1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_STRING: { 1441 std::string String(Record.begin(), Record.end()); 1442 llvm::UpgradeMDStringConstant(String); 1443 Metadata *MD = MDString::get(Context, String); 1444 MDValueList.AssignValue(MD, NextMDValueNo++); 1445 break; 1446 } 1447 case bitc::METADATA_KIND: { 1448 if (Record.size() < 2) 1449 return Error("Invalid record"); 1450 1451 unsigned Kind = Record[0]; 1452 SmallString<8> Name(Record.begin()+1, Record.end()); 1453 1454 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1455 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1456 return Error("Conflicting METADATA_KIND records"); 1457 break; 1458 } 1459 } 1460 } 1461 #undef GET_OR_DISTINCT 1462 } 1463 1464 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1465 /// the LSB for dense VBR encoding. 1466 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1467 if ((V & 1) == 0) 1468 return V >> 1; 1469 if (V != 1) 1470 return -(V >> 1); 1471 // There is no such thing as -0 with integers. "-0" really means MININT. 1472 return 1ULL << 63; 1473 } 1474 1475 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1476 /// values and aliases that we can. 1477 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1478 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1479 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1480 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1481 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1482 1483 GlobalInitWorklist.swap(GlobalInits); 1484 AliasInitWorklist.swap(AliasInits); 1485 FunctionPrefixWorklist.swap(FunctionPrefixes); 1486 FunctionPrologueWorklist.swap(FunctionPrologues); 1487 1488 while (!GlobalInitWorklist.empty()) { 1489 unsigned ValID = GlobalInitWorklist.back().second; 1490 if (ValID >= ValueList.size()) { 1491 // Not ready to resolve this yet, it requires something later in the file. 1492 GlobalInits.push_back(GlobalInitWorklist.back()); 1493 } else { 1494 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1495 GlobalInitWorklist.back().first->setInitializer(C); 1496 else 1497 return Error("Expected a constant"); 1498 } 1499 GlobalInitWorklist.pop_back(); 1500 } 1501 1502 while (!AliasInitWorklist.empty()) { 1503 unsigned ValID = AliasInitWorklist.back().second; 1504 if (ValID >= ValueList.size()) { 1505 AliasInits.push_back(AliasInitWorklist.back()); 1506 } else { 1507 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1508 AliasInitWorklist.back().first->setAliasee(C); 1509 else 1510 return Error("Expected a constant"); 1511 } 1512 AliasInitWorklist.pop_back(); 1513 } 1514 1515 while (!FunctionPrefixWorklist.empty()) { 1516 unsigned ValID = FunctionPrefixWorklist.back().second; 1517 if (ValID >= ValueList.size()) { 1518 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1519 } else { 1520 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1521 FunctionPrefixWorklist.back().first->setPrefixData(C); 1522 else 1523 return Error("Expected a constant"); 1524 } 1525 FunctionPrefixWorklist.pop_back(); 1526 } 1527 1528 while (!FunctionPrologueWorklist.empty()) { 1529 unsigned ValID = FunctionPrologueWorklist.back().second; 1530 if (ValID >= ValueList.size()) { 1531 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1532 } else { 1533 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1534 FunctionPrologueWorklist.back().first->setPrologueData(C); 1535 else 1536 return Error("Expected a constant"); 1537 } 1538 FunctionPrologueWorklist.pop_back(); 1539 } 1540 1541 return std::error_code(); 1542 } 1543 1544 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1545 SmallVector<uint64_t, 8> Words(Vals.size()); 1546 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1547 BitcodeReader::decodeSignRotatedValue); 1548 1549 return APInt(TypeBits, Words); 1550 } 1551 1552 std::error_code BitcodeReader::ParseConstants() { 1553 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1554 return Error("Invalid record"); 1555 1556 SmallVector<uint64_t, 64> Record; 1557 1558 // Read all the records for this value table. 1559 Type *CurTy = Type::getInt32Ty(Context); 1560 unsigned NextCstNo = ValueList.size(); 1561 while (1) { 1562 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1563 1564 switch (Entry.Kind) { 1565 case BitstreamEntry::SubBlock: // Handled for us already. 1566 case BitstreamEntry::Error: 1567 return Error("Malformed block"); 1568 case BitstreamEntry::EndBlock: 1569 if (NextCstNo != ValueList.size()) 1570 return Error("Invalid ronstant reference"); 1571 1572 // Once all the constants have been read, go through and resolve forward 1573 // references. 1574 ValueList.ResolveConstantForwardRefs(); 1575 return std::error_code(); 1576 case BitstreamEntry::Record: 1577 // The interesting case. 1578 break; 1579 } 1580 1581 // Read a record. 1582 Record.clear(); 1583 Value *V = nullptr; 1584 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1585 switch (BitCode) { 1586 default: // Default behavior: unknown constant 1587 case bitc::CST_CODE_UNDEF: // UNDEF 1588 V = UndefValue::get(CurTy); 1589 break; 1590 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1591 if (Record.empty()) 1592 return Error("Invalid record"); 1593 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1594 return Error("Invalid record"); 1595 CurTy = TypeList[Record[0]]; 1596 continue; // Skip the ValueList manipulation. 1597 case bitc::CST_CODE_NULL: // NULL 1598 V = Constant::getNullValue(CurTy); 1599 break; 1600 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1601 if (!CurTy->isIntegerTy() || Record.empty()) 1602 return Error("Invalid record"); 1603 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1604 break; 1605 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1606 if (!CurTy->isIntegerTy() || Record.empty()) 1607 return Error("Invalid record"); 1608 1609 APInt VInt = ReadWideAPInt(Record, 1610 cast<IntegerType>(CurTy)->getBitWidth()); 1611 V = ConstantInt::get(Context, VInt); 1612 1613 break; 1614 } 1615 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1616 if (Record.empty()) 1617 return Error("Invalid record"); 1618 if (CurTy->isHalfTy()) 1619 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1620 APInt(16, (uint16_t)Record[0]))); 1621 else if (CurTy->isFloatTy()) 1622 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1623 APInt(32, (uint32_t)Record[0]))); 1624 else if (CurTy->isDoubleTy()) 1625 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1626 APInt(64, Record[0]))); 1627 else if (CurTy->isX86_FP80Ty()) { 1628 // Bits are not stored the same way as a normal i80 APInt, compensate. 1629 uint64_t Rearrange[2]; 1630 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1631 Rearrange[1] = Record[0] >> 48; 1632 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1633 APInt(80, Rearrange))); 1634 } else if (CurTy->isFP128Ty()) 1635 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1636 APInt(128, Record))); 1637 else if (CurTy->isPPC_FP128Ty()) 1638 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1639 APInt(128, Record))); 1640 else 1641 V = UndefValue::get(CurTy); 1642 break; 1643 } 1644 1645 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1646 if (Record.empty()) 1647 return Error("Invalid record"); 1648 1649 unsigned Size = Record.size(); 1650 SmallVector<Constant*, 16> Elts; 1651 1652 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1653 for (unsigned i = 0; i != Size; ++i) 1654 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1655 STy->getElementType(i))); 1656 V = ConstantStruct::get(STy, Elts); 1657 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1658 Type *EltTy = ATy->getElementType(); 1659 for (unsigned i = 0; i != Size; ++i) 1660 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1661 V = ConstantArray::get(ATy, Elts); 1662 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1663 Type *EltTy = VTy->getElementType(); 1664 for (unsigned i = 0; i != Size; ++i) 1665 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1666 V = ConstantVector::get(Elts); 1667 } else { 1668 V = UndefValue::get(CurTy); 1669 } 1670 break; 1671 } 1672 case bitc::CST_CODE_STRING: // STRING: [values] 1673 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1674 if (Record.empty()) 1675 return Error("Invalid record"); 1676 1677 SmallString<16> Elts(Record.begin(), Record.end()); 1678 V = ConstantDataArray::getString(Context, Elts, 1679 BitCode == bitc::CST_CODE_CSTRING); 1680 break; 1681 } 1682 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1683 if (Record.empty()) 1684 return Error("Invalid record"); 1685 1686 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1687 unsigned Size = Record.size(); 1688 1689 if (EltTy->isIntegerTy(8)) { 1690 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1691 if (isa<VectorType>(CurTy)) 1692 V = ConstantDataVector::get(Context, Elts); 1693 else 1694 V = ConstantDataArray::get(Context, Elts); 1695 } else if (EltTy->isIntegerTy(16)) { 1696 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1697 if (isa<VectorType>(CurTy)) 1698 V = ConstantDataVector::get(Context, Elts); 1699 else 1700 V = ConstantDataArray::get(Context, Elts); 1701 } else if (EltTy->isIntegerTy(32)) { 1702 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1703 if (isa<VectorType>(CurTy)) 1704 V = ConstantDataVector::get(Context, Elts); 1705 else 1706 V = ConstantDataArray::get(Context, Elts); 1707 } else if (EltTy->isIntegerTy(64)) { 1708 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1709 if (isa<VectorType>(CurTy)) 1710 V = ConstantDataVector::get(Context, Elts); 1711 else 1712 V = ConstantDataArray::get(Context, Elts); 1713 } else if (EltTy->isFloatTy()) { 1714 SmallVector<float, 16> Elts(Size); 1715 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1716 if (isa<VectorType>(CurTy)) 1717 V = ConstantDataVector::get(Context, Elts); 1718 else 1719 V = ConstantDataArray::get(Context, Elts); 1720 } else if (EltTy->isDoubleTy()) { 1721 SmallVector<double, 16> Elts(Size); 1722 std::transform(Record.begin(), Record.end(), Elts.begin(), 1723 BitsToDouble); 1724 if (isa<VectorType>(CurTy)) 1725 V = ConstantDataVector::get(Context, Elts); 1726 else 1727 V = ConstantDataArray::get(Context, Elts); 1728 } else { 1729 return Error("Invalid type for value"); 1730 } 1731 break; 1732 } 1733 1734 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1735 if (Record.size() < 3) 1736 return Error("Invalid record"); 1737 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1738 if (Opc < 0) { 1739 V = UndefValue::get(CurTy); // Unknown binop. 