1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 989 (RawFlags & 0x2) ? true : false); 990 } 991 992 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 993 switch (Val) { 994 default: // Map unknown visibilities to default. 995 case 0: return GlobalValue::DefaultVisibility; 996 case 1: return GlobalValue::HiddenVisibility; 997 case 2: return GlobalValue::ProtectedVisibility; 998 } 999 } 1000 1001 static GlobalValue::DLLStorageClassTypes 1002 getDecodedDLLStorageClass(unsigned Val) { 1003 switch (Val) { 1004 default: // Map unknown values to default. 1005 case 0: return GlobalValue::DefaultStorageClass; 1006 case 1: return GlobalValue::DLLImportStorageClass; 1007 case 2: return GlobalValue::DLLExportStorageClass; 1008 } 1009 } 1010 1011 static bool getDecodedDSOLocal(unsigned Val) { 1012 switch(Val) { 1013 default: // Map unknown values to preemptable. 1014 case 0: return false; 1015 case 1: return true; 1016 } 1017 } 1018 1019 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1020 switch (Val) { 1021 case 0: return GlobalVariable::NotThreadLocal; 1022 default: // Map unknown non-zero value to general dynamic. 1023 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1024 case 2: return GlobalVariable::LocalDynamicTLSModel; 1025 case 3: return GlobalVariable::InitialExecTLSModel; 1026 case 4: return GlobalVariable::LocalExecTLSModel; 1027 } 1028 } 1029 1030 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1031 switch (Val) { 1032 default: // Map unknown to UnnamedAddr::None. 1033 case 0: return GlobalVariable::UnnamedAddr::None; 1034 case 1: return GlobalVariable::UnnamedAddr::Global; 1035 case 2: return GlobalVariable::UnnamedAddr::Local; 1036 } 1037 } 1038 1039 static int getDecodedCastOpcode(unsigned Val) { 1040 switch (Val) { 1041 default: return -1; 1042 case bitc::CAST_TRUNC : return Instruction::Trunc; 1043 case bitc::CAST_ZEXT : return Instruction::ZExt; 1044 case bitc::CAST_SEXT : return Instruction::SExt; 1045 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1046 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1047 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1048 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1049 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1050 case bitc::CAST_FPEXT : return Instruction::FPExt; 1051 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1052 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1053 case bitc::CAST_BITCAST : return Instruction::BitCast; 1054 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1055 } 1056 } 1057 1058 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1059 bool IsFP = Ty->isFPOrFPVectorTy(); 1060 // UnOps are only valid for int/fp or vector of int/fp types 1061 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1062 return -1; 1063 1064 switch (Val) { 1065 default: 1066 return -1; 1067 case bitc::UNOP_FNEG: 1068 return IsFP ? Instruction::FNeg : -1; 1069 } 1070 } 1071 1072 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1073 bool IsFP = Ty->isFPOrFPVectorTy(); 1074 // BinOps are only valid for int/fp or vector of int/fp types 1075 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1076 return -1; 1077 1078 switch (Val) { 1079 default: 1080 return -1; 1081 case bitc::BINOP_ADD: 1082 return IsFP ? Instruction::FAdd : Instruction::Add; 1083 case bitc::BINOP_SUB: 1084 return IsFP ? Instruction::FSub : Instruction::Sub; 1085 case bitc::BINOP_MUL: 1086 return IsFP ? Instruction::FMul : Instruction::Mul; 1087 case bitc::BINOP_UDIV: 1088 return IsFP ? -1 : Instruction::UDiv; 1089 case bitc::BINOP_SDIV: 1090 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1091 case bitc::BINOP_UREM: 1092 return IsFP ? -1 : Instruction::URem; 1093 case bitc::BINOP_SREM: 1094 return IsFP ? Instruction::FRem : Instruction::SRem; 1095 case bitc::BINOP_SHL: 1096 return IsFP ? -1 : Instruction::Shl; 1097 case bitc::BINOP_LSHR: 1098 return IsFP ? -1 : Instruction::LShr; 1099 case bitc::BINOP_ASHR: 1100 return IsFP ? -1 : Instruction::AShr; 1101 case bitc::BINOP_AND: 1102 return IsFP ? -1 : Instruction::And; 1103 case bitc::BINOP_OR: 1104 return IsFP ? -1 : Instruction::Or; 1105 case bitc::BINOP_XOR: 1106 return IsFP ? -1 : Instruction::Xor; 1107 } 1108 } 1109 1110 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1111 switch (Val) { 1112 default: return AtomicRMWInst::BAD_BINOP; 1113 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1114 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1115 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1116 case bitc::RMW_AND: return AtomicRMWInst::And; 1117 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1118 case bitc::RMW_OR: return AtomicRMWInst::Or; 1119 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1120 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1121 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1122 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1123 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1124 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1125 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1126 } 1127 } 1128 1129 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1130 switch (Val) { 1131 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1132 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1133 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1134 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1135 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1136 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1137 default: // Map unknown orderings to sequentially-consistent. 1138 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1139 } 1140 } 1141 1142 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1143 switch (Val) { 1144 default: // Map unknown selection kinds to any. 1145 case bitc::COMDAT_SELECTION_KIND_ANY: 1146 return Comdat::Any; 1147 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1148 return Comdat::ExactMatch; 1149 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1150 return Comdat::Largest; 1151 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1152 return Comdat::NoDuplicates; 1153 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1154 return Comdat::SameSize; 1155 } 1156 } 1157 1158 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1159 FastMathFlags FMF; 1160 if (0 != (Val & bitc::UnsafeAlgebra)) 1161 FMF.setFast(); 1162 if (0 != (Val & bitc::AllowReassoc)) 1163 FMF.setAllowReassoc(); 1164 if (0 != (Val & bitc::NoNaNs)) 1165 FMF.setNoNaNs(); 1166 if (0 != (Val & bitc::NoInfs)) 1167 FMF.setNoInfs(); 1168 if (0 != (Val & bitc::NoSignedZeros)) 1169 FMF.setNoSignedZeros(); 1170 if (0 != (Val & bitc::AllowReciprocal)) 1171 FMF.setAllowReciprocal(); 1172 if (0 != (Val & bitc::AllowContract)) 1173 FMF.setAllowContract(true); 1174 if (0 != (Val & bitc::ApproxFunc)) 1175 FMF.setApproxFunc(); 1176 return FMF; 1177 } 1178 1179 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1180 switch (Val) { 1181 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1182 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1183 } 1184 } 1185 1186 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1187 // The type table size is always specified correctly. 1188 if (ID >= TypeList.size()) 1189 return nullptr; 1190 1191 if (Type *Ty = TypeList[ID]) 1192 return Ty; 1193 1194 // If we have a forward reference, the only possible case is when it is to a 1195 // named struct. Just create a placeholder for now. 1196 return TypeList[ID] = createIdentifiedStructType(Context); 1197 } 1198 1199 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1200 StringRef Name) { 1201 auto *Ret = StructType::create(Context, Name); 1202 IdentifiedStructTypes.push_back(Ret); 1203 return Ret; 1204 } 1205 1206 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1207 auto *Ret = StructType::create(Context); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 //===----------------------------------------------------------------------===// 1213 // Functions for parsing blocks from the bitcode file 1214 //===----------------------------------------------------------------------===// 1215 1216 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1217 switch (Val) { 1218 case Attribute::EndAttrKinds: 1219 llvm_unreachable("Synthetic enumerators which should never get here"); 1220 1221 case Attribute::None: return 0; 1222 case Attribute::ZExt: return 1 << 0; 1223 case Attribute::SExt: return 1 << 1; 1224 case Attribute::NoReturn: return 1 << 2; 1225 case Attribute::InReg: return 1 << 3; 1226 case Attribute::StructRet: return 1 << 4; 1227 case Attribute::NoUnwind: return 1 << 5; 1228 case Attribute::NoAlias: return 1 << 6; 1229 case Attribute::ByVal: return 1 << 7; 1230 case Attribute::Nest: return 1 << 8; 1231 case Attribute::ReadNone: return 1 << 9; 1232 case Attribute::ReadOnly: return 1 << 10; 1233 case Attribute::NoInline: return 1 << 11; 1234 case Attribute::AlwaysInline: return 1 << 12; 1235 case Attribute::OptimizeForSize: return 1 << 13; 1236 case Attribute::StackProtect: return 1 << 14; 1237 case Attribute::StackProtectReq: return 1 << 15; 1238 case Attribute::Alignment: return 31 << 16; 1239 case Attribute::NoCapture: return 1 << 21; 1240 case Attribute::NoRedZone: return 1 << 22; 1241 case Attribute::NoImplicitFloat: return 1 << 23; 1242 case Attribute::Naked: return 1 << 24; 1243 case Attribute::InlineHint: return 1 << 25; 1244 case Attribute::StackAlignment: return 7 << 26; 1245 case Attribute::ReturnsTwice: return 1 << 29; 1246 case Attribute::UWTable: return 1 << 30; 1247 case Attribute::NonLazyBind: return 1U << 31; 1248 case Attribute::SanitizeAddress: return 1ULL << 32; 1249 case Attribute::MinSize: return 1ULL << 33; 1250 case Attribute::NoDuplicate: return 1ULL << 34; 1251 case Attribute::StackProtectStrong: return 1ULL << 35; 1252 case Attribute::SanitizeThread: return 1ULL << 36; 1253 case Attribute::SanitizeMemory: return 1ULL << 37; 1254 case Attribute::NoBuiltin: return 1ULL << 38; 1255 case Attribute::Returned: return 1ULL << 39; 1256 case Attribute::Cold: return 1ULL << 40; 1257 case Attribute::Builtin: return 1ULL << 41; 1258 case Attribute::OptimizeNone: return 1ULL << 42; 1259 case Attribute::InAlloca: return 1ULL << 43; 1260 case Attribute::NonNull: return 1ULL << 44; 1261 case Attribute::JumpTable: return 1ULL << 45; 1262 case Attribute::Convergent: return 1ULL << 46; 1263 case Attribute::SafeStack: return 1ULL << 47; 1264 case Attribute::NoRecurse: return 1ULL << 48; 1265 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1266 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1267 case Attribute::SwiftSelf: return 1ULL << 51; 1268 case Attribute::SwiftError: return 1ULL << 52; 1269 case Attribute::WriteOnly: return 1ULL << 53; 1270 case Attribute::Speculatable: return 1ULL << 54; 1271 case Attribute::StrictFP: return 1ULL << 55; 1272 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1273 case Attribute::NoCfCheck: return 1ULL << 57; 1274 case Attribute::OptForFuzzing: return 1ULL << 58; 1275 case Attribute::ShadowCallStack: return 1ULL << 59; 1276 case Attribute::SpeculativeLoadHardening: 1277 return 1ULL << 60; 1278 case Attribute::ImmArg: 1279 return 1ULL << 61; 1280 case Attribute::WillReturn: 1281 return 1ULL << 62; 1282 case Attribute::NoFree: 1283 return 1ULL << 63; 1284 case Attribute::NoSync: 1285 llvm_unreachable("nosync attribute not supported in raw format"); 1286 break; 1287 case Attribute::Dereferenceable: 1288 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1289 break; 1290 case Attribute::DereferenceableOrNull: 1291 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1292 "format"); 1293 break; 1294 case Attribute::ArgMemOnly: 1295 llvm_unreachable("argmemonly attribute not supported in raw format"); 1296 break; 1297 case Attribute::AllocSize: 1298 llvm_unreachable("allocsize not supported in raw format"); 1299 break; 1300 case Attribute::SanitizeMemTag: 1301 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1302 break; 1303 } 1304 llvm_unreachable("Unsupported attribute type"); 1305 } 1306 1307 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1308 if (!Val) return; 1309 1310 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1311 I = Attribute::AttrKind(I + 1)) { 1312 if (I == Attribute::SanitizeMemTag || 1313 I == Attribute::Dereferenceable || 1314 I == Attribute::DereferenceableOrNull || 1315 I == Attribute::ArgMemOnly || 1316 I == Attribute::AllocSize || 1317 I == Attribute::NoSync) 1318 continue; 1319 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1320 if (I == Attribute::Alignment) 1321 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1322 else if (I == Attribute::StackAlignment) 1323 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1324 else 1325 B.addAttribute(I); 1326 } 1327 } 1328 } 1329 1330 /// This fills an AttrBuilder object with the LLVM attributes that have 1331 /// been decoded from the given integer. This function must stay in sync with 1332 /// 'encodeLLVMAttributesForBitcode'. 1333 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1334 uint64_t EncodedAttrs) { 1335 // FIXME: Remove in 4.0. 1336 1337 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1338 // the bits above 31 down by 11 bits. 1339 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1340 assert((!Alignment || isPowerOf2_32(Alignment)) && 1341 "Alignment must be a power of two."); 1342 1343 if (Alignment) 1344 B.addAlignmentAttr(Alignment); 1345 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1346 (EncodedAttrs & 0xffff)); 1347 } 1348 1349 Error BitcodeReader::parseAttributeBlock() { 1350 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1351 return Err; 1352 1353 if (!MAttributes.empty()) 1354 return error("Invalid multiple blocks"); 1355 1356 SmallVector<uint64_t, 64> Record; 1357 1358 SmallVector<AttributeList, 8> Attrs; 1359 1360 // Read all the records. 1361 while (true) { 1362 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1363 if (!MaybeEntry) 1364 return MaybeEntry.takeError(); 1365 BitstreamEntry Entry = MaybeEntry.get(); 1366 1367 switch (Entry.Kind) { 1368 case BitstreamEntry::SubBlock: // Handled for us already. 1369 case BitstreamEntry::Error: 1370 return error("Malformed block"); 1371 case BitstreamEntry::EndBlock: 1372 return Error::success(); 1373 case BitstreamEntry::Record: 1374 // The interesting case. 1375 break; 1376 } 1377 1378 // Read a record. 1379 Record.clear(); 1380 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1381 if (!MaybeRecord) 1382 return MaybeRecord.takeError(); 1383 switch (MaybeRecord.get()) { 1384 default: // Default behavior: ignore. 1385 break; 1386 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1387 // FIXME: Remove in 4.0. 1388 if (Record.size() & 1) 1389 return error("Invalid record"); 1390 1391 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1392 AttrBuilder B; 1393 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1394 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1395 } 1396 1397 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1398 Attrs.clear(); 1399 break; 1400 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1401 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1402 Attrs.push_back(MAttributeGroups[Record[i]]); 1403 1404 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1405 Attrs.clear(); 1406 break; 1407 } 1408 } 1409 } 1410 1411 // Returns Attribute::None on unrecognized codes. 1412 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1413 switch (Code) { 1414 default: 1415 return Attribute::None; 1416 case bitc::ATTR_KIND_ALIGNMENT: 1417 return Attribute::Alignment; 1418 case bitc::ATTR_KIND_ALWAYS_INLINE: 1419 return Attribute::AlwaysInline; 1420 case bitc::ATTR_KIND_ARGMEMONLY: 1421 return Attribute::ArgMemOnly; 1422 case bitc::ATTR_KIND_BUILTIN: 1423 return Attribute::Builtin; 1424 case bitc::ATTR_KIND_BY_VAL: 1425 return Attribute::ByVal; 1426 case bitc::ATTR_KIND_IN_ALLOCA: 1427 return Attribute::InAlloca; 1428 case bitc::ATTR_KIND_COLD: 1429 return Attribute::Cold; 1430 case bitc::ATTR_KIND_CONVERGENT: 1431 return Attribute::Convergent; 1432 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1433 return Attribute::InaccessibleMemOnly; 1434 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1435 return Attribute::InaccessibleMemOrArgMemOnly; 1436 case bitc::ATTR_KIND_INLINE_HINT: 1437 return Attribute::InlineHint; 1438 case bitc::ATTR_KIND_IN_REG: 1439 return Attribute::InReg; 1440 case bitc::ATTR_KIND_JUMP_TABLE: 1441 return Attribute::JumpTable; 1442 case bitc::ATTR_KIND_MIN_SIZE: 1443 return Attribute::MinSize; 1444 case bitc::ATTR_KIND_NAKED: 1445 return Attribute::Naked; 1446 case bitc::ATTR_KIND_NEST: 1447 return Attribute::Nest; 1448 case bitc::ATTR_KIND_NO_ALIAS: 1449 return Attribute::NoAlias; 1450 case bitc::ATTR_KIND_NO_BUILTIN: 1451 return Attribute::NoBuiltin; 1452 case bitc::ATTR_KIND_NO_CAPTURE: 1453 return Attribute::NoCapture; 1454 case bitc::ATTR_KIND_NO_DUPLICATE: 1455 return Attribute::NoDuplicate; 1456 case bitc::ATTR_KIND_NOFREE: 1457 return Attribute::NoFree; 1458 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1459 return Attribute::NoImplicitFloat; 1460 case bitc::ATTR_KIND_NO_INLINE: 1461 return Attribute::NoInline; 1462 case bitc::ATTR_KIND_NO_RECURSE: 1463 return Attribute::NoRecurse; 1464 case bitc::ATTR_KIND_NON_LAZY_BIND: 1465 return Attribute::NonLazyBind; 1466 case bitc::ATTR_KIND_NON_NULL: 1467 return Attribute::NonNull; 1468 case bitc::ATTR_KIND_DEREFERENCEABLE: 1469 return Attribute::Dereferenceable; 1470 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1471 return Attribute::DereferenceableOrNull; 1472 case bitc::ATTR_KIND_ALLOC_SIZE: 1473 return Attribute::AllocSize; 1474 case bitc::ATTR_KIND_NO_RED_ZONE: 1475 return Attribute::NoRedZone; 1476 case bitc::ATTR_KIND_NO_RETURN: 1477 return Attribute::NoReturn; 1478 case bitc::ATTR_KIND_NOSYNC: 1479 return Attribute::NoSync; 1480 case bitc::ATTR_KIND_NOCF_CHECK: 1481 return Attribute::NoCfCheck; 1482 case bitc::ATTR_KIND_NO_UNWIND: 1483 return Attribute::NoUnwind; 1484 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1485 return Attribute::OptForFuzzing; 1486 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1487 return Attribute::OptimizeForSize; 1488 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1489 return Attribute::OptimizeNone; 1490 case bitc::ATTR_KIND_READ_NONE: 1491 return Attribute::ReadNone; 1492 case bitc::ATTR_KIND_READ_ONLY: 1493 return Attribute::ReadOnly; 1494 case bitc::ATTR_KIND_RETURNED: 1495 return Attribute::Returned; 1496 case bitc::ATTR_KIND_RETURNS_TWICE: 1497 return Attribute::ReturnsTwice; 1498 case bitc::ATTR_KIND_S_EXT: 1499 return Attribute::SExt; 1500 case bitc::ATTR_KIND_SPECULATABLE: 1501 return Attribute::Speculatable; 1502 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1503 return Attribute::StackAlignment; 1504 case bitc::ATTR_KIND_STACK_PROTECT: 1505 return Attribute::StackProtect; 1506 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1507 return Attribute::StackProtectReq; 1508 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1509 return Attribute::StackProtectStrong; 1510 case bitc::ATTR_KIND_SAFESTACK: 1511 return Attribute::SafeStack; 1512 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1513 return Attribute::ShadowCallStack; 1514 case bitc::ATTR_KIND_STRICT_FP: 1515 return Attribute::StrictFP; 1516 case bitc::ATTR_KIND_STRUCT_RET: 1517 return Attribute::StructRet; 1518 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1519 return Attribute::SanitizeAddress; 1520 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1521 return Attribute::SanitizeHWAddress; 1522 case bitc::ATTR_KIND_SANITIZE_THREAD: 1523 return Attribute::SanitizeThread; 1524 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1525 return Attribute::SanitizeMemory; 1526 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1527 return Attribute::SpeculativeLoadHardening; 1528 case bitc::ATTR_KIND_SWIFT_ERROR: 1529 return Attribute::SwiftError; 1530 case bitc::ATTR_KIND_SWIFT_SELF: 1531 return Attribute::SwiftSelf; 1532 case bitc::ATTR_KIND_UW_TABLE: 1533 return Attribute::UWTable; 1534 case bitc::ATTR_KIND_WILLRETURN: 1535 return Attribute::WillReturn; 1536 case bitc::ATTR_KIND_WRITEONLY: 1537 return Attribute::WriteOnly; 1538 case bitc::ATTR_KIND_Z_EXT: 1539 return Attribute::ZExt; 1540 case bitc::ATTR_KIND_IMMARG: 1541 return Attribute::ImmArg; 1542 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1543 return Attribute::SanitizeMemTag; 1544 } 1545 } 1546 1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1548 MaybeAlign &Alignment) { 1549 // Note: Alignment in bitcode files is incremented by 1, so that zero 1550 // can be used for default alignment. 1551 if (Exponent > Value::MaxAlignmentExponent + 1) 1552 return error("Invalid alignment value"); 1553 Alignment = decodeMaybeAlign(Exponent); 1554 return Error::success(); 1555 } 1556 1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1558 *Kind = getAttrFromCode(Code); 1559 if (*Kind == Attribute::None) 1560 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1561 return Error::success(); 1562 } 1563 1564 Error BitcodeReader::parseAttributeGroupBlock() { 1565 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1566 return Err; 1567 1568 if (!MAttributeGroups.empty()) 1569 return error("Invalid multiple blocks"); 1570 1571 SmallVector<uint64_t, 64> Record; 1572 1573 // Read all the records. 1574 while (true) { 1575 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1576 if (!MaybeEntry) 1577 return MaybeEntry.takeError(); 1578 BitstreamEntry Entry = MaybeEntry.get(); 1579 1580 switch (Entry.Kind) { 1581 case BitstreamEntry::SubBlock: // Handled for us already. 1582 case BitstreamEntry::Error: 1583 return error("Malformed block"); 1584 case BitstreamEntry::EndBlock: 1585 return Error::success(); 1586 case BitstreamEntry::Record: 1587 // The interesting case. 1588 break; 1589 } 1590 1591 // Read a record. 1592 Record.clear(); 1593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1594 if (!MaybeRecord) 1595 return MaybeRecord.takeError(); 1596 switch (MaybeRecord.get()) { 1597 default: // Default behavior: ignore. 1598 break; 1599 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1600 if (Record.size() < 3) 1601 return error("Invalid record"); 1602 1603 uint64_t GrpID = Record[0]; 1604 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1605 1606 AttrBuilder B; 1607 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1608 if (Record[i] == 0) { // Enum attribute 1609 Attribute::AttrKind Kind; 1610 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1611 return Err; 1612 1613 // Upgrade old-style byval attribute to one with a type, even if it's 1614 // nullptr. We will have to insert the real type when we associate 1615 // this AttributeList with a function. 1616 if (Kind == Attribute::ByVal) 1617 B.addByValAttr(nullptr); 1618 1619 B.addAttribute(Kind); 1620 } else if (Record[i] == 1) { // Integer attribute 1621 Attribute::AttrKind Kind; 1622 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1623 return Err; 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1635 bool HasValue = (Record[i++] == 4); 1636 SmallString<64> KindStr; 1637 SmallString<64> ValStr; 1638 1639 while (Record[i] != 0 && i != e) 1640 KindStr += Record[i++]; 1641 assert(Record[i] == 0 && "Kind string not null terminated"); 1642 1643 if (HasValue) { 1644 // Has a value associated with it. 1645 ++i; // Skip the '0' that terminates the "kind" string. 1646 while (Record[i] != 0 && i != e) 1647 ValStr += Record[i++]; 1648 assert(Record[i] == 0 && "Value string not null terminated"); 1649 } 1650 1651 B.addAttribute(KindStr.str(), ValStr.str()); 1652 } else { 1653 assert((Record[i] == 5 || Record[i] == 6) && 1654 "Invalid attribute group entry"); 1655 bool HasType = Record[i] == 6; 1656 Attribute::AttrKind Kind; 1657 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1658 return Err; 1659 if (Kind == Attribute::ByVal) 1660 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1665 break; 1666 } 1667 } 1668 } 1669 } 1670 1671 Error BitcodeReader::parseTypeTable() { 1672 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1673 return Err; 1674 1675 return parseTypeTableBody(); 1676 } 1677 1678 Error BitcodeReader::parseTypeTableBody() { 1679 if (!TypeList.empty()) 1680 return error("Invalid multiple blocks"); 1681 1682 SmallVector<uint64_t, 64> Record; 1683 unsigned NumRecords = 0; 1684 1685 SmallString<64> TypeName; 1686 1687 // Read all the records for this type table. 1688 while (true) { 1689 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1690 if (!MaybeEntry) 1691 return MaybeEntry.takeError(); 1692 BitstreamEntry Entry = MaybeEntry.get(); 1693 1694 switch (Entry.Kind) { 1695 case BitstreamEntry::SubBlock: // Handled for us already. 1696 case BitstreamEntry::Error: 1697 return error("Malformed block"); 1698 case BitstreamEntry::EndBlock: 1699 if (NumRecords != TypeList.size()) 1700 return error("Malformed block"); 1701 return Error::success(); 1702 case BitstreamEntry::Record: 1703 // The interesting case. 1704 break; 1705 } 1706 1707 // Read a record. 