1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void assignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 Module *TheModule = nullptr; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 // Next offset to start scanning for lazy parsing of function bodies. 141 uint64_t NextUnreadBit = 0; 142 // Last function offset found in the VST. 143 uint64_t LastFunctionBlockBit = 0; 144 bool SeenValueSymbolTable = false; 145 uint64_t VSTOffset = 0; 146 // Contains an arbitrary and optional string identifying the bitcode producer 147 std::string ProducerIdentification; 148 // Number of module level metadata records specified by the 149 // MODULE_CODE_METADATA_VALUES record. 150 unsigned NumModuleMDs = 0; 151 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 152 bool SeenModuleValuesRecord = false; 153 154 std::vector<Type*> TypeList; 155 BitcodeReaderValueList ValueList; 156 BitcodeReaderMetadataList MetadataList; 157 std::vector<Comdat *> ComdatList; 158 SmallVector<Instruction *, 64> InstructionList; 159 160 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 161 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 163 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 164 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 165 166 SmallVector<Instruction*, 64> InstsWithTBAATag; 167 168 /// The set of attributes by index. Index zero in the file is for null, and 169 /// is thus not represented here. As such all indices are off by one. 170 std::vector<AttributeSet> MAttributes; 171 172 /// The set of attribute groups. 173 std::map<unsigned, AttributeSet> MAttributeGroups; 174 175 /// While parsing a function body, this is a list of the basic blocks for the 176 /// function. 177 std::vector<BasicBlock*> FunctionBBs; 178 179 // When reading the module header, this list is populated with functions that 180 // have bodies later in the file. 181 std::vector<Function*> FunctionsWithBodies; 182 183 // When intrinsic functions are encountered which require upgrading they are 184 // stored here with their replacement function. 185 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 186 UpgradedIntrinsicMap UpgradedIntrinsics; 187 188 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 189 DenseMap<unsigned, unsigned> MDKindMap; 190 191 // Several operations happen after the module header has been read, but 192 // before function bodies are processed. This keeps track of whether 193 // we've done this yet. 194 bool SeenFirstFunctionBody = false; 195 196 /// When function bodies are initially scanned, this map contains info about 197 /// where to find deferred function body in the stream. 198 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 199 200 /// When Metadata block is initially scanned when parsing the module, we may 201 /// choose to defer parsing of the metadata. This vector contains info about 202 /// which Metadata blocks are deferred. 203 std::vector<uint64_t> DeferredMetadataInfo; 204 205 /// These are basic blocks forward-referenced by block addresses. They are 206 /// inserted lazily into functions when they're loaded. The basic block ID is 207 /// its index into the vector. 208 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 209 std::deque<Function *> BasicBlockFwdRefQueue; 210 211 /// Indicates that we are using a new encoding for instruction operands where 212 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 213 /// instruction number, for a more compact encoding. Some instruction 214 /// operands are not relative to the instruction ID: basic block numbers, and 215 /// types. Once the old style function blocks have been phased out, we would 216 /// not need this flag. 217 bool UseRelativeIDs = false; 218 219 /// True if all functions will be materialized, negating the need to process 220 /// (e.g.) blockaddress forward references. 221 bool WillMaterializeAllForwardRefs = false; 222 223 /// True if any Metadata block has been materialized. 224 bool IsMetadataMaterialized = false; 225 226 bool StripDebugInfo = false; 227 228 /// Functions that need to be matched with subprograms when upgrading old 229 /// metadata. 230 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 231 232 std::vector<std::string> BundleTags; 233 234 public: 235 std::error_code error(BitcodeError E, const Twine &Message); 236 std::error_code error(BitcodeError E); 237 std::error_code error(const Twine &Message); 238 239 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 240 BitcodeReader(LLVMContext &Context); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 std::error_code materialize(GlobalValue *GV) override; 250 std::error_code materializeModule() override; 251 std::vector<StructType *> getIdentifiedStructTypes() const override; 252 253 /// \brief Main interface to parsing a bitcode buffer. 254 /// \returns true if an error occurred. 255 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 256 Module *M, 257 bool ShouldLazyLoadMetadata = false); 258 259 /// \brief Cheap mechanism to just extract module triple 260 /// \returns true if an error occurred. 261 ErrorOr<std::string> parseTriple(); 262 263 /// Cheap mechanism to just extract the identification block out of bitcode. 264 ErrorOr<std::string> parseIdentificationBlock(); 265 266 static uint64_t decodeSignRotatedValue(uint64_t V); 267 268 /// Materialize any deferred Metadata block. 269 std::error_code materializeMetadata() override; 270 271 void setStripDebugInfo() override; 272 273 /// Save the mapping between the metadata values and the corresponding 274 /// value id that were recorded in the MetadataList during parsing. If 275 /// OnlyTempMD is true, then only record those entries that are still 276 /// temporary metadata. This interface is used when metadata linking is 277 /// performed as a postpass, such as during function importing. 278 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 279 bool OnlyTempMD) override; 280 281 private: 282 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 283 // ProducerIdentification data member, and do some basic enforcement on the 284 // "epoch" encoded in the bitcode. 285 std::error_code parseBitcodeVersion(); 286 287 std::vector<StructType *> IdentifiedStructTypes; 288 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 289 StructType *createIdentifiedStructType(LLVMContext &Context); 290 291 Type *getTypeByID(unsigned ID); 292 Value *getFnValueByID(unsigned ID, Type *Ty) { 293 if (Ty && Ty->isMetadataTy()) 294 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 295 return ValueList.getValueFwdRef(ID, Ty); 296 } 297 Metadata *getFnMetadataByID(unsigned ID) { 298 return MetadataList.getValueFwdRef(ID); 299 } 300 BasicBlock *getBasicBlock(unsigned ID) const { 301 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 302 return FunctionBBs[ID]; 303 } 304 AttributeSet getAttributes(unsigned i) const { 305 if (i-1 < MAttributes.size()) 306 return MAttributes[i-1]; 307 return AttributeSet(); 308 } 309 310 /// Read a value/type pair out of the specified record from slot 'Slot'. 311 /// Increment Slot past the number of slots used in the record. Return true on 312 /// failure. 313 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 314 unsigned InstNum, Value *&ResVal) { 315 if (Slot == Record.size()) return true; 316 unsigned ValNo = (unsigned)Record[Slot++]; 317 // Adjust the ValNo, if it was encoded relative to the InstNum. 318 if (UseRelativeIDs) 319 ValNo = InstNum - ValNo; 320 if (ValNo < InstNum) { 321 // If this is not a forward reference, just return the value we already 322 // have. 323 ResVal = getFnValueByID(ValNo, nullptr); 324 return ResVal == nullptr; 325 } 326 if (Slot == Record.size()) 327 return true; 328 329 unsigned TypeNo = (unsigned)Record[Slot++]; 330 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 331 return ResVal == nullptr; 332 } 333 334 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 335 /// past the number of slots used by the value in the record. Return true if 336 /// there is an error. 337 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 340 return true; 341 // All values currently take a single record slot. 342 ++Slot; 343 return false; 344 } 345 346 /// Like popValue, but does not increment the Slot number. 347 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty, Value *&ResVal) { 349 ResVal = getValue(Record, Slot, InstNum, Ty); 350 return ResVal == nullptr; 351 } 352 353 /// Version of getValue that returns ResVal directly, or 0 if there is an 354 /// error. 355 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 356 unsigned InstNum, Type *Ty) { 357 if (Slot == Record.size()) return nullptr; 358 unsigned ValNo = (unsigned)Record[Slot]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 return getFnValueByID(ValNo, Ty); 363 } 364 365 /// Like getValue, but decodes signed VBRs. 366 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(bool ModuleLevel = false); 401 std::error_code parseMetadataKinds(); 402 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 403 std::error_code parseMetadataAttachment(Function &F); 404 ErrorOr<std::string> parseModuleTriple(); 405 std::error_code parseUseLists(); 406 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code initStreamFromBuffer(); 408 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code findFunctionInStream( 410 Function *F, 411 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 412 }; 413 414 /// Class to manage reading and parsing function summary index bitcode 415 /// files/sections. 416 class FunctionIndexBitcodeReader { 417 DiagnosticHandlerFunction DiagnosticHandler; 418 419 /// Eventually points to the function index built during parsing. 420 FunctionInfoIndex *TheIndex = nullptr; 421 422 std::unique_ptr<MemoryBuffer> Buffer; 423 std::unique_ptr<BitstreamReader> StreamFile; 424 BitstreamCursor Stream; 425 426 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 427 /// 428 /// If false, the summary section is fully parsed into the index during 429 /// the initial parse. Otherwise, if true, the caller is expected to 430 /// invoke \a readFunctionSummary for each summary needed, and the summary 431 /// section is thus parsed lazily. 432 bool IsLazy = false; 433 434 /// Used to indicate whether caller only wants to check for the presence 435 /// of the function summary bitcode section. All blocks are skipped, 436 /// but the SeenFuncSummary boolean is set. 437 bool CheckFuncSummaryPresenceOnly = false; 438 439 /// Indicates whether we have encountered a function summary section 440 /// yet during parsing, used when checking if file contains function 441 /// summary section. 442 bool SeenFuncSummary = false; 443 444 /// \brief Map populated during function summary section parsing, and 445 /// consumed during ValueSymbolTable parsing. 446 /// 447 /// Used to correlate summary records with VST entries. For the per-module 448 /// index this maps the ValueID to the parsed function summary, and 449 /// for the combined index this maps the summary record's bitcode 450 /// offset to the function summary (since in the combined index the 451 /// VST records do not hold value IDs but rather hold the function 452 /// summary record offset). 453 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 454 455 /// Map populated during module path string table parsing, from the 456 /// module ID to a string reference owned by the index's module 457 /// path string table, used to correlate with combined index function 458 /// summary records. 459 DenseMap<uint64_t, StringRef> ModuleIdMap; 460 461 public: 462 std::error_code error(BitcodeError E, const Twine &Message); 463 std::error_code error(BitcodeError E); 464 std::error_code error(const Twine &Message); 465 466 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 467 DiagnosticHandlerFunction DiagnosticHandler, 468 bool IsLazy = false, 469 bool CheckFuncSummaryPresenceOnly = false); 470 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 471 bool IsLazy = false, 472 bool CheckFuncSummaryPresenceOnly = false); 473 ~FunctionIndexBitcodeReader() { freeState(); } 474 475 void freeState(); 476 477 void releaseBuffer(); 478 479 /// Check if the parser has encountered a function summary section. 480 bool foundFuncSummary() { return SeenFuncSummary; } 481 482 /// \brief Main interface to parsing a bitcode buffer. 483 /// \returns true if an error occurred. 484 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 485 FunctionInfoIndex *I); 486 487 /// \brief Interface for parsing a function summary lazily. 488 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 489 FunctionInfoIndex *I, 490 size_t FunctionSummaryOffset); 491 492 private: 493 std::error_code parseModule(); 494 std::error_code parseValueSymbolTable(); 495 std::error_code parseEntireSummary(); 496 std::error_code parseModuleStringTable(); 497 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 498 std::error_code initStreamFromBuffer(); 499 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 500 }; 501 } // end anonymous namespace 502 503 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 504 DiagnosticSeverity Severity, 505 const Twine &Msg) 506 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 507 508 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 509 510 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 511 std::error_code EC, const Twine &Message) { 512 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 513 DiagnosticHandler(DI); 514 return EC; 515 } 516 517 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 518 std::error_code EC) { 519 return error(DiagnosticHandler, EC, EC.message()); 520 } 521 522 static std::error_code error(LLVMContext &Context, std::error_code EC, 523 const Twine &Message) { 524 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 525 Message); 526 } 527 528 static std::error_code error(LLVMContext &Context, std::error_code EC) { 529 return error(Context, EC, EC.message()); 530 } 531 532 static std::error_code error(LLVMContext &Context, const Twine &Message) { 533 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 534 Message); 535 } 536 537 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 538 if (!ProducerIdentification.empty()) { 539 return ::error(Context, make_error_code(E), 540 Message + " (Producer: '" + ProducerIdentification + 541 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 542 } 543 return ::error(Context, make_error_code(E), Message); 544 } 545 546 std::error_code BitcodeReader::error(const Twine &Message) { 547 if (!ProducerIdentification.empty()) { 548 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 549 Message + " (Producer: '" + ProducerIdentification + 550 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 551 } 552 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 553 Message); 554 } 555 556 std::error_code BitcodeReader::error(BitcodeError E) { 557 return ::error(Context, make_error_code(E)); 558 } 559 560 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 561 : Context(Context), Buffer(Buffer), ValueList(Context), 562 MetadataList(Context) {} 563 564 BitcodeReader::BitcodeReader(LLVMContext &Context) 565 : Context(Context), Buffer(nullptr), ValueList(Context), 566 MetadataList(Context) {} 567 568 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 569 if (WillMaterializeAllForwardRefs) 570 return std::error_code(); 571 572 // Prevent recursion. 573 WillMaterializeAllForwardRefs = true; 574 575 while (!BasicBlockFwdRefQueue.empty()) { 576 Function *F = BasicBlockFwdRefQueue.front(); 577 BasicBlockFwdRefQueue.pop_front(); 578 assert(F && "Expected valid function"); 579 if (!BasicBlockFwdRefs.count(F)) 580 // Already materialized. 581 continue; 582 583 // Check for a function that isn't materializable to prevent an infinite 584 // loop. When parsing a blockaddress stored in a global variable, there 585 // isn't a trivial way to check if a function will have a body without a 586 // linear search through FunctionsWithBodies, so just check it here. 587 if (!F->isMaterializable()) 588 return error("Never resolved function from blockaddress"); 589 590 // Try to materialize F. 591 if (std::error_code EC = materialize(F)) 592 return EC; 593 } 594 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 595 596 // Reset state. 597 WillMaterializeAllForwardRefs = false; 598 return std::error_code(); 599 } 600 601 void BitcodeReader::freeState() { 602 Buffer = nullptr; 603 std::vector<Type*>().swap(TypeList); 604 ValueList.clear(); 605 MetadataList.clear(); 606 std::vector<Comdat *>().swap(ComdatList); 607 608 std::vector<AttributeSet>().swap(MAttributes); 609 std::vector<BasicBlock*>().swap(FunctionBBs); 610 std::vector<Function*>().swap(FunctionsWithBodies); 611 DeferredFunctionInfo.clear(); 612 DeferredMetadataInfo.clear(); 613 MDKindMap.clear(); 614 615 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 616 BasicBlockFwdRefQueue.clear(); 617 } 618 619 //===----------------------------------------------------------------------===// 620 // Helper functions to implement forward reference resolution, etc. 621 //===----------------------------------------------------------------------===// 622 623 /// Convert a string from a record into an std::string, return true on failure. 624 template <typename StrTy> 625 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 626 StrTy &Result) { 627 if (Idx > Record.size()) 628 return true; 629 630 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 631 Result += (char)Record[i]; 632 return false; 633 } 634 635 static bool hasImplicitComdat(size_t Val) { 636 switch (Val) { 637 default: 638 return false; 639 case 1: // Old WeakAnyLinkage 640 case 4: // Old LinkOnceAnyLinkage 641 case 10: // Old WeakODRLinkage 642 case 11: // Old LinkOnceODRLinkage 643 return true; 644 } 645 } 646 647 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 648 switch (Val) { 649 default: // Map unknown/new linkages to external 650 case 0: 651 return GlobalValue::ExternalLinkage; 652 case 2: 653 return GlobalValue::AppendingLinkage; 654 case 3: 655 return GlobalValue::InternalLinkage; 656 case 5: 657 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 658 case 6: 659 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 660 case 7: 661 return GlobalValue::ExternalWeakLinkage; 662 case 8: 663 return GlobalValue::CommonLinkage; 664 case 9: 665 return GlobalValue::PrivateLinkage; 666 case 12: 667 return GlobalValue::AvailableExternallyLinkage; 668 case 13: 669 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 670 case 14: 671 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 672 case 15: 673 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 674 case 1: // Old value with implicit comdat. 675 case 16: 676 return GlobalValue::WeakAnyLinkage; 677 case 10: // Old value with implicit comdat. 678 case 17: 679 return GlobalValue::WeakODRLinkage; 680 case 4: // Old value with implicit comdat. 681 case 18: 682 return GlobalValue::LinkOnceAnyLinkage; 683 case 11: // Old value with implicit comdat. 684 case 19: 685 return GlobalValue::LinkOnceODRLinkage; 686 } 687 } 688 689 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 690 switch (Val) { 691 default: // Map unknown visibilities to default. 692 case 0: return GlobalValue::DefaultVisibility; 693 case 1: return GlobalValue::HiddenVisibility; 694 case 2: return GlobalValue::ProtectedVisibility; 695 } 696 } 697 698 static GlobalValue::DLLStorageClassTypes 699 getDecodedDLLStorageClass(unsigned Val) { 700 switch (Val) { 701 default: // Map unknown values to default. 702 case 0: return GlobalValue::DefaultStorageClass; 703 case 1: return GlobalValue::DLLImportStorageClass; 704 case 2: return GlobalValue::DLLExportStorageClass; 705 } 706 } 707 708 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 709 switch (Val) { 710 case 0: return GlobalVariable::NotThreadLocal; 711 default: // Map unknown non-zero value to general dynamic. 712 case 1: return GlobalVariable::GeneralDynamicTLSModel; 713 case 2: return GlobalVariable::LocalDynamicTLSModel; 714 case 3: return GlobalVariable::InitialExecTLSModel; 715 case 4: return GlobalVariable::LocalExecTLSModel; 716 } 717 } 718 719 static int getDecodedCastOpcode(unsigned Val) { 720 switch (Val) { 721 default: return -1; 722 case bitc::CAST_TRUNC : return Instruction::Trunc; 723 case bitc::CAST_ZEXT : return Instruction::ZExt; 724 case bitc::CAST_SEXT : return Instruction::SExt; 725 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 726 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 727 case bitc::CAST_UITOFP : return Instruction::UIToFP; 728 case bitc::CAST_SITOFP : return Instruction::SIToFP; 729 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 730 case bitc::CAST_FPEXT : return Instruction::FPExt; 731 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 732 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 733 case bitc::CAST_BITCAST : return Instruction::BitCast; 734 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 735 } 736 } 737 738 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 739 bool IsFP = Ty->isFPOrFPVectorTy(); 740 // BinOps are only valid for int/fp or vector of int/fp types 741 if (!IsFP && !Ty->isIntOrIntVectorTy()) 742 return -1; 743 744 switch (Val) { 745 default: 746 return -1; 747 case bitc::BINOP_ADD: 748 return IsFP ? Instruction::FAdd : Instruction::Add; 749 case bitc::BINOP_SUB: 750 return IsFP ? Instruction::FSub : Instruction::Sub; 751 case bitc::BINOP_MUL: 752 return IsFP ? Instruction::FMul : Instruction::Mul; 753 case bitc::BINOP_UDIV: 754 return IsFP ? -1 : Instruction::UDiv; 755 case bitc::BINOP_SDIV: 756 return IsFP ? Instruction::FDiv : Instruction::SDiv; 757 case bitc::BINOP_UREM: 758 return IsFP ? -1 : Instruction::URem; 759 case bitc::BINOP_SREM: 760 return IsFP ? Instruction::FRem : Instruction::SRem; 761 case bitc::BINOP_SHL: 762 return IsFP ? -1 : Instruction::Shl; 763 case bitc::BINOP_LSHR: 764 return IsFP ? -1 : Instruction::LShr; 765 case bitc::BINOP_ASHR: 766 return IsFP ? -1 : Instruction::AShr; 767 case bitc::BINOP_AND: 768 return IsFP ? -1 : Instruction::And; 769 case bitc::BINOP_OR: 770 return IsFP ? -1 : Instruction::Or; 771 case bitc::BINOP_XOR: 772 return IsFP ? -1 : Instruction::Xor; 773 } 774 } 775 776 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 777 switch (Val) { 778 default: return AtomicRMWInst::BAD_BINOP; 779 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 780 case bitc::RMW_ADD: return AtomicRMWInst::Add; 781 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 782 case bitc::RMW_AND: return AtomicRMWInst::And; 783 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 784 case bitc::RMW_OR: return AtomicRMWInst::Or; 785 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 786 case bitc::RMW_MAX: return AtomicRMWInst::Max; 787 case bitc::RMW_MIN: return AtomicRMWInst::Min; 788 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 789 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 790 } 791 } 792 793 static AtomicOrdering getDecodedOrdering(unsigned Val) { 794 switch (Val) { 795 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 796 case bitc::ORDERING_UNORDERED: return Unordered; 797 case bitc::ORDERING_MONOTONIC: return Monotonic; 798 case bitc::ORDERING_ACQUIRE: return Acquire; 799 case bitc::ORDERING_RELEASE: return Release; 800 case bitc::ORDERING_ACQREL: return AcquireRelease; 801 default: // Map unknown orderings to sequentially-consistent. 802 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 803 } 804 } 805 806 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 807 switch (Val) { 808 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 809 default: // Map unknown scopes to cross-thread. 810 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 811 } 812 } 813 814 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 815 switch (Val) { 816 default: // Map unknown selection kinds to any. 817 case bitc::COMDAT_SELECTION_KIND_ANY: 818 return Comdat::Any; 819 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 820 return Comdat::ExactMatch; 821 case bitc::COMDAT_SELECTION_KIND_LARGEST: 822 return Comdat::Largest; 823 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 824 return Comdat::NoDuplicates; 825 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 826 return Comdat::SameSize; 827 } 828 } 829 830 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 831 FastMathFlags FMF; 832 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 833 FMF.setUnsafeAlgebra(); 834 if (0 != (Val & FastMathFlags::NoNaNs)) 835 FMF.setNoNaNs(); 836 if (0 != (Val & FastMathFlags::NoInfs)) 837 FMF.setNoInfs(); 838 if (0 != (Val & FastMathFlags::NoSignedZeros)) 839 FMF.setNoSignedZeros(); 840 if (0 != (Val & FastMathFlags::AllowReciprocal)) 841 FMF.setAllowReciprocal(); 842 return FMF; 843 } 844 845 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 846 switch (Val) { 847 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 848 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 849 } 850 } 851 852 namespace llvm { 853 namespace { 854 /// \brief A class for maintaining the slot number definition 855 /// as a placeholder for the actual definition for forward constants defs. 856 class ConstantPlaceHolder : public ConstantExpr { 857 void operator=(const ConstantPlaceHolder &) = delete; 858 859 public: 860 // allocate space for exactly one operand 861 void *operator new(size_t s) { return User::operator new(s, 1); } 862 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 863 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 864 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 865 } 866 867 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 868 static bool classof(const Value *V) { 869 return isa<ConstantExpr>(V) && 870 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 871 } 872 873 /// Provide fast operand accessors 874 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 875 }; 876 } // end anonymous namespace 877 878 // FIXME: can we inherit this from ConstantExpr? 