1740 } else { 1741 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1742 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1743 unsigned Flags = 0; 1744 if (Record.size() >= 4) { 1745 if (Opc == Instruction::Add || 1746 Opc == Instruction::Sub || 1747 Opc == Instruction::Mul || 1748 Opc == Instruction::Shl) { 1749 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1750 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1751 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1752 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1753 } else if (Opc == Instruction::SDiv || 1754 Opc == Instruction::UDiv || 1755 Opc == Instruction::LShr || 1756 Opc == Instruction::AShr) { 1757 if (Record[3] & (1 << bitc::PEO_EXACT)) 1758 Flags |= SDivOperator::IsExact; 1759 } 1760 } 1761 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1762 } 1763 break; 1764 } 1765 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1766 if (Record.size() < 3) 1767 return Error("Invalid record"); 1768 int Opc = GetDecodedCastOpcode(Record[0]); 1769 if (Opc < 0) { 1770 V = UndefValue::get(CurTy); // Unknown cast. 1771 } else { 1772 Type *OpTy = getTypeByID(Record[1]); 1773 if (!OpTy) 1774 return Error("Invalid record"); 1775 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1776 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1777 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1778 } 1779 break; 1780 } 1781 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1782 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1783 if (Record.size() & 1) 1784 return Error("Invalid record"); 1785 SmallVector<Constant*, 16> Elts; 1786 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1787 Type *ElTy = getTypeByID(Record[i]); 1788 if (!ElTy) 1789 return Error("Invalid record"); 1790 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1791 } 1792 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1793 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1794 BitCode == 1795 bitc::CST_CODE_CE_INBOUNDS_GEP); 1796 break; 1797 } 1798 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1799 if (Record.size() < 3) 1800 return Error("Invalid record"); 1801 1802 Type *SelectorTy = Type::getInt1Ty(Context); 1803 1804 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1805 // vector. Otherwise, it must be a single bit. 1806 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1807 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1808 VTy->getNumElements()); 1809 1810 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1811 SelectorTy), 1812 ValueList.getConstantFwdRef(Record[1],CurTy), 1813 ValueList.getConstantFwdRef(Record[2],CurTy)); 1814 break; 1815 } 1816 case bitc::CST_CODE_CE_EXTRACTELT 1817 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1818 if (Record.size() < 3) 1819 return Error("Invalid record"); 1820 VectorType *OpTy = 1821 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1822 if (!OpTy) 1823 return Error("Invalid record"); 1824 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1825 Constant *Op1 = nullptr; 1826 if (Record.size() == 4) { 1827 Type *IdxTy = getTypeByID(Record[2]); 1828 if (!IdxTy) 1829 return Error("Invalid record"); 1830 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1831 } else // TODO: Remove with llvm 4.0 1832 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1833 if (!Op1) 1834 return Error("Invalid record"); 1835 V = ConstantExpr::getExtractElement(Op0, Op1); 1836 break; 1837 } 1838 case bitc::CST_CODE_CE_INSERTELT 1839 : { // CE_INSERTELT: [opval, opval, opty, opval] 1840 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1841 if (Record.size() < 3 || !OpTy) 1842 return Error("Invalid record"); 1843 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1844 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1845 OpTy->getElementType()); 1846 Constant *Op2 = nullptr; 1847 if (Record.size() == 4) { 1848 Type *IdxTy = getTypeByID(Record[2]); 1849 if (!IdxTy) 1850 return Error("Invalid record"); 1851 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1852 } else // TODO: Remove with llvm 4.0 1853 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1854 if (!Op2) 1855 return Error("Invalid record"); 1856 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1857 break; 1858 } 1859 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1860 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1861 if (Record.size() < 3 || !OpTy) 1862 return Error("Invalid record"); 1863 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1864 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1865 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1866 OpTy->getNumElements()); 1867 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1868 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1869 break; 1870 } 1871 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1872 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1873 VectorType *OpTy = 1874 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1875 if (Record.size() < 4 || !RTy || !OpTy) 1876 return Error("Invalid record"); 1877 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1878 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1879 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1880 RTy->getNumElements()); 1881 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1882 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1883 break; 1884 } 1885 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1886 if (Record.size() < 4) 1887 return Error("Invalid record"); 1888 Type *OpTy = getTypeByID(Record[0]); 1889 if (!OpTy) 1890 return Error("Invalid record"); 1891 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1892 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1893 1894 if (OpTy->isFPOrFPVectorTy()) 1895 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1896 else 1897 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1898 break; 1899 } 1900 // This maintains backward compatibility, pre-asm dialect keywords. 1901 // FIXME: Remove with the 4.0 release. 1902 case bitc::CST_CODE_INLINEASM_OLD: { 1903 if (Record.size() < 2) 1904 return Error("Invalid record"); 1905 std::string AsmStr, ConstrStr; 1906 bool HasSideEffects = Record[0] & 1; 1907 bool IsAlignStack = Record[0] >> 1; 1908 unsigned AsmStrSize = Record[1]; 1909 if (2+AsmStrSize >= Record.size()) 1910 return Error("Invalid record"); 1911 unsigned ConstStrSize = Record[2+AsmStrSize]; 1912 if (3+AsmStrSize+ConstStrSize > Record.size()) 1913 return Error("Invalid record"); 1914 1915 for (unsigned i = 0; i != AsmStrSize; ++i) 1916 AsmStr += (char)Record[2+i]; 1917 for (unsigned i = 0; i != ConstStrSize; ++i) 1918 ConstrStr += (char)Record[3+AsmStrSize+i]; 1919 PointerType *PTy = cast<PointerType>(CurTy); 1920 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1921 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1922 break; 1923 } 1924 // This version adds support for the asm dialect keywords (e.g., 1925 // inteldialect). 1926 case bitc::CST_CODE_INLINEASM: { 1927 if (Record.size() < 2) 1928 return Error("Invalid record"); 1929 std::string AsmStr, ConstrStr; 1930 bool HasSideEffects = Record[0] & 1; 1931 bool IsAlignStack = (Record[0] >> 1) & 1; 1932 unsigned AsmDialect = Record[0] >> 2; 1933 unsigned AsmStrSize = Record[1]; 1934 if (2+AsmStrSize >= Record.size()) 1935 return Error("Invalid record"); 1936 unsigned ConstStrSize = Record[2+AsmStrSize]; 1937 if (3+AsmStrSize+ConstStrSize > Record.size()) 1938 return Error("Invalid record"); 1939 1940 for (unsigned i = 0; i != AsmStrSize; ++i) 1941 AsmStr += (char)Record[2+i]; 1942 for (unsigned i = 0; i != ConstStrSize; ++i) 1943 ConstrStr += (char)Record[3+AsmStrSize+i]; 1944 PointerType *PTy = cast<PointerType>(CurTy); 1945 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1946 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1947 InlineAsm::AsmDialect(AsmDialect)); 1948 break; 1949 } 1950 case bitc::CST_CODE_BLOCKADDRESS:{ 1951 if (Record.size() < 3) 1952 return Error("Invalid record"); 1953 Type *FnTy = getTypeByID(Record[0]); 1954 if (!FnTy) 1955 return Error("Invalid record"); 1956 Function *Fn = 1957 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1958 if (!Fn) 1959 return Error("Invalid record"); 1960 1961 // Don't let Fn get dematerialized. 1962 BlockAddressesTaken.insert(Fn); 1963 1964 // If the function is already parsed we can insert the block address right 1965 // away. 1966 BasicBlock *BB; 1967 unsigned BBID = Record[2]; 1968 if (!BBID) 1969 // Invalid reference to entry block. 1970 return Error("Invalid ID"); 1971 if (!Fn->empty()) { 1972 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1973 for (size_t I = 0, E = BBID; I != E; ++I) { 1974 if (BBI == BBE) 1975 return Error("Invalid ID"); 1976 ++BBI; 1977 } 1978 BB = BBI; 1979 } else { 1980 // Otherwise insert a placeholder and remember it so it can be inserted 1981 // when the function is parsed. 1982 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1983 if (FwdBBs.empty()) 1984 BasicBlockFwdRefQueue.push_back(Fn); 1985 if (FwdBBs.size() < BBID + 1) 1986 FwdBBs.resize(BBID + 1); 1987 if (!FwdBBs[BBID]) 1988 FwdBBs[BBID] = BasicBlock::Create(Context); 1989 BB = FwdBBs[BBID]; 1990 } 1991 V = BlockAddress::get(Fn, BB); 1992 break; 1993 } 1994 } 1995 1996 ValueList.AssignValue(V, NextCstNo); 1997 ++NextCstNo; 1998 } 1999 } 2000 2001 std::error_code BitcodeReader::ParseUseLists() { 2002 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2003 return Error("Invalid record"); 2004 2005 // Read all the records. 2006 SmallVector<uint64_t, 64> Record; 2007 while (1) { 2008 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2009 2010 switch (Entry.Kind) { 2011 case BitstreamEntry::SubBlock: // Handled for us already. 2012 case BitstreamEntry::Error: 2013 return Error("Malformed block"); 2014 case BitstreamEntry::EndBlock: 2015 return std::error_code(); 2016 case BitstreamEntry::Record: 2017 // The interesting case. 2018 break; 2019 } 2020 2021 // Read a use list record. 2022 Record.clear(); 2023 bool IsBB = false; 2024 switch (Stream.readRecord(Entry.ID, Record)) { 2025 default: // Default behavior: unknown type. 2026 break; 2027 case bitc::USELIST_CODE_BB: 2028 IsBB = true; 2029 // fallthrough 2030 case bitc::USELIST_CODE_DEFAULT: { 2031 unsigned RecordLength = Record.size(); 2032 if (RecordLength < 3) 2033 // Records should have at least an ID and two indexes. 