1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMetadataList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MetadataPtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMetadataList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MetadataPtrs.size(); } 111 void resize(unsigned N) { MetadataPtrs.resize(N); } 112 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 113 void clear() { MetadataPtrs.clear(); } 114 Metadata *back() const { return MetadataPtrs.back(); } 115 void pop_back() { MetadataPtrs.pop_back(); } 116 bool empty() const { return MetadataPtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MetadataPtrs.size()); 120 return MetadataPtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MetadataPtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMetadataList MetadataList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// True if any Metadata block has been materialized. 223 bool IsMetadataMaterialized = false; 224 225 bool StripDebugInfo = false; 226 227 /// Functions that need to be matched with subprograms when upgrading old 228 /// metadata. 229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 230 231 std::vector<std::string> BundleTags; 232 233 public: 234 std::error_code error(BitcodeError E, const Twine &Message); 235 std::error_code error(BitcodeError E); 236 std::error_code error(const Twine &Message); 237 238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 239 BitcodeReader(LLVMContext &Context); 240 ~BitcodeReader() override { freeState(); } 241 242 std::error_code materializeForwardReferencedFunctions(); 243 244 void freeState(); 245 246 void releaseBuffer(); 247 248 std::error_code materialize(GlobalValue *GV) override; 249 std::error_code materializeModule() override; 250 std::vector<StructType *> getIdentifiedStructTypes() const override; 251 252 /// \brief Main interface to parsing a bitcode buffer. 253 /// \returns true if an error occurred. 254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 255 Module *M, 256 bool ShouldLazyLoadMetadata = false); 257 258 /// \brief Cheap mechanism to just extract module triple 259 /// \returns true if an error occurred. 260 ErrorOr<std::string> parseTriple(); 261 262 /// Cheap mechanism to just extract the identification block out of bitcode. 263 ErrorOr<std::string> parseIdentificationBlock(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 /// Save the mapping between the metadata values and the corresponding 273 /// value id that were recorded in the MetadataList during parsing. If 274 /// OnlyTempMD is true, then only record those entries that are still 275 /// temporary metadata. This interface is used when metadata linking is 276 /// performed as a postpass, such as during function importing. 277 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 278 bool OnlyTempMD) override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getValueFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndAliasInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataKinds(); 401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 402 std::error_code parseMetadataAttachment(Function &F); 403 ErrorOr<std::string> parseModuleTriple(); 404 std::error_code parseUseLists(); 405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 406 std::error_code initStreamFromBuffer(); 407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code findFunctionInStream( 409 Function *F, 410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 411 }; 412 413 /// Class to manage reading and parsing function summary index bitcode 414 /// files/sections. 415 class FunctionIndexBitcodeReader { 416 DiagnosticHandlerFunction DiagnosticHandler; 417 418 /// Eventually points to the function index built during parsing. 419 FunctionInfoIndex *TheIndex = nullptr; 420 421 std::unique_ptr<MemoryBuffer> Buffer; 422 std::unique_ptr<BitstreamReader> StreamFile; 423 BitstreamCursor Stream; 424 425 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 426 /// 427 /// If false, the summary section is fully parsed into the index during 428 /// the initial parse. Otherwise, if true, the caller is expected to 429 /// invoke \a readFunctionSummary for each summary needed, and the summary 430 /// section is thus parsed lazily. 431 bool IsLazy = false; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the function summary bitcode section. All blocks are skipped, 435 /// but the SeenFuncSummary boolean is set. 436 bool CheckFuncSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a function summary section 439 /// yet during parsing, used when checking if file contains function 440 /// summary section. 441 bool SeenFuncSummary = false; 442 443 /// \brief Map populated during function summary section parsing, and 444 /// consumed during ValueSymbolTable parsing. 445 /// 446 /// Used to correlate summary records with VST entries. For the per-module 447 /// index this maps the ValueID to the parsed function summary, and 448 /// for the combined index this maps the summary record's bitcode 449 /// offset to the function summary (since in the combined index the 450 /// VST records do not hold value IDs but rather hold the function 451 /// summary record offset). 452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 453 454 /// Map populated during module path string table parsing, from the 455 /// module ID to a string reference owned by the index's module 456 /// path string table, used to correlate with combined index function 457 /// summary records. 458 DenseMap<uint64_t, StringRef> ModuleIdMap; 459 460 public: 461 std::error_code error(BitcodeError E, const Twine &Message); 462 std::error_code error(BitcodeError E); 463 std::error_code error(const Twine &Message); 464 465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 466 DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(LLVMContext &Context, std::error_code EC, 522 const Twine &Message) { 523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 524 Message); 525 } 526 527 static std::error_code error(LLVMContext &Context, std::error_code EC) { 528 return error(Context, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, const Twine &Message) { 532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 533 Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(Context, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(Context, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(Context, make_error_code(E)); 557 } 558 559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 560 : Context(Context), Buffer(Buffer), ValueList(Context), 561 MetadataList(Context) {} 562 563 BitcodeReader::BitcodeReader(LLVMContext &Context) 564 : Context(Context), Buffer(nullptr), ValueList(Context), 565 MetadataList(Context) {} 566 567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 568 if (WillMaterializeAllForwardRefs) 569 return std::error_code(); 570 571 // Prevent recursion. 572 WillMaterializeAllForwardRefs = true; 573 574 while (!BasicBlockFwdRefQueue.empty()) { 575 Function *F = BasicBlockFwdRefQueue.front(); 576 BasicBlockFwdRefQueue.pop_front(); 577 assert(F && "Expected valid function"); 578 if (!BasicBlockFwdRefs.count(F)) 579 // Already materialized. 580 continue; 581 582 // Check for a function that isn't materializable to prevent an infinite 583 // loop. When parsing a blockaddress stored in a global variable, there 584 // isn't a trivial way to check if a function will have a body without a 585 // linear search through FunctionsWithBodies, so just check it here. 586 if (!F->isMaterializable()) 587 return error("Never resolved function from blockaddress"); 588 589 // Try to materialize F. 590 if (std::error_code EC = materialize(F)) 591 return EC; 592 } 593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 594 595 // Reset state. 596 WillMaterializeAllForwardRefs = false; 597 return std::error_code(); 598 } 599 600 void BitcodeReader::freeState() { 601 Buffer = nullptr; 602 std::vector<Type*>().swap(TypeList); 603 ValueList.clear(); 604 MetadataList.clear(); 605 std::vector<Comdat *>().swap(ComdatList); 606 607 std::vector<AttributeSet>().swap(MAttributes); 608 std::vector<BasicBlock*>().swap(FunctionBBs); 609 std::vector<Function*>().swap(FunctionsWithBodies); 610 DeferredFunctionInfo.clear(); 611 DeferredMetadataInfo.clear(); 612 MDKindMap.clear(); 613 614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 615 BasicBlockFwdRefQueue.clear(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // Helper functions to implement forward reference resolution, etc. 620 //===----------------------------------------------------------------------===// 621 622 /// Convert a string from a record into an std::string, return true on failure. 623 template <typename StrTy> 624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 625 StrTy &Result) { 626 if (Idx > Record.size()) 627 return true; 628 629 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 630 Result += (char)Record[i]; 631 return false; 632 } 633 634 static bool hasImplicitComdat(size_t Val) { 635 switch (Val) { 636 default: 637 return false; 638 case 1: // Old WeakAnyLinkage 639 case 4: // Old LinkOnceAnyLinkage 640 case 10: // Old WeakODRLinkage 641 case 11: // Old LinkOnceODRLinkage 642 return true; 643 } 644 } 645 646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 647 switch (Val) { 648 default: // Map unknown/new linkages to external 649 case 0: 650 return GlobalValue::ExternalLinkage; 651 case 2: 652 return GlobalValue::AppendingLinkage; 653 case 3: 654 return GlobalValue::InternalLinkage; 655 case 5: 656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 657 case 6: 658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 659 case 7: 660 return GlobalValue::ExternalWeakLinkage; 661 case 8: 662 return GlobalValue::CommonLinkage; 663 case 9: 664 return GlobalValue::PrivateLinkage; 665 case 12: 666 return GlobalValue::AvailableExternallyLinkage; 667 case 13: 668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 669 case 14: 670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 671 case 15: 672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 673 case 1: // Old value with implicit comdat. 674 case 16: 675 return GlobalValue::WeakAnyLinkage; 676 case 10: // Old value with implicit comdat. 677 case 17: 678 return GlobalValue::WeakODRLinkage; 679 case 4: // Old value with implicit comdat. 680 case 18: 681 return GlobalValue::LinkOnceAnyLinkage; 682 case 11: // Old value with implicit comdat. 683 case 19: 684 return GlobalValue::LinkOnceODRLinkage; 685 } 686 } 687 688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown visibilities to default. 691 case 0: return GlobalValue::DefaultVisibility; 692 case 1: return GlobalValue::HiddenVisibility; 693 case 2: return GlobalValue::ProtectedVisibility; 694 } 695 } 696 697 static GlobalValue::DLLStorageClassTypes 698 getDecodedDLLStorageClass(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown values to default. 701 case 0: return GlobalValue::DefaultStorageClass; 702 case 1: return GlobalValue::DLLImportStorageClass; 703 case 2: return GlobalValue::DLLExportStorageClass; 704 } 705 } 706 707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 708 switch (Val) { 709 case 0: return GlobalVariable::NotThreadLocal; 710 default: // Map unknown non-zero value to general dynamic. 711 case 1: return GlobalVariable::GeneralDynamicTLSModel; 712 case 2: return GlobalVariable::LocalDynamicTLSModel; 713 case 3: return GlobalVariable::InitialExecTLSModel; 714 case 4: return GlobalVariable::LocalExecTLSModel; 715 } 716 } 717 718 static int getDecodedCastOpcode(unsigned Val) { 719 switch (Val) { 720 default: return -1; 721 case bitc::CAST_TRUNC : return Instruction::Trunc; 722 case bitc::CAST_ZEXT : return Instruction::ZExt; 723 case bitc::CAST_SEXT : return Instruction::SExt; 724 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 725 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 726 case bitc::CAST_UITOFP : return Instruction::UIToFP; 727 case bitc::CAST_SITOFP : return Instruction::SIToFP; 728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 729 case bitc::CAST_FPEXT : return Instruction::FPExt; 730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 732 case bitc::CAST_BITCAST : return Instruction::BitCast; 733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 734 } 735 } 736 737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 738 bool IsFP = Ty->isFPOrFPVectorTy(); 739 // BinOps are only valid for int/fp or vector of int/fp types 740 if (!IsFP && !Ty->isIntOrIntVectorTy()) 741 return -1; 742 743 switch (Val) { 744 default: 745 return -1; 746 case bitc::BINOP_ADD: 747 return IsFP ? Instruction::FAdd : Instruction::Add; 748 case bitc::BINOP_SUB: 749 return IsFP ? Instruction::FSub : Instruction::Sub; 750 case bitc::BINOP_MUL: 751 return IsFP ? Instruction::FMul : Instruction::Mul; 752 case bitc::BINOP_UDIV: 753 return IsFP ? -1 : Instruction::UDiv; 754 case bitc::BINOP_SDIV: 755 return IsFP ? Instruction::FDiv : Instruction::SDiv; 756 case bitc::BINOP_UREM: 757 return IsFP ? -1 : Instruction::URem; 758 case bitc::BINOP_SREM: 759 return IsFP ? Instruction::FRem : Instruction::SRem; 760 case bitc::BINOP_SHL: 761 return IsFP ? -1 : Instruction::Shl; 762 case bitc::BINOP_LSHR: 763 return IsFP ? -1 : Instruction::LShr; 764 case bitc::BINOP_ASHR: 765 return IsFP ? -1 : Instruction::AShr; 766 case bitc::BINOP_AND: 767 return IsFP ? -1 : Instruction::And; 768 case bitc::BINOP_OR: 769 return IsFP ? -1 : Instruction::Or; 770 case bitc::BINOP_XOR: 771 return IsFP ? -1 : Instruction::Xor; 772 } 773 } 774 775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 776 switch (Val) { 777 default: return AtomicRMWInst::BAD_BINOP; 778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 779 case bitc::RMW_ADD: return AtomicRMWInst::Add; 780 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 781 case bitc::RMW_AND: return AtomicRMWInst::And; 782 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 783 case bitc::RMW_OR: return AtomicRMWInst::Or; 784 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 785 case bitc::RMW_MAX: return AtomicRMWInst::Max; 786 case bitc::RMW_MIN: return AtomicRMWInst::Min; 787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 789 } 790 } 791 792 static AtomicOrdering getDecodedOrdering(unsigned Val) { 793 switch (Val) { 794 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 795 case bitc::ORDERING_UNORDERED: return Unordered; 796 case bitc::ORDERING_MONOTONIC: return Monotonic; 797 case bitc::ORDERING_ACQUIRE: return Acquire; 798 case bitc::ORDERING_RELEASE: return Release; 799 case bitc::ORDERING_ACQREL: return AcquireRelease; 800 default: // Map unknown orderings to sequentially-consistent. 801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 802 } 803 } 804 805 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 806 switch (Val) { 807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 808 default: // Map unknown scopes to cross-thread. 809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 810 } 811 } 812 813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown selection kinds to any. 816 case bitc::COMDAT_SELECTION_KIND_ANY: 817 return Comdat::Any; 818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 819 return Comdat::ExactMatch; 820 case bitc::COMDAT_SELECTION_KIND_LARGEST: 821 return Comdat::Largest; 822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 823 return Comdat::NoDuplicates; 824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 825 return Comdat::SameSize; 826 } 827 } 828 829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 830 FastMathFlags FMF; 831 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 832 FMF.setUnsafeAlgebra(); 833 if (0 != (Val & FastMathFlags::NoNaNs)) 834 FMF.setNoNaNs(); 835 if (0 != (Val & FastMathFlags::NoInfs)) 836 FMF.setNoInfs(); 837 if (0 != (Val & FastMathFlags::NoSignedZeros)) 838 FMF.setNoSignedZeros(); 839 if (0 != (Val & FastMathFlags::AllowReciprocal)) 840 FMF.setAllowReciprocal(); 841 return FMF; 842 } 843 844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 845 switch (Val) { 846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 848 } 849 } 850 851 namespace llvm { 852 namespace { 853 /// \brief A class for maintaining the slot number definition 854 /// as a placeholder for the actual definition for forward constants defs. 855 class ConstantPlaceHolder : public ConstantExpr { 856 void operator=(const ConstantPlaceHolder &) = delete; 857 858 public: 859 // allocate space for exactly one operand 860 void *operator new(size_t s) { return User::operator new(s, 1); } 861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 864 } 865 866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 867 static bool classof(const Value *V) { 868 return isa<ConstantExpr>(V) && 869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 870 } 871 872 /// Provide fast operand accessors 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 }; 875 } 876 877 // FIXME: can we inherit this from ConstantExpr? 878 template <> 879 struct OperandTraits<ConstantPlaceHolder> : 880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 881 }; 882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 883 } 884 885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 886 if (Idx == size()) { 887 push_back(V); 888 return; 889 } 890 891 if (Idx >= size()) 892 resize(Idx+1); 893 894 WeakVH &OldV = ValuePtrs[Idx]; 895 if (!OldV) { 896 OldV = V; 897 return; 898 } 899 900 // Handle constants and non-constants (e.g. instrs) differently for 901 // efficiency. 902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 903 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 904 OldV = V; 905 } else { 906 // If there was a forward reference to this value, replace it. 907 Value *PrevVal = OldV; 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 934 // Bail out for a clearly invalid value. This would make us call resize(0) 935 if (Idx == UINT_MAX) 936 return nullptr; 937 938 if (Idx >= size()) 939 resize(Idx + 1); 940 941 if (Value *V = ValuePtrs[Idx]) { 942 // If the types don't match, it's invalid. 943 if (Ty && Ty != V->getType()) 944 return nullptr; 945 return V; 946 } 947 948 // No type specified, must be invalid reference. 949 if (!Ty) return nullptr; 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Value *V = new Argument(Ty); 953 ValuePtrs[Idx] = V; 954 return V; 955 } 956 957 /// Once all constants are read, this method bulk resolves any forward 958 /// references. The idea behind this is that we sometimes get constants (such 959 /// as large arrays) which reference *many* forward ref constants. Replacing 960 /// each of these causes a lot of thrashing when building/reuniquing the 961 /// constant. Instead of doing this, we look at all the uses and rewrite all 962 /// the place holders at once for any constant that uses a placeholder. 963 void BitcodeReaderValueList::resolveConstantForwardRefs() { 964 // Sort the values by-pointer so that they are efficient to look up with a 965 // binary search. 966 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 967 968 SmallVector<Constant*, 64> NewOps; 969 970 while (!ResolveConstants.empty()) { 971 Value *RealVal = operator[](ResolveConstants.back().second); 972 Constant *Placeholder = ResolveConstants.back().first; 973 ResolveConstants.pop_back(); 974 975 // Loop over all users of the placeholder, updating them to reference the 976 // new value. If they reference more than one placeholder, update them all 977 // at once. 978 while (!Placeholder->use_empty()) { 979 auto UI = Placeholder->user_begin(); 980 User *U = *UI; 981 982 // If the using object isn't uniqued, just update the operands. This 983 // handles instructions and initializers for global variables. 984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 985 UI.getUse().set(RealVal); 986 continue; 987 } 988 989 // Otherwise, we have a constant that uses the placeholder. Replace that 990 // constant with a new constant that has *all* placeholder uses updated. 991 Constant *UserC = cast<Constant>(U); 992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 993 I != E; ++I) { 994 Value *NewOp; 995 if (!isa<ConstantPlaceHolder>(*I)) { 996 // Not a placeholder reference. 997 NewOp = *I; 998 } else if (*I == Placeholder) { 999 // Common case is that it just references this one placeholder. 