1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 752 std::pair<ValueInfo, GlobalValue::GUID> 753 getValueInfoFromValueId(unsigned ValueId); 754 755 void addThisModule(); 756 ModuleSummaryIndex::ModuleInfo *getThisModule(); 757 }; 758 759 } // end anonymous namespace 760 761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 762 Error Err) { 763 if (Err) { 764 std::error_code EC; 765 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 766 EC = EIB.convertToErrorCode(); 767 Ctx.emitError(EIB.message()); 768 }); 769 return EC; 770 } 771 return std::error_code(); 772 } 773 774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 775 StringRef ProducerIdentification, 776 LLVMContext &Context) 777 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 778 ValueList(Context) { 779 this->ProducerIdentification = ProducerIdentification; 780 } 781 782 Error BitcodeReader::materializeForwardReferencedFunctions() { 783 if (WillMaterializeAllForwardRefs) 784 return Error::success(); 785 786 // Prevent recursion. 787 WillMaterializeAllForwardRefs = true; 788 789 while (!BasicBlockFwdRefQueue.empty()) { 790 Function *F = BasicBlockFwdRefQueue.front(); 791 BasicBlockFwdRefQueue.pop_front(); 792 assert(F && "Expected valid function"); 793 if (!BasicBlockFwdRefs.count(F)) 794 // Already materialized. 795 continue; 796 797 // Check for a function that isn't materializable to prevent an infinite 798 // loop. When parsing a blockaddress stored in a global variable, there 799 // isn't a trivial way to check if a function will have a body without a 800 // linear search through FunctionsWithBodies, so just check it here. 801 if (!F->isMaterializable()) 802 return error("Never resolved function from blockaddress"); 803 804 // Try to materialize F. 805 if (Error Err = materialize(F)) 806 return Err; 807 } 808 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 809 810 // Reset state. 811 WillMaterializeAllForwardRefs = false; 812 return Error::success(); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // Helper functions to implement forward reference resolution, etc. 817 //===----------------------------------------------------------------------===// 818 819 static bool hasImplicitComdat(size_t Val) { 820 switch (Val) { 821 default: 822 return false; 823 case 1: // Old WeakAnyLinkage 824 case 4: // Old LinkOnceAnyLinkage 825 case 10: // Old WeakODRLinkage 826 case 11: // Old LinkOnceODRLinkage 827 return true; 828 } 829 } 830 831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown/new linkages to external 834 case 0: 835 return GlobalValue::ExternalLinkage; 836 case 2: 837 return GlobalValue::AppendingLinkage; 838 case 3: 839 return GlobalValue::InternalLinkage; 840 case 5: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 842 case 6: 843 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 844 case 7: 845 return GlobalValue::ExternalWeakLinkage; 846 case 8: 847 return GlobalValue::CommonLinkage; 848 case 9: 849 return GlobalValue::PrivateLinkage; 850 case 12: 851 return GlobalValue::AvailableExternallyLinkage; 852 case 13: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 854 case 14: 855 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 856 case 15: 857 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 858 case 1: // Old value with implicit comdat. 859 case 16: 860 return GlobalValue::WeakAnyLinkage; 861 case 10: // Old value with implicit comdat. 862 case 17: 863 return GlobalValue::WeakODRLinkage; 864 case 4: // Old value with implicit comdat. 865 case 18: 866 return GlobalValue::LinkOnceAnyLinkage; 867 case 11: // Old value with implicit comdat. 868 case 19: 869 return GlobalValue::LinkOnceODRLinkage; 870 } 871 } 872 873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 874 FunctionSummary::FFlags Flags; 875 Flags.ReadNone = RawFlags & 0x1; 876 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 877 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 878 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 879 Flags.NoInline = (RawFlags >> 4) & 0x1; 880 return Flags; 881 } 882 883 /// Decode the flags for GlobalValue in the summary. 884 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 885 uint64_t Version) { 886 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 887 // like getDecodedLinkage() above. Any future change to the linkage enum and 888 // to getDecodedLinkage() will need to be taken into account here as above. 889 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 890 RawFlags = RawFlags >> 4; 891 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 892 // The Live flag wasn't introduced until version 3. For dead stripping 893 // to work correctly on earlier versions, we must conservatively treat all 894 // values as live. 895 bool Live = (RawFlags & 0x2) || Version < 3; 896 bool Local = (RawFlags & 0x4); 897 898 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 899 } 900 901 // Decode the flags for GlobalVariable in the summary 902 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 903 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 904 } 905 906 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 907 switch (Val) { 908 default: // Map unknown visibilities to default. 909 case 0: return GlobalValue::DefaultVisibility; 910 case 1: return GlobalValue::HiddenVisibility; 911 case 2: return GlobalValue::ProtectedVisibility; 912 } 913 } 914 915 static GlobalValue::DLLStorageClassTypes 916 getDecodedDLLStorageClass(unsigned Val) { 917 switch (Val) { 918 default: // Map unknown values to default. 919 case 0: return GlobalValue::DefaultStorageClass; 920 case 1: return GlobalValue::DLLImportStorageClass; 921 case 2: return GlobalValue::DLLExportStorageClass; 922 } 923 } 924 925 static bool getDecodedDSOLocal(unsigned Val) { 926 switch(Val) { 927 default: // Map unknown values to preemptable. 928 case 0: return false; 929 case 1: return true; 930 } 931 } 932 933 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 934 switch (Val) { 935 case 0: return GlobalVariable::NotThreadLocal; 936 default: // Map unknown non-zero value to general dynamic. 937 case 1: return GlobalVariable::GeneralDynamicTLSModel; 938 case 2: return GlobalVariable::LocalDynamicTLSModel; 939 case 3: return GlobalVariable::InitialExecTLSModel; 940 case 4: return GlobalVariable::LocalExecTLSModel; 941 } 942 } 943 944 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 945 switch (Val) { 946 default: // Map unknown to UnnamedAddr::None. 947 case 0: return GlobalVariable::UnnamedAddr::None; 948 case 1: return GlobalVariable::UnnamedAddr::Global; 949 case 2: return GlobalVariable::UnnamedAddr::Local; 950 } 951 } 952 953 static int getDecodedCastOpcode(unsigned Val) { 954 switch (Val) { 955 default: return -1; 956 case bitc::CAST_TRUNC : return Instruction::Trunc; 957 case bitc::CAST_ZEXT : return Instruction::ZExt; 958 case bitc::CAST_SEXT : return Instruction::SExt; 959 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 960 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 961 case bitc::CAST_UITOFP : return Instruction::UIToFP; 962 case bitc::CAST_SITOFP : return Instruction::SIToFP; 963 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 964 case bitc::CAST_FPEXT : return Instruction::FPExt; 965 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 966 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 967 case bitc::CAST_BITCAST : return Instruction::BitCast; 968 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 969 } 970 } 971 972 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 973 bool IsFP = Ty->isFPOrFPVectorTy(); 974 // UnOps are only valid for int/fp or vector of int/fp types 975 if (!IsFP && !Ty->isIntOrIntVectorTy()) 976 return -1; 977 978 switch (Val) { 979 default: 980 return -1; 981 case bitc::UNOP_NEG: 982 return IsFP ? Instruction::FNeg : -1; 983 } 984 } 985 986 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 987 bool IsFP = Ty->isFPOrFPVectorTy(); 988 // BinOps are only valid for int/fp or vector of int/fp types 989 if (!IsFP && !Ty->isIntOrIntVectorTy()) 990 return -1; 991 992 switch (Val) { 993 default: 994 return -1; 995 case bitc::BINOP_ADD: 996 return IsFP ? Instruction::FAdd : Instruction::Add; 997 case bitc::BINOP_SUB: 998 return IsFP ? Instruction::FSub : Instruction::Sub; 999 case bitc::BINOP_MUL: 1000 return IsFP ? Instruction::FMul : Instruction::Mul; 1001 case bitc::BINOP_UDIV: 1002 return IsFP ? -1 : Instruction::UDiv; 1003 case bitc::BINOP_SDIV: 1004 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1005 case bitc::BINOP_UREM: 1006 return IsFP ? -1 : Instruction::URem; 1007 case bitc::BINOP_SREM: 1008 return IsFP ? Instruction::FRem : Instruction::SRem; 1009 case bitc::BINOP_SHL: 1010 return IsFP ? -1 : Instruction::Shl; 1011 case bitc::BINOP_LSHR: 1012 return IsFP ? -1 : Instruction::LShr; 1013 case bitc::BINOP_ASHR: 1014 return IsFP ? -1 : Instruction::AShr; 1015 case bitc::BINOP_AND: 1016 return IsFP ? -1 : Instruction::And; 1017 case bitc::BINOP_OR: 1018 return IsFP ? -1 : Instruction::Or; 1019 case bitc::BINOP_XOR: 1020 return IsFP ? -1 : Instruction::Xor; 1021 } 1022 } 1023 1024 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1025 switch (Val) { 1026 default: return AtomicRMWInst::BAD_BINOP; 1027 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1028 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1029 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1030 case bitc::RMW_AND: return AtomicRMWInst::And; 1031 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1032 case bitc::RMW_OR: return AtomicRMWInst::Or; 1033 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1034 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1035 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1036 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1037 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1038 } 1039 } 1040 1041 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1042 switch (Val) { 1043 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1044 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1045 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1046 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1047 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1048 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1049 default: // Map unknown orderings to sequentially-consistent. 1050 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1051 } 1052 } 1053 1054 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1055 switch (Val) { 1056 default: // Map unknown selection kinds to any. 1057 case bitc::COMDAT_SELECTION_KIND_ANY: 1058 return Comdat::Any; 1059 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1060 return Comdat::ExactMatch; 1061 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1062 return Comdat::Largest; 1063 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1064 return Comdat::NoDuplicates; 1065 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1066 return Comdat::SameSize; 1067 } 1068 } 1069 1070 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1071 FastMathFlags FMF; 1072 if (0 != (Val & bitc::UnsafeAlgebra)) 1073 FMF.setFast(); 1074 if (0 != (Val & bitc::AllowReassoc)) 1075 FMF.setAllowReassoc(); 1076 if (0 != (Val & bitc::NoNaNs)) 1077 FMF.setNoNaNs(); 1078 if (0 != (Val & bitc::NoInfs)) 1079 FMF.setNoInfs(); 1080 if (0 != (Val & bitc::NoSignedZeros)) 1081 FMF.setNoSignedZeros(); 1082 if (0 != (Val & bitc::AllowReciprocal)) 1083 FMF.setAllowReciprocal(); 1084 if (0 != (Val & bitc::AllowContract)) 1085 FMF.setAllowContract(true); 1086 if (0 != (Val & bitc::ApproxFunc)) 1087 FMF.setApproxFunc(); 1088 return FMF; 1089 } 1090 1091 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1092 switch (Val) { 1093 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1094 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1095 } 1096 } 1097 1098 Type *BitcodeReader::getTypeByID(unsigned ID) { 1099 // The type table size is always specified correctly. 1100 if (ID >= TypeList.size()) 1101 return nullptr; 1102 1103 if (Type *Ty = TypeList[ID]) 1104 return Ty; 1105 1106 // If we have a forward reference, the only possible case is when it is to a 1107 // named struct. Just create a placeholder for now. 1108 return TypeList[ID] = createIdentifiedStructType(Context); 1109 } 1110 1111 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1112 StringRef Name) { 1113 auto *Ret = StructType::create(Context, Name); 1114 IdentifiedStructTypes.push_back(Ret); 1115 return Ret; 1116 } 1117 1118 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1119 auto *Ret = StructType::create(Context); 1120 IdentifiedStructTypes.push_back(Ret); 1121 return Ret; 1122 } 1123 1124 //===----------------------------------------------------------------------===// 1125 // Functions for parsing blocks from the bitcode file 1126 //===----------------------------------------------------------------------===// 1127 1128 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1129 switch (Val) { 1130 case Attribute::EndAttrKinds: 1131 llvm_unreachable("Synthetic enumerators which should never get here"); 1132 1133 case Attribute::None: return 0; 1134 case Attribute::ZExt: return 1 << 0; 1135 case Attribute::SExt: return 1 << 1; 1136 case Attribute::NoReturn: return 1 << 2; 1137 case Attribute::InReg: return 1 << 3; 1138 case Attribute::StructRet: return 1 << 4; 1139 case Attribute::NoUnwind: return 1 << 5; 1140 case Attribute::NoAlias: return 1 << 6; 1141 case Attribute::ByVal: return 1 << 7; 1142 case Attribute::Nest: return 1 << 8; 1143 case Attribute::ReadNone: return 1 << 9; 1144 case Attribute::ReadOnly: return 1 << 10; 1145 case Attribute::NoInline: return 1 << 11; 1146 case Attribute::AlwaysInline: return 1 << 12; 1147 case Attribute::OptimizeForSize: return 1 << 13; 1148 case Attribute::StackProtect: return 1 << 14; 1149 case Attribute::StackProtectReq: return 1 << 15; 1150 case Attribute::Alignment: return 31 << 16; 1151 case Attribute::NoCapture: return 1 << 21; 1152 case Attribute::NoRedZone: return 1 << 22; 1153 case Attribute::NoImplicitFloat: return 1 << 23; 1154 case Attribute::Naked: return 1 << 24; 1155 case Attribute::InlineHint: return 1 << 25; 1156 case Attribute::StackAlignment: return 7 << 26; 1157 case Attribute::ReturnsTwice: return 1 << 29; 1158 case Attribute::UWTable: return 1 << 30; 1159 case Attribute::NonLazyBind: return 1U << 31; 1160 case Attribute::SanitizeAddress: return 1ULL << 32; 1161 case Attribute::MinSize: return 1ULL << 33; 1162 case Attribute::NoDuplicate: return 1ULL << 34; 1163 case Attribute::StackProtectStrong: return 1ULL << 35; 1164 case Attribute::SanitizeThread: return 1ULL << 36; 1165 case Attribute::SanitizeMemory: return 1ULL << 37; 1166 case Attribute::NoBuiltin: return 1ULL << 38; 1167 case Attribute::Returned: return 1ULL << 39; 1168 case Attribute::Cold: return 1ULL << 40; 1169 case Attribute::Builtin: return 1ULL << 41; 1170 case Attribute::OptimizeNone: return 1ULL << 42; 1171 case Attribute::InAlloca: return 1ULL << 43; 1172 case Attribute::NonNull: return 1ULL << 44; 1173 case Attribute::JumpTable: return 1ULL << 45; 1174 case Attribute::Convergent: return 1ULL << 46; 1175 case Attribute::SafeStack: return 1ULL << 47; 1176 case Attribute::NoRecurse: return 1ULL << 48; 1177 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1178 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1179 case Attribute::SwiftSelf: return 1ULL << 51; 1180 case Attribute::SwiftError: return 1ULL << 52; 1181 case Attribute::WriteOnly: return 1ULL << 53; 1182 case Attribute::Speculatable: return 1ULL << 54; 1183 case Attribute::StrictFP: return 1ULL << 55; 1184 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1185 case Attribute::NoCfCheck: return 1ULL << 57; 1186 case Attribute::OptForFuzzing: return 1ULL << 58; 1187 case Attribute::ShadowCallStack: return 1ULL << 59; 1188 case Attribute::SpeculativeLoadHardening: 1189 return 1ULL << 60; 1190 case Attribute::Dereferenceable: 1191 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1192 break; 1193 case Attribute::DereferenceableOrNull: 1194 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1195 "format"); 1196 break; 1197 case Attribute::ArgMemOnly: 1198 llvm_unreachable("argmemonly attribute not supported in raw format"); 1199 break; 1200 case Attribute::AllocSize: 1201 llvm_unreachable("allocsize not supported in raw format"); 1202 break; 1203 } 1204 llvm_unreachable("Unsupported attribute type"); 1205 } 1206 1207 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1208 if (!Val) return; 1209 1210 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1211 I = Attribute::AttrKind(I + 1)) { 1212 if (I == Attribute::Dereferenceable || 1213 I == Attribute::DereferenceableOrNull || 1214 I == Attribute::ArgMemOnly || 1215 I == Attribute::AllocSize) 1216 continue; 1217 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1218 if (I == Attribute::Alignment) 1219 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1220 else if (I == Attribute::StackAlignment) 1221 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1222 else 1223 B.addAttribute(I); 1224 } 1225 } 1226 } 1227 1228 /// This fills an AttrBuilder object with the LLVM attributes that have 1229 /// been decoded from the given integer. This function must stay in sync with 1230 /// 'encodeLLVMAttributesForBitcode'. 1231 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1232 uint64_t EncodedAttrs) { 1233 // FIXME: Remove in 4.0. 1234 1235 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1236 // the bits above 31 down by 11 bits. 1237 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1238 assert((!Alignment || isPowerOf2_32(Alignment)) && 1239 "Alignment must be a power of two."); 1240 1241 if (Alignment) 1242 B.addAlignmentAttr(Alignment); 1243 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1244 (EncodedAttrs & 0xffff)); 1245 } 1246 1247 Error BitcodeReader::parseAttributeBlock() { 1248 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1249 return error("Invalid record"); 1250 1251 if (!MAttributes.empty()) 1252 return error("Invalid multiple blocks"); 1253 1254 SmallVector<uint64_t, 64> Record; 1255 1256 SmallVector<AttributeList, 8> Attrs; 1257 1258 // Read all the records. 1259 while (true) { 1260 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1261 1262 switch (Entry.Kind) { 1263 case BitstreamEntry::SubBlock: // Handled for us already. 1264 case BitstreamEntry::Error: 1265 return error("Malformed block"); 1266 case BitstreamEntry::EndBlock: 1267 return Error::success(); 1268 case BitstreamEntry::Record: 1269 // The interesting case. 1270 break; 1271 } 1272 1273 // Read a record. 1274 Record.clear(); 1275 switch (Stream.readRecord(Entry.ID, Record)) { 1276 default: // Default behavior: ignore. 1277 break; 1278 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1279 // FIXME: Remove in 4.0. 1280 if (Record.size() & 1) 1281 return error("Invalid record"); 1282 1283 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1284 AttrBuilder B; 1285 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1286 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1287 } 1288 1289 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1290 Attrs.clear(); 1291 break; 1292 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1293 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1294 Attrs.push_back(MAttributeGroups[Record[i]]); 1295 1296 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1297 Attrs.clear(); 1298 break; 1299 } 1300 } 1301 } 1302 1303 // Returns Attribute::None on unrecognized codes. 1304 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1305 switch (Code) { 1306 default: 1307 return Attribute::None; 1308 case bitc::ATTR_KIND_ALIGNMENT: 1309 return Attribute::Alignment; 1310 case bitc::ATTR_KIND_ALWAYS_INLINE: 1311 return Attribute::AlwaysInline; 1312 case bitc::ATTR_KIND_ARGMEMONLY: 1313 return Attribute::ArgMemOnly; 1314 case bitc::ATTR_KIND_BUILTIN: 1315 return Attribute::Builtin; 1316 case bitc::ATTR_KIND_BY_VAL: 1317 return Attribute::ByVal; 1318 case bitc::ATTR_KIND_IN_ALLOCA: 1319 return Attribute::InAlloca; 1320 case bitc::ATTR_KIND_COLD: 1321 return Attribute::Cold; 1322 case bitc::ATTR_KIND_CONVERGENT: 1323 return Attribute::Convergent; 1324 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1325 return Attribute::InaccessibleMemOnly; 1326 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1327 return Attribute::InaccessibleMemOrArgMemOnly; 1328 case bitc::ATTR_KIND_INLINE_HINT: 1329 return Attribute::InlineHint; 1330 case bitc::ATTR_KIND_IN_REG: 1331 return Attribute::InReg; 1332 case bitc::ATTR_KIND_JUMP_TABLE: 1333 return Attribute::JumpTable; 1334 case bitc::ATTR_KIND_MIN_SIZE: 1335 return Attribute::MinSize; 1336 case bitc::ATTR_KIND_NAKED: 1337 return Attribute::Naked; 1338 case bitc::ATTR_KIND_NEST: 1339 return Attribute::Nest; 1340 case bitc::ATTR_KIND_NO_ALIAS: 1341 return Attribute::NoAlias; 1342 case bitc::ATTR_KIND_NO_BUILTIN: 1343 return Attribute::NoBuiltin; 1344 case bitc::ATTR_KIND_NO_CAPTURE: 1345 return Attribute::NoCapture; 1346 case bitc::ATTR_KIND_NO_DUPLICATE: 1347 return Attribute::NoDuplicate; 1348 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1349 return Attribute::NoImplicitFloat; 1350 case bitc::ATTR_KIND_NO_INLINE: 1351 return Attribute::NoInline; 1352 case bitc::ATTR_KIND_NO_RECURSE: 1353 return Attribute::NoRecurse; 1354 case bitc::ATTR_KIND_NON_LAZY_BIND: 1355 return Attribute::NonLazyBind; 1356 case bitc::ATTR_KIND_NON_NULL: 1357 return Attribute::NonNull; 1358 case bitc::ATTR_KIND_DEREFERENCEABLE: 1359 return Attribute::Dereferenceable; 1360 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1361 return Attribute::DereferenceableOrNull; 1362 case bitc::ATTR_KIND_ALLOC_SIZE: 1363 return Attribute::AllocSize; 1364 case bitc::ATTR_KIND_NO_RED_ZONE: 1365 return Attribute::NoRedZone; 1366 case bitc::ATTR_KIND_NO_RETURN: 1367 return Attribute::NoReturn; 1368 case bitc::ATTR_KIND_NOCF_CHECK: 1369 return Attribute::NoCfCheck; 1370 case bitc::ATTR_KIND_NO_UNWIND: 1371 return Attribute::NoUnwind; 1372 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1373 return Attribute::OptForFuzzing; 1374 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1375 return Attribute::OptimizeForSize; 1376 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1377 return Attribute::OptimizeNone; 1378 case bitc::ATTR_KIND_READ_NONE: 1379 return Attribute::ReadNone; 1380 case bitc::ATTR_KIND_READ_ONLY: 1381 return Attribute::ReadOnly; 1382 case bitc::ATTR_KIND_RETURNED: 1383 return Attribute::Returned; 1384 case bitc::ATTR_KIND_RETURNS_TWICE: 1385 return Attribute::ReturnsTwice; 1386 case bitc::ATTR_KIND_S_EXT: 1387 return Attribute::SExt; 1388 case bitc::ATTR_KIND_SPECULATABLE: 1389 return Attribute::Speculatable; 1390 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1391 return Attribute::StackAlignment; 1392 case bitc::ATTR_KIND_STACK_PROTECT: 1393 return Attribute::StackProtect; 1394 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1395 return Attribute::StackProtectReq; 1396 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1397 return Attribute::StackProtectStrong; 1398 case bitc::ATTR_KIND_SAFESTACK: 1399 return Attribute::SafeStack; 1400 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1401 return Attribute::ShadowCallStack; 1402 case bitc::ATTR_KIND_STRICT_FP: 1403 return Attribute::StrictFP; 1404 case bitc::ATTR_KIND_STRUCT_RET: 1405 return Attribute::StructRet; 1406 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1407 return Attribute::SanitizeAddress; 1408 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1409 return Attribute::SanitizeHWAddress; 1410 case bitc::ATTR_KIND_SANITIZE_THREAD: 1411 return Attribute::SanitizeThread; 1412 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1413 return Attribute::SanitizeMemory; 1414 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1415 return Attribute::SpeculativeLoadHardening; 1416 case bitc::ATTR_KIND_SWIFT_ERROR: 1417 return Attribute::SwiftError; 1418 case bitc::ATTR_KIND_SWIFT_SELF: 1419 return Attribute::SwiftSelf; 1420 case bitc::ATTR_KIND_UW_TABLE: 1421 return Attribute::UWTable; 1422 case bitc::ATTR_KIND_WRITEONLY: 1423 return Attribute::WriteOnly; 1424 case bitc::ATTR_KIND_Z_EXT: 1425 return Attribute::ZExt; 1426 } 1427 } 1428 1429 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1430 unsigned &Alignment) { 1431 // Note: Alignment in bitcode files is incremented by 1, so that zero 1432 // can be used for default alignment. 