2034 return Error("Invalid record"); 2035 unsigned ID = Record.back(); 2036 Record.pop_back(); 2037 2038 Value *V; 2039 if (IsBB) { 2040 assert(ID < FunctionBBs.size() && "Basic block not found"); 2041 V = FunctionBBs[ID]; 2042 } else 2043 V = ValueList[ID]; 2044 unsigned NumUses = 0; 2045 SmallDenseMap<const Use *, unsigned, 16> Order; 2046 for (const Use &U : V->uses()) { 2047 if (++NumUses > Record.size()) 2048 break; 2049 Order[&U] = Record[NumUses - 1]; 2050 } 2051 if (Order.size() != Record.size() || NumUses > Record.size()) 2052 // Mismatches can happen if the functions are being materialized lazily 2053 // (out-of-order), or a value has been upgraded. 2054 break; 2055 2056 V->sortUseList([&](const Use &L, const Use &R) { 2057 return Order.lookup(&L) < Order.lookup(&R); 2058 }); 2059 break; 2060 } 2061 } 2062 } 2063 } 2064 2065 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2066 /// remember where it is and then skip it. This lets us lazily deserialize the 2067 /// functions. 2068 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2069 // Get the function we are talking about. 2070 if (FunctionsWithBodies.empty()) 2071 return Error("Insufficient function protos"); 2072 2073 Function *Fn = FunctionsWithBodies.back(); 2074 FunctionsWithBodies.pop_back(); 2075 2076 // Save the current stream state. 2077 uint64_t CurBit = Stream.GetCurrentBitNo(); 2078 DeferredFunctionInfo[Fn] = CurBit; 2079 2080 // Skip over the function block for now. 2081 if (Stream.SkipBlock()) 2082 return Error("Invalid record"); 2083 return std::error_code(); 2084 } 2085 2086 std::error_code BitcodeReader::GlobalCleanup() { 2087 // Patch the initializers for globals and aliases up. 2088 ResolveGlobalAndAliasInits(); 2089 if (!GlobalInits.empty() || !AliasInits.empty()) 2090 return Error("Malformed global initializer set"); 2091 2092 // Look for intrinsic functions which need to be upgraded at some point 2093 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2094 FI != FE; ++FI) { 2095 Function *NewFn; 2096 if (UpgradeIntrinsicFunction(FI, NewFn)) 2097 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2098 } 2099 2100 // Look for global variables which need to be renamed. 2101 for (Module::global_iterator 2102 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2103 GI != GE;) { 2104 GlobalVariable *GV = GI++; 2105 UpgradeGlobalVariable(GV); 2106 } 2107 2108 // Force deallocation of memory for these vectors to favor the client that 2109 // want lazy deserialization. 2110 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2111 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2112 return std::error_code(); 2113 } 2114 2115 std::error_code BitcodeReader::ParseModule(bool Resume) { 2116 if (Resume) 2117 Stream.JumpToBit(NextUnreadBit); 2118 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2119 return Error("Invalid record"); 2120 2121 SmallVector<uint64_t, 64> Record; 2122 std::vector<std::string> SectionTable; 2123 std::vector<std::string> GCTable; 2124 2125 // Read all the records for this module. 2126 while (1) { 2127 BitstreamEntry Entry = Stream.advance(); 2128 2129 switch (Entry.Kind) { 2130 case BitstreamEntry::Error: 2131 return Error("Malformed block"); 2132 case BitstreamEntry::EndBlock: 2133 return GlobalCleanup(); 2134 2135 case BitstreamEntry::SubBlock: 2136 switch (Entry.ID) { 2137 default: // Skip unknown content. 2138 if (Stream.SkipBlock()) 2139 return Error("Invalid record"); 2140 break; 2141 case bitc::BLOCKINFO_BLOCK_ID: 2142 if (Stream.ReadBlockInfoBlock()) 2143 return Error("Malformed block"); 2144 break; 2145 case bitc::PARAMATTR_BLOCK_ID: 2146 if (std::error_code EC = ParseAttributeBlock()) 2147 return EC; 2148 break; 2149 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2150 if (std::error_code EC = ParseAttributeGroupBlock()) 2151 return EC; 2152 break; 2153 case bitc::TYPE_BLOCK_ID_NEW: 2154 if (std::error_code EC = ParseTypeTable()) 2155 return EC; 2156 break; 2157 case bitc::VALUE_SYMTAB_BLOCK_ID: 2158 if (std::error_code EC = ParseValueSymbolTable()) 2159 return EC; 2160 SeenValueSymbolTable = true; 2161 break; 2162 case bitc::CONSTANTS_BLOCK_ID: 2163 if (std::error_code EC = ParseConstants()) 2164 return EC; 2165 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2166 return EC; 2167 break; 2168 case bitc::METADATA_BLOCK_ID: 2169 if (std::error_code EC = ParseMetadata()) 2170 return EC; 2171 break; 2172 case bitc::FUNCTION_BLOCK_ID: 2173 // If this is the first function body we've seen, reverse the 2174 // FunctionsWithBodies list. 2175 if (!SeenFirstFunctionBody) { 2176 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2177 if (std::error_code EC = GlobalCleanup()) 2178 return EC; 2179 SeenFirstFunctionBody = true; 2180 } 2181 2182 if (std::error_code EC = RememberAndSkipFunctionBody()) 2183 return EC; 2184 // For streaming bitcode, suspend parsing when we reach the function 2185 // bodies. Subsequent materialization calls will resume it when 2186 // necessary. For streaming, the function bodies must be at the end of 2187 // the bitcode. If the bitcode file is old, the symbol table will be 2188 // at the end instead and will not have been seen yet. In this case, 2189 // just finish the parse now. 2190 if (LazyStreamer && SeenValueSymbolTable) { 2191 NextUnreadBit = Stream.GetCurrentBitNo(); 2192 return std::error_code(); 2193 } 2194 break; 2195 case bitc::USELIST_BLOCK_ID: 2196 if (std::error_code EC = ParseUseLists()) 2197 return EC; 2198 break; 2199 } 2200 continue; 2201 2202 case BitstreamEntry::Record: 2203 // The interesting case. 2204 break; 2205 } 2206 2207 2208 // Read a record. 2209 switch (Stream.readRecord(Entry.ID, Record)) { 2210 default: break; // Default behavior, ignore unknown content. 2211 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2212 if (Record.size() < 1) 2213 return Error("Invalid record"); 2214 // Only version #0 and #1 are supported so far. 2215 unsigned module_version = Record[0]; 2216 switch (module_version) { 2217 default: 2218 return Error("Invalid value"); 2219 case 0: 2220 UseRelativeIDs = false; 2221 break; 2222 case 1: 2223 UseRelativeIDs = true; 2224 break; 2225 } 2226 break; 2227 } 2228 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2229 std::string S; 2230 if (ConvertToString(Record, 0, S)) 2231 return Error("Invalid record"); 2232 TheModule->setTargetTriple(S); 2233 break; 2234 } 2235 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2236 std::string S; 2237 if (ConvertToString(Record, 0, S)) 2238 return Error("Invalid record"); 2239 TheModule->setDataLayout(S); 2240 break; 2241 } 2242 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2243 std::string S; 2244 if (ConvertToString(Record, 0, S)) 2245 return Error("Invalid record"); 2246 TheModule->setModuleInlineAsm(S); 2247 break; 2248 } 2249 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2250 // FIXME: Remove in 4.0. 2251 std::string S; 2252 if (ConvertToString(Record, 0, S)) 2253 return Error("Invalid record"); 2254 // Ignore value. 2255 break; 2256 } 2257 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2258 std::string S; 2259 if (ConvertToString(Record, 0, S)) 2260 return Error("Invalid record"); 2261 SectionTable.push_back(S); 2262 break; 2263 } 2264 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2265 std::string S; 2266 if (ConvertToString(Record, 0, S)) 2267 return Error("Invalid record"); 2268 GCTable.push_back(S); 2269 break; 2270 } 2271 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2272 if (Record.size() < 2) 2273 return Error("Invalid record"); 2274 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2275 unsigned ComdatNameSize = Record[1]; 2276 std::string ComdatName; 2277 ComdatName.reserve(ComdatNameSize); 2278 for (unsigned i = 0; i != ComdatNameSize; ++i) 2279 ComdatName += (char)Record[2 + i]; 2280 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2281 C->setSelectionKind(SK); 2282 ComdatList.push_back(C); 2283 break; 2284 } 2285 // GLOBALVAR: [pointer type, isconst, initid, 2286 // linkage, alignment, section, visibility, threadlocal, 2287 // unnamed_addr, externally_initialized, dllstorageclass, 2288 // comdat] 2289 case bitc::MODULE_CODE_GLOBALVAR: { 2290 if (Record.size() < 6) 2291 return Error("Invalid record"); 2292 Type *Ty = getTypeByID(Record[0]); 2293 if (!Ty) 2294 return Error("Invalid record"); 2295 if (!Ty->isPointerTy()) 2296 return Error("Invalid type for value"); 2297 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2298 Ty = cast<PointerType>(Ty)->getElementType(); 2299 2300 bool isConstant = Record[1]; 2301 uint64_t RawLinkage = Record[3]; 2302 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2303 unsigned Alignment = (1 << Record[4]) >> 1; 2304 std::string Section; 2305 if (Record[5]) { 2306 if (Record[5]-1 >= SectionTable.size()) 2307 return Error("Invalid ID"); 2308 Section = SectionTable[Record[5]-1]; 2309 } 2310 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2311 // Local linkage must have default visibility. 2312 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2313 // FIXME: Change to an error if non-default in 4.0. 2314 Visibility = GetDecodedVisibility(Record[6]); 2315 2316 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2317 if (Record.size() > 7) 2318 TLM = GetDecodedThreadLocalMode(Record[7]); 2319 2320 bool UnnamedAddr = false; 2321 if (Record.size() > 8) 2322 UnnamedAddr = Record[8]; 2323 2324 bool ExternallyInitialized = false; 2325 if (Record.size() > 9) 2326 ExternallyInitialized = Record[9]; 2327 2328 GlobalVariable *NewGV = 2329 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2330 TLM, AddressSpace, ExternallyInitialized); 2331 NewGV->setAlignment(Alignment); 2332 if (!Section.empty()) 2333 NewGV->setSection(Section); 2334 NewGV->setVisibility(Visibility); 2335 NewGV->setUnnamedAddr(UnnamedAddr); 2336 2337 if (Record.size() > 10) 2338 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2339 else 2340 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2341 2342 ValueList.push_back(NewGV); 2343 2344 // Remember which value to use for the global initializer. 