1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 35 if (WillMaterializeAllForwardRefs) 36 return std::error_code(); 37 38 // Prevent recursion. 39 WillMaterializeAllForwardRefs = true; 40 41 while (!BasicBlockFwdRefQueue.empty()) { 42 Function *F = BasicBlockFwdRefQueue.front(); 43 BasicBlockFwdRefQueue.pop_front(); 44 assert(F && "Expected valid function"); 45 if (!BasicBlockFwdRefs.count(F)) 46 // Already materialized. 47 continue; 48 49 // Check for a function that isn't materializable to prevent an infinite 50 // loop. When parsing a blockaddress stored in a global variable, there 51 // isn't a trivial way to check if a function will have a body without a 52 // linear search through FunctionsWithBodies, so just check it here. 53 if (!F->isMaterializable()) 54 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 55 56 // Try to materialize F. 57 if (std::error_code EC = Materialize(F)) 58 return EC; 59 } 60 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 61 62 // Reset state. 63 WillMaterializeAllForwardRefs = false; 64 return std::error_code(); 65 } 66 67 void BitcodeReader::FreeState() { 68 Buffer = nullptr; 69 std::vector<Type*>().swap(TypeList); 70 ValueList.clear(); 71 MDValueList.clear(); 72 std::vector<Comdat *>().swap(ComdatList); 73 74 std::vector<AttributeSet>().swap(MAttributes); 75 std::vector<BasicBlock*>().swap(FunctionBBs); 76 std::vector<Function*>().swap(FunctionsWithBodies); 77 DeferredFunctionInfo.clear(); 78 MDKindMap.clear(); 79 80 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 81 BasicBlockFwdRefQueue.clear(); 82 } 83 84 //===----------------------------------------------------------------------===// 85 // Helper functions to implement forward reference resolution, etc. 86 //===----------------------------------------------------------------------===// 87 88 /// ConvertToString - Convert a string from a record into an std::string, return 89 /// true on failure. 90 template<typename StrTy> 91 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 92 StrTy &Result) { 93 if (Idx > Record.size()) 94 return true; 95 96 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 97 Result += (char)Record[i]; 98 return false; 99 } 100 101 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 102 switch (Val) { 103 default: // Map unknown/new linkages to external 104 case 0: return GlobalValue::ExternalLinkage; 105 case 1: return GlobalValue::WeakAnyLinkage; 106 case 2: return GlobalValue::AppendingLinkage; 107 case 3: return GlobalValue::InternalLinkage; 108 case 4: return GlobalValue::LinkOnceAnyLinkage; 109 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 110 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 111 case 7: return GlobalValue::ExternalWeakLinkage; 112 case 8: return GlobalValue::CommonLinkage; 113 case 9: return GlobalValue::PrivateLinkage; 114 case 10: return GlobalValue::WeakODRLinkage; 115 case 11: return GlobalValue::LinkOnceODRLinkage; 116 case 12: return GlobalValue::AvailableExternallyLinkage; 117 case 13: 118 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 119 case 14: 120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 121 } 122 } 123 124 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 125 switch (Val) { 126 default: // Map unknown visibilities to default. 127 case 0: return GlobalValue::DefaultVisibility; 128 case 1: return GlobalValue::HiddenVisibility; 129 case 2: return GlobalValue::ProtectedVisibility; 130 } 131 } 132 133 static GlobalValue::DLLStorageClassTypes 134 GetDecodedDLLStorageClass(unsigned Val) { 135 switch (Val) { 136 default: // Map unknown values to default. 137 case 0: return GlobalValue::DefaultStorageClass; 138 case 1: return GlobalValue::DLLImportStorageClass; 139 case 2: return GlobalValue::DLLExportStorageClass; 140 } 141 } 142 143 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 144 switch (Val) { 145 case 0: return GlobalVariable::NotThreadLocal; 146 default: // Map unknown non-zero value to general dynamic. 147 case 1: return GlobalVariable::GeneralDynamicTLSModel; 148 case 2: return GlobalVariable::LocalDynamicTLSModel; 149 case 3: return GlobalVariable::InitialExecTLSModel; 150 case 4: return GlobalVariable::LocalExecTLSModel; 151 } 152 } 153 154 static int GetDecodedCastOpcode(unsigned Val) { 155 switch (Val) { 156 default: return -1; 157 case bitc::CAST_TRUNC : return Instruction::Trunc; 158 case bitc::CAST_ZEXT : return Instruction::ZExt; 159 case bitc::CAST_SEXT : return Instruction::SExt; 160 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 161 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 162 case bitc::CAST_UITOFP : return Instruction::UIToFP; 163 case bitc::CAST_SITOFP : return Instruction::SIToFP; 164 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 165 case bitc::CAST_FPEXT : return Instruction::FPExt; 166 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 167 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 168 case bitc::CAST_BITCAST : return Instruction::BitCast; 169 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 170 } 171 } 172 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 173 switch (Val) { 174 default: return -1; 175 case bitc::BINOP_ADD: 176 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 177 case bitc::BINOP_SUB: 178 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 179 case bitc::BINOP_MUL: 180 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 181 case bitc::BINOP_UDIV: return Instruction::UDiv; 182 case bitc::BINOP_SDIV: 183 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 184 case bitc::BINOP_UREM: return Instruction::URem; 185 case bitc::BINOP_SREM: 186 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 187 case bitc::BINOP_SHL: return Instruction::Shl; 188 case bitc::BINOP_LSHR: return Instruction::LShr; 189 case bitc::BINOP_ASHR: return Instruction::AShr; 190 case bitc::BINOP_AND: return Instruction::And; 191 case bitc::BINOP_OR: return Instruction::Or; 192 case bitc::BINOP_XOR: return Instruction::Xor; 193 } 194 } 195 196 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 197 switch (Val) { 198 default: return AtomicRMWInst::BAD_BINOP; 199 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 200 case bitc::RMW_ADD: return AtomicRMWInst::Add; 201 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 202 case bitc::RMW_AND: return AtomicRMWInst::And; 203 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 204 case bitc::RMW_OR: return AtomicRMWInst::Or; 205 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 206 case bitc::RMW_MAX: return AtomicRMWInst::Max; 207 case bitc::RMW_MIN: return AtomicRMWInst::Min; 208 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 209 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 210 } 211 } 212 213 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 214 switch (Val) { 215 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 216 case bitc::ORDERING_UNORDERED: return Unordered; 217 case bitc::ORDERING_MONOTONIC: return Monotonic; 218 case bitc::ORDERING_ACQUIRE: return Acquire; 219 case bitc::ORDERING_RELEASE: return Release; 220 case bitc::ORDERING_ACQREL: return AcquireRelease; 221 default: // Map unknown orderings to sequentially-consistent. 222 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 223 } 224 } 225 226 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 227 switch (Val) { 228 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 229 default: // Map unknown scopes to cross-thread. 230 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 231 } 232 } 233 234 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 235 switch (Val) { 236 default: // Map unknown selection kinds to any. 237 case bitc::COMDAT_SELECTION_KIND_ANY: 238 return Comdat::Any; 239 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 240 return Comdat::ExactMatch; 241 case bitc::COMDAT_SELECTION_KIND_LARGEST: 242 return Comdat::Largest; 243 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 244 return Comdat::NoDuplicates; 245 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 246 return Comdat::SameSize; 247 } 248 } 249 250 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 251 switch (Val) { 252 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 253 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 254 } 255 } 256 257 namespace llvm { 258 namespace { 259 /// @brief A class for maintaining the slot number definition 260 /// as a placeholder for the actual definition for forward constants defs. 261 class ConstantPlaceHolder : public ConstantExpr { 262 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 263 public: 264 // allocate space for exactly one operand 265 void *operator new(size_t s) { 266 return User::operator new(s, 1); 267 } 268 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 269 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 270 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 271 } 272 273 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 274 static bool classof(const Value *V) { 275 return isa<ConstantExpr>(V) && 276 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 277 } 278 279 280 /// Provide fast operand accessors 281 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 282 }; 283 } 284 285 // FIXME: can we inherit this from ConstantExpr? 286 template <> 287 struct OperandTraits<ConstantPlaceHolder> : 288 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 289 }; 290 } 291 292 293 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 294 if (Idx == size()) { 295 push_back(V); 296 return; 297 } 298 299 if (Idx >= size()) 300 resize(Idx+1); 301 302 WeakVH &OldV = ValuePtrs[Idx]; 303 if (!OldV) { 304 OldV = V; 305 return; 306 } 307 308 // Handle constants and non-constants (e.g. instrs) differently for 309 // efficiency. 310 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 311 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 312 OldV = V; 313 } else { 314 // If there was a forward reference to this value, replace it. 315 Value *PrevVal = OldV; 316 OldV->replaceAllUsesWith(V); 317 delete PrevVal; 318 } 319 } 320 321 322 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 323 Type *Ty) { 324 if (Idx >= size()) 325 resize(Idx + 1); 326 327 if (Value *V = ValuePtrs[Idx]) { 328 assert(Ty == V->getType() && "Type mismatch in constant table!"); 329 return cast<Constant>(V); 330 } 331 332 // Create and return a placeholder, which will later be RAUW'd. 333 Constant *C = new ConstantPlaceHolder(Ty, Context); 334 ValuePtrs[Idx] = C; 335 return C; 336 } 337 338 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 339 if (Idx >= size()) 340 resize(Idx + 1); 341 342 if (Value *V = ValuePtrs[Idx]) { 343 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 344 return V; 345 } 346 347 // No type specified, must be invalid reference. 348 if (!Ty) return nullptr; 349 350 // Create and return a placeholder, which will later be RAUW'd. 351 Value *V = new Argument(Ty); 352 ValuePtrs[Idx] = V; 353 return V; 354 } 355 356 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 357 /// resolves any forward references. The idea behind this is that we sometimes 358 /// get constants (such as large arrays) which reference *many* forward ref 359 /// constants. Replacing each of these causes a lot of thrashing when 360 /// building/reuniquing the constant. Instead of doing this, we look at all the 361 /// uses and rewrite all the place holders at once for any constant that uses 362 /// a placeholder. 363 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 364 // Sort the values by-pointer so that they are efficient to look up with a 365 // binary search. 366 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 367 368 SmallVector<Constant*, 64> NewOps; 369 370 while (!ResolveConstants.empty()) { 371 Value *RealVal = operator[](ResolveConstants.back().second); 372 Constant *Placeholder = ResolveConstants.back().first; 373 ResolveConstants.pop_back(); 374 375 // Loop over all users of the placeholder, updating them to reference the 376 // new value. If they reference more than one placeholder, update them all 377 // at once. 378 while (!Placeholder->use_empty()) { 379 auto UI = Placeholder->user_begin(); 380 User *U = *UI; 381 382 // If the using object isn't uniqued, just update the operands. This 383 // handles instructions and initializers for global variables. 384 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 385 UI.getUse().set(RealVal); 386 continue; 387 } 388 389 // Otherwise, we have a constant that uses the placeholder. Replace that 390 // constant with a new constant that has *all* placeholder uses updated. 391 Constant *UserC = cast<Constant>(U); 392 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 393 I != E; ++I) { 394 Value *NewOp; 395 if (!isa<ConstantPlaceHolder>(*I)) { 396 // Not a placeholder reference. 397 NewOp = *I; 398 } else if (*I == Placeholder) { 399 // Common case is that it just references this one placeholder. 400 NewOp = RealVal; 401 } else { 402 // Otherwise, look up the placeholder in ResolveConstants. 403 ResolveConstantsTy::iterator It = 404 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 405 std::pair<Constant*, unsigned>(cast<Constant>(*I), 406 0)); 407 assert(It != ResolveConstants.end() && It->first == *I); 408 NewOp = operator[](It->second); 409 } 410 411 NewOps.push_back(cast<Constant>(NewOp)); 412 } 413 414 // Make the new constant. 415 Constant *NewC; 416 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 417 NewC = ConstantArray::get(UserCA->getType(), NewOps); 418 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 419 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 420 } else if (isa<ConstantVector>(UserC)) { 421 NewC = ConstantVector::get(NewOps); 422 } else { 423 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 424 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 425 } 426 427 UserC->replaceAllUsesWith(NewC); 428 UserC->destroyConstant(); 429 NewOps.clear(); 430 } 431 432 // Update all ValueHandles, they should be the only users at this point. 433 Placeholder->replaceAllUsesWith(RealVal); 434 delete Placeholder; 435 } 436 } 437 438 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 439 if (Idx == size()) { 440 push_back(V); 441 return; 442 } 443 444 if (Idx >= size()) 445 resize(Idx+1); 446 447 WeakVH &OldV = MDValuePtrs[Idx]; 448 if (!OldV) { 449 OldV = V; 450 return; 451 } 452 453 // If there was a forward reference to this value, replace it. 454 MDNode *PrevVal = cast<MDNode>(OldV); 455 OldV->replaceAllUsesWith(V); 456 MDNode::deleteTemporary(PrevVal); 457 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 458 // value for Idx. 459 MDValuePtrs[Idx] = V; 460 } 461 462 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 463 if (Idx >= size()) 464 resize(Idx + 1); 465 466 if (Value *V = MDValuePtrs[Idx]) { 467 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 468 return V; 469 } 470 471 // Create and return a placeholder, which will later be RAUW'd. 472 Value *V = MDNode::getTemporary(Context, None); 473 MDValuePtrs[Idx] = V; 474 return V; 475 } 476 477 Type *BitcodeReader::getTypeByID(unsigned ID) { 478 // The type table size is always specified correctly. 