879 template <> 880 struct OperandTraits<ConstantPlaceHolder> : 881 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 882 }; 883 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 884 } // end namespace llvm 885 886 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 887 if (Idx == size()) { 888 push_back(V); 889 return; 890 } 891 892 if (Idx >= size()) 893 resize(Idx+1); 894 895 WeakVH &OldV = ValuePtrs[Idx]; 896 if (!OldV) { 897 OldV = V; 898 return; 899 } 900 901 // Handle constants and non-constants (e.g. instrs) differently for 902 // efficiency. 903 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 904 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 905 OldV = V; 906 } else { 907 // If there was a forward reference to this value, replace it. 908 Value *PrevVal = OldV; 909 OldV->replaceAllUsesWith(V); 910 delete PrevVal; 911 } 912 } 913 914 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 915 Type *Ty) { 916 if (Idx >= size()) 917 resize(Idx + 1); 918 919 if (Value *V = ValuePtrs[Idx]) { 920 if (Ty != V->getType()) 921 report_fatal_error("Type mismatch in constant table!"); 922 return cast<Constant>(V); 923 } 924 925 // Create and return a placeholder, which will later be RAUW'd. 926 Constant *C = new ConstantPlaceHolder(Ty, Context); 927 ValuePtrs[Idx] = C; 928 return C; 929 } 930 931 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 932 // Bail out for a clearly invalid value. This would make us call resize(0) 933 if (Idx == UINT_MAX) 934 return nullptr; 935 936 if (Idx >= size()) 937 resize(Idx + 1); 938 939 if (Value *V = ValuePtrs[Idx]) { 940 // If the types don't match, it's invalid. 941 if (Ty && Ty != V->getType()) 942 return nullptr; 943 return V; 944 } 945 946 // No type specified, must be invalid reference. 947 if (!Ty) return nullptr; 948 949 // Create and return a placeholder, which will later be RAUW'd. 950 Value *V = new Argument(Ty); 951 ValuePtrs[Idx] = V; 952 return V; 953 } 954 955 /// Once all constants are read, this method bulk resolves any forward 956 /// references. The idea behind this is that we sometimes get constants (such 957 /// as large arrays) which reference *many* forward ref constants. Replacing 958 /// each of these causes a lot of thrashing when building/reuniquing the 959 /// constant. Instead of doing this, we look at all the uses and rewrite all 960 /// the place holders at once for any constant that uses a placeholder. 961 void BitcodeReaderValueList::resolveConstantForwardRefs() { 962 // Sort the values by-pointer so that they are efficient to look up with a 963 // binary search. 964 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 965 966 SmallVector<Constant*, 64> NewOps; 967 968 while (!ResolveConstants.empty()) { 969 Value *RealVal = operator[](ResolveConstants.back().second); 970 Constant *Placeholder = ResolveConstants.back().first; 971 ResolveConstants.pop_back(); 972 973 // Loop over all users of the placeholder, updating them to reference the 974 // new value. If they reference more than one placeholder, update them all 975 // at once. 976 while (!Placeholder->use_empty()) { 977 auto UI = Placeholder->user_begin(); 978 User *U = *UI; 979 980 // If the using object isn't uniqued, just update the operands. This 981 // handles instructions and initializers for global variables. 982 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 983 UI.getUse().set(RealVal); 984 continue; 985 } 986 987 // Otherwise, we have a constant that uses the placeholder. Replace that 988 // constant with a new constant that has *all* placeholder uses updated. 989 Constant *UserC = cast<Constant>(U); 990 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 991 I != E; ++I) { 992 Value *NewOp; 993 if (!isa<ConstantPlaceHolder>(*I)) { 994 // Not a placeholder reference. 995 NewOp = *I; 996 } else if (*I == Placeholder) { 997 // Common case is that it just references this one placeholder. 998 NewOp = RealVal; 999 } else { 1000 // Otherwise, look up the placeholder in ResolveConstants. 1001 ResolveConstantsTy::iterator It = 1002 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1003 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1004 0)); 1005 assert(It != ResolveConstants.end() && It->first == *I); 1006 NewOp = operator[](It->second); 1007 } 1008 1009 NewOps.push_back(cast<Constant>(NewOp)); 1010 } 1011 1012 // Make the new constant. 1013 Constant *NewC; 1014 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1015 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1016 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1017 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1018 } else if (isa<ConstantVector>(UserC)) { 1019 NewC = ConstantVector::get(NewOps); 1020 } else { 1021 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1022 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1023 } 1024 1025 UserC->replaceAllUsesWith(NewC); 1026 UserC->destroyConstant(); 1027 NewOps.clear(); 1028 } 1029 1030 // Update all ValueHandles, they should be the only users at this point. 1031 Placeholder->replaceAllUsesWith(RealVal); 1032 delete Placeholder; 1033 } 1034 } 1035 1036 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1037 if (Idx == size()) { 1038 push_back(MD); 1039 return; 1040 } 1041 1042 if (Idx >= size()) 1043 resize(Idx+1); 1044 1045 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1046 if (!OldMD) { 1047 OldMD.reset(MD); 1048 return; 1049 } 1050 1051 // If there was a forward reference to this value, replace it. 1052 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1053 PrevMD->replaceAllUsesWith(MD); 1054 --NumFwdRefs; 1055 } 1056 1057 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1058 if (Idx >= size()) 1059 resize(Idx + 1); 1060 1061 if (Metadata *MD = MetadataPtrs[Idx]) 1062 return MD; 1063 1064 // Track forward refs to be resolved later. 1065 if (AnyFwdRefs) { 1066 MinFwdRef = std::min(MinFwdRef, Idx); 1067 MaxFwdRef = std::max(MaxFwdRef, Idx); 1068 } else { 1069 AnyFwdRefs = true; 1070 MinFwdRef = MaxFwdRef = Idx; 1071 } 1072 ++NumFwdRefs; 1073 1074 // Create and return a placeholder, which will later be RAUW'd. 1075 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1076 MetadataPtrs[Idx].reset(MD); 1077 return MD; 1078 } 1079 1080 void BitcodeReaderMetadataList::tryToResolveCycles() { 1081 if (!AnyFwdRefs) 1082 // Nothing to do. 1083 return; 1084 1085 if (NumFwdRefs) 1086 // Still forward references... can't resolve cycles. 1087 return; 1088 1089 // Resolve any cycles. 1090 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1091 auto &MD = MetadataPtrs[I]; 1092 auto *N = dyn_cast_or_null<MDNode>(MD); 1093 if (!N) 1094 continue; 1095 1096 assert(!N->isTemporary() && "Unexpected forward reference"); 1097 N->resolveCycles(); 1098 } 1099 1100 // Make sure we return early again until there's another forward ref. 1101 AnyFwdRefs = false; 1102 } 1103 1104 Type *BitcodeReader::getTypeByID(unsigned ID) { 1105 // The type table size is always specified correctly. 1106 if (ID >= TypeList.size()) 1107 return nullptr; 1108 1109 if (Type *Ty = TypeList[ID]) 1110 return Ty; 1111 1112 // If we have a forward reference, the only possible case is when it is to a 1113 // named struct. Just create a placeholder for now. 1114 return TypeList[ID] = createIdentifiedStructType(Context); 1115 } 1116 1117 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1118 StringRef Name) { 1119 auto *Ret = StructType::create(Context, Name); 1120 IdentifiedStructTypes.push_back(Ret); 1121 return Ret; 1122 } 1123 1124 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1125 auto *Ret = StructType::create(Context); 1126 IdentifiedStructTypes.push_back(Ret); 1127 return Ret; 1128 } 1129 1130 //===----------------------------------------------------------------------===// 1131 // Functions for parsing blocks from the bitcode file 1132 //===----------------------------------------------------------------------===// 1133 1134 1135 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1136 /// been decoded from the given integer. This function must stay in sync with 1137 /// 'encodeLLVMAttributesForBitcode'. 1138 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1139 uint64_t EncodedAttrs) { 1140 // FIXME: Remove in 4.0. 1141 1142 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1143 // the bits above 31 down by 11 bits. 1144 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1145 assert((!Alignment || isPowerOf2_32(Alignment)) && 1146 "Alignment must be a power of two."); 1147 1148 if (Alignment) 1149 B.addAlignmentAttr(Alignment); 1150 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1151 (EncodedAttrs & 0xffff)); 1152 } 1153 1154 std::error_code BitcodeReader::parseAttributeBlock() { 1155 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1156 return error("Invalid record"); 1157 1158 if (!MAttributes.empty()) 1159 return error("Invalid multiple blocks"); 1160 1161 SmallVector<uint64_t, 64> Record; 1162 1163 SmallVector<AttributeSet, 8> Attrs; 1164 1165 // Read all the records. 1166 while (1) { 1167 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1168 1169 switch (Entry.Kind) { 1170 case BitstreamEntry::SubBlock: // Handled for us already. 1171 case BitstreamEntry::Error: 1172 return error("Malformed block"); 1173 case BitstreamEntry::EndBlock: 1174 return std::error_code(); 1175 case BitstreamEntry::Record: 1176 // The interesting case. 1177 break; 1178 } 1179 1180 // Read a record. 1181 Record.clear(); 1182 switch (Stream.readRecord(Entry.ID, Record)) { 1183 default: // Default behavior: ignore. 1184 break; 1185 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1186 // FIXME: Remove in 4.0. 1187 if (Record.size() & 1) 1188 return error("Invalid record"); 1189 1190 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1191 AttrBuilder B; 1192 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1193 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1194 } 1195 1196 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1197 Attrs.clear(); 1198 break; 1199 } 1200 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1201 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1202 Attrs.push_back(MAttributeGroups[Record[i]]); 1203 1204 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1205 Attrs.clear(); 1206 break; 1207 } 1208 } 1209 } 1210 } 1211 1212 // Returns Attribute::None on unrecognized codes. 1213 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1214 switch (Code) { 1215 default: 1216 return Attribute::None; 1217 case bitc::ATTR_KIND_ALIGNMENT: 1218 return Attribute::Alignment; 1219 case bitc::ATTR_KIND_ALWAYS_INLINE: 1220 return Attribute::AlwaysInline; 1221 case bitc::ATTR_KIND_ARGMEMONLY: 1222 return Attribute::ArgMemOnly; 1223 case bitc::ATTR_KIND_BUILTIN: 1224 return Attribute::Builtin; 1225 case bitc::ATTR_KIND_BY_VAL: 1226 return Attribute::ByVal; 1227 case bitc::ATTR_KIND_IN_ALLOCA: 1228 return Attribute::InAlloca; 1229 case bitc::ATTR_KIND_COLD: 1230 return Attribute::Cold; 1231 case bitc::ATTR_KIND_CONVERGENT: 1232 return Attribute::Convergent; 1233 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1234 return Attribute::InaccessibleMemOnly; 1235 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1236 return Attribute::InaccessibleMemOrArgMemOnly; 1237 case bitc::ATTR_KIND_INLINE_HINT: 1238 return Attribute::InlineHint; 1239 case bitc::ATTR_KIND_IN_REG: 1240 return Attribute::InReg; 1241 case bitc::ATTR_KIND_JUMP_TABLE: 1242 return Attribute::JumpTable; 1243 case bitc::ATTR_KIND_MIN_SIZE: 1244 return Attribute::MinSize; 1245 case bitc::ATTR_KIND_NAKED: 1246 return Attribute::Naked; 1247 case bitc::ATTR_KIND_NEST: 1248 return Attribute::Nest; 1249 case bitc::ATTR_KIND_NO_ALIAS: 1250 return Attribute::NoAlias; 1251 case bitc::ATTR_KIND_NO_BUILTIN: 1252 return Attribute::NoBuiltin; 1253 case bitc::ATTR_KIND_NO_CAPTURE: 1254 return Attribute::NoCapture; 1255 case bitc::ATTR_KIND_NO_DUPLICATE: 1256 return Attribute::NoDuplicate; 1257 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1258 return Attribute::NoImplicitFloat; 1259 case bitc::ATTR_KIND_NO_INLINE: 1260 return Attribute::NoInline; 1261 case bitc::ATTR_KIND_NO_RECURSE: 1262 return Attribute::NoRecurse; 1263 case bitc::ATTR_KIND_NON_LAZY_BIND: 1264 return Attribute::NonLazyBind; 1265 case bitc::ATTR_KIND_NON_NULL: 1266 return Attribute::NonNull; 1267 case bitc::ATTR_KIND_DEREFERENCEABLE: 1268 return Attribute::Dereferenceable; 1269 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1270 return Attribute::DereferenceableOrNull; 1271 case bitc::ATTR_KIND_NO_RED_ZONE: 1272 return Attribute::NoRedZone; 1273 case bitc::ATTR_KIND_NO_RETURN: 1274 return Attribute::NoReturn; 1275 case bitc::ATTR_KIND_NO_UNWIND: 1276 return Attribute::NoUnwind; 1277 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1278 return Attribute::OptimizeForSize; 1279 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1280 return Attribute::OptimizeNone; 1281 case bitc::ATTR_KIND_READ_NONE: 1282 return Attribute::ReadNone; 1283 case bitc::ATTR_KIND_READ_ONLY: 1284 return Attribute::ReadOnly; 1285 case bitc::ATTR_KIND_RETURNED: 1286 return Attribute::Returned; 1287 case bitc::ATTR_KIND_RETURNS_TWICE: 1288 return Attribute::ReturnsTwice; 1289 case bitc::ATTR_KIND_S_EXT: 1290 return Attribute::SExt; 1291 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1292 return Attribute::StackAlignment; 1293 case bitc::ATTR_KIND_STACK_PROTECT: 1294 return Attribute::StackProtect; 1295 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1296 return Attribute::StackProtectReq; 1297 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1298 return Attribute::StackProtectStrong; 1299 case bitc::ATTR_KIND_SAFESTACK: 1300 return Attribute::SafeStack; 1301 case bitc::ATTR_KIND_STRUCT_RET: 1302 return Attribute::StructRet; 1303 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1304 return Attribute::SanitizeAddress; 1305 case bitc::ATTR_KIND_SANITIZE_THREAD: 1306 return Attribute::SanitizeThread; 1307 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1308 return Attribute::SanitizeMemory; 1309 case bitc::ATTR_KIND_UW_TABLE: 1310 return Attribute::UWTable; 1311 case bitc::ATTR_KIND_Z_EXT: 1312 return Attribute::ZExt; 1313 } 1314 } 1315 1316 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1317 unsigned &Alignment) { 1318 // Note: Alignment in bitcode files is incremented by 1, so that zero 1319 // can be used for default alignment. 1320 if (Exponent > Value::MaxAlignmentExponent + 1) 1321 return error("Invalid alignment value"); 1322 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1323 return std::error_code(); 1324 } 1325 1326 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1327 Attribute::AttrKind *Kind) { 1328 *Kind = getAttrFromCode(Code); 1329 if (*Kind == Attribute::None) 1330 return error(BitcodeError::CorruptedBitcode, 1331 "Unknown attribute kind (" + Twine(Code) + ")"); 1332 return std::error_code(); 1333 } 1334 1335 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1336 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1337 return error("Invalid record"); 1338 1339 if (!MAttributeGroups.empty()) 1340 return error("Invalid multiple blocks"); 1341 1342 SmallVector<uint64_t, 64> Record; 1343 1344 // Read all the records. 1345 while (1) { 1346 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1347 1348 switch (Entry.Kind) { 1349 case BitstreamEntry::SubBlock: // Handled for us already. 1350 case BitstreamEntry::Error: 1351 return error("Malformed block"); 1352 case BitstreamEntry::EndBlock: 1353 return std::error_code(); 1354 case BitstreamEntry::Record: 1355 // The interesting case. 1356 break; 1357 } 1358 1359 // Read a record. 1360 Record.clear(); 1361 switch (Stream.readRecord(Entry.ID, Record)) { 1362 default: // Default behavior: ignore. 1363 break; 1364 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1365 if (Record.size() < 3) 1366 return error("Invalid record"); 1367 1368 uint64_t GrpID = Record[0]; 1369 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1370 1371 AttrBuilder B; 1372 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1373 if (Record[i] == 0) { // Enum attribute 1374 Attribute::AttrKind Kind; 1375 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1376 return EC; 1377 1378 B.addAttribute(Kind); 1379 } else if (Record[i] == 1) { // Integer attribute 1380 Attribute::AttrKind Kind; 1381 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1382 return EC; 1383 if (Kind == Attribute::Alignment) 1384 B.addAlignmentAttr(Record[++i]); 1385 else if (Kind == Attribute::StackAlignment) 1386 B.addStackAlignmentAttr(Record[++i]); 1387 else if (Kind == Attribute::Dereferenceable) 1388 B.addDereferenceableAttr(Record[++i]); 1389 else if (Kind == Attribute::DereferenceableOrNull) 1390 B.addDereferenceableOrNullAttr(Record[++i]); 1391 } else { // String attribute 1392 assert((Record[i] == 3 || Record[i] == 4) && 1393 "Invalid attribute group entry"); 1394 bool HasValue = (Record[i++] == 4); 1395 SmallString<64> KindStr; 1396 SmallString<64> ValStr; 1397 1398 while (Record[i] != 0 && i != e) 1399 KindStr += Record[i++]; 1400 assert(Record[i] == 0 && "Kind string not null terminated"); 1401 1402 if (HasValue) { 1403 // Has a value associated with it. 1404 ++i; // Skip the '0' that terminates the "kind" string. 1405 while (Record[i] != 0 && i != e) 1406 ValStr += Record[i++]; 1407 assert(Record[i] == 0 && "Value string not null terminated"); 1408 } 1409 1410 B.addAttribute(KindStr.str(), ValStr.str()); 1411 } 1412 } 1413 1414 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1415 break; 1416 } 1417 } 1418 } 1419 } 1420 1421 std::error_code BitcodeReader::parseTypeTable() { 1422 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1423 return error("Invalid record"); 1424 1425 return parseTypeTableBody(); 1426 } 1427 1428 std::error_code BitcodeReader::parseTypeTableBody() { 1429 if (!TypeList.empty()) 1430 return error("Invalid multiple blocks"); 1431 1432 SmallVector<uint64_t, 64> Record; 1433 unsigned NumRecords = 0; 1434 1435 SmallString<64> TypeName; 1436 1437 // Read all the records for this type table. 1438 while (1) { 1439 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1440 1441 switch (Entry.Kind) { 1442 case BitstreamEntry::SubBlock: // Handled for us already. 1443 case BitstreamEntry::Error: 1444 return error("Malformed block"); 1445 case BitstreamEntry::EndBlock: 1446 if (NumRecords != TypeList.size()) 1447 return error("Malformed block"); 1448 return std::error_code(); 1449 case BitstreamEntry::Record: 1450 // The interesting case. 1451 break; 1452 } 1453 1454 // Read a record. 1455 Record.clear(); 1456 Type *ResultTy = nullptr; 1457 switch (Stream.readRecord(Entry.ID, Record)) { 1458 default: 1459 return error("Invalid value"); 1460 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1461 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1462 // type list. This allows us to reserve space. 1463 if (Record.size() < 1) 1464 return error("Invalid record"); 1465 TypeList.resize(Record[0]); 1466 continue; 1467 case bitc::TYPE_CODE_VOID: // VOID 1468 ResultTy = Type::getVoidTy(Context); 1469 break; 1470 case bitc::TYPE_CODE_HALF: // HALF 1471 ResultTy = Type::getHalfTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_FLOAT: // FLOAT 1474 ResultTy = Type::getFloatTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1477 ResultTy = Type::getDoubleTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1480 ResultTy = Type::getX86_FP80Ty(Context); 1481 break; 1482 case bitc::TYPE_CODE_FP128: // FP128 1483 ResultTy = Type::getFP128Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1486 ResultTy = Type::getPPC_FP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_LABEL: // LABEL 1489 ResultTy = Type::getLabelTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_METADATA: // METADATA 1492 ResultTy = Type::getMetadataTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1495 ResultTy = Type::getX86_MMXTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_TOKEN: // TOKEN 1498 ResultTy = Type::getTokenTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1501 if (Record.size() < 1) 1502 return error("Invalid record"); 1503 1504 uint64_t NumBits = Record[0]; 1505 if (NumBits < IntegerType::MIN_INT_BITS || 1506 NumBits > IntegerType::MAX_INT_BITS) 1507 return error("Bitwidth for integer type out of range"); 1508 ResultTy = IntegerType::get(Context, NumBits); 1509 break; 1510 } 1511 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1512 // [pointee type, address space] 1513 if (Record.size() < 1) 1514 return error("Invalid record"); 1515 unsigned AddressSpace = 0; 1516 if (Record.size() == 2) 1517 AddressSpace = Record[1]; 1518 ResultTy = getTypeByID(Record[0]); 1519 if (!ResultTy || 1520 !PointerType::isValidElementType(ResultTy)) 1521 return error("Invalid type"); 1522 ResultTy = PointerType::get(ResultTy, AddressSpace); 1523 break; 1524 } 1525 case bitc::TYPE_CODE_FUNCTION_OLD: { 1526 // FIXME: attrid is dead, remove it in LLVM 4.0 1527 // FUNCTION: [vararg, attrid, retty, paramty x N] 1528 if (Record.size() < 3) 1529 return error("Invalid record"); 1530 SmallVector<Type*, 8> ArgTys; 1531 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1532 if (Type *T = getTypeByID(Record[i])) 1533 ArgTys.push_back(T); 1534 else 1535 break; 1536 } 1537 1538 ResultTy = getTypeByID(Record[2]); 1539 if (!ResultTy || ArgTys.size() < Record.size()-3) 1540 return error("Invalid type"); 1541 1542 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1543 break; 1544 } 1545 case bitc::TYPE_CODE_FUNCTION: { 1546 // FUNCTION: [vararg, retty, paramty x N] 1547 if (Record.size() < 2) 1548 return error("Invalid record"); 1549 SmallVector<Type*, 8> ArgTys; 1550 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1551 if (Type *T = getTypeByID(Record[i])) { 1552 if (!FunctionType::isValidArgumentType(T)) 1553 return error("Invalid function argument type"); 1554 ArgTys.push_back(T); 1555 } 1556 else 1557 break; 1558 } 1559 1560 ResultTy = getTypeByID(Record[1]); 1561 if (!ResultTy || ArgTys.size() < Record.size()-2) 1562 return error("Invalid type"); 1563 1564 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1565 break; 1566 } 1567 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1568 if (Record.size() < 1) 1569 return error("Invalid record"); 1570 SmallVector<Type*, 8> EltTys; 1571 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1572 if (Type *T = getTypeByID(Record[i])) 1573 EltTys.push_back(T); 1574 else 1575 break; 1576 } 1577 if (EltTys.size() != Record.size()-1) 1578 return error("Invalid type"); 1579 ResultTy = StructType::get(Context, EltTys, Record[0]); 1580 break; 1581 } 1582 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1583 if (convertToString(Record, 0, TypeName)) 1584 return error("Invalid record"); 1585 continue; 1586 1587 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1588 if (Record.size() < 1) 1589 return error("Invalid record"); 1590 1591 if (NumRecords >= TypeList.size()) 1592 return error("Invalid TYPE table"); 1593 1594 // Check to see if this was forward referenced, if so fill in the temp. 1595 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1596 if (Res) { 1597 Res->setName(TypeName); 1598 TypeList[NumRecords] = nullptr; 1599 } else // Otherwise, create a new struct. 