1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/DiagnosticPrinter.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/OperandTraits.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/Support/DataStream.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/MemoryBuffer.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 enum { 37 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 38 }; 39 40 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 41 DiagnosticSeverity Severity, 42 const Twine &Msg) 43 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 44 45 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 46 47 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 48 std::error_code EC, const Twine &Message) { 49 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 50 DiagnosticHandler(DI); 51 return EC; 52 } 53 54 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 55 std::error_code EC) { 56 return Error(DiagnosticHandler, EC, EC.message()); 57 } 58 59 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 60 return ::Error(DiagnosticHandler, make_error_code(E), Message); 61 } 62 63 std::error_code BitcodeReader::Error(const Twine &Message) { 64 return ::Error(DiagnosticHandler, 65 make_error_code(BitcodeError::CorruptedBitcode), Message); 66 } 67 68 std::error_code BitcodeReader::Error(BitcodeError E) { 69 return ::Error(DiagnosticHandler, make_error_code(E)); 70 } 71 72 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 73 LLVMContext &C) { 74 if (F) 75 return F; 76 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 77 } 78 79 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 80 DiagnosticHandlerFunction DiagnosticHandler) 81 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 82 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 83 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 84 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 85 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 86 87 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 88 DiagnosticHandlerFunction DiagnosticHandler) 89 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 90 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 91 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 92 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 93 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 94 95 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 96 if (WillMaterializeAllForwardRefs) 97 return std::error_code(); 98 99 // Prevent recursion. 100 WillMaterializeAllForwardRefs = true; 101 102 while (!BasicBlockFwdRefQueue.empty()) { 103 Function *F = BasicBlockFwdRefQueue.front(); 104 BasicBlockFwdRefQueue.pop_front(); 105 assert(F && "Expected valid function"); 106 if (!BasicBlockFwdRefs.count(F)) 107 // Already materialized. 108 continue; 109 110 // Check for a function that isn't materializable to prevent an infinite 111 // loop. When parsing a blockaddress stored in a global variable, there 112 // isn't a trivial way to check if a function will have a body without a 113 // linear search through FunctionsWithBodies, so just check it here. 114 if (!F->isMaterializable()) 115 return Error("Never resolved function from blockaddress"); 116 117 // Try to materialize F. 118 if (std::error_code EC = materialize(F)) 119 return EC; 120 } 121 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 122 123 // Reset state. 124 WillMaterializeAllForwardRefs = false; 125 return std::error_code(); 126 } 127 128 void BitcodeReader::FreeState() { 129 Buffer = nullptr; 130 std::vector<Type*>().swap(TypeList); 131 ValueList.clear(); 132 MDValueList.clear(); 133 std::vector<Comdat *>().swap(ComdatList); 134 135 std::vector<AttributeSet>().swap(MAttributes); 136 std::vector<BasicBlock*>().swap(FunctionBBs); 137 std::vector<Function*>().swap(FunctionsWithBodies); 138 DeferredFunctionInfo.clear(); 139 DeferredMetadataInfo.clear(); 140 MDKindMap.clear(); 141 142 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 143 BasicBlockFwdRefQueue.clear(); 144 } 145 146 //===----------------------------------------------------------------------===// 147 // Helper functions to implement forward reference resolution, etc. 148 //===----------------------------------------------------------------------===// 149 150 /// ConvertToString - Convert a string from a record into an std::string, return 151 /// true on failure. 