2345 if (unsigned InitID = Record[2]) 2346 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2347 2348 if (Record.size() > 11) { 2349 if (unsigned ComdatID = Record[11]) { 2350 assert(ComdatID <= ComdatList.size()); 2351 NewGV->setComdat(ComdatList[ComdatID - 1]); 2352 } 2353 } else if (hasImplicitComdat(RawLinkage)) { 2354 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2355 } 2356 break; 2357 } 2358 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2359 // alignment, section, visibility, gc, unnamed_addr, 2360 // prologuedata, dllstorageclass, comdat, prefixdata] 2361 case bitc::MODULE_CODE_FUNCTION: { 2362 if (Record.size() < 8) 2363 return Error("Invalid record"); 2364 Type *Ty = getTypeByID(Record[0]); 2365 if (!Ty) 2366 return Error("Invalid record"); 2367 if (!Ty->isPointerTy()) 2368 return Error("Invalid type for value"); 2369 FunctionType *FTy = 2370 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2371 if (!FTy) 2372 return Error("Invalid type for value"); 2373 2374 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2375 "", TheModule); 2376 2377 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2378 bool isProto = Record[2]; 2379 uint64_t RawLinkage = Record[3]; 2380 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2381 Func->setAttributes(getAttributes(Record[4])); 2382 2383 Func->setAlignment((1 << Record[5]) >> 1); 2384 if (Record[6]) { 2385 if (Record[6]-1 >= SectionTable.size()) 2386 return Error("Invalid ID"); 2387 Func->setSection(SectionTable[Record[6]-1]); 2388 } 2389 // Local linkage must have default visibility. 2390 if (!Func->hasLocalLinkage()) 2391 // FIXME: Change to an error if non-default in 4.0. 2392 Func->setVisibility(GetDecodedVisibility(Record[7])); 2393 if (Record.size() > 8 && Record[8]) { 2394 if (Record[8]-1 > GCTable.size()) 2395 return Error("Invalid ID"); 2396 Func->setGC(GCTable[Record[8]-1].c_str()); 2397 } 2398 bool UnnamedAddr = false; 2399 if (Record.size() > 9) 2400 UnnamedAddr = Record[9]; 2401 Func->setUnnamedAddr(UnnamedAddr); 2402 if (Record.size() > 10 && Record[10] != 0) 2403 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2404 2405 if (Record.size() > 11) 2406 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2407 else 2408 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2409 2410 if (Record.size() > 12) { 2411 if (unsigned ComdatID = Record[12]) { 2412 assert(ComdatID <= ComdatList.size()); 2413 Func->setComdat(ComdatList[ComdatID - 1]); 2414 } 2415 } else if (hasImplicitComdat(RawLinkage)) { 2416 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2417 } 2418 2419 if (Record.size() > 13 && Record[13] != 0) 2420 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2421 2422 ValueList.push_back(Func); 2423 2424 // If this is a function with a body, remember the prototype we are 2425 // creating now, so that we can match up the body with them later. 2426 if (!isProto) { 2427 Func->setIsMaterializable(true); 2428 FunctionsWithBodies.push_back(Func); 2429 if (LazyStreamer) 2430 DeferredFunctionInfo[Func] = 0; 2431 } 2432 break; 2433 } 2434 // ALIAS: [alias type, aliasee val#, linkage] 2435 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2436 case bitc::MODULE_CODE_ALIAS: { 2437 if (Record.size() < 3) 2438 return Error("Invalid record"); 2439 Type *Ty = getTypeByID(Record[0]); 2440 if (!Ty) 2441 return Error("Invalid record"); 2442 auto *PTy = dyn_cast<PointerType>(Ty); 2443 if (!PTy) 2444 return Error("Invalid type for value"); 2445 2446 auto *NewGA = 2447 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2448 getDecodedLinkage(Record[2]), "", TheModule); 2449 // Old bitcode files didn't have visibility field. 2450 // Local linkage must have default visibility. 2451 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2452 // FIXME: Change to an error if non-default in 4.0. 2453 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2454 if (Record.size() > 4) 2455 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2456 else 2457 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2458 if (Record.size() > 5) 2459 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2460 if (Record.size() > 6) 2461 NewGA->setUnnamedAddr(Record[6]); 2462 ValueList.push_back(NewGA); 2463 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2464 break; 2465 } 2466 /// MODULE_CODE_PURGEVALS: [numvals] 2467 case bitc::MODULE_CODE_PURGEVALS: 2468 // Trim down the value list to the specified size. 2469 if (Record.size() < 1 || Record[0] > ValueList.size()) 2470 return Error("Invalid record"); 2471 ValueList.shrinkTo(Record[0]); 2472 break; 2473 } 2474 Record.clear(); 2475 } 2476 } 2477 2478 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2479 TheModule = nullptr; 2480 2481 if (std::error_code EC = InitStream()) 2482 return EC; 2483 2484 // Sniff for the signature. 2485 if (Stream.Read(8) != 'B' || 2486 Stream.Read(8) != 'C' || 2487 Stream.Read(4) != 0x0 || 2488 Stream.Read(4) != 0xC || 2489 Stream.Read(4) != 0xE || 2490 Stream.Read(4) != 0xD) 2491 return Error("Invalid bitcode signature"); 2492 2493 // We expect a number of well-defined blocks, though we don't necessarily 2494 // need to understand them all. 2495 while (1) { 2496 if (Stream.AtEndOfStream()) 2497 return std::error_code(); 2498 2499 BitstreamEntry Entry = 2500 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2501 2502 switch (Entry.Kind) { 2503 case BitstreamEntry::Error: 2504 return Error("Malformed block"); 2505 case BitstreamEntry::EndBlock: 2506 return std::error_code(); 2507 2508 case BitstreamEntry::SubBlock: 2509 switch (Entry.ID) { 2510 case bitc::BLOCKINFO_BLOCK_ID: 2511 if (Stream.ReadBlockInfoBlock()) 2512 return Error("Malformed block"); 2513 break; 2514 case bitc::MODULE_BLOCK_ID: 2515 // Reject multiple MODULE_BLOCK's in a single bitstream. 2516 if (TheModule) 2517 return Error("Invalid multiple blocks"); 2518 TheModule = M; 2519 if (std::error_code EC = ParseModule(false)) 2520 return EC; 2521 if (LazyStreamer) 2522 return std::error_code(); 2523 break; 2524 default: 2525 if (Stream.SkipBlock()) 2526 return Error("Invalid record"); 2527 break; 2528 } 2529 continue; 2530 case BitstreamEntry::Record: 2531 // There should be no records in the top-level of blocks. 2532 2533 // The ranlib in Xcode 4 will align archive members by appending newlines 2534 // to the end of them. If this file size is a multiple of 4 but not 8, we 2535 // have to read and ignore these final 4 bytes :-( 2536 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2537 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2538 Stream.AtEndOfStream()) 2539 return std::error_code(); 2540 2541 return Error("Invalid record"); 2542 } 2543 } 2544 } 2545 2546 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2547 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2548 return Error("Invalid record"); 2549 2550 SmallVector<uint64_t, 64> Record; 2551 2552 std::string Triple; 2553 // Read all the records for this module. 2554 while (1) { 2555 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2556 2557 switch (Entry.Kind) { 2558 case BitstreamEntry::SubBlock: // Handled for us already. 2559 case BitstreamEntry::Error: 2560 return Error("Malformed block"); 2561 case BitstreamEntry::EndBlock: 2562 return Triple; 2563 case BitstreamEntry::Record: 2564 // The interesting case. 2565 break; 2566 } 2567 2568 // Read a record. 2569 switch (Stream.readRecord(Entry.ID, Record)) { 2570 default: break; // Default behavior, ignore unknown content. 2571 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2572 std::string S; 2573 if (ConvertToString(Record, 0, S)) 2574 return Error("Invalid record"); 2575 Triple = S; 2576 break; 2577 } 2578 } 2579 Record.clear(); 2580 } 2581 llvm_unreachable("Exit infinite loop"); 2582 } 2583 2584 ErrorOr<std::string> BitcodeReader::parseTriple() { 2585 if (std::error_code EC = InitStream()) 2586 return EC; 2587 2588 // Sniff for the signature. 2589 if (Stream.Read(8) != 'B' || 2590 Stream.Read(8) != 'C' || 2591 Stream.Read(4) != 0x0 || 2592 Stream.Read(4) != 0xC || 2593 Stream.Read(4) != 0xE || 2594 Stream.Read(4) != 0xD) 2595 return Error("Invalid bitcode signature"); 2596 2597 // We expect a number of well-defined blocks, though we don't necessarily 2598 // need to understand them all. 2599 while (1) { 2600 BitstreamEntry Entry = Stream.advance(); 2601 2602 switch (Entry.Kind) { 2603 case BitstreamEntry::Error: 2604 return Error("Malformed block"); 2605 case BitstreamEntry::EndBlock: 2606 return std::error_code(); 2607 2608 case BitstreamEntry::SubBlock: 2609 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2610 return parseModuleTriple(); 2611 2612 // Ignore other sub-blocks. 2613 if (Stream.SkipBlock()) 2614 return Error("Malformed block"); 2615 continue; 2616 2617 case BitstreamEntry::Record: 2618 Stream.skipRecord(Entry.ID); 2619 continue; 2620 } 2621 } 2622 } 2623 2624 /// ParseMetadataAttachment - Parse metadata attachments. 2625 std::error_code BitcodeReader::ParseMetadataAttachment() { 2626 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2627 return Error("Invalid record"); 2628 2629 SmallVector<uint64_t, 64> Record; 2630 while (1) { 2631 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2632 2633 switch (Entry.Kind) { 2634 case BitstreamEntry::SubBlock: // Handled for us already. 2635 case BitstreamEntry::Error: 2636 return Error("Malformed block"); 2637 case BitstreamEntry::EndBlock: 2638 return std::error_code(); 2639 case BitstreamEntry::Record: 2640 // The interesting case. 2641 break; 2642 } 2643 2644 // Read a metadata attachment record. 2645 Record.clear(); 2646 switch (Stream.readRecord(Entry.ID, Record)) { 2647 default: // Default behavior: ignore. 2648 break; 2649 case bitc::METADATA_ATTACHMENT: { 2650 unsigned RecordLength = Record.size(); 2651 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2652 return Error("Invalid record"); 2653 Instruction *Inst = InstructionList[Record[0]]; 2654 for (unsigned i = 1; i != RecordLength; i = i+2) { 2655 unsigned Kind = Record[i]; 2656 DenseMap<unsigned, unsigned>::iterator I = 2657 MDKindMap.find(Kind); 2658 if (I == MDKindMap.end()) 2659 return Error("Invalid ID"); 2660 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2661 if (isa<LocalAsMetadata>(Node)) 2662 // Drop the attachment. This used to be legal, but there's no 2663 // upgrade path. 2664 break; 2665 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2666 if (I->second == LLVMContext::MD_tbaa) 2667 InstsWithTBAATag.push_back(Inst); 2668 } 2669 break; 2670 } 2671 } 2672 } 2673 } 2674 2675 /// ParseFunctionBody - Lazily parse the specified function body block. 2676 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2677 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2678 return Error("Invalid record"); 2679 2680 InstructionList.clear(); 2681 unsigned ModuleValueListSize = ValueList.size(); 2682 unsigned ModuleMDValueListSize = MDValueList.size(); 2683 2684 // Add all the function arguments to the value table. 