1433 if (Exponent > Value::MaxAlignmentExponent + 1) 1434 return error("Invalid alignment value"); 1435 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1436 return Error::success(); 1437 } 1438 1439 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1440 *Kind = getAttrFromCode(Code); 1441 if (*Kind == Attribute::None) 1442 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1443 return Error::success(); 1444 } 1445 1446 Error BitcodeReader::parseAttributeGroupBlock() { 1447 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1448 return error("Invalid record"); 1449 1450 if (!MAttributeGroups.empty()) 1451 return error("Invalid multiple blocks"); 1452 1453 SmallVector<uint64_t, 64> Record; 1454 1455 // Read all the records. 1456 while (true) { 1457 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1458 1459 switch (Entry.Kind) { 1460 case BitstreamEntry::SubBlock: // Handled for us already. 1461 case BitstreamEntry::Error: 1462 return error("Malformed block"); 1463 case BitstreamEntry::EndBlock: 1464 return Error::success(); 1465 case BitstreamEntry::Record: 1466 // The interesting case. 1467 break; 1468 } 1469 1470 // Read a record. 1471 Record.clear(); 1472 switch (Stream.readRecord(Entry.ID, Record)) { 1473 default: // Default behavior: ignore. 1474 break; 1475 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1476 if (Record.size() < 3) 1477 return error("Invalid record"); 1478 1479 uint64_t GrpID = Record[0]; 1480 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1481 1482 AttrBuilder B; 1483 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1484 if (Record[i] == 0) { // Enum attribute 1485 Attribute::AttrKind Kind; 1486 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1487 return Err; 1488 1489 B.addAttribute(Kind); 1490 } else if (Record[i] == 1) { // Integer attribute 1491 Attribute::AttrKind Kind; 1492 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1493 return Err; 1494 if (Kind == Attribute::Alignment) 1495 B.addAlignmentAttr(Record[++i]); 1496 else if (Kind == Attribute::StackAlignment) 1497 B.addStackAlignmentAttr(Record[++i]); 1498 else if (Kind == Attribute::Dereferenceable) 1499 B.addDereferenceableAttr(Record[++i]); 1500 else if (Kind == Attribute::DereferenceableOrNull) 1501 B.addDereferenceableOrNullAttr(Record[++i]); 1502 else if (Kind == Attribute::AllocSize) 1503 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1504 } else { // String attribute 1505 assert((Record[i] == 3 || Record[i] == 4) && 1506 "Invalid attribute group entry"); 1507 bool HasValue = (Record[i++] == 4); 1508 SmallString<64> KindStr; 1509 SmallString<64> ValStr; 1510 1511 while (Record[i] != 0 && i != e) 1512 KindStr += Record[i++]; 1513 assert(Record[i] == 0 && "Kind string not null terminated"); 1514 1515 if (HasValue) { 1516 // Has a value associated with it. 1517 ++i; // Skip the '0' that terminates the "kind" string. 1518 while (Record[i] != 0 && i != e) 1519 ValStr += Record[i++]; 1520 assert(Record[i] == 0 && "Value string not null terminated"); 1521 } 1522 1523 B.addAttribute(KindStr.str(), ValStr.str()); 1524 } 1525 } 1526 1527 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1528 break; 1529 } 1530 } 1531 } 1532 } 1533 1534 Error BitcodeReader::parseTypeTable() { 1535 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1536 return error("Invalid record"); 1537 1538 return parseTypeTableBody(); 1539 } 1540 1541 Error BitcodeReader::parseTypeTableBody() { 1542 if (!TypeList.empty()) 1543 return error("Invalid multiple blocks"); 1544 1545 SmallVector<uint64_t, 64> Record; 1546 unsigned NumRecords = 0; 1547 1548 SmallString<64> TypeName; 1549 1550 // Read all the records for this type table. 1551 while (true) { 1552 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1553 1554 switch (Entry.Kind) { 1555 case BitstreamEntry::SubBlock: // Handled for us already. 1556 case BitstreamEntry::Error: 1557 return error("Malformed block"); 1558 case BitstreamEntry::EndBlock: 1559 if (NumRecords != TypeList.size()) 1560 return error("Malformed block"); 1561 return Error::success(); 1562 case BitstreamEntry::Record: 1563 // The interesting case. 1564 break; 1565 } 1566 1567 // Read a record. 1568 Record.clear(); 1569 Type *ResultTy = nullptr; 1570 switch (Stream.readRecord(Entry.ID, Record)) { 1571 default: 1572 return error("Invalid value"); 1573 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1574 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1575 // type list. This allows us to reserve space. 1576 if (Record.size() < 1) 1577 return error("Invalid record"); 1578 TypeList.resize(Record[0]); 1579 continue; 1580 case bitc::TYPE_CODE_VOID: // VOID 1581 ResultTy = Type::getVoidTy(Context); 1582 break; 1583 case bitc::TYPE_CODE_HALF: // HALF 1584 ResultTy = Type::getHalfTy(Context); 1585 break; 1586 case bitc::TYPE_CODE_FLOAT: // FLOAT 1587 ResultTy = Type::getFloatTy(Context); 1588 break; 1589 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1590 ResultTy = Type::getDoubleTy(Context); 1591 break; 1592 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1593 ResultTy = Type::getX86_FP80Ty(Context); 1594 break; 1595 case bitc::TYPE_CODE_FP128: // FP128 1596 ResultTy = Type::getFP128Ty(Context); 1597 break; 1598 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1599 ResultTy = Type::getPPC_FP128Ty(Context); 1600 break; 1601 case bitc::TYPE_CODE_LABEL: // LABEL 1602 ResultTy = Type::getLabelTy(Context); 1603 break; 1604 case bitc::TYPE_CODE_METADATA: // METADATA 1605 ResultTy = Type::getMetadataTy(Context); 1606 break; 1607 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1608 ResultTy = Type::getX86_MMXTy(Context); 1609 break; 1610 case bitc::TYPE_CODE_TOKEN: // TOKEN 1611 ResultTy = Type::getTokenTy(Context); 1612 break; 1613 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1614 if (Record.size() < 1) 1615 return error("Invalid record"); 1616 1617 uint64_t NumBits = Record[0]; 1618 if (NumBits < IntegerType::MIN_INT_BITS || 1619 NumBits > IntegerType::MAX_INT_BITS) 1620 return error("Bitwidth for integer type out of range"); 1621 ResultTy = IntegerType::get(Context, NumBits); 1622 break; 1623 } 1624 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1625 // [pointee type, address space] 1626 if (Record.size() < 1) 1627 return error("Invalid record"); 1628 unsigned AddressSpace = 0; 1629 if (Record.size() == 2) 1630 AddressSpace = Record[1]; 1631 ResultTy = getTypeByID(Record[0]); 1632 if (!ResultTy || 1633 !PointerType::isValidElementType(ResultTy)) 1634 return error("Invalid type"); 1635 ResultTy = PointerType::get(ResultTy, AddressSpace); 1636 break; 1637 } 1638 case bitc::TYPE_CODE_FUNCTION_OLD: { 1639 // FIXME: attrid is dead, remove it in LLVM 4.0 1640 // FUNCTION: [vararg, attrid, retty, paramty x N] 1641 if (Record.size() < 3) 1642 return error("Invalid record"); 1643 SmallVector<Type*, 8> ArgTys; 1644 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1645 if (Type *T = getTypeByID(Record[i])) 1646 ArgTys.push_back(T); 1647 else 1648 break; 1649 } 1650 1651 ResultTy = getTypeByID(Record[2]); 1652 if (!ResultTy || ArgTys.size() < Record.size()-3) 1653 return error("Invalid type"); 1654 1655 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1656 break; 1657 } 1658 case bitc::TYPE_CODE_FUNCTION: { 1659 // FUNCTION: [vararg, retty, paramty x N] 1660 if (Record.size() < 2) 1661 return error("Invalid record"); 1662 SmallVector<Type*, 8> ArgTys; 1663 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1664 if (Type *T = getTypeByID(Record[i])) { 1665 if (!FunctionType::isValidArgumentType(T)) 1666 return error("Invalid function argument type"); 1667 ArgTys.push_back(T); 1668 } 1669 else 1670 break; 1671 } 1672 1673 ResultTy = getTypeByID(Record[1]); 1674 if (!ResultTy || ArgTys.size() < Record.size()-2) 1675 return error("Invalid type"); 1676 1677 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1678 break; 1679 } 1680 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1681 if (Record.size() < 1) 1682 return error("Invalid record"); 1683 SmallVector<Type*, 8> EltTys; 1684 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1685 if (Type *T = getTypeByID(Record[i])) 1686 EltTys.push_back(T); 1687 else 1688 break; 1689 } 1690 if (EltTys.size() != Record.size()-1) 1691 return error("Invalid type"); 1692 ResultTy = StructType::get(Context, EltTys, Record[0]); 1693 break; 1694 } 1695 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1696 if (convertToString(Record, 0, TypeName)) 1697 return error("Invalid record"); 1698 continue; 1699 1700 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1701 if (Record.size() < 1) 1702 return error("Invalid record"); 1703 1704 if (NumRecords >= TypeList.size()) 1705 return error("Invalid TYPE table"); 1706 1707 // Check to see if this was forward referenced, if so fill in the temp. 1708 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1709 if (Res) { 1710 Res->setName(TypeName); 1711 TypeList[NumRecords] = nullptr; 1712 } else // Otherwise, create a new struct. 1713 Res = createIdentifiedStructType(Context, TypeName); 1714 TypeName.clear(); 1715 1716 SmallVector<Type*, 8> EltTys; 1717 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1718 if (Type *T = getTypeByID(Record[i])) 1719 EltTys.push_back(T); 1720 else 1721 break; 1722 } 1723 if (EltTys.size() != Record.size()-1) 1724 return error("Invalid record"); 1725 Res->setBody(EltTys, Record[0]); 1726 ResultTy = Res; 1727 break; 1728 } 1729 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1730 if (Record.size() != 1) 1731 return error("Invalid record"); 1732 1733 if (NumRecords >= TypeList.size()) 1734 return error("Invalid TYPE table"); 1735 1736 // Check to see if this was forward referenced, if so fill in the temp. 1737 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1738 if (Res) { 1739 Res->setName(TypeName); 1740 TypeList[NumRecords] = nullptr; 1741 } else // Otherwise, create a new struct with no body. 1742 Res = createIdentifiedStructType(Context, TypeName); 1743 TypeName.clear(); 1744 ResultTy = Res; 1745 break; 1746 } 1747 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1748 if (Record.size() < 2) 1749 return error("Invalid record"); 1750 ResultTy = getTypeByID(Record[1]); 1751 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1752 return error("Invalid type"); 1753 ResultTy = ArrayType::get(ResultTy, Record[0]); 1754 break; 1755 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1756 if (Record.size() < 2) 1757 return error("Invalid record"); 1758 if (Record[0] == 0) 1759 return error("Invalid vector length"); 1760 ResultTy = getTypeByID(Record[1]); 1761 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1762 return error("Invalid type"); 1763 ResultTy = VectorType::get(ResultTy, Record[0]); 1764 break; 1765 } 1766 1767 if (NumRecords >= TypeList.size()) 1768 return error("Invalid TYPE table"); 1769 if (TypeList[NumRecords]) 1770 return error( 1771 "Invalid TYPE table: Only named structs can be forward referenced"); 1772 assert(ResultTy && "Didn't read a type?"); 1773 TypeList[NumRecords++] = ResultTy; 1774 } 1775 } 1776 1777 Error BitcodeReader::parseOperandBundleTags() { 1778 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1779 return error("Invalid record"); 1780 1781 if (!BundleTags.empty()) 1782 return error("Invalid multiple blocks"); 1783 1784 SmallVector<uint64_t, 64> Record; 1785 1786 while (true) { 1787 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1788 1789 switch (Entry.Kind) { 1790 case BitstreamEntry::SubBlock: // Handled for us already. 1791 case BitstreamEntry::Error: 1792 return error("Malformed block"); 1793 case BitstreamEntry::EndBlock: 1794 return Error::success(); 1795 case BitstreamEntry::Record: 1796 // The interesting case. 1797 break; 1798 } 1799 1800 // Tags are implicitly mapped to integers by their order. 1801 1802 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1803 return error("Invalid record"); 1804 1805 // OPERAND_BUNDLE_TAG: [strchr x N] 1806 BundleTags.emplace_back(); 1807 if (convertToString(Record, 0, BundleTags.back())) 1808 return error("Invalid record"); 1809 Record.clear(); 1810 } 1811 } 1812 1813 Error BitcodeReader::parseSyncScopeNames() { 1814 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1815 return error("Invalid record"); 1816 1817 if (!SSIDs.empty()) 1818 return error("Invalid multiple synchronization scope names blocks"); 1819 1820 SmallVector<uint64_t, 64> Record; 1821 while (true) { 1822 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1823 switch (Entry.Kind) { 1824 case BitstreamEntry::SubBlock: // Handled for us already. 1825 case BitstreamEntry::Error: 1826 return error("Malformed block"); 1827 case BitstreamEntry::EndBlock: 1828 if (SSIDs.empty()) 1829 return error("Invalid empty synchronization scope names block"); 1830 return Error::success(); 1831 case BitstreamEntry::Record: 1832 // The interesting case. 1833 break; 1834 } 1835 1836 // Synchronization scope names are implicitly mapped to synchronization 1837 // scope IDs by their order. 1838 1839 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1840 return error("Invalid record"); 1841 1842 SmallString<16> SSN; 1843 if (convertToString(Record, 0, SSN)) 1844 return error("Invalid record"); 1845 1846 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1847 Record.clear(); 1848 } 1849 } 1850 1851 /// Associate a value with its name from the given index in the provided record. 1852 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1853 unsigned NameIndex, Triple &TT) { 1854 SmallString<128> ValueName; 1855 if (convertToString(Record, NameIndex, ValueName)) 1856 return error("Invalid record"); 1857 unsigned ValueID = Record[0]; 1858 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1859 return error("Invalid record"); 1860 Value *V = ValueList[ValueID]; 1861 1862 StringRef NameStr(ValueName.data(), ValueName.size()); 1863 if (NameStr.find_first_of(0) != StringRef::npos) 1864 return error("Invalid value name"); 1865 V->setName(NameStr); 1866 auto *GO = dyn_cast<GlobalObject>(V); 1867 if (GO) { 1868 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1869 if (TT.supportsCOMDAT()) 1870 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1871 else 1872 GO->setComdat(nullptr); 1873 } 1874 } 1875 return V; 1876 } 1877 1878 /// Helper to note and return the current location, and jump to the given 1879 /// offset. 1880 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1881 BitstreamCursor &Stream) { 1882 // Save the current parsing location so we can jump back at the end 1883 // of the VST read. 1884 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1885 Stream.JumpToBit(Offset * 32); 1886 #ifndef NDEBUG 1887 // Do some checking if we are in debug mode. 1888 BitstreamEntry Entry = Stream.advance(); 1889 assert(Entry.Kind == BitstreamEntry::SubBlock); 1890 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1891 #else 1892 // In NDEBUG mode ignore the output so we don't get an unused variable 1893 // warning. 1894 Stream.advance(); 1895 #endif 1896 return CurrentBit; 1897 } 1898 1899 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1900 Function *F, 1901 ArrayRef<uint64_t> Record) { 1902 // Note that we subtract 1 here because the offset is relative to one word 1903 // before the start of the identification or module block, which was 1904 // historically always the start of the regular bitcode header. 1905 uint64_t FuncWordOffset = Record[1] - 1; 1906 uint64_t FuncBitOffset = FuncWordOffset * 32; 1907 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1908 // Set the LastFunctionBlockBit to point to the last function block. 1909 // Later when parsing is resumed after function materialization, 1910 // we can simply skip that last function block. 1911 if (FuncBitOffset > LastFunctionBlockBit) 1912 LastFunctionBlockBit = FuncBitOffset; 1913 } 1914 1915 /// Read a new-style GlobalValue symbol table. 1916 Error BitcodeReader::parseGlobalValueSymbolTable() { 1917 unsigned FuncBitcodeOffsetDelta = 1918 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1919 1920 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1921 return error("Invalid record"); 1922 1923 SmallVector<uint64_t, 64> Record; 1924 while (true) { 1925 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1926 1927 switch (Entry.Kind) { 1928 case BitstreamEntry::SubBlock: 1929 case BitstreamEntry::Error: 1930 return error("Malformed block"); 1931 case BitstreamEntry::EndBlock: 1932 return Error::success(); 1933 case BitstreamEntry::Record: 1934 break; 1935 } 1936 1937 Record.clear(); 1938 switch (Stream.readRecord(Entry.ID, Record)) { 1939 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1940 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1941 cast<Function>(ValueList[Record[0]]), Record); 1942 break; 1943 } 1944 } 1945 } 1946 1947 /// Parse the value symbol table at either the current parsing location or 1948 /// at the given bit offset if provided. 1949 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1950 uint64_t CurrentBit; 1951 // Pass in the Offset to distinguish between calling for the module-level 1952 // VST (where we want to jump to the VST offset) and the function-level 1953 // VST (where we don't). 1954 if (Offset > 0) { 1955 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1956 // If this module uses a string table, read this as a module-level VST. 1957 if (UseStrtab) { 1958 if (Error Err = parseGlobalValueSymbolTable()) 1959 return Err; 1960 Stream.JumpToBit(CurrentBit); 1961 return Error::success(); 1962 } 1963 // Otherwise, the VST will be in a similar format to a function-level VST, 1964 // and will contain symbol names. 1965 } 1966 1967 // Compute the delta between the bitcode indices in the VST (the word offset 1968 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1969 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1970 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1971 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1972 // just before entering the VST subblock because: 1) the EnterSubBlock 1973 // changes the AbbrevID width; 2) the VST block is nested within the same 1974 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1975 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1976 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1977 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1978 unsigned FuncBitcodeOffsetDelta = 1979 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1980 1981 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1982 return error("Invalid record"); 1983 1984 SmallVector<uint64_t, 64> Record; 1985 1986 Triple TT(TheModule->getTargetTriple()); 1987 1988 // Read all the records for this value table. 1989 SmallString<128> ValueName; 1990 1991 while (true) { 1992 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1993 1994 switch (Entry.Kind) { 1995 case BitstreamEntry::SubBlock: // Handled for us already. 1996 case BitstreamEntry::Error: 1997 return error("Malformed block"); 1998 case BitstreamEntry::EndBlock: 1999 if (Offset > 0) 2000 Stream.JumpToBit(CurrentBit); 2001 return Error::success(); 2002 case BitstreamEntry::Record: 2003 // The interesting case. 2004 break; 2005 } 2006 2007 // Read a record. 2008 Record.clear(); 2009 switch (Stream.readRecord(Entry.ID, Record)) { 2010 default: // Default behavior: unknown type. 2011 break; 2012 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2013 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2014 if (Error Err = ValOrErr.takeError()) 2015 return Err; 2016 ValOrErr.get(); 2017 break; 2018 } 2019 case bitc::VST_CODE_FNENTRY: { 2020 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2021 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2022 if (Error Err = ValOrErr.takeError()) 2023 return Err; 2024 Value *V = ValOrErr.get(); 2025 2026 // Ignore function offsets emitted for aliases of functions in older 2027 // versions of LLVM. 2028 if (auto *F = dyn_cast<Function>(V)) 2029 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2030 break; 2031 } 2032 case bitc::VST_CODE_BBENTRY: { 2033 if (convertToString(Record, 1, ValueName)) 2034 return error("Invalid record"); 2035 BasicBlock *BB = getBasicBlock(Record[0]); 2036 if (!BB) 2037 return error("Invalid record"); 2038 2039 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2040 ValueName.clear(); 2041 break; 2042 } 2043 } 2044 } 2045 } 2046 2047 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2048 /// encoding. 2049 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2050 if ((V & 1) == 0) 2051 return V >> 1; 2052 if (V != 1) 2053 return -(V >> 1); 2054 // There is no such thing as -0 with integers. "-0" really means MININT. 