTypeRefs;
126 
127   LLVMContext &Context;
128 public:
129   BitcodeReaderMetadataList(LLVMContext &C)
130       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
131 
132   // vector compatibility methods
133   unsigned size() const { return MetadataPtrs.size(); }
134   void resize(unsigned N) { MetadataPtrs.resize(N); }
135   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
136   void clear() { MetadataPtrs.clear(); }
137   Metadata *back() const { return MetadataPtrs.back(); }
138   void pop_back() { MetadataPtrs.pop_back(); }
139   bool empty() const { return MetadataPtrs.empty(); }
140 
141   Metadata *operator[](unsigned i) const {
142     assert(i < MetadataPtrs.size());
143     return MetadataPtrs[i];
144   }
145 
146   Metadata *lookup(unsigned I) const {
147     if (I < MetadataPtrs.size())
148       return MetadataPtrs[I];
149     return nullptr;
150   }
151 
152   void shrinkTo(unsigned N) {
153     assert(N <= size() && "Invalid shrinkTo request!");
154     assert(!AnyFwdRefs && "Unexpected forward refs");
155     MetadataPtrs.resize(N);
156   }
157 
158   /// Return the given metadata, creating a replaceable forward reference if
159   /// necessary.
160   Metadata *getMetadataFwdRef(unsigned Idx);
161 
162   /// Return the the given metadata only if it is fully resolved.
163   ///
164   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
165   /// would give \c false.
166   Metadata *getMetadataIfResolved(unsigned Idx);
167 
168   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
169   void assignValue(Metadata *MD, unsigned Idx);
170   void tryToResolveCycles();
171   bool hasFwdRefs() const { return AnyFwdRefs; }
172 
173   /// Upgrade a type that had an MDString reference.
174   void addTypeRef(MDString &UUID, DICompositeType &CT);
175 
176   /// Upgrade a type that had an MDString reference.
177   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
178 
179   /// Upgrade a type ref array that may have MDString references.
180   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
181 
182 private:
183   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
184 };
185 
186 class BitcodeReader : public GVMaterializer {
187   LLVMContext &Context;
188   Module *TheModule = nullptr;
189   std::unique_ptr<MemoryBuffer> Buffer;
190   std::unique_ptr<BitstreamReader> StreamFile;
191   BitstreamCursor Stream;
192   // Next offset to start scanning for lazy parsing of function bodies.
193   uint64_t NextUnreadBit = 0;
194   // Last function offset found in the VST.
195   uint64_t LastFunctionBlockBit = 0;
196   bool SeenValueSymbolTable = false;
197   uint64_t VSTOffset = 0;
198   // Contains an arbitrary and optional string identifying the bitcode producer
199   std::string ProducerIdentification;
200 
201   std::vector<Type*> TypeList;
202   BitcodeReaderValueList ValueList;
203   BitcodeReaderMetadataList MetadataList;
204   std::vector<Comdat *> ComdatList;
205   SmallVector<Instruction *, 64> InstructionList;
206 
207   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
208   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
209   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
210   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
211   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
212 
213   SmallVector<Instruction*, 64> InstsWithTBAATag;
214 
215   bool HasSeenOldLoopTags = false;
216 
217   /// The set of attributes by index.  Index zero in the file is for null, and
218   /// is thus not represented here.  As such all indices are off by one.
219   std::vector<AttributeSet> MAttributes;
220 
221   /// The set of attribute groups.
222   std::map<unsigned, AttributeSet> MAttributeGroups;
223 
224   /// While parsing a function body, this is a list of the basic blocks for the
225   /// function.
226   std::vector<BasicBlock*> FunctionBBs;
227 
228   // When reading the module header, this list is populated with functions that
229   // have bodies later in the file.
230   std::vector<Function*> FunctionsWithBodies;
231 
232   // When intrinsic functions are encountered which require upgrading they are
233   // stored here with their replacement function.
234   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
235   UpdatedIntrinsicMap UpgradedIntrinsics;
236   // Intrinsics which were remangled because of types rename
237   UpdatedIntrinsicMap RemangledIntrinsics;
238 
239   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
240   DenseMap<unsigned, unsigned> MDKindMap;
241 
242   // Several operations happen after the module header has been read, but
243   // before function bodies are processed. This keeps track of whether
244   // we've done this yet.
245   bool SeenFirstFunctionBody = false;
246 
247   /// When function bodies are initially scanned, this map contains info about
248   /// where to find deferred function body in the stream.
249   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
250 
251   /// When Metadata block is initially scanned when parsing the module, we may
252   /// choose to defer parsing of the metadata. This vector contains info about
253   /// which Metadata blocks are deferred.
254   std::vector<uint64_t> DeferredMetadataInfo;
255 
256   /// These are basic blocks forward-referenced by block addresses.  They are
257   /// inserted lazily into functions when they're loaded.  The basic block ID is
258   /// its index into the vector.
259   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
260   std::deque<Function *> BasicBlockFwdRefQueue;
261 
262   /// Indicates that we are using a new encoding for instruction operands where
263   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
264   /// instruction number, for a more compact encoding.  Some instruction
265   /// operands are not relative to the instruction ID: basic block numbers, and
266   /// types. Once the old style function blocks have been phased out, we would
267   /// not need this flag.
268   bool UseRelativeIDs = false;
269 
270   /// True if all functions will be materialized, negating the need to process
271   /// (e.g.) blockaddress forward references.
272   bool WillMaterializeAllForwardRefs = false;
273 
274   /// True if any Metadata block has been materialized.
275   bool IsMetadataMaterialized = false;
276 
277   bool StripDebugInfo = false;
278 
279   /// Functions that need to be matched with subprograms when upgrading old
280   /// metadata.
281   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
282 
283   std::vector<std::string> BundleTags;
284 
285 public:
286   std::error_code error(BitcodeError E, const Twine &Message);
287   std::error_code error(const Twine &Message);
288 
289   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
290   BitcodeReader(LLVMContext &Context);
291   ~BitcodeReader() override { freeState(); }
292 
293   std::error_code materializeForwardReferencedFunctions();
294 
295   void freeState();
296 
297   void releaseBuffer();
298 
299   std::error_code materialize(GlobalValue *GV) override;
300   std::error_code materializeModule() override;
301   std::vector<StructType *> getIdentifiedStructTypes() const override;
302 
303   /// \brief Main interface to parsing a bitcode buffer.
304   /// \returns true if an error occurred.
305   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
306                                    Module *M,
307                                    bool ShouldLazyLoadMetadata = false);
308 
309   /// \brief Cheap mechanism to just extract module triple
310   /// \returns true if an error occurred.
311   ErrorOr<std::string> parseTriple();
312 
313   /// Cheap mechanism to just extract the identification block out of bitcode.
314   ErrorOr<std::string> parseIdentificationBlock();
315 
316   static uint64_t decodeSignRotatedValue(uint64_t V);
317 
318   /// Materialize any deferred Metadata block.
319   std::error_code materializeMetadata() override;
320 
321   void setStripDebugInfo() override;
322 
323 private:
324   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
325   // ProducerIdentification data member, and do some basic enforcement on the
326   // "epoch" encoded in the bitcode.
327   std::error_code parseBitcodeVersion();
328 
329   std::vector<StructType *> IdentifiedStructTypes;
330   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
331   StructType *createIdentifiedStructType(LLVMContext &Context);
332 
333   Type *getTypeByID(unsigned ID);
334   Value *getFnValueByID(unsigned ID, Type *Ty) {
335     if (Ty && Ty->isMetadataTy())
336       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
337     return ValueList.getValueFwdRef(ID, Ty);
338   }
339   Metadata *getFnMetadataByID(unsigned ID) {
340     return MetadataList.getMetadataFwdRef(ID);
341   }
342   BasicBlock *getBasicBlock(unsigned ID) const {
343     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
344     return FunctionBBs[ID];
345   }
346   AttributeSet getAttributes(unsigned i) const {
347     if (i-1 < MAttributes.size())
348       return MAttributes[i-1];
349     return AttributeSet();
350   }
351 
352   /// Read a value/type pair out of the specified record from slot 'Slot'.
353   /// Increment Slot past the number of slots used in the record. Return true on
354   /// failure.
355   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
356                         unsigned InstNum, Value *&ResVal) {
357     if (Slot == Record.size()) return true;
358     unsigned ValNo = (unsigned)Record[Slot++];
359     // Adjust the ValNo, if it was encoded relative to the InstNum.
360     if (UseRelativeIDs)
361       ValNo = InstNum - ValNo;
362     if (ValNo < InstNum) {
363       // If this is not a forward reference, just return the value we already
364       // have.
365       ResVal = getFnValueByID(ValNo, nullptr);
366       return ResVal == nullptr;
367     }
368     if (Slot == Record.size())
369       return true;
370 
371     unsigned TypeNo = (unsigned)Record[Slot++];
372     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
373     return ResVal == nullptr;
374   }
375 
376   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
377   /// past the number of slots used by the value in the record. Return true if
378   /// there is an error.
379   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
380                 unsigned InstNum, Type *Ty, Value *&ResVal) {
381     if (getValue(Record, Slot, InstNum, Ty, ResVal))
382       return true;
383     // All values currently take a single record slot.
384     ++Slot;
385     return false;
386   }
387 
388   /// Like popValue, but does not increment the Slot number.
389   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
390                 unsigned InstNum, Type *Ty, Value *&ResVal) {
391     ResVal = getValue(Record, Slot, InstNum, Ty);
392     return ResVal == nullptr;
393   }
394 
395   /// Version of getValue that returns ResVal directly, or 0 if there is an
396   /// error.
397   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
398                   unsigned InstNum, Type *Ty) {
399     if (Slot == Record.size()) return nullptr;
400     unsigned ValNo = (unsigned)Record[Slot];
401     // Adjust the ValNo, if it was encoded relative to the InstNum.
402     if (UseRelativeIDs)
403       ValNo = InstNum - ValNo;
404     return getFnValueByID(ValNo, Ty);
405   }
406 
407   /// Like getValue, but decodes signed VBRs.
408   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
409                         unsigned InstNum, Type *Ty) {
410     if (Slot == Record.size()) return nullptr;
411     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
412     // Adjust the ValNo, if it was encoded relative to the InstNum.
413     if (UseRelativeIDs)
414       ValNo = InstNum - ValNo;
415     return getFnValueByID(ValNo, Ty);
416   }
417 
418   /// Converts alignment exponent (i.e. power of two (or zero)) to the
419   /// corresponding alignment to use. If alignment is too large, returns
420   /// a corresponding error code.
421   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
422   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
423   std::error_code parseModule(uint64_t ResumeBit,
424                               bool ShouldLazyLoadMetadata = false);
425   std::error_code parseAttributeBlock();
426   std::error_code parseAttributeGroupBlock();
427   std::error_code parseTypeTable();
428   std::error_code parseTypeTableBody();
429   std::error_code parseOperandBundleTags();
430 
431   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
432                                unsigned NameIndex, Triple &TT);
433   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
434   std::error_code parseConstants();
435   std::error_code rememberAndSkipFunctionBodies();
436   std::error_code rememberAndSkipFunctionBody();
437   /// Save the positions of the Metadata blocks and skip parsing the blocks.
438   std::error_code rememberAndSkipMetadata();
439   std::error_code parseFunctionBody(Function *F);
440   std::error_code globalCleanup();
441   std::error_code resolveGlobalAndIndirectSymbolInits();
442   std::error_code parseMetadata(bool ModuleLevel = false);
443   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
444                                        StringRef Blob,
445                                        unsigned &NextMetadataNo);
446   std::error_code parseMetadataKinds();
447   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
448   std::error_code
449   parseGlobalObjectAttachment(GlobalObject &GO,
450                               ArrayRef<uint64_t> Record);
451   std::error_code parseMetadataAttachment(Function &F);
452   ErrorOr<std::string> parseModuleTriple();
453   std::error_code parseUseLists();
454   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
455   std::error_code initStreamFromBuffer();
456   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
457   std::error_code findFunctionInStream(
458       Function *F,
459       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
460 };
461 
462 /// Class to manage reading and parsing function summary index bitcode
463 /// files/sections.
464 class ModuleSummaryIndexBitcodeReader {
465   DiagnosticHandlerFunction DiagnosticHandler;
466 
467   /// Eventually points to the module index built during parsing.
468   ModuleSummaryIndex *TheIndex = nullptr;
469 
470   std::unique_ptr<MemoryBuffer> Buffer;
471   std::unique_ptr<BitstreamReader> StreamFile;
472   BitstreamCursor Stream;
473 
474   /// Used to indicate whether caller only wants to check for the presence
475   /// of the global value summary bitcode section. All blocks are skipped,
476   /// but the SeenGlobalValSummary boolean is set.
477   bool CheckGlobalValSummaryPresenceOnly = false;
478 
479   /// Indicates whether we have encountered a global value summary section
480   /// yet during parsing, used when checking if file contains global value
481   /// summary section.
482   bool SeenGlobalValSummary = false;
483 
484   /// Indicates whether we have already parsed the VST, used for error checking.
485   bool SeenValueSymbolTable = false;
486 
487   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
488   /// Used to enable on-demand parsing of the VST.
489   uint64_t VSTOffset = 0;
490 
491   // Map to save ValueId to GUID association that was recorded in the
492   // ValueSymbolTable. It is used after the VST is parsed to convert
493   // call graph edges read from the function summary from referencing
494   // callees by their ValueId to using the GUID instead, which is how
495   // they are recorded in the summary index being built.
496   // We save a second GUID which is the same as the first one, but ignoring the
497   // linkage, i.e. for value other than local linkage they are identical.
498   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
499       ValueIdToCallGraphGUIDMap;
500 
501   /// Map populated during module path string table parsing, from the
502   /// module ID to a string reference owned by the index's module
503   /// path string table, used to correlate with combined index
504   /// summary records.
505   DenseMap<uint64_t, StringRef> ModuleIdMap;
506 
507   /// Original source file name recorded in a bitcode record.
508   std::string SourceFileName;
509 
510 public:
511   std::error_code error(const Twine &Message);
512 
513   ModuleSummaryIndexBitcodeReader(
514       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
515       bool CheckGlobalValSummaryPresenceOnly = false);
516   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
517 
518   void freeState();
519 
520   void releaseBuffer();
521 
522   /// Check if the parser has encountered a summary section.
523   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
524 
525   /// \brief Main interface to parsing a bitcode buffer.
526   /// \returns true if an error occurred.
527   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
528                                         ModuleSummaryIndex *I);
529 
530 private:
531   std::error_code parseModule();
532   std::error_code parseValueSymbolTable(
533       uint64_t Offset,
534       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
535   std::error_code parseEntireSummary();
536   std::error_code parseModuleStringTable();
537   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
538   std::error_code initStreamFromBuffer();
539   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
540   std::pair<GlobalValue::GUID, GlobalValue::GUID>
541   getGUIDFromValueId(unsigned ValueId);
542 };
543 } // end anonymous namespace
544 
545 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
546                                              DiagnosticSeverity Severity,
547                                              const Twine &Msg)
548     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
549 
550 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
551 
552 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
553                              std::error_code EC, const Twine &Message) {
554   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
555   DiagnosticHandler(DI);
556   return EC;
557 }
558 
559 static std::error_code error(LLVMContext &Context, std::error_code EC,
560                              const Twine &Message) {
561   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
562                Message);
563 }
564 
565 static std::error_code error(LLVMContext &Context, const Twine &Message) {
566   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
567                Message);
568 }
569 
570 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
571   if (!ProducerIdentification.empty()) {
572     return ::error(Context, make_error_code(E),
573                    Message + " (Producer: '" + ProducerIdentification +
574                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
575   }
576   return ::error(Context, make_error_code(E), Message);
577 }
578 
579 std::error_code BitcodeReader::error(const Twine &Message) {
580   if (!ProducerIdentification.empty()) {
581     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
582                    Message + " (Producer: '" + ProducerIdentification +
583                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
584   }
585   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
586                  Message);
587 }
588 
589 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
590     : Context(Context), Buffer(Buffer), ValueList(Context),
591       MetadataList(Context) {}
592 
593 BitcodeReader::BitcodeReader(LLVMContext &Context)
594     : Context(Context), Buffer(nullptr), ValueList(Context),
595       MetadataList(Context) {}
596 
597 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
598   if (WillMaterializeAllForwardRefs)
599     return std::error_code();
600 
601   // Prevent recursion.
602   WillMaterializeAllForwardRefs = true;
603 
604   while (!BasicBlockFwdRefQueue.empty()) {
605     Function *F = BasicBlockFwdRefQueue.front();
606     BasicBlockFwdRefQueue.pop_front();
607     assert(F && "Expected valid function");
608     if (!BasicBlockFwdRefs.count(F))
609       // Already materialized.
610       continue;
611 
612     // Check for a function that isn't materializable to prevent an infinite
613     // loop.  When parsing a blockaddress stored in a global variable, there
614     // isn't a trivial way to check if a function will have a body without a
615     // linear search through FunctionsWithBodies, so just check it here.
616     if (!F->isMaterializable())
617       return error("Never resolved function from blockaddress");
618 
619     // Try to materialize F.
620     if (std::error_code EC = materialize(F))
621       return EC;
622   }
623   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
624 
625   // Reset state.
626   WillMaterializeAllForwardRefs = false;
627   return std::error_code();
628 }
629 
630 void BitcodeReader::freeState() {
631   Buffer = nullptr;
632   std::vector<Type*>().swap(TypeList);
633   ValueList.clear();
634   MetadataList.clear();
635   std::vector<Comdat *>().swap(ComdatList);
636 
637   std::vector<AttributeSet>().swap(MAttributes);
638   std::vector<BasicBlock*>().swap(FunctionBBs);
639   std::vector<Function*>().swap(FunctionsWithBodies);
640   DeferredFunctionInfo.clear();
641   DeferredMetadataInfo.clear();
642   MDKindMap.clear();
643 
644   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
645   BasicBlockFwdRefQueue.clear();
646 }
647 
648 //===----------------------------------------------------------------------===//
649 //  Helper functions to implement forward reference resolution, etc.
650 //===----------------------------------------------------------------------===//
651 
652 /// Convert a string from a record into an std::string, return true on failure.
653 template <typename StrTy>
654 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
655                             StrTy &Result) {
656   if (Idx > Record.size())
657     return true;
658 
659   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
660     Result += (char)Record[i];
661   return false;
662 }
663 
664 static bool hasImplicitComdat(size_t Val) {
665   switch (Val) {
666   default:
667     return false;
668   case 1:  // Old WeakAnyLinkage
669   case 4:  // Old LinkOnceAnyLinkage
670   case 10: // Old WeakODRLinkage
671   case 11: // Old LinkOnceODRLinkage
672     return true;
673   }
674 }
675 
676 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
677   switch (Val) {
678   default: // Map unknown/new linkages to external
679   case 0:
680     return GlobalValue::ExternalLinkage;
681   case 2:
682     return GlobalValue::AppendingLinkage;
683   case 3:
684     return GlobalValue::InternalLinkage;
685   case 5:
686     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
687   case 6:
688     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
689   case 7:
690     return GlobalValue::ExternalWeakLinkage;
691   case 8:
692     return GlobalValue::CommonLinkage;
693   case 9:
694     return GlobalValue::PrivateLinkage;
695   case 12:
696     return GlobalValue::AvailableExternallyLinkage;
697   case 13:
698     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
699   case 14:
700     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
701   case 15:
702     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
703   case 1: // Old value with implicit comdat.
704   case 16:
705     return GlobalValue::WeakAnyLinkage;
706   case 10: // Old value with implicit comdat.
707   case 17:
708     return GlobalValue::WeakODRLinkage;
709   case 4: // Old value with implicit comdat.
710   case 18:
711     return GlobalValue::LinkOnceAnyLinkage;
712   case 11: // Old value with implicit comdat.
713   case 19:
714     return GlobalValue::LinkOnceODRLinkage;
715   }
716 }
717 
718 // Decode the flags for GlobalValue in the summary
719 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
720                                                             uint64_t Version) {
721   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
722   // like getDecodedLinkage() above. Any future change to the linkage enum and
723   // to getDecodedLinkage() will need to be taken into account here as above.
724   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
725   RawFlags = RawFlags >> 4;
726   auto HasSection = RawFlags & 0x1; // bool
727   return GlobalValueSummary::GVFlags(Linkage, HasSection);
728 }
729 
730 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
731   switch (Val) {
732   default: // Map unknown visibilities to default.
733   case 0: return GlobalValue::DefaultVisibility;
734   case 1: return GlobalValue::HiddenVisibility;
735   case 2: return GlobalValue::ProtectedVisibility;
736   }
737 }
738 
739 static GlobalValue::DLLStorageClassTypes
740 getDecodedDLLStorageClass(unsigned Val) {
741   switch (Val) {
742   default: // Map unknown values to default.
743   case 0: return GlobalValue::DefaultStorageClass;
744   case 1: return GlobalValue::DLLImportStorageClass;
745   case 2: return GlobalValue::DLLExportStorageClass;
746   }
747 }
748 
749 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
750   switch (Val) {
751     case 0: return GlobalVariable::NotThreadLocal;
752     default: // Map unknown non-zero value to general dynamic.
753     case 1: return GlobalVariable::GeneralDynamicTLSModel;
754     case 2: return GlobalVariable::LocalDynamicTLSModel;
755     case 3: return GlobalVariable::InitialExecTLSModel;
756     case 4: return GlobalVariable::LocalExecTLSModel;
757   }
758 }
759 
760 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
761   switch (Val) {
762     default: // Map unknown to UnnamedAddr::None.
763     case 0: return GlobalVariable::UnnamedAddr::None;
764     case 1: return GlobalVariable::UnnamedAddr::Global;
765     case 2: return GlobalVariable::UnnamedAddr::Local;
766   }
767 }
768 
769 static int getDecodedCastOpcode(unsigned Val) {
770   switch (Val) {
771   default: return -1;
772   case bitc::CAST_TRUNC   : return Instruction::Trunc;
773   case bitc::CAST_ZEXT    : return Instruction::ZExt;
774   case bitc::CAST_SEXT    : return Instruction::SExt;
775   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
776   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
777   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
778   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
779   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
780   case bitc::CAST_FPEXT   : return Instruction::FPExt;
781   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
782   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
783   case bitc::CAST_BITCAST : return Instruction::BitCast;
784   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
785   }
786 }
787 
788 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
789   bool IsFP = Ty->isFPOrFPVectorTy();
790   // BinOps are only valid for int/fp or vector of int/fp types
791   if (!IsFP && !Ty->isIntOrIntVectorTy())
792     return -1;
793 
794   switch (Val) {
795   default:
796     return -1;
797   case bitc::BINOP_ADD:
798     return IsFP ? Instruction::FAdd : Instruction::Add;
799   case bitc::BINOP_SUB:
800     return IsFP ? Instruction::FSub : Instruction::Sub;
801   case bitc::BINOP_MUL:
802     return IsFP ? Instruction::FMul : Instruction::Mul;
803   case bitc::BINOP_UDIV:
804     return IsFP ? -1 : Instruction::UDiv;
805   case bitc::BINOP_SDIV:
806     return IsFP ? Instruction::FDiv : Instruction::SDiv;
807   case bitc::BINOP_UREM:
808     return IsFP ? -1 : Instruction::URem;
809   case bitc::BINOP_SREM:
810     return IsFP ? Instruction::FRem : Instruction::SRem;
811   case bitc::BINOP_SHL:
812     return IsFP ? -1 : Instruction::Shl;
813   case bitc::BINOP_LSHR:
814     return IsFP ? -1 : Instruction::LShr;
815   case bitc::BINOP_ASHR:
816     return IsFP ? -1 : Instruction::AShr;
817   case bitc::BINOP_AND:
818     return IsFP ? -1 : Instruction::And;
819   case bitc::BINOP_OR:
820     return IsFP ? -1 : Instruction::Or;
821   case bitc::BINOP_XOR:
822     return IsFP ? -1 : Instruction::Xor;
823   }
824 }
825 
826 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
827   switch (Val) {
828   default: return AtomicRMWInst::BAD_BINOP;
829   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
830   case bitc::RMW_ADD: return AtomicRMWInst::Add;
831   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
832   case bitc::RMW_AND: return AtomicRMWInst::And;
833   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
834   case bitc::RMW_OR: return AtomicRMWInst::Or;
835   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
836   case bitc::RMW_MAX: return AtomicRMWInst::Max;
837   case bitc::RMW_MIN: return AtomicRMWInst::Min;
838   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
839   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
840   }
841 }
842 
843 static AtomicOrdering getDecodedOrdering(unsigned Val) {
844   switch (Val) {
845   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
846   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
847   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
848   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
849   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
850   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
851   default: // Map unknown orderings to sequentially-consistent.
852   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
853   }
854 }
855 
856 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
857   switch (Val) {
858   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
859   default: // Map unknown scopes to cross-thread.
860   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
861   }
862 }
863 
864 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
865   switch (Val) {
866   default: // Map unknown selection kinds to any.
867   case bitc::COMDAT_SELECTION_KIND_ANY:
868     return Comdat::Any;
869   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
870     return Comdat::ExactMatch;
871   case bitc::COMDAT_SELECTION_KIND_LARGEST:
872     return Comdat::Largest;
873   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
874     return Comdat::NoDuplicates;
875   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
876     return Comdat::SameSize;
877   }
878 }
879 
880 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
881   FastMathFlags FMF;
882   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
883     FMF.setUnsafeAlgebra();
884   if (0 != (Val & FastMathFlags::NoNaNs))
885     FMF.setNoNaNs();
886   if (0 != (Val & FastMathFlags::NoInfs))
887     FMF.setNoInfs();
888   if (0 != (Val & FastMathFlags::NoSignedZeros))
889     FMF.setNoSignedZeros();
890   if (0 != (Val & FastMathFlags::AllowReciprocal))
891     FMF.setAllowReciprocal();
892   return FMF;
893 }
894 
895 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
896   switch (Val) {
897   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
898   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
899   }
900 }
901 
902 namespace llvm {
903 namespace {
904 /// \brief A class for maintaining the slot number definition
905 /// as a placeholder for the actual definition for forward constants defs.