1708 Record.clear(); 1709 Type *ResultTy = nullptr; 1710 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1711 if (!MaybeRecord) 1712 return MaybeRecord.takeError(); 1713 switch (MaybeRecord.get()) { 1714 default: 1715 return error("Invalid value"); 1716 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1717 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1718 // type list. This allows us to reserve space. 1719 if (Record.size() < 1) 1720 return error("Invalid record"); 1721 TypeList.resize(Record[0]); 1722 continue; 1723 case bitc::TYPE_CODE_VOID: // VOID 1724 ResultTy = Type::getVoidTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_HALF: // HALF 1727 ResultTy = Type::getHalfTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_FLOAT: // FLOAT 1730 ResultTy = Type::getFloatTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1733 ResultTy = Type::getDoubleTy(Context); 1734 break; 1735 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1736 ResultTy = Type::getX86_FP80Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_FP128: // FP128 1739 ResultTy = Type::getFP128Ty(Context); 1740 break; 1741 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1742 ResultTy = Type::getPPC_FP128Ty(Context); 1743 break; 1744 case bitc::TYPE_CODE_LABEL: // LABEL 1745 ResultTy = Type::getLabelTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_METADATA: // METADATA 1748 ResultTy = Type::getMetadataTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1751 ResultTy = Type::getX86_MMXTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_TOKEN: // TOKEN 1754 ResultTy = Type::getTokenTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1757 if (Record.size() < 1) 1758 return error("Invalid record"); 1759 1760 uint64_t NumBits = Record[0]; 1761 if (NumBits < IntegerType::MIN_INT_BITS || 1762 NumBits > IntegerType::MAX_INT_BITS) 1763 return error("Bitwidth for integer type out of range"); 1764 ResultTy = IntegerType::get(Context, NumBits); 1765 break; 1766 } 1767 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1768 // [pointee type, address space] 1769 if (Record.size() < 1) 1770 return error("Invalid record"); 1771 unsigned AddressSpace = 0; 1772 if (Record.size() == 2) 1773 AddressSpace = Record[1]; 1774 ResultTy = getTypeByID(Record[0]); 1775 if (!ResultTy || 1776 !PointerType::isValidElementType(ResultTy)) 1777 return error("Invalid type"); 1778 ResultTy = PointerType::get(ResultTy, AddressSpace); 1779 break; 1780 } 1781 case bitc::TYPE_CODE_FUNCTION_OLD: { 1782 // FIXME: attrid is dead, remove it in LLVM 4.0 1783 // FUNCTION: [vararg, attrid, retty, paramty x N] 1784 if (Record.size() < 3) 1785 return error("Invalid record"); 1786 SmallVector<Type*, 8> ArgTys; 1787 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1788 if (Type *T = getTypeByID(Record[i])) 1789 ArgTys.push_back(T); 1790 else 1791 break; 1792 } 1793 1794 ResultTy = getTypeByID(Record[2]); 1795 if (!ResultTy || ArgTys.size() < Record.size()-3) 1796 return error("Invalid type"); 1797 1798 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1799 break; 1800 } 1801 case bitc::TYPE_CODE_FUNCTION: { 1802 // FUNCTION: [vararg, retty, paramty x N] 1803 if (Record.size() < 2) 1804 return error("Invalid record"); 1805 SmallVector<Type*, 8> ArgTys; 1806 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1807 if (Type *T = getTypeByID(Record[i])) { 1808 if (!FunctionType::isValidArgumentType(T)) 1809 return error("Invalid function argument type"); 1810 ArgTys.push_back(T); 1811 } 1812 else 1813 break; 1814 } 1815 1816 ResultTy = getTypeByID(Record[1]); 1817 if (!ResultTy || ArgTys.size() < Record.size()-2) 1818 return error("Invalid type"); 1819 1820 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1821 break; 1822 } 1823 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1824 if (Record.size() < 1) 1825 return error("Invalid record"); 1826 SmallVector<Type*, 8> EltTys; 1827 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1828 if (Type *T = getTypeByID(Record[i])) 1829 EltTys.push_back(T); 1830 else 1831 break; 1832 } 1833 if (EltTys.size() != Record.size()-1) 1834 return error("Invalid type"); 1835 ResultTy = StructType::get(Context, EltTys, Record[0]); 1836 break; 1837 } 1838 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1839 if (convertToString(Record, 0, TypeName)) 1840 return error("Invalid record"); 1841 continue; 1842 1843 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1844 if (Record.size() < 1) 1845 return error("Invalid record"); 1846 1847 if (NumRecords >= TypeList.size()) 1848 return error("Invalid TYPE table"); 1849 1850 // Check to see if this was forward referenced, if so fill in the temp. 1851 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1852 if (Res) { 1853 Res->setName(TypeName); 1854 TypeList[NumRecords] = nullptr; 1855 } else // Otherwise, create a new struct. 1856 Res = createIdentifiedStructType(Context, TypeName); 1857 TypeName.clear(); 1858 1859 SmallVector<Type*, 8> EltTys; 1860 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1861 if (Type *T = getTypeByID(Record[i])) 1862 EltTys.push_back(T); 1863 else 1864 break; 1865 } 1866 if (EltTys.size() != Record.size()-1) 1867 return error("Invalid record"); 1868 Res->setBody(EltTys, Record[0]); 1869 ResultTy = Res; 1870 break; 1871 } 1872 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1873 if (Record.size() != 1) 1874 return error("Invalid record"); 1875 1876 if (NumRecords >= TypeList.size()) 1877 return error("Invalid TYPE table"); 1878 1879 // Check to see if this was forward referenced, if so fill in the temp. 1880 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1881 if (Res) { 1882 Res->setName(TypeName); 1883 TypeList[NumRecords] = nullptr; 1884 } else // Otherwise, create a new struct with no body. 1885 Res = createIdentifiedStructType(Context, TypeName); 1886 TypeName.clear(); 1887 ResultTy = Res; 1888 break; 1889 } 1890 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1891 if (Record.size() < 2) 1892 return error("Invalid record"); 1893 ResultTy = getTypeByID(Record[1]); 1894 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1895 return error("Invalid type"); 1896 ResultTy = ArrayType::get(ResultTy, Record[0]); 1897 break; 1898 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1899 // [numelts, eltty, scalable] 1900 if (Record.size() < 2) 1901 return error("Invalid record"); 1902 if (Record[0] == 0) 1903 return error("Invalid vector length"); 1904 ResultTy = getTypeByID(Record[1]); 1905 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1906 return error("Invalid type"); 1907 bool Scalable = Record.size() > 2 ? Record[2] : false; 1908 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1909 break; 1910 } 1911 1912 if (NumRecords >= TypeList.size()) 1913 return error("Invalid TYPE table"); 1914 if (TypeList[NumRecords]) 1915 return error( 1916 "Invalid TYPE table: Only named structs can be forward referenced"); 1917 assert(ResultTy && "Didn't read a type?"); 1918 TypeList[NumRecords++] = ResultTy; 1919 } 1920 } 1921 1922 Error BitcodeReader::parseOperandBundleTags() { 1923 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1924 return Err; 1925 1926 if (!BundleTags.empty()) 1927 return error("Invalid multiple blocks"); 1928 1929 SmallVector<uint64_t, 64> Record; 1930 1931 while (true) { 1932 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1933 if (!MaybeEntry) 1934 return MaybeEntry.takeError(); 1935 BitstreamEntry Entry = MaybeEntry.get(); 1936 1937 switch (Entry.Kind) { 1938 case BitstreamEntry::SubBlock: // Handled for us already. 1939 case BitstreamEntry::Error: 1940 return error("Malformed block"); 1941 case BitstreamEntry::EndBlock: 1942 return Error::success(); 1943 case BitstreamEntry::Record: 1944 // The interesting case. 1945 break; 1946 } 1947 1948 // Tags are implicitly mapped to integers by their order. 1949 1950 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1951 if (!MaybeRecord) 1952 return MaybeRecord.takeError(); 1953 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1954 return error("Invalid record"); 1955 1956 // OPERAND_BUNDLE_TAG: [strchr x N] 1957 BundleTags.emplace_back(); 1958 if (convertToString(Record, 0, BundleTags.back())) 1959 return error("Invalid record"); 1960 Record.clear(); 1961 } 1962 } 1963 1964 Error BitcodeReader::parseSyncScopeNames() { 1965 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1966 return Err; 1967 1968 if (!SSIDs.empty()) 1969 return error("Invalid multiple synchronization scope names blocks"); 1970 1971 SmallVector<uint64_t, 64> Record; 1972 while (true) { 1973 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1974 if (!MaybeEntry) 1975 return MaybeEntry.takeError(); 1976 BitstreamEntry Entry = MaybeEntry.get(); 1977 1978 switch (Entry.Kind) { 1979 case BitstreamEntry::SubBlock: // Handled for us already. 1980 case BitstreamEntry::Error: 1981 return error("Malformed block"); 1982 case BitstreamEntry::EndBlock: 1983 if (SSIDs.empty()) 1984 return error("Invalid empty synchronization scope names block"); 1985 return Error::success(); 1986 case BitstreamEntry::Record: 1987 // The interesting case. 1988 break; 1989 } 1990 1991 // Synchronization scope names are implicitly mapped to synchronization 1992 // scope IDs by their order. 1993 1994 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1995 if (!MaybeRecord) 1996 return MaybeRecord.takeError(); 1997 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1998 return error("Invalid record"); 1999 2000 SmallString<16> SSN; 2001 if (convertToString(Record, 0, SSN)) 2002 return error("Invalid record"); 2003 2004 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2005 Record.clear(); 2006 } 2007 } 2008 2009 /// Associate a value with its name from the given index in the provided record. 2010 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2011 unsigned NameIndex, Triple &TT) { 2012 SmallString<128> ValueName; 2013 if (convertToString(Record, NameIndex, ValueName)) 2014 return error("Invalid record"); 2015 unsigned ValueID = Record[0]; 2016 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2017 return error("Invalid record"); 2018 Value *V = ValueList[ValueID]; 2019 2020 StringRef NameStr(ValueName.data(), ValueName.size()); 2021 if (NameStr.find_first_of(0) != StringRef::npos) 2022 return error("Invalid value name"); 2023 V->setName(NameStr); 2024 auto *GO = dyn_cast<GlobalObject>(V); 2025 if (GO) { 2026 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2027 if (TT.supportsCOMDAT()) 2028 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2029 else 2030 GO->setComdat(nullptr); 2031 } 2032 } 2033 return V; 2034 } 2035 2036 /// Helper to note and return the current location, and jump to the given 2037 /// offset. 2038 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2039 BitstreamCursor &Stream) { 2040 // Save the current parsing location so we can jump back at the end 2041 // of the VST read. 2042 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2043 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2044 return std::move(JumpFailed); 2045 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2046 if (!MaybeEntry) 2047 return MaybeEntry.takeError(); 2048 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2049 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2050 return CurrentBit; 2051 } 2052 2053 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2054 Function *F, 2055 ArrayRef<uint64_t> Record) { 2056 // Note that we subtract 1 here because the offset is relative to one word 2057 // before the start of the identification or module block, which was 2058 // historically always the start of the regular bitcode header. 2059 uint64_t FuncWordOffset = Record[1] - 1; 2060 uint64_t FuncBitOffset = FuncWordOffset * 32; 2061 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2062 // Set the LastFunctionBlockBit to point to the last function block. 2063 // Later when parsing is resumed after function materialization, 2064 // we can simply skip that last function block. 2065 if (FuncBitOffset > LastFunctionBlockBit) 2066 LastFunctionBlockBit = FuncBitOffset; 2067 } 2068 2069 /// Read a new-style GlobalValue symbol table. 2070 Error BitcodeReader::parseGlobalValueSymbolTable() { 2071 unsigned FuncBitcodeOffsetDelta = 2072 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2073 2074 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2075 return Err; 2076 2077 SmallVector<uint64_t, 64> Record; 2078 while (true) { 2079 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2080 if (!MaybeEntry) 2081 return MaybeEntry.takeError(); 2082 BitstreamEntry Entry = MaybeEntry.get(); 2083 2084 switch (Entry.Kind) { 2085 case BitstreamEntry::SubBlock: 2086 case BitstreamEntry::Error: 2087 return error("Malformed block"); 2088 case BitstreamEntry::EndBlock: 2089 return Error::success(); 2090 case BitstreamEntry::Record: 2091 break; 2092 } 2093 2094 Record.clear(); 2095 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2096 if (!MaybeRecord) 2097 return MaybeRecord.takeError(); 2098 switch (MaybeRecord.get()) { 2099 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2100 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2101 cast<Function>(ValueList[Record[0]]), Record); 2102 break; 2103 } 2104 } 2105 } 2106 2107 /// Parse the value symbol table at either the current parsing location or 2108 /// at the given bit offset if provided. 2109 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2110 uint64_t CurrentBit; 2111 // Pass in the Offset to distinguish between calling for the module-level 2112 // VST (where we want to jump to the VST offset) and the function-level 2113 // VST (where we don't). 2114 if (Offset > 0) { 2115 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2116 if (!MaybeCurrentBit) 2117 return MaybeCurrentBit.takeError(); 2118 CurrentBit = MaybeCurrentBit.get(); 2119 // If this module uses a string table, read this as a module-level VST. 2120 if (UseStrtab) { 2121 if (Error Err = parseGlobalValueSymbolTable()) 2122 return Err; 2123 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2124 return JumpFailed; 2125 return Error::success(); 2126 } 2127 // Otherwise, the VST will be in a similar format to a function-level VST, 2128 // and will contain symbol names. 2129 } 2130 2131 // Compute the delta between the bitcode indices in the VST (the word offset 2132 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2133 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2134 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2135 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2136 // just before entering the VST subblock because: 1) the EnterSubBlock 2137 // changes the AbbrevID width; 2) the VST block is nested within the same 2138 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2139 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2140 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2141 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2142 unsigned FuncBitcodeOffsetDelta = 2143 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2144 2145 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2146 return Err; 2147 2148 SmallVector<uint64_t, 64> Record; 2149 2150 Triple TT(TheModule->getTargetTriple()); 2151 2152 // Read all the records for this value table. 2153 SmallString<128> ValueName; 2154 2155 while (true) { 2156 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2157 if (!MaybeEntry) 2158 return MaybeEntry.takeError(); 2159 BitstreamEntry Entry = MaybeEntry.get(); 2160 2161 switch (Entry.Kind) { 2162 case BitstreamEntry::SubBlock: // Handled for us already. 2163 case BitstreamEntry::Error: 2164 return error("Malformed block"); 2165 case BitstreamEntry::EndBlock: 2166 if (Offset > 0) 2167 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2168 return JumpFailed; 2169 return Error::success(); 2170 case BitstreamEntry::Record: 2171 // The interesting case. 2172 break; 2173 } 2174 2175 // Read a record. 2176 Record.clear(); 2177 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2178 if (!MaybeRecord) 2179 return MaybeRecord.takeError(); 2180 switch (MaybeRecord.get()) { 2181 default: // Default behavior: unknown type. 2182 break; 2183 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2184 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2185 if (Error Err = ValOrErr.takeError()) 2186 return Err; 2187 ValOrErr.get(); 2188 break; 2189 } 2190 case bitc::VST_CODE_FNENTRY: { 2191 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2192 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2193 if (Error Err = ValOrErr.takeError()) 2194 return Err; 2195 Value *V = ValOrErr.get(); 2196 2197 // Ignore function offsets emitted for aliases of functions in older 2198 // versions of LLVM. 2199 if (auto *F = dyn_cast<Function>(V)) 2200 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2201 break; 2202 } 2203 case bitc::VST_CODE_BBENTRY: { 2204 if (convertToString(Record, 1, ValueName)) 2205 return error("Invalid record"); 2206 BasicBlock *BB = getBasicBlock(Record[0]); 2207 if (!BB) 2208 return error("Invalid record"); 2209 2210 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2211 ValueName.clear(); 2212 break; 2213 } 2214 } 2215 } 2216 } 2217 2218 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2219 /// encoding. 2220 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2221 if ((V & 1) == 0) 2222 return V >> 1; 2223 if (V != 1) 2224 return -(V >> 1); 2225 // There is no such thing as -0 with integers. "-0" really means MININT. 2226 return 1ULL << 63; 2227 } 2228 2229 /// Resolve all of the initializers for global values and aliases that we can. 2230 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2231 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2232 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2233 IndirectSymbolInitWorklist; 2234 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2235 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2236 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2237 2238 GlobalInitWorklist.swap(GlobalInits); 2239 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2240 FunctionPrefixWorklist.swap(FunctionPrefixes); 2241 FunctionPrologueWorklist.swap(FunctionPrologues); 2242 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2243 2244 while (!GlobalInitWorklist.empty()) { 2245 unsigned ValID = GlobalInitWorklist.back().second; 2246 if (ValID >= ValueList.size()) { 2247 // Not ready to resolve this yet, it requires something later in the file. 2248 GlobalInits.push_back(GlobalInitWorklist.back()); 2249 } else { 2250 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2251 GlobalInitWorklist.back().first->setInitializer(C); 2252 else 2253 return error("Expected a constant"); 2254 } 2255 GlobalInitWorklist.pop_back(); 2256 } 2257 2258 while (!IndirectSymbolInitWorklist.empty()) { 2259 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2260 if (ValID >= ValueList.size()) { 2261 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2262 } else { 2263 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2264 if (!C) 2265 return error("Expected a constant"); 2266 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2267 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2268 return error("Alias and aliasee types don't match"); 2269 GIS->setIndirectSymbol(C); 2270 } 2271 IndirectSymbolInitWorklist.pop_back(); 2272 } 2273 2274 while (!FunctionPrefixWorklist.empty()) { 2275 unsigned ValID = FunctionPrefixWorklist.back().second; 2276 if (ValID >= ValueList.size()) { 2277 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2278 } else { 2279 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2280 FunctionPrefixWorklist.back().first->setPrefixData(C); 2281 else 2282 return error("Expected a constant"); 2283 } 2284 FunctionPrefixWorklist.pop_back(); 2285 } 2286 2287 while (!FunctionPrologueWorklist.empty()) { 2288 unsigned ValID = FunctionPrologueWorklist.back().second; 2289 if (ValID >= ValueList.size()) { 2290 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2291 } else { 2292 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2293 FunctionPrologueWorklist.back().first->setPrologueData(C); 2294 else 2295 return error("Expected a constant"); 2296 } 2297 FunctionPrologueWorklist.pop_back(); 2298 } 2299 2300 while (!FunctionPersonalityFnWorklist.empty()) { 2301 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2302 if (ValID >= ValueList.size()) { 2303 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2304 } else { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2307 else 2308 return error("Expected a constant"); 2309 } 2310 FunctionPersonalityFnWorklist.pop_back(); 2311 } 2312 2313 return Error::success(); 2314 } 2315 2316 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2317 SmallVector<uint64_t, 8> Words(Vals.size()); 2318 transform(Vals, Words.begin(), 2319 BitcodeReader::decodeSignRotatedValue); 2320 2321 return APInt(TypeBits, Words); 2322 } 2323 2324 Error BitcodeReader::parseConstants() { 2325 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2326 return Err; 2327 2328 SmallVector<uint64_t, 64> Record; 2329 2330 // Read all the records for this value table. 2331 Type *CurTy = Type::getInt32Ty(Context); 2332 Type *CurFullTy = Type::getInt32Ty(Context); 2333 unsigned NextCstNo = ValueList.size(); 2334 2335 while (true) { 2336 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2337 if (!MaybeEntry) 2338 return MaybeEntry.takeError(); 2339 BitstreamEntry Entry = MaybeEntry.get(); 2340 2341 switch (Entry.Kind) { 2342 case BitstreamEntry::SubBlock: // Handled for us already. 2343 case BitstreamEntry::Error: 2344 return error("Malformed block"); 2345 case BitstreamEntry::EndBlock: 2346 if (NextCstNo != ValueList.size()) 2347 return error("Invalid constant reference"); 2348 2349 // Once all the constants have been read, go through and resolve forward 2350 // references. 2351 ValueList.resolveConstantForwardRefs(); 2352 return Error::success(); 2353 case BitstreamEntry::Record: 2354 // The interesting case. 2355 break; 2356 } 2357 2358 // Read a record. 2359 Record.clear(); 2360 Type *VoidType = Type::getVoidTy(Context); 2361 Value *V = nullptr; 2362 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2363 if (!MaybeBitCode) 2364 return MaybeBitCode.takeError(); 2365 switch (unsigned BitCode = MaybeBitCode.get()) { 2366 default: // Default behavior: unknown constant 2367 case bitc::CST_CODE_UNDEF: // UNDEF 2368 V = UndefValue::get(CurTy); 2369 break; 2370 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2371 if (Record.empty()) 2372 return error("Invalid record"); 2373 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2374 return error("Invalid record"); 2375 if (TypeList[Record[0]] == VoidType) 2376 return error("Invalid constant type"); 2377 CurFullTy = TypeList[Record[0]]; 2378 CurTy = flattenPointerTypes(CurFullTy); 2379 continue; // Skip the ValueList manipulation. 2380 case bitc::CST_CODE_NULL: // NULL 2381 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2382 return error("Invalid type for a constant null value"); 2383 V = Constant::getNullValue(CurTy); 2384 break; 2385 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2386 if (!CurTy->isIntegerTy() || Record.empty()) 2387 return error("Invalid record"); 2388 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2389 break; 2390 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2391 if (!CurTy->isIntegerTy() || Record.empty()) 2392 return error("Invalid record"); 2393 2394 APInt VInt = 2395 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2396 V = ConstantInt::get(Context, VInt); 2397 2398 break; 2399 } 2400 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2401 if (Record.empty()) 2402 return error("Invalid record"); 2403 if (CurTy->isHalfTy()) 2404 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2405 APInt(16, (uint16_t)Record[0]))); 2406 else if (CurTy->isFloatTy()) 2407 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2408 APInt(32, (uint32_t)Record[0]))); 2409 else if (CurTy->isDoubleTy()) 2410 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2411 APInt(64, Record[0]))); 2412 else if (CurTy->isX86_FP80Ty()) { 2413 // Bits are not stored the same way as a normal i80 APInt, compensate. 