479 if (ID >= TypeList.size()) 480 return nullptr; 481 482 if (Type *Ty = TypeList[ID]) 483 return Ty; 484 485 // If we have a forward reference, the only possible case is when it is to a 486 // named struct. Just create a placeholder for now. 487 return TypeList[ID] = StructType::create(Context); 488 } 489 490 491 //===----------------------------------------------------------------------===// 492 // Functions for parsing blocks from the bitcode file 493 //===----------------------------------------------------------------------===// 494 495 496 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 497 /// been decoded from the given integer. This function must stay in sync with 498 /// 'encodeLLVMAttributesForBitcode'. 499 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 500 uint64_t EncodedAttrs) { 501 // FIXME: Remove in 4.0. 502 503 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 504 // the bits above 31 down by 11 bits. 505 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 506 assert((!Alignment || isPowerOf2_32(Alignment)) && 507 "Alignment must be a power of two."); 508 509 if (Alignment) 510 B.addAlignmentAttr(Alignment); 511 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 512 (EncodedAttrs & 0xffff)); 513 } 514 515 std::error_code BitcodeReader::ParseAttributeBlock() { 516 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 517 return Error(BitcodeError::InvalidRecord); 518 519 if (!MAttributes.empty()) 520 return Error(BitcodeError::InvalidMultipleBlocks); 521 522 SmallVector<uint64_t, 64> Record; 523 524 SmallVector<AttributeSet, 8> Attrs; 525 526 // Read all the records. 527 while (1) { 528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 529 530 switch (Entry.Kind) { 531 case BitstreamEntry::SubBlock: // Handled for us already. 532 case BitstreamEntry::Error: 533 return Error(BitcodeError::MalformedBlock); 534 case BitstreamEntry::EndBlock: 535 return std::error_code(); 536 case BitstreamEntry::Record: 537 // The interesting case. 538 break; 539 } 540 541 // Read a record. 542 Record.clear(); 543 switch (Stream.readRecord(Entry.ID, Record)) { 544 default: // Default behavior: ignore. 545 break; 546 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 547 // FIXME: Remove in 4.0. 548 if (Record.size() & 1) 549 return Error(BitcodeError::InvalidRecord); 550 551 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 552 AttrBuilder B; 553 decodeLLVMAttributesForBitcode(B, Record[i+1]); 554 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 555 } 556 557 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 558 Attrs.clear(); 559 break; 560 } 561 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 562 for (unsigned i = 0, e = Record.size(); i != e; ++i) 563 Attrs.push_back(MAttributeGroups[Record[i]]); 564 565 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 566 Attrs.clear(); 567 break; 568 } 569 } 570 } 571 } 572 573 // Returns Attribute::None on unrecognized codes. 574 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 575 switch (Code) { 576 default: 577 return Attribute::None; 578 case bitc::ATTR_KIND_ALIGNMENT: 579 return Attribute::Alignment; 580 case bitc::ATTR_KIND_ALWAYS_INLINE: 581 return Attribute::AlwaysInline; 582 case bitc::ATTR_KIND_BUILTIN: 583 return Attribute::Builtin; 584 case bitc::ATTR_KIND_BY_VAL: 585 return Attribute::ByVal; 586 case bitc::ATTR_KIND_IN_ALLOCA: 587 return Attribute::InAlloca; 588 case bitc::ATTR_KIND_COLD: 589 return Attribute::Cold; 590 case bitc::ATTR_KIND_INLINE_HINT: 591 return Attribute::InlineHint; 592 case bitc::ATTR_KIND_IN_REG: 593 return Attribute::InReg; 594 case bitc::ATTR_KIND_JUMP_TABLE: 595 return Attribute::JumpTable; 596 case bitc::ATTR_KIND_MIN_SIZE: 597 return Attribute::MinSize; 598 case bitc::ATTR_KIND_NAKED: 599 return Attribute::Naked; 600 case bitc::ATTR_KIND_NEST: 601 return Attribute::Nest; 602 case bitc::ATTR_KIND_NO_ALIAS: 603 return Attribute::NoAlias; 604 case bitc::ATTR_KIND_NO_BUILTIN: 605 return Attribute::NoBuiltin; 606 case bitc::ATTR_KIND_NO_CAPTURE: 607 return Attribute::NoCapture; 608 case bitc::ATTR_KIND_NO_DUPLICATE: 609 return Attribute::NoDuplicate; 610 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 611 return Attribute::NoImplicitFloat; 612 case bitc::ATTR_KIND_NO_INLINE: 613 return Attribute::NoInline; 614 case bitc::ATTR_KIND_NON_LAZY_BIND: 615 return Attribute::NonLazyBind; 616 case bitc::ATTR_KIND_NON_NULL: 617 return Attribute::NonNull; 618 case bitc::ATTR_KIND_DEREFERENCEABLE: 619 return Attribute::Dereferenceable; 620 case bitc::ATTR_KIND_NO_RED_ZONE: 621 return Attribute::NoRedZone; 622 case bitc::ATTR_KIND_NO_RETURN: 623 return Attribute::NoReturn; 624 case bitc::ATTR_KIND_NO_UNWIND: 625 return Attribute::NoUnwind; 626 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 627 return Attribute::OptimizeForSize; 628 case bitc::ATTR_KIND_OPTIMIZE_NONE: 629 return Attribute::OptimizeNone; 630 case bitc::ATTR_KIND_READ_NONE: 631 return Attribute::ReadNone; 632 case bitc::ATTR_KIND_READ_ONLY: 633 return Attribute::ReadOnly; 634 case bitc::ATTR_KIND_RETURNED: 635 return Attribute::Returned; 636 case bitc::ATTR_KIND_RETURNS_TWICE: 637 return Attribute::ReturnsTwice; 638 case bitc::ATTR_KIND_S_EXT: 639 return Attribute::SExt; 640 case bitc::ATTR_KIND_STACK_ALIGNMENT: 641 return Attribute::StackAlignment; 642 case bitc::ATTR_KIND_STACK_PROTECT: 643 return Attribute::StackProtect; 644 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 645 return Attribute::StackProtectReq; 646 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 647 return Attribute::StackProtectStrong; 648 case bitc::ATTR_KIND_STRUCT_RET: 649 return Attribute::StructRet; 650 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 651 return Attribute::SanitizeAddress; 652 case bitc::ATTR_KIND_SANITIZE_THREAD: 653 return Attribute::SanitizeThread; 654 case bitc::ATTR_KIND_SANITIZE_MEMORY: 655 return Attribute::SanitizeMemory; 656 case bitc::ATTR_KIND_UW_TABLE: 657 return Attribute::UWTable; 658 case bitc::ATTR_KIND_Z_EXT: 659 return Attribute::ZExt; 660 } 661 } 662 663 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 664 Attribute::AttrKind *Kind) { 665 *Kind = GetAttrFromCode(Code); 666 if (*Kind == Attribute::None) 667 return Error(BitcodeError::InvalidValue); 668 return std::error_code(); 669 } 670 671 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 672 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 673 return Error(BitcodeError::InvalidRecord); 674 675 if (!MAttributeGroups.empty()) 676 return Error(BitcodeError::InvalidMultipleBlocks); 677 678 SmallVector<uint64_t, 64> Record; 679 680 // Read all the records. 681 while (1) { 682 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 683 684 switch (Entry.Kind) { 685 case BitstreamEntry::SubBlock: // Handled for us already. 686 case BitstreamEntry::Error: 687 return Error(BitcodeError::MalformedBlock); 688 case BitstreamEntry::EndBlock: 689 return std::error_code(); 690 case BitstreamEntry::Record: 691 // The interesting case. 692 break; 693 } 694 695 // Read a record. 696 Record.clear(); 697 switch (Stream.readRecord(Entry.ID, Record)) { 698 default: // Default behavior: ignore. 699 break; 700 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 701 if (Record.size() < 3) 702 return Error(BitcodeError::InvalidRecord); 703 704 uint64_t GrpID = Record[0]; 705 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 706 707 AttrBuilder B; 708 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 709 if (Record[i] == 0) { // Enum attribute 710 Attribute::AttrKind Kind; 711 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 712 return EC; 713 714 B.addAttribute(Kind); 715 } else if (Record[i] == 1) { // Integer attribute 716 Attribute::AttrKind Kind; 717 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 718 return EC; 719 if (Kind == Attribute::Alignment) 720 B.addAlignmentAttr(Record[++i]); 721 else if (Kind == Attribute::StackAlignment) 722 B.addStackAlignmentAttr(Record[++i]); 723 else if (Kind == Attribute::Dereferenceable) 724 B.addDereferenceableAttr(Record[++i]); 725 } else { // String attribute 726 assert((Record[i] == 3 || Record[i] == 4) && 727 "Invalid attribute group entry"); 728 bool HasValue = (Record[i++] == 4); 729 SmallString<64> KindStr; 730 SmallString<64> ValStr; 731 732 while (Record[i] != 0 && i != e) 733 KindStr += Record[i++]; 734 assert(Record[i] == 0 && "Kind string not null terminated"); 735 736 if (HasValue) { 737 // Has a value associated with it. 738 ++i; // Skip the '0' that terminates the "kind" string. 739 while (Record[i] != 0 && i != e) 740 ValStr += Record[i++]; 741 assert(Record[i] == 0 && "Value string not null terminated"); 742 } 743 744 B.addAttribute(KindStr.str(), ValStr.str()); 745 } 746 } 747 748 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 749 break; 750 } 751 } 752 } 753 } 754 755 std::error_code BitcodeReader::ParseTypeTable() { 756 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 757 return Error(BitcodeError::InvalidRecord); 758 759 return ParseTypeTableBody(); 760 } 761 762 std::error_code BitcodeReader::ParseTypeTableBody() { 763 if (!TypeList.empty()) 764 return Error(BitcodeError::InvalidMultipleBlocks); 765 766 SmallVector<uint64_t, 64> Record; 767 unsigned NumRecords = 0; 768 769 SmallString<64> TypeName; 770 771 // Read all the records for this type table. 772 while (1) { 773 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 774 775 switch (Entry.Kind) { 776 case BitstreamEntry::SubBlock: // Handled for us already. 777 case BitstreamEntry::Error: 778 return Error(BitcodeError::MalformedBlock); 779 case BitstreamEntry::EndBlock: 780 if (NumRecords != TypeList.size()) 781 return Error(BitcodeError::MalformedBlock); 782 return std::error_code(); 783 case BitstreamEntry::Record: 784 // The interesting case. 785 break; 786 } 787 788 // Read a record. 789 Record.clear(); 790 Type *ResultTy = nullptr; 791 switch (Stream.readRecord(Entry.ID, Record)) { 792 default: 793 return Error(BitcodeError::InvalidValue); 794 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 795 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 796 // type list. This allows us to reserve space. 797 if (Record.size() < 1) 798 return Error(BitcodeError::InvalidRecord); 799 TypeList.resize(Record[0]); 800 continue; 801 case bitc::TYPE_CODE_VOID: // VOID 802 ResultTy = Type::getVoidTy(Context); 803 break; 804 case bitc::TYPE_CODE_HALF: // HALF 805 ResultTy = Type::getHalfTy(Context); 806 break; 807 case bitc::TYPE_CODE_FLOAT: // FLOAT 808 ResultTy = Type::getFloatTy(Context); 809 break; 810 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 811 ResultTy = Type::getDoubleTy(Context); 812 break; 813 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 814 ResultTy = Type::getX86_FP80Ty(Context); 815 break; 816 case bitc::TYPE_CODE_FP128: // FP128 817 ResultTy = Type::getFP128Ty(Context); 818 break; 819 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 820 ResultTy = Type::getPPC_FP128Ty(Context); 821 break; 822 case bitc::TYPE_CODE_LABEL: // LABEL 823 ResultTy = Type::getLabelTy(Context); 824 break; 825 case bitc::TYPE_CODE_METADATA: // METADATA 826 ResultTy = Type::getMetadataTy(Context); 827 break; 828 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 829 ResultTy = Type::getX86_MMXTy(Context); 830 break; 831 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 832 if (Record.size() < 1) 833 return Error(BitcodeError::InvalidRecord); 834 835 ResultTy = IntegerType::get(Context, Record[0]); 836 break; 837 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 838 // [pointee type, address space] 839 if (Record.size() < 1) 840 return Error(BitcodeError::InvalidRecord); 841 unsigned AddressSpace = 0; 842 if (Record.size() == 2) 843 AddressSpace = Record[1]; 844 ResultTy = getTypeByID(Record[0]); 845 if (!ResultTy) 846 return Error(BitcodeError::InvalidType); 847 ResultTy = PointerType::get(ResultTy, AddressSpace); 848 break; 849 } 850 case bitc::TYPE_CODE_FUNCTION_OLD: { 851 // FIXME: attrid is dead, remove it in LLVM 4.0 852 // FUNCTION: [vararg, attrid, retty, paramty x N] 853 if (Record.size() < 3) 854 return Error(BitcodeError::InvalidRecord); 855 SmallVector<Type*, 8> ArgTys; 856 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 857 if (Type *T = getTypeByID(Record[i])) 858 ArgTys.push_back(T); 859 else 860 break; 861 } 862 863 ResultTy = getTypeByID(Record[2]); 864 if (!ResultTy || ArgTys.size() < Record.size()-3) 865 return Error(BitcodeError::InvalidType); 866 867 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 868 break; 869 } 870 case bitc::TYPE_CODE_FUNCTION: { 871 // FUNCTION: [vararg, retty, paramty x N] 872 if (Record.size() < 2) 873 return Error(BitcodeError::InvalidRecord); 874 SmallVector<Type*, 8> ArgTys; 875 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 876 if (Type *T = getTypeByID(Record[i])) 877 ArgTys.push_back(T); 878 else 879 break; 880 } 881 882 ResultTy = getTypeByID(Record[1]); 883 if (!ResultTy || ArgTys.size() < Record.size()-2) 884 return Error(BitcodeError::InvalidType); 885 886 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 887 break; 888 } 889 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 890 if (Record.size() < 1) 891 return Error(BitcodeError::InvalidRecord); 892 SmallVector<Type*, 8> EltTys; 893 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 894 if (Type *T = getTypeByID(Record[i])) 895 EltTys.push_back(T); 896 else 897 break; 898 } 899 if (EltTys.size() != Record.size()-1) 900 return Error(BitcodeError::InvalidType); 901 ResultTy = StructType::get(Context, EltTys, Record[0]); 902 break; 903 } 904 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 905 if (ConvertToString(Record, 0, TypeName)) 906 return Error(BitcodeError::InvalidRecord); 907 continue; 908 909 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 910 if (Record.size() < 1) 911 return Error(BitcodeError::InvalidRecord); 912 913 if (NumRecords >= TypeList.size()) 914 return Error(BitcodeError::InvalidTYPETable); 915 916 // Check to see if this was forward referenced, if so fill in the temp. 917 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 918 if (Res) { 919 Res->setName(TypeName); 920 TypeList[NumRecords] = nullptr; 921 } else // Otherwise, create a new struct. 