906 class ConstantPlaceHolder : public ConstantExpr {
907   void operator=(const ConstantPlaceHolder &) = delete;
908 
909 public:
910   // allocate space for exactly one operand
911   void *operator new(size_t s) { return User::operator new(s, 1); }
912   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
913       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
914     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
915   }
916 
917   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
918   static bool classof(const Value *V) {
919     return isa<ConstantExpr>(V) &&
920            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
921   }
922 
923   /// Provide fast operand accessors
924   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
925 };
926 } // end anonymous namespace
927 
928 // FIXME: can we inherit this from ConstantExpr?
929 template <>
930 struct OperandTraits<ConstantPlaceHolder> :
931   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
932 };
933 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
934 } // end namespace llvm
935 
936 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
937   if (Idx == size()) {
938     push_back(V);
939     return;
940   }
941 
942   if (Idx >= size())
943     resize(Idx+1);
944 
945   WeakVH &OldV = ValuePtrs[Idx];
946   if (!OldV) {
947     OldV = V;
948     return;
949   }
950 
951   // Handle constants and non-constants (e.g. instrs) differently for
952   // efficiency.
953   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
954     ResolveConstants.push_back(std::make_pair(PHC, Idx));
955     OldV = V;
956   } else {
957     // If there was a forward reference to this value, replace it.
958     Value *PrevVal = OldV;
959     OldV->replaceAllUsesWith(V);
960     delete PrevVal;
961   }
962 }
963 
964 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
965                                                     Type *Ty) {
966   if (Idx >= size())
967     resize(Idx + 1);
968 
969   if (Value *V = ValuePtrs[Idx]) {
970     if (Ty != V->getType())
971       report_fatal_error("Type mismatch in constant table!");
972     return cast<Constant>(V);
973   }
974 
975   // Create and return a placeholder, which will later be RAUW'd.
976   Constant *C = new ConstantPlaceHolder(Ty, Context);
977   ValuePtrs[Idx] = C;
978   return C;
979 }
980 
981 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
982   // Bail out for a clearly invalid value. This would make us call resize(0)
983   if (Idx == UINT_MAX)
984     return nullptr;
985 
986   if (Idx >= size())
987     resize(Idx + 1);
988 
989   if (Value *V = ValuePtrs[Idx]) {
990     // If the types don't match, it's invalid.
991     if (Ty && Ty != V->getType())
992       return nullptr;
993     return V;
994   }
995 
996   // No type specified, must be invalid reference.
997   if (!Ty) return nullptr;
998 
999   // Create and return a placeholder, which will later be RAUW'd.
1000   Value *V = new Argument(Ty);
1001   ValuePtrs[Idx] = V;
1002   return V;
1003 }
1004 
1005 /// Once all constants are read, this method bulk resolves any forward
1006 /// references.  The idea behind this is that we sometimes get constants (such
1007 /// as large arrays) which reference *many* forward ref constants.  Replacing
1008 /// each of these causes a lot of thrashing when building/reuniquing the
1009 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1010 /// the place holders at once for any constant that uses a placeholder.
1011 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1012   // Sort the values by-pointer so that they are efficient to look up with a
1013   // binary search.
1014   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1015 
1016   SmallVector<Constant*, 64> NewOps;
1017 
1018   while (!ResolveConstants.empty()) {
1019     Value *RealVal = operator[](ResolveConstants.back().second);
1020     Constant *Placeholder = ResolveConstants.back().first;
1021     ResolveConstants.pop_back();
1022 
1023     // Loop over all users of the placeholder, updating them to reference the
1024     // new value.  If they reference more than one placeholder, update them all
1025     // at once.
1026     while (!Placeholder->use_empty()) {
1027       auto UI = Placeholder->user_begin();
1028       User *U = *UI;
1029 
1030       // If the using object isn't uniqued, just update the operands.  This
1031       // handles instructions and initializers for global variables.
1032       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1033         UI.getUse().set(RealVal);
1034         continue;
1035       }
1036 
1037       // Otherwise, we have a constant that uses the placeholder.  Replace that
1038       // constant with a new constant that has *all* placeholder uses updated.
1039       Constant *UserC = cast<Constant>(U);
1040       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1041            I != E; ++I) {
1042         Value *NewOp;
1043         if (!isa<ConstantPlaceHolder>(*I)) {
1044           // Not a placeholder reference.
1045           NewOp = *I;
1046         } else if (*I == Placeholder) {
1047           // Common case is that it just references this one placeholder.
1048           NewOp = RealVal;
1049         } else {
1050           // Otherwise, look up the placeholder in ResolveConstants.
1051           ResolveConstantsTy::iterator It =
1052             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1053                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1054                                                             0));
1055           assert(It != ResolveConstants.end() && It->first == *I);
1056           NewOp = operator[](It->second);
1057         }
1058 
1059         NewOps.push_back(cast<Constant>(NewOp));
1060       }
1061 
1062       // Make the new constant.
1063       Constant *NewC;
1064       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1065         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1066       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1067         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1068       } else if (isa<ConstantVector>(UserC)) {
1069         NewC = ConstantVector::get(NewOps);
1070       } else {
1071         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1072         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1073       }
1074 
1075       UserC->replaceAllUsesWith(NewC);
1076       UserC->destroyConstant();
1077       NewOps.clear();
1078     }
1079 
1080     // Update all ValueHandles, they should be the only users at this point.
1081     Placeholder->replaceAllUsesWith(RealVal);
1082     delete Placeholder;
1083   }
1084 }
1085 
1086 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1087   if (Idx == size()) {
1088     push_back(MD);
1089     return;
1090   }
1091 
1092   if (Idx >= size())
1093     resize(Idx+1);
1094 
1095   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1096   if (!OldMD) {
1097     OldMD.reset(MD);
1098     return;
1099   }
1100 
1101   // If there was a forward reference to this value, replace it.
1102   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1103   PrevMD->replaceAllUsesWith(MD);
1104   --NumFwdRefs;
1105 }
1106 
1107 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1108   if (Idx >= size())
1109     resize(Idx + 1);
1110 
1111   if (Metadata *MD = MetadataPtrs[Idx])
1112     return MD;
1113 
1114   // Track forward refs to be resolved later.
1115   if (AnyFwdRefs) {
1116     MinFwdRef = std::min(MinFwdRef, Idx);
1117     MaxFwdRef = std::max(MaxFwdRef, Idx);
1118   } else {
1119     AnyFwdRefs = true;
1120     MinFwdRef = MaxFwdRef = Idx;
1121   }
1122   ++NumFwdRefs;
1123 
1124   // Create and return a placeholder, which will later be RAUW'd.
1125   Metadata *MD = MDNode::getTemporary(Context, None).release();
1126   MetadataPtrs[Idx].reset(MD);
1127   return MD;
1128 }
1129 
1130 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1131   Metadata *MD = lookup(Idx);
1132   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1133     if (!N->isResolved())
1134       return nullptr;
1135   return MD;
1136 }
1137 
1138 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1139   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1140 }
1141 
1142 void BitcodeReaderMetadataList::tryToResolveCycles() {
1143   if (NumFwdRefs)
1144     // Still forward references... can't resolve cycles.
1145     return;
1146 
1147   bool DidReplaceTypeRefs = false;
1148 
1149   // Give up on finding a full definition for any forward decls that remain.
1150   for (const auto &Ref : OldTypeRefs.FwdDecls)
1151     OldTypeRefs.Final.insert(Ref);
1152   OldTypeRefs.FwdDecls.clear();
1153 
1154   // Upgrade from old type ref arrays.  In strange cases, this could add to
1155   // OldTypeRefs.Unknown.
1156   for (const auto &Array : OldTypeRefs.Arrays) {
1157     DidReplaceTypeRefs = true;
1158     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1159   }
1160   OldTypeRefs.Arrays.clear();
1161 
1162   // Replace old string-based type refs with the resolved node, if possible.
1163   // If we haven't seen the node, leave it to the verifier to complain about
1164   // the invalid string reference.
1165   for (const auto &Ref : OldTypeRefs.Unknown) {
1166     DidReplaceTypeRefs = true;
1167     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1168       Ref.second->replaceAllUsesWith(CT);
1169     else
1170       Ref.second->replaceAllUsesWith(Ref.first);
1171   }
1172   OldTypeRefs.Unknown.clear();
1173 
1174   // Make sure all the upgraded types are resolved.
1175   if (DidReplaceTypeRefs) {
1176     AnyFwdRefs = true;
1177     MinFwdRef = 0;
1178     MaxFwdRef = MetadataPtrs.size() - 1;
1179   }
1180 
1181   if (!AnyFwdRefs)
1182     // Nothing to do.
1183     return;
1184 
1185   // Resolve any cycles.
1186   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1187     auto &MD = MetadataPtrs[I];
1188     auto *N = dyn_cast_or_null<MDNode>(MD);
1189     if (!N)
1190       continue;
1191 
1192     assert(!N->isTemporary() && "Unexpected forward reference");
1193     N->resolveCycles();
1194   }
1195 
1196   // Make sure we return early again until there's another forward ref.
1197   AnyFwdRefs = false;
1198 }
1199 
1200 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1201                                            DICompositeType &CT) {
1202   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1203   if (CT.isForwardDecl())
1204     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1205   else
1206     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1207 }
1208 
1209 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1210   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1211   if (LLVM_LIKELY(!UUID))
1212     return MaybeUUID;
1213 
1214   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1215     return CT;
1216 
1217   auto &Ref = OldTypeRefs.Unknown[UUID];
1218   if (!Ref)
1219     Ref = MDNode::getTemporary(Context, None);
1220   return Ref.get();
1221 }
1222 
1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1224   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1225   if (!Tuple || Tuple->isDistinct())
1226     return MaybeTuple;
1227 
1228   // Look through the array immediately if possible.
1229   if (!Tuple->isTemporary())
1230     return resolveTypeRefArray(Tuple);
1231 
1232   // Create and return a placeholder to use for now.  Eventually
1233   // resolveTypeRefArrays() will be resolve this forward reference.
1234   OldTypeRefs.Arrays.emplace_back(
1235       std::piecewise_construct, std::forward_as_tuple(Tuple),
1236       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1237   return OldTypeRefs.Arrays.back().second.get();
1238 }
1239 
1240 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1241   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1242   if (!Tuple || Tuple->isDistinct())
1243     return MaybeTuple;
1244 
1245   // Look through the DITypeRefArray, upgrading each DITypeRef.
1246   SmallVector<Metadata *, 32> Ops;
1247   Ops.reserve(Tuple->getNumOperands());
1248   for (Metadata *MD : Tuple->operands())
1249     Ops.push_back(upgradeTypeRef(MD));
1250 
1251   return MDTuple::get(Context, Ops);
1252 }
1253 
1254 Type *BitcodeReader::getTypeByID(unsigned ID) {
1255   // The type table size is always specified correctly.
1256   if (ID >= TypeList.size())
1257     return nullptr;
1258 
1259   if (Type *Ty = TypeList[ID])
1260     return Ty;
1261 
1262   // If we have a forward reference, the only possible case is when it is to a
1263   // named struct.  Just create a placeholder for now.
1264   return TypeList[ID] = createIdentifiedStructType(Context);
1265 }
1266 
1267 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1268                                                       StringRef Name) {
1269   auto *Ret = StructType::create(Context, Name);
1270   IdentifiedStructTypes.push_back(Ret);
1271   return Ret;
1272 }
1273 
1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1275   auto *Ret = StructType::create(Context);
1276   IdentifiedStructTypes.push_back(Ret);
1277   return Ret;
1278 }
1279 
1280 //===----------------------------------------------------------------------===//
1281 //  Functions for parsing blocks from the bitcode file
1282 //===----------------------------------------------------------------------===//
1283 
1284 
1285 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1286 /// been decoded from the given integer. This function must stay in sync with
1287 /// 'encodeLLVMAttributesForBitcode'.
1288 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1289                                            uint64_t EncodedAttrs) {
1290   // FIXME: Remove in 4.0.
1291 
1292   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1293   // the bits above 31 down by 11 bits.
1294   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1295   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1296          "Alignment must be a power of two.");
1297 
1298   if (Alignment)
1299     B.addAlignmentAttr(Alignment);
1300   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1301                 (EncodedAttrs & 0xffff));
1302 }
1303 
1304 std::error_code BitcodeReader::parseAttributeBlock() {
1305   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1306     return error("Invalid record");
1307 
1308   if (!MAttributes.empty())
1309     return error("Invalid multiple blocks");
1310 
1311   SmallVector<uint64_t, 64> Record;
1312 
1313   SmallVector<AttributeSet, 8> Attrs;
1314 
1315   // Read all the records.
1316   while (1) {
1317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1318 
1319     switch (Entry.Kind) {
1320     case BitstreamEntry::SubBlock: // Handled for us already.
1321     case BitstreamEntry::Error:
1322       return error("Malformed block");
1323     case BitstreamEntry::EndBlock:
1324       return std::error_code();
1325     case BitstreamEntry::Record:
1326       // The interesting case.
1327       break;
1328     }
1329 
1330     // Read a record.
1331     Record.clear();
1332     switch (Stream.readRecord(Entry.ID, Record)) {
1333     default:  // Default behavior: ignore.
1334       break;
1335     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1336       // FIXME: Remove in 4.0.
1337       if (Record.size() & 1)
1338         return error("Invalid record");
1339 
1340       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1341         AttrBuilder B;
1342         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1343         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1344       }
1345 
1346       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1347       Attrs.clear();
1348       break;
1349     }
1350     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1351       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1352         Attrs.push_back(MAttributeGroups[Record[i]]);
1353 
1354       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1355       Attrs.clear();
1356       break;
1357     }
1358     }
1359   }
1360 }
1361 
1362 // Returns Attribute::None on unrecognized codes.
1363 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1364   switch (Code) {
1365   default:
1366     return Attribute::None;
1367   case bitc::ATTR_KIND_ALIGNMENT:
1368     return Attribute::Alignment;
1369   case bitc::ATTR_KIND_ALWAYS_INLINE:
1370     return Attribute::AlwaysInline;
1371   case bitc::ATTR_KIND_ARGMEMONLY:
1372     return Attribute::ArgMemOnly;
1373   case bitc::ATTR_KIND_BUILTIN:
1374     return Attribute::Builtin;
1375   case bitc::ATTR_KIND_BY_VAL:
1376     return Attribute::ByVal;
1377   case bitc::ATTR_KIND_IN_ALLOCA:
1378     return Attribute::InAlloca;
1379   case bitc::ATTR_KIND_COLD:
1380     return Attribute::Cold;
1381   case bitc::ATTR_KIND_CONVERGENT:
1382     return Attribute::Convergent;
1383   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1384     return Attribute::InaccessibleMemOnly;
1385   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1386     return Attribute::InaccessibleMemOrArgMemOnly;
1387   case bitc::ATTR_KIND_INLINE_HINT:
1388     return Attribute::InlineHint;
1389   case bitc::ATTR_KIND_IN_REG:
1390     return Attribute::InReg;
1391   case bitc::ATTR_KIND_JUMP_TABLE:
1392     return Attribute::JumpTable;
1393   case bitc::ATTR_KIND_MIN_SIZE:
1394     return Attribute::MinSize;
1395   case bitc::ATTR_KIND_NAKED:
1396     return Attribute::Naked;
1397   case bitc::ATTR_KIND_NEST:
1398     return Attribute::Nest;
1399   case bitc::ATTR_KIND_NO_ALIAS:
1400     return Attribute::NoAlias;
1401   case bitc::ATTR_KIND_NO_BUILTIN:
1402     return Attribute::NoBuiltin;
1403   case bitc::ATTR_KIND_NO_CAPTURE:
1404     return Attribute::NoCapture;
1405   case bitc::ATTR_KIND_NO_DUPLICATE:
1406     return Attribute::NoDuplicate;
1407   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1408     return Attribute::NoImplicitFloat;
1409   case bitc::ATTR_KIND_NO_INLINE:
1410     return Attribute::NoInline;
1411   case bitc::ATTR_KIND_NO_RECURSE:
1412     return Attribute::NoRecurse;
1413   case bitc::ATTR_KIND_NON_LAZY_BIND:
1414     return Attribute::NonLazyBind;
1415   case bitc::ATTR_KIND_NON_NULL:
1416     return Attribute::NonNull;
1417   case bitc::ATTR_KIND_DEREFERENCEABLE:
1418     return Attribute::Dereferenceable;
1419   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1420     return Attribute::DereferenceableOrNull;
1421   case bitc::ATTR_KIND_ALLOC_SIZE:
1422     return Attribute::AllocSize;
1423   case bitc::ATTR_KIND_NO_RED_ZONE:
1424     return Attribute::NoRedZone;
1425   case bitc::ATTR_KIND_NO_RETURN:
1426     return Attribute::NoReturn;
1427   case bitc::ATTR_KIND_NO_UNWIND:
1428     return Attribute::NoUnwind;
1429   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1430     return Attribute::OptimizeForSize;
1431   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1432     return Attribute::OptimizeNone;
1433   case bitc::ATTR_KIND_READ_NONE:
1434     return Attribute::ReadNone;
1435   case bitc::ATTR_KIND_READ_ONLY:
1436     return Attribute::ReadOnly;
1437   case bitc::ATTR_KIND_RETURNED:
1438     return Attribute::Returned;
1439   case bitc::ATTR_KIND_RETURNS_TWICE:
1440     return Attribute::ReturnsTwice;
1441   case bitc::ATTR_KIND_S_EXT:
1442     return Attribute::SExt;
1443   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1444     return Attribute::StackAlignment;
1445   case bitc::ATTR_KIND_STACK_PROTECT:
1446     return Attribute::StackProtect;
1447   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1448     return Attribute::StackProtectReq;
1449   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1450     return Attribute::StackProtectStrong;
1451   case bitc::ATTR_KIND_SAFESTACK:
1452     return Attribute::SafeStack;
1453   case bitc::ATTR_KIND_STRUCT_RET:
1454     return Attribute::StructRet;
1455   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1456     return Attribute::SanitizeAddress;
1457   case bitc::ATTR_KIND_SANITIZE_THREAD:
1458     return Attribute::SanitizeThread;
1459   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1460     return Attribute::SanitizeMemory;
1461   case bitc::ATTR_KIND_SWIFT_ERROR:
1462     return Attribute::SwiftError;
1463   case bitc::ATTR_KIND_SWIFT_SELF:
1464     return Attribute::SwiftSelf;
1465   case bitc::ATTR_KIND_UW_TABLE:
1466     return Attribute::UWTable;
1467   case bitc::ATTR_KIND_Z_EXT:
1468     return Attribute::ZExt;
1469   }
1470 }
1471 
1472 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1473                                                    unsigned &Alignment) {
1474   // Note: Alignment in bitcode files is incremented by 1, so that zero
1475   // can be used for default alignment.
1476   if (Exponent > Value::MaxAlignmentExponent + 1)
1477     return error("Invalid alignment value");
1478   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1479   return std::error_code();
1480 }
1481 
1482 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1483                                              Attribute::AttrKind *Kind) {
1484   *Kind = getAttrFromCode(Code);
1485   if (*Kind == Attribute::None)
1486     return error(BitcodeError::CorruptedBitcode,
1487                  "Unknown attribute kind (" + Twine(Code) + ")");
1488   return std::error_code();
1489 }
1490 
1491 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1492   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1493     return error("Invalid record");
1494 
1495   if (!MAttributeGroups.empty())
1496     return error("Invalid multiple blocks");
1497 
1498   SmallVector<uint64_t, 64> Record;
1499 
1500   // Read all the records.
1501   while (1) {
1502     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1503 
1504     switch (Entry.Kind) {
1505     case BitstreamEntry::SubBlock: // Handled for us already.
1506     case BitstreamEntry::Error:
1507       return error("Malformed block");
1508     case BitstreamEntry::EndBlock:
1509       return std::error_code();
1510     case BitstreamEntry::Record:
1511       // The interesting case.
1512       break;
1513     }
1514 
1515     // Read a record.
1516     Record.clear();
1517     switch (Stream.readRecord(Entry.ID, Record)) {
1518     default:  // Default behavior: ignore.
1519       break;
1520     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1521       if (Record.size() < 3)
1522         return error("Invalid record");
1523 
1524       uint64_t GrpID = Record[0];
1525       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1526 
1527       AttrBuilder B;
1528       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1529         if (Record[i] == 0) {        // Enum attribute
1530           Attribute::AttrKind Kind;
1531           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1532             return EC;
1533 
1534           B.addAttribute(Kind);
1535         } else if (Record[i] == 1) { // Integer attribute
1536           Attribute::AttrKind Kind;
1537           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1538             return EC;
1539           if (Kind == Attribute::Alignment)
1540             B.addAlignmentAttr(Record[++i]);
1541           else if (Kind == Attribute::StackAlignment)
1542             B.addStackAlignmentAttr(Record[++i]);
1543           else if (Kind == Attribute::Dereferenceable)
1544             B.addDereferenceableAttr(Record[++i]);
1545           else if (Kind == Attribute::DereferenceableOrNull)
1546             B.addDereferenceableOrNullAttr(Record[++i]);
1547           else if (Kind == Attribute::AllocSize)
1548             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1549         } else {                     // String attribute
1550           assert((Record[i] == 3 || Record[i] == 4) &&
1551                  "Invalid attribute group entry");
1552           bool HasValue = (Record[i++] == 4);
1553           SmallString<64> KindStr;
1554           SmallString<64> ValStr;
1555 
1556           while (Record[i] != 0 && i != e)
1557             KindStr += Record[i++];
1558           assert(Record[i] == 0 && "Kind string not null terminated");
1559 
1560           if (HasValue) {
1561             // Has a value associated with it.
1562             ++i; // Skip the '0' that terminates the "kind" string.
1563             while (Record[i] != 0 && i != e)
1564               ValStr += Record[i++];
1565             assert(Record[i] == 0 && "Value string not null terminated");
1566           }
1567 
1568           B.addAttribute(KindStr.str(), ValStr.str());
1569         }
1570       }
1571 
1572       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1573       break;
1574     }
1575     }
1576   }
1577 }
1578 
1579 std::error_code BitcodeReader::parseTypeTable() {
1580   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1581     return error("Invalid record");
1582 
1583   return parseTypeTableBody();
1584 }
1585 
1586 std::error_code BitcodeReader::parseTypeTableBody() {
1587   if (!TypeList.empty())
1588     return error("Invalid multiple blocks");
1589 
1590   SmallVector<uint64_t, 64> Record;
1591   unsigned NumRecords = 0;
1592 
1593   SmallString<64> TypeName;
1594 
1595   // Read all the records for this type table.
1596   while (1) {
1597     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1598 
1599     switch (Entry.Kind) {
1600     case BitstreamEntry::SubBlock: // Handled for us already.
1601     case BitstreamEntry::Error:
1602       return error("Malformed block");
1603     case BitstreamEntry::EndBlock:
1604       if (NumRecords != TypeList.size())
1605         return error("Malformed block");
1606       return std::error_code();
1607     case BitstreamEntry::Record:
1608       // The interesting case.
1609       break;
1610     }
1611 
1612     // Read a record.
1613     Record.clear();
1614     Type *ResultTy = nullptr;
1615     switch (Stream.readRecord(Entry.ID, Record)) {
1616     default:
1617       return error("Invalid value");
1618     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1619       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1620       // type list.  This allows us to reserve space.
1621       if (Record.size() < 1)
1622         return error("Invalid record");
1623       TypeList.resize(Record[0]);
1624       continue;
1625     case bitc::TYPE_CODE_VOID:      // VOID
1626       ResultTy = Type::getVoidTy(Context);
1627       break;
1628     case bitc::TYPE_CODE_HALF:     // HALF
1629       ResultTy = Type::getHalfTy(Context);
1630       break;
1631     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1632       ResultTy = Type::getFloatTy(Context);
1633       break;
1634     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1635       ResultTy = Type::getDoubleTy(Context);
1636       break;
1637     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1638       ResultTy = Type::getX86_FP80Ty(Context);
1639       break;
1640     case bitc::TYPE_CODE_FP128:     // FP128
1641       ResultTy = Type::getFP128Ty(Context);
1642       break;
1643     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1644       ResultTy = Type::getPPC_FP128Ty(Context);
1645       break;
1646     case bitc::TYPE_CODE_LABEL:     // LABEL
1647       ResultTy = Type::getLabelTy(Context);
1648       break;
1649     case bitc::TYPE_CODE_METADATA:  // METADATA
1650       ResultTy = Type::getMetadataTy(Context);
1651       break;
1652     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1653       ResultTy = Type::getX86_MMXTy(Context);
1654       break;
1655     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1656       ResultTy = Type::getTokenTy(Context);
1657       break;
1658     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1659       if (Record.size() < 1)
1660         return error("Invalid record");
1661 
1662       uint64_t NumBits = Record[0];
1663       if (NumBits < IntegerType::MIN_INT_BITS ||
1664           NumBits > IntegerType::MAX_INT_BITS)
1665         return error("Bitwidth for integer type out of range");
1666       ResultTy = IntegerType::get(Context, NumBits);
1667       break;
1668     }
1669     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1670                                     //          [pointee type, address space]
1671       if (Record.size() < 1)
1672         return error("Invalid record");
1673       unsigned AddressSpace = 0;
1674       if (Record.size() == 2)
1675         AddressSpace = Record[1];
1676       ResultTy = getTypeByID(Record[0]);
1677       if (!ResultTy ||
1678           !PointerType::isValidElementType(ResultTy))
1679         return error("Invalid type");
1680       ResultTy = PointerType::get(ResultTy, AddressSpace);
1681       break;
1682     }
1683     case bitc::TYPE_CODE_FUNCTION_OLD: {
1684       // FIXME: attrid is dead, remove it in LLVM 4.0
1685       // FUNCTION: [vararg, attrid, retty, paramty x N]
1686       if (Record.size() < 3)
1687         return error("Invalid record");
1688       SmallVector<Type*, 8> ArgTys;
1689       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1690         if (Type *T = getTypeByID(Record[i]))
1691           ArgTys.push_back(T);
1692         else
1693           break;
1694       }
1695 
1696       ResultTy = getTypeByID(Record[2]);
1697       if (!ResultTy || ArgTys.size() < Record.size()-3)
1698         return error("Invalid type");
1699 
1700       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1701       break;
1702     }
1703     case bitc::TYPE_CODE_FUNCTION: {
1704       // FUNCTION: [vararg, retty, paramty x N]
1705       if (Record.size() < 2)
1706         return error("Invalid record");
1707       SmallVector<Type*, 8> ArgTys;
1708       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1709         if (Type *T = getTypeByID(Record[i])) {
1710           if (!FunctionType::isValidArgumentType(T))
1711             return error("Invalid function argument type");
1712           ArgTys.push_back(T);
1713         }
1714         else
1715           break;
1716       }
1717 
1718       ResultTy = getTypeByID(Record[1]);
1719       if (!ResultTy || ArgTys.size() < Record.size()-2)
1720         return error("Invalid type");
1721 
1722       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1723       break;
1724     }
1725     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1726       if (Record.size() < 1)
1727         return error("Invalid record");
1728       SmallVector<Type*, 8> EltTys;
1729       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1730         if (Type *T = getTypeByID(Record[i]))
1731           EltTys.push_back(T);
1732         else
1733           break;
1734       }
1735       if (EltTys.size() != Record.size()-1)
1736         return error("Invalid type");
1737       ResultTy = StructType::get(Context, EltTys, Record[0]);
1738       break;
1739     }
1740     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1741       if (convertToString(Record, 0, TypeName))
1742         return error("Invalid record");
1743       continue;
1744 
1745     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1746       if (Record.size() < 1)
1747         return error("Invalid record");
1748 
1749       if (NumRecords >= TypeList.size())
1750         return error("Invalid TYPE table");
1751 
1752       // Check to see if this was forward referenced, if so fill in the temp.