2414 uint64_t Rearrange[2]; 2415 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2416 Rearrange[1] = Record[0] >> 48; 2417 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2418 APInt(80, Rearrange))); 2419 } else if (CurTy->isFP128Ty()) 2420 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2421 APInt(128, Record))); 2422 else if (CurTy->isPPC_FP128Ty()) 2423 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2424 APInt(128, Record))); 2425 else 2426 V = UndefValue::get(CurTy); 2427 break; 2428 } 2429 2430 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2431 if (Record.empty()) 2432 return error("Invalid record"); 2433 2434 unsigned Size = Record.size(); 2435 SmallVector<Constant*, 16> Elts; 2436 2437 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2438 for (unsigned i = 0; i != Size; ++i) 2439 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2440 STy->getElementType(i))); 2441 V = ConstantStruct::get(STy, Elts); 2442 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2443 Type *EltTy = ATy->getElementType(); 2444 for (unsigned i = 0; i != Size; ++i) 2445 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2446 V = ConstantArray::get(ATy, Elts); 2447 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2448 Type *EltTy = VTy->getElementType(); 2449 for (unsigned i = 0; i != Size; ++i) 2450 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2451 V = ConstantVector::get(Elts); 2452 } else { 2453 V = UndefValue::get(CurTy); 2454 } 2455 break; 2456 } 2457 case bitc::CST_CODE_STRING: // STRING: [values] 2458 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2459 if (Record.empty()) 2460 return error("Invalid record"); 2461 2462 SmallString<16> Elts(Record.begin(), Record.end()); 2463 V = ConstantDataArray::getString(Context, Elts, 2464 BitCode == bitc::CST_CODE_CSTRING); 2465 break; 2466 } 2467 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2468 if (Record.empty()) 2469 return error("Invalid record"); 2470 2471 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2472 if (EltTy->isIntegerTy(8)) { 2473 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2474 if (isa<VectorType>(CurTy)) 2475 V = ConstantDataVector::get(Context, Elts); 2476 else 2477 V = ConstantDataArray::get(Context, Elts); 2478 } else if (EltTy->isIntegerTy(16)) { 2479 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2480 if (isa<VectorType>(CurTy)) 2481 V = ConstantDataVector::get(Context, Elts); 2482 else 2483 V = ConstantDataArray::get(Context, Elts); 2484 } else if (EltTy->isIntegerTy(32)) { 2485 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2486 if (isa<VectorType>(CurTy)) 2487 V = ConstantDataVector::get(Context, Elts); 2488 else 2489 V = ConstantDataArray::get(Context, Elts); 2490 } else if (EltTy->isIntegerTy(64)) { 2491 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2492 if (isa<VectorType>(CurTy)) 2493 V = ConstantDataVector::get(Context, Elts); 2494 else 2495 V = ConstantDataArray::get(Context, Elts); 2496 } else if (EltTy->isHalfTy()) { 2497 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2498 if (isa<VectorType>(CurTy)) 2499 V = ConstantDataVector::getFP(Context, Elts); 2500 else 2501 V = ConstantDataArray::getFP(Context, Elts); 2502 } else if (EltTy->isFloatTy()) { 2503 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2504 if (isa<VectorType>(CurTy)) 2505 V = ConstantDataVector::getFP(Context, Elts); 2506 else 2507 V = ConstantDataArray::getFP(Context, Elts); 2508 } else if (EltTy->isDoubleTy()) { 2509 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2510 if (isa<VectorType>(CurTy)) 2511 V = ConstantDataVector::getFP(Context, Elts); 2512 else 2513 V = ConstantDataArray::getFP(Context, Elts); 2514 } else { 2515 return error("Invalid type for value"); 2516 } 2517 break; 2518 } 2519 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2520 if (Record.size() < 2) 2521 return error("Invalid record"); 2522 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2523 if (Opc < 0) { 2524 V = UndefValue::get(CurTy); // Unknown unop. 2525 } else { 2526 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2527 unsigned Flags = 0; 2528 V = ConstantExpr::get(Opc, LHS, Flags); 2529 } 2530 break; 2531 } 2532 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2533 if (Record.size() < 3) 2534 return error("Invalid record"); 2535 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2536 if (Opc < 0) { 2537 V = UndefValue::get(CurTy); // Unknown binop. 2538 } else { 2539 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2540 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2541 unsigned Flags = 0; 2542 if (Record.size() >= 4) { 2543 if (Opc == Instruction::Add || 2544 Opc == Instruction::Sub || 2545 Opc == Instruction::Mul || 2546 Opc == Instruction::Shl) { 2547 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2548 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2549 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2550 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2551 } else if (Opc == Instruction::SDiv || 2552 Opc == Instruction::UDiv || 2553 Opc == Instruction::LShr || 2554 Opc == Instruction::AShr) { 2555 if (Record[3] & (1 << bitc::PEO_EXACT)) 2556 Flags |= SDivOperator::IsExact; 2557 } 2558 } 2559 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2560 } 2561 break; 2562 } 2563 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2564 if (Record.size() < 3) 2565 return error("Invalid record"); 2566 int Opc = getDecodedCastOpcode(Record[0]); 2567 if (Opc < 0) { 2568 V = UndefValue::get(CurTy); // Unknown cast. 2569 } else { 2570 Type *OpTy = getTypeByID(Record[1]); 2571 if (!OpTy) 2572 return error("Invalid record"); 2573 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2574 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2575 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2576 } 2577 break; 2578 } 2579 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2580 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2581 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2582 // operands] 2583 unsigned OpNum = 0; 2584 Type *PointeeType = nullptr; 2585 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2586 Record.size() % 2) 2587 PointeeType = getTypeByID(Record[OpNum++]); 2588 2589 bool InBounds = false; 2590 Optional<unsigned> InRangeIndex; 2591 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2592 uint64_t Op = Record[OpNum++]; 2593 InBounds = Op & 1; 2594 InRangeIndex = Op >> 1; 2595 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2596 InBounds = true; 2597 2598 SmallVector<Constant*, 16> Elts; 2599 Type *Elt0FullTy = nullptr; 2600 while (OpNum != Record.size()) { 2601 if (!Elt0FullTy) 2602 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2603 Type *ElTy = getTypeByID(Record[OpNum++]); 2604 if (!ElTy) 2605 return error("Invalid record"); 2606 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2607 } 2608 2609 if (Elts.size() < 1) 2610 return error("Invalid gep with no operands"); 2611 2612 Type *ImplicitPointeeType = 2613 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2614 if (!PointeeType) 2615 PointeeType = ImplicitPointeeType; 2616 else if (PointeeType != ImplicitPointeeType) 2617 return error("Explicit gep operator type does not match pointee type " 2618 "of pointer operand"); 2619 2620 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2621 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2622 InBounds, InRangeIndex); 2623 break; 2624 } 2625 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2626 if (Record.size() < 3) 2627 return error("Invalid record"); 2628 2629 Type *SelectorTy = Type::getInt1Ty(Context); 2630 2631 // The selector might be an i1 or an <n x i1> 2632 // Get the type from the ValueList before getting a forward ref. 2633 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2634 if (Value *V = ValueList[Record[0]]) 2635 if (SelectorTy != V->getType()) 2636 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2637 2638 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2639 SelectorTy), 2640 ValueList.getConstantFwdRef(Record[1],CurTy), 2641 ValueList.getConstantFwdRef(Record[2],CurTy)); 2642 break; 2643 } 2644 case bitc::CST_CODE_CE_EXTRACTELT 2645 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2646 if (Record.size() < 3) 2647 return error("Invalid record"); 2648 VectorType *OpTy = 2649 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2650 if (!OpTy) 2651 return error("Invalid record"); 2652 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2653 Constant *Op1 = nullptr; 2654 if (Record.size() == 4) { 2655 Type *IdxTy = getTypeByID(Record[2]); 2656 if (!IdxTy) 2657 return error("Invalid record"); 2658 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2659 } else // TODO: Remove with llvm 4.0 2660 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2661 if (!Op1) 2662 return error("Invalid record"); 2663 V = ConstantExpr::getExtractElement(Op0, Op1); 2664 break; 2665 } 2666 case bitc::CST_CODE_CE_INSERTELT 2667 : { // CE_INSERTELT: [opval, opval, opty, opval] 2668 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2669 if (Record.size() < 3 || !OpTy) 2670 return error("Invalid record"); 2671 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2672 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2673 OpTy->getElementType()); 2674 Constant *Op2 = nullptr; 2675 if (Record.size() == 4) { 2676 Type *IdxTy = getTypeByID(Record[2]); 2677 if (!IdxTy) 2678 return error("Invalid record"); 2679 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2680 } else // TODO: Remove with llvm 4.0 2681 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2682 if (!Op2) 2683 return error("Invalid record"); 2684 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2685 break; 2686 } 2687 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2688 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2689 if (Record.size() < 3 || !OpTy) 2690 return error("Invalid record"); 2691 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2692 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2693 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2694 OpTy->getNumElements()); 2695 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2696 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2697 break; 2698 } 2699 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2700 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2701 VectorType *OpTy = 2702 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2703 if (Record.size() < 4 || !RTy || !OpTy) 2704 return error("Invalid record"); 2705 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2706 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2707 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2708 RTy->getNumElements()); 2709 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2710 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2711 break; 2712 } 2713 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2714 if (Record.size() < 4) 2715 return error("Invalid record"); 2716 Type *OpTy = getTypeByID(Record[0]); 2717 if (!OpTy) 2718 return error("Invalid record"); 2719 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2720 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2721 2722 if (OpTy->isFPOrFPVectorTy()) 2723 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2724 else 2725 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2726 break; 2727 } 2728 // This maintains backward compatibility, pre-asm dialect keywords. 2729 // FIXME: Remove with the 4.0 release. 2730 case bitc::CST_CODE_INLINEASM_OLD: { 2731 if (Record.size() < 2) 2732 return error("Invalid record"); 2733 std::string AsmStr, ConstrStr; 2734 bool HasSideEffects = Record[0] & 1; 2735 bool IsAlignStack = Record[0] >> 1; 2736 unsigned AsmStrSize = Record[1]; 2737 if (2+AsmStrSize >= Record.size()) 2738 return error("Invalid record"); 2739 unsigned ConstStrSize = Record[2+AsmStrSize]; 2740 if (3+AsmStrSize+ConstStrSize > Record.size()) 2741 return error("Invalid record"); 2742 2743 for (unsigned i = 0; i != AsmStrSize; ++i) 2744 AsmStr += (char)Record[2+i]; 2745 for (unsigned i = 0; i != ConstStrSize; ++i) 2746 ConstrStr += (char)Record[3+AsmStrSize+i]; 2747 UpgradeInlineAsmString(&AsmStr); 2748 V = InlineAsm::get( 2749 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2750 ConstrStr, HasSideEffects, IsAlignStack); 2751 break; 2752 } 2753 // This version adds support for the asm dialect keywords (e.g., 2754 // inteldialect). 2755 case bitc::CST_CODE_INLINEASM: { 2756 if (Record.size() < 2) 2757 return error("Invalid record"); 2758 std::string AsmStr, ConstrStr; 2759 bool HasSideEffects = Record[0] & 1; 2760 bool IsAlignStack = (Record[0] >> 1) & 1; 2761 unsigned AsmDialect = Record[0] >> 2; 2762 unsigned AsmStrSize = Record[1]; 2763 if (2+AsmStrSize >= Record.size()) 2764 return error("Invalid record"); 2765 unsigned ConstStrSize = Record[2+AsmStrSize]; 2766 if (3+AsmStrSize+ConstStrSize > Record.size()) 2767 return error("Invalid record"); 2768 2769 for (unsigned i = 0; i != AsmStrSize; ++i) 2770 AsmStr += (char)Record[2+i]; 2771 for (unsigned i = 0; i != ConstStrSize; ++i) 2772 ConstrStr += (char)Record[3+AsmStrSize+i]; 2773 UpgradeInlineAsmString(&AsmStr); 2774 V = InlineAsm::get( 2775 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2776 ConstrStr, HasSideEffects, IsAlignStack, 2777 InlineAsm::AsmDialect(AsmDialect)); 2778 break; 2779 } 2780 case bitc::CST_CODE_BLOCKADDRESS:{ 2781 if (Record.size() < 3) 2782 return error("Invalid record"); 2783 Type *FnTy = getTypeByID(Record[0]); 2784 if (!FnTy) 2785 return error("Invalid record"); 2786 Function *Fn = 2787 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2788 if (!Fn) 2789 return error("Invalid record"); 2790 2791 // If the function is already parsed we can insert the block address right 2792 // away. 2793 BasicBlock *BB; 2794 unsigned BBID = Record[2]; 2795 if (!BBID) 2796 // Invalid reference to entry block. 2797 return error("Invalid ID"); 2798 if (!Fn->empty()) { 2799 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2800 for (size_t I = 0, E = BBID; I != E; ++I) { 2801 if (BBI == BBE) 2802 return error("Invalid ID"); 2803 ++BBI; 2804 } 2805 BB = &*BBI; 2806 } else { 2807 // Otherwise insert a placeholder and remember it so it can be inserted 2808 // when the function is parsed. 2809 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2810 if (FwdBBs.empty()) 2811 BasicBlockFwdRefQueue.push_back(Fn); 2812 if (FwdBBs.size() < BBID + 1) 2813 FwdBBs.resize(BBID + 1); 2814 if (!FwdBBs[BBID]) 2815 FwdBBs[BBID] = BasicBlock::Create(Context); 2816 BB = FwdBBs[BBID]; 2817 } 2818 V = BlockAddress::get(Fn, BB); 2819 break; 2820 } 2821 } 2822 2823 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2824 "Incorrect fully structured type provided for Constant"); 2825 ValueList.assignValue(V, NextCstNo, CurFullTy); 2826 ++NextCstNo; 2827 } 2828 } 2829 2830 Error BitcodeReader::parseUseLists() { 2831 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2832 return Err; 2833 2834 // Read all the records. 2835 SmallVector<uint64_t, 64> Record; 2836 2837 while (true) { 2838 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2839 if (!MaybeEntry) 2840 return MaybeEntry.takeError(); 2841 BitstreamEntry Entry = MaybeEntry.get(); 2842 2843 switch (Entry.Kind) { 2844 case BitstreamEntry::SubBlock: // Handled for us already. 2845 case BitstreamEntry::Error: 2846 return error("Malformed block"); 2847 case BitstreamEntry::EndBlock: 2848 return Error::success(); 2849 case BitstreamEntry::Record: 2850 // The interesting case. 2851 break; 2852 } 2853 2854 // Read a use list record. 2855 Record.clear(); 2856 bool IsBB = false; 2857 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2858 if (!MaybeRecord) 2859 return MaybeRecord.takeError(); 2860 switch (MaybeRecord.get()) { 2861 default: // Default behavior: unknown type. 2862 break; 2863 case bitc::USELIST_CODE_BB: 2864 IsBB = true; 2865 LLVM_FALLTHROUGH; 2866 case bitc::USELIST_CODE_DEFAULT: { 2867 unsigned RecordLength = Record.size(); 2868 if (RecordLength < 3) 2869 // Records should have at least an ID and two indexes. 2870 return error("Invalid record"); 2871 unsigned ID = Record.back(); 2872 Record.pop_back(); 2873 2874 Value *V; 2875 if (IsBB) { 2876 assert(ID < FunctionBBs.size() && "Basic block not found"); 2877 V = FunctionBBs[ID]; 2878 } else 2879 V = ValueList[ID]; 2880 unsigned NumUses = 0; 2881 SmallDenseMap<const Use *, unsigned, 16> Order; 2882 for (const Use &U : V->materialized_uses()) { 2883 if (++NumUses > Record.size()) 2884 break; 2885 Order[&U] = Record[NumUses - 1]; 2886 } 2887 if (Order.size() != Record.size() || NumUses > Record.size()) 2888 // Mismatches can happen if the functions are being materialized lazily 2889 // (out-of-order), or a value has been upgraded. 2890 break; 2891 2892 V->sortUseList([&](const Use &L, const Use &R) { 2893 return Order.lookup(&L) < Order.lookup(&R); 2894 }); 2895 break; 2896 } 2897 } 2898 } 2899 } 2900 2901 /// When we see the block for metadata, remember where it is and then skip it. 2902 /// This lets us lazily deserialize the metadata. 2903 Error BitcodeReader::rememberAndSkipMetadata() { 2904 // Save the current stream state. 2905 uint64_t CurBit = Stream.GetCurrentBitNo(); 2906 DeferredMetadataInfo.push_back(CurBit); 2907 2908 // Skip over the block for now. 2909 if (Error Err = Stream.SkipBlock()) 2910 return Err; 2911 return Error::success(); 2912 } 2913 2914 Error BitcodeReader::materializeMetadata() { 2915 for (uint64_t BitPos : DeferredMetadataInfo) { 2916 // Move the bit stream to the saved position. 2917 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2918 return JumpFailed; 2919 if (Error Err = MDLoader->parseModuleMetadata()) 2920 return Err; 2921 } 2922 2923 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2924 // metadata. 2925 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2926 NamedMDNode *LinkerOpts = 2927 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2928 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2929 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2930 } 2931 2932 DeferredMetadataInfo.clear(); 2933 return Error::success(); 2934 } 2935 2936 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2937 2938 /// When we see the block for a function body, remember where it is and then 2939 /// skip it. This lets us lazily deserialize the functions. 2940 Error BitcodeReader::rememberAndSkipFunctionBody() { 2941 // Get the function we are talking about. 2942 if (FunctionsWithBodies.empty()) 2943 return error("Insufficient function protos"); 2944 2945 Function *Fn = FunctionsWithBodies.back(); 2946 FunctionsWithBodies.pop_back(); 2947 2948 // Save the current stream state. 2949 uint64_t CurBit = Stream.GetCurrentBitNo(); 2950 assert( 2951 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2952 "Mismatch between VST and scanned function offsets"); 2953 DeferredFunctionInfo[Fn] = CurBit; 2954 2955 // Skip over the function block for now. 2956 if (Error Err = Stream.SkipBlock()) 2957 return Err; 2958 return Error::success(); 2959 } 2960 2961 Error BitcodeReader::globalCleanup() { 2962 // Patch the initializers for globals and aliases up. 2963 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2964 return Err; 2965 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2966 return error("Malformed global initializer set"); 2967 2968 // Look for intrinsic functions which need to be upgraded at some point 2969 for (Function &F : *TheModule) { 2970 MDLoader->upgradeDebugIntrinsics(F); 2971 Function *NewFn; 2972 if (UpgradeIntrinsicFunction(&F, NewFn)) 2973 UpgradedIntrinsics[&F] = NewFn; 2974 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2975 // Some types could be renamed during loading if several modules are 2976 // loaded in the same LLVMContext (LTO scenario). In this case we should 2977 // remangle intrinsics names as well. 2978 RemangledIntrinsics[&F] = Remangled.getValue(); 2979 } 2980 2981 // Look for global variables which need to be renamed. 2982 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2983 for (GlobalVariable &GV : TheModule->globals()) 2984 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2985 UpgradedVariables.emplace_back(&GV, Upgraded); 2986 for (auto &Pair : UpgradedVariables) { 2987 Pair.first->eraseFromParent(); 2988 TheModule->getGlobalList().push_back(Pair.second); 2989 } 2990 2991 // Force deallocation of memory for these vectors to favor the client that 2992 // want lazy deserialization. 2993 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2994 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2995 IndirectSymbolInits); 2996 return Error::success(); 2997 } 2998 2999 /// Support for lazy parsing of function bodies. This is required if we 3000 /// either have an old bitcode file without a VST forward declaration record, 3001 /// or if we have an anonymous function being materialized, since anonymous 3002 /// functions do not have a name and are therefore not in the VST. 3003 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3004 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3005 return JumpFailed; 3006 3007 if (Stream.AtEndOfStream()) 3008 return error("Could not find function in stream"); 3009 3010 if (!SeenFirstFunctionBody) 3011 return error("Trying to materialize functions before seeing function blocks"); 3012 3013 // An old bitcode file with the symbol table at the end would have 3014 // finished the parse greedily. 3015 assert(SeenValueSymbolTable); 3016 3017 SmallVector<uint64_t, 64> Record; 3018 3019 while (true) { 3020 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3021 if (!MaybeEntry) 3022 return MaybeEntry.takeError(); 3023 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3024 3025 switch (Entry.Kind) { 3026 default: 3027 return error("Expect SubBlock"); 3028 case BitstreamEntry::SubBlock: 3029 switch (Entry.ID) { 3030 default: 3031 return error("Expect function block"); 3032 case bitc::FUNCTION_BLOCK_ID: 3033 if (Error Err = rememberAndSkipFunctionBody()) 3034 return Err; 3035 NextUnreadBit = Stream.GetCurrentBitNo(); 3036 return Error::success(); 3037 } 3038 } 3039 } 3040 } 3041 3042 bool BitcodeReaderBase::readBlockInfo() { 3043 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3044 Stream.ReadBlockInfoBlock(); 3045 if (!MaybeNewBlockInfo) 3046 return true; // FIXME Handle the error. 3047 Optional<BitstreamBlockInfo> NewBlockInfo = 3048 std::move(MaybeNewBlockInfo.get()); 3049 if (!NewBlockInfo) 3050 return true; 3051 BlockInfo = std::move(*NewBlockInfo); 3052 return false; 3053 } 3054 3055 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3056 // v1: [selection_kind, name] 3057 // v2: [strtab_offset, strtab_size, selection_kind] 3058 StringRef Name; 3059 std::tie(Name, Record) = readNameFromStrtab(Record); 3060 3061 if (Record.empty()) 3062 return error("Invalid record"); 3063 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3064 std::string OldFormatName; 3065 if (!UseStrtab) { 3066 if (Record.size() < 2) 3067 return error("Invalid record"); 3068 unsigned ComdatNameSize = Record[1]; 3069 OldFormatName.reserve(ComdatNameSize); 3070 for (unsigned i = 0; i != ComdatNameSize; ++i) 3071 OldFormatName += (char)Record[2 + i]; 3072 Name = OldFormatName; 3073 } 3074 Comdat *C = TheModule->getOrInsertComdat(Name); 3075 C->setSelectionKind(SK); 3076 ComdatList.push_back(C); 3077 return Error::success(); 3078 } 3079 3080 static void inferDSOLocal(GlobalValue *GV) { 3081 // infer dso_local from linkage and visibility if it is not encoded. 3082 if (GV->hasLocalLinkage() || 3083 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3084 GV->setDSOLocal(true); 3085 } 3086 3087 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3088 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3089 // visibility, threadlocal, unnamed_addr, externally_initialized, 3090 // dllstorageclass, comdat, attributes, preemption specifier, 3091 // partition strtab offset, partition strtab size] (name in VST) 3092 // v2: [strtab_offset, strtab_size, v1] 3093 StringRef Name; 3094 std::tie(Name, Record) = readNameFromStrtab(Record); 3095 3096 if (Record.size() < 6) 3097 return error("Invalid record"); 3098 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3099 Type *Ty = flattenPointerTypes(FullTy); 3100 if (!Ty) 3101 return error("Invalid record"); 3102 bool isConstant = Record[1] & 1; 3103 bool explicitType = Record[1] & 2; 3104 unsigned AddressSpace; 3105 if (explicitType) { 3106 AddressSpace = Record[1] >> 2; 3107 } else { 3108 if (!Ty->isPointerTy()) 3109 return error("Invalid type for value"); 3110 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3111 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3112 } 3113 3114 uint64_t RawLinkage = Record[3]; 3115 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3116 MaybeAlign Alignment; 3117 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3118 return Err; 3119 std::string Section; 3120 if (Record[5]) { 3121 if (Record[5] - 1 >= SectionTable.size()) 3122 return error("Invalid ID"); 3123 Section = SectionTable[Record[5] - 1]; 3124 } 3125 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3126 // Local linkage must have default visibility. 3127 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3128 // FIXME: Change to an error if non-default in 4.0. 