922 Res = StructType::create(Context, TypeName); 923 TypeName.clear(); 924 925 SmallVector<Type*, 8> EltTys; 926 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 927 if (Type *T = getTypeByID(Record[i])) 928 EltTys.push_back(T); 929 else 930 break; 931 } 932 if (EltTys.size() != Record.size()-1) 933 return Error(BitcodeError::InvalidRecord); 934 Res->setBody(EltTys, Record[0]); 935 ResultTy = Res; 936 break; 937 } 938 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 939 if (Record.size() != 1) 940 return Error(BitcodeError::InvalidRecord); 941 942 if (NumRecords >= TypeList.size()) 943 return Error(BitcodeError::InvalidTYPETable); 944 945 // Check to see if this was forward referenced, if so fill in the temp. 946 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 947 if (Res) { 948 Res->setName(TypeName); 949 TypeList[NumRecords] = nullptr; 950 } else // Otherwise, create a new struct with no body. 951 Res = StructType::create(Context, TypeName); 952 TypeName.clear(); 953 ResultTy = Res; 954 break; 955 } 956 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 957 if (Record.size() < 2) 958 return Error(BitcodeError::InvalidRecord); 959 if ((ResultTy = getTypeByID(Record[1]))) 960 ResultTy = ArrayType::get(ResultTy, Record[0]); 961 else 962 return Error(BitcodeError::InvalidType); 963 break; 964 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 965 if (Record.size() < 2) 966 return Error(BitcodeError::InvalidRecord); 967 if ((ResultTy = getTypeByID(Record[1]))) 968 ResultTy = VectorType::get(ResultTy, Record[0]); 969 else 970 return Error(BitcodeError::InvalidType); 971 break; 972 } 973 974 if (NumRecords >= TypeList.size()) 975 return Error(BitcodeError::InvalidTYPETable); 976 assert(ResultTy && "Didn't read a type?"); 977 assert(!TypeList[NumRecords] && "Already read type?"); 978 TypeList[NumRecords++] = ResultTy; 979 } 980 } 981 982 std::error_code BitcodeReader::ParseValueSymbolTable() { 983 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 984 return Error(BitcodeError::InvalidRecord); 985 986 SmallVector<uint64_t, 64> Record; 987 988 // Read all the records for this value table. 989 SmallString<128> ValueName; 990 while (1) { 991 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 992 993 switch (Entry.Kind) { 994 case BitstreamEntry::SubBlock: // Handled for us already. 995 case BitstreamEntry::Error: 996 return Error(BitcodeError::MalformedBlock); 997 case BitstreamEntry::EndBlock: 998 return std::error_code(); 999 case BitstreamEntry::Record: 1000 // The interesting case. 1001 break; 1002 } 1003 1004 // Read a record. 1005 Record.clear(); 1006 switch (Stream.readRecord(Entry.ID, Record)) { 1007 default: // Default behavior: unknown type. 1008 break; 1009 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1010 if (ConvertToString(Record, 1, ValueName)) 1011 return Error(BitcodeError::InvalidRecord); 1012 unsigned ValueID = Record[0]; 1013 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1014 return Error(BitcodeError::InvalidRecord); 1015 Value *V = ValueList[ValueID]; 1016 1017 V->setName(StringRef(ValueName.data(), ValueName.size())); 1018 ValueName.clear(); 1019 break; 1020 } 1021 case bitc::VST_CODE_BBENTRY: { 1022 if (ConvertToString(Record, 1, ValueName)) 1023 return Error(BitcodeError::InvalidRecord); 1024 BasicBlock *BB = getBasicBlock(Record[0]); 1025 if (!BB) 1026 return Error(BitcodeError::InvalidRecord); 1027 1028 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1029 ValueName.clear(); 1030 break; 1031 } 1032 } 1033 } 1034 } 1035 1036 std::error_code BitcodeReader::ParseMetadata() { 1037 unsigned NextMDValueNo = MDValueList.size(); 1038 1039 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1040 return Error(BitcodeError::InvalidRecord); 1041 1042 SmallVector<uint64_t, 64> Record; 1043 1044 // Read all the records. 1045 while (1) { 1046 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1047 1048 switch (Entry.Kind) { 1049 case BitstreamEntry::SubBlock: // Handled for us already. 1050 case BitstreamEntry::Error: 1051 return Error(BitcodeError::MalformedBlock); 1052 case BitstreamEntry::EndBlock: 1053 return std::error_code(); 1054 case BitstreamEntry::Record: 1055 // The interesting case. 1056 break; 1057 } 1058 1059 bool IsFunctionLocal = false; 1060 // Read a record. 1061 Record.clear(); 1062 unsigned Code = Stream.readRecord(Entry.ID, Record); 1063 switch (Code) { 1064 default: // Default behavior: ignore. 1065 break; 1066 case bitc::METADATA_NAME: { 1067 // Read name of the named metadata. 1068 SmallString<8> Name(Record.begin(), Record.end()); 1069 Record.clear(); 1070 Code = Stream.ReadCode(); 1071 1072 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1073 unsigned NextBitCode = Stream.readRecord(Code, Record); 1074 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1075 1076 // Read named metadata elements. 1077 unsigned Size = Record.size(); 1078 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1079 for (unsigned i = 0; i != Size; ++i) { 1080 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1081 if (!MD) 1082 return Error(BitcodeError::InvalidRecord); 1083 NMD->addOperand(MD); 1084 } 1085 break; 1086 } 1087 case bitc::METADATA_FN_NODE: 1088 IsFunctionLocal = true; 1089 // fall-through 1090 case bitc::METADATA_NODE: { 1091 if (Record.size() % 2 == 1) 1092 return Error(BitcodeError::InvalidRecord); 1093 1094 unsigned Size = Record.size(); 1095 SmallVector<Value*, 8> Elts; 1096 for (unsigned i = 0; i != Size; i += 2) { 1097 Type *Ty = getTypeByID(Record[i]); 1098 if (!Ty) 1099 return Error(BitcodeError::InvalidRecord); 1100 if (Ty->isMetadataTy()) 1101 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1102 else if (!Ty->isVoidTy()) 1103 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1104 else 1105 Elts.push_back(nullptr); 1106 } 1107 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1108 IsFunctionLocal = false; 1109 MDValueList.AssignValue(V, NextMDValueNo++); 1110 break; 1111 } 1112 case bitc::METADATA_STRING: { 1113 std::string String(Record.begin(), Record.end()); 1114 llvm::UpgradeMDStringConstant(String); 1115 Value *V = MDString::get(Context, String); 1116 MDValueList.AssignValue(V, NextMDValueNo++); 1117 break; 1118 } 1119 case bitc::METADATA_KIND: { 1120 if (Record.size() < 2) 1121 return Error(BitcodeError::InvalidRecord); 1122 1123 unsigned Kind = Record[0]; 1124 SmallString<8> Name(Record.begin()+1, Record.end()); 1125 1126 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1127 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1128 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1129 break; 1130 } 1131 } 1132 } 1133 } 1134 1135 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1136 /// the LSB for dense VBR encoding. 1137 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1138 if ((V & 1) == 0) 1139 return V >> 1; 1140 if (V != 1) 1141 return -(V >> 1); 1142 // There is no such thing as -0 with integers. "-0" really means MININT. 1143 return 1ULL << 63; 1144 } 1145 1146 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1147 /// values and aliases that we can. 1148 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1152 1153 GlobalInitWorklist.swap(GlobalInits); 1154 AliasInitWorklist.swap(AliasInits); 1155 FunctionPrefixWorklist.swap(FunctionPrefixes); 1156 1157 while (!GlobalInitWorklist.empty()) { 1158 unsigned ValID = GlobalInitWorklist.back().second; 1159 if (ValID >= ValueList.size()) { 1160 // Not ready to resolve this yet, it requires something later in the file. 1161 GlobalInits.push_back(GlobalInitWorklist.back()); 1162 } else { 1163 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1164 GlobalInitWorklist.back().first->setInitializer(C); 1165 else 1166 return Error(BitcodeError::ExpectedConstant); 1167 } 1168 GlobalInitWorklist.pop_back(); 1169 } 1170 1171 while (!AliasInitWorklist.empty()) { 1172 unsigned ValID = AliasInitWorklist.back().second; 1173 if (ValID >= ValueList.size()) { 1174 AliasInits.push_back(AliasInitWorklist.back()); 1175 } else { 1176 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1177 AliasInitWorklist.back().first->setAliasee(C); 1178 else 1179 return Error(BitcodeError::ExpectedConstant); 1180 } 1181 AliasInitWorklist.pop_back(); 1182 } 1183 1184 while (!FunctionPrefixWorklist.empty()) { 1185 unsigned ValID = FunctionPrefixWorklist.back().second; 1186 if (ValID >= ValueList.size()) { 1187 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1188 } else { 1189 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1190 FunctionPrefixWorklist.back().first->setPrefixData(C); 1191 else 1192 return Error(BitcodeError::ExpectedConstant); 1193 } 1194 FunctionPrefixWorklist.pop_back(); 1195 } 1196 1197 return std::error_code(); 1198 } 1199 1200 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1201 SmallVector<uint64_t, 8> Words(Vals.size()); 1202 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1203 BitcodeReader::decodeSignRotatedValue); 1204 1205 return APInt(TypeBits, Words); 1206 } 1207 1208 std::error_code BitcodeReader::ParseConstants() { 1209 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1210 return Error(BitcodeError::InvalidRecord); 1211 1212 SmallVector<uint64_t, 64> Record; 1213 1214 // Read all the records for this value table. 1215 Type *CurTy = Type::getInt32Ty(Context); 1216 unsigned NextCstNo = ValueList.size(); 1217 while (1) { 1218 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1219 1220 switch (Entry.Kind) { 1221 case BitstreamEntry::SubBlock: // Handled for us already. 1222 case BitstreamEntry::Error: 1223 return Error(BitcodeError::MalformedBlock); 1224 case BitstreamEntry::EndBlock: 1225 if (NextCstNo != ValueList.size()) 1226 return Error(BitcodeError::InvalidConstantReference); 1227 1228 // Once all the constants have been read, go through and resolve forward 1229 // references. 1230 ValueList.ResolveConstantForwardRefs(); 1231 return std::error_code(); 1232 case BitstreamEntry::Record: 1233 // The interesting case. 1234 break; 1235 } 1236 1237 // Read a record. 1238 Record.clear(); 1239 Value *V = nullptr; 1240 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1241 switch (BitCode) { 1242 default: // Default behavior: unknown constant 1243 case bitc::CST_CODE_UNDEF: // UNDEF 1244 V = UndefValue::get(CurTy); 1245 break; 1246 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1247 if (Record.empty()) 1248 return Error(BitcodeError::InvalidRecord); 1249 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1250 return Error(BitcodeError::InvalidRecord); 1251 CurTy = TypeList[Record[0]]; 1252 continue; // Skip the ValueList manipulation. 1253 case bitc::CST_CODE_NULL: // NULL 1254 V = Constant::getNullValue(CurTy); 1255 break; 1256 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1257 if (!CurTy->isIntegerTy() || Record.empty()) 1258 return Error(BitcodeError::InvalidRecord); 1259 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1260 break; 1261 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1262 if (!CurTy->isIntegerTy() || Record.empty()) 1263 return Error(BitcodeError::InvalidRecord); 1264 1265 APInt VInt = ReadWideAPInt(Record, 1266 cast<IntegerType>(CurTy)->getBitWidth()); 1267 V = ConstantInt::get(Context, VInt); 1268 1269 break; 1270 } 1271 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1272 if (Record.empty()) 1273 return Error(BitcodeError::InvalidRecord); 1274 if (CurTy->isHalfTy()) 1275 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1276 APInt(16, (uint16_t)Record[0]))); 1277 else if (CurTy->isFloatTy()) 1278 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1279 APInt(32, (uint32_t)Record[0]))); 1280 else if (CurTy->isDoubleTy()) 1281 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1282 APInt(64, Record[0]))); 1283 else if (CurTy->isX86_FP80Ty()) { 1284 // Bits are not stored the same way as a normal i80 APInt, compensate. 1285 uint64_t Rearrange[2]; 1286 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1287 Rearrange[1] = Record[0] >> 48; 1288 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1289 APInt(80, Rearrange))); 1290 } else if (CurTy->isFP128Ty()) 1291 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1292 APInt(128, Record))); 1293 else if (CurTy->isPPC_FP128Ty()) 1294 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1295 APInt(128, Record))); 1296 else 1297 V = UndefValue::get(CurTy); 1298 break; 1299 } 1300 1301 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1302 if (Record.empty()) 1303 return Error(BitcodeError::InvalidRecord); 1304 1305 unsigned Size = Record.size(); 1306 SmallVector<Constant*, 16> Elts; 1307 1308 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1309 for (unsigned i = 0; i != Size; ++i) 1310 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1311 STy->getElementType(i))); 1312 V = ConstantStruct::get(STy, Elts); 1313 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1314 Type *EltTy = ATy->getElementType(); 1315 for (unsigned i = 0; i != Size; ++i) 1316 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1317 V = ConstantArray::get(ATy, Elts); 1318 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1319 Type *EltTy = VTy->getElementType(); 1320 for (unsigned i = 0; i != Size; ++i) 1321 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1322 V = ConstantVector::get(Elts); 1323 } else { 1324 V = UndefValue::get(CurTy); 1325 } 1326 break; 1327 } 1328 case bitc::CST_CODE_STRING: // STRING: [values] 1329 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1330 if (Record.empty()) 1331 return Error(BitcodeError::InvalidRecord); 1332 1333 SmallString<16> Elts(Record.begin(), Record.end()); 1334 V = ConstantDataArray::getString(Context, Elts, 1335 BitCode == bitc::CST_CODE_CSTRING); 1336 break; 1337 } 1338 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1339 if (Record.empty()) 1340 return Error(BitcodeError::InvalidRecord); 1341 1342 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1343 unsigned Size = Record.size(); 1344 1345 if (EltTy->isIntegerTy(8)) { 1346 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1347 if (isa<VectorType>(CurTy)) 1348 V = ConstantDataVector::get(Context, Elts); 1349 else 1350 V = ConstantDataArray::get(Context, Elts); 1351 } else if (EltTy->isIntegerTy(16)) { 1352 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1353 if (isa<VectorType>(CurTy)) 1354 V = ConstantDataVector::get(Context, Elts); 1355 else 1356 V = ConstantDataArray::get(Context, Elts); 1357 } else if (EltTy->isIntegerTy(32)) { 1358 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1359 if (isa<VectorType>(CurTy)) 1360 V = ConstantDataVector::get(Context, Elts); 1361 else 1362 V = ConstantDataArray::get(Context, Elts); 1363 } else if (EltTy->isIntegerTy(64)) { 1364 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1365 if (isa<VectorType>(CurTy)) 1366 V = ConstantDataVector::get(Context, Elts); 1367 else 1368 V = ConstantDataArray::get(Context, Elts); 1369 } else if (EltTy->isFloatTy()) { 1370 SmallVector<float, 16> Elts(Size); 1371 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1372 if (isa<VectorType>(CurTy)) 1373 V = ConstantDataVector::get(Context, Elts); 1374 else 1375 V = ConstantDataArray::get(Context, Elts); 1376 } else if (EltTy->isDoubleTy()) { 1377 SmallVector<double, 16> Elts(Size); 1378 std::transform(Record.begin(), Record.end(), Elts.begin(), 1379 BitsToDouble); 1380 if (isa<VectorType>(CurTy)) 1381 V = ConstantDataVector::get(Context, Elts); 1382 else 1383 V = ConstantDataArray::get(Context, Elts); 1384 } else { 1385 return Error(BitcodeError::InvalidTypeForValue); 1386 } 1387 break; 1388 } 1389 1390 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1391 if (Record.size() < 3) 1392 return Error(BitcodeError::InvalidRecord); 1393 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1394 if (Opc < 0) { 1395 V = UndefValue::get(CurTy); // Unknown binop. 