1753       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1754       if (Res) {
1755         Res->setName(TypeName);
1756         TypeList[NumRecords] = nullptr;
1757       } else  // Otherwise, create a new struct.
1758         Res = createIdentifiedStructType(Context, TypeName);
1759       TypeName.clear();
1760 
1761       SmallVector<Type*, 8> EltTys;
1762       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1763         if (Type *T = getTypeByID(Record[i]))
1764           EltTys.push_back(T);
1765         else
1766           break;
1767       }
1768       if (EltTys.size() != Record.size()-1)
1769         return error("Invalid record");
1770       Res->setBody(EltTys, Record[0]);
1771       ResultTy = Res;
1772       break;
1773     }
1774     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1775       if (Record.size() != 1)
1776         return error("Invalid record");
1777 
1778       if (NumRecords >= TypeList.size())
1779         return error("Invalid TYPE table");
1780 
1781       // Check to see if this was forward referenced, if so fill in the temp.
1782       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1783       if (Res) {
1784         Res->setName(TypeName);
1785         TypeList[NumRecords] = nullptr;
1786       } else  // Otherwise, create a new struct with no body.
1787         Res = createIdentifiedStructType(Context, TypeName);
1788       TypeName.clear();
1789       ResultTy = Res;
1790       break;
1791     }
1792     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1793       if (Record.size() < 2)
1794         return error("Invalid record");
1795       ResultTy = getTypeByID(Record[1]);
1796       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1797         return error("Invalid type");
1798       ResultTy = ArrayType::get(ResultTy, Record[0]);
1799       break;
1800     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1801       if (Record.size() < 2)
1802         return error("Invalid record");
1803       if (Record[0] == 0)
1804         return error("Invalid vector length");
1805       ResultTy = getTypeByID(Record[1]);
1806       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1807         return error("Invalid type");
1808       ResultTy = VectorType::get(ResultTy, Record[0]);
1809       break;
1810     }
1811 
1812     if (NumRecords >= TypeList.size())
1813       return error("Invalid TYPE table");
1814     if (TypeList[NumRecords])
1815       return error(
1816           "Invalid TYPE table: Only named structs can be forward referenced");
1817     assert(ResultTy && "Didn't read a type?");
1818     TypeList[NumRecords++] = ResultTy;
1819   }
1820 }
1821 
1822 std::error_code BitcodeReader::parseOperandBundleTags() {
1823   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1824     return error("Invalid record");
1825 
1826   if (!BundleTags.empty())
1827     return error("Invalid multiple blocks");
1828 
1829   SmallVector<uint64_t, 64> Record;
1830 
1831   while (1) {
1832     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1833 
1834     switch (Entry.Kind) {
1835     case BitstreamEntry::SubBlock: // Handled for us already.
1836     case BitstreamEntry::Error:
1837       return error("Malformed block");
1838     case BitstreamEntry::EndBlock:
1839       return std::error_code();
1840     case BitstreamEntry::Record:
1841       // The interesting case.
1842       break;
1843     }
1844 
1845     // Tags are implicitly mapped to integers by their order.
1846 
1847     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1848       return error("Invalid record");
1849 
1850     // OPERAND_BUNDLE_TAG: [strchr x N]
1851     BundleTags.emplace_back();
1852     if (convertToString(Record, 0, BundleTags.back()))
1853       return error("Invalid record");
1854     Record.clear();
1855   }
1856 }
1857 
1858 /// Associate a value with its name from the given index in the provided record.
1859 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1860                                             unsigned NameIndex, Triple &TT) {
1861   SmallString<128> ValueName;
1862   if (convertToString(Record, NameIndex, ValueName))
1863     return error("Invalid record");
1864   unsigned ValueID = Record[0];
1865   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1866     return error("Invalid record");
1867   Value *V = ValueList[ValueID];
1868 
1869   StringRef NameStr(ValueName.data(), ValueName.size());
1870   if (NameStr.find_first_of(0) != StringRef::npos)
1871     return error("Invalid value name");
1872   V->setName(NameStr);
1873   auto *GO = dyn_cast<GlobalObject>(V);
1874   if (GO) {
1875     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1876       if (TT.isOSBinFormatMachO())
1877         GO->setComdat(nullptr);
1878       else
1879         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1880     }
1881   }
1882   return V;
1883 }
1884 
1885 /// Helper to note and return the current location, and jump to the given
1886 /// offset.
1887 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1888                                        BitstreamCursor &Stream) {
1889   // Save the current parsing location so we can jump back at the end
1890   // of the VST read.
1891   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1892   Stream.JumpToBit(Offset * 32);
1893 #ifndef NDEBUG
1894   // Do some checking if we are in debug mode.
1895   BitstreamEntry Entry = Stream.advance();
1896   assert(Entry.Kind == BitstreamEntry::SubBlock);
1897   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1898 #else
1899   // In NDEBUG mode ignore the output so we don't get an unused variable
1900   // warning.
1901   Stream.advance();
1902 #endif
1903   return CurrentBit;
1904 }
1905 
1906 /// Parse the value symbol table at either the current parsing location or
1907 /// at the given bit offset if provided.
1908 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1909   uint64_t CurrentBit;
1910   // Pass in the Offset to distinguish between calling for the module-level
1911   // VST (where we want to jump to the VST offset) and the function-level
1912   // VST (where we don't).
1913   if (Offset > 0)
1914     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1915 
1916   // Compute the delta between the bitcode indices in the VST (the word offset
1917   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1918   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1919   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1920   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1921   // just before entering the VST subblock because: 1) the EnterSubBlock
1922   // changes the AbbrevID width; 2) the VST block is nested within the same
1923   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1924   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1925   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1926   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1927   unsigned FuncBitcodeOffsetDelta =
1928       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1929 
1930   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1931     return error("Invalid record");
1932 
1933   SmallVector<uint64_t, 64> Record;
1934 
1935   Triple TT(TheModule->getTargetTriple());
1936 
1937   // Read all the records for this value table.
1938   SmallString<128> ValueName;
1939   while (1) {
1940     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1941 
1942     switch (Entry.Kind) {
1943     case BitstreamEntry::SubBlock: // Handled for us already.
1944     case BitstreamEntry::Error:
1945       return error("Malformed block");
1946     case BitstreamEntry::EndBlock:
1947       if (Offset > 0)
1948         Stream.JumpToBit(CurrentBit);
1949       return std::error_code();
1950     case BitstreamEntry::Record:
1951       // The interesting case.
1952       break;
1953     }
1954 
1955     // Read a record.
1956     Record.clear();
1957     switch (Stream.readRecord(Entry.ID, Record)) {
1958     default:  // Default behavior: unknown type.
1959       break;
1960     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1961       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1962       if (std::error_code EC = ValOrErr.getError())
1963         return EC;
1964       ValOrErr.get();
1965       break;
1966     }
1967     case bitc::VST_CODE_FNENTRY: {
1968       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1969       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1970       if (std::error_code EC = ValOrErr.getError())
1971         return EC;
1972       Value *V = ValOrErr.get();
1973 
1974       auto *GO = dyn_cast<GlobalObject>(V);
1975       if (!GO) {
1976         // If this is an alias, need to get the actual Function object
1977         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1978         auto *GA = dyn_cast<GlobalAlias>(V);
1979         if (GA)
1980           GO = GA->getBaseObject();
1981         assert(GO);
1982       }
1983 
1984       uint64_t FuncWordOffset = Record[1];
1985       Function *F = dyn_cast<Function>(GO);
1986       assert(F);
1987       uint64_t FuncBitOffset = FuncWordOffset * 32;
1988       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1989       // Set the LastFunctionBlockBit to point to the last function block.
1990       // Later when parsing is resumed after function materialization,
1991       // we can simply skip that last function block.
1992       if (FuncBitOffset > LastFunctionBlockBit)
1993         LastFunctionBlockBit = FuncBitOffset;
1994       break;
1995     }
1996     case bitc::VST_CODE_BBENTRY: {
1997       if (convertToString(Record, 1, ValueName))
1998         return error("Invalid record");
1999       BasicBlock *BB = getBasicBlock(Record[0]);
2000       if (!BB)
2001         return error("Invalid record");
2002 
2003       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2004       ValueName.clear();
2005       break;
2006     }
2007     }
2008   }
2009 }
2010 
2011 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2012 std::error_code
2013 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2014   if (Record.size() < 2)
2015     return error("Invalid record");
2016 
2017   unsigned Kind = Record[0];
2018   SmallString<8> Name(Record.begin() + 1, Record.end());
2019 
2020   unsigned NewKind = TheModule->getMDKindID(Name.str());
2021   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2022     return error("Conflicting METADATA_KIND records");
2023   return std::error_code();
2024 }
2025 
2026 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2027 
2028 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2029                                                     StringRef Blob,
2030                                                     unsigned &NextMetadataNo) {
2031   // All the MDStrings in the block are emitted together in a single
2032   // record.  The strings are concatenated and stored in a blob along with
2033   // their sizes.
2034   if (Record.size() != 2)
2035     return error("Invalid record: metadata strings layout");
2036 
2037   unsigned NumStrings = Record[0];
2038   unsigned StringsOffset = Record[1];
2039   if (!NumStrings)
2040     return error("Invalid record: metadata strings with no strings");
2041   if (StringsOffset > Blob.size())
2042     return error("Invalid record: metadata strings corrupt offset");
2043 
2044   StringRef Lengths = Blob.slice(0, StringsOffset);
2045   SimpleBitstreamCursor R(*StreamFile);
2046   R.jumpToPointer(Lengths.begin());
2047 
2048   // Ensure that Blob doesn't get invalidated, even if this is reading from
2049   // a StreamingMemoryObject with corrupt data.
2050   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2051 
2052   StringRef Strings = Blob.drop_front(StringsOffset);
2053   do {
2054     if (R.AtEndOfStream())
2055       return error("Invalid record: metadata strings bad length");
2056 
2057     unsigned Size = R.ReadVBR(6);
2058     if (Strings.size() < Size)
2059       return error("Invalid record: metadata strings truncated chars");
2060 
2061     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2062                              NextMetadataNo++);
2063     Strings = Strings.drop_front(Size);
2064   } while (--NumStrings);
2065 
2066   return std::error_code();
2067 }
2068 
2069 namespace {
2070 class PlaceholderQueue {
2071   // Placeholders would thrash around when moved, so store in a std::deque
2072   // instead of some sort of vector.
2073   std::deque<DistinctMDOperandPlaceholder> PHs;
2074 
2075 public:
2076   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2077   void flush(BitcodeReaderMetadataList &MetadataList);
2078 };
2079 } // end namespace
2080 
2081 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2082   PHs.emplace_back(ID);
2083   return PHs.back();
2084 }
2085 
2086 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2087   while (!PHs.empty()) {
2088     PHs.front().replaceUseWith(
2089         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2090     PHs.pop_front();
2091   }
2092 }
2093 
2094 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2095 /// module level metadata.
2096 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2097   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2098          "Must read all module-level metadata before function-level");
2099 
2100   IsMetadataMaterialized = true;
2101   unsigned NextMetadataNo = MetadataList.size();
2102 
2103   if (!ModuleLevel && MetadataList.hasFwdRefs())
2104     return error("Invalid metadata: fwd refs into function blocks");
2105 
2106   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2107     return error("Invalid record");
2108 
2109   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2110   SmallVector<uint64_t, 64> Record;
2111 
2112   PlaceholderQueue Placeholders;
2113   bool IsDistinct;
2114   auto getMD = [&](unsigned ID) -> Metadata * {
2115     if (!IsDistinct)
2116       return MetadataList.getMetadataFwdRef(ID);
2117     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2118       return MD;
2119     return &Placeholders.getPlaceholderOp(ID);
2120   };
2121   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2122     if (ID)
2123       return getMD(ID - 1);
2124     return nullptr;
2125   };
2126   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2127     if (ID)
2128       return MetadataList.getMetadataFwdRef(ID - 1);
2129     return nullptr;
2130   };
2131   auto getMDString = [&](unsigned ID) -> MDString *{
2132     // This requires that the ID is not really a forward reference.  In
2133     // particular, the MDString must already have been resolved.
2134     return cast_or_null<MDString>(getMDOrNull(ID));
2135   };
2136 
2137   // Support for old type refs.
2138   auto getDITypeRefOrNull = [&](unsigned ID) {
2139     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2140   };
2141 
2142 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2143   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2144 
2145   // Read all the records.
2146   while (1) {
2147     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2148 
2149     switch (Entry.Kind) {
2150     case BitstreamEntry::SubBlock: // Handled for us already.
2151     case BitstreamEntry::Error:
2152       return error("Malformed block");
2153     case BitstreamEntry::EndBlock:
2154       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2155       for (auto CU_SP : CUSubprograms)
2156         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2157           for (auto &Op : SPs->operands())
2158             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2159               SP->replaceOperandWith(7, CU_SP.first);
2160 
2161       MetadataList.tryToResolveCycles();
2162       Placeholders.flush(MetadataList);
2163       return std::error_code();
2164     case BitstreamEntry::Record:
2165       // The interesting case.
2166       break;
2167     }
2168 
2169     // Read a record.
2170     Record.clear();
2171     StringRef Blob;
2172     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2173     IsDistinct = false;
2174     switch (Code) {
2175     default:  // Default behavior: ignore.
2176       break;
2177     case bitc::METADATA_NAME: {
2178       // Read name of the named metadata.
2179       SmallString<8> Name(Record.begin(), Record.end());
2180       Record.clear();
2181       Code = Stream.ReadCode();
2182 
2183       unsigned NextBitCode = Stream.readRecord(Code, Record);
2184       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2185         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2186 
2187       // Read named metadata elements.
2188       unsigned Size = Record.size();
2189       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2190       for (unsigned i = 0; i != Size; ++i) {
2191         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2192         if (!MD)
2193           return error("Invalid record");
2194         NMD->addOperand(MD);
2195       }
2196       break;
2197     }
2198     case bitc::METADATA_OLD_FN_NODE: {
2199       // FIXME: Remove in 4.0.
2200       // This is a LocalAsMetadata record, the only type of function-local
2201       // metadata.
2202       if (Record.size() % 2 == 1)
2203         return error("Invalid record");
2204 
2205       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2206       // to be legal, but there's no upgrade path.
2207       auto dropRecord = [&] {
2208         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2209       };
2210       if (Record.size() != 2) {
2211         dropRecord();
2212         break;
2213       }
2214 
2215       Type *Ty = getTypeByID(Record[0]);
2216       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2217         dropRecord();
2218         break;
2219       }
2220 
2221       MetadataList.assignValue(
2222           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2223           NextMetadataNo++);
2224       break;
2225     }
2226     case bitc::METADATA_OLD_NODE: {
2227       // FIXME: Remove in 4.0.
2228       if (Record.size() % 2 == 1)
2229         return error("Invalid record");
2230 
2231       unsigned Size = Record.size();
2232       SmallVector<Metadata *, 8> Elts;
2233       for (unsigned i = 0; i != Size; i += 2) {
2234         Type *Ty = getTypeByID(Record[i]);
2235         if (!Ty)
2236           return error("Invalid record");
2237         if (Ty->isMetadataTy())
2238           Elts.push_back(getMD(Record[i + 1]));
2239         else if (!Ty->isVoidTy()) {
2240           auto *MD =
2241               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2242           assert(isa<ConstantAsMetadata>(MD) &&
2243                  "Expected non-function-local metadata");
2244           Elts.push_back(MD);
2245         } else
2246           Elts.push_back(nullptr);
2247       }
2248       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2249       break;
2250     }
2251     case bitc::METADATA_VALUE: {
2252       if (Record.size() != 2)
2253         return error("Invalid record");
2254 
2255       Type *Ty = getTypeByID(Record[0]);
2256       if (Ty->isMetadataTy() || Ty->isVoidTy())
2257         return error("Invalid record");
2258 
2259       MetadataList.assignValue(
2260           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2261           NextMetadataNo++);
2262       break;
2263     }
2264     case bitc::METADATA_DISTINCT_NODE:
2265       IsDistinct = true;
2266       // fallthrough...
2267     case bitc::METADATA_NODE: {
2268       SmallVector<Metadata *, 8> Elts;
2269       Elts.reserve(Record.size());
2270       for (unsigned ID : Record)
2271         Elts.push_back(getMDOrNull(ID));
2272       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2273                                           : MDNode::get(Context, Elts),
2274                                NextMetadataNo++);
2275       break;
2276     }
2277     case bitc::METADATA_LOCATION: {
2278       if (Record.size() != 5)
2279         return error("Invalid record");
2280 
2281       IsDistinct = Record[0];
2282       unsigned Line = Record[1];
2283       unsigned Column = Record[2];
2284       Metadata *Scope = getMD(Record[3]);
2285       Metadata *InlinedAt = getMDOrNull(Record[4]);
2286       MetadataList.assignValue(
2287           GET_OR_DISTINCT(DILocation,
2288                           (Context, Line, Column, Scope, InlinedAt)),
2289           NextMetadataNo++);
2290       break;
2291     }
2292     case bitc::METADATA_GENERIC_DEBUG: {
2293       if (Record.size() < 4)
2294         return error("Invalid record");
2295 
2296       IsDistinct = Record[0];
2297       unsigned Tag = Record[1];
2298       unsigned Version = Record[2];
2299 
2300       if (Tag >= 1u << 16 || Version != 0)
2301         return error("Invalid record");
2302 
2303       auto *Header = getMDString(Record[3]);
2304       SmallVector<Metadata *, 8> DwarfOps;
2305       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2306         DwarfOps.push_back(getMDOrNull(Record[I]));
2307       MetadataList.assignValue(
2308           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2309           NextMetadataNo++);
2310       break;
2311     }
2312     case bitc::METADATA_SUBRANGE: {
2313       if (Record.size() != 3)
2314         return error("Invalid record");
2315 
2316       IsDistinct = Record[0];
2317       MetadataList.assignValue(
2318           GET_OR_DISTINCT(DISubrange,
2319                           (Context, Record[1], unrotateSign(Record[2]))),
2320           NextMetadataNo++);
2321       break;
2322     }
2323     case bitc::METADATA_ENUMERATOR: {
2324       if (Record.size() != 3)
2325         return error("Invalid record");
2326 
2327       IsDistinct = Record[0];
2328       MetadataList.assignValue(
2329           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2330                                          getMDString(Record[2]))),
2331           NextMetadataNo++);
2332       break;
2333     }
2334     case bitc::METADATA_BASIC_TYPE: {
2335       if (Record.size() != 6)
2336         return error("Invalid record");
2337 
2338       IsDistinct = Record[0];
2339       MetadataList.assignValue(
2340           GET_OR_DISTINCT(DIBasicType,
2341                           (Context, Record[1], getMDString(Record[2]),
2342                            Record[3], Record[4], Record[5])),
2343           NextMetadataNo++);
2344       break;
2345     }
2346     case bitc::METADATA_DERIVED_TYPE: {
2347       if (Record.size() != 12)
2348         return error("Invalid record");
2349 
2350       IsDistinct = Record[0];
2351       MetadataList.assignValue(
2352           GET_OR_DISTINCT(
2353               DIDerivedType,
2354               (Context, Record[1], getMDString(Record[2]),
2355                getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]),
2356                getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9],
2357                Record[10], getDITypeRefOrNull(Record[11]))),
2358           NextMetadataNo++);
2359       break;
2360     }
2361     case bitc::METADATA_COMPOSITE_TYPE: {
2362       if (Record.size() != 16)
2363         return error("Invalid record");
2364 
2365       // If we have a UUID and this is not a forward declaration, lookup the
2366       // mapping.
2367       IsDistinct = Record[0] & 0x1;
2368       bool IsNotUsedInTypeRef = Record[0] >= 2;
2369       unsigned Tag = Record[1];
2370       MDString *Name = getMDString(Record[2]);
2371       Metadata *File = getMDOrNull(Record[3]);
2372       unsigned Line = Record[4];
2373       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2374       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2375       uint64_t SizeInBits = Record[7];
2376       uint64_t AlignInBits = Record[8];
2377       uint64_t OffsetInBits = Record[9];
2378       unsigned Flags = Record[10];
2379       Metadata *Elements = getMDOrNull(Record[11]);
2380       unsigned RuntimeLang = Record[12];
2381       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2382       Metadata *TemplateParams = getMDOrNull(Record[14]);
2383       auto *Identifier = getMDString(Record[15]);
2384       DICompositeType *CT = nullptr;
2385       if (Identifier)
2386         CT = DICompositeType::buildODRType(
2387             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2388             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2389             VTableHolder, TemplateParams);
2390 
2391       // Create a node if we didn't get a lazy ODR type.
2392       if (!CT)
2393         CT = GET_OR_DISTINCT(DICompositeType,
2394                              (Context, Tag, Name, File, Line, Scope, BaseType,
2395                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2396                               Elements, RuntimeLang, VTableHolder,
2397                               TemplateParams, Identifier));
2398       if (!IsNotUsedInTypeRef && Identifier)
2399         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2400 
2401       MetadataList.assignValue(CT, NextMetadataNo++);
2402       break;
2403     }
2404     case bitc::METADATA_SUBROUTINE_TYPE: {
2405       if (Record.size() < 3 || Record.size() > 4)
2406         return error("Invalid record");
2407       bool IsOldTypeRefArray = Record[0] < 2;
2408       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2409 
2410       IsDistinct = Record[0] & 0x1;
2411       Metadata *Types = getMDOrNull(Record[2]);
2412       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2413         Types = MetadataList.upgradeTypeRefArray(Types);
2414 
2415       MetadataList.assignValue(
2416           GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)),
2417           NextMetadataNo++);
2418       break;
2419     }
2420 
2421     case bitc::METADATA_MODULE: {
2422       if (Record.size() != 6)
2423         return error("Invalid record");
2424 
2425       IsDistinct = Record[0];
2426       MetadataList.assignValue(
2427           GET_OR_DISTINCT(DIModule,
2428                           (Context, getMDOrNull(Record[1]),
2429                            getMDString(Record[2]), getMDString(Record[3]),
2430                            getMDString(Record[4]), getMDString(Record[5]))),
2431           NextMetadataNo++);
2432       break;
2433     }
2434 
2435     case bitc::METADATA_FILE: {
2436       if (Record.size() != 3)
2437         return error("Invalid record");
2438 
2439       IsDistinct = Record[0];
2440       MetadataList.assignValue(
2441           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2442                                    getMDString(Record[2]))),
2443           NextMetadataNo++);
2444       break;
2445     }
2446     case bitc::METADATA_COMPILE_UNIT: {
2447       if (Record.size() < 14 || Record.size() > 16)
2448         return error("Invalid record");
2449 
2450       // Ignore Record[0], which indicates whether this compile unit is
2451       // distinct.  It's always distinct.
2452       IsDistinct = true;
2453       auto *CU = DICompileUnit::getDistinct(
2454           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2455           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2456           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2457           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2458           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2459           Record.size() <= 14 ? 0 : Record[14]);
2460 
2461       MetadataList.assignValue(CU, NextMetadataNo++);
2462 
2463       // Move the Upgrade the list of subprograms.
2464       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2465         CUSubprograms.push_back({CU, SPs});
2466       break;
2467     }
2468     case bitc::METADATA_SUBPROGRAM: {
2469       if (Record.size() != 18 && Record.size() != 19)
2470         return error("Invalid record");
2471 
2472       IsDistinct =
2473           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2474       // Version 1 has a Function as Record[15].
2475       // Version 2 has removed Record[15].
2476       // Version 3 has the Unit as Record[15].
2477       bool HasUnit = Record[0] >= 2;
2478       if (HasUnit && Record.size() != 19)
2479         return error("Invalid record");
2480       Metadata *CUorFn = getMDOrNull(Record[15]);
2481       unsigned Offset = Record.size() == 19 ? 1 : 0;
2482       bool HasFn = Offset && !HasUnit;
2483       DISubprogram *SP = GET_OR_DISTINCT(
2484           DISubprogram,
2485           (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]),
2486            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2487            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2488            getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13],
2489            Record[14], HasUnit ? CUorFn : nullptr,
2490            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2491            getMDOrNull(Record[17 + Offset])));
2492       MetadataList.assignValue(SP, NextMetadataNo++);
2493 
2494       // Upgrade sp->function mapping to function->sp mapping.
