1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 ModuleSummaryIndex::ModuleInfo *addThisModule(); 755 }; 756 757 } // end anonymous namespace 758 759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 760 Error Err) { 761 if (Err) { 762 std::error_code EC; 763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 764 EC = EIB.convertToErrorCode(); 765 Ctx.emitError(EIB.message()); 766 }); 767 return EC; 768 } 769 return std::error_code(); 770 } 771 772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 773 StringRef ProducerIdentification, 774 LLVMContext &Context) 775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 776 ValueList(Context) { 777 this->ProducerIdentification = ProducerIdentification; 778 } 779 780 Error BitcodeReader::materializeForwardReferencedFunctions() { 781 if (WillMaterializeAllForwardRefs) 782 return Error::success(); 783 784 // Prevent recursion. 785 WillMaterializeAllForwardRefs = true; 786 787 while (!BasicBlockFwdRefQueue.empty()) { 788 Function *F = BasicBlockFwdRefQueue.front(); 789 BasicBlockFwdRefQueue.pop_front(); 790 assert(F && "Expected valid function"); 791 if (!BasicBlockFwdRefs.count(F)) 792 // Already materialized. 793 continue; 794 795 // Check for a function that isn't materializable to prevent an infinite 796 // loop. When parsing a blockaddress stored in a global variable, there 797 // isn't a trivial way to check if a function will have a body without a 798 // linear search through FunctionsWithBodies, so just check it here. 799 if (!F->isMaterializable()) 800 return error("Never resolved function from blockaddress"); 801 802 // Try to materialize F. 803 if (Error Err = materialize(F)) 804 return Err; 805 } 806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 807 808 // Reset state. 809 WillMaterializeAllForwardRefs = false; 810 return Error::success(); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Helper functions to implement forward reference resolution, etc. 815 //===----------------------------------------------------------------------===// 816 817 static bool hasImplicitComdat(size_t Val) { 818 switch (Val) { 819 default: 820 return false; 821 case 1: // Old WeakAnyLinkage 822 case 4: // Old LinkOnceAnyLinkage 823 case 10: // Old WeakODRLinkage 824 case 11: // Old LinkOnceODRLinkage 825 return true; 826 } 827 } 828 829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown/new linkages to external 832 case 0: 833 return GlobalValue::ExternalLinkage; 834 case 2: 835 return GlobalValue::AppendingLinkage; 836 case 3: 837 return GlobalValue::InternalLinkage; 838 case 5: 839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 840 case 6: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 842 case 7: 843 return GlobalValue::ExternalWeakLinkage; 844 case 8: 845 return GlobalValue::CommonLinkage; 846 case 9: 847 return GlobalValue::PrivateLinkage; 848 case 12: 849 return GlobalValue::AvailableExternallyLinkage; 850 case 13: 851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 852 case 14: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 854 case 15: 855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 856 case 1: // Old value with implicit comdat. 857 case 16: 858 return GlobalValue::WeakAnyLinkage; 859 case 10: // Old value with implicit comdat. 860 case 17: 861 return GlobalValue::WeakODRLinkage; 862 case 4: // Old value with implicit comdat. 863 case 18: 864 return GlobalValue::LinkOnceAnyLinkage; 865 case 11: // Old value with implicit comdat. 866 case 19: 867 return GlobalValue::LinkOnceODRLinkage; 868 } 869 } 870 871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 872 FunctionSummary::FFlags Flags; 873 Flags.ReadNone = RawFlags & 0x1; 874 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 875 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 877 return Flags; 878 } 879 880 /// Decode the flags for GlobalValue in the summary. 881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 882 uint64_t Version) { 883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 884 // like getDecodedLinkage() above. Any future change to the linkage enum and 885 // to getDecodedLinkage() will need to be taken into account here as above. 886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 887 RawFlags = RawFlags >> 4; 888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 889 // The Live flag wasn't introduced until version 3. For dead stripping 890 // to work correctly on earlier versions, we must conservatively treat all 891 // values as live. 892 bool Live = (RawFlags & 0x2) || Version < 3; 893 bool Local = (RawFlags & 0x4); 894 895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 896 } 897 898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown visibilities to default. 901 case 0: return GlobalValue::DefaultVisibility; 902 case 1: return GlobalValue::HiddenVisibility; 903 case 2: return GlobalValue::ProtectedVisibility; 904 } 905 } 906 907 static GlobalValue::DLLStorageClassTypes 908 getDecodedDLLStorageClass(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown values to default. 911 case 0: return GlobalValue::DefaultStorageClass; 912 case 1: return GlobalValue::DLLImportStorageClass; 913 case 2: return GlobalValue::DLLExportStorageClass; 914 } 915 } 916 917 static bool getDecodedDSOLocal(unsigned Val) { 918 switch(Val) { 919 default: // Map unknown values to preemptable. 920 case 0: return false; 921 case 1: return true; 922 } 923 } 924 925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 926 switch (Val) { 927 case 0: return GlobalVariable::NotThreadLocal; 928 default: // Map unknown non-zero value to general dynamic. 929 case 1: return GlobalVariable::GeneralDynamicTLSModel; 930 case 2: return GlobalVariable::LocalDynamicTLSModel; 931 case 3: return GlobalVariable::InitialExecTLSModel; 932 case 4: return GlobalVariable::LocalExecTLSModel; 933 } 934 } 935 936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown to UnnamedAddr::None. 939 case 0: return GlobalVariable::UnnamedAddr::None; 940 case 1: return GlobalVariable::UnnamedAddr::Global; 941 case 2: return GlobalVariable::UnnamedAddr::Local; 942 } 943 } 944 945 static int getDecodedCastOpcode(unsigned Val) { 946 switch (Val) { 947 default: return -1; 948 case bitc::CAST_TRUNC : return Instruction::Trunc; 949 case bitc::CAST_ZEXT : return Instruction::ZExt; 950 case bitc::CAST_SEXT : return Instruction::SExt; 951 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 952 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 953 case bitc::CAST_UITOFP : return Instruction::UIToFP; 954 case bitc::CAST_SITOFP : return Instruction::SIToFP; 955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 956 case bitc::CAST_FPEXT : return Instruction::FPExt; 957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 959 case bitc::CAST_BITCAST : return Instruction::BitCast; 960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 961 } 962 } 963 964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 965 bool IsFP = Ty->isFPOrFPVectorTy(); 966 // BinOps are only valid for int/fp or vector of int/fp types 967 if (!IsFP && !Ty->isIntOrIntVectorTy()) 968 return -1; 969 970 switch (Val) { 971 default: 972 return -1; 973 case bitc::BINOP_ADD: 974 return IsFP ? Instruction::FAdd : Instruction::Add; 975 case bitc::BINOP_SUB: 976 return IsFP ? Instruction::FSub : Instruction::Sub; 977 case bitc::BINOP_MUL: 978 return IsFP ? Instruction::FMul : Instruction::Mul; 979 case bitc::BINOP_UDIV: 980 return IsFP ? -1 : Instruction::UDiv; 981 case bitc::BINOP_SDIV: 982 return IsFP ? Instruction::FDiv : Instruction::SDiv; 983 case bitc::BINOP_UREM: 984 return IsFP ? -1 : Instruction::URem; 985 case bitc::BINOP_SREM: 986 return IsFP ? Instruction::FRem : Instruction::SRem; 987 case bitc::BINOP_SHL: 988 return IsFP ? -1 : Instruction::Shl; 989 case bitc::BINOP_LSHR: 990 return IsFP ? -1 : Instruction::LShr; 991 case bitc::BINOP_ASHR: 992 return IsFP ? -1 : Instruction::AShr; 993 case bitc::BINOP_AND: 994 return IsFP ? -1 : Instruction::And; 995 case bitc::BINOP_OR: 996 return IsFP ? -1 : Instruction::Or; 997 case bitc::BINOP_XOR: 998 return IsFP ? -1 : Instruction::Xor; 999 } 1000 } 1001 1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1003 switch (Val) { 1004 default: return AtomicRMWInst::BAD_BINOP; 1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1006 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1008 case bitc::RMW_AND: return AtomicRMWInst::And; 1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1010 case bitc::RMW_OR: return AtomicRMWInst::Or; 1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1012 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1013 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1016 } 1017 } 1018 1019 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1020 switch (Val) { 1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1027 default: // Map unknown orderings to sequentially-consistent. 1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1029 } 1030 } 1031 1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown selection kinds to any. 1035 case bitc::COMDAT_SELECTION_KIND_ANY: 1036 return Comdat::Any; 1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1038 return Comdat::ExactMatch; 1039 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1040 return Comdat::Largest; 1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1042 return Comdat::NoDuplicates; 1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1044 return Comdat::SameSize; 1045 } 1046 } 1047 1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1049 FastMathFlags FMF; 1050 if (0 != (Val & bitc::UnsafeAlgebra)) 1051 FMF.setFast(); 1052 if (0 != (Val & bitc::AllowReassoc)) 1053 FMF.setAllowReassoc(); 1054 if (0 != (Val & bitc::NoNaNs)) 1055 FMF.setNoNaNs(); 1056 if (0 != (Val & bitc::NoInfs)) 1057 FMF.setNoInfs(); 1058 if (0 != (Val & bitc::NoSignedZeros)) 1059 FMF.setNoSignedZeros(); 1060 if (0 != (Val & bitc::AllowReciprocal)) 1061 FMF.setAllowReciprocal(); 1062 if (0 != (Val & bitc::AllowContract)) 1063 FMF.setAllowContract(true); 1064 if (0 != (Val & bitc::ApproxFunc)) 1065 FMF.setApproxFunc(); 1066 return FMF; 1067 } 1068 1069 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1070 switch (Val) { 1071 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1072 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1073 } 1074 } 1075 1076 Type *BitcodeReader::getTypeByID(unsigned ID) { 1077 // The type table size is always specified correctly. 1078 if (ID >= TypeList.size()) 1079 return nullptr; 1080 1081 if (Type *Ty = TypeList[ID]) 1082 return Ty; 1083 1084 // If we have a forward reference, the only possible case is when it is to a 1085 // named struct. Just create a placeholder for now. 1086 return TypeList[ID] = createIdentifiedStructType(Context); 1087 } 1088 1089 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1090 StringRef Name) { 1091 auto *Ret = StructType::create(Context, Name); 1092 IdentifiedStructTypes.push_back(Ret); 1093 return Ret; 1094 } 1095 1096 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1097 auto *Ret = StructType::create(Context); 1098 IdentifiedStructTypes.push_back(Ret); 1099 return Ret; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Functions for parsing blocks from the bitcode file 1104 //===----------------------------------------------------------------------===// 1105 1106 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1107 switch (Val) { 1108 case Attribute::EndAttrKinds: 1109 llvm_unreachable("Synthetic enumerators which should never get here"); 1110 1111 case Attribute::None: return 0; 1112 case Attribute::ZExt: return 1 << 0; 1113 case Attribute::SExt: return 1 << 1; 1114 case Attribute::NoReturn: return 1 << 2; 1115 case Attribute::InReg: return 1 << 3; 1116 case Attribute::StructRet: return 1 << 4; 1117 case Attribute::NoUnwind: return 1 << 5; 1118 case Attribute::NoAlias: return 1 << 6; 1119 case Attribute::ByVal: return 1 << 7; 1120 case Attribute::Nest: return 1 << 8; 1121 case Attribute::ReadNone: return 1 << 9; 1122 case Attribute::ReadOnly: return 1 << 10; 1123 case Attribute::NoInline: return 1 << 11; 1124 case Attribute::AlwaysInline: return 1 << 12; 1125 case Attribute::OptimizeForSize: return 1 << 13; 1126 case Attribute::StackProtect: return 1 << 14; 1127 case Attribute::StackProtectReq: return 1 << 15; 1128 case Attribute::Alignment: return 31 << 16; 1129 case Attribute::NoCapture: return 1 << 21; 1130 case Attribute::NoRedZone: return 1 << 22; 1131 case Attribute::NoImplicitFloat: return 1 << 23; 1132 case Attribute::Naked: return 1 << 24; 1133 case Attribute::InlineHint: return 1 << 25; 1134 case Attribute::StackAlignment: return 7 << 26; 1135 case Attribute::ReturnsTwice: return 1 << 29; 1136 case Attribute::UWTable: return 1 << 30; 1137 case Attribute::NonLazyBind: return 1U << 31; 1138 case Attribute::SanitizeAddress: return 1ULL << 32; 1139 case Attribute::MinSize: return 1ULL << 33; 1140 case Attribute::NoDuplicate: return 1ULL << 34; 1141 case Attribute::StackProtectStrong: return 1ULL << 35; 1142 case Attribute::SanitizeThread: return 1ULL << 36; 1143 case Attribute::SanitizeMemory: return 1ULL << 37; 1144 case Attribute::NoBuiltin: return 1ULL << 38; 1145 case Attribute::Returned: return 1ULL << 39; 1146 case Attribute::Cold: return 1ULL << 40; 1147 case Attribute::Builtin: return 1ULL << 41; 1148 case Attribute::OptimizeNone: return 1ULL << 42; 1149 case Attribute::InAlloca: return 1ULL << 43; 1150 case Attribute::NonNull: return 1ULL << 44; 1151 case Attribute::JumpTable: return 1ULL << 45; 1152 case Attribute::Convergent: return 1ULL << 46; 1153 case Attribute::SafeStack: return 1ULL << 47; 1154 case Attribute::NoRecurse: return 1ULL << 48; 1155 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1156 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1157 case Attribute::SwiftSelf: return 1ULL << 51; 1158 case Attribute::SwiftError: return 1ULL << 52; 1159 case Attribute::WriteOnly: return 1ULL << 53; 1160 case Attribute::Speculatable: return 1ULL << 54; 1161 case Attribute::StrictFP: return 1ULL << 55; 1162 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1163 case Attribute::Dereferenceable: 1164 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1165 break; 1166 case Attribute::DereferenceableOrNull: 1167 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1168 "format"); 1169 break; 1170 case Attribute::ArgMemOnly: 1171 llvm_unreachable("argmemonly attribute not supported in raw format"); 1172 break; 1173 case Attribute::AllocSize: 1174 llvm_unreachable("allocsize not supported in raw format"); 1175 break; 1176 } 1177 llvm_unreachable("Unsupported attribute type"); 1178 } 1179 1180 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1181 if (!Val) return; 1182 1183 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1184 I = Attribute::AttrKind(I + 1)) { 1185 if (I == Attribute::Dereferenceable || 1186 I == Attribute::DereferenceableOrNull || 1187 I == Attribute::ArgMemOnly || 1188 I == Attribute::AllocSize) 1189 continue; 1190 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1191 if (I == Attribute::Alignment) 1192 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1193 else if (I == Attribute::StackAlignment) 1194 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1195 else 1196 B.addAttribute(I); 1197 } 1198 } 1199 } 1200 1201 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1202 /// been decoded from the given integer. This function must stay in sync with 1203 /// 'encodeLLVMAttributesForBitcode'. 1204 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1205 uint64_t EncodedAttrs) { 1206 // FIXME: Remove in 4.0. 1207 1208 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1209 // the bits above 31 down by 11 bits. 1210 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1211 assert((!Alignment || isPowerOf2_32(Alignment)) && 1212 "Alignment must be a power of two."); 1213 1214 if (Alignment) 1215 B.addAlignmentAttr(Alignment); 1216 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1217 (EncodedAttrs & 0xffff)); 1218 } 1219 1220 Error BitcodeReader::parseAttributeBlock() { 1221 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1222 return error("Invalid record"); 1223 1224 if (!MAttributes.empty()) 1225 return error("Invalid multiple blocks"); 1226 1227 SmallVector<uint64_t, 64> Record; 1228 1229 SmallVector<AttributeList, 8> Attrs; 1230 1231 // Read all the records. 1232 while (true) { 1233 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1234 1235 switch (Entry.Kind) { 1236 case BitstreamEntry::SubBlock: // Handled for us already. 1237 case BitstreamEntry::Error: 1238 return error("Malformed block"); 1239 case BitstreamEntry::EndBlock: 1240 return Error::success(); 1241 case BitstreamEntry::Record: 1242 // The interesting case. 1243 break; 1244 } 1245 1246 // Read a record. 1247 Record.clear(); 1248 switch (Stream.readRecord(Entry.ID, Record)) { 1249 default: // Default behavior: ignore. 1250 break; 1251 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1252 // FIXME: Remove in 4.0. 1253 if (Record.size() & 1) 1254 return error("Invalid record"); 1255 1256 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1257 AttrBuilder B; 1258 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1259 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1260 } 1261 1262 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1263 Attrs.clear(); 1264 break; 1265 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1266 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1267 Attrs.push_back(MAttributeGroups[Record[i]]); 1268 1269 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1270 Attrs.clear(); 1271 break; 1272 } 1273 } 1274 } 1275 1276 // Returns Attribute::None on unrecognized codes. 1277 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1278 switch (Code) { 1279 default: 1280 return Attribute::None; 1281 case bitc::ATTR_KIND_ALIGNMENT: 1282 return Attribute::Alignment; 1283 case bitc::ATTR_KIND_ALWAYS_INLINE: 1284 return Attribute::AlwaysInline; 1285 case bitc::ATTR_KIND_ARGMEMONLY: 1286 return Attribute::ArgMemOnly; 1287 case bitc::ATTR_KIND_BUILTIN: 1288 return Attribute::Builtin; 1289 case bitc::ATTR_KIND_BY_VAL: 1290 return Attribute::ByVal; 1291 case bitc::ATTR_KIND_IN_ALLOCA: 1292 return Attribute::InAlloca; 1293 case bitc::ATTR_KIND_COLD: 1294 return Attribute::Cold; 1295 case bitc::ATTR_KIND_CONVERGENT: 1296 return Attribute::Convergent; 1297 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1298 return Attribute::InaccessibleMemOnly; 1299 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1300 return Attribute::InaccessibleMemOrArgMemOnly; 1301 case bitc::ATTR_KIND_INLINE_HINT: 1302 return Attribute::InlineHint; 1303 case bitc::ATTR_KIND_IN_REG: 1304 return Attribute::InReg; 1305 case bitc::ATTR_KIND_JUMP_TABLE: 1306 return Attribute::JumpTable; 1307 case bitc::ATTR_KIND_MIN_SIZE: 1308 return Attribute::MinSize; 1309 case bitc::ATTR_KIND_NAKED: 1310 return Attribute::Naked; 1311 case bitc::ATTR_KIND_NEST: 1312 return Attribute::Nest; 1313 case bitc::ATTR_KIND_NO_ALIAS: 1314 return Attribute::NoAlias; 1315 case bitc::ATTR_KIND_NO_BUILTIN: 1316 return Attribute::NoBuiltin; 1317 case bitc::ATTR_KIND_NO_CAPTURE: 1318 return Attribute::NoCapture; 1319 case bitc::ATTR_KIND_NO_DUPLICATE: 1320 return Attribute::NoDuplicate; 1321 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1322 return Attribute::NoImplicitFloat; 1323 case bitc::ATTR_KIND_NO_INLINE: 1324 return Attribute::NoInline; 1325 case bitc::ATTR_KIND_NO_RECURSE: 1326 return Attribute::NoRecurse; 1327 case bitc::ATTR_KIND_NON_LAZY_BIND: 1328 return Attribute::NonLazyBind; 1329 case bitc::ATTR_KIND_NON_NULL: 1330 return Attribute::NonNull; 1331 case bitc::ATTR_KIND_DEREFERENCEABLE: 1332 return Attribute::Dereferenceable; 1333 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1334 return Attribute::DereferenceableOrNull; 1335 case bitc::ATTR_KIND_ALLOC_SIZE: 1336 return Attribute::AllocSize; 1337 case bitc::ATTR_KIND_NO_RED_ZONE: 1338 return Attribute::NoRedZone; 1339 case bitc::ATTR_KIND_NO_RETURN: 1340 return Attribute::NoReturn; 1341 case bitc::ATTR_KIND_NO_UNWIND: 1342 return Attribute::NoUnwind; 1343 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1344 return Attribute::OptimizeForSize; 1345 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1346 return Attribute::OptimizeNone; 1347 case bitc::ATTR_KIND_READ_NONE: 1348 return Attribute::ReadNone; 1349 case bitc::ATTR_KIND_READ_ONLY: 1350 return Attribute::ReadOnly; 1351 case bitc::ATTR_KIND_RETURNED: 1352 return Attribute::Returned; 1353 case bitc::ATTR_KIND_RETURNS_TWICE: 1354 return Attribute::ReturnsTwice; 1355 case bitc::ATTR_KIND_S_EXT: 1356 return Attribute::SExt; 1357 case bitc::ATTR_KIND_SPECULATABLE: 1358 return Attribute::Speculatable; 1359 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1360 return Attribute::StackAlignment; 1361 case bitc::ATTR_KIND_STACK_PROTECT: 1362 return Attribute::StackProtect; 1363 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1364 return Attribute::StackProtectReq; 1365 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1366 return Attribute::StackProtectStrong; 1367 case bitc::ATTR_KIND_SAFESTACK: 1368 return Attribute::SafeStack; 1369 case bitc::ATTR_KIND_STRICT_FP: 1370 return Attribute::StrictFP; 1371 case bitc::ATTR_KIND_STRUCT_RET: 1372 return Attribute::StructRet; 1373 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1374 return Attribute::SanitizeAddress; 1375 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1376 return Attribute::SanitizeHWAddress; 1377 case bitc::ATTR_KIND_SANITIZE_THREAD: 1378 return Attribute::SanitizeThread; 1379 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1380 return Attribute::SanitizeMemory; 1381 case bitc::ATTR_KIND_SWIFT_ERROR: 1382 return Attribute::SwiftError; 1383 case bitc::ATTR_KIND_SWIFT_SELF: 1384 return Attribute::SwiftSelf; 1385 case bitc::ATTR_KIND_UW_TABLE: 1386 return Attribute::UWTable; 1387 case bitc::ATTR_KIND_WRITEONLY: 1388 return Attribute::WriteOnly; 1389 case bitc::ATTR_KIND_Z_EXT: 1390 return Attribute::ZExt; 1391 } 1392 } 1393 1394 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1395 unsigned &Alignment) { 1396 // Note: Alignment in bitcode files is incremented by 1, so that zero 1397 // can be used for default alignment. 