3129 Visibility = getDecodedVisibility(Record[6]); 3130 3131 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3132 if (Record.size() > 7) 3133 TLM = getDecodedThreadLocalMode(Record[7]); 3134 3135 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3136 if (Record.size() > 8) 3137 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3138 3139 bool ExternallyInitialized = false; 3140 if (Record.size() > 9) 3141 ExternallyInitialized = Record[9]; 3142 3143 GlobalVariable *NewGV = 3144 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3145 nullptr, TLM, AddressSpace, ExternallyInitialized); 3146 NewGV->setAlignment(Alignment); 3147 if (!Section.empty()) 3148 NewGV->setSection(Section); 3149 NewGV->setVisibility(Visibility); 3150 NewGV->setUnnamedAddr(UnnamedAddr); 3151 3152 if (Record.size() > 10) 3153 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3154 else 3155 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3156 3157 FullTy = PointerType::get(FullTy, AddressSpace); 3158 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3159 "Incorrect fully specified type for GlobalVariable"); 3160 ValueList.push_back(NewGV, FullTy); 3161 3162 // Remember which value to use for the global initializer. 3163 if (unsigned InitID = Record[2]) 3164 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3165 3166 if (Record.size() > 11) { 3167 if (unsigned ComdatID = Record[11]) { 3168 if (ComdatID > ComdatList.size()) 3169 return error("Invalid global variable comdat ID"); 3170 NewGV->setComdat(ComdatList[ComdatID - 1]); 3171 } 3172 } else if (hasImplicitComdat(RawLinkage)) { 3173 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3174 } 3175 3176 if (Record.size() > 12) { 3177 auto AS = getAttributes(Record[12]).getFnAttributes(); 3178 NewGV->setAttributes(AS); 3179 } 3180 3181 if (Record.size() > 13) { 3182 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3183 } 3184 inferDSOLocal(NewGV); 3185 3186 // Check whether we have enough values to read a partition name. 3187 if (Record.size() > 15) 3188 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3189 3190 return Error::success(); 3191 } 3192 3193 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3194 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3195 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3196 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3197 // v2: [strtab_offset, strtab_size, v1] 3198 StringRef Name; 3199 std::tie(Name, Record) = readNameFromStrtab(Record); 3200 3201 if (Record.size() < 8) 3202 return error("Invalid record"); 3203 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3204 Type *FTy = flattenPointerTypes(FullFTy); 3205 if (!FTy) 3206 return error("Invalid record"); 3207 if (isa<PointerType>(FTy)) 3208 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3209 3210 if (!isa<FunctionType>(FTy)) 3211 return error("Invalid type for value"); 3212 auto CC = static_cast<CallingConv::ID>(Record[1]); 3213 if (CC & ~CallingConv::MaxID) 3214 return error("Invalid calling convention ID"); 3215 3216 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3217 if (Record.size() > 16) 3218 AddrSpace = Record[16]; 3219 3220 Function *Func = 3221 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3222 AddrSpace, Name, TheModule); 3223 3224 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3225 "Incorrect fully specified type provided for function"); 3226 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3227 3228 Func->setCallingConv(CC); 3229 bool isProto = Record[2]; 3230 uint64_t RawLinkage = Record[3]; 3231 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3232 Func->setAttributes(getAttributes(Record[4])); 3233 3234 // Upgrade any old-style byval without a type by propagating the argument's 3235 // pointee type. There should be no opaque pointers where the byval type is 3236 // implicit. 3237 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3238 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3239 continue; 3240 3241 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3242 Func->removeParamAttr(i, Attribute::ByVal); 3243 Func->addParamAttr(i, Attribute::getWithByValType( 3244 Context, getPointerElementFlatType(PTy))); 3245 } 3246 3247 MaybeAlign Alignment; 3248 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3249 return Err; 3250 Func->setAlignment(Alignment); 3251 if (Record[6]) { 3252 if (Record[6] - 1 >= SectionTable.size()) 3253 return error("Invalid ID"); 3254 Func->setSection(SectionTable[Record[6] - 1]); 3255 } 3256 // Local linkage must have default visibility. 3257 if (!Func->hasLocalLinkage()) 3258 // FIXME: Change to an error if non-default in 4.0. 3259 Func->setVisibility(getDecodedVisibility(Record[7])); 3260 if (Record.size() > 8 && Record[8]) { 3261 if (Record[8] - 1 >= GCTable.size()) 3262 return error("Invalid ID"); 3263 Func->setGC(GCTable[Record[8] - 1]); 3264 } 3265 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3266 if (Record.size() > 9) 3267 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3268 Func->setUnnamedAddr(UnnamedAddr); 3269 if (Record.size() > 10 && Record[10] != 0) 3270 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3271 3272 if (Record.size() > 11) 3273 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3274 else 3275 upgradeDLLImportExportLinkage(Func, RawLinkage); 3276 3277 if (Record.size() > 12) { 3278 if (unsigned ComdatID = Record[12]) { 3279 if (ComdatID > ComdatList.size()) 3280 return error("Invalid function comdat ID"); 3281 Func->setComdat(ComdatList[ComdatID - 1]); 3282 } 3283 } else if (hasImplicitComdat(RawLinkage)) { 3284 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3285 } 3286 3287 if (Record.size() > 13 && Record[13] != 0) 3288 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3289 3290 if (Record.size() > 14 && Record[14] != 0) 3291 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3292 3293 if (Record.size() > 15) { 3294 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3295 } 3296 inferDSOLocal(Func); 3297 3298 // Record[16] is the address space number. 3299 3300 // Check whether we have enough values to read a partition name. 3301 if (Record.size() > 18) 3302 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3303 3304 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3305 assert(Func->getType() == flattenPointerTypes(FullTy) && 3306 "Incorrect fully specified type provided for Function"); 3307 ValueList.push_back(Func, FullTy); 3308 3309 // If this is a function with a body, remember the prototype we are 3310 // creating now, so that we can match up the body with them later. 3311 if (!isProto) { 3312 Func->setIsMaterializable(true); 3313 FunctionsWithBodies.push_back(Func); 3314 DeferredFunctionInfo[Func] = 0; 3315 } 3316 return Error::success(); 3317 } 3318 3319 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3320 unsigned BitCode, ArrayRef<uint64_t> Record) { 3321 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3322 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3323 // dllstorageclass, threadlocal, unnamed_addr, 3324 // preemption specifier] (name in VST) 3325 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3326 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3327 // preemption specifier] (name in VST) 3328 // v2: [strtab_offset, strtab_size, v1] 3329 StringRef Name; 3330 std::tie(Name, Record) = readNameFromStrtab(Record); 3331 3332 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3333 if (Record.size() < (3 + (unsigned)NewRecord)) 3334 return error("Invalid record"); 3335 unsigned OpNum = 0; 3336 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3337 Type *Ty = flattenPointerTypes(FullTy); 3338 if (!Ty) 3339 return error("Invalid record"); 3340 3341 unsigned AddrSpace; 3342 if (!NewRecord) { 3343 auto *PTy = dyn_cast<PointerType>(Ty); 3344 if (!PTy) 3345 return error("Invalid type for value"); 3346 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3347 AddrSpace = PTy->getAddressSpace(); 3348 } else { 3349 AddrSpace = Record[OpNum++]; 3350 } 3351 3352 auto Val = Record[OpNum++]; 3353 auto Linkage = Record[OpNum++]; 3354 GlobalIndirectSymbol *NewGA; 3355 if (BitCode == bitc::MODULE_CODE_ALIAS || 3356 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3357 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3358 TheModule); 3359 else 3360 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3361 nullptr, TheModule); 3362 3363 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3364 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3365 // Old bitcode files didn't have visibility field. 3366 // Local linkage must have default visibility. 3367 if (OpNum != Record.size()) { 3368 auto VisInd = OpNum++; 3369 if (!NewGA->hasLocalLinkage()) 3370 // FIXME: Change to an error if non-default in 4.0. 3371 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3372 } 3373 if (BitCode == bitc::MODULE_CODE_ALIAS || 3374 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3375 if (OpNum != Record.size()) 3376 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3377 else 3378 upgradeDLLImportExportLinkage(NewGA, Linkage); 3379 if (OpNum != Record.size()) 3380 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3381 if (OpNum != Record.size()) 3382 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3383 } 3384 if (OpNum != Record.size()) 3385 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3386 inferDSOLocal(NewGA); 3387 3388 // Check whether we have enough values to read a partition name. 3389 if (OpNum + 1 < Record.size()) { 3390 NewGA->setPartition( 3391 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3392 OpNum += 2; 3393 } 3394 3395 FullTy = PointerType::get(FullTy, AddrSpace); 3396 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3397 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3398 ValueList.push_back(NewGA, FullTy); 3399 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3400 return Error::success(); 3401 } 3402 3403 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3404 bool ShouldLazyLoadMetadata) { 3405 if (ResumeBit) { 3406 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3407 return JumpFailed; 3408 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3409 return Err; 3410 3411 SmallVector<uint64_t, 64> Record; 3412 3413 // Read all the records for this module. 3414 while (true) { 3415 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3416 if (!MaybeEntry) 3417 return MaybeEntry.takeError(); 3418 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3419 3420 switch (Entry.Kind) { 3421 case BitstreamEntry::Error: 3422 return error("Malformed block"); 3423 case BitstreamEntry::EndBlock: 3424 return globalCleanup(); 3425 3426 case BitstreamEntry::SubBlock: 3427 switch (Entry.ID) { 3428 default: // Skip unknown content. 3429 if (Error Err = Stream.SkipBlock()) 3430 return Err; 3431 break; 3432 case bitc::BLOCKINFO_BLOCK_ID: 3433 if (readBlockInfo()) 3434 return error("Malformed block"); 3435 break; 3436 case bitc::PARAMATTR_BLOCK_ID: 3437 if (Error Err = parseAttributeBlock()) 3438 return Err; 3439 break; 3440 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3441 if (Error Err = parseAttributeGroupBlock()) 3442 return Err; 3443 break; 3444 case bitc::TYPE_BLOCK_ID_NEW: 3445 if (Error Err = parseTypeTable()) 3446 return Err; 3447 break; 3448 case bitc::VALUE_SYMTAB_BLOCK_ID: 3449 if (!SeenValueSymbolTable) { 3450 // Either this is an old form VST without function index and an 3451 // associated VST forward declaration record (which would have caused 3452 // the VST to be jumped to and parsed before it was encountered 3453 // normally in the stream), or there were no function blocks to 3454 // trigger an earlier parsing of the VST. 3455 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3456 if (Error Err = parseValueSymbolTable()) 3457 return Err; 3458 SeenValueSymbolTable = true; 3459 } else { 3460 // We must have had a VST forward declaration record, which caused 3461 // the parser to jump to and parse the VST earlier. 3462 assert(VSTOffset > 0); 3463 if (Error Err = Stream.SkipBlock()) 3464 return Err; 3465 } 3466 break; 3467 case bitc::CONSTANTS_BLOCK_ID: 3468 if (Error Err = parseConstants()) 3469 return Err; 3470 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3471 return Err; 3472 break; 3473 case bitc::METADATA_BLOCK_ID: 3474 if (ShouldLazyLoadMetadata) { 3475 if (Error Err = rememberAndSkipMetadata()) 3476 return Err; 3477 break; 3478 } 3479 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3480 if (Error Err = MDLoader->parseModuleMetadata()) 3481 return Err; 3482 break; 3483 case bitc::METADATA_KIND_BLOCK_ID: 3484 if (Error Err = MDLoader->parseMetadataKinds()) 3485 return Err; 3486 break; 3487 case bitc::FUNCTION_BLOCK_ID: 3488 // If this is the first function body we've seen, reverse the 3489 // FunctionsWithBodies list. 3490 if (!SeenFirstFunctionBody) { 3491 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3492 if (Error Err = globalCleanup()) 3493 return Err; 3494 SeenFirstFunctionBody = true; 3495 } 3496 3497 if (VSTOffset > 0) { 3498 // If we have a VST forward declaration record, make sure we 3499 // parse the VST now if we haven't already. It is needed to 3500 // set up the DeferredFunctionInfo vector for lazy reading. 3501 if (!SeenValueSymbolTable) { 3502 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3503 return Err; 3504 SeenValueSymbolTable = true; 3505 // Fall through so that we record the NextUnreadBit below. 3506 // This is necessary in case we have an anonymous function that 3507 // is later materialized. Since it will not have a VST entry we 3508 // need to fall back to the lazy parse to find its offset. 3509 } else { 3510 // If we have a VST forward declaration record, but have already 3511 // parsed the VST (just above, when the first function body was 3512 // encountered here), then we are resuming the parse after 3513 // materializing functions. The ResumeBit points to the 3514 // start of the last function block recorded in the 3515 // DeferredFunctionInfo map. Skip it. 3516 if (Error Err = Stream.SkipBlock()) 3517 return Err; 3518 continue; 3519 } 3520 } 3521 3522 // Support older bitcode files that did not have the function 3523 // index in the VST, nor a VST forward declaration record, as 3524 // well as anonymous functions that do not have VST entries. 3525 // Build the DeferredFunctionInfo vector on the fly. 3526 if (Error Err = rememberAndSkipFunctionBody()) 3527 return Err; 3528 3529 // Suspend parsing when we reach the function bodies. Subsequent 3530 // materialization calls will resume it when necessary. If the bitcode 3531 // file is old, the symbol table will be at the end instead and will not 3532 // have been seen yet. In this case, just finish the parse now. 3533 if (SeenValueSymbolTable) { 3534 NextUnreadBit = Stream.GetCurrentBitNo(); 3535 // After the VST has been parsed, we need to make sure intrinsic name 3536 // are auto-upgraded. 3537 return globalCleanup(); 3538 } 3539 break; 3540 case bitc::USELIST_BLOCK_ID: 3541 if (Error Err = parseUseLists()) 3542 return Err; 3543 break; 3544 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3545 if (Error Err = parseOperandBundleTags()) 3546 return Err; 3547 break; 3548 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3549 if (Error Err = parseSyncScopeNames()) 3550 return Err; 3551 break; 3552 } 3553 continue; 3554 3555 case BitstreamEntry::Record: 3556 // The interesting case. 3557 break; 3558 } 3559 3560 // Read a record. 3561 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3562 if (!MaybeBitCode) 3563 return MaybeBitCode.takeError(); 3564 switch (unsigned BitCode = MaybeBitCode.get()) { 3565 default: break; // Default behavior, ignore unknown content. 3566 case bitc::MODULE_CODE_VERSION: { 3567 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3568 if (!VersionOrErr) 3569 return VersionOrErr.takeError(); 3570 UseRelativeIDs = *VersionOrErr >= 1; 3571 break; 3572 } 3573 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3574 std::string S; 3575 if (convertToString(Record, 0, S)) 3576 return error("Invalid record"); 3577 TheModule->setTargetTriple(S); 3578 break; 3579 } 3580 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3581 std::string S; 3582 if (convertToString(Record, 0, S)) 3583 return error("Invalid record"); 3584 TheModule->setDataLayout(S); 3585 break; 3586 } 3587 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3588 std::string S; 3589 if (convertToString(Record, 0, S)) 3590 return error("Invalid record"); 3591 TheModule->setModuleInlineAsm(S); 3592 break; 3593 } 3594 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3595 // FIXME: Remove in 4.0. 3596 std::string S; 3597 if (convertToString(Record, 0, S)) 3598 return error("Invalid record"); 3599 // Ignore value. 3600 break; 3601 } 3602 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3603 std::string S; 3604 if (convertToString(Record, 0, S)) 3605 return error("Invalid record"); 3606 SectionTable.push_back(S); 3607 break; 3608 } 3609 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3610 std::string S; 3611 if (convertToString(Record, 0, S)) 3612 return error("Invalid record"); 3613 GCTable.push_back(S); 3614 break; 3615 } 3616 case bitc::MODULE_CODE_COMDAT: 3617 if (Error Err = parseComdatRecord(Record)) 3618 return Err; 3619 break; 3620 case bitc::MODULE_CODE_GLOBALVAR: 3621 if (Error Err = parseGlobalVarRecord(Record)) 3622 return Err; 3623 break; 3624 case bitc::MODULE_CODE_FUNCTION: 3625 if (Error Err = parseFunctionRecord(Record)) 3626 return Err; 3627 break; 3628 case bitc::MODULE_CODE_IFUNC: 3629 case bitc::MODULE_CODE_ALIAS: 3630 case bitc::MODULE_CODE_ALIAS_OLD: 3631 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3632 return Err; 3633 break; 3634 /// MODULE_CODE_VSTOFFSET: [offset] 3635 case bitc::MODULE_CODE_VSTOFFSET: 3636 if (Record.size() < 1) 3637 return error("Invalid record"); 3638 // Note that we subtract 1 here because the offset is relative to one word 3639 // before the start of the identification or module block, which was 3640 // historically always the start of the regular bitcode header. 3641 VSTOffset = Record[0] - 1; 3642 break; 3643 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3644 case bitc::MODULE_CODE_SOURCE_FILENAME: 3645 SmallString<128> ValueName; 3646 if (convertToString(Record, 0, ValueName)) 3647 return error("Invalid record"); 3648 TheModule->setSourceFileName(ValueName); 3649 break; 3650 } 3651 Record.clear(); 3652 3653 // Upgrade data layout string. 3654 std::string DL = llvm::UpgradeDataLayoutString( 3655 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3656 TheModule->setDataLayout(DL); 3657 } 3658 } 3659 3660 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3661 bool IsImporting) { 3662 TheModule = M; 3663 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3664 [&](unsigned ID) { return getTypeByID(ID); }); 3665 return parseModule(0, ShouldLazyLoadMetadata); 3666 } 3667 3668 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3669 if (!isa<PointerType>(PtrType)) 3670 return error("Load/Store operand is not a pointer type"); 3671 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3672 3673 if (ValType && ValType != ElemType) 3674 return error("Explicit load/store type does not match pointee " 3675 "type of pointer operand"); 3676 if (!PointerType::isLoadableOrStorableType(ElemType)) 3677 return error("Cannot load/store from pointer"); 3678 return Error::success(); 3679 } 3680 3681 void BitcodeReader::propagateByValTypes(CallBase *CB, 3682 ArrayRef<Type *> ArgsFullTys) { 3683 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3684 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3685 continue; 3686 3687 CB->removeParamAttr(i, Attribute::ByVal); 3688 CB->addParamAttr( 3689 i, Attribute::getWithByValType( 3690 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3691 } 3692 } 3693 3694 /// Lazily parse the specified function body block. 3695 Error BitcodeReader::parseFunctionBody(Function *F) { 3696 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3697 return Err; 3698 3699 // Unexpected unresolved metadata when parsing function. 3700 if (MDLoader->hasFwdRefs()) 3701 return error("Invalid function metadata: incoming forward references"); 3702 3703 InstructionList.clear(); 3704 unsigned ModuleValueListSize = ValueList.size(); 3705 unsigned ModuleMDLoaderSize = MDLoader->size(); 3706 3707 // Add all the function arguments to the value table. 3708 unsigned ArgNo = 0; 3709 FunctionType *FullFTy = FunctionTypes[F]; 3710 for (Argument &I : F->args()) { 3711 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3712 "Incorrect fully specified type for Function Argument"); 3713 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3714 } 3715 unsigned NextValueNo = ValueList.size(); 3716 BasicBlock *CurBB = nullptr; 3717 unsigned CurBBNo = 0; 3718 3719 DebugLoc LastLoc; 3720 auto getLastInstruction = [&]() -> Instruction * { 3721 if (CurBB && !CurBB->empty()) 3722 return &CurBB->back(); 3723 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3724 !FunctionBBs[CurBBNo - 1]->empty()) 3725 return &FunctionBBs[CurBBNo - 1]->back(); 3726 return nullptr; 3727 }; 3728 3729 std::vector<OperandBundleDef> OperandBundles; 3730 3731 // Read all the records. 3732 SmallVector<uint64_t, 64> Record; 3733 3734 while (true) { 3735 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3736 if (!MaybeEntry) 3737 return MaybeEntry.takeError(); 3738 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3739 3740 switch (Entry.Kind) { 3741 case BitstreamEntry::Error: 3742 return error("Malformed block"); 3743 case BitstreamEntry::EndBlock: 3744 goto OutOfRecordLoop; 3745 3746 case BitstreamEntry::SubBlock: 3747 switch (Entry.ID) { 3748 default: // Skip unknown content. 3749 if (Error Err = Stream.SkipBlock()) 3750 return Err; 3751 break; 3752 case bitc::CONSTANTS_BLOCK_ID: 3753 if (Error Err = parseConstants()) 3754 return Err; 3755 NextValueNo = ValueList.size(); 3756 break; 3757 case bitc::VALUE_SYMTAB_BLOCK_ID: 3758 if (Error Err = parseValueSymbolTable()) 3759 return Err; 3760 break; 3761 case bitc::METADATA_ATTACHMENT_ID: 3762 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3763 return Err; 3764 break; 3765 case bitc::METADATA_BLOCK_ID: 3766 assert(DeferredMetadataInfo.empty() && 3767 "Must read all module-level metadata before function-level"); 3768 if (Error Err = MDLoader->parseFunctionMetadata()) 3769 return Err; 3770 break; 3771 case bitc::USELIST_BLOCK_ID: 3772 if (Error Err = parseUseLists()) 3773 return Err; 3774 break; 3775 } 3776 continue; 3777 3778 case BitstreamEntry::Record: 3779 // The interesting case. 3780 break; 3781 } 3782 3783 // Read a record. 3784 Record.clear(); 3785 Instruction *I = nullptr; 3786 Type *FullTy = nullptr; 3787 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3788 if (!MaybeBitCode) 3789 return MaybeBitCode.takeError(); 3790 switch (unsigned BitCode = MaybeBitCode.get()) { 3791 default: // Default behavior: reject 3792 return error("Invalid value"); 3793 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3794 if (Record.size() < 1 || Record[0] == 0) 3795 return error("Invalid record"); 3796 // Create all the basic blocks for the function. 3797 FunctionBBs.resize(Record[0]); 3798 3799 // See if anything took the address of blocks in this function. 3800 auto BBFRI = BasicBlockFwdRefs.find(F); 3801 if (BBFRI == BasicBlockFwdRefs.end()) { 3802 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3803 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3804 } else { 3805 auto &BBRefs = BBFRI->second; 3806 // Check for invalid basic block references. 3807 if (BBRefs.size() > FunctionBBs.size()) 3808 return error("Invalid ID"); 3809 assert(!BBRefs.empty() && "Unexpected empty array"); 3810 assert(!BBRefs.front() && "Invalid reference to entry block"); 3811 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3812 ++I) 3813 if (I < RE && BBRefs[I]) { 3814 BBRefs[I]->insertInto(F); 3815 FunctionBBs[I] = BBRefs[I]; 3816 } else { 3817 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3818 } 3819 3820 // Erase from the table. 3821 BasicBlockFwdRefs.erase(BBFRI); 3822 } 3823 3824 CurBB = FunctionBBs[0]; 3825 continue; 3826 } 3827 3828 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3829 // This record indicates that the last instruction is at the same 3830 // location as the previous instruction with a location. 