2685 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2686 ValueList.push_back(I); 2687 2688 unsigned NextValueNo = ValueList.size(); 2689 BasicBlock *CurBB = nullptr; 2690 unsigned CurBBNo = 0; 2691 2692 DebugLoc LastLoc; 2693 auto getLastInstruction = [&]() -> Instruction * { 2694 if (CurBB && !CurBB->empty()) 2695 return &CurBB->back(); 2696 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2697 !FunctionBBs[CurBBNo - 1]->empty()) 2698 return &FunctionBBs[CurBBNo - 1]->back(); 2699 return nullptr; 2700 }; 2701 2702 // Read all the records. 2703 SmallVector<uint64_t, 64> Record; 2704 while (1) { 2705 BitstreamEntry Entry = Stream.advance(); 2706 2707 switch (Entry.Kind) { 2708 case BitstreamEntry::Error: 2709 return Error("Malformed block"); 2710 case BitstreamEntry::EndBlock: 2711 goto OutOfRecordLoop; 2712 2713 case BitstreamEntry::SubBlock: 2714 switch (Entry.ID) { 2715 default: // Skip unknown content. 2716 if (Stream.SkipBlock()) 2717 return Error("Invalid record"); 2718 break; 2719 case bitc::CONSTANTS_BLOCK_ID: 2720 if (std::error_code EC = ParseConstants()) 2721 return EC; 2722 NextValueNo = ValueList.size(); 2723 break; 2724 case bitc::VALUE_SYMTAB_BLOCK_ID: 2725 if (std::error_code EC = ParseValueSymbolTable()) 2726 return EC; 2727 break; 2728 case bitc::METADATA_ATTACHMENT_ID: 2729 if (std::error_code EC = ParseMetadataAttachment()) 2730 return EC; 2731 break; 2732 case bitc::METADATA_BLOCK_ID: 2733 if (std::error_code EC = ParseMetadata()) 2734 return EC; 2735 break; 2736 case bitc::USELIST_BLOCK_ID: 2737 if (std::error_code EC = ParseUseLists()) 2738 return EC; 2739 break; 2740 } 2741 continue; 2742 2743 case BitstreamEntry::Record: 2744 // The interesting case. 2745 break; 2746 } 2747 2748 // Read a record. 2749 Record.clear(); 2750 Instruction *I = nullptr; 2751 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2752 switch (BitCode) { 2753 default: // Default behavior: reject 2754 return Error("Invalid value"); 2755 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2756 if (Record.size() < 1 || Record[0] == 0) 2757 return Error("Invalid record"); 2758 // Create all the basic blocks for the function. 2759 FunctionBBs.resize(Record[0]); 2760 2761 // See if anything took the address of blocks in this function. 2762 auto BBFRI = BasicBlockFwdRefs.find(F); 2763 if (BBFRI == BasicBlockFwdRefs.end()) { 2764 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2765 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2766 } else { 2767 auto &BBRefs = BBFRI->second; 2768 // Check for invalid basic block references. 2769 if (BBRefs.size() > FunctionBBs.size()) 2770 return Error("Invalid ID"); 2771 assert(!BBRefs.empty() && "Unexpected empty array"); 2772 assert(!BBRefs.front() && "Invalid reference to entry block"); 2773 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2774 ++I) 2775 if (I < RE && BBRefs[I]) { 2776 BBRefs[I]->insertInto(F); 2777 FunctionBBs[I] = BBRefs[I]; 2778 } else { 2779 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2780 } 2781 2782 // Erase from the table. 2783 BasicBlockFwdRefs.erase(BBFRI); 2784 } 2785 2786 CurBB = FunctionBBs[0]; 2787 continue; 2788 } 2789 2790 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2791 // This record indicates that the last instruction is at the same 2792 // location as the previous instruction with a location. 2793 I = getLastInstruction(); 2794 2795 if (!I) 2796 return Error("Invalid record"); 2797 I->setDebugLoc(LastLoc); 2798 I = nullptr; 2799 continue; 2800 2801 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2802 I = getLastInstruction(); 2803 if (!I || Record.size() < 4) 2804 return Error("Invalid record"); 2805 2806 unsigned Line = Record[0], Col = Record[1]; 2807 unsigned ScopeID = Record[2], IAID = Record[3]; 2808 2809 MDNode *Scope = nullptr, *IA = nullptr; 2810 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2811 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2812 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2813 I->setDebugLoc(LastLoc); 2814 I = nullptr; 2815 continue; 2816 } 2817 2818 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2819 unsigned OpNum = 0; 2820 Value *LHS, *RHS; 2821 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2822 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2823 OpNum+1 > Record.size()) 2824 return Error("Invalid record"); 2825 2826 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2827 if (Opc == -1) 2828 return Error("Invalid record"); 2829 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2830 InstructionList.push_back(I); 2831 if (OpNum < Record.size()) { 2832 if (Opc == Instruction::Add || 2833 Opc == Instruction::Sub || 2834 Opc == Instruction::Mul || 2835 Opc == Instruction::Shl) { 2836 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2837 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2838 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2839 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2840 } else if (Opc == Instruction::SDiv || 2841 Opc == Instruction::UDiv || 2842 Opc == Instruction::LShr || 2843 Opc == Instruction::AShr) { 2844 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2845 cast<BinaryOperator>(I)->setIsExact(true); 2846 } else if (isa<FPMathOperator>(I)) { 2847 FastMathFlags FMF; 2848 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2849 FMF.setUnsafeAlgebra(); 2850 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2851 FMF.setNoNaNs(); 2852 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2853 FMF.setNoInfs(); 2854 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2855 FMF.setNoSignedZeros(); 2856 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2857 FMF.setAllowReciprocal(); 2858 if (FMF.any()) 2859 I->setFastMathFlags(FMF); 2860 } 2861 2862 } 2863 break; 2864 } 2865 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2866 unsigned OpNum = 0; 2867 Value *Op; 2868 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2869 OpNum+2 != Record.size()) 2870 return Error("Invalid record"); 2871 2872 Type *ResTy = getTypeByID(Record[OpNum]); 2873 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2874 if (Opc == -1 || !ResTy) 2875 return Error("Invalid record"); 2876 Instruction *Temp = nullptr; 2877 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2878 if (Temp) { 2879 InstructionList.push_back(Temp); 2880 CurBB->getInstList().push_back(Temp); 2881 } 2882 } else { 2883 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2884 } 2885 InstructionList.push_back(I); 2886 break; 2887 } 2888 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2889 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2890 unsigned OpNum = 0; 2891 Value *BasePtr; 2892 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2893 return Error("Invalid record"); 2894 2895 SmallVector<Value*, 16> GEPIdx; 2896 while (OpNum != Record.size()) { 2897 Value *Op; 2898 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2899 return Error("Invalid record"); 2900 GEPIdx.push_back(Op); 2901 } 2902 2903 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2904 InstructionList.push_back(I); 2905 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2906 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2907 break; 2908 } 2909 2910 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2911 // EXTRACTVAL: [opty, opval, n x indices] 2912 unsigned OpNum = 0; 2913 Value *Agg; 2914 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2915 return Error("Invalid record"); 2916 2917 SmallVector<unsigned, 4> EXTRACTVALIdx; 2918 for (unsigned RecSize = Record.size(); 2919 OpNum != RecSize; ++OpNum) { 2920 uint64_t Index = Record[OpNum]; 2921 if ((unsigned)Index != Index) 2922 return Error("Invalid value"); 2923 EXTRACTVALIdx.push_back((unsigned)Index); 2924 } 2925 2926 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2927 InstructionList.push_back(I); 2928 break; 2929 } 2930 2931 case bitc::FUNC_CODE_INST_INSERTVAL: { 2932 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2933 unsigned OpNum = 0; 2934 Value *Agg; 2935 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2936 return Error("Invalid record"); 2937 Value *Val; 2938 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2939 return Error("Invalid record"); 2940 2941 SmallVector<unsigned, 4> INSERTVALIdx; 2942 for (unsigned RecSize = Record.size(); 2943 OpNum != RecSize; ++OpNum) { 2944 uint64_t Index = Record[OpNum]; 2945 if ((unsigned)Index != Index) 2946 return Error("Invalid value"); 2947 INSERTVALIdx.push_back((unsigned)Index); 2948 } 2949 2950 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2951 InstructionList.push_back(I); 2952 break; 2953 } 2954 2955 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2956 // obsolete form of select 2957 // handles select i1 ... in old bitcode 2958 unsigned OpNum = 0; 2959 Value *TrueVal, *FalseVal, *Cond; 2960 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2961 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2962 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2963 return Error("Invalid record"); 2964 2965 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2966 InstructionList.push_back(I); 2967 break; 2968 } 2969 2970 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2971 // new form of select 2972 // handles select i1 or select [N x i1] 2973 unsigned OpNum = 0; 2974 Value *TrueVal, *FalseVal, *Cond; 2975 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2976 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2977 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2978 return Error("Invalid record"); 2979 2980 // select condition can be either i1 or [N x i1] 2981 if (VectorType* vector_type = 2982 dyn_cast<VectorType>(Cond->getType())) { 2983 // expect <n x i1> 2984 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2985 return Error("Invalid type for value"); 2986 } else { 2987 // expect i1 2988 if (Cond->getType() != Type::getInt1Ty(Context)) 2989 return Error("Invalid type for value"); 2990 } 2991 2992 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2993 InstructionList.push_back(I); 2994 break; 2995 } 2996 2997 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2998 unsigned OpNum = 0; 2999 Value *Vec, *Idx; 3000 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3001 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3002 return Error("Invalid record"); 3003 I = ExtractElementInst::Create(Vec, Idx); 3004 InstructionList.push_back(I); 3005 break; 3006 } 3007 3008 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3009 unsigned OpNum = 0; 3010 Value *Vec, *Elt, *Idx; 3011 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3012 popValue(Record, OpNum, NextValueNo, 3013 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3014 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3015 return Error("Invalid record"); 3016 I = InsertElementInst::Create(Vec, Elt, Idx); 3017 InstructionList.push_back(I); 3018 break; 3019 } 3020 3021 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3022 unsigned OpNum = 0; 3023 Value *Vec1, *Vec2, *Mask; 3024 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3025 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3026 return Error("Invalid record"); 3027 3028 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3029 return Error("Invalid record"); 3030 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3031 InstructionList.push_back(I); 3032 break; 3033 } 3034 3035 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3036 // Old form of ICmp/FCmp returning bool 3037 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3038 // both legal on vectors but had different behaviour. 