1000 NewOp = RealVal; 1001 } else { 1002 // Otherwise, look up the placeholder in ResolveConstants. 1003 ResolveConstantsTy::iterator It = 1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1005 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1006 0)); 1007 assert(It != ResolveConstants.end() && It->first == *I); 1008 NewOp = operator[](It->second); 1009 } 1010 1011 NewOps.push_back(cast<Constant>(NewOp)); 1012 } 1013 1014 // Make the new constant. 1015 Constant *NewC; 1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1017 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1020 } else if (isa<ConstantVector>(UserC)) { 1021 NewC = ConstantVector::get(NewOps); 1022 } else { 1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1025 } 1026 1027 UserC->replaceAllUsesWith(NewC); 1028 UserC->destroyConstant(); 1029 NewOps.clear(); 1030 } 1031 1032 // Update all ValueHandles, they should be the only users at this point. 1033 Placeholder->replaceAllUsesWith(RealVal); 1034 delete Placeholder; 1035 } 1036 } 1037 1038 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1039 if (Idx == size()) { 1040 push_back(MD); 1041 return; 1042 } 1043 1044 if (Idx >= size()) 1045 resize(Idx+1); 1046 1047 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1048 if (!OldMD) { 1049 OldMD.reset(MD); 1050 return; 1051 } 1052 1053 // If there was a forward reference to this value, replace it. 1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1055 PrevMD->replaceAllUsesWith(MD); 1056 --NumFwdRefs; 1057 } 1058 1059 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Metadata *MD = MetadataPtrs[Idx]) 1064 return MD; 1065 1066 // Track forward refs to be resolved later. 1067 if (AnyFwdRefs) { 1068 MinFwdRef = std::min(MinFwdRef, Idx); 1069 MaxFwdRef = std::max(MaxFwdRef, Idx); 1070 } else { 1071 AnyFwdRefs = true; 1072 MinFwdRef = MaxFwdRef = Idx; 1073 } 1074 ++NumFwdRefs; 1075 1076 // Create and return a placeholder, which will later be RAUW'd. 1077 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1078 MetadataPtrs[Idx].reset(MD); 1079 return MD; 1080 } 1081 1082 void BitcodeReaderMetadataList::tryToResolveCycles() { 1083 if (!AnyFwdRefs) 1084 // Nothing to do. 1085 return; 1086 1087 if (NumFwdRefs) 1088 // Still forward references... can't resolve cycles. 1089 return; 1090 1091 // Resolve any cycles. 1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1093 auto &MD = MetadataPtrs[I]; 1094 auto *N = dyn_cast_or_null<MDNode>(MD); 1095 if (!N) 1096 continue; 1097 1098 assert(!N->isTemporary() && "Unexpected forward reference"); 1099 N->resolveCycles(); 1100 } 1101 1102 // Make sure we return early again until there's another forward ref. 1103 AnyFwdRefs = false; 1104 } 1105 1106 Type *BitcodeReader::getTypeByID(unsigned ID) { 1107 // The type table size is always specified correctly. 1108 if (ID >= TypeList.size()) 1109 return nullptr; 1110 1111 if (Type *Ty = TypeList[ID]) 1112 return Ty; 1113 1114 // If we have a forward reference, the only possible case is when it is to a 1115 // named struct. Just create a placeholder for now. 1116 return TypeList[ID] = createIdentifiedStructType(Context); 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1120 StringRef Name) { 1121 auto *Ret = StructType::create(Context, Name); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1127 auto *Ret = StructType::create(Context); 1128 IdentifiedStructTypes.push_back(Ret); 1129 return Ret; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMetadataNo = MetadataList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MetadataList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MetadataList in with the parsed module 1878 // The function-level metadata parsing should have reset the MetadataList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MetadataList.size() && 1882 "Expected MetadataList to only contain module level values"); 1883 NextMetadataNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = [&](unsigned ID) -> Metadata * { 1892 return MetadataList.getValueFwdRef(ID); 1893 }; 1894 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1895 if (ID) 1896 return getMD(ID - 1); 1897 return nullptr; 1898 }; 1899 auto getMDString = [&](unsigned ID) -> MDString *{ 1900 // This requires that the ID is not really a forward reference. In 1901 // particular, the MDString must already have been resolved. 1902 return cast_or_null<MDString>(getMDOrNull(ID)); 1903 }; 1904 1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1906 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1907 1908 // Read all the records. 1909 while (1) { 1910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1911 1912 switch (Entry.Kind) { 1913 case BitstreamEntry::SubBlock: // Handled for us already. 1914 case BitstreamEntry::Error: 1915 return error("Malformed block"); 1916 case BitstreamEntry::EndBlock: 1917 MetadataList.tryToResolveCycles(); 1918 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1919 NumModuleMDs == MetadataList.size()) && 1920 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1921 return std::error_code(); 1922 case BitstreamEntry::Record: 1923 // The interesting case. 1924 break; 1925 } 1926 1927 // Read a record. 1928 Record.clear(); 1929 unsigned Code = Stream.readRecord(Entry.ID, Record); 1930 bool IsDistinct = false; 1931 switch (Code) { 1932 default: // Default behavior: ignore. 1933 break; 1934 case bitc::METADATA_NAME: { 1935 // Read name of the named metadata. 1936 SmallString<8> Name(Record.begin(), Record.end()); 1937 Record.clear(); 1938 Code = Stream.ReadCode(); 1939 1940 unsigned NextBitCode = Stream.readRecord(Code, Record); 1941 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1943 1944 // Read named metadata elements. 1945 unsigned Size = Record.size(); 1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1947 for (unsigned i = 0; i != Size; ++i) { 1948 MDNode *MD = 1949 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1950 if (!MD) 1951 return error("Invalid record"); 1952 NMD->addOperand(MD); 1953 } 1954 break; 1955 } 1956 case bitc::METADATA_OLD_FN_NODE: { 1957 // FIXME: Remove in 4.0. 1958 // This is a LocalAsMetadata record, the only type of function-local 1959 // metadata. 1960 if (Record.size() % 2 == 1) 1961 return error("Invalid record"); 1962 1963 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1964 // to be legal, but there's no upgrade path. 1965 auto dropRecord = [&] { 1966 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1967 }; 1968 if (Record.size() != 2) { 1969 dropRecord(); 1970 break; 1971 } 1972 1973 Type *Ty = getTypeByID(Record[0]); 1974 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1975 dropRecord(); 1976 break; 1977 } 1978 1979 MetadataList.assignValue( 1980 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1981 NextMetadataNo++); 1982 break; 1983 } 1984 case bitc::METADATA_OLD_NODE: { 1985 // FIXME: Remove in 4.0. 1986 if (Record.size() % 2 == 1) 1987 return error("Invalid record"); 1988 1989 unsigned Size = Record.size(); 1990 SmallVector<Metadata *, 8> Elts; 1991 for (unsigned i = 0; i != Size; i += 2) { 1992 Type *Ty = getTypeByID(Record[i]); 1993 if (!Ty) 1994 return error("Invalid record"); 1995 if (Ty->isMetadataTy()) 1996 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 1997 else if (!Ty->isVoidTy()) { 1998 auto *MD = 1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2000 assert(isa<ConstantAsMetadata>(MD) && 2001 "Expected non-function-local metadata"); 2002 Elts.push_back(MD); 2003 } else 2004 Elts.push_back(nullptr); 2005 } 2006 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2007 break; 2008 } 2009 case bitc::METADATA_VALUE: { 2010 if (Record.size() != 2) 2011 return error("Invalid record"); 2012 2013 Type *Ty = getTypeByID(Record[0]); 2014 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2015 return error("Invalid record"); 2016 2017 MetadataList.assignValue( 2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2019 NextMetadataNo++); 2020 break; 2021 } 2022 case bitc::METADATA_DISTINCT_NODE: 2023 IsDistinct = true; 2024 // fallthrough... 2025 case bitc::METADATA_NODE: { 2026 SmallVector<Metadata *, 8> Elts; 2027 Elts.reserve(Record.size()); 2028 for (unsigned ID : Record) 2029 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2030 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2031 : MDNode::get(Context, Elts), 2032 NextMetadataNo++); 2033 break; 2034 } 2035 case bitc::METADATA_LOCATION: { 2036 if (Record.size() != 5) 2037 return error("Invalid record"); 2038 2039 unsigned Line = Record[1]; 2040 unsigned Column = Record[2]; 2041 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2042 Metadata *InlinedAt = 2043 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2044 MetadataList.assignValue( 2045 GET_OR_DISTINCT(DILocation, Record[0], 2046 (Context, Line, Column, Scope, InlinedAt)), 2047 NextMetadataNo++); 2048 break; 2049 } 2050 case bitc::METADATA_GENERIC_DEBUG: { 2051 if (Record.size() < 4) 2052 return error("Invalid record"); 2053 2054 unsigned Tag = Record[1]; 2055 unsigned Version = Record[2]; 2056 2057 if (Tag >= 1u << 16 || Version != 0) 2058 return error("Invalid record"); 2059 2060 auto *Header = getMDString(Record[3]); 2061 SmallVector<Metadata *, 8> DwarfOps; 2062 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2063 DwarfOps.push_back( 2064 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2065 MetadataList.assignValue( 2066 GET_OR_DISTINCT(GenericDINode, Record[0], 2067 (Context, Tag, Header, DwarfOps)), 2068 NextMetadataNo++); 2069 break; 2070 } 2071 case bitc::METADATA_SUBRANGE: { 2072 if (Record.size() != 3) 2073 return error("Invalid record"); 2074 2075 MetadataList.assignValue( 2076 GET_OR_DISTINCT(DISubrange, Record[0], 2077 (Context, Record[1], unrotateSign(Record[2]))), 2078 NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_ENUMERATOR: { 2082 if (Record.size() != 3) 2083 return error("Invalid record"); 2084 2085 MetadataList.assignValue( 2086 GET_OR_DISTINCT( 2087 DIEnumerator, Record[0], 2088 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2089 NextMetadataNo++); 2090 break; 2091 } 2092 case bitc::METADATA_BASIC_TYPE: { 2093 if (Record.size() != 6) 2094 return error("Invalid record"); 2095 2096 MetadataList.assignValue( 2097 GET_OR_DISTINCT(DIBasicType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 Record[3], Record[4], Record[5])), 2100 NextMetadataNo++); 2101 break; 2102 } 2103 case bitc::METADATA_DERIVED_TYPE: { 2104 if (Record.size() != 12) 2105 return error("Invalid record"); 2106 2107 MetadataList.assignValue( 2108 GET_OR_DISTINCT(DIDerivedType, Record[0], 2109 (Context, Record[1], getMDString(Record[2]), 2110 getMDOrNull(Record[3]), Record[4], 2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2112 Record[7], Record[8], Record[9], Record[10], 2113 getMDOrNull(Record[11]))), 2114 NextMetadataNo++); 2115 break; 2116 } 2117 case bitc::METADATA_COMPOSITE_TYPE: { 2118 if (Record.size() != 16) 2119 return error("Invalid record"); 2120 2121 MetadataList.assignValue( 2122 GET_OR_DISTINCT(DICompositeType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 getMDOrNull(Record[3]), Record[4], 2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2126 Record[7], Record[8], Record[9], Record[10], 2127 getMDOrNull(Record[11]), Record[12], 2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2129 getMDString(Record[15]))), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBROUTINE_TYPE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubroutineType, Record[0], 2139 (Context, Record[1], getMDOrNull(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 2144 case bitc::METADATA_MODULE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DIModule, Record[0], 2150 (Context, getMDOrNull(Record[1]), 2151 getMDString(Record[2]), getMDString(Record[3]), 2152 getMDString(Record[4]), getMDString(Record[5]))), 2153 NextMetadataNo++); 2154 break; 2155 } 2156 2157 case bitc::METADATA_FILE: { 2158 if (Record.size() != 3) 2159 return error("Invalid record"); 2160 2161 MetadataList.assignValue( 2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2163 getMDString(Record[2]))), 2164 NextMetadataNo++); 2165 break; 2166 } 2167 case bitc::METADATA_COMPILE_UNIT: { 2168 if (Record.size() < 14 || Record.size() > 16) 2169 return error("Invalid record"); 2170 2171 // Ignore Record[0], which indicates whether this compile unit is 2172 // distinct. It's always distinct. 2173 MetadataList.assignValue( 2174 DICompileUnit::getDistinct( 2175 Context, Record[1], getMDOrNull(Record[2]), 2176 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2177 Record[6], getMDString(Record[7]), Record[8], 2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2180 getMDOrNull(Record[13]), 2181 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2182 Record.size() <= 14 ? 0 : Record[14]), 2183 NextMetadataNo++); 2184 break; 2185 } 2186 case bitc::METADATA_SUBPROGRAM: { 2187 if (Record.size() != 18 && Record.size() != 19) 2188 return error("Invalid record"); 2189 2190 bool HasFn = Record.size() == 19; 2191 DISubprogram *SP = GET_OR_DISTINCT( 2192 DISubprogram, 2193 Record[0] || Record[8], // All definitions should be distinct. 2194 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2195 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2196 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2197 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2198 Record[14], getMDOrNull(Record[15 + HasFn]), 2199 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2200 MetadataList.assignValue(SP, NextMetadataNo++); 2201 2202 // Upgrade sp->function mapping to function->sp mapping. 2203 if (HasFn && Record[15]) { 2204 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2205 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2206 if (F->isMaterializable()) 2207 // Defer until materialized; unmaterialized functions may not have 2208 // metadata. 2209 FunctionsWithSPs[F] = SP; 2210 else if (!F->empty()) 2211 F->setSubprogram(SP); 2212 } 2213 } 2214 break; 2215 } 2216 case bitc::METADATA_LEXICAL_BLOCK: { 2217 if (Record.size() != 5) 2218 return error("Invalid record"); 2219 2220 MetadataList.assignValue( 2221 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2222 (Context, getMDOrNull(Record[1]), 2223 getMDOrNull(Record[2]), Record[3], Record[4])), 2224 NextMetadataNo++); 2225 break; 2226 } 2227 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2228 if (Record.size() != 4) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDOrNull(Record[2]), Record[3])), 2235 NextMetadataNo++); 2236 break; 2237 } 2238 case bitc::METADATA_NAMESPACE: { 2239 if (Record.size() != 5) 2240 return error("Invalid record"); 2241 2242 MetadataList.assignValue( 2243 GET_OR_DISTINCT(DINamespace, Record[0], 2244 (Context, getMDOrNull(Record[1]), 2245 getMDOrNull(Record[2]), getMDString(Record[3]), 2246 Record[4])), 2247 NextMetadataNo++); 2248 break; 2249 } 2250 case bitc::METADATA_MACRO: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MetadataList.assignValue( 2255 GET_OR_DISTINCT(DIMacro, Record[0], 2256 (Context, Record[1], Record[2], 2257 getMDString(Record[3]), getMDString(Record[4]))), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_MACRO_FILE: { 2262 if (Record.size() != 5) 2263 return error("Invalid record"); 2264 2265 MetadataList.assignValue( 2266 GET_OR_DISTINCT(DIMacroFile, Record[0], 2267 (Context, Record[1], Record[2], 2268 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2269 NextMetadataNo++); 2270 break; 2271 } 2272 case bitc::METADATA_TEMPLATE_TYPE: { 2273 if (Record.size() != 3) 2274 return error("Invalid record"); 2275 2276 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2277 Record[0], 2278 (Context, getMDString(Record[1]), 2279 getMDOrNull(Record[2]))), 2280 NextMetadataNo++); 2281 break; 2282 } 2283 case bitc::METADATA_TEMPLATE_VALUE: { 2284 if (Record.size() != 5) 2285 return error("Invalid record"); 2286 2287 MetadataList.assignValue( 2288 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2289 (Context, Record[1], getMDString(Record[2]), 2290 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_GLOBAL_VAR: { 2295 if (Record.size() != 11) 2296 return error("Invalid record"); 2297 2298 MetadataList.assignValue( 2299 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2300 (Context, getMDOrNull(Record[1]), 2301 getMDString(Record[2]), getMDString(Record[3]), 2302 getMDOrNull(Record[4]), Record[5], 2303 getMDOrNull(Record[6]), Record[7], Record[8], 2304 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2305 NextMetadataNo++); 2306 break; 2307 } 2308 case bitc::METADATA_LOCAL_VAR: { 2309 // 10th field is for the obseleted 'inlinedAt:' field. 2310 if (Record.size() < 8 || Record.size() > 10) 2311 return error("Invalid record"); 2312 2313 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2314 // DW_TAG_arg_variable. 2315 bool HasTag = Record.size() > 8; 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DILocalVariable, Record[0], 2318 (Context, getMDOrNull(Record[1 + HasTag]), 2319 getMDString(Record[2 + HasTag]), 2320 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2321 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2322 Record[7 + HasTag])), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_EXPRESSION: { 2327 if (Record.size() < 1) 2328 return error("Invalid record"); 2329 2330 MetadataList.assignValue( 2331 GET_OR_DISTINCT(DIExpression, Record[0], 2332 (Context, makeArrayRef(Record).slice(1))), 2333 NextMetadataNo++); 2334 break; 2335 } 2336 case bitc::METADATA_OBJC_PROPERTY: { 2337 if (Record.size() != 8) 2338 return error("Invalid record"); 2339 2340 MetadataList.assignValue( 2341 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2342 (Context, getMDString(Record[1]), 2343 getMDOrNull(Record[2]), Record[3], 2344 getMDString(Record[4]), getMDString(Record[5]), 2345 Record[6], getMDOrNull(Record[7]))), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_IMPORTED_ENTITY: { 2350 if (Record.size() != 6) 2351 return error("Invalid record"); 2352 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2355 (Context, Record[1], getMDOrNull(Record[2]), 2356 getMDOrNull(Record[3]), Record[4], 2357 getMDString(Record[5]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_STRING: { 2362 std::string String(Record.begin(), Record.end()); 2363 llvm::UpgradeMDStringConstant(String); 2364 Metadata *MD = MDString::get(Context, String); 2365 MetadataList.assignValue(MD, NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_KIND: { 2369 // Support older bitcode files that had METADATA_KIND records in a 2370 // block with METADATA_BLOCK_ID. 2371 if (std::error_code EC = parseMetadataKindRecord(Record)) 2372 return EC; 2373 break; 2374 } 2375 } 2376 } 2377 #undef GET_OR_DISTINCT 2378 } 2379 2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2381 std::error_code BitcodeReader::parseMetadataKinds() { 2382 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2383 return error("Invalid record"); 2384 2385 SmallVector<uint64_t, 64> Record; 2386 2387 // Read all the records. 2388 while (1) { 2389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2390 2391 switch (Entry.Kind) { 2392 case BitstreamEntry::SubBlock: // Handled for us already. 2393 case BitstreamEntry::Error: 2394 return error("Malformed block"); 2395 case BitstreamEntry::EndBlock: 2396 return std::error_code(); 2397 case BitstreamEntry::Record: 2398 // The interesting case. 2399 break; 2400 } 2401 2402 // Read a record. 2403 Record.clear(); 2404 unsigned Code = Stream.readRecord(Entry.ID, Record); 2405 switch (Code) { 2406 default: // Default behavior: ignore. 2407 break; 2408 case bitc::METADATA_KIND: { 2409 if (std::error_code EC = parseMetadataKindRecord(Record)) 2410 return EC; 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2418 /// encoding. 2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2420 if ((V & 1) == 0) 2421 return V >> 1; 2422 if (V != 1) 2423 return -(V >> 1); 2424 // There is no such thing as -0 with integers. "-0" really means MININT. 