152 template<typename StrTy> 153 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 154 StrTy &Result) { 155 if (Idx > Record.size()) 156 return true; 157 158 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 159 Result += (char)Record[i]; 160 return false; 161 } 162 163 static bool hasImplicitComdat(size_t Val) { 164 switch (Val) { 165 default: 166 return false; 167 case 1: // Old WeakAnyLinkage 168 case 4: // Old LinkOnceAnyLinkage 169 case 10: // Old WeakODRLinkage 170 case 11: // Old LinkOnceODRLinkage 171 return true; 172 } 173 } 174 175 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 176 switch (Val) { 177 default: // Map unknown/new linkages to external 178 case 0: 179 return GlobalValue::ExternalLinkage; 180 case 2: 181 return GlobalValue::AppendingLinkage; 182 case 3: 183 return GlobalValue::InternalLinkage; 184 case 5: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 186 case 6: 187 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 188 case 7: 189 return GlobalValue::ExternalWeakLinkage; 190 case 8: 191 return GlobalValue::CommonLinkage; 192 case 9: 193 return GlobalValue::PrivateLinkage; 194 case 12: 195 return GlobalValue::AvailableExternallyLinkage; 196 case 13: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 198 case 14: 199 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 200 case 15: 201 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 202 case 1: // Old value with implicit comdat. 203 case 16: 204 return GlobalValue::WeakAnyLinkage; 205 case 10: // Old value with implicit comdat. 206 case 17: 207 return GlobalValue::WeakODRLinkage; 208 case 4: // Old value with implicit comdat. 209 case 18: 210 return GlobalValue::LinkOnceAnyLinkage; 211 case 11: // Old value with implicit comdat. 212 case 19: 213 return GlobalValue::LinkOnceODRLinkage; 214 } 215 } 216 217 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 218 switch (Val) { 219 default: // Map unknown visibilities to default. 220 case 0: return GlobalValue::DefaultVisibility; 221 case 1: return GlobalValue::HiddenVisibility; 222 case 2: return GlobalValue::ProtectedVisibility; 223 } 224 } 225 226 static GlobalValue::DLLStorageClassTypes 227 GetDecodedDLLStorageClass(unsigned Val) { 228 switch (Val) { 229 default: // Map unknown values to default. 230 case 0: return GlobalValue::DefaultStorageClass; 231 case 1: return GlobalValue::DLLImportStorageClass; 232 case 2: return GlobalValue::DLLExportStorageClass; 233 } 234 } 235 236 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 237 switch (Val) { 238 case 0: return GlobalVariable::NotThreadLocal; 239 default: // Map unknown non-zero value to general dynamic. 240 case 1: return GlobalVariable::GeneralDynamicTLSModel; 241 case 2: return GlobalVariable::LocalDynamicTLSModel; 242 case 3: return GlobalVariable::InitialExecTLSModel; 243 case 4: return GlobalVariable::LocalExecTLSModel; 244 } 245 } 246 247 static int GetDecodedCastOpcode(unsigned Val) { 248 switch (Val) { 249 default: return -1; 250 case bitc::CAST_TRUNC : return Instruction::Trunc; 251 case bitc::CAST_ZEXT : return Instruction::ZExt; 252 case bitc::CAST_SEXT : return Instruction::SExt; 253 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 254 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 255 case bitc::CAST_UITOFP : return Instruction::UIToFP; 256 case bitc::CAST_SITOFP : return Instruction::SIToFP; 257 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 258 case bitc::CAST_FPEXT : return Instruction::FPExt; 259 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 260 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 261 case bitc::CAST_BITCAST : return Instruction::BitCast; 262 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 263 } 264 } 265 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 266 switch (Val) { 267 default: return -1; 268 case bitc::BINOP_ADD: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 270 case bitc::BINOP_SUB: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 272 case bitc::BINOP_MUL: 273 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 274 case bitc::BINOP_UDIV: return Instruction::UDiv; 275 case bitc::BINOP_SDIV: 276 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 277 case bitc::BINOP_UREM: return Instruction::URem; 278 case bitc::BINOP_SREM: 279 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 280 case bitc::BINOP_SHL: return Instruction::Shl; 281 case bitc::BINOP_LSHR: return Instruction::LShr; 282 case bitc::BINOP_ASHR: return Instruction::AShr; 283 case bitc::BINOP_AND: return Instruction::And; 284 case bitc::BINOP_OR: return Instruction::Or; 285 case bitc::BINOP_XOR: return Instruction::Xor; 286 } 287 } 288 289 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 290 switch (Val) { 291 default: return AtomicRMWInst::BAD_BINOP; 292 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 293 case bitc::RMW_ADD: return AtomicRMWInst::Add; 294 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 295 case bitc::RMW_AND: return AtomicRMWInst::And; 296 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 