1398 if (Exponent > Value::MaxAlignmentExponent + 1) 1399 return error("Invalid alignment value"); 1400 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1401 return Error::success(); 1402 } 1403 1404 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1405 *Kind = getAttrFromCode(Code); 1406 if (*Kind == Attribute::None) 1407 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1408 return Error::success(); 1409 } 1410 1411 Error BitcodeReader::parseAttributeGroupBlock() { 1412 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1413 return error("Invalid record"); 1414 1415 if (!MAttributeGroups.empty()) 1416 return error("Invalid multiple blocks"); 1417 1418 SmallVector<uint64_t, 64> Record; 1419 1420 // Read all the records. 1421 while (true) { 1422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1423 1424 switch (Entry.Kind) { 1425 case BitstreamEntry::SubBlock: // Handled for us already. 1426 case BitstreamEntry::Error: 1427 return error("Malformed block"); 1428 case BitstreamEntry::EndBlock: 1429 return Error::success(); 1430 case BitstreamEntry::Record: 1431 // The interesting case. 1432 break; 1433 } 1434 1435 // Read a record. 1436 Record.clear(); 1437 switch (Stream.readRecord(Entry.ID, Record)) { 1438 default: // Default behavior: ignore. 1439 break; 1440 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1441 if (Record.size() < 3) 1442 return error("Invalid record"); 1443 1444 uint64_t GrpID = Record[0]; 1445 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1446 1447 AttrBuilder B; 1448 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1449 if (Record[i] == 0) { // Enum attribute 1450 Attribute::AttrKind Kind; 1451 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1452 return Err; 1453 1454 B.addAttribute(Kind); 1455 } else if (Record[i] == 1) { // Integer attribute 1456 Attribute::AttrKind Kind; 1457 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1458 return Err; 1459 if (Kind == Attribute::Alignment) 1460 B.addAlignmentAttr(Record[++i]); 1461 else if (Kind == Attribute::StackAlignment) 1462 B.addStackAlignmentAttr(Record[++i]); 1463 else if (Kind == Attribute::Dereferenceable) 1464 B.addDereferenceableAttr(Record[++i]); 1465 else if (Kind == Attribute::DereferenceableOrNull) 1466 B.addDereferenceableOrNullAttr(Record[++i]); 1467 else if (Kind == Attribute::AllocSize) 1468 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1469 } else { // String attribute 1470 assert((Record[i] == 3 || Record[i] == 4) && 1471 "Invalid attribute group entry"); 1472 bool HasValue = (Record[i++] == 4); 1473 SmallString<64> KindStr; 1474 SmallString<64> ValStr; 1475 1476 while (Record[i] != 0 && i != e) 1477 KindStr += Record[i++]; 1478 assert(Record[i] == 0 && "Kind string not null terminated"); 1479 1480 if (HasValue) { 1481 // Has a value associated with it. 1482 ++i; // Skip the '0' that terminates the "kind" string. 1483 while (Record[i] != 0 && i != e) 1484 ValStr += Record[i++]; 1485 assert(Record[i] == 0 && "Value string not null terminated"); 1486 } 1487 1488 B.addAttribute(KindStr.str(), ValStr.str()); 1489 } 1490 } 1491 1492 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1493 break; 1494 } 1495 } 1496 } 1497 } 1498 1499 Error BitcodeReader::parseTypeTable() { 1500 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1501 return error("Invalid record"); 1502 1503 return parseTypeTableBody(); 1504 } 1505 1506 Error BitcodeReader::parseTypeTableBody() { 1507 if (!TypeList.empty()) 1508 return error("Invalid multiple blocks"); 1509 1510 SmallVector<uint64_t, 64> Record; 1511 unsigned NumRecords = 0; 1512 1513 SmallString<64> TypeName; 1514 1515 // Read all the records for this type table. 1516 while (true) { 1517 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1518 1519 switch (Entry.Kind) { 1520 case BitstreamEntry::SubBlock: // Handled for us already. 1521 case BitstreamEntry::Error: 1522 return error("Malformed block"); 1523 case BitstreamEntry::EndBlock: 1524 if (NumRecords != TypeList.size()) 1525 return error("Malformed block"); 1526 return Error::success(); 1527 case BitstreamEntry::Record: 1528 // The interesting case. 1529 break; 1530 } 1531 1532 // Read a record. 1533 Record.clear(); 1534 Type *ResultTy = nullptr; 1535 switch (Stream.readRecord(Entry.ID, Record)) { 1536 default: 1537 return error("Invalid value"); 1538 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1539 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1540 // type list. This allows us to reserve space. 1541 if (Record.size() < 1) 1542 return error("Invalid record"); 1543 TypeList.resize(Record[0]); 1544 continue; 1545 case bitc::TYPE_CODE_VOID: // VOID 1546 ResultTy = Type::getVoidTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_HALF: // HALF 1549 ResultTy = Type::getHalfTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_FLOAT: // FLOAT 1552 ResultTy = Type::getFloatTy(Context); 1553 break; 1554 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1555 ResultTy = Type::getDoubleTy(Context); 1556 break; 1557 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1558 ResultTy = Type::getX86_FP80Ty(Context); 1559 break; 1560 case bitc::TYPE_CODE_FP128: // FP128 1561 ResultTy = Type::getFP128Ty(Context); 1562 break; 1563 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1564 ResultTy = Type::getPPC_FP128Ty(Context); 1565 break; 1566 case bitc::TYPE_CODE_LABEL: // LABEL 1567 ResultTy = Type::getLabelTy(Context); 1568 break; 1569 case bitc::TYPE_CODE_METADATA: // METADATA 1570 ResultTy = Type::getMetadataTy(Context); 1571 break; 1572 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1573 ResultTy = Type::getX86_MMXTy(Context); 1574 break; 1575 case bitc::TYPE_CODE_TOKEN: // TOKEN 1576 ResultTy = Type::getTokenTy(Context); 1577 break; 1578 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1579 if (Record.size() < 1) 1580 return error("Invalid record"); 1581 1582 uint64_t NumBits = Record[0]; 1583 if (NumBits < IntegerType::MIN_INT_BITS || 1584 NumBits > IntegerType::MAX_INT_BITS) 1585 return error("Bitwidth for integer type out of range"); 1586 ResultTy = IntegerType::get(Context, NumBits); 1587 break; 1588 } 1589 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1590 // [pointee type, address space] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 unsigned AddressSpace = 0; 1594 if (Record.size() == 2) 1595 AddressSpace = Record[1]; 1596 ResultTy = getTypeByID(Record[0]); 1597 if (!ResultTy || 1598 !PointerType::isValidElementType(ResultTy)) 1599 return error("Invalid type"); 1600 ResultTy = PointerType::get(ResultTy, AddressSpace); 1601 break; 1602 } 1603 case bitc::TYPE_CODE_FUNCTION_OLD: { 1604 // FIXME: attrid is dead, remove it in LLVM 4.0 1605 // FUNCTION: [vararg, attrid, retty, paramty x N] 1606 if (Record.size() < 3) 1607 return error("Invalid record"); 1608 SmallVector<Type*, 8> ArgTys; 1609 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1610 if (Type *T = getTypeByID(Record[i])) 1611 ArgTys.push_back(T); 1612 else 1613 break; 1614 } 1615 1616 ResultTy = getTypeByID(Record[2]); 1617 if (!ResultTy || ArgTys.size() < Record.size()-3) 1618 return error("Invalid type"); 1619 1620 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_FUNCTION: { 1624 // FUNCTION: [vararg, retty, paramty x N] 1625 if (Record.size() < 2) 1626 return error("Invalid record"); 1627 SmallVector<Type*, 8> ArgTys; 1628 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1629 if (Type *T = getTypeByID(Record[i])) { 1630 if (!FunctionType::isValidArgumentType(T)) 1631 return error("Invalid function argument type"); 1632 ArgTys.push_back(T); 1633 } 1634 else 1635 break; 1636 } 1637 1638 ResultTy = getTypeByID(Record[1]); 1639 if (!ResultTy || ArgTys.size() < Record.size()-2) 1640 return error("Invalid type"); 1641 1642 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1643 break; 1644 } 1645 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1646 if (Record.size() < 1) 1647 return error("Invalid record"); 1648 SmallVector<Type*, 8> EltTys; 1649 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1650 if (Type *T = getTypeByID(Record[i])) 1651 EltTys.push_back(T); 1652 else 1653 break; 1654 } 1655 if (EltTys.size() != Record.size()-1) 1656 return error("Invalid type"); 1657 ResultTy = StructType::get(Context, EltTys, Record[0]); 1658 break; 1659 } 1660 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1661 if (convertToString(Record, 0, TypeName)) 1662 return error("Invalid record"); 1663 continue; 1664 1665 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1666 if (Record.size() < 1) 1667 return error("Invalid record"); 1668 1669 if (NumRecords >= TypeList.size()) 1670 return error("Invalid TYPE table"); 1671 1672 // Check to see if this was forward referenced, if so fill in the temp. 1673 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1674 if (Res) { 1675 Res->setName(TypeName); 1676 TypeList[NumRecords] = nullptr; 1677 } else // Otherwise, create a new struct. 1678 Res = createIdentifiedStructType(Context, TypeName); 1679 TypeName.clear(); 1680 1681 SmallVector<Type*, 8> EltTys; 1682 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1683 if (Type *T = getTypeByID(Record[i])) 1684 EltTys.push_back(T); 1685 else 1686 break; 1687 } 1688 if (EltTys.size() != Record.size()-1) 1689 return error("Invalid record"); 1690 Res->setBody(EltTys, Record[0]); 1691 ResultTy = Res; 1692 break; 1693 } 1694 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1695 if (Record.size() != 1) 1696 return error("Invalid record"); 1697 1698 if (NumRecords >= TypeList.size()) 1699 return error("Invalid TYPE table"); 1700 1701 // Check to see if this was forward referenced, if so fill in the temp. 1702 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1703 if (Res) { 1704 Res->setName(TypeName); 1705 TypeList[NumRecords] = nullptr; 1706 } else // Otherwise, create a new struct with no body. 1707 Res = createIdentifiedStructType(Context, TypeName); 1708 TypeName.clear(); 1709 ResultTy = Res; 1710 break; 1711 } 1712 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1713 if (Record.size() < 2) 1714 return error("Invalid record"); 1715 ResultTy = getTypeByID(Record[1]); 1716 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1717 return error("Invalid type"); 1718 ResultTy = ArrayType::get(ResultTy, Record[0]); 1719 break; 1720 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1721 if (Record.size() < 2) 1722 return error("Invalid record"); 1723 if (Record[0] == 0) 1724 return error("Invalid vector length"); 1725 ResultTy = getTypeByID(Record[1]); 1726 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1727 return error("Invalid type"); 1728 ResultTy = VectorType::get(ResultTy, Record[0]); 1729 break; 1730 } 1731 1732 if (NumRecords >= TypeList.size()) 1733 return error("Invalid TYPE table"); 1734 if (TypeList[NumRecords]) 1735 return error( 1736 "Invalid TYPE table: Only named structs can be forward referenced"); 1737 assert(ResultTy && "Didn't read a type?"); 1738 TypeList[NumRecords++] = ResultTy; 1739 } 1740 } 1741 1742 Error BitcodeReader::parseOperandBundleTags() { 1743 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1744 return error("Invalid record"); 1745 1746 if (!BundleTags.empty()) 1747 return error("Invalid multiple blocks"); 1748 1749 SmallVector<uint64_t, 64> Record; 1750 1751 while (true) { 1752 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1753 1754 switch (Entry.Kind) { 1755 case BitstreamEntry::SubBlock: // Handled for us already. 1756 case BitstreamEntry::Error: 1757 return error("Malformed block"); 1758 case BitstreamEntry::EndBlock: 1759 return Error::success(); 1760 case BitstreamEntry::Record: 1761 // The interesting case. 1762 break; 1763 } 1764 1765 // Tags are implicitly mapped to integers by their order. 1766 1767 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1768 return error("Invalid record"); 1769 1770 // OPERAND_BUNDLE_TAG: [strchr x N] 1771 BundleTags.emplace_back(); 1772 if (convertToString(Record, 0, BundleTags.back())) 1773 return error("Invalid record"); 1774 Record.clear(); 1775 } 1776 } 1777 1778 Error BitcodeReader::parseSyncScopeNames() { 1779 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1780 return error("Invalid record"); 1781 1782 if (!SSIDs.empty()) 1783 return error("Invalid multiple synchronization scope names blocks"); 1784 1785 SmallVector<uint64_t, 64> Record; 1786 while (true) { 1787 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1788 switch (Entry.Kind) { 1789 case BitstreamEntry::SubBlock: // Handled for us already. 1790 case BitstreamEntry::Error: 1791 return error("Malformed block"); 1792 case BitstreamEntry::EndBlock: 1793 if (SSIDs.empty()) 1794 return error("Invalid empty synchronization scope names block"); 1795 return Error::success(); 1796 case BitstreamEntry::Record: 1797 // The interesting case. 1798 break; 1799 } 1800 1801 // Synchronization scope names are implicitly mapped to synchronization 1802 // scope IDs by their order. 1803 1804 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1805 return error("Invalid record"); 1806 1807 SmallString<16> SSN; 1808 if (convertToString(Record, 0, SSN)) 1809 return error("Invalid record"); 1810 1811 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1812 Record.clear(); 1813 } 1814 } 1815 1816 /// Associate a value with its name from the given index in the provided record. 1817 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1818 unsigned NameIndex, Triple &TT) { 1819 SmallString<128> ValueName; 1820 if (convertToString(Record, NameIndex, ValueName)) 1821 return error("Invalid record"); 1822 unsigned ValueID = Record[0]; 1823 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1824 return error("Invalid record"); 1825 Value *V = ValueList[ValueID]; 1826 1827 StringRef NameStr(ValueName.data(), ValueName.size()); 1828 if (NameStr.find_first_of(0) != StringRef::npos) 1829 return error("Invalid value name"); 1830 V->setName(NameStr); 1831 auto *GO = dyn_cast<GlobalObject>(V); 1832 if (GO) { 1833 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1834 if (TT.supportsCOMDAT()) 1835 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1836 else 1837 GO->setComdat(nullptr); 1838 } 1839 } 1840 return V; 1841 } 1842 1843 /// Helper to note and return the current location, and jump to the given 1844 /// offset. 1845 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1846 BitstreamCursor &Stream) { 1847 // Save the current parsing location so we can jump back at the end 1848 // of the VST read. 1849 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1850 Stream.JumpToBit(Offset * 32); 1851 #ifndef NDEBUG 1852 // Do some checking if we are in debug mode. 1853 BitstreamEntry Entry = Stream.advance(); 1854 assert(Entry.Kind == BitstreamEntry::SubBlock); 1855 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1856 #else 1857 // In NDEBUG mode ignore the output so we don't get an unused variable 1858 // warning. 1859 Stream.advance(); 1860 #endif 1861 return CurrentBit; 1862 } 1863 1864 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1865 Function *F, 1866 ArrayRef<uint64_t> Record) { 1867 // Note that we subtract 1 here because the offset is relative to one word 1868 // before the start of the identification or module block, which was 1869 // historically always the start of the regular bitcode header. 1870 uint64_t FuncWordOffset = Record[1] - 1; 1871 uint64_t FuncBitOffset = FuncWordOffset * 32; 1872 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1873 // Set the LastFunctionBlockBit to point to the last function block. 1874 // Later when parsing is resumed after function materialization, 1875 // we can simply skip that last function block. 1876 if (FuncBitOffset > LastFunctionBlockBit) 1877 LastFunctionBlockBit = FuncBitOffset; 1878 } 1879 1880 /// Read a new-style GlobalValue symbol table. 1881 Error BitcodeReader::parseGlobalValueSymbolTable() { 1882 unsigned FuncBitcodeOffsetDelta = 1883 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1884 1885 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1886 return error("Invalid record"); 1887 1888 SmallVector<uint64_t, 64> Record; 1889 while (true) { 1890 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1891 1892 switch (Entry.Kind) { 1893 case BitstreamEntry::SubBlock: 1894 case BitstreamEntry::Error: 1895 return error("Malformed block"); 1896 case BitstreamEntry::EndBlock: 1897 return Error::success(); 1898 case BitstreamEntry::Record: 1899 break; 1900 } 1901 1902 Record.clear(); 1903 switch (Stream.readRecord(Entry.ID, Record)) { 1904 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1905 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1906 cast<Function>(ValueList[Record[0]]), Record); 1907 break; 1908 } 1909 } 1910 } 1911 1912 /// Parse the value symbol table at either the current parsing location or 1913 /// at the given bit offset if provided. 1914 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1915 uint64_t CurrentBit; 1916 // Pass in the Offset to distinguish between calling for the module-level 1917 // VST (where we want to jump to the VST offset) and the function-level 1918 // VST (where we don't). 1919 if (Offset > 0) { 1920 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1921 // If this module uses a string table, read this as a module-level VST. 1922 if (UseStrtab) { 1923 if (Error Err = parseGlobalValueSymbolTable()) 1924 return Err; 1925 Stream.JumpToBit(CurrentBit); 1926 return Error::success(); 1927 } 1928 // Otherwise, the VST will be in a similar format to a function-level VST, 1929 // and will contain symbol names. 1930 } 1931 1932 // Compute the delta between the bitcode indices in the VST (the word offset 1933 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1934 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1935 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1936 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1937 // just before entering the VST subblock because: 1) the EnterSubBlock 1938 // changes the AbbrevID width; 2) the VST block is nested within the same 1939 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1940 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1941 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1942 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1943 unsigned FuncBitcodeOffsetDelta = 1944 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1945 1946 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1947 return error("Invalid record"); 1948 1949 SmallVector<uint64_t, 64> Record; 1950 1951 Triple TT(TheModule->getTargetTriple()); 1952 1953 // Read all the records for this value table. 1954 SmallString<128> ValueName; 1955 1956 while (true) { 1957 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1958 1959 switch (Entry.Kind) { 1960 case BitstreamEntry::SubBlock: // Handled for us already. 1961 case BitstreamEntry::Error: 1962 return error("Malformed block"); 1963 case BitstreamEntry::EndBlock: 1964 if (Offset > 0) 1965 Stream.JumpToBit(CurrentBit); 1966 return Error::success(); 1967 case BitstreamEntry::Record: 1968 // The interesting case. 1969 break; 1970 } 1971 1972 // Read a record. 1973 Record.clear(); 1974 switch (Stream.readRecord(Entry.ID, Record)) { 1975 default: // Default behavior: unknown type. 1976 break; 1977 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1978 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1979 if (Error Err = ValOrErr.takeError()) 1980 return Err; 1981 ValOrErr.get(); 1982 break; 1983 } 1984 case bitc::VST_CODE_FNENTRY: { 1985 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1986 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1987 if (Error Err = ValOrErr.takeError()) 1988 return Err; 1989 Value *V = ValOrErr.get(); 1990 1991 // Ignore function offsets emitted for aliases of functions in older 1992 // versions of LLVM. 1993 if (auto *F = dyn_cast<Function>(V)) 1994 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1995 break; 1996 } 1997 case bitc::VST_CODE_BBENTRY: { 1998 if (convertToString(Record, 1, ValueName)) 1999 return error("Invalid record"); 2000 BasicBlock *BB = getBasicBlock(Record[0]); 2001 if (!BB) 2002 return error("Invalid record"); 2003 2004 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2005 ValueName.clear(); 2006 break; 2007 } 2008 } 2009 } 2010 } 2011 2012 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2013 /// encoding. 2014 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2015 if ((V & 1) == 0) 2016 return V >> 1; 2017 if (V != 1) 2018 return -(V >> 1); 2019 // There is no such thing as -0 with integers. "-0" really means MININT. 