2425 return 1ULL << 63; 2426 } 2427 2428 /// Resolve all of the initializers for global values and aliases that we can. 2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2430 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2431 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2432 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2433 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2435 2436 GlobalInitWorklist.swap(GlobalInits); 2437 AliasInitWorklist.swap(AliasInits); 2438 FunctionPrefixWorklist.swap(FunctionPrefixes); 2439 FunctionPrologueWorklist.swap(FunctionPrologues); 2440 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2441 2442 while (!GlobalInitWorklist.empty()) { 2443 unsigned ValID = GlobalInitWorklist.back().second; 2444 if (ValID >= ValueList.size()) { 2445 // Not ready to resolve this yet, it requires something later in the file. 2446 GlobalInits.push_back(GlobalInitWorklist.back()); 2447 } else { 2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2449 GlobalInitWorklist.back().first->setInitializer(C); 2450 else 2451 return error("Expected a constant"); 2452 } 2453 GlobalInitWorklist.pop_back(); 2454 } 2455 2456 while (!AliasInitWorklist.empty()) { 2457 unsigned ValID = AliasInitWorklist.back().second; 2458 if (ValID >= ValueList.size()) { 2459 AliasInits.push_back(AliasInitWorklist.back()); 2460 } else { 2461 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2462 if (!C) 2463 return error("Expected a constant"); 2464 GlobalAlias *Alias = AliasInitWorklist.back().first; 2465 if (C->getType() != Alias->getType()) 2466 return error("Alias and aliasee types don't match"); 2467 Alias->setAliasee(C); 2468 } 2469 AliasInitWorklist.pop_back(); 2470 } 2471 2472 while (!FunctionPrefixWorklist.empty()) { 2473 unsigned ValID = FunctionPrefixWorklist.back().second; 2474 if (ValID >= ValueList.size()) { 2475 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2476 } else { 2477 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2478 FunctionPrefixWorklist.back().first->setPrefixData(C); 2479 else 2480 return error("Expected a constant"); 2481 } 2482 FunctionPrefixWorklist.pop_back(); 2483 } 2484 2485 while (!FunctionPrologueWorklist.empty()) { 2486 unsigned ValID = FunctionPrologueWorklist.back().second; 2487 if (ValID >= ValueList.size()) { 2488 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2489 } else { 2490 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2491 FunctionPrologueWorklist.back().first->setPrologueData(C); 2492 else 2493 return error("Expected a constant"); 2494 } 2495 FunctionPrologueWorklist.pop_back(); 2496 } 2497 2498 while (!FunctionPersonalityFnWorklist.empty()) { 2499 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2500 if (ValID >= ValueList.size()) { 2501 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2502 } else { 2503 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2504 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2505 else 2506 return error("Expected a constant"); 2507 } 2508 FunctionPersonalityFnWorklist.pop_back(); 2509 } 2510 2511 return std::error_code(); 2512 } 2513 2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2515 SmallVector<uint64_t, 8> Words(Vals.size()); 2516 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2517 BitcodeReader::decodeSignRotatedValue); 2518 2519 return APInt(TypeBits, Words); 2520 } 2521 2522 std::error_code BitcodeReader::parseConstants() { 2523 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2524 return error("Invalid record"); 2525 2526 SmallVector<uint64_t, 64> Record; 2527 2528 // Read all the records for this value table. 2529 Type *CurTy = Type::getInt32Ty(Context); 2530 unsigned NextCstNo = ValueList.size(); 2531 while (1) { 2532 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2533 2534 switch (Entry.Kind) { 2535 case BitstreamEntry::SubBlock: // Handled for us already. 2536 case BitstreamEntry::Error: 2537 return error("Malformed block"); 2538 case BitstreamEntry::EndBlock: 2539 if (NextCstNo != ValueList.size()) 2540 return error("Invalid ronstant reference"); 2541 2542 // Once all the constants have been read, go through and resolve forward 2543 // references. 2544 ValueList.resolveConstantForwardRefs(); 2545 return std::error_code(); 2546 case BitstreamEntry::Record: 2547 // The interesting case. 2548 break; 2549 } 2550 2551 // Read a record. 2552 Record.clear(); 2553 Value *V = nullptr; 2554 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2555 switch (BitCode) { 2556 default: // Default behavior: unknown constant 2557 case bitc::CST_CODE_UNDEF: // UNDEF 2558 V = UndefValue::get(CurTy); 2559 break; 2560 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2561 if (Record.empty()) 2562 return error("Invalid record"); 2563 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2564 return error("Invalid record"); 2565 CurTy = TypeList[Record[0]]; 2566 continue; // Skip the ValueList manipulation. 2567 case bitc::CST_CODE_NULL: // NULL 2568 V = Constant::getNullValue(CurTy); 2569 break; 2570 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2571 if (!CurTy->isIntegerTy() || Record.empty()) 2572 return error("Invalid record"); 2573 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2574 break; 2575 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2576 if (!CurTy->isIntegerTy() || Record.empty()) 2577 return error("Invalid record"); 2578 2579 APInt VInt = 2580 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2581 V = ConstantInt::get(Context, VInt); 2582 2583 break; 2584 } 2585 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 if (CurTy->isHalfTy()) 2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2590 APInt(16, (uint16_t)Record[0]))); 2591 else if (CurTy->isFloatTy()) 2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2593 APInt(32, (uint32_t)Record[0]))); 2594 else if (CurTy->isDoubleTy()) 2595 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2596 APInt(64, Record[0]))); 2597 else if (CurTy->isX86_FP80Ty()) { 2598 // Bits are not stored the same way as a normal i80 APInt, compensate. 2599 uint64_t Rearrange[2]; 2600 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2601 Rearrange[1] = Record[0] >> 48; 2602 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2603 APInt(80, Rearrange))); 2604 } else if (CurTy->isFP128Ty()) 2605 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2606 APInt(128, Record))); 2607 else if (CurTy->isPPC_FP128Ty()) 2608 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2609 APInt(128, Record))); 2610 else 2611 V = UndefValue::get(CurTy); 2612 break; 2613 } 2614 2615 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 2619 unsigned Size = Record.size(); 2620 SmallVector<Constant*, 16> Elts; 2621 2622 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2623 for (unsigned i = 0; i != Size; ++i) 2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2625 STy->getElementType(i))); 2626 V = ConstantStruct::get(STy, Elts); 2627 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2628 Type *EltTy = ATy->getElementType(); 2629 for (unsigned i = 0; i != Size; ++i) 2630 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2631 V = ConstantArray::get(ATy, Elts); 2632 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2633 Type *EltTy = VTy->getElementType(); 2634 for (unsigned i = 0; i != Size; ++i) 2635 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2636 V = ConstantVector::get(Elts); 2637 } else { 2638 V = UndefValue::get(CurTy); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_STRING: // STRING: [values] 2643 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2644 if (Record.empty()) 2645 return error("Invalid record"); 2646 2647 SmallString<16> Elts(Record.begin(), Record.end()); 2648 V = ConstantDataArray::getString(Context, Elts, 2649 BitCode == bitc::CST_CODE_CSTRING); 2650 break; 2651 } 2652 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2653 if (Record.empty()) 2654 return error("Invalid record"); 2655 2656 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2657 unsigned Size = Record.size(); 2658 2659 if (EltTy->isIntegerTy(8)) { 2660 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2661 if (isa<VectorType>(CurTy)) 2662 V = ConstantDataVector::get(Context, Elts); 2663 else 2664 V = ConstantDataArray::get(Context, Elts); 2665 } else if (EltTy->isIntegerTy(16)) { 2666 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2667 if (isa<VectorType>(CurTy)) 2668 V = ConstantDataVector::get(Context, Elts); 2669 else 2670 V = ConstantDataArray::get(Context, Elts); 2671 } else if (EltTy->isIntegerTy(32)) { 2672 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2673 if (isa<VectorType>(CurTy)) 2674 V = ConstantDataVector::get(Context, Elts); 2675 else 2676 V = ConstantDataArray::get(Context, Elts); 2677 } else if (EltTy->isIntegerTy(64)) { 2678 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2679 if (isa<VectorType>(CurTy)) 2680 V = ConstantDataVector::get(Context, Elts); 2681 else 2682 V = ConstantDataArray::get(Context, Elts); 2683 } else if (EltTy->isFloatTy()) { 2684 SmallVector<float, 16> Elts(Size); 2685 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2686 if (isa<VectorType>(CurTy)) 2687 V = ConstantDataVector::get(Context, Elts); 2688 else 2689 V = ConstantDataArray::get(Context, Elts); 2690 } else if (EltTy->isDoubleTy()) { 2691 SmallVector<double, 16> Elts(Size); 2692 std::transform(Record.begin(), Record.end(), Elts.begin(), 2693 BitsToDouble); 2694 if (isa<VectorType>(CurTy)) 2695 V = ConstantDataVector::get(Context, Elts); 2696 else 2697 V = ConstantDataArray::get(Context, Elts); 2698 } else { 2699 return error("Invalid type for value"); 2700 } 2701 break; 2702 } 2703 2704 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2705 if (Record.size() < 3) 2706 return error("Invalid record"); 2707 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2708 if (Opc < 0) { 2709 V = UndefValue::get(CurTy); // Unknown binop. 2710 } else { 2711 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2712 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2713 unsigned Flags = 0; 2714 if (Record.size() >= 4) { 2715 if (Opc == Instruction::Add || 2716 Opc == Instruction::Sub || 2717 Opc == Instruction::Mul || 2718 Opc == Instruction::Shl) { 2719 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2720 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2721 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2722 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2723 } else if (Opc == Instruction::SDiv || 2724 Opc == Instruction::UDiv || 2725 Opc == Instruction::LShr || 2726 Opc == Instruction::AShr) { 2727 if (Record[3] & (1 << bitc::PEO_EXACT)) 2728 Flags |= SDivOperator::IsExact; 2729 } 2730 } 2731 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2732 } 2733 break; 2734 } 2735 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2736 if (Record.size() < 3) 2737 return error("Invalid record"); 2738 int Opc = getDecodedCastOpcode(Record[0]); 2739 if (Opc < 0) { 2740 V = UndefValue::get(CurTy); // Unknown cast. 2741 } else { 2742 Type *OpTy = getTypeByID(Record[1]); 2743 if (!OpTy) 2744 return error("Invalid record"); 2745 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2746 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2747 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2748 } 2749 break; 2750 } 2751 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2752 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2753 unsigned OpNum = 0; 2754 Type *PointeeType = nullptr; 2755 if (Record.size() % 2) 2756 PointeeType = getTypeByID(Record[OpNum++]); 2757 SmallVector<Constant*, 16> Elts; 2758 while (OpNum != Record.size()) { 2759 Type *ElTy = getTypeByID(Record[OpNum++]); 2760 if (!ElTy) 2761 return error("Invalid record"); 2762 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2763 } 2764 2765 if (PointeeType && 2766 PointeeType != 2767 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2768 ->getElementType()) 2769 return error("Explicit gep operator type does not match pointee type " 2770 "of pointer operand"); 2771 2772 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2773 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2774 BitCode == 2775 bitc::CST_CODE_CE_INBOUNDS_GEP); 2776 break; 2777 } 2778 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2779 if (Record.size() < 3) 2780 return error("Invalid record"); 2781 2782 Type *SelectorTy = Type::getInt1Ty(Context); 2783 2784 // The selector might be an i1 or an <n x i1> 2785 // Get the type from the ValueList before getting a forward ref. 2786 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2787 if (Value *V = ValueList[Record[0]]) 2788 if (SelectorTy != V->getType()) 2789 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2790 2791 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2792 SelectorTy), 2793 ValueList.getConstantFwdRef(Record[1],CurTy), 2794 ValueList.getConstantFwdRef(Record[2],CurTy)); 2795 break; 2796 } 2797 case bitc::CST_CODE_CE_EXTRACTELT 2798 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2799 if (Record.size() < 3) 2800 return error("Invalid record"); 2801 VectorType *OpTy = 2802 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2803 if (!OpTy) 2804 return error("Invalid record"); 2805 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2806 Constant *Op1 = nullptr; 2807 if (Record.size() == 4) { 2808 Type *IdxTy = getTypeByID(Record[2]); 2809 if (!IdxTy) 2810 return error("Invalid record"); 2811 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2812 } else // TODO: Remove with llvm 4.0 2813 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2814 if (!Op1) 2815 return error("Invalid record"); 2816 V = ConstantExpr::getExtractElement(Op0, Op1); 2817 break; 2818 } 2819 case bitc::CST_CODE_CE_INSERTELT 2820 : { // CE_INSERTELT: [opval, opval, opty, opval] 2821 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2822 if (Record.size() < 3 || !OpTy) 2823 return error("Invalid record"); 2824 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2825 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2826 OpTy->getElementType()); 2827 Constant *Op2 = nullptr; 2828 if (Record.size() == 4) { 2829 Type *IdxTy = getTypeByID(Record[2]); 2830 if (!IdxTy) 2831 return error("Invalid record"); 2832 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2833 } else // TODO: Remove with llvm 4.0 2834 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2835 if (!Op2) 2836 return error("Invalid record"); 2837 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2838 break; 2839 } 2840 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2841 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2842 if (Record.size() < 3 || !OpTy) 2843 return error("Invalid record"); 2844 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2845 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2846 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2847 OpTy->getNumElements()); 2848 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2849 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2850 break; 2851 } 2852 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2853 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2854 VectorType *OpTy = 2855 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2856 if (Record.size() < 4 || !RTy || !OpTy) 2857 return error("Invalid record"); 2858 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2859 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2860 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2861 RTy->getNumElements()); 2862 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2863 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2864 break; 2865 } 2866 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2867 if (Record.size() < 4) 2868 return error("Invalid record"); 2869 Type *OpTy = getTypeByID(Record[0]); 2870 if (!OpTy) 2871 return error("Invalid record"); 2872 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2873 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2874 2875 if (OpTy->isFPOrFPVectorTy()) 2876 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2877 else 2878 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2879 break; 2880 } 2881 // This maintains backward compatibility, pre-asm dialect keywords. 2882 // FIXME: Remove with the 4.0 release. 2883 case bitc::CST_CODE_INLINEASM_OLD: { 2884 if (Record.size() < 2) 2885 return error("Invalid record"); 2886 std::string AsmStr, ConstrStr; 2887 bool HasSideEffects = Record[0] & 1; 2888 bool IsAlignStack = Record[0] >> 1; 2889 unsigned AsmStrSize = Record[1]; 2890 if (2+AsmStrSize >= Record.size()) 2891 return error("Invalid record"); 2892 unsigned ConstStrSize = Record[2+AsmStrSize]; 2893 if (3+AsmStrSize+ConstStrSize > Record.size()) 2894 return error("Invalid record"); 2895 2896 for (unsigned i = 0; i != AsmStrSize; ++i) 2897 AsmStr += (char)Record[2+i]; 2898 for (unsigned i = 0; i != ConstStrSize; ++i) 2899 ConstrStr += (char)Record[3+AsmStrSize+i]; 2900 PointerType *PTy = cast<PointerType>(CurTy); 2901 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2902 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2903 break; 2904 } 2905 // This version adds support for the asm dialect keywords (e.g., 2906 // inteldialect). 2907 case bitc::CST_CODE_INLINEASM: { 2908 if (Record.size() < 2) 2909 return error("Invalid record"); 2910 std::string AsmStr, ConstrStr; 2911 bool HasSideEffects = Record[0] & 1; 2912 bool IsAlignStack = (Record[0] >> 1) & 1; 2913 unsigned AsmDialect = Record[0] >> 2; 2914 unsigned AsmStrSize = Record[1]; 2915 if (2+AsmStrSize >= Record.size()) 2916 return error("Invalid record"); 2917 unsigned ConstStrSize = Record[2+AsmStrSize]; 2918 if (3+AsmStrSize+ConstStrSize > Record.size()) 2919 return error("Invalid record"); 2920 2921 for (unsigned i = 0; i != AsmStrSize; ++i) 2922 AsmStr += (char)Record[2+i]; 2923 for (unsigned i = 0; i != ConstStrSize; ++i) 2924 ConstrStr += (char)Record[3+AsmStrSize+i]; 2925 PointerType *PTy = cast<PointerType>(CurTy); 2926 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2927 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2928 InlineAsm::AsmDialect(AsmDialect)); 2929 break; 2930 } 2931 case bitc::CST_CODE_BLOCKADDRESS:{ 2932 if (Record.size() < 3) 2933 return error("Invalid record"); 2934 Type *FnTy = getTypeByID(Record[0]); 2935 if (!FnTy) 2936 return error("Invalid record"); 2937 Function *Fn = 2938 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2939 if (!Fn) 2940 return error("Invalid record"); 2941 2942 // If the function is already parsed we can insert the block address right 2943 // away. 2944 BasicBlock *BB; 2945 unsigned BBID = Record[2]; 2946 if (!BBID) 2947 // Invalid reference to entry block. 2948 return error("Invalid ID"); 2949 if (!Fn->empty()) { 2950 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2951 for (size_t I = 0, E = BBID; I != E; ++I) { 2952 if (BBI == BBE) 2953 return error("Invalid ID"); 2954 ++BBI; 2955 } 2956 BB = &*BBI; 2957 } else { 2958 // Otherwise insert a placeholder and remember it so it can be inserted 2959 // when the function is parsed. 2960 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2961 if (FwdBBs.empty()) 2962 BasicBlockFwdRefQueue.push_back(Fn); 2963 if (FwdBBs.size() < BBID + 1) 2964 FwdBBs.resize(BBID + 1); 2965 if (!FwdBBs[BBID]) 2966 FwdBBs[BBID] = BasicBlock::Create(Context); 2967 BB = FwdBBs[BBID]; 2968 } 2969 V = BlockAddress::get(Fn, BB); 2970 break; 2971 } 2972 } 2973 2974 ValueList.assignValue(V, NextCstNo); 2975 ++NextCstNo; 2976 } 2977 } 2978 2979 std::error_code BitcodeReader::parseUseLists() { 2980 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2981 return error("Invalid record"); 2982 2983 // Read all the records. 2984 SmallVector<uint64_t, 64> Record; 2985 while (1) { 2986 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2987 2988 switch (Entry.Kind) { 2989 case BitstreamEntry::SubBlock: // Handled for us already. 2990 case BitstreamEntry::Error: 2991 return error("Malformed block"); 2992 case BitstreamEntry::EndBlock: 2993 return std::error_code(); 2994 case BitstreamEntry::Record: 2995 // The interesting case. 2996 break; 2997 } 2998 2999 // Read a use list record. 3000 Record.clear(); 3001 bool IsBB = false; 3002 switch (Stream.readRecord(Entry.ID, Record)) { 3003 default: // Default behavior: unknown type. 3004 break; 3005 case bitc::USELIST_CODE_BB: 3006 IsBB = true; 3007 // fallthrough 3008 case bitc::USELIST_CODE_DEFAULT: { 3009 unsigned RecordLength = Record.size(); 3010 if (RecordLength < 3) 3011 // Records should have at least an ID and two indexes. 