2495       if (HasFn) {
2496         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2497           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2498             if (F->isMaterializable())
2499               // Defer until materialized; unmaterialized functions may not have
2500               // metadata.
2501               FunctionsWithSPs[F] = SP;
2502             else if (!F->empty())
2503               F->setSubprogram(SP);
2504           }
2505       }
2506       break;
2507     }
2508     case bitc::METADATA_LEXICAL_BLOCK: {
2509       if (Record.size() != 5)
2510         return error("Invalid record");
2511 
2512       IsDistinct = Record[0];
2513       MetadataList.assignValue(
2514           GET_OR_DISTINCT(DILexicalBlock,
2515                           (Context, getMDOrNull(Record[1]),
2516                            getMDOrNull(Record[2]), Record[3], Record[4])),
2517           NextMetadataNo++);
2518       break;
2519     }
2520     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2521       if (Record.size() != 4)
2522         return error("Invalid record");
2523 
2524       IsDistinct = Record[0];
2525       MetadataList.assignValue(
2526           GET_OR_DISTINCT(DILexicalBlockFile,
2527                           (Context, getMDOrNull(Record[1]),
2528                            getMDOrNull(Record[2]), Record[3])),
2529           NextMetadataNo++);
2530       break;
2531     }
2532     case bitc::METADATA_NAMESPACE: {
2533       if (Record.size() != 5)
2534         return error("Invalid record");
2535 
2536       IsDistinct = Record[0];
2537       MetadataList.assignValue(
2538           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2539                                         getMDOrNull(Record[2]),
2540                                         getMDString(Record[3]), Record[4])),
2541           NextMetadataNo++);
2542       break;
2543     }
2544     case bitc::METADATA_MACRO: {
2545       if (Record.size() != 5)
2546         return error("Invalid record");
2547 
2548       IsDistinct = Record[0];
2549       MetadataList.assignValue(
2550           GET_OR_DISTINCT(DIMacro,
2551                           (Context, Record[1], Record[2],
2552                            getMDString(Record[3]), getMDString(Record[4]))),
2553           NextMetadataNo++);
2554       break;
2555     }
2556     case bitc::METADATA_MACRO_FILE: {
2557       if (Record.size() != 5)
2558         return error("Invalid record");
2559 
2560       IsDistinct = Record[0];
2561       MetadataList.assignValue(
2562           GET_OR_DISTINCT(DIMacroFile,
2563                           (Context, Record[1], Record[2],
2564                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2565           NextMetadataNo++);
2566       break;
2567     }
2568     case bitc::METADATA_TEMPLATE_TYPE: {
2569       if (Record.size() != 3)
2570         return error("Invalid record");
2571 
2572       IsDistinct = Record[0];
2573       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2574                                                (Context, getMDString(Record[1]),
2575                                                 getDITypeRefOrNull(Record[2]))),
2576                                NextMetadataNo++);
2577       break;
2578     }
2579     case bitc::METADATA_TEMPLATE_VALUE: {
2580       if (Record.size() != 5)
2581         return error("Invalid record");
2582 
2583       IsDistinct = Record[0];
2584       MetadataList.assignValue(
2585           GET_OR_DISTINCT(DITemplateValueParameter,
2586                           (Context, Record[1], getMDString(Record[2]),
2587                            getDITypeRefOrNull(Record[3]),
2588                            getMDOrNull(Record[4]))),
2589           NextMetadataNo++);
2590       break;
2591     }
2592     case bitc::METADATA_GLOBAL_VAR: {
2593       if (Record.size() != 11)
2594         return error("Invalid record");
2595 
2596       IsDistinct = Record[0];
2597       MetadataList.assignValue(
2598           GET_OR_DISTINCT(DIGlobalVariable,
2599                           (Context, getMDOrNull(Record[1]),
2600                            getMDString(Record[2]), getMDString(Record[3]),
2601                            getMDOrNull(Record[4]), Record[5],
2602                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2603                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2604           NextMetadataNo++);
2605       break;
2606     }
2607     case bitc::METADATA_LOCAL_VAR: {
2608       // 10th field is for the obseleted 'inlinedAt:' field.
2609       if (Record.size() < 8 || Record.size() > 10)
2610         return error("Invalid record");
2611 
2612       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2613       // DW_TAG_arg_variable.
2614       IsDistinct = Record[0];
2615       bool HasTag = Record.size() > 8;
2616       MetadataList.assignValue(
2617           GET_OR_DISTINCT(DILocalVariable,
2618                           (Context, getMDOrNull(Record[1 + HasTag]),
2619                            getMDString(Record[2 + HasTag]),
2620                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2621                            getDITypeRefOrNull(Record[5 + HasTag]),
2622                            Record[6 + HasTag], Record[7 + HasTag])),
2623           NextMetadataNo++);
2624       break;
2625     }
2626     case bitc::METADATA_EXPRESSION: {
2627       if (Record.size() < 1)
2628         return error("Invalid record");
2629 
2630       IsDistinct = Record[0];
2631       MetadataList.assignValue(
2632           GET_OR_DISTINCT(DIExpression,
2633                           (Context, makeArrayRef(Record).slice(1))),
2634           NextMetadataNo++);
2635       break;
2636     }
2637     case bitc::METADATA_OBJC_PROPERTY: {
2638       if (Record.size() != 8)
2639         return error("Invalid record");
2640 
2641       IsDistinct = Record[0];
2642       MetadataList.assignValue(
2643           GET_OR_DISTINCT(DIObjCProperty,
2644                           (Context, getMDString(Record[1]),
2645                            getMDOrNull(Record[2]), Record[3],
2646                            getMDString(Record[4]), getMDString(Record[5]),
2647                            Record[6], getDITypeRefOrNull(Record[7]))),
2648           NextMetadataNo++);
2649       break;
2650     }
2651     case bitc::METADATA_IMPORTED_ENTITY: {
2652       if (Record.size() != 6)
2653         return error("Invalid record");
2654 
2655       IsDistinct = Record[0];
2656       MetadataList.assignValue(
2657           GET_OR_DISTINCT(DIImportedEntity,
2658                           (Context, Record[1], getMDOrNull(Record[2]),
2659                            getDITypeRefOrNull(Record[3]), Record[4],
2660                            getMDString(Record[5]))),
2661           NextMetadataNo++);
2662       break;
2663     }
2664     case bitc::METADATA_STRING_OLD: {
2665       std::string String(Record.begin(), Record.end());
2666 
2667       // Test for upgrading !llvm.loop.
2668       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2669 
2670       Metadata *MD = MDString::get(Context, String);
2671       MetadataList.assignValue(MD, NextMetadataNo++);
2672       break;
2673     }
2674     case bitc::METADATA_STRINGS:
2675       if (std::error_code EC =
2676               parseMetadataStrings(Record, Blob, NextMetadataNo))
2677         return EC;
2678       break;
2679     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2680       if (Record.size() % 2 == 0)
2681         return error("Invalid record");
2682       unsigned ValueID = Record[0];
2683       if (ValueID >= ValueList.size())
2684         return error("Invalid record");
2685       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2686         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2687       break;
2688     }
2689     case bitc::METADATA_KIND: {
2690       // Support older bitcode files that had METADATA_KIND records in a
2691       // block with METADATA_BLOCK_ID.
2692       if (std::error_code EC = parseMetadataKindRecord(Record))
2693         return EC;
2694       break;
2695     }
2696     }
2697   }
2698 #undef GET_OR_DISTINCT
2699 }
2700 
2701 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2702 std::error_code BitcodeReader::parseMetadataKinds() {
2703   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2704     return error("Invalid record");
2705 
2706   SmallVector<uint64_t, 64> Record;
2707 
2708   // Read all the records.
2709   while (1) {
2710     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2711 
2712     switch (Entry.Kind) {
2713     case BitstreamEntry::SubBlock: // Handled for us already.
2714     case BitstreamEntry::Error:
2715       return error("Malformed block");
2716     case BitstreamEntry::EndBlock:
2717       return std::error_code();
2718     case BitstreamEntry::Record:
2719       // The interesting case.
2720       break;
2721     }
2722 
2723     // Read a record.
2724     Record.clear();
2725     unsigned Code = Stream.readRecord(Entry.ID, Record);
2726     switch (Code) {
2727     default: // Default behavior: ignore.
2728       break;
2729     case bitc::METADATA_KIND: {
2730       if (std::error_code EC = parseMetadataKindRecord(Record))
2731         return EC;
2732       break;
2733     }
2734     }
2735   }
2736 }
2737 
2738 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2739 /// encoding.
2740 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2741   if ((V & 1) == 0)
2742     return V >> 1;
2743   if (V != 1)
2744     return -(V >> 1);
2745   // There is no such thing as -0 with integers.  "-0" really means MININT.
2746   return 1ULL << 63;
2747 }
2748 
2749 /// Resolve all of the initializers for global values and aliases that we can.
2750 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2751   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2752   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2753       IndirectSymbolInitWorklist;
2754   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2755   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2756   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2757 
2758   GlobalInitWorklist.swap(GlobalInits);
2759   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2760   FunctionPrefixWorklist.swap(FunctionPrefixes);
2761   FunctionPrologueWorklist.swap(FunctionPrologues);
2762   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2763 
2764   while (!GlobalInitWorklist.empty()) {
2765     unsigned ValID = GlobalInitWorklist.back().second;
2766     if (ValID >= ValueList.size()) {
2767       // Not ready to resolve this yet, it requires something later in the file.
2768       GlobalInits.push_back(GlobalInitWorklist.back());
2769     } else {
2770       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2771         GlobalInitWorklist.back().first->setInitializer(C);
2772       else
2773         return error("Expected a constant");
2774     }
2775     GlobalInitWorklist.pop_back();
2776   }
2777 
2778   while (!IndirectSymbolInitWorklist.empty()) {
2779     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2780     if (ValID >= ValueList.size()) {
2781       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2782     } else {
2783       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2784       if (!C)
2785         return error("Expected a constant");
2786       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2787       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2788         return error("Alias and aliasee types don't match");
2789       GIS->setIndirectSymbol(C);
2790     }
2791     IndirectSymbolInitWorklist.pop_back();
2792   }
2793 
2794   while (!FunctionPrefixWorklist.empty()) {
2795     unsigned ValID = FunctionPrefixWorklist.back().second;
2796     if (ValID >= ValueList.size()) {
2797       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2798     } else {
2799       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2800         FunctionPrefixWorklist.back().first->setPrefixData(C);
2801       else
2802         return error("Expected a constant");
2803     }
2804     FunctionPrefixWorklist.pop_back();
2805   }
2806 
2807   while (!FunctionPrologueWorklist.empty()) {
2808     unsigned ValID = FunctionPrologueWorklist.back().second;
2809     if (ValID >= ValueList.size()) {
2810       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2811     } else {
2812       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2813         FunctionPrologueWorklist.back().first->setPrologueData(C);
2814       else
2815         return error("Expected a constant");
2816     }
2817     FunctionPrologueWorklist.pop_back();
2818   }
2819 
2820   while (!FunctionPersonalityFnWorklist.empty()) {
2821     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2822     if (ValID >= ValueList.size()) {
2823       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2824     } else {
2825       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2826         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2827       else
2828         return error("Expected a constant");
2829     }
2830     FunctionPersonalityFnWorklist.pop_back();
2831   }
2832 
2833   return std::error_code();
2834 }
2835 
2836 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2837   SmallVector<uint64_t, 8> Words(Vals.size());
2838   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2839                  BitcodeReader::decodeSignRotatedValue);
2840 
2841   return APInt(TypeBits, Words);
2842 }
2843 
2844 std::error_code BitcodeReader::parseConstants() {
2845   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2846     return error("Invalid record");
2847 
2848   SmallVector<uint64_t, 64> Record;
2849 
2850   // Read all the records for this value table.
2851   Type *CurTy = Type::getInt32Ty(Context);
2852   unsigned NextCstNo = ValueList.size();
2853   while (1) {
2854     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2855 
2856     switch (Entry.Kind) {
2857     case BitstreamEntry::SubBlock: // Handled for us already.
2858     case BitstreamEntry::Error:
2859       return error("Malformed block");
2860     case BitstreamEntry::EndBlock:
2861       if (NextCstNo != ValueList.size())
2862         return error("Invalid constant reference");
2863 
2864       // Once all the constants have been read, go through and resolve forward
2865       // references.
2866       ValueList.resolveConstantForwardRefs();
2867       return std::error_code();
2868     case BitstreamEntry::Record:
2869       // The interesting case.
2870       break;
2871     }
2872 
2873     // Read a record.
2874     Record.clear();
2875     Type *VoidType = Type::getVoidTy(Context);
2876     Value *V = nullptr;
2877     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2878     switch (BitCode) {
2879     default:  // Default behavior: unknown constant
2880     case bitc::CST_CODE_UNDEF:     // UNDEF
2881       V = UndefValue::get(CurTy);
2882       break;
2883     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2884       if (Record.empty())
2885         return error("Invalid record");
2886       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2887         return error("Invalid record");
2888       if (TypeList[Record[0]] == VoidType)
2889         return error("Invalid constant type");
2890       CurTy = TypeList[Record[0]];
2891       continue;  // Skip the ValueList manipulation.
2892     case bitc::CST_CODE_NULL:      // NULL
2893       V = Constant::getNullValue(CurTy);
2894       break;
2895     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2896       if (!CurTy->isIntegerTy() || Record.empty())
2897         return error("Invalid record");
2898       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2899       break;
2900     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2901       if (!CurTy->isIntegerTy() || Record.empty())
2902         return error("Invalid record");
2903 
2904       APInt VInt =
2905           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2906       V = ConstantInt::get(Context, VInt);
2907 
2908       break;
2909     }
2910     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2911       if (Record.empty())
2912         return error("Invalid record");
2913       if (CurTy->isHalfTy())
2914         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2915                                              APInt(16, (uint16_t)Record[0])));
2916       else if (CurTy->isFloatTy())
2917         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2918                                              APInt(32, (uint32_t)Record[0])));
2919       else if (CurTy->isDoubleTy())
2920         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2921                                              APInt(64, Record[0])));
2922       else if (CurTy->isX86_FP80Ty()) {
2923         // Bits are not stored the same way as a normal i80 APInt, compensate.
2924         uint64_t Rearrange[2];
2925         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2926         Rearrange[1] = Record[0] >> 48;
2927         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2928                                              APInt(80, Rearrange)));
2929       } else if (CurTy->isFP128Ty())
2930         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2931                                              APInt(128, Record)));
2932       else if (CurTy->isPPC_FP128Ty())
2933         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2934                                              APInt(128, Record)));
2935       else
2936         V = UndefValue::get(CurTy);
2937       break;
2938     }
2939 
2940     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2941       if (Record.empty())
2942         return error("Invalid record");
2943 
2944       unsigned Size = Record.size();
2945       SmallVector<Constant*, 16> Elts;
2946 
2947       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2948         for (unsigned i = 0; i != Size; ++i)
2949           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2950                                                      STy->getElementType(i)));
2951         V = ConstantStruct::get(STy, Elts);
2952       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2953         Type *EltTy = ATy->getElementType();
2954         for (unsigned i = 0; i != Size; ++i)
2955           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2956         V = ConstantArray::get(ATy, Elts);
2957       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2958         Type *EltTy = VTy->getElementType();
2959         for (unsigned i = 0; i != Size; ++i)
2960           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2961         V = ConstantVector::get(Elts);
2962       } else {
2963         V = UndefValue::get(CurTy);
2964       }
2965       break;
2966     }
2967     case bitc::CST_CODE_STRING:    // STRING: [values]
2968     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2969       if (Record.empty())
2970         return error("Invalid record");
2971 
2972       SmallString<16> Elts(Record.begin(), Record.end());
2973       V = ConstantDataArray::getString(Context, Elts,
2974                                        BitCode == bitc::CST_CODE_CSTRING);
2975       break;
2976     }
2977     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2978       if (Record.empty())
2979         return error("Invalid record");
2980 
2981       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2982       if (EltTy->isIntegerTy(8)) {
2983         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2984         if (isa<VectorType>(CurTy))
2985           V = ConstantDataVector::get(Context, Elts);
2986         else
2987           V = ConstantDataArray::get(Context, Elts);
2988       } else if (EltTy->isIntegerTy(16)) {
2989         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2990         if (isa<VectorType>(CurTy))
2991           V = ConstantDataVector::get(Context, Elts);
2992         else
2993           V = ConstantDataArray::get(Context, Elts);
2994       } else if (EltTy->isIntegerTy(32)) {
2995         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2996         if (isa<VectorType>(CurTy))
2997           V = ConstantDataVector::get(Context, Elts);
2998         else
2999           V = ConstantDataArray::get(Context, Elts);
3000       } else if (EltTy->isIntegerTy(64)) {
3001         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3002         if (isa<VectorType>(CurTy))
3003           V = ConstantDataVector::get(Context, Elts);
3004         else
3005           V = ConstantDataArray::get(Context, Elts);
3006       } else if (EltTy->isHalfTy()) {
3007         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3008         if (isa<VectorType>(CurTy))
3009           V = ConstantDataVector::getFP(Context, Elts);
3010         else
3011           V = ConstantDataArray::getFP(Context, Elts);
3012       } else if (EltTy->isFloatTy()) {
3013         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3014         if (isa<VectorType>(CurTy))
3015           V = ConstantDataVector::getFP(Context, Elts);
3016         else
3017           V = ConstantDataArray::getFP(Context, Elts);
3018       } else if (EltTy->isDoubleTy()) {
3019         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3020         if (isa<VectorType>(CurTy))
3021           V = ConstantDataVector::getFP(Context, Elts);
3022         else
3023           V = ConstantDataArray::getFP(Context, Elts);
3024       } else {
3025         return error("Invalid type for value");
3026       }
3027       break;
3028     }
3029     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3030       if (Record.size() < 3)
3031         return error("Invalid record");
3032       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3033       if (Opc < 0) {
3034         V = UndefValue::get(CurTy);  // Unknown binop.
3035       } else {
3036         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3037         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3038         unsigned Flags = 0;
3039         if (Record.size() >= 4) {
3040           if (Opc == Instruction::Add ||
3041               Opc == Instruction::Sub ||
3042               Opc == Instruction::Mul ||
3043               Opc == Instruction::Shl) {
3044             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3045               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3046             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3047               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3048           } else if (Opc == Instruction::SDiv ||
3049                      Opc == Instruction::UDiv ||
3050                      Opc == Instruction::LShr ||
3051                      Opc == Instruction::AShr) {
3052             if (Record[3] & (1 << bitc::PEO_EXACT))
3053               Flags |= SDivOperator::IsExact;
3054           }
3055         }
3056         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3057       }
3058       break;
3059     }
3060     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3061       if (Record.size() < 3)
3062         return error("Invalid record");
3063       int Opc = getDecodedCastOpcode(Record[0]);
3064       if (Opc < 0) {
3065         V = UndefValue::get(CurTy);  // Unknown cast.
3066       } else {
3067         Type *OpTy = getTypeByID(Record[1]);
3068         if (!OpTy)
3069           return error("Invalid record");
3070         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3071         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3072         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3073       }
3074       break;
3075     }
3076     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3077     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3078       unsigned OpNum = 0;
3079       Type *PointeeType = nullptr;
3080       if (Record.size() % 2)
3081         PointeeType = getTypeByID(Record[OpNum++]);
3082       SmallVector<Constant*, 16> Elts;
3083       while (OpNum != Record.size()) {
3084         Type *ElTy = getTypeByID(Record[OpNum++]);
3085         if (!ElTy)
3086           return error("Invalid record");
3087         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3088       }
3089 
3090       if (PointeeType &&
3091           PointeeType !=
3092               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3093                   ->getElementType())
3094         return error("Explicit gep operator type does not match pointee type "
3095                      "of pointer operand");
3096 
3097       if (Elts.size() < 1)
3098         return error("Invalid gep with no operands");
3099 
3100       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3101       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3102                                          BitCode ==
3103                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3104       break;
3105     }
3106     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3107       if (Record.size() < 3)
3108         return error("Invalid record");
3109 
3110       Type *SelectorTy = Type::getInt1Ty(Context);
3111 
3112       // The selector might be an i1 or an <n x i1>
3113       // Get the type from the ValueList before getting a forward ref.
3114       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3115         if (Value *V = ValueList[Record[0]])
3116           if (SelectorTy != V->getType())
3117             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3118 
3119       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3120                                                               SelectorTy),
3121                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3122                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3123       break;
3124     }
3125     case bitc::CST_CODE_CE_EXTRACTELT
3126         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3127       if (Record.size() < 3)
3128         return error("Invalid record");
3129       VectorType *OpTy =
3130         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3131       if (!OpTy)
3132         return error("Invalid record");
3133       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3134       Constant *Op1 = nullptr;
3135       if (Record.size() == 4) {
3136         Type *IdxTy = getTypeByID(Record[2]);
3137         if (!IdxTy)
3138           return error("Invalid record");
3139         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3140       } else // TODO: Remove with llvm 4.0
3141         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3142       if (!Op1)
3143         return error("Invalid record");
3144       V = ConstantExpr::getExtractElement(Op0, Op1);
3145       break;
3146     }
3147     case bitc::CST_CODE_CE_INSERTELT
3148         : { // CE_INSERTELT: [opval, opval, opty, opval]
3149       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3150       if (Record.size() < 3 || !OpTy)
3151         return error("Invalid record");
3152       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3153       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3154                                                   OpTy->getElementType());
3155       Constant *Op2 = nullptr;
3156       if (Record.size() == 4) {
3157         Type *IdxTy = getTypeByID(Record[2]);
3158         if (!IdxTy)
3159           return error("Invalid record");
3160         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3161       } else // TODO: Remove with llvm 4.0
3162         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3163       if (!Op2)
3164         return error("Invalid record");
3165       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3166       break;
3167     }
3168     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3169       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3170       if (Record.size() < 3 || !OpTy)
3171         return error("Invalid record");
3172       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3173       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3174       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3175                                                  OpTy->getNumElements());
3176       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3177       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3178       break;
3179     }
3180     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3181       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3182       VectorType *OpTy =
3183         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3184       if (Record.size() < 4 || !RTy || !OpTy)
3185         return error("Invalid record");
3186       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3187       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3188       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3189                                                  RTy->getNumElements());
3190       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3191       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3192       break;
3193     }
3194     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3195       if (Record.size() < 4)
3196         return error("Invalid record");
3197       Type *OpTy = getTypeByID(Record[0]);
3198       if (!OpTy)
3199         return error("Invalid record");
3200       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3201       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3202 
3203       if (OpTy->isFPOrFPVectorTy())
3204         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3205       else
3206         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3207       break;
3208     }
3209     // This maintains backward compatibility, pre-asm dialect keywords.
3210     // FIXME: Remove with the 4.0 release.
3211     case bitc::CST_CODE_INLINEASM_OLD: {
3212       if (Record.size() < 2)
3213         return error("Invalid record");
3214       std::string AsmStr, ConstrStr;
3215       bool HasSideEffects = Record[0] & 1;
3216       bool IsAlignStack = Record[0] >> 1;
3217       unsigned AsmStrSize = Record[1];
3218       if (2+AsmStrSize >= Record.size())
3219         return error("Invalid record");
3220       unsigned ConstStrSize = Record[2+AsmStrSize];
3221       if (3+AsmStrSize+ConstStrSize > Record.size())
3222         return error("Invalid record");
3223 
3224       for (unsigned i = 0; i != AsmStrSize; ++i)
3225         AsmStr += (char)Record[2+i];
3226       for (unsigned i = 0; i != ConstStrSize; ++i)
3227         ConstrStr += (char)Record[3+AsmStrSize+i];
3228       PointerType *PTy = cast<PointerType>(CurTy);
3229       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3230                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3231       break;
3232     }
3233     // This version adds support for the asm dialect keywords (e.g.,
3234     // inteldialect).
3235     case bitc::CST_CODE_INLINEASM: {
3236       if (Record.size() < 2)
3237         return error("Invalid record");
3238       std::string AsmStr, ConstrStr;
3239       bool HasSideEffects = Record[0] & 1;
3240       bool IsAlignStack = (Record[0] >> 1) & 1;
3241       unsigned AsmDialect = Record[0] >> 2;
3242       unsigned AsmStrSize = Record[1];
3243       if (2+AsmStrSize >= Record.size())
3244         return error("Invalid record");
3245       unsigned ConstStrSize = Record[2+AsmStrSize];
3246       if (3+AsmStrSize+ConstStrSize > Record.size())
3247         return error("Invalid record");
3248 
3249       for (unsigned i = 0; i != AsmStrSize; ++i)
3250         AsmStr += (char)Record[2+i];
3251       for (unsigned i = 0; i != ConstStrSize; ++i)
3252         ConstrStr += (char)Record[3+AsmStrSize+i];
3253       PointerType *PTy = cast<PointerType>(CurTy);
3254       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3255                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3256                          InlineAsm::AsmDialect(AsmDialect));
3257       break;
3258     }
3259     case bitc::CST_CODE_BLOCKADDRESS:{
3260       if (Record.size() < 3)
3261         return error("Invalid record");
3262       Type *FnTy = getTypeByID(Record[0]);
3263       if (!FnTy)
3264         return error("Invalid record");
3265       Function *Fn =
3266         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3267       if (!Fn)
3268         return error("Invalid record");
3269 
3270       // If the function is already parsed we can insert the block address right
3271       // away.
3272       BasicBlock *BB;
3273       unsigned BBID = Record[2];
3274       if (!BBID)
3275         // Invalid reference to entry block.
3276         return error("Invalid ID");
3277       if (!Fn->empty()) {
3278         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3279         for (size_t I = 0, E = BBID; I != E; ++I) {
3280           if (BBI == BBE)
3281             return error("Invalid ID");
3282           ++BBI;
3283         }
3284         BB = &*BBI;
3285       } else {
3286         // Otherwise insert a placeholder and remember it so it can be inserted
3287         // when the function is parsed.