2020 return 1ULL << 63; 2021 } 2022 2023 /// Resolve all of the initializers for global values and aliases that we can. 2024 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2025 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2026 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2027 IndirectSymbolInitWorklist; 2028 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2029 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2030 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2031 2032 GlobalInitWorklist.swap(GlobalInits); 2033 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2034 FunctionPrefixWorklist.swap(FunctionPrefixes); 2035 FunctionPrologueWorklist.swap(FunctionPrologues); 2036 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2037 2038 while (!GlobalInitWorklist.empty()) { 2039 unsigned ValID = GlobalInitWorklist.back().second; 2040 if (ValID >= ValueList.size()) { 2041 // Not ready to resolve this yet, it requires something later in the file. 2042 GlobalInits.push_back(GlobalInitWorklist.back()); 2043 } else { 2044 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2045 GlobalInitWorklist.back().first->setInitializer(C); 2046 else 2047 return error("Expected a constant"); 2048 } 2049 GlobalInitWorklist.pop_back(); 2050 } 2051 2052 while (!IndirectSymbolInitWorklist.empty()) { 2053 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2054 if (ValID >= ValueList.size()) { 2055 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2056 } else { 2057 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2058 if (!C) 2059 return error("Expected a constant"); 2060 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2061 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2062 return error("Alias and aliasee types don't match"); 2063 GIS->setIndirectSymbol(C); 2064 } 2065 IndirectSymbolInitWorklist.pop_back(); 2066 } 2067 2068 while (!FunctionPrefixWorklist.empty()) { 2069 unsigned ValID = FunctionPrefixWorklist.back().second; 2070 if (ValID >= ValueList.size()) { 2071 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2072 } else { 2073 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2074 FunctionPrefixWorklist.back().first->setPrefixData(C); 2075 else 2076 return error("Expected a constant"); 2077 } 2078 FunctionPrefixWorklist.pop_back(); 2079 } 2080 2081 while (!FunctionPrologueWorklist.empty()) { 2082 unsigned ValID = FunctionPrologueWorklist.back().second; 2083 if (ValID >= ValueList.size()) { 2084 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2085 } else { 2086 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2087 FunctionPrologueWorklist.back().first->setPrologueData(C); 2088 else 2089 return error("Expected a constant"); 2090 } 2091 FunctionPrologueWorklist.pop_back(); 2092 } 2093 2094 while (!FunctionPersonalityFnWorklist.empty()) { 2095 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2096 if (ValID >= ValueList.size()) { 2097 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2098 } else { 2099 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2100 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2101 else 2102 return error("Expected a constant"); 2103 } 2104 FunctionPersonalityFnWorklist.pop_back(); 2105 } 2106 2107 return Error::success(); 2108 } 2109 2110 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2111 SmallVector<uint64_t, 8> Words(Vals.size()); 2112 transform(Vals, Words.begin(), 2113 BitcodeReader::decodeSignRotatedValue); 2114 2115 return APInt(TypeBits, Words); 2116 } 2117 2118 Error BitcodeReader::parseConstants() { 2119 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2120 return error("Invalid record"); 2121 2122 SmallVector<uint64_t, 64> Record; 2123 2124 // Read all the records for this value table. 2125 Type *CurTy = Type::getInt32Ty(Context); 2126 unsigned NextCstNo = ValueList.size(); 2127 2128 while (true) { 2129 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2130 2131 switch (Entry.Kind) { 2132 case BitstreamEntry::SubBlock: // Handled for us already. 2133 case BitstreamEntry::Error: 2134 return error("Malformed block"); 2135 case BitstreamEntry::EndBlock: 2136 if (NextCstNo != ValueList.size()) 2137 return error("Invalid constant reference"); 2138 2139 // Once all the constants have been read, go through and resolve forward 2140 // references. 2141 ValueList.resolveConstantForwardRefs(); 2142 return Error::success(); 2143 case BitstreamEntry::Record: 2144 // The interesting case. 2145 break; 2146 } 2147 2148 // Read a record. 2149 Record.clear(); 2150 Type *VoidType = Type::getVoidTy(Context); 2151 Value *V = nullptr; 2152 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2153 switch (BitCode) { 2154 default: // Default behavior: unknown constant 2155 case bitc::CST_CODE_UNDEF: // UNDEF 2156 V = UndefValue::get(CurTy); 2157 break; 2158 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2159 if (Record.empty()) 2160 return error("Invalid record"); 2161 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2162 return error("Invalid record"); 2163 if (TypeList[Record[0]] == VoidType) 2164 return error("Invalid constant type"); 2165 CurTy = TypeList[Record[0]]; 2166 continue; // Skip the ValueList manipulation. 2167 case bitc::CST_CODE_NULL: // NULL 2168 V = Constant::getNullValue(CurTy); 2169 break; 2170 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2171 if (!CurTy->isIntegerTy() || Record.empty()) 2172 return error("Invalid record"); 2173 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2174 break; 2175 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2176 if (!CurTy->isIntegerTy() || Record.empty()) 2177 return error("Invalid record"); 2178 2179 APInt VInt = 2180 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2181 V = ConstantInt::get(Context, VInt); 2182 2183 break; 2184 } 2185 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2186 if (Record.empty()) 2187 return error("Invalid record"); 2188 if (CurTy->isHalfTy()) 2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2190 APInt(16, (uint16_t)Record[0]))); 2191 else if (CurTy->isFloatTy()) 2192 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2193 APInt(32, (uint32_t)Record[0]))); 2194 else if (CurTy->isDoubleTy()) 2195 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2196 APInt(64, Record[0]))); 2197 else if (CurTy->isX86_FP80Ty()) { 2198 // Bits are not stored the same way as a normal i80 APInt, compensate. 2199 uint64_t Rearrange[2]; 2200 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2201 Rearrange[1] = Record[0] >> 48; 2202 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2203 APInt(80, Rearrange))); 2204 } else if (CurTy->isFP128Ty()) 2205 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2206 APInt(128, Record))); 2207 else if (CurTy->isPPC_FP128Ty()) 2208 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2209 APInt(128, Record))); 2210 else 2211 V = UndefValue::get(CurTy); 2212 break; 2213 } 2214 2215 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2216 if (Record.empty()) 2217 return error("Invalid record"); 2218 2219 unsigned Size = Record.size(); 2220 SmallVector<Constant*, 16> Elts; 2221 2222 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2223 for (unsigned i = 0; i != Size; ++i) 2224 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2225 STy->getElementType(i))); 2226 V = ConstantStruct::get(STy, Elts); 2227 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2228 Type *EltTy = ATy->getElementType(); 2229 for (unsigned i = 0; i != Size; ++i) 2230 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2231 V = ConstantArray::get(ATy, Elts); 2232 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2233 Type *EltTy = VTy->getElementType(); 2234 for (unsigned i = 0; i != Size; ++i) 2235 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2236 V = ConstantVector::get(Elts); 2237 } else { 2238 V = UndefValue::get(CurTy); 2239 } 2240 break; 2241 } 2242 case bitc::CST_CODE_STRING: // STRING: [values] 2243 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2244 if (Record.empty()) 2245 return error("Invalid record"); 2246 2247 SmallString<16> Elts(Record.begin(), Record.end()); 2248 V = ConstantDataArray::getString(Context, Elts, 2249 BitCode == bitc::CST_CODE_CSTRING); 2250 break; 2251 } 2252 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2253 if (Record.empty()) 2254 return error("Invalid record"); 2255 2256 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2257 if (EltTy->isIntegerTy(8)) { 2258 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2259 if (isa<VectorType>(CurTy)) 2260 V = ConstantDataVector::get(Context, Elts); 2261 else 2262 V = ConstantDataArray::get(Context, Elts); 2263 } else if (EltTy->isIntegerTy(16)) { 2264 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else if (EltTy->isIntegerTy(32)) { 2270 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isIntegerTy(64)) { 2276 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2277 if (isa<VectorType>(CurTy)) 2278 V = ConstantDataVector::get(Context, Elts); 2279 else 2280 V = ConstantDataArray::get(Context, Elts); 2281 } else if (EltTy->isHalfTy()) { 2282 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2283 if (isa<VectorType>(CurTy)) 2284 V = ConstantDataVector::getFP(Context, Elts); 2285 else 2286 V = ConstantDataArray::getFP(Context, Elts); 2287 } else if (EltTy->isFloatTy()) { 2288 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2289 if (isa<VectorType>(CurTy)) 2290 V = ConstantDataVector::getFP(Context, Elts); 2291 else 2292 V = ConstantDataArray::getFP(Context, Elts); 2293 } else if (EltTy->isDoubleTy()) { 2294 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::getFP(Context, Elts); 2297 else 2298 V = ConstantDataArray::getFP(Context, Elts); 2299 } else { 2300 return error("Invalid type for value"); 2301 } 2302 break; 2303 } 2304 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2305 if (Record.size() < 3) 2306 return error("Invalid record"); 2307 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2308 if (Opc < 0) { 2309 V = UndefValue::get(CurTy); // Unknown binop. 2310 } else { 2311 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2312 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2313 unsigned Flags = 0; 2314 if (Record.size() >= 4) { 2315 if (Opc == Instruction::Add || 2316 Opc == Instruction::Sub || 2317 Opc == Instruction::Mul || 2318 Opc == Instruction::Shl) { 2319 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2320 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2321 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2322 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2323 } else if (Opc == Instruction::SDiv || 2324 Opc == Instruction::UDiv || 2325 Opc == Instruction::LShr || 2326 Opc == Instruction::AShr) { 2327 if (Record[3] & (1 << bitc::PEO_EXACT)) 2328 Flags |= SDivOperator::IsExact; 2329 } 2330 } 2331 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2332 } 2333 break; 2334 } 2335 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2336 if (Record.size() < 3) 2337 return error("Invalid record"); 2338 int Opc = getDecodedCastOpcode(Record[0]); 2339 if (Opc < 0) { 2340 V = UndefValue::get(CurTy); // Unknown cast. 2341 } else { 2342 Type *OpTy = getTypeByID(Record[1]); 2343 if (!OpTy) 2344 return error("Invalid record"); 2345 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2346 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2347 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2348 } 2349 break; 2350 } 2351 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2352 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2353 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2354 // operands] 2355 unsigned OpNum = 0; 2356 Type *PointeeType = nullptr; 2357 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2358 Record.size() % 2) 2359 PointeeType = getTypeByID(Record[OpNum++]); 2360 2361 bool InBounds = false; 2362 Optional<unsigned> InRangeIndex; 2363 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2364 uint64_t Op = Record[OpNum++]; 2365 InBounds = Op & 1; 2366 InRangeIndex = Op >> 1; 2367 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2368 InBounds = true; 2369 2370 SmallVector<Constant*, 16> Elts; 2371 while (OpNum != Record.size()) { 2372 Type *ElTy = getTypeByID(Record[OpNum++]); 2373 if (!ElTy) 2374 return error("Invalid record"); 2375 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2376 } 2377 2378 if (PointeeType && 2379 PointeeType != 2380 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2381 ->getElementType()) 2382 return error("Explicit gep operator type does not match pointee type " 2383 "of pointer operand"); 2384 2385 if (Elts.size() < 1) 2386 return error("Invalid gep with no operands"); 2387 2388 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2389 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2390 InBounds, InRangeIndex); 2391 break; 2392 } 2393 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2394 if (Record.size() < 3) 2395 return error("Invalid record"); 2396 2397 Type *SelectorTy = Type::getInt1Ty(Context); 2398 2399 // The selector might be an i1 or an <n x i1> 2400 // Get the type from the ValueList before getting a forward ref. 2401 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2402 if (Value *V = ValueList[Record[0]]) 2403 if (SelectorTy != V->getType()) 2404 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2405 2406 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2407 SelectorTy), 2408 ValueList.getConstantFwdRef(Record[1],CurTy), 2409 ValueList.getConstantFwdRef(Record[2],CurTy)); 2410 break; 2411 } 2412 case bitc::CST_CODE_CE_EXTRACTELT 2413 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2414 if (Record.size() < 3) 2415 return error("Invalid record"); 2416 VectorType *OpTy = 2417 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2418 if (!OpTy) 2419 return error("Invalid record"); 2420 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2421 Constant *Op1 = nullptr; 2422 if (Record.size() == 4) { 2423 Type *IdxTy = getTypeByID(Record[2]); 2424 if (!IdxTy) 2425 return error("Invalid record"); 2426 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2427 } else // TODO: Remove with llvm 4.0 2428 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2429 if (!Op1) 2430 return error("Invalid record"); 2431 V = ConstantExpr::getExtractElement(Op0, Op1); 2432 break; 2433 } 2434 case bitc::CST_CODE_CE_INSERTELT 2435 : { // CE_INSERTELT: [opval, opval, opty, opval] 2436 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2437 if (Record.size() < 3 || !OpTy) 2438 return error("Invalid record"); 2439 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2440 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2441 OpTy->getElementType()); 2442 Constant *Op2 = nullptr; 2443 if (Record.size() == 4) { 2444 Type *IdxTy = getTypeByID(Record[2]); 2445 if (!IdxTy) 2446 return error("Invalid record"); 2447 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2448 } else // TODO: Remove with llvm 4.0 2449 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2450 if (!Op2) 2451 return error("Invalid record"); 2452 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2453 break; 2454 } 2455 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2456 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2457 if (Record.size() < 3 || !OpTy) 2458 return error("Invalid record"); 2459 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2460 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2461 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2462 OpTy->getNumElements()); 2463 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2464 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2465 break; 2466 } 2467 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2468 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2469 VectorType *OpTy = 2470 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2471 if (Record.size() < 4 || !RTy || !OpTy) 2472 return error("Invalid record"); 2473 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2474 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2475 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2476 RTy->getNumElements()); 2477 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2478 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2479 break; 2480 } 2481 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2482 if (Record.size() < 4) 2483 return error("Invalid record"); 2484 Type *OpTy = getTypeByID(Record[0]); 2485 if (!OpTy) 2486 return error("Invalid record"); 2487 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2488 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2489 2490 if (OpTy->isFPOrFPVectorTy()) 2491 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2492 else 2493 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2494 break; 2495 } 2496 // This maintains backward compatibility, pre-asm dialect keywords. 2497 // FIXME: Remove with the 4.0 release. 2498 case bitc::CST_CODE_INLINEASM_OLD: { 2499 if (Record.size() < 2) 2500 return error("Invalid record"); 2501 std::string AsmStr, ConstrStr; 2502 bool HasSideEffects = Record[0] & 1; 2503 bool IsAlignStack = Record[0] >> 1; 2504 unsigned AsmStrSize = Record[1]; 2505 if (2+AsmStrSize >= Record.size()) 2506 return error("Invalid record"); 2507 unsigned ConstStrSize = Record[2+AsmStrSize]; 2508 if (3+AsmStrSize+ConstStrSize > Record.size()) 2509 return error("Invalid record"); 2510 2511 for (unsigned i = 0; i != AsmStrSize; ++i) 2512 AsmStr += (char)Record[2+i]; 2513 for (unsigned i = 0; i != ConstStrSize; ++i) 2514 ConstrStr += (char)Record[3+AsmStrSize+i]; 2515 PointerType *PTy = cast<PointerType>(CurTy); 2516 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2517 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2518 break; 2519 } 2520 // This version adds support for the asm dialect keywords (e.g., 2521 // inteldialect). 2522 case bitc::CST_CODE_INLINEASM: { 2523 if (Record.size() < 2) 2524 return error("Invalid record"); 2525 std::string AsmStr, ConstrStr; 2526 bool HasSideEffects = Record[0] & 1; 2527 bool IsAlignStack = (Record[0] >> 1) & 1; 2528 unsigned AsmDialect = Record[0] >> 2; 2529 unsigned AsmStrSize = Record[1]; 2530 if (2+AsmStrSize >= Record.size()) 2531 return error("Invalid record"); 2532 unsigned ConstStrSize = Record[2+AsmStrSize]; 2533 if (3+AsmStrSize+ConstStrSize > Record.size()) 2534 return error("Invalid record"); 2535 2536 for (unsigned i = 0; i != AsmStrSize; ++i) 2537 AsmStr += (char)Record[2+i]; 2538 for (unsigned i = 0; i != ConstStrSize; ++i) 2539 ConstrStr += (char)Record[3+AsmStrSize+i]; 2540 PointerType *PTy = cast<PointerType>(CurTy); 2541 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2542 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2543 InlineAsm::AsmDialect(AsmDialect)); 2544 break; 2545 } 2546 case bitc::CST_CODE_BLOCKADDRESS:{ 2547 if (Record.size() < 3) 2548 return error("Invalid record"); 2549 Type *FnTy = getTypeByID(Record[0]); 2550 if (!FnTy) 2551 return error("Invalid record"); 2552 Function *Fn = 2553 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2554 if (!Fn) 2555 return error("Invalid record"); 2556 2557 // If the function is already parsed we can insert the block address right 2558 // away. 2559 BasicBlock *BB; 2560 unsigned BBID = Record[2]; 2561 if (!BBID) 2562 // Invalid reference to entry block. 2563 return error("Invalid ID"); 2564 if (!Fn->empty()) { 2565 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2566 for (size_t I = 0, E = BBID; I != E; ++I) { 2567 if (BBI == BBE) 2568 return error("Invalid ID"); 2569 ++BBI; 2570 } 2571 BB = &*BBI; 2572 } else { 2573 // Otherwise insert a placeholder and remember it so it can be inserted 2574 // when the function is parsed. 2575 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2576 if (FwdBBs.empty()) 2577 BasicBlockFwdRefQueue.push_back(Fn); 2578 if (FwdBBs.size() < BBID + 1) 2579 FwdBBs.resize(BBID + 1); 2580 if (!FwdBBs[BBID]) 2581 FwdBBs[BBID] = BasicBlock::Create(Context); 2582 BB = FwdBBs[BBID]; 2583 } 2584 V = BlockAddress::get(Fn, BB); 2585 break; 2586 } 2587 } 2588 2589 ValueList.assignValue(V, NextCstNo); 2590 ++NextCstNo; 2591 } 2592 } 2593 2594 Error BitcodeReader::parseUseLists() { 2595 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2596 return error("Invalid record"); 2597 2598 // Read all the records. 2599 SmallVector<uint64_t, 64> Record; 2600 2601 while (true) { 2602 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2603 2604 switch (Entry.Kind) { 2605 case BitstreamEntry::SubBlock: // Handled for us already. 2606 case BitstreamEntry::Error: 2607 return error("Malformed block"); 2608 case BitstreamEntry::EndBlock: 2609 return Error::success(); 2610 case BitstreamEntry::Record: 2611 // The interesting case. 2612 break; 2613 } 2614 2615 // Read a use list record. 2616 Record.clear(); 2617 bool IsBB = false; 2618 switch (Stream.readRecord(Entry.ID, Record)) { 2619 default: // Default behavior: unknown type. 2620 break; 2621 case bitc::USELIST_CODE_BB: 2622 IsBB = true; 2623 LLVM_FALLTHROUGH; 2624 case bitc::USELIST_CODE_DEFAULT: { 2625 unsigned RecordLength = Record.size(); 2626 if (RecordLength < 3) 2627 // Records should have at least an ID and two indexes. 2628 return error("Invalid record"); 2629 unsigned ID = Record.back(); 2630 Record.pop_back(); 2631 2632 Value *V; 2633 if (IsBB) { 2634 assert(ID < FunctionBBs.size() && "Basic block not found"); 2635 V = FunctionBBs[ID]; 2636 } else 2637 V = ValueList[ID]; 2638 unsigned NumUses = 0; 2639 SmallDenseMap<const Use *, unsigned, 16> Order; 2640 for (const Use &U : V->materialized_uses()) { 2641 if (++NumUses > Record.size()) 2642 break; 2643 Order[&U] = Record[NumUses - 1]; 2644 } 2645 if (Order.size() != Record.size() || NumUses > Record.size()) 2646 // Mismatches can happen if the functions are being materialized lazily 2647 // (out-of-order), or a value has been upgraded. 2648 break; 2649 2650 V->sortUseList([&](const Use &L, const Use &R) { 2651 return Order.lookup(&L) < Order.lookup(&R); 2652 }); 2653 break; 2654 } 2655 } 2656 } 2657 } 2658 2659 /// When we see the block for metadata, remember where it is and then skip it. 2660 /// This lets us lazily deserialize the metadata. 2661 Error BitcodeReader::rememberAndSkipMetadata() { 2662 // Save the current stream state. 2663 uint64_t CurBit = Stream.GetCurrentBitNo(); 2664 DeferredMetadataInfo.push_back(CurBit); 2665 2666 // Skip over the block for now. 2667 if (Stream.SkipBlock()) 2668 return error("Invalid record"); 2669 return Error::success(); 2670 } 2671 2672 Error BitcodeReader::materializeMetadata() { 2673 for (uint64_t BitPos : DeferredMetadataInfo) { 2674 // Move the bit stream to the saved position. 2675 Stream.JumpToBit(BitPos); 2676 if (Error Err = MDLoader->parseModuleMetadata()) 2677 return Err; 2678 } 2679 2680 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2681 // metadata. 2682 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2683 NamedMDNode *LinkerOpts = 2684 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2685 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2686 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2687 } 2688 2689 DeferredMetadataInfo.clear(); 2690 return Error::success(); 2691 } 2692 2693 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2694 2695 /// When we see the block for a function body, remember where it is and then 2696 /// skip it. This lets us lazily deserialize the functions. 2697 Error BitcodeReader::rememberAndSkipFunctionBody() { 2698 // Get the function we are talking about. 2699 if (FunctionsWithBodies.empty()) 2700 return error("Insufficient function protos"); 2701 2702 Function *Fn = FunctionsWithBodies.back(); 2703 FunctionsWithBodies.pop_back(); 2704 2705 // Save the current stream state. 