3012 return error("Invalid record"); 3013 unsigned ID = Record.back(); 3014 Record.pop_back(); 3015 3016 Value *V; 3017 if (IsBB) { 3018 assert(ID < FunctionBBs.size() && "Basic block not found"); 3019 V = FunctionBBs[ID]; 3020 } else 3021 V = ValueList[ID]; 3022 unsigned NumUses = 0; 3023 SmallDenseMap<const Use *, unsigned, 16> Order; 3024 for (const Use &U : V->materialized_uses()) { 3025 if (++NumUses > Record.size()) 3026 break; 3027 Order[&U] = Record[NumUses - 1]; 3028 } 3029 if (Order.size() != Record.size() || NumUses > Record.size()) 3030 // Mismatches can happen if the functions are being materialized lazily 3031 // (out-of-order), or a value has been upgraded. 3032 break; 3033 3034 V->sortUseList([&](const Use &L, const Use &R) { 3035 return Order.lookup(&L) < Order.lookup(&R); 3036 }); 3037 break; 3038 } 3039 } 3040 } 3041 } 3042 3043 /// When we see the block for metadata, remember where it is and then skip it. 3044 /// This lets us lazily deserialize the metadata. 3045 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3046 // Save the current stream state. 3047 uint64_t CurBit = Stream.GetCurrentBitNo(); 3048 DeferredMetadataInfo.push_back(CurBit); 3049 3050 // Skip over the block for now. 3051 if (Stream.SkipBlock()) 3052 return error("Invalid record"); 3053 return std::error_code(); 3054 } 3055 3056 std::error_code BitcodeReader::materializeMetadata() { 3057 for (uint64_t BitPos : DeferredMetadataInfo) { 3058 // Move the bit stream to the saved position. 3059 Stream.JumpToBit(BitPos); 3060 if (std::error_code EC = parseMetadata(true)) 3061 return EC; 3062 } 3063 DeferredMetadataInfo.clear(); 3064 return std::error_code(); 3065 } 3066 3067 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3068 3069 void BitcodeReader::saveMetadataList( 3070 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3071 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3072 Metadata *MD = MetadataList[ID]; 3073 auto *N = dyn_cast_or_null<MDNode>(MD); 3074 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3075 if (!OnlyTempMD || (N && N->isTemporary())) { 3076 // Will call this after materializing each function, in order to 3077 // handle remapping of the function's instructions/metadata. 3078 // See if we already have an entry in that case. 3079 if (OnlyTempMD && MetadataToIDs.count(MD)) { 3080 assert(MetadataToIDs[MD] == ID && "Inconsistent metadata value id"); 3081 continue; 3082 } 3083 MetadataToIDs[MD] = ID; 3084 } 3085 } 3086 } 3087 3088 /// When we see the block for a function body, remember where it is and then 3089 /// skip it. This lets us lazily deserialize the functions. 3090 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3091 // Get the function we are talking about. 3092 if (FunctionsWithBodies.empty()) 3093 return error("Insufficient function protos"); 3094 3095 Function *Fn = FunctionsWithBodies.back(); 3096 FunctionsWithBodies.pop_back(); 3097 3098 // Save the current stream state. 3099 uint64_t CurBit = Stream.GetCurrentBitNo(); 3100 assert( 3101 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3102 "Mismatch between VST and scanned function offsets"); 3103 DeferredFunctionInfo[Fn] = CurBit; 3104 3105 // Skip over the function block for now. 3106 if (Stream.SkipBlock()) 3107 return error("Invalid record"); 3108 return std::error_code(); 3109 } 3110 3111 std::error_code BitcodeReader::globalCleanup() { 3112 // Patch the initializers for globals and aliases up. 3113 resolveGlobalAndAliasInits(); 3114 if (!GlobalInits.empty() || !AliasInits.empty()) 3115 return error("Malformed global initializer set"); 3116 3117 // Look for intrinsic functions which need to be upgraded at some point 3118 for (Function &F : *TheModule) { 3119 Function *NewFn; 3120 if (UpgradeIntrinsicFunction(&F, NewFn)) 3121 UpgradedIntrinsics[&F] = NewFn; 3122 } 3123 3124 // Look for global variables which need to be renamed. 3125 for (GlobalVariable &GV : TheModule->globals()) 3126 UpgradeGlobalVariable(&GV); 3127 3128 // Force deallocation of memory for these vectors to favor the client that 3129 // want lazy deserialization. 3130 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3131 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3132 return std::error_code(); 3133 } 3134 3135 /// Support for lazy parsing of function bodies. This is required if we 3136 /// either have an old bitcode file without a VST forward declaration record, 3137 /// or if we have an anonymous function being materialized, since anonymous 3138 /// functions do not have a name and are therefore not in the VST. 3139 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3140 Stream.JumpToBit(NextUnreadBit); 3141 3142 if (Stream.AtEndOfStream()) 3143 return error("Could not find function in stream"); 3144 3145 if (!SeenFirstFunctionBody) 3146 return error("Trying to materialize functions before seeing function blocks"); 3147 3148 // An old bitcode file with the symbol table at the end would have 3149 // finished the parse greedily. 3150 assert(SeenValueSymbolTable); 3151 3152 SmallVector<uint64_t, 64> Record; 3153 3154 while (1) { 3155 BitstreamEntry Entry = Stream.advance(); 3156 switch (Entry.Kind) { 3157 default: 3158 return error("Expect SubBlock"); 3159 case BitstreamEntry::SubBlock: 3160 switch (Entry.ID) { 3161 default: 3162 return error("Expect function block"); 3163 case bitc::FUNCTION_BLOCK_ID: 3164 if (std::error_code EC = rememberAndSkipFunctionBody()) 3165 return EC; 3166 NextUnreadBit = Stream.GetCurrentBitNo(); 3167 return std::error_code(); 3168 } 3169 } 3170 } 3171 } 3172 3173 std::error_code BitcodeReader::parseBitcodeVersion() { 3174 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3175 return error("Invalid record"); 3176 3177 // Read all the records. 3178 SmallVector<uint64_t, 64> Record; 3179 while (1) { 3180 BitstreamEntry Entry = Stream.advance(); 3181 3182 switch (Entry.Kind) { 3183 default: 3184 case BitstreamEntry::Error: 3185 return error("Malformed block"); 3186 case BitstreamEntry::EndBlock: 3187 return std::error_code(); 3188 case BitstreamEntry::Record: 3189 // The interesting case. 3190 break; 3191 } 3192 3193 // Read a record. 3194 Record.clear(); 3195 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3196 switch (BitCode) { 3197 default: // Default behavior: reject 3198 return error("Invalid value"); 3199 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3200 // N] 3201 convertToString(Record, 0, ProducerIdentification); 3202 break; 3203 } 3204 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3205 unsigned epoch = (unsigned)Record[0]; 3206 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3207 return error( 3208 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3209 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3210 } 3211 } 3212 } 3213 } 3214 } 3215 3216 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3217 bool ShouldLazyLoadMetadata) { 3218 if (ResumeBit) 3219 Stream.JumpToBit(ResumeBit); 3220 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3221 return error("Invalid record"); 3222 3223 SmallVector<uint64_t, 64> Record; 3224 std::vector<std::string> SectionTable; 3225 std::vector<std::string> GCTable; 3226 3227 // Read all the records for this module. 3228 while (1) { 3229 BitstreamEntry Entry = Stream.advance(); 3230 3231 switch (Entry.Kind) { 3232 case BitstreamEntry::Error: 3233 return error("Malformed block"); 3234 case BitstreamEntry::EndBlock: 3235 return globalCleanup(); 3236 3237 case BitstreamEntry::SubBlock: 3238 switch (Entry.ID) { 3239 default: // Skip unknown content. 3240 if (Stream.SkipBlock()) 3241 return error("Invalid record"); 3242 break; 3243 case bitc::BLOCKINFO_BLOCK_ID: 3244 if (Stream.ReadBlockInfoBlock()) 3245 return error("Malformed block"); 3246 break; 3247 case bitc::PARAMATTR_BLOCK_ID: 3248 if (std::error_code EC = parseAttributeBlock()) 3249 return EC; 3250 break; 3251 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3252 if (std::error_code EC = parseAttributeGroupBlock()) 3253 return EC; 3254 break; 3255 case bitc::TYPE_BLOCK_ID_NEW: 3256 if (std::error_code EC = parseTypeTable()) 3257 return EC; 3258 break; 3259 case bitc::VALUE_SYMTAB_BLOCK_ID: 3260 if (!SeenValueSymbolTable) { 3261 // Either this is an old form VST without function index and an 3262 // associated VST forward declaration record (which would have caused 3263 // the VST to be jumped to and parsed before it was encountered 3264 // normally in the stream), or there were no function blocks to 3265 // trigger an earlier parsing of the VST. 3266 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3267 if (std::error_code EC = parseValueSymbolTable()) 3268 return EC; 3269 SeenValueSymbolTable = true; 3270 } else { 3271 // We must have had a VST forward declaration record, which caused 3272 // the parser to jump to and parse the VST earlier. 3273 assert(VSTOffset > 0); 3274 if (Stream.SkipBlock()) 3275 return error("Invalid record"); 3276 } 3277 break; 3278 case bitc::CONSTANTS_BLOCK_ID: 3279 if (std::error_code EC = parseConstants()) 3280 return EC; 3281 if (std::error_code EC = resolveGlobalAndAliasInits()) 3282 return EC; 3283 break; 3284 case bitc::METADATA_BLOCK_ID: 3285 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3286 if (std::error_code EC = rememberAndSkipMetadata()) 3287 return EC; 3288 break; 3289 } 3290 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3291 if (std::error_code EC = parseMetadata(true)) 3292 return EC; 3293 break; 3294 case bitc::METADATA_KIND_BLOCK_ID: 3295 if (std::error_code EC = parseMetadataKinds()) 3296 return EC; 3297 break; 3298 case bitc::FUNCTION_BLOCK_ID: 3299 // If this is the first function body we've seen, reverse the 3300 // FunctionsWithBodies list. 3301 if (!SeenFirstFunctionBody) { 3302 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3303 if (std::error_code EC = globalCleanup()) 3304 return EC; 3305 SeenFirstFunctionBody = true; 3306 } 3307 3308 if (VSTOffset > 0) { 3309 // If we have a VST forward declaration record, make sure we 3310 // parse the VST now if we haven't already. It is needed to 3311 // set up the DeferredFunctionInfo vector for lazy reading. 3312 if (!SeenValueSymbolTable) { 3313 if (std::error_code EC = 3314 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3315 return EC; 3316 SeenValueSymbolTable = true; 3317 // Fall through so that we record the NextUnreadBit below. 3318 // This is necessary in case we have an anonymous function that 3319 // is later materialized. Since it will not have a VST entry we 3320 // need to fall back to the lazy parse to find its offset. 3321 } else { 3322 // If we have a VST forward declaration record, but have already 3323 // parsed the VST (just above, when the first function body was 3324 // encountered here), then we are resuming the parse after 3325 // materializing functions. The ResumeBit points to the 3326 // start of the last function block recorded in the 3327 // DeferredFunctionInfo map. Skip it. 3328 if (Stream.SkipBlock()) 3329 return error("Invalid record"); 3330 continue; 3331 } 3332 } 3333 3334 // Support older bitcode files that did not have the function 3335 // index in the VST, nor a VST forward declaration record, as 3336 // well as anonymous functions that do not have VST entries. 3337 // Build the DeferredFunctionInfo vector on the fly. 3338 if (std::error_code EC = rememberAndSkipFunctionBody()) 3339 return EC; 3340 3341 // Suspend parsing when we reach the function bodies. Subsequent 3342 // materialization calls will resume it when necessary. If the bitcode 3343 // file is old, the symbol table will be at the end instead and will not 3344 // have been seen yet. In this case, just finish the parse now. 3345 if (SeenValueSymbolTable) { 3346 NextUnreadBit = Stream.GetCurrentBitNo(); 3347 return std::error_code(); 3348 } 3349 break; 3350 case bitc::USELIST_BLOCK_ID: 3351 if (std::error_code EC = parseUseLists()) 3352 return EC; 3353 break; 3354 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3355 if (std::error_code EC = parseOperandBundleTags()) 3356 return EC; 3357 break; 3358 } 3359 continue; 3360 3361 case BitstreamEntry::Record: 3362 // The interesting case. 3363 break; 3364 } 3365 3366 3367 // Read a record. 3368 auto BitCode = Stream.readRecord(Entry.ID, Record); 3369 switch (BitCode) { 3370 default: break; // Default behavior, ignore unknown content. 3371 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3372 if (Record.size() < 1) 3373 return error("Invalid record"); 3374 // Only version #0 and #1 are supported so far. 3375 unsigned module_version = Record[0]; 3376 switch (module_version) { 3377 default: 3378 return error("Invalid value"); 3379 case 0: 3380 UseRelativeIDs = false; 3381 break; 3382 case 1: 3383 UseRelativeIDs = true; 3384 break; 3385 } 3386 break; 3387 } 3388 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3389 std::string S; 3390 if (convertToString(Record, 0, S)) 3391 return error("Invalid record"); 3392 TheModule->setTargetTriple(S); 3393 break; 3394 } 3395 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3396 std::string S; 3397 if (convertToString(Record, 0, S)) 3398 return error("Invalid record"); 3399 TheModule->setDataLayout(S); 3400 break; 3401 } 3402 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3403 std::string S; 3404 if (convertToString(Record, 0, S)) 3405 return error("Invalid record"); 3406 TheModule->setModuleInlineAsm(S); 3407 break; 3408 } 3409 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3410 // FIXME: Remove in 4.0. 3411 std::string S; 3412 if (convertToString(Record, 0, S)) 3413 return error("Invalid record"); 3414 // Ignore value. 3415 break; 3416 } 3417 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3418 std::string S; 3419 if (convertToString(Record, 0, S)) 3420 return error("Invalid record"); 3421 SectionTable.push_back(S); 3422 break; 3423 } 3424 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3425 std::string S; 3426 if (convertToString(Record, 0, S)) 3427 return error("Invalid record"); 3428 GCTable.push_back(S); 3429 break; 3430 } 3431 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3432 if (Record.size() < 2) 3433 return error("Invalid record"); 3434 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3435 unsigned ComdatNameSize = Record[1]; 3436 std::string ComdatName; 3437 ComdatName.reserve(ComdatNameSize); 3438 for (unsigned i = 0; i != ComdatNameSize; ++i) 3439 ComdatName += (char)Record[2 + i]; 3440 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3441 C->setSelectionKind(SK); 3442 ComdatList.push_back(C); 3443 break; 3444 } 3445 // GLOBALVAR: [pointer type, isconst, initid, 3446 // linkage, alignment, section, visibility, threadlocal, 3447 // unnamed_addr, externally_initialized, dllstorageclass, 3448 // comdat] 3449 case bitc::MODULE_CODE_GLOBALVAR: { 3450 if (Record.size() < 6) 3451 return error("Invalid record"); 3452 Type *Ty = getTypeByID(Record[0]); 3453 if (!Ty) 3454 return error("Invalid record"); 3455 bool isConstant = Record[1] & 1; 3456 bool explicitType = Record[1] & 2; 3457 unsigned AddressSpace; 3458 if (explicitType) { 3459 AddressSpace = Record[1] >> 2; 3460 } else { 3461 if (!Ty->isPointerTy()) 3462 return error("Invalid type for value"); 3463 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3464 Ty = cast<PointerType>(Ty)->getElementType(); 3465 } 3466 3467 uint64_t RawLinkage = Record[3]; 3468 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3469 unsigned Alignment; 3470 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3471 return EC; 3472 std::string Section; 3473 if (Record[5]) { 3474 if (Record[5]-1 >= SectionTable.size()) 3475 return error("Invalid ID"); 3476 Section = SectionTable[Record[5]-1]; 3477 } 3478 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3479 // Local linkage must have default visibility. 3480 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3481 // FIXME: Change to an error if non-default in 4.0. 3482 Visibility = getDecodedVisibility(Record[6]); 3483 3484 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3485 if (Record.size() > 7) 3486 TLM = getDecodedThreadLocalMode(Record[7]); 3487 3488 bool UnnamedAddr = false; 3489 if (Record.size() > 8) 3490 UnnamedAddr = Record[8]; 3491 3492 bool ExternallyInitialized = false; 3493 if (Record.size() > 9) 3494 ExternallyInitialized = Record[9]; 3495 3496 GlobalVariable *NewGV = 3497 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3498 TLM, AddressSpace, ExternallyInitialized); 3499 NewGV->setAlignment(Alignment); 3500 if (!Section.empty()) 3501 NewGV->setSection(Section); 3502 NewGV->setVisibility(Visibility); 3503 NewGV->setUnnamedAddr(UnnamedAddr); 3504 3505 if (Record.size() > 10) 3506 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3507 else 3508 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3509 3510 ValueList.push_back(NewGV); 3511 3512 // Remember which value to use for the global initializer. 3513 if (unsigned InitID = Record[2]) 3514 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3515 3516 if (Record.size() > 11) { 3517 if (unsigned ComdatID = Record[11]) { 3518 if (ComdatID > ComdatList.size()) 3519 return error("Invalid global variable comdat ID"); 3520 NewGV->setComdat(ComdatList[ComdatID - 1]); 3521 } 3522 } else if (hasImplicitComdat(RawLinkage)) { 3523 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3524 } 3525 break; 3526 } 3527 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3528 // alignment, section, visibility, gc, unnamed_addr, 3529 // prologuedata, dllstorageclass, comdat, prefixdata] 3530 case bitc::MODULE_CODE_FUNCTION: { 3531 if (Record.size() < 8) 3532 return error("Invalid record"); 3533 Type *Ty = getTypeByID(Record[0]); 3534 if (!Ty) 3535 return error("Invalid record"); 3536 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3537 Ty = PTy->getElementType(); 3538 auto *FTy = dyn_cast<FunctionType>(Ty); 3539 if (!FTy) 3540 return error("Invalid type for value"); 3541 auto CC = static_cast<CallingConv::ID>(Record[1]); 3542 if (CC & ~CallingConv::MaxID) 3543 return error("Invalid calling convention ID"); 3544 3545 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3546 "", TheModule); 3547 3548 Func->setCallingConv(CC); 3549 bool isProto = Record[2]; 3550 uint64_t RawLinkage = Record[3]; 3551 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3552 Func->setAttributes(getAttributes(Record[4])); 3553 3554 unsigned Alignment; 3555 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3556 return EC; 3557 Func->setAlignment(Alignment); 3558 if (Record[6]) { 3559 if (Record[6]-1 >= SectionTable.size()) 3560 return error("Invalid ID"); 3561 Func->setSection(SectionTable[Record[6]-1]); 3562 } 3563 // Local linkage must have default visibility. 3564 if (!Func->hasLocalLinkage()) 3565 // FIXME: Change to an error if non-default in 4.0. 3566 Func->setVisibility(getDecodedVisibility(Record[7])); 3567 if (Record.size() > 8 && Record[8]) { 3568 if (Record[8]-1 >= GCTable.size()) 3569 return error("Invalid ID"); 3570 Func->setGC(GCTable[Record[8]-1].c_str()); 3571 } 3572 bool UnnamedAddr = false; 3573 if (Record.size() > 9) 3574 UnnamedAddr = Record[9]; 3575 Func->setUnnamedAddr(UnnamedAddr); 3576 if (Record.size() > 10 && Record[10] != 0) 3577 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3578 3579 if (Record.size() > 11) 3580 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3581 else 3582 upgradeDLLImportExportLinkage(Func, RawLinkage); 3583 3584 if (Record.size() > 12) { 3585 if (unsigned ComdatID = Record[12]) { 3586 if (ComdatID > ComdatList.size()) 3587 return error("Invalid function comdat ID"); 3588 Func->setComdat(ComdatList[ComdatID - 1]); 3589 } 3590 } else if (hasImplicitComdat(RawLinkage)) { 3591 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3592 } 3593 3594 if (Record.size() > 13 && Record[13] != 0) 3595 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3596 3597 if (Record.size() > 14 && Record[14] != 0) 3598 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3599 3600 ValueList.push_back(Func); 3601 3602 // If this is a function with a body, remember the prototype we are 3603 // creating now, so that we can match up the body with them later. 