297 case bitc::RMW_OR: return AtomicRMWInst::Or; 298 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 299 case bitc::RMW_MAX: return AtomicRMWInst::Max; 300 case bitc::RMW_MIN: return AtomicRMWInst::Min; 301 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 302 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 303 } 304 } 305 306 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 307 switch (Val) { 308 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 309 case bitc::ORDERING_UNORDERED: return Unordered; 310 case bitc::ORDERING_MONOTONIC: return Monotonic; 311 case bitc::ORDERING_ACQUIRE: return Acquire; 312 case bitc::ORDERING_RELEASE: return Release; 313 case bitc::ORDERING_ACQREL: return AcquireRelease; 314 default: // Map unknown orderings to sequentially-consistent. 315 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 316 } 317 } 318 319 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 320 switch (Val) { 321 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 322 default: // Map unknown scopes to cross-thread. 323 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 324 } 325 } 326 327 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 328 switch (Val) { 329 default: // Map unknown selection kinds to any. 330 case bitc::COMDAT_SELECTION_KIND_ANY: 331 return Comdat::Any; 332 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 333 return Comdat::ExactMatch; 334 case bitc::COMDAT_SELECTION_KIND_LARGEST: 335 return Comdat::Largest; 336 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 337 return Comdat::NoDuplicates; 338 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 339 return Comdat::SameSize; 340 } 341 } 342 343 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 344 switch (Val) { 345 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 346 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 347 } 348 } 349 350 namespace llvm { 351 namespace { 352 /// @brief A class for maintaining the slot number definition 353 /// as a placeholder for the actual definition for forward constants defs. 354 class ConstantPlaceHolder : public ConstantExpr { 355 void operator=(const ConstantPlaceHolder &) = delete; 356 public: 357 // allocate space for exactly one operand 358 void *operator new(size_t s) { 359 return User::operator new(s, 1); 360 } 361 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 362 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 363 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 364 } 365 366 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 367 static bool classof(const Value *V) { 368 return isa<ConstantExpr>(V) && 369 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 370 } 371 372 373 /// Provide fast operand accessors 374 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 375 }; 376 } 377 378 // FIXME: can we inherit this from ConstantExpr? 379 template <> 380 struct OperandTraits<ConstantPlaceHolder> : 381 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 382 }; 383 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 384 } 385 386 387 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 388 if (Idx == size()) { 389 push_back(V); 390 return; 391 } 392 393 if (Idx >= size()) 394 resize(Idx+1); 395 396 WeakVH &OldV = ValuePtrs[Idx]; 397 if (!OldV) { 398 OldV = V; 399 return; 400 } 401 402 // Handle constants and non-constants (e.g. instrs) differently for 403 // efficiency. 404 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 405 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 406 OldV = V; 407 } else { 408 // If there was a forward reference to this value, replace it. 409 Value *PrevVal = OldV; 410 OldV->replaceAllUsesWith(V); 411 delete PrevVal; 412 } 413 } 414 415 416 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 417 Type *Ty) { 418 if (Idx >= size()) 419 resize(Idx + 1); 420 421 if (Value *V = ValuePtrs[Idx]) { 422 assert(Ty == V->getType() && "Type mismatch in constant table!"); 423 return cast<Constant>(V); 424 } 425 426 // Create and return a placeholder, which will later be RAUW'd. 427 Constant *C = new ConstantPlaceHolder(Ty, Context); 428 ValuePtrs[Idx] = C; 429 return C; 430 } 431 432 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 433 if (Idx >= size()) 434 resize(Idx + 1); 435 436 if (Value *V = ValuePtrs[Idx]) { 437 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 438 return V; 439 } 440 441 // No type specified, must be invalid reference. 