2706 uint64_t CurBit = Stream.GetCurrentBitNo(); 2707 assert( 2708 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2709 "Mismatch between VST and scanned function offsets"); 2710 DeferredFunctionInfo[Fn] = CurBit; 2711 2712 // Skip over the function block for now. 2713 if (Stream.SkipBlock()) 2714 return error("Invalid record"); 2715 return Error::success(); 2716 } 2717 2718 Error BitcodeReader::globalCleanup() { 2719 // Patch the initializers for globals and aliases up. 2720 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2721 return Err; 2722 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2723 return error("Malformed global initializer set"); 2724 2725 // Look for intrinsic functions which need to be upgraded at some point 2726 for (Function &F : *TheModule) { 2727 MDLoader->upgradeDebugIntrinsics(F); 2728 Function *NewFn; 2729 if (UpgradeIntrinsicFunction(&F, NewFn)) 2730 UpgradedIntrinsics[&F] = NewFn; 2731 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2732 // Some types could be renamed during loading if several modules are 2733 // loaded in the same LLVMContext (LTO scenario). In this case we should 2734 // remangle intrinsics names as well. 2735 RemangledIntrinsics[&F] = Remangled.getValue(); 2736 } 2737 2738 // Look for global variables which need to be renamed. 2739 for (GlobalVariable &GV : TheModule->globals()) 2740 UpgradeGlobalVariable(&GV); 2741 2742 // Force deallocation of memory for these vectors to favor the client that 2743 // want lazy deserialization. 2744 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2745 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2746 IndirectSymbolInits); 2747 return Error::success(); 2748 } 2749 2750 /// Support for lazy parsing of function bodies. This is required if we 2751 /// either have an old bitcode file without a VST forward declaration record, 2752 /// or if we have an anonymous function being materialized, since anonymous 2753 /// functions do not have a name and are therefore not in the VST. 2754 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2755 Stream.JumpToBit(NextUnreadBit); 2756 2757 if (Stream.AtEndOfStream()) 2758 return error("Could not find function in stream"); 2759 2760 if (!SeenFirstFunctionBody) 2761 return error("Trying to materialize functions before seeing function blocks"); 2762 2763 // An old bitcode file with the symbol table at the end would have 2764 // finished the parse greedily. 2765 assert(SeenValueSymbolTable); 2766 2767 SmallVector<uint64_t, 64> Record; 2768 2769 while (true) { 2770 BitstreamEntry Entry = Stream.advance(); 2771 switch (Entry.Kind) { 2772 default: 2773 return error("Expect SubBlock"); 2774 case BitstreamEntry::SubBlock: 2775 switch (Entry.ID) { 2776 default: 2777 return error("Expect function block"); 2778 case bitc::FUNCTION_BLOCK_ID: 2779 if (Error Err = rememberAndSkipFunctionBody()) 2780 return Err; 2781 NextUnreadBit = Stream.GetCurrentBitNo(); 2782 return Error::success(); 2783 } 2784 } 2785 } 2786 } 2787 2788 bool BitcodeReaderBase::readBlockInfo() { 2789 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2790 if (!NewBlockInfo) 2791 return true; 2792 BlockInfo = std::move(*NewBlockInfo); 2793 return false; 2794 } 2795 2796 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2797 // v1: [selection_kind, name] 2798 // v2: [strtab_offset, strtab_size, selection_kind] 2799 StringRef Name; 2800 std::tie(Name, Record) = readNameFromStrtab(Record); 2801 2802 if (Record.empty()) 2803 return error("Invalid record"); 2804 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2805 std::string OldFormatName; 2806 if (!UseStrtab) { 2807 if (Record.size() < 2) 2808 return error("Invalid record"); 2809 unsigned ComdatNameSize = Record[1]; 2810 OldFormatName.reserve(ComdatNameSize); 2811 for (unsigned i = 0; i != ComdatNameSize; ++i) 2812 OldFormatName += (char)Record[2 + i]; 2813 Name = OldFormatName; 2814 } 2815 Comdat *C = TheModule->getOrInsertComdat(Name); 2816 C->setSelectionKind(SK); 2817 ComdatList.push_back(C); 2818 return Error::success(); 2819 } 2820 2821 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2822 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2823 // visibility, threadlocal, unnamed_addr, externally_initialized, 2824 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2825 // v2: [strtab_offset, strtab_size, v1] 2826 StringRef Name; 2827 std::tie(Name, Record) = readNameFromStrtab(Record); 2828 2829 if (Record.size() < 6) 2830 return error("Invalid record"); 2831 Type *Ty = getTypeByID(Record[0]); 2832 if (!Ty) 2833 return error("Invalid record"); 2834 bool isConstant = Record[1] & 1; 2835 bool explicitType = Record[1] & 2; 2836 unsigned AddressSpace; 2837 if (explicitType) { 2838 AddressSpace = Record[1] >> 2; 2839 } else { 2840 if (!Ty->isPointerTy()) 2841 return error("Invalid type for value"); 2842 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2843 Ty = cast<PointerType>(Ty)->getElementType(); 2844 } 2845 2846 uint64_t RawLinkage = Record[3]; 2847 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2848 unsigned Alignment; 2849 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2850 return Err; 2851 std::string Section; 2852 if (Record[5]) { 2853 if (Record[5] - 1 >= SectionTable.size()) 2854 return error("Invalid ID"); 2855 Section = SectionTable[Record[5] - 1]; 2856 } 2857 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2858 // Local linkage must have default visibility. 2859 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2860 // FIXME: Change to an error if non-default in 4.0. 2861 Visibility = getDecodedVisibility(Record[6]); 2862 2863 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2864 if (Record.size() > 7) 2865 TLM = getDecodedThreadLocalMode(Record[7]); 2866 2867 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2868 if (Record.size() > 8) 2869 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2870 2871 bool ExternallyInitialized = false; 2872 if (Record.size() > 9) 2873 ExternallyInitialized = Record[9]; 2874 2875 GlobalVariable *NewGV = 2876 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2877 nullptr, TLM, AddressSpace, ExternallyInitialized); 2878 NewGV->setAlignment(Alignment); 2879 if (!Section.empty()) 2880 NewGV->setSection(Section); 2881 NewGV->setVisibility(Visibility); 2882 NewGV->setUnnamedAddr(UnnamedAddr); 2883 2884 if (Record.size() > 10) 2885 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2886 else 2887 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2888 2889 ValueList.push_back(NewGV); 2890 2891 // Remember which value to use for the global initializer. 2892 if (unsigned InitID = Record[2]) 2893 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2894 2895 if (Record.size() > 11) { 2896 if (unsigned ComdatID = Record[11]) { 2897 if (ComdatID > ComdatList.size()) 2898 return error("Invalid global variable comdat ID"); 2899 NewGV->setComdat(ComdatList[ComdatID - 1]); 2900 } 2901 } else if (hasImplicitComdat(RawLinkage)) { 2902 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2903 } 2904 2905 if (Record.size() > 12) { 2906 auto AS = getAttributes(Record[12]).getFnAttributes(); 2907 NewGV->setAttributes(AS); 2908 } 2909 2910 if (Record.size() > 13) { 2911 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2912 } 2913 2914 return Error::success(); 2915 } 2916 2917 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2918 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2919 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2920 // prefixdata, personalityfn, preemption specifier] (name in VST) 2921 // v2: [strtab_offset, strtab_size, v1] 2922 StringRef Name; 2923 std::tie(Name, Record) = readNameFromStrtab(Record); 2924 2925 if (Record.size() < 8) 2926 return error("Invalid record"); 2927 Type *Ty = getTypeByID(Record[0]); 2928 if (!Ty) 2929 return error("Invalid record"); 2930 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2931 Ty = PTy->getElementType(); 2932 auto *FTy = dyn_cast<FunctionType>(Ty); 2933 if (!FTy) 2934 return error("Invalid type for value"); 2935 auto CC = static_cast<CallingConv::ID>(Record[1]); 2936 if (CC & ~CallingConv::MaxID) 2937 return error("Invalid calling convention ID"); 2938 2939 Function *Func = 2940 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2941 2942 Func->setCallingConv(CC); 2943 bool isProto = Record[2]; 2944 uint64_t RawLinkage = Record[3]; 2945 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2946 Func->setAttributes(getAttributes(Record[4])); 2947 2948 unsigned Alignment; 2949 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2950 return Err; 2951 Func->setAlignment(Alignment); 2952 if (Record[6]) { 2953 if (Record[6] - 1 >= SectionTable.size()) 2954 return error("Invalid ID"); 2955 Func->setSection(SectionTable[Record[6] - 1]); 2956 } 2957 // Local linkage must have default visibility. 2958 if (!Func->hasLocalLinkage()) 2959 // FIXME: Change to an error if non-default in 4.0. 2960 Func->setVisibility(getDecodedVisibility(Record[7])); 2961 if (Record.size() > 8 && Record[8]) { 2962 if (Record[8] - 1 >= GCTable.size()) 2963 return error("Invalid ID"); 2964 Func->setGC(GCTable[Record[8] - 1]); 2965 } 2966 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2967 if (Record.size() > 9) 2968 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2969 Func->setUnnamedAddr(UnnamedAddr); 2970 if (Record.size() > 10 && Record[10] != 0) 2971 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2972 2973 if (Record.size() > 11) 2974 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2975 else 2976 upgradeDLLImportExportLinkage(Func, RawLinkage); 2977 2978 if (Record.size() > 12) { 2979 if (unsigned ComdatID = Record[12]) { 2980 if (ComdatID > ComdatList.size()) 2981 return error("Invalid function comdat ID"); 2982 Func->setComdat(ComdatList[ComdatID - 1]); 2983 } 2984 } else if (hasImplicitComdat(RawLinkage)) { 2985 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2986 } 2987 2988 if (Record.size() > 13 && Record[13] != 0) 2989 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2990 2991 if (Record.size() > 14 && Record[14] != 0) 2992 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2993 2994 if (Record.size() > 15) { 2995 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2996 } 2997 2998 ValueList.push_back(Func); 2999 3000 // If this is a function with a body, remember the prototype we are 3001 // creating now, so that we can match up the body with them later. 3002 if (!isProto) { 3003 Func->setIsMaterializable(true); 3004 FunctionsWithBodies.push_back(Func); 3005 DeferredFunctionInfo[Func] = 0; 3006 } 3007 return Error::success(); 3008 } 3009 3010 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3011 unsigned BitCode, ArrayRef<uint64_t> Record) { 3012 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3013 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3014 // dllstorageclass, threadlocal, unnamed_addr, 3015 // preemption specifier] (name in VST) 3016 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3017 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3018 // preemption specifier] (name in VST) 3019 // v2: [strtab_offset, strtab_size, v1] 3020 StringRef Name; 3021 std::tie(Name, Record) = readNameFromStrtab(Record); 3022 3023 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3024 if (Record.size() < (3 + (unsigned)NewRecord)) 3025 return error("Invalid record"); 3026 unsigned OpNum = 0; 3027 Type *Ty = getTypeByID(Record[OpNum++]); 3028 if (!Ty) 3029 return error("Invalid record"); 3030 3031 unsigned AddrSpace; 3032 if (!NewRecord) { 3033 auto *PTy = dyn_cast<PointerType>(Ty); 3034 if (!PTy) 3035 return error("Invalid type for value"); 3036 Ty = PTy->getElementType(); 3037 AddrSpace = PTy->getAddressSpace(); 3038 } else { 3039 AddrSpace = Record[OpNum++]; 3040 } 3041 3042 auto Val = Record[OpNum++]; 3043 auto Linkage = Record[OpNum++]; 3044 GlobalIndirectSymbol *NewGA; 3045 if (BitCode == bitc::MODULE_CODE_ALIAS || 3046 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3047 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3048 TheModule); 3049 else 3050 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3051 nullptr, TheModule); 3052 // Old bitcode files didn't have visibility field. 3053 // Local linkage must have default visibility. 3054 if (OpNum != Record.size()) { 3055 auto VisInd = OpNum++; 3056 if (!NewGA->hasLocalLinkage()) 3057 // FIXME: Change to an error if non-default in 4.0. 3058 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3059 } 3060 if (BitCode == bitc::MODULE_CODE_ALIAS || 3061 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3062 if (OpNum != Record.size()) 3063 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3064 else 3065 upgradeDLLImportExportLinkage(NewGA, Linkage); 3066 if (OpNum != Record.size()) 3067 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3068 if (OpNum != Record.size()) 3069 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3070 } 3071 if (OpNum != Record.size()) 3072 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3073 ValueList.push_back(NewGA); 3074 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3075 return Error::success(); 3076 } 3077 3078 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3079 bool ShouldLazyLoadMetadata) { 3080 if (ResumeBit) 3081 Stream.JumpToBit(ResumeBit); 3082 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3083 return error("Invalid record"); 3084 3085 SmallVector<uint64_t, 64> Record; 3086 3087 // Read all the records for this module. 3088 while (true) { 3089 BitstreamEntry Entry = Stream.advance(); 3090 3091 switch (Entry.Kind) { 3092 case BitstreamEntry::Error: 3093 return error("Malformed block"); 3094 case BitstreamEntry::EndBlock: 3095 return globalCleanup(); 3096 3097 case BitstreamEntry::SubBlock: 3098 switch (Entry.ID) { 3099 default: // Skip unknown content. 3100 if (Stream.SkipBlock()) 3101 return error("Invalid record"); 3102 break; 3103 case bitc::BLOCKINFO_BLOCK_ID: 3104 if (readBlockInfo()) 3105 return error("Malformed block"); 3106 break; 3107 case bitc::PARAMATTR_BLOCK_ID: 3108 if (Error Err = parseAttributeBlock()) 3109 return Err; 3110 break; 3111 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3112 if (Error Err = parseAttributeGroupBlock()) 3113 return Err; 3114 break; 3115 case bitc::TYPE_BLOCK_ID_NEW: 3116 if (Error Err = parseTypeTable()) 3117 return Err; 3118 break; 3119 case bitc::VALUE_SYMTAB_BLOCK_ID: 3120 if (!SeenValueSymbolTable) { 3121 // Either this is an old form VST without function index and an 3122 // associated VST forward declaration record (which would have caused 3123 // the VST to be jumped to and parsed before it was encountered 3124 // normally in the stream), or there were no function blocks to 3125 // trigger an earlier parsing of the VST. 3126 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3127 if (Error Err = parseValueSymbolTable()) 3128 return Err; 3129 SeenValueSymbolTable = true; 3130 } else { 3131 // We must have had a VST forward declaration record, which caused 3132 // the parser to jump to and parse the VST earlier. 3133 assert(VSTOffset > 0); 3134 if (Stream.SkipBlock()) 3135 return error("Invalid record"); 3136 } 3137 break; 3138 case bitc::CONSTANTS_BLOCK_ID: 3139 if (Error Err = parseConstants()) 3140 return Err; 3141 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3142 return Err; 3143 break; 3144 case bitc::METADATA_BLOCK_ID: 3145 if (ShouldLazyLoadMetadata) { 3146 if (Error Err = rememberAndSkipMetadata()) 3147 return Err; 3148 break; 3149 } 3150 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3151 if (Error Err = MDLoader->parseModuleMetadata()) 3152 return Err; 3153 break; 3154 case bitc::METADATA_KIND_BLOCK_ID: 3155 if (Error Err = MDLoader->parseMetadataKinds()) 3156 return Err; 3157 break; 3158 case bitc::FUNCTION_BLOCK_ID: 3159 // If this is the first function body we've seen, reverse the 3160 // FunctionsWithBodies list. 3161 if (!SeenFirstFunctionBody) { 3162 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3163 if (Error Err = globalCleanup()) 3164 return Err; 3165 SeenFirstFunctionBody = true; 3166 } 3167 3168 if (VSTOffset > 0) { 3169 // If we have a VST forward declaration record, make sure we 3170 // parse the VST now if we haven't already. It is needed to 3171 // set up the DeferredFunctionInfo vector for lazy reading. 3172 if (!SeenValueSymbolTable) { 3173 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3174 return Err; 3175 SeenValueSymbolTable = true; 3176 // Fall through so that we record the NextUnreadBit below. 3177 // This is necessary in case we have an anonymous function that 3178 // is later materialized. Since it will not have a VST entry we 3179 // need to fall back to the lazy parse to find its offset. 3180 } else { 3181 // If we have a VST forward declaration record, but have already 3182 // parsed the VST (just above, when the first function body was 3183 // encountered here), then we are resuming the parse after 3184 // materializing functions. The ResumeBit points to the 3185 // start of the last function block recorded in the 3186 // DeferredFunctionInfo map. Skip it. 3187 if (Stream.SkipBlock()) 3188 return error("Invalid record"); 3189 continue; 3190 } 3191 } 3192 3193 // Support older bitcode files that did not have the function 3194 // index in the VST, nor a VST forward declaration record, as 3195 // well as anonymous functions that do not have VST entries. 3196 // Build the DeferredFunctionInfo vector on the fly. 3197 if (Error Err = rememberAndSkipFunctionBody()) 3198 return Err; 3199 3200 // Suspend parsing when we reach the function bodies. Subsequent 3201 // materialization calls will resume it when necessary. If the bitcode 3202 // file is old, the symbol table will be at the end instead and will not 3203 // have been seen yet. In this case, just finish the parse now. 3204 if (SeenValueSymbolTable) { 3205 NextUnreadBit = Stream.GetCurrentBitNo(); 3206 // After the VST has been parsed, we need to make sure intrinsic name 3207 // are auto-upgraded. 3208 return globalCleanup(); 3209 } 3210 break; 3211 case bitc::USELIST_BLOCK_ID: 3212 if (Error Err = parseUseLists()) 3213 return Err; 3214 break; 3215 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3216 if (Error Err = parseOperandBundleTags()) 3217 return Err; 3218 break; 3219 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3220 if (Error Err = parseSyncScopeNames()) 3221 return Err; 3222 break; 3223 } 3224 continue; 3225 3226 case BitstreamEntry::Record: 3227 // The interesting case. 3228 break; 3229 } 3230 3231 // Read a record. 3232 auto BitCode = Stream.readRecord(Entry.ID, Record); 3233 switch (BitCode) { 3234 default: break; // Default behavior, ignore unknown content. 3235 case bitc::MODULE_CODE_VERSION: { 3236 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3237 if (!VersionOrErr) 3238 return VersionOrErr.takeError(); 3239 UseRelativeIDs = *VersionOrErr >= 1; 3240 break; 3241 } 3242 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3243 std::string S; 3244 if (convertToString(Record, 0, S)) 3245 return error("Invalid record"); 3246 TheModule->setTargetTriple(S); 3247 break; 3248 } 3249 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3250 std::string S; 3251 if (convertToString(Record, 0, S)) 3252 return error("Invalid record"); 3253 TheModule->setDataLayout(S); 3254 break; 3255 } 3256 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3257 std::string S; 3258 if (convertToString(Record, 0, S)) 3259 return error("Invalid record"); 3260 TheModule->setModuleInlineAsm(S); 3261 break; 3262 } 3263 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3264 // FIXME: Remove in 4.0. 3265 std::string S; 3266 if (convertToString(Record, 0, S)) 3267 return error("Invalid record"); 3268 // Ignore value. 3269 break; 3270 } 3271 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3272 std::string S; 3273 if (convertToString(Record, 0, S)) 3274 return error("Invalid record"); 3275 SectionTable.push_back(S); 3276 break; 3277 } 3278 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3279 std::string S; 3280 if (convertToString(Record, 0, S)) 3281 return error("Invalid record"); 3282 GCTable.push_back(S); 3283 break; 3284 } 3285 case bitc::MODULE_CODE_COMDAT: 3286 if (Error Err = parseComdatRecord(Record)) 3287 return Err; 3288 break; 3289 case bitc::MODULE_CODE_GLOBALVAR: 3290 if (Error Err = parseGlobalVarRecord(Record)) 3291 return Err; 3292 break; 3293 case bitc::MODULE_CODE_FUNCTION: 3294 if (Error Err = parseFunctionRecord(Record)) 3295 return Err; 3296 break; 3297 case bitc::MODULE_CODE_IFUNC: 3298 case bitc::MODULE_CODE_ALIAS: 3299 case bitc::MODULE_CODE_ALIAS_OLD: 3300 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3301 return Err; 3302 break; 3303 /// MODULE_CODE_VSTOFFSET: [offset] 3304 case bitc::MODULE_CODE_VSTOFFSET: 3305 if (Record.size() < 1) 3306 return error("Invalid record"); 3307 // Note that we subtract 1 here because the offset is relative to one word 3308 // before the start of the identification or module block, which was 3309 // historically always the start of the regular bitcode header. 3310 VSTOffset = Record[0] - 1; 3311 break; 3312 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3313 case bitc::MODULE_CODE_SOURCE_FILENAME: 3314 SmallString<128> ValueName; 3315 if (convertToString(Record, 0, ValueName)) 3316 return error("Invalid record"); 3317 TheModule->setSourceFileName(ValueName); 3318 break; 3319 } 3320 Record.clear(); 3321 } 3322 } 3323 3324 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3325 bool IsImporting) { 3326 TheModule = M; 3327 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3328 [&](unsigned ID) { return getTypeByID(ID); }); 3329 return parseModule(0, ShouldLazyLoadMetadata); 3330 } 3331 3332 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3333 if (!isa<PointerType>(PtrType)) 3334 return error("Load/Store operand is not a pointer type"); 3335 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3336 3337 if (ValType && ValType != ElemType) 3338 return error("Explicit load/store type does not match pointee " 3339 "type of pointer operand"); 3340 if (!PointerType::isLoadableOrStorableType(ElemType)) 3341 return error("Cannot load/store from pointer"); 3342 return Error::success(); 3343 } 3344 3345 /// Lazily parse the specified function body block. 