2055 return 1ULL << 63; 2056 } 2057 2058 /// Resolve all of the initializers for global values and aliases that we can. 2059 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2060 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2061 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2062 IndirectSymbolInitWorklist; 2063 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2064 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2065 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2066 2067 GlobalInitWorklist.swap(GlobalInits); 2068 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2069 FunctionPrefixWorklist.swap(FunctionPrefixes); 2070 FunctionPrologueWorklist.swap(FunctionPrologues); 2071 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2072 2073 while (!GlobalInitWorklist.empty()) { 2074 unsigned ValID = GlobalInitWorklist.back().second; 2075 if (ValID >= ValueList.size()) { 2076 // Not ready to resolve this yet, it requires something later in the file. 2077 GlobalInits.push_back(GlobalInitWorklist.back()); 2078 } else { 2079 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2080 GlobalInitWorklist.back().first->setInitializer(C); 2081 else 2082 return error("Expected a constant"); 2083 } 2084 GlobalInitWorklist.pop_back(); 2085 } 2086 2087 while (!IndirectSymbolInitWorklist.empty()) { 2088 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2089 if (ValID >= ValueList.size()) { 2090 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2091 } else { 2092 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2093 if (!C) 2094 return error("Expected a constant"); 2095 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2096 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2097 return error("Alias and aliasee types don't match"); 2098 GIS->setIndirectSymbol(C); 2099 } 2100 IndirectSymbolInitWorklist.pop_back(); 2101 } 2102 2103 while (!FunctionPrefixWorklist.empty()) { 2104 unsigned ValID = FunctionPrefixWorklist.back().second; 2105 if (ValID >= ValueList.size()) { 2106 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2107 } else { 2108 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2109 FunctionPrefixWorklist.back().first->setPrefixData(C); 2110 else 2111 return error("Expected a constant"); 2112 } 2113 FunctionPrefixWorklist.pop_back(); 2114 } 2115 2116 while (!FunctionPrologueWorklist.empty()) { 2117 unsigned ValID = FunctionPrologueWorklist.back().second; 2118 if (ValID >= ValueList.size()) { 2119 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2120 } else { 2121 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2122 FunctionPrologueWorklist.back().first->setPrologueData(C); 2123 else 2124 return error("Expected a constant"); 2125 } 2126 FunctionPrologueWorklist.pop_back(); 2127 } 2128 2129 while (!FunctionPersonalityFnWorklist.empty()) { 2130 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2131 if (ValID >= ValueList.size()) { 2132 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2133 } else { 2134 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2135 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2136 else 2137 return error("Expected a constant"); 2138 } 2139 FunctionPersonalityFnWorklist.pop_back(); 2140 } 2141 2142 return Error::success(); 2143 } 2144 2145 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2146 SmallVector<uint64_t, 8> Words(Vals.size()); 2147 transform(Vals, Words.begin(), 2148 BitcodeReader::decodeSignRotatedValue); 2149 2150 return APInt(TypeBits, Words); 2151 } 2152 2153 Error BitcodeReader::parseConstants() { 2154 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2155 return error("Invalid record"); 2156 2157 SmallVector<uint64_t, 64> Record; 2158 2159 // Read all the records for this value table. 2160 Type *CurTy = Type::getInt32Ty(Context); 2161 unsigned NextCstNo = ValueList.size(); 2162 2163 while (true) { 2164 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2165 2166 switch (Entry.Kind) { 2167 case BitstreamEntry::SubBlock: // Handled for us already. 2168 case BitstreamEntry::Error: 2169 return error("Malformed block"); 2170 case BitstreamEntry::EndBlock: 2171 if (NextCstNo != ValueList.size()) 2172 return error("Invalid constant reference"); 2173 2174 // Once all the constants have been read, go through and resolve forward 2175 // references. 2176 ValueList.resolveConstantForwardRefs(); 2177 return Error::success(); 2178 case BitstreamEntry::Record: 2179 // The interesting case. 2180 break; 2181 } 2182 2183 // Read a record. 2184 Record.clear(); 2185 Type *VoidType = Type::getVoidTy(Context); 2186 Value *V = nullptr; 2187 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2188 switch (BitCode) { 2189 default: // Default behavior: unknown constant 2190 case bitc::CST_CODE_UNDEF: // UNDEF 2191 V = UndefValue::get(CurTy); 2192 break; 2193 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2194 if (Record.empty()) 2195 return error("Invalid record"); 2196 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2197 return error("Invalid record"); 2198 if (TypeList[Record[0]] == VoidType) 2199 return error("Invalid constant type"); 2200 CurTy = TypeList[Record[0]]; 2201 continue; // Skip the ValueList manipulation. 2202 case bitc::CST_CODE_NULL: // NULL 2203 V = Constant::getNullValue(CurTy); 2204 break; 2205 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2206 if (!CurTy->isIntegerTy() || Record.empty()) 2207 return error("Invalid record"); 2208 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2209 break; 2210 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2211 if (!CurTy->isIntegerTy() || Record.empty()) 2212 return error("Invalid record"); 2213 2214 APInt VInt = 2215 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2216 V = ConstantInt::get(Context, VInt); 2217 2218 break; 2219 } 2220 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2221 if (Record.empty()) 2222 return error("Invalid record"); 2223 if (CurTy->isHalfTy()) 2224 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2225 APInt(16, (uint16_t)Record[0]))); 2226 else if (CurTy->isFloatTy()) 2227 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2228 APInt(32, (uint32_t)Record[0]))); 2229 else if (CurTy->isDoubleTy()) 2230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2231 APInt(64, Record[0]))); 2232 else if (CurTy->isX86_FP80Ty()) { 2233 // Bits are not stored the same way as a normal i80 APInt, compensate. 2234 uint64_t Rearrange[2]; 2235 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2236 Rearrange[1] = Record[0] >> 48; 2237 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2238 APInt(80, Rearrange))); 2239 } else if (CurTy->isFP128Ty()) 2240 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2241 APInt(128, Record))); 2242 else if (CurTy->isPPC_FP128Ty()) 2243 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2244 APInt(128, Record))); 2245 else 2246 V = UndefValue::get(CurTy); 2247 break; 2248 } 2249 2250 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2251 if (Record.empty()) 2252 return error("Invalid record"); 2253 2254 unsigned Size = Record.size(); 2255 SmallVector<Constant*, 16> Elts; 2256 2257 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2258 for (unsigned i = 0; i != Size; ++i) 2259 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2260 STy->getElementType(i))); 2261 V = ConstantStruct::get(STy, Elts); 2262 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2263 Type *EltTy = ATy->getElementType(); 2264 for (unsigned i = 0; i != Size; ++i) 2265 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2266 V = ConstantArray::get(ATy, Elts); 2267 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2268 Type *EltTy = VTy->getElementType(); 2269 for (unsigned i = 0; i != Size; ++i) 2270 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2271 V = ConstantVector::get(Elts); 2272 } else { 2273 V = UndefValue::get(CurTy); 2274 } 2275 break; 2276 } 2277 case bitc::CST_CODE_STRING: // STRING: [values] 2278 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2279 if (Record.empty()) 2280 return error("Invalid record"); 2281 2282 SmallString<16> Elts(Record.begin(), Record.end()); 2283 V = ConstantDataArray::getString(Context, Elts, 2284 BitCode == bitc::CST_CODE_CSTRING); 2285 break; 2286 } 2287 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2288 if (Record.empty()) 2289 return error("Invalid record"); 2290 2291 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2292 if (EltTy->isIntegerTy(8)) { 2293 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2294 if (isa<VectorType>(CurTy)) 2295 V = ConstantDataVector::get(Context, Elts); 2296 else 2297 V = ConstantDataArray::get(Context, Elts); 2298 } else if (EltTy->isIntegerTy(16)) { 2299 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2300 if (isa<VectorType>(CurTy)) 2301 V = ConstantDataVector::get(Context, Elts); 2302 else 2303 V = ConstantDataArray::get(Context, Elts); 2304 } else if (EltTy->isIntegerTy(32)) { 2305 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2306 if (isa<VectorType>(CurTy)) 2307 V = ConstantDataVector::get(Context, Elts); 2308 else 2309 V = ConstantDataArray::get(Context, Elts); 2310 } else if (EltTy->isIntegerTy(64)) { 2311 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2312 if (isa<VectorType>(CurTy)) 2313 V = ConstantDataVector::get(Context, Elts); 2314 else 2315 V = ConstantDataArray::get(Context, Elts); 2316 } else if (EltTy->isHalfTy()) { 2317 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2318 if (isa<VectorType>(CurTy)) 2319 V = ConstantDataVector::getFP(Context, Elts); 2320 else 2321 V = ConstantDataArray::getFP(Context, Elts); 2322 } else if (EltTy->isFloatTy()) { 2323 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2324 if (isa<VectorType>(CurTy)) 2325 V = ConstantDataVector::getFP(Context, Elts); 2326 else 2327 V = ConstantDataArray::getFP(Context, Elts); 2328 } else if (EltTy->isDoubleTy()) { 2329 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2330 if (isa<VectorType>(CurTy)) 2331 V = ConstantDataVector::getFP(Context, Elts); 2332 else 2333 V = ConstantDataArray::getFP(Context, Elts); 2334 } else { 2335 return error("Invalid type for value"); 2336 } 2337 break; 2338 } 2339 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2340 if (Record.size() < 2) 2341 return error("Invalid record"); 2342 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2343 if (Opc < 0) { 2344 V = UndefValue::get(CurTy); // Unknown unop. 2345 } else { 2346 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2347 unsigned Flags = 0; 2348 V = ConstantExpr::get(Opc, LHS, Flags); 2349 } 2350 break; 2351 } 2352 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2353 if (Record.size() < 3) 2354 return error("Invalid record"); 2355 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2356 if (Opc < 0) { 2357 V = UndefValue::get(CurTy); // Unknown binop. 2358 } else { 2359 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2360 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2361 unsigned Flags = 0; 2362 if (Record.size() >= 4) { 2363 if (Opc == Instruction::Add || 2364 Opc == Instruction::Sub || 2365 Opc == Instruction::Mul || 2366 Opc == Instruction::Shl) { 2367 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2368 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2369 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2370 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2371 } else if (Opc == Instruction::SDiv || 2372 Opc == Instruction::UDiv || 2373 Opc == Instruction::LShr || 2374 Opc == Instruction::AShr) { 2375 if (Record[3] & (1 << bitc::PEO_EXACT)) 2376 Flags |= SDivOperator::IsExact; 2377 } 2378 } 2379 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2380 } 2381 break; 2382 } 2383 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2384 if (Record.size() < 3) 2385 return error("Invalid record"); 2386 int Opc = getDecodedCastOpcode(Record[0]); 2387 if (Opc < 0) { 2388 V = UndefValue::get(CurTy); // Unknown cast. 2389 } else { 2390 Type *OpTy = getTypeByID(Record[1]); 2391 if (!OpTy) 2392 return error("Invalid record"); 2393 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2394 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2395 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2396 } 2397 break; 2398 } 2399 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2400 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2401 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2402 // operands] 2403 unsigned OpNum = 0; 2404 Type *PointeeType = nullptr; 2405 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2406 Record.size() % 2) 2407 PointeeType = getTypeByID(Record[OpNum++]); 2408 2409 bool InBounds = false; 2410 Optional<unsigned> InRangeIndex; 2411 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2412 uint64_t Op = Record[OpNum++]; 2413 InBounds = Op & 1; 2414 InRangeIndex = Op >> 1; 2415 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2416 InBounds = true; 2417 2418 SmallVector<Constant*, 16> Elts; 2419 while (OpNum != Record.size()) { 2420 Type *ElTy = getTypeByID(Record[OpNum++]); 2421 if (!ElTy) 2422 return error("Invalid record"); 2423 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2424 } 2425 2426 if (PointeeType && 2427 PointeeType != 2428 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2429 ->getElementType()) 2430 return error("Explicit gep operator type does not match pointee type " 2431 "of pointer operand"); 2432 2433 if (Elts.size() < 1) 2434 return error("Invalid gep with no operands"); 2435 2436 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2437 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2438 InBounds, InRangeIndex); 2439 break; 2440 } 2441 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2442 if (Record.size() < 3) 2443 return error("Invalid record"); 2444 2445 Type *SelectorTy = Type::getInt1Ty(Context); 2446 2447 // The selector might be an i1 or an <n x i1> 2448 // Get the type from the ValueList before getting a forward ref. 2449 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2450 if (Value *V = ValueList[Record[0]]) 2451 if (SelectorTy != V->getType()) 2452 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2453 2454 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2455 SelectorTy), 2456 ValueList.getConstantFwdRef(Record[1],CurTy), 2457 ValueList.getConstantFwdRef(Record[2],CurTy)); 2458 break; 2459 } 2460 case bitc::CST_CODE_CE_EXTRACTELT 2461 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2462 if (Record.size() < 3) 2463 return error("Invalid record"); 2464 VectorType *OpTy = 2465 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2466 if (!OpTy) 2467 return error("Invalid record"); 2468 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2469 Constant *Op1 = nullptr; 2470 if (Record.size() == 4) { 2471 Type *IdxTy = getTypeByID(Record[2]); 2472 if (!IdxTy) 2473 return error("Invalid record"); 2474 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2475 } else // TODO: Remove with llvm 4.0 2476 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2477 if (!Op1) 2478 return error("Invalid record"); 2479 V = ConstantExpr::getExtractElement(Op0, Op1); 2480 break; 2481 } 2482 case bitc::CST_CODE_CE_INSERTELT 2483 : { // CE_INSERTELT: [opval, opval, opty, opval] 2484 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2485 if (Record.size() < 3 || !OpTy) 2486 return error("Invalid record"); 2487 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2488 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2489 OpTy->getElementType()); 2490 Constant *Op2 = nullptr; 2491 if (Record.size() == 4) { 2492 Type *IdxTy = getTypeByID(Record[2]); 2493 if (!IdxTy) 2494 return error("Invalid record"); 2495 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2496 } else // TODO: Remove with llvm 4.0 2497 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2498 if (!Op2) 2499 return error("Invalid record"); 2500 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2501 break; 2502 } 2503 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2504 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2505 if (Record.size() < 3 || !OpTy) 2506 return error("Invalid record"); 2507 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2508 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2509 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2510 OpTy->getNumElements()); 2511 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2512 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2513 break; 2514 } 2515 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2516 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2517 VectorType *OpTy = 2518 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2519 if (Record.size() < 4 || !RTy || !OpTy) 2520 return error("Invalid record"); 2521 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2522 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2523 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2524 RTy->getNumElements()); 2525 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2526 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2527 break; 2528 } 2529 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2530 if (Record.size() < 4) 2531 return error("Invalid record"); 2532 Type *OpTy = getTypeByID(Record[0]); 2533 if (!OpTy) 2534 return error("Invalid record"); 2535 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2536 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2537 2538 if (OpTy->isFPOrFPVectorTy()) 2539 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2540 else 2541 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2542 break; 2543 } 2544 // This maintains backward compatibility, pre-asm dialect keywords. 2545 // FIXME: Remove with the 4.0 release. 2546 case bitc::CST_CODE_INLINEASM_OLD: { 2547 if (Record.size() < 2) 2548 return error("Invalid record"); 2549 std::string AsmStr, ConstrStr; 2550 bool HasSideEffects = Record[0] & 1; 2551 bool IsAlignStack = Record[0] >> 1; 2552 unsigned AsmStrSize = Record[1]; 2553 if (2+AsmStrSize >= Record.size()) 2554 return error("Invalid record"); 2555 unsigned ConstStrSize = Record[2+AsmStrSize]; 2556 if (3+AsmStrSize+ConstStrSize > Record.size()) 2557 return error("Invalid record"); 2558 2559 for (unsigned i = 0; i != AsmStrSize; ++i) 2560 AsmStr += (char)Record[2+i]; 2561 for (unsigned i = 0; i != ConstStrSize; ++i) 2562 ConstrStr += (char)Record[3+AsmStrSize+i]; 2563 PointerType *PTy = cast<PointerType>(CurTy); 2564 UpgradeInlineAsmString(&AsmStr); 2565 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2566 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2567 break; 2568 } 2569 // This version adds support for the asm dialect keywords (e.g., 2570 // inteldialect). 2571 case bitc::CST_CODE_INLINEASM: { 2572 if (Record.size() < 2) 2573 return error("Invalid record"); 2574 std::string AsmStr, ConstrStr; 2575 bool HasSideEffects = Record[0] & 1; 2576 bool IsAlignStack = (Record[0] >> 1) & 1; 2577 unsigned AsmDialect = Record[0] >> 2; 2578 unsigned AsmStrSize = Record[1]; 2579 if (2+AsmStrSize >= Record.size()) 2580 return error("Invalid record"); 2581 unsigned ConstStrSize = Record[2+AsmStrSize]; 2582 if (3+AsmStrSize+ConstStrSize > Record.size()) 2583 return error("Invalid record"); 2584 2585 for (unsigned i = 0; i != AsmStrSize; ++i) 2586 AsmStr += (char)Record[2+i]; 2587 for (unsigned i = 0; i != ConstStrSize; ++i) 2588 ConstrStr += (char)Record[3+AsmStrSize+i]; 2589 PointerType *PTy = cast<PointerType>(CurTy); 2590 UpgradeInlineAsmString(&AsmStr); 2591 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2592 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2593 InlineAsm::AsmDialect(AsmDialect)); 2594 break; 2595 } 2596 case bitc::CST_CODE_BLOCKADDRESS:{ 2597 if (Record.size() < 3) 2598 return error("Invalid record"); 2599 Type *FnTy = getTypeByID(Record[0]); 2600 if (!FnTy) 2601 return error("Invalid record"); 2602 Function *Fn = 2603 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2604 if (!Fn) 2605 return error("Invalid record"); 2606 2607 // If the function is already parsed we can insert the block address right 2608 // away. 2609 BasicBlock *BB; 2610 unsigned BBID = Record[2]; 2611 if (!BBID) 2612 // Invalid reference to entry block. 2613 return error("Invalid ID"); 2614 if (!Fn->empty()) { 2615 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2616 for (size_t I = 0, E = BBID; I != E; ++I) { 2617 if (BBI == BBE) 2618 return error("Invalid ID"); 2619 ++BBI; 2620 } 2621 BB = &*BBI; 2622 } else { 2623 // Otherwise insert a placeholder and remember it so it can be inserted 2624 // when the function is parsed. 2625 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2626 if (FwdBBs.empty()) 2627 BasicBlockFwdRefQueue.push_back(Fn); 2628 if (FwdBBs.size() < BBID + 1) 2629 FwdBBs.resize(BBID + 1); 2630 if (!FwdBBs[BBID]) 2631 FwdBBs[BBID] = BasicBlock::Create(Context); 2632 BB = FwdBBs[BBID]; 2633 } 2634 V = BlockAddress::get(Fn, BB); 2635 break; 2636 } 2637 } 2638 2639 ValueList.assignValue(V, NextCstNo); 2640 ++NextCstNo; 2641 } 2642 } 2643 2644 Error BitcodeReader::parseUseLists() { 2645 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2646 return error("Invalid record"); 2647 2648 // Read all the records. 2649 SmallVector<uint64_t, 64> Record; 2650 2651 while (true) { 2652 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2653 2654 switch (Entry.Kind) { 2655 case BitstreamEntry::SubBlock: // Handled for us already. 2656 case BitstreamEntry::Error: 2657 return error("Malformed block"); 2658 case BitstreamEntry::EndBlock: 2659 return Error::success(); 2660 case BitstreamEntry::Record: 2661 // The interesting case. 2662 break; 2663 } 2664 2665 // Read a use list record. 2666 Record.clear(); 2667 bool IsBB = false; 2668 switch (Stream.readRecord(Entry.ID, Record)) { 2669 default: // Default behavior: unknown type. 2670 break; 2671 case bitc::USELIST_CODE_BB: 2672 IsBB = true; 2673 LLVM_FALLTHROUGH; 2674 case bitc::USELIST_CODE_DEFAULT: { 2675 unsigned RecordLength = Record.size(); 2676 if (RecordLength < 3) 2677 // Records should have at least an ID and two indexes. 2678 return error("Invalid record"); 2679 unsigned ID = Record.back(); 2680 Record.pop_back(); 2681 2682 Value *V; 2683 if (IsBB) { 2684 assert(ID < FunctionBBs.size() && "Basic block not found"); 2685 V = FunctionBBs[ID]; 2686 } else 2687 V = ValueList[ID]; 2688 unsigned NumUses = 0; 2689 SmallDenseMap<const Use *, unsigned, 16> Order; 2690 for (const Use &U : V->materialized_uses()) { 2691 if (++NumUses > Record.size()) 2692 break; 2693 Order[&U] = Record[NumUses - 1]; 2694 } 2695 if (Order.size() != Record.size() || NumUses > Record.size()) 2696 // Mismatches can happen if the functions are being materialized lazily 2697 // (out-of-order), or a value has been upgraded. 2698 break; 2699 2700 V->sortUseList([&](const Use &L, const Use &R) { 2701 return Order.lookup(&L) < Order.lookup(&R); 2702 }); 2703 break; 2704 } 2705 } 2706 } 2707 } 2708 2709 /// When we see the block for metadata, remember where it is and then skip it. 2710 /// This lets us lazily deserialize the metadata. 2711 Error BitcodeReader::rememberAndSkipMetadata() { 2712 // Save the current stream state. 2713 uint64_t CurBit = Stream.GetCurrentBitNo(); 2714 DeferredMetadataInfo.push_back(CurBit); 2715 2716 // Skip over the block for now. 2717 if (Stream.SkipBlock()) 2718 return error("Invalid record"); 2719 return Error::success(); 2720 } 2721 2722 Error BitcodeReader::materializeMetadata() { 2723 for (uint64_t BitPos : DeferredMetadataInfo) { 2724 // Move the bit stream to the saved position. 2725 Stream.JumpToBit(BitPos); 2726 if (Error Err = MDLoader->parseModuleMetadata()) 2727 return Err; 2728 } 2729 2730 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2731 // metadata. 