3288         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3289         if (FwdBBs.empty())
3290           BasicBlockFwdRefQueue.push_back(Fn);
3291         if (FwdBBs.size() < BBID + 1)
3292           FwdBBs.resize(BBID + 1);
3293         if (!FwdBBs[BBID])
3294           FwdBBs[BBID] = BasicBlock::Create(Context);
3295         BB = FwdBBs[BBID];
3296       }
3297       V = BlockAddress::get(Fn, BB);
3298       break;
3299     }
3300     }
3301 
3302     ValueList.assignValue(V, NextCstNo);
3303     ++NextCstNo;
3304   }
3305 }
3306 
3307 std::error_code BitcodeReader::parseUseLists() {
3308   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3309     return error("Invalid record");
3310 
3311   // Read all the records.
3312   SmallVector<uint64_t, 64> Record;
3313   while (1) {
3314     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3315 
3316     switch (Entry.Kind) {
3317     case BitstreamEntry::SubBlock: // Handled for us already.
3318     case BitstreamEntry::Error:
3319       return error("Malformed block");
3320     case BitstreamEntry::EndBlock:
3321       return std::error_code();
3322     case BitstreamEntry::Record:
3323       // The interesting case.
3324       break;
3325     }
3326 
3327     // Read a use list record.
3328     Record.clear();
3329     bool IsBB = false;
3330     switch (Stream.readRecord(Entry.ID, Record)) {
3331     default:  // Default behavior: unknown type.
3332       break;
3333     case bitc::USELIST_CODE_BB:
3334       IsBB = true;
3335       // fallthrough
3336     case bitc::USELIST_CODE_DEFAULT: {
3337       unsigned RecordLength = Record.size();
3338       if (RecordLength < 3)
3339         // Records should have at least an ID and two indexes.
3340         return error("Invalid record");
3341       unsigned ID = Record.back();
3342       Record.pop_back();
3343 
3344       Value *V;
3345       if (IsBB) {
3346         assert(ID < FunctionBBs.size() && "Basic block not found");
3347         V = FunctionBBs[ID];
3348       } else
3349         V = ValueList[ID];
3350       unsigned NumUses = 0;
3351       SmallDenseMap<const Use *, unsigned, 16> Order;
3352       for (const Use &U : V->materialized_uses()) {
3353         if (++NumUses > Record.size())
3354           break;
3355         Order[&U] = Record[NumUses - 1];
3356       }
3357       if (Order.size() != Record.size() || NumUses > Record.size())
3358         // Mismatches can happen if the functions are being materialized lazily
3359         // (out-of-order), or a value has been upgraded.
3360         break;
3361 
3362       V->sortUseList([&](const Use &L, const Use &R) {
3363         return Order.lookup(&L) < Order.lookup(&R);
3364       });
3365       break;
3366     }
3367     }
3368   }
3369 }
3370 
3371 /// When we see the block for metadata, remember where it is and then skip it.
3372 /// This lets us lazily deserialize the metadata.
3373 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3374   // Save the current stream state.
3375   uint64_t CurBit = Stream.GetCurrentBitNo();
3376   DeferredMetadataInfo.push_back(CurBit);
3377 
3378   // Skip over the block for now.
3379   if (Stream.SkipBlock())
3380     return error("Invalid record");
3381   return std::error_code();
3382 }
3383 
3384 std::error_code BitcodeReader::materializeMetadata() {
3385   for (uint64_t BitPos : DeferredMetadataInfo) {
3386     // Move the bit stream to the saved position.
3387     Stream.JumpToBit(BitPos);
3388     if (std::error_code EC = parseMetadata(true))
3389       return EC;
3390   }
3391   DeferredMetadataInfo.clear();
3392   return std::error_code();
3393 }
3394 
3395 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3396 
3397 /// When we see the block for a function body, remember where it is and then
3398 /// skip it.  This lets us lazily deserialize the functions.
3399 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3400   // Get the function we are talking about.
3401   if (FunctionsWithBodies.empty())
3402     return error("Insufficient function protos");
3403 
3404   Function *Fn = FunctionsWithBodies.back();
3405   FunctionsWithBodies.pop_back();
3406 
3407   // Save the current stream state.
3408   uint64_t CurBit = Stream.GetCurrentBitNo();
3409   assert(
3410       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3411       "Mismatch between VST and scanned function offsets");
3412   DeferredFunctionInfo[Fn] = CurBit;
3413 
3414   // Skip over the function block for now.
3415   if (Stream.SkipBlock())
3416     return error("Invalid record");
3417   return std::error_code();
3418 }
3419 
3420 std::error_code BitcodeReader::globalCleanup() {
3421   // Patch the initializers for globals and aliases up.
3422   resolveGlobalAndIndirectSymbolInits();
3423   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3424     return error("Malformed global initializer set");
3425 
3426   // Look for intrinsic functions which need to be upgraded at some point
3427   for (Function &F : *TheModule) {
3428     Function *NewFn;
3429     if (UpgradeIntrinsicFunction(&F, NewFn))
3430       UpgradedIntrinsics[&F] = NewFn;
3431     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3432       // Some types could be renamed during loading if several modules are
3433       // loaded in the same LLVMContext (LTO scenario). In this case we should
3434       // remangle intrinsics names as well.
3435       RemangledIntrinsics[&F] = Remangled.getValue();
3436   }
3437 
3438   // Look for global variables which need to be renamed.
3439   for (GlobalVariable &GV : TheModule->globals())
3440     UpgradeGlobalVariable(&GV);
3441 
3442   // Force deallocation of memory for these vectors to favor the client that
3443   // want lazy deserialization.
3444   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3445   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3446       IndirectSymbolInits);
3447   return std::error_code();
3448 }
3449 
3450 /// Support for lazy parsing of function bodies. This is required if we
3451 /// either have an old bitcode file without a VST forward declaration record,
3452 /// or if we have an anonymous function being materialized, since anonymous
3453 /// functions do not have a name and are therefore not in the VST.
3454 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3455   Stream.JumpToBit(NextUnreadBit);
3456 
3457   if (Stream.AtEndOfStream())
3458     return error("Could not find function in stream");
3459 
3460   if (!SeenFirstFunctionBody)
3461     return error("Trying to materialize functions before seeing function blocks");
3462 
3463   // An old bitcode file with the symbol table at the end would have
3464   // finished the parse greedily.
3465   assert(SeenValueSymbolTable);
3466 
3467   SmallVector<uint64_t, 64> Record;
3468 
3469   while (1) {
3470     BitstreamEntry Entry = Stream.advance();
3471     switch (Entry.Kind) {
3472     default:
3473       return error("Expect SubBlock");
3474     case BitstreamEntry::SubBlock:
3475       switch (Entry.ID) {
3476       default:
3477         return error("Expect function block");
3478       case bitc::FUNCTION_BLOCK_ID:
3479         if (std::error_code EC = rememberAndSkipFunctionBody())
3480           return EC;
3481         NextUnreadBit = Stream.GetCurrentBitNo();
3482         return std::error_code();
3483       }
3484     }
3485   }
3486 }
3487 
3488 std::error_code BitcodeReader::parseBitcodeVersion() {
3489   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3490     return error("Invalid record");
3491 
3492   // Read all the records.
3493   SmallVector<uint64_t, 64> Record;
3494   while (1) {
3495     BitstreamEntry Entry = Stream.advance();
3496 
3497     switch (Entry.Kind) {
3498     default:
3499     case BitstreamEntry::Error:
3500       return error("Malformed block");
3501     case BitstreamEntry::EndBlock:
3502       return std::error_code();
3503     case BitstreamEntry::Record:
3504       // The interesting case.
3505       break;
3506     }
3507 
3508     // Read a record.
3509     Record.clear();
3510     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3511     switch (BitCode) {
3512     default: // Default behavior: reject
3513       return error("Invalid value");
3514     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3515                                              // N]
3516       convertToString(Record, 0, ProducerIdentification);
3517       break;
3518     }
3519     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3520       unsigned epoch = (unsigned)Record[0];
3521       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3522         return error(
3523           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3524           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3525       }
3526     }
3527     }
3528   }
3529 }
3530 
3531 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3532                                            bool ShouldLazyLoadMetadata) {
3533   if (ResumeBit)
3534     Stream.JumpToBit(ResumeBit);
3535   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3536     return error("Invalid record");
3537 
3538   SmallVector<uint64_t, 64> Record;
3539   std::vector<std::string> SectionTable;
3540   std::vector<std::string> GCTable;
3541 
3542   // Read all the records for this module.
3543   while (1) {
3544     BitstreamEntry Entry = Stream.advance();
3545 
3546     switch (Entry.Kind) {
3547     case BitstreamEntry::Error:
3548       return error("Malformed block");
3549     case BitstreamEntry::EndBlock:
3550       return globalCleanup();
3551 
3552     case BitstreamEntry::SubBlock:
3553       switch (Entry.ID) {
3554       default:  // Skip unknown content.
3555         if (Stream.SkipBlock())
3556           return error("Invalid record");
3557         break;
3558       case bitc::BLOCKINFO_BLOCK_ID:
3559         if (Stream.ReadBlockInfoBlock())
3560           return error("Malformed block");
3561         break;
3562       case bitc::PARAMATTR_BLOCK_ID:
3563         if (std::error_code EC = parseAttributeBlock())
3564           return EC;
3565         break;
3566       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3567         if (std::error_code EC = parseAttributeGroupBlock())
3568           return EC;
3569         break;
3570       case bitc::TYPE_BLOCK_ID_NEW:
3571         if (std::error_code EC = parseTypeTable())
3572           return EC;
3573         break;
3574       case bitc::VALUE_SYMTAB_BLOCK_ID:
3575         if (!SeenValueSymbolTable) {
3576           // Either this is an old form VST without function index and an
3577           // associated VST forward declaration record (which would have caused
3578           // the VST to be jumped to and parsed before it was encountered
3579           // normally in the stream), or there were no function blocks to
3580           // trigger an earlier parsing of the VST.
3581           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3582           if (std::error_code EC = parseValueSymbolTable())
3583             return EC;
3584           SeenValueSymbolTable = true;
3585         } else {
3586           // We must have had a VST forward declaration record, which caused
3587           // the parser to jump to and parse the VST earlier.
3588           assert(VSTOffset > 0);
3589           if (Stream.SkipBlock())
3590             return error("Invalid record");
3591         }
3592         break;
3593       case bitc::CONSTANTS_BLOCK_ID:
3594         if (std::error_code EC = parseConstants())
3595           return EC;
3596         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3597           return EC;
3598         break;
3599       case bitc::METADATA_BLOCK_ID:
3600         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3601           if (std::error_code EC = rememberAndSkipMetadata())
3602             return EC;
3603           break;
3604         }
3605         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3606         if (std::error_code EC = parseMetadata(true))
3607           return EC;
3608         break;
3609       case bitc::METADATA_KIND_BLOCK_ID:
3610         if (std::error_code EC = parseMetadataKinds())
3611           return EC;
3612         break;
3613       case bitc::FUNCTION_BLOCK_ID:
3614         // If this is the first function body we've seen, reverse the
3615         // FunctionsWithBodies list.
3616         if (!SeenFirstFunctionBody) {
3617           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3618           if (std::error_code EC = globalCleanup())
3619             return EC;
3620           SeenFirstFunctionBody = true;
3621         }
3622 
3623         if (VSTOffset > 0) {
3624           // If we have a VST forward declaration record, make sure we
3625           // parse the VST now if we haven't already. It is needed to
3626           // set up the DeferredFunctionInfo vector for lazy reading.
3627           if (!SeenValueSymbolTable) {
3628             if (std::error_code EC =
3629                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3630               return EC;
3631             SeenValueSymbolTable = true;
3632             // Fall through so that we record the NextUnreadBit below.
3633             // This is necessary in case we have an anonymous function that
3634             // is later materialized. Since it will not have a VST entry we
3635             // need to fall back to the lazy parse to find its offset.
3636           } else {
3637             // If we have a VST forward declaration record, but have already
3638             // parsed the VST (just above, when the first function body was
3639             // encountered here), then we are resuming the parse after
3640             // materializing functions. The ResumeBit points to the
3641             // start of the last function block recorded in the
3642             // DeferredFunctionInfo map. Skip it.
3643             if (Stream.SkipBlock())
3644               return error("Invalid record");
3645             continue;
3646           }
3647         }
3648 
3649         // Support older bitcode files that did not have the function
3650         // index in the VST, nor a VST forward declaration record, as
3651         // well as anonymous functions that do not have VST entries.
3652         // Build the DeferredFunctionInfo vector on the fly.
3653         if (std::error_code EC = rememberAndSkipFunctionBody())
3654           return EC;
3655 
3656         // Suspend parsing when we reach the function bodies. Subsequent
3657         // materialization calls will resume it when necessary. If the bitcode
3658         // file is old, the symbol table will be at the end instead and will not
3659         // have been seen yet. In this case, just finish the parse now.
3660         if (SeenValueSymbolTable) {
3661           NextUnreadBit = Stream.GetCurrentBitNo();
3662           return std::error_code();
3663         }
3664         break;
3665       case bitc::USELIST_BLOCK_ID:
3666         if (std::error_code EC = parseUseLists())
3667           return EC;
3668         break;
3669       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3670         if (std::error_code EC = parseOperandBundleTags())
3671           return EC;
3672         break;
3673       }
3674       continue;
3675 
3676     case BitstreamEntry::Record:
3677       // The interesting case.
3678       break;
3679     }
3680 
3681     // Read a record.
3682     auto BitCode = Stream.readRecord(Entry.ID, Record);
3683     switch (BitCode) {
3684     default: break;  // Default behavior, ignore unknown content.
3685     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3686       if (Record.size() < 1)
3687         return error("Invalid record");
3688       // Only version #0 and #1 are supported so far.
3689       unsigned module_version = Record[0];
3690       switch (module_version) {
3691         default:
3692           return error("Invalid value");
3693         case 0:
3694           UseRelativeIDs = false;
3695           break;
3696         case 1:
3697           UseRelativeIDs = true;
3698           break;
3699       }
3700       break;
3701     }
3702     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3703       std::string S;
3704       if (convertToString(Record, 0, S))
3705         return error("Invalid record");
3706       TheModule->setTargetTriple(S);
3707       break;
3708     }
3709     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3710       std::string S;
3711       if (convertToString(Record, 0, S))
3712         return error("Invalid record");
3713       TheModule->setDataLayout(S);
3714       break;
3715     }
3716     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3717       std::string S;
3718       if (convertToString(Record, 0, S))
3719         return error("Invalid record");
3720       TheModule->setModuleInlineAsm(S);
3721       break;
3722     }
3723     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3724       // FIXME: Remove in 4.0.
3725       std::string S;
3726       if (convertToString(Record, 0, S))
3727         return error("Invalid record");
3728       // Ignore value.
3729       break;
3730     }
3731     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3732       std::string S;
3733       if (convertToString(Record, 0, S))
3734         return error("Invalid record");
3735       SectionTable.push_back(S);
3736       break;
3737     }
3738     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3739       std::string S;
3740       if (convertToString(Record, 0, S))
3741         return error("Invalid record");
3742       GCTable.push_back(S);
3743       break;
3744     }
3745     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3746       if (Record.size() < 2)
3747         return error("Invalid record");
3748       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3749       unsigned ComdatNameSize = Record[1];
3750       std::string ComdatName;
3751       ComdatName.reserve(ComdatNameSize);
3752       for (unsigned i = 0; i != ComdatNameSize; ++i)
3753         ComdatName += (char)Record[2 + i];
3754       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3755       C->setSelectionKind(SK);
3756       ComdatList.push_back(C);
3757       break;
3758     }
3759     // GLOBALVAR: [pointer type, isconst, initid,
3760     //             linkage, alignment, section, visibility, threadlocal,
3761     //             unnamed_addr, externally_initialized, dllstorageclass,
3762     //             comdat]
3763     case bitc::MODULE_CODE_GLOBALVAR: {
3764       if (Record.size() < 6)
3765         return error("Invalid record");
3766       Type *Ty = getTypeByID(Record[0]);
3767       if (!Ty)
3768         return error("Invalid record");
3769       bool isConstant = Record[1] & 1;
3770       bool explicitType = Record[1] & 2;
3771       unsigned AddressSpace;
3772       if (explicitType) {
3773         AddressSpace = Record[1] >> 2;
3774       } else {
3775         if (!Ty->isPointerTy())
3776           return error("Invalid type for value");
3777         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3778         Ty = cast<PointerType>(Ty)->getElementType();
3779       }
3780 
3781       uint64_t RawLinkage = Record[3];
3782       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3783       unsigned Alignment;
3784       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3785         return EC;
3786       std::string Section;
3787       if (Record[5]) {
3788         if (Record[5]-1 >= SectionTable.size())
3789           return error("Invalid ID");
3790         Section = SectionTable[Record[5]-1];
3791       }
3792       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3793       // Local linkage must have default visibility.
3794       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3795         // FIXME: Change to an error if non-default in 4.0.
3796         Visibility = getDecodedVisibility(Record[6]);
3797 
3798       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3799       if (Record.size() > 7)
3800         TLM = getDecodedThreadLocalMode(Record[7]);
3801 
3802       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3803       if (Record.size() > 8)
3804         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3805 
3806       bool ExternallyInitialized = false;
3807       if (Record.size() > 9)
3808         ExternallyInitialized = Record[9];
3809 
3810       GlobalVariable *NewGV =
3811         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3812                            TLM, AddressSpace, ExternallyInitialized);
3813       NewGV->setAlignment(Alignment);
3814       if (!Section.empty())
3815         NewGV->setSection(Section);
3816       NewGV->setVisibility(Visibility);
3817       NewGV->setUnnamedAddr(UnnamedAddr);
3818 
3819       if (Record.size() > 10)
3820         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3821       else
3822         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3823 
3824       ValueList.push_back(NewGV);
3825 
3826       // Remember which value to use for the global initializer.
3827       if (unsigned InitID = Record[2])
3828         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3829 
3830       if (Record.size() > 11) {
3831         if (unsigned ComdatID = Record[11]) {
3832           if (ComdatID > ComdatList.size())
3833             return error("Invalid global variable comdat ID");
3834           NewGV->setComdat(ComdatList[ComdatID - 1]);
3835         }
3836       } else if (hasImplicitComdat(RawLinkage)) {
3837         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3838       }
3839 
3840       break;
3841     }
3842     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3843     //             alignment, section, visibility, gc, unnamed_addr,
3844     //             prologuedata, dllstorageclass, comdat, prefixdata]
3845     case bitc::MODULE_CODE_FUNCTION: {
3846       if (Record.size() < 8)
3847         return error("Invalid record");
3848       Type *Ty = getTypeByID(Record[0]);
3849       if (!Ty)
3850         return error("Invalid record");
3851       if (auto *PTy = dyn_cast<PointerType>(Ty))
3852         Ty = PTy->getElementType();
3853       auto *FTy = dyn_cast<FunctionType>(Ty);
3854       if (!FTy)
3855         return error("Invalid type for value");
3856       auto CC = static_cast<CallingConv::ID>(Record[1]);
3857       if (CC & ~CallingConv::MaxID)
3858         return error("Invalid calling convention ID");
3859 
3860       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3861                                         "", TheModule);
3862 
3863       Func->setCallingConv(CC);
3864       bool isProto = Record[2];
3865       uint64_t RawLinkage = Record[3];
3866       Func->setLinkage(getDecodedLinkage(RawLinkage));
3867       Func->setAttributes(getAttributes(Record[4]));
3868 
3869       unsigned Alignment;
3870       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3871         return EC;
3872       Func->setAlignment(Alignment);
3873       if (Record[6]) {
3874         if (Record[6]-1 >= SectionTable.size())
3875           return error("Invalid ID");
3876         Func->setSection(SectionTable[Record[6]-1]);
3877       }
3878       // Local linkage must have default visibility.
3879       if (!Func->hasLocalLinkage())
3880         // FIXME: Change to an error if non-default in 4.0.
3881         Func->setVisibility(getDecodedVisibility(Record[7]));
3882       if (Record.size() > 8 && Record[8]) {
3883         if (Record[8]-1 >= GCTable.size())
3884           return error("Invalid ID");
3885         Func->setGC(GCTable[Record[8] - 1]);
3886       }
3887       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3888       if (Record.size() > 9)
3889         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3890       Func->setUnnamedAddr(UnnamedAddr);
3891       if (Record.size() > 10 && Record[10] != 0)
3892         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3893 
3894       if (Record.size() > 11)
3895         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3896       else
3897         upgradeDLLImportExportLinkage(Func, RawLinkage);
3898 
3899       if (Record.size() > 12) {
3900         if (unsigned ComdatID = Record[12]) {
3901           if (ComdatID > ComdatList.size())
3902             return error("Invalid function comdat ID");
3903           Func->setComdat(ComdatList[ComdatID - 1]);
3904         }
3905       } else if (hasImplicitComdat(RawLinkage)) {
3906         Func->setComdat(reinterpret_cast<Comdat *>(1));
3907       }
3908 
3909       if (Record.size() > 13 && Record[13] != 0)
3910         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3911 
3912       if (Record.size() > 14 && Record[14] != 0)
3913         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3914 
3915       ValueList.push_back(Func);
3916 
3917       // If this is a function with a body, remember the prototype we are
3918       // creating now, so that we can match up the body with them later.
3919       if (!isProto) {
3920         Func->setIsMaterializable(true);
3921         FunctionsWithBodies.push_back(Func);
3922         DeferredFunctionInfo[Func] = 0;
3923       }
3924       break;
3925     }
3926     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3927     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3928     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3929     case bitc::MODULE_CODE_IFUNC:
3930     case bitc::MODULE_CODE_ALIAS:
3931     case bitc::MODULE_CODE_ALIAS_OLD: {
3932       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3933       if (Record.size() < (3 + (unsigned)NewRecord))
3934         return error("Invalid record");
3935       unsigned OpNum = 0;
3936       Type *Ty = getTypeByID(Record[OpNum++]);
3937       if (!Ty)
3938         return error("Invalid record");
3939 
3940       unsigned AddrSpace;
3941       if (!NewRecord) {
3942         auto *PTy = dyn_cast<PointerType>(Ty);
3943         if (!PTy)
3944           return error("Invalid type for value");
3945         Ty = PTy->getElementType();
3946         AddrSpace = PTy->getAddressSpace();
3947       } else {
3948         AddrSpace = Record[OpNum++];
3949       }
3950 
3951       auto Val = Record[OpNum++];
3952       auto Linkage = Record[OpNum++];
3953       GlobalIndirectSymbol *NewGA;
3954       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3955           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3956         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3957                                     "", TheModule);
3958       else
3959         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3960                                     "", nullptr, TheModule);
3961       // Old bitcode files didn't have visibility field.
3962       // Local linkage must have default visibility.
3963       if (OpNum != Record.size()) {
3964         auto VisInd = OpNum++;
3965         if (!NewGA->hasLocalLinkage())
3966           // FIXME: Change to an error if non-default in 4.0.
3967           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3968       }
3969       if (OpNum != Record.size())
3970         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3971       else
3972         upgradeDLLImportExportLinkage(NewGA, Linkage);
3973       if (OpNum != Record.size())
3974         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3975       if (OpNum != Record.size())
3976         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3977       ValueList.push_back(NewGA);
3978       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3979       break;
3980     }
3981     /// MODULE_CODE_PURGEVALS: [numvals]
3982     case bitc::MODULE_CODE_PURGEVALS:
3983       // Trim down the value list to the specified size.
3984       if (Record.size() < 1 || Record[0] > ValueList.size())
3985         return error("Invalid record");
3986       ValueList.shrinkTo(Record[0]);
3987       break;
3988     /// MODULE_CODE_VSTOFFSET: [offset]
3989     case bitc::MODULE_CODE_VSTOFFSET:
3990       if (Record.size() < 1)
3991         return error("Invalid record");
3992       VSTOffset = Record[0];
3993       break;
3994     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3995     case bitc::MODULE_CODE_SOURCE_FILENAME:
3996       SmallString<128> ValueName;
3997       if (convertToString(Record, 0, ValueName))
3998         return error("Invalid record");
3999       TheModule->setSourceFileName(ValueName);
4000       break;
4001     }
4002     Record.clear();
4003   }
4004 }
4005 
4006 /// Helper to read the header common to all bitcode files.
4007 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4008   // Sniff for the signature.
4009   if (Stream.Read(8) != 'B' ||
4010       Stream.Read(8) != 'C' ||
4011       Stream.Read(4) != 0x0 ||
4012       Stream.Read(4) != 0xC ||
4013       Stream.Read(4) != 0xE ||
4014       Stream.Read(4) != 0xD)
4015     return false;
4016   return true;
4017 }
4018 
4019 std::error_code
4020 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4021                                 Module *M, bool ShouldLazyLoadMetadata) {
4022   TheModule = M;
4023 
4024   if (std::error_code EC = initStream(std::move(Streamer)))
4025     return EC;
4026 
4027   // Sniff for the signature.
4028   if (!hasValidBitcodeHeader(Stream))
4029     return error("Invalid bitcode signature");
4030 
4031   // We expect a number of well-defined blocks, though we don't necessarily
4032   // need to understand them all.
4033   while (1) {
4034     if (Stream.AtEndOfStream()) {
4035       // We didn't really read a proper Module.
4036       return error("Malformed IR file");
4037     }
4038 
4039     BitstreamEntry Entry =
4040       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4041 
4042     if (Entry.Kind != BitstreamEntry::SubBlock)
4043       return error("Malformed block");
4044 
4045     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4046       parseBitcodeVersion();
4047       continue;
4048     }
4049 
4050     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4051       return parseModule(0, ShouldLazyLoadMetadata);
4052 
4053     if (Stream.SkipBlock())
4054       return error("Invalid record");
4055   }
4056 }
4057 
4058 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4059   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4060     return error("Invalid record");
4061 
4062   SmallVector<uint64_t, 64> Record;
4063 
4064   std::string Triple;
4065   // Read all the records for this module.