3039 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3040 // FCmp/ICmp returning bool or vector of bool 3041 3042 unsigned OpNum = 0; 3043 Value *LHS, *RHS; 3044 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3045 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3046 OpNum+1 != Record.size()) 3047 return Error("Invalid record"); 3048 3049 if (LHS->getType()->isFPOrFPVectorTy()) 3050 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3051 else 3052 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3053 InstructionList.push_back(I); 3054 break; 3055 } 3056 3057 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3058 { 3059 unsigned Size = Record.size(); 3060 if (Size == 0) { 3061 I = ReturnInst::Create(Context); 3062 InstructionList.push_back(I); 3063 break; 3064 } 3065 3066 unsigned OpNum = 0; 3067 Value *Op = nullptr; 3068 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3069 return Error("Invalid record"); 3070 if (OpNum != Record.size()) 3071 return Error("Invalid record"); 3072 3073 I = ReturnInst::Create(Context, Op); 3074 InstructionList.push_back(I); 3075 break; 3076 } 3077 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3078 if (Record.size() != 1 && Record.size() != 3) 3079 return Error("Invalid record"); 3080 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3081 if (!TrueDest) 3082 return Error("Invalid record"); 3083 3084 if (Record.size() == 1) { 3085 I = BranchInst::Create(TrueDest); 3086 InstructionList.push_back(I); 3087 } 3088 else { 3089 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3090 Value *Cond = getValue(Record, 2, NextValueNo, 3091 Type::getInt1Ty(Context)); 3092 if (!FalseDest || !Cond) 3093 return Error("Invalid record"); 3094 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3095 InstructionList.push_back(I); 3096 } 3097 break; 3098 } 3099 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3100 // Check magic 3101 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3102 // "New" SwitchInst format with case ranges. The changes to write this 3103 // format were reverted but we still recognize bitcode that uses it. 3104 // Hopefully someday we will have support for case ranges and can use 3105 // this format again. 3106 3107 Type *OpTy = getTypeByID(Record[1]); 3108 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3109 3110 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3111 BasicBlock *Default = getBasicBlock(Record[3]); 3112 if (!OpTy || !Cond || !Default) 3113 return Error("Invalid record"); 3114 3115 unsigned NumCases = Record[4]; 3116 3117 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3118 InstructionList.push_back(SI); 3119 3120 unsigned CurIdx = 5; 3121 for (unsigned i = 0; i != NumCases; ++i) { 3122 SmallVector<ConstantInt*, 1> CaseVals; 3123 unsigned NumItems = Record[CurIdx++]; 3124 for (unsigned ci = 0; ci != NumItems; ++ci) { 3125 bool isSingleNumber = Record[CurIdx++]; 3126 3127 APInt Low; 3128 unsigned ActiveWords = 1; 3129 if (ValueBitWidth > 64) 3130 ActiveWords = Record[CurIdx++]; 3131 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3132 ValueBitWidth); 3133 CurIdx += ActiveWords; 3134 3135 if (!isSingleNumber) { 3136 ActiveWords = 1; 3137 if (ValueBitWidth > 64) 3138 ActiveWords = Record[CurIdx++]; 3139 APInt High = 3140 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3141 ValueBitWidth); 3142 CurIdx += ActiveWords; 3143 3144 // FIXME: It is not clear whether values in the range should be 3145 // compared as signed or unsigned values. The partially 3146 // implemented changes that used this format in the past used 3147 // unsigned comparisons. 3148 for ( ; Low.ule(High); ++Low) 3149 CaseVals.push_back(ConstantInt::get(Context, Low)); 3150 } else 3151 CaseVals.push_back(ConstantInt::get(Context, Low)); 3152 } 3153 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3154 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3155 cve = CaseVals.end(); cvi != cve; ++cvi) 3156 SI->addCase(*cvi, DestBB); 3157 } 3158 I = SI; 3159 break; 3160 } 3161 3162 // Old SwitchInst format without case ranges. 3163 3164 if (Record.size() < 3 || (Record.size() & 1) == 0) 3165 return Error("Invalid record"); 3166 Type *OpTy = getTypeByID(Record[0]); 3167 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3168 BasicBlock *Default = getBasicBlock(Record[2]); 3169 if (!OpTy || !Cond || !Default) 3170 return Error("Invalid record"); 3171 unsigned NumCases = (Record.size()-3)/2; 3172 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3173 InstructionList.push_back(SI); 3174 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3175 ConstantInt *CaseVal = 3176 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3177 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3178 if (!CaseVal || !DestBB) { 3179 delete SI; 3180 return Error("Invalid record"); 3181 } 3182 SI->addCase(CaseVal, DestBB); 3183 } 3184 I = SI; 3185 break; 3186 } 3187 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3188 if (Record.size() < 2) 3189 return Error("Invalid record"); 3190 Type *OpTy = getTypeByID(Record[0]); 3191 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3192 if (!OpTy || !Address) 3193 return Error("Invalid record"); 3194 unsigned NumDests = Record.size()-2; 3195 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3196 InstructionList.push_back(IBI); 3197 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3198 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3199 IBI->addDestination(DestBB); 3200 } else { 3201 delete IBI; 3202 return Error("Invalid record"); 3203 } 3204 } 3205 I = IBI; 3206 break; 3207 } 3208 3209 case bitc::FUNC_CODE_INST_INVOKE: { 3210 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3211 if (Record.size() < 4) 3212 return Error("Invalid record"); 3213 AttributeSet PAL = getAttributes(Record[0]); 3214 unsigned CCInfo = Record[1]; 3215 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3216 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3217 3218 unsigned OpNum = 4; 3219 Value *Callee; 3220 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3221 return Error("Invalid record"); 3222 3223 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3224 FunctionType *FTy = !CalleeTy ? nullptr : 3225 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3226 3227 // Check that the right number of fixed parameters are here. 3228 if (!FTy || !NormalBB || !UnwindBB || 3229 Record.size() < OpNum+FTy->getNumParams()) 3230 return Error("Invalid record"); 3231 3232 SmallVector<Value*, 16> Ops; 3233 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3234 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3235 FTy->getParamType(i))); 3236 if (!Ops.back()) 3237 return Error("Invalid record"); 3238 } 3239 3240 if (!FTy->isVarArg()) { 3241 if (Record.size() != OpNum) 3242 return Error("Invalid record"); 3243 } else { 3244 // Read type/value pairs for varargs params. 3245 while (OpNum != Record.size()) { 3246 Value *Op; 3247 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3248 return Error("Invalid record"); 3249 Ops.push_back(Op); 3250 } 3251 } 3252 3253 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3254 InstructionList.push_back(I); 3255 cast<InvokeInst>(I)->setCallingConv( 3256 static_cast<CallingConv::ID>(CCInfo)); 3257 cast<InvokeInst>(I)->setAttributes(PAL); 3258 break; 3259 } 3260 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3261 unsigned Idx = 0; 3262 Value *Val = nullptr; 3263 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3264 return Error("Invalid record"); 3265 I = ResumeInst::Create(Val); 3266 InstructionList.push_back(I); 3267 break; 3268 } 3269 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3270 I = new UnreachableInst(Context); 3271 InstructionList.push_back(I); 3272 break; 3273 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3274 if (Record.size() < 1 || ((Record.size()-1)&1)) 3275 return Error("Invalid record"); 3276 Type *Ty = getTypeByID(Record[0]); 3277 if (!Ty) 3278 return Error("Invalid record"); 3279 3280 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3281 InstructionList.push_back(PN); 3282 3283 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3284 Value *V; 3285 // With the new function encoding, it is possible that operands have 3286 // negative IDs (for forward references). Use a signed VBR 3287 // representation to keep the encoding small. 