2732 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2733 NamedMDNode *LinkerOpts = 2734 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2735 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2736 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2737 } 2738 2739 DeferredMetadataInfo.clear(); 2740 return Error::success(); 2741 } 2742 2743 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2744 2745 /// When we see the block for a function body, remember where it is and then 2746 /// skip it. This lets us lazily deserialize the functions. 2747 Error BitcodeReader::rememberAndSkipFunctionBody() { 2748 // Get the function we are talking about. 2749 if (FunctionsWithBodies.empty()) 2750 return error("Insufficient function protos"); 2751 2752 Function *Fn = FunctionsWithBodies.back(); 2753 FunctionsWithBodies.pop_back(); 2754 2755 // Save the current stream state. 2756 uint64_t CurBit = Stream.GetCurrentBitNo(); 2757 assert( 2758 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2759 "Mismatch between VST and scanned function offsets"); 2760 DeferredFunctionInfo[Fn] = CurBit; 2761 2762 // Skip over the function block for now. 2763 if (Stream.SkipBlock()) 2764 return error("Invalid record"); 2765 return Error::success(); 2766 } 2767 2768 Error BitcodeReader::globalCleanup() { 2769 // Patch the initializers for globals and aliases up. 2770 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2771 return Err; 2772 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2773 return error("Malformed global initializer set"); 2774 2775 // Look for intrinsic functions which need to be upgraded at some point 2776 for (Function &F : *TheModule) { 2777 MDLoader->upgradeDebugIntrinsics(F); 2778 Function *NewFn; 2779 if (UpgradeIntrinsicFunction(&F, NewFn)) 2780 UpgradedIntrinsics[&F] = NewFn; 2781 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2782 // Some types could be renamed during loading if several modules are 2783 // loaded in the same LLVMContext (LTO scenario). In this case we should 2784 // remangle intrinsics names as well. 2785 RemangledIntrinsics[&F] = Remangled.getValue(); 2786 } 2787 2788 // Look for global variables which need to be renamed. 2789 for (GlobalVariable &GV : TheModule->globals()) 2790 UpgradeGlobalVariable(&GV); 2791 2792 // Force deallocation of memory for these vectors to favor the client that 2793 // want lazy deserialization. 2794 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2795 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2796 IndirectSymbolInits); 2797 return Error::success(); 2798 } 2799 2800 /// Support for lazy parsing of function bodies. This is required if we 2801 /// either have an old bitcode file without a VST forward declaration record, 2802 /// or if we have an anonymous function being materialized, since anonymous 2803 /// functions do not have a name and are therefore not in the VST. 2804 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2805 Stream.JumpToBit(NextUnreadBit); 2806 2807 if (Stream.AtEndOfStream()) 2808 return error("Could not find function in stream"); 2809 2810 if (!SeenFirstFunctionBody) 2811 return error("Trying to materialize functions before seeing function blocks"); 2812 2813 // An old bitcode file with the symbol table at the end would have 2814 // finished the parse greedily. 2815 assert(SeenValueSymbolTable); 2816 2817 SmallVector<uint64_t, 64> Record; 2818 2819 while (true) { 2820 BitstreamEntry Entry = Stream.advance(); 2821 switch (Entry.Kind) { 2822 default: 2823 return error("Expect SubBlock"); 2824 case BitstreamEntry::SubBlock: 2825 switch (Entry.ID) { 2826 default: 2827 return error("Expect function block"); 2828 case bitc::FUNCTION_BLOCK_ID: 2829 if (Error Err = rememberAndSkipFunctionBody()) 2830 return Err; 2831 NextUnreadBit = Stream.GetCurrentBitNo(); 2832 return Error::success(); 2833 } 2834 } 2835 } 2836 } 2837 2838 bool BitcodeReaderBase::readBlockInfo() { 2839 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2840 if (!NewBlockInfo) 2841 return true; 2842 BlockInfo = std::move(*NewBlockInfo); 2843 return false; 2844 } 2845 2846 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2847 // v1: [selection_kind, name] 2848 // v2: [strtab_offset, strtab_size, selection_kind] 2849 StringRef Name; 2850 std::tie(Name, Record) = readNameFromStrtab(Record); 2851 2852 if (Record.empty()) 2853 return error("Invalid record"); 2854 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2855 std::string OldFormatName; 2856 if (!UseStrtab) { 2857 if (Record.size() < 2) 2858 return error("Invalid record"); 2859 unsigned ComdatNameSize = Record[1]; 2860 OldFormatName.reserve(ComdatNameSize); 2861 for (unsigned i = 0; i != ComdatNameSize; ++i) 2862 OldFormatName += (char)Record[2 + i]; 2863 Name = OldFormatName; 2864 } 2865 Comdat *C = TheModule->getOrInsertComdat(Name); 2866 C->setSelectionKind(SK); 2867 ComdatList.push_back(C); 2868 return Error::success(); 2869 } 2870 2871 static void inferDSOLocal(GlobalValue *GV) { 2872 // infer dso_local from linkage and visibility if it is not encoded. 2873 if (GV->hasLocalLinkage() || 2874 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2875 GV->setDSOLocal(true); 2876 } 2877 2878 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2879 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2880 // visibility, threadlocal, unnamed_addr, externally_initialized, 2881 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2882 // v2: [strtab_offset, strtab_size, v1] 2883 StringRef Name; 2884 std::tie(Name, Record) = readNameFromStrtab(Record); 2885 2886 if (Record.size() < 6) 2887 return error("Invalid record"); 2888 Type *Ty = getTypeByID(Record[0]); 2889 if (!Ty) 2890 return error("Invalid record"); 2891 bool isConstant = Record[1] & 1; 2892 bool explicitType = Record[1] & 2; 2893 unsigned AddressSpace; 2894 if (explicitType) { 2895 AddressSpace = Record[1] >> 2; 2896 } else { 2897 if (!Ty->isPointerTy()) 2898 return error("Invalid type for value"); 2899 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2900 Ty = cast<PointerType>(Ty)->getElementType(); 2901 } 2902 2903 uint64_t RawLinkage = Record[3]; 2904 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2905 unsigned Alignment; 2906 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2907 return Err; 2908 std::string Section; 2909 if (Record[5]) { 2910 if (Record[5] - 1 >= SectionTable.size()) 2911 return error("Invalid ID"); 2912 Section = SectionTable[Record[5] - 1]; 2913 } 2914 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2915 // Local linkage must have default visibility. 2916 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2917 // FIXME: Change to an error if non-default in 4.0. 2918 Visibility = getDecodedVisibility(Record[6]); 2919 2920 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2921 if (Record.size() > 7) 2922 TLM = getDecodedThreadLocalMode(Record[7]); 2923 2924 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2925 if (Record.size() > 8) 2926 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2927 2928 bool ExternallyInitialized = false; 2929 if (Record.size() > 9) 2930 ExternallyInitialized = Record[9]; 2931 2932 GlobalVariable *NewGV = 2933 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2934 nullptr, TLM, AddressSpace, ExternallyInitialized); 2935 NewGV->setAlignment(Alignment); 2936 if (!Section.empty()) 2937 NewGV->setSection(Section); 2938 NewGV->setVisibility(Visibility); 2939 NewGV->setUnnamedAddr(UnnamedAddr); 2940 2941 if (Record.size() > 10) 2942 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2943 else 2944 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2945 2946 ValueList.push_back(NewGV); 2947 2948 // Remember which value to use for the global initializer. 2949 if (unsigned InitID = Record[2]) 2950 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2951 2952 if (Record.size() > 11) { 2953 if (unsigned ComdatID = Record[11]) { 2954 if (ComdatID > ComdatList.size()) 2955 return error("Invalid global variable comdat ID"); 2956 NewGV->setComdat(ComdatList[ComdatID - 1]); 2957 } 2958 } else if (hasImplicitComdat(RawLinkage)) { 2959 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2960 } 2961 2962 if (Record.size() > 12) { 2963 auto AS = getAttributes(Record[12]).getFnAttributes(); 2964 NewGV->setAttributes(AS); 2965 } 2966 2967 if (Record.size() > 13) { 2968 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2969 } 2970 inferDSOLocal(NewGV); 2971 2972 return Error::success(); 2973 } 2974 2975 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2976 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2977 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2978 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2979 // v2: [strtab_offset, strtab_size, v1] 2980 StringRef Name; 2981 std::tie(Name, Record) = readNameFromStrtab(Record); 2982 2983 if (Record.size() < 8) 2984 return error("Invalid record"); 2985 Type *Ty = getTypeByID(Record[0]); 2986 if (!Ty) 2987 return error("Invalid record"); 2988 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2989 Ty = PTy->getElementType(); 2990 auto *FTy = dyn_cast<FunctionType>(Ty); 2991 if (!FTy) 2992 return error("Invalid type for value"); 2993 auto CC = static_cast<CallingConv::ID>(Record[1]); 2994 if (CC & ~CallingConv::MaxID) 2995 return error("Invalid calling convention ID"); 2996 2997 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 2998 if (Record.size() > 16) 2999 AddrSpace = Record[16]; 3000 3001 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3002 AddrSpace, Name, TheModule); 3003 3004 Func->setCallingConv(CC); 3005 bool isProto = Record[2]; 3006 uint64_t RawLinkage = Record[3]; 3007 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3008 Func->setAttributes(getAttributes(Record[4])); 3009 3010 unsigned Alignment; 3011 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3012 return Err; 3013 Func->setAlignment(Alignment); 3014 if (Record[6]) { 3015 if (Record[6] - 1 >= SectionTable.size()) 3016 return error("Invalid ID"); 3017 Func->setSection(SectionTable[Record[6] - 1]); 3018 } 3019 // Local linkage must have default visibility. 3020 if (!Func->hasLocalLinkage()) 3021 // FIXME: Change to an error if non-default in 4.0. 3022 Func->setVisibility(getDecodedVisibility(Record[7])); 3023 if (Record.size() > 8 && Record[8]) { 3024 if (Record[8] - 1 >= GCTable.size()) 3025 return error("Invalid ID"); 3026 Func->setGC(GCTable[Record[8] - 1]); 3027 } 3028 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3029 if (Record.size() > 9) 3030 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3031 Func->setUnnamedAddr(UnnamedAddr); 3032 if (Record.size() > 10 && Record[10] != 0) 3033 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3034 3035 if (Record.size() > 11) 3036 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3037 else 3038 upgradeDLLImportExportLinkage(Func, RawLinkage); 3039 3040 if (Record.size() > 12) { 3041 if (unsigned ComdatID = Record[12]) { 3042 if (ComdatID > ComdatList.size()) 3043 return error("Invalid function comdat ID"); 3044 Func->setComdat(ComdatList[ComdatID - 1]); 3045 } 3046 } else if (hasImplicitComdat(RawLinkage)) { 3047 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3048 } 3049 3050 if (Record.size() > 13 && Record[13] != 0) 3051 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3052 3053 if (Record.size() > 14 && Record[14] != 0) 3054 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3055 3056 if (Record.size() > 15) { 3057 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3058 } 3059 inferDSOLocal(Func); 3060 3061 ValueList.push_back(Func); 3062 3063 // If this is a function with a body, remember the prototype we are 3064 // creating now, so that we can match up the body with them later. 3065 if (!isProto) { 3066 Func->setIsMaterializable(true); 3067 FunctionsWithBodies.push_back(Func); 3068 DeferredFunctionInfo[Func] = 0; 3069 } 3070 return Error::success(); 3071 } 3072 3073 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3074 unsigned BitCode, ArrayRef<uint64_t> Record) { 3075 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3076 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3077 // dllstorageclass, threadlocal, unnamed_addr, 3078 // preemption specifier] (name in VST) 3079 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3080 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3081 // preemption specifier] (name in VST) 3082 // v2: [strtab_offset, strtab_size, v1] 3083 StringRef Name; 3084 std::tie(Name, Record) = readNameFromStrtab(Record); 3085 3086 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3087 if (Record.size() < (3 + (unsigned)NewRecord)) 3088 return error("Invalid record"); 3089 unsigned OpNum = 0; 3090 Type *Ty = getTypeByID(Record[OpNum++]); 3091 if (!Ty) 3092 return error("Invalid record"); 3093 3094 unsigned AddrSpace; 3095 if (!NewRecord) { 3096 auto *PTy = dyn_cast<PointerType>(Ty); 3097 if (!PTy) 3098 return error("Invalid type for value"); 3099 Ty = PTy->getElementType(); 3100 AddrSpace = PTy->getAddressSpace(); 3101 } else { 3102 AddrSpace = Record[OpNum++]; 3103 } 3104 3105 auto Val = Record[OpNum++]; 3106 auto Linkage = Record[OpNum++]; 3107 GlobalIndirectSymbol *NewGA; 3108 if (BitCode == bitc::MODULE_CODE_ALIAS || 3109 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3110 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3111 TheModule); 3112 else 3113 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3114 nullptr, TheModule); 3115 // Old bitcode files didn't have visibility field. 3116 // Local linkage must have default visibility. 3117 if (OpNum != Record.size()) { 3118 auto VisInd = OpNum++; 3119 if (!NewGA->hasLocalLinkage()) 3120 // FIXME: Change to an error if non-default in 4.0. 3121 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3122 } 3123 if (BitCode == bitc::MODULE_CODE_ALIAS || 3124 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3125 if (OpNum != Record.size()) 3126 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3127 else 3128 upgradeDLLImportExportLinkage(NewGA, Linkage); 3129 if (OpNum != Record.size()) 3130 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3131 if (OpNum != Record.size()) 3132 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3133 } 3134 if (OpNum != Record.size()) 3135 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3136 inferDSOLocal(NewGA); 3137 3138 ValueList.push_back(NewGA); 3139 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3140 return Error::success(); 3141 } 3142 3143 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3144 bool ShouldLazyLoadMetadata) { 3145 if (ResumeBit) 3146 Stream.JumpToBit(ResumeBit); 3147 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3148 return error("Invalid record"); 3149 3150 SmallVector<uint64_t, 64> Record; 3151 3152 // Read all the records for this module. 3153 while (true) { 3154 BitstreamEntry Entry = Stream.advance(); 3155 3156 switch (Entry.Kind) { 3157 case BitstreamEntry::Error: 3158 return error("Malformed block"); 3159 case BitstreamEntry::EndBlock: 3160 return globalCleanup(); 3161 3162 case BitstreamEntry::SubBlock: 3163 switch (Entry.ID) { 3164 default: // Skip unknown content. 3165 if (Stream.SkipBlock()) 3166 return error("Invalid record"); 3167 break; 3168 case bitc::BLOCKINFO_BLOCK_ID: 3169 if (readBlockInfo()) 3170 return error("Malformed block"); 3171 break; 3172 case bitc::PARAMATTR_BLOCK_ID: 3173 if (Error Err = parseAttributeBlock()) 3174 return Err; 3175 break; 3176 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3177 if (Error Err = parseAttributeGroupBlock()) 3178 return Err; 3179 break; 3180 case bitc::TYPE_BLOCK_ID_NEW: 3181 if (Error Err = parseTypeTable()) 3182 return Err; 3183 break; 3184 case bitc::VALUE_SYMTAB_BLOCK_ID: 3185 if (!SeenValueSymbolTable) { 3186 // Either this is an old form VST without function index and an 3187 // associated VST forward declaration record (which would have caused 3188 // the VST to be jumped to and parsed before it was encountered 3189 // normally in the stream), or there were no function blocks to 3190 // trigger an earlier parsing of the VST. 3191 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3192 if (Error Err = parseValueSymbolTable()) 3193 return Err; 3194 SeenValueSymbolTable = true; 3195 } else { 3196 // We must have had a VST forward declaration record, which caused 3197 // the parser to jump to and parse the VST earlier. 3198 assert(VSTOffset > 0); 3199 if (Stream.SkipBlock()) 3200 return error("Invalid record"); 3201 } 3202 break; 3203 case bitc::CONSTANTS_BLOCK_ID: 3204 if (Error Err = parseConstants()) 3205 return Err; 3206 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3207 return Err; 3208 break; 3209 case bitc::METADATA_BLOCK_ID: 3210 if (ShouldLazyLoadMetadata) { 3211 if (Error Err = rememberAndSkipMetadata()) 3212 return Err; 3213 break; 3214 } 3215 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3216 if (Error Err = MDLoader->parseModuleMetadata()) 3217 return Err; 3218 break; 3219 case bitc::METADATA_KIND_BLOCK_ID: 3220 if (Error Err = MDLoader->parseMetadataKinds()) 3221 return Err; 3222 break; 3223 case bitc::FUNCTION_BLOCK_ID: 3224 // If this is the first function body we've seen, reverse the 3225 // FunctionsWithBodies list. 3226 if (!SeenFirstFunctionBody) { 3227 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3228 if (Error Err = globalCleanup()) 3229 return Err; 3230 SeenFirstFunctionBody = true; 3231 } 3232 3233 if (VSTOffset > 0) { 3234 // If we have a VST forward declaration record, make sure we 3235 // parse the VST now if we haven't already. It is needed to 3236 // set up the DeferredFunctionInfo vector for lazy reading. 3237 if (!SeenValueSymbolTable) { 3238 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3239 return Err; 3240 SeenValueSymbolTable = true; 3241 // Fall through so that we record the NextUnreadBit below. 3242 // This is necessary in case we have an anonymous function that 3243 // is later materialized. Since it will not have a VST entry we 3244 // need to fall back to the lazy parse to find its offset. 3245 } else { 3246 // If we have a VST forward declaration record, but have already 3247 // parsed the VST (just above, when the first function body was 3248 // encountered here), then we are resuming the parse after 3249 // materializing functions. The ResumeBit points to the 3250 // start of the last function block recorded in the 3251 // DeferredFunctionInfo map. Skip it. 3252 if (Stream.SkipBlock()) 3253 return error("Invalid record"); 3254 continue; 3255 } 3256 } 3257 3258 // Support older bitcode files that did not have the function 3259 // index in the VST, nor a VST forward declaration record, as 3260 // well as anonymous functions that do not have VST entries. 3261 // Build the DeferredFunctionInfo vector on the fly. 3262 if (Error Err = rememberAndSkipFunctionBody()) 3263 return Err; 3264 3265 // Suspend parsing when we reach the function bodies. Subsequent 3266 // materialization calls will resume it when necessary. If the bitcode 3267 // file is old, the symbol table will be at the end instead and will not 3268 // have been seen yet. In this case, just finish the parse now. 3269 if (SeenValueSymbolTable) { 3270 NextUnreadBit = Stream.GetCurrentBitNo(); 3271 // After the VST has been parsed, we need to make sure intrinsic name 3272 // are auto-upgraded. 3273 return globalCleanup(); 3274 } 3275 break; 3276 case bitc::USELIST_BLOCK_ID: 3277 if (Error Err = parseUseLists()) 3278 return Err; 3279 break; 3280 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3281 if (Error Err = parseOperandBundleTags()) 3282 return Err; 3283 break; 3284 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3285 if (Error Err = parseSyncScopeNames()) 3286 return Err; 3287 break; 3288 } 3289 continue; 3290 3291 case BitstreamEntry::Record: 3292 // The interesting case. 3293 break; 3294 } 3295 3296 // Read a record. 3297 auto BitCode = Stream.readRecord(Entry.ID, Record); 3298 switch (BitCode) { 3299 default: break; // Default behavior, ignore unknown content. 3300 case bitc::MODULE_CODE_VERSION: { 3301 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3302 if (!VersionOrErr) 3303 return VersionOrErr.takeError(); 3304 UseRelativeIDs = *VersionOrErr >= 1; 3305 break; 3306 } 3307 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3308 std::string S; 3309 if (convertToString(Record, 0, S)) 3310 return error("Invalid record"); 3311 TheModule->setTargetTriple(S); 3312 break; 3313 } 3314 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3315 std::string S; 3316 if (convertToString(Record, 0, S)) 3317 return error("Invalid record"); 3318 TheModule->setDataLayout(S); 3319 break; 3320 } 3321 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3322 std::string S; 3323 if (convertToString(Record, 0, S)) 3324 return error("Invalid record"); 3325 TheModule->setModuleInlineAsm(S); 3326 break; 3327 } 3328 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3329 // FIXME: Remove in 4.0. 3330 std::string S; 3331 if (convertToString(Record, 0, S)) 3332 return error("Invalid record"); 3333 // Ignore value. 3334 break; 3335 } 3336 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3337 std::string S; 3338 if (convertToString(Record, 0, S)) 3339 return error("Invalid record"); 3340 SectionTable.push_back(S); 3341 break; 3342 } 3343 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3344 std::string S; 3345 if (convertToString(Record, 0, S)) 3346 return error("Invalid record"); 3347 GCTable.push_back(S); 3348 break; 3349 } 3350 case bitc::MODULE_CODE_COMDAT: 3351 if (Error Err = parseComdatRecord(Record)) 3352 return Err; 3353 break; 3354 case bitc::MODULE_CODE_GLOBALVAR: 3355 if (Error Err = parseGlobalVarRecord(Record)) 3356 return Err; 3357 break; 3358 case bitc::MODULE_CODE_FUNCTION: 3359 if (Error Err = parseFunctionRecord(Record)) 3360 return Err; 3361 break; 3362 case bitc::MODULE_CODE_IFUNC: 3363 case bitc::MODULE_CODE_ALIAS: 3364 case bitc::MODULE_CODE_ALIAS_OLD: 3365 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3366 return Err; 3367 break; 3368 /// MODULE_CODE_VSTOFFSET: [offset] 3369 case bitc::MODULE_CODE_VSTOFFSET: 3370 if (Record.size() < 1) 3371 return error("Invalid record"); 3372 // Note that we subtract 1 here because the offset is relative to one word 3373 // before the start of the identification or module block, which was 3374 // historically always the start of the regular bitcode header. 3375 VSTOffset = Record[0] - 1; 3376 break; 3377 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3378 case bitc::MODULE_CODE_SOURCE_FILENAME: 3379 SmallString<128> ValueName; 3380 if (convertToString(Record, 0, ValueName)) 3381 return error("Invalid record"); 3382 TheModule->setSourceFileName(ValueName); 3383 break; 3384 } 3385 Record.clear(); 3386 } 3387 } 3388 3389 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3390 bool IsImporting) { 3391 TheModule = M; 3392 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3393 [&](unsigned ID) { return getTypeByID(ID); }); 3394 return parseModule(0, ShouldLazyLoadMetadata); 3395 } 3396 3397 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3398 if (!isa<PointerType>(PtrType)) 3399 return error("Load/Store operand is not a pointer type"); 3400 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3401 3402 if (ValType && ValType != ElemType) 3403 return error("Explicit load/store type does not match pointee " 3404 "type of pointer operand"); 3405 if (!PointerType::isLoadableOrStorableType(ElemType)) 3406 return error("Cannot load/store from pointer"); 3407 return Error::success(); 3408 } 3409 3410 /// Lazily parse the specified function body block. 