3346 Error BitcodeReader::parseFunctionBody(Function *F) { 3347 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3348 return error("Invalid record"); 3349 3350 // Unexpected unresolved metadata when parsing function. 3351 if (MDLoader->hasFwdRefs()) 3352 return error("Invalid function metadata: incoming forward references"); 3353 3354 InstructionList.clear(); 3355 unsigned ModuleValueListSize = ValueList.size(); 3356 unsigned ModuleMDLoaderSize = MDLoader->size(); 3357 3358 // Add all the function arguments to the value table. 3359 for (Argument &I : F->args()) 3360 ValueList.push_back(&I); 3361 3362 unsigned NextValueNo = ValueList.size(); 3363 BasicBlock *CurBB = nullptr; 3364 unsigned CurBBNo = 0; 3365 3366 DebugLoc LastLoc; 3367 auto getLastInstruction = [&]() -> Instruction * { 3368 if (CurBB && !CurBB->empty()) 3369 return &CurBB->back(); 3370 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3371 !FunctionBBs[CurBBNo - 1]->empty()) 3372 return &FunctionBBs[CurBBNo - 1]->back(); 3373 return nullptr; 3374 }; 3375 3376 std::vector<OperandBundleDef> OperandBundles; 3377 3378 // Read all the records. 3379 SmallVector<uint64_t, 64> Record; 3380 3381 while (true) { 3382 BitstreamEntry Entry = Stream.advance(); 3383 3384 switch (Entry.Kind) { 3385 case BitstreamEntry::Error: 3386 return error("Malformed block"); 3387 case BitstreamEntry::EndBlock: 3388 goto OutOfRecordLoop; 3389 3390 case BitstreamEntry::SubBlock: 3391 switch (Entry.ID) { 3392 default: // Skip unknown content. 3393 if (Stream.SkipBlock()) 3394 return error("Invalid record"); 3395 break; 3396 case bitc::CONSTANTS_BLOCK_ID: 3397 if (Error Err = parseConstants()) 3398 return Err; 3399 NextValueNo = ValueList.size(); 3400 break; 3401 case bitc::VALUE_SYMTAB_BLOCK_ID: 3402 if (Error Err = parseValueSymbolTable()) 3403 return Err; 3404 break; 3405 case bitc::METADATA_ATTACHMENT_ID: 3406 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3407 return Err; 3408 break; 3409 case bitc::METADATA_BLOCK_ID: 3410 assert(DeferredMetadataInfo.empty() && 3411 "Must read all module-level metadata before function-level"); 3412 if (Error Err = MDLoader->parseFunctionMetadata()) 3413 return Err; 3414 break; 3415 case bitc::USELIST_BLOCK_ID: 3416 if (Error Err = parseUseLists()) 3417 return Err; 3418 break; 3419 } 3420 continue; 3421 3422 case BitstreamEntry::Record: 3423 // The interesting case. 3424 break; 3425 } 3426 3427 // Read a record. 3428 Record.clear(); 3429 Instruction *I = nullptr; 3430 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3431 switch (BitCode) { 3432 default: // Default behavior: reject 3433 return error("Invalid value"); 3434 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3435 if (Record.size() < 1 || Record[0] == 0) 3436 return error("Invalid record"); 3437 // Create all the basic blocks for the function. 3438 FunctionBBs.resize(Record[0]); 3439 3440 // See if anything took the address of blocks in this function. 3441 auto BBFRI = BasicBlockFwdRefs.find(F); 3442 if (BBFRI == BasicBlockFwdRefs.end()) { 3443 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3444 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3445 } else { 3446 auto &BBRefs = BBFRI->second; 3447 // Check for invalid basic block references. 3448 if (BBRefs.size() > FunctionBBs.size()) 3449 return error("Invalid ID"); 3450 assert(!BBRefs.empty() && "Unexpected empty array"); 3451 assert(!BBRefs.front() && "Invalid reference to entry block"); 3452 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3453 ++I) 3454 if (I < RE && BBRefs[I]) { 3455 BBRefs[I]->insertInto(F); 3456 FunctionBBs[I] = BBRefs[I]; 3457 } else { 3458 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3459 } 3460 3461 // Erase from the table. 3462 BasicBlockFwdRefs.erase(BBFRI); 3463 } 3464 3465 CurBB = FunctionBBs[0]; 3466 continue; 3467 } 3468 3469 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3470 // This record indicates that the last instruction is at the same 3471 // location as the previous instruction with a location. 3472 I = getLastInstruction(); 3473 3474 if (!I) 3475 return error("Invalid record"); 3476 I->setDebugLoc(LastLoc); 3477 I = nullptr; 3478 continue; 3479 3480 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3481 I = getLastInstruction(); 3482 if (!I || Record.size() < 4) 3483 return error("Invalid record"); 3484 3485 unsigned Line = Record[0], Col = Record[1]; 3486 unsigned ScopeID = Record[2], IAID = Record[3]; 3487 3488 MDNode *Scope = nullptr, *IA = nullptr; 3489 if (ScopeID) { 3490 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3491 if (!Scope) 3492 return error("Invalid record"); 3493 } 3494 if (IAID) { 3495 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3496 if (!IA) 3497 return error("Invalid record"); 3498 } 3499 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3500 I->setDebugLoc(LastLoc); 3501 I = nullptr; 3502 continue; 3503 } 3504 3505 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3506 unsigned OpNum = 0; 3507 Value *LHS, *RHS; 3508 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3509 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3510 OpNum+1 > Record.size()) 3511 return error("Invalid record"); 3512 3513 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3514 if (Opc == -1) 3515 return error("Invalid record"); 3516 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3517 InstructionList.push_back(I); 3518 if (OpNum < Record.size()) { 3519 if (Opc == Instruction::Add || 3520 Opc == Instruction::Sub || 3521 Opc == Instruction::Mul || 3522 Opc == Instruction::Shl) { 3523 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3524 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3525 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3526 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3527 } else if (Opc == Instruction::SDiv || 3528 Opc == Instruction::UDiv || 3529 Opc == Instruction::LShr || 3530 Opc == Instruction::AShr) { 3531 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3532 cast<BinaryOperator>(I)->setIsExact(true); 3533 } else if (isa<FPMathOperator>(I)) { 3534 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3535 if (FMF.any()) 3536 I->setFastMathFlags(FMF); 3537 } 3538 3539 } 3540 break; 3541 } 3542 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3543 unsigned OpNum = 0; 3544 Value *Op; 3545 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3546 OpNum+2 != Record.size()) 3547 return error("Invalid record"); 3548 3549 Type *ResTy = getTypeByID(Record[OpNum]); 3550 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3551 if (Opc == -1 || !ResTy) 3552 return error("Invalid record"); 3553 Instruction *Temp = nullptr; 3554 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3555 if (Temp) { 3556 InstructionList.push_back(Temp); 3557 CurBB->getInstList().push_back(Temp); 3558 } 3559 } else { 3560 auto CastOp = (Instruction::CastOps)Opc; 3561 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3562 return error("Invalid cast"); 3563 I = CastInst::Create(CastOp, Op, ResTy); 3564 } 3565 InstructionList.push_back(I); 3566 break; 3567 } 3568 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3569 case bitc::FUNC_CODE_INST_GEP_OLD: 3570 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3571 unsigned OpNum = 0; 3572 3573 Type *Ty; 3574 bool InBounds; 3575 3576 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3577 InBounds = Record[OpNum++]; 3578 Ty = getTypeByID(Record[OpNum++]); 3579 } else { 3580 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3581 Ty = nullptr; 3582 } 3583 3584 Value *BasePtr; 3585 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3586 return error("Invalid record"); 3587 3588 if (!Ty) 3589 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3590 ->getElementType(); 3591 else if (Ty != 3592 cast<PointerType>(BasePtr->getType()->getScalarType()) 3593 ->getElementType()) 3594 return error( 3595 "Explicit gep type does not match pointee type of pointer operand"); 3596 3597 SmallVector<Value*, 16> GEPIdx; 3598 while (OpNum != Record.size()) { 3599 Value *Op; 3600 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3601 return error("Invalid record"); 3602 GEPIdx.push_back(Op); 3603 } 3604 3605 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3606 3607 InstructionList.push_back(I); 3608 if (InBounds) 3609 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3610 break; 3611 } 3612 3613 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3614 // EXTRACTVAL: [opty, opval, n x indices] 3615 unsigned OpNum = 0; 3616 Value *Agg; 3617 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3618 return error("Invalid record"); 3619 3620 unsigned RecSize = Record.size(); 3621 if (OpNum == RecSize) 3622 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3623 3624 SmallVector<unsigned, 4> EXTRACTVALIdx; 3625 Type *CurTy = Agg->getType(); 3626 for (; OpNum != RecSize; ++OpNum) { 3627 bool IsArray = CurTy->isArrayTy(); 3628 bool IsStruct = CurTy->isStructTy(); 3629 uint64_t Index = Record[OpNum]; 3630 3631 if (!IsStruct && !IsArray) 3632 return error("EXTRACTVAL: Invalid type"); 3633 if ((unsigned)Index != Index) 3634 return error("Invalid value"); 3635 if (IsStruct && Index >= CurTy->subtypes().size()) 3636 return error("EXTRACTVAL: Invalid struct index"); 3637 if (IsArray && Index >= CurTy->getArrayNumElements()) 3638 return error("EXTRACTVAL: Invalid array index"); 3639 EXTRACTVALIdx.push_back((unsigned)Index); 3640 3641 if (IsStruct) 3642 CurTy = CurTy->subtypes()[Index]; 3643 else 3644 CurTy = CurTy->subtypes()[0]; 3645 } 3646 3647 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3648 InstructionList.push_back(I); 3649 break; 3650 } 3651 3652 case bitc::FUNC_CODE_INST_INSERTVAL: { 3653 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3654 unsigned OpNum = 0; 3655 Value *Agg; 3656 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3657 return error("Invalid record"); 3658 Value *Val; 3659 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3660 return error("Invalid record"); 3661 3662 unsigned RecSize = Record.size(); 3663 if (OpNum == RecSize) 3664 return error("INSERTVAL: Invalid instruction with 0 indices"); 3665 3666 SmallVector<unsigned, 4> INSERTVALIdx; 3667 Type *CurTy = Agg->getType(); 3668 for (; OpNum != RecSize; ++OpNum) { 3669 bool IsArray = CurTy->isArrayTy(); 3670 bool IsStruct = CurTy->isStructTy(); 3671 uint64_t Index = Record[OpNum]; 3672 3673 if (!IsStruct && !IsArray) 3674 return error("INSERTVAL: Invalid type"); 3675 if ((unsigned)Index != Index) 3676 return error("Invalid value"); 3677 if (IsStruct && Index >= CurTy->subtypes().size()) 3678 return error("INSERTVAL: Invalid struct index"); 3679 if (IsArray && Index >= CurTy->getArrayNumElements()) 3680 return error("INSERTVAL: Invalid array index"); 3681 3682 INSERTVALIdx.push_back((unsigned)Index); 3683 if (IsStruct) 3684 CurTy = CurTy->subtypes()[Index]; 3685 else 3686 CurTy = CurTy->subtypes()[0]; 3687 } 3688 3689 if (CurTy != Val->getType()) 3690 return error("Inserted value type doesn't match aggregate type"); 3691 3692 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3693 InstructionList.push_back(I); 3694 break; 3695 } 3696 3697 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3698 // obsolete form of select 3699 // handles select i1 ... in old bitcode 3700 unsigned OpNum = 0; 3701 Value *TrueVal, *FalseVal, *Cond; 3702 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3703 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3704 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3705 return error("Invalid record"); 3706 3707 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3708 InstructionList.push_back(I); 3709 break; 3710 } 3711 3712 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3713 // new form of select 3714 // handles select i1 or select [N x i1] 3715 unsigned OpNum = 0; 3716 Value *TrueVal, *FalseVal, *Cond; 3717 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3718 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3719 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3720 return error("Invalid record"); 3721 3722 // select condition can be either i1 or [N x i1] 3723 if (VectorType* vector_type = 3724 dyn_cast<VectorType>(Cond->getType())) { 3725 // expect <n x i1> 3726 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3727 return error("Invalid type for value"); 3728 } else { 3729 // expect i1 3730 if (Cond->getType() != Type::getInt1Ty(Context)) 3731 return error("Invalid type for value"); 3732 } 3733 3734 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3735 InstructionList.push_back(I); 3736 break; 3737 } 3738 3739 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3740 unsigned OpNum = 0; 3741 Value *Vec, *Idx; 3742 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3743 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3744 return error("Invalid record"); 3745 if (!Vec->getType()->isVectorTy()) 3746 return error("Invalid type for value"); 3747 I = ExtractElementInst::Create(Vec, Idx); 3748 InstructionList.push_back(I); 3749 break; 3750 } 3751 3752 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3753 unsigned OpNum = 0; 3754 Value *Vec, *Elt, *Idx; 3755 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3756 return error("Invalid record"); 3757 if (!Vec->getType()->isVectorTy()) 3758 return error("Invalid type for value"); 3759 if (popValue(Record, OpNum, NextValueNo, 3760 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3761 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3762 return error("Invalid record"); 3763 I = InsertElementInst::Create(Vec, Elt, Idx); 3764 InstructionList.push_back(I); 3765 break; 3766 } 3767 3768 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3769 unsigned OpNum = 0; 3770 Value *Vec1, *Vec2, *Mask; 3771 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3772 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3773 return error("Invalid record"); 3774 3775 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3776 return error("Invalid record"); 3777 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3778 return error("Invalid type for value"); 3779 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3780 InstructionList.push_back(I); 3781 break; 3782 } 3783 3784 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3785 // Old form of ICmp/FCmp returning bool 3786 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3787 // both legal on vectors but had different behaviour. 3788 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3789 // FCmp/ICmp returning bool or vector of bool 3790 3791 unsigned OpNum = 0; 3792 Value *LHS, *RHS; 3793 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3794 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3795 return error("Invalid record"); 3796 3797 unsigned PredVal = Record[OpNum]; 3798 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3799 FastMathFlags FMF; 3800 if (IsFP && Record.size() > OpNum+1) 3801 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3802 3803 if (OpNum+1 != Record.size()) 3804 return error("Invalid record"); 3805 3806 if (LHS->getType()->isFPOrFPVectorTy()) 3807 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3808 else 3809 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3810 3811 if (FMF.any()) 3812 I->setFastMathFlags(FMF); 3813 InstructionList.push_back(I); 3814 break; 3815 } 3816 3817 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3818 { 3819 unsigned Size = Record.size(); 3820 if (Size == 0) { 3821 I = ReturnInst::Create(Context); 3822 InstructionList.push_back(I); 3823 break; 3824 } 3825 3826 unsigned OpNum = 0; 3827 Value *Op = nullptr; 3828 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3829 return error("Invalid record"); 3830 if (OpNum != Record.size()) 3831 return error("Invalid record"); 3832 3833 I = ReturnInst::Create(Context, Op); 3834 InstructionList.push_back(I); 3835 break; 3836 } 3837 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3838 if (Record.size() != 1 && Record.size() != 3) 3839 return error("Invalid record"); 3840 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3841 if (!TrueDest) 3842 return error("Invalid record"); 3843 3844 if (Record.size() == 1) { 3845 I = BranchInst::Create(TrueDest); 3846 InstructionList.push_back(I); 3847 } 3848 else { 3849 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3850 Value *Cond = getValue(Record, 2, NextValueNo, 3851 Type::getInt1Ty(Context)); 3852 if (!FalseDest || !Cond) 3853 return error("Invalid record"); 3854 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3855 InstructionList.push_back(I); 3856 } 3857 break; 3858 } 3859 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3860 if (Record.size() != 1 && Record.size() != 2) 3861 return error("Invalid record"); 3862 unsigned Idx = 0; 3863 Value *CleanupPad = 3864 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3865 if (!CleanupPad) 3866 return error("Invalid record"); 3867 BasicBlock *UnwindDest = nullptr; 3868 if (Record.size() == 2) { 3869 UnwindDest = getBasicBlock(Record[Idx++]); 3870 if (!UnwindDest) 3871 return error("Invalid record"); 3872 } 3873 3874 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3875 InstructionList.push_back(I); 3876 break; 3877 } 3878 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3879 if (Record.size() != 2) 3880 return error("Invalid record"); 3881 unsigned Idx = 0; 3882 Value *CatchPad = 3883 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3884 if (!CatchPad) 3885 return error("Invalid record"); 3886 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3887 if (!BB) 3888 return error("Invalid record"); 3889 3890 I = CatchReturnInst::Create(CatchPad, BB); 3891 InstructionList.push_back(I); 3892 break; 3893 } 3894 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3895 // We must have, at minimum, the outer scope and the number of arguments. 3896 if (Record.size() < 2) 3897 return error("Invalid record"); 3898 3899 unsigned Idx = 0; 3900 3901 Value *ParentPad = 3902 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3903 3904 unsigned NumHandlers = Record[Idx++]; 3905 3906 SmallVector<BasicBlock *, 2> Handlers; 3907 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3908 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3909 if (!BB) 3910 return error("Invalid record"); 3911 Handlers.push_back(BB); 3912 } 3913 3914 BasicBlock *UnwindDest = nullptr; 3915 if (Idx + 1 == Record.size()) { 3916 UnwindDest = getBasicBlock(Record[Idx++]); 3917 if (!UnwindDest) 3918 return error("Invalid record"); 3919 } 3920 3921 if (Record.size() != Idx) 3922 return error("Invalid record"); 3923 3924 auto *CatchSwitch = 3925 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3926 for (BasicBlock *Handler : Handlers) 3927 CatchSwitch->addHandler(Handler); 3928 I = CatchSwitch; 3929 InstructionList.push_back(I); 3930 break; 3931 } 3932 case bitc::FUNC_CODE_INST_CATCHPAD: 3933 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3934 // We must have, at minimum, the outer scope and the number of arguments. 3935 if (Record.size() < 2) 3936 return error("Invalid record"); 3937 3938 unsigned Idx = 0; 3939 3940 Value *ParentPad = 3941 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3942 3943 unsigned NumArgOperands = Record[Idx++]; 3944 3945 SmallVector<Value *, 2> Args; 3946 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3947 Value *Val; 3948 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3949 return error("Invalid record"); 3950 Args.push_back(Val); 3951 } 3952 3953 if (Record.size() != Idx) 3954 return error("Invalid record"); 3955 3956 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3957 I = CleanupPadInst::Create(ParentPad, Args); 3958 else 3959 I = CatchPadInst::Create(ParentPad, Args); 3960 InstructionList.push_back(I); 3961 break; 3962 } 3963 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3964 // Check magic 3965 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3966 // "New" SwitchInst format with case ranges. The changes to write this 3967 // format were reverted but we still recognize bitcode that uses it. 3968 // Hopefully someday we will have support for case ranges and can use 3969 // this format again. 3970 3971 Type *OpTy = getTypeByID(Record[1]); 3972 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3973 3974 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3975 BasicBlock *Default = getBasicBlock(Record[3]); 3976 if (!OpTy || !Cond || !Default) 3977 return error("Invalid record"); 3978 3979 unsigned NumCases = Record[4]; 3980 3981 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3982 InstructionList.push_back(SI); 3983 3984 unsigned CurIdx = 5; 3985 for (unsigned i = 0; i != NumCases; ++i) { 3986 SmallVector<ConstantInt*, 1> CaseVals; 3987 unsigned NumItems = Record[CurIdx++]; 3988 for (unsigned ci = 0; ci != NumItems; ++ci) { 3989 bool isSingleNumber = Record[CurIdx++]; 3990 3991 APInt Low; 3992 unsigned ActiveWords = 1; 3993 if (ValueBitWidth > 64) 3994 ActiveWords = Record[CurIdx++]; 3995 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3996 ValueBitWidth); 3997 CurIdx += ActiveWords; 3998 3999 if (!isSingleNumber) { 4000 ActiveWords = 1; 4001 if (ValueBitWidth > 64) 4002 ActiveWords = Record[CurIdx++]; 4003 APInt High = readWideAPInt( 4004 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4005 CurIdx += ActiveWords; 4006 4007 // FIXME: It is not clear whether values in the range should be 4008 // compared as signed or unsigned values. The partially 4009 // implemented changes that used this format in the past used 4010 // unsigned comparisons. 4011 for ( ; Low.ule(High); ++Low) 4012 CaseVals.push_back(ConstantInt::get(Context, Low)); 4013 } else 4014 CaseVals.push_back(ConstantInt::get(Context, Low)); 4015 } 4016 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4017 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4018 cve = CaseVals.end(); cvi != cve; ++cvi) 4019 SI->addCase(*cvi, DestBB); 4020 } 4021 I = SI; 4022 break; 4023 } 4024 4025 // Old SwitchInst format without case ranges. 