4066   while (1) {
4067     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4068 
4069     switch (Entry.Kind) {
4070     case BitstreamEntry::SubBlock: // Handled for us already.
4071     case BitstreamEntry::Error:
4072       return error("Malformed block");
4073     case BitstreamEntry::EndBlock:
4074       return Triple;
4075     case BitstreamEntry::Record:
4076       // The interesting case.
4077       break;
4078     }
4079 
4080     // Read a record.
4081     switch (Stream.readRecord(Entry.ID, Record)) {
4082     default: break;  // Default behavior, ignore unknown content.
4083     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4084       std::string S;
4085       if (convertToString(Record, 0, S))
4086         return error("Invalid record");
4087       Triple = S;
4088       break;
4089     }
4090     }
4091     Record.clear();
4092   }
4093   llvm_unreachable("Exit infinite loop");
4094 }
4095 
4096 ErrorOr<std::string> BitcodeReader::parseTriple() {
4097   if (std::error_code EC = initStream(nullptr))
4098     return EC;
4099 
4100   // Sniff for the signature.
4101   if (!hasValidBitcodeHeader(Stream))
4102     return error("Invalid bitcode signature");
4103 
4104   // We expect a number of well-defined blocks, though we don't necessarily
4105   // need to understand them all.
4106   while (1) {
4107     BitstreamEntry Entry = Stream.advance();
4108 
4109     switch (Entry.Kind) {
4110     case BitstreamEntry::Error:
4111       return error("Malformed block");
4112     case BitstreamEntry::EndBlock:
4113       return std::error_code();
4114 
4115     case BitstreamEntry::SubBlock:
4116       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4117         return parseModuleTriple();
4118 
4119       // Ignore other sub-blocks.
4120       if (Stream.SkipBlock())
4121         return error("Malformed block");
4122       continue;
4123 
4124     case BitstreamEntry::Record:
4125       Stream.skipRecord(Entry.ID);
4126       continue;
4127     }
4128   }
4129 }
4130 
4131 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4132   if (std::error_code EC = initStream(nullptr))
4133     return EC;
4134 
4135   // Sniff for the signature.
4136   if (!hasValidBitcodeHeader(Stream))
4137     return error("Invalid bitcode signature");
4138 
4139   // We expect a number of well-defined blocks, though we don't necessarily
4140   // need to understand them all.
4141   while (1) {
4142     BitstreamEntry Entry = Stream.advance();
4143     switch (Entry.Kind) {
4144     case BitstreamEntry::Error:
4145       return error("Malformed block");
4146     case BitstreamEntry::EndBlock:
4147       return std::error_code();
4148 
4149     case BitstreamEntry::SubBlock:
4150       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4151         if (std::error_code EC = parseBitcodeVersion())
4152           return EC;
4153         return ProducerIdentification;
4154       }
4155       // Ignore other sub-blocks.
4156       if (Stream.SkipBlock())
4157         return error("Malformed block");
4158       continue;
4159     case BitstreamEntry::Record:
4160       Stream.skipRecord(Entry.ID);
4161       continue;
4162     }
4163   }
4164 }
4165 
4166 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4167     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4168   assert(Record.size() % 2 == 0);
4169   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4170     auto K = MDKindMap.find(Record[I]);
4171     if (K == MDKindMap.end())
4172       return error("Invalid ID");
4173     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4174     if (!MD)
4175       return error("Invalid metadata attachment");
4176     GO.addMetadata(K->second, *MD);
4177   }
4178   return std::error_code();
4179 }
4180 
4181 /// Parse metadata attachments.
4182 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4183   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4184     return error("Invalid record");
4185 
4186   SmallVector<uint64_t, 64> Record;
4187   while (1) {
4188     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4189 
4190     switch (Entry.Kind) {
4191     case BitstreamEntry::SubBlock: // Handled for us already.
4192     case BitstreamEntry::Error:
4193       return error("Malformed block");
4194     case BitstreamEntry::EndBlock:
4195       return std::error_code();
4196     case BitstreamEntry::Record:
4197       // The interesting case.
4198       break;
4199     }
4200 
4201     // Read a metadata attachment record.
4202     Record.clear();
4203     switch (Stream.readRecord(Entry.ID, Record)) {
4204     default:  // Default behavior: ignore.
4205       break;
4206     case bitc::METADATA_ATTACHMENT: {
4207       unsigned RecordLength = Record.size();
4208       if (Record.empty())
4209         return error("Invalid record");
4210       if (RecordLength % 2 == 0) {
4211         // A function attachment.
4212         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4213           return EC;
4214         continue;
4215       }
4216 
4217       // An instruction attachment.
4218       Instruction *Inst = InstructionList[Record[0]];
4219       for (unsigned i = 1; i != RecordLength; i = i+2) {
4220         unsigned Kind = Record[i];
4221         DenseMap<unsigned, unsigned>::iterator I =
4222           MDKindMap.find(Kind);
4223         if (I == MDKindMap.end())
4224           return error("Invalid ID");
4225         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4226         if (isa<LocalAsMetadata>(Node))
4227           // Drop the attachment.  This used to be legal, but there's no
4228           // upgrade path.
4229           break;
4230         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4231         if (!MD)
4232           return error("Invalid metadata attachment");
4233 
4234         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4235           MD = upgradeInstructionLoopAttachment(*MD);
4236 
4237         Inst->setMetadata(I->second, MD);
4238         if (I->second == LLVMContext::MD_tbaa) {
4239           InstsWithTBAATag.push_back(Inst);
4240           continue;
4241         }
4242       }
4243       break;
4244     }
4245     }
4246   }
4247 }
4248 
4249 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4250   LLVMContext &Context = PtrType->getContext();
4251   if (!isa<PointerType>(PtrType))
4252     return error(Context, "Load/Store operand is not a pointer type");
4253   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4254 
4255   if (ValType && ValType != ElemType)
4256     return error(Context, "Explicit load/store type does not match pointee "
4257                           "type of pointer operand");
4258   if (!PointerType::isLoadableOrStorableType(ElemType))
4259     return error(Context, "Cannot load/store from pointer");
4260   return std::error_code();
4261 }
4262 
4263 /// Lazily parse the specified function body block.
4264 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4265   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4266     return error("Invalid record");
4267 
4268   // Unexpected unresolved metadata when parsing function.
4269   if (MetadataList.hasFwdRefs())
4270     return error("Invalid function metadata: incoming forward references");
4271 
4272   InstructionList.clear();
4273   unsigned ModuleValueListSize = ValueList.size();
4274   unsigned ModuleMetadataListSize = MetadataList.size();
4275 
4276   // Add all the function arguments to the value table.
4277   for (Argument &I : F->args())
4278     ValueList.push_back(&I);
4279 
4280   unsigned NextValueNo = ValueList.size();
4281   BasicBlock *CurBB = nullptr;
4282   unsigned CurBBNo = 0;
4283 
4284   DebugLoc LastLoc;
4285   auto getLastInstruction = [&]() -> Instruction * {
4286     if (CurBB && !CurBB->empty())
4287       return &CurBB->back();
4288     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4289              !FunctionBBs[CurBBNo - 1]->empty())
4290       return &FunctionBBs[CurBBNo - 1]->back();
4291     return nullptr;
4292   };
4293 
4294   std::vector<OperandBundleDef> OperandBundles;
4295 
4296   // Read all the records.
4297   SmallVector<uint64_t, 64> Record;
4298   while (1) {
4299     BitstreamEntry Entry = Stream.advance();
4300 
4301     switch (Entry.Kind) {
4302     case BitstreamEntry::Error:
4303       return error("Malformed block");
4304     case BitstreamEntry::EndBlock:
4305       goto OutOfRecordLoop;
4306 
4307     case BitstreamEntry::SubBlock:
4308       switch (Entry.ID) {
4309       default:  // Skip unknown content.
4310         if (Stream.SkipBlock())
4311           return error("Invalid record");
4312         break;
4313       case bitc::CONSTANTS_BLOCK_ID:
4314         if (std::error_code EC = parseConstants())
4315           return EC;
4316         NextValueNo = ValueList.size();
4317         break;
4318       case bitc::VALUE_SYMTAB_BLOCK_ID:
4319         if (std::error_code EC = parseValueSymbolTable())
4320           return EC;
4321         break;
4322       case bitc::METADATA_ATTACHMENT_ID:
4323         if (std::error_code EC = parseMetadataAttachment(*F))
4324           return EC;
4325         break;
4326       case bitc::METADATA_BLOCK_ID:
4327         if (std::error_code EC = parseMetadata())
4328           return EC;
4329         break;
4330       case bitc::USELIST_BLOCK_ID:
4331         if (std::error_code EC = parseUseLists())
4332           return EC;
4333         break;
4334       }
4335       continue;
4336 
4337     case BitstreamEntry::Record:
4338       // The interesting case.
4339       break;
4340     }
4341 
4342     // Read a record.
4343     Record.clear();
4344     Instruction *I = nullptr;
4345     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4346     switch (BitCode) {
4347     default: // Default behavior: reject
4348       return error("Invalid value");
4349     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4350       if (Record.size() < 1 || Record[0] == 0)
4351         return error("Invalid record");
4352       // Create all the basic blocks for the function.
4353       FunctionBBs.resize(Record[0]);
4354 
4355       // See if anything took the address of blocks in this function.
4356       auto BBFRI = BasicBlockFwdRefs.find(F);
4357       if (BBFRI == BasicBlockFwdRefs.end()) {
4358         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4359           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4360       } else {
4361         auto &BBRefs = BBFRI->second;
4362         // Check for invalid basic block references.
4363         if (BBRefs.size() > FunctionBBs.size())
4364           return error("Invalid ID");
4365         assert(!BBRefs.empty() && "Unexpected empty array");
4366         assert(!BBRefs.front() && "Invalid reference to entry block");
4367         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4368              ++I)
4369           if (I < RE && BBRefs[I]) {
4370             BBRefs[I]->insertInto(F);
4371             FunctionBBs[I] = BBRefs[I];
4372           } else {
4373             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4374           }
4375 
4376         // Erase from the table.
4377         BasicBlockFwdRefs.erase(BBFRI);
4378       }
4379 
4380       CurBB = FunctionBBs[0];
4381       continue;
4382     }
4383 
4384     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4385       // This record indicates that the last instruction is at the same
4386       // location as the previous instruction with a location.
4387       I = getLastInstruction();
4388 
4389       if (!I)
4390         return error("Invalid record");
4391       I->setDebugLoc(LastLoc);
4392       I = nullptr;
4393       continue;
4394 
4395     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4396       I = getLastInstruction();
4397       if (!I || Record.size() < 4)
4398         return error("Invalid record");
4399 
4400       unsigned Line = Record[0], Col = Record[1];
4401       unsigned ScopeID = Record[2], IAID = Record[3];
4402 
4403       MDNode *Scope = nullptr, *IA = nullptr;
4404       if (ScopeID) {
4405         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4406         if (!Scope)
4407           return error("Invalid record");
4408       }
4409       if (IAID) {
4410         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4411         if (!IA)
4412           return error("Invalid record");
4413       }
4414       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4415       I->setDebugLoc(LastLoc);
4416       I = nullptr;
4417       continue;
4418     }
4419 
4420     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4421       unsigned OpNum = 0;
4422       Value *LHS, *RHS;
4423       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4424           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4425           OpNum+1 > Record.size())
4426         return error("Invalid record");
4427 
4428       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4429       if (Opc == -1)
4430         return error("Invalid record");
4431       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4432       InstructionList.push_back(I);
4433       if (OpNum < Record.size()) {
4434         if (Opc == Instruction::Add ||
4435             Opc == Instruction::Sub ||
4436             Opc == Instruction::Mul ||
4437             Opc == Instruction::Shl) {
4438           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4439             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4440           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4441             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4442         } else if (Opc == Instruction::SDiv ||
4443                    Opc == Instruction::UDiv ||
4444                    Opc == Instruction::LShr ||
4445                    Opc == Instruction::AShr) {
4446           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4447             cast<BinaryOperator>(I)->setIsExact(true);
4448         } else if (isa<FPMathOperator>(I)) {
4449           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4450           if (FMF.any())
4451             I->setFastMathFlags(FMF);
4452         }
4453 
4454       }
4455       break;
4456     }
4457     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4458       unsigned OpNum = 0;
4459       Value *Op;
4460       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4461           OpNum+2 != Record.size())
4462         return error("Invalid record");
4463 
4464       Type *ResTy = getTypeByID(Record[OpNum]);
4465       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4466       if (Opc == -1 || !ResTy)
4467         return error("Invalid record");
4468       Instruction *Temp = nullptr;
4469       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4470         if (Temp) {
4471           InstructionList.push_back(Temp);
4472           CurBB->getInstList().push_back(Temp);
4473         }
4474       } else {
4475         auto CastOp = (Instruction::CastOps)Opc;
4476         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4477           return error("Invalid cast");
4478         I = CastInst::Create(CastOp, Op, ResTy);
4479       }
4480       InstructionList.push_back(I);
4481       break;
4482     }
4483     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4484     case bitc::FUNC_CODE_INST_GEP_OLD:
4485     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4486       unsigned OpNum = 0;
4487 
4488       Type *Ty;
4489       bool InBounds;
4490 
4491       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4492         InBounds = Record[OpNum++];
4493         Ty = getTypeByID(Record[OpNum++]);
4494       } else {
4495         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4496         Ty = nullptr;
4497       }
4498 
4499       Value *BasePtr;
4500       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4501         return error("Invalid record");
4502 
4503       if (!Ty)
4504         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4505                  ->getElementType();
4506       else if (Ty !=
4507                cast<SequentialType>(BasePtr->getType()->getScalarType())
4508                    ->getElementType())
4509         return error(
4510             "Explicit gep type does not match pointee type of pointer operand");
4511 
4512       SmallVector<Value*, 16> GEPIdx;
4513       while (OpNum != Record.size()) {
4514         Value *Op;
4515         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4516           return error("Invalid record");
4517         GEPIdx.push_back(Op);
4518       }
4519 
4520       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4521 
4522       InstructionList.push_back(I);
4523       if (InBounds)
4524         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4525       break;
4526     }
4527 
4528     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4529                                        // EXTRACTVAL: [opty, opval, n x indices]
4530       unsigned OpNum = 0;
4531       Value *Agg;
4532       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4533         return error("Invalid record");
4534 
4535       unsigned RecSize = Record.size();
4536       if (OpNum == RecSize)
4537         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4538 
4539       SmallVector<unsigned, 4> EXTRACTVALIdx;
4540       Type *CurTy = Agg->getType();
4541       for (; OpNum != RecSize; ++OpNum) {
4542         bool IsArray = CurTy->isArrayTy();
4543         bool IsStruct = CurTy->isStructTy();
4544         uint64_t Index = Record[OpNum];
4545 
4546         if (!IsStruct && !IsArray)
4547           return error("EXTRACTVAL: Invalid type");
4548         if ((unsigned)Index != Index)
4549           return error("Invalid value");
4550         if (IsStruct && Index >= CurTy->subtypes().size())
4551           return error("EXTRACTVAL: Invalid struct index");
4552         if (IsArray && Index >= CurTy->getArrayNumElements())
4553           return error("EXTRACTVAL: Invalid array index");
4554         EXTRACTVALIdx.push_back((unsigned)Index);
4555 
4556         if (IsStruct)
4557           CurTy = CurTy->subtypes()[Index];
4558         else
4559           CurTy = CurTy->subtypes()[0];
4560       }
4561 
4562       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4563       InstructionList.push_back(I);
4564       break;
4565     }
4566 
4567     case bitc::FUNC_CODE_INST_INSERTVAL: {
4568                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4569       unsigned OpNum = 0;
4570       Value *Agg;
4571       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4572         return error("Invalid record");
4573       Value *Val;
4574       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4575         return error("Invalid record");
4576 
4577       unsigned RecSize = Record.size();
4578       if (OpNum == RecSize)
4579         return error("INSERTVAL: Invalid instruction with 0 indices");
4580 
4581       SmallVector<unsigned, 4> INSERTVALIdx;
4582       Type *CurTy = Agg->getType();
4583       for (; OpNum != RecSize; ++OpNum) {
4584         bool IsArray = CurTy->isArrayTy();
4585         bool IsStruct = CurTy->isStructTy();
4586         uint64_t Index = Record[OpNum];
4587 
4588         if (!IsStruct && !IsArray)
4589           return error("INSERTVAL: Invalid type");
4590         if ((unsigned)Index != Index)
4591           return error("Invalid value");
4592         if (IsStruct && Index >= CurTy->subtypes().size())
4593           return error("INSERTVAL: Invalid struct index");
4594         if (IsArray && Index >= CurTy->getArrayNumElements())
4595           return error("INSERTVAL: Invalid array index");
4596 
4597         INSERTVALIdx.push_back((unsigned)Index);
4598         if (IsStruct)
4599           CurTy = CurTy->subtypes()[Index];
4600         else
4601           CurTy = CurTy->subtypes()[0];
4602       }
4603 
4604       if (CurTy != Val->getType())
4605         return error("Inserted value type doesn't match aggregate type");
4606 
4607       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4608       InstructionList.push_back(I);
4609       break;
4610     }
4611 
4612     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4613       // obsolete form of select
4614       // handles select i1 ... in old bitcode
4615       unsigned OpNum = 0;
4616       Value *TrueVal, *FalseVal, *Cond;
4617       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4618           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4619           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4620         return error("Invalid record");
4621 
4622       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4623       InstructionList.push_back(I);
4624       break;
4625     }
4626 
4627     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4628       // new form of select
4629       // handles select i1 or select [N x i1]
4630       unsigned OpNum = 0;
4631       Value *TrueVal, *FalseVal, *Cond;
4632       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4633           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4634           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4635         return error("Invalid record");
4636 
4637       // select condition can be either i1 or [N x i1]
4638       if (VectorType* vector_type =
4639           dyn_cast<VectorType>(Cond->getType())) {
4640         // expect <n x i1>
4641         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4642           return error("Invalid type for value");
4643       } else {
4644         // expect i1
4645         if (Cond->getType() != Type::getInt1Ty(Context))
4646           return error("Invalid type for value");
4647       }
4648 
4649       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4650       InstructionList.push_back(I);
4651       break;
4652     }
4653 
4654     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4655       unsigned OpNum = 0;
4656       Value *Vec, *Idx;
4657       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4658           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4659         return error("Invalid record");
4660       if (!Vec->getType()->isVectorTy())
4661         return error("Invalid type for value");
4662       I = ExtractElementInst::Create(Vec, Idx);
4663       InstructionList.push_back(I);
4664       break;
4665     }
4666 
4667     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4668       unsigned OpNum = 0;
4669       Value *Vec, *Elt, *Idx;
4670       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4671         return error("Invalid record");
4672       if (!Vec->getType()->isVectorTy())
4673         return error("Invalid type for value");
4674       if (popValue(Record, OpNum, NextValueNo,
4675                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4676           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4677         return error("Invalid record");
4678       I = InsertElementInst::Create(Vec, Elt, Idx);
4679       InstructionList.push_back(I);
4680       break;
4681     }
4682 
4683     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4684       unsigned OpNum = 0;
4685       Value *Vec1, *Vec2, *Mask;
4686       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4687           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4688         return error("Invalid record");
4689 
4690       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4691         return error("Invalid record");
4692       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4693         return error("Invalid type for value");
4694       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4695       InstructionList.push_back(I);
4696       break;
4697     }
4698 
4699     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4700       // Old form of ICmp/FCmp returning bool
4701       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4702       // both legal on vectors but had different behaviour.
4703     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4704       // FCmp/ICmp returning bool or vector of bool
4705 
4706       unsigned OpNum = 0;
4707       Value *LHS, *RHS;
4708       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4709           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4710         return error("Invalid record");
4711 
4712       unsigned PredVal = Record[OpNum];
4713       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4714       FastMathFlags FMF;
4715       if (IsFP && Record.size() > OpNum+1)
4716         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4717 
4718       if (OpNum+1 != Record.size())
4719         return error("Invalid record");
4720 
4721       if (LHS->getType()->isFPOrFPVectorTy())
4722         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4723       else
4724         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4725 
4726       if (FMF.any())
4727         I->setFastMathFlags(FMF);
4728       InstructionList.push_back(I);
4729       break;
4730     }
4731 
4732     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4733       {
4734         unsigned Size = Record.size();
4735         if (Size == 0) {
4736           I = ReturnInst::Create(Context);
4737           InstructionList.push_back(I);
4738           break;
4739         }
4740 
4741         unsigned OpNum = 0;
4742         Value *Op = nullptr;
4743         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4744           return error("Invalid record");
4745         if (OpNum != Record.size())
4746           return error("Invalid record");
4747 
4748         I = ReturnInst::Create(Context, Op);
4749         InstructionList.push_back(I);
4750         break;
4751       }
4752     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4753       if (Record.size() != 1 && Record.size() != 3)
4754         return error("Invalid record");
4755       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4756       if (!TrueDest)
4757         return error("Invalid record");
4758 
4759       if (Record.size() == 1) {
4760         I = BranchInst::Create(TrueDest);
4761         InstructionList.push_back(I);
4762       }
4763       else {
4764         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4765         Value *Cond = getValue(Record, 2, NextValueNo,
4766                                Type::getInt1Ty(Context));
4767         if (!FalseDest || !Cond)
4768           return error("Invalid record");
4769         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4770         InstructionList.push_back(I);
4771       }
4772       break;
4773     }
4774     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4775       if (Record.size() != 1 && Record.size() != 2)
4776         return error("Invalid record");
4777       unsigned Idx = 0;
4778       Value *CleanupPad =
4779           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4780       if (!CleanupPad)
4781         return error("Invalid record");
4782       BasicBlock *UnwindDest = nullptr;
4783       if (Record.size() == 2) {
4784         UnwindDest = getBasicBlock(Record[Idx++]);
4785         if (!UnwindDest)
4786           return error("Invalid record");
4787       }
4788 
4789       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4790       InstructionList.push_back(I);
4791       break;
4792     }
4793     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4794       if (Record.size() != 2)
4795         return error("Invalid record");
4796       unsigned Idx = 0;
4797       Value *CatchPad =
4798           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4799       if (!CatchPad)
4800         return error("Invalid record");
4801       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4802       if (!BB)
4803         return error("Invalid record");
4804 
4805       I = CatchReturnInst::Create(CatchPad, BB);
4806       InstructionList.push_back(I);
4807       break;
4808     }
4809     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4810       // We must have, at minimum, the outer scope and the number of arguments.
4811       if (Record.size() < 2)
4812         return error("Invalid record");
4813 
4814       unsigned Idx = 0;
4815 
4816       Value *ParentPad =
4817           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4818 
4819       unsigned NumHandlers = Record[Idx++];
4820 
4821       SmallVector<BasicBlock *, 2> Handlers;
4822       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4823         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4824         if (!BB)
4825           return error("Invalid record");
4826         Handlers.push_back(BB);
4827       }
4828 
4829       BasicBlock *UnwindDest = nullptr;
4830       if (Idx + 1 == Record.size()) {
4831         UnwindDest = getBasicBlock(Record[Idx++]);
4832         if (!UnwindDest)
4833           return error("Invalid record");
4834       }
4835 
4836       if (Record.size() != Idx)
4837         return error("Invalid record");
4838 
4839       auto *CatchSwitch =
4840           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4841       for (BasicBlock *Handler : Handlers)
4842         CatchSwitch->addHandler(Handler);
4843       I = CatchSwitch;
4844       InstructionList.push_back(I);
4845       break;
4846     }
4847     case bitc::FUNC_CODE_INST_CATCHPAD:
4848     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4849       // We must have, at minimum, the outer scope and the number of arguments.
4850       if (Record.size() < 2)
4851         return error("Invalid record");
4852 
4853       unsigned Idx = 0;
4854 
4855       Value *ParentPad =
4856           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4857 
4858       unsigned NumArgOperands = Record[Idx++];
4859 
4860       SmallVector<Value *, 2> Args;
4861       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4862         Value *Val;
4863         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4864           return error("Invalid record");
4865         Args.push_back(Val);
4866       }
4867 
4868       if (Record.size() != Idx)
4869         return error("Invalid record");
4870 
4871       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4872         I = CleanupPadInst::Create(ParentPad, Args);
4873       else
4874         I = CatchPadInst::Create(ParentPad, Args);
4875       InstructionList.push_back(I);
4876       break;
4877     }
4878     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4879       // Check magic
4880       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4881         // "New" SwitchInst format with case ranges. The changes to write this
4882         // format were reverted but we still recognize bitcode that uses it.
4883         // Hopefully someday we will have support for case ranges and can use
4884         // this format again.
4885 
4886         Type *OpTy = getTypeByID(Record[1]);
4887         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4888 
4889         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4890         BasicBlock *Default = getBasicBlock(Record[3]);
4891         if (!OpTy || !Cond || !Default)
4892           return error("Invalid record");
4893 
4894         unsigned NumCases = Record[4];
4895 
4896         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4897         InstructionList.push_back(SI);
4898 
4899         unsigned CurIdx = 5;
4900         for (unsigned i = 0; i != NumCases; ++i) {
4901           SmallVector<ConstantInt*, 1> CaseVals;
4902           unsigned NumItems = Record[CurIdx++];
4903           for (unsigned ci = 0; ci != NumItems; ++ci) {
4904             bool isSingleNumber = Record[CurIdx++];
4905 
4906             APInt Low;
4907             unsigned ActiveWords = 1;
4908             if (ValueBitWidth > 64)
4909               ActiveWords = Record[CurIdx++];
4910             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4911                                 ValueBitWidth);
4912             CurIdx += ActiveWords;
4913 
4914             if (!isSingleNumber) {
4915               ActiveWords = 1;
4916               if (ValueBitWidth > 64)
4917                 ActiveWords = Record[CurIdx++];
4918               APInt High = readWideAPInt(
4919                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4920               CurIdx += ActiveWords;
4921 
4922               // FIXME: It is not clear whether values in the range should be
4923               // compared as signed or unsigned values. The partially
4924               // implemented changes that used this format in the past used
4925               // unsigned comparisons.