3604 if (!isProto) { 3605 Func->setIsMaterializable(true); 3606 FunctionsWithBodies.push_back(Func); 3607 DeferredFunctionInfo[Func] = 0; 3608 } 3609 break; 3610 } 3611 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3612 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3613 case bitc::MODULE_CODE_ALIAS: 3614 case bitc::MODULE_CODE_ALIAS_OLD: { 3615 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3616 if (Record.size() < (3 + (unsigned)NewRecord)) 3617 return error("Invalid record"); 3618 unsigned OpNum = 0; 3619 Type *Ty = getTypeByID(Record[OpNum++]); 3620 if (!Ty) 3621 return error("Invalid record"); 3622 3623 unsigned AddrSpace; 3624 if (!NewRecord) { 3625 auto *PTy = dyn_cast<PointerType>(Ty); 3626 if (!PTy) 3627 return error("Invalid type for value"); 3628 Ty = PTy->getElementType(); 3629 AddrSpace = PTy->getAddressSpace(); 3630 } else { 3631 AddrSpace = Record[OpNum++]; 3632 } 3633 3634 auto Val = Record[OpNum++]; 3635 auto Linkage = Record[OpNum++]; 3636 auto *NewGA = GlobalAlias::create( 3637 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3638 // Old bitcode files didn't have visibility field. 3639 // Local linkage must have default visibility. 3640 if (OpNum != Record.size()) { 3641 auto VisInd = OpNum++; 3642 if (!NewGA->hasLocalLinkage()) 3643 // FIXME: Change to an error if non-default in 4.0. 3644 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3645 } 3646 if (OpNum != Record.size()) 3647 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3648 else 3649 upgradeDLLImportExportLinkage(NewGA, Linkage); 3650 if (OpNum != Record.size()) 3651 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3652 if (OpNum != Record.size()) 3653 NewGA->setUnnamedAddr(Record[OpNum++]); 3654 ValueList.push_back(NewGA); 3655 AliasInits.push_back(std::make_pair(NewGA, Val)); 3656 break; 3657 } 3658 /// MODULE_CODE_PURGEVALS: [numvals] 3659 case bitc::MODULE_CODE_PURGEVALS: 3660 // Trim down the value list to the specified size. 3661 if (Record.size() < 1 || Record[0] > ValueList.size()) 3662 return error("Invalid record"); 3663 ValueList.shrinkTo(Record[0]); 3664 break; 3665 /// MODULE_CODE_VSTOFFSET: [offset] 3666 case bitc::MODULE_CODE_VSTOFFSET: 3667 if (Record.size() < 1) 3668 return error("Invalid record"); 3669 VSTOffset = Record[0]; 3670 break; 3671 /// MODULE_CODE_METADATA_VALUES: [numvals] 3672 case bitc::MODULE_CODE_METADATA_VALUES: 3673 if (Record.size() < 1) 3674 return error("Invalid record"); 3675 assert(!IsMetadataMaterialized); 3676 // This record contains the number of metadata values in the module-level 3677 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3678 // a postpass, where we will parse function-level metadata first. 3679 // This is needed because the ids of metadata are assigned implicitly 3680 // based on their ordering in the bitcode, with the function-level 3681 // metadata ids starting after the module-level metadata ids. Otherwise, 3682 // we would have to parse the module-level metadata block to prime the 3683 // MetadataList when we are lazy loading metadata during function 3684 // importing. Initialize the MetadataList size here based on the 3685 // record value, regardless of whether we are doing lazy metadata 3686 // loading, so that we have consistent handling and assertion 3687 // checking in parseMetadata for module-level metadata. 3688 NumModuleMDs = Record[0]; 3689 SeenModuleValuesRecord = true; 3690 assert(MetadataList.size() == 0); 3691 MetadataList.resize(NumModuleMDs); 3692 break; 3693 } 3694 Record.clear(); 3695 } 3696 } 3697 3698 /// Helper to read the header common to all bitcode files. 3699 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3700 // Sniff for the signature. 3701 if (Stream.Read(8) != 'B' || 3702 Stream.Read(8) != 'C' || 3703 Stream.Read(4) != 0x0 || 3704 Stream.Read(4) != 0xC || 3705 Stream.Read(4) != 0xE || 3706 Stream.Read(4) != 0xD) 3707 return false; 3708 return true; 3709 } 3710 3711 std::error_code 3712 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3713 Module *M, bool ShouldLazyLoadMetadata) { 3714 TheModule = M; 3715 3716 if (std::error_code EC = initStream(std::move(Streamer))) 3717 return EC; 3718 3719 // Sniff for the signature. 3720 if (!hasValidBitcodeHeader(Stream)) 3721 return error("Invalid bitcode signature"); 3722 3723 // We expect a number of well-defined blocks, though we don't necessarily 3724 // need to understand them all. 3725 while (1) { 3726 if (Stream.AtEndOfStream()) { 3727 // We didn't really read a proper Module. 3728 return error("Malformed IR file"); 3729 } 3730 3731 BitstreamEntry Entry = 3732 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3733 3734 if (Entry.Kind != BitstreamEntry::SubBlock) 3735 return error("Malformed block"); 3736 3737 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3738 parseBitcodeVersion(); 3739 continue; 3740 } 3741 3742 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3743 return parseModule(0, ShouldLazyLoadMetadata); 3744 3745 if (Stream.SkipBlock()) 3746 return error("Invalid record"); 3747 } 3748 } 3749 3750 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3751 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3752 return error("Invalid record"); 3753 3754 SmallVector<uint64_t, 64> Record; 3755 3756 std::string Triple; 3757 // Read all the records for this module. 3758 while (1) { 3759 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3760 3761 switch (Entry.Kind) { 3762 case BitstreamEntry::SubBlock: // Handled for us already. 3763 case BitstreamEntry::Error: 3764 return error("Malformed block"); 3765 case BitstreamEntry::EndBlock: 3766 return Triple; 3767 case BitstreamEntry::Record: 3768 // The interesting case. 3769 break; 3770 } 3771 3772 // Read a record. 3773 switch (Stream.readRecord(Entry.ID, Record)) { 3774 default: break; // Default behavior, ignore unknown content. 3775 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3776 std::string S; 3777 if (convertToString(Record, 0, S)) 3778 return error("Invalid record"); 3779 Triple = S; 3780 break; 3781 } 3782 } 3783 Record.clear(); 3784 } 3785 llvm_unreachable("Exit infinite loop"); 3786 } 3787 3788 ErrorOr<std::string> BitcodeReader::parseTriple() { 3789 if (std::error_code EC = initStream(nullptr)) 3790 return EC; 3791 3792 // Sniff for the signature. 3793 if (!hasValidBitcodeHeader(Stream)) 3794 return error("Invalid bitcode signature"); 3795 3796 // We expect a number of well-defined blocks, though we don't necessarily 3797 // need to understand them all. 3798 while (1) { 3799 BitstreamEntry Entry = Stream.advance(); 3800 3801 switch (Entry.Kind) { 3802 case BitstreamEntry::Error: 3803 return error("Malformed block"); 3804 case BitstreamEntry::EndBlock: 3805 return std::error_code(); 3806 3807 case BitstreamEntry::SubBlock: 3808 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3809 return parseModuleTriple(); 3810 3811 // Ignore other sub-blocks. 3812 if (Stream.SkipBlock()) 3813 return error("Malformed block"); 3814 continue; 3815 3816 case BitstreamEntry::Record: 3817 Stream.skipRecord(Entry.ID); 3818 continue; 3819 } 3820 } 3821 } 3822 3823 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3824 if (std::error_code EC = initStream(nullptr)) 3825 return EC; 3826 3827 // Sniff for the signature. 3828 if (!hasValidBitcodeHeader(Stream)) 3829 return error("Invalid bitcode signature"); 3830 3831 // We expect a number of well-defined blocks, though we don't necessarily 3832 // need to understand them all. 3833 while (1) { 3834 BitstreamEntry Entry = Stream.advance(); 3835 switch (Entry.Kind) { 3836 case BitstreamEntry::Error: 3837 return error("Malformed block"); 3838 case BitstreamEntry::EndBlock: 3839 return std::error_code(); 3840 3841 case BitstreamEntry::SubBlock: 3842 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3843 if (std::error_code EC = parseBitcodeVersion()) 3844 return EC; 3845 return ProducerIdentification; 3846 } 3847 // Ignore other sub-blocks. 3848 if (Stream.SkipBlock()) 3849 return error("Malformed block"); 3850 continue; 3851 case BitstreamEntry::Record: 3852 Stream.skipRecord(Entry.ID); 3853 continue; 3854 } 3855 } 3856 } 3857 3858 /// Parse metadata attachments. 3859 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3860 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3861 return error("Invalid record"); 3862 3863 SmallVector<uint64_t, 64> Record; 3864 while (1) { 3865 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3866 3867 switch (Entry.Kind) { 3868 case BitstreamEntry::SubBlock: // Handled for us already. 3869 case BitstreamEntry::Error: 3870 return error("Malformed block"); 3871 case BitstreamEntry::EndBlock: 3872 return std::error_code(); 3873 case BitstreamEntry::Record: 3874 // The interesting case. 3875 break; 3876 } 3877 3878 // Read a metadata attachment record. 3879 Record.clear(); 3880 switch (Stream.readRecord(Entry.ID, Record)) { 3881 default: // Default behavior: ignore. 3882 break; 3883 case bitc::METADATA_ATTACHMENT: { 3884 unsigned RecordLength = Record.size(); 3885 if (Record.empty()) 3886 return error("Invalid record"); 3887 if (RecordLength % 2 == 0) { 3888 // A function attachment. 3889 for (unsigned I = 0; I != RecordLength; I += 2) { 3890 auto K = MDKindMap.find(Record[I]); 3891 if (K == MDKindMap.end()) 3892 return error("Invalid ID"); 3893 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3894 F.setMetadata(K->second, cast<MDNode>(MD)); 3895 } 3896 continue; 3897 } 3898 3899 // An instruction attachment. 3900 Instruction *Inst = InstructionList[Record[0]]; 3901 for (unsigned i = 1; i != RecordLength; i = i+2) { 3902 unsigned Kind = Record[i]; 3903 DenseMap<unsigned, unsigned>::iterator I = 3904 MDKindMap.find(Kind); 3905 if (I == MDKindMap.end()) 3906 return error("Invalid ID"); 3907 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3908 if (isa<LocalAsMetadata>(Node)) 3909 // Drop the attachment. This used to be legal, but there's no 3910 // upgrade path. 3911 break; 3912 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3913 if (I->second == LLVMContext::MD_tbaa) 3914 InstsWithTBAATag.push_back(Inst); 3915 } 3916 break; 3917 } 3918 } 3919 } 3920 } 3921 3922 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3923 LLVMContext &Context = PtrType->getContext(); 3924 if (!isa<PointerType>(PtrType)) 3925 return error(Context, "Load/Store operand is not a pointer type"); 3926 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3927 3928 if (ValType && ValType != ElemType) 3929 return error(Context, "Explicit load/store type does not match pointee " 3930 "type of pointer operand"); 3931 if (!PointerType::isLoadableOrStorableType(ElemType)) 3932 return error(Context, "Cannot load/store from pointer"); 3933 return std::error_code(); 3934 } 3935 3936 /// Lazily parse the specified function body block. 3937 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3938 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3939 return error("Invalid record"); 3940 3941 InstructionList.clear(); 3942 unsigned ModuleValueListSize = ValueList.size(); 3943 unsigned ModuleMetadataListSize = MetadataList.size(); 3944 3945 // Add all the function arguments to the value table. 3946 for (Argument &I : F->args()) 3947 ValueList.push_back(&I); 3948 3949 unsigned NextValueNo = ValueList.size(); 3950 BasicBlock *CurBB = nullptr; 3951 unsigned CurBBNo = 0; 3952 3953 DebugLoc LastLoc; 3954 auto getLastInstruction = [&]() -> Instruction * { 3955 if (CurBB && !CurBB->empty()) 3956 return &CurBB->back(); 3957 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3958 !FunctionBBs[CurBBNo - 1]->empty()) 3959 return &FunctionBBs[CurBBNo - 1]->back(); 3960 return nullptr; 3961 }; 3962 3963 std::vector<OperandBundleDef> OperandBundles; 3964 3965 // Read all the records. 3966 SmallVector<uint64_t, 64> Record; 3967 while (1) { 3968 BitstreamEntry Entry = Stream.advance(); 3969 3970 switch (Entry.Kind) { 3971 case BitstreamEntry::Error: 3972 return error("Malformed block"); 3973 case BitstreamEntry::EndBlock: 3974 goto OutOfRecordLoop; 3975 3976 case BitstreamEntry::SubBlock: 3977 switch (Entry.ID) { 3978 default: // Skip unknown content. 3979 if (Stream.SkipBlock()) 3980 return error("Invalid record"); 3981 break; 3982 case bitc::CONSTANTS_BLOCK_ID: 3983 if (std::error_code EC = parseConstants()) 3984 return EC; 3985 NextValueNo = ValueList.size(); 3986 break; 3987 case bitc::VALUE_SYMTAB_BLOCK_ID: 3988 if (std::error_code EC = parseValueSymbolTable()) 3989 return EC; 3990 break; 3991 case bitc::METADATA_ATTACHMENT_ID: 3992 if (std::error_code EC = parseMetadataAttachment(*F)) 3993 return EC; 3994 break; 3995 case bitc::METADATA_BLOCK_ID: 3996 if (std::error_code EC = parseMetadata()) 3997 return EC; 3998 break; 3999 case bitc::USELIST_BLOCK_ID: 4000 if (std::error_code EC = parseUseLists()) 4001 return EC; 4002 break; 4003 } 4004 continue; 4005 4006 case BitstreamEntry::Record: 4007 // The interesting case. 4008 break; 4009 } 4010 4011 // Read a record. 4012 Record.clear(); 4013 Instruction *I = nullptr; 4014 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4015 switch (BitCode) { 4016 default: // Default behavior: reject 4017 return error("Invalid value"); 4018 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4019 if (Record.size() < 1 || Record[0] == 0) 4020 return error("Invalid record"); 4021 // Create all the basic blocks for the function. 4022 FunctionBBs.resize(Record[0]); 4023 4024 // See if anything took the address of blocks in this function. 4025 auto BBFRI = BasicBlockFwdRefs.find(F); 4026 if (BBFRI == BasicBlockFwdRefs.end()) { 4027 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4028 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4029 } else { 4030 auto &BBRefs = BBFRI->second; 4031 // Check for invalid basic block references. 4032 if (BBRefs.size() > FunctionBBs.size()) 4033 return error("Invalid ID"); 4034 assert(!BBRefs.empty() && "Unexpected empty array"); 4035 assert(!BBRefs.front() && "Invalid reference to entry block"); 4036 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4037 ++I) 4038 if (I < RE && BBRefs[I]) { 4039 BBRefs[I]->insertInto(F); 4040 FunctionBBs[I] = BBRefs[I]; 4041 } else { 4042 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4043 } 4044 4045 // Erase from the table. 4046 BasicBlockFwdRefs.erase(BBFRI); 4047 } 4048 4049 CurBB = FunctionBBs[0]; 4050 continue; 4051 } 4052 4053 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4054 // This record indicates that the last instruction is at the same 4055 // location as the previous instruction with a location. 4056 I = getLastInstruction(); 4057 4058 if (!I) 4059 return error("Invalid record"); 4060 I->setDebugLoc(LastLoc); 4061 I = nullptr; 4062 continue; 4063 4064 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4065 I = getLastInstruction(); 4066 if (!I || Record.size() < 4) 4067 return error("Invalid record"); 4068 4069 unsigned Line = Record[0], Col = Record[1]; 4070 unsigned ScopeID = Record[2], IAID = Record[3]; 4071 4072 MDNode *Scope = nullptr, *IA = nullptr; 4073 if (ScopeID) 4074 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4075 if (IAID) 4076 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4077 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4078 I->setDebugLoc(LastLoc); 4079 I = nullptr; 4080 continue; 4081 } 4082 4083 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4084 unsigned OpNum = 0; 4085 Value *LHS, *RHS; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4087 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4088 OpNum+1 > Record.size()) 4089 return error("Invalid record"); 4090 4091 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4092 if (Opc == -1) 4093 return error("Invalid record"); 4094 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4095 InstructionList.push_back(I); 4096 if (OpNum < Record.size()) { 4097 if (Opc == Instruction::Add || 4098 Opc == Instruction::Sub || 4099 Opc == Instruction::Mul || 4100 Opc == Instruction::Shl) { 4101 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4102 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4103 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4104 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4105 } else if (Opc == Instruction::SDiv || 4106 Opc == Instruction::UDiv || 4107 Opc == Instruction::LShr || 4108 Opc == Instruction::AShr) { 4109 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4110 cast<BinaryOperator>(I)->setIsExact(true); 4111 } else if (isa<FPMathOperator>(I)) { 4112 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4113 if (FMF.any()) 4114 I->setFastMathFlags(FMF); 4115 } 4116 4117 } 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4121 unsigned OpNum = 0; 4122 Value *Op; 4123 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4124 OpNum+2 != Record.size()) 4125 return error("Invalid record"); 4126 4127 Type *ResTy = getTypeByID(Record[OpNum]); 4128 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4129 if (Opc == -1 || !ResTy) 4130 return error("Invalid record"); 4131 Instruction *Temp = nullptr; 4132 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4133 if (Temp) { 4134 InstructionList.push_back(Temp); 4135 CurBB->getInstList().push_back(Temp); 4136 } 4137 } else { 4138 auto CastOp = (Instruction::CastOps)Opc; 4139 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4140 return error("Invalid cast"); 4141 I = CastInst::Create(CastOp, Op, ResTy); 4142 } 4143 InstructionList.push_back(I); 4144 break; 4145 } 4146 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4147 case bitc::FUNC_CODE_INST_GEP_OLD: 4148 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4149 unsigned OpNum = 0; 4150 4151 Type *Ty; 4152 bool InBounds; 4153 4154 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4155 InBounds = Record[OpNum++]; 4156 Ty = getTypeByID(Record[OpNum++]); 4157 } else { 4158 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4159 Ty = nullptr; 4160 } 4161 4162 Value *BasePtr; 4163 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4164 return error("Invalid record"); 4165 4166 if (!Ty) 4167 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4168 ->getElementType(); 4169 else if (Ty != 4170 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4171 ->getElementType()) 4172 return error( 4173 "Explicit gep type does not match pointee type of pointer operand"); 4174 4175 SmallVector<Value*, 16> GEPIdx; 4176 while (OpNum != Record.size()) { 4177 Value *Op; 4178 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4179 return error("Invalid record"); 4180 GEPIdx.push_back(Op); 4181 } 4182 4183 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4184 4185 InstructionList.push_back(I); 4186 if (InBounds) 4187 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4188 break; 4189 } 4190 4191 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4192 // EXTRACTVAL: [opty, opval, n x indices] 4193 unsigned OpNum = 0; 4194 Value *Agg; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4196 return error("Invalid record"); 4197 4198 unsigned RecSize = Record.size(); 4199 if (OpNum == RecSize) 4200 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4201 4202 SmallVector<unsigned, 4> EXTRACTVALIdx; 4203 Type *CurTy = Agg->getType(); 4204 for (; OpNum != RecSize; ++OpNum) { 4205 bool IsArray = CurTy->isArrayTy(); 4206 bool IsStruct = CurTy->isStructTy(); 4207 uint64_t Index = Record[OpNum]; 4208 4209 if (!IsStruct && !IsArray) 4210 return error("EXTRACTVAL: Invalid type"); 4211 if ((unsigned)Index != Index) 4212 return error("Invalid value"); 4213 if (IsStruct && Index >= CurTy->subtypes().size()) 4214 return error("EXTRACTVAL: Invalid struct index"); 4215 if (IsArray && Index >= CurTy->getArrayNumElements()) 4216 return error("EXTRACTVAL: Invalid array index"); 4217 EXTRACTVALIdx.push_back((unsigned)Index); 4218 4219 if (IsStruct) 4220 CurTy = CurTy->subtypes()[Index]; 4221 else 4222 CurTy = CurTy->subtypes()[0]; 4223 } 4224 4225 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4226 InstructionList.push_back(I); 4227 break; 4228 } 4229 4230 case bitc::FUNC_CODE_INST_INSERTVAL: { 4231 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4232 unsigned OpNum = 0; 4233 Value *Agg; 4234 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4235 return error("Invalid record"); 4236 Value *Val; 4237 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4238 return error("Invalid record"); 4239 4240 unsigned RecSize = Record.size(); 4241 if (OpNum == RecSize) 4242 return error("INSERTVAL: Invalid instruction with 0 indices"); 