3288 if (UseRelativeIDs) 3289 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3290 else 3291 V = getValue(Record, 1+i, NextValueNo, Ty); 3292 BasicBlock *BB = getBasicBlock(Record[2+i]); 3293 if (!V || !BB) 3294 return Error("Invalid record"); 3295 PN->addIncoming(V, BB); 3296 } 3297 I = PN; 3298 break; 3299 } 3300 3301 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3302 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3303 unsigned Idx = 0; 3304 if (Record.size() < 4) 3305 return Error("Invalid record"); 3306 Type *Ty = getTypeByID(Record[Idx++]); 3307 if (!Ty) 3308 return Error("Invalid record"); 3309 Value *PersFn = nullptr; 3310 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3311 return Error("Invalid record"); 3312 3313 bool IsCleanup = !!Record[Idx++]; 3314 unsigned NumClauses = Record[Idx++]; 3315 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3316 LP->setCleanup(IsCleanup); 3317 for (unsigned J = 0; J != NumClauses; ++J) { 3318 LandingPadInst::ClauseType CT = 3319 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3320 Value *Val; 3321 3322 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3323 delete LP; 3324 return Error("Invalid record"); 3325 } 3326 3327 assert((CT != LandingPadInst::Catch || 3328 !isa<ArrayType>(Val->getType())) && 3329 "Catch clause has a invalid type!"); 3330 assert((CT != LandingPadInst::Filter || 3331 isa<ArrayType>(Val->getType())) && 3332 "Filter clause has invalid type!"); 3333 LP->addClause(cast<Constant>(Val)); 3334 } 3335 3336 I = LP; 3337 InstructionList.push_back(I); 3338 break; 3339 } 3340 3341 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3342 if (Record.size() != 4) 3343 return Error("Invalid record"); 3344 PointerType *Ty = 3345 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3346 Type *OpTy = getTypeByID(Record[1]); 3347 Value *Size = getFnValueByID(Record[2], OpTy); 3348 unsigned AlignRecord = Record[3]; 3349 bool InAlloca = AlignRecord & (1 << 5); 3350 unsigned Align = AlignRecord & ((1 << 5) - 1); 3351 if (!Ty || !Size) 3352 return Error("Invalid record"); 3353 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3354 AI->setUsedWithInAlloca(InAlloca); 3355 I = AI; 3356 InstructionList.push_back(I); 3357 break; 3358 } 3359 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3360 unsigned OpNum = 0; 3361 Value *Op; 3362 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3363 OpNum+2 != Record.size()) 3364 return Error("Invalid record"); 3365 3366 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3367 InstructionList.push_back(I); 3368 break; 3369 } 3370 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3371 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3372 unsigned OpNum = 0; 3373 Value *Op; 3374 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3375 OpNum+4 != Record.size()) 3376 return Error("Invalid record"); 3377 3378 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3379 if (Ordering == NotAtomic || Ordering == Release || 3380 Ordering == AcquireRelease) 3381 return Error("Invalid record"); 3382 if (Ordering != NotAtomic && Record[OpNum] == 0) 3383 return Error("Invalid record"); 3384 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3385 3386 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3387 Ordering, SynchScope); 3388 InstructionList.push_back(I); 3389 break; 3390 } 3391 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3392 unsigned OpNum = 0; 3393 Value *Val, *Ptr; 3394 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3395 popValue(Record, OpNum, NextValueNo, 3396 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3397 OpNum+2 != Record.size()) 3398 return Error("Invalid record"); 3399 3400 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3401 InstructionList.push_back(I); 3402 break; 3403 } 3404 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3405 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3406 unsigned OpNum = 0; 3407 Value *Val, *Ptr; 3408 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3409 popValue(Record, OpNum, NextValueNo, 3410 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3411 OpNum+4 != Record.size()) 3412 return Error("Invalid record"); 3413 3414 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3415 if (Ordering == NotAtomic || Ordering == Acquire || 3416 Ordering == AcquireRelease) 3417 return Error("Invalid record"); 3418 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3419 if (Ordering != NotAtomic && Record[OpNum] == 0) 3420 return Error("Invalid record"); 3421 3422 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3423 Ordering, SynchScope); 3424 InstructionList.push_back(I); 3425 break; 3426 } 3427 case bitc::FUNC_CODE_INST_CMPXCHG: { 3428 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3429 // failureordering?, isweak?] 3430 unsigned OpNum = 0; 3431 Value *Ptr, *Cmp, *New; 3432 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3433 popValue(Record, OpNum, NextValueNo, 3434 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3435 popValue(Record, OpNum, NextValueNo, 3436 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3437 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3438 return Error("Invalid record"); 3439 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3440 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3441 return Error("Invalid record"); 3442 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3443 3444 AtomicOrdering FailureOrdering; 3445 if (Record.size() < 7) 3446 FailureOrdering = 3447 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3448 else 3449 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3450 3451 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3452 SynchScope); 3453 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3454 3455 if (Record.size() < 8) { 3456 // Before weak cmpxchgs existed, the instruction simply returned the 3457 // value loaded from memory, so bitcode files from that era will be 3458 // expecting the first component of a modern cmpxchg. 3459 CurBB->getInstList().push_back(I); 3460 I = ExtractValueInst::Create(I, 0); 3461 } else { 3462 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3463 } 3464 3465 InstructionList.push_back(I); 3466 break; 3467 } 3468 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3469 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3470 unsigned OpNum = 0; 3471 Value *Ptr, *Val; 3472 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3473 popValue(Record, OpNum, NextValueNo, 3474 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3475 OpNum+4 != Record.size()) 3476 return Error("Invalid record"); 3477 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3478 if (Operation < AtomicRMWInst::FIRST_BINOP || 3479 Operation > AtomicRMWInst::LAST_BINOP) 3480 return Error("Invalid record"); 3481 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3482 if (Ordering == NotAtomic || Ordering == Unordered) 3483 return Error("Invalid record"); 3484 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3485 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3486 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3487 InstructionList.push_back(I); 3488 break; 3489 } 3490 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3491 if (2 != Record.size()) 3492 return Error("Invalid record"); 3493 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3494 if (Ordering == NotAtomic || Ordering == Unordered || 3495 Ordering == Monotonic) 3496 return Error("Invalid record"); 3497 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3498 I = new FenceInst(Context, Ordering, SynchScope); 3499 InstructionList.push_back(I); 3500 break; 3501 } 3502 case bitc::FUNC_CODE_INST_CALL: { 3503 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3504 if (Record.size() < 3) 3505 return Error("Invalid record"); 3506 3507 AttributeSet PAL = getAttributes(Record[0]); 3508 unsigned CCInfo = Record[1]; 3509 3510 unsigned OpNum = 2; 3511 Value *Callee; 3512 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3513 return Error("Invalid record"); 3514 3515 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3516 FunctionType *FTy = nullptr; 3517 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3518 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3519 return Error("Invalid record"); 3520 3521 SmallVector<Value*, 16> Args; 3522 // Read the fixed params. 3523 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3524 if (FTy->getParamType(i)->isLabelTy()) 3525 Args.push_back(getBasicBlock(Record[OpNum])); 3526 else 3527 Args.push_back(getValue(Record, OpNum, NextValueNo, 3528 FTy->getParamType(i))); 3529 if (!Args.back()) 3530 return Error("Invalid record"); 3531 } 3532 3533 // Read type/value pairs for varargs params. 3534 if (!FTy->isVarArg()) { 3535 if (OpNum != Record.size()) 3536 return Error("Invalid record"); 3537 } else { 3538 while (OpNum != Record.size()) { 3539 Value *Op; 3540 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3541 return Error("Invalid record"); 3542 Args.push_back(Op); 3543 } 3544 } 3545 3546 I = CallInst::Create(Callee, Args); 3547 InstructionList.push_back(I); 3548 cast<CallInst>(I)->setCallingConv( 3549 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3550 CallInst::TailCallKind TCK = CallInst::TCK_None; 3551 if (CCInfo & 1) 3552 TCK = CallInst::TCK_Tail; 3553 if (CCInfo & (1 << 14)) 3554 TCK = CallInst::TCK_MustTail; 3555 cast<CallInst>(I)->setTailCallKind(TCK); 3556 cast<CallInst>(I)->setAttributes(PAL); 3557 break; 3558 } 3559 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3560 if (Record.size() < 3) 3561 return Error("Invalid record"); 3562 Type *OpTy = getTypeByID(Record[0]); 3563 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3564 Type *ResTy = getTypeByID(Record[2]); 3565 if (!OpTy || !Op || !ResTy) 3566 return Error("Invalid record"); 3567 I = new VAArgInst(Op, ResTy); 3568 InstructionList.push_back(I); 3569 break; 3570 } 3571 } 3572 3573 // Add instruction to end of current BB. If there is no current BB, reject 3574 // this file. 3575 if (!CurBB) { 3576 delete I; 3577 return Error("Invalid instruction with no BB"); 3578 } 3579 CurBB->getInstList().push_back(I); 3580 3581 // If this was a terminator instruction, move to the next block. 3582 if (isa<TerminatorInst>(I)) { 3583 ++CurBBNo; 3584 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3585 } 3586 3587 // Non-void values get registered in the value table for future use. 3588 if (I && !I->getType()->isVoidTy()) 3589 ValueList.AssignValue(I, NextValueNo++); 3590 } 3591 3592 OutOfRecordLoop: 3593 3594 // Check the function list for unresolved values. 3595 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3596 if (!A->getParent()) { 3597 // We found at least one unresolved value. Nuke them all to avoid leaks. 3598 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3599 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3600 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3601 delete A; 3602 } 3603 } 3604 return Error("Never resolved value found in function"); 3605 } 3606 } 3607 3608 // FIXME: Check for unresolved forward-declared metadata references 3609 // and clean up leaks. 3610 3611 // Trim the value list down to the size it was before we parsed this function. 