1396 } else { 1397 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1398 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1399 unsigned Flags = 0; 1400 if (Record.size() >= 4) { 1401 if (Opc == Instruction::Add || 1402 Opc == Instruction::Sub || 1403 Opc == Instruction::Mul || 1404 Opc == Instruction::Shl) { 1405 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1406 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1407 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1408 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1409 } else if (Opc == Instruction::SDiv || 1410 Opc == Instruction::UDiv || 1411 Opc == Instruction::LShr || 1412 Opc == Instruction::AShr) { 1413 if (Record[3] & (1 << bitc::PEO_EXACT)) 1414 Flags |= SDivOperator::IsExact; 1415 } 1416 } 1417 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1418 } 1419 break; 1420 } 1421 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1422 if (Record.size() < 3) 1423 return Error(BitcodeError::InvalidRecord); 1424 int Opc = GetDecodedCastOpcode(Record[0]); 1425 if (Opc < 0) { 1426 V = UndefValue::get(CurTy); // Unknown cast. 1427 } else { 1428 Type *OpTy = getTypeByID(Record[1]); 1429 if (!OpTy) 1430 return Error(BitcodeError::InvalidRecord); 1431 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1432 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1433 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1434 } 1435 break; 1436 } 1437 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1438 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1439 if (Record.size() & 1) 1440 return Error(BitcodeError::InvalidRecord); 1441 SmallVector<Constant*, 16> Elts; 1442 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1443 Type *ElTy = getTypeByID(Record[i]); 1444 if (!ElTy) 1445 return Error(BitcodeError::InvalidRecord); 1446 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1447 } 1448 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1449 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1450 BitCode == 1451 bitc::CST_CODE_CE_INBOUNDS_GEP); 1452 break; 1453 } 1454 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1455 if (Record.size() < 3) 1456 return Error(BitcodeError::InvalidRecord); 1457 1458 Type *SelectorTy = Type::getInt1Ty(Context); 1459 1460 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1461 // vector. Otherwise, it must be a single bit. 1462 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1463 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1464 VTy->getNumElements()); 1465 1466 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1467 SelectorTy), 1468 ValueList.getConstantFwdRef(Record[1],CurTy), 1469 ValueList.getConstantFwdRef(Record[2],CurTy)); 1470 break; 1471 } 1472 case bitc::CST_CODE_CE_EXTRACTELT 1473 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1474 if (Record.size() < 3) 1475 return Error(BitcodeError::InvalidRecord); 1476 VectorType *OpTy = 1477 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1478 if (!OpTy) 1479 return Error(BitcodeError::InvalidRecord); 1480 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1481 Constant *Op1 = nullptr; 1482 if (Record.size() == 4) { 1483 Type *IdxTy = getTypeByID(Record[2]); 1484 if (!IdxTy) 1485 return Error(BitcodeError::InvalidRecord); 1486 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1487 } else // TODO: Remove with llvm 4.0 1488 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1489 if (!Op1) 1490 return Error(BitcodeError::InvalidRecord); 1491 V = ConstantExpr::getExtractElement(Op0, Op1); 1492 break; 1493 } 1494 case bitc::CST_CODE_CE_INSERTELT 1495 : { // CE_INSERTELT: [opval, opval, opty, opval] 1496 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1497 if (Record.size() < 3 || !OpTy) 1498 return Error(BitcodeError::InvalidRecord); 1499 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1500 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1501 OpTy->getElementType()); 1502 Constant *Op2 = nullptr; 1503 if (Record.size() == 4) { 1504 Type *IdxTy = getTypeByID(Record[2]); 1505 if (!IdxTy) 1506 return Error(BitcodeError::InvalidRecord); 1507 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1508 } else // TODO: Remove with llvm 4.0 1509 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1510 if (!Op2) 1511 return Error(BitcodeError::InvalidRecord); 1512 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1513 break; 1514 } 1515 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1516 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1517 if (Record.size() < 3 || !OpTy) 1518 return Error(BitcodeError::InvalidRecord); 1519 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1520 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1521 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1522 OpTy->getNumElements()); 1523 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1524 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1525 break; 1526 } 1527 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1528 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1529 VectorType *OpTy = 1530 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1531 if (Record.size() < 4 || !RTy || !OpTy) 1532 return Error(BitcodeError::InvalidRecord); 1533 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1534 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1535 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1536 RTy->getNumElements()); 1537 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1538 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1539 break; 1540 } 1541 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1542 if (Record.size() < 4) 1543 return Error(BitcodeError::InvalidRecord); 1544 Type *OpTy = getTypeByID(Record[0]); 1545 if (!OpTy) 1546 return Error(BitcodeError::InvalidRecord); 1547 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1548 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1549 1550 if (OpTy->isFPOrFPVectorTy()) 1551 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1552 else 1553 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1554 break; 1555 } 1556 // This maintains backward compatibility, pre-asm dialect keywords. 1557 // FIXME: Remove with the 4.0 release. 1558 case bitc::CST_CODE_INLINEASM_OLD: { 1559 if (Record.size() < 2) 1560 return Error(BitcodeError::InvalidRecord); 1561 std::string AsmStr, ConstrStr; 1562 bool HasSideEffects = Record[0] & 1; 1563 bool IsAlignStack = Record[0] >> 1; 1564 unsigned AsmStrSize = Record[1]; 1565 if (2+AsmStrSize >= Record.size()) 1566 return Error(BitcodeError::InvalidRecord); 1567 unsigned ConstStrSize = Record[2+AsmStrSize]; 1568 if (3+AsmStrSize+ConstStrSize > Record.size()) 1569 return Error(BitcodeError::InvalidRecord); 1570 1571 for (unsigned i = 0; i != AsmStrSize; ++i) 1572 AsmStr += (char)Record[2+i]; 1573 for (unsigned i = 0; i != ConstStrSize; ++i) 1574 ConstrStr += (char)Record[3+AsmStrSize+i]; 1575 PointerType *PTy = cast<PointerType>(CurTy); 1576 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1577 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1578 break; 1579 } 1580 // This version adds support for the asm dialect keywords (e.g., 1581 // inteldialect). 1582 case bitc::CST_CODE_INLINEASM: { 1583 if (Record.size() < 2) 1584 return Error(BitcodeError::InvalidRecord); 1585 std::string AsmStr, ConstrStr; 1586 bool HasSideEffects = Record[0] & 1; 1587 bool IsAlignStack = (Record[0] >> 1) & 1; 1588 unsigned AsmDialect = Record[0] >> 2; 1589 unsigned AsmStrSize = Record[1]; 1590 if (2+AsmStrSize >= Record.size()) 1591 return Error(BitcodeError::InvalidRecord); 1592 unsigned ConstStrSize = Record[2+AsmStrSize]; 1593 if (3+AsmStrSize+ConstStrSize > Record.size()) 1594 return Error(BitcodeError::InvalidRecord); 1595 1596 for (unsigned i = 0; i != AsmStrSize; ++i) 1597 AsmStr += (char)Record[2+i]; 1598 for (unsigned i = 0; i != ConstStrSize; ++i) 1599 ConstrStr += (char)Record[3+AsmStrSize+i]; 1600 PointerType *PTy = cast<PointerType>(CurTy); 1601 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1602 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1603 InlineAsm::AsmDialect(AsmDialect)); 1604 break; 1605 } 1606 case bitc::CST_CODE_BLOCKADDRESS:{ 1607 if (Record.size() < 3) 1608 return Error(BitcodeError::InvalidRecord); 1609 Type *FnTy = getTypeByID(Record[0]); 1610 if (!FnTy) 1611 return Error(BitcodeError::InvalidRecord); 1612 Function *Fn = 1613 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1614 if (!Fn) 1615 return Error(BitcodeError::InvalidRecord); 1616 1617 // Don't let Fn get dematerialized. 1618 BlockAddressesTaken.insert(Fn); 1619 1620 // If the function is already parsed we can insert the block address right 1621 // away. 1622 BasicBlock *BB; 1623 unsigned BBID = Record[2]; 1624 if (!BBID) 1625 // Invalid reference to entry block. 1626 return Error(BitcodeError::InvalidID); 1627 if (!Fn->empty()) { 1628 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1629 for (size_t I = 0, E = BBID; I != E; ++I) { 1630 if (BBI == BBE) 1631 return Error(BitcodeError::InvalidID); 1632 ++BBI; 1633 } 1634 BB = BBI; 1635 } else { 1636 // Otherwise insert a placeholder and remember it so it can be inserted 1637 // when the function is parsed. 1638 BB = BasicBlock::Create(Context); 1639 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1640 if (FwdBBs.empty()) 1641 BasicBlockFwdRefQueue.push_back(Fn); 1642 FwdBBs.emplace_back(BBID, BB); 1643 } 1644 V = BlockAddress::get(Fn, BB); 1645 break; 1646 } 1647 } 1648 1649 ValueList.AssignValue(V, NextCstNo); 1650 ++NextCstNo; 1651 } 1652 } 1653 1654 std::error_code BitcodeReader::ParseUseLists() { 1655 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1656 return Error(BitcodeError::InvalidRecord); 1657 1658 // Read all the records. 1659 SmallVector<uint64_t, 64> Record; 1660 while (1) { 1661 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1662 1663 switch (Entry.Kind) { 1664 case BitstreamEntry::SubBlock: // Handled for us already. 1665 case BitstreamEntry::Error: 1666 return Error(BitcodeError::MalformedBlock); 1667 case BitstreamEntry::EndBlock: 1668 return std::error_code(); 1669 case BitstreamEntry::Record: 1670 // The interesting case. 1671 break; 1672 } 1673 1674 // Read a use list record. 1675 Record.clear(); 1676 bool IsBB = false; 1677 switch (Stream.readRecord(Entry.ID, Record)) { 1678 default: // Default behavior: unknown type. 1679 break; 1680 case bitc::USELIST_CODE_BB: 1681 IsBB = true; 1682 // fallthrough 1683 case bitc::USELIST_CODE_DEFAULT: { 1684 unsigned RecordLength = Record.size(); 1685 if (RecordLength < 3) 1686 // Records should have at least an ID and two indexes. 1687 return Error(BitcodeError::InvalidRecord); 1688 unsigned ID = Record.back(); 1689 Record.pop_back(); 1690 1691 Value *V; 1692 if (IsBB) { 1693 assert(ID < FunctionBBs.size() && "Basic block not found"); 1694 V = FunctionBBs[ID]; 1695 } else 1696 V = ValueList[ID]; 1697 unsigned NumUses = 0; 1698 SmallDenseMap<const Use *, unsigned, 16> Order; 1699 for (const Use &U : V->uses()) { 1700 if (NumUses > Record.size()) 1701 break; 1702 Order[&U] = Record[NumUses++]; 1703 } 1704 if (Order.size() != Record.size() || NumUses > Record.size()) 1705 // Mismatches can happen if the functions are being materialized lazily 1706 // (out-of-order), or a value has been upgraded. 1707 break; 1708 1709 V->sortUseList([&](const Use &L, const Use &R) { 1710 return Order.lookup(&L) < Order.lookup(&R); 1711 }); 1712 break; 1713 } 1714 } 1715 } 1716 } 1717 1718 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1719 /// remember where it is and then skip it. This lets us lazily deserialize the 1720 /// functions. 1721 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1722 // Get the function we are talking about. 1723 if (FunctionsWithBodies.empty()) 1724 return Error(BitcodeError::InsufficientFunctionProtos); 1725 1726 Function *Fn = FunctionsWithBodies.back(); 1727 FunctionsWithBodies.pop_back(); 1728 1729 // Save the current stream state. 1730 uint64_t CurBit = Stream.GetCurrentBitNo(); 1731 DeferredFunctionInfo[Fn] = CurBit; 1732 1733 // Skip over the function block for now. 1734 if (Stream.SkipBlock()) 1735 return Error(BitcodeError::InvalidRecord); 1736 return std::error_code(); 1737 } 1738 1739 std::error_code BitcodeReader::GlobalCleanup() { 1740 // Patch the initializers for globals and aliases up. 1741 ResolveGlobalAndAliasInits(); 1742 if (!GlobalInits.empty() || !AliasInits.empty()) 1743 return Error(BitcodeError::MalformedGlobalInitializerSet); 1744 1745 // Look for intrinsic functions which need to be upgraded at some point 1746 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1747 FI != FE; ++FI) { 1748 Function *NewFn; 1749 if (UpgradeIntrinsicFunction(FI, NewFn)) 1750 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1751 } 1752 1753 // Look for global variables which need to be renamed. 1754 for (Module::global_iterator 1755 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1756 GI != GE;) { 1757 GlobalVariable *GV = GI++; 1758 UpgradeGlobalVariable(GV); 1759 } 1760 1761 // Force deallocation of memory for these vectors to favor the client that 1762 // want lazy deserialization. 1763 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1764 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1765 return std::error_code(); 1766 } 1767 1768 std::error_code BitcodeReader::ParseModule(bool Resume) { 1769 if (Resume) 1770 Stream.JumpToBit(NextUnreadBit); 1771 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1772 return Error(BitcodeError::InvalidRecord); 1773 1774 SmallVector<uint64_t, 64> Record; 1775 std::vector<std::string> SectionTable; 1776 std::vector<std::string> GCTable; 1777 1778 // Read all the records for this module. 1779 while (1) { 1780 BitstreamEntry Entry = Stream.advance(); 1781 1782 switch (Entry.Kind) { 1783 case BitstreamEntry::Error: 1784 return Error(BitcodeError::MalformedBlock); 1785 case BitstreamEntry::EndBlock: 1786 return GlobalCleanup(); 1787 1788 case BitstreamEntry::SubBlock: 1789 switch (Entry.ID) { 1790 default: // Skip unknown content. 1791 if (Stream.SkipBlock()) 1792 return Error(BitcodeError::InvalidRecord); 1793 break; 1794 case bitc::BLOCKINFO_BLOCK_ID: 1795 if (Stream.ReadBlockInfoBlock()) 1796 return Error(BitcodeError::MalformedBlock); 1797 break; 1798 case bitc::PARAMATTR_BLOCK_ID: 1799 if (std::error_code EC = ParseAttributeBlock()) 1800 return EC; 1801 break; 1802 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1803 if (std::error_code EC = ParseAttributeGroupBlock()) 1804 return EC; 1805 break; 1806 case bitc::TYPE_BLOCK_ID_NEW: 1807 if (std::error_code EC = ParseTypeTable()) 1808 return EC; 1809 break; 1810 case bitc::VALUE_SYMTAB_BLOCK_ID: 1811 if (std::error_code EC = ParseValueSymbolTable()) 1812 return EC; 1813 SeenValueSymbolTable = true; 1814 break; 1815 case bitc::CONSTANTS_BLOCK_ID: 1816 if (std::error_code EC = ParseConstants()) 1817 return EC; 1818 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1819 return EC; 1820 break; 1821 case bitc::METADATA_BLOCK_ID: 1822 if (std::error_code EC = ParseMetadata()) 1823 return EC; 1824 break; 1825 case bitc::FUNCTION_BLOCK_ID: 1826 // If this is the first function body we've seen, reverse the 1827 // FunctionsWithBodies list. 1828 if (!SeenFirstFunctionBody) { 1829 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1830 if (std::error_code EC = GlobalCleanup()) 1831 return EC; 1832 SeenFirstFunctionBody = true; 1833 } 1834 1835 if (std::error_code EC = RememberAndSkipFunctionBody()) 1836 return EC; 1837 // For streaming bitcode, suspend parsing when we reach the function 1838 // bodies. Subsequent materialization calls will resume it when 1839 // necessary. For streaming, the function bodies must be at the end of 1840 // the bitcode. If the bitcode file is old, the symbol table will be 1841 // at the end instead and will not have been seen yet. In this case, 1842 // just finish the parse now. 1843 if (LazyStreamer && SeenValueSymbolTable) { 1844 NextUnreadBit = Stream.GetCurrentBitNo(); 1845 return std::error_code(); 1846 } 1847 break; 1848 case bitc::USELIST_BLOCK_ID: 1849 if (std::error_code EC = ParseUseLists()) 1850 return EC; 1851 break; 1852 } 1853 continue; 1854 1855 case BitstreamEntry::Record: 1856 // The interesting case. 1857 break; 1858 } 1859 1860 1861 // Read a record. 