4243 4244 SmallVector<unsigned, 4> INSERTVALIdx; 4245 Type *CurTy = Agg->getType(); 4246 for (; OpNum != RecSize; ++OpNum) { 4247 bool IsArray = CurTy->isArrayTy(); 4248 bool IsStruct = CurTy->isStructTy(); 4249 uint64_t Index = Record[OpNum]; 4250 4251 if (!IsStruct && !IsArray) 4252 return error("INSERTVAL: Invalid type"); 4253 if ((unsigned)Index != Index) 4254 return error("Invalid value"); 4255 if (IsStruct && Index >= CurTy->subtypes().size()) 4256 return error("INSERTVAL: Invalid struct index"); 4257 if (IsArray && Index >= CurTy->getArrayNumElements()) 4258 return error("INSERTVAL: Invalid array index"); 4259 4260 INSERTVALIdx.push_back((unsigned)Index); 4261 if (IsStruct) 4262 CurTy = CurTy->subtypes()[Index]; 4263 else 4264 CurTy = CurTy->subtypes()[0]; 4265 } 4266 4267 if (CurTy != Val->getType()) 4268 return error("Inserted value type doesn't match aggregate type"); 4269 4270 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 4275 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4276 // obsolete form of select 4277 // handles select i1 ... in old bitcode 4278 unsigned OpNum = 0; 4279 Value *TrueVal, *FalseVal, *Cond; 4280 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4281 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4282 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4283 return error("Invalid record"); 4284 4285 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4286 InstructionList.push_back(I); 4287 break; 4288 } 4289 4290 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4291 // new form of select 4292 // handles select i1 or select [N x i1] 4293 unsigned OpNum = 0; 4294 Value *TrueVal, *FalseVal, *Cond; 4295 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4296 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4297 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4298 return error("Invalid record"); 4299 4300 // select condition can be either i1 or [N x i1] 4301 if (VectorType* vector_type = 4302 dyn_cast<VectorType>(Cond->getType())) { 4303 // expect <n x i1> 4304 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4305 return error("Invalid type for value"); 4306 } else { 4307 // expect i1 4308 if (Cond->getType() != Type::getInt1Ty(Context)) 4309 return error("Invalid type for value"); 4310 } 4311 4312 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4313 InstructionList.push_back(I); 4314 break; 4315 } 4316 4317 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4318 unsigned OpNum = 0; 4319 Value *Vec, *Idx; 4320 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4321 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4322 return error("Invalid record"); 4323 if (!Vec->getType()->isVectorTy()) 4324 return error("Invalid type for value"); 4325 I = ExtractElementInst::Create(Vec, Idx); 4326 InstructionList.push_back(I); 4327 break; 4328 } 4329 4330 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4331 unsigned OpNum = 0; 4332 Value *Vec, *Elt, *Idx; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4334 return error("Invalid record"); 4335 if (!Vec->getType()->isVectorTy()) 4336 return error("Invalid type for value"); 4337 if (popValue(Record, OpNum, NextValueNo, 4338 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4339 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4340 return error("Invalid record"); 4341 I = InsertElementInst::Create(Vec, Elt, Idx); 4342 InstructionList.push_back(I); 4343 break; 4344 } 4345 4346 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4347 unsigned OpNum = 0; 4348 Value *Vec1, *Vec2, *Mask; 4349 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4350 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4351 return error("Invalid record"); 4352 4353 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4354 return error("Invalid record"); 4355 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4356 return error("Invalid type for value"); 4357 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 4362 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4363 // Old form of ICmp/FCmp returning bool 4364 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4365 // both legal on vectors but had different behaviour. 4366 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4367 // FCmp/ICmp returning bool or vector of bool 4368 4369 unsigned OpNum = 0; 4370 Value *LHS, *RHS; 4371 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4372 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4373 return error("Invalid record"); 4374 4375 unsigned PredVal = Record[OpNum]; 4376 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4377 FastMathFlags FMF; 4378 if (IsFP && Record.size() > OpNum+1) 4379 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4380 4381 if (OpNum+1 != Record.size()) 4382 return error("Invalid record"); 4383 4384 if (LHS->getType()->isFPOrFPVectorTy()) 4385 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4386 else 4387 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4388 4389 if (FMF.any()) 4390 I->setFastMathFlags(FMF); 4391 InstructionList.push_back(I); 4392 break; 4393 } 4394 4395 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4396 { 4397 unsigned Size = Record.size(); 4398 if (Size == 0) { 4399 I = ReturnInst::Create(Context); 4400 InstructionList.push_back(I); 4401 break; 4402 } 4403 4404 unsigned OpNum = 0; 4405 Value *Op = nullptr; 4406 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4407 return error("Invalid record"); 4408 if (OpNum != Record.size()) 4409 return error("Invalid record"); 4410 4411 I = ReturnInst::Create(Context, Op); 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4416 if (Record.size() != 1 && Record.size() != 3) 4417 return error("Invalid record"); 4418 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4419 if (!TrueDest) 4420 return error("Invalid record"); 4421 4422 if (Record.size() == 1) { 4423 I = BranchInst::Create(TrueDest); 4424 InstructionList.push_back(I); 4425 } 4426 else { 4427 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4428 Value *Cond = getValue(Record, 2, NextValueNo, 4429 Type::getInt1Ty(Context)); 4430 if (!FalseDest || !Cond) 4431 return error("Invalid record"); 4432 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4433 InstructionList.push_back(I); 4434 } 4435 break; 4436 } 4437 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4438 if (Record.size() != 1 && Record.size() != 2) 4439 return error("Invalid record"); 4440 unsigned Idx = 0; 4441 Value *CleanupPad = 4442 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4443 if (!CleanupPad) 4444 return error("Invalid record"); 4445 BasicBlock *UnwindDest = nullptr; 4446 if (Record.size() == 2) { 4447 UnwindDest = getBasicBlock(Record[Idx++]); 4448 if (!UnwindDest) 4449 return error("Invalid record"); 4450 } 4451 4452 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4453 InstructionList.push_back(I); 4454 break; 4455 } 4456 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4457 if (Record.size() != 2) 4458 return error("Invalid record"); 4459 unsigned Idx = 0; 4460 Value *CatchPad = 4461 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4462 if (!CatchPad) 4463 return error("Invalid record"); 4464 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4465 if (!BB) 4466 return error("Invalid record"); 4467 4468 I = CatchReturnInst::Create(CatchPad, BB); 4469 InstructionList.push_back(I); 4470 break; 4471 } 4472 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4473 // We must have, at minimum, the outer scope and the number of arguments. 4474 if (Record.size() < 2) 4475 return error("Invalid record"); 4476 4477 unsigned Idx = 0; 4478 4479 Value *ParentPad = 4480 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4481 4482 unsigned NumHandlers = Record[Idx++]; 4483 4484 SmallVector<BasicBlock *, 2> Handlers; 4485 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4486 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4487 if (!BB) 4488 return error("Invalid record"); 4489 Handlers.push_back(BB); 4490 } 4491 4492 BasicBlock *UnwindDest = nullptr; 4493 if (Idx + 1 == Record.size()) { 4494 UnwindDest = getBasicBlock(Record[Idx++]); 4495 if (!UnwindDest) 4496 return error("Invalid record"); 4497 } 4498 4499 if (Record.size() != Idx) 4500 return error("Invalid record"); 4501 4502 auto *CatchSwitch = 4503 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4504 for (BasicBlock *Handler : Handlers) 4505 CatchSwitch->addHandler(Handler); 4506 I = CatchSwitch; 4507 InstructionList.push_back(I); 4508 break; 4509 } 4510 case bitc::FUNC_CODE_INST_CATCHPAD: 4511 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4512 // We must have, at minimum, the outer scope and the number of arguments. 4513 if (Record.size() < 2) 4514 return error("Invalid record"); 4515 4516 unsigned Idx = 0; 4517 4518 Value *ParentPad = 4519 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4520 4521 unsigned NumArgOperands = Record[Idx++]; 4522 4523 SmallVector<Value *, 2> Args; 4524 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4525 Value *Val; 4526 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4527 return error("Invalid record"); 4528 Args.push_back(Val); 4529 } 4530 4531 if (Record.size() != Idx) 4532 return error("Invalid record"); 4533 4534 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4535 I = CleanupPadInst::Create(ParentPad, Args); 4536 else 4537 I = CatchPadInst::Create(ParentPad, Args); 4538 InstructionList.push_back(I); 4539 break; 4540 } 4541 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4542 // Check magic 4543 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4544 // "New" SwitchInst format with case ranges. The changes to write this 4545 // format were reverted but we still recognize bitcode that uses it. 4546 // Hopefully someday we will have support for case ranges and can use 4547 // this format again. 4548 4549 Type *OpTy = getTypeByID(Record[1]); 4550 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4551 4552 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4553 BasicBlock *Default = getBasicBlock(Record[3]); 4554 if (!OpTy || !Cond || !Default) 4555 return error("Invalid record"); 4556 4557 unsigned NumCases = Record[4]; 4558 4559 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4560 InstructionList.push_back(SI); 4561 4562 unsigned CurIdx = 5; 4563 for (unsigned i = 0; i != NumCases; ++i) { 4564 SmallVector<ConstantInt*, 1> CaseVals; 4565 unsigned NumItems = Record[CurIdx++]; 4566 for (unsigned ci = 0; ci != NumItems; ++ci) { 4567 bool isSingleNumber = Record[CurIdx++]; 4568 4569 APInt Low; 4570 unsigned ActiveWords = 1; 4571 if (ValueBitWidth > 64) 4572 ActiveWords = Record[CurIdx++]; 4573 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4574 ValueBitWidth); 4575 CurIdx += ActiveWords; 4576 4577 if (!isSingleNumber) { 4578 ActiveWords = 1; 4579 if (ValueBitWidth > 64) 4580 ActiveWords = Record[CurIdx++]; 4581 APInt High = readWideAPInt( 4582 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4583 CurIdx += ActiveWords; 4584 4585 // FIXME: It is not clear whether values in the range should be 4586 // compared as signed or unsigned values. The partially 4587 // implemented changes that used this format in the past used 4588 // unsigned comparisons. 4589 for ( ; Low.ule(High); ++Low) 4590 CaseVals.push_back(ConstantInt::get(Context, Low)); 4591 } else 4592 CaseVals.push_back(ConstantInt::get(Context, Low)); 4593 } 4594 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4595 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4596 cve = CaseVals.end(); cvi != cve; ++cvi) 4597 SI->addCase(*cvi, DestBB); 4598 } 4599 I = SI; 4600 break; 4601 } 4602 4603 // Old SwitchInst format without case ranges. 4604 4605 if (Record.size() < 3 || (Record.size() & 1) == 0) 4606 return error("Invalid record"); 4607 Type *OpTy = getTypeByID(Record[0]); 4608 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4609 BasicBlock *Default = getBasicBlock(Record[2]); 4610 if (!OpTy || !Cond || !Default) 4611 return error("Invalid record"); 4612 unsigned NumCases = (Record.size()-3)/2; 4613 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4614 InstructionList.push_back(SI); 4615 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4616 ConstantInt *CaseVal = 4617 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4618 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4619 if (!CaseVal || !DestBB) { 4620 delete SI; 4621 return error("Invalid record"); 4622 } 4623 SI->addCase(CaseVal, DestBB); 4624 } 4625 I = SI; 4626 break; 4627 } 4628 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4629 if (Record.size() < 2) 4630 return error("Invalid record"); 4631 Type *OpTy = getTypeByID(Record[0]); 4632 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4633 if (!OpTy || !Address) 4634 return error("Invalid record"); 4635 unsigned NumDests = Record.size()-2; 4636 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4637 InstructionList.push_back(IBI); 4638 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4639 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4640 IBI->addDestination(DestBB); 4641 } else { 4642 delete IBI; 4643 return error("Invalid record"); 4644 } 4645 } 4646 I = IBI; 4647 break; 4648 } 4649 4650 case bitc::FUNC_CODE_INST_INVOKE: { 4651 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4652 if (Record.size() < 4) 4653 return error("Invalid record"); 4654 unsigned OpNum = 0; 4655 AttributeSet PAL = getAttributes(Record[OpNum++]); 4656 unsigned CCInfo = Record[OpNum++]; 4657 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4658 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4659 4660 FunctionType *FTy = nullptr; 4661 if (CCInfo >> 13 & 1 && 4662 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4663 return error("Explicit invoke type is not a function type"); 4664 4665 Value *Callee; 4666 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4667 return error("Invalid record"); 4668 4669 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4670 if (!CalleeTy) 4671 return error("Callee is not a pointer"); 4672 if (!FTy) { 4673 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4674 if (!FTy) 4675 return error("Callee is not of pointer to function type"); 4676 } else if (CalleeTy->getElementType() != FTy) 4677 return error("Explicit invoke type does not match pointee type of " 4678 "callee operand"); 4679 if (Record.size() < FTy->getNumParams() + OpNum) 4680 return error("Insufficient operands to call"); 4681 4682 SmallVector<Value*, 16> Ops; 4683 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4684 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4685 FTy->getParamType(i))); 4686 if (!Ops.back()) 4687 return error("Invalid record"); 4688 } 4689 4690 if (!FTy->isVarArg()) { 4691 if (Record.size() != OpNum) 4692 return error("Invalid record"); 4693 } else { 4694 // Read type/value pairs for varargs params. 4695 while (OpNum != Record.size()) { 4696 Value *Op; 4697 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4698 return error("Invalid record"); 4699 Ops.push_back(Op); 4700 } 4701 } 4702 4703 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4704 OperandBundles.clear(); 4705 InstructionList.push_back(I); 4706 cast<InvokeInst>(I)->setCallingConv( 4707 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4708 cast<InvokeInst>(I)->setAttributes(PAL); 4709 break; 4710 } 4711 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4712 unsigned Idx = 0; 4713 Value *Val = nullptr; 4714 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4715 return error("Invalid record"); 4716 I = ResumeInst::Create(Val); 4717 InstructionList.push_back(I); 4718 break; 4719 } 4720 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4721 I = new UnreachableInst(Context); 4722 InstructionList.push_back(I); 4723 break; 4724 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4725 if (Record.size() < 1 || ((Record.size()-1)&1)) 4726 return error("Invalid record"); 4727 Type *Ty = getTypeByID(Record[0]); 4728 if (!Ty) 4729 return error("Invalid record"); 4730 4731 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4732 InstructionList.push_back(PN); 4733 4734 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4735 Value *V; 4736 // With the new function encoding, it is possible that operands have 4737 // negative IDs (for forward references). Use a signed VBR 4738 // representation to keep the encoding small. 4739 if (UseRelativeIDs) 4740 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4741 else 4742 V = getValue(Record, 1+i, NextValueNo, Ty); 4743 BasicBlock *BB = getBasicBlock(Record[2+i]); 4744 if (!V || !BB) 4745 return error("Invalid record"); 4746 PN->addIncoming(V, BB); 4747 } 4748 I = PN; 4749 break; 4750 } 4751 4752 case bitc::FUNC_CODE_INST_LANDINGPAD: 4753 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4754 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4755 unsigned Idx = 0; 4756 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4757 if (Record.size() < 3) 4758 return error("Invalid record"); 4759 } else { 4760 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4761 if (Record.size() < 4) 4762 return error("Invalid record"); 4763 } 4764 Type *Ty = getTypeByID(Record[Idx++]); 4765 if (!Ty) 4766 return error("Invalid record"); 4767 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4768 Value *PersFn = nullptr; 4769 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4770 return error("Invalid record"); 4771 4772 if (!F->hasPersonalityFn()) 4773 F->setPersonalityFn(cast<Constant>(PersFn)); 4774 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4775 return error("Personality function mismatch"); 4776 } 4777 4778 bool IsCleanup = !!Record[Idx++]; 4779 unsigned NumClauses = Record[Idx++]; 4780 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4781 LP->setCleanup(IsCleanup); 4782 for (unsigned J = 0; J != NumClauses; ++J) { 4783 LandingPadInst::ClauseType CT = 4784 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4785 Value *Val; 4786 4787 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4788 delete LP; 4789 return error("Invalid record"); 4790 } 4791 4792 assert((CT != LandingPadInst::Catch || 4793 !isa<ArrayType>(Val->getType())) && 4794 "Catch clause has a invalid type!"); 4795 assert((CT != LandingPadInst::Filter || 4796 isa<ArrayType>(Val->getType())) && 4797 "Filter clause has invalid type!"); 4798 LP->addClause(cast<Constant>(Val)); 4799 } 4800 4801 I = LP; 4802 InstructionList.push_back(I); 4803 break; 4804 } 4805 4806 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4807 if (Record.size() != 4) 4808 return error("Invalid record"); 4809 uint64_t AlignRecord = Record[3]; 4810 const uint64_t InAllocaMask = uint64_t(1) << 5; 4811 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4812 // Reserve bit 7 for SwiftError flag. 4813 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4814 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4815 bool InAlloca = AlignRecord & InAllocaMask; 4816 Type *Ty = getTypeByID(Record[0]); 4817 if ((AlignRecord & ExplicitTypeMask) == 0) { 4818 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4819 if (!PTy) 4820 return error("Old-style alloca with a non-pointer type"); 4821 Ty = PTy->getElementType(); 4822 } 4823 Type *OpTy = getTypeByID(Record[1]); 4824 Value *Size = getFnValueByID(Record[2], OpTy); 4825 unsigned Align; 4826 if (std::error_code EC = 4827 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4828 return EC; 4829 } 4830 if (!Ty || !Size) 4831 return error("Invalid record"); 4832 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4833 AI->setUsedWithInAlloca(InAlloca); 4834 I = AI; 4835 InstructionList.push_back(I); 4836 break; 4837 } 4838 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4839 unsigned OpNum = 0; 4840 Value *Op; 4841 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4842 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4843 return error("Invalid record"); 4844 4845 Type *Ty = nullptr; 4846 if (OpNum + 3 == Record.size()) 4847 Ty = getTypeByID(Record[OpNum++]); 4848 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4849 return EC; 4850 if (!Ty) 4851 Ty = cast<PointerType>(Op->getType())->getElementType(); 4852 4853 unsigned Align; 4854 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4855 return EC; 4856 