4926               for ( ; Low.ule(High); ++Low)
4927                 CaseVals.push_back(ConstantInt::get(Context, Low));
4928             } else
4929               CaseVals.push_back(ConstantInt::get(Context, Low));
4930           }
4931           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4932           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4933                  cve = CaseVals.end(); cvi != cve; ++cvi)
4934             SI->addCase(*cvi, DestBB);
4935         }
4936         I = SI;
4937         break;
4938       }
4939 
4940       // Old SwitchInst format without case ranges.
4941 
4942       if (Record.size() < 3 || (Record.size() & 1) == 0)
4943         return error("Invalid record");
4944       Type *OpTy = getTypeByID(Record[0]);
4945       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4946       BasicBlock *Default = getBasicBlock(Record[2]);
4947       if (!OpTy || !Cond || !Default)
4948         return error("Invalid record");
4949       unsigned NumCases = (Record.size()-3)/2;
4950       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4951       InstructionList.push_back(SI);
4952       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4953         ConstantInt *CaseVal =
4954           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4955         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4956         if (!CaseVal || !DestBB) {
4957           delete SI;
4958           return error("Invalid record");
4959         }
4960         SI->addCase(CaseVal, DestBB);
4961       }
4962       I = SI;
4963       break;
4964     }
4965     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4966       if (Record.size() < 2)
4967         return error("Invalid record");
4968       Type *OpTy = getTypeByID(Record[0]);
4969       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4970       if (!OpTy || !Address)
4971         return error("Invalid record");
4972       unsigned NumDests = Record.size()-2;
4973       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4974       InstructionList.push_back(IBI);
4975       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4976         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4977           IBI->addDestination(DestBB);
4978         } else {
4979           delete IBI;
4980           return error("Invalid record");
4981         }
4982       }
4983       I = IBI;
4984       break;
4985     }
4986 
4987     case bitc::FUNC_CODE_INST_INVOKE: {
4988       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4989       if (Record.size() < 4)
4990         return error("Invalid record");
4991       unsigned OpNum = 0;
4992       AttributeSet PAL = getAttributes(Record[OpNum++]);
4993       unsigned CCInfo = Record[OpNum++];
4994       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4995       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4996 
4997       FunctionType *FTy = nullptr;
4998       if (CCInfo >> 13 & 1 &&
4999           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5000         return error("Explicit invoke type is not a function type");
5001 
5002       Value *Callee;
5003       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5004         return error("Invalid record");
5005 
5006       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5007       if (!CalleeTy)
5008         return error("Callee is not a pointer");
5009       if (!FTy) {
5010         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5011         if (!FTy)
5012           return error("Callee is not of pointer to function type");
5013       } else if (CalleeTy->getElementType() != FTy)
5014         return error("Explicit invoke type does not match pointee type of "
5015                      "callee operand");
5016       if (Record.size() < FTy->getNumParams() + OpNum)
5017         return error("Insufficient operands to call");
5018 
5019       SmallVector<Value*, 16> Ops;
5020       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5021         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5022                                FTy->getParamType(i)));
5023         if (!Ops.back())
5024           return error("Invalid record");
5025       }
5026 
5027       if (!FTy->isVarArg()) {
5028         if (Record.size() != OpNum)
5029           return error("Invalid record");
5030       } else {
5031         // Read type/value pairs for varargs params.
5032         while (OpNum != Record.size()) {
5033           Value *Op;
5034           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5035             return error("Invalid record");
5036           Ops.push_back(Op);
5037         }
5038       }
5039 
5040       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5041       OperandBundles.clear();
5042       InstructionList.push_back(I);
5043       cast<InvokeInst>(I)->setCallingConv(
5044           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5045       cast<InvokeInst>(I)->setAttributes(PAL);
5046       break;
5047     }
5048     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5049       unsigned Idx = 0;
5050       Value *Val = nullptr;
5051       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5052         return error("Invalid record");
5053       I = ResumeInst::Create(Val);
5054       InstructionList.push_back(I);
5055       break;
5056     }
5057     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5058       I = new UnreachableInst(Context);
5059       InstructionList.push_back(I);
5060       break;
5061     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5062       if (Record.size() < 1 || ((Record.size()-1)&1))
5063         return error("Invalid record");
5064       Type *Ty = getTypeByID(Record[0]);
5065       if (!Ty)
5066         return error("Invalid record");
5067 
5068       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5069       InstructionList.push_back(PN);
5070 
5071       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5072         Value *V;
5073         // With the new function encoding, it is possible that operands have
5074         // negative IDs (for forward references).  Use a signed VBR
5075         // representation to keep the encoding small.
5076         if (UseRelativeIDs)
5077           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5078         else
5079           V = getValue(Record, 1+i, NextValueNo, Ty);
5080         BasicBlock *BB = getBasicBlock(Record[2+i]);
5081         if (!V || !BB)
5082           return error("Invalid record");
5083         PN->addIncoming(V, BB);
5084       }
5085       I = PN;
5086       break;
5087     }
5088 
5089     case bitc::FUNC_CODE_INST_LANDINGPAD:
5090     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5091       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5092       unsigned Idx = 0;
5093       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5094         if (Record.size() < 3)
5095           return error("Invalid record");
5096       } else {
5097         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5098         if (Record.size() < 4)
5099           return error("Invalid record");
5100       }
5101       Type *Ty = getTypeByID(Record[Idx++]);
5102       if (!Ty)
5103         return error("Invalid record");
5104       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5105         Value *PersFn = nullptr;
5106         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5107           return error("Invalid record");
5108 
5109         if (!F->hasPersonalityFn())
5110           F->setPersonalityFn(cast<Constant>(PersFn));
5111         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5112           return error("Personality function mismatch");
5113       }
5114 
5115       bool IsCleanup = !!Record[Idx++];
5116       unsigned NumClauses = Record[Idx++];
5117       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5118       LP->setCleanup(IsCleanup);
5119       for (unsigned J = 0; J != NumClauses; ++J) {
5120         LandingPadInst::ClauseType CT =
5121           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5122         Value *Val;
5123 
5124         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5125           delete LP;
5126           return error("Invalid record");
5127         }
5128 
5129         assert((CT != LandingPadInst::Catch ||
5130                 !isa<ArrayType>(Val->getType())) &&
5131                "Catch clause has a invalid type!");
5132         assert((CT != LandingPadInst::Filter ||
5133                 isa<ArrayType>(Val->getType())) &&
5134                "Filter clause has invalid type!");
5135         LP->addClause(cast<Constant>(Val));
5136       }
5137 
5138       I = LP;
5139       InstructionList.push_back(I);
5140       break;
5141     }
5142 
5143     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5144       if (Record.size() != 4)
5145         return error("Invalid record");
5146       uint64_t AlignRecord = Record[3];
5147       const uint64_t InAllocaMask = uint64_t(1) << 5;
5148       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5149       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5150       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5151                                 SwiftErrorMask;
5152       bool InAlloca = AlignRecord & InAllocaMask;
5153       bool SwiftError = AlignRecord & SwiftErrorMask;
5154       Type *Ty = getTypeByID(Record[0]);
5155       if ((AlignRecord & ExplicitTypeMask) == 0) {
5156         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5157         if (!PTy)
5158           return error("Old-style alloca with a non-pointer type");
5159         Ty = PTy->getElementType();
5160       }
5161       Type *OpTy = getTypeByID(Record[1]);
5162       Value *Size = getFnValueByID(Record[2], OpTy);
5163       unsigned Align;
5164       if (std::error_code EC =
5165               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5166         return EC;
5167       }
5168       if (!Ty || !Size)
5169         return error("Invalid record");
5170       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5171       AI->setUsedWithInAlloca(InAlloca);
5172       AI->setSwiftError(SwiftError);
5173       I = AI;
5174       InstructionList.push_back(I);
5175       break;
5176     }
5177     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5178       unsigned OpNum = 0;
5179       Value *Op;
5180       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5181           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5182         return error("Invalid record");
5183 
5184       Type *Ty = nullptr;
5185       if (OpNum + 3 == Record.size())
5186         Ty = getTypeByID(Record[OpNum++]);
5187       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5188         return EC;
5189       if (!Ty)
5190         Ty = cast<PointerType>(Op->getType())->getElementType();
5191 
5192       unsigned Align;
5193       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5194         return EC;
5195       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5196 
5197       InstructionList.push_back(I);
5198       break;
5199     }
5200     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5201        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5202       unsigned OpNum = 0;
5203       Value *Op;
5204       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5205           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5206         return error("Invalid record");
5207 
5208       Type *Ty = nullptr;
5209       if (OpNum + 5 == Record.size())
5210         Ty = getTypeByID(Record[OpNum++]);
5211       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5212         return EC;
5213       if (!Ty)
5214         Ty = cast<PointerType>(Op->getType())->getElementType();
5215 
5216       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5217       if (Ordering == AtomicOrdering::NotAtomic ||
5218           Ordering == AtomicOrdering::Release ||
5219           Ordering == AtomicOrdering::AcquireRelease)
5220         return error("Invalid record");
5221       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5222         return error("Invalid record");
5223       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5224 
5225       unsigned Align;
5226       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5227         return EC;
5228       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5229 
5230       InstructionList.push_back(I);
5231       break;
5232     }
5233     case bitc::FUNC_CODE_INST_STORE:
5234     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5235       unsigned OpNum = 0;
5236       Value *Val, *Ptr;
5237       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5238           (BitCode == bitc::FUNC_CODE_INST_STORE
5239                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5240                : popValue(Record, OpNum, NextValueNo,
5241                           cast<PointerType>(Ptr->getType())->getElementType(),
5242                           Val)) ||
5243           OpNum + 2 != Record.size())
5244         return error("Invalid record");
5245 
5246       if (std::error_code EC =
5247               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5248         return EC;
5249       unsigned Align;
5250       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5251         return EC;
5252       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5253       InstructionList.push_back(I);
5254       break;
5255     }
5256     case bitc::FUNC_CODE_INST_STOREATOMIC:
5257     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5258       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5259       unsigned OpNum = 0;
5260       Value *Val, *Ptr;
5261       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5262           !isa<PointerType>(Ptr->getType()) ||
5263           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5264                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5265                : popValue(Record, OpNum, NextValueNo,
5266                           cast<PointerType>(Ptr->getType())->getElementType(),
5267                           Val)) ||
5268           OpNum + 4 != Record.size())
5269         return error("Invalid record");
5270 
5271       if (std::error_code EC =
5272               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5273         return EC;
5274       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5275       if (Ordering == AtomicOrdering::NotAtomic ||
5276           Ordering == AtomicOrdering::Acquire ||
5277           Ordering == AtomicOrdering::AcquireRelease)
5278         return error("Invalid record");
5279       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5280       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5281         return error("Invalid record");
5282 
5283       unsigned Align;
5284       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5285         return EC;
5286       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5287       InstructionList.push_back(I);
5288       break;
5289     }
5290     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5291     case bitc::FUNC_CODE_INST_CMPXCHG: {
5292       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5293       //          failureordering?, isweak?]
5294       unsigned OpNum = 0;
5295       Value *Ptr, *Cmp, *New;
5296       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5297           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5298                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5299                : popValue(Record, OpNum, NextValueNo,
5300                           cast<PointerType>(Ptr->getType())->getElementType(),
5301                           Cmp)) ||
5302           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5303           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5304         return error("Invalid record");
5305       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5306       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5307           SuccessOrdering == AtomicOrdering::Unordered)
5308         return error("Invalid record");
5309       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5310 
5311       if (std::error_code EC =
5312               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5313         return EC;
5314       AtomicOrdering FailureOrdering;
5315       if (Record.size() < 7)
5316         FailureOrdering =
5317             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5318       else
5319         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5320 
5321       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5322                                 SynchScope);
5323       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5324 
5325       if (Record.size() < 8) {
5326         // Before weak cmpxchgs existed, the instruction simply returned the
5327         // value loaded from memory, so bitcode files from that era will be
5328         // expecting the first component of a modern cmpxchg.
5329         CurBB->getInstList().push_back(I);
5330         I = ExtractValueInst::Create(I, 0);
5331       } else {
5332         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5333       }
5334 
5335       InstructionList.push_back(I);
5336       break;
5337     }
5338     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5339       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5340       unsigned OpNum = 0;
5341       Value *Ptr, *Val;
5342       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5343           !isa<PointerType>(Ptr->getType()) ||
5344           popValue(Record, OpNum, NextValueNo,
5345                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5346           OpNum+4 != Record.size())
5347         return error("Invalid record");
5348       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5349       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5350           Operation > AtomicRMWInst::LAST_BINOP)
5351         return error("Invalid record");
5352       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5353       if (Ordering == AtomicOrdering::NotAtomic ||
5354           Ordering == AtomicOrdering::Unordered)
5355         return error("Invalid record");
5356       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5357       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5358       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5359       InstructionList.push_back(I);
5360       break;
5361     }
5362     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5363       if (2 != Record.size())
5364         return error("Invalid record");
5365       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5366       if (Ordering == AtomicOrdering::NotAtomic ||
5367           Ordering == AtomicOrdering::Unordered ||
5368           Ordering == AtomicOrdering::Monotonic)
5369         return error("Invalid record");
5370       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5371       I = new FenceInst(Context, Ordering, SynchScope);
5372       InstructionList.push_back(I);
5373       break;
5374     }
5375     case bitc::FUNC_CODE_INST_CALL: {
5376       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5377       if (Record.size() < 3)
5378         return error("Invalid record");
5379 
5380       unsigned OpNum = 0;
5381       AttributeSet PAL = getAttributes(Record[OpNum++]);
5382       unsigned CCInfo = Record[OpNum++];
5383 
5384       FastMathFlags FMF;
5385       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5386         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5387         if (!FMF.any())
5388           return error("Fast math flags indicator set for call with no FMF");
5389       }
5390 
5391       FunctionType *FTy = nullptr;
5392       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5393           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5394         return error("Explicit call type is not a function type");
5395 
5396       Value *Callee;
5397       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5398         return error("Invalid record");
5399 
5400       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5401       if (!OpTy)
5402         return error("Callee is not a pointer type");
5403       if (!FTy) {
5404         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5405         if (!FTy)
5406           return error("Callee is not of pointer to function type");
5407       } else if (OpTy->getElementType() != FTy)
5408         return error("Explicit call type does not match pointee type of "
5409                      "callee operand");
5410       if (Record.size() < FTy->getNumParams() + OpNum)
5411         return error("Insufficient operands to call");
5412 
5413       SmallVector<Value*, 16> Args;
5414       // Read the fixed params.
5415       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5416         if (FTy->getParamType(i)->isLabelTy())
5417           Args.push_back(getBasicBlock(Record[OpNum]));
5418         else
5419           Args.push_back(getValue(Record, OpNum, NextValueNo,
5420                                   FTy->getParamType(i)));
5421         if (!Args.back())
5422           return error("Invalid record");
5423       }
5424 
5425       // Read type/value pairs for varargs params.
5426       if (!FTy->isVarArg()) {
5427         if (OpNum != Record.size())
5428           return error("Invalid record");
5429       } else {
5430         while (OpNum != Record.size()) {
5431           Value *Op;
5432           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5433             return error("Invalid record");
5434           Args.push_back(Op);
5435         }
5436       }
5437 
5438       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5439       OperandBundles.clear();
5440       InstructionList.push_back(I);
5441       cast<CallInst>(I)->setCallingConv(
5442           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5443       CallInst::TailCallKind TCK = CallInst::TCK_None;
5444       if (CCInfo & 1 << bitc::CALL_TAIL)
5445         TCK = CallInst::TCK_Tail;
5446       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5447         TCK = CallInst::TCK_MustTail;
5448       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5449         TCK = CallInst::TCK_NoTail;
5450       cast<CallInst>(I)->setTailCallKind(TCK);
5451       cast<CallInst>(I)->setAttributes(PAL);
5452       if (FMF.any()) {
5453         if (!isa<FPMathOperator>(I))
5454           return error("Fast-math-flags specified for call without "
5455                        "floating-point scalar or vector return type");
5456         I->setFastMathFlags(FMF);
5457       }
5458       break;
5459     }
5460     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5461       if (Record.size() < 3)
5462         return error("Invalid record");
5463       Type *OpTy = getTypeByID(Record[0]);
5464       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5465       Type *ResTy = getTypeByID(Record[2]);
5466       if (!OpTy || !Op || !ResTy)
5467         return error("Invalid record");
5468       I = new VAArgInst(Op, ResTy);
5469       InstructionList.push_back(I);
5470       break;
5471     }
5472 
5473     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5474       // A call or an invoke can be optionally prefixed with some variable
5475       // number of operand bundle blocks.  These blocks are read into
5476       // OperandBundles and consumed at the next call or invoke instruction.
5477 
5478       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5479         return error("Invalid record");
5480 
5481       std::vector<Value *> Inputs;
5482 
5483       unsigned OpNum = 1;
5484       while (OpNum != Record.size()) {
5485         Value *Op;
5486         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5487           return error("Invalid record");
5488         Inputs.push_back(Op);
5489       }
5490 
5491       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5492       continue;
5493     }
5494     }
5495 
5496     // Add instruction to end of current BB.  If there is no current BB, reject
5497     // this file.
5498     if (!CurBB) {
5499       delete I;
5500       return error("Invalid instruction with no BB");
5501     }
5502     if (!OperandBundles.empty()) {
5503       delete I;
5504       return error("Operand bundles found with no consumer");
5505     }
5506     CurBB->getInstList().push_back(I);
5507 
5508     // If this was a terminator instruction, move to the next block.
5509     if (isa<TerminatorInst>(I)) {
5510       ++CurBBNo;
5511       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5512     }
5513 
5514     // Non-void values get registered in the value table for future use.
5515     if (I && !I->getType()->isVoidTy())
5516       ValueList.assignValue(I, NextValueNo++);
5517   }
5518 
5519 OutOfRecordLoop:
5520 
5521   if (!OperandBundles.empty())
5522     return error("Operand bundles found with no consumer");
5523 
5524   // Check the function list for unresolved values.
5525   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5526     if (!A->getParent()) {
5527       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5528       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5529         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5530           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5531           delete A;
5532         }
5533       }
5534       return error("Never resolved value found in function");
5535     }
5536   }
5537 
5538   // Unexpected unresolved metadata about to be dropped.
5539   if (MetadataList.hasFwdRefs())
5540     return error("Invalid function metadata: outgoing forward refs");
5541 
5542   // Trim the value list down to the size it was before we parsed this function.
5543   ValueList.shrinkTo(ModuleValueListSize);
5544   MetadataList.shrinkTo(ModuleMetadataListSize);
5545   std::vector<BasicBlock*>().swap(FunctionBBs);
5546   return std::error_code();
5547 }
5548 
5549 /// Find the function body in the bitcode stream
5550 std::error_code BitcodeReader::findFunctionInStream(
5551     Function *F,
5552     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5553   while (DeferredFunctionInfoIterator->second == 0) {
5554     // This is the fallback handling for the old format bitcode that
5555     // didn't contain the function index in the VST, or when we have
5556     // an anonymous function which would not have a VST entry.
5557     // Assert that we have one of those two cases.
5558     assert(VSTOffset == 0 || !F->hasName());
5559     // Parse the next body in the stream and set its position in the
5560     // DeferredFunctionInfo map.
5561     if (std::error_code EC = rememberAndSkipFunctionBodies())
5562       return EC;
5563   }
5564   return std::error_code();
5565 }
5566 
5567 //===----------------------------------------------------------------------===//
5568 // GVMaterializer implementation
5569 //===----------------------------------------------------------------------===//
5570 
5571 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5572 
5573 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5574   Function *F = dyn_cast<Function>(GV);
5575   // If it's not a function or is already material, ignore the request.
5576   if (!F || !F->isMaterializable())
5577     return std::error_code();
5578 
5579   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5580   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5581   // If its position is recorded as 0, its body is somewhere in the stream
5582   // but we haven't seen it yet.
5583   if (DFII->second == 0)
5584     if (std::error_code EC = findFunctionInStream(F, DFII))
5585       return EC;
5586 
5587   // Materialize metadata before parsing any function bodies.
5588   if (std::error_code EC = materializeMetadata())
5589     return EC;
5590 
5591   // Move the bit stream to the saved position of the deferred function body.
5592   Stream.JumpToBit(DFII->second);
5593 
5594   if (std::error_code EC = parseFunctionBody(F))
5595     return EC;
5596   F->setIsMaterializable(false);
5597 
5598   if (StripDebugInfo)
5599     stripDebugInfo(*F);
5600 
5601   // Upgrade any old intrinsic calls in the function.
5602   for (auto &I : UpgradedIntrinsics) {
5603     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5604          UI != UE;) {
5605       User *U = *UI;
5606       ++UI;
5607       if (CallInst *CI = dyn_cast<CallInst>(U))
5608         UpgradeIntrinsicCall(CI, I.second);
5609     }
5610   }
5611 
5612   // Update calls to the remangled intrinsics
5613   for (auto &I : RemangledIntrinsics)
5614     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5615          UI != UE;)
5616       // Don't expect any other users than call sites
5617       CallSite(*UI++).setCalledFunction(I.second);
5618 
5619   // Finish fn->subprogram upgrade for materialized functions.
5620   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5621     F->setSubprogram(SP);
5622 
5623   // Bring in any functions that this function forward-referenced via
5624   // blockaddresses.
5625   return materializeForwardReferencedFunctions();
5626 }
5627 
5628 std::error_code BitcodeReader::materializeModule() {
5629   if (std::error_code EC = materializeMetadata())
5630     return EC;
5631 
5632   // Promise to materialize all forward references.
5633   WillMaterializeAllForwardRefs = true;
5634 
5635   // Iterate over the module, deserializing any functions that are still on
5636   // disk.
5637   for (Function &F : *TheModule) {
5638     if (std::error_code EC = materialize(&F))
5639       return EC;
5640   }
5641   // At this point, if there are any function bodies, parse the rest of
5642   // the bits in the module past the last function block we have recorded
5643   // through either lazy scanning or the VST.
5644   if (LastFunctionBlockBit || NextUnreadBit)
5645     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5646                                                      : NextUnreadBit);
5647 
5648   // Check that all block address forward references got resolved (as we
5649   // promised above).
5650   if (!BasicBlockFwdRefs.empty())
5651     return error("Never resolved function from blockaddress");
5652 
5653   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5654   // to prevent this instructions with TBAA tags should be upgraded first.
5655   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5656     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5657 
5658   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5659   // delete the old functions to clean up. We can't do this unless the entire
5660   // module is materialized because there could always be another function body
5661   // with calls to the old function.
5662   for (auto &I : UpgradedIntrinsics) {
5663     for (auto *U : I.first->users()) {
5664       if (CallInst *CI = dyn_cast<CallInst>(U))
5665         UpgradeIntrinsicCall(CI, I.second);
5666     }
5667     if (!I.first->use_empty())
5668       I.first->replaceAllUsesWith(I.second);
5669     I.first->eraseFromParent();
5670   }
5671   UpgradedIntrinsics.clear();
5672   // Do the same for remangled intrinsics
5673   for (auto &I : RemangledIntrinsics) {
5674     I.first->replaceAllUsesWith(I.second);
5675     I.first->eraseFromParent();
5676   }
5677   RemangledIntrinsics.clear();
5678 
5679   UpgradeDebugInfo(*TheModule);
5680 
5681   UpgradeModuleFlags(*TheModule);
5682   return std::error_code();
5683 }
5684 
5685 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5686   return IdentifiedStructTypes;
5687 }
5688 
5689 std::error_code
5690 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5691   if (Streamer)
5692     return initLazyStream(std::move(Streamer));
5693   return initStreamFromBuffer();
5694 }
5695 
5696 std::error_code BitcodeReader::initStreamFromBuffer() {
5697   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5698   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5699 
5700   if (Buffer->getBufferSize() & 3)
5701     return error("Invalid bitcode signature");
5702 
5703   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5704   // The magic number is 0x0B17C0DE stored in little endian.
5705   if (isBitcodeWrapper(BufPtr, BufEnd))
5706     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5707       return error("Invalid bitcode wrapper header");
5708 
5709   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5710   Stream.init(&*StreamFile);
5711 
5712   return std::error_code();
5713 }
5714 
5715 std::error_code
5716 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5717   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5718   // see it.
5719   auto OwnedBytes =
5720       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5721   StreamingMemoryObject &Bytes = *OwnedBytes;
5722   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5723   Stream.init(&*StreamFile);
5724 
5725   unsigned char buf[16];
5726   if (Bytes.readBytes(buf, 16, 0) != 16)
5727     return error("Invalid bitcode signature");
5728 
5729   if (!isBitcode(buf, buf + 16))
5730     return error("Invalid bitcode signature");
5731 
5732   if (isBitcodeWrapper(buf, buf + 4)) {
5733     const unsigned char *bitcodeStart = buf;
5734     const unsigned char *bitcodeEnd = buf + 16;
5735     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5736     Bytes.dropLeadingBytes(bitcodeStart - buf);
5737     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5738   }
5739   return std::error_code();
5740 }
5741 
5742 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5743   return ::error(DiagnosticHandler,
5744                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5745 }
5746 
5747 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5748     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5749     bool CheckGlobalValSummaryPresenceOnly)
5750     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer),
5751       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5752 
5753 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5754 
5755 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5756 
5757 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5758 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5759   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5760   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5761   return VGI->second;
5762 }
5763 
5764 // Specialized value symbol table parser used when reading module index
5765 // blocks where we don't actually create global values. The parsed information
5766 // is saved in the bitcode reader for use when later parsing summaries.
5767 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5768     uint64_t Offset,
5769     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5770   assert(Offset > 0 && "Expected non-zero VST offset");
5771   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5772 
5773   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5774     return error("Invalid record");
5775 
5776   SmallVector<uint64_t, 64> Record;
5777 
5778   // Read all the records for this value table.
5779   SmallString<128> ValueName;
5780   while (1) {
5781     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5782 
5783     switch (Entry.Kind) {
5784     case BitstreamEntry::SubBlock: // Handled for us already.