1862 switch (Stream.readRecord(Entry.ID, Record)) { 1863 default: break; // Default behavior, ignore unknown content. 1864 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1865 if (Record.size() < 1) 1866 return Error(BitcodeError::InvalidRecord); 1867 // Only version #0 and #1 are supported so far. 1868 unsigned module_version = Record[0]; 1869 switch (module_version) { 1870 default: 1871 return Error(BitcodeError::InvalidValue); 1872 case 0: 1873 UseRelativeIDs = false; 1874 break; 1875 case 1: 1876 UseRelativeIDs = true; 1877 break; 1878 } 1879 break; 1880 } 1881 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1882 std::string S; 1883 if (ConvertToString(Record, 0, S)) 1884 return Error(BitcodeError::InvalidRecord); 1885 TheModule->setTargetTriple(S); 1886 break; 1887 } 1888 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1889 std::string S; 1890 if (ConvertToString(Record, 0, S)) 1891 return Error(BitcodeError::InvalidRecord); 1892 TheModule->setDataLayout(S); 1893 break; 1894 } 1895 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1896 std::string S; 1897 if (ConvertToString(Record, 0, S)) 1898 return Error(BitcodeError::InvalidRecord); 1899 TheModule->setModuleInlineAsm(S); 1900 break; 1901 } 1902 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1903 // FIXME: Remove in 4.0. 1904 std::string S; 1905 if (ConvertToString(Record, 0, S)) 1906 return Error(BitcodeError::InvalidRecord); 1907 // Ignore value. 1908 break; 1909 } 1910 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1911 std::string S; 1912 if (ConvertToString(Record, 0, S)) 1913 return Error(BitcodeError::InvalidRecord); 1914 SectionTable.push_back(S); 1915 break; 1916 } 1917 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1918 std::string S; 1919 if (ConvertToString(Record, 0, S)) 1920 return Error(BitcodeError::InvalidRecord); 1921 GCTable.push_back(S); 1922 break; 1923 } 1924 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 1925 if (Record.size() < 2) 1926 return Error(BitcodeError::InvalidRecord); 1927 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 1928 unsigned ComdatNameSize = Record[1]; 1929 std::string ComdatName; 1930 ComdatName.reserve(ComdatNameSize); 1931 for (unsigned i = 0; i != ComdatNameSize; ++i) 1932 ComdatName += (char)Record[2 + i]; 1933 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 1934 C->setSelectionKind(SK); 1935 ComdatList.push_back(C); 1936 break; 1937 } 1938 // GLOBALVAR: [pointer type, isconst, initid, 1939 // linkage, alignment, section, visibility, threadlocal, 1940 // unnamed_addr, dllstorageclass] 1941 case bitc::MODULE_CODE_GLOBALVAR: { 1942 if (Record.size() < 6) 1943 return Error(BitcodeError::InvalidRecord); 1944 Type *Ty = getTypeByID(Record[0]); 1945 if (!Ty) 1946 return Error(BitcodeError::InvalidRecord); 1947 if (!Ty->isPointerTy()) 1948 return Error(BitcodeError::InvalidTypeForValue); 1949 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1950 Ty = cast<PointerType>(Ty)->getElementType(); 1951 1952 bool isConstant = Record[1]; 1953 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1954 unsigned Alignment = (1 << Record[4]) >> 1; 1955 std::string Section; 1956 if (Record[5]) { 1957 if (Record[5]-1 >= SectionTable.size()) 1958 return Error(BitcodeError::InvalidID); 1959 Section = SectionTable[Record[5]-1]; 1960 } 1961 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1962 // Local linkage must have default visibility. 1963 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1964 // FIXME: Change to an error if non-default in 4.0. 1965 Visibility = GetDecodedVisibility(Record[6]); 1966 1967 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1968 if (Record.size() > 7) 1969 TLM = GetDecodedThreadLocalMode(Record[7]); 1970 1971 bool UnnamedAddr = false; 1972 if (Record.size() > 8) 1973 UnnamedAddr = Record[8]; 1974 1975 bool ExternallyInitialized = false; 1976 if (Record.size() > 9) 1977 ExternallyInitialized = Record[9]; 1978 1979 GlobalVariable *NewGV = 1980 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1981 TLM, AddressSpace, ExternallyInitialized); 1982 NewGV->setAlignment(Alignment); 1983 if (!Section.empty()) 1984 NewGV->setSection(Section); 1985 NewGV->setVisibility(Visibility); 1986 NewGV->setUnnamedAddr(UnnamedAddr); 1987 1988 if (Record.size() > 10) 1989 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1990 else 1991 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1992 1993 ValueList.push_back(NewGV); 1994 1995 // Remember which value to use for the global initializer. 1996 if (unsigned InitID = Record[2]) 1997 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1998 1999 if (Record.size() > 11) 2000 if (unsigned ComdatID = Record[11]) { 2001 assert(ComdatID <= ComdatList.size()); 2002 NewGV->setComdat(ComdatList[ComdatID - 1]); 2003 } 2004 break; 2005 } 2006 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2007 // alignment, section, visibility, gc, unnamed_addr, 2008 // dllstorageclass] 2009 case bitc::MODULE_CODE_FUNCTION: { 2010 if (Record.size() < 8) 2011 return Error(BitcodeError::InvalidRecord); 2012 Type *Ty = getTypeByID(Record[0]); 2013 if (!Ty) 2014 return Error(BitcodeError::InvalidRecord); 2015 if (!Ty->isPointerTy()) 2016 return Error(BitcodeError::InvalidTypeForValue); 2017 FunctionType *FTy = 2018 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2019 if (!FTy) 2020 return Error(BitcodeError::InvalidTypeForValue); 2021 2022 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2023 "", TheModule); 2024 2025 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2026 bool isProto = Record[2]; 2027 Func->setLinkage(GetDecodedLinkage(Record[3])); 2028 Func->setAttributes(getAttributes(Record[4])); 2029 2030 Func->setAlignment((1 << Record[5]) >> 1); 2031 if (Record[6]) { 2032 if (Record[6]-1 >= SectionTable.size()) 2033 return Error(BitcodeError::InvalidID); 2034 Func->setSection(SectionTable[Record[6]-1]); 2035 } 2036 // Local linkage must have default visibility. 2037 if (!Func->hasLocalLinkage()) 2038 // FIXME: Change to an error if non-default in 4.0. 2039 Func->setVisibility(GetDecodedVisibility(Record[7])); 2040 if (Record.size() > 8 && Record[8]) { 2041 if (Record[8]-1 > GCTable.size()) 2042 return Error(BitcodeError::InvalidID); 2043 Func->setGC(GCTable[Record[8]-1].c_str()); 2044 } 2045 bool UnnamedAddr = false; 2046 if (Record.size() > 9) 2047 UnnamedAddr = Record[9]; 2048 Func->setUnnamedAddr(UnnamedAddr); 2049 if (Record.size() > 10 && Record[10] != 0) 2050 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 2051 2052 if (Record.size() > 11) 2053 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2054 else 2055 UpgradeDLLImportExportLinkage(Func, Record[3]); 2056 2057 if (Record.size() > 12) 2058 if (unsigned ComdatID = Record[12]) { 2059 assert(ComdatID <= ComdatList.size()); 2060 Func->setComdat(ComdatList[ComdatID - 1]); 2061 } 2062 2063 ValueList.push_back(Func); 2064 2065 // If this is a function with a body, remember the prototype we are 2066 // creating now, so that we can match up the body with them later. 2067 if (!isProto) { 2068 FunctionsWithBodies.push_back(Func); 2069 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 2070 } 2071 break; 2072 } 2073 // ALIAS: [alias type, aliasee val#, linkage] 2074 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2075 case bitc::MODULE_CODE_ALIAS: { 2076 if (Record.size() < 3) 2077 return Error(BitcodeError::InvalidRecord); 2078 Type *Ty = getTypeByID(Record[0]); 2079 if (!Ty) 2080 return Error(BitcodeError::InvalidRecord); 2081 auto *PTy = dyn_cast<PointerType>(Ty); 2082 if (!PTy) 2083 return Error(BitcodeError::InvalidTypeForValue); 2084 2085 auto *NewGA = 2086 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2087 GetDecodedLinkage(Record[2]), "", TheModule); 2088 // Old bitcode files didn't have visibility field. 2089 // Local linkage must have default visibility. 2090 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2091 // FIXME: Change to an error if non-default in 4.0. 2092 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2093 if (Record.size() > 4) 2094 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2095 else 2096 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2097 if (Record.size() > 5) 2098 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2099 if (Record.size() > 6) 2100 NewGA->setUnnamedAddr(Record[6]); 2101 ValueList.push_back(NewGA); 2102 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2103 break; 2104 } 2105 /// MODULE_CODE_PURGEVALS: [numvals] 2106 case bitc::MODULE_CODE_PURGEVALS: 2107 // Trim down the value list to the specified size. 2108 if (Record.size() < 1 || Record[0] > ValueList.size()) 2109 return Error(BitcodeError::InvalidRecord); 2110 ValueList.shrinkTo(Record[0]); 2111 break; 2112 } 2113 Record.clear(); 2114 } 2115 } 2116 2117 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2118 TheModule = nullptr; 2119 2120 if (std::error_code EC = InitStream()) 2121 return EC; 2122 2123 // Sniff for the signature. 2124 if (Stream.Read(8) != 'B' || 2125 Stream.Read(8) != 'C' || 2126 Stream.Read(4) != 0x0 || 2127 Stream.Read(4) != 0xC || 2128 Stream.Read(4) != 0xE || 2129 Stream.Read(4) != 0xD) 2130 return Error(BitcodeError::InvalidBitcodeSignature); 2131 2132 // We expect a number of well-defined blocks, though we don't necessarily 2133 // need to understand them all. 2134 while (1) { 2135 if (Stream.AtEndOfStream()) 2136 return std::error_code(); 2137 2138 BitstreamEntry Entry = 2139 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2140 2141 switch (Entry.Kind) { 2142 case BitstreamEntry::Error: 2143 return Error(BitcodeError::MalformedBlock); 2144 case BitstreamEntry::EndBlock: 2145 return std::error_code(); 2146 2147 case BitstreamEntry::SubBlock: 2148 switch (Entry.ID) { 2149 case bitc::BLOCKINFO_BLOCK_ID: 2150 if (Stream.ReadBlockInfoBlock()) 2151 return Error(BitcodeError::MalformedBlock); 2152 break; 2153 case bitc::MODULE_BLOCK_ID: 2154 // Reject multiple MODULE_BLOCK's in a single bitstream. 2155 if (TheModule) 2156 return Error(BitcodeError::InvalidMultipleBlocks); 2157 TheModule = M; 2158 if (std::error_code EC = ParseModule(false)) 2159 return EC; 2160 if (LazyStreamer) 2161 return std::error_code(); 2162 break; 2163 default: 2164 if (Stream.SkipBlock()) 2165 return Error(BitcodeError::InvalidRecord); 2166 break; 2167 } 2168 continue; 2169 case BitstreamEntry::Record: 2170 // There should be no records in the top-level of blocks. 2171 2172 // The ranlib in Xcode 4 will align archive members by appending newlines 2173 // to the end of them. If this file size is a multiple of 4 but not 8, we 2174 // have to read and ignore these final 4 bytes :-( 2175 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2176 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2177 Stream.AtEndOfStream()) 2178 return std::error_code(); 2179 2180 return Error(BitcodeError::InvalidRecord); 2181 } 2182 } 2183 } 2184 2185 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2186 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2187 return Error(BitcodeError::InvalidRecord); 2188 2189 SmallVector<uint64_t, 64> Record; 2190 2191 std::string Triple; 2192 // Read all the records for this module. 2193 while (1) { 2194 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2195 2196 switch (Entry.Kind) { 2197 case BitstreamEntry::SubBlock: // Handled for us already. 2198 case BitstreamEntry::Error: 2199 return Error(BitcodeError::MalformedBlock); 2200 case BitstreamEntry::EndBlock: 2201 return Triple; 2202 case BitstreamEntry::Record: 2203 // The interesting case. 2204 break; 2205 } 2206 2207 // Read a record. 2208 switch (Stream.readRecord(Entry.ID, Record)) { 2209 default: break; // Default behavior, ignore unknown content. 2210 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2211 std::string S; 2212 if (ConvertToString(Record, 0, S)) 2213 return Error(BitcodeError::InvalidRecord); 2214 Triple = S; 2215 break; 2216 } 2217 } 2218 Record.clear(); 2219 } 2220 llvm_unreachable("Exit infinite loop"); 2221 } 2222 2223 ErrorOr<std::string> BitcodeReader::parseTriple() { 2224 if (std::error_code EC = InitStream()) 2225 return EC; 2226 2227 // Sniff for the signature. 2228 if (Stream.Read(8) != 'B' || 2229 Stream.Read(8) != 'C' || 2230 Stream.Read(4) != 0x0 || 2231 Stream.Read(4) != 0xC || 2232 Stream.Read(4) != 0xE || 2233 Stream.Read(4) != 0xD) 2234 return Error(BitcodeError::InvalidBitcodeSignature); 2235 2236 // We expect a number of well-defined blocks, though we don't necessarily 2237 // need to understand them all. 2238 while (1) { 2239 BitstreamEntry Entry = Stream.advance(); 2240 2241 switch (Entry.Kind) { 2242 case BitstreamEntry::Error: 2243 return Error(BitcodeError::MalformedBlock); 2244 case BitstreamEntry::EndBlock: 2245 return std::error_code(); 2246 2247 case BitstreamEntry::SubBlock: 2248 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2249 return parseModuleTriple(); 2250 2251 // Ignore other sub-blocks. 2252 if (Stream.SkipBlock()) 2253 return Error(BitcodeError::MalformedBlock); 2254 continue; 2255 2256 case BitstreamEntry::Record: 2257 Stream.skipRecord(Entry.ID); 2258 continue; 2259 } 2260 } 2261 } 2262 2263 /// ParseMetadataAttachment - Parse metadata attachments. 2264 std::error_code BitcodeReader::ParseMetadataAttachment() { 2265 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2266 return Error(BitcodeError::InvalidRecord); 2267 2268 SmallVector<uint64_t, 64> Record; 2269 while (1) { 2270 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2271 2272 switch (Entry.Kind) { 2273 case BitstreamEntry::SubBlock: // Handled for us already. 2274 case BitstreamEntry::Error: 2275 return Error(BitcodeError::MalformedBlock); 2276 case BitstreamEntry::EndBlock: 2277 return std::error_code(); 2278 case BitstreamEntry::Record: 2279 // The interesting case. 2280 break; 2281 } 2282 2283 // Read a metadata attachment record. 2284 Record.clear(); 2285 switch (Stream.readRecord(Entry.ID, Record)) { 2286 default: // Default behavior: ignore. 