3831 I = getLastInstruction(); 3832 3833 if (!I) 3834 return error("Invalid record"); 3835 I->setDebugLoc(LastLoc); 3836 I = nullptr; 3837 continue; 3838 3839 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3840 I = getLastInstruction(); 3841 if (!I || Record.size() < 4) 3842 return error("Invalid record"); 3843 3844 unsigned Line = Record[0], Col = Record[1]; 3845 unsigned ScopeID = Record[2], IAID = Record[3]; 3846 bool isImplicitCode = Record.size() == 5 && Record[4]; 3847 3848 MDNode *Scope = nullptr, *IA = nullptr; 3849 if (ScopeID) { 3850 Scope = dyn_cast_or_null<MDNode>( 3851 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3852 if (!Scope) 3853 return error("Invalid record"); 3854 } 3855 if (IAID) { 3856 IA = dyn_cast_or_null<MDNode>( 3857 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3858 if (!IA) 3859 return error("Invalid record"); 3860 } 3861 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3862 I->setDebugLoc(LastLoc); 3863 I = nullptr; 3864 continue; 3865 } 3866 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3867 unsigned OpNum = 0; 3868 Value *LHS; 3869 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3870 OpNum+1 > Record.size()) 3871 return error("Invalid record"); 3872 3873 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3874 if (Opc == -1) 3875 return error("Invalid record"); 3876 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3877 InstructionList.push_back(I); 3878 if (OpNum < Record.size()) { 3879 if (isa<FPMathOperator>(I)) { 3880 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3881 if (FMF.any()) 3882 I->setFastMathFlags(FMF); 3883 } 3884 } 3885 break; 3886 } 3887 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3888 unsigned OpNum = 0; 3889 Value *LHS, *RHS; 3890 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3891 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3892 OpNum+1 > Record.size()) 3893 return error("Invalid record"); 3894 3895 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3896 if (Opc == -1) 3897 return error("Invalid record"); 3898 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3899 InstructionList.push_back(I); 3900 if (OpNum < Record.size()) { 3901 if (Opc == Instruction::Add || 3902 Opc == Instruction::Sub || 3903 Opc == Instruction::Mul || 3904 Opc == Instruction::Shl) { 3905 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3906 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3907 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3908 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3909 } else if (Opc == Instruction::SDiv || 3910 Opc == Instruction::UDiv || 3911 Opc == Instruction::LShr || 3912 Opc == Instruction::AShr) { 3913 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3914 cast<BinaryOperator>(I)->setIsExact(true); 3915 } else if (isa<FPMathOperator>(I)) { 3916 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3917 if (FMF.any()) 3918 I->setFastMathFlags(FMF); 3919 } 3920 3921 } 3922 break; 3923 } 3924 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3925 unsigned OpNum = 0; 3926 Value *Op; 3927 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3928 OpNum+2 != Record.size()) 3929 return error("Invalid record"); 3930 3931 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3932 Type *ResTy = flattenPointerTypes(FullTy); 3933 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3934 if (Opc == -1 || !ResTy) 3935 return error("Invalid record"); 3936 Instruction *Temp = nullptr; 3937 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3938 if (Temp) { 3939 InstructionList.push_back(Temp); 3940 assert(CurBB && "No current BB?"); 3941 CurBB->getInstList().push_back(Temp); 3942 } 3943 } else { 3944 auto CastOp = (Instruction::CastOps)Opc; 3945 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3946 return error("Invalid cast"); 3947 I = CastInst::Create(CastOp, Op, ResTy); 3948 } 3949 InstructionList.push_back(I); 3950 break; 3951 } 3952 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3953 case bitc::FUNC_CODE_INST_GEP_OLD: 3954 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3955 unsigned OpNum = 0; 3956 3957 Type *Ty; 3958 bool InBounds; 3959 3960 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3961 InBounds = Record[OpNum++]; 3962 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3963 Ty = flattenPointerTypes(FullTy); 3964 } else { 3965 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3966 Ty = nullptr; 3967 } 3968 3969 Value *BasePtr; 3970 Type *FullBaseTy = nullptr; 3971 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3972 return error("Invalid record"); 3973 3974 if (!Ty) { 3975 std::tie(FullTy, Ty) = 3976 getPointerElementTypes(FullBaseTy->getScalarType()); 3977 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3978 return error( 3979 "Explicit gep type does not match pointee type of pointer operand"); 3980 3981 SmallVector<Value*, 16> GEPIdx; 3982 while (OpNum != Record.size()) { 3983 Value *Op; 3984 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3985 return error("Invalid record"); 3986 GEPIdx.push_back(Op); 3987 } 3988 3989 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3990 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3991 3992 InstructionList.push_back(I); 3993 if (InBounds) 3994 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3995 break; 3996 } 3997 3998 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3999 // EXTRACTVAL: [opty, opval, n x indices] 4000 unsigned OpNum = 0; 4001 Value *Agg; 4002 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4003 return error("Invalid record"); 4004 4005 unsigned RecSize = Record.size(); 4006 if (OpNum == RecSize) 4007 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4008 4009 SmallVector<unsigned, 4> EXTRACTVALIdx; 4010 for (; OpNum != RecSize; ++OpNum) { 4011 bool IsArray = FullTy->isArrayTy(); 4012 bool IsStruct = FullTy->isStructTy(); 4013 uint64_t Index = Record[OpNum]; 4014 4015 if (!IsStruct && !IsArray) 4016 return error("EXTRACTVAL: Invalid type"); 4017 if ((unsigned)Index != Index) 4018 return error("Invalid value"); 4019 if (IsStruct && Index >= FullTy->getStructNumElements()) 4020 return error("EXTRACTVAL: Invalid struct index"); 4021 if (IsArray && Index >= FullTy->getArrayNumElements()) 4022 return error("EXTRACTVAL: Invalid array index"); 4023 EXTRACTVALIdx.push_back((unsigned)Index); 4024 4025 if (IsStruct) 4026 FullTy = FullTy->getStructElementType(Index); 4027 else 4028 FullTy = FullTy->getArrayElementType(); 4029 } 4030 4031 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4032 InstructionList.push_back(I); 4033 break; 4034 } 4035 4036 case bitc::FUNC_CODE_INST_INSERTVAL: { 4037 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4038 unsigned OpNum = 0; 4039 Value *Agg; 4040 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4041 return error("Invalid record"); 4042 Value *Val; 4043 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4044 return error("Invalid record"); 4045 4046 unsigned RecSize = Record.size(); 4047 if (OpNum == RecSize) 4048 return error("INSERTVAL: Invalid instruction with 0 indices"); 4049 4050 SmallVector<unsigned, 4> INSERTVALIdx; 4051 Type *CurTy = Agg->getType(); 4052 for (; OpNum != RecSize; ++OpNum) { 4053 bool IsArray = CurTy->isArrayTy(); 4054 bool IsStruct = CurTy->isStructTy(); 4055 uint64_t Index = Record[OpNum]; 4056 4057 if (!IsStruct && !IsArray) 4058 return error("INSERTVAL: Invalid type"); 4059 if ((unsigned)Index != Index) 4060 return error("Invalid value"); 4061 if (IsStruct && Index >= CurTy->getStructNumElements()) 4062 return error("INSERTVAL: Invalid struct index"); 4063 if (IsArray && Index >= CurTy->getArrayNumElements()) 4064 return error("INSERTVAL: Invalid array index"); 4065 4066 INSERTVALIdx.push_back((unsigned)Index); 4067 if (IsStruct) 4068 CurTy = CurTy->getStructElementType(Index); 4069 else 4070 CurTy = CurTy->getArrayElementType(); 4071 } 4072 4073 if (CurTy != Val->getType()) 4074 return error("Inserted value type doesn't match aggregate type"); 4075 4076 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4077 InstructionList.push_back(I); 4078 break; 4079 } 4080 4081 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4082 // obsolete form of select 4083 // handles select i1 ... in old bitcode 4084 unsigned OpNum = 0; 4085 Value *TrueVal, *FalseVal, *Cond; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4087 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4088 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4089 return error("Invalid record"); 4090 4091 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4092 InstructionList.push_back(I); 4093 break; 4094 } 4095 4096 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4097 // new form of select 4098 // handles select i1 or select [N x i1] 4099 unsigned OpNum = 0; 4100 Value *TrueVal, *FalseVal, *Cond; 4101 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4102 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4103 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4104 return error("Invalid record"); 4105 4106 // select condition can be either i1 or [N x i1] 4107 if (VectorType* vector_type = 4108 dyn_cast<VectorType>(Cond->getType())) { 4109 // expect <n x i1> 4110 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4111 return error("Invalid type for value"); 4112 } else { 4113 // expect i1 4114 if (Cond->getType() != Type::getInt1Ty(Context)) 4115 return error("Invalid type for value"); 4116 } 4117 4118 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4119 InstructionList.push_back(I); 4120 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4121 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4122 if (FMF.any()) 4123 I->setFastMathFlags(FMF); 4124 } 4125 break; 4126 } 4127 4128 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4129 unsigned OpNum = 0; 4130 Value *Vec, *Idx; 4131 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4132 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4133 return error("Invalid record"); 4134 if (!Vec->getType()->isVectorTy()) 4135 return error("Invalid type for value"); 4136 I = ExtractElementInst::Create(Vec, Idx); 4137 FullTy = FullTy->getVectorElementType(); 4138 InstructionList.push_back(I); 4139 break; 4140 } 4141 4142 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4143 unsigned OpNum = 0; 4144 Value *Vec, *Elt, *Idx; 4145 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4146 return error("Invalid record"); 4147 if (!Vec->getType()->isVectorTy()) 4148 return error("Invalid type for value"); 4149 if (popValue(Record, OpNum, NextValueNo, 4150 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4151 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4152 return error("Invalid record"); 4153 I = InsertElementInst::Create(Vec, Elt, Idx); 4154 InstructionList.push_back(I); 4155 break; 4156 } 4157 4158 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4159 unsigned OpNum = 0; 4160 Value *Vec1, *Vec2, *Mask; 4161 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4162 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4163 return error("Invalid record"); 4164 4165 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4166 return error("Invalid record"); 4167 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4168 return error("Invalid type for value"); 4169 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4170 FullTy = VectorType::get(FullTy->getVectorElementType(), 4171 Mask->getType()->getVectorNumElements()); 4172 InstructionList.push_back(I); 4173 break; 4174 } 4175 4176 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4177 // Old form of ICmp/FCmp returning bool 4178 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4179 // both legal on vectors but had different behaviour. 4180 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4181 // FCmp/ICmp returning bool or vector of bool 4182 4183 unsigned OpNum = 0; 4184 Value *LHS, *RHS; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4186 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4187 return error("Invalid record"); 4188 4189 if (OpNum >= Record.size()) 4190 return error( 4191 "Invalid record: operand number exceeded available operands"); 4192 4193 unsigned PredVal = Record[OpNum]; 4194 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4195 FastMathFlags FMF; 4196 if (IsFP && Record.size() > OpNum+1) 4197 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4198 4199 if (OpNum+1 != Record.size()) 4200 return error("Invalid record"); 4201 4202 if (LHS->getType()->isFPOrFPVectorTy()) 4203 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4204 else 4205 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4206 4207 if (FMF.any()) 4208 I->setFastMathFlags(FMF); 4209 InstructionList.push_back(I); 4210 break; 4211 } 4212 4213 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4214 { 4215 unsigned Size = Record.size(); 4216 if (Size == 0) { 4217 I = ReturnInst::Create(Context); 4218 InstructionList.push_back(I); 4219 break; 4220 } 4221 4222 unsigned OpNum = 0; 4223 Value *Op = nullptr; 4224 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4225 return error("Invalid record"); 4226 if (OpNum != Record.size()) 4227 return error("Invalid record"); 4228 4229 I = ReturnInst::Create(Context, Op); 4230 InstructionList.push_back(I); 4231 break; 4232 } 4233 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4234 if (Record.size() != 1 && Record.size() != 3) 4235 return error("Invalid record"); 4236 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4237 if (!TrueDest) 4238 return error("Invalid record"); 4239 4240 if (Record.size() == 1) { 4241 I = BranchInst::Create(TrueDest); 4242 InstructionList.push_back(I); 4243 } 4244 else { 4245 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4246 Value *Cond = getValue(Record, 2, NextValueNo, 4247 Type::getInt1Ty(Context)); 4248 if (!FalseDest || !Cond) 4249 return error("Invalid record"); 4250 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4251 InstructionList.push_back(I); 4252 } 4253 break; 4254 } 4255 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4256 if (Record.size() != 1 && Record.size() != 2) 4257 return error("Invalid record"); 4258 unsigned Idx = 0; 4259 Value *CleanupPad = 4260 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4261 if (!CleanupPad) 4262 return error("Invalid record"); 4263 BasicBlock *UnwindDest = nullptr; 4264 if (Record.size() == 2) { 4265 UnwindDest = getBasicBlock(Record[Idx++]); 4266 if (!UnwindDest) 4267 return error("Invalid record"); 4268 } 4269 4270 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4275 if (Record.size() != 2) 4276 return error("Invalid record"); 4277 unsigned Idx = 0; 4278 Value *CatchPad = 4279 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4280 if (!CatchPad) 4281 return error("Invalid record"); 4282 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4283 if (!BB) 4284 return error("Invalid record"); 4285 4286 I = CatchReturnInst::Create(CatchPad, BB); 4287 InstructionList.push_back(I); 4288 break; 4289 } 4290 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4291 // We must have, at minimum, the outer scope and the number of arguments. 4292 if (Record.size() < 2) 4293 return error("Invalid record"); 4294 4295 unsigned Idx = 0; 4296 4297 Value *ParentPad = 4298 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4299 4300 unsigned NumHandlers = Record[Idx++]; 4301 4302 SmallVector<BasicBlock *, 2> Handlers; 4303 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4304 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4305 if (!BB) 4306 return error("Invalid record"); 4307 Handlers.push_back(BB); 4308 } 4309 4310 BasicBlock *UnwindDest = nullptr; 4311 if (Idx + 1 == Record.size()) { 4312 UnwindDest = getBasicBlock(Record[Idx++]); 4313 if (!UnwindDest) 4314 return error("Invalid record"); 4315 } 4316 4317 if (Record.size() != Idx) 4318 return error("Invalid record"); 4319 4320 auto *CatchSwitch = 4321 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4322 for (BasicBlock *Handler : Handlers) 4323 CatchSwitch->addHandler(Handler); 4324 I = CatchSwitch; 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 case bitc::FUNC_CODE_INST_CATCHPAD: 4329 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4330 // We must have, at minimum, the outer scope and the number of arguments. 4331 if (Record.size() < 2) 4332 return error("Invalid record"); 4333 4334 unsigned Idx = 0; 4335 4336 Value *ParentPad = 4337 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4338 4339 unsigned NumArgOperands = Record[Idx++]; 4340 4341 SmallVector<Value *, 2> Args; 4342 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4343 Value *Val; 4344 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4345 return error("Invalid record"); 4346 Args.push_back(Val); 4347 } 4348 4349 if (Record.size() != Idx) 4350 return error("Invalid record"); 4351 4352 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4353 I = CleanupPadInst::Create(ParentPad, Args); 4354 else 4355 I = CatchPadInst::Create(ParentPad, Args); 4356 InstructionList.push_back(I); 4357 break; 4358 } 4359 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4360 // Check magic 4361 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4362 // "New" SwitchInst format with case ranges. The changes to write this 4363 // format were reverted but we still recognize bitcode that uses it. 4364 // Hopefully someday we will have support for case ranges and can use 4365 // this format again. 4366 4367 Type *OpTy = getTypeByID(Record[1]); 4368 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4369 4370 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4371 BasicBlock *Default = getBasicBlock(Record[3]); 4372 if (!OpTy || !Cond || !Default) 4373 return error("Invalid record"); 4374 4375 unsigned NumCases = Record[4]; 4376 4377 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4378 InstructionList.push_back(SI); 4379 4380 unsigned CurIdx = 5; 4381 for (unsigned i = 0; i != NumCases; ++i) { 4382 SmallVector<ConstantInt*, 1> CaseVals; 4383 unsigned NumItems = Record[CurIdx++]; 4384 for (unsigned ci = 0; ci != NumItems; ++ci) { 4385 bool isSingleNumber = Record[CurIdx++]; 4386 4387 APInt Low; 4388 unsigned ActiveWords = 1; 4389 if (ValueBitWidth > 64) 4390 ActiveWords = Record[CurIdx++]; 4391 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4392 ValueBitWidth); 4393 CurIdx += ActiveWords; 4394 4395 if (!isSingleNumber) { 4396 ActiveWords = 1; 4397 if (ValueBitWidth > 64) 4398 ActiveWords = Record[CurIdx++]; 4399 APInt High = readWideAPInt( 4400 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4401 CurIdx += ActiveWords; 4402 4403 // FIXME: It is not clear whether values in the range should be 4404 // compared as signed or unsigned values. The partially 4405 // implemented changes that used this format in the past used 4406 // unsigned comparisons. 4407 for ( ; Low.ule(High); ++Low) 4408 CaseVals.push_back(ConstantInt::get(Context, Low)); 4409 } else 4410 CaseVals.push_back(ConstantInt::get(Context, Low)); 4411 } 4412 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4413 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4414 cve = CaseVals.end(); cvi != cve; ++cvi) 4415 SI->addCase(*cvi, DestBB); 4416 } 4417 I = SI; 4418 break; 4419 } 4420 4421 // Old SwitchInst format without case ranges. 4422 4423 if (Record.size() < 3 || (Record.size() & 1) == 0) 4424 return error("Invalid record"); 4425 Type *OpTy = getTypeByID(Record[0]); 4426 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4427 BasicBlock *Default = getBasicBlock(Record[2]); 4428 if (!OpTy || !Cond || !Default) 4429 return error("Invalid record"); 4430 unsigned NumCases = (Record.size()-3)/2; 4431 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4432 InstructionList.push_back(SI); 4433 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4434 ConstantInt *CaseVal = 4435 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4436 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4437 if (!CaseVal || !DestBB) { 4438 delete SI; 4439 return error("Invalid record"); 4440 } 4441 SI->addCase(CaseVal, DestBB); 4442 } 4443 I = SI; 4444 break; 4445 } 4446 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4447 if (Record.size() < 2) 4448 return error("Invalid record"); 4449 Type *OpTy = getTypeByID(Record[0]); 4450 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4451 if (!OpTy || !Address) 4452 return error("Invalid record"); 4453 unsigned NumDests = Record.size()-2; 4454 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4455 InstructionList.push_back(IBI); 4456 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4457 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4458 IBI->addDestination(DestBB); 4459 } else { 4460 delete IBI; 4461 return error("Invalid record"); 4462 } 4463 } 4464 I = IBI; 4465 break; 4466 } 4467 4468 case bitc::FUNC_CODE_INST_INVOKE: { 4469 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4470 if (Record.size() < 4) 4471 return error("Invalid record"); 4472 unsigned OpNum = 0; 4473 AttributeList PAL = getAttributes(Record[OpNum++]); 4474 unsigned CCInfo = Record[OpNum++]; 4475 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4476 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4477 4478 FunctionType *FTy = nullptr; 4479 FunctionType *FullFTy = nullptr; 4480 if ((CCInfo >> 13) & 1) { 4481 FullFTy = 4482 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4483 if (!FullFTy) 4484 return error("Explicit invoke type is not a function type"); 4485 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4486 } 4487 4488 Value *Callee; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4490 return error("Invalid record"); 4491 4492 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4493 if (!CalleeTy) 4494 return error("Callee is not a pointer"); 4495 if (!FTy) { 4496 FullFTy = 4497 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4498 if (!FullFTy) 4499 return error("Callee is not of pointer to function type"); 4500 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4501 } else if (getPointerElementFlatType(FullTy) != FTy) 4502 return error("Explicit invoke type does not match pointee type of " 4503 "callee operand"); 4504 if (Record.size() < FTy->getNumParams() + OpNum) 4505 return error("Insufficient operands to call"); 4506 4507 SmallVector<Value*, 16> Ops; 4508 SmallVector<Type *, 16> ArgsFullTys; 4509 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4510 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4511 FTy->getParamType(i))); 4512 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4513 if (!Ops.back()) 4514 return error("Invalid record"); 4515 } 4516 4517 if (!FTy->isVarArg()) { 4518 if (Record.size() != OpNum) 4519 return error("Invalid record"); 4520 } else { 4521 // Read type/value pairs for varargs params. 4522 while (OpNum != Record.size()) { 4523 Value *Op; 4524 Type *FullTy; 4525 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4526 return error("Invalid record"); 4527 Ops.push_back(Op); 4528 ArgsFullTys.push_back(FullTy); 4529 } 4530 } 4531 4532 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4533 OperandBundles); 4534 FullTy = FullFTy->getReturnType(); 4535 OperandBundles.clear(); 4536 InstructionList.push_back(I); 4537 cast<InvokeInst>(I)->setCallingConv( 4538 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4539 cast<InvokeInst>(I)->setAttributes(PAL); 4540 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4541 4542 break; 4543 } 4544 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4545 unsigned Idx = 0; 4546 Value *Val = nullptr; 4547 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4548 return error("Invalid record"); 4549 I = ResumeInst::Create(Val); 4550 InstructionList.push_back(I); 4551 break; 4552 } 4553 case bitc::FUNC_CODE_INST_CALLBR: { 4554 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4555 unsigned OpNum = 0; 4556 AttributeList PAL = getAttributes(Record[OpNum++]); 4557 unsigned CCInfo = Record[OpNum++]; 4558 4559 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4560 unsigned NumIndirectDests = Record[OpNum++]; 4561 SmallVector<BasicBlock *, 16> IndirectDests; 4562 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4563 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4564 4565 FunctionType *FTy = nullptr; 4566 FunctionType *FullFTy = nullptr; 4567 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4568 FullFTy = 4569 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4570 if (!FullFTy) 4571 return error("Explicit call type is not a function type"); 4572 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4573 } 4574 4575 Value *Callee; 4576 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4577 return error("Invalid record"); 4578 4579 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4580 if (!OpTy) 4581 return error("Callee is not a pointer type"); 4582 if (!FTy) { 4583 FullFTy = 4584 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4585 if (!FullFTy) 4586 return error("Callee is not of pointer to function type"); 4587 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4588 } else if (getPointerElementFlatType(FullTy) != FTy) 4589 return error("Explicit call type does not match pointee type of " 4590 "callee operand"); 4591 if (Record.size() < FTy->getNumParams() + OpNum) 4592 return error("Insufficient operands to call"); 4593 4594 SmallVector<Value*, 16> Args; 4595 // Read the fixed params. 4596 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4597 if (FTy->getParamType(i)->isLabelTy()) 4598 Args.push_back(getBasicBlock(Record[OpNum])); 4599 else 4600 Args.push_back(getValue(Record, OpNum, NextValueNo, 4601 FTy->getParamType(i))); 4602 if (!Args.back()) 4603 return error("Invalid record"); 4604 } 4605 4606 // Read type/value pairs for varargs params. 