5785     case BitstreamEntry::Error:
5786       return error("Malformed block");
5787     case BitstreamEntry::EndBlock:
5788       // Done parsing VST, jump back to wherever we came from.
5789       Stream.JumpToBit(CurrentBit);
5790       return std::error_code();
5791     case BitstreamEntry::Record:
5792       // The interesting case.
5793       break;
5794     }
5795 
5796     // Read a record.
5797     Record.clear();
5798     switch (Stream.readRecord(Entry.ID, Record)) {
5799     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5800       break;
5801     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5802       if (convertToString(Record, 1, ValueName))
5803         return error("Invalid record");
5804       unsigned ValueID = Record[0];
5805       assert(!SourceFileName.empty());
5806       auto VLI = ValueIdToLinkageMap.find(ValueID);
5807       assert(VLI != ValueIdToLinkageMap.end() &&
5808              "No linkage found for VST entry?");
5809       auto Linkage = VLI->second;
5810       std::string GlobalId =
5811           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5812       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5813       auto OriginalNameID = ValueGUID;
5814       if (GlobalValue::isLocalLinkage(Linkage))
5815         OriginalNameID = GlobalValue::getGUID(ValueName);
5816       if (PrintSummaryGUIDs)
5817         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5818                << ValueName << "\n";
5819       ValueIdToCallGraphGUIDMap[ValueID] =
5820           std::make_pair(ValueGUID, OriginalNameID);
5821       ValueName.clear();
5822       break;
5823     }
5824     case bitc::VST_CODE_FNENTRY: {
5825       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5826       if (convertToString(Record, 2, ValueName))
5827         return error("Invalid record");
5828       unsigned ValueID = Record[0];
5829       assert(!SourceFileName.empty());
5830       auto VLI = ValueIdToLinkageMap.find(ValueID);
5831       assert(VLI != ValueIdToLinkageMap.end() &&
5832              "No linkage found for VST entry?");
5833       auto Linkage = VLI->second;
5834       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5835           ValueName, VLI->second, SourceFileName);
5836       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5837       auto OriginalNameID = FunctionGUID;
5838       if (GlobalValue::isLocalLinkage(Linkage))
5839         OriginalNameID = GlobalValue::getGUID(ValueName);
5840       if (PrintSummaryGUIDs)
5841         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5842                << ValueName << "\n";
5843       ValueIdToCallGraphGUIDMap[ValueID] =
5844           std::make_pair(FunctionGUID, OriginalNameID);
5845 
5846       ValueName.clear();
5847       break;
5848     }
5849     case bitc::VST_CODE_COMBINED_ENTRY: {
5850       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5851       unsigned ValueID = Record[0];
5852       GlobalValue::GUID RefGUID = Record[1];
5853       // The "original name", which is the second value of the pair will be
5854       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5855       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5856       break;
5857     }
5858     }
5859   }
5860 }
5861 
5862 // Parse just the blocks needed for building the index out of the module.
5863 // At the end of this routine the module Index is populated with a map
5864 // from global value id to GlobalValueSummary objects.
5865 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5866   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5867     return error("Invalid record");
5868 
5869   SmallVector<uint64_t, 64> Record;
5870   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5871   unsigned ValueId = 0;
5872 
5873   // Read the index for this module.
5874   while (1) {
5875     BitstreamEntry Entry = Stream.advance();
5876 
5877     switch (Entry.Kind) {
5878     case BitstreamEntry::Error:
5879       return error("Malformed block");
5880     case BitstreamEntry::EndBlock:
5881       return std::error_code();
5882 
5883     case BitstreamEntry::SubBlock:
5884       if (CheckGlobalValSummaryPresenceOnly) {
5885         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5886           SeenGlobalValSummary = true;
5887           // No need to parse the rest since we found the summary.
5888           return std::error_code();
5889         }
5890         if (Stream.SkipBlock())
5891           return error("Invalid record");
5892         continue;
5893       }
5894       switch (Entry.ID) {
5895       default: // Skip unknown content.
5896         if (Stream.SkipBlock())
5897           return error("Invalid record");
5898         break;
5899       case bitc::BLOCKINFO_BLOCK_ID:
5900         // Need to parse these to get abbrev ids (e.g. for VST)
5901         if (Stream.ReadBlockInfoBlock())
5902           return error("Malformed block");
5903         break;
5904       case bitc::VALUE_SYMTAB_BLOCK_ID:
5905         // Should have been parsed earlier via VSTOffset, unless there
5906         // is no summary section.
5907         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5908                 !SeenGlobalValSummary) &&
5909                "Expected early VST parse via VSTOffset record");
5910         if (Stream.SkipBlock())
5911           return error("Invalid record");
5912         break;
5913       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5914         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5915         assert(!SeenValueSymbolTable &&
5916                "Already read VST when parsing summary block?");
5917         if (std::error_code EC =
5918                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5919           return EC;
5920         SeenValueSymbolTable = true;
5921         SeenGlobalValSummary = true;
5922         if (std::error_code EC = parseEntireSummary())
5923           return EC;
5924         break;
5925       case bitc::MODULE_STRTAB_BLOCK_ID:
5926         if (std::error_code EC = parseModuleStringTable())
5927           return EC;
5928         break;
5929       }
5930       continue;
5931 
5932     case BitstreamEntry::Record: {
5933         Record.clear();
5934         auto BitCode = Stream.readRecord(Entry.ID, Record);
5935         switch (BitCode) {
5936         default:
5937           break; // Default behavior, ignore unknown content.
5938         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5939         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5940           SmallString<128> ValueName;
5941           if (convertToString(Record, 0, ValueName))
5942             return error("Invalid record");
5943           SourceFileName = ValueName.c_str();
5944           break;
5945         }
5946         /// MODULE_CODE_HASH: [5*i32]
5947         case bitc::MODULE_CODE_HASH: {
5948           if (Record.size() != 5)
5949             return error("Invalid hash length " + Twine(Record.size()).str());
5950           if (!TheIndex)
5951             break;
5952           if (TheIndex->modulePaths().empty())
5953             // Does not have any summary emitted.
5954             break;
5955           if (TheIndex->modulePaths().size() != 1)
5956             return error("Don't expect multiple modules defined?");
5957           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5958           int Pos = 0;
5959           for (auto &Val : Record) {
5960             assert(!(Val >> 32) && "Unexpected high bits set");
5961             Hash[Pos++] = Val;
5962           }
5963           break;
5964         }
5965         /// MODULE_CODE_VSTOFFSET: [offset]
5966         case bitc::MODULE_CODE_VSTOFFSET:
5967           if (Record.size() < 1)
5968             return error("Invalid record");
5969           VSTOffset = Record[0];
5970           break;
5971         // GLOBALVAR: [pointer type, isconst, initid,
5972         //             linkage, alignment, section, visibility, threadlocal,
5973         //             unnamed_addr, externally_initialized, dllstorageclass,
5974         //             comdat]
5975         case bitc::MODULE_CODE_GLOBALVAR: {
5976           if (Record.size() < 6)
5977             return error("Invalid record");
5978           uint64_t RawLinkage = Record[3];
5979           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5980           ValueIdToLinkageMap[ValueId++] = Linkage;
5981           break;
5982         }
5983         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5984         //             alignment, section, visibility, gc, unnamed_addr,
5985         //             prologuedata, dllstorageclass, comdat, prefixdata]
5986         case bitc::MODULE_CODE_FUNCTION: {
5987           if (Record.size() < 8)
5988             return error("Invalid record");
5989           uint64_t RawLinkage = Record[3];
5990           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5991           ValueIdToLinkageMap[ValueId++] = Linkage;
5992           break;
5993         }
5994         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5995         // dllstorageclass]
5996         case bitc::MODULE_CODE_ALIAS: {
5997           if (Record.size() < 6)
5998             return error("Invalid record");
5999           uint64_t RawLinkage = Record[3];
6000           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6001           ValueIdToLinkageMap[ValueId++] = Linkage;
6002           break;
6003         }
6004         }
6005       }
6006       continue;
6007     }
6008   }
6009 }
6010 
6011 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6012 // objects in the index.
6013 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6014   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6015     return error("Invalid record");
6016   SmallVector<uint64_t, 64> Record;
6017 
6018   // Parse version
6019   {
6020     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6021     if (Entry.Kind != BitstreamEntry::Record)
6022       return error("Invalid Summary Block: record for version expected");
6023     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6024       return error("Invalid Summary Block: version expected");
6025   }
6026   const uint64_t Version = Record[0];
6027   if (Version != 1)
6028     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6029   Record.clear();
6030 
6031   // Keep around the last seen summary to be used when we see an optional
6032   // "OriginalName" attachement.
6033   GlobalValueSummary *LastSeenSummary = nullptr;
6034   bool Combined = false;
6035   while (1) {
6036     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6037 
6038     switch (Entry.Kind) {
6039     case BitstreamEntry::SubBlock: // Handled for us already.
6040     case BitstreamEntry::Error:
6041       return error("Malformed block");
6042     case BitstreamEntry::EndBlock:
6043       // For a per-module index, remove any entries that still have empty
6044       // summaries. The VST parsing creates entries eagerly for all symbols,
6045       // but not all have associated summaries (e.g. it doesn't know how to
6046       // distinguish between VST_CODE_ENTRY for function declarations vs global
6047       // variables with initializers that end up with a summary). Remove those
6048       // entries now so that we don't need to rely on the combined index merger
6049       // to clean them up (especially since that may not run for the first
6050       // module's index if we merge into that).
6051       if (!Combined)
6052         TheIndex->removeEmptySummaryEntries();
6053       return std::error_code();
6054     case BitstreamEntry::Record:
6055       // The interesting case.
6056       break;
6057     }
6058 
6059     // Read a record. The record format depends on whether this
6060     // is a per-module index or a combined index file. In the per-module
6061     // case the records contain the associated value's ID for correlation
6062     // with VST entries. In the combined index the correlation is done
6063     // via the bitcode offset of the summary records (which were saved
6064     // in the combined index VST entries). The records also contain
6065     // information used for ThinLTO renaming and importing.
6066     Record.clear();
6067     auto BitCode = Stream.readRecord(Entry.ID, Record);
6068     switch (BitCode) {
6069     default: // Default behavior: ignore.
6070       break;
6071     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6072     //                n x (valueid, callsitecount)]
6073     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6074     //                        numrefs x valueid,
6075     //                        n x (valueid, callsitecount, profilecount)]
6076     case bitc::FS_PERMODULE:
6077     case bitc::FS_PERMODULE_PROFILE: {
6078       unsigned ValueID = Record[0];
6079       uint64_t RawFlags = Record[1];
6080       unsigned InstCount = Record[2];
6081       unsigned NumRefs = Record[3];
6082       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6083       std::unique_ptr<FunctionSummary> FS =
6084           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6085       // The module path string ref set in the summary must be owned by the
6086       // index's module string table. Since we don't have a module path
6087       // string table section in the per-module index, we create a single
6088       // module path string table entry with an empty (0) ID to take
6089       // ownership.
6090       FS->setModulePath(
6091           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6092       static int RefListStartIndex = 4;
6093       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6094       assert(Record.size() >= RefListStartIndex + NumRefs &&
6095              "Record size inconsistent with number of references");
6096       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6097         unsigned RefValueId = Record[I];
6098         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6099         FS->addRefEdge(RefGUID);
6100       }
6101       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6102       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6103            ++I) {
6104         unsigned CalleeValueId = Record[I];
6105         unsigned CallsiteCount = Record[++I];
6106         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6107         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6108         FS->addCallGraphEdge(CalleeGUID,
6109                              CalleeInfo(CallsiteCount, ProfileCount));
6110       }
6111       auto GUID = getGUIDFromValueId(ValueID);
6112       FS->setOriginalName(GUID.second);
6113       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6114       break;
6115     }
6116     // FS_ALIAS: [valueid, flags, valueid]
6117     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6118     // they expect all aliasee summaries to be available.
6119     case bitc::FS_ALIAS: {
6120       unsigned ValueID = Record[0];
6121       uint64_t RawFlags = Record[1];
6122       unsigned AliaseeID = Record[2];
6123       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6124       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6125       // The module path string ref set in the summary must be owned by the
6126       // index's module string table. Since we don't have a module path
6127       // string table section in the per-module index, we create a single
6128       // module path string table entry with an empty (0) ID to take
6129       // ownership.
6130       AS->setModulePath(
6131           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6132 
6133       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6134       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6135       if (!AliaseeSummary)
6136         return error("Alias expects aliasee summary to be parsed");
6137       AS->setAliasee(AliaseeSummary);
6138 
6139       auto GUID = getGUIDFromValueId(ValueID);
6140       AS->setOriginalName(GUID.second);
6141       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6142       break;
6143     }
6144     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6145     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6146       unsigned ValueID = Record[0];
6147       uint64_t RawFlags = Record[1];
6148       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6149       std::unique_ptr<GlobalVarSummary> FS =
6150           llvm::make_unique<GlobalVarSummary>(Flags);
6151       FS->setModulePath(
6152           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6153       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6154         unsigned RefValueId = Record[I];
6155         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6156         FS->addRefEdge(RefGUID);
6157       }
6158       auto GUID = getGUIDFromValueId(ValueID);
6159       FS->setOriginalName(GUID.second);
6160       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6161       break;
6162     }
6163     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6164     //               numrefs x valueid, n x (valueid, callsitecount)]
6165     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6166     //                       numrefs x valueid,
6167     //                       n x (valueid, callsitecount, profilecount)]
6168     case bitc::FS_COMBINED:
6169     case bitc::FS_COMBINED_PROFILE: {
6170       unsigned ValueID = Record[0];
6171       uint64_t ModuleId = Record[1];
6172       uint64_t RawFlags = Record[2];
6173       unsigned InstCount = Record[3];
6174       unsigned NumRefs = Record[4];
6175       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6176       std::unique_ptr<FunctionSummary> FS =
6177           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6178       LastSeenSummary = FS.get();
6179       FS->setModulePath(ModuleIdMap[ModuleId]);
6180       static int RefListStartIndex = 5;
6181       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6182       assert(Record.size() >= RefListStartIndex + NumRefs &&
6183              "Record size inconsistent with number of references");
6184       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6185            ++I) {
6186         unsigned RefValueId = Record[I];
6187         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6188         FS->addRefEdge(RefGUID);
6189       }
6190       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6191       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6192            ++I) {
6193         unsigned CalleeValueId = Record[I];
6194         unsigned CallsiteCount = Record[++I];
6195         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6196         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6197         FS->addCallGraphEdge(CalleeGUID,
6198                              CalleeInfo(CallsiteCount, ProfileCount));
6199       }
6200       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6201       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6202       Combined = true;
6203       break;
6204     }
6205     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6206     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6207     // they expect all aliasee summaries to be available.
6208     case bitc::FS_COMBINED_ALIAS: {
6209       unsigned ValueID = Record[0];
6210       uint64_t ModuleId = Record[1];
6211       uint64_t RawFlags = Record[2];
6212       unsigned AliaseeValueId = Record[3];
6213       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6214       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6215       LastSeenSummary = AS.get();
6216       AS->setModulePath(ModuleIdMap[ModuleId]);
6217 
6218       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6219       auto AliaseeInModule =
6220           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6221       if (!AliaseeInModule)
6222         return error("Alias expects aliasee summary to be parsed");
6223       AS->setAliasee(AliaseeInModule);
6224 
6225       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6226       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6227       Combined = true;
6228       break;
6229     }
6230     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6231     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6232       unsigned ValueID = Record[0];
6233       uint64_t ModuleId = Record[1];
6234       uint64_t RawFlags = Record[2];
6235       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6236       std::unique_ptr<GlobalVarSummary> FS =
6237           llvm::make_unique<GlobalVarSummary>(Flags);
6238       LastSeenSummary = FS.get();
6239       FS->setModulePath(ModuleIdMap[ModuleId]);
6240       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6241         unsigned RefValueId = Record[I];
6242         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6243         FS->addRefEdge(RefGUID);
6244       }
6245       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6246       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6247       Combined = true;
6248       break;
6249     }
6250     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6251     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6252       uint64_t OriginalName = Record[0];
6253       if (!LastSeenSummary)
6254         return error("Name attachment that does not follow a combined record");
6255       LastSeenSummary->setOriginalName(OriginalName);
6256       // Reset the LastSeenSummary
6257       LastSeenSummary = nullptr;
6258     }
6259     }
6260   }
6261   llvm_unreachable("Exit infinite loop");
6262 }
6263 
6264 // Parse the  module string table block into the Index.
6265 // This populates the ModulePathStringTable map in the index.
6266 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6267   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6268     return error("Invalid record");
6269 
6270   SmallVector<uint64_t, 64> Record;
6271 
6272   SmallString<128> ModulePath;
6273   ModulePathStringTableTy::iterator LastSeenModulePath;
6274   while (1) {
6275     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6276 
6277     switch (Entry.Kind) {
6278     case BitstreamEntry::SubBlock: // Handled for us already.
6279     case BitstreamEntry::Error:
6280       return error("Malformed block");
6281     case BitstreamEntry::EndBlock:
6282       return std::error_code();
6283     case BitstreamEntry::Record:
6284       // The interesting case.
6285       break;
6286     }
6287 
6288     Record.clear();
6289     switch (Stream.readRecord(Entry.ID, Record)) {
6290     default: // Default behavior: ignore.
6291       break;
6292     case bitc::MST_CODE_ENTRY: {
6293       // MST_ENTRY: [modid, namechar x N]
6294       uint64_t ModuleId = Record[0];
6295 
6296       if (convertToString(Record, 1, ModulePath))
6297         return error("Invalid record");
6298 
6299       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6300       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6301 
6302       ModulePath.clear();
6303       break;
6304     }
6305     /// MST_CODE_HASH: [5*i32]
6306     case bitc::MST_CODE_HASH: {
6307       if (Record.size() != 5)
6308         return error("Invalid hash length " + Twine(Record.size()).str());
6309       if (LastSeenModulePath == TheIndex->modulePaths().end())
6310         return error("Invalid hash that does not follow a module path");
6311       int Pos = 0;
6312       for (auto &Val : Record) {
6313         assert(!(Val >> 32) && "Unexpected high bits set");
6314         LastSeenModulePath->second.second[Pos++] = Val;
6315       }
6316       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6317       LastSeenModulePath = TheIndex->modulePaths().end();
6318       break;
6319     }
6320     }
6321   }
6322   llvm_unreachable("Exit infinite loop");
6323 }
6324 
6325 // Parse the function info index from the bitcode streamer into the given index.
6326 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6327     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6328   TheIndex = I;
6329 
6330   if (std::error_code EC = initStream(std::move(Streamer)))
6331     return EC;
6332 
6333   // Sniff for the signature.
6334   if (!hasValidBitcodeHeader(Stream))
6335     return error("Invalid bitcode signature");
6336 
6337   // We expect a number of well-defined blocks, though we don't necessarily
6338   // need to understand them all.
6339   while (1) {
6340     if (Stream.AtEndOfStream()) {
6341       // We didn't really read a proper Module block.
6342       return error("Malformed block");
6343     }
6344 
6345     BitstreamEntry Entry =
6346         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6347 
6348     if (Entry.Kind != BitstreamEntry::SubBlock)
6349       return error("Malformed block");
6350 
6351     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6352     // building the function summary index.
6353     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6354       return parseModule();
6355 
6356     if (Stream.SkipBlock())
6357       return error("Invalid record");
6358   }
6359 }
6360 
6361 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6362     std::unique_ptr<DataStreamer> Streamer) {
6363   if (Streamer)
6364     return initLazyStream(std::move(Streamer));
6365   return initStreamFromBuffer();
6366 }
6367 
6368 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6369   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6370   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6371 
6372   if (Buffer->getBufferSize() & 3)
6373     return error("Invalid bitcode signature");
6374 
6375   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6376   // The magic number is 0x0B17C0DE stored in little endian.
6377   if (isBitcodeWrapper(BufPtr, BufEnd))
6378     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6379       return error("Invalid bitcode wrapper header");
6380 
6381   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6382   Stream.init(&*StreamFile);
6383 
6384   return std::error_code();
6385 }
6386 
6387 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6388     std::unique_ptr<DataStreamer> Streamer) {
6389   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6390   // see it.
6391   auto OwnedBytes =
6392       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6393   StreamingMemoryObject &Bytes = *OwnedBytes;
6394   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6395   Stream.init(&*StreamFile);
6396 
6397   unsigned char buf[16];
6398   if (Bytes.readBytes(buf, 16, 0) != 16)
6399     return error("Invalid bitcode signature");
6400 
6401   if (!isBitcode(buf, buf + 16))
6402     return error("Invalid bitcode signature");
6403 
6404   if (isBitcodeWrapper(buf, buf + 4)) {
6405     const unsigned char *bitcodeStart = buf;
6406     const unsigned char *bitcodeEnd = buf + 16;
6407     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6408     Bytes.dropLeadingBytes(bitcodeStart - buf);
6409     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6410   }
6411   return std::error_code();
6412 }
6413 
6414 namespace {
6415 // FIXME: This class is only here to support the transition to llvm::Error. It
6416 // will be removed once this transition is complete. Clients should prefer to
6417 // deal with the Error value directly, rather than converting to error_code.
6418 class BitcodeErrorCategoryType : public std::error_category {
6419   const char *name() const LLVM_NOEXCEPT override {
6420     return "llvm.bitcode";
6421   }
6422   std::string message(int IE) const override {
6423     BitcodeError E = static_cast<BitcodeError>(IE);
6424     switch (E) {
6425     case BitcodeError::InvalidBitcodeSignature:
6426       return "Invalid bitcode signature";
6427     case BitcodeError::CorruptedBitcode:
6428       return "Corrupted bitcode";
6429     }
6430     llvm_unreachable("Unknown error type!");
6431   }
6432 };
6433 } // end anonymous namespace
6434 
6435 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6436 
6437 const std::error_category &llvm::BitcodeErrorCategory() {
6438   return *ErrorCategory;
6439 }
6440 
6441 //===----------------------------------------------------------------------===//
6442 // External interface
6443 //===----------------------------------------------------------------------===//
6444 
6445 static ErrorOr<std::unique_ptr<Module>>
6446 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6447                      BitcodeReader *R, LLVMContext &Context,
6448                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6449   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6450   M->setMaterializer(R);
6451 
6452   auto cleanupOnError = [&](std::error_code EC) {
6453     R->releaseBuffer(); // Never take ownership on error.
6454     return EC;
6455   };
6456 
6457   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6458   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6459                                                ShouldLazyLoadMetadata))
6460     return cleanupOnError(EC);
6461 
6462   if (MaterializeAll) {
6463     // Read in the entire module, and destroy the BitcodeReader.
6464     if (std::error_code EC = M->materializeAll())
6465       return cleanupOnError(EC);
6466   } else {
6467     // Resolve forward references from blockaddresses.
6468     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6469       return cleanupOnError(EC);
6470   }
6471   return std::move(M);
6472 }
6473 
6474 /// \brief Get a lazy one-at-time loading module from bitcode.
6475 ///
6476 /// This isn't always used in a lazy context.  In particular, it's also used by
6477 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6478 /// in forward-referenced functions from block address references.
6479 ///
6480 /// \param[in] MaterializeAll Set to \c true if we should materialize
6481 /// everything.
6482 static ErrorOr<std::unique_ptr<Module>>
6483 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6484                          LLVMContext &Context, bool MaterializeAll,
6485                          bool ShouldLazyLoadMetadata = false) {
6486   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6487 
6488   ErrorOr<std::unique_ptr<Module>> Ret =
6489       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6490                            MaterializeAll, ShouldLazyLoadMetadata);
6491   if (!Ret)
6492     return Ret;
6493 
6494   Buffer.release(); // The BitcodeReader owns it now.
6495   return Ret;
6496 }
6497 
6498 ErrorOr<std::unique_ptr<Module>>
6499 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6500                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6501   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6502                                   ShouldLazyLoadMetadata);
6503 }
6504 
6505 ErrorOr<std::unique_ptr<Module>>
6506 llvm::getStreamedBitcodeModule(StringRef Name,
6507                                std::unique_ptr<DataStreamer> Streamer,
6508                                LLVMContext &Context) {
6509   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6510   BitcodeReader *R = new BitcodeReader(Context);
6511 
6512   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6513                               false);
6514 }
6515 
6516 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6517                                                         LLVMContext &Context) {
6518   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6519   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6520   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6521   // written.  We must defer until the Module has been fully materialized.
6522 }
6523 
6524 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6525                                          LLVMContext &Context) {
6526   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6527   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6528   ErrorOr<std::string> Triple = R->parseTriple();
6529   if (Triple.getError())
6530     return "";
6531   return Triple.get();
6532 }
6533 
6534 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6535                                            LLVMContext &Context) {
6536   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6537   BitcodeReader R(Buf.release(), Context);
6538   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6539   if (ProducerString.getError())
6540     return "";
6541   return ProducerString.get();
6542 }
6543 
6544 // Parse the specified bitcode buffer, returning the function info index.
6545 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6546     MemoryBufferRef Buffer,
6547     const DiagnosticHandlerFunction &DiagnosticHandler) {
6548   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6549   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6550 
6551   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6552 
6553   auto cleanupOnError = [&](std::error_code EC) {
6554     R.releaseBuffer(); // Never take ownership on error.
6555     return EC;
6556   };
6557 
6558   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6559     return cleanupOnError(EC);
6560 
6561   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6562   return std::move(Index);
6563 }
6564 
6565 // Check if the given bitcode buffer contains a global value summary block.
6566 bool llvm::hasGlobalValueSummary(
6567     MemoryBufferRef Buffer,
6568     const DiagnosticHandlerFunction &DiagnosticHandler) {
6569   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6570   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6571 
6572   auto cleanupOnError = [&](std::error_code EC) {
6573     R.releaseBuffer(); // Never take ownership on error.
6574     return false;
6575   };
6576 
6577   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6578     return cleanupOnError(EC);
6579 
6580   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6581   return R.foundGlobalValSummary();
6582 }
6583