2287 break; 2288 case bitc::METADATA_ATTACHMENT: { 2289 unsigned RecordLength = Record.size(); 2290 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2291 return Error(BitcodeError::InvalidRecord); 2292 Instruction *Inst = InstructionList[Record[0]]; 2293 for (unsigned i = 1; i != RecordLength; i = i+2) { 2294 unsigned Kind = Record[i]; 2295 DenseMap<unsigned, unsigned>::iterator I = 2296 MDKindMap.find(Kind); 2297 if (I == MDKindMap.end()) 2298 return Error(BitcodeError::InvalidID); 2299 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2300 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2301 if (I->second == LLVMContext::MD_tbaa) 2302 InstsWithTBAATag.push_back(Inst); 2303 } 2304 break; 2305 } 2306 } 2307 } 2308 } 2309 2310 /// ParseFunctionBody - Lazily parse the specified function body block. 2311 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2312 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2313 return Error(BitcodeError::InvalidRecord); 2314 2315 InstructionList.clear(); 2316 unsigned ModuleValueListSize = ValueList.size(); 2317 unsigned ModuleMDValueListSize = MDValueList.size(); 2318 2319 // Add all the function arguments to the value table. 2320 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2321 ValueList.push_back(I); 2322 2323 unsigned NextValueNo = ValueList.size(); 2324 BasicBlock *CurBB = nullptr; 2325 unsigned CurBBNo = 0; 2326 2327 DebugLoc LastLoc; 2328 2329 // Read all the records. 2330 SmallVector<uint64_t, 64> Record; 2331 while (1) { 2332 BitstreamEntry Entry = Stream.advance(); 2333 2334 switch (Entry.Kind) { 2335 case BitstreamEntry::Error: 2336 return Error(BitcodeError::MalformedBlock); 2337 case BitstreamEntry::EndBlock: 2338 goto OutOfRecordLoop; 2339 2340 case BitstreamEntry::SubBlock: 2341 switch (Entry.ID) { 2342 default: // Skip unknown content. 2343 if (Stream.SkipBlock()) 2344 return Error(BitcodeError::InvalidRecord); 2345 break; 2346 case bitc::CONSTANTS_BLOCK_ID: 2347 if (std::error_code EC = ParseConstants()) 2348 return EC; 2349 NextValueNo = ValueList.size(); 2350 break; 2351 case bitc::VALUE_SYMTAB_BLOCK_ID: 2352 if (std::error_code EC = ParseValueSymbolTable()) 2353 return EC; 2354 break; 2355 case bitc::METADATA_ATTACHMENT_ID: 2356 if (std::error_code EC = ParseMetadataAttachment()) 2357 return EC; 2358 break; 2359 case bitc::METADATA_BLOCK_ID: 2360 if (std::error_code EC = ParseMetadata()) 2361 return EC; 2362 break; 2363 case bitc::USELIST_BLOCK_ID: 2364 if (std::error_code EC = ParseUseLists()) 2365 return EC; 2366 break; 2367 } 2368 continue; 2369 2370 case BitstreamEntry::Record: 2371 // The interesting case. 2372 break; 2373 } 2374 2375 // Read a record. 2376 Record.clear(); 2377 Instruction *I = nullptr; 2378 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2379 switch (BitCode) { 2380 default: // Default behavior: reject 2381 return Error(BitcodeError::InvalidValue); 2382 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2383 if (Record.size() < 1 || Record[0] == 0) 2384 return Error(BitcodeError::InvalidRecord); 2385 // Create all the basic blocks for the function. 2386 FunctionBBs.resize(Record[0]); 2387 2388 // See if anything took the address of blocks in this function. 2389 auto BBFRI = BasicBlockFwdRefs.find(F); 2390 if (BBFRI == BasicBlockFwdRefs.end()) { 2391 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2392 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2393 } else { 2394 auto &BBRefs = BBFRI->second; 2395 std::sort(BBRefs.begin(), BBRefs.end(), 2396 [](const std::pair<unsigned, BasicBlock *> &LHS, 2397 const std::pair<unsigned, BasicBlock *> &RHS) { 2398 return LHS.first < RHS.first; 2399 }); 2400 unsigned R = 0, RE = BBRefs.size(); 2401 for (unsigned I = 0, E = FunctionBBs.size(); I != E; ++I) 2402 if (R != RE && BBRefs[R].first == I) { 2403 assert(I != 0 && "Invalid reference to entry block"); 2404 BasicBlock *BB = BBRefs[R++].second; 2405 BB->insertInto(F); 2406 FunctionBBs[I] = BB; 2407 } else { 2408 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2409 } 2410 // Check for invalid basic block references. 2411 if (R != RE) 2412 return Error(BitcodeError::InvalidID); 2413 2414 // Erase from the table. 2415 BasicBlockFwdRefs.erase(BBFRI); 2416 } 2417 2418 CurBB = FunctionBBs[0]; 2419 continue; 2420 } 2421 2422 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2423 // This record indicates that the last instruction is at the same 2424 // location as the previous instruction with a location. 2425 I = nullptr; 2426 2427 // Get the last instruction emitted. 2428 if (CurBB && !CurBB->empty()) 2429 I = &CurBB->back(); 2430 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2431 !FunctionBBs[CurBBNo-1]->empty()) 2432 I = &FunctionBBs[CurBBNo-1]->back(); 2433 2434 if (!I) 2435 return Error(BitcodeError::InvalidRecord); 2436 I->setDebugLoc(LastLoc); 2437 I = nullptr; 2438 continue; 2439 2440 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2441 I = nullptr; // Get the last instruction emitted. 2442 if (CurBB && !CurBB->empty()) 2443 I = &CurBB->back(); 2444 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2445 !FunctionBBs[CurBBNo-1]->empty()) 2446 I = &FunctionBBs[CurBBNo-1]->back(); 2447 if (!I || Record.size() < 4) 2448 return Error(BitcodeError::InvalidRecord); 2449 2450 unsigned Line = Record[0], Col = Record[1]; 2451 unsigned ScopeID = Record[2], IAID = Record[3]; 2452 2453 MDNode *Scope = nullptr, *IA = nullptr; 2454 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2455 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2456 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2457 I->setDebugLoc(LastLoc); 2458 I = nullptr; 2459 continue; 2460 } 2461 2462 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2463 unsigned OpNum = 0; 2464 Value *LHS, *RHS; 2465 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2466 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2467 OpNum+1 > Record.size()) 2468 return Error(BitcodeError::InvalidRecord); 2469 2470 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2471 if (Opc == -1) 2472 return Error(BitcodeError::InvalidRecord); 2473 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2474 InstructionList.push_back(I); 2475 if (OpNum < Record.size()) { 2476 if (Opc == Instruction::Add || 2477 Opc == Instruction::Sub || 2478 Opc == Instruction::Mul || 2479 Opc == Instruction::Shl) { 2480 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2481 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2482 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2483 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2484 } else if (Opc == Instruction::SDiv || 2485 Opc == Instruction::UDiv || 2486 Opc == Instruction::LShr || 2487 Opc == Instruction::AShr) { 2488 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2489 cast<BinaryOperator>(I)->setIsExact(true); 2490 } else if (isa<FPMathOperator>(I)) { 2491 FastMathFlags FMF; 2492 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2493 FMF.setUnsafeAlgebra(); 2494 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2495 FMF.setNoNaNs(); 2496 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2497 FMF.setNoInfs(); 2498 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2499 FMF.setNoSignedZeros(); 2500 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2501 FMF.setAllowReciprocal(); 2502 if (FMF.any()) 2503 I->setFastMathFlags(FMF); 2504 } 2505 2506 } 2507 break; 2508 } 2509 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2510 unsigned OpNum = 0; 2511 Value *Op; 2512 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2513 OpNum+2 != Record.size()) 2514 return Error(BitcodeError::InvalidRecord); 2515 2516 Type *ResTy = getTypeByID(Record[OpNum]); 2517 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2518 if (Opc == -1 || !ResTy) 2519 return Error(BitcodeError::InvalidRecord); 2520 Instruction *Temp = nullptr; 2521 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2522 if (Temp) { 2523 InstructionList.push_back(Temp); 2524 CurBB->getInstList().push_back(Temp); 2525 } 2526 } else { 2527 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2528 } 2529 InstructionList.push_back(I); 2530 break; 2531 } 2532 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2533 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2534 unsigned OpNum = 0; 2535 Value *BasePtr; 2536 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2537 return Error(BitcodeError::InvalidRecord); 2538 2539 SmallVector<Value*, 16> GEPIdx; 2540 while (OpNum != Record.size()) { 2541 Value *Op; 2542 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2543 return Error(BitcodeError::InvalidRecord); 2544 GEPIdx.push_back(Op); 2545 } 2546 2547 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2548 InstructionList.push_back(I); 2549 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2550 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2551 break; 2552 } 2553 2554 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2555 // EXTRACTVAL: [opty, opval, n x indices] 2556 unsigned OpNum = 0; 2557 Value *Agg; 2558 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2559 return Error(BitcodeError::InvalidRecord); 2560 2561 SmallVector<unsigned, 4> EXTRACTVALIdx; 2562 for (unsigned RecSize = Record.size(); 2563 OpNum != RecSize; ++OpNum) { 2564 uint64_t Index = Record[OpNum]; 2565 if ((unsigned)Index != Index) 2566 return Error(BitcodeError::InvalidValue); 2567 EXTRACTVALIdx.push_back((unsigned)Index); 2568 } 2569 2570 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2571 InstructionList.push_back(I); 2572 break; 2573 } 2574 2575 case bitc::FUNC_CODE_INST_INSERTVAL: { 2576 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2577 unsigned OpNum = 0; 2578 Value *Agg; 2579 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2580 return Error(BitcodeError::InvalidRecord); 2581 Value *Val; 2582 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2583 return Error(BitcodeError::InvalidRecord); 2584 2585 SmallVector<unsigned, 4> INSERTVALIdx; 2586 for (unsigned RecSize = Record.size(); 2587 OpNum != RecSize; ++OpNum) { 2588 uint64_t Index = Record[OpNum]; 2589 if ((unsigned)Index != Index) 2590 return Error(BitcodeError::InvalidValue); 2591 INSERTVALIdx.push_back((unsigned)Index); 2592 } 2593 2594 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2595 InstructionList.push_back(I); 2596 break; 2597 } 2598 2599 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2600 // obsolete form of select 2601 // handles select i1 ... in old bitcode 2602 unsigned OpNum = 0; 2603 Value *TrueVal, *FalseVal, *Cond; 2604 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2605 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2606 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2607 return Error(BitcodeError::InvalidRecord); 2608 2609 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2610 InstructionList.push_back(I); 2611 break; 2612 } 2613 2614 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2615 // new form of select 2616 // handles select i1 or select [N x i1] 2617 unsigned OpNum = 0; 2618 Value *TrueVal, *FalseVal, *Cond; 2619 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2620 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2621 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2622 return Error(BitcodeError::InvalidRecord); 2623 2624 // select condition can be either i1 or [N x i1] 2625 if (VectorType* vector_type = 2626 dyn_cast<VectorType>(Cond->getType())) { 2627 // expect <n x i1> 2628 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2629 return Error(BitcodeError::InvalidTypeForValue); 2630 } else { 2631 // expect i1 2632 if (Cond->getType() != Type::getInt1Ty(Context)) 2633 return Error(BitcodeError::InvalidTypeForValue); 2634 } 2635 2636 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2637 InstructionList.push_back(I); 2638 break; 2639 } 2640 2641 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2642 unsigned OpNum = 0; 2643 Value *Vec, *Idx; 2644 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2645 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2646 return Error(BitcodeError::InvalidRecord); 2647 I = ExtractElementInst::Create(Vec, Idx); 2648 InstructionList.push_back(I); 2649 break; 2650 } 2651 2652 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2653 unsigned OpNum = 0; 2654 Value *Vec, *Elt, *Idx; 2655 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2656 popValue(Record, OpNum, NextValueNo, 2657 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2658 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2659 return Error(BitcodeError::InvalidRecord); 2660 I = InsertElementInst::Create(Vec, Elt, Idx); 2661 InstructionList.push_back(I); 2662 break; 2663 } 2664 2665 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2666 unsigned OpNum = 0; 2667 Value *Vec1, *Vec2, *Mask; 2668 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2669 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2670 return Error(BitcodeError::InvalidRecord); 2671 2672 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2673 return Error(BitcodeError::InvalidRecord); 2674 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2675 InstructionList.push_back(I); 2676 break; 2677 } 2678 2679 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2680 // Old form of ICmp/FCmp returning bool 2681 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2682 // both legal on vectors but had different behaviour. 2683 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2684 // FCmp/ICmp returning bool or vector of bool 2685 2686 unsigned OpNum = 0; 2687 Value *LHS, *RHS; 2688 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2689 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2690 OpNum+1 != Record.size()) 2691 return Error(BitcodeError::InvalidRecord); 2692 2693 if (LHS->getType()->isFPOrFPVectorTy()) 2694 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2695 else 2696 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2697 InstructionList.push_back(I); 2698 break; 2699 } 2700 2701 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2702 { 2703 unsigned Size = Record.size(); 2704 if (Size == 0) { 2705 I = ReturnInst::Create(Context); 2706 InstructionList.push_back(I); 2707 break; 2708 } 2709 2710 unsigned OpNum = 0; 2711 Value *Op = nullptr; 2712 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2713 return Error(BitcodeError::InvalidRecord); 2714 if (OpNum != Record.size()) 2715 return Error(BitcodeError::InvalidRecord); 2716 2717 I = ReturnInst::Create(Context, Op); 2718 InstructionList.push_back(I); 2719 break; 2720 } 2721 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2722 if (Record.size() != 1 && Record.size() != 3) 2723 return Error(BitcodeError::InvalidRecord); 2724 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2725 if (!TrueDest) 2726 return Error(BitcodeError::InvalidRecord); 2727 2728 if (Record.size() == 1) { 2729 I = BranchInst::Create(TrueDest); 2730 InstructionList.push_back(I); 2731 } 2732 else { 2733 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2734 Value *Cond = getValue(Record, 2, NextValueNo, 2735 Type::getInt1Ty(Context)); 2736 if (!FalseDest || !Cond) 2737 return Error(BitcodeError::InvalidRecord); 2738 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2739 InstructionList.push_back(I); 2740 } 2741 break; 2742 } 2743 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2744 // Check magic 2745 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2746 // "New" SwitchInst format with case ranges. The changes to write this 2747 // format were reverted but we still recognize bitcode that uses it. 2748 // Hopefully someday we will have support for case ranges and can use 2749 // this format again. 