4607 if (!FTy->isVarArg()) { 4608 if (OpNum != Record.size()) 4609 return error("Invalid record"); 4610 } else { 4611 while (OpNum != Record.size()) { 4612 Value *Op; 4613 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4614 return error("Invalid record"); 4615 Args.push_back(Op); 4616 } 4617 } 4618 4619 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4620 OperandBundles); 4621 FullTy = FullFTy->getReturnType(); 4622 OperandBundles.clear(); 4623 InstructionList.push_back(I); 4624 cast<CallBrInst>(I)->setCallingConv( 4625 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4626 cast<CallBrInst>(I)->setAttributes(PAL); 4627 break; 4628 } 4629 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4630 I = new UnreachableInst(Context); 4631 InstructionList.push_back(I); 4632 break; 4633 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4634 if (Record.size() < 1) 4635 return error("Invalid record"); 4636 // The first record specifies the type. 4637 FullTy = getFullyStructuredTypeByID(Record[0]); 4638 Type *Ty = flattenPointerTypes(FullTy); 4639 if (!Ty) 4640 return error("Invalid record"); 4641 4642 // Phi arguments are pairs of records of [value, basic block]. 4643 // There is an optional final record for fast-math-flags if this phi has a 4644 // floating-point type. 4645 size_t NumArgs = (Record.size() - 1) / 2; 4646 PHINode *PN = PHINode::Create(Ty, NumArgs); 4647 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4648 return error("Invalid record"); 4649 InstructionList.push_back(PN); 4650 4651 for (unsigned i = 0; i != NumArgs; i++) { 4652 Value *V; 4653 // With the new function encoding, it is possible that operands have 4654 // negative IDs (for forward references). Use a signed VBR 4655 // representation to keep the encoding small. 4656 if (UseRelativeIDs) 4657 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4658 else 4659 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4660 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4661 if (!V || !BB) 4662 return error("Invalid record"); 4663 PN->addIncoming(V, BB); 4664 } 4665 I = PN; 4666 4667 // If there are an even number of records, the final record must be FMF. 4668 if (Record.size() % 2 == 0) { 4669 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4670 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4671 if (FMF.any()) 4672 I->setFastMathFlags(FMF); 4673 } 4674 4675 break; 4676 } 4677 4678 case bitc::FUNC_CODE_INST_LANDINGPAD: 4679 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4680 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4681 unsigned Idx = 0; 4682 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4683 if (Record.size() < 3) 4684 return error("Invalid record"); 4685 } else { 4686 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4687 if (Record.size() < 4) 4688 return error("Invalid record"); 4689 } 4690 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4691 Type *Ty = flattenPointerTypes(FullTy); 4692 if (!Ty) 4693 return error("Invalid record"); 4694 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4695 Value *PersFn = nullptr; 4696 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4697 return error("Invalid record"); 4698 4699 if (!F->hasPersonalityFn()) 4700 F->setPersonalityFn(cast<Constant>(PersFn)); 4701 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4702 return error("Personality function mismatch"); 4703 } 4704 4705 bool IsCleanup = !!Record[Idx++]; 4706 unsigned NumClauses = Record[Idx++]; 4707 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4708 LP->setCleanup(IsCleanup); 4709 for (unsigned J = 0; J != NumClauses; ++J) { 4710 LandingPadInst::ClauseType CT = 4711 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4712 Value *Val; 4713 4714 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4715 delete LP; 4716 return error("Invalid record"); 4717 } 4718 4719 assert((CT != LandingPadInst::Catch || 4720 !isa<ArrayType>(Val->getType())) && 4721 "Catch clause has a invalid type!"); 4722 assert((CT != LandingPadInst::Filter || 4723 isa<ArrayType>(Val->getType())) && 4724 "Filter clause has invalid type!"); 4725 LP->addClause(cast<Constant>(Val)); 4726 } 4727 4728 I = LP; 4729 InstructionList.push_back(I); 4730 break; 4731 } 4732 4733 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4734 if (Record.size() != 4) 4735 return error("Invalid record"); 4736 uint64_t AlignRecord = Record[3]; 4737 const uint64_t InAllocaMask = uint64_t(1) << 5; 4738 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4739 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4740 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4741 SwiftErrorMask; 4742 bool InAlloca = AlignRecord & InAllocaMask; 4743 bool SwiftError = AlignRecord & SwiftErrorMask; 4744 FullTy = getFullyStructuredTypeByID(Record[0]); 4745 Type *Ty = flattenPointerTypes(FullTy); 4746 if ((AlignRecord & ExplicitTypeMask) == 0) { 4747 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4748 if (!PTy) 4749 return error("Old-style alloca with a non-pointer type"); 4750 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4751 } 4752 Type *OpTy = getTypeByID(Record[1]); 4753 Value *Size = getFnValueByID(Record[2], OpTy); 4754 MaybeAlign Align; 4755 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4756 return Err; 4757 } 4758 if (!Ty || !Size) 4759 return error("Invalid record"); 4760 4761 // FIXME: Make this an optional field. 4762 const DataLayout &DL = TheModule->getDataLayout(); 4763 unsigned AS = DL.getAllocaAddrSpace(); 4764 4765 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4766 AI->setUsedWithInAlloca(InAlloca); 4767 AI->setSwiftError(SwiftError); 4768 I = AI; 4769 FullTy = PointerType::get(FullTy, AS); 4770 InstructionList.push_back(I); 4771 break; 4772 } 4773 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4774 unsigned OpNum = 0; 4775 Value *Op; 4776 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4777 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4778 return error("Invalid record"); 4779 4780 if (!isa<PointerType>(Op->getType())) 4781 return error("Load operand is not a pointer type"); 4782 4783 Type *Ty = nullptr; 4784 if (OpNum + 3 == Record.size()) { 4785 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4786 Ty = flattenPointerTypes(FullTy); 4787 } else 4788 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4789 4790 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4791 return Err; 4792 4793 MaybeAlign Align; 4794 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4795 return Err; 4796 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4797 InstructionList.push_back(I); 4798 break; 4799 } 4800 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4801 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4802 unsigned OpNum = 0; 4803 Value *Op; 4804 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4805 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4806 return error("Invalid record"); 4807 4808 if (!isa<PointerType>(Op->getType())) 4809 return error("Load operand is not a pointer type"); 4810 4811 Type *Ty = nullptr; 4812 if (OpNum + 5 == Record.size()) { 4813 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4814 Ty = flattenPointerTypes(FullTy); 4815 } else 4816 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4817 4818 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4819 return Err; 4820 4821 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4822 if (Ordering == AtomicOrdering::NotAtomic || 4823 Ordering == AtomicOrdering::Release || 4824 Ordering == AtomicOrdering::AcquireRelease) 4825 return error("Invalid record"); 4826 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4827 return error("Invalid record"); 4828 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4829 4830 MaybeAlign Align; 4831 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4832 return Err; 4833 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4834 InstructionList.push_back(I); 4835 break; 4836 } 4837 case bitc::FUNC_CODE_INST_STORE: 4838 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4839 unsigned OpNum = 0; 4840 Value *Val, *Ptr; 4841 Type *FullTy; 4842 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4843 (BitCode == bitc::FUNC_CODE_INST_STORE 4844 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4845 : popValue(Record, OpNum, NextValueNo, 4846 getPointerElementFlatType(FullTy), Val)) || 4847 OpNum + 2 != Record.size()) 4848 return error("Invalid record"); 4849 4850 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4851 return Err; 4852 MaybeAlign Align; 4853 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4854 return Err; 4855 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4856 InstructionList.push_back(I); 4857 break; 4858 } 4859 case bitc::FUNC_CODE_INST_STOREATOMIC: 4860 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4861 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4862 unsigned OpNum = 0; 4863 Value *Val, *Ptr; 4864 Type *FullTy; 4865 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4866 !isa<PointerType>(Ptr->getType()) || 4867 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4868 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4869 : popValue(Record, OpNum, NextValueNo, 4870 getPointerElementFlatType(FullTy), Val)) || 4871 OpNum + 4 != Record.size()) 4872 return error("Invalid record"); 4873 4874 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4875 return Err; 4876 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4877 if (Ordering == AtomicOrdering::NotAtomic || 4878 Ordering == AtomicOrdering::Acquire || 4879 Ordering == AtomicOrdering::AcquireRelease) 4880 return error("Invalid record"); 4881 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4882 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4883 return error("Invalid record"); 4884 4885 MaybeAlign Align; 4886 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4887 return Err; 4888 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4889 InstructionList.push_back(I); 4890 break; 4891 } 4892 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4893 case bitc::FUNC_CODE_INST_CMPXCHG: { 4894 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4895 // failureordering?, isweak?] 4896 unsigned OpNum = 0; 4897 Value *Ptr, *Cmp, *New; 4898 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4899 return error("Invalid record"); 4900 4901 if (!isa<PointerType>(Ptr->getType())) 4902 return error("Cmpxchg operand is not a pointer type"); 4903 4904 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4905 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4906 return error("Invalid record"); 4907 } else if (popValue(Record, OpNum, NextValueNo, 4908 getPointerElementFlatType(FullTy), Cmp)) 4909 return error("Invalid record"); 4910 else 4911 FullTy = cast<PointerType>(FullTy)->getElementType(); 4912 4913 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4914 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4915 return error("Invalid record"); 4916 4917 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4918 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4919 SuccessOrdering == AtomicOrdering::Unordered) 4920 return error("Invalid record"); 4921 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4922 4923 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4924 return Err; 4925 AtomicOrdering FailureOrdering; 4926 if (Record.size() < 7) 4927 FailureOrdering = 4928 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4929 else 4930 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4931 4932 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4933 SSID); 4934 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4935 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4936 4937 if (Record.size() < 8) { 4938 // Before weak cmpxchgs existed, the instruction simply returned the 4939 // value loaded from memory, so bitcode files from that era will be 4940 // expecting the first component of a modern cmpxchg. 4941 CurBB->getInstList().push_back(I); 4942 I = ExtractValueInst::Create(I, 0); 4943 FullTy = cast<StructType>(FullTy)->getElementType(0); 4944 } else { 4945 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4946 } 4947 4948 InstructionList.push_back(I); 4949 break; 4950 } 4951 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4952 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4953 unsigned OpNum = 0; 4954 Value *Ptr, *Val; 4955 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4956 !isa<PointerType>(Ptr->getType()) || 4957 popValue(Record, OpNum, NextValueNo, 4958 getPointerElementFlatType(FullTy), Val) || 4959 OpNum + 4 != Record.size()) 4960 return error("Invalid record"); 4961 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4962 if (Operation < AtomicRMWInst::FIRST_BINOP || 4963 Operation > AtomicRMWInst::LAST_BINOP) 4964 return error("Invalid record"); 4965 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4966 if (Ordering == AtomicOrdering::NotAtomic || 4967 Ordering == AtomicOrdering::Unordered) 4968 return error("Invalid record"); 4969 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4970 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4971 FullTy = getPointerElementFlatType(FullTy); 4972 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4973 InstructionList.push_back(I); 4974 break; 4975 } 4976 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4977 if (2 != Record.size()) 4978 return error("Invalid record"); 4979 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4980 if (Ordering == AtomicOrdering::NotAtomic || 4981 Ordering == AtomicOrdering::Unordered || 4982 Ordering == AtomicOrdering::Monotonic) 4983 return error("Invalid record"); 4984 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4985 I = new FenceInst(Context, Ordering, SSID); 4986 InstructionList.push_back(I); 4987 break; 4988 } 4989 case bitc::FUNC_CODE_INST_CALL: { 4990 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4991 if (Record.size() < 3) 4992 return error("Invalid record"); 4993 4994 unsigned OpNum = 0; 4995 AttributeList PAL = getAttributes(Record[OpNum++]); 4996 unsigned CCInfo = Record[OpNum++]; 4997 4998 FastMathFlags FMF; 4999 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5000 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5001 if (!FMF.any()) 5002 return error("Fast math flags indicator set for call with no FMF"); 5003 } 5004 5005 FunctionType *FTy = nullptr; 5006 FunctionType *FullFTy = nullptr; 5007 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5008 FullFTy = 5009 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5010 if (!FullFTy) 5011 return error("Explicit call type is not a function type"); 5012 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5013 } 5014 5015 Value *Callee; 5016 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5017 return error("Invalid record"); 5018 5019 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5020 if (!OpTy) 5021 return error("Callee is not a pointer type"); 5022 if (!FTy) { 5023 FullFTy = 5024 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5025 if (!FullFTy) 5026 return error("Callee is not of pointer to function type"); 5027 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5028 } else if (getPointerElementFlatType(FullTy) != FTy) 5029 return error("Explicit call type does not match pointee type of " 5030 "callee operand"); 5031 if (Record.size() < FTy->getNumParams() + OpNum) 5032 return error("Insufficient operands to call"); 5033 5034 SmallVector<Value*, 16> Args; 5035 SmallVector<Type*, 16> ArgsFullTys; 5036 // Read the fixed params. 5037 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5038 if (FTy->getParamType(i)->isLabelTy()) 5039 Args.push_back(getBasicBlock(Record[OpNum])); 5040 else 5041 Args.push_back(getValue(Record, OpNum, NextValueNo, 5042 FTy->getParamType(i))); 5043 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5044 if (!Args.back()) 5045 return error("Invalid record"); 5046 } 5047 5048 // Read type/value pairs for varargs params. 5049 if (!FTy->isVarArg()) { 5050 if (OpNum != Record.size()) 5051 return error("Invalid record"); 5052 } else { 5053 while (OpNum != Record.size()) { 5054 Value *Op; 5055 Type *FullTy; 5056 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5057 return error("Invalid record"); 5058 Args.push_back(Op); 5059 ArgsFullTys.push_back(FullTy); 5060 } 5061 } 5062 5063 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5064 FullTy = FullFTy->getReturnType(); 5065 OperandBundles.clear(); 5066 InstructionList.push_back(I); 5067 cast<CallInst>(I)->setCallingConv( 5068 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5069 CallInst::TailCallKind TCK = CallInst::TCK_None; 5070 if (CCInfo & 1 << bitc::CALL_TAIL) 5071 TCK = CallInst::TCK_Tail; 5072 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5073 TCK = CallInst::TCK_MustTail; 5074 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5075 TCK = CallInst::TCK_NoTail; 5076 cast<CallInst>(I)->setTailCallKind(TCK); 5077 cast<CallInst>(I)->setAttributes(PAL); 5078 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5079 if (FMF.any()) { 5080 if (!isa<FPMathOperator>(I)) 5081 return error("Fast-math-flags specified for call without " 5082 "floating-point scalar or vector return type"); 5083 I->setFastMathFlags(FMF); 5084 } 5085 break; 5086 } 5087 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5088 if (Record.size() < 3) 5089 return error("Invalid record"); 5090 Type *OpTy = getTypeByID(Record[0]); 5091 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5092 FullTy = getFullyStructuredTypeByID(Record[2]); 5093 Type *ResTy = flattenPointerTypes(FullTy); 5094 if (!OpTy || !Op || !ResTy) 5095 return error("Invalid record"); 5096 I = new VAArgInst(Op, ResTy); 5097 InstructionList.push_back(I); 5098 break; 5099 } 5100 5101 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5102 // A call or an invoke can be optionally prefixed with some variable 5103 // number of operand bundle blocks. These blocks are read into 5104 // OperandBundles and consumed at the next call or invoke instruction. 5105 5106 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5107 return error("Invalid record"); 5108 5109 std::vector<Value *> Inputs; 5110 5111 unsigned OpNum = 1; 5112 while (OpNum != Record.size()) { 5113 Value *Op; 5114 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5115 return error("Invalid record"); 5116 Inputs.push_back(Op); 5117 } 5118 5119 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5120 continue; 5121 } 5122 5123 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5124 unsigned OpNum = 0; 5125 Value *Op = nullptr; 5126 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5127 return error("Invalid record"); 5128 if (OpNum != Record.size()) 5129 return error("Invalid record"); 5130 5131 I = new FreezeInst(Op); 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 } 5136 5137 // Add instruction to end of current BB. If there is no current BB, reject 5138 // this file. 5139 if (!CurBB) { 5140 I->deleteValue(); 5141 return error("Invalid instruction with no BB"); 5142 } 5143 if (!OperandBundles.empty()) { 5144 I->deleteValue(); 5145 return error("Operand bundles found with no consumer"); 5146 } 5147 CurBB->getInstList().push_back(I); 5148 5149 // If this was a terminator instruction, move to the next block. 5150 if (I->isTerminator()) { 5151 ++CurBBNo; 5152 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5153 } 5154 5155 // Non-void values get registered in the value table for future use. 5156 if (!I->getType()->isVoidTy()) { 5157 if (!FullTy) { 5158 FullTy = I->getType(); 5159 assert( 5160 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5161 !isa<ArrayType>(FullTy) && 5162 (!isa<VectorType>(FullTy) || 5163 FullTy->getVectorElementType()->isFloatingPointTy() || 5164 FullTy->getVectorElementType()->isIntegerTy()) && 5165 "Structured types must be assigned with corresponding non-opaque " 5166 "pointer type"); 5167 } 5168 5169 assert(I->getType() == flattenPointerTypes(FullTy) && 5170 "Incorrect fully structured type provided for Instruction"); 5171 ValueList.assignValue(I, NextValueNo++, FullTy); 5172 } 5173 } 5174 5175 OutOfRecordLoop: 5176 5177 if (!OperandBundles.empty()) 5178 return error("Operand bundles found with no consumer"); 5179 5180 // Check the function list for unresolved values. 5181 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5182 if (!A->getParent()) { 5183 // We found at least one unresolved value. Nuke them all to avoid leaks. 5184 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5185 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5186 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5187 delete A; 5188 } 5189 } 5190 return error("Never resolved value found in function"); 5191 } 5192 } 5193 5194 // Unexpected unresolved metadata about to be dropped. 5195 if (MDLoader->hasFwdRefs()) 5196 return error("Invalid function metadata: outgoing forward refs"); 5197 5198 // Trim the value list down to the size it was before we parsed this function. 5199 ValueList.shrinkTo(ModuleValueListSize); 5200 MDLoader->shrinkTo(ModuleMDLoaderSize); 5201 std::vector<BasicBlock*>().swap(FunctionBBs); 5202 return Error::success(); 5203 } 5204 5205 /// Find the function body in the bitcode stream 5206 Error BitcodeReader::findFunctionInStream( 5207 Function *F, 5208 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5209 while (DeferredFunctionInfoIterator->second == 0) { 5210 // This is the fallback handling for the old format bitcode that 5211 // didn't contain the function index in the VST, or when we have 5212 // an anonymous function which would not have a VST entry. 5213 // Assert that we have one of those two cases. 5214 assert(VSTOffset == 0 || !F->hasName()); 5215 // Parse the next body in the stream and set its position in the 5216 // DeferredFunctionInfo map. 5217 if (Error Err = rememberAndSkipFunctionBodies()) 5218 return Err; 5219 } 5220 return Error::success(); 5221 } 5222 5223 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5224 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5225 return SyncScope::ID(Val); 5226 if (Val >= SSIDs.size()) 5227 return SyncScope::System; // Map unknown synchronization scopes to system. 5228 return SSIDs[Val]; 5229 } 5230 5231 //===----------------------------------------------------------------------===// 5232 // GVMaterializer implementation 5233 //===----------------------------------------------------------------------===// 5234 5235 Error BitcodeReader::materialize(GlobalValue *GV) { 5236 Function *F = dyn_cast<Function>(GV); 5237 // If it's not a function or is already material, ignore the request. 5238 if (!F || !F->isMaterializable()) 5239 return Error::success(); 5240 5241 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5242 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5243 // If its position is recorded as 0, its body is somewhere in the stream 5244 // but we haven't seen it yet. 5245 if (DFII->second == 0) 5246 if (Error Err = findFunctionInStream(F, DFII)) 5247 return Err; 5248 5249 // Materialize metadata before parsing any function bodies. 5250 if (Error Err = materializeMetadata()) 5251 return Err; 5252 5253 // Move the bit stream to the saved position of the deferred function body. 5254 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5255 return JumpFailed; 5256 if (Error Err = parseFunctionBody(F)) 5257 return Err; 5258 F->setIsMaterializable(false); 5259 5260 if (StripDebugInfo) 5261 stripDebugInfo(*F); 5262 5263 // Upgrade any old intrinsic calls in the function. 5264 for (auto &I : UpgradedIntrinsics) { 5265 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5266 UI != UE;) { 5267 User *U = *UI; 5268 ++UI; 5269 if (CallInst *CI = dyn_cast<CallInst>(U)) 5270 UpgradeIntrinsicCall(CI, I.second); 5271 } 5272 } 5273 5274 // Update calls to the remangled intrinsics 5275 for (auto &I : RemangledIntrinsics) 5276 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5277 UI != UE;) 5278 // Don't expect any other users than call sites 5279 CallSite(*UI++).setCalledFunction(I.second); 5280 5281 // Finish fn->subprogram upgrade for materialized functions. 5282 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5283 F->setSubprogram(SP); 5284 5285 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5286 if (!MDLoader->isStrippingTBAA()) { 5287 for (auto &I : instructions(F)) { 5288 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5289 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5290 continue; 5291 MDLoader->setStripTBAA(true); 5292 stripTBAA(F->getParent()); 5293 } 5294 } 5295 5296 // Bring in any functions that this function forward-referenced via 5297 // blockaddresses. 5298 return materializeForwardReferencedFunctions(); 5299 } 5300 5301 Error BitcodeReader::materializeModule() { 5302 if (Error Err = materializeMetadata()) 5303 return Err; 5304 5305 // Promise to materialize all forward references. 5306 WillMaterializeAllForwardRefs = true; 5307 5308 // Iterate over the module, deserializing any functions that are still on 5309 // disk. 5310 for (Function &F : *TheModule) { 5311 if (Error Err = materialize(&F)) 5312 return Err; 5313 } 5314 // At this point, if there are any function bodies, parse the rest of 5315 // the bits in the module past the last function block we have recorded 5316 // through either lazy scanning or the VST. 5317 if (LastFunctionBlockBit || NextUnreadBit) 5318 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5319 ? LastFunctionBlockBit 5320 : NextUnreadBit)) 5321 return Err; 5322 5323 // Check that all block address forward references got resolved (as we 5324 // promised above). 