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4857 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4862 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4863 unsigned OpNum = 0; 4864 Value *Op; 4865 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4866 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4867 return error("Invalid record"); 4868 4869 Type *Ty = nullptr; 4870 if (OpNum + 5 == Record.size()) 4871 Ty = getTypeByID(Record[OpNum++]); 4872 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4873 return EC; 4874 if (!Ty) 4875 Ty = cast<PointerType>(Op->getType())->getElementType(); 4876 4877 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4878 if (Ordering == NotAtomic || Ordering == Release || 4879 Ordering == AcquireRelease) 4880 return error("Invalid record"); 4881 if (Ordering != NotAtomic && Record[OpNum] == 0) 4882 return error("Invalid record"); 4883 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4884 4885 unsigned Align; 4886 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4887 return EC; 4888 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4889 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_STORE: 4894 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4895 unsigned OpNum = 0; 4896 Value *Val, *Ptr; 4897 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4898 (BitCode == bitc::FUNC_CODE_INST_STORE 4899 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4900 : popValue(Record, OpNum, NextValueNo, 4901 cast<PointerType>(Ptr->getType())->getElementType(), 4902 Val)) || 4903 OpNum + 2 != Record.size()) 4904 return error("Invalid record"); 4905 4906 if (std::error_code EC = 4907 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4908 return EC; 4909 unsigned Align; 4910 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4911 return EC; 4912 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4913 InstructionList.push_back(I); 4914 break; 4915 } 4916 case bitc::FUNC_CODE_INST_STOREATOMIC: 4917 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4918 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4919 unsigned OpNum = 0; 4920 Value *Val, *Ptr; 4921 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4922 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4923 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4924 : popValue(Record, OpNum, NextValueNo, 4925 cast<PointerType>(Ptr->getType())->getElementType(), 4926 Val)) || 4927 OpNum + 4 != Record.size()) 4928 return error("Invalid record"); 4929 4930 if (std::error_code EC = 4931 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4932 return EC; 4933 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4934 if (Ordering == NotAtomic || Ordering == Acquire || 4935 Ordering == AcquireRelease) 4936 return error("Invalid record"); 4937 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4938 if (Ordering != NotAtomic && Record[OpNum] == 0) 4939 return error("Invalid record"); 4940 4941 unsigned Align; 4942 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4943 return EC; 4944 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4949 case bitc::FUNC_CODE_INST_CMPXCHG: { 4950 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4951 // failureordering?, isweak?] 4952 unsigned OpNum = 0; 4953 Value *Ptr, *Cmp, *New; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4955 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4956 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4957 : popValue(Record, OpNum, NextValueNo, 4958 cast<PointerType>(Ptr->getType())->getElementType(), 4959 Cmp)) || 4960 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4961 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4962 return error("Invalid record"); 4963 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4964 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4965 return error("Invalid record"); 4966 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4967 4968 if (std::error_code EC = 4969 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4970 return EC; 4971 AtomicOrdering FailureOrdering; 4972 if (Record.size() < 7) 4973 FailureOrdering = 4974 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4975 else 4976 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4977 4978 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4979 SynchScope); 4980 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4981 4982 if (Record.size() < 8) { 4983 // Before weak cmpxchgs existed, the instruction simply returned the 4984 // value loaded from memory, so bitcode files from that era will be 4985 // expecting the first component of a modern cmpxchg. 4986 CurBB->getInstList().push_back(I); 4987 I = ExtractValueInst::Create(I, 0); 4988 } else { 4989 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4990 } 4991 4992 InstructionList.push_back(I); 4993 break; 4994 } 4995 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4996 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4997 unsigned OpNum = 0; 4998 Value *Ptr, *Val; 4999 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5000 popValue(Record, OpNum, NextValueNo, 5001 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5002 OpNum+4 != Record.size()) 5003 return error("Invalid record"); 5004 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5005 if (Operation < AtomicRMWInst::FIRST_BINOP || 5006 Operation > AtomicRMWInst::LAST_BINOP) 5007 return error("Invalid record"); 5008 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5009 if (Ordering == NotAtomic || Ordering == Unordered) 5010 return error("Invalid record"); 5011 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5012 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5013 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5014 InstructionList.push_back(I); 5015 break; 5016 } 5017 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5018 if (2 != Record.size()) 5019 return error("Invalid record"); 5020 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5021 if (Ordering == NotAtomic || Ordering == Unordered || 5022 Ordering == Monotonic) 5023 return error("Invalid record"); 5024 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5025 I = new FenceInst(Context, Ordering, SynchScope); 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_CALL: { 5030 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5031 if (Record.size() < 3) 5032 return error("Invalid record"); 5033 5034 unsigned OpNum = 0; 5035 AttributeSet PAL = getAttributes(Record[OpNum++]); 5036 unsigned CCInfo = Record[OpNum++]; 5037 5038 FastMathFlags FMF; 5039 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5040 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5041 if (!FMF.any()) 5042 return error("Fast math flags indicator set for call with no FMF"); 5043 } 5044 5045 FunctionType *FTy = nullptr; 5046 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5047 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5048 return error("Explicit call type is not a function type"); 5049 5050 Value *Callee; 5051 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5052 return error("Invalid record"); 5053 5054 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5055 if (!OpTy) 5056 return error("Callee is not a pointer type"); 5057 if (!FTy) { 5058 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5059 if (!FTy) 5060 return error("Callee is not of pointer to function type"); 5061 } else if (OpTy->getElementType() != FTy) 5062 return error("Explicit call type does not match pointee type of " 5063 "callee operand"); 5064 if (Record.size() < FTy->getNumParams() + OpNum) 5065 return error("Insufficient operands to call"); 5066 5067 SmallVector<Value*, 16> Args; 5068 // Read the fixed params. 5069 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5070 if (FTy->getParamType(i)->isLabelTy()) 5071 Args.push_back(getBasicBlock(Record[OpNum])); 5072 else 5073 Args.push_back(getValue(Record, OpNum, NextValueNo, 5074 FTy->getParamType(i))); 5075 if (!Args.back()) 5076 return error("Invalid record"); 5077 } 5078 5079 // Read type/value pairs for varargs params. 5080 if (!FTy->isVarArg()) { 5081 if (OpNum != Record.size()) 5082 return error("Invalid record"); 5083 } else { 5084 while (OpNum != Record.size()) { 5085 Value *Op; 5086 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5087 return error("Invalid record"); 5088 Args.push_back(Op); 5089 } 5090 } 5091 5092 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5093 OperandBundles.clear(); 5094 InstructionList.push_back(I); 5095 cast<CallInst>(I)->setCallingConv( 5096 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5097 CallInst::TailCallKind TCK = CallInst::TCK_None; 5098 if (CCInfo & 1 << bitc::CALL_TAIL) 5099 TCK = CallInst::TCK_Tail; 5100 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5101 TCK = CallInst::TCK_MustTail; 5102 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5103 TCK = CallInst::TCK_NoTail; 5104 cast<CallInst>(I)->setTailCallKind(TCK); 5105 cast<CallInst>(I)->setAttributes(PAL); 5106 if (FMF.any()) { 5107 if (!isa<FPMathOperator>(I)) 5108 return error("Fast-math-flags specified for call without " 5109 "floating-point scalar or vector return type"); 5110 I->setFastMathFlags(FMF); 5111 } 5112 break; 5113 } 5114 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5115 if (Record.size() < 3) 5116 return error("Invalid record"); 5117 Type *OpTy = getTypeByID(Record[0]); 5118 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5119 Type *ResTy = getTypeByID(Record[2]); 5120 if (!OpTy || !Op || !ResTy) 5121 return error("Invalid record"); 5122 I = new VAArgInst(Op, ResTy); 5123 InstructionList.push_back(I); 5124 break; 5125 } 5126 5127 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5128 // A call or an invoke can be optionally prefixed with some variable 5129 // number of operand bundle blocks. These blocks are read into 5130 // OperandBundles and consumed at the next call or invoke instruction. 5131 5132 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5133 return error("Invalid record"); 5134 5135 std::vector<Value *> Inputs; 5136 5137 unsigned OpNum = 1; 5138 while (OpNum != Record.size()) { 5139 Value *Op; 5140 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5141 return error("Invalid record"); 5142 Inputs.push_back(Op); 5143 } 5144 5145 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5146 continue; 5147 } 5148 } 5149 5150 // Add instruction to end of current BB. If there is no current BB, reject 5151 // this file. 5152 if (!CurBB) { 5153 delete I; 5154 return error("Invalid instruction with no BB"); 5155 } 5156 if (!OperandBundles.empty()) { 5157 delete I; 5158 return error("Operand bundles found with no consumer"); 5159 } 5160 CurBB->getInstList().push_back(I); 5161 5162 // If this was a terminator instruction, move to the next block. 5163 if (isa<TerminatorInst>(I)) { 5164 ++CurBBNo; 5165 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5166 } 5167 5168 // Non-void values get registered in the value table for future use. 5169 if (I && !I->getType()->isVoidTy()) 5170 ValueList.assignValue(I, NextValueNo++); 5171 } 5172 5173 OutOfRecordLoop: 5174 5175 if (!OperandBundles.empty()) 5176 return error("Operand bundles found with no consumer"); 5177 5178 // Check the function list for unresolved values. 5179 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5180 if (!A->getParent()) { 5181 // We found at least one unresolved value. Nuke them all to avoid leaks. 5182 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5183 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5184 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5185 delete A; 5186 } 5187 } 5188 return error("Never resolved value found in function"); 5189 } 5190 } 5191 5192 // FIXME: Check for unresolved forward-declared metadata references 5193 // and clean up leaks. 5194 5195 // Trim the value list down to the size it was before we parsed this function. 5196 ValueList.shrinkTo(ModuleValueListSize); 5197 MetadataList.shrinkTo(ModuleMetadataListSize); 5198 std::vector<BasicBlock*>().swap(FunctionBBs); 5199 return std::error_code(); 5200 } 5201 5202 /// Find the function body in the bitcode stream 5203 std::error_code BitcodeReader::findFunctionInStream( 5204 Function *F, 5205 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5206 while (DeferredFunctionInfoIterator->second == 0) { 5207 // This is the fallback handling for the old format bitcode that 5208 // didn't contain the function index in the VST, or when we have 5209 // an anonymous function which would not have a VST entry. 5210 // Assert that we have one of those two cases. 5211 assert(VSTOffset == 0 || !F->hasName()); 5212 // Parse the next body in the stream and set its position in the 5213 // DeferredFunctionInfo map. 5214 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5215 return EC; 5216 } 5217 return std::error_code(); 5218 } 5219 5220 //===----------------------------------------------------------------------===// 5221 // GVMaterializer implementation 5222 //===----------------------------------------------------------------------===// 5223 5224 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5225 5226 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5227 // In older bitcode we must materialize the metadata before parsing 5228 // any functions, in order to set up the MetadataList properly. 5229 if (!SeenModuleValuesRecord) { 5230 if (std::error_code EC = materializeMetadata()) 5231 return EC; 5232 } 5233 5234 Function *F = dyn_cast<Function>(GV); 5235 // If it's not a function or is already material, ignore the request. 5236 if (!F || !F->isMaterializable()) 5237 return std::error_code(); 5238 5239 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5240 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5241 // If its position is recorded as 0, its body is somewhere in the stream 5242 // but we haven't seen it yet. 5243 if (DFII->second == 0) 5244 if (std::error_code EC = findFunctionInStream(F, DFII)) 5245 return EC; 5246 5247 // Move the bit stream to the saved position of the deferred function body. 5248 Stream.JumpToBit(DFII->second); 5249 5250 if (std::error_code EC = parseFunctionBody(F)) 5251 return EC; 5252 F->setIsMaterializable(false); 5253 5254 if (StripDebugInfo) 5255 stripDebugInfo(*F); 5256 5257 // Upgrade any old intrinsic calls in the function. 5258 for (auto &I : UpgradedIntrinsics) { 5259 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5260 UI != UE;) { 5261 User *U = *UI; 5262 ++UI; 5263 if (CallInst *CI = dyn_cast<CallInst>(U)) 5264 UpgradeIntrinsicCall(CI, I.second); 5265 } 5266 } 5267 5268 // Finish fn->subprogram upgrade for materialized functions. 5269 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5270 F->setSubprogram(SP); 5271 5272 // Bring in any functions that this function forward-referenced via 5273 // blockaddresses. 5274 return materializeForwardReferencedFunctions(); 5275 } 5276 5277 std::error_code BitcodeReader::materializeModule() { 5278 if (std::error_code EC = materializeMetadata()) 5279 return EC; 5280 5281 // Promise to materialize all forward references. 5282 WillMaterializeAllForwardRefs = true; 5283 5284 // Iterate over the module, deserializing any functions that are still on 5285 // disk. 5286 for (Function &F : *TheModule) { 5287 if (std::error_code EC = materialize(&F)) 5288 return EC; 5289 } 5290 // At this point, if there are any function bodies, parse the rest of 5291 // the bits in the module past the last function block we have recorded 5292 // through either lazy scanning or the VST. 5293 if (LastFunctionBlockBit || NextUnreadBit) 5294 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5295 : NextUnreadBit); 5296 5297 // Check that all block address forward references got resolved (as we 5298 // promised above). 5299 if (!BasicBlockFwdRefs.empty()) 5300 return error("Never resolved function from blockaddress"); 5301 5302 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5303 // delete the old functions to clean up. We can't do this unless the entire 5304 // module is materialized because there could always be another function body 5305 // with calls to the old function. 5306 for (auto &I : UpgradedIntrinsics) { 5307 for (auto *U : I.first->users()) { 5308 if (CallInst *CI = dyn_cast<CallInst>(U)) 5309 UpgradeIntrinsicCall(CI, I.second); 5310 } 5311 if (!I.first->use_empty()) 5312 I.first->replaceAllUsesWith(I.second); 5313 I.first->eraseFromParent(); 5314 } 5315 UpgradedIntrinsics.clear(); 5316 5317 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5318 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5319 5320 UpgradeDebugInfo(*TheModule); 5321 return std::error_code(); 5322 } 5323 5324 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5325 return IdentifiedStructTypes; 5326 } 5327 5328 std::error_code 5329 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5330 if (Streamer) 5331 return initLazyStream(std::move(Streamer)); 5332 return initStreamFromBuffer(); 5333 } 5334 5335 std::error_code BitcodeReader::initStreamFromBuffer() { 5336 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5337 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5338 5339 if (Buffer->getBufferSize() & 3) 5340 return error("Invalid bitcode signature"); 5341 5342 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5343 // The magic number is 0x0B17C0DE stored in little endian. 5344 if (isBitcodeWrapper(BufPtr, BufEnd)) 5345 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5346 return error("Invalid bitcode wrapper header"); 5347 5348 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5349 Stream.init(&*StreamFile); 5350 5351 return std::error_code(); 5352 } 5353 5354 std::error_code 5355 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5356 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5357 // see it. 5358 auto OwnedBytes = 5359 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5360 StreamingMemoryObject &Bytes = *OwnedBytes; 5361 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5362 Stream.init(&*StreamFile); 5363 5364 unsigned char buf[16]; 5365 if (Bytes.readBytes(buf, 16, 0) != 16) 5366 return error("Invalid bitcode signature"); 5367 5368 if (!isBitcode(buf, buf + 16)) 5369 return error("Invalid bitcode signature"); 5370 5371 if (isBitcodeWrapper(buf, buf + 4)) { 5372 const unsigned char *bitcodeStart = buf; 5373 const unsigned char *bitcodeEnd = buf + 16; 5374 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5375 Bytes.dropLeadingBytes(bitcodeStart - buf); 5376 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5377 } 5378 return std::error_code(); 5379 } 5380 5381 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5382 const Twine &Message) { 5383 return ::error(DiagnosticHandler, make_error_code(E), Message); 5384 } 5385 5386 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5387 return ::error(DiagnosticHandler, 5388 make_error_code(BitcodeError::CorruptedBitcode), Message); 5389 } 5390 5391 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5392 return ::error(DiagnosticHandler, make_error_code(E)); 5393 } 5394 5395 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5396 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5397 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5398 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5399 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5400 5401 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5402 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5403 bool CheckFuncSummaryPresenceOnly) 5404 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5405 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5406 5407 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5408 5409 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5410 5411 // Specialized value symbol table parser used when reading function index 5412 // blocks where we don't actually create global values. 5413 // At the end of this routine the function index is populated with a map 5414 // from function name to FunctionInfo. The function info contains 5415 // the function block's bitcode offset as well as the offset into the 5416 // function summary section. 5417 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5418 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5419 return error("Invalid record"); 5420 5421 SmallVector<uint64_t, 64> Record; 5422 5423 // Read all the records for this value table. 