4026 4027 if (Record.size() < 3 || (Record.size() & 1) == 0) 4028 return error("Invalid record"); 4029 Type *OpTy = getTypeByID(Record[0]); 4030 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4031 BasicBlock *Default = getBasicBlock(Record[2]); 4032 if (!OpTy || !Cond || !Default) 4033 return error("Invalid record"); 4034 unsigned NumCases = (Record.size()-3)/2; 4035 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4036 InstructionList.push_back(SI); 4037 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4038 ConstantInt *CaseVal = 4039 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4040 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4041 if (!CaseVal || !DestBB) { 4042 delete SI; 4043 return error("Invalid record"); 4044 } 4045 SI->addCase(CaseVal, DestBB); 4046 } 4047 I = SI; 4048 break; 4049 } 4050 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4051 if (Record.size() < 2) 4052 return error("Invalid record"); 4053 Type *OpTy = getTypeByID(Record[0]); 4054 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4055 if (!OpTy || !Address) 4056 return error("Invalid record"); 4057 unsigned NumDests = Record.size()-2; 4058 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4059 InstructionList.push_back(IBI); 4060 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4061 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4062 IBI->addDestination(DestBB); 4063 } else { 4064 delete IBI; 4065 return error("Invalid record"); 4066 } 4067 } 4068 I = IBI; 4069 break; 4070 } 4071 4072 case bitc::FUNC_CODE_INST_INVOKE: { 4073 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4074 if (Record.size() < 4) 4075 return error("Invalid record"); 4076 unsigned OpNum = 0; 4077 AttributeList PAL = getAttributes(Record[OpNum++]); 4078 unsigned CCInfo = Record[OpNum++]; 4079 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4080 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4081 4082 FunctionType *FTy = nullptr; 4083 if (CCInfo >> 13 & 1 && 4084 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4085 return error("Explicit invoke type is not a function type"); 4086 4087 Value *Callee; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4089 return error("Invalid record"); 4090 4091 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4092 if (!CalleeTy) 4093 return error("Callee is not a pointer"); 4094 if (!FTy) { 4095 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4096 if (!FTy) 4097 return error("Callee is not of pointer to function type"); 4098 } else if (CalleeTy->getElementType() != FTy) 4099 return error("Explicit invoke type does not match pointee type of " 4100 "callee operand"); 4101 if (Record.size() < FTy->getNumParams() + OpNum) 4102 return error("Insufficient operands to call"); 4103 4104 SmallVector<Value*, 16> Ops; 4105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4106 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4107 FTy->getParamType(i))); 4108 if (!Ops.back()) 4109 return error("Invalid record"); 4110 } 4111 4112 if (!FTy->isVarArg()) { 4113 if (Record.size() != OpNum) 4114 return error("Invalid record"); 4115 } else { 4116 // Read type/value pairs for varargs params. 4117 while (OpNum != Record.size()) { 4118 Value *Op; 4119 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4120 return error("Invalid record"); 4121 Ops.push_back(Op); 4122 } 4123 } 4124 4125 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4126 OperandBundles.clear(); 4127 InstructionList.push_back(I); 4128 cast<InvokeInst>(I)->setCallingConv( 4129 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4130 cast<InvokeInst>(I)->setAttributes(PAL); 4131 break; 4132 } 4133 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4134 unsigned Idx = 0; 4135 Value *Val = nullptr; 4136 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4137 return error("Invalid record"); 4138 I = ResumeInst::Create(Val); 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4143 I = new UnreachableInst(Context); 4144 InstructionList.push_back(I); 4145 break; 4146 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4147 if (Record.size() < 1 || ((Record.size()-1)&1)) 4148 return error("Invalid record"); 4149 Type *Ty = getTypeByID(Record[0]); 4150 if (!Ty) 4151 return error("Invalid record"); 4152 4153 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4154 InstructionList.push_back(PN); 4155 4156 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4157 Value *V; 4158 // With the new function encoding, it is possible that operands have 4159 // negative IDs (for forward references). Use a signed VBR 4160 // representation to keep the encoding small. 4161 if (UseRelativeIDs) 4162 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4163 else 4164 V = getValue(Record, 1+i, NextValueNo, Ty); 4165 BasicBlock *BB = getBasicBlock(Record[2+i]); 4166 if (!V || !BB) 4167 return error("Invalid record"); 4168 PN->addIncoming(V, BB); 4169 } 4170 I = PN; 4171 break; 4172 } 4173 4174 case bitc::FUNC_CODE_INST_LANDINGPAD: 4175 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4176 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4177 unsigned Idx = 0; 4178 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4179 if (Record.size() < 3) 4180 return error("Invalid record"); 4181 } else { 4182 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4183 if (Record.size() < 4) 4184 return error("Invalid record"); 4185 } 4186 Type *Ty = getTypeByID(Record[Idx++]); 4187 if (!Ty) 4188 return error("Invalid record"); 4189 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4190 Value *PersFn = nullptr; 4191 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4192 return error("Invalid record"); 4193 4194 if (!F->hasPersonalityFn()) 4195 F->setPersonalityFn(cast<Constant>(PersFn)); 4196 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4197 return error("Personality function mismatch"); 4198 } 4199 4200 bool IsCleanup = !!Record[Idx++]; 4201 unsigned NumClauses = Record[Idx++]; 4202 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4203 LP->setCleanup(IsCleanup); 4204 for (unsigned J = 0; J != NumClauses; ++J) { 4205 LandingPadInst::ClauseType CT = 4206 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4207 Value *Val; 4208 4209 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4210 delete LP; 4211 return error("Invalid record"); 4212 } 4213 4214 assert((CT != LandingPadInst::Catch || 4215 !isa<ArrayType>(Val->getType())) && 4216 "Catch clause has a invalid type!"); 4217 assert((CT != LandingPadInst::Filter || 4218 isa<ArrayType>(Val->getType())) && 4219 "Filter clause has invalid type!"); 4220 LP->addClause(cast<Constant>(Val)); 4221 } 4222 4223 I = LP; 4224 InstructionList.push_back(I); 4225 break; 4226 } 4227 4228 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4229 if (Record.size() != 4) 4230 return error("Invalid record"); 4231 uint64_t AlignRecord = Record[3]; 4232 const uint64_t InAllocaMask = uint64_t(1) << 5; 4233 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4234 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4235 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4236 SwiftErrorMask; 4237 bool InAlloca = AlignRecord & InAllocaMask; 4238 bool SwiftError = AlignRecord & SwiftErrorMask; 4239 Type *Ty = getTypeByID(Record[0]); 4240 if ((AlignRecord & ExplicitTypeMask) == 0) { 4241 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4242 if (!PTy) 4243 return error("Old-style alloca with a non-pointer type"); 4244 Ty = PTy->getElementType(); 4245 } 4246 Type *OpTy = getTypeByID(Record[1]); 4247 Value *Size = getFnValueByID(Record[2], OpTy); 4248 unsigned Align; 4249 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4250 return Err; 4251 } 4252 if (!Ty || !Size) 4253 return error("Invalid record"); 4254 4255 // FIXME: Make this an optional field. 4256 const DataLayout &DL = TheModule->getDataLayout(); 4257 unsigned AS = DL.getAllocaAddrSpace(); 4258 4259 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4260 AI->setUsedWithInAlloca(InAlloca); 4261 AI->setSwiftError(SwiftError); 4262 I = AI; 4263 InstructionList.push_back(I); 4264 break; 4265 } 4266 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4267 unsigned OpNum = 0; 4268 Value *Op; 4269 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4270 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4271 return error("Invalid record"); 4272 4273 Type *Ty = nullptr; 4274 if (OpNum + 3 == Record.size()) 4275 Ty = getTypeByID(Record[OpNum++]); 4276 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4277 return Err; 4278 if (!Ty) 4279 Ty = cast<PointerType>(Op->getType())->getElementType(); 4280 4281 unsigned Align; 4282 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4283 return Err; 4284 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4285 4286 InstructionList.push_back(I); 4287 break; 4288 } 4289 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4290 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4291 unsigned OpNum = 0; 4292 Value *Op; 4293 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4294 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4295 return error("Invalid record"); 4296 4297 Type *Ty = nullptr; 4298 if (OpNum + 5 == Record.size()) 4299 Ty = getTypeByID(Record[OpNum++]); 4300 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4301 return Err; 4302 if (!Ty) 4303 Ty = cast<PointerType>(Op->getType())->getElementType(); 4304 4305 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4306 if (Ordering == AtomicOrdering::NotAtomic || 4307 Ordering == AtomicOrdering::Release || 4308 Ordering == AtomicOrdering::AcquireRelease) 4309 return error("Invalid record"); 4310 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4311 return error("Invalid record"); 4312 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4313 4314 unsigned Align; 4315 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4316 return Err; 4317 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4318 4319 InstructionList.push_back(I); 4320 break; 4321 } 4322 case bitc::FUNC_CODE_INST_STORE: 4323 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4324 unsigned OpNum = 0; 4325 Value *Val, *Ptr; 4326 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4327 (BitCode == bitc::FUNC_CODE_INST_STORE 4328 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4329 : popValue(Record, OpNum, NextValueNo, 4330 cast<PointerType>(Ptr->getType())->getElementType(), 4331 Val)) || 4332 OpNum + 2 != Record.size()) 4333 return error("Invalid record"); 4334 4335 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4336 return Err; 4337 unsigned Align; 4338 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4339 return Err; 4340 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4341 InstructionList.push_back(I); 4342 break; 4343 } 4344 case bitc::FUNC_CODE_INST_STOREATOMIC: 4345 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4346 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4347 unsigned OpNum = 0; 4348 Value *Val, *Ptr; 4349 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4350 !isa<PointerType>(Ptr->getType()) || 4351 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4352 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4353 : popValue(Record, OpNum, NextValueNo, 4354 cast<PointerType>(Ptr->getType())->getElementType(), 4355 Val)) || 4356 OpNum + 4 != Record.size()) 4357 return error("Invalid record"); 4358 4359 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4360 return Err; 4361 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4362 if (Ordering == AtomicOrdering::NotAtomic || 4363 Ordering == AtomicOrdering::Acquire || 4364 Ordering == AtomicOrdering::AcquireRelease) 4365 return error("Invalid record"); 4366 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4367 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4368 return error("Invalid record"); 4369 4370 unsigned Align; 4371 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4372 return Err; 4373 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4378 case bitc::FUNC_CODE_INST_CMPXCHG: { 4379 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4380 // failureordering?, isweak?] 4381 unsigned OpNum = 0; 4382 Value *Ptr, *Cmp, *New; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4384 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4385 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4386 : popValue(Record, OpNum, NextValueNo, 4387 cast<PointerType>(Ptr->getType())->getElementType(), 4388 Cmp)) || 4389 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4390 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4391 return error("Invalid record"); 4392 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4393 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4394 SuccessOrdering == AtomicOrdering::Unordered) 4395 return error("Invalid record"); 4396 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4397 4398 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4399 return Err; 4400 AtomicOrdering FailureOrdering; 4401 if (Record.size() < 7) 4402 FailureOrdering = 4403 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4404 else 4405 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4406 4407 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4408 SSID); 4409 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4410 4411 if (Record.size() < 8) { 4412 // Before weak cmpxchgs existed, the instruction simply returned the 4413 // value loaded from memory, so bitcode files from that era will be 4414 // expecting the first component of a modern cmpxchg. 4415 CurBB->getInstList().push_back(I); 4416 I = ExtractValueInst::Create(I, 0); 4417 } else { 4418 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4419 } 4420 4421 InstructionList.push_back(I); 4422 break; 4423 } 4424 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4425 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4426 unsigned OpNum = 0; 4427 Value *Ptr, *Val; 4428 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4429 !isa<PointerType>(Ptr->getType()) || 4430 popValue(Record, OpNum, NextValueNo, 4431 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4432 OpNum+4 != Record.size()) 4433 return error("Invalid record"); 4434 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4435 if (Operation < AtomicRMWInst::FIRST_BINOP || 4436 Operation > AtomicRMWInst::LAST_BINOP) 4437 return error("Invalid record"); 4438 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4439 if (Ordering == AtomicOrdering::NotAtomic || 4440 Ordering == AtomicOrdering::Unordered) 4441 return error("Invalid record"); 4442 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4443 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4444 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4445 InstructionList.push_back(I); 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4449 if (2 != Record.size()) 4450 return error("Invalid record"); 4451 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4452 if (Ordering == AtomicOrdering::NotAtomic || 4453 Ordering == AtomicOrdering::Unordered || 4454 Ordering == AtomicOrdering::Monotonic) 4455 return error("Invalid record"); 4456 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4457 I = new FenceInst(Context, Ordering, SSID); 4458 InstructionList.push_back(I); 4459 break; 4460 } 4461 case bitc::FUNC_CODE_INST_CALL: { 4462 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4463 if (Record.size() < 3) 4464 return error("Invalid record"); 4465 4466 unsigned OpNum = 0; 4467 AttributeList PAL = getAttributes(Record[OpNum++]); 4468 unsigned CCInfo = Record[OpNum++]; 4469 4470 FastMathFlags FMF; 4471 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4472 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4473 if (!FMF.any()) 4474 return error("Fast math flags indicator set for call with no FMF"); 4475 } 4476 4477 FunctionType *FTy = nullptr; 4478 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4479 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4480 return error("Explicit call type is not a function type"); 4481 4482 Value *Callee; 4483 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4484 return error("Invalid record"); 4485 4486 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4487 if (!OpTy) 4488 return error("Callee is not a pointer type"); 4489 if (!FTy) { 4490 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4491 if (!FTy) 4492 return error("Callee is not of pointer to function type"); 4493 } else if (OpTy->getElementType() != FTy) 4494 return error("Explicit call type does not match pointee type of " 4495 "callee operand"); 4496 if (Record.size() < FTy->getNumParams() + OpNum) 4497 return error("Insufficient operands to call"); 4498 4499 SmallVector<Value*, 16> Args; 4500 // Read the fixed params. 4501 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4502 if (FTy->getParamType(i)->isLabelTy()) 4503 Args.push_back(getBasicBlock(Record[OpNum])); 4504 else 4505 Args.push_back(getValue(Record, OpNum, NextValueNo, 4506 FTy->getParamType(i))); 4507 if (!Args.back()) 4508 return error("Invalid record"); 4509 } 4510 4511 // Read type/value pairs for varargs params. 4512 if (!FTy->isVarArg()) { 4513 if (OpNum != Record.size()) 4514 return error("Invalid record"); 4515 } else { 4516 while (OpNum != Record.size()) { 4517 Value *Op; 4518 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4519 return error("Invalid record"); 4520 Args.push_back(Op); 4521 } 4522 } 4523 4524 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4525 OperandBundles.clear(); 4526 InstructionList.push_back(I); 4527 cast<CallInst>(I)->setCallingConv( 4528 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4529 CallInst::TailCallKind TCK = CallInst::TCK_None; 4530 if (CCInfo & 1 << bitc::CALL_TAIL) 4531 TCK = CallInst::TCK_Tail; 4532 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4533 TCK = CallInst::TCK_MustTail; 4534 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4535 TCK = CallInst::TCK_NoTail; 4536 cast<CallInst>(I)->setTailCallKind(TCK); 4537 cast<CallInst>(I)->setAttributes(PAL); 4538 if (FMF.any()) { 4539 if (!isa<FPMathOperator>(I)) 4540 return error("Fast-math-flags specified for call without " 4541 "floating-point scalar or vector return type"); 4542 I->setFastMathFlags(FMF); 4543 } 4544 break; 4545 } 4546 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4547 if (Record.size() < 3) 4548 return error("Invalid record"); 4549 Type *OpTy = getTypeByID(Record[0]); 4550 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4551 Type *ResTy = getTypeByID(Record[2]); 4552 if (!OpTy || !Op || !ResTy) 4553 return error("Invalid record"); 4554 I = new VAArgInst(Op, ResTy); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 4559 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4560 // A call or an invoke can be optionally prefixed with some variable 4561 // number of operand bundle blocks. These blocks are read into 4562 // OperandBundles and consumed at the next call or invoke instruction. 4563 4564 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4565 return error("Invalid record"); 4566 4567 std::vector<Value *> Inputs; 4568 4569 unsigned OpNum = 1; 4570 while (OpNum != Record.size()) { 4571 Value *Op; 4572 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4573 return error("Invalid record"); 4574 Inputs.push_back(Op); 4575 } 4576 4577 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4578 continue; 4579 } 4580 } 4581 4582 // Add instruction to end of current BB. If there is no current BB, reject 4583 // this file. 4584 if (!CurBB) { 4585 I->deleteValue(); 4586 return error("Invalid instruction with no BB"); 4587 } 4588 if (!OperandBundles.empty()) { 4589 I->deleteValue(); 4590 return error("Operand bundles found with no consumer"); 4591 } 4592 CurBB->getInstList().push_back(I); 4593 4594 // If this was a terminator instruction, move to the next block. 4595 if (isa<TerminatorInst>(I)) { 4596 ++CurBBNo; 4597 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4598 } 4599 4600 // Non-void values get registered in the value table for future use. 4601 if (I && !I->getType()->isVoidTy()) 4602 ValueList.assignValue(I, NextValueNo++); 4603 } 4604 4605 OutOfRecordLoop: 4606 4607 if (!OperandBundles.empty()) 4608 return error("Operand bundles found with no consumer"); 4609 4610 // Check the function list for unresolved values. 4611 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4612 if (!A->getParent()) { 4613 // We found at least one unresolved value. Nuke them all to avoid leaks. 4614 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4615 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4616 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4617 delete A; 4618 } 4619 } 4620 return error("Never resolved value found in function"); 4621 } 4622 } 4623 4624 // Unexpected unresolved metadata about to be dropped. 4625 if (MDLoader->hasFwdRefs()) 4626 return error("Invalid function metadata: outgoing forward refs"); 4627 4628 // Trim the value list down to the size it was before we parsed this function. 4629 ValueList.shrinkTo(ModuleValueListSize); 4630 MDLoader->shrinkTo(ModuleMDLoaderSize); 4631 std::vector<BasicBlock*>().swap(FunctionBBs); 4632 return Error::success(); 4633 } 4634 4635 /// Find the function body in the bitcode stream 4636 Error BitcodeReader::findFunctionInStream( 4637 Function *F, 4638 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4639 while (DeferredFunctionInfoIterator->second == 0) { 4640 // This is the fallback handling for the old format bitcode that 4641 // didn't contain the function index in the VST, or when we have 4642 // an anonymous function which would not have a VST entry. 4643 // Assert that we have one of those two cases. 4644 assert(VSTOffset == 0 || !F->hasName()); 4645 // Parse the next body in the stream and set its position in the 4646 // DeferredFunctionInfo map. 4647 if (Error Err = rememberAndSkipFunctionBodies()) 4648 return Err; 4649 } 4650 return Error::success(); 4651 } 4652 4653 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4654 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4655 return SyncScope::ID(Val); 4656 if (Val >= SSIDs.size()) 4657 return SyncScope::System; // Map unknown synchronization scopes to system. 4658 return SSIDs[Val]; 4659 } 4660 4661 //===----------------------------------------------------------------------===// 4662 // GVMaterializer implementation 4663 //===----------------------------------------------------------------------===// 4664 4665 Error BitcodeReader::materialize(GlobalValue *GV) { 4666 Function *F = dyn_cast<Function>(GV); 4667 // If it's not a function or is already material, ignore the request. 