3411 Error BitcodeReader::parseFunctionBody(Function *F) { 3412 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3413 return error("Invalid record"); 3414 3415 // Unexpected unresolved metadata when parsing function. 3416 if (MDLoader->hasFwdRefs()) 3417 return error("Invalid function metadata: incoming forward references"); 3418 3419 InstructionList.clear(); 3420 unsigned ModuleValueListSize = ValueList.size(); 3421 unsigned ModuleMDLoaderSize = MDLoader->size(); 3422 3423 // Add all the function arguments to the value table. 3424 for (Argument &I : F->args()) 3425 ValueList.push_back(&I); 3426 3427 unsigned NextValueNo = ValueList.size(); 3428 BasicBlock *CurBB = nullptr; 3429 unsigned CurBBNo = 0; 3430 3431 DebugLoc LastLoc; 3432 auto getLastInstruction = [&]() -> Instruction * { 3433 if (CurBB && !CurBB->empty()) 3434 return &CurBB->back(); 3435 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3436 !FunctionBBs[CurBBNo - 1]->empty()) 3437 return &FunctionBBs[CurBBNo - 1]->back(); 3438 return nullptr; 3439 }; 3440 3441 std::vector<OperandBundleDef> OperandBundles; 3442 3443 // Read all the records. 3444 SmallVector<uint64_t, 64> Record; 3445 3446 while (true) { 3447 BitstreamEntry Entry = Stream.advance(); 3448 3449 switch (Entry.Kind) { 3450 case BitstreamEntry::Error: 3451 return error("Malformed block"); 3452 case BitstreamEntry::EndBlock: 3453 goto OutOfRecordLoop; 3454 3455 case BitstreamEntry::SubBlock: 3456 switch (Entry.ID) { 3457 default: // Skip unknown content. 3458 if (Stream.SkipBlock()) 3459 return error("Invalid record"); 3460 break; 3461 case bitc::CONSTANTS_BLOCK_ID: 3462 if (Error Err = parseConstants()) 3463 return Err; 3464 NextValueNo = ValueList.size(); 3465 break; 3466 case bitc::VALUE_SYMTAB_BLOCK_ID: 3467 if (Error Err = parseValueSymbolTable()) 3468 return Err; 3469 break; 3470 case bitc::METADATA_ATTACHMENT_ID: 3471 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3472 return Err; 3473 break; 3474 case bitc::METADATA_BLOCK_ID: 3475 assert(DeferredMetadataInfo.empty() && 3476 "Must read all module-level metadata before function-level"); 3477 if (Error Err = MDLoader->parseFunctionMetadata()) 3478 return Err; 3479 break; 3480 case bitc::USELIST_BLOCK_ID: 3481 if (Error Err = parseUseLists()) 3482 return Err; 3483 break; 3484 } 3485 continue; 3486 3487 case BitstreamEntry::Record: 3488 // The interesting case. 3489 break; 3490 } 3491 3492 // Read a record. 3493 Record.clear(); 3494 Instruction *I = nullptr; 3495 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3496 switch (BitCode) { 3497 default: // Default behavior: reject 3498 return error("Invalid value"); 3499 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3500 if (Record.size() < 1 || Record[0] == 0) 3501 return error("Invalid record"); 3502 // Create all the basic blocks for the function. 3503 FunctionBBs.resize(Record[0]); 3504 3505 // See if anything took the address of blocks in this function. 3506 auto BBFRI = BasicBlockFwdRefs.find(F); 3507 if (BBFRI == BasicBlockFwdRefs.end()) { 3508 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3509 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3510 } else { 3511 auto &BBRefs = BBFRI->second; 3512 // Check for invalid basic block references. 3513 if (BBRefs.size() > FunctionBBs.size()) 3514 return error("Invalid ID"); 3515 assert(!BBRefs.empty() && "Unexpected empty array"); 3516 assert(!BBRefs.front() && "Invalid reference to entry block"); 3517 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3518 ++I) 3519 if (I < RE && BBRefs[I]) { 3520 BBRefs[I]->insertInto(F); 3521 FunctionBBs[I] = BBRefs[I]; 3522 } else { 3523 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3524 } 3525 3526 // Erase from the table. 3527 BasicBlockFwdRefs.erase(BBFRI); 3528 } 3529 3530 CurBB = FunctionBBs[0]; 3531 continue; 3532 } 3533 3534 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3535 // This record indicates that the last instruction is at the same 3536 // location as the previous instruction with a location. 3537 I = getLastInstruction(); 3538 3539 if (!I) 3540 return error("Invalid record"); 3541 I->setDebugLoc(LastLoc); 3542 I = nullptr; 3543 continue; 3544 3545 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3546 I = getLastInstruction(); 3547 if (!I || Record.size() < 4) 3548 return error("Invalid record"); 3549 3550 unsigned Line = Record[0], Col = Record[1]; 3551 unsigned ScopeID = Record[2], IAID = Record[3]; 3552 bool isImplicitCode = Record.size() == 5 && Record[4]; 3553 3554 MDNode *Scope = nullptr, *IA = nullptr; 3555 if (ScopeID) { 3556 Scope = dyn_cast_or_null<MDNode>( 3557 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3558 if (!Scope) 3559 return error("Invalid record"); 3560 } 3561 if (IAID) { 3562 IA = dyn_cast_or_null<MDNode>( 3563 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3564 if (!IA) 3565 return error("Invalid record"); 3566 } 3567 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3568 I->setDebugLoc(LastLoc); 3569 I = nullptr; 3570 continue; 3571 } 3572 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3573 unsigned OpNum = 0; 3574 Value *LHS; 3575 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3576 OpNum+1 > Record.size()) 3577 return error("Invalid record"); 3578 3579 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3580 if (Opc == -1) 3581 return error("Invalid record"); 3582 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3583 InstructionList.push_back(I); 3584 if (OpNum < Record.size()) { 3585 if (isa<FPMathOperator>(I)) { 3586 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3587 if (FMF.any()) 3588 I->setFastMathFlags(FMF); 3589 } 3590 } 3591 break; 3592 } 3593 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3594 unsigned OpNum = 0; 3595 Value *LHS, *RHS; 3596 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3597 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3598 OpNum+1 > Record.size()) 3599 return error("Invalid record"); 3600 3601 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3602 if (Opc == -1) 3603 return error("Invalid record"); 3604 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3605 InstructionList.push_back(I); 3606 if (OpNum < Record.size()) { 3607 if (Opc == Instruction::Add || 3608 Opc == Instruction::Sub || 3609 Opc == Instruction::Mul || 3610 Opc == Instruction::Shl) { 3611 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3612 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3613 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3614 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3615 } else if (Opc == Instruction::SDiv || 3616 Opc == Instruction::UDiv || 3617 Opc == Instruction::LShr || 3618 Opc == Instruction::AShr) { 3619 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3620 cast<BinaryOperator>(I)->setIsExact(true); 3621 } else if (isa<FPMathOperator>(I)) { 3622 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3623 if (FMF.any()) 3624 I->setFastMathFlags(FMF); 3625 } 3626 3627 } 3628 break; 3629 } 3630 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3631 unsigned OpNum = 0; 3632 Value *Op; 3633 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3634 OpNum+2 != Record.size()) 3635 return error("Invalid record"); 3636 3637 Type *ResTy = getTypeByID(Record[OpNum]); 3638 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3639 if (Opc == -1 || !ResTy) 3640 return error("Invalid record"); 3641 Instruction *Temp = nullptr; 3642 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3643 if (Temp) { 3644 InstructionList.push_back(Temp); 3645 CurBB->getInstList().push_back(Temp); 3646 } 3647 } else { 3648 auto CastOp = (Instruction::CastOps)Opc; 3649 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3650 return error("Invalid cast"); 3651 I = CastInst::Create(CastOp, Op, ResTy); 3652 } 3653 InstructionList.push_back(I); 3654 break; 3655 } 3656 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3657 case bitc::FUNC_CODE_INST_GEP_OLD: 3658 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3659 unsigned OpNum = 0; 3660 3661 Type *Ty; 3662 bool InBounds; 3663 3664 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3665 InBounds = Record[OpNum++]; 3666 Ty = getTypeByID(Record[OpNum++]); 3667 } else { 3668 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3669 Ty = nullptr; 3670 } 3671 3672 Value *BasePtr; 3673 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3674 return error("Invalid record"); 3675 3676 if (!Ty) 3677 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3678 ->getElementType(); 3679 else if (Ty != 3680 cast<PointerType>(BasePtr->getType()->getScalarType()) 3681 ->getElementType()) 3682 return error( 3683 "Explicit gep type does not match pointee type of pointer operand"); 3684 3685 SmallVector<Value*, 16> GEPIdx; 3686 while (OpNum != Record.size()) { 3687 Value *Op; 3688 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3689 return error("Invalid record"); 3690 GEPIdx.push_back(Op); 3691 } 3692 3693 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3694 3695 InstructionList.push_back(I); 3696 if (InBounds) 3697 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3698 break; 3699 } 3700 3701 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3702 // EXTRACTVAL: [opty, opval, n x indices] 3703 unsigned OpNum = 0; 3704 Value *Agg; 3705 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3706 return error("Invalid record"); 3707 3708 unsigned RecSize = Record.size(); 3709 if (OpNum == RecSize) 3710 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3711 3712 SmallVector<unsigned, 4> EXTRACTVALIdx; 3713 Type *CurTy = Agg->getType(); 3714 for (; OpNum != RecSize; ++OpNum) { 3715 bool IsArray = CurTy->isArrayTy(); 3716 bool IsStruct = CurTy->isStructTy(); 3717 uint64_t Index = Record[OpNum]; 3718 3719 if (!IsStruct && !IsArray) 3720 return error("EXTRACTVAL: Invalid type"); 3721 if ((unsigned)Index != Index) 3722 return error("Invalid value"); 3723 if (IsStruct && Index >= CurTy->getStructNumElements()) 3724 return error("EXTRACTVAL: Invalid struct index"); 3725 if (IsArray && Index >= CurTy->getArrayNumElements()) 3726 return error("EXTRACTVAL: Invalid array index"); 3727 EXTRACTVALIdx.push_back((unsigned)Index); 3728 3729 if (IsStruct) 3730 CurTy = CurTy->getStructElementType(Index); 3731 else 3732 CurTy = CurTy->getArrayElementType(); 3733 } 3734 3735 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3736 InstructionList.push_back(I); 3737 break; 3738 } 3739 3740 case bitc::FUNC_CODE_INST_INSERTVAL: { 3741 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3742 unsigned OpNum = 0; 3743 Value *Agg; 3744 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3745 return error("Invalid record"); 3746 Value *Val; 3747 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3748 return error("Invalid record"); 3749 3750 unsigned RecSize = Record.size(); 3751 if (OpNum == RecSize) 3752 return error("INSERTVAL: Invalid instruction with 0 indices"); 3753 3754 SmallVector<unsigned, 4> INSERTVALIdx; 3755 Type *CurTy = Agg->getType(); 3756 for (; OpNum != RecSize; ++OpNum) { 3757 bool IsArray = CurTy->isArrayTy(); 3758 bool IsStruct = CurTy->isStructTy(); 3759 uint64_t Index = Record[OpNum]; 3760 3761 if (!IsStruct && !IsArray) 3762 return error("INSERTVAL: Invalid type"); 3763 if ((unsigned)Index != Index) 3764 return error("Invalid value"); 3765 if (IsStruct && Index >= CurTy->getStructNumElements()) 3766 return error("INSERTVAL: Invalid struct index"); 3767 if (IsArray && Index >= CurTy->getArrayNumElements()) 3768 return error("INSERTVAL: Invalid array index"); 3769 3770 INSERTVALIdx.push_back((unsigned)Index); 3771 if (IsStruct) 3772 CurTy = CurTy->getStructElementType(Index); 3773 else 3774 CurTy = CurTy->getArrayElementType(); 3775 } 3776 3777 if (CurTy != Val->getType()) 3778 return error("Inserted value type doesn't match aggregate type"); 3779 3780 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3781 InstructionList.push_back(I); 3782 break; 3783 } 3784 3785 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3786 // obsolete form of select 3787 // handles select i1 ... in old bitcode 3788 unsigned OpNum = 0; 3789 Value *TrueVal, *FalseVal, *Cond; 3790 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3791 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3792 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3793 return error("Invalid record"); 3794 3795 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3796 InstructionList.push_back(I); 3797 break; 3798 } 3799 3800 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3801 // new form of select 3802 // handles select i1 or select [N x i1] 3803 unsigned OpNum = 0; 3804 Value *TrueVal, *FalseVal, *Cond; 3805 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3806 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3807 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3808 return error("Invalid record"); 3809 3810 // select condition can be either i1 or [N x i1] 3811 if (VectorType* vector_type = 3812 dyn_cast<VectorType>(Cond->getType())) { 3813 // expect <n x i1> 3814 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3815 return error("Invalid type for value"); 3816 } else { 3817 // expect i1 3818 if (Cond->getType() != Type::getInt1Ty(Context)) 3819 return error("Invalid type for value"); 3820 } 3821 3822 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3823 InstructionList.push_back(I); 3824 break; 3825 } 3826 3827 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3828 unsigned OpNum = 0; 3829 Value *Vec, *Idx; 3830 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3831 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3832 return error("Invalid record"); 3833 if (!Vec->getType()->isVectorTy()) 3834 return error("Invalid type for value"); 3835 I = ExtractElementInst::Create(Vec, Idx); 3836 InstructionList.push_back(I); 3837 break; 3838 } 3839 3840 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3841 unsigned OpNum = 0; 3842 Value *Vec, *Elt, *Idx; 3843 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3844 return error("Invalid record"); 3845 if (!Vec->getType()->isVectorTy()) 3846 return error("Invalid type for value"); 3847 if (popValue(Record, OpNum, NextValueNo, 3848 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3849 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3850 return error("Invalid record"); 3851 I = InsertElementInst::Create(Vec, Elt, Idx); 3852 InstructionList.push_back(I); 3853 break; 3854 } 3855 3856 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3857 unsigned OpNum = 0; 3858 Value *Vec1, *Vec2, *Mask; 3859 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3860 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3861 return error("Invalid record"); 3862 3863 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3864 return error("Invalid record"); 3865 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3866 return error("Invalid type for value"); 3867 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3868 InstructionList.push_back(I); 3869 break; 3870 } 3871 3872 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3873 // Old form of ICmp/FCmp returning bool 3874 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3875 // both legal on vectors but had different behaviour. 3876 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3877 // FCmp/ICmp returning bool or vector of bool 3878 3879 unsigned OpNum = 0; 3880 Value *LHS, *RHS; 3881 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3882 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3883 return error("Invalid record"); 3884 3885 unsigned PredVal = Record[OpNum]; 3886 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3887 FastMathFlags FMF; 3888 if (IsFP && Record.size() > OpNum+1) 3889 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3890 3891 if (OpNum+1 != Record.size()) 3892 return error("Invalid record"); 3893 3894 if (LHS->getType()->isFPOrFPVectorTy()) 3895 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3896 else 3897 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3898 3899 if (FMF.any()) 3900 I->setFastMathFlags(FMF); 3901 InstructionList.push_back(I); 3902 break; 3903 } 3904 3905 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3906 { 3907 unsigned Size = Record.size(); 3908 if (Size == 0) { 3909 I = ReturnInst::Create(Context); 3910 InstructionList.push_back(I); 3911 break; 3912 } 3913 3914 unsigned OpNum = 0; 3915 Value *Op = nullptr; 3916 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3917 return error("Invalid record"); 3918 if (OpNum != Record.size()) 3919 return error("Invalid record"); 3920 3921 I = ReturnInst::Create(Context, Op); 3922 InstructionList.push_back(I); 3923 break; 3924 } 3925 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3926 if (Record.size() != 1 && Record.size() != 3) 3927 return error("Invalid record"); 3928 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3929 if (!TrueDest) 3930 return error("Invalid record"); 3931 3932 if (Record.size() == 1) { 3933 I = BranchInst::Create(TrueDest); 3934 InstructionList.push_back(I); 3935 } 3936 else { 3937 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3938 Value *Cond = getValue(Record, 2, NextValueNo, 3939 Type::getInt1Ty(Context)); 3940 if (!FalseDest || !Cond) 3941 return error("Invalid record"); 3942 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3943 InstructionList.push_back(I); 3944 } 3945 break; 3946 } 3947 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3948 if (Record.size() != 1 && Record.size() != 2) 3949 return error("Invalid record"); 3950 unsigned Idx = 0; 3951 Value *CleanupPad = 3952 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3953 if (!CleanupPad) 3954 return error("Invalid record"); 3955 BasicBlock *UnwindDest = nullptr; 3956 if (Record.size() == 2) { 3957 UnwindDest = getBasicBlock(Record[Idx++]); 3958 if (!UnwindDest) 3959 return error("Invalid record"); 3960 } 3961 3962 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3963 InstructionList.push_back(I); 3964 break; 3965 } 3966 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3967 if (Record.size() != 2) 3968 return error("Invalid record"); 3969 unsigned Idx = 0; 3970 Value *CatchPad = 3971 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3972 if (!CatchPad) 3973 return error("Invalid record"); 3974 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3975 if (!BB) 3976 return error("Invalid record"); 3977 3978 I = CatchReturnInst::Create(CatchPad, BB); 3979 InstructionList.push_back(I); 3980 break; 3981 } 3982 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3983 // We must have, at minimum, the outer scope and the number of arguments. 3984 if (Record.size() < 2) 3985 return error("Invalid record"); 3986 3987 unsigned Idx = 0; 3988 3989 Value *ParentPad = 3990 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3991 3992 unsigned NumHandlers = Record[Idx++]; 3993 3994 SmallVector<BasicBlock *, 2> Handlers; 3995 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3996 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3997 if (!BB) 3998 return error("Invalid record"); 3999 Handlers.push_back(BB); 4000 } 4001 4002 BasicBlock *UnwindDest = nullptr; 4003 if (Idx + 1 == Record.size()) { 4004 UnwindDest = getBasicBlock(Record[Idx++]); 4005 if (!UnwindDest) 4006 return error("Invalid record"); 4007 } 4008 4009 if (Record.size() != Idx) 4010 return error("Invalid record"); 4011 4012 auto *CatchSwitch = 4013 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4014 for (BasicBlock *Handler : Handlers) 4015 CatchSwitch->addHandler(Handler); 4016 I = CatchSwitch; 4017 InstructionList.push_back(I); 4018 break; 4019 } 4020 case bitc::FUNC_CODE_INST_CATCHPAD: 4021 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4022 // We must have, at minimum, the outer scope and the number of arguments. 4023 if (Record.size() < 2) 4024 return error("Invalid record"); 4025 4026 unsigned Idx = 0; 4027 4028 Value *ParentPad = 4029 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4030 4031 unsigned NumArgOperands = Record[Idx++]; 4032 4033 SmallVector<Value *, 2> Args; 4034 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4035 Value *Val; 4036 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4037 return error("Invalid record"); 4038 Args.push_back(Val); 4039 } 4040 4041 if (Record.size() != Idx) 4042 return error("Invalid record"); 4043 4044 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4045 I = CleanupPadInst::Create(ParentPad, Args); 4046 else 4047 I = CatchPadInst::Create(ParentPad, Args); 4048 InstructionList.push_back(I); 4049 break; 4050 } 4051 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4052 // Check magic 4053 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4054 // "New" SwitchInst format with case ranges. The changes to write this 4055 // format were reverted but we still recognize bitcode that uses it. 4056 // Hopefully someday we will have support for case ranges and can use 4057 // this format again. 4058 4059 Type *OpTy = getTypeByID(Record[1]); 4060 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4061 4062 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4063 BasicBlock *Default = getBasicBlock(Record[3]); 4064 if (!OpTy || !Cond || !Default) 4065 return error("Invalid record"); 4066 4067 unsigned NumCases = Record[4]; 4068 4069 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4070 InstructionList.push_back(SI); 4071 4072 unsigned CurIdx = 5; 4073 for (unsigned i = 0; i != NumCases; ++i) { 4074 SmallVector<ConstantInt*, 1> CaseVals; 4075 unsigned NumItems = Record[CurIdx++]; 4076 for (unsigned ci = 0; ci != NumItems; ++ci) { 4077 bool isSingleNumber = Record[CurIdx++]; 4078 4079 APInt Low; 4080 unsigned ActiveWords = 1; 4081 if (ValueBitWidth > 64) 4082 ActiveWords = Record[CurIdx++]; 4083 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4084 ValueBitWidth); 4085 CurIdx += ActiveWords; 4086 4087 if (!isSingleNumber) { 4088 ActiveWords = 1; 4089 if (ValueBitWidth > 64) 4090 ActiveWords = Record[CurIdx++]; 4091 APInt High = readWideAPInt( 4092 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4093 CurIdx += ActiveWords; 4094 4095 // FIXME: It is not clear whether values in the range should be 4096 // compared as signed or unsigned values. The partially 4097 // implemented changes that used this format in the past used 4098 // unsigned comparisons. 