1600 Res = createIdentifiedStructType(Context, TypeName); 1601 TypeName.clear(); 1602 1603 SmallVector<Type*, 8> EltTys; 1604 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1605 if (Type *T = getTypeByID(Record[i])) 1606 EltTys.push_back(T); 1607 else 1608 break; 1609 } 1610 if (EltTys.size() != Record.size()-1) 1611 return error("Invalid record"); 1612 Res->setBody(EltTys, Record[0]); 1613 ResultTy = Res; 1614 break; 1615 } 1616 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1617 if (Record.size() != 1) 1618 return error("Invalid record"); 1619 1620 if (NumRecords >= TypeList.size()) 1621 return error("Invalid TYPE table"); 1622 1623 // Check to see if this was forward referenced, if so fill in the temp. 1624 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1625 if (Res) { 1626 Res->setName(TypeName); 1627 TypeList[NumRecords] = nullptr; 1628 } else // Otherwise, create a new struct with no body. 1629 Res = createIdentifiedStructType(Context, TypeName); 1630 TypeName.clear(); 1631 ResultTy = Res; 1632 break; 1633 } 1634 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1635 if (Record.size() < 2) 1636 return error("Invalid record"); 1637 ResultTy = getTypeByID(Record[1]); 1638 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1639 return error("Invalid type"); 1640 ResultTy = ArrayType::get(ResultTy, Record[0]); 1641 break; 1642 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1643 if (Record.size() < 2) 1644 return error("Invalid record"); 1645 if (Record[0] == 0) 1646 return error("Invalid vector length"); 1647 ResultTy = getTypeByID(Record[1]); 1648 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1649 return error("Invalid type"); 1650 ResultTy = VectorType::get(ResultTy, Record[0]); 1651 break; 1652 } 1653 1654 if (NumRecords >= TypeList.size()) 1655 return error("Invalid TYPE table"); 1656 if (TypeList[NumRecords]) 1657 return error( 1658 "Invalid TYPE table: Only named structs can be forward referenced"); 1659 assert(ResultTy && "Didn't read a type?"); 1660 TypeList[NumRecords++] = ResultTy; 1661 } 1662 } 1663 1664 std::error_code BitcodeReader::parseOperandBundleTags() { 1665 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1666 return error("Invalid record"); 1667 1668 if (!BundleTags.empty()) 1669 return error("Invalid multiple blocks"); 1670 1671 SmallVector<uint64_t, 64> Record; 1672 1673 while (1) { 1674 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1675 1676 switch (Entry.Kind) { 1677 case BitstreamEntry::SubBlock: // Handled for us already. 1678 case BitstreamEntry::Error: 1679 return error("Malformed block"); 1680 case BitstreamEntry::EndBlock: 1681 return std::error_code(); 1682 case BitstreamEntry::Record: 1683 // The interesting case. 1684 break; 1685 } 1686 1687 // Tags are implicitly mapped to integers by their order. 1688 1689 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1690 return error("Invalid record"); 1691 1692 // OPERAND_BUNDLE_TAG: [strchr x N] 1693 BundleTags.emplace_back(); 1694 if (convertToString(Record, 0, BundleTags.back())) 1695 return error("Invalid record"); 1696 Record.clear(); 1697 } 1698 } 1699 1700 /// Associate a value with its name from the given index in the provided record. 1701 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1702 unsigned NameIndex, Triple &TT) { 1703 SmallString<128> ValueName; 1704 if (convertToString(Record, NameIndex, ValueName)) 1705 return error("Invalid record"); 1706 unsigned ValueID = Record[0]; 1707 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1708 return error("Invalid record"); 1709 Value *V = ValueList[ValueID]; 1710 1711 StringRef NameStr(ValueName.data(), ValueName.size()); 1712 if (NameStr.find_first_of(0) != StringRef::npos) 1713 return error("Invalid value name"); 1714 V->setName(NameStr); 1715 auto *GO = dyn_cast<GlobalObject>(V); 1716 if (GO) { 1717 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1718 if (TT.isOSBinFormatMachO()) 1719 GO->setComdat(nullptr); 1720 else 1721 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1722 } 1723 } 1724 return V; 1725 } 1726 1727 /// Parse the value symbol table at either the current parsing location or 1728 /// at the given bit offset if provided. 1729 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1730 uint64_t CurrentBit; 1731 // Pass in the Offset to distinguish between calling for the module-level 1732 // VST (where we want to jump to the VST offset) and the function-level 1733 // VST (where we don't). 1734 if (Offset > 0) { 1735 // Save the current parsing location so we can jump back at the end 1736 // of the VST read. 1737 CurrentBit = Stream.GetCurrentBitNo(); 1738 Stream.JumpToBit(Offset * 32); 1739 #ifndef NDEBUG 1740 // Do some checking if we are in debug mode. 1741 BitstreamEntry Entry = Stream.advance(); 1742 assert(Entry.Kind == BitstreamEntry::SubBlock); 1743 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1744 #else 1745 // In NDEBUG mode ignore the output so we don't get an unused variable 1746 // warning. 1747 Stream.advance(); 1748 #endif 1749 } 1750 1751 // Compute the delta between the bitcode indices in the VST (the word offset 1752 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1753 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1754 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1755 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1756 // just before entering the VST subblock because: 1) the EnterSubBlock 1757 // changes the AbbrevID width; 2) the VST block is nested within the same 1758 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1759 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1760 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1761 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1762 unsigned FuncBitcodeOffsetDelta = 1763 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1764 1765 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1766 return error("Invalid record"); 1767 1768 SmallVector<uint64_t, 64> Record; 1769 1770 Triple TT(TheModule->getTargetTriple()); 1771 1772 // Read all the records for this value table. 1773 SmallString<128> ValueName; 1774 while (1) { 1775 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1776 1777 switch (Entry.Kind) { 1778 case BitstreamEntry::SubBlock: // Handled for us already. 1779 case BitstreamEntry::Error: 1780 return error("Malformed block"); 1781 case BitstreamEntry::EndBlock: 1782 if (Offset > 0) 1783 Stream.JumpToBit(CurrentBit); 1784 return std::error_code(); 1785 case BitstreamEntry::Record: 1786 // The interesting case. 1787 break; 1788 } 1789 1790 // Read a record. 1791 Record.clear(); 1792 switch (Stream.readRecord(Entry.ID, Record)) { 1793 default: // Default behavior: unknown type. 1794 break; 1795 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1796 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1797 if (std::error_code EC = ValOrErr.getError()) 1798 return EC; 1799 ValOrErr.get(); 1800 break; 1801 } 1802 case bitc::VST_CODE_FNENTRY: { 1803 // VST_FNENTRY: [valueid, offset, namechar x N] 1804 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1805 if (std::error_code EC = ValOrErr.getError()) 1806 return EC; 1807 Value *V = ValOrErr.get(); 1808 1809 auto *GO = dyn_cast<GlobalObject>(V); 1810 if (!GO) { 1811 // If this is an alias, need to get the actual Function object 1812 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1813 auto *GA = dyn_cast<GlobalAlias>(V); 1814 if (GA) 1815 GO = GA->getBaseObject(); 1816 assert(GO); 1817 } 1818 1819 uint64_t FuncWordOffset = Record[1]; 1820 Function *F = dyn_cast<Function>(GO); 1821 assert(F); 1822 uint64_t FuncBitOffset = FuncWordOffset * 32; 1823 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1824 // Set the LastFunctionBlockBit to point to the last function block. 1825 // Later when parsing is resumed after function materialization, 1826 // we can simply skip that last function block. 1827 if (FuncBitOffset > LastFunctionBlockBit) 1828 LastFunctionBlockBit = FuncBitOffset; 1829 break; 1830 } 1831 case bitc::VST_CODE_BBENTRY: { 1832 if (convertToString(Record, 1, ValueName)) 1833 return error("Invalid record"); 1834 BasicBlock *BB = getBasicBlock(Record[0]); 1835 if (!BB) 1836 return error("Invalid record"); 1837 1838 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1839 ValueName.clear(); 1840 break; 1841 } 1842 } 1843 } 1844 } 1845 1846 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1847 std::error_code 1848 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1849 if (Record.size() < 2) 1850 return error("Invalid record"); 1851 1852 unsigned Kind = Record[0]; 1853 SmallString<8> Name(Record.begin() + 1, Record.end()); 1854 1855 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1856 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1857 return error("Conflicting METADATA_KIND records"); 1858 return std::error_code(); 1859 } 1860 1861 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1862 1863 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1864 /// module level metadata. 1865 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1866 IsMetadataMaterialized = true; 1867 unsigned NextMetadataNo = MetadataList.size(); 1868 if (ModuleLevel && SeenModuleValuesRecord) { 1869 // Now that we are parsing the module level metadata, we want to restart 1870 // the numbering of the MD values, and replace temp MD created earlier 1871 // with their real values. If we saw a METADATA_VALUE record then we 1872 // would have set the MetadataList size to the number specified in that 1873 // record, to support parsing function-level metadata first, and we need 1874 // to reset back to 0 to fill the MetadataList in with the parsed module 1875 // The function-level metadata parsing should have reset the MetadataList 1876 // size back to the value reported by the METADATA_VALUE record, saved in 1877 // NumModuleMDs. 1878 assert(NumModuleMDs == MetadataList.size() && 1879 "Expected MetadataList to only contain module level values"); 1880 NextMetadataNo = 0; 1881 } 1882 1883 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1884 return error("Invalid record"); 1885 1886 SmallVector<uint64_t, 64> Record; 1887 1888 auto getMD = [&](unsigned ID) -> Metadata * { 1889 return MetadataList.getValueFwdRef(ID); 1890 }; 1891 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1892 if (ID) 1893 return getMD(ID - 1); 1894 return nullptr; 1895 }; 1896 auto getMDString = [&](unsigned ID) -> MDString *{ 1897 // This requires that the ID is not really a forward reference. In 1898 // particular, the MDString must already have been resolved. 1899 return cast_or_null<MDString>(getMDOrNull(ID)); 1900 }; 1901 1902 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1903 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1904 1905 // Read all the records. 1906 while (1) { 1907 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1908 1909 switch (Entry.Kind) { 1910 case BitstreamEntry::SubBlock: // Handled for us already. 1911 case BitstreamEntry::Error: 1912 return error("Malformed block"); 1913 case BitstreamEntry::EndBlock: 1914 MetadataList.tryToResolveCycles(); 1915 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1916 NumModuleMDs == MetadataList.size()) && 1917 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1918 return std::error_code(); 1919 case BitstreamEntry::Record: 1920 // The interesting case. 1921 break; 1922 } 1923 1924 // Read a record. 1925 Record.clear(); 1926 unsigned Code = Stream.readRecord(Entry.ID, Record); 1927 bool IsDistinct = false; 1928 switch (Code) { 1929 default: // Default behavior: ignore. 1930 break; 1931 case bitc::METADATA_NAME: { 1932 // Read name of the named metadata. 1933 SmallString<8> Name(Record.begin(), Record.end()); 1934 Record.clear(); 1935 Code = Stream.ReadCode(); 1936 1937 unsigned NextBitCode = Stream.readRecord(Code, Record); 1938 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1939 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1940 1941 // Read named metadata elements. 1942 unsigned Size = Record.size(); 1943 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1944 for (unsigned i = 0; i != Size; ++i) { 1945 MDNode *MD = 1946 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1947 if (!MD) 1948 return error("Invalid record"); 1949 NMD->addOperand(MD); 1950 } 1951 break; 1952 } 1953 case bitc::METADATA_OLD_FN_NODE: { 1954 // FIXME: Remove in 4.0. 1955 // This is a LocalAsMetadata record, the only type of function-local 1956 // metadata. 1957 if (Record.size() % 2 == 1) 1958 return error("Invalid record"); 1959 1960 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1961 // to be legal, but there's no upgrade path. 1962 auto dropRecord = [&] { 1963 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1964 }; 1965 if (Record.size() != 2) { 1966 dropRecord(); 1967 break; 1968 } 1969 1970 Type *Ty = getTypeByID(Record[0]); 1971 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1972 dropRecord(); 1973 break; 1974 } 1975 1976 MetadataList.assignValue( 1977 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1978 NextMetadataNo++); 1979 break; 1980 } 1981 case bitc::METADATA_OLD_NODE: { 1982 // FIXME: Remove in 4.0. 1983 if (Record.size() % 2 == 1) 1984 return error("Invalid record"); 1985 1986 unsigned Size = Record.size(); 1987 SmallVector<Metadata *, 8> Elts; 1988 for (unsigned i = 0; i != Size; i += 2) { 1989 Type *Ty = getTypeByID(Record[i]); 1990 if (!Ty) 1991 return error("Invalid record"); 1992 if (Ty->isMetadataTy()) 1993 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 1994 else if (!Ty->isVoidTy()) { 1995 auto *MD = 1996 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1997 assert(isa<ConstantAsMetadata>(MD) && 1998 "Expected non-function-local metadata"); 1999 Elts.push_back(MD); 2000 } else 2001 Elts.push_back(nullptr); 2002 } 2003 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2004 break; 2005 } 2006 case bitc::METADATA_VALUE: { 2007 if (Record.size() != 2) 2008 return error("Invalid record"); 2009 2010 Type *Ty = getTypeByID(Record[0]); 2011 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2012 return error("Invalid record"); 2013 2014 MetadataList.assignValue( 2015 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2016 NextMetadataNo++); 2017 break; 2018 } 2019 case bitc::METADATA_DISTINCT_NODE: 2020 IsDistinct = true; 2021 // fallthrough... 2022 case bitc::METADATA_NODE: { 2023 SmallVector<Metadata *, 8> Elts; 2024 Elts.reserve(Record.size()); 2025 for (unsigned ID : Record) 2026 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2027 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2028 : MDNode::get(Context, Elts), 2029 NextMetadataNo++); 2030 break; 2031 } 2032 case bitc::METADATA_LOCATION: { 2033 if (Record.size() != 5) 2034 return error("Invalid record"); 2035 2036 unsigned Line = Record[1]; 2037 unsigned Column = Record[2]; 2038 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2039 Metadata *InlinedAt = 2040 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2041 MetadataList.assignValue( 2042 GET_OR_DISTINCT(DILocation, Record[0], 2043 (Context, Line, Column, Scope, InlinedAt)), 2044 NextMetadataNo++); 2045 break; 2046 } 2047 case bitc::METADATA_GENERIC_DEBUG: { 2048 if (Record.size() < 4) 2049 return error("Invalid record"); 2050 2051 unsigned Tag = Record[1]; 2052 unsigned Version = Record[2]; 2053 2054 if (Tag >= 1u << 16 || Version != 0) 2055 return error("Invalid record"); 2056 2057 auto *Header = getMDString(Record[3]); 2058 SmallVector<Metadata *, 8> DwarfOps; 2059 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2060 DwarfOps.push_back( 2061 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2062 MetadataList.assignValue( 2063 GET_OR_DISTINCT(GenericDINode, Record[0], 2064 (Context, Tag, Header, DwarfOps)), 2065 NextMetadataNo++); 2066 break; 2067 } 2068 case bitc::METADATA_SUBRANGE: { 2069 if (Record.size() != 3) 2070 return error("Invalid record"); 2071 2072 MetadataList.assignValue( 2073 GET_OR_DISTINCT(DISubrange, Record[0], 2074 (Context, Record[1], unrotateSign(Record[2]))), 2075 NextMetadataNo++); 2076 break; 2077 } 2078 case bitc::METADATA_ENUMERATOR: { 2079 if (Record.size() != 3) 2080 return error("Invalid record"); 2081 2082 MetadataList.assignValue( 2083 GET_OR_DISTINCT( 2084 DIEnumerator, Record[0], 2085 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2086 NextMetadataNo++); 2087 break; 2088 } 2089 case bitc::METADATA_BASIC_TYPE: { 2090 if (Record.size() != 6) 2091 return error("Invalid record"); 2092 2093 MetadataList.assignValue( 2094 GET_OR_DISTINCT(DIBasicType, Record[0], 2095 (Context, Record[1], getMDString(Record[2]), 2096 Record[3], Record[4], Record[5])), 2097 NextMetadataNo++); 2098 break; 2099 } 2100 case bitc::METADATA_DERIVED_TYPE: { 2101 if (Record.size() != 12) 2102 return error("Invalid record"); 2103 2104 MetadataList.assignValue( 2105 GET_OR_DISTINCT(DIDerivedType, Record[0], 2106 (Context, Record[1], getMDString(Record[2]), 2107 getMDOrNull(Record[3]), Record[4], 2108 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2109 Record[7], Record[8], Record[9], Record[10], 2110 getMDOrNull(Record[11]))), 2111 NextMetadataNo++); 2112 break; 2113 } 2114 case bitc::METADATA_COMPOSITE_TYPE: { 2115 if (Record.size() != 16) 2116 return error("Invalid record"); 2117 2118 MetadataList.assignValue( 2119 GET_OR_DISTINCT(DICompositeType, Record[0], 2120 (Context, Record[1], getMDString(Record[2]), 2121 getMDOrNull(Record[3]), Record[4], 2122 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2123 Record[7], Record[8], Record[9], Record[10], 2124 getMDOrNull(Record[11]), Record[12], 2125 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2126 getMDString(Record[15]))), 2127 NextMetadataNo++); 2128 break; 2129 } 2130 case bitc::METADATA_SUBROUTINE_TYPE: { 2131 if (Record.size() != 3) 2132 return error("Invalid record"); 2133 2134 MetadataList.assignValue( 2135 GET_OR_DISTINCT(DISubroutineType, Record[0], 2136 (Context, Record[1], getMDOrNull(Record[2]))), 2137 NextMetadataNo++); 2138 break; 2139 } 2140 2141 case bitc::METADATA_MODULE: { 2142 if (Record.size() != 6) 2143 return error("Invalid record"); 2144 2145 MetadataList.assignValue( 2146 GET_OR_DISTINCT(DIModule, Record[0], 2147 (Context, getMDOrNull(Record[1]), 2148 getMDString(Record[2]), getMDString(Record[3]), 2149 getMDString(Record[4]), getMDString(Record[5]))), 2150 NextMetadataNo++); 2151 break; 2152 } 2153 2154 case bitc::METADATA_FILE: { 2155 if (Record.size() != 3) 2156 return error("Invalid record"); 2157 2158 MetadataList.assignValue( 2159 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2160 getMDString(Record[2]))), 2161 NextMetadataNo++); 2162 break; 2163 } 2164 case bitc::METADATA_COMPILE_UNIT: { 2165 if (Record.size() < 14 || Record.size() > 16) 2166 return error("Invalid record"); 2167 2168 // Ignore Record[0], which indicates whether this compile unit is 2169 // distinct. It's always distinct. 2170 MetadataList.assignValue( 2171 DICompileUnit::getDistinct( 2172 Context, Record[1], getMDOrNull(Record[2]), 2173 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2174 Record[6], getMDString(Record[7]), Record[8], 2175 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2176 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2177 getMDOrNull(Record[13]), 2178 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2179 Record.size() <= 14 ? 0 : Record[14]), 2180 NextMetadataNo++); 2181 break; 2182 } 2183 case bitc::METADATA_SUBPROGRAM: { 2184 if (Record.size() != 18 && Record.size() != 19) 2185 return error("Invalid record"); 2186 2187 bool HasFn = Record.size() == 19; 2188 DISubprogram *SP = GET_OR_DISTINCT( 2189 DISubprogram, 2190 Record[0] || Record[8], // All definitions should be distinct. 2191 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2192 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2193 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2194 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2195 Record[14], getMDOrNull(Record[15 + HasFn]), 2196 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2197 MetadataList.assignValue(SP, NextMetadataNo++); 2198 2199 // Upgrade sp->function mapping to function->sp mapping. 2200 if (HasFn && Record[15]) { 2201 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2202 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2203 if (F->isMaterializable()) 2204 // Defer until materialized; unmaterialized functions may not have 2205 // metadata. 2206 FunctionsWithSPs[F] = SP; 2207 else if (!F->empty()) 2208 F->setSubprogram(SP); 2209 } 2210 } 2211 break; 2212 } 2213 case bitc::METADATA_LEXICAL_BLOCK: { 2214 if (Record.size() != 5) 2215 return error("Invalid record"); 2216 2217 MetadataList.assignValue( 2218 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2219 (Context, getMDOrNull(Record[1]), 2220 getMDOrNull(Record[2]), Record[3], Record[4])), 2221 NextMetadataNo++); 2222 break; 2223 } 2224 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2225 if (Record.size() != 4) 2226 return error("Invalid record"); 2227 2228 MetadataList.assignValue( 2229 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2230 (Context, getMDOrNull(Record[1]), 2231 getMDOrNull(Record[2]), Record[3])), 2232 NextMetadataNo++); 2233 break; 2234 } 2235 case bitc::METADATA_NAMESPACE: { 2236 if (Record.size() != 5) 2237 return error("Invalid record"); 2238 2239 MetadataList.assignValue( 2240 GET_OR_DISTINCT(DINamespace, Record[0], 2241 (Context, getMDOrNull(Record[1]), 2242 getMDOrNull(Record[2]), getMDString(Record[3]), 2243 Record[4])), 2244 NextMetadataNo++); 2245 break; 2246 } 2247 case bitc::METADATA_MACRO: { 2248 if (Record.size() != 5) 2249 return error("Invalid record"); 2250 2251 MetadataList.assignValue( 2252 GET_OR_DISTINCT(DIMacro, Record[0], 2253 (Context, Record[1], Record[2], 2254 getMDString(Record[3]), getMDString(Record[4]))), 2255 NextMetadataNo++); 2256 break; 2257 } 2258 case bitc::METADATA_MACRO_FILE: { 2259 if (Record.size() != 5) 2260 return error("Invalid record"); 2261 2262 MetadataList.assignValue( 2263 GET_OR_DISTINCT(DIMacroFile, Record[0], 2264 (Context, Record[1], Record[2], 2265 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2266 NextMetadataNo++); 2267 break; 2268 } 2269 case bitc::METADATA_TEMPLATE_TYPE: { 2270 if (Record.size() != 3) 2271 return error("Invalid record"); 2272 2273 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2274 Record[0], 2275 (Context, getMDString(Record[1]), 2276 getMDOrNull(Record[2]))), 2277 NextMetadataNo++); 2278 break; 2279 } 2280 case bitc::METADATA_TEMPLATE_VALUE: { 2281 if (Record.size() != 5) 2282 return error("Invalid record"); 2283 2284 MetadataList.assignValue( 2285 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2286 (Context, Record[1], getMDString(Record[2]), 2287 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2288 NextMetadataNo++); 2289 break; 2290 } 2291 case bitc::METADATA_GLOBAL_VAR: { 2292 if (Record.size() != 11) 2293 return error("Invalid record"); 2294 2295 MetadataList.assignValue( 2296 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2297 (Context, getMDOrNull(Record[1]), 2298 getMDString(Record[2]), getMDString(Record[3]), 2299 getMDOrNull(Record[4]), Record[5], 2300 getMDOrNull(Record[6]), Record[7], Record[8], 2301 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2302 NextMetadataNo++); 2303 break; 2304 } 2305 case bitc::METADATA_LOCAL_VAR: { 2306 // 10th field is for the obseleted 'inlinedAt:' field. 2307 if (Record.size() < 8 || Record.size() > 10) 2308 return error("Invalid record"); 2309 2310 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2311 // DW_TAG_arg_variable. 2312 bool HasTag = Record.size() > 8; 2313 MetadataList.assignValue( 2314 GET_OR_DISTINCT(DILocalVariable, Record[0], 2315 (Context, getMDOrNull(Record[1 + HasTag]), 2316 getMDString(Record[2 + HasTag]), 2317 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2318 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2319 Record[7 + HasTag])), 2320 NextMetadataNo++); 2321 break; 2322 } 2323 case bitc::METADATA_EXPRESSION: { 2324 if (Record.size() < 1) 2325 return error("Invalid record"); 2326 2327 MetadataList.assignValue( 2328 GET_OR_DISTINCT(DIExpression, Record[0], 2329 (Context, makeArrayRef(Record).slice(1))), 2330 NextMetadataNo++); 2331 break; 2332 } 2333 case bitc::METADATA_OBJC_PROPERTY: { 2334 if (Record.size() != 8) 2335 return error("Invalid record"); 2336 2337 MetadataList.assignValue( 2338 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2339 (Context, getMDString(Record[1]), 2340 getMDOrNull(Record[2]), Record[3], 2341 getMDString(Record[4]), getMDString(Record[5]), 2342 Record[6], getMDOrNull(Record[7]))), 2343 NextMetadataNo++); 2344 break; 2345 } 2346 case bitc::METADATA_IMPORTED_ENTITY: { 2347 if (Record.size() != 6) 2348 return error("Invalid record"); 2349 2350 MetadataList.assignValue( 2351 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2352 (Context, Record[1], getMDOrNull(Record[2]), 2353 getMDOrNull(Record[3]), Record[4], 2354 getMDString(Record[5]))), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_STRING: { 2359 std::string String(Record.begin(), Record.end()); 2360 llvm::UpgradeMDStringConstant(String); 2361 Metadata *MD = MDString::get(Context, String); 2362 MetadataList.assignValue(MD, NextMetadataNo++); 2363 break; 2364 } 2365 case bitc::METADATA_KIND: { 2366 // Support older bitcode files that had METADATA_KIND records in a 2367 // block with METADATA_BLOCK_ID. 2368 if (std::error_code EC = parseMetadataKindRecord(Record)) 2369 return EC; 2370 break; 2371 } 2372 } 2373 } 2374 #undef GET_OR_DISTINCT 2375 } 2376 2377 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2378 std::error_code BitcodeReader::parseMetadataKinds() { 2379 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2380 return error("Invalid record"); 2381 2382 SmallVector<uint64_t, 64> Record; 2383 2384 // Read all the records. 