5325 if (!BasicBlockFwdRefs.empty()) 5326 return error("Never resolved function from blockaddress"); 5327 5328 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5329 // delete the old functions to clean up. We can't do this unless the entire 5330 // module is materialized because there could always be another function body 5331 // with calls to the old function. 5332 for (auto &I : UpgradedIntrinsics) { 5333 for (auto *U : I.first->users()) { 5334 if (CallInst *CI = dyn_cast<CallInst>(U)) 5335 UpgradeIntrinsicCall(CI, I.second); 5336 } 5337 if (!I.first->use_empty()) 5338 I.first->replaceAllUsesWith(I.second); 5339 I.first->eraseFromParent(); 5340 } 5341 UpgradedIntrinsics.clear(); 5342 // Do the same for remangled intrinsics 5343 for (auto &I : RemangledIntrinsics) { 5344 I.first->replaceAllUsesWith(I.second); 5345 I.first->eraseFromParent(); 5346 } 5347 RemangledIntrinsics.clear(); 5348 5349 UpgradeDebugInfo(*TheModule); 5350 5351 UpgradeModuleFlags(*TheModule); 5352 5353 UpgradeARCRuntime(*TheModule); 5354 5355 return Error::success(); 5356 } 5357 5358 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5359 return IdentifiedStructTypes; 5360 } 5361 5362 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5363 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5364 StringRef ModulePath, unsigned ModuleId) 5365 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5366 ModulePath(ModulePath), ModuleId(ModuleId) {} 5367 5368 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5369 TheIndex.addModule(ModulePath, ModuleId); 5370 } 5371 5372 ModuleSummaryIndex::ModuleInfo * 5373 ModuleSummaryIndexBitcodeReader::getThisModule() { 5374 return TheIndex.getModule(ModulePath); 5375 } 5376 5377 std::pair<ValueInfo, GlobalValue::GUID> 5378 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5379 auto VGI = ValueIdToValueInfoMap[ValueId]; 5380 assert(VGI.first); 5381 return VGI; 5382 } 5383 5384 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5385 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5386 StringRef SourceFileName) { 5387 std::string GlobalId = 5388 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5389 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5390 auto OriginalNameID = ValueGUID; 5391 if (GlobalValue::isLocalLinkage(Linkage)) 5392 OriginalNameID = GlobalValue::getGUID(ValueName); 5393 if (PrintSummaryGUIDs) 5394 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5395 << ValueName << "\n"; 5396 5397 // UseStrtab is false for legacy summary formats and value names are 5398 // created on stack. In that case we save the name in a string saver in 5399 // the index so that the value name can be recorded. 5400 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5401 TheIndex.getOrInsertValueInfo( 5402 ValueGUID, 5403 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5404 OriginalNameID); 5405 } 5406 5407 // Specialized value symbol table parser used when reading module index 5408 // blocks where we don't actually create global values. The parsed information 5409 // is saved in the bitcode reader for use when later parsing summaries. 5410 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5411 uint64_t Offset, 5412 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5413 // With a strtab the VST is not required to parse the summary. 5414 if (UseStrtab) 5415 return Error::success(); 5416 5417 assert(Offset > 0 && "Expected non-zero VST offset"); 5418 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5419 if (!MaybeCurrentBit) 5420 return MaybeCurrentBit.takeError(); 5421 uint64_t CurrentBit = MaybeCurrentBit.get(); 5422 5423 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5424 return Err; 5425 5426 SmallVector<uint64_t, 64> Record; 5427 5428 // Read all the records for this value table. 5429 SmallString<128> ValueName; 5430 5431 while (true) { 5432 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5433 if (!MaybeEntry) 5434 return MaybeEntry.takeError(); 5435 BitstreamEntry Entry = MaybeEntry.get(); 5436 5437 switch (Entry.Kind) { 5438 case BitstreamEntry::SubBlock: // Handled for us already. 5439 case BitstreamEntry::Error: 5440 return error("Malformed block"); 5441 case BitstreamEntry::EndBlock: 5442 // Done parsing VST, jump back to wherever we came from. 5443 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5444 return JumpFailed; 5445 return Error::success(); 5446 case BitstreamEntry::Record: 5447 // The interesting case. 5448 break; 5449 } 5450 5451 // Read a record. 5452 Record.clear(); 5453 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5454 if (!MaybeRecord) 5455 return MaybeRecord.takeError(); 5456 switch (MaybeRecord.get()) { 5457 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5458 break; 5459 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5460 if (convertToString(Record, 1, ValueName)) 5461 return error("Invalid record"); 5462 unsigned ValueID = Record[0]; 5463 assert(!SourceFileName.empty()); 5464 auto VLI = ValueIdToLinkageMap.find(ValueID); 5465 assert(VLI != ValueIdToLinkageMap.end() && 5466 "No linkage found for VST entry?"); 5467 auto Linkage = VLI->second; 5468 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5469 ValueName.clear(); 5470 break; 5471 } 5472 case bitc::VST_CODE_FNENTRY: { 5473 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5474 if (convertToString(Record, 2, ValueName)) 5475 return error("Invalid record"); 5476 unsigned ValueID = Record[0]; 5477 assert(!SourceFileName.empty()); 5478 auto VLI = ValueIdToLinkageMap.find(ValueID); 5479 assert(VLI != ValueIdToLinkageMap.end() && 5480 "No linkage found for VST entry?"); 5481 auto Linkage = VLI->second; 5482 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5483 ValueName.clear(); 5484 break; 5485 } 5486 case bitc::VST_CODE_COMBINED_ENTRY: { 5487 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5488 unsigned ValueID = Record[0]; 5489 GlobalValue::GUID RefGUID = Record[1]; 5490 // The "original name", which is the second value of the pair will be 5491 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5492 ValueIdToValueInfoMap[ValueID] = 5493 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5494 break; 5495 } 5496 } 5497 } 5498 } 5499 5500 // Parse just the blocks needed for building the index out of the module. 5501 // At the end of this routine the module Index is populated with a map 5502 // from global value id to GlobalValueSummary objects. 5503 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5504 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5505 return Err; 5506 5507 SmallVector<uint64_t, 64> Record; 5508 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5509 unsigned ValueId = 0; 5510 5511 // Read the index for this module. 5512 while (true) { 5513 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5514 if (!MaybeEntry) 5515 return MaybeEntry.takeError(); 5516 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5517 5518 switch (Entry.Kind) { 5519 case BitstreamEntry::Error: 5520 return error("Malformed block"); 5521 case BitstreamEntry::EndBlock: 5522 return Error::success(); 5523 5524 case BitstreamEntry::SubBlock: 5525 switch (Entry.ID) { 5526 default: // Skip unknown content. 5527 if (Error Err = Stream.SkipBlock()) 5528 return Err; 5529 break; 5530 case bitc::BLOCKINFO_BLOCK_ID: 5531 // Need to parse these to get abbrev ids (e.g. for VST) 5532 if (readBlockInfo()) 5533 return error("Malformed block"); 5534 break; 5535 case bitc::VALUE_SYMTAB_BLOCK_ID: 5536 // Should have been parsed earlier via VSTOffset, unless there 5537 // is no summary section. 5538 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5539 !SeenGlobalValSummary) && 5540 "Expected early VST parse via VSTOffset record"); 5541 if (Error Err = Stream.SkipBlock()) 5542 return Err; 5543 break; 5544 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5545 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5546 // Add the module if it is a per-module index (has a source file name). 5547 if (!SourceFileName.empty()) 5548 addThisModule(); 5549 assert(!SeenValueSymbolTable && 5550 "Already read VST when parsing summary block?"); 5551 // We might not have a VST if there were no values in the 5552 // summary. An empty summary block generated when we are 5553 // performing ThinLTO compiles so we don't later invoke 5554 // the regular LTO process on them. 5555 if (VSTOffset > 0) { 5556 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5557 return Err; 5558 SeenValueSymbolTable = true; 5559 } 5560 SeenGlobalValSummary = true; 5561 if (Error Err = parseEntireSummary(Entry.ID)) 5562 return Err; 5563 break; 5564 case bitc::MODULE_STRTAB_BLOCK_ID: 5565 if (Error Err = parseModuleStringTable()) 5566 return Err; 5567 break; 5568 } 5569 continue; 5570 5571 case BitstreamEntry::Record: { 5572 Record.clear(); 5573 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5574 if (!MaybeBitCode) 5575 return MaybeBitCode.takeError(); 5576 switch (MaybeBitCode.get()) { 5577 default: 5578 break; // Default behavior, ignore unknown content. 5579 case bitc::MODULE_CODE_VERSION: { 5580 if (Error Err = parseVersionRecord(Record).takeError()) 5581 return Err; 5582 break; 5583 } 5584 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5585 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5586 SmallString<128> ValueName; 5587 if (convertToString(Record, 0, ValueName)) 5588 return error("Invalid record"); 5589 SourceFileName = ValueName.c_str(); 5590 break; 5591 } 5592 /// MODULE_CODE_HASH: [5*i32] 5593 case bitc::MODULE_CODE_HASH: { 5594 if (Record.size() != 5) 5595 return error("Invalid hash length " + Twine(Record.size()).str()); 5596 auto &Hash = getThisModule()->second.second; 5597 int Pos = 0; 5598 for (auto &Val : Record) { 5599 assert(!(Val >> 32) && "Unexpected high bits set"); 5600 Hash[Pos++] = Val; 5601 } 5602 break; 5603 } 5604 /// MODULE_CODE_VSTOFFSET: [offset] 5605 case bitc::MODULE_CODE_VSTOFFSET: 5606 if (Record.size() < 1) 5607 return error("Invalid record"); 5608 // Note that we subtract 1 here because the offset is relative to one 5609 // word before the start of the identification or module block, which 5610 // was historically always the start of the regular bitcode header. 5611 VSTOffset = Record[0] - 1; 5612 break; 5613 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5614 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5615 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5616 // v2: [strtab offset, strtab size, v1] 5617 case bitc::MODULE_CODE_GLOBALVAR: 5618 case bitc::MODULE_CODE_FUNCTION: 5619 case bitc::MODULE_CODE_ALIAS: { 5620 StringRef Name; 5621 ArrayRef<uint64_t> GVRecord; 5622 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5623 if (GVRecord.size() <= 3) 5624 return error("Invalid record"); 5625 uint64_t RawLinkage = GVRecord[3]; 5626 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5627 if (!UseStrtab) { 5628 ValueIdToLinkageMap[ValueId++] = Linkage; 5629 break; 5630 } 5631 5632 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5633 break; 5634 } 5635 } 5636 } 5637 continue; 5638 } 5639 } 5640 } 5641 5642 std::vector<ValueInfo> 5643 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5644 std::vector<ValueInfo> Ret; 5645 Ret.reserve(Record.size()); 5646 for (uint64_t RefValueId : Record) 5647 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5648 return Ret; 5649 } 5650 5651 std::vector<FunctionSummary::EdgeTy> 5652 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5653 bool IsOldProfileFormat, 5654 bool HasProfile, bool HasRelBF) { 5655 std::vector<FunctionSummary::EdgeTy> Ret; 5656 Ret.reserve(Record.size()); 5657 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5658 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5659 uint64_t RelBF = 0; 5660 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5661 if (IsOldProfileFormat) { 5662 I += 1; // Skip old callsitecount field 5663 if (HasProfile) 5664 I += 1; // Skip old profilecount field 5665 } else if (HasProfile) 5666 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5667 else if (HasRelBF) 5668 RelBF = Record[++I]; 5669 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5670 } 5671 return Ret; 5672 } 5673 5674 static void 5675 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5676 WholeProgramDevirtResolution &Wpd) { 5677 uint64_t ArgNum = Record[Slot++]; 5678 WholeProgramDevirtResolution::ByArg &B = 5679 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5680 Slot += ArgNum; 5681 5682 B.TheKind = 5683 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5684 B.Info = Record[Slot++]; 5685 B.Byte = Record[Slot++]; 5686 B.Bit = Record[Slot++]; 5687 } 5688 5689 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5690 StringRef Strtab, size_t &Slot, 5691 TypeIdSummary &TypeId) { 5692 uint64_t Id = Record[Slot++]; 5693 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5694 5695 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5696 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5697 static_cast<size_t>(Record[Slot + 1])}; 5698 Slot += 2; 5699 5700 uint64_t ResByArgNum = Record[Slot++]; 5701 for (uint64_t I = 0; I != ResByArgNum; ++I) 5702 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5703 } 5704 5705 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5706 StringRef Strtab, 5707 ModuleSummaryIndex &TheIndex) { 5708 size_t Slot = 0; 5709 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5710 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5711 Slot += 2; 5712 5713 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5714 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5715 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5716 TypeId.TTRes.SizeM1 = Record[Slot++]; 5717 TypeId.TTRes.BitMask = Record[Slot++]; 5718 TypeId.TTRes.InlineBits = Record[Slot++]; 5719 5720 while (Slot < Record.size()) 5721 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5722 } 5723 5724 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5725 ArrayRef<uint64_t> Record, size_t &Slot, 5726 TypeIdCompatibleVtableInfo &TypeId) { 5727 uint64_t Offset = Record[Slot++]; 5728 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5729 TypeId.push_back({Offset, Callee}); 5730 } 5731 5732 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5733 ArrayRef<uint64_t> Record) { 5734 size_t Slot = 0; 5735 TypeIdCompatibleVtableInfo &TypeId = 5736 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5737 {Strtab.data() + Record[Slot], 5738 static_cast<size_t>(Record[Slot + 1])}); 5739 Slot += 2; 5740 5741 while (Slot < Record.size()) 5742 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5743 } 5744 5745 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5746 unsigned WOCnt) { 5747 // Readonly and writeonly refs are in the end of the refs list. 5748 assert(ROCnt + WOCnt <= Refs.size()); 5749 unsigned FirstWORef = Refs.size() - WOCnt; 5750 unsigned RefNo = FirstWORef - ROCnt; 5751 for (; RefNo < FirstWORef; ++RefNo) 5752 Refs[RefNo].setReadOnly(); 5753 for (; RefNo < Refs.size(); ++RefNo) 5754 Refs[RefNo].setWriteOnly(); 5755 } 5756 5757 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5758 // objects in the index. 5759 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5760 if (Error Err = Stream.EnterSubBlock(ID)) 5761 return Err; 5762 SmallVector<uint64_t, 64> Record; 5763 5764 // Parse version 5765 { 5766 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5767 if (!MaybeEntry) 5768 return MaybeEntry.takeError(); 5769 BitstreamEntry Entry = MaybeEntry.get(); 5770 5771 if (Entry.Kind != BitstreamEntry::Record) 5772 return error("Invalid Summary Block: record for version expected"); 5773 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5774 if (!MaybeRecord) 5775 return MaybeRecord.takeError(); 5776 if (MaybeRecord.get() != bitc::FS_VERSION) 5777 return error("Invalid Summary Block: version expected"); 5778 } 5779 const uint64_t Version = Record[0]; 5780 const bool IsOldProfileFormat = Version == 1; 5781 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5782 return error("Invalid summary version " + Twine(Version) + 5783 ". Version should be in the range [1-" + 5784 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5785 "]."); 5786 Record.clear(); 5787 5788 // Keep around the last seen summary to be used when we see an optional 5789 // "OriginalName" attachement. 5790 GlobalValueSummary *LastSeenSummary = nullptr; 5791 GlobalValue::GUID LastSeenGUID = 0; 5792 5793 // We can expect to see any number of type ID information records before 5794 // each function summary records; these variables store the information 5795 // collected so far so that it can be used to create the summary object. 5796 std::vector<GlobalValue::GUID> PendingTypeTests; 5797 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5798 PendingTypeCheckedLoadVCalls; 5799 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5800 PendingTypeCheckedLoadConstVCalls; 5801 5802 while (true) { 5803 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5804 if (!MaybeEntry) 5805 return MaybeEntry.takeError(); 5806 BitstreamEntry Entry = MaybeEntry.get(); 5807 5808 switch (Entry.Kind) { 5809 case BitstreamEntry::SubBlock: // Handled for us already. 5810 case BitstreamEntry::Error: 5811 return error("Malformed block"); 5812 case BitstreamEntry::EndBlock: 5813 return Error::success(); 5814 case BitstreamEntry::Record: 5815 // The interesting case. 5816 break; 5817 } 5818 5819 // Read a record. The record format depends on whether this 5820 // is a per-module index or a combined index file. In the per-module 5821 // case the records contain the associated value's ID for correlation 5822 // with VST entries. In the combined index the correlation is done 5823 // via the bitcode offset of the summary records (which were saved 5824 // in the combined index VST entries). The records also contain 5825 // information used for ThinLTO renaming and importing. 5826 Record.clear(); 5827 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5828 if (!MaybeBitCode) 5829 return MaybeBitCode.takeError(); 5830 switch (unsigned BitCode = MaybeBitCode.get()) { 5831 default: // Default behavior: ignore. 5832 break; 5833 case bitc::FS_FLAGS: { // [flags] 5834 uint64_t Flags = Record[0]; 5835 // Scan flags. 5836 assert(Flags <= 0x3f && "Unexpected bits in flag"); 5837 5838 // 1 bit: WithGlobalValueDeadStripping flag. 5839 // Set on combined index only. 5840 if (Flags & 0x1) 5841 TheIndex.setWithGlobalValueDeadStripping(); 5842 // 1 bit: SkipModuleByDistributedBackend flag. 5843 // Set on combined index only. 5844 if (Flags & 0x2) 5845 TheIndex.setSkipModuleByDistributedBackend(); 5846 // 1 bit: HasSyntheticEntryCounts flag. 5847 // Set on combined index only. 5848 if (Flags & 0x4) 5849 TheIndex.setHasSyntheticEntryCounts(); 5850 // 1 bit: DisableSplitLTOUnit flag. 5851 // Set on per module indexes. It is up to the client to validate 5852 // the consistency of this flag across modules being linked. 5853 if (Flags & 0x8) 5854 TheIndex.setEnableSplitLTOUnit(); 5855 // 1 bit: PartiallySplitLTOUnits flag. 5856 // Set on combined index only. 5857 if (Flags & 0x10) 5858 TheIndex.setPartiallySplitLTOUnits(); 5859 // 1 bit: WithAttributePropagation flag. 5860 // Set on combined index only. 5861 if (Flags & 0x20) 5862 TheIndex.setWithAttributePropagation(); 5863 break; 5864 } 5865 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5866 uint64_t ValueID = Record[0]; 5867 GlobalValue::GUID RefGUID = Record[1]; 5868 ValueIdToValueInfoMap[ValueID] = 5869 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5870 break; 5871 } 5872 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5873 // numrefs x valueid, n x (valueid)] 5874 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5875 // numrefs x valueid, 5876 // n x (valueid, hotness)] 5877 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5878 // numrefs x valueid, 5879 // n x (valueid, relblockfreq)] 5880 case bitc::FS_PERMODULE: 5881 case bitc::FS_PERMODULE_RELBF: 5882 case bitc::FS_PERMODULE_PROFILE: { 5883 unsigned ValueID = Record[0]; 5884 uint64_t RawFlags = Record[1]; 5885 unsigned InstCount = Record[2]; 5886 uint64_t RawFunFlags = 0; 5887 unsigned NumRefs = Record[3]; 5888 unsigned NumRORefs = 0, NumWORefs = 0; 5889 int RefListStartIndex = 4; 5890 if (Version >= 4) { 5891 RawFunFlags = Record[3]; 5892 NumRefs = Record[4]; 5893 RefListStartIndex = 5; 5894 if (Version >= 5) { 5895 NumRORefs = Record[5]; 5896 RefListStartIndex = 6; 5897 if (Version >= 7) { 5898 NumWORefs = Record[6]; 5899 RefListStartIndex = 7; 5900 } 5901 } 5902 } 5903 5904 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5905 // The module path string ref set in the summary must be owned by the 5906 // index's module string table. Since we don't have a module path 5907 // string table section in the per-module index, we create a single 5908 // module path string table entry with an empty (0) ID to take 5909 // ownership. 5910 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5911 assert(Record.size() >= RefListStartIndex + NumRefs && 5912 "Record size inconsistent with number of references"); 5913 std::vector<ValueInfo> Refs = makeRefList( 5914 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5915 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5916 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5917 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5918 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5919 IsOldProfileFormat, HasProfile, HasRelBF); 5920 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5921 auto FS = std::make_unique<FunctionSummary>( 5922 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5923 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5924 std::move(PendingTypeTestAssumeVCalls), 5925 std::move(PendingTypeCheckedLoadVCalls), 5926 std::move(PendingTypeTestAssumeConstVCalls), 5927 std::move(PendingTypeCheckedLoadConstVCalls)); 5928 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5929 FS->setModulePath(getThisModule()->first()); 5930 FS->setOriginalName(VIAndOriginalGUID.second); 5931 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5932 break; 5933 } 5934 // FS_ALIAS: [valueid, flags, valueid] 5935 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5936 // they expect all aliasee summaries to be available. 5937 case bitc::FS_ALIAS: { 5938 unsigned ValueID = Record[0]; 5939 uint64_t RawFlags = Record[1]; 5940 unsigned AliaseeID = Record[2]; 5941 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5942 auto AS = std::make_unique<AliasSummary>(Flags); 5943 // The module path string ref set in the summary must be owned by the 5944 // index's module string table. Since we don't have a module path 5945 // string table section in the per-module index, we create a single 5946 // module path string table entry with an empty (0) ID to take 5947 // ownership. 