4099 for ( ; Low.ule(High); ++Low) 4100 CaseVals.push_back(ConstantInt::get(Context, Low)); 4101 } else 4102 CaseVals.push_back(ConstantInt::get(Context, Low)); 4103 } 4104 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4105 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4106 cve = CaseVals.end(); cvi != cve; ++cvi) 4107 SI->addCase(*cvi, DestBB); 4108 } 4109 I = SI; 4110 break; 4111 } 4112 4113 // Old SwitchInst format without case ranges. 4114 4115 if (Record.size() < 3 || (Record.size() & 1) == 0) 4116 return error("Invalid record"); 4117 Type *OpTy = getTypeByID(Record[0]); 4118 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4119 BasicBlock *Default = getBasicBlock(Record[2]); 4120 if (!OpTy || !Cond || !Default) 4121 return error("Invalid record"); 4122 unsigned NumCases = (Record.size()-3)/2; 4123 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4124 InstructionList.push_back(SI); 4125 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4126 ConstantInt *CaseVal = 4127 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4128 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4129 if (!CaseVal || !DestBB) { 4130 delete SI; 4131 return error("Invalid record"); 4132 } 4133 SI->addCase(CaseVal, DestBB); 4134 } 4135 I = SI; 4136 break; 4137 } 4138 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4139 if (Record.size() < 2) 4140 return error("Invalid record"); 4141 Type *OpTy = getTypeByID(Record[0]); 4142 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4143 if (!OpTy || !Address) 4144 return error("Invalid record"); 4145 unsigned NumDests = Record.size()-2; 4146 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4147 InstructionList.push_back(IBI); 4148 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4149 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4150 IBI->addDestination(DestBB); 4151 } else { 4152 delete IBI; 4153 return error("Invalid record"); 4154 } 4155 } 4156 I = IBI; 4157 break; 4158 } 4159 4160 case bitc::FUNC_CODE_INST_INVOKE: { 4161 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4162 if (Record.size() < 4) 4163 return error("Invalid record"); 4164 unsigned OpNum = 0; 4165 AttributeList PAL = getAttributes(Record[OpNum++]); 4166 unsigned CCInfo = Record[OpNum++]; 4167 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4168 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4169 4170 FunctionType *FTy = nullptr; 4171 if (CCInfo >> 13 & 1 && 4172 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4173 return error("Explicit invoke type is not a function type"); 4174 4175 Value *Callee; 4176 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4177 return error("Invalid record"); 4178 4179 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4180 if (!CalleeTy) 4181 return error("Callee is not a pointer"); 4182 if (!FTy) { 4183 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4184 if (!FTy) 4185 return error("Callee is not of pointer to function type"); 4186 } else if (CalleeTy->getElementType() != FTy) 4187 return error("Explicit invoke type does not match pointee type of " 4188 "callee operand"); 4189 if (Record.size() < FTy->getNumParams() + OpNum) 4190 return error("Insufficient operands to call"); 4191 4192 SmallVector<Value*, 16> Ops; 4193 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4194 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4195 FTy->getParamType(i))); 4196 if (!Ops.back()) 4197 return error("Invalid record"); 4198 } 4199 4200 if (!FTy->isVarArg()) { 4201 if (Record.size() != OpNum) 4202 return error("Invalid record"); 4203 } else { 4204 // Read type/value pairs for varargs params. 4205 while (OpNum != Record.size()) { 4206 Value *Op; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4208 return error("Invalid record"); 4209 Ops.push_back(Op); 4210 } 4211 } 4212 4213 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4214 OperandBundles.clear(); 4215 InstructionList.push_back(I); 4216 cast<InvokeInst>(I)->setCallingConv( 4217 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4218 cast<InvokeInst>(I)->setAttributes(PAL); 4219 break; 4220 } 4221 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4222 unsigned Idx = 0; 4223 Value *Val = nullptr; 4224 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4225 return error("Invalid record"); 4226 I = ResumeInst::Create(Val); 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4231 I = new UnreachableInst(Context); 4232 InstructionList.push_back(I); 4233 break; 4234 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4235 if (Record.size() < 1 || ((Record.size()-1)&1)) 4236 return error("Invalid record"); 4237 Type *Ty = getTypeByID(Record[0]); 4238 if (!Ty) 4239 return error("Invalid record"); 4240 4241 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4242 InstructionList.push_back(PN); 4243 4244 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4245 Value *V; 4246 // With the new function encoding, it is possible that operands have 4247 // negative IDs (for forward references). Use a signed VBR 4248 // representation to keep the encoding small. 4249 if (UseRelativeIDs) 4250 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4251 else 4252 V = getValue(Record, 1+i, NextValueNo, Ty); 4253 BasicBlock *BB = getBasicBlock(Record[2+i]); 4254 if (!V || !BB) 4255 return error("Invalid record"); 4256 PN->addIncoming(V, BB); 4257 } 4258 I = PN; 4259 break; 4260 } 4261 4262 case bitc::FUNC_CODE_INST_LANDINGPAD: 4263 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4264 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4265 unsigned Idx = 0; 4266 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4267 if (Record.size() < 3) 4268 return error("Invalid record"); 4269 } else { 4270 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4271 if (Record.size() < 4) 4272 return error("Invalid record"); 4273 } 4274 Type *Ty = getTypeByID(Record[Idx++]); 4275 if (!Ty) 4276 return error("Invalid record"); 4277 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4278 Value *PersFn = nullptr; 4279 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4280 return error("Invalid record"); 4281 4282 if (!F->hasPersonalityFn()) 4283 F->setPersonalityFn(cast<Constant>(PersFn)); 4284 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4285 return error("Personality function mismatch"); 4286 } 4287 4288 bool IsCleanup = !!Record[Idx++]; 4289 unsigned NumClauses = Record[Idx++]; 4290 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4291 LP->setCleanup(IsCleanup); 4292 for (unsigned J = 0; J != NumClauses; ++J) { 4293 LandingPadInst::ClauseType CT = 4294 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4295 Value *Val; 4296 4297 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4298 delete LP; 4299 return error("Invalid record"); 4300 } 4301 4302 assert((CT != LandingPadInst::Catch || 4303 !isa<ArrayType>(Val->getType())) && 4304 "Catch clause has a invalid type!"); 4305 assert((CT != LandingPadInst::Filter || 4306 isa<ArrayType>(Val->getType())) && 4307 "Filter clause has invalid type!"); 4308 LP->addClause(cast<Constant>(Val)); 4309 } 4310 4311 I = LP; 4312 InstructionList.push_back(I); 4313 break; 4314 } 4315 4316 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4317 if (Record.size() != 4) 4318 return error("Invalid record"); 4319 uint64_t AlignRecord = Record[3]; 4320 const uint64_t InAllocaMask = uint64_t(1) << 5; 4321 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4322 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4323 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4324 SwiftErrorMask; 4325 bool InAlloca = AlignRecord & InAllocaMask; 4326 bool SwiftError = AlignRecord & SwiftErrorMask; 4327 Type *Ty = getTypeByID(Record[0]); 4328 if ((AlignRecord & ExplicitTypeMask) == 0) { 4329 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4330 if (!PTy) 4331 return error("Old-style alloca with a non-pointer type"); 4332 Ty = PTy->getElementType(); 4333 } 4334 Type *OpTy = getTypeByID(Record[1]); 4335 Value *Size = getFnValueByID(Record[2], OpTy); 4336 unsigned Align; 4337 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4338 return Err; 4339 } 4340 if (!Ty || !Size) 4341 return error("Invalid record"); 4342 4343 // FIXME: Make this an optional field. 4344 const DataLayout &DL = TheModule->getDataLayout(); 4345 unsigned AS = DL.getAllocaAddrSpace(); 4346 4347 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4348 AI->setUsedWithInAlloca(InAlloca); 4349 AI->setSwiftError(SwiftError); 4350 I = AI; 4351 InstructionList.push_back(I); 4352 break; 4353 } 4354 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4355 unsigned OpNum = 0; 4356 Value *Op; 4357 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4358 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4359 return error("Invalid record"); 4360 4361 Type *Ty = nullptr; 4362 if (OpNum + 3 == Record.size()) 4363 Ty = getTypeByID(Record[OpNum++]); 4364 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4365 return Err; 4366 if (!Ty) 4367 Ty = cast<PointerType>(Op->getType())->getElementType(); 4368 4369 unsigned Align; 4370 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4371 return Err; 4372 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4373 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4378 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4379 unsigned OpNum = 0; 4380 Value *Op; 4381 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4382 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4383 return error("Invalid record"); 4384 4385 Type *Ty = nullptr; 4386 if (OpNum + 5 == Record.size()) 4387 Ty = getTypeByID(Record[OpNum++]); 4388 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4389 return Err; 4390 if (!Ty) 4391 Ty = cast<PointerType>(Op->getType())->getElementType(); 4392 4393 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4394 if (Ordering == AtomicOrdering::NotAtomic || 4395 Ordering == AtomicOrdering::Release || 4396 Ordering == AtomicOrdering::AcquireRelease) 4397 return error("Invalid record"); 4398 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4399 return error("Invalid record"); 4400 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4401 4402 unsigned Align; 4403 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4404 return Err; 4405 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4406 4407 InstructionList.push_back(I); 4408 break; 4409 } 4410 case bitc::FUNC_CODE_INST_STORE: 4411 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4412 unsigned OpNum = 0; 4413 Value *Val, *Ptr; 4414 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4415 (BitCode == bitc::FUNC_CODE_INST_STORE 4416 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4417 : popValue(Record, OpNum, NextValueNo, 4418 cast<PointerType>(Ptr->getType())->getElementType(), 4419 Val)) || 4420 OpNum + 2 != Record.size()) 4421 return error("Invalid record"); 4422 4423 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4424 return Err; 4425 unsigned Align; 4426 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4427 return Err; 4428 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4429 InstructionList.push_back(I); 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_STOREATOMIC: 4433 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4434 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4435 unsigned OpNum = 0; 4436 Value *Val, *Ptr; 4437 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4438 !isa<PointerType>(Ptr->getType()) || 4439 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4440 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4441 : popValue(Record, OpNum, NextValueNo, 4442 cast<PointerType>(Ptr->getType())->getElementType(), 4443 Val)) || 4444 OpNum + 4 != Record.size()) 4445 return error("Invalid record"); 4446 4447 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4448 return Err; 4449 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4450 if (Ordering == AtomicOrdering::NotAtomic || 4451 Ordering == AtomicOrdering::Acquire || 4452 Ordering == AtomicOrdering::AcquireRelease) 4453 return error("Invalid record"); 4454 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4455 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4456 return error("Invalid record"); 4457 4458 unsigned Align; 4459 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4460 return Err; 4461 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4466 case bitc::FUNC_CODE_INST_CMPXCHG: { 4467 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4468 // failureordering?, isweak?] 4469 unsigned OpNum = 0; 4470 Value *Ptr, *Cmp, *New; 4471 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4472 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4473 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4474 : popValue(Record, OpNum, NextValueNo, 4475 cast<PointerType>(Ptr->getType())->getElementType(), 4476 Cmp)) || 4477 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4478 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4479 return error("Invalid record"); 4480 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4481 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4482 SuccessOrdering == AtomicOrdering::Unordered) 4483 return error("Invalid record"); 4484 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4485 4486 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4487 return Err; 4488 AtomicOrdering FailureOrdering; 4489 if (Record.size() < 7) 4490 FailureOrdering = 4491 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4492 else 4493 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4494 4495 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4496 SSID); 4497 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4498 4499 if (Record.size() < 8) { 4500 // Before weak cmpxchgs existed, the instruction simply returned the 4501 // value loaded from memory, so bitcode files from that era will be 4502 // expecting the first component of a modern cmpxchg. 4503 CurBB->getInstList().push_back(I); 4504 I = ExtractValueInst::Create(I, 0); 4505 } else { 4506 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4507 } 4508 4509 InstructionList.push_back(I); 4510 break; 4511 } 4512 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4513 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4514 unsigned OpNum = 0; 4515 Value *Ptr, *Val; 4516 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4517 !isa<PointerType>(Ptr->getType()) || 4518 popValue(Record, OpNum, NextValueNo, 4519 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4520 OpNum+4 != Record.size()) 4521 return error("Invalid record"); 4522 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4523 if (Operation < AtomicRMWInst::FIRST_BINOP || 4524 Operation > AtomicRMWInst::LAST_BINOP) 4525 return error("Invalid record"); 4526 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4527 if (Ordering == AtomicOrdering::NotAtomic || 4528 Ordering == AtomicOrdering::Unordered) 4529 return error("Invalid record"); 4530 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4531 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4532 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4533 InstructionList.push_back(I); 4534 break; 4535 } 4536 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4537 if (2 != Record.size()) 4538 return error("Invalid record"); 4539 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4540 if (Ordering == AtomicOrdering::NotAtomic || 4541 Ordering == AtomicOrdering::Unordered || 4542 Ordering == AtomicOrdering::Monotonic) 4543 return error("Invalid record"); 4544 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4545 I = new FenceInst(Context, Ordering, SSID); 4546 InstructionList.push_back(I); 4547 break; 4548 } 4549 case bitc::FUNC_CODE_INST_CALL: { 4550 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4551 if (Record.size() < 3) 4552 return error("Invalid record"); 4553 4554 unsigned OpNum = 0; 4555 AttributeList PAL = getAttributes(Record[OpNum++]); 4556 unsigned CCInfo = Record[OpNum++]; 4557 4558 FastMathFlags FMF; 4559 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4560 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4561 if (!FMF.any()) 4562 return error("Fast math flags indicator set for call with no FMF"); 4563 } 4564 4565 FunctionType *FTy = nullptr; 4566 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4567 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4568 return error("Explicit call type is not a function type"); 4569 4570 Value *Callee; 4571 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4572 return error("Invalid record"); 4573 4574 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4575 if (!OpTy) 4576 return error("Callee is not a pointer type"); 4577 if (!FTy) { 4578 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4579 if (!FTy) 4580 return error("Callee is not of pointer to function type"); 4581 } else if (OpTy->getElementType() != FTy) 4582 return error("Explicit call type does not match pointee type of " 4583 "callee operand"); 4584 if (Record.size() < FTy->getNumParams() + OpNum) 4585 return error("Insufficient operands to call"); 4586 4587 SmallVector<Value*, 16> Args; 4588 // Read the fixed params. 4589 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4590 if (FTy->getParamType(i)->isLabelTy()) 4591 Args.push_back(getBasicBlock(Record[OpNum])); 4592 else 4593 Args.push_back(getValue(Record, OpNum, NextValueNo, 4594 FTy->getParamType(i))); 4595 if (!Args.back()) 4596 return error("Invalid record"); 4597 } 4598 4599 // Read type/value pairs for varargs params. 4600 if (!FTy->isVarArg()) { 4601 if (OpNum != Record.size()) 4602 return error("Invalid record"); 4603 } else { 4604 while (OpNum != Record.size()) { 4605 Value *Op; 4606 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4607 return error("Invalid record"); 4608 Args.push_back(Op); 4609 } 4610 } 4611 4612 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4613 OperandBundles.clear(); 4614 InstructionList.push_back(I); 4615 cast<CallInst>(I)->setCallingConv( 4616 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4617 CallInst::TailCallKind TCK = CallInst::TCK_None; 4618 if (CCInfo & 1 << bitc::CALL_TAIL) 4619 TCK = CallInst::TCK_Tail; 4620 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4621 TCK = CallInst::TCK_MustTail; 4622 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4623 TCK = CallInst::TCK_NoTail; 4624 cast<CallInst>(I)->setTailCallKind(TCK); 4625 cast<CallInst>(I)->setAttributes(PAL); 4626 if (FMF.any()) { 4627 if (!isa<FPMathOperator>(I)) 4628 return error("Fast-math-flags specified for call without " 4629 "floating-point scalar or vector return type"); 4630 I->setFastMathFlags(FMF); 4631 } 4632 break; 4633 } 4634 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4635 if (Record.size() < 3) 4636 return error("Invalid record"); 4637 Type *OpTy = getTypeByID(Record[0]); 4638 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4639 Type *ResTy = getTypeByID(Record[2]); 4640 if (!OpTy || !Op || !ResTy) 4641 return error("Invalid record"); 4642 I = new VAArgInst(Op, ResTy); 4643 InstructionList.push_back(I); 4644 break; 4645 } 4646 4647 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4648 // A call or an invoke can be optionally prefixed with some variable 4649 // number of operand bundle blocks. These blocks are read into 4650 // OperandBundles and consumed at the next call or invoke instruction. 4651 4652 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4653 return error("Invalid record"); 4654 4655 std::vector<Value *> Inputs; 4656 4657 unsigned OpNum = 1; 4658 while (OpNum != Record.size()) { 4659 Value *Op; 4660 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4661 return error("Invalid record"); 4662 Inputs.push_back(Op); 4663 } 4664 4665 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4666 continue; 4667 } 4668 } 4669 4670 // Add instruction to end of current BB. If there is no current BB, reject 4671 // this file. 4672 if (!CurBB) { 4673 I->deleteValue(); 4674 return error("Invalid instruction with no BB"); 4675 } 4676 if (!OperandBundles.empty()) { 4677 I->deleteValue(); 4678 return error("Operand bundles found with no consumer"); 4679 } 4680 CurBB->getInstList().push_back(I); 4681 4682 // If this was a terminator instruction, move to the next block. 4683 if (I->isTerminator()) { 4684 ++CurBBNo; 4685 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4686 } 4687 4688 // Non-void values get registered in the value table for future use. 4689 if (I && !I->getType()->isVoidTy()) 4690 ValueList.assignValue(I, NextValueNo++); 4691 } 4692 4693 OutOfRecordLoop: 4694 4695 if (!OperandBundles.empty()) 4696 return error("Operand bundles found with no consumer"); 4697 4698 // Check the function list for unresolved values. 4699 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4700 if (!A->getParent()) { 4701 // We found at least one unresolved value. Nuke them all to avoid leaks. 4702 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4703 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4704 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4705 delete A; 4706 } 4707 } 4708 return error("Never resolved value found in function"); 4709 } 4710 } 4711 4712 // Unexpected unresolved metadata about to be dropped. 4713 if (MDLoader->hasFwdRefs()) 4714 return error("Invalid function metadata: outgoing forward refs"); 4715 4716 // Trim the value list down to the size it was before we parsed this function. 4717 ValueList.shrinkTo(ModuleValueListSize); 4718 MDLoader->shrinkTo(ModuleMDLoaderSize); 4719 std::vector<BasicBlock*>().swap(FunctionBBs); 4720 return Error::success(); 4721 } 4722 4723 /// Find the function body in the bitcode stream 4724 Error BitcodeReader::findFunctionInStream( 4725 Function *F, 4726 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4727 while (DeferredFunctionInfoIterator->second == 0) { 4728 // This is the fallback handling for the old format bitcode that 4729 // didn't contain the function index in the VST, or when we have 4730 // an anonymous function which would not have a VST entry. 4731 // Assert that we have one of those two cases. 4732 assert(VSTOffset == 0 || !F->hasName()); 4733 // Parse the next body in the stream and set its position in the 4734 // DeferredFunctionInfo map. 4735 if (Error Err = rememberAndSkipFunctionBodies()) 4736 return Err; 4737 } 4738 return Error::success(); 4739 } 4740 4741 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4742 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4743 return SyncScope::ID(Val); 4744 if (Val >= SSIDs.size()) 4745 return SyncScope::System; // Map unknown synchronization scopes to system. 4746 return SSIDs[Val]; 4747 } 4748 4749 //===----------------------------------------------------------------------===// 4750 // GVMaterializer implementation 4751 //===----------------------------------------------------------------------===// 4752 4753 Error BitcodeReader::materialize(GlobalValue *GV) { 4754 Function *F = dyn_cast<Function>(GV); 4755 // If it's not a function or is already material, ignore the request. 