2385 while (1) { 2386 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2387 2388 switch (Entry.Kind) { 2389 case BitstreamEntry::SubBlock: // Handled for us already. 2390 case BitstreamEntry::Error: 2391 return error("Malformed block"); 2392 case BitstreamEntry::EndBlock: 2393 return std::error_code(); 2394 case BitstreamEntry::Record: 2395 // The interesting case. 2396 break; 2397 } 2398 2399 // Read a record. 2400 Record.clear(); 2401 unsigned Code = Stream.readRecord(Entry.ID, Record); 2402 switch (Code) { 2403 default: // Default behavior: ignore. 2404 break; 2405 case bitc::METADATA_KIND: { 2406 if (std::error_code EC = parseMetadataKindRecord(Record)) 2407 return EC; 2408 break; 2409 } 2410 } 2411 } 2412 } 2413 2414 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2415 /// encoding. 2416 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2417 if ((V & 1) == 0) 2418 return V >> 1; 2419 if (V != 1) 2420 return -(V >> 1); 2421 // There is no such thing as -0 with integers. "-0" really means MININT. 2422 return 1ULL << 63; 2423 } 2424 2425 /// Resolve all of the initializers for global values and aliases that we can. 2426 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2427 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2428 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2429 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2430 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2431 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2432 2433 GlobalInitWorklist.swap(GlobalInits); 2434 AliasInitWorklist.swap(AliasInits); 2435 FunctionPrefixWorklist.swap(FunctionPrefixes); 2436 FunctionPrologueWorklist.swap(FunctionPrologues); 2437 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2438 2439 while (!GlobalInitWorklist.empty()) { 2440 unsigned ValID = GlobalInitWorklist.back().second; 2441 if (ValID >= ValueList.size()) { 2442 // Not ready to resolve this yet, it requires something later in the file. 2443 GlobalInits.push_back(GlobalInitWorklist.back()); 2444 } else { 2445 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2446 GlobalInitWorklist.back().first->setInitializer(C); 2447 else 2448 return error("Expected a constant"); 2449 } 2450 GlobalInitWorklist.pop_back(); 2451 } 2452 2453 while (!AliasInitWorklist.empty()) { 2454 unsigned ValID = AliasInitWorklist.back().second; 2455 if (ValID >= ValueList.size()) { 2456 AliasInits.push_back(AliasInitWorklist.back()); 2457 } else { 2458 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2459 if (!C) 2460 return error("Expected a constant"); 2461 GlobalAlias *Alias = AliasInitWorklist.back().first; 2462 if (C->getType() != Alias->getType()) 2463 return error("Alias and aliasee types don't match"); 2464 Alias->setAliasee(C); 2465 } 2466 AliasInitWorklist.pop_back(); 2467 } 2468 2469 while (!FunctionPrefixWorklist.empty()) { 2470 unsigned ValID = FunctionPrefixWorklist.back().second; 2471 if (ValID >= ValueList.size()) { 2472 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2473 } else { 2474 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2475 FunctionPrefixWorklist.back().first->setPrefixData(C); 2476 else 2477 return error("Expected a constant"); 2478 } 2479 FunctionPrefixWorklist.pop_back(); 2480 } 2481 2482 while (!FunctionPrologueWorklist.empty()) { 2483 unsigned ValID = FunctionPrologueWorklist.back().second; 2484 if (ValID >= ValueList.size()) { 2485 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2486 } else { 2487 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2488 FunctionPrologueWorklist.back().first->setPrologueData(C); 2489 else 2490 return error("Expected a constant"); 2491 } 2492 FunctionPrologueWorklist.pop_back(); 2493 } 2494 2495 while (!FunctionPersonalityFnWorklist.empty()) { 2496 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2497 if (ValID >= ValueList.size()) { 2498 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2499 } else { 2500 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2501 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2502 else 2503 return error("Expected a constant"); 2504 } 2505 FunctionPersonalityFnWorklist.pop_back(); 2506 } 2507 2508 return std::error_code(); 2509 } 2510 2511 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2512 SmallVector<uint64_t, 8> Words(Vals.size()); 2513 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2514 BitcodeReader::decodeSignRotatedValue); 2515 2516 return APInt(TypeBits, Words); 2517 } 2518 2519 std::error_code BitcodeReader::parseConstants() { 2520 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2521 return error("Invalid record"); 2522 2523 SmallVector<uint64_t, 64> Record; 2524 2525 // Read all the records for this value table. 2526 Type *CurTy = Type::getInt32Ty(Context); 2527 unsigned NextCstNo = ValueList.size(); 2528 while (1) { 2529 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2530 2531 switch (Entry.Kind) { 2532 case BitstreamEntry::SubBlock: // Handled for us already. 2533 case BitstreamEntry::Error: 2534 return error("Malformed block"); 2535 case BitstreamEntry::EndBlock: 2536 if (NextCstNo != ValueList.size()) 2537 return error("Invalid constant reference"); 2538 2539 // Once all the constants have been read, go through and resolve forward 2540 // references. 2541 ValueList.resolveConstantForwardRefs(); 2542 return std::error_code(); 2543 case BitstreamEntry::Record: 2544 // The interesting case. 2545 break; 2546 } 2547 2548 // Read a record. 2549 Record.clear(); 2550 Value *V = nullptr; 2551 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2552 switch (BitCode) { 2553 default: // Default behavior: unknown constant 2554 case bitc::CST_CODE_UNDEF: // UNDEF 2555 V = UndefValue::get(CurTy); 2556 break; 2557 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2558 if (Record.empty()) 2559 return error("Invalid record"); 2560 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2561 return error("Invalid record"); 2562 CurTy = TypeList[Record[0]]; 2563 continue; // Skip the ValueList manipulation. 2564 case bitc::CST_CODE_NULL: // NULL 2565 V = Constant::getNullValue(CurTy); 2566 break; 2567 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2568 if (!CurTy->isIntegerTy() || Record.empty()) 2569 return error("Invalid record"); 2570 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2571 break; 2572 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2573 if (!CurTy->isIntegerTy() || Record.empty()) 2574 return error("Invalid record"); 2575 2576 APInt VInt = 2577 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2578 V = ConstantInt::get(Context, VInt); 2579 2580 break; 2581 } 2582 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2583 if (Record.empty()) 2584 return error("Invalid record"); 2585 if (CurTy->isHalfTy()) 2586 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2587 APInt(16, (uint16_t)Record[0]))); 2588 else if (CurTy->isFloatTy()) 2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2590 APInt(32, (uint32_t)Record[0]))); 2591 else if (CurTy->isDoubleTy()) 2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2593 APInt(64, Record[0]))); 2594 else if (CurTy->isX86_FP80Ty()) { 2595 // Bits are not stored the same way as a normal i80 APInt, compensate. 2596 uint64_t Rearrange[2]; 2597 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2598 Rearrange[1] = Record[0] >> 48; 2599 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2600 APInt(80, Rearrange))); 2601 } else if (CurTy->isFP128Ty()) 2602 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2603 APInt(128, Record))); 2604 else if (CurTy->isPPC_FP128Ty()) 2605 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2606 APInt(128, Record))); 2607 else 2608 V = UndefValue::get(CurTy); 2609 break; 2610 } 2611 2612 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2613 if (Record.empty()) 2614 return error("Invalid record"); 2615 2616 unsigned Size = Record.size(); 2617 SmallVector<Constant*, 16> Elts; 2618 2619 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2620 for (unsigned i = 0; i != Size; ++i) 2621 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2622 STy->getElementType(i))); 2623 V = ConstantStruct::get(STy, Elts); 2624 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2625 Type *EltTy = ATy->getElementType(); 2626 for (unsigned i = 0; i != Size; ++i) 2627 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2628 V = ConstantArray::get(ATy, Elts); 2629 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2630 Type *EltTy = VTy->getElementType(); 2631 for (unsigned i = 0; i != Size; ++i) 2632 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2633 V = ConstantVector::get(Elts); 2634 } else { 2635 V = UndefValue::get(CurTy); 2636 } 2637 break; 2638 } 2639 case bitc::CST_CODE_STRING: // STRING: [values] 2640 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2641 if (Record.empty()) 2642 return error("Invalid record"); 2643 2644 SmallString<16> Elts(Record.begin(), Record.end()); 2645 V = ConstantDataArray::getString(Context, Elts, 2646 BitCode == bitc::CST_CODE_CSTRING); 2647 break; 2648 } 2649 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2650 if (Record.empty()) 2651 return error("Invalid record"); 2652 2653 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2654 if (EltTy->isIntegerTy(8)) { 2655 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2656 if (isa<VectorType>(CurTy)) 2657 V = ConstantDataVector::get(Context, Elts); 2658 else 2659 V = ConstantDataArray::get(Context, Elts); 2660 } else if (EltTy->isIntegerTy(16)) { 2661 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2662 if (isa<VectorType>(CurTy)) 2663 V = ConstantDataVector::get(Context, Elts); 2664 else 2665 V = ConstantDataArray::get(Context, Elts); 2666 } else if (EltTy->isIntegerTy(32)) { 2667 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2668 if (isa<VectorType>(CurTy)) 2669 V = ConstantDataVector::get(Context, Elts); 2670 else 2671 V = ConstantDataArray::get(Context, Elts); 2672 } else if (EltTy->isIntegerTy(64)) { 2673 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2674 if (isa<VectorType>(CurTy)) 2675 V = ConstantDataVector::get(Context, Elts); 2676 else 2677 V = ConstantDataArray::get(Context, Elts); 2678 } else if (EltTy->isHalfTy()) { 2679 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2680 if (isa<VectorType>(CurTy)) 2681 V = ConstantDataVector::getFP(Context, Elts); 2682 else 2683 V = ConstantDataArray::getFP(Context, Elts); 2684 } else if (EltTy->isFloatTy()) { 2685 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2686 if (isa<VectorType>(CurTy)) 2687 V = ConstantDataVector::getFP(Context, Elts); 2688 else 2689 V = ConstantDataArray::getFP(Context, Elts); 2690 } else if (EltTy->isDoubleTy()) { 2691 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2692 if (isa<VectorType>(CurTy)) 2693 V = ConstantDataVector::getFP(Context, Elts); 2694 else 2695 V = ConstantDataArray::getFP(Context, Elts); 2696 } else { 2697 return error("Invalid type for value"); 2698 } 2699 break; 2700 } 2701 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2702 if (Record.size() < 3) 2703 return error("Invalid record"); 2704 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2705 if (Opc < 0) { 2706 V = UndefValue::get(CurTy); // Unknown binop. 2707 } else { 2708 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2709 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2710 unsigned Flags = 0; 2711 if (Record.size() >= 4) { 2712 if (Opc == Instruction::Add || 2713 Opc == Instruction::Sub || 2714 Opc == Instruction::Mul || 2715 Opc == Instruction::Shl) { 2716 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2717 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2718 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2719 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2720 } else if (Opc == Instruction::SDiv || 2721 Opc == Instruction::UDiv || 2722 Opc == Instruction::LShr || 2723 Opc == Instruction::AShr) { 2724 if (Record[3] & (1 << bitc::PEO_EXACT)) 2725 Flags |= SDivOperator::IsExact; 2726 } 2727 } 2728 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2729 } 2730 break; 2731 } 2732 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2733 if (Record.size() < 3) 2734 return error("Invalid record"); 2735 int Opc = getDecodedCastOpcode(Record[0]); 2736 if (Opc < 0) { 2737 V = UndefValue::get(CurTy); // Unknown cast. 2738 } else { 2739 Type *OpTy = getTypeByID(Record[1]); 2740 if (!OpTy) 2741 return error("Invalid record"); 2742 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2743 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2744 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2745 } 2746 break; 2747 } 2748 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2749 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2750 unsigned OpNum = 0; 2751 Type *PointeeType = nullptr; 2752 if (Record.size() % 2) 2753 PointeeType = getTypeByID(Record[OpNum++]); 2754 SmallVector<Constant*, 16> Elts; 2755 while (OpNum != Record.size()) { 2756 Type *ElTy = getTypeByID(Record[OpNum++]); 2757 if (!ElTy) 2758 return error("Invalid record"); 2759 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2760 } 2761 2762 if (PointeeType && 2763 PointeeType != 2764 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2765 ->getElementType()) 2766 return error("Explicit gep operator type does not match pointee type " 2767 "of pointer operand"); 2768 2769 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2770 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2771 BitCode == 2772 bitc::CST_CODE_CE_INBOUNDS_GEP); 2773 break; 2774 } 2775 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2776 if (Record.size() < 3) 2777 return error("Invalid record"); 2778 2779 Type *SelectorTy = Type::getInt1Ty(Context); 2780 2781 // The selector might be an i1 or an <n x i1> 2782 // Get the type from the ValueList before getting a forward ref. 2783 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2784 if (Value *V = ValueList[Record[0]]) 2785 if (SelectorTy != V->getType()) 2786 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2787 2788 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2789 SelectorTy), 2790 ValueList.getConstantFwdRef(Record[1],CurTy), 2791 ValueList.getConstantFwdRef(Record[2],CurTy)); 2792 break; 2793 } 2794 case bitc::CST_CODE_CE_EXTRACTELT 2795 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2796 if (Record.size() < 3) 2797 return error("Invalid record"); 2798 VectorType *OpTy = 2799 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2800 if (!OpTy) 2801 return error("Invalid record"); 2802 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2803 Constant *Op1 = nullptr; 2804 if (Record.size() == 4) { 2805 Type *IdxTy = getTypeByID(Record[2]); 2806 if (!IdxTy) 2807 return error("Invalid record"); 2808 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2809 } else // TODO: Remove with llvm 4.0 2810 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2811 if (!Op1) 2812 return error("Invalid record"); 2813 V = ConstantExpr::getExtractElement(Op0, Op1); 2814 break; 2815 } 2816 case bitc::CST_CODE_CE_INSERTELT 2817 : { // CE_INSERTELT: [opval, opval, opty, opval] 2818 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2819 if (Record.size() < 3 || !OpTy) 2820 return error("Invalid record"); 2821 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2822 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2823 OpTy->getElementType()); 2824 Constant *Op2 = nullptr; 2825 if (Record.size() == 4) { 2826 Type *IdxTy = getTypeByID(Record[2]); 2827 if (!IdxTy) 2828 return error("Invalid record"); 2829 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2830 } else // TODO: Remove with llvm 4.0 2831 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2832 if (!Op2) 2833 return error("Invalid record"); 2834 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2835 break; 2836 } 2837 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2838 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2839 if (Record.size() < 3 || !OpTy) 2840 return error("Invalid record"); 2841 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2842 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2843 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2844 OpTy->getNumElements()); 2845 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2846 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2847 break; 2848 } 2849 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2850 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2851 VectorType *OpTy = 2852 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2853 if (Record.size() < 4 || !RTy || !OpTy) 2854 return error("Invalid record"); 2855 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2856 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2857 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2858 RTy->getNumElements()); 2859 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2860 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2861 break; 2862 } 2863 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2864 if (Record.size() < 4) 2865 return error("Invalid record"); 2866 Type *OpTy = getTypeByID(Record[0]); 2867 if (!OpTy) 2868 return error("Invalid record"); 2869 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2870 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2871 2872 if (OpTy->isFPOrFPVectorTy()) 2873 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2874 else 2875 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2876 break; 2877 } 2878 // This maintains backward compatibility, pre-asm dialect keywords. 2879 // FIXME: Remove with the 4.0 release. 2880 case bitc::CST_CODE_INLINEASM_OLD: { 2881 if (Record.size() < 2) 2882 return error("Invalid record"); 2883 std::string AsmStr, ConstrStr; 2884 bool HasSideEffects = Record[0] & 1; 2885 bool IsAlignStack = Record[0] >> 1; 2886 unsigned AsmStrSize = Record[1]; 2887 if (2+AsmStrSize >= Record.size()) 2888 return error("Invalid record"); 2889 unsigned ConstStrSize = Record[2+AsmStrSize]; 2890 if (3+AsmStrSize+ConstStrSize > Record.size()) 2891 return error("Invalid record"); 2892 2893 for (unsigned i = 0; i != AsmStrSize; ++i) 2894 AsmStr += (char)Record[2+i]; 2895 for (unsigned i = 0; i != ConstStrSize; ++i) 2896 ConstrStr += (char)Record[3+AsmStrSize+i]; 2897 PointerType *PTy = cast<PointerType>(CurTy); 2898 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2899 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2900 break; 2901 } 2902 // This version adds support for the asm dialect keywords (e.g., 2903 // inteldialect). 2904 case bitc::CST_CODE_INLINEASM: { 2905 if (Record.size() < 2) 2906 return error("Invalid record"); 2907 std::string AsmStr, ConstrStr; 2908 bool HasSideEffects = Record[0] & 1; 2909 bool IsAlignStack = (Record[0] >> 1) & 1; 2910 unsigned AsmDialect = Record[0] >> 2; 2911 unsigned AsmStrSize = Record[1]; 2912 if (2+AsmStrSize >= Record.size()) 2913 return error("Invalid record"); 2914 unsigned ConstStrSize = Record[2+AsmStrSize]; 2915 if (3+AsmStrSize+ConstStrSize > Record.size()) 2916 return error("Invalid record"); 2917 2918 for (unsigned i = 0; i != AsmStrSize; ++i) 2919 AsmStr += (char)Record[2+i]; 2920 for (unsigned i = 0; i != ConstStrSize; ++i) 2921 ConstrStr += (char)Record[3+AsmStrSize+i]; 2922 PointerType *PTy = cast<PointerType>(CurTy); 2923 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2924 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2925 InlineAsm::AsmDialect(AsmDialect)); 2926 break; 2927 } 2928 case bitc::CST_CODE_BLOCKADDRESS:{ 2929 if (Record.size() < 3) 2930 return error("Invalid record"); 2931 Type *FnTy = getTypeByID(Record[0]); 2932 if (!FnTy) 2933 return error("Invalid record"); 2934 Function *Fn = 2935 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2936 if (!Fn) 2937 return error("Invalid record"); 2938 2939 // If the function is already parsed we can insert the block address right 2940 // away. 2941 BasicBlock *BB; 2942 unsigned BBID = Record[2]; 2943 if (!BBID) 2944 // Invalid reference to entry block. 2945 return error("Invalid ID"); 2946 if (!Fn->empty()) { 2947 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2948 for (size_t I = 0, E = BBID; I != E; ++I) { 2949 if (BBI == BBE) 2950 return error("Invalid ID"); 2951 ++BBI; 2952 } 2953 BB = &*BBI; 2954 } else { 2955 // Otherwise insert a placeholder and remember it so it can be inserted 2956 // when the function is parsed. 2957 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2958 if (FwdBBs.empty()) 2959 BasicBlockFwdRefQueue.push_back(Fn); 2960 if (FwdBBs.size() < BBID + 1) 2961 FwdBBs.resize(BBID + 1); 2962 if (!FwdBBs[BBID]) 2963 FwdBBs[BBID] = BasicBlock::Create(Context); 2964 BB = FwdBBs[BBID]; 2965 } 2966 V = BlockAddress::get(Fn, BB); 2967 break; 2968 } 2969 } 2970 2971 ValueList.assignValue(V, NextCstNo); 2972 ++NextCstNo; 2973 } 2974 } 2975 2976 std::error_code BitcodeReader::parseUseLists() { 2977 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2978 return error("Invalid record"); 2979 2980 // Read all the records. 2981 SmallVector<uint64_t, 64> Record; 2982 while (1) { 2983 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2984 2985 switch (Entry.Kind) { 2986 case BitstreamEntry::SubBlock: // Handled for us already. 2987 case BitstreamEntry::Error: 2988 return error("Malformed block"); 2989 case BitstreamEntry::EndBlock: 2990 return std::error_code(); 2991 case BitstreamEntry::Record: 2992 // The interesting case. 2993 break; 2994 } 2995 2996 // Read a use list record. 2997 Record.clear(); 2998 bool IsBB = false; 2999 switch (Stream.readRecord(Entry.ID, Record)) { 3000 default: // Default behavior: unknown type. 3001 break; 3002 case bitc::USELIST_CODE_BB: 3003 IsBB = true; 3004 // fallthrough 3005 case bitc::USELIST_CODE_DEFAULT: { 3006 unsigned RecordLength = Record.size(); 3007 if (RecordLength < 3) 3008 // Records should have at least an ID and two indexes. 3009 return error("Invalid record"); 3010 unsigned ID = Record.back(); 3011 Record.pop_back(); 3012 3013 Value *V; 3014 if (IsBB) { 3015 assert(ID < FunctionBBs.size() && "Basic block not found"); 3016 V = FunctionBBs[ID]; 3017 } else 3018 V = ValueList[ID]; 3019 unsigned NumUses = 0; 3020 SmallDenseMap<const Use *, unsigned, 16> Order; 3021 for (const Use &U : V->materialized_uses()) { 3022 if (++NumUses > Record.size()) 3023 break; 3024 Order[&U] = Record[NumUses - 1]; 3025 } 3026 if (Order.size() != Record.size() || NumUses > Record.size()) 3027 // Mismatches can happen if the functions are being materialized lazily 3028 // (out-of-order), or a value has been upgraded. 3029 break; 3030 3031 V->sortUseList([&](const Use &L, const Use &R) { 3032 return Order.lookup(&L) < Order.lookup(&R); 3033 }); 3034 break; 3035 } 3036 } 3037 } 3038 } 3039 3040 /// When we see the block for metadata, remember where it is and then skip it. 3041 /// This lets us lazily deserialize the metadata. 3042 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3043 // Save the current stream state. 3044 uint64_t CurBit = Stream.GetCurrentBitNo(); 3045 DeferredMetadataInfo.push_back(CurBit); 3046 3047 // Skip over the block for now. 3048 if (Stream.SkipBlock()) 3049 return error("Invalid record"); 3050 return std::error_code(); 3051 } 3052 3053 std::error_code BitcodeReader::materializeMetadata() { 3054 for (uint64_t BitPos : DeferredMetadataInfo) { 3055 // Move the bit stream to the saved position. 3056 Stream.JumpToBit(BitPos); 3057 if (std::error_code EC = parseMetadata(true)) 3058 return EC; 3059 } 3060 DeferredMetadataInfo.clear(); 3061 return std::error_code(); 3062 } 3063 3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3065 3066 void BitcodeReader::saveMetadataList( 3067 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3068 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3069 Metadata *MD = MetadataList[ID]; 3070 auto *N = dyn_cast_or_null<MDNode>(MD); 3071 assert((!N || (N->isResolved() || N->isTemporary())) && 3072 "Found non-resolved non-temp MDNode while saving metadata"); 3073 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3074 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3075 // just MDNode, as we may have references to other types of module-level 3076 // metadata (e.g. ValueAsMetadata) from instructions. 3077 if (!OnlyTempMD || (N && N->isTemporary())) { 3078 // Will call this after materializing each function, in order to 3079 // handle remapping of the function's instructions/metadata. 