3612 ValueList.shrinkTo(ModuleValueListSize); 3613 MDValueList.shrinkTo(ModuleMDValueListSize); 3614 std::vector<BasicBlock*>().swap(FunctionBBs); 3615 return std::error_code(); 3616 } 3617 3618 /// Find the function body in the bitcode stream 3619 std::error_code BitcodeReader::FindFunctionInStream( 3620 Function *F, 3621 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3622 while (DeferredFunctionInfoIterator->second == 0) { 3623 if (Stream.AtEndOfStream()) 3624 return Error("Could not find function in stream"); 3625 // ParseModule will parse the next body in the stream and set its 3626 // position in the DeferredFunctionInfo map. 3627 if (std::error_code EC = ParseModule(true)) 3628 return EC; 3629 } 3630 return std::error_code(); 3631 } 3632 3633 //===----------------------------------------------------------------------===// 3634 // GVMaterializer implementation 3635 //===----------------------------------------------------------------------===// 3636 3637 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3638 3639 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3640 Function *F = dyn_cast<Function>(GV); 3641 // If it's not a function or is already material, ignore the request. 3642 if (!F || !F->isMaterializable()) 3643 return std::error_code(); 3644 3645 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3646 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3647 // If its position is recorded as 0, its body is somewhere in the stream 3648 // but we haven't seen it yet. 3649 if (DFII->second == 0 && LazyStreamer) 3650 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3651 return EC; 3652 3653 // Move the bit stream to the saved position of the deferred function body. 3654 Stream.JumpToBit(DFII->second); 3655 3656 if (std::error_code EC = ParseFunctionBody(F)) 3657 return EC; 3658 F->setIsMaterializable(false); 3659 3660 // Upgrade any old intrinsic calls in the function. 3661 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3662 E = UpgradedIntrinsics.end(); I != E; ++I) { 3663 if (I->first != I->second) { 3664 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3665 UI != UE;) { 3666 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3667 UpgradeIntrinsicCall(CI, I->second); 3668 } 3669 } 3670 } 3671 3672 // Bring in any functions that this function forward-referenced via 3673 // blockaddresses. 3674 return materializeForwardReferencedFunctions(); 3675 } 3676 3677 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3678 const Function *F = dyn_cast<Function>(GV); 3679 if (!F || F->isDeclaration()) 3680 return false; 3681 3682 // Dematerializing F would leave dangling references that wouldn't be 3683 // reconnected on re-materialization. 3684 if (BlockAddressesTaken.count(F)) 3685 return false; 3686 3687 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3688 } 3689 3690 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3691 Function *F = dyn_cast<Function>(GV); 3692 // If this function isn't dematerializable, this is a noop. 3693 if (!F || !isDematerializable(F)) 3694 return; 3695 3696 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3697 3698 // Just forget the function body, we can remat it later. 3699 F->dropAllReferences(); 3700 F->setIsMaterializable(true); 3701 } 3702 3703 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3704 assert(M == TheModule && 3705 "Can only Materialize the Module this BitcodeReader is attached to."); 3706 3707 // Promise to materialize all forward references. 3708 WillMaterializeAllForwardRefs = true; 3709 3710 // Iterate over the module, deserializing any functions that are still on 3711 // disk. 3712 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3713 F != E; ++F) { 3714 if (std::error_code EC = materialize(F)) 3715 return EC; 3716 } 3717 // At this point, if there are any function bodies, the current bit is 3718 // pointing to the END_BLOCK record after them. Now make sure the rest 3719 // of the bits in the module have been read. 3720 if (NextUnreadBit) 3721 ParseModule(true); 3722 3723 // Check that all block address forward references got resolved (as we 3724 // promised above). 3725 if (!BasicBlockFwdRefs.empty()) 3726 return Error("Never resolved function from blockaddress"); 3727 3728 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3729 // delete the old functions to clean up. We can't do this unless the entire 3730 // module is materialized because there could always be another function body 3731 // with calls to the old function. 3732 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3733 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3734 if (I->first != I->second) { 3735 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3736 UI != UE;) { 3737 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3738 UpgradeIntrinsicCall(CI, I->second); 3739 } 3740 if (!I->first->use_empty()) 3741 I->first->replaceAllUsesWith(I->second); 3742 I->first->eraseFromParent(); 3743 } 3744 } 3745 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3746 3747 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3748 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3749 3750 UpgradeDebugInfo(*M); 3751 return std::error_code(); 3752 } 3753 3754 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3755 return IdentifiedStructTypes; 3756 } 3757 3758 std::error_code BitcodeReader::InitStream() { 3759 if (LazyStreamer) 3760 return InitLazyStream(); 3761 return InitStreamFromBuffer(); 3762 } 3763 3764 std::error_code BitcodeReader::InitStreamFromBuffer() { 3765 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3766 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3767 3768 if (Buffer->getBufferSize() & 3) 3769 return Error("Invalid bitcode signature"); 3770 3771 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3772 // The magic number is 0x0B17C0DE stored in little endian. 3773 if (isBitcodeWrapper(BufPtr, BufEnd)) 3774 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3775 return Error("Invalid bitcode wrapper header"); 3776 3777 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3778 Stream.init(&*StreamFile); 3779 3780 return std::error_code(); 3781 } 3782 3783 std::error_code BitcodeReader::InitLazyStream() { 3784 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3785 // see it. 3786 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3787 StreamingMemoryObject &Bytes = *OwnedBytes; 3788 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3789 Stream.init(&*StreamFile); 3790 3791 unsigned char buf[16]; 3792 if (Bytes.readBytes(buf, 16, 0) != 16) 3793 return Error("Invalid bitcode signature"); 3794 3795 if (!isBitcode(buf, buf + 16)) 3796 return Error("Invalid bitcode signature"); 3797 3798 if (isBitcodeWrapper(buf, buf + 4)) { 3799 const unsigned char *bitcodeStart = buf; 3800 const unsigned char *bitcodeEnd = buf + 16; 3801 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3802 Bytes.dropLeadingBytes(bitcodeStart - buf); 3803 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3804 } 3805 return std::error_code(); 3806 } 3807 3808 namespace { 3809 class BitcodeErrorCategoryType : public std::error_category { 3810 const char *name() const LLVM_NOEXCEPT override { 3811 return "llvm.bitcode"; 3812 } 3813 std::string message(int IE) const override { 3814 BitcodeError E = static_cast<BitcodeError>(IE); 3815 switch (E) { 3816 case BitcodeError::InvalidBitcodeSignature: 3817 return "Invalid bitcode signature"; 3818 case BitcodeError::CorruptedBitcode: 3819 return "Corrupted bitcode"; 3820 } 3821 llvm_unreachable("Unknown error type!"); 3822 } 3823 }; 3824 } 3825 3826 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3827 3828 const std::error_category &llvm::BitcodeErrorCategory() { 3829 return *ErrorCategory; 3830 } 3831 3832 //===----------------------------------------------------------------------===// 3833 // External interface 3834 //===----------------------------------------------------------------------===// 3835 3836 /// \brief Get a lazy one-at-time loading module from bitcode. 3837 /// 3838 /// This isn't always used in a lazy context. In particular, it's also used by 3839 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3840 /// in forward-referenced functions from block address references. 3841 /// 3842 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3843 /// materialize everything -- in particular, if this isn't truly lazy. 3844 static ErrorOr<Module *> 3845 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3846 LLVMContext &Context, bool WillMaterializeAll, 3847 DiagnosticHandlerFunction DiagnosticHandler) { 3848 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3849 BitcodeReader *R = 3850 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3851 M->setMaterializer(R); 3852 3853 auto cleanupOnError = [&](std::error_code EC) { 3854 R->releaseBuffer(); // Never take ownership on error. 3855 delete M; // Also deletes R. 3856 return EC; 3857 }; 3858 3859 if (std::error_code EC = R->ParseBitcodeInto(M)) 3860 return cleanupOnError(EC); 3861 3862 if (!WillMaterializeAll) 3863 // Resolve forward references from blockaddresses. 3864 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3865 return cleanupOnError(EC); 3866 3867 Buffer.release(); // The BitcodeReader owns it now. 3868 return M; 3869 } 3870 3871 ErrorOr<Module *> 3872 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3873 LLVMContext &Context, 3874 DiagnosticHandlerFunction DiagnosticHandler) { 3875 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3876 DiagnosticHandler); 3877 } 3878 3879 ErrorOr<std::unique_ptr<Module>> 3880 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3881 LLVMContext &Context, 3882 DiagnosticHandlerFunction DiagnosticHandler) { 3883 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3884 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3885 M->setMaterializer(R); 3886 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3887 return EC; 3888 return std::move(M); 3889 } 3890 3891 ErrorOr<Module *> 3892 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3893 DiagnosticHandlerFunction DiagnosticHandler) { 3894 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3895 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3896 std::move(Buf), Context, true, DiagnosticHandler); 3897 if (!ModuleOrErr) 3898 return ModuleOrErr; 3899 Module *M = ModuleOrErr.get(); 3900 // Read in the entire module, and destroy the BitcodeReader. 3901 if (std::error_code EC = M->materializeAllPermanently()) { 3902 delete M; 3903 return EC; 3904 } 3905 3906 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3907 // written. We must defer until the Module has been fully materialized. 3908 3909 return M; 3910 } 3911 3912 std::string 3913 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3914 DiagnosticHandlerFunction DiagnosticHandler) { 3915 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3916 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3917 DiagnosticHandler); 3918 ErrorOr<std::string> Triple = R->parseTriple(); 3919 if (Triple.getError()) 3920 return ""; 3921 return Triple.get(); 3922 } 3923