4756 if (!F || !F->isMaterializable()) 4757 return Error::success(); 4758 4759 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4760 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4761 // If its position is recorded as 0, its body is somewhere in the stream 4762 // but we haven't seen it yet. 4763 if (DFII->second == 0) 4764 if (Error Err = findFunctionInStream(F, DFII)) 4765 return Err; 4766 4767 // Materialize metadata before parsing any function bodies. 4768 if (Error Err = materializeMetadata()) 4769 return Err; 4770 4771 // Move the bit stream to the saved position of the deferred function body. 4772 Stream.JumpToBit(DFII->second); 4773 4774 if (Error Err = parseFunctionBody(F)) 4775 return Err; 4776 F->setIsMaterializable(false); 4777 4778 if (StripDebugInfo) 4779 stripDebugInfo(*F); 4780 4781 // Upgrade any old intrinsic calls in the function. 4782 for (auto &I : UpgradedIntrinsics) { 4783 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4784 UI != UE;) { 4785 User *U = *UI; 4786 ++UI; 4787 if (CallInst *CI = dyn_cast<CallInst>(U)) 4788 UpgradeIntrinsicCall(CI, I.second); 4789 } 4790 } 4791 4792 // Update calls to the remangled intrinsics 4793 for (auto &I : RemangledIntrinsics) 4794 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4795 UI != UE;) 4796 // Don't expect any other users than call sites 4797 CallSite(*UI++).setCalledFunction(I.second); 4798 4799 // Finish fn->subprogram upgrade for materialized functions. 4800 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4801 F->setSubprogram(SP); 4802 4803 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4804 if (!MDLoader->isStrippingTBAA()) { 4805 for (auto &I : instructions(F)) { 4806 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4807 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4808 continue; 4809 MDLoader->setStripTBAA(true); 4810 stripTBAA(F->getParent()); 4811 } 4812 } 4813 4814 // Bring in any functions that this function forward-referenced via 4815 // blockaddresses. 4816 return materializeForwardReferencedFunctions(); 4817 } 4818 4819 Error BitcodeReader::materializeModule() { 4820 if (Error Err = materializeMetadata()) 4821 return Err; 4822 4823 // Promise to materialize all forward references. 4824 WillMaterializeAllForwardRefs = true; 4825 4826 // Iterate over the module, deserializing any functions that are still on 4827 // disk. 4828 for (Function &F : *TheModule) { 4829 if (Error Err = materialize(&F)) 4830 return Err; 4831 } 4832 // At this point, if there are any function bodies, parse the rest of 4833 // the bits in the module past the last function block we have recorded 4834 // through either lazy scanning or the VST. 4835 if (LastFunctionBlockBit || NextUnreadBit) 4836 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4837 ? LastFunctionBlockBit 4838 : NextUnreadBit)) 4839 return Err; 4840 4841 // Check that all block address forward references got resolved (as we 4842 // promised above). 4843 if (!BasicBlockFwdRefs.empty()) 4844 return error("Never resolved function from blockaddress"); 4845 4846 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4847 // delete the old functions to clean up. We can't do this unless the entire 4848 // module is materialized because there could always be another function body 4849 // with calls to the old function. 4850 for (auto &I : UpgradedIntrinsics) { 4851 for (auto *U : I.first->users()) { 4852 if (CallInst *CI = dyn_cast<CallInst>(U)) 4853 UpgradeIntrinsicCall(CI, I.second); 4854 } 4855 if (!I.first->use_empty()) 4856 I.first->replaceAllUsesWith(I.second); 4857 I.first->eraseFromParent(); 4858 } 4859 UpgradedIntrinsics.clear(); 4860 // Do the same for remangled intrinsics 4861 for (auto &I : RemangledIntrinsics) { 4862 I.first->replaceAllUsesWith(I.second); 4863 I.first->eraseFromParent(); 4864 } 4865 RemangledIntrinsics.clear(); 4866 4867 UpgradeDebugInfo(*TheModule); 4868 4869 UpgradeModuleFlags(*TheModule); 4870 4871 UpgradeRetainReleaseMarker(*TheModule); 4872 4873 return Error::success(); 4874 } 4875 4876 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4877 return IdentifiedStructTypes; 4878 } 4879 4880 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4881 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4882 StringRef ModulePath, unsigned ModuleId) 4883 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4884 ModulePath(ModulePath), ModuleId(ModuleId) {} 4885 4886 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4887 TheIndex.addModule(ModulePath, ModuleId); 4888 } 4889 4890 ModuleSummaryIndex::ModuleInfo * 4891 ModuleSummaryIndexBitcodeReader::getThisModule() { 4892 return TheIndex.getModule(ModulePath); 4893 } 4894 4895 std::pair<ValueInfo, GlobalValue::GUID> 4896 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4897 auto VGI = ValueIdToValueInfoMap[ValueId]; 4898 assert(VGI.first); 4899 return VGI; 4900 } 4901 4902 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4903 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4904 StringRef SourceFileName) { 4905 std::string GlobalId = 4906 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4907 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4908 auto OriginalNameID = ValueGUID; 4909 if (GlobalValue::isLocalLinkage(Linkage)) 4910 OriginalNameID = GlobalValue::getGUID(ValueName); 4911 if (PrintSummaryGUIDs) 4912 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4913 << ValueName << "\n"; 4914 4915 // UseStrtab is false for legacy summary formats and value names are 4916 // created on stack. In that case we save the name in a string saver in 4917 // the index so that the value name can be recorded. 4918 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4919 TheIndex.getOrInsertValueInfo( 4920 ValueGUID, 4921 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 4922 OriginalNameID); 4923 } 4924 4925 // Specialized value symbol table parser used when reading module index 4926 // blocks where we don't actually create global values. The parsed information 4927 // is saved in the bitcode reader for use when later parsing summaries. 4928 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4929 uint64_t Offset, 4930 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4931 // With a strtab the VST is not required to parse the summary. 4932 if (UseStrtab) 4933 return Error::success(); 4934 4935 assert(Offset > 0 && "Expected non-zero VST offset"); 4936 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4937 4938 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4939 return error("Invalid record"); 4940 4941 SmallVector<uint64_t, 64> Record; 4942 4943 // Read all the records for this value table. 4944 SmallString<128> ValueName; 4945 4946 while (true) { 4947 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4948 4949 switch (Entry.Kind) { 4950 case BitstreamEntry::SubBlock: // Handled for us already. 4951 case BitstreamEntry::Error: 4952 return error("Malformed block"); 4953 case BitstreamEntry::EndBlock: 4954 // Done parsing VST, jump back to wherever we came from. 4955 Stream.JumpToBit(CurrentBit); 4956 return Error::success(); 4957 case BitstreamEntry::Record: 4958 // The interesting case. 4959 break; 4960 } 4961 4962 // Read a record. 4963 Record.clear(); 4964 switch (Stream.readRecord(Entry.ID, Record)) { 4965 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4966 break; 4967 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4968 if (convertToString(Record, 1, ValueName)) 4969 return error("Invalid record"); 4970 unsigned ValueID = Record[0]; 4971 assert(!SourceFileName.empty()); 4972 auto VLI = ValueIdToLinkageMap.find(ValueID); 4973 assert(VLI != ValueIdToLinkageMap.end() && 4974 "No linkage found for VST entry?"); 4975 auto Linkage = VLI->second; 4976 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4977 ValueName.clear(); 4978 break; 4979 } 4980 case bitc::VST_CODE_FNENTRY: { 4981 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4982 if (convertToString(Record, 2, ValueName)) 4983 return error("Invalid record"); 4984 unsigned ValueID = Record[0]; 4985 assert(!SourceFileName.empty()); 4986 auto VLI = ValueIdToLinkageMap.find(ValueID); 4987 assert(VLI != ValueIdToLinkageMap.end() && 4988 "No linkage found for VST entry?"); 4989 auto Linkage = VLI->second; 4990 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4991 ValueName.clear(); 4992 break; 4993 } 4994 case bitc::VST_CODE_COMBINED_ENTRY: { 4995 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4996 unsigned ValueID = Record[0]; 4997 GlobalValue::GUID RefGUID = Record[1]; 4998 // The "original name", which is the second value of the pair will be 4999 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5000 ValueIdToValueInfoMap[ValueID] = 5001 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5002 break; 5003 } 5004 } 5005 } 5006 } 5007 5008 // Parse just the blocks needed for building the index out of the module. 5009 // At the end of this routine the module Index is populated with a map 5010 // from global value id to GlobalValueSummary objects. 5011 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5012 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5013 return error("Invalid record"); 5014 5015 SmallVector<uint64_t, 64> Record; 5016 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5017 unsigned ValueId = 0; 5018 5019 // Read the index for this module. 5020 while (true) { 5021 BitstreamEntry Entry = Stream.advance(); 5022 5023 switch (Entry.Kind) { 5024 case BitstreamEntry::Error: 5025 return error("Malformed block"); 5026 case BitstreamEntry::EndBlock: 5027 return Error::success(); 5028 5029 case BitstreamEntry::SubBlock: 5030 switch (Entry.ID) { 5031 default: // Skip unknown content. 5032 if (Stream.SkipBlock()) 5033 return error("Invalid record"); 5034 break; 5035 case bitc::BLOCKINFO_BLOCK_ID: 5036 // Need to parse these to get abbrev ids (e.g. for VST) 5037 if (readBlockInfo()) 5038 return error("Malformed block"); 5039 break; 5040 case bitc::VALUE_SYMTAB_BLOCK_ID: 5041 // Should have been parsed earlier via VSTOffset, unless there 5042 // is no summary section. 5043 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5044 !SeenGlobalValSummary) && 5045 "Expected early VST parse via VSTOffset record"); 5046 if (Stream.SkipBlock()) 5047 return error("Invalid record"); 5048 break; 5049 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5050 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5051 // Add the module if it is a per-module index (has a source file name). 5052 if (!SourceFileName.empty()) 5053 addThisModule(); 5054 assert(!SeenValueSymbolTable && 5055 "Already read VST when parsing summary block?"); 5056 // We might not have a VST if there were no values in the 5057 // summary. An empty summary block generated when we are 5058 // performing ThinLTO compiles so we don't later invoke 5059 // the regular LTO process on them. 5060 if (VSTOffset > 0) { 5061 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5062 return Err; 5063 SeenValueSymbolTable = true; 5064 } 5065 SeenGlobalValSummary = true; 5066 if (Error Err = parseEntireSummary(Entry.ID)) 5067 return Err; 5068 break; 5069 case bitc::MODULE_STRTAB_BLOCK_ID: 5070 if (Error Err = parseModuleStringTable()) 5071 return Err; 5072 break; 5073 } 5074 continue; 5075 5076 case BitstreamEntry::Record: { 5077 Record.clear(); 5078 auto BitCode = Stream.readRecord(Entry.ID, Record); 5079 switch (BitCode) { 5080 default: 5081 break; // Default behavior, ignore unknown content. 5082 case bitc::MODULE_CODE_VERSION: { 5083 if (Error Err = parseVersionRecord(Record).takeError()) 5084 return Err; 5085 break; 5086 } 5087 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5088 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5089 SmallString<128> ValueName; 5090 if (convertToString(Record, 0, ValueName)) 5091 return error("Invalid record"); 5092 SourceFileName = ValueName.c_str(); 5093 break; 5094 } 5095 /// MODULE_CODE_HASH: [5*i32] 5096 case bitc::MODULE_CODE_HASH: { 5097 if (Record.size() != 5) 5098 return error("Invalid hash length " + Twine(Record.size()).str()); 5099 auto &Hash = getThisModule()->second.second; 5100 int Pos = 0; 5101 for (auto &Val : Record) { 5102 assert(!(Val >> 32) && "Unexpected high bits set"); 5103 Hash[Pos++] = Val; 5104 } 5105 break; 5106 } 5107 /// MODULE_CODE_VSTOFFSET: [offset] 5108 case bitc::MODULE_CODE_VSTOFFSET: 5109 if (Record.size() < 1) 5110 return error("Invalid record"); 5111 // Note that we subtract 1 here because the offset is relative to one 5112 // word before the start of the identification or module block, which 5113 // was historically always the start of the regular bitcode header. 5114 VSTOffset = Record[0] - 1; 5115 break; 5116 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5117 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5118 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5119 // v2: [strtab offset, strtab size, v1] 5120 case bitc::MODULE_CODE_GLOBALVAR: 5121 case bitc::MODULE_CODE_FUNCTION: 5122 case bitc::MODULE_CODE_ALIAS: { 5123 StringRef Name; 5124 ArrayRef<uint64_t> GVRecord; 5125 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5126 if (GVRecord.size() <= 3) 5127 return error("Invalid record"); 5128 uint64_t RawLinkage = GVRecord[3]; 5129 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5130 if (!UseStrtab) { 5131 ValueIdToLinkageMap[ValueId++] = Linkage; 5132 break; 5133 } 5134 5135 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5136 break; 5137 } 5138 } 5139 } 5140 continue; 5141 } 5142 } 5143 } 5144 5145 std::vector<ValueInfo> 5146 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5147 std::vector<ValueInfo> Ret; 5148 Ret.reserve(Record.size()); 5149 for (uint64_t RefValueId : Record) 5150 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5151 return Ret; 5152 } 5153 5154 std::vector<FunctionSummary::EdgeTy> 5155 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5156 bool IsOldProfileFormat, 5157 bool HasProfile, bool HasRelBF) { 5158 std::vector<FunctionSummary::EdgeTy> Ret; 5159 Ret.reserve(Record.size()); 5160 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5161 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5162 uint64_t RelBF = 0; 5163 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5164 if (IsOldProfileFormat) { 5165 I += 1; // Skip old callsitecount field 5166 if (HasProfile) 5167 I += 1; // Skip old profilecount field 5168 } else if (HasProfile) 5169 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5170 else if (HasRelBF) 5171 RelBF = Record[++I]; 5172 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5173 } 5174 return Ret; 5175 } 5176 5177 static void 5178 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5179 WholeProgramDevirtResolution &Wpd) { 5180 uint64_t ArgNum = Record[Slot++]; 5181 WholeProgramDevirtResolution::ByArg &B = 5182 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5183 Slot += ArgNum; 5184 5185 B.TheKind = 5186 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5187 B.Info = Record[Slot++]; 5188 B.Byte = Record[Slot++]; 5189 B.Bit = Record[Slot++]; 5190 } 5191 5192 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5193 StringRef Strtab, size_t &Slot, 5194 TypeIdSummary &TypeId) { 5195 uint64_t Id = Record[Slot++]; 5196 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5197 5198 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5199 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5200 static_cast<size_t>(Record[Slot + 1])}; 5201 Slot += 2; 5202 5203 uint64_t ResByArgNum = Record[Slot++]; 5204 for (uint64_t I = 0; I != ResByArgNum; ++I) 5205 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5206 } 5207 5208 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5209 StringRef Strtab, 5210 ModuleSummaryIndex &TheIndex) { 5211 size_t Slot = 0; 5212 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5213 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5214 Slot += 2; 5215 5216 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5217 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5218 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5219 TypeId.TTRes.SizeM1 = Record[Slot++]; 5220 TypeId.TTRes.BitMask = Record[Slot++]; 5221 TypeId.TTRes.InlineBits = Record[Slot++]; 5222 5223 while (Slot < Record.size()) 5224 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5225 } 5226 5227 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5228 // Read-only refs are in the end of the refs list. 5229 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5230 Refs[RefNo].setReadOnly(); 5231 } 5232 5233 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5234 // objects in the index. 5235 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5236 if (Stream.EnterSubBlock(ID)) 5237 return error("Invalid record"); 5238 SmallVector<uint64_t, 64> Record; 5239 5240 // Parse version 5241 { 5242 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5243 if (Entry.Kind != BitstreamEntry::Record) 5244 return error("Invalid Summary Block: record for version expected"); 5245 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5246 return error("Invalid Summary Block: version expected"); 5247 } 5248 const uint64_t Version = Record[0]; 5249 const bool IsOldProfileFormat = Version == 1; 5250 if (Version < 1 || Version > 6) 5251 return error("Invalid summary version " + Twine(Version) + 5252 ". Version should be in the range [1-6]."); 5253 Record.clear(); 5254 5255 // Keep around the last seen summary to be used when we see an optional 5256 // "OriginalName" attachement. 5257 GlobalValueSummary *LastSeenSummary = nullptr; 5258 GlobalValue::GUID LastSeenGUID = 0; 5259 5260 // We can expect to see any number of type ID information records before 5261 // each function summary records; these variables store the information 5262 // collected so far so that it can be used to create the summary object. 5263 std::vector<GlobalValue::GUID> PendingTypeTests; 5264 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5265 PendingTypeCheckedLoadVCalls; 5266 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5267 PendingTypeCheckedLoadConstVCalls; 5268 5269 while (true) { 5270 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5271 5272 switch (Entry.Kind) { 5273 case BitstreamEntry::SubBlock: // Handled for us already. 5274 case BitstreamEntry::Error: 5275 return error("Malformed block"); 5276 case BitstreamEntry::EndBlock: 5277 return Error::success(); 5278 case BitstreamEntry::Record: 5279 // The interesting case. 5280 break; 5281 } 5282 5283 // Read a record. The record format depends on whether this 5284 // is a per-module index or a combined index file. In the per-module 5285 // case the records contain the associated value's ID for correlation 5286 // with VST entries. In the combined index the correlation is done 5287 // via the bitcode offset of the summary records (which were saved 5288 // in the combined index VST entries). The records also contain 5289 // information used for ThinLTO renaming and importing. 5290 Record.clear(); 5291 auto BitCode = Stream.readRecord(Entry.ID, Record); 5292 switch (BitCode) { 5293 default: // Default behavior: ignore. 5294 break; 5295 case bitc::FS_FLAGS: { // [flags] 5296 uint64_t Flags = Record[0]; 5297 // Scan flags (set only on the combined index). 5298 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5299 5300 // 1 bit: WithGlobalValueDeadStripping flag. 5301 if (Flags & 0x1) 5302 TheIndex.setWithGlobalValueDeadStripping(); 5303 // 1 bit: SkipModuleByDistributedBackend flag. 5304 if (Flags & 0x2) 5305 TheIndex.setSkipModuleByDistributedBackend(); 5306 // 1 bit: HasSyntheticEntryCounts flag. 5307 if (Flags & 0x4) 5308 TheIndex.setHasSyntheticEntryCounts(); 5309 break; 5310 } 5311 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5312 uint64_t ValueID = Record[0]; 5313 GlobalValue::GUID RefGUID = Record[1]; 5314 ValueIdToValueInfoMap[ValueID] = 5315 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5316 break; 5317 } 5318 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5319 // numrefs x valueid, n x (valueid)] 5320 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5321 // numrefs x valueid, 5322 // n x (valueid, hotness)] 5323 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5324 // numrefs x valueid, 5325 // n x (valueid, relblockfreq)] 5326 case bitc::FS_PERMODULE: 5327 case bitc::FS_PERMODULE_RELBF: 5328 case bitc::FS_PERMODULE_PROFILE: { 5329 unsigned ValueID = Record[0]; 5330 uint64_t RawFlags = Record[1]; 5331 unsigned InstCount = Record[2]; 5332 uint64_t RawFunFlags = 0; 5333 unsigned NumRefs = Record[3]; 5334 unsigned NumImmutableRefs = 0; 5335 int RefListStartIndex = 4; 5336 if (Version >= 4) { 5337 RawFunFlags = Record[3]; 5338 NumRefs = Record[4]; 5339 RefListStartIndex = 5; 5340 if (Version >= 5) { 5341 NumImmutableRefs = Record[5]; 5342 RefListStartIndex = 6; 5343 } 5344 } 5345 5346 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5347 // The module path string ref set in the summary must be owned by the 5348 // index's module string table. Since we don't have a module path 5349 // string table section in the per-module index, we create a single 5350 // module path string table entry with an empty (0) ID to take 5351 // ownership. 5352 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5353 assert(Record.size() >= RefListStartIndex + NumRefs && 5354 "Record size inconsistent with number of references"); 5355 std::vector<ValueInfo> Refs = makeRefList( 5356 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5357 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5358 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5359 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5360 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5361 IsOldProfileFormat, HasProfile, HasRelBF); 5362 setImmutableRefs(Refs, NumImmutableRefs); 5363 auto FS = llvm::make_unique<FunctionSummary>( 5364 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5365 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5366 std::move(PendingTypeTestAssumeVCalls), 5367 std::move(PendingTypeCheckedLoadVCalls), 5368 std::move(PendingTypeTestAssumeConstVCalls), 5369 std::move(PendingTypeCheckedLoadConstVCalls)); 5370 PendingTypeTests.clear(); 5371 PendingTypeTestAssumeVCalls.clear(); 5372 PendingTypeCheckedLoadVCalls.clear(); 5373 PendingTypeTestAssumeConstVCalls.clear(); 5374 PendingTypeCheckedLoadConstVCalls.clear(); 5375 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5376 FS->setModulePath(getThisModule()->first()); 5377 FS->setOriginalName(VIAndOriginalGUID.second); 5378 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5379 break; 5380 } 5381 // FS_ALIAS: [valueid, flags, valueid] 5382 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5383 // they expect all aliasee summaries to be available. 5384 case bitc::FS_ALIAS: { 5385 unsigned ValueID = Record[0]; 5386 uint64_t RawFlags = Record[1]; 5387 unsigned AliaseeID = Record[2]; 5388 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5389 auto AS = llvm::make_unique<AliasSummary>(Flags); 5390 // The module path string ref set in the summary must be owned by the 5391 // index's module string table. Since we don't have a module path 5392 // string table section in the per-module index, we create a single 5393 // module path string table entry with an empty (0) ID to take 5394 // ownership. 