3080 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3081 // See if we already have an entry in that case. 3082 if (OnlyTempMD && !IterBool.second) { 3083 assert(IterBool.first->second == ID && 3084 "Inconsistent metadata value id"); 3085 continue; 3086 } 3087 if (N && N->isTemporary()) 3088 // Ensure that we assert if someone tries to RAUW this temporary 3089 // metadata while it is the key of a map. The flag will be set back 3090 // to true when the saved metadata list is destroyed. 3091 N->setCanReplace(false); 3092 } 3093 } 3094 } 3095 3096 /// When we see the block for a function body, remember where it is and then 3097 /// skip it. This lets us lazily deserialize the functions. 3098 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3099 // Get the function we are talking about. 3100 if (FunctionsWithBodies.empty()) 3101 return error("Insufficient function protos"); 3102 3103 Function *Fn = FunctionsWithBodies.back(); 3104 FunctionsWithBodies.pop_back(); 3105 3106 // Save the current stream state. 3107 uint64_t CurBit = Stream.GetCurrentBitNo(); 3108 assert( 3109 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3110 "Mismatch between VST and scanned function offsets"); 3111 DeferredFunctionInfo[Fn] = CurBit; 3112 3113 // Skip over the function block for now. 3114 if (Stream.SkipBlock()) 3115 return error("Invalid record"); 3116 return std::error_code(); 3117 } 3118 3119 std::error_code BitcodeReader::globalCleanup() { 3120 // Patch the initializers for globals and aliases up. 3121 resolveGlobalAndAliasInits(); 3122 if (!GlobalInits.empty() || !AliasInits.empty()) 3123 return error("Malformed global initializer set"); 3124 3125 // Look for intrinsic functions which need to be upgraded at some point 3126 for (Function &F : *TheModule) { 3127 Function *NewFn; 3128 if (UpgradeIntrinsicFunction(&F, NewFn)) 3129 UpgradedIntrinsics[&F] = NewFn; 3130 } 3131 3132 // Look for global variables which need to be renamed. 3133 for (GlobalVariable &GV : TheModule->globals()) 3134 UpgradeGlobalVariable(&GV); 3135 3136 // Force deallocation of memory for these vectors to favor the client that 3137 // want lazy deserialization. 3138 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3139 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3140 return std::error_code(); 3141 } 3142 3143 /// Support for lazy parsing of function bodies. This is required if we 3144 /// either have an old bitcode file without a VST forward declaration record, 3145 /// or if we have an anonymous function being materialized, since anonymous 3146 /// functions do not have a name and are therefore not in the VST. 3147 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3148 Stream.JumpToBit(NextUnreadBit); 3149 3150 if (Stream.AtEndOfStream()) 3151 return error("Could not find function in stream"); 3152 3153 if (!SeenFirstFunctionBody) 3154 return error("Trying to materialize functions before seeing function blocks"); 3155 3156 // An old bitcode file with the symbol table at the end would have 3157 // finished the parse greedily. 3158 assert(SeenValueSymbolTable); 3159 3160 SmallVector<uint64_t, 64> Record; 3161 3162 while (1) { 3163 BitstreamEntry Entry = Stream.advance(); 3164 switch (Entry.Kind) { 3165 default: 3166 return error("Expect SubBlock"); 3167 case BitstreamEntry::SubBlock: 3168 switch (Entry.ID) { 3169 default: 3170 return error("Expect function block"); 3171 case bitc::FUNCTION_BLOCK_ID: 3172 if (std::error_code EC = rememberAndSkipFunctionBody()) 3173 return EC; 3174 NextUnreadBit = Stream.GetCurrentBitNo(); 3175 return std::error_code(); 3176 } 3177 } 3178 } 3179 } 3180 3181 std::error_code BitcodeReader::parseBitcodeVersion() { 3182 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3183 return error("Invalid record"); 3184 3185 // Read all the records. 3186 SmallVector<uint64_t, 64> Record; 3187 while (1) { 3188 BitstreamEntry Entry = Stream.advance(); 3189 3190 switch (Entry.Kind) { 3191 default: 3192 case BitstreamEntry::Error: 3193 return error("Malformed block"); 3194 case BitstreamEntry::EndBlock: 3195 return std::error_code(); 3196 case BitstreamEntry::Record: 3197 // The interesting case. 3198 break; 3199 } 3200 3201 // Read a record. 3202 Record.clear(); 3203 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3204 switch (BitCode) { 3205 default: // Default behavior: reject 3206 return error("Invalid value"); 3207 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3208 // N] 3209 convertToString(Record, 0, ProducerIdentification); 3210 break; 3211 } 3212 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3213 unsigned epoch = (unsigned)Record[0]; 3214 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3215 return error( 3216 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3217 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3218 } 3219 } 3220 } 3221 } 3222 } 3223 3224 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3225 bool ShouldLazyLoadMetadata) { 3226 if (ResumeBit) 3227 Stream.JumpToBit(ResumeBit); 3228 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3229 return error("Invalid record"); 3230 3231 SmallVector<uint64_t, 64> Record; 3232 std::vector<std::string> SectionTable; 3233 std::vector<std::string> GCTable; 3234 3235 // Read all the records for this module. 3236 while (1) { 3237 BitstreamEntry Entry = Stream.advance(); 3238 3239 switch (Entry.Kind) { 3240 case BitstreamEntry::Error: 3241 return error("Malformed block"); 3242 case BitstreamEntry::EndBlock: 3243 return globalCleanup(); 3244 3245 case BitstreamEntry::SubBlock: 3246 switch (Entry.ID) { 3247 default: // Skip unknown content. 3248 if (Stream.SkipBlock()) 3249 return error("Invalid record"); 3250 break; 3251 case bitc::BLOCKINFO_BLOCK_ID: 3252 if (Stream.ReadBlockInfoBlock()) 3253 return error("Malformed block"); 3254 break; 3255 case bitc::PARAMATTR_BLOCK_ID: 3256 if (std::error_code EC = parseAttributeBlock()) 3257 return EC; 3258 break; 3259 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3260 if (std::error_code EC = parseAttributeGroupBlock()) 3261 return EC; 3262 break; 3263 case bitc::TYPE_BLOCK_ID_NEW: 3264 if (std::error_code EC = parseTypeTable()) 3265 return EC; 3266 break; 3267 case bitc::VALUE_SYMTAB_BLOCK_ID: 3268 if (!SeenValueSymbolTable) { 3269 // Either this is an old form VST without function index and an 3270 // associated VST forward declaration record (which would have caused 3271 // the VST to be jumped to and parsed before it was encountered 3272 // normally in the stream), or there were no function blocks to 3273 // trigger an earlier parsing of the VST. 3274 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3275 if (std::error_code EC = parseValueSymbolTable()) 3276 return EC; 3277 SeenValueSymbolTable = true; 3278 } else { 3279 // We must have had a VST forward declaration record, which caused 3280 // the parser to jump to and parse the VST earlier. 3281 assert(VSTOffset > 0); 3282 if (Stream.SkipBlock()) 3283 return error("Invalid record"); 3284 } 3285 break; 3286 case bitc::CONSTANTS_BLOCK_ID: 3287 if (std::error_code EC = parseConstants()) 3288 return EC; 3289 if (std::error_code EC = resolveGlobalAndAliasInits()) 3290 return EC; 3291 break; 3292 case bitc::METADATA_BLOCK_ID: 3293 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3294 if (std::error_code EC = rememberAndSkipMetadata()) 3295 return EC; 3296 break; 3297 } 3298 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3299 if (std::error_code EC = parseMetadata(true)) 3300 return EC; 3301 break; 3302 case bitc::METADATA_KIND_BLOCK_ID: 3303 if (std::error_code EC = parseMetadataKinds()) 3304 return EC; 3305 break; 3306 case bitc::FUNCTION_BLOCK_ID: 3307 // If this is the first function body we've seen, reverse the 3308 // FunctionsWithBodies list. 3309 if (!SeenFirstFunctionBody) { 3310 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3311 if (std::error_code EC = globalCleanup()) 3312 return EC; 3313 SeenFirstFunctionBody = true; 3314 } 3315 3316 if (VSTOffset > 0) { 3317 // If we have a VST forward declaration record, make sure we 3318 // parse the VST now if we haven't already. It is needed to 3319 // set up the DeferredFunctionInfo vector for lazy reading. 3320 if (!SeenValueSymbolTable) { 3321 if (std::error_code EC = 3322 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3323 return EC; 3324 SeenValueSymbolTable = true; 3325 // Fall through so that we record the NextUnreadBit below. 3326 // This is necessary in case we have an anonymous function that 3327 // is later materialized. Since it will not have a VST entry we 3328 // need to fall back to the lazy parse to find its offset. 3329 } else { 3330 // If we have a VST forward declaration record, but have already 3331 // parsed the VST (just above, when the first function body was 3332 // encountered here), then we are resuming the parse after 3333 // materializing functions. The ResumeBit points to the 3334 // start of the last function block recorded in the 3335 // DeferredFunctionInfo map. Skip it. 3336 if (Stream.SkipBlock()) 3337 return error("Invalid record"); 3338 continue; 3339 } 3340 } 3341 3342 // Support older bitcode files that did not have the function 3343 // index in the VST, nor a VST forward declaration record, as 3344 // well as anonymous functions that do not have VST entries. 3345 // Build the DeferredFunctionInfo vector on the fly. 3346 if (std::error_code EC = rememberAndSkipFunctionBody()) 3347 return EC; 3348 3349 // Suspend parsing when we reach the function bodies. Subsequent 3350 // materialization calls will resume it when necessary. If the bitcode 3351 // file is old, the symbol table will be at the end instead and will not 3352 // have been seen yet. In this case, just finish the parse now. 3353 if (SeenValueSymbolTable) { 3354 NextUnreadBit = Stream.GetCurrentBitNo(); 3355 return std::error_code(); 3356 } 3357 break; 3358 case bitc::USELIST_BLOCK_ID: 3359 if (std::error_code EC = parseUseLists()) 3360 return EC; 3361 break; 3362 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3363 if (std::error_code EC = parseOperandBundleTags()) 3364 return EC; 3365 break; 3366 } 3367 continue; 3368 3369 case BitstreamEntry::Record: 3370 // The interesting case. 3371 break; 3372 } 3373 3374 // Read a record. 3375 auto BitCode = Stream.readRecord(Entry.ID, Record); 3376 switch (BitCode) { 3377 default: break; // Default behavior, ignore unknown content. 3378 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3379 if (Record.size() < 1) 3380 return error("Invalid record"); 3381 // Only version #0 and #1 are supported so far. 3382 unsigned module_version = Record[0]; 3383 switch (module_version) { 3384 default: 3385 return error("Invalid value"); 3386 case 0: 3387 UseRelativeIDs = false; 3388 break; 3389 case 1: 3390 UseRelativeIDs = true; 3391 break; 3392 } 3393 break; 3394 } 3395 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3396 std::string S; 3397 if (convertToString(Record, 0, S)) 3398 return error("Invalid record"); 3399 TheModule->setTargetTriple(S); 3400 break; 3401 } 3402 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3403 std::string S; 3404 if (convertToString(Record, 0, S)) 3405 return error("Invalid record"); 3406 TheModule->setDataLayout(S); 3407 break; 3408 } 3409 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3410 std::string S; 3411 if (convertToString(Record, 0, S)) 3412 return error("Invalid record"); 3413 TheModule->setModuleInlineAsm(S); 3414 break; 3415 } 3416 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3417 // FIXME: Remove in 4.0. 3418 std::string S; 3419 if (convertToString(Record, 0, S)) 3420 return error("Invalid record"); 3421 // Ignore value. 3422 break; 3423 } 3424 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3425 std::string S; 3426 if (convertToString(Record, 0, S)) 3427 return error("Invalid record"); 3428 SectionTable.push_back(S); 3429 break; 3430 } 3431 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3432 std::string S; 3433 if (convertToString(Record, 0, S)) 3434 return error("Invalid record"); 3435 GCTable.push_back(S); 3436 break; 3437 } 3438 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3439 if (Record.size() < 2) 3440 return error("Invalid record"); 3441 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3442 unsigned ComdatNameSize = Record[1]; 3443 std::string ComdatName; 3444 ComdatName.reserve(ComdatNameSize); 3445 for (unsigned i = 0; i != ComdatNameSize; ++i) 3446 ComdatName += (char)Record[2 + i]; 3447 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3448 C->setSelectionKind(SK); 3449 ComdatList.push_back(C); 3450 break; 3451 } 3452 // GLOBALVAR: [pointer type, isconst, initid, 3453 // linkage, alignment, section, visibility, threadlocal, 3454 // unnamed_addr, externally_initialized, dllstorageclass, 3455 // comdat] 3456 case bitc::MODULE_CODE_GLOBALVAR: { 3457 if (Record.size() < 6) 3458 return error("Invalid record"); 3459 Type *Ty = getTypeByID(Record[0]); 3460 if (!Ty) 3461 return error("Invalid record"); 3462 bool isConstant = Record[1] & 1; 3463 bool explicitType = Record[1] & 2; 3464 unsigned AddressSpace; 3465 if (explicitType) { 3466 AddressSpace = Record[1] >> 2; 3467 } else { 3468 if (!Ty->isPointerTy()) 3469 return error("Invalid type for value"); 3470 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3471 Ty = cast<PointerType>(Ty)->getElementType(); 3472 } 3473 3474 uint64_t RawLinkage = Record[3]; 3475 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3476 unsigned Alignment; 3477 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3478 return EC; 3479 std::string Section; 3480 if (Record[5]) { 3481 if (Record[5]-1 >= SectionTable.size()) 3482 return error("Invalid ID"); 3483 Section = SectionTable[Record[5]-1]; 3484 } 3485 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3486 // Local linkage must have default visibility. 3487 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3488 // FIXME: Change to an error if non-default in 4.0. 3489 Visibility = getDecodedVisibility(Record[6]); 3490 3491 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3492 if (Record.size() > 7) 3493 TLM = getDecodedThreadLocalMode(Record[7]); 3494 3495 bool UnnamedAddr = false; 3496 if (Record.size() > 8) 3497 UnnamedAddr = Record[8]; 3498 3499 bool ExternallyInitialized = false; 3500 if (Record.size() > 9) 3501 ExternallyInitialized = Record[9]; 3502 3503 GlobalVariable *NewGV = 3504 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3505 TLM, AddressSpace, ExternallyInitialized); 3506 NewGV->setAlignment(Alignment); 3507 if (!Section.empty()) 3508 NewGV->setSection(Section); 3509 NewGV->setVisibility(Visibility); 3510 NewGV->setUnnamedAddr(UnnamedAddr); 3511 3512 if (Record.size() > 10) 3513 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3514 else 3515 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3516 3517 ValueList.push_back(NewGV); 3518 3519 // Remember which value to use for the global initializer. 3520 if (unsigned InitID = Record[2]) 3521 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3522 3523 if (Record.size() > 11) { 3524 if (unsigned ComdatID = Record[11]) { 3525 if (ComdatID > ComdatList.size()) 3526 return error("Invalid global variable comdat ID"); 3527 NewGV->setComdat(ComdatList[ComdatID - 1]); 3528 } 3529 } else if (hasImplicitComdat(RawLinkage)) { 3530 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3531 } 3532 break; 3533 } 3534 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3535 // alignment, section, visibility, gc, unnamed_addr, 3536 // prologuedata, dllstorageclass, comdat, prefixdata] 3537 case bitc::MODULE_CODE_FUNCTION: { 3538 if (Record.size() < 8) 3539 return error("Invalid record"); 3540 Type *Ty = getTypeByID(Record[0]); 3541 if (!Ty) 3542 return error("Invalid record"); 3543 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3544 Ty = PTy->getElementType(); 3545 auto *FTy = dyn_cast<FunctionType>(Ty); 3546 if (!FTy) 3547 return error("Invalid type for value"); 3548 auto CC = static_cast<CallingConv::ID>(Record[1]); 3549 if (CC & ~CallingConv::MaxID) 3550 return error("Invalid calling convention ID"); 3551 3552 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3553 "", TheModule); 3554 3555 Func->setCallingConv(CC); 3556 bool isProto = Record[2]; 3557 uint64_t RawLinkage = Record[3]; 3558 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3559 Func->setAttributes(getAttributes(Record[4])); 3560 3561 unsigned Alignment; 3562 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3563 return EC; 3564 Func->setAlignment(Alignment); 3565 if (Record[6]) { 3566 if (Record[6]-1 >= SectionTable.size()) 3567 return error("Invalid ID"); 3568 Func->setSection(SectionTable[Record[6]-1]); 3569 } 3570 // Local linkage must have default visibility. 3571 if (!Func->hasLocalLinkage()) 3572 // FIXME: Change to an error if non-default in 4.0. 3573 Func->setVisibility(getDecodedVisibility(Record[7])); 3574 if (Record.size() > 8 && Record[8]) { 3575 if (Record[8]-1 >= GCTable.size()) 3576 return error("Invalid ID"); 3577 Func->setGC(GCTable[Record[8]-1].c_str()); 3578 } 3579 bool UnnamedAddr = false; 3580 if (Record.size() > 9) 3581 UnnamedAddr = Record[9]; 3582 Func->setUnnamedAddr(UnnamedAddr); 3583 if (Record.size() > 10 && Record[10] != 0) 3584 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3585 3586 if (Record.size() > 11) 3587 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3588 else 3589 upgradeDLLImportExportLinkage(Func, RawLinkage); 3590 3591 if (Record.size() > 12) { 3592 if (unsigned ComdatID = Record[12]) { 3593 if (ComdatID > ComdatList.size()) 3594 return error("Invalid function comdat ID"); 3595 Func->setComdat(ComdatList[ComdatID - 1]); 3596 } 3597 } else if (hasImplicitComdat(RawLinkage)) { 3598 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3599 } 3600 3601 if (Record.size() > 13 && Record[13] != 0) 3602 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3603 3604 if (Record.size() > 14 && Record[14] != 0) 3605 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3606 3607 ValueList.push_back(Func); 3608 3609 // If this is a function with a body, remember the prototype we are 3610 // creating now, so that we can match up the body with them later. 3611 if (!isProto) { 3612 Func->setIsMaterializable(true); 3613 FunctionsWithBodies.push_back(Func); 3614 DeferredFunctionInfo[Func] = 0; 3615 } 3616 break; 3617 } 3618 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3619 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3620 case bitc::MODULE_CODE_ALIAS: 3621 case bitc::MODULE_CODE_ALIAS_OLD: { 3622 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3623 if (Record.size() < (3 + (unsigned)NewRecord)) 3624 return error("Invalid record"); 3625 unsigned OpNum = 0; 3626 Type *Ty = getTypeByID(Record[OpNum++]); 3627 if (!Ty) 3628 return error("Invalid record"); 3629 3630 unsigned AddrSpace; 3631 if (!NewRecord) { 3632 auto *PTy = dyn_cast<PointerType>(Ty); 3633 if (!PTy) 3634 return error("Invalid type for value"); 3635 Ty = PTy->getElementType(); 3636 AddrSpace = PTy->getAddressSpace(); 3637 } else { 3638 AddrSpace = Record[OpNum++]; 3639 } 3640 3641 auto Val = Record[OpNum++]; 3642 auto Linkage = Record[OpNum++]; 3643 auto *NewGA = GlobalAlias::create( 3644 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3645 // Old bitcode files didn't have visibility field. 3646 // Local linkage must have default visibility. 3647 if (OpNum != Record.size()) { 3648 auto VisInd = OpNum++; 3649 if (!NewGA->hasLocalLinkage()) 3650 // FIXME: Change to an error if non-default in 4.0. 3651 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3652 } 3653 if (OpNum != Record.size()) 3654 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3655 else 3656 upgradeDLLImportExportLinkage(NewGA, Linkage); 3657 if (OpNum != Record.size()) 3658 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3659 if (OpNum != Record.size()) 3660 NewGA->setUnnamedAddr(Record[OpNum++]); 3661 ValueList.push_back(NewGA); 3662 AliasInits.push_back(std::make_pair(NewGA, Val)); 3663 break; 3664 } 3665 /// MODULE_CODE_PURGEVALS: [numvals] 3666 case bitc::MODULE_CODE_PURGEVALS: 3667 // Trim down the value list to the specified size. 3668 if (Record.size() < 1 || Record[0] > ValueList.size()) 3669 return error("Invalid record"); 3670 ValueList.shrinkTo(Record[0]); 3671 break; 3672 /// MODULE_CODE_VSTOFFSET: [offset] 3673 case bitc::MODULE_CODE_VSTOFFSET: 3674 if (Record.size() < 1) 3675 return error("Invalid record"); 3676 VSTOffset = Record[0]; 3677 break; 3678 /// MODULE_CODE_METADATA_VALUES: [numvals] 3679 case bitc::MODULE_CODE_METADATA_VALUES: 3680 if (Record.size() < 1) 3681 return error("Invalid record"); 3682 assert(!IsMetadataMaterialized); 3683 // This record contains the number of metadata values in the module-level 3684 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3685 // a postpass, where we will parse function-level metadata first. 3686 // This is needed because the ids of metadata are assigned implicitly 3687 // based on their ordering in the bitcode, with the function-level 3688 // metadata ids starting after the module-level metadata ids. Otherwise, 3689 // we would have to parse the module-level metadata block to prime the 3690 // MetadataList when we are lazy loading metadata during function 3691 // importing. Initialize the MetadataList size here based on the 3692 // record value, regardless of whether we are doing lazy metadata 3693 // loading, so that we have consistent handling and assertion 3694 // checking in parseMetadata for module-level metadata. 3695 NumModuleMDs = Record[0]; 3696 SeenModuleValuesRecord = true; 3697 assert(MetadataList.size() == 0); 3698 MetadataList.resize(NumModuleMDs); 3699 break; 3700 } 3701 Record.clear(); 3702 } 3703 } 3704 3705 /// Helper to read the header common to all bitcode files. 3706 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3707 // Sniff for the signature. 3708 if (Stream.Read(8) != 'B' || 3709 Stream.Read(8) != 'C' || 3710 Stream.Read(4) != 0x0 || 3711 Stream.Read(4) != 0xC || 3712 Stream.Read(4) != 0xE || 3713 Stream.Read(4) != 0xD) 3714 return false; 3715 return true; 3716 } 3717 3718 std::error_code 3719 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3720 Module *M, bool ShouldLazyLoadMetadata) { 3721 TheModule = M; 3722 3723 if (std::error_code EC = initStream(std::move(Streamer))) 3724 return EC; 3725 3726 // Sniff for the signature. 3727 if (!hasValidBitcodeHeader(Stream)) 3728 return error("Invalid bitcode signature"); 3729 3730 // We expect a number of well-defined blocks, though we don't necessarily 3731 // need to understand them all. 3732 while (1) { 3733 if (Stream.AtEndOfStream()) { 3734 // We didn't really read a proper Module. 3735 return error("Malformed IR file"); 3736 } 3737 3738 BitstreamEntry Entry = 3739 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3740 3741 if (Entry.Kind != BitstreamEntry::SubBlock) 3742 return error("Malformed block"); 3743 3744 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3745 parseBitcodeVersion(); 3746 continue; 3747 } 3748 3749 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3750 return parseModule(0, ShouldLazyLoadMetadata); 3751 3752 if (Stream.SkipBlock()) 3753 return error("Invalid record"); 3754 } 3755 } 3756 3757 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3758 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3759 return error("Invalid record"); 3760 3761 SmallVector<uint64_t, 64> Record; 3762 3763 std::string Triple; 3764 // Read all the records for this module. 3765 while (1) { 3766 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3767 3768 switch (Entry.Kind) { 3769 case BitstreamEntry::SubBlock: // Handled for us already. 3770 case BitstreamEntry::Error: 3771 return error("Malformed block"); 3772 case BitstreamEntry::EndBlock: 3773 return Triple; 3774 case BitstreamEntry::Record: 3775 // The interesting case. 3776 break; 3777 } 3778 3779 // Read a record. 3780 switch (Stream.readRecord(Entry.ID, Record)) { 3781 default: break; // Default behavior, ignore unknown content. 3782 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3783 std::string S; 3784 if (convertToString(Record, 0, S)) 3785 return error("Invalid record"); 3786 Triple = S; 3787 break; 3788 } 3789 } 3790 Record.clear(); 3791 } 3792 llvm_unreachable("Exit infinite loop"); 3793 } 3794 3795 ErrorOr<std::string> BitcodeReader::parseTriple() { 3796 if (std::error_code EC = initStream(nullptr)) 3797 return EC; 3798 3799 // Sniff for the signature. 3800 if (!hasValidBitcodeHeader(Stream)) 3801 return error("Invalid bitcode signature"); 3802 3803 // We expect a number of well-defined blocks, though we don't necessarily 3804 // need to understand them all. 3805 while (1) { 3806 BitstreamEntry Entry = Stream.advance(); 3807 3808 switch (Entry.Kind) { 3809 case BitstreamEntry::Error: 3810 return error("Malformed block"); 3811 case BitstreamEntry::EndBlock: 3812 return std::error_code(); 3813 3814 case BitstreamEntry::SubBlock: 3815 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3816 return parseModuleTriple(); 3817 3818 // Ignore other sub-blocks. 