5948 AS->setModulePath(getThisModule()->first()); 5949 5950 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5951 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5952 if (!AliaseeInModule) 5953 return error("Alias expects aliasee summary to be parsed"); 5954 AS->setAliasee(AliaseeVI, AliaseeInModule); 5955 5956 auto GUID = getValueInfoFromValueId(ValueID); 5957 AS->setOriginalName(GUID.second); 5958 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5959 break; 5960 } 5961 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5962 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5963 unsigned ValueID = Record[0]; 5964 uint64_t RawFlags = Record[1]; 5965 unsigned RefArrayStart = 2; 5966 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5967 /* WriteOnly */ false); 5968 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5969 if (Version >= 5) { 5970 GVF = getDecodedGVarFlags(Record[2]); 5971 RefArrayStart = 3; 5972 } 5973 std::vector<ValueInfo> Refs = 5974 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5975 auto FS = 5976 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5977 FS->setModulePath(getThisModule()->first()); 5978 auto GUID = getValueInfoFromValueId(ValueID); 5979 FS->setOriginalName(GUID.second); 5980 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5981 break; 5982 } 5983 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5984 // numrefs, numrefs x valueid, 5985 // n x (valueid, offset)] 5986 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5987 unsigned ValueID = Record[0]; 5988 uint64_t RawFlags = Record[1]; 5989 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5990 unsigned NumRefs = Record[3]; 5991 unsigned RefListStartIndex = 4; 5992 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5993 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5994 std::vector<ValueInfo> Refs = makeRefList( 5995 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5996 VTableFuncList VTableFuncs; 5997 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5998 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5999 uint64_t Offset = Record[++I]; 6000 VTableFuncs.push_back({Callee, Offset}); 6001 } 6002 auto VS = 6003 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6004 VS->setModulePath(getThisModule()->first()); 6005 VS->setVTableFuncs(VTableFuncs); 6006 auto GUID = getValueInfoFromValueId(ValueID); 6007 VS->setOriginalName(GUID.second); 6008 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6009 break; 6010 } 6011 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6012 // numrefs x valueid, n x (valueid)] 6013 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6014 // numrefs x valueid, n x (valueid, hotness)] 6015 case bitc::FS_COMBINED: 6016 case bitc::FS_COMBINED_PROFILE: { 6017 unsigned ValueID = Record[0]; 6018 uint64_t ModuleId = Record[1]; 6019 uint64_t RawFlags = Record[2]; 6020 unsigned InstCount = Record[3]; 6021 uint64_t RawFunFlags = 0; 6022 uint64_t EntryCount = 0; 6023 unsigned NumRefs = Record[4]; 6024 unsigned NumRORefs = 0, NumWORefs = 0; 6025 int RefListStartIndex = 5; 6026 6027 if (Version >= 4) { 6028 RawFunFlags = Record[4]; 6029 RefListStartIndex = 6; 6030 size_t NumRefsIndex = 5; 6031 if (Version >= 5) { 6032 unsigned NumRORefsOffset = 1; 6033 RefListStartIndex = 7; 6034 if (Version >= 6) { 6035 NumRefsIndex = 6; 6036 EntryCount = Record[5]; 6037 RefListStartIndex = 8; 6038 if (Version >= 7) { 6039 RefListStartIndex = 9; 6040 NumWORefs = Record[8]; 6041 NumRORefsOffset = 2; 6042 } 6043 } 6044 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6045 } 6046 NumRefs = Record[NumRefsIndex]; 6047 } 6048 6049 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6050 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6051 assert(Record.size() >= RefListStartIndex + NumRefs && 6052 "Record size inconsistent with number of references"); 6053 std::vector<ValueInfo> Refs = makeRefList( 6054 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6055 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6056 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6057 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6058 IsOldProfileFormat, HasProfile, false); 6059 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6060 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6061 auto FS = std::make_unique<FunctionSummary>( 6062 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6063 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6064 std::move(PendingTypeTestAssumeVCalls), 6065 std::move(PendingTypeCheckedLoadVCalls), 6066 std::move(PendingTypeTestAssumeConstVCalls), 6067 std::move(PendingTypeCheckedLoadConstVCalls)); 6068 LastSeenSummary = FS.get(); 6069 LastSeenGUID = VI.getGUID(); 6070 FS->setModulePath(ModuleIdMap[ModuleId]); 6071 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6072 break; 6073 } 6074 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6075 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6076 // they expect all aliasee summaries to be available. 6077 case bitc::FS_COMBINED_ALIAS: { 6078 unsigned ValueID = Record[0]; 6079 uint64_t ModuleId = Record[1]; 6080 uint64_t RawFlags = Record[2]; 6081 unsigned AliaseeValueId = Record[3]; 6082 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6083 auto AS = std::make_unique<AliasSummary>(Flags); 6084 LastSeenSummary = AS.get(); 6085 AS->setModulePath(ModuleIdMap[ModuleId]); 6086 6087 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6088 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6089 AS->setAliasee(AliaseeVI, AliaseeInModule); 6090 6091 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6092 LastSeenGUID = VI.getGUID(); 6093 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6094 break; 6095 } 6096 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6097 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6098 unsigned ValueID = Record[0]; 6099 uint64_t ModuleId = Record[1]; 6100 uint64_t RawFlags = Record[2]; 6101 unsigned RefArrayStart = 3; 6102 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6103 /* WriteOnly */ false); 6104 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6105 if (Version >= 5) { 6106 GVF = getDecodedGVarFlags(Record[3]); 6107 RefArrayStart = 4; 6108 } 6109 std::vector<ValueInfo> Refs = 6110 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6111 auto FS = 6112 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6113 LastSeenSummary = FS.get(); 6114 FS->setModulePath(ModuleIdMap[ModuleId]); 6115 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6116 LastSeenGUID = VI.getGUID(); 6117 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6118 break; 6119 } 6120 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6121 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6122 uint64_t OriginalName = Record[0]; 6123 if (!LastSeenSummary) 6124 return error("Name attachment that does not follow a combined record"); 6125 LastSeenSummary->setOriginalName(OriginalName); 6126 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6127 // Reset the LastSeenSummary 6128 LastSeenSummary = nullptr; 6129 LastSeenGUID = 0; 6130 break; 6131 } 6132 case bitc::FS_TYPE_TESTS: 6133 assert(PendingTypeTests.empty()); 6134 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6135 Record.end()); 6136 break; 6137 6138 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6139 assert(PendingTypeTestAssumeVCalls.empty()); 6140 for (unsigned I = 0; I != Record.size(); I += 2) 6141 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6142 break; 6143 6144 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6145 assert(PendingTypeCheckedLoadVCalls.empty()); 6146 for (unsigned I = 0; I != Record.size(); I += 2) 6147 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6148 break; 6149 6150 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6151 PendingTypeTestAssumeConstVCalls.push_back( 6152 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6153 break; 6154 6155 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6156 PendingTypeCheckedLoadConstVCalls.push_back( 6157 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6158 break; 6159 6160 case bitc::FS_CFI_FUNCTION_DEFS: { 6161 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6162 for (unsigned I = 0; I != Record.size(); I += 2) 6163 CfiFunctionDefs.insert( 6164 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6165 break; 6166 } 6167 6168 case bitc::FS_CFI_FUNCTION_DECLS: { 6169 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6170 for (unsigned I = 0; I != Record.size(); I += 2) 6171 CfiFunctionDecls.insert( 6172 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6173 break; 6174 } 6175 6176 case bitc::FS_TYPE_ID: 6177 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6178 break; 6179 6180 case bitc::FS_TYPE_ID_METADATA: 6181 parseTypeIdCompatibleVtableSummaryRecord(Record); 6182 break; 6183 } 6184 } 6185 llvm_unreachable("Exit infinite loop"); 6186 } 6187 6188 // Parse the module string table block into the Index. 6189 // This populates the ModulePathStringTable map in the index. 6190 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6191 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6192 return Err; 6193 6194 SmallVector<uint64_t, 64> Record; 6195 6196 SmallString<128> ModulePath; 6197 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6198 6199 while (true) { 6200 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6201 if (!MaybeEntry) 6202 return MaybeEntry.takeError(); 6203 BitstreamEntry Entry = MaybeEntry.get(); 6204 6205 switch (Entry.Kind) { 6206 case BitstreamEntry::SubBlock: // Handled for us already. 6207 case BitstreamEntry::Error: 6208 return error("Malformed block"); 6209 case BitstreamEntry::EndBlock: 6210 return Error::success(); 6211 case BitstreamEntry::Record: 6212 // The interesting case. 6213 break; 6214 } 6215 6216 Record.clear(); 6217 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6218 if (!MaybeRecord) 6219 return MaybeRecord.takeError(); 6220 switch (MaybeRecord.get()) { 6221 default: // Default behavior: ignore. 6222 break; 6223 case bitc::MST_CODE_ENTRY: { 6224 // MST_ENTRY: [modid, namechar x N] 6225 uint64_t ModuleId = Record[0]; 6226 6227 if (convertToString(Record, 1, ModulePath)) 6228 return error("Invalid record"); 6229 6230 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6231 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6232 6233 ModulePath.clear(); 6234 break; 6235 } 6236 /// MST_CODE_HASH: [5*i32] 6237 case bitc::MST_CODE_HASH: { 6238 if (Record.size() != 5) 6239 return error("Invalid hash length " + Twine(Record.size()).str()); 6240 if (!LastSeenModule) 6241 return error("Invalid hash that does not follow a module path"); 6242 int Pos = 0; 6243 for (auto &Val : Record) { 6244 assert(!(Val >> 32) && "Unexpected high bits set"); 6245 LastSeenModule->second.second[Pos++] = Val; 6246 } 6247 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6248 LastSeenModule = nullptr; 6249 break; 6250 } 6251 } 6252 } 6253 llvm_unreachable("Exit infinite loop"); 6254 } 6255 6256 namespace { 6257 6258 // FIXME: This class is only here to support the transition to llvm::Error. It 6259 // will be removed once this transition is complete. Clients should prefer to 6260 // deal with the Error value directly, rather than converting to error_code. 6261 class BitcodeErrorCategoryType : public std::error_category { 6262 const char *name() const noexcept override { 6263 return "llvm.bitcode"; 6264 } 6265 6266 std::string message(int IE) const override { 6267 BitcodeError E = static_cast<BitcodeError>(IE); 6268 switch (E) { 6269 case BitcodeError::CorruptedBitcode: 6270 return "Corrupted bitcode"; 6271 } 6272 llvm_unreachable("Unknown error type!"); 6273 } 6274 }; 6275 6276 } // end anonymous namespace 6277 6278 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6279 6280 const std::error_category &llvm::BitcodeErrorCategory() { 6281 return *ErrorCategory; 6282 } 6283 6284 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6285 unsigned Block, unsigned RecordID) { 6286 if (Error Err = Stream.EnterSubBlock(Block)) 6287 return std::move(Err); 6288 6289 StringRef Strtab; 6290 while (true) { 6291 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6292 if (!MaybeEntry) 6293 return MaybeEntry.takeError(); 6294 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6295 6296 switch (Entry.Kind) { 6297 case BitstreamEntry::EndBlock: 6298 return Strtab; 6299 6300 case BitstreamEntry::Error: 6301 return error("Malformed block"); 6302 6303 case BitstreamEntry::SubBlock: 6304 if (Error Err = Stream.SkipBlock()) 6305 return std::move(Err); 6306 break; 6307 6308 case BitstreamEntry::Record: 6309 StringRef Blob; 6310 SmallVector<uint64_t, 1> Record; 6311 Expected<unsigned> MaybeRecord = 6312 Stream.readRecord(Entry.ID, Record, &Blob); 6313 if (!MaybeRecord) 6314 return MaybeRecord.takeError(); 6315 if (MaybeRecord.get() == RecordID) 6316 Strtab = Blob; 6317 break; 6318 } 6319 } 6320 } 6321 6322 //===----------------------------------------------------------------------===// 6323 // External interface 6324 //===----------------------------------------------------------------------===// 6325 6326 Expected<std::vector<BitcodeModule>> 6327 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6328 auto FOrErr = getBitcodeFileContents(Buffer); 6329 if (!FOrErr) 6330 return FOrErr.takeError(); 6331 return std::move(FOrErr->Mods); 6332 } 6333 6334 Expected<BitcodeFileContents> 6335 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6336 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6337 if (!StreamOrErr) 6338 return StreamOrErr.takeError(); 6339 BitstreamCursor &Stream = *StreamOrErr; 6340 6341 BitcodeFileContents F; 6342 while (true) { 6343 uint64_t BCBegin = Stream.getCurrentByteNo(); 6344 6345 // We may be consuming bitcode from a client that leaves garbage at the end 6346 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6347 // the end that there cannot possibly be another module, stop looking. 6348 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6349 return F; 6350 6351 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6352 if (!MaybeEntry) 6353 return MaybeEntry.takeError(); 6354 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6355 6356 switch (Entry.Kind) { 6357 case BitstreamEntry::EndBlock: 6358 case BitstreamEntry::Error: 6359 return error("Malformed block"); 6360 6361 case BitstreamEntry::SubBlock: { 6362 uint64_t IdentificationBit = -1ull; 6363 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6364 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6365 if (Error Err = Stream.SkipBlock()) 6366 return std::move(Err); 6367 6368 { 6369 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6370 if (!MaybeEntry) 6371 return MaybeEntry.takeError(); 6372 Entry = MaybeEntry.get(); 6373 } 6374 6375 if (Entry.Kind != BitstreamEntry::SubBlock || 6376 Entry.ID != bitc::MODULE_BLOCK_ID) 6377 return error("Malformed block"); 6378 } 6379 6380 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6381 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6382 if (Error Err = Stream.SkipBlock()) 6383 return std::move(Err); 6384 6385 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6386 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6387 Buffer.getBufferIdentifier(), IdentificationBit, 6388 ModuleBit}); 6389 continue; 6390 } 6391 6392 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6393 Expected<StringRef> Strtab = 6394 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6395 if (!Strtab) 6396 return Strtab.takeError(); 6397 // This string table is used by every preceding bitcode module that does 6398 // not have its own string table. A bitcode file may have multiple 6399 // string tables if it was created by binary concatenation, for example 6400 // with "llvm-cat -b". 6401 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6402 if (!I->Strtab.empty()) 6403 break; 6404 I->Strtab = *Strtab; 6405 } 6406 // Similarly, the string table is used by every preceding symbol table; 6407 // normally there will be just one unless the bitcode file was created 6408 // by binary concatenation. 6409 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6410 F.StrtabForSymtab = *Strtab; 6411 continue; 6412 } 6413 6414 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6415 Expected<StringRef> SymtabOrErr = 6416 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6417 if (!SymtabOrErr) 6418 return SymtabOrErr.takeError(); 6419 6420 // We can expect the bitcode file to have multiple symbol tables if it 6421 // was created by binary concatenation. In that case we silently 6422 // ignore any subsequent symbol tables, which is fine because this is a 6423 // low level function. The client is expected to notice that the number 6424 // of modules in the symbol table does not match the number of modules 6425 // in the input file and regenerate the symbol table. 6426 if (F.Symtab.empty()) 6427 F.Symtab = *SymtabOrErr; 6428 continue; 6429 } 6430 6431 if (Error Err = Stream.SkipBlock()) 6432 return std::move(Err); 6433 continue; 6434 } 6435 case BitstreamEntry::Record: 6436 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6437 continue; 6438 else 6439 return StreamFailed.takeError(); 6440 } 6441 } 6442 } 6443 6444 /// Get a lazy one-at-time loading module from bitcode. 6445 /// 6446 /// This isn't always used in a lazy context. In particular, it's also used by 6447 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6448 /// in forward-referenced functions from block address references. 6449 /// 6450 /// \param[in] MaterializeAll Set to \c true if we should materialize 6451 /// everything. 6452 Expected<std::unique_ptr<Module>> 6453 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6454 bool ShouldLazyLoadMetadata, bool IsImporting) { 6455 BitstreamCursor Stream(Buffer); 6456 6457 std::string ProducerIdentification; 6458 if (IdentificationBit != -1ull) { 6459 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6460 return std::move(JumpFailed); 6461 Expected<std::string> ProducerIdentificationOrErr = 6462 readIdentificationBlock(Stream); 6463 if (!ProducerIdentificationOrErr) 6464 return ProducerIdentificationOrErr.takeError(); 6465 6466 ProducerIdentification = *ProducerIdentificationOrErr; 6467 } 6468 6469 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6470 return std::move(JumpFailed); 6471 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6472 Context); 6473 6474 std::unique_ptr<Module> M = 6475 std::make_unique<Module>(ModuleIdentifier, Context); 6476 M->setMaterializer(R); 6477 6478 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6479 if (Error Err = 6480 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6481 return std::move(Err); 6482 6483 if (MaterializeAll) { 6484 // Read in the entire module, and destroy the BitcodeReader. 6485 if (Error Err = M->materializeAll()) 6486 return std::move(Err); 6487 } else { 6488 // Resolve forward references from blockaddresses. 6489 if (Error Err = R->materializeForwardReferencedFunctions()) 6490 return std::move(Err); 6491 } 6492 return std::move(M); 6493 } 6494 6495 Expected<std::unique_ptr<Module>> 6496 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6497 bool IsImporting) { 6498 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6499 } 6500 6501 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6502 // We don't use ModuleIdentifier here because the client may need to control the 6503 // module path used in the combined summary (e.g. when reading summaries for 6504 // regular LTO modules). 6505 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6506 StringRef ModulePath, uint64_t ModuleId) { 6507 BitstreamCursor Stream(Buffer); 6508 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6509 return JumpFailed; 6510 6511 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6512 ModulePath, ModuleId); 6513 return R.parseModule(); 6514 } 6515 6516 // Parse the specified bitcode buffer, returning the function info index. 6517 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6518 BitstreamCursor Stream(Buffer); 6519 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6520 return std::move(JumpFailed); 6521 6522 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6523 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6524 ModuleIdentifier, 0); 6525 6526 if (Error Err = R.parseModule()) 6527 return std::move(Err); 6528 6529 return std::move(Index); 6530 } 6531 6532 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6533 unsigned ID) { 6534 if (Error Err = Stream.EnterSubBlock(ID)) 6535 return std::move(Err); 6536 SmallVector<uint64_t, 64> Record; 6537 6538 while (true) { 6539 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6540 if (!MaybeEntry) 6541 return MaybeEntry.takeError(); 6542 BitstreamEntry Entry = MaybeEntry.get(); 6543 6544 switch (Entry.Kind) { 6545 case BitstreamEntry::SubBlock: // Handled for us already. 6546 case BitstreamEntry::Error: 6547 return error("Malformed block"); 6548 case BitstreamEntry::EndBlock: 6549 // If no flags record found, conservatively return true to mimic 6550 // behavior before this flag was added. 6551 return true; 6552 case BitstreamEntry::Record: 6553 // The interesting case. 6554 break; 6555 } 6556 6557 // Look for the FS_FLAGS record. 6558 Record.clear(); 6559 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6560 if (!MaybeBitCode) 6561 return MaybeBitCode.takeError(); 6562 switch (MaybeBitCode.get()) { 6563 default: // Default behavior: ignore. 6564 break; 6565 case bitc::FS_FLAGS: { // [flags] 6566 uint64_t Flags = Record[0]; 6567 // Scan flags. 6568 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6569 6570 return Flags & 0x8; 6571 } 6572 } 6573 } 6574 llvm_unreachable("Exit infinite loop"); 6575 } 6576 6577 // Check if the given bitcode buffer contains a global value summary block. 6578 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6579 BitstreamCursor Stream(Buffer); 6580 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6581 return std::move(JumpFailed); 6582 6583 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6584 return std::move(Err); 6585 6586 while (true) { 6587 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6588 if (!MaybeEntry) 6589 return MaybeEntry.takeError(); 6590 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6591 6592 switch (Entry.Kind) { 6593 case BitstreamEntry::Error: 6594 return error("Malformed block"); 6595 case BitstreamEntry::EndBlock: 6596 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6597 /*EnableSplitLTOUnit=*/false}; 6598 6599 case BitstreamEntry::SubBlock: 6600 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6601 Expected<bool> EnableSplitLTOUnit = 6602 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6603 if (!EnableSplitLTOUnit) 6604 return EnableSplitLTOUnit.takeError(); 6605 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6606 *EnableSplitLTOUnit}; 6607 } 6608 6609 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6610 Expected<bool> EnableSplitLTOUnit = 6611 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6612 if (!EnableSplitLTOUnit) 6613 return EnableSplitLTOUnit.takeError(); 6614 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6615 *EnableSplitLTOUnit}; 6616 } 6617 6618 // Ignore other sub-blocks. 6619 if (Error Err = Stream.SkipBlock()) 6620 return std::move(Err); 6621 continue; 6622 6623 case BitstreamEntry::Record: 6624 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6625 continue; 6626 else 6627 return StreamFailed.takeError(); 6628 } 6629 } 6630 } 6631 6632 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6633 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6634 if (!MsOrErr) 6635 return MsOrErr.takeError(); 6636 6637 if (MsOrErr->size() != 1) 6638 return error("Expected a single module"); 6639 6640 return (*MsOrErr)[0]; 6641 } 6642 6643 Expected<std::unique_ptr<Module>> 6644 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6645 bool ShouldLazyLoadMetadata, bool IsImporting) { 6646 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6647 if (!BM) 6648 return BM.takeError(); 6649 6650 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6651 } 6652 6653 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6654 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6655 bool ShouldLazyLoadMetadata, bool IsImporting) { 6656 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6657 IsImporting); 6658 if (MOrErr) 6659 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6660 return MOrErr; 6661 } 6662 6663 Expected<std::unique_ptr<Module>> 6664 BitcodeModule::parseModule(LLVMContext &Context) { 6665 return getModuleImpl(Context, true, false, false); 6666 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6667 // written. We must defer until the Module has been fully materialized. 6668 } 6669 6670 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6671 LLVMContext &Context) { 6672 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6673 if (!BM) 6674 return BM.takeError(); 6675 6676 return BM->parseModule(Context); 6677 } 6678 6679 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6680 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6681 if (!StreamOrErr) 6682 return StreamOrErr.takeError(); 6683 6684 return readTriple(*StreamOrErr); 6685 } 6686 6687 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6688 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6689 if (!StreamOrErr) 6690 return StreamOrErr.takeError(); 6691 6692 return hasObjCCategory(*StreamOrErr); 6693 } 6694 6695 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6696 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6697 if (!StreamOrErr) 6698 return StreamOrErr.takeError(); 6699 6700 return readIdentificationCode(*StreamOrErr); 6701 } 6702 6703 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6704 ModuleSummaryIndex &CombinedIndex, 6705 uint64_t ModuleId) { 6706 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6707 if (!BM) 6708 return BM.takeError(); 6709 6710 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6711 } 6712 6713 Expected<std::unique_ptr<ModuleSummaryIndex>> 6714 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6715 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6716 if (!BM) 6717 return BM.takeError(); 6718 6719 return BM->getSummary(); 6720 } 6721 6722 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6723 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6724 if (!BM) 6725 return BM.takeError(); 6726 6727 return BM->getLTOInfo(); 6728 } 6729 6730 Expected<std::unique_ptr<ModuleSummaryIndex>> 6731 llvm::getModuleSummaryIndexForFile(StringRef Path, 6732 bool IgnoreEmptyThinLTOIndexFile) { 6733 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6734 MemoryBuffer::getFileOrSTDIN(Path); 6735 if (!FileOrErr) 6736 return errorCodeToError(FileOrErr.getError()); 6737 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6738 return nullptr; 6739 return getModuleSummaryIndex(**FileOrErr); 6740 } 6741