2750 2751 Type *OpTy = getTypeByID(Record[1]); 2752 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2753 2754 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2755 BasicBlock *Default = getBasicBlock(Record[3]); 2756 if (!OpTy || !Cond || !Default) 2757 return Error(BitcodeError::InvalidRecord); 2758 2759 unsigned NumCases = Record[4]; 2760 2761 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2762 InstructionList.push_back(SI); 2763 2764 unsigned CurIdx = 5; 2765 for (unsigned i = 0; i != NumCases; ++i) { 2766 SmallVector<ConstantInt*, 1> CaseVals; 2767 unsigned NumItems = Record[CurIdx++]; 2768 for (unsigned ci = 0; ci != NumItems; ++ci) { 2769 bool isSingleNumber = Record[CurIdx++]; 2770 2771 APInt Low; 2772 unsigned ActiveWords = 1; 2773 if (ValueBitWidth > 64) 2774 ActiveWords = Record[CurIdx++]; 2775 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2776 ValueBitWidth); 2777 CurIdx += ActiveWords; 2778 2779 if (!isSingleNumber) { 2780 ActiveWords = 1; 2781 if (ValueBitWidth > 64) 2782 ActiveWords = Record[CurIdx++]; 2783 APInt High = 2784 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2785 ValueBitWidth); 2786 CurIdx += ActiveWords; 2787 2788 // FIXME: It is not clear whether values in the range should be 2789 // compared as signed or unsigned values. The partially 2790 // implemented changes that used this format in the past used 2791 // unsigned comparisons. 2792 for ( ; Low.ule(High); ++Low) 2793 CaseVals.push_back(ConstantInt::get(Context, Low)); 2794 } else 2795 CaseVals.push_back(ConstantInt::get(Context, Low)); 2796 } 2797 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2798 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2799 cve = CaseVals.end(); cvi != cve; ++cvi) 2800 SI->addCase(*cvi, DestBB); 2801 } 2802 I = SI; 2803 break; 2804 } 2805 2806 // Old SwitchInst format without case ranges. 2807 2808 if (Record.size() < 3 || (Record.size() & 1) == 0) 2809 return Error(BitcodeError::InvalidRecord); 2810 Type *OpTy = getTypeByID(Record[0]); 2811 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2812 BasicBlock *Default = getBasicBlock(Record[2]); 2813 if (!OpTy || !Cond || !Default) 2814 return Error(BitcodeError::InvalidRecord); 2815 unsigned NumCases = (Record.size()-3)/2; 2816 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2817 InstructionList.push_back(SI); 2818 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2819 ConstantInt *CaseVal = 2820 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2821 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2822 if (!CaseVal || !DestBB) { 2823 delete SI; 2824 return Error(BitcodeError::InvalidRecord); 2825 } 2826 SI->addCase(CaseVal, DestBB); 2827 } 2828 I = SI; 2829 break; 2830 } 2831 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2832 if (Record.size() < 2) 2833 return Error(BitcodeError::InvalidRecord); 2834 Type *OpTy = getTypeByID(Record[0]); 2835 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2836 if (!OpTy || !Address) 2837 return Error(BitcodeError::InvalidRecord); 2838 unsigned NumDests = Record.size()-2; 2839 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2840 InstructionList.push_back(IBI); 2841 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2842 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2843 IBI->addDestination(DestBB); 2844 } else { 2845 delete IBI; 2846 return Error(BitcodeError::InvalidRecord); 2847 } 2848 } 2849 I = IBI; 2850 break; 2851 } 2852 2853 case bitc::FUNC_CODE_INST_INVOKE: { 2854 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2855 if (Record.size() < 4) 2856 return Error(BitcodeError::InvalidRecord); 2857 AttributeSet PAL = getAttributes(Record[0]); 2858 unsigned CCInfo = Record[1]; 2859 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2860 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2861 2862 unsigned OpNum = 4; 2863 Value *Callee; 2864 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2865 return Error(BitcodeError::InvalidRecord); 2866 2867 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2868 FunctionType *FTy = !CalleeTy ? nullptr : 2869 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2870 2871 // Check that the right number of fixed parameters are here. 2872 if (!FTy || !NormalBB || !UnwindBB || 2873 Record.size() < OpNum+FTy->getNumParams()) 2874 return Error(BitcodeError::InvalidRecord); 2875 2876 SmallVector<Value*, 16> Ops; 2877 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2878 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2879 FTy->getParamType(i))); 2880 if (!Ops.back()) 2881 return Error(BitcodeError::InvalidRecord); 2882 } 2883 2884 if (!FTy->isVarArg()) { 2885 if (Record.size() != OpNum) 2886 return Error(BitcodeError::InvalidRecord); 2887 } else { 2888 // Read type/value pairs for varargs params. 2889 while (OpNum != Record.size()) { 2890 Value *Op; 2891 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2892 return Error(BitcodeError::InvalidRecord); 2893 Ops.push_back(Op); 2894 } 2895 } 2896 2897 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2898 InstructionList.push_back(I); 2899 cast<InvokeInst>(I)->setCallingConv( 2900 static_cast<CallingConv::ID>(CCInfo)); 2901 cast<InvokeInst>(I)->setAttributes(PAL); 2902 break; 2903 } 2904 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2905 unsigned Idx = 0; 2906 Value *Val = nullptr; 2907 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2908 return Error(BitcodeError::InvalidRecord); 2909 I = ResumeInst::Create(Val); 2910 InstructionList.push_back(I); 2911 break; 2912 } 2913 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2914 I = new UnreachableInst(Context); 2915 InstructionList.push_back(I); 2916 break; 2917 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2918 if (Record.size() < 1 || ((Record.size()-1)&1)) 2919 return Error(BitcodeError::InvalidRecord); 2920 Type *Ty = getTypeByID(Record[0]); 2921 if (!Ty) 2922 return Error(BitcodeError::InvalidRecord); 2923 2924 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2925 InstructionList.push_back(PN); 2926 2927 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2928 Value *V; 2929 // With the new function encoding, it is possible that operands have 2930 // negative IDs (for forward references). Use a signed VBR 2931 // representation to keep the encoding small. 2932 if (UseRelativeIDs) 2933 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2934 else 2935 V = getValue(Record, 1+i, NextValueNo, Ty); 2936 BasicBlock *BB = getBasicBlock(Record[2+i]); 2937 if (!V || !BB) 2938 return Error(BitcodeError::InvalidRecord); 2939 PN->addIncoming(V, BB); 2940 } 2941 I = PN; 2942 break; 2943 } 2944 2945 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2946 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2947 unsigned Idx = 0; 2948 if (Record.size() < 4) 2949 return Error(BitcodeError::InvalidRecord); 2950 Type *Ty = getTypeByID(Record[Idx++]); 2951 if (!Ty) 2952 return Error(BitcodeError::InvalidRecord); 2953 Value *PersFn = nullptr; 2954 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2955 return Error(BitcodeError::InvalidRecord); 2956 2957 bool IsCleanup = !!Record[Idx++]; 2958 unsigned NumClauses = Record[Idx++]; 2959 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2960 LP->setCleanup(IsCleanup); 2961 for (unsigned J = 0; J != NumClauses; ++J) { 2962 LandingPadInst::ClauseType CT = 2963 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2964 Value *Val; 2965 2966 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2967 delete LP; 2968 return Error(BitcodeError::InvalidRecord); 2969 } 2970 2971 assert((CT != LandingPadInst::Catch || 2972 !isa<ArrayType>(Val->getType())) && 2973 "Catch clause has a invalid type!"); 2974 assert((CT != LandingPadInst::Filter || 2975 isa<ArrayType>(Val->getType())) && 2976 "Filter clause has invalid type!"); 2977 LP->addClause(cast<Constant>(Val)); 2978 } 2979 2980 I = LP; 2981 InstructionList.push_back(I); 2982 break; 2983 } 2984 2985 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2986 if (Record.size() != 4) 2987 return Error(BitcodeError::InvalidRecord); 2988 PointerType *Ty = 2989 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2990 Type *OpTy = getTypeByID(Record[1]); 2991 Value *Size = getFnValueByID(Record[2], OpTy); 2992 unsigned AlignRecord = Record[3]; 2993 bool InAlloca = AlignRecord & (1 << 5); 2994 unsigned Align = AlignRecord & ((1 << 5) - 1); 2995 if (!Ty || !Size) 2996 return Error(BitcodeError::InvalidRecord); 2997 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2998 AI->setUsedWithInAlloca(InAlloca); 2999 I = AI; 3000 InstructionList.push_back(I); 3001 break; 3002 } 3003 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3004 unsigned OpNum = 0; 3005 Value *Op; 3006 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3007 OpNum+2 != Record.size()) 3008 return Error(BitcodeError::InvalidRecord); 3009 3010 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3011 InstructionList.push_back(I); 3012 break; 3013 } 3014 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3015 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3016 unsigned OpNum = 0; 3017 Value *Op; 3018 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3019 OpNum+4 != Record.size()) 3020 return Error(BitcodeError::InvalidRecord); 3021 3022 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3023 if (Ordering == NotAtomic || Ordering == Release || 3024 Ordering == AcquireRelease) 3025 return Error(BitcodeError::InvalidRecord); 3026 if (Ordering != NotAtomic && Record[OpNum] == 0) 3027 return Error(BitcodeError::InvalidRecord); 3028 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3029 3030 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3031 Ordering, SynchScope); 3032 InstructionList.push_back(I); 3033 break; 3034 } 3035 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3036 unsigned OpNum = 0; 3037 Value *Val, *Ptr; 3038 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3039 popValue(Record, OpNum, NextValueNo, 3040 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3041 OpNum+2 != Record.size()) 3042 return Error(BitcodeError::InvalidRecord); 3043 3044 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3045 InstructionList.push_back(I); 3046 break; 3047 } 3048 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3049 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3050 unsigned OpNum = 0; 3051 Value *Val, *Ptr; 3052 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3053 popValue(Record, OpNum, NextValueNo, 3054 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3055 OpNum+4 != Record.size()) 3056 return Error(BitcodeError::InvalidRecord); 3057 3058 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3059 if (Ordering == NotAtomic || Ordering == Acquire || 3060 Ordering == AcquireRelease) 3061 return Error(BitcodeError::InvalidRecord); 3062 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3063 if (Ordering != NotAtomic && Record[OpNum] == 0) 3064 return Error(BitcodeError::InvalidRecord); 3065 3066 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3067 Ordering, SynchScope); 3068 InstructionList.push_back(I); 3069 break; 3070 } 3071 case bitc::FUNC_CODE_INST_CMPXCHG: { 3072 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3073 // failureordering?, isweak?] 3074 unsigned OpNum = 0; 3075 Value *Ptr, *Cmp, *New; 3076 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3077 popValue(Record, OpNum, NextValueNo, 3078 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3079 popValue(Record, OpNum, NextValueNo, 3080 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3081 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3082 return Error(BitcodeError::InvalidRecord); 3083 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3084 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3085 return Error(BitcodeError::InvalidRecord); 3086 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3087 3088 AtomicOrdering FailureOrdering; 3089 if (Record.size() < 7) 3090 FailureOrdering = 3091 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3092 else 3093 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3094 3095 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3096 SynchScope); 3097 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3098 3099 if (Record.size() < 8) { 3100 // Before weak cmpxchgs existed, the instruction simply returned the 3101 // value loaded from memory, so bitcode files from that era will be 3102 // expecting the first component of a modern cmpxchg. 3103 CurBB->getInstList().push_back(I); 3104 I = ExtractValueInst::Create(I, 0); 3105 } else { 3106 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3107 } 3108 3109 InstructionList.push_back(I); 3110 break; 3111 } 3112 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3113 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3114 unsigned OpNum = 0; 3115 Value *Ptr, *Val; 3116 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3117 popValue(Record, OpNum, NextValueNo, 3118 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3119 OpNum+4 != Record.size()) 3120 return Error(BitcodeError::InvalidRecord); 3121 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3122 if (Operation < AtomicRMWInst::FIRST_BINOP || 3123 Operation > AtomicRMWInst::LAST_BINOP) 3124 return Error(BitcodeError::InvalidRecord); 3125 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3126 if (Ordering == NotAtomic || Ordering == Unordered) 3127 return Error(BitcodeError::InvalidRecord); 3128 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3129 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3130 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3131 InstructionList.push_back(I); 3132 break; 3133 } 3134 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3135 if (2 != Record.size()) 3136 return Error(BitcodeError::InvalidRecord); 3137 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3138 if (Ordering == NotAtomic || Ordering == Unordered || 3139 Ordering == Monotonic) 3140 return Error(BitcodeError::InvalidRecord); 3141 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3142 I = new FenceInst(Context, Ordering, SynchScope); 3143 InstructionList.push_back(I); 3144 break; 3145 } 3146 case bitc::FUNC_CODE_INST_CALL: { 3147 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3148 if (Record.size() < 3) 3149 return Error(BitcodeError::InvalidRecord); 3150 3151 AttributeSet PAL = getAttributes(Record[0]); 3152 unsigned CCInfo = Record[1]; 3153 3154 unsigned OpNum = 2; 3155 Value *Callee; 3156 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3157 return Error(BitcodeError::InvalidRecord); 3158 3159 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3160 FunctionType *FTy = nullptr; 3161 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3162 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3163 return Error(BitcodeError::InvalidRecord); 3164 3165 SmallVector<Value*, 16> Args; 3166 // Read the fixed params. 