3819 if (Stream.SkipBlock()) 3820 return error("Malformed block"); 3821 continue; 3822 3823 case BitstreamEntry::Record: 3824 Stream.skipRecord(Entry.ID); 3825 continue; 3826 } 3827 } 3828 } 3829 3830 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3831 if (std::error_code EC = initStream(nullptr)) 3832 return EC; 3833 3834 // Sniff for the signature. 3835 if (!hasValidBitcodeHeader(Stream)) 3836 return error("Invalid bitcode signature"); 3837 3838 // We expect a number of well-defined blocks, though we don't necessarily 3839 // need to understand them all. 3840 while (1) { 3841 BitstreamEntry Entry = Stream.advance(); 3842 switch (Entry.Kind) { 3843 case BitstreamEntry::Error: 3844 return error("Malformed block"); 3845 case BitstreamEntry::EndBlock: 3846 return std::error_code(); 3847 3848 case BitstreamEntry::SubBlock: 3849 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3850 if (std::error_code EC = parseBitcodeVersion()) 3851 return EC; 3852 return ProducerIdentification; 3853 } 3854 // Ignore other sub-blocks. 3855 if (Stream.SkipBlock()) 3856 return error("Malformed block"); 3857 continue; 3858 case BitstreamEntry::Record: 3859 Stream.skipRecord(Entry.ID); 3860 continue; 3861 } 3862 } 3863 } 3864 3865 /// Parse metadata attachments. 3866 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3867 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3868 return error("Invalid record"); 3869 3870 SmallVector<uint64_t, 64> Record; 3871 while (1) { 3872 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3873 3874 switch (Entry.Kind) { 3875 case BitstreamEntry::SubBlock: // Handled for us already. 3876 case BitstreamEntry::Error: 3877 return error("Malformed block"); 3878 case BitstreamEntry::EndBlock: 3879 return std::error_code(); 3880 case BitstreamEntry::Record: 3881 // The interesting case. 3882 break; 3883 } 3884 3885 // Read a metadata attachment record. 3886 Record.clear(); 3887 switch (Stream.readRecord(Entry.ID, Record)) { 3888 default: // Default behavior: ignore. 3889 break; 3890 case bitc::METADATA_ATTACHMENT: { 3891 unsigned RecordLength = Record.size(); 3892 if (Record.empty()) 3893 return error("Invalid record"); 3894 if (RecordLength % 2 == 0) { 3895 // A function attachment. 3896 for (unsigned I = 0; I != RecordLength; I += 2) { 3897 auto K = MDKindMap.find(Record[I]); 3898 if (K == MDKindMap.end()) 3899 return error("Invalid ID"); 3900 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3901 F.setMetadata(K->second, cast<MDNode>(MD)); 3902 } 3903 continue; 3904 } 3905 3906 // An instruction attachment. 3907 Instruction *Inst = InstructionList[Record[0]]; 3908 for (unsigned i = 1; i != RecordLength; i = i+2) { 3909 unsigned Kind = Record[i]; 3910 DenseMap<unsigned, unsigned>::iterator I = 3911 MDKindMap.find(Kind); 3912 if (I == MDKindMap.end()) 3913 return error("Invalid ID"); 3914 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3915 if (isa<LocalAsMetadata>(Node)) 3916 // Drop the attachment. This used to be legal, but there's no 3917 // upgrade path. 3918 break; 3919 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3920 if (I->second == LLVMContext::MD_tbaa) 3921 InstsWithTBAATag.push_back(Inst); 3922 } 3923 break; 3924 } 3925 } 3926 } 3927 } 3928 3929 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3930 LLVMContext &Context = PtrType->getContext(); 3931 if (!isa<PointerType>(PtrType)) 3932 return error(Context, "Load/Store operand is not a pointer type"); 3933 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3934 3935 if (ValType && ValType != ElemType) 3936 return error(Context, "Explicit load/store type does not match pointee " 3937 "type of pointer operand"); 3938 if (!PointerType::isLoadableOrStorableType(ElemType)) 3939 return error(Context, "Cannot load/store from pointer"); 3940 return std::error_code(); 3941 } 3942 3943 /// Lazily parse the specified function body block. 3944 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3945 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3946 return error("Invalid record"); 3947 3948 InstructionList.clear(); 3949 unsigned ModuleValueListSize = ValueList.size(); 3950 unsigned ModuleMetadataListSize = MetadataList.size(); 3951 3952 // Add all the function arguments to the value table. 3953 for (Argument &I : F->args()) 3954 ValueList.push_back(&I); 3955 3956 unsigned NextValueNo = ValueList.size(); 3957 BasicBlock *CurBB = nullptr; 3958 unsigned CurBBNo = 0; 3959 3960 DebugLoc LastLoc; 3961 auto getLastInstruction = [&]() -> Instruction * { 3962 if (CurBB && !CurBB->empty()) 3963 return &CurBB->back(); 3964 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3965 !FunctionBBs[CurBBNo - 1]->empty()) 3966 return &FunctionBBs[CurBBNo - 1]->back(); 3967 return nullptr; 3968 }; 3969 3970 std::vector<OperandBundleDef> OperandBundles; 3971 3972 // Read all the records. 3973 SmallVector<uint64_t, 64> Record; 3974 while (1) { 3975 BitstreamEntry Entry = Stream.advance(); 3976 3977 switch (Entry.Kind) { 3978 case BitstreamEntry::Error: 3979 return error("Malformed block"); 3980 case BitstreamEntry::EndBlock: 3981 goto OutOfRecordLoop; 3982 3983 case BitstreamEntry::SubBlock: 3984 switch (Entry.ID) { 3985 default: // Skip unknown content. 3986 if (Stream.SkipBlock()) 3987 return error("Invalid record"); 3988 break; 3989 case bitc::CONSTANTS_BLOCK_ID: 3990 if (std::error_code EC = parseConstants()) 3991 return EC; 3992 NextValueNo = ValueList.size(); 3993 break; 3994 case bitc::VALUE_SYMTAB_BLOCK_ID: 3995 if (std::error_code EC = parseValueSymbolTable()) 3996 return EC; 3997 break; 3998 case bitc::METADATA_ATTACHMENT_ID: 3999 if (std::error_code EC = parseMetadataAttachment(*F)) 4000 return EC; 4001 break; 4002 case bitc::METADATA_BLOCK_ID: 4003 if (std::error_code EC = parseMetadata()) 4004 return EC; 4005 break; 4006 case bitc::USELIST_BLOCK_ID: 4007 if (std::error_code EC = parseUseLists()) 4008 return EC; 4009 break; 4010 } 4011 continue; 4012 4013 case BitstreamEntry::Record: 4014 // The interesting case. 4015 break; 4016 } 4017 4018 // Read a record. 4019 Record.clear(); 4020 Instruction *I = nullptr; 4021 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4022 switch (BitCode) { 4023 default: // Default behavior: reject 4024 return error("Invalid value"); 4025 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4026 if (Record.size() < 1 || Record[0] == 0) 4027 return error("Invalid record"); 4028 // Create all the basic blocks for the function. 4029 FunctionBBs.resize(Record[0]); 4030 4031 // See if anything took the address of blocks in this function. 4032 auto BBFRI = BasicBlockFwdRefs.find(F); 4033 if (BBFRI == BasicBlockFwdRefs.end()) { 4034 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4035 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4036 } else { 4037 auto &BBRefs = BBFRI->second; 4038 // Check for invalid basic block references. 4039 if (BBRefs.size() > FunctionBBs.size()) 4040 return error("Invalid ID"); 4041 assert(!BBRefs.empty() && "Unexpected empty array"); 4042 assert(!BBRefs.front() && "Invalid reference to entry block"); 4043 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4044 ++I) 4045 if (I < RE && BBRefs[I]) { 4046 BBRefs[I]->insertInto(F); 4047 FunctionBBs[I] = BBRefs[I]; 4048 } else { 4049 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4050 } 4051 4052 // Erase from the table. 4053 BasicBlockFwdRefs.erase(BBFRI); 4054 } 4055 4056 CurBB = FunctionBBs[0]; 4057 continue; 4058 } 4059 4060 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4061 // This record indicates that the last instruction is at the same 4062 // location as the previous instruction with a location. 4063 I = getLastInstruction(); 4064 4065 if (!I) 4066 return error("Invalid record"); 4067 I->setDebugLoc(LastLoc); 4068 I = nullptr; 4069 continue; 4070 4071 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4072 I = getLastInstruction(); 4073 if (!I || Record.size() < 4) 4074 return error("Invalid record"); 4075 4076 unsigned Line = Record[0], Col = Record[1]; 4077 unsigned ScopeID = Record[2], IAID = Record[3]; 4078 4079 MDNode *Scope = nullptr, *IA = nullptr; 4080 if (ScopeID) 4081 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4082 if (IAID) 4083 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4084 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4085 I->setDebugLoc(LastLoc); 4086 I = nullptr; 4087 continue; 4088 } 4089 4090 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4091 unsigned OpNum = 0; 4092 Value *LHS, *RHS; 4093 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4094 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4095 OpNum+1 > Record.size()) 4096 return error("Invalid record"); 4097 4098 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4099 if (Opc == -1) 4100 return error("Invalid record"); 4101 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4102 InstructionList.push_back(I); 4103 if (OpNum < Record.size()) { 4104 if (Opc == Instruction::Add || 4105 Opc == Instruction::Sub || 4106 Opc == Instruction::Mul || 4107 Opc == Instruction::Shl) { 4108 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4109 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4110 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4111 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4112 } else if (Opc == Instruction::SDiv || 4113 Opc == Instruction::UDiv || 4114 Opc == Instruction::LShr || 4115 Opc == Instruction::AShr) { 4116 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4117 cast<BinaryOperator>(I)->setIsExact(true); 4118 } else if (isa<FPMathOperator>(I)) { 4119 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4120 if (FMF.any()) 4121 I->setFastMathFlags(FMF); 4122 } 4123 4124 } 4125 break; 4126 } 4127 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4128 unsigned OpNum = 0; 4129 Value *Op; 4130 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4131 OpNum+2 != Record.size()) 4132 return error("Invalid record"); 4133 4134 Type *ResTy = getTypeByID(Record[OpNum]); 4135 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4136 if (Opc == -1 || !ResTy) 4137 return error("Invalid record"); 4138 Instruction *Temp = nullptr; 4139 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4140 if (Temp) { 4141 InstructionList.push_back(Temp); 4142 CurBB->getInstList().push_back(Temp); 4143 } 4144 } else { 4145 auto CastOp = (Instruction::CastOps)Opc; 4146 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4147 return error("Invalid cast"); 4148 I = CastInst::Create(CastOp, Op, ResTy); 4149 } 4150 InstructionList.push_back(I); 4151 break; 4152 } 4153 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4154 case bitc::FUNC_CODE_INST_GEP_OLD: 4155 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4156 unsigned OpNum = 0; 4157 4158 Type *Ty; 4159 bool InBounds; 4160 4161 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4162 InBounds = Record[OpNum++]; 4163 Ty = getTypeByID(Record[OpNum++]); 4164 } else { 4165 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4166 Ty = nullptr; 4167 } 4168 4169 Value *BasePtr; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4171 return error("Invalid record"); 4172 4173 if (!Ty) 4174 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4175 ->getElementType(); 4176 else if (Ty != 4177 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4178 ->getElementType()) 4179 return error( 4180 "Explicit gep type does not match pointee type of pointer operand"); 4181 4182 SmallVector<Value*, 16> GEPIdx; 4183 while (OpNum != Record.size()) { 4184 Value *Op; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4186 return error("Invalid record"); 4187 GEPIdx.push_back(Op); 4188 } 4189 4190 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4191 4192 InstructionList.push_back(I); 4193 if (InBounds) 4194 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4195 break; 4196 } 4197 4198 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4199 // EXTRACTVAL: [opty, opval, n x indices] 4200 unsigned OpNum = 0; 4201 Value *Agg; 4202 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4203 return error("Invalid record"); 4204 4205 unsigned RecSize = Record.size(); 4206 if (OpNum == RecSize) 4207 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4208 4209 SmallVector<unsigned, 4> EXTRACTVALIdx; 4210 Type *CurTy = Agg->getType(); 4211 for (; OpNum != RecSize; ++OpNum) { 4212 bool IsArray = CurTy->isArrayTy(); 4213 bool IsStruct = CurTy->isStructTy(); 4214 uint64_t Index = Record[OpNum]; 4215 4216 if (!IsStruct && !IsArray) 4217 return error("EXTRACTVAL: Invalid type"); 4218 if ((unsigned)Index != Index) 4219 return error("Invalid value"); 4220 if (IsStruct && Index >= CurTy->subtypes().size()) 4221 return error("EXTRACTVAL: Invalid struct index"); 4222 if (IsArray && Index >= CurTy->getArrayNumElements()) 4223 return error("EXTRACTVAL: Invalid array index"); 4224 EXTRACTVALIdx.push_back((unsigned)Index); 4225 4226 if (IsStruct) 4227 CurTy = CurTy->subtypes()[Index]; 4228 else 4229 CurTy = CurTy->subtypes()[0]; 4230 } 4231 4232 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4233 InstructionList.push_back(I); 4234 break; 4235 } 4236 4237 case bitc::FUNC_CODE_INST_INSERTVAL: { 4238 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4239 unsigned OpNum = 0; 4240 Value *Agg; 4241 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4242 return error("Invalid record"); 4243 Value *Val; 4244 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4245 return error("Invalid record"); 4246 4247 unsigned RecSize = Record.size(); 4248 if (OpNum == RecSize) 4249 return error("INSERTVAL: Invalid instruction with 0 indices"); 4250 4251 SmallVector<unsigned, 4> INSERTVALIdx; 4252 Type *CurTy = Agg->getType(); 4253 for (; OpNum != RecSize; ++OpNum) { 4254 bool IsArray = CurTy->isArrayTy(); 4255 bool IsStruct = CurTy->isStructTy(); 4256 uint64_t Index = Record[OpNum]; 4257 4258 if (!IsStruct && !IsArray) 4259 return error("INSERTVAL: Invalid type"); 4260 if ((unsigned)Index != Index) 4261 return error("Invalid value"); 4262 if (IsStruct && Index >= CurTy->subtypes().size()) 4263 return error("INSERTVAL: Invalid struct index"); 4264 if (IsArray && Index >= CurTy->getArrayNumElements()) 4265 return error("INSERTVAL: Invalid array index"); 4266 4267 INSERTVALIdx.push_back((unsigned)Index); 4268 if (IsStruct) 4269 CurTy = CurTy->subtypes()[Index]; 4270 else 4271 CurTy = CurTy->subtypes()[0]; 4272 } 4273 4274 if (CurTy != Val->getType()) 4275 return error("Inserted value type doesn't match aggregate type"); 4276 4277 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4278 InstructionList.push_back(I); 4279 break; 4280 } 4281 4282 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4283 // obsolete form of select 4284 // handles select i1 ... in old bitcode 4285 unsigned OpNum = 0; 4286 Value *TrueVal, *FalseVal, *Cond; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4288 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4289 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4290 return error("Invalid record"); 4291 4292 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4293 InstructionList.push_back(I); 4294 break; 4295 } 4296 4297 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4298 // new form of select 4299 // handles select i1 or select [N x i1] 4300 unsigned OpNum = 0; 4301 Value *TrueVal, *FalseVal, *Cond; 4302 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4303 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4304 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4305 return error("Invalid record"); 4306 4307 // select condition can be either i1 or [N x i1] 4308 if (VectorType* vector_type = 4309 dyn_cast<VectorType>(Cond->getType())) { 4310 // expect <n x i1> 4311 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4312 return error("Invalid type for value"); 4313 } else { 4314 // expect i1 4315 if (Cond->getType() != Type::getInt1Ty(Context)) 4316 return error("Invalid type for value"); 4317 } 4318 4319 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 4324 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4325 unsigned OpNum = 0; 4326 Value *Vec, *Idx; 4327 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4328 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4329 return error("Invalid record"); 4330 if (!Vec->getType()->isVectorTy()) 4331 return error("Invalid type for value"); 4332 I = ExtractElementInst::Create(Vec, Idx); 4333 InstructionList.push_back(I); 4334 break; 4335 } 4336 4337 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4338 unsigned OpNum = 0; 4339 Value *Vec, *Elt, *Idx; 4340 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4341 return error("Invalid record"); 4342 if (!Vec->getType()->isVectorTy()) 4343 return error("Invalid type for value"); 4344 if (popValue(Record, OpNum, NextValueNo, 4345 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4346 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4347 return error("Invalid record"); 4348 I = InsertElementInst::Create(Vec, Elt, Idx); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 4353 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4354 unsigned OpNum = 0; 4355 Value *Vec1, *Vec2, *Mask; 4356 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4357 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4358 return error("Invalid record"); 4359 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4361 return error("Invalid record"); 4362 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4363 return error("Invalid type for value"); 4364 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 4369 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4370 // Old form of ICmp/FCmp returning bool 4371 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4372 // both legal on vectors but had different behaviour. 4373 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4374 // FCmp/ICmp returning bool or vector of bool 4375 4376 unsigned OpNum = 0; 4377 Value *LHS, *RHS; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4379 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4380 return error("Invalid record"); 4381 4382 unsigned PredVal = Record[OpNum]; 4383 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4384 FastMathFlags FMF; 4385 if (IsFP && Record.size() > OpNum+1) 4386 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4387 4388 if (OpNum+1 != Record.size()) 4389 return error("Invalid record"); 4390 4391 if (LHS->getType()->isFPOrFPVectorTy()) 4392 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4393 else 4394 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4395 4396 if (FMF.any()) 4397 I->setFastMathFlags(FMF); 4398 InstructionList.push_back(I); 4399 break; 4400 } 4401 4402 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4403 { 4404 unsigned Size = Record.size(); 4405 if (Size == 0) { 4406 I = ReturnInst::Create(Context); 4407 InstructionList.push_back(I); 4408 break; 4409 } 4410 4411 unsigned OpNum = 0; 4412 Value *Op = nullptr; 4413 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4414 return error("Invalid record"); 4415 if (OpNum != Record.size()) 4416 return error("Invalid record"); 4417 4418 I = ReturnInst::Create(Context, Op); 4419 InstructionList.push_back(I); 4420 break; 4421 } 4422 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4423 if (Record.size() != 1 && Record.size() != 3) 4424 return error("Invalid record"); 4425 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4426 if (!TrueDest) 4427 return error("Invalid record"); 4428 4429 if (Record.size() == 1) { 4430 I = BranchInst::Create(TrueDest); 4431 InstructionList.push_back(I); 4432 } 4433 else { 4434 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4435 Value *Cond = getValue(Record, 2, NextValueNo, 4436 Type::getInt1Ty(Context)); 4437 if (!FalseDest || !Cond) 4438 return error("Invalid record"); 4439 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4440 InstructionList.push_back(I); 4441 } 4442 break; 4443 } 4444 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4445 if (Record.size() != 1 && Record.size() != 2) 4446 return error("Invalid record"); 4447 unsigned Idx = 0; 4448 Value *CleanupPad = 4449 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4450 if (!CleanupPad) 4451 return error("Invalid record"); 4452 BasicBlock *UnwindDest = nullptr; 4453 if (Record.size() == 2) { 4454 UnwindDest = getBasicBlock(Record[Idx++]); 4455 if (!UnwindDest) 4456 return error("Invalid record"); 4457 } 4458 4459 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4460 InstructionList.push_back(I); 4461 break; 4462 } 4463 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4464 if (Record.size() != 2) 4465 return error("Invalid record"); 4466 unsigned Idx = 0; 4467 Value *CatchPad = 4468 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4469 if (!CatchPad) 4470 return error("Invalid record"); 4471 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4472 if (!BB) 4473 return error("Invalid record"); 4474 4475 I = CatchReturnInst::Create(CatchPad, BB); 4476 InstructionList.push_back(I); 4477 break; 4478 } 4479 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4480 // We must have, at minimum, the outer scope and the number of arguments. 4481 if (Record.size() < 2) 4482 return error("Invalid record"); 4483 4484 unsigned Idx = 0; 4485 4486 Value *ParentPad = 4487 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4488 4489 unsigned NumHandlers = Record[Idx++]; 4490 4491 SmallVector<BasicBlock *, 2> Handlers; 4492 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4493 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4494 if (!BB) 4495 return error("Invalid record"); 4496 Handlers.push_back(BB); 4497 } 4498 4499 BasicBlock *UnwindDest = nullptr; 4500 if (Idx + 1 == Record.size()) { 4501 UnwindDest = getBasicBlock(Record[Idx++]); 4502 if (!UnwindDest) 4503 return error("Invalid record"); 4504 } 4505 4506 if (Record.size() != Idx) 4507 return error("Invalid record"); 4508 4509 auto *CatchSwitch = 4510 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4511 for (BasicBlock *Handler : Handlers) 4512 CatchSwitch->addHandler(Handler); 4513 I = CatchSwitch; 4514 InstructionList.push_back(I); 4515 break; 4516 } 4517 case bitc::FUNC_CODE_INST_CATCHPAD: 4518 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4519 // We must have, at minimum, the outer scope and the number of arguments. 4520 if (Record.size() < 2) 4521 return error("Invalid record"); 4522 4523 unsigned Idx = 0; 4524 4525 Value *ParentPad = 4526 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4527 4528 unsigned NumArgOperands = Record[Idx++]; 4529 4530 SmallVector<Value *, 2> Args; 4531 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4532 Value *Val; 4533 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4534 return error("Invalid record"); 4535 Args.push_back(Val); 4536 } 4537 4538 if (Record.size() != Idx) 4539 return error("Invalid record"); 4540 4541 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4542 I = CleanupPadInst::Create(ParentPad, Args); 4543 else 4544 I = CatchPadInst::Create(ParentPad, Args); 4545 InstructionList.push_back(I); 4546 break; 4547 } 4548 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4549 // Check magic 4550 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4551 // "New" SwitchInst format with case ranges. The changes to write this 4552 // format were reverted but we still recognize bitcode that uses it. 4553 // Hopefully someday we will have support for case ranges and can use 4554 // this format again. 4555 4556 Type *OpTy = getTypeByID(Record[1]); 4557 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4558 4559 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4560 BasicBlock *Default = getBasicBlock(Record[3]); 4561 if (!OpTy || !Cond || !Default) 4562 return error("Invalid record"); 4563 4564 unsigned NumCases = Record[4]; 4565 4566 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4567 InstructionList.push_back(SI); 4568 4569 unsigned CurIdx = 5; 4570 for (unsigned i = 0; i != NumCases; ++i) { 4571 SmallVector<ConstantInt*, 1> CaseVals; 4572 unsigned NumItems = Record[CurIdx++]; 4573 for (unsigned ci = 0; ci != NumItems; ++ci) { 4574 bool isSingleNumber = Record[CurIdx++]; 4575 4576 APInt Low; 4577 unsigned ActiveWords = 1; 4578 if (ValueBitWidth > 64) 4579 ActiveWords = Record[CurIdx++]; 4580 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4581 ValueBitWidth); 4582 CurIdx += ActiveWords; 4583 4584 if (!isSingleNumber) { 4585 ActiveWords = 1; 4586 if (ValueBitWidth > 64) 4587 ActiveWords = Record[CurIdx++]; 4588 APInt High = readWideAPInt( 4589 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4590 CurIdx += ActiveWords; 4591 4592 // FIXME: It is not clear whether values in the range should be 4593 // compared as signed or unsigned values. The partially 4594 // implemented changes that used this format in the past used 4595 // unsigned comparisons. 