5395 AS->setModulePath(getThisModule()->first()); 5396 5397 GlobalValue::GUID AliaseeGUID = 5398 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5399 auto AliaseeInModule = 5400 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5401 if (!AliaseeInModule) 5402 return error("Alias expects aliasee summary to be parsed"); 5403 AS->setAliasee(AliaseeInModule); 5404 AS->setAliaseeGUID(AliaseeGUID); 5405 5406 auto GUID = getValueInfoFromValueId(ValueID); 5407 AS->setOriginalName(GUID.second); 5408 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5409 break; 5410 } 5411 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5412 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5413 unsigned ValueID = Record[0]; 5414 uint64_t RawFlags = Record[1]; 5415 unsigned RefArrayStart = 2; 5416 GlobalVarSummary::GVarFlags GVF; 5417 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5418 if (Version >= 5) { 5419 GVF = getDecodedGVarFlags(Record[2]); 5420 RefArrayStart = 3; 5421 } 5422 std::vector<ValueInfo> Refs = 5423 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5424 auto FS = 5425 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5426 FS->setModulePath(getThisModule()->first()); 5427 auto GUID = getValueInfoFromValueId(ValueID); 5428 FS->setOriginalName(GUID.second); 5429 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5430 break; 5431 } 5432 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5433 // numrefs x valueid, n x (valueid)] 5434 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5435 // numrefs x valueid, n x (valueid, hotness)] 5436 case bitc::FS_COMBINED: 5437 case bitc::FS_COMBINED_PROFILE: { 5438 unsigned ValueID = Record[0]; 5439 uint64_t ModuleId = Record[1]; 5440 uint64_t RawFlags = Record[2]; 5441 unsigned InstCount = Record[3]; 5442 uint64_t RawFunFlags = 0; 5443 uint64_t EntryCount = 0; 5444 unsigned NumRefs = Record[4]; 5445 unsigned NumImmutableRefs = 0; 5446 int RefListStartIndex = 5; 5447 5448 if (Version >= 4) { 5449 RawFunFlags = Record[4]; 5450 RefListStartIndex = 6; 5451 size_t NumRefsIndex = 5; 5452 if (Version >= 5) { 5453 RefListStartIndex = 7; 5454 if (Version >= 6) { 5455 NumRefsIndex = 6; 5456 EntryCount = Record[5]; 5457 RefListStartIndex = 8; 5458 } 5459 NumImmutableRefs = Record[RefListStartIndex - 1]; 5460 } 5461 NumRefs = Record[NumRefsIndex]; 5462 } 5463 5464 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5465 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5466 assert(Record.size() >= RefListStartIndex + NumRefs && 5467 "Record size inconsistent with number of references"); 5468 std::vector<ValueInfo> Refs = makeRefList( 5469 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5470 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5471 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5472 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5473 IsOldProfileFormat, HasProfile, false); 5474 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5475 setImmutableRefs(Refs, NumImmutableRefs); 5476 auto FS = llvm::make_unique<FunctionSummary>( 5477 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5478 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5479 std::move(PendingTypeTestAssumeVCalls), 5480 std::move(PendingTypeCheckedLoadVCalls), 5481 std::move(PendingTypeTestAssumeConstVCalls), 5482 std::move(PendingTypeCheckedLoadConstVCalls)); 5483 PendingTypeTests.clear(); 5484 PendingTypeTestAssumeVCalls.clear(); 5485 PendingTypeCheckedLoadVCalls.clear(); 5486 PendingTypeTestAssumeConstVCalls.clear(); 5487 PendingTypeCheckedLoadConstVCalls.clear(); 5488 LastSeenSummary = FS.get(); 5489 LastSeenGUID = VI.getGUID(); 5490 FS->setModulePath(ModuleIdMap[ModuleId]); 5491 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5492 break; 5493 } 5494 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5495 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5496 // they expect all aliasee summaries to be available. 5497 case bitc::FS_COMBINED_ALIAS: { 5498 unsigned ValueID = Record[0]; 5499 uint64_t ModuleId = Record[1]; 5500 uint64_t RawFlags = Record[2]; 5501 unsigned AliaseeValueId = Record[3]; 5502 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5503 auto AS = llvm::make_unique<AliasSummary>(Flags); 5504 LastSeenSummary = AS.get(); 5505 AS->setModulePath(ModuleIdMap[ModuleId]); 5506 5507 auto AliaseeGUID = 5508 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5509 auto AliaseeInModule = 5510 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5511 AS->setAliasee(AliaseeInModule); 5512 AS->setAliaseeGUID(AliaseeGUID); 5513 5514 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5515 LastSeenGUID = VI.getGUID(); 5516 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5517 break; 5518 } 5519 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5520 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5521 unsigned ValueID = Record[0]; 5522 uint64_t ModuleId = Record[1]; 5523 uint64_t RawFlags = Record[2]; 5524 unsigned RefArrayStart = 3; 5525 GlobalVarSummary::GVarFlags GVF; 5526 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5527 if (Version >= 5) { 5528 GVF = getDecodedGVarFlags(Record[3]); 5529 RefArrayStart = 4; 5530 } 5531 std::vector<ValueInfo> Refs = 5532 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5533 auto FS = 5534 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5535 LastSeenSummary = FS.get(); 5536 FS->setModulePath(ModuleIdMap[ModuleId]); 5537 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5538 LastSeenGUID = VI.getGUID(); 5539 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5540 break; 5541 } 5542 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5543 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5544 uint64_t OriginalName = Record[0]; 5545 if (!LastSeenSummary) 5546 return error("Name attachment that does not follow a combined record"); 5547 LastSeenSummary->setOriginalName(OriginalName); 5548 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5549 // Reset the LastSeenSummary 5550 LastSeenSummary = nullptr; 5551 LastSeenGUID = 0; 5552 break; 5553 } 5554 case bitc::FS_TYPE_TESTS: 5555 assert(PendingTypeTests.empty()); 5556 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5557 Record.end()); 5558 break; 5559 5560 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5561 assert(PendingTypeTestAssumeVCalls.empty()); 5562 for (unsigned I = 0; I != Record.size(); I += 2) 5563 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5564 break; 5565 5566 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5567 assert(PendingTypeCheckedLoadVCalls.empty()); 5568 for (unsigned I = 0; I != Record.size(); I += 2) 5569 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5570 break; 5571 5572 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5573 PendingTypeTestAssumeConstVCalls.push_back( 5574 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5575 break; 5576 5577 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5578 PendingTypeCheckedLoadConstVCalls.push_back( 5579 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5580 break; 5581 5582 case bitc::FS_CFI_FUNCTION_DEFS: { 5583 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5584 for (unsigned I = 0; I != Record.size(); I += 2) 5585 CfiFunctionDefs.insert( 5586 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5587 break; 5588 } 5589 5590 case bitc::FS_CFI_FUNCTION_DECLS: { 5591 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5592 for (unsigned I = 0; I != Record.size(); I += 2) 5593 CfiFunctionDecls.insert( 5594 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5595 break; 5596 } 5597 5598 case bitc::FS_TYPE_ID: 5599 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5600 break; 5601 } 5602 } 5603 llvm_unreachable("Exit infinite loop"); 5604 } 5605 5606 // Parse the module string table block into the Index. 5607 // This populates the ModulePathStringTable map in the index. 5608 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5609 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5610 return error("Invalid record"); 5611 5612 SmallVector<uint64_t, 64> Record; 5613 5614 SmallString<128> ModulePath; 5615 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5616 5617 while (true) { 5618 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5619 5620 switch (Entry.Kind) { 5621 case BitstreamEntry::SubBlock: // Handled for us already. 5622 case BitstreamEntry::Error: 5623 return error("Malformed block"); 5624 case BitstreamEntry::EndBlock: 5625 return Error::success(); 5626 case BitstreamEntry::Record: 5627 // The interesting case. 5628 break; 5629 } 5630 5631 Record.clear(); 5632 switch (Stream.readRecord(Entry.ID, Record)) { 5633 default: // Default behavior: ignore. 5634 break; 5635 case bitc::MST_CODE_ENTRY: { 5636 // MST_ENTRY: [modid, namechar x N] 5637 uint64_t ModuleId = Record[0]; 5638 5639 if (convertToString(Record, 1, ModulePath)) 5640 return error("Invalid record"); 5641 5642 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5643 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5644 5645 ModulePath.clear(); 5646 break; 5647 } 5648 /// MST_CODE_HASH: [5*i32] 5649 case bitc::MST_CODE_HASH: { 5650 if (Record.size() != 5) 5651 return error("Invalid hash length " + Twine(Record.size()).str()); 5652 if (!LastSeenModule) 5653 return error("Invalid hash that does not follow a module path"); 5654 int Pos = 0; 5655 for (auto &Val : Record) { 5656 assert(!(Val >> 32) && "Unexpected high bits set"); 5657 LastSeenModule->second.second[Pos++] = Val; 5658 } 5659 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5660 LastSeenModule = nullptr; 5661 break; 5662 } 5663 } 5664 } 5665 llvm_unreachable("Exit infinite loop"); 5666 } 5667 5668 namespace { 5669 5670 // FIXME: This class is only here to support the transition to llvm::Error. It 5671 // will be removed once this transition is complete. Clients should prefer to 5672 // deal with the Error value directly, rather than converting to error_code. 5673 class BitcodeErrorCategoryType : public std::error_category { 5674 const char *name() const noexcept override { 5675 return "llvm.bitcode"; 5676 } 5677 5678 std::string message(int IE) const override { 5679 BitcodeError E = static_cast<BitcodeError>(IE); 5680 switch (E) { 5681 case BitcodeError::CorruptedBitcode: 5682 return "Corrupted bitcode"; 5683 } 5684 llvm_unreachable("Unknown error type!"); 5685 } 5686 }; 5687 5688 } // end anonymous namespace 5689 5690 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5691 5692 const std::error_category &llvm::BitcodeErrorCategory() { 5693 return *ErrorCategory; 5694 } 5695 5696 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5697 unsigned Block, unsigned RecordID) { 5698 if (Stream.EnterSubBlock(Block)) 5699 return error("Invalid record"); 5700 5701 StringRef Strtab; 5702 while (true) { 5703 BitstreamEntry Entry = Stream.advance(); 5704 switch (Entry.Kind) { 5705 case BitstreamEntry::EndBlock: 5706 return Strtab; 5707 5708 case BitstreamEntry::Error: 5709 return error("Malformed block"); 5710 5711 case BitstreamEntry::SubBlock: 5712 if (Stream.SkipBlock()) 5713 return error("Malformed block"); 5714 break; 5715 5716 case BitstreamEntry::Record: 5717 StringRef Blob; 5718 SmallVector<uint64_t, 1> Record; 5719 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5720 Strtab = Blob; 5721 break; 5722 } 5723 } 5724 } 5725 5726 //===----------------------------------------------------------------------===// 5727 // External interface 5728 //===----------------------------------------------------------------------===// 5729 5730 Expected<std::vector<BitcodeModule>> 5731 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5732 auto FOrErr = getBitcodeFileContents(Buffer); 5733 if (!FOrErr) 5734 return FOrErr.takeError(); 5735 return std::move(FOrErr->Mods); 5736 } 5737 5738 Expected<BitcodeFileContents> 5739 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5740 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5741 if (!StreamOrErr) 5742 return StreamOrErr.takeError(); 5743 BitstreamCursor &Stream = *StreamOrErr; 5744 5745 BitcodeFileContents F; 5746 while (true) { 5747 uint64_t BCBegin = Stream.getCurrentByteNo(); 5748 5749 // We may be consuming bitcode from a client that leaves garbage at the end 5750 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5751 // the end that there cannot possibly be another module, stop looking. 5752 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5753 return F; 5754 5755 BitstreamEntry Entry = Stream.advance(); 5756 switch (Entry.Kind) { 5757 case BitstreamEntry::EndBlock: 5758 case BitstreamEntry::Error: 5759 return error("Malformed block"); 5760 5761 case BitstreamEntry::SubBlock: { 5762 uint64_t IdentificationBit = -1ull; 5763 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5764 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5765 if (Stream.SkipBlock()) 5766 return error("Malformed block"); 5767 5768 Entry = Stream.advance(); 5769 if (Entry.Kind != BitstreamEntry::SubBlock || 5770 Entry.ID != bitc::MODULE_BLOCK_ID) 5771 return error("Malformed block"); 5772 } 5773 5774 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5775 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5776 if (Stream.SkipBlock()) 5777 return error("Malformed block"); 5778 5779 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5780 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5781 Buffer.getBufferIdentifier(), IdentificationBit, 5782 ModuleBit}); 5783 continue; 5784 } 5785 5786 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5787 Expected<StringRef> Strtab = 5788 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5789 if (!Strtab) 5790 return Strtab.takeError(); 5791 // This string table is used by every preceding bitcode module that does 5792 // not have its own string table. A bitcode file may have multiple 5793 // string tables if it was created by binary concatenation, for example 5794 // with "llvm-cat -b". 5795 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5796 if (!I->Strtab.empty()) 5797 break; 5798 I->Strtab = *Strtab; 5799 } 5800 // Similarly, the string table is used by every preceding symbol table; 5801 // normally there will be just one unless the bitcode file was created 5802 // by binary concatenation. 5803 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5804 F.StrtabForSymtab = *Strtab; 5805 continue; 5806 } 5807 5808 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5809 Expected<StringRef> SymtabOrErr = 5810 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5811 if (!SymtabOrErr) 5812 return SymtabOrErr.takeError(); 5813 5814 // We can expect the bitcode file to have multiple symbol tables if it 5815 // was created by binary concatenation. In that case we silently 5816 // ignore any subsequent symbol tables, which is fine because this is a 5817 // low level function. The client is expected to notice that the number 5818 // of modules in the symbol table does not match the number of modules 5819 // in the input file and regenerate the symbol table. 5820 if (F.Symtab.empty()) 5821 F.Symtab = *SymtabOrErr; 5822 continue; 5823 } 5824 5825 if (Stream.SkipBlock()) 5826 return error("Malformed block"); 5827 continue; 5828 } 5829 case BitstreamEntry::Record: 5830 Stream.skipRecord(Entry.ID); 5831 continue; 5832 } 5833 } 5834 } 5835 5836 /// Get a lazy one-at-time loading module from bitcode. 5837 /// 5838 /// This isn't always used in a lazy context. In particular, it's also used by 5839 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5840 /// in forward-referenced functions from block address references. 5841 /// 5842 /// \param[in] MaterializeAll Set to \c true if we should materialize 5843 /// everything. 5844 Expected<std::unique_ptr<Module>> 5845 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5846 bool ShouldLazyLoadMetadata, bool IsImporting) { 5847 BitstreamCursor Stream(Buffer); 5848 5849 std::string ProducerIdentification; 5850 if (IdentificationBit != -1ull) { 5851 Stream.JumpToBit(IdentificationBit); 5852 Expected<std::string> ProducerIdentificationOrErr = 5853 readIdentificationBlock(Stream); 5854 if (!ProducerIdentificationOrErr) 5855 return ProducerIdentificationOrErr.takeError(); 5856 5857 ProducerIdentification = *ProducerIdentificationOrErr; 5858 } 5859 5860 Stream.JumpToBit(ModuleBit); 5861 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5862 Context); 5863 5864 std::unique_ptr<Module> M = 5865 llvm::make_unique<Module>(ModuleIdentifier, Context); 5866 M->setMaterializer(R); 5867 5868 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5869 if (Error Err = 5870 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5871 return std::move(Err); 5872 5873 if (MaterializeAll) { 5874 // Read in the entire module, and destroy the BitcodeReader. 5875 if (Error Err = M->materializeAll()) 5876 return std::move(Err); 5877 } else { 5878 // Resolve forward references from blockaddresses. 5879 if (Error Err = R->materializeForwardReferencedFunctions()) 5880 return std::move(Err); 5881 } 5882 return std::move(M); 5883 } 5884 5885 Expected<std::unique_ptr<Module>> 5886 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5887 bool IsImporting) { 5888 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5889 } 5890 5891 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5892 // We don't use ModuleIdentifier here because the client may need to control the 5893 // module path used in the combined summary (e.g. when reading summaries for 5894 // regular LTO modules). 5895 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5896 StringRef ModulePath, uint64_t ModuleId) { 5897 BitstreamCursor Stream(Buffer); 5898 Stream.JumpToBit(ModuleBit); 5899 5900 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5901 ModulePath, ModuleId); 5902 return R.parseModule(); 5903 } 5904 5905 // Parse the specified bitcode buffer, returning the function info index. 5906 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5907 BitstreamCursor Stream(Buffer); 5908 Stream.JumpToBit(ModuleBit); 5909 5910 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5911 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5912 ModuleIdentifier, 0); 5913 5914 if (Error Err = R.parseModule()) 5915 return std::move(Err); 5916 5917 return std::move(Index); 5918 } 5919 5920 // Check if the given bitcode buffer contains a global value summary block. 5921 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5922 BitstreamCursor Stream(Buffer); 5923 Stream.JumpToBit(ModuleBit); 5924 5925 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5926 return error("Invalid record"); 5927 5928 while (true) { 5929 BitstreamEntry Entry = Stream.advance(); 5930 5931 switch (Entry.Kind) { 5932 case BitstreamEntry::Error: 5933 return error("Malformed block"); 5934 case BitstreamEntry::EndBlock: 5935 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5936 5937 case BitstreamEntry::SubBlock: 5938 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5939 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5940 5941 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5942 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5943 5944 // Ignore other sub-blocks. 5945 if (Stream.SkipBlock()) 5946 return error("Malformed block"); 5947 continue; 5948 5949 case BitstreamEntry::Record: 5950 Stream.skipRecord(Entry.ID); 5951 continue; 5952 } 5953 } 5954 } 5955 5956 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5957 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5958 if (!MsOrErr) 5959 return MsOrErr.takeError(); 5960 5961 if (MsOrErr->size() != 1) 5962 return error("Expected a single module"); 5963 5964 return (*MsOrErr)[0]; 5965 } 5966 5967 Expected<std::unique_ptr<Module>> 5968 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5969 bool ShouldLazyLoadMetadata, bool IsImporting) { 5970 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5971 if (!BM) 5972 return BM.takeError(); 5973 5974 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5975 } 5976 5977 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5978 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5979 bool ShouldLazyLoadMetadata, bool IsImporting) { 5980 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5981 IsImporting); 5982 if (MOrErr) 5983 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5984 return MOrErr; 5985 } 5986 5987 Expected<std::unique_ptr<Module>> 5988 BitcodeModule::parseModule(LLVMContext &Context) { 5989 return getModuleImpl(Context, true, false, false); 5990 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5991 // written. We must defer until the Module has been fully materialized. 5992 } 5993 5994 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5995 LLVMContext &Context) { 5996 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5997 if (!BM) 5998 return BM.takeError(); 5999 6000 return BM->parseModule(Context); 6001 } 6002 6003 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6004 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6005 if (!StreamOrErr) 6006 return StreamOrErr.takeError(); 6007 6008 return readTriple(*StreamOrErr); 6009 } 6010 6011 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6012 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6013 if (!StreamOrErr) 6014 return StreamOrErr.takeError(); 6015 6016 return hasObjCCategory(*StreamOrErr); 6017 } 6018 6019 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6020 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6021 if (!StreamOrErr) 6022 return StreamOrErr.takeError(); 6023 6024 return readIdentificationCode(*StreamOrErr); 6025 } 6026 6027 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6028 ModuleSummaryIndex &CombinedIndex, 6029 uint64_t ModuleId) { 6030 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6031 if (!BM) 6032 return BM.takeError(); 6033 6034 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6035 } 6036 6037 Expected<std::unique_ptr<ModuleSummaryIndex>> 6038 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6039 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6040 if (!BM) 6041 return BM.takeError(); 6042 6043 return BM->getSummary(); 6044 } 6045 6046 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6047 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6048 if (!BM) 6049 return BM.takeError(); 6050 6051 return BM->getLTOInfo(); 6052 } 6053 6054 Expected<std::unique_ptr<ModuleSummaryIndex>> 6055 llvm::getModuleSummaryIndexForFile(StringRef Path, 6056 bool IgnoreEmptyThinLTOIndexFile) { 6057 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6058 MemoryBuffer::getFileOrSTDIN(Path); 6059 if (!FileOrErr) 6060 return errorCodeToError(FileOrErr.getError()); 6061 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6062 return nullptr; 6063 return getModuleSummaryIndex(**FileOrErr); 6064 } 6065