3167 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3168 if (FTy->getParamType(i)->isLabelTy()) 3169 Args.push_back(getBasicBlock(Record[OpNum])); 3170 else 3171 Args.push_back(getValue(Record, OpNum, NextValueNo, 3172 FTy->getParamType(i))); 3173 if (!Args.back()) 3174 return Error(BitcodeError::InvalidRecord); 3175 } 3176 3177 // Read type/value pairs for varargs params. 3178 if (!FTy->isVarArg()) { 3179 if (OpNum != Record.size()) 3180 return Error(BitcodeError::InvalidRecord); 3181 } else { 3182 while (OpNum != Record.size()) { 3183 Value *Op; 3184 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3185 return Error(BitcodeError::InvalidRecord); 3186 Args.push_back(Op); 3187 } 3188 } 3189 3190 I = CallInst::Create(Callee, Args); 3191 InstructionList.push_back(I); 3192 cast<CallInst>(I)->setCallingConv( 3193 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3194 CallInst::TailCallKind TCK = CallInst::TCK_None; 3195 if (CCInfo & 1) 3196 TCK = CallInst::TCK_Tail; 3197 if (CCInfo & (1 << 14)) 3198 TCK = CallInst::TCK_MustTail; 3199 cast<CallInst>(I)->setTailCallKind(TCK); 3200 cast<CallInst>(I)->setAttributes(PAL); 3201 break; 3202 } 3203 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3204 if (Record.size() < 3) 3205 return Error(BitcodeError::InvalidRecord); 3206 Type *OpTy = getTypeByID(Record[0]); 3207 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3208 Type *ResTy = getTypeByID(Record[2]); 3209 if (!OpTy || !Op || !ResTy) 3210 return Error(BitcodeError::InvalidRecord); 3211 I = new VAArgInst(Op, ResTy); 3212 InstructionList.push_back(I); 3213 break; 3214 } 3215 } 3216 3217 // Add instruction to end of current BB. If there is no current BB, reject 3218 // this file. 3219 if (!CurBB) { 3220 delete I; 3221 return Error(BitcodeError::InvalidInstructionWithNoBB); 3222 } 3223 CurBB->getInstList().push_back(I); 3224 3225 // If this was a terminator instruction, move to the next block. 3226 if (isa<TerminatorInst>(I)) { 3227 ++CurBBNo; 3228 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3229 } 3230 3231 // Non-void values get registered in the value table for future use. 3232 if (I && !I->getType()->isVoidTy()) 3233 ValueList.AssignValue(I, NextValueNo++); 3234 } 3235 3236 OutOfRecordLoop: 3237 3238 // Check the function list for unresolved values. 3239 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3240 if (!A->getParent()) { 3241 // We found at least one unresolved value. Nuke them all to avoid leaks. 3242 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3243 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3244 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3245 delete A; 3246 } 3247 } 3248 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3249 } 3250 } 3251 3252 // FIXME: Check for unresolved forward-declared metadata references 3253 // and clean up leaks. 3254 3255 // Trim the value list down to the size it was before we parsed this function. 3256 ValueList.shrinkTo(ModuleValueListSize); 3257 MDValueList.shrinkTo(ModuleMDValueListSize); 3258 std::vector<BasicBlock*>().swap(FunctionBBs); 3259 return std::error_code(); 3260 } 3261 3262 /// Find the function body in the bitcode stream 3263 std::error_code BitcodeReader::FindFunctionInStream( 3264 Function *F, 3265 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3266 while (DeferredFunctionInfoIterator->second == 0) { 3267 if (Stream.AtEndOfStream()) 3268 return Error(BitcodeError::CouldNotFindFunctionInStream); 3269 // ParseModule will parse the next body in the stream and set its 3270 // position in the DeferredFunctionInfo map. 3271 if (std::error_code EC = ParseModule(true)) 3272 return EC; 3273 } 3274 return std::error_code(); 3275 } 3276 3277 //===----------------------------------------------------------------------===// 3278 // GVMaterializer implementation 3279 //===----------------------------------------------------------------------===// 3280 3281 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3282 3283 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3284 if (const Function *F = dyn_cast<Function>(GV)) { 3285 return F->isDeclaration() && 3286 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3287 } 3288 return false; 3289 } 3290 3291 std::error_code BitcodeReader::Materialize(GlobalValue *GV) { 3292 Function *F = dyn_cast<Function>(GV); 3293 // If it's not a function or is already material, ignore the request. 3294 if (!F || !F->isMaterializable()) 3295 return std::error_code(); 3296 3297 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3298 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3299 // If its position is recorded as 0, its body is somewhere in the stream 3300 // but we haven't seen it yet. 3301 if (DFII->second == 0 && LazyStreamer) 3302 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3303 return EC; 3304 3305 // Move the bit stream to the saved position of the deferred function body. 3306 Stream.JumpToBit(DFII->second); 3307 3308 if (std::error_code EC = ParseFunctionBody(F)) 3309 return EC; 3310 3311 // Upgrade any old intrinsic calls in the function. 3312 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3313 E = UpgradedIntrinsics.end(); I != E; ++I) { 3314 if (I->first != I->second) { 3315 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3316 UI != UE;) { 3317 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3318 UpgradeIntrinsicCall(CI, I->second); 3319 } 3320 } 3321 } 3322 3323 // Bring in any functions that this function forward-referenced via 3324 // blockaddresses. 3325 return materializeForwardReferencedFunctions(); 3326 } 3327 3328 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3329 const Function *F = dyn_cast<Function>(GV); 3330 if (!F || F->isDeclaration()) 3331 return false; 3332 3333 // Dematerializing F would leave dangling references that wouldn't be 3334 // reconnected on re-materialization. 3335 if (BlockAddressesTaken.count(F)) 3336 return false; 3337 3338 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3339 } 3340 3341 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3342 Function *F = dyn_cast<Function>(GV); 3343 // If this function isn't dematerializable, this is a noop. 3344 if (!F || !isDematerializable(F)) 3345 return; 3346 3347 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3348 3349 // Just forget the function body, we can remat it later. 3350 F->deleteBody(); 3351 } 3352 3353 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3354 assert(M == TheModule && 3355 "Can only Materialize the Module this BitcodeReader is attached to."); 3356 3357 // Promise to materialize all forward references. 3358 WillMaterializeAllForwardRefs = true; 3359 3360 // Iterate over the module, deserializing any functions that are still on 3361 // disk. 3362 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3363 F != E; ++F) { 3364 if (F->isMaterializable()) { 3365 if (std::error_code EC = Materialize(F)) 3366 return EC; 3367 } 3368 } 3369 // At this point, if there are any function bodies, the current bit is 3370 // pointing to the END_BLOCK record after them. Now make sure the rest 3371 // of the bits in the module have been read. 3372 if (NextUnreadBit) 3373 ParseModule(true); 3374 3375 // Check that all block address forward references got resolved (as we 3376 // promised above). 3377 if (!BasicBlockFwdRefs.empty()) 3378 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3379 3380 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3381 // delete the old functions to clean up. We can't do this unless the entire 3382 // module is materialized because there could always be another function body 3383 // with calls to the old function. 3384 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3385 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3386 if (I->first != I->second) { 3387 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3388 UI != UE;) { 3389 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3390 UpgradeIntrinsicCall(CI, I->second); 3391 } 3392 if (!I->first->use_empty()) 3393 I->first->replaceAllUsesWith(I->second); 3394 I->first->eraseFromParent(); 3395 } 3396 } 3397 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3398 3399 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3400 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3401 3402 UpgradeDebugInfo(*M); 3403 return std::error_code(); 3404 } 3405 3406 std::error_code BitcodeReader::InitStream() { 3407 if (LazyStreamer) 3408 return InitLazyStream(); 3409 return InitStreamFromBuffer(); 3410 } 3411 3412 std::error_code BitcodeReader::InitStreamFromBuffer() { 3413 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3414 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3415 3416 if (Buffer->getBufferSize() & 3) 3417 return Error(BitcodeError::InvalidBitcodeSignature); 3418 3419 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3420 // The magic number is 0x0B17C0DE stored in little endian. 3421 if (isBitcodeWrapper(BufPtr, BufEnd)) 3422 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3423 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3424 3425 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3426 Stream.init(*StreamFile); 3427 3428 return std::error_code(); 3429 } 3430 3431 std::error_code BitcodeReader::InitLazyStream() { 3432 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3433 // see it. 3434 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3435 StreamFile.reset(new BitstreamReader(Bytes)); 3436 Stream.init(*StreamFile); 3437 3438 unsigned char buf[16]; 3439 if (Bytes->readBytes(0, 16, buf) == -1) 3440 return Error(BitcodeError::InvalidBitcodeSignature); 3441 3442 if (!isBitcode(buf, buf + 16)) 3443 return Error(BitcodeError::InvalidBitcodeSignature); 3444 3445 if (isBitcodeWrapper(buf, buf + 4)) { 3446 const unsigned char *bitcodeStart = buf; 3447 const unsigned char *bitcodeEnd = buf + 16; 3448 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3449 Bytes->dropLeadingBytes(bitcodeStart - buf); 3450 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3451 } 3452 return std::error_code(); 3453 } 3454 3455 namespace { 3456 class BitcodeErrorCategoryType : public std::error_category { 3457 const char *name() const LLVM_NOEXCEPT override { 3458 return "llvm.bitcode"; 3459 } 3460 std::string message(int IE) const override { 3461 BitcodeError E = static_cast<BitcodeError>(IE); 3462 switch (E) { 3463 case BitcodeError::ConflictingMETADATA_KINDRecords: 3464 return "Conflicting METADATA_KIND records"; 3465 case BitcodeError::CouldNotFindFunctionInStream: 3466 return "Could not find function in stream"; 3467 case BitcodeError::ExpectedConstant: 3468 return "Expected a constant"; 3469 case BitcodeError::InsufficientFunctionProtos: 3470 return "Insufficient function protos"; 3471 case BitcodeError::InvalidBitcodeSignature: 3472 return "Invalid bitcode signature"; 3473 case BitcodeError::InvalidBitcodeWrapperHeader: 3474 return "Invalid bitcode wrapper header"; 3475 case BitcodeError::InvalidConstantReference: 3476 return "Invalid ronstant reference"; 3477 case BitcodeError::InvalidID: 3478 return "Invalid ID"; 3479 case BitcodeError::InvalidInstructionWithNoBB: 3480 return "Invalid instruction with no BB"; 3481 case BitcodeError::InvalidRecord: 3482 return "Invalid record"; 3483 case BitcodeError::InvalidTypeForValue: 3484 return "Invalid type for value"; 3485 case BitcodeError::InvalidTYPETable: 3486 return "Invalid TYPE table"; 3487 case BitcodeError::InvalidType: 3488 return "Invalid type"; 3489 case BitcodeError::MalformedBlock: 3490 return "Malformed block"; 3491 case BitcodeError::MalformedGlobalInitializerSet: 3492 return "Malformed global initializer set"; 3493 case BitcodeError::InvalidMultipleBlocks: 3494 return "Invalid multiple blocks"; 3495 case BitcodeError::NeverResolvedValueFoundInFunction: 3496 return "Never resolved value found in function"; 3497 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3498 return "Never resolved function from blockaddress"; 3499 case BitcodeError::InvalidValue: 3500 return "Invalid value"; 3501 } 3502 llvm_unreachable("Unknown error type!"); 3503 } 3504 }; 3505 } 3506 3507 const std::error_category &llvm::BitcodeErrorCategory() { 3508 static BitcodeErrorCategoryType O; 3509 return O; 3510 } 3511 3512 //===----------------------------------------------------------------------===// 3513 // External interface 3514 //===----------------------------------------------------------------------===// 3515 3516 /// \brief Get a lazy one-at-time loading module from bitcode. 3517 /// 3518 /// This isn't always used in a lazy context. In particular, it's also used by 3519 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3520 /// in forward-referenced functions from block address references. 3521 /// 3522 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3523 /// materialize everything -- in particular, if this isn't truly lazy. 3524 static ErrorOr<Module *> getLazyBitcodeModuleImpl(MemoryBuffer *Buffer, 3525 LLVMContext &Context, 3526 bool WillMaterializeAll) { 3527 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3528 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3529 M->setMaterializer(R); 3530 3531 auto cleanupOnError = [&](std::error_code EC) { 3532 R->releaseBuffer(); // Never take ownership on error. 3533 delete M; // Also deletes R. 3534 return EC; 3535 }; 3536 3537 if (std::error_code EC = R->ParseBitcodeInto(M)) 3538 return cleanupOnError(EC); 3539 3540 if (!WillMaterializeAll) 3541 // Resolve forward references from blockaddresses. 3542 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3543 return cleanupOnError(EC); 3544 3545 return M; 3546 } 3547 3548 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3549 LLVMContext &Context) { 3550 return getLazyBitcodeModuleImpl(Buffer, Context, false); 3551 } 3552 3553 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3554 DataStreamer *streamer, 3555 LLVMContext &Context, 3556 std::string *ErrMsg) { 3557 Module *M = new Module(name, Context); 3558 BitcodeReader *R = new BitcodeReader(streamer, Context); 3559 M->setMaterializer(R); 3560 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3561 if (ErrMsg) 3562 *ErrMsg = EC.message(); 3563 delete M; // Also deletes R. 3564 return nullptr; 3565 } 3566 return M; 3567 } 3568 3569 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3570 LLVMContext &Context) { 3571 ErrorOr<Module *> ModuleOrErr = 3572 getLazyBitcodeModuleImpl(Buffer, Context, true); 3573 if (!ModuleOrErr) 3574 return ModuleOrErr; 3575 Module *M = ModuleOrErr.get(); 3576 // Read in the entire module, and destroy the BitcodeReader. 3577 if (std::error_code EC = M->materializeAllPermanently(true)) { 3578 delete M; 3579 return EC; 3580 } 3581 3582 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3583 // written. We must defer until the Module has been fully materialized. 3584 3585 return M; 3586 } 3587 3588 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3589 LLVMContext &Context) { 3590 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3591 ErrorOr<std::string> Triple = R->parseTriple(); 3592 R->releaseBuffer(); 3593 delete R; 3594 if (Triple.getError()) 3595 return ""; 3596 return Triple.get(); 3597 } 3598