4596 for ( ; Low.ule(High); ++Low) 4597 CaseVals.push_back(ConstantInt::get(Context, Low)); 4598 } else 4599 CaseVals.push_back(ConstantInt::get(Context, Low)); 4600 } 4601 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4602 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4603 cve = CaseVals.end(); cvi != cve; ++cvi) 4604 SI->addCase(*cvi, DestBB); 4605 } 4606 I = SI; 4607 break; 4608 } 4609 4610 // Old SwitchInst format without case ranges. 4611 4612 if (Record.size() < 3 || (Record.size() & 1) == 0) 4613 return error("Invalid record"); 4614 Type *OpTy = getTypeByID(Record[0]); 4615 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4616 BasicBlock *Default = getBasicBlock(Record[2]); 4617 if (!OpTy || !Cond || !Default) 4618 return error("Invalid record"); 4619 unsigned NumCases = (Record.size()-3)/2; 4620 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4621 InstructionList.push_back(SI); 4622 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4623 ConstantInt *CaseVal = 4624 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4625 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4626 if (!CaseVal || !DestBB) { 4627 delete SI; 4628 return error("Invalid record"); 4629 } 4630 SI->addCase(CaseVal, DestBB); 4631 } 4632 I = SI; 4633 break; 4634 } 4635 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4636 if (Record.size() < 2) 4637 return error("Invalid record"); 4638 Type *OpTy = getTypeByID(Record[0]); 4639 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4640 if (!OpTy || !Address) 4641 return error("Invalid record"); 4642 unsigned NumDests = Record.size()-2; 4643 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4644 InstructionList.push_back(IBI); 4645 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4646 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4647 IBI->addDestination(DestBB); 4648 } else { 4649 delete IBI; 4650 return error("Invalid record"); 4651 } 4652 } 4653 I = IBI; 4654 break; 4655 } 4656 4657 case bitc::FUNC_CODE_INST_INVOKE: { 4658 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4659 if (Record.size() < 4) 4660 return error("Invalid record"); 4661 unsigned OpNum = 0; 4662 AttributeSet PAL = getAttributes(Record[OpNum++]); 4663 unsigned CCInfo = Record[OpNum++]; 4664 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4665 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4666 4667 FunctionType *FTy = nullptr; 4668 if (CCInfo >> 13 & 1 && 4669 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4670 return error("Explicit invoke type is not a function type"); 4671 4672 Value *Callee; 4673 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4674 return error("Invalid record"); 4675 4676 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4677 if (!CalleeTy) 4678 return error("Callee is not a pointer"); 4679 if (!FTy) { 4680 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4681 if (!FTy) 4682 return error("Callee is not of pointer to function type"); 4683 } else if (CalleeTy->getElementType() != FTy) 4684 return error("Explicit invoke type does not match pointee type of " 4685 "callee operand"); 4686 if (Record.size() < FTy->getNumParams() + OpNum) 4687 return error("Insufficient operands to call"); 4688 4689 SmallVector<Value*, 16> Ops; 4690 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4691 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4692 FTy->getParamType(i))); 4693 if (!Ops.back()) 4694 return error("Invalid record"); 4695 } 4696 4697 if (!FTy->isVarArg()) { 4698 if (Record.size() != OpNum) 4699 return error("Invalid record"); 4700 } else { 4701 // Read type/value pairs for varargs params. 4702 while (OpNum != Record.size()) { 4703 Value *Op; 4704 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4705 return error("Invalid record"); 4706 Ops.push_back(Op); 4707 } 4708 } 4709 4710 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4711 OperandBundles.clear(); 4712 InstructionList.push_back(I); 4713 cast<InvokeInst>(I)->setCallingConv( 4714 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4715 cast<InvokeInst>(I)->setAttributes(PAL); 4716 break; 4717 } 4718 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4719 unsigned Idx = 0; 4720 Value *Val = nullptr; 4721 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4722 return error("Invalid record"); 4723 I = ResumeInst::Create(Val); 4724 InstructionList.push_back(I); 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4728 I = new UnreachableInst(Context); 4729 InstructionList.push_back(I); 4730 break; 4731 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4732 if (Record.size() < 1 || ((Record.size()-1)&1)) 4733 return error("Invalid record"); 4734 Type *Ty = getTypeByID(Record[0]); 4735 if (!Ty) 4736 return error("Invalid record"); 4737 4738 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4739 InstructionList.push_back(PN); 4740 4741 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4742 Value *V; 4743 // With the new function encoding, it is possible that operands have 4744 // negative IDs (for forward references). Use a signed VBR 4745 // representation to keep the encoding small. 4746 if (UseRelativeIDs) 4747 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4748 else 4749 V = getValue(Record, 1+i, NextValueNo, Ty); 4750 BasicBlock *BB = getBasicBlock(Record[2+i]); 4751 if (!V || !BB) 4752 return error("Invalid record"); 4753 PN->addIncoming(V, BB); 4754 } 4755 I = PN; 4756 break; 4757 } 4758 4759 case bitc::FUNC_CODE_INST_LANDINGPAD: 4760 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4761 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4762 unsigned Idx = 0; 4763 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4764 if (Record.size() < 3) 4765 return error("Invalid record"); 4766 } else { 4767 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4768 if (Record.size() < 4) 4769 return error("Invalid record"); 4770 } 4771 Type *Ty = getTypeByID(Record[Idx++]); 4772 if (!Ty) 4773 return error("Invalid record"); 4774 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4775 Value *PersFn = nullptr; 4776 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4777 return error("Invalid record"); 4778 4779 if (!F->hasPersonalityFn()) 4780 F->setPersonalityFn(cast<Constant>(PersFn)); 4781 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4782 return error("Personality function mismatch"); 4783 } 4784 4785 bool IsCleanup = !!Record[Idx++]; 4786 unsigned NumClauses = Record[Idx++]; 4787 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4788 LP->setCleanup(IsCleanup); 4789 for (unsigned J = 0; J != NumClauses; ++J) { 4790 LandingPadInst::ClauseType CT = 4791 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4792 Value *Val; 4793 4794 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4795 delete LP; 4796 return error("Invalid record"); 4797 } 4798 4799 assert((CT != LandingPadInst::Catch || 4800 !isa<ArrayType>(Val->getType())) && 4801 "Catch clause has a invalid type!"); 4802 assert((CT != LandingPadInst::Filter || 4803 isa<ArrayType>(Val->getType())) && 4804 "Filter clause has invalid type!"); 4805 LP->addClause(cast<Constant>(Val)); 4806 } 4807 4808 I = LP; 4809 InstructionList.push_back(I); 4810 break; 4811 } 4812 4813 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4814 if (Record.size() != 4) 4815 return error("Invalid record"); 4816 uint64_t AlignRecord = Record[3]; 4817 const uint64_t InAllocaMask = uint64_t(1) << 5; 4818 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4819 // Reserve bit 7 for SwiftError flag. 4820 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4821 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4822 bool InAlloca = AlignRecord & InAllocaMask; 4823 Type *Ty = getTypeByID(Record[0]); 4824 if ((AlignRecord & ExplicitTypeMask) == 0) { 4825 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4826 if (!PTy) 4827 return error("Old-style alloca with a non-pointer type"); 4828 Ty = PTy->getElementType(); 4829 } 4830 Type *OpTy = getTypeByID(Record[1]); 4831 Value *Size = getFnValueByID(Record[2], OpTy); 4832 unsigned Align; 4833 if (std::error_code EC = 4834 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4835 return EC; 4836 } 4837 if (!Ty || !Size) 4838 return error("Invalid record"); 4839 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4840 AI->setUsedWithInAlloca(InAlloca); 4841 I = AI; 4842 InstructionList.push_back(I); 4843 break; 4844 } 4845 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4846 unsigned OpNum = 0; 4847 Value *Op; 4848 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4849 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4850 return error("Invalid record"); 4851 4852 Type *Ty = nullptr; 4853 if (OpNum + 3 == Record.size()) 4854 Ty = getTypeByID(Record[OpNum++]); 4855 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4856 return EC; 4857 if (!Ty) 4858 Ty = cast<PointerType>(Op->getType())->getElementType(); 4859 4860 unsigned Align; 4861 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4862 return EC; 4863 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4864 4865 InstructionList.push_back(I); 4866 break; 4867 } 4868 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4869 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4870 unsigned OpNum = 0; 4871 Value *Op; 4872 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4873 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4874 return error("Invalid record"); 4875 4876 Type *Ty = nullptr; 4877 if (OpNum + 5 == Record.size()) 4878 Ty = getTypeByID(Record[OpNum++]); 4879 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4880 return EC; 4881 if (!Ty) 4882 Ty = cast<PointerType>(Op->getType())->getElementType(); 4883 4884 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4885 if (Ordering == NotAtomic || Ordering == Release || 4886 Ordering == AcquireRelease) 4887 return error("Invalid record"); 4888 if (Ordering != NotAtomic && Record[OpNum] == 0) 4889 return error("Invalid record"); 4890 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4891 4892 unsigned Align; 4893 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4894 return EC; 4895 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4896 4897 InstructionList.push_back(I); 4898 break; 4899 } 4900 case bitc::FUNC_CODE_INST_STORE: 4901 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4902 unsigned OpNum = 0; 4903 Value *Val, *Ptr; 4904 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4905 (BitCode == bitc::FUNC_CODE_INST_STORE 4906 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4907 : popValue(Record, OpNum, NextValueNo, 4908 cast<PointerType>(Ptr->getType())->getElementType(), 4909 Val)) || 4910 OpNum + 2 != Record.size()) 4911 return error("Invalid record"); 4912 4913 if (std::error_code EC = 4914 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4915 return EC; 4916 unsigned Align; 4917 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4918 return EC; 4919 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_STOREATOMIC: 4924 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4925 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4926 unsigned OpNum = 0; 4927 Value *Val, *Ptr; 4928 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4929 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4930 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4931 : popValue(Record, OpNum, NextValueNo, 4932 cast<PointerType>(Ptr->getType())->getElementType(), 4933 Val)) || 4934 OpNum + 4 != Record.size()) 4935 return error("Invalid record"); 4936 4937 if (std::error_code EC = 4938 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4939 return EC; 4940 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4941 if (Ordering == NotAtomic || Ordering == Acquire || 4942 Ordering == AcquireRelease) 4943 return error("Invalid record"); 4944 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4945 if (Ordering != NotAtomic && Record[OpNum] == 0) 4946 return error("Invalid record"); 4947 4948 unsigned Align; 4949 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4950 return EC; 4951 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4952 InstructionList.push_back(I); 4953 break; 4954 } 4955 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4956 case bitc::FUNC_CODE_INST_CMPXCHG: { 4957 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4958 // failureordering?, isweak?] 4959 unsigned OpNum = 0; 4960 Value *Ptr, *Cmp, *New; 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4962 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4963 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4964 : popValue(Record, OpNum, NextValueNo, 4965 cast<PointerType>(Ptr->getType())->getElementType(), 4966 Cmp)) || 4967 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4968 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4969 return error("Invalid record"); 4970 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4971 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4972 return error("Invalid record"); 4973 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4974 4975 if (std::error_code EC = 4976 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4977 return EC; 4978 AtomicOrdering FailureOrdering; 4979 if (Record.size() < 7) 4980 FailureOrdering = 4981 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4982 else 4983 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4984 4985 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4986 SynchScope); 4987 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4988 4989 if (Record.size() < 8) { 4990 // Before weak cmpxchgs existed, the instruction simply returned the 4991 // value loaded from memory, so bitcode files from that era will be 4992 // expecting the first component of a modern cmpxchg. 4993 CurBB->getInstList().push_back(I); 4994 I = ExtractValueInst::Create(I, 0); 4995 } else { 4996 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4997 } 4998 4999 InstructionList.push_back(I); 5000 break; 5001 } 5002 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5003 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5004 unsigned OpNum = 0; 5005 Value *Ptr, *Val; 5006 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5007 popValue(Record, OpNum, NextValueNo, 5008 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5009 OpNum+4 != Record.size()) 5010 return error("Invalid record"); 5011 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5012 if (Operation < AtomicRMWInst::FIRST_BINOP || 5013 Operation > AtomicRMWInst::LAST_BINOP) 5014 return error("Invalid record"); 5015 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5016 if (Ordering == NotAtomic || Ordering == Unordered) 5017 return error("Invalid record"); 5018 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5019 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5020 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5021 InstructionList.push_back(I); 5022 break; 5023 } 5024 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5025 if (2 != Record.size()) 5026 return error("Invalid record"); 5027 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5028 if (Ordering == NotAtomic || Ordering == Unordered || 5029 Ordering == Monotonic) 5030 return error("Invalid record"); 5031 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5032 I = new FenceInst(Context, Ordering, SynchScope); 5033 InstructionList.push_back(I); 5034 break; 5035 } 5036 case bitc::FUNC_CODE_INST_CALL: { 5037 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5038 if (Record.size() < 3) 5039 return error("Invalid record"); 5040 5041 unsigned OpNum = 0; 5042 AttributeSet PAL = getAttributes(Record[OpNum++]); 5043 unsigned CCInfo = Record[OpNum++]; 5044 5045 FastMathFlags FMF; 5046 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5047 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5048 if (!FMF.any()) 5049 return error("Fast math flags indicator set for call with no FMF"); 5050 } 5051 5052 FunctionType *FTy = nullptr; 5053 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5054 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5055 return error("Explicit call type is not a function type"); 5056 5057 Value *Callee; 5058 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5059 return error("Invalid record"); 5060 5061 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5062 if (!OpTy) 5063 return error("Callee is not a pointer type"); 5064 if (!FTy) { 5065 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5066 if (!FTy) 5067 return error("Callee is not of pointer to function type"); 5068 } else if (OpTy->getElementType() != FTy) 5069 return error("Explicit call type does not match pointee type of " 5070 "callee operand"); 5071 if (Record.size() < FTy->getNumParams() + OpNum) 5072 return error("Insufficient operands to call"); 5073 5074 SmallVector<Value*, 16> Args; 5075 // Read the fixed params. 5076 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5077 if (FTy->getParamType(i)->isLabelTy()) 5078 Args.push_back(getBasicBlock(Record[OpNum])); 5079 else 5080 Args.push_back(getValue(Record, OpNum, NextValueNo, 5081 FTy->getParamType(i))); 5082 if (!Args.back()) 5083 return error("Invalid record"); 5084 } 5085 5086 // Read type/value pairs for varargs params. 5087 if (!FTy->isVarArg()) { 5088 if (OpNum != Record.size()) 5089 return error("Invalid record"); 5090 } else { 5091 while (OpNum != Record.size()) { 5092 Value *Op; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5094 return error("Invalid record"); 5095 Args.push_back(Op); 5096 } 5097 } 5098 5099 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5100 OperandBundles.clear(); 5101 InstructionList.push_back(I); 5102 cast<CallInst>(I)->setCallingConv( 5103 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5104 CallInst::TailCallKind TCK = CallInst::TCK_None; 5105 if (CCInfo & 1 << bitc::CALL_TAIL) 5106 TCK = CallInst::TCK_Tail; 5107 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5108 TCK = CallInst::TCK_MustTail; 5109 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5110 TCK = CallInst::TCK_NoTail; 5111 cast<CallInst>(I)->setTailCallKind(TCK); 5112 cast<CallInst>(I)->setAttributes(PAL); 5113 if (FMF.any()) { 5114 if (!isa<FPMathOperator>(I)) 5115 return error("Fast-math-flags specified for call without " 5116 "floating-point scalar or vector return type"); 5117 I->setFastMathFlags(FMF); 5118 } 5119 break; 5120 } 5121 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5122 if (Record.size() < 3) 5123 return error("Invalid record"); 5124 Type *OpTy = getTypeByID(Record[0]); 5125 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5126 Type *ResTy = getTypeByID(Record[2]); 5127 if (!OpTy || !Op || !ResTy) 5128 return error("Invalid record"); 5129 I = new VAArgInst(Op, ResTy); 5130 InstructionList.push_back(I); 5131 break; 5132 } 5133 5134 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5135 // A call or an invoke can be optionally prefixed with some variable 5136 // number of operand bundle blocks. These blocks are read into 5137 // OperandBundles and consumed at the next call or invoke instruction. 5138 5139 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5140 return error("Invalid record"); 5141 5142 std::vector<Value *> Inputs; 5143 5144 unsigned OpNum = 1; 5145 while (OpNum != Record.size()) { 5146 Value *Op; 5147 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5148 return error("Invalid record"); 5149 Inputs.push_back(Op); 5150 } 5151 5152 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5153 continue; 5154 } 5155 } 5156 5157 // Add instruction to end of current BB. If there is no current BB, reject 5158 // this file. 5159 if (!CurBB) { 5160 delete I; 5161 return error("Invalid instruction with no BB"); 5162 } 5163 if (!OperandBundles.empty()) { 5164 delete I; 5165 return error("Operand bundles found with no consumer"); 5166 } 5167 CurBB->getInstList().push_back(I); 5168 5169 // If this was a terminator instruction, move to the next block. 5170 if (isa<TerminatorInst>(I)) { 5171 ++CurBBNo; 5172 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5173 } 5174 5175 // Non-void values get registered in the value table for future use. 5176 if (I && !I->getType()->isVoidTy()) 5177 ValueList.assignValue(I, NextValueNo++); 5178 } 5179 5180 OutOfRecordLoop: 5181 5182 if (!OperandBundles.empty()) 5183 return error("Operand bundles found with no consumer"); 5184 5185 // Check the function list for unresolved values. 5186 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5187 if (!A->getParent()) { 5188 // We found at least one unresolved value. Nuke them all to avoid leaks. 5189 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5190 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5191 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5192 delete A; 5193 } 5194 } 5195 return error("Never resolved value found in function"); 5196 } 5197 } 5198 5199 // FIXME: Check for unresolved forward-declared metadata references 5200 // and clean up leaks. 5201 5202 // Trim the value list down to the size it was before we parsed this function. 5203 ValueList.shrinkTo(ModuleValueListSize); 5204 MetadataList.shrinkTo(ModuleMetadataListSize); 5205 std::vector<BasicBlock*>().swap(FunctionBBs); 5206 return std::error_code(); 5207 } 5208 5209 /// Find the function body in the bitcode stream 5210 std::error_code BitcodeReader::findFunctionInStream( 5211 Function *F, 5212 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5213 while (DeferredFunctionInfoIterator->second == 0) { 5214 // This is the fallback handling for the old format bitcode that 5215 // didn't contain the function index in the VST, or when we have 5216 // an anonymous function which would not have a VST entry. 5217 // Assert that we have one of those two cases. 5218 assert(VSTOffset == 0 || !F->hasName()); 5219 // Parse the next body in the stream and set its position in the 5220 // DeferredFunctionInfo map. 5221 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5222 return EC; 5223 } 5224 return std::error_code(); 5225 } 5226 5227 //===----------------------------------------------------------------------===// 5228 // GVMaterializer implementation 5229 //===----------------------------------------------------------------------===// 5230 5231 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5232 5233 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5234 // In older bitcode we must materialize the metadata before parsing 5235 // any functions, in order to set up the MetadataList properly. 5236 if (!SeenModuleValuesRecord) { 5237 if (std::error_code EC = materializeMetadata()) 5238 return EC; 5239 } 5240 5241 Function *F = dyn_cast<Function>(GV); 5242 // If it's not a function or is already material, ignore the request. 5243 if (!F || !F->isMaterializable()) 5244 return std::error_code(); 5245 5246 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5247 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5248 // If its position is recorded as 0, its body is somewhere in the stream 5249 // but we haven't seen it yet. 5250 if (DFII->second == 0) 5251 if (std::error_code EC = findFunctionInStream(F, DFII)) 5252 return EC; 5253 5254 // Move the bit stream to the saved position of the deferred function body. 5255 Stream.JumpToBit(DFII->second); 5256 5257 if (std::error_code EC = parseFunctionBody(F)) 5258 return EC; 5259 F->setIsMaterializable(false); 5260 5261 if (StripDebugInfo) 5262 stripDebugInfo(*F); 5263 5264 // Upgrade any old intrinsic calls in the function. 5265 for (auto &I : UpgradedIntrinsics) { 5266 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5267 UI != UE;) { 5268 User *U = *UI; 5269 ++UI; 5270 if (CallInst *CI = dyn_cast<CallInst>(U)) 5271 UpgradeIntrinsicCall(CI, I.second); 5272 } 5273 } 5274 5275 // Finish fn->subprogram upgrade for materialized functions. 5276 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5277 F->setSubprogram(SP); 5278 5279 // Bring in any functions that this function forward-referenced via 5280 // blockaddresses. 5281 return materializeForwardReferencedFunctions(); 5282 } 5283 5284 std::error_code BitcodeReader::materializeModule() { 5285 if (std::error_code EC = materializeMetadata()) 5286 return EC; 5287 5288 // Promise to materialize all forward references. 5289 WillMaterializeAllForwardRefs = true; 5290 5291 // Iterate over the module, deserializing any functions that are still on 5292 // disk. 5293 for (Function &F : *TheModule) { 5294 if (std::error_code EC = materialize(&F)) 5295 return EC; 5296 } 5297 // At this point, if there are any function bodies, parse the rest of 5298 // the bits in the module past the last function block we have recorded 5299 // through either lazy scanning or the VST. 5300 if (LastFunctionBlockBit || NextUnreadBit) 5301 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5302 : NextUnreadBit); 5303 5304 // Check that all block address forward references got resolved (as we 5305 // promised above). 