5424 SmallString<128> ValueName; 5425 while (1) { 5426 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5427 5428 switch (Entry.Kind) { 5429 case BitstreamEntry::SubBlock: // Handled for us already. 5430 case BitstreamEntry::Error: 5431 return error("Malformed block"); 5432 case BitstreamEntry::EndBlock: 5433 return std::error_code(); 5434 case BitstreamEntry::Record: 5435 // The interesting case. 5436 break; 5437 } 5438 5439 // Read a record. 5440 Record.clear(); 5441 switch (Stream.readRecord(Entry.ID, Record)) { 5442 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5443 break; 5444 case bitc::VST_CODE_FNENTRY: { 5445 // VST_FNENTRY: [valueid, offset, namechar x N] 5446 if (convertToString(Record, 2, ValueName)) 5447 return error("Invalid record"); 5448 unsigned ValueID = Record[0]; 5449 uint64_t FuncOffset = Record[1]; 5450 std::unique_ptr<FunctionInfo> FuncInfo = 5451 llvm::make_unique<FunctionInfo>(FuncOffset); 5452 if (foundFuncSummary() && !IsLazy) { 5453 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5454 SummaryMap.find(ValueID); 5455 assert(SMI != SummaryMap.end() && "Summary info not found"); 5456 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5457 } 5458 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5459 5460 ValueName.clear(); 5461 break; 5462 } 5463 case bitc::VST_CODE_COMBINED_FNENTRY: { 5464 // VST_FNENTRY: [offset, namechar x N] 5465 if (convertToString(Record, 1, ValueName)) 5466 return error("Invalid record"); 5467 uint64_t FuncSummaryOffset = Record[0]; 5468 std::unique_ptr<FunctionInfo> FuncInfo = 5469 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5470 if (foundFuncSummary() && !IsLazy) { 5471 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5472 SummaryMap.find(FuncSummaryOffset); 5473 assert(SMI != SummaryMap.end() && "Summary info not found"); 5474 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5475 } 5476 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5477 5478 ValueName.clear(); 5479 break; 5480 } 5481 } 5482 } 5483 } 5484 5485 // Parse just the blocks needed for function index building out of the module. 5486 // At the end of this routine the function Index is populated with a map 5487 // from function name to FunctionInfo. The function info contains 5488 // either the parsed function summary information (when parsing summaries 5489 // eagerly), or just to the function summary record's offset 5490 // if parsing lazily (IsLazy). 5491 std::error_code FunctionIndexBitcodeReader::parseModule() { 5492 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5493 return error("Invalid record"); 5494 5495 // Read the function index for this module. 5496 while (1) { 5497 BitstreamEntry Entry = Stream.advance(); 5498 5499 switch (Entry.Kind) { 5500 case BitstreamEntry::Error: 5501 return error("Malformed block"); 5502 case BitstreamEntry::EndBlock: 5503 return std::error_code(); 5504 5505 case BitstreamEntry::SubBlock: 5506 if (CheckFuncSummaryPresenceOnly) { 5507 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5508 SeenFuncSummary = true; 5509 // No need to parse the rest since we found the summary. 5510 return std::error_code(); 5511 } 5512 if (Stream.SkipBlock()) 5513 return error("Invalid record"); 5514 continue; 5515 } 5516 switch (Entry.ID) { 5517 default: // Skip unknown content. 5518 if (Stream.SkipBlock()) 5519 return error("Invalid record"); 5520 break; 5521 case bitc::BLOCKINFO_BLOCK_ID: 5522 // Need to parse these to get abbrev ids (e.g. for VST) 5523 if (Stream.ReadBlockInfoBlock()) 5524 return error("Malformed block"); 5525 break; 5526 case bitc::VALUE_SYMTAB_BLOCK_ID: 5527 if (std::error_code EC = parseValueSymbolTable()) 5528 return EC; 5529 break; 5530 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5531 SeenFuncSummary = true; 5532 if (IsLazy) { 5533 // Lazy parsing of summary info, skip it. 5534 if (Stream.SkipBlock()) 5535 return error("Invalid record"); 5536 } else if (std::error_code EC = parseEntireSummary()) 5537 return EC; 5538 break; 5539 case bitc::MODULE_STRTAB_BLOCK_ID: 5540 if (std::error_code EC = parseModuleStringTable()) 5541 return EC; 5542 break; 5543 } 5544 continue; 5545 5546 case BitstreamEntry::Record: 5547 Stream.skipRecord(Entry.ID); 5548 continue; 5549 } 5550 } 5551 } 5552 5553 // Eagerly parse the entire function summary block (i.e. for all functions 5554 // in the index). This populates the FunctionSummary objects in 5555 // the index. 5556 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5557 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5558 return error("Invalid record"); 5559 5560 SmallVector<uint64_t, 64> Record; 5561 5562 while (1) { 5563 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5564 5565 switch (Entry.Kind) { 5566 case BitstreamEntry::SubBlock: // Handled for us already. 5567 case BitstreamEntry::Error: 5568 return error("Malformed block"); 5569 case BitstreamEntry::EndBlock: 5570 return std::error_code(); 5571 case BitstreamEntry::Record: 5572 // The interesting case. 5573 break; 5574 } 5575 5576 // Read a record. The record format depends on whether this 5577 // is a per-module index or a combined index file. In the per-module 5578 // case the records contain the associated value's ID for correlation 5579 // with VST entries. In the combined index the correlation is done 5580 // via the bitcode offset of the summary records (which were saved 5581 // in the combined index VST entries). The records also contain 5582 // information used for ThinLTO renaming and importing. 5583 Record.clear(); 5584 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5585 switch (Stream.readRecord(Entry.ID, Record)) { 5586 default: // Default behavior: ignore. 5587 break; 5588 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5589 case bitc::FS_CODE_PERMODULE_ENTRY: { 5590 unsigned ValueID = Record[0]; 5591 bool IsLocal = Record[1]; 5592 unsigned InstCount = Record[2]; 5593 std::unique_ptr<FunctionSummary> FS = 5594 llvm::make_unique<FunctionSummary>(InstCount); 5595 FS->setLocalFunction(IsLocal); 5596 // The module path string ref set in the summary must be owned by the 5597 // index's module string table. Since we don't have a module path 5598 // string table section in the per-module index, we create a single 5599 // module path string table entry with an empty (0) ID to take 5600 // ownership. 5601 FS->setModulePath( 5602 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5603 SummaryMap[ValueID] = std::move(FS); 5604 } 5605 // FS_COMBINED_ENTRY: [modid, instcount] 5606 case bitc::FS_CODE_COMBINED_ENTRY: { 5607 uint64_t ModuleId = Record[0]; 5608 unsigned InstCount = Record[1]; 5609 std::unique_ptr<FunctionSummary> FS = 5610 llvm::make_unique<FunctionSummary>(InstCount); 5611 FS->setModulePath(ModuleIdMap[ModuleId]); 5612 SummaryMap[CurRecordBit] = std::move(FS); 5613 } 5614 } 5615 } 5616 llvm_unreachable("Exit infinite loop"); 5617 } 5618 5619 // Parse the module string table block into the Index. 5620 // This populates the ModulePathStringTable map in the index. 5621 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5622 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5623 return error("Invalid record"); 5624 5625 SmallVector<uint64_t, 64> Record; 5626 5627 SmallString<128> ModulePath; 5628 while (1) { 5629 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5630 5631 switch (Entry.Kind) { 5632 case BitstreamEntry::SubBlock: // Handled for us already. 5633 case BitstreamEntry::Error: 5634 return error("Malformed block"); 5635 case BitstreamEntry::EndBlock: 5636 return std::error_code(); 5637 case BitstreamEntry::Record: 5638 // The interesting case. 5639 break; 5640 } 5641 5642 Record.clear(); 5643 switch (Stream.readRecord(Entry.ID, Record)) { 5644 default: // Default behavior: ignore. 5645 break; 5646 case bitc::MST_CODE_ENTRY: { 5647 // MST_ENTRY: [modid, namechar x N] 5648 if (convertToString(Record, 1, ModulePath)) 5649 return error("Invalid record"); 5650 uint64_t ModuleId = Record[0]; 5651 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5652 ModuleIdMap[ModuleId] = ModulePathInMap; 5653 ModulePath.clear(); 5654 break; 5655 } 5656 } 5657 } 5658 llvm_unreachable("Exit infinite loop"); 5659 } 5660 5661 // Parse the function info index from the bitcode streamer into the given index. 5662 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5663 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5664 TheIndex = I; 5665 5666 if (std::error_code EC = initStream(std::move(Streamer))) 5667 return EC; 5668 5669 // Sniff for the signature. 5670 if (!hasValidBitcodeHeader(Stream)) 5671 return error("Invalid bitcode signature"); 5672 5673 // We expect a number of well-defined blocks, though we don't necessarily 5674 // need to understand them all. 5675 while (1) { 5676 if (Stream.AtEndOfStream()) { 5677 // We didn't really read a proper Module block. 5678 return error("Malformed block"); 5679 } 5680 5681 BitstreamEntry Entry = 5682 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5683 5684 if (Entry.Kind != BitstreamEntry::SubBlock) 5685 return error("Malformed block"); 5686 5687 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5688 // building the function summary index. 5689 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5690 return parseModule(); 5691 5692 if (Stream.SkipBlock()) 5693 return error("Invalid record"); 5694 } 5695 } 5696 5697 // Parse the function information at the given offset in the buffer into 5698 // the index. Used to support lazy parsing of function summaries from the 5699 // combined index during importing. 5700 // TODO: This function is not yet complete as it won't have a consumer 5701 // until ThinLTO function importing is added. 5702 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5703 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5704 size_t FunctionSummaryOffset) { 5705 TheIndex = I; 5706 5707 if (std::error_code EC = initStream(std::move(Streamer))) 5708 return EC; 5709 5710 // Sniff for the signature. 5711 if (!hasValidBitcodeHeader(Stream)) 5712 return error("Invalid bitcode signature"); 5713 5714 Stream.JumpToBit(FunctionSummaryOffset); 5715 5716 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5717 5718 switch (Entry.Kind) { 5719 default: 5720 return error("Malformed block"); 5721 case BitstreamEntry::Record: 5722 // The expected case. 5723 break; 5724 } 5725 5726 // TODO: Read a record. This interface will be completed when ThinLTO 5727 // importing is added so that it can be tested. 5728 SmallVector<uint64_t, 64> Record; 5729 switch (Stream.readRecord(Entry.ID, Record)) { 5730 case bitc::FS_CODE_COMBINED_ENTRY: 5731 default: 5732 return error("Invalid record"); 5733 } 5734 5735 return std::error_code(); 5736 } 5737 5738 std::error_code 5739 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5740 if (Streamer) 5741 return initLazyStream(std::move(Streamer)); 5742 return initStreamFromBuffer(); 5743 } 5744 5745 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5746 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5747 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5748 5749 if (Buffer->getBufferSize() & 3) 5750 return error("Invalid bitcode signature"); 5751 5752 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5753 // The magic number is 0x0B17C0DE stored in little endian. 5754 if (isBitcodeWrapper(BufPtr, BufEnd)) 5755 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5756 return error("Invalid bitcode wrapper header"); 5757 5758 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5759 Stream.init(&*StreamFile); 5760 5761 return std::error_code(); 5762 } 5763 5764 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5765 std::unique_ptr<DataStreamer> Streamer) { 5766 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5767 // see it. 5768 auto OwnedBytes = 5769 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5770 StreamingMemoryObject &Bytes = *OwnedBytes; 5771 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5772 Stream.init(&*StreamFile); 5773 5774 unsigned char buf[16]; 5775 if (Bytes.readBytes(buf, 16, 0) != 16) 5776 return error("Invalid bitcode signature"); 5777 5778 if (!isBitcode(buf, buf + 16)) 5779 return error("Invalid bitcode signature"); 5780 5781 if (isBitcodeWrapper(buf, buf + 4)) { 5782 const unsigned char *bitcodeStart = buf; 5783 const unsigned char *bitcodeEnd = buf + 16; 5784 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5785 Bytes.dropLeadingBytes(bitcodeStart - buf); 5786 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5787 } 5788 return std::error_code(); 5789 } 5790 5791 namespace { 5792 class BitcodeErrorCategoryType : public std::error_category { 5793 const char *name() const LLVM_NOEXCEPT override { 5794 return "llvm.bitcode"; 5795 } 5796 std::string message(int IE) const override { 5797 BitcodeError E = static_cast<BitcodeError>(IE); 5798 switch (E) { 5799 case BitcodeError::InvalidBitcodeSignature: 5800 return "Invalid bitcode signature"; 5801 case BitcodeError::CorruptedBitcode: 5802 return "Corrupted bitcode"; 5803 } 5804 llvm_unreachable("Unknown error type!"); 5805 } 5806 }; 5807 } 5808 5809 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5810 5811 const std::error_category &llvm::BitcodeErrorCategory() { 5812 return *ErrorCategory; 5813 } 5814 5815 //===----------------------------------------------------------------------===// 5816 // External interface 5817 //===----------------------------------------------------------------------===// 5818 5819 static ErrorOr<std::unique_ptr<Module>> 5820 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5821 BitcodeReader *R, LLVMContext &Context, 5822 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5823 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5824 M->setMaterializer(R); 5825 5826 auto cleanupOnError = [&](std::error_code EC) { 5827 R->releaseBuffer(); // Never take ownership on error. 5828 return EC; 5829 }; 5830 5831 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5832 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5833 ShouldLazyLoadMetadata)) 5834 return cleanupOnError(EC); 5835 5836 if (MaterializeAll) { 5837 // Read in the entire module, and destroy the BitcodeReader. 5838 if (std::error_code EC = M->materializeAll()) 5839 return cleanupOnError(EC); 5840 } else { 5841 // Resolve forward references from blockaddresses. 5842 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5843 return cleanupOnError(EC); 5844 } 5845 return std::move(M); 5846 } 5847 5848 /// \brief Get a lazy one-at-time loading module from bitcode. 5849 /// 5850 /// This isn't always used in a lazy context. In particular, it's also used by 5851 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5852 /// in forward-referenced functions from block address references. 5853 /// 5854 /// \param[in] MaterializeAll Set to \c true if we should materialize 5855 /// everything. 5856 static ErrorOr<std::unique_ptr<Module>> 5857 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5858 LLVMContext &Context, bool MaterializeAll, 5859 bool ShouldLazyLoadMetadata = false) { 5860 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5861 5862 ErrorOr<std::unique_ptr<Module>> Ret = 5863 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5864 MaterializeAll, ShouldLazyLoadMetadata); 5865 if (!Ret) 5866 return Ret; 5867 5868 Buffer.release(); // The BitcodeReader owns it now. 5869 return Ret; 5870 } 5871 5872 ErrorOr<std::unique_ptr<Module>> 5873 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5874 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5875 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5876 ShouldLazyLoadMetadata); 5877 } 5878 5879 ErrorOr<std::unique_ptr<Module>> 5880 llvm::getStreamedBitcodeModule(StringRef Name, 5881 std::unique_ptr<DataStreamer> Streamer, 5882 LLVMContext &Context) { 5883 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5884 BitcodeReader *R = new BitcodeReader(Context); 5885 5886 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5887 false); 5888 } 5889 5890 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5891 LLVMContext &Context) { 5892 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5893 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5894 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5895 // written. We must defer until the Module has been fully materialized. 5896 } 5897 5898 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5899 LLVMContext &Context) { 5900 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5901 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5902 ErrorOr<std::string> Triple = R->parseTriple(); 5903 if (Triple.getError()) 5904 return ""; 5905 return Triple.get(); 5906 } 5907 5908 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5909 LLVMContext &Context) { 5910 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5911 BitcodeReader R(Buf.release(), Context); 5912 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5913 if (ProducerString.getError()) 5914 return ""; 5915 return ProducerString.get(); 5916 } 5917 5918 // Parse the specified bitcode buffer, returning the function info index. 5919 // If IsLazy is false, parse the entire function summary into 5920 // the index. Otherwise skip the function summary section, and only create 5921 // an index object with a map from function name to function summary offset. 5922 // The index is used to perform lazy function summary reading later. 5923 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5924 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5925 DiagnosticHandlerFunction DiagnosticHandler, 5926 bool IsLazy) { 5927 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5928 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5929 5930 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5931 5932 auto cleanupOnError = [&](std::error_code EC) { 5933 R.releaseBuffer(); // Never take ownership on error. 5934 return EC; 5935 }; 5936 5937 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5938 return cleanupOnError(EC); 5939 5940 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5941 return std::move(Index); 5942 } 5943 5944 // Check if the given bitcode buffer contains a function summary block. 5945 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5946 DiagnosticHandlerFunction DiagnosticHandler) { 5947 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5948 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5949 5950 auto cleanupOnError = [&](std::error_code EC) { 5951 R.releaseBuffer(); // Never take ownership on error. 5952 return false; 5953 }; 5954 5955 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5956 return cleanupOnError(EC); 5957 5958 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5959 return R.foundFuncSummary(); 5960 } 5961 5962 // This method supports lazy reading of function summary data from the combined 5963 // index during ThinLTO function importing. When reading the combined index 5964 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5965 // Then this method is called for each function considered for importing, 5966 // to parse the summary information for the given function name into 5967 // the index. 5968 std::error_code llvm::readFunctionSummary( 5969 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5970 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5971 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5972 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5973 5974 auto cleanupOnError = [&](std::error_code EC) { 5975 R.releaseBuffer(); // Never take ownership on error. 5976 return EC; 5977 }; 5978 5979 // Lookup the given function name in the FunctionMap, which may 5980 // contain a list of function infos in the case of a COMDAT. Walk through 5981 // and parse each function summary info at the function summary offset 5982 // recorded when parsing the value symbol table. 5983 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5984 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5985 if (std::error_code EC = 5986 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5987 return cleanupOnError(EC); 5988 } 5989 5990 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5991 return std::error_code(); 5992 } 5993