4668 if (!F || !F->isMaterializable()) 4669 return Error::success(); 4670 4671 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4672 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4673 // If its position is recorded as 0, its body is somewhere in the stream 4674 // but we haven't seen it yet. 4675 if (DFII->second == 0) 4676 if (Error Err = findFunctionInStream(F, DFII)) 4677 return Err; 4678 4679 // Materialize metadata before parsing any function bodies. 4680 if (Error Err = materializeMetadata()) 4681 return Err; 4682 4683 // Move the bit stream to the saved position of the deferred function body. 4684 Stream.JumpToBit(DFII->second); 4685 4686 if (Error Err = parseFunctionBody(F)) 4687 return Err; 4688 F->setIsMaterializable(false); 4689 4690 if (StripDebugInfo) 4691 stripDebugInfo(*F); 4692 4693 // Upgrade any old intrinsic calls in the function. 4694 for (auto &I : UpgradedIntrinsics) { 4695 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4696 UI != UE;) { 4697 User *U = *UI; 4698 ++UI; 4699 if (CallInst *CI = dyn_cast<CallInst>(U)) 4700 UpgradeIntrinsicCall(CI, I.second); 4701 } 4702 } 4703 4704 // Update calls to the remangled intrinsics 4705 for (auto &I : RemangledIntrinsics) 4706 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4707 UI != UE;) 4708 // Don't expect any other users than call sites 4709 CallSite(*UI++).setCalledFunction(I.second); 4710 4711 // Finish fn->subprogram upgrade for materialized functions. 4712 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4713 F->setSubprogram(SP); 4714 4715 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4716 if (!MDLoader->isStrippingTBAA()) { 4717 for (auto &I : instructions(F)) { 4718 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4719 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4720 continue; 4721 MDLoader->setStripTBAA(true); 4722 stripTBAA(F->getParent()); 4723 } 4724 } 4725 4726 // Bring in any functions that this function forward-referenced via 4727 // blockaddresses. 4728 return materializeForwardReferencedFunctions(); 4729 } 4730 4731 Error BitcodeReader::materializeModule() { 4732 if (Error Err = materializeMetadata()) 4733 return Err; 4734 4735 // Promise to materialize all forward references. 4736 WillMaterializeAllForwardRefs = true; 4737 4738 // Iterate over the module, deserializing any functions that are still on 4739 // disk. 4740 for (Function &F : *TheModule) { 4741 if (Error Err = materialize(&F)) 4742 return Err; 4743 } 4744 // At this point, if there are any function bodies, parse the rest of 4745 // the bits in the module past the last function block we have recorded 4746 // through either lazy scanning or the VST. 4747 if (LastFunctionBlockBit || NextUnreadBit) 4748 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4749 ? LastFunctionBlockBit 4750 : NextUnreadBit)) 4751 return Err; 4752 4753 // Check that all block address forward references got resolved (as we 4754 // promised above). 4755 if (!BasicBlockFwdRefs.empty()) 4756 return error("Never resolved function from blockaddress"); 4757 4758 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4759 // delete the old functions to clean up. We can't do this unless the entire 4760 // module is materialized because there could always be another function body 4761 // with calls to the old function. 4762 for (auto &I : UpgradedIntrinsics) { 4763 for (auto *U : I.first->users()) { 4764 if (CallInst *CI = dyn_cast<CallInst>(U)) 4765 UpgradeIntrinsicCall(CI, I.second); 4766 } 4767 if (!I.first->use_empty()) 4768 I.first->replaceAllUsesWith(I.second); 4769 I.first->eraseFromParent(); 4770 } 4771 UpgradedIntrinsics.clear(); 4772 // Do the same for remangled intrinsics 4773 for (auto &I : RemangledIntrinsics) { 4774 I.first->replaceAllUsesWith(I.second); 4775 I.first->eraseFromParent(); 4776 } 4777 RemangledIntrinsics.clear(); 4778 4779 UpgradeDebugInfo(*TheModule); 4780 4781 UpgradeModuleFlags(*TheModule); 4782 return Error::success(); 4783 } 4784 4785 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4786 return IdentifiedStructTypes; 4787 } 4788 4789 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4790 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4791 StringRef ModulePath, unsigned ModuleId) 4792 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4793 ModulePath(ModulePath), ModuleId(ModuleId) {} 4794 4795 ModuleSummaryIndex::ModuleInfo * 4796 ModuleSummaryIndexBitcodeReader::addThisModule() { 4797 return TheIndex.addModule(ModulePath, ModuleId); 4798 } 4799 4800 std::pair<ValueInfo, GlobalValue::GUID> 4801 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4802 auto VGI = ValueIdToValueInfoMap[ValueId]; 4803 assert(VGI.first); 4804 return VGI; 4805 } 4806 4807 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4808 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4809 StringRef SourceFileName) { 4810 std::string GlobalId = 4811 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4812 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4813 auto OriginalNameID = ValueGUID; 4814 if (GlobalValue::isLocalLinkage(Linkage)) 4815 OriginalNameID = GlobalValue::getGUID(ValueName); 4816 if (PrintSummaryGUIDs) 4817 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4818 << ValueName << "\n"; 4819 4820 // UseStrtab is false for legacy summary formats and value names are 4821 // created on stack. We can't use them outside of parseValueSymbolTable. 4822 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4823 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4824 OriginalNameID); 4825 } 4826 4827 // Specialized value symbol table parser used when reading module index 4828 // blocks where we don't actually create global values. The parsed information 4829 // is saved in the bitcode reader for use when later parsing summaries. 4830 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4831 uint64_t Offset, 4832 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4833 // With a strtab the VST is not required to parse the summary. 4834 if (UseStrtab) 4835 return Error::success(); 4836 4837 assert(Offset > 0 && "Expected non-zero VST offset"); 4838 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4839 4840 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4841 return error("Invalid record"); 4842 4843 SmallVector<uint64_t, 64> Record; 4844 4845 // Read all the records for this value table. 4846 SmallString<128> ValueName; 4847 4848 while (true) { 4849 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4850 4851 switch (Entry.Kind) { 4852 case BitstreamEntry::SubBlock: // Handled for us already. 4853 case BitstreamEntry::Error: 4854 return error("Malformed block"); 4855 case BitstreamEntry::EndBlock: 4856 // Done parsing VST, jump back to wherever we came from. 4857 Stream.JumpToBit(CurrentBit); 4858 return Error::success(); 4859 case BitstreamEntry::Record: 4860 // The interesting case. 4861 break; 4862 } 4863 4864 // Read a record. 4865 Record.clear(); 4866 switch (Stream.readRecord(Entry.ID, Record)) { 4867 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4868 break; 4869 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4870 if (convertToString(Record, 1, ValueName)) 4871 return error("Invalid record"); 4872 unsigned ValueID = Record[0]; 4873 assert(!SourceFileName.empty()); 4874 auto VLI = ValueIdToLinkageMap.find(ValueID); 4875 assert(VLI != ValueIdToLinkageMap.end() && 4876 "No linkage found for VST entry?"); 4877 auto Linkage = VLI->second; 4878 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4879 ValueName.clear(); 4880 break; 4881 } 4882 case bitc::VST_CODE_FNENTRY: { 4883 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4884 if (convertToString(Record, 2, ValueName)) 4885 return error("Invalid record"); 4886 unsigned ValueID = Record[0]; 4887 assert(!SourceFileName.empty()); 4888 auto VLI = ValueIdToLinkageMap.find(ValueID); 4889 assert(VLI != ValueIdToLinkageMap.end() && 4890 "No linkage found for VST entry?"); 4891 auto Linkage = VLI->second; 4892 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4893 ValueName.clear(); 4894 break; 4895 } 4896 case bitc::VST_CODE_COMBINED_ENTRY: { 4897 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4898 unsigned ValueID = Record[0]; 4899 GlobalValue::GUID RefGUID = Record[1]; 4900 // The "original name", which is the second value of the pair will be 4901 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4902 ValueIdToValueInfoMap[ValueID] = 4903 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4904 break; 4905 } 4906 } 4907 } 4908 } 4909 4910 // Parse just the blocks needed for building the index out of the module. 4911 // At the end of this routine the module Index is populated with a map 4912 // from global value id to GlobalValueSummary objects. 4913 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4914 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4915 return error("Invalid record"); 4916 4917 SmallVector<uint64_t, 64> Record; 4918 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4919 unsigned ValueId = 0; 4920 4921 // Read the index for this module. 4922 while (true) { 4923 BitstreamEntry Entry = Stream.advance(); 4924 4925 switch (Entry.Kind) { 4926 case BitstreamEntry::Error: 4927 return error("Malformed block"); 4928 case BitstreamEntry::EndBlock: 4929 return Error::success(); 4930 4931 case BitstreamEntry::SubBlock: 4932 switch (Entry.ID) { 4933 default: // Skip unknown content. 4934 if (Stream.SkipBlock()) 4935 return error("Invalid record"); 4936 break; 4937 case bitc::BLOCKINFO_BLOCK_ID: 4938 // Need to parse these to get abbrev ids (e.g. for VST) 4939 if (readBlockInfo()) 4940 return error("Malformed block"); 4941 break; 4942 case bitc::VALUE_SYMTAB_BLOCK_ID: 4943 // Should have been parsed earlier via VSTOffset, unless there 4944 // is no summary section. 4945 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4946 !SeenGlobalValSummary) && 4947 "Expected early VST parse via VSTOffset record"); 4948 if (Stream.SkipBlock()) 4949 return error("Invalid record"); 4950 break; 4951 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4952 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4953 assert(!SeenValueSymbolTable && 4954 "Already read VST when parsing summary block?"); 4955 // We might not have a VST if there were no values in the 4956 // summary. An empty summary block generated when we are 4957 // performing ThinLTO compiles so we don't later invoke 4958 // the regular LTO process on them. 4959 if (VSTOffset > 0) { 4960 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4961 return Err; 4962 SeenValueSymbolTable = true; 4963 } 4964 SeenGlobalValSummary = true; 4965 if (Error Err = parseEntireSummary(Entry.ID)) 4966 return Err; 4967 break; 4968 case bitc::MODULE_STRTAB_BLOCK_ID: 4969 if (Error Err = parseModuleStringTable()) 4970 return Err; 4971 break; 4972 } 4973 continue; 4974 4975 case BitstreamEntry::Record: { 4976 Record.clear(); 4977 auto BitCode = Stream.readRecord(Entry.ID, Record); 4978 switch (BitCode) { 4979 default: 4980 break; // Default behavior, ignore unknown content. 4981 case bitc::MODULE_CODE_VERSION: { 4982 if (Error Err = parseVersionRecord(Record).takeError()) 4983 return Err; 4984 break; 4985 } 4986 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4987 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4988 SmallString<128> ValueName; 4989 if (convertToString(Record, 0, ValueName)) 4990 return error("Invalid record"); 4991 SourceFileName = ValueName.c_str(); 4992 break; 4993 } 4994 /// MODULE_CODE_HASH: [5*i32] 4995 case bitc::MODULE_CODE_HASH: { 4996 if (Record.size() != 5) 4997 return error("Invalid hash length " + Twine(Record.size()).str()); 4998 auto &Hash = addThisModule()->second.second; 4999 int Pos = 0; 5000 for (auto &Val : Record) { 5001 assert(!(Val >> 32) && "Unexpected high bits set"); 5002 Hash[Pos++] = Val; 5003 } 5004 break; 5005 } 5006 /// MODULE_CODE_VSTOFFSET: [offset] 5007 case bitc::MODULE_CODE_VSTOFFSET: 5008 if (Record.size() < 1) 5009 return error("Invalid record"); 5010 // Note that we subtract 1 here because the offset is relative to one 5011 // word before the start of the identification or module block, which 5012 // was historically always the start of the regular bitcode header. 5013 VSTOffset = Record[0] - 1; 5014 break; 5015 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5016 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5017 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5018 // v2: [strtab offset, strtab size, v1] 5019 case bitc::MODULE_CODE_GLOBALVAR: 5020 case bitc::MODULE_CODE_FUNCTION: 5021 case bitc::MODULE_CODE_ALIAS: { 5022 StringRef Name; 5023 ArrayRef<uint64_t> GVRecord; 5024 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5025 if (GVRecord.size() <= 3) 5026 return error("Invalid record"); 5027 uint64_t RawLinkage = GVRecord[3]; 5028 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5029 if (!UseStrtab) { 5030 ValueIdToLinkageMap[ValueId++] = Linkage; 5031 break; 5032 } 5033 5034 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5035 break; 5036 } 5037 } 5038 } 5039 continue; 5040 } 5041 } 5042 } 5043 5044 std::vector<ValueInfo> 5045 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5046 std::vector<ValueInfo> Ret; 5047 Ret.reserve(Record.size()); 5048 for (uint64_t RefValueId : Record) 5049 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5050 return Ret; 5051 } 5052 5053 std::vector<FunctionSummary::EdgeTy> 5054 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5055 bool IsOldProfileFormat, 5056 bool HasProfile, bool HasRelBF) { 5057 std::vector<FunctionSummary::EdgeTy> Ret; 5058 Ret.reserve(Record.size()); 5059 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5060 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5061 uint64_t RelBF = 0; 5062 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5063 if (IsOldProfileFormat) { 5064 I += 1; // Skip old callsitecount field 5065 if (HasProfile) 5066 I += 1; // Skip old profilecount field 5067 } else if (HasProfile) 5068 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5069 else if (HasRelBF) 5070 RelBF = Record[++I]; 5071 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5072 } 5073 return Ret; 5074 } 5075 5076 static void 5077 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5078 WholeProgramDevirtResolution &Wpd) { 5079 uint64_t ArgNum = Record[Slot++]; 5080 WholeProgramDevirtResolution::ByArg &B = 5081 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5082 Slot += ArgNum; 5083 5084 B.TheKind = 5085 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5086 B.Info = Record[Slot++]; 5087 B.Byte = Record[Slot++]; 5088 B.Bit = Record[Slot++]; 5089 } 5090 5091 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5092 StringRef Strtab, size_t &Slot, 5093 TypeIdSummary &TypeId) { 5094 uint64_t Id = Record[Slot++]; 5095 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5096 5097 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5098 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5099 static_cast<size_t>(Record[Slot + 1])}; 5100 Slot += 2; 5101 5102 uint64_t ResByArgNum = Record[Slot++]; 5103 for (uint64_t I = 0; I != ResByArgNum; ++I) 5104 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5105 } 5106 5107 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5108 StringRef Strtab, 5109 ModuleSummaryIndex &TheIndex) { 5110 size_t Slot = 0; 5111 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5112 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5113 Slot += 2; 5114 5115 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5116 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5117 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5118 TypeId.TTRes.SizeM1 = Record[Slot++]; 5119 TypeId.TTRes.BitMask = Record[Slot++]; 5120 TypeId.TTRes.InlineBits = Record[Slot++]; 5121 5122 while (Slot < Record.size()) 5123 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5124 } 5125 5126 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5127 // objects in the index. 5128 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5129 if (Stream.EnterSubBlock(ID)) 5130 return error("Invalid record"); 5131 SmallVector<uint64_t, 64> Record; 5132 5133 // Parse version 5134 { 5135 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5136 if (Entry.Kind != BitstreamEntry::Record) 5137 return error("Invalid Summary Block: record for version expected"); 5138 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5139 return error("Invalid Summary Block: version expected"); 5140 } 5141 const uint64_t Version = Record[0]; 5142 const bool IsOldProfileFormat = Version == 1; 5143 if (Version < 1 || Version > 4) 5144 return error("Invalid summary version " + Twine(Version) + 5145 ", 1, 2, 3 or 4 expected"); 5146 Record.clear(); 5147 5148 // Keep around the last seen summary to be used when we see an optional 5149 // "OriginalName" attachement. 5150 GlobalValueSummary *LastSeenSummary = nullptr; 5151 GlobalValue::GUID LastSeenGUID = 0; 5152 5153 // We can expect to see any number of type ID information records before 5154 // each function summary records; these variables store the information 5155 // collected so far so that it can be used to create the summary object. 5156 std::vector<GlobalValue::GUID> PendingTypeTests; 5157 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5158 PendingTypeCheckedLoadVCalls; 5159 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5160 PendingTypeCheckedLoadConstVCalls; 5161 5162 while (true) { 5163 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5164 5165 switch (Entry.Kind) { 5166 case BitstreamEntry::SubBlock: // Handled for us already. 5167 case BitstreamEntry::Error: 5168 return error("Malformed block"); 5169 case BitstreamEntry::EndBlock: 5170 return Error::success(); 5171 case BitstreamEntry::Record: 5172 // The interesting case. 5173 break; 5174 } 5175 5176 // Read a record. The record format depends on whether this 5177 // is a per-module index or a combined index file. In the per-module 5178 // case the records contain the associated value's ID for correlation 5179 // with VST entries. In the combined index the correlation is done 5180 // via the bitcode offset of the summary records (which were saved 5181 // in the combined index VST entries). The records also contain 5182 // information used for ThinLTO renaming and importing. 5183 Record.clear(); 5184 auto BitCode = Stream.readRecord(Entry.ID, Record); 5185 switch (BitCode) { 5186 default: // Default behavior: ignore. 5187 break; 5188 case bitc::FS_FLAGS: { // [flags] 5189 uint64_t Flags = Record[0]; 5190 // Scan flags (set only on the combined index). 5191 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5192 5193 // 1 bit: WithGlobalValueDeadStripping flag. 5194 if (Flags & 0x1) 5195 TheIndex.setWithGlobalValueDeadStripping(); 5196 // 1 bit: SkipModuleByDistributedBackend flag. 5197 if (Flags & 0x2) 5198 TheIndex.setSkipModuleByDistributedBackend(); 5199 break; 5200 } 5201 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5202 uint64_t ValueID = Record[0]; 5203 GlobalValue::GUID RefGUID = Record[1]; 5204 ValueIdToValueInfoMap[ValueID] = 5205 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5206 break; 5207 } 5208 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5209 // numrefs x valueid, n x (valueid)] 5210 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5211 // numrefs x valueid, 5212 // n x (valueid, hotness)] 5213 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5214 // numrefs x valueid, 5215 // n x (valueid, relblockfreq)] 5216 case bitc::FS_PERMODULE: 5217 case bitc::FS_PERMODULE_RELBF: 5218 case bitc::FS_PERMODULE_PROFILE: { 5219 unsigned ValueID = Record[0]; 5220 uint64_t RawFlags = Record[1]; 5221 unsigned InstCount = Record[2]; 5222 uint64_t RawFunFlags = 0; 5223 unsigned NumRefs = Record[3]; 5224 int RefListStartIndex = 4; 5225 if (Version >= 4) { 5226 RawFunFlags = Record[3]; 5227 NumRefs = Record[4]; 5228 RefListStartIndex = 5; 5229 } 5230 5231 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5232 // The module path string ref set in the summary must be owned by the 5233 // index's module string table. Since we don't have a module path 5234 // string table section in the per-module index, we create a single 5235 // module path string table entry with an empty (0) ID to take 5236 // ownership. 5237 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5238 assert(Record.size() >= RefListStartIndex + NumRefs && 5239 "Record size inconsistent with number of references"); 5240 std::vector<ValueInfo> Refs = makeRefList( 5241 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5242 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5243 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5244 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5245 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5246 IsOldProfileFormat, HasProfile, HasRelBF); 5247 auto FS = llvm::make_unique<FunctionSummary>( 5248 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5249 std::move(Calls), std::move(PendingTypeTests), 5250 std::move(PendingTypeTestAssumeVCalls), 5251 std::move(PendingTypeCheckedLoadVCalls), 5252 std::move(PendingTypeTestAssumeConstVCalls), 5253 std::move(PendingTypeCheckedLoadConstVCalls)); 5254 PendingTypeTests.clear(); 5255 PendingTypeTestAssumeVCalls.clear(); 5256 PendingTypeCheckedLoadVCalls.clear(); 5257 PendingTypeTestAssumeConstVCalls.clear(); 5258 PendingTypeCheckedLoadConstVCalls.clear(); 5259 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5260 FS->setModulePath(addThisModule()->first()); 5261 FS->setOriginalName(VIAndOriginalGUID.second); 5262 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5263 break; 5264 } 5265 // FS_ALIAS: [valueid, flags, valueid] 5266 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5267 // they expect all aliasee summaries to be available. 5268 case bitc::FS_ALIAS: { 5269 unsigned ValueID = Record[0]; 5270 uint64_t RawFlags = Record[1]; 5271 unsigned AliaseeID = Record[2]; 5272 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5273 auto AS = llvm::make_unique<AliasSummary>(Flags); 5274 // The module path string ref set in the summary must be owned by the 5275 // index's module string table. Since we don't have a module path 5276 // string table section in the per-module index, we create a single 5277 // module path string table entry with an empty (0) ID to take 5278 // ownership. 