5306 if (!BasicBlockFwdRefs.empty()) 5307 return error("Never resolved function from blockaddress"); 5308 5309 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5310 // delete the old functions to clean up. We can't do this unless the entire 5311 // module is materialized because there could always be another function body 5312 // with calls to the old function. 5313 for (auto &I : UpgradedIntrinsics) { 5314 for (auto *U : I.first->users()) { 5315 if (CallInst *CI = dyn_cast<CallInst>(U)) 5316 UpgradeIntrinsicCall(CI, I.second); 5317 } 5318 if (!I.first->use_empty()) 5319 I.first->replaceAllUsesWith(I.second); 5320 I.first->eraseFromParent(); 5321 } 5322 UpgradedIntrinsics.clear(); 5323 5324 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5325 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5326 5327 UpgradeDebugInfo(*TheModule); 5328 return std::error_code(); 5329 } 5330 5331 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5332 return IdentifiedStructTypes; 5333 } 5334 5335 std::error_code 5336 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5337 if (Streamer) 5338 return initLazyStream(std::move(Streamer)); 5339 return initStreamFromBuffer(); 5340 } 5341 5342 std::error_code BitcodeReader::initStreamFromBuffer() { 5343 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5344 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5345 5346 if (Buffer->getBufferSize() & 3) 5347 return error("Invalid bitcode signature"); 5348 5349 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5350 // The magic number is 0x0B17C0DE stored in little endian. 5351 if (isBitcodeWrapper(BufPtr, BufEnd)) 5352 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5353 return error("Invalid bitcode wrapper header"); 5354 5355 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5356 Stream.init(&*StreamFile); 5357 5358 return std::error_code(); 5359 } 5360 5361 std::error_code 5362 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5363 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5364 // see it. 5365 auto OwnedBytes = 5366 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5367 StreamingMemoryObject &Bytes = *OwnedBytes; 5368 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5369 Stream.init(&*StreamFile); 5370 5371 unsigned char buf[16]; 5372 if (Bytes.readBytes(buf, 16, 0) != 16) 5373 return error("Invalid bitcode signature"); 5374 5375 if (!isBitcode(buf, buf + 16)) 5376 return error("Invalid bitcode signature"); 5377 5378 if (isBitcodeWrapper(buf, buf + 4)) { 5379 const unsigned char *bitcodeStart = buf; 5380 const unsigned char *bitcodeEnd = buf + 16; 5381 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5382 Bytes.dropLeadingBytes(bitcodeStart - buf); 5383 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5384 } 5385 return std::error_code(); 5386 } 5387 5388 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5389 const Twine &Message) { 5390 return ::error(DiagnosticHandler, make_error_code(E), Message); 5391 } 5392 5393 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5394 return ::error(DiagnosticHandler, 5395 make_error_code(BitcodeError::CorruptedBitcode), Message); 5396 } 5397 5398 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5399 return ::error(DiagnosticHandler, make_error_code(E)); 5400 } 5401 5402 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5403 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5404 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5405 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5406 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5407 5408 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5409 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5410 bool CheckFuncSummaryPresenceOnly) 5411 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5412 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5413 5414 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5415 5416 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5417 5418 // Specialized value symbol table parser used when reading function index 5419 // blocks where we don't actually create global values. 5420 // At the end of this routine the function index is populated with a map 5421 // from function name to FunctionInfo. The function info contains 5422 // the function block's bitcode offset as well as the offset into the 5423 // function summary section. 5424 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5425 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5426 return error("Invalid record"); 5427 5428 SmallVector<uint64_t, 64> Record; 5429 5430 // Read all the records for this value table. 5431 SmallString<128> ValueName; 5432 while (1) { 5433 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5434 5435 switch (Entry.Kind) { 5436 case BitstreamEntry::SubBlock: // Handled for us already. 5437 case BitstreamEntry::Error: 5438 return error("Malformed block"); 5439 case BitstreamEntry::EndBlock: 5440 return std::error_code(); 5441 case BitstreamEntry::Record: 5442 // The interesting case. 5443 break; 5444 } 5445 5446 // Read a record. 5447 Record.clear(); 5448 switch (Stream.readRecord(Entry.ID, Record)) { 5449 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5450 break; 5451 case bitc::VST_CODE_FNENTRY: { 5452 // VST_FNENTRY: [valueid, offset, namechar x N] 5453 if (convertToString(Record, 2, ValueName)) 5454 return error("Invalid record"); 5455 unsigned ValueID = Record[0]; 5456 uint64_t FuncOffset = Record[1]; 5457 std::unique_ptr<FunctionInfo> FuncInfo = 5458 llvm::make_unique<FunctionInfo>(FuncOffset); 5459 if (foundFuncSummary() && !IsLazy) { 5460 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5461 SummaryMap.find(ValueID); 5462 assert(SMI != SummaryMap.end() && "Summary info not found"); 5463 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5464 } 5465 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5466 5467 ValueName.clear(); 5468 break; 5469 } 5470 case bitc::VST_CODE_COMBINED_FNENTRY: { 5471 // VST_FNENTRY: [offset, namechar x N] 5472 if (convertToString(Record, 1, ValueName)) 5473 return error("Invalid record"); 5474 uint64_t FuncSummaryOffset = Record[0]; 5475 std::unique_ptr<FunctionInfo> FuncInfo = 5476 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5477 if (foundFuncSummary() && !IsLazy) { 5478 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5479 SummaryMap.find(FuncSummaryOffset); 5480 assert(SMI != SummaryMap.end() && "Summary info not found"); 5481 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5482 } 5483 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5484 5485 ValueName.clear(); 5486 break; 5487 } 5488 } 5489 } 5490 } 5491 5492 // Parse just the blocks needed for function index building out of the module. 5493 // At the end of this routine the function Index is populated with a map 5494 // from function name to FunctionInfo. The function info contains 5495 // either the parsed function summary information (when parsing summaries 5496 // eagerly), or just to the function summary record's offset 5497 // if parsing lazily (IsLazy). 5498 std::error_code FunctionIndexBitcodeReader::parseModule() { 5499 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5500 return error("Invalid record"); 5501 5502 // Read the function index for this module. 5503 while (1) { 5504 BitstreamEntry Entry = Stream.advance(); 5505 5506 switch (Entry.Kind) { 5507 case BitstreamEntry::Error: 5508 return error("Malformed block"); 5509 case BitstreamEntry::EndBlock: 5510 return std::error_code(); 5511 5512 case BitstreamEntry::SubBlock: 5513 if (CheckFuncSummaryPresenceOnly) { 5514 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5515 SeenFuncSummary = true; 5516 // No need to parse the rest since we found the summary. 5517 return std::error_code(); 5518 } 5519 if (Stream.SkipBlock()) 5520 return error("Invalid record"); 5521 continue; 5522 } 5523 switch (Entry.ID) { 5524 default: // Skip unknown content. 5525 if (Stream.SkipBlock()) 5526 return error("Invalid record"); 5527 break; 5528 case bitc::BLOCKINFO_BLOCK_ID: 5529 // Need to parse these to get abbrev ids (e.g. for VST) 5530 if (Stream.ReadBlockInfoBlock()) 5531 return error("Malformed block"); 5532 break; 5533 case bitc::VALUE_SYMTAB_BLOCK_ID: 5534 if (std::error_code EC = parseValueSymbolTable()) 5535 return EC; 5536 break; 5537 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5538 SeenFuncSummary = true; 5539 if (IsLazy) { 5540 // Lazy parsing of summary info, skip it. 5541 if (Stream.SkipBlock()) 5542 return error("Invalid record"); 5543 } else if (std::error_code EC = parseEntireSummary()) 5544 return EC; 5545 break; 5546 case bitc::MODULE_STRTAB_BLOCK_ID: 5547 if (std::error_code EC = parseModuleStringTable()) 5548 return EC; 5549 break; 5550 } 5551 continue; 5552 5553 case BitstreamEntry::Record: 5554 Stream.skipRecord(Entry.ID); 5555 continue; 5556 } 5557 } 5558 } 5559 5560 // Eagerly parse the entire function summary block (i.e. for all functions 5561 // in the index). This populates the FunctionSummary objects in 5562 // the index. 5563 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5564 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5565 return error("Invalid record"); 5566 5567 SmallVector<uint64_t, 64> Record; 5568 5569 while (1) { 5570 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5571 5572 switch (Entry.Kind) { 5573 case BitstreamEntry::SubBlock: // Handled for us already. 5574 case BitstreamEntry::Error: 5575 return error("Malformed block"); 5576 case BitstreamEntry::EndBlock: 5577 return std::error_code(); 5578 case BitstreamEntry::Record: 5579 // The interesting case. 5580 break; 5581 } 5582 5583 // Read a record. The record format depends on whether this 5584 // is a per-module index or a combined index file. In the per-module 5585 // case the records contain the associated value's ID for correlation 5586 // with VST entries. In the combined index the correlation is done 5587 // via the bitcode offset of the summary records (which were saved 5588 // in the combined index VST entries). The records also contain 5589 // information used for ThinLTO renaming and importing. 5590 Record.clear(); 5591 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5592 switch (Stream.readRecord(Entry.ID, Record)) { 5593 default: // Default behavior: ignore. 5594 break; 5595 // FS_PERMODULE_ENTRY: [valueid, linkage, instcount] 5596 case bitc::FS_CODE_PERMODULE_ENTRY: { 5597 unsigned ValueID = Record[0]; 5598 uint64_t RawLinkage = Record[1]; 5599 unsigned InstCount = Record[2]; 5600 std::unique_ptr<FunctionSummary> FS = 5601 llvm::make_unique<FunctionSummary>(InstCount); 5602 FS->setFunctionLinkage(getDecodedLinkage(RawLinkage)); 5603 // The module path string ref set in the summary must be owned by the 5604 // index's module string table. Since we don't have a module path 5605 // string table section in the per-module index, we create a single 5606 // module path string table entry with an empty (0) ID to take 5607 // ownership. 5608 FS->setModulePath( 5609 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5610 SummaryMap[ValueID] = std::move(FS); 5611 } 5612 // FS_COMBINED_ENTRY: [modid, linkage, instcount] 5613 case bitc::FS_CODE_COMBINED_ENTRY: { 5614 uint64_t ModuleId = Record[0]; 5615 uint64_t RawLinkage = Record[1]; 5616 unsigned InstCount = Record[2]; 5617 std::unique_ptr<FunctionSummary> FS = 5618 llvm::make_unique<FunctionSummary>(InstCount); 5619 FS->setFunctionLinkage(getDecodedLinkage(RawLinkage)); 5620 FS->setModulePath(ModuleIdMap[ModuleId]); 5621 SummaryMap[CurRecordBit] = std::move(FS); 5622 } 5623 } 5624 } 5625 llvm_unreachable("Exit infinite loop"); 5626 } 5627 5628 // Parse the module string table block into the Index. 5629 // This populates the ModulePathStringTable map in the index. 5630 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5631 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5632 return error("Invalid record"); 5633 5634 SmallVector<uint64_t, 64> Record; 5635 5636 SmallString<128> ModulePath; 5637 while (1) { 5638 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5639 5640 switch (Entry.Kind) { 5641 case BitstreamEntry::SubBlock: // Handled for us already. 5642 case BitstreamEntry::Error: 5643 return error("Malformed block"); 5644 case BitstreamEntry::EndBlock: 5645 return std::error_code(); 5646 case BitstreamEntry::Record: 5647 // The interesting case. 5648 break; 5649 } 5650 5651 Record.clear(); 5652 switch (Stream.readRecord(Entry.ID, Record)) { 5653 default: // Default behavior: ignore. 5654 break; 5655 case bitc::MST_CODE_ENTRY: { 5656 // MST_ENTRY: [modid, namechar x N] 5657 if (convertToString(Record, 1, ModulePath)) 5658 return error("Invalid record"); 5659 uint64_t ModuleId = Record[0]; 5660 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5661 ModuleIdMap[ModuleId] = ModulePathInMap; 5662 ModulePath.clear(); 5663 break; 5664 } 5665 } 5666 } 5667 llvm_unreachable("Exit infinite loop"); 5668 } 5669 5670 // Parse the function info index from the bitcode streamer into the given index. 5671 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5672 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5673 TheIndex = I; 5674 5675 if (std::error_code EC = initStream(std::move(Streamer))) 5676 return EC; 5677 5678 // Sniff for the signature. 5679 if (!hasValidBitcodeHeader(Stream)) 5680 return error("Invalid bitcode signature"); 5681 5682 // We expect a number of well-defined blocks, though we don't necessarily 5683 // need to understand them all. 5684 while (1) { 5685 if (Stream.AtEndOfStream()) { 5686 // We didn't really read a proper Module block. 5687 return error("Malformed block"); 5688 } 5689 5690 BitstreamEntry Entry = 5691 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5692 5693 if (Entry.Kind != BitstreamEntry::SubBlock) 5694 return error("Malformed block"); 5695 5696 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5697 // building the function summary index. 5698 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5699 return parseModule(); 5700 5701 if (Stream.SkipBlock()) 5702 return error("Invalid record"); 5703 } 5704 } 5705 5706 // Parse the function information at the given offset in the buffer into 5707 // the index. Used to support lazy parsing of function summaries from the 5708 // combined index during importing. 5709 // TODO: This function is not yet complete as it won't have a consumer 5710 // until ThinLTO function importing is added. 5711 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5712 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5713 size_t FunctionSummaryOffset) { 5714 TheIndex = I; 5715 5716 if (std::error_code EC = initStream(std::move(Streamer))) 5717 return EC; 5718 5719 // Sniff for the signature. 5720 if (!hasValidBitcodeHeader(Stream)) 5721 return error("Invalid bitcode signature"); 5722 5723 Stream.JumpToBit(FunctionSummaryOffset); 5724 5725 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5726 5727 switch (Entry.Kind) { 5728 default: 5729 return error("Malformed block"); 5730 case BitstreamEntry::Record: 5731 // The expected case. 5732 break; 5733 } 5734 5735 // TODO: Read a record. This interface will be completed when ThinLTO 5736 // importing is added so that it can be tested. 5737 SmallVector<uint64_t, 64> Record; 5738 switch (Stream.readRecord(Entry.ID, Record)) { 5739 case bitc::FS_CODE_COMBINED_ENTRY: 5740 default: 5741 return error("Invalid record"); 5742 } 5743 5744 return std::error_code(); 5745 } 5746 5747 std::error_code 5748 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5749 if (Streamer) 5750 return initLazyStream(std::move(Streamer)); 5751 return initStreamFromBuffer(); 5752 } 5753 5754 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5755 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5756 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5757 5758 if (Buffer->getBufferSize() & 3) 5759 return error("Invalid bitcode signature"); 5760 5761 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5762 // The magic number is 0x0B17C0DE stored in little endian. 5763 if (isBitcodeWrapper(BufPtr, BufEnd)) 5764 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5765 return error("Invalid bitcode wrapper header"); 5766 5767 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5768 Stream.init(&*StreamFile); 5769 5770 return std::error_code(); 5771 } 5772 5773 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5774 std::unique_ptr<DataStreamer> Streamer) { 5775 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5776 // see it. 5777 auto OwnedBytes = 5778 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5779 StreamingMemoryObject &Bytes = *OwnedBytes; 5780 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5781 Stream.init(&*StreamFile); 5782 5783 unsigned char buf[16]; 5784 if (Bytes.readBytes(buf, 16, 0) != 16) 5785 return error("Invalid bitcode signature"); 5786 5787 if (!isBitcode(buf, buf + 16)) 5788 return error("Invalid bitcode signature"); 5789 5790 if (isBitcodeWrapper(buf, buf + 4)) { 5791 const unsigned char *bitcodeStart = buf; 5792 const unsigned char *bitcodeEnd = buf + 16; 5793 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5794 Bytes.dropLeadingBytes(bitcodeStart - buf); 5795 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5796 } 5797 return std::error_code(); 5798 } 5799 5800 namespace { 5801 class BitcodeErrorCategoryType : public std::error_category { 5802 const char *name() const LLVM_NOEXCEPT override { 5803 return "llvm.bitcode"; 5804 } 5805 std::string message(int IE) const override { 5806 BitcodeError E = static_cast<BitcodeError>(IE); 5807 switch (E) { 5808 case BitcodeError::InvalidBitcodeSignature: 5809 return "Invalid bitcode signature"; 5810 case BitcodeError::CorruptedBitcode: 5811 return "Corrupted bitcode"; 5812 } 5813 llvm_unreachable("Unknown error type!"); 5814 } 5815 }; 5816 } // end anonymous namespace 5817 5818 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5819 5820 const std::error_category &llvm::BitcodeErrorCategory() { 5821 return *ErrorCategory; 5822 } 5823 5824 //===----------------------------------------------------------------------===// 5825 // External interface 5826 //===----------------------------------------------------------------------===// 5827 5828 static ErrorOr<std::unique_ptr<Module>> 5829 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5830 BitcodeReader *R, LLVMContext &Context, 5831 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5832 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5833 M->setMaterializer(R); 5834 5835 auto cleanupOnError = [&](std::error_code EC) { 5836 R->releaseBuffer(); // Never take ownership on error. 5837 return EC; 5838 }; 5839 5840 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5841 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5842 ShouldLazyLoadMetadata)) 5843 return cleanupOnError(EC); 5844 5845 if (MaterializeAll) { 5846 // Read in the entire module, and destroy the BitcodeReader. 5847 if (std::error_code EC = M->materializeAll()) 5848 return cleanupOnError(EC); 5849 } else { 5850 // Resolve forward references from blockaddresses. 5851 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5852 return cleanupOnError(EC); 5853 } 5854 return std::move(M); 5855 } 5856 5857 /// \brief Get a lazy one-at-time loading module from bitcode. 5858 /// 5859 /// This isn't always used in a lazy context. In particular, it's also used by 5860 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5861 /// in forward-referenced functions from block address references. 5862 /// 5863 /// \param[in] MaterializeAll Set to \c true if we should materialize 5864 /// everything. 5865 static ErrorOr<std::unique_ptr<Module>> 5866 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5867 LLVMContext &Context, bool MaterializeAll, 5868 bool ShouldLazyLoadMetadata = false) { 5869 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5870 5871 ErrorOr<std::unique_ptr<Module>> Ret = 5872 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5873 MaterializeAll, ShouldLazyLoadMetadata); 5874 if (!Ret) 5875 return Ret; 5876 5877 Buffer.release(); // The BitcodeReader owns it now. 5878 return Ret; 5879 } 5880 5881 ErrorOr<std::unique_ptr<Module>> 5882 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5883 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5884 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5885 ShouldLazyLoadMetadata); 5886 } 5887 5888 ErrorOr<std::unique_ptr<Module>> 5889 llvm::getStreamedBitcodeModule(StringRef Name, 5890 std::unique_ptr<DataStreamer> Streamer, 5891 LLVMContext &Context) { 5892 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5893 BitcodeReader *R = new BitcodeReader(Context); 5894 5895 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5896 false); 5897 } 5898 5899 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5900 LLVMContext &Context) { 5901 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5902 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5903 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5904 // written. We must defer until the Module has been fully materialized. 5905 } 5906 5907 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5908 LLVMContext &Context) { 5909 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5910 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5911 ErrorOr<std::string> Triple = R->parseTriple(); 5912 if (Triple.getError()) 5913 return ""; 5914 return Triple.get(); 5915 } 5916 5917 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5918 LLVMContext &Context) { 5919 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5920 BitcodeReader R(Buf.release(), Context); 5921 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5922 if (ProducerString.getError()) 5923 return ""; 5924 return ProducerString.get(); 5925 } 5926 5927 // Parse the specified bitcode buffer, returning the function info index. 5928 // If IsLazy is false, parse the entire function summary into 5929 // the index. Otherwise skip the function summary section, and only create 5930 // an index object with a map from function name to function summary offset. 5931 // The index is used to perform lazy function summary reading later. 5932 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5933 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5934 DiagnosticHandlerFunction DiagnosticHandler, 5935 bool IsLazy) { 5936 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5937 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5938 5939 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5940 5941 auto cleanupOnError = [&](std::error_code EC) { 5942 R.releaseBuffer(); // Never take ownership on error. 5943 return EC; 5944 }; 5945 5946 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5947 return cleanupOnError(EC); 5948 5949 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5950 return std::move(Index); 5951 } 5952 5953 // Check if the given bitcode buffer contains a function summary block. 5954 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5955 DiagnosticHandlerFunction DiagnosticHandler) { 5956 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5957 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5958 5959 auto cleanupOnError = [&](std::error_code EC) { 5960 R.releaseBuffer(); // Never take ownership on error. 5961 return false; 5962 }; 5963 5964 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5965 return cleanupOnError(EC); 5966 5967 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5968 return R.foundFuncSummary(); 5969 } 5970 5971 // This method supports lazy reading of function summary data from the combined 5972 // index during ThinLTO function importing. When reading the combined index 5973 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5974 // Then this method is called for each function considered for importing, 5975 // to parse the summary information for the given function name into 5976 // the index. 5977 std::error_code llvm::readFunctionSummary( 5978 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5979 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5980 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5981 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5982 5983 auto cleanupOnError = [&](std::error_code EC) { 5984 R.releaseBuffer(); // Never take ownership on error. 5985 return EC; 5986 }; 5987 5988 // Lookup the given function name in the FunctionMap, which may 5989 // contain a list of function infos in the case of a COMDAT. Walk through 5990 // and parse each function summary info at the function summary offset 5991 // recorded when parsing the value symbol table. 5992 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5993 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5994 if (std::error_code EC = 5995 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5996 return cleanupOnError(EC); 5997 } 5998 5999 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6000 return std::error_code(); 6001 } 6002