5279 AS->setModulePath(addThisModule()->first()); 5280 5281 GlobalValue::GUID AliaseeGUID = 5282 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5283 auto AliaseeInModule = 5284 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5285 if (!AliaseeInModule) 5286 return error("Alias expects aliasee summary to be parsed"); 5287 AS->setAliasee(AliaseeInModule); 5288 AS->setAliaseeGUID(AliaseeGUID); 5289 5290 auto GUID = getValueInfoFromValueId(ValueID); 5291 AS->setOriginalName(GUID.second); 5292 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5293 break; 5294 } 5295 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5296 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5297 unsigned ValueID = Record[0]; 5298 uint64_t RawFlags = Record[1]; 5299 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5300 std::vector<ValueInfo> Refs = 5301 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5302 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5303 FS->setModulePath(addThisModule()->first()); 5304 auto GUID = getValueInfoFromValueId(ValueID); 5305 FS->setOriginalName(GUID.second); 5306 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5307 break; 5308 } 5309 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5310 // numrefs x valueid, n x (valueid)] 5311 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5312 // numrefs x valueid, n x (valueid, hotness)] 5313 case bitc::FS_COMBINED: 5314 case bitc::FS_COMBINED_PROFILE: { 5315 unsigned ValueID = Record[0]; 5316 uint64_t ModuleId = Record[1]; 5317 uint64_t RawFlags = Record[2]; 5318 unsigned InstCount = Record[3]; 5319 uint64_t RawFunFlags = 0; 5320 unsigned NumRefs = Record[4]; 5321 int RefListStartIndex = 5; 5322 5323 if (Version >= 4) { 5324 RawFunFlags = Record[4]; 5325 NumRefs = Record[5]; 5326 RefListStartIndex = 6; 5327 } 5328 5329 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5330 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5331 assert(Record.size() >= RefListStartIndex + NumRefs && 5332 "Record size inconsistent with number of references"); 5333 std::vector<ValueInfo> Refs = makeRefList( 5334 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5335 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5336 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5337 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5338 IsOldProfileFormat, HasProfile, false); 5339 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5340 auto FS = llvm::make_unique<FunctionSummary>( 5341 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5342 std::move(Edges), std::move(PendingTypeTests), 5343 std::move(PendingTypeTestAssumeVCalls), 5344 std::move(PendingTypeCheckedLoadVCalls), 5345 std::move(PendingTypeTestAssumeConstVCalls), 5346 std::move(PendingTypeCheckedLoadConstVCalls)); 5347 PendingTypeTests.clear(); 5348 PendingTypeTestAssumeVCalls.clear(); 5349 PendingTypeCheckedLoadVCalls.clear(); 5350 PendingTypeTestAssumeConstVCalls.clear(); 5351 PendingTypeCheckedLoadConstVCalls.clear(); 5352 LastSeenSummary = FS.get(); 5353 LastSeenGUID = VI.getGUID(); 5354 FS->setModulePath(ModuleIdMap[ModuleId]); 5355 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5356 break; 5357 } 5358 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5359 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5360 // they expect all aliasee summaries to be available. 5361 case bitc::FS_COMBINED_ALIAS: { 5362 unsigned ValueID = Record[0]; 5363 uint64_t ModuleId = Record[1]; 5364 uint64_t RawFlags = Record[2]; 5365 unsigned AliaseeValueId = Record[3]; 5366 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5367 auto AS = llvm::make_unique<AliasSummary>(Flags); 5368 LastSeenSummary = AS.get(); 5369 AS->setModulePath(ModuleIdMap[ModuleId]); 5370 5371 auto AliaseeGUID = 5372 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5373 auto AliaseeInModule = 5374 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5375 AS->setAliasee(AliaseeInModule); 5376 AS->setAliaseeGUID(AliaseeGUID); 5377 5378 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5379 LastSeenGUID = VI.getGUID(); 5380 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5381 break; 5382 } 5383 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5384 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5385 unsigned ValueID = Record[0]; 5386 uint64_t ModuleId = Record[1]; 5387 uint64_t RawFlags = Record[2]; 5388 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5389 std::vector<ValueInfo> Refs = 5390 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5391 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5392 LastSeenSummary = FS.get(); 5393 FS->setModulePath(ModuleIdMap[ModuleId]); 5394 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5395 LastSeenGUID = VI.getGUID(); 5396 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5397 break; 5398 } 5399 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5400 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5401 uint64_t OriginalName = Record[0]; 5402 if (!LastSeenSummary) 5403 return error("Name attachment that does not follow a combined record"); 5404 LastSeenSummary->setOriginalName(OriginalName); 5405 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5406 // Reset the LastSeenSummary 5407 LastSeenSummary = nullptr; 5408 LastSeenGUID = 0; 5409 break; 5410 } 5411 case bitc::FS_TYPE_TESTS: 5412 assert(PendingTypeTests.empty()); 5413 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5414 Record.end()); 5415 break; 5416 5417 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5418 assert(PendingTypeTestAssumeVCalls.empty()); 5419 for (unsigned I = 0; I != Record.size(); I += 2) 5420 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5421 break; 5422 5423 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5424 assert(PendingTypeCheckedLoadVCalls.empty()); 5425 for (unsigned I = 0; I != Record.size(); I += 2) 5426 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5427 break; 5428 5429 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5430 PendingTypeTestAssumeConstVCalls.push_back( 5431 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5432 break; 5433 5434 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5435 PendingTypeCheckedLoadConstVCalls.push_back( 5436 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5437 break; 5438 5439 case bitc::FS_CFI_FUNCTION_DEFS: { 5440 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5441 for (unsigned I = 0; I != Record.size(); I += 2) 5442 CfiFunctionDefs.insert( 5443 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5444 break; 5445 } 5446 5447 case bitc::FS_CFI_FUNCTION_DECLS: { 5448 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5449 for (unsigned I = 0; I != Record.size(); I += 2) 5450 CfiFunctionDecls.insert( 5451 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5452 break; 5453 } 5454 5455 case bitc::FS_TYPE_ID: 5456 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5457 break; 5458 } 5459 } 5460 llvm_unreachable("Exit infinite loop"); 5461 } 5462 5463 // Parse the module string table block into the Index. 5464 // This populates the ModulePathStringTable map in the index. 5465 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5466 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5467 return error("Invalid record"); 5468 5469 SmallVector<uint64_t, 64> Record; 5470 5471 SmallString<128> ModulePath; 5472 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5473 5474 while (true) { 5475 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5476 5477 switch (Entry.Kind) { 5478 case BitstreamEntry::SubBlock: // Handled for us already. 5479 case BitstreamEntry::Error: 5480 return error("Malformed block"); 5481 case BitstreamEntry::EndBlock: 5482 return Error::success(); 5483 case BitstreamEntry::Record: 5484 // The interesting case. 5485 break; 5486 } 5487 5488 Record.clear(); 5489 switch (Stream.readRecord(Entry.ID, Record)) { 5490 default: // Default behavior: ignore. 5491 break; 5492 case bitc::MST_CODE_ENTRY: { 5493 // MST_ENTRY: [modid, namechar x N] 5494 uint64_t ModuleId = Record[0]; 5495 5496 if (convertToString(Record, 1, ModulePath)) 5497 return error("Invalid record"); 5498 5499 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5500 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5501 5502 ModulePath.clear(); 5503 break; 5504 } 5505 /// MST_CODE_HASH: [5*i32] 5506 case bitc::MST_CODE_HASH: { 5507 if (Record.size() != 5) 5508 return error("Invalid hash length " + Twine(Record.size()).str()); 5509 if (!LastSeenModule) 5510 return error("Invalid hash that does not follow a module path"); 5511 int Pos = 0; 5512 for (auto &Val : Record) { 5513 assert(!(Val >> 32) && "Unexpected high bits set"); 5514 LastSeenModule->second.second[Pos++] = Val; 5515 } 5516 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5517 LastSeenModule = nullptr; 5518 break; 5519 } 5520 } 5521 } 5522 llvm_unreachable("Exit infinite loop"); 5523 } 5524 5525 namespace { 5526 5527 // FIXME: This class is only here to support the transition to llvm::Error. It 5528 // will be removed once this transition is complete. Clients should prefer to 5529 // deal with the Error value directly, rather than converting to error_code. 5530 class BitcodeErrorCategoryType : public std::error_category { 5531 const char *name() const noexcept override { 5532 return "llvm.bitcode"; 5533 } 5534 5535 std::string message(int IE) const override { 5536 BitcodeError E = static_cast<BitcodeError>(IE); 5537 switch (E) { 5538 case BitcodeError::CorruptedBitcode: 5539 return "Corrupted bitcode"; 5540 } 5541 llvm_unreachable("Unknown error type!"); 5542 } 5543 }; 5544 5545 } // end anonymous namespace 5546 5547 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5548 5549 const std::error_category &llvm::BitcodeErrorCategory() { 5550 return *ErrorCategory; 5551 } 5552 5553 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5554 unsigned Block, unsigned RecordID) { 5555 if (Stream.EnterSubBlock(Block)) 5556 return error("Invalid record"); 5557 5558 StringRef Strtab; 5559 while (true) { 5560 BitstreamEntry Entry = Stream.advance(); 5561 switch (Entry.Kind) { 5562 case BitstreamEntry::EndBlock: 5563 return Strtab; 5564 5565 case BitstreamEntry::Error: 5566 return error("Malformed block"); 5567 5568 case BitstreamEntry::SubBlock: 5569 if (Stream.SkipBlock()) 5570 return error("Malformed block"); 5571 break; 5572 5573 case BitstreamEntry::Record: 5574 StringRef Blob; 5575 SmallVector<uint64_t, 1> Record; 5576 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5577 Strtab = Blob; 5578 break; 5579 } 5580 } 5581 } 5582 5583 //===----------------------------------------------------------------------===// 5584 // External interface 5585 //===----------------------------------------------------------------------===// 5586 5587 Expected<std::vector<BitcodeModule>> 5588 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5589 auto FOrErr = getBitcodeFileContents(Buffer); 5590 if (!FOrErr) 5591 return FOrErr.takeError(); 5592 return std::move(FOrErr->Mods); 5593 } 5594 5595 Expected<BitcodeFileContents> 5596 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5597 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5598 if (!StreamOrErr) 5599 return StreamOrErr.takeError(); 5600 BitstreamCursor &Stream = *StreamOrErr; 5601 5602 BitcodeFileContents F; 5603 while (true) { 5604 uint64_t BCBegin = Stream.getCurrentByteNo(); 5605 5606 // We may be consuming bitcode from a client that leaves garbage at the end 5607 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5608 // the end that there cannot possibly be another module, stop looking. 5609 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5610 return F; 5611 5612 BitstreamEntry Entry = Stream.advance(); 5613 switch (Entry.Kind) { 5614 case BitstreamEntry::EndBlock: 5615 case BitstreamEntry::Error: 5616 return error("Malformed block"); 5617 5618 case BitstreamEntry::SubBlock: { 5619 uint64_t IdentificationBit = -1ull; 5620 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5621 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5622 if (Stream.SkipBlock()) 5623 return error("Malformed block"); 5624 5625 Entry = Stream.advance(); 5626 if (Entry.Kind != BitstreamEntry::SubBlock || 5627 Entry.ID != bitc::MODULE_BLOCK_ID) 5628 return error("Malformed block"); 5629 } 5630 5631 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5632 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5633 if (Stream.SkipBlock()) 5634 return error("Malformed block"); 5635 5636 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5637 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5638 Buffer.getBufferIdentifier(), IdentificationBit, 5639 ModuleBit}); 5640 continue; 5641 } 5642 5643 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5644 Expected<StringRef> Strtab = 5645 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5646 if (!Strtab) 5647 return Strtab.takeError(); 5648 // This string table is used by every preceding bitcode module that does 5649 // not have its own string table. A bitcode file may have multiple 5650 // string tables if it was created by binary concatenation, for example 5651 // with "llvm-cat -b". 5652 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5653 if (!I->Strtab.empty()) 5654 break; 5655 I->Strtab = *Strtab; 5656 } 5657 // Similarly, the string table is used by every preceding symbol table; 5658 // normally there will be just one unless the bitcode file was created 5659 // by binary concatenation. 5660 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5661 F.StrtabForSymtab = *Strtab; 5662 continue; 5663 } 5664 5665 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5666 Expected<StringRef> SymtabOrErr = 5667 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5668 if (!SymtabOrErr) 5669 return SymtabOrErr.takeError(); 5670 5671 // We can expect the bitcode file to have multiple symbol tables if it 5672 // was created by binary concatenation. In that case we silently 5673 // ignore any subsequent symbol tables, which is fine because this is a 5674 // low level function. The client is expected to notice that the number 5675 // of modules in the symbol table does not match the number of modules 5676 // in the input file and regenerate the symbol table. 5677 if (F.Symtab.empty()) 5678 F.Symtab = *SymtabOrErr; 5679 continue; 5680 } 5681 5682 if (Stream.SkipBlock()) 5683 return error("Malformed block"); 5684 continue; 5685 } 5686 case BitstreamEntry::Record: 5687 Stream.skipRecord(Entry.ID); 5688 continue; 5689 } 5690 } 5691 } 5692 5693 /// \brief Get a lazy one-at-time loading module from bitcode. 5694 /// 5695 /// This isn't always used in a lazy context. In particular, it's also used by 5696 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5697 /// in forward-referenced functions from block address references. 5698 /// 5699 /// \param[in] MaterializeAll Set to \c true if we should materialize 5700 /// everything. 5701 Expected<std::unique_ptr<Module>> 5702 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5703 bool ShouldLazyLoadMetadata, bool IsImporting) { 5704 BitstreamCursor Stream(Buffer); 5705 5706 std::string ProducerIdentification; 5707 if (IdentificationBit != -1ull) { 5708 Stream.JumpToBit(IdentificationBit); 5709 Expected<std::string> ProducerIdentificationOrErr = 5710 readIdentificationBlock(Stream); 5711 if (!ProducerIdentificationOrErr) 5712 return ProducerIdentificationOrErr.takeError(); 5713 5714 ProducerIdentification = *ProducerIdentificationOrErr; 5715 } 5716 5717 Stream.JumpToBit(ModuleBit); 5718 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5719 Context); 5720 5721 std::unique_ptr<Module> M = 5722 llvm::make_unique<Module>(ModuleIdentifier, Context); 5723 M->setMaterializer(R); 5724 5725 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5726 if (Error Err = 5727 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5728 return std::move(Err); 5729 5730 if (MaterializeAll) { 5731 // Read in the entire module, and destroy the BitcodeReader. 5732 if (Error Err = M->materializeAll()) 5733 return std::move(Err); 5734 } else { 5735 // Resolve forward references from blockaddresses. 5736 if (Error Err = R->materializeForwardReferencedFunctions()) 5737 return std::move(Err); 5738 } 5739 return std::move(M); 5740 } 5741 5742 Expected<std::unique_ptr<Module>> 5743 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5744 bool IsImporting) { 5745 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5746 } 5747 5748 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5749 // We don't use ModuleIdentifier here because the client may need to control the 5750 // module path used in the combined summary (e.g. when reading summaries for 5751 // regular LTO modules). 5752 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5753 StringRef ModulePath, uint64_t ModuleId) { 5754 BitstreamCursor Stream(Buffer); 5755 Stream.JumpToBit(ModuleBit); 5756 5757 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5758 ModulePath, ModuleId); 5759 return R.parseModule(); 5760 } 5761 5762 // Parse the specified bitcode buffer, returning the function info index. 5763 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5764 BitstreamCursor Stream(Buffer); 5765 Stream.JumpToBit(ModuleBit); 5766 5767 auto Index = 5768 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5769 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5770 ModuleIdentifier, 0); 5771 5772 if (Error Err = R.parseModule()) 5773 return std::move(Err); 5774 5775 return std::move(Index); 5776 } 5777 5778 // Check if the given bitcode buffer contains a global value summary block. 5779 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5780 BitstreamCursor Stream(Buffer); 5781 Stream.JumpToBit(ModuleBit); 5782 5783 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5784 return error("Invalid record"); 5785 5786 while (true) { 5787 BitstreamEntry Entry = Stream.advance(); 5788 5789 switch (Entry.Kind) { 5790 case BitstreamEntry::Error: 5791 return error("Malformed block"); 5792 case BitstreamEntry::EndBlock: 5793 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5794 5795 case BitstreamEntry::SubBlock: 5796 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5797 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5798 5799 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5800 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5801 5802 // Ignore other sub-blocks. 5803 if (Stream.SkipBlock()) 5804 return error("Malformed block"); 5805 continue; 5806 5807 case BitstreamEntry::Record: 5808 Stream.skipRecord(Entry.ID); 5809 continue; 5810 } 5811 } 5812 } 5813 5814 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5815 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5816 if (!MsOrErr) 5817 return MsOrErr.takeError(); 5818 5819 if (MsOrErr->size() != 1) 5820 return error("Expected a single module"); 5821 5822 return (*MsOrErr)[0]; 5823 } 5824 5825 Expected<std::unique_ptr<Module>> 5826 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5827 bool ShouldLazyLoadMetadata, bool IsImporting) { 5828 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5829 if (!BM) 5830 return BM.takeError(); 5831 5832 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5833 } 5834 5835 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5836 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5837 bool ShouldLazyLoadMetadata, bool IsImporting) { 5838 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5839 IsImporting); 5840 if (MOrErr) 5841 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5842 return MOrErr; 5843 } 5844 5845 Expected<std::unique_ptr<Module>> 5846 BitcodeModule::parseModule(LLVMContext &Context) { 5847 return getModuleImpl(Context, true, false, false); 5848 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5849 // written. We must defer until the Module has been fully materialized. 5850 } 5851 5852 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5853 LLVMContext &Context) { 5854 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5855 if (!BM) 5856 return BM.takeError(); 5857 5858 return BM->parseModule(Context); 5859 } 5860 5861 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5862 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5863 if (!StreamOrErr) 5864 return StreamOrErr.takeError(); 5865 5866 return readTriple(*StreamOrErr); 5867 } 5868 5869 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5870 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5871 if (!StreamOrErr) 5872 return StreamOrErr.takeError(); 5873 5874 return hasObjCCategory(*StreamOrErr); 5875 } 5876 5877 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5878 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5879 if (!StreamOrErr) 5880 return StreamOrErr.takeError(); 5881 5882 return readIdentificationCode(*StreamOrErr); 5883 } 5884 5885 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5886 ModuleSummaryIndex &CombinedIndex, 5887 uint64_t ModuleId) { 5888 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5889 if (!BM) 5890 return BM.takeError(); 5891 5892 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5893 } 5894 5895 Expected<std::unique_ptr<ModuleSummaryIndex>> 5896 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5897 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5898 if (!BM) 5899 return BM.takeError(); 5900 5901 return BM->getSummary(); 5902 } 5903 5904 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5905 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5906 if (!BM) 5907 return BM.takeError(); 5908 5909 return BM->getLTOInfo(); 5910 } 5911 5912 Expected<std::unique_ptr<ModuleSummaryIndex>> 5913 llvm::getModuleSummaryIndexForFile(StringRef Path, 5914 bool IgnoreEmptyThinLTOIndexFile) { 5915 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5916 MemoryBuffer::getFileOrSTDIN(Path); 5917 if (!FileOrErr) 5918 return errorCodeToError(FileOrErr.getError()); 5919 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5920 return nullptr; 5921 return getModuleSummaryIndex(**FileOrErr); 5922 } 5923