442 if (!Ty) return nullptr; 443 444 // Create and return a placeholder, which will later be RAUW'd. 445 Value *V = new Argument(Ty); 446 ValuePtrs[Idx] = V; 447 return V; 448 } 449 450 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 451 /// resolves any forward references. The idea behind this is that we sometimes 452 /// get constants (such as large arrays) which reference *many* forward ref 453 /// constants. Replacing each of these causes a lot of thrashing when 454 /// building/reuniquing the constant. Instead of doing this, we look at all the 455 /// uses and rewrite all the place holders at once for any constant that uses 456 /// a placeholder. 457 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 458 // Sort the values by-pointer so that they are efficient to look up with a 459 // binary search. 460 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 461 462 SmallVector<Constant*, 64> NewOps; 463 464 while (!ResolveConstants.empty()) { 465 Value *RealVal = operator[](ResolveConstants.back().second); 466 Constant *Placeholder = ResolveConstants.back().first; 467 ResolveConstants.pop_back(); 468 469 // Loop over all users of the placeholder, updating them to reference the 470 // new value. If they reference more than one placeholder, update them all 471 // at once. 472 while (!Placeholder->use_empty()) { 473 auto UI = Placeholder->user_begin(); 474 User *U = *UI; 475 476 // If the using object isn't uniqued, just update the operands. This 477 // handles instructions and initializers for global variables. 478 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 479 UI.getUse().set(RealVal); 480 continue; 481 } 482 483 // Otherwise, we have a constant that uses the placeholder. Replace that 484 // constant with a new constant that has *all* placeholder uses updated. 485 Constant *UserC = cast<Constant>(U); 486 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 487 I != E; ++I) { 488 Value *NewOp; 489 if (!isa<ConstantPlaceHolder>(*I)) { 490 // Not a placeholder reference. 491 NewOp = *I; 492 } else if (*I == Placeholder) { 493 // Common case is that it just references this one placeholder. 494 NewOp = RealVal; 495 } else { 496 // Otherwise, look up the placeholder in ResolveConstants. 497 ResolveConstantsTy::iterator It = 498 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 499 std::pair<Constant*, unsigned>(cast<Constant>(*I), 500 0)); 501 assert(It != ResolveConstants.end() && It->first == *I); 502 NewOp = operator[](It->second); 503 } 504 505 NewOps.push_back(cast<Constant>(NewOp)); 506 } 507 508 // Make the new constant. 509 Constant *NewC; 510 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 511 NewC = ConstantArray::get(UserCA->getType(), NewOps); 512 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 513 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 514 } else if (isa<ConstantVector>(UserC)) { 515 NewC = ConstantVector::get(NewOps); 516 } else { 517 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 518 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 519 } 520 521 UserC->replaceAllUsesWith(NewC); 522 UserC->destroyConstant(); 523 NewOps.clear(); 524 } 525 526 // Update all ValueHandles, they should be the only users at this point. 527 Placeholder->replaceAllUsesWith(RealVal); 528 delete Placeholder; 529 } 530 } 531 532 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 533 if (Idx == size()) { 534 push_back(MD); 535 return; 536 } 537 538 if (Idx >= size()) 539 resize(Idx+1); 540 541 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 542 if (!OldMD) { 543 OldMD.reset(MD); 544 return; 545 } 546 547 // If there was a forward reference to this value, replace it. 548 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 549 PrevMD->replaceAllUsesWith(MD); 550 --NumFwdRefs; 551 } 552 553 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 554 if (Idx >= size()) 555 resize(Idx + 1); 556 557 if (Metadata *MD = MDValuePtrs[Idx]) 558 return MD; 559 560 // Track forward refs to be resolved later. 561 if (AnyFwdRefs) { 562 MinFwdRef = std::min(MinFwdRef, Idx); 563 MaxFwdRef = std::max(MaxFwdRef, Idx); 564 } else { 565 AnyFwdRefs = true; 566 MinFwdRef = MaxFwdRef = Idx; 567 } 568 ++NumFwdRefs; 569 570 // Create and return a placeholder, which will later be RAUW'd. 571 Metadata *MD = MDNode::getTemporary(Context, None).release(); 572 MDValuePtrs[Idx].reset(MD); 573 return MD; 574 } 575 576 void BitcodeReaderMDValueList::tryToResolveCycles() { 577 if (!AnyFwdRefs) 578 // Nothing to do. 579 return; 580 581 if (NumFwdRefs) 582 // Still forward references... can't resolve cycles. 583 return; 584 585 // Resolve any cycles. 586 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 587 auto &MD = MDValuePtrs[I]; 588 auto *N = dyn_cast_or_null<MDNode>(MD); 589 if (!N) 590 continue; 591 592 assert(!N->isTemporary() && "Unexpected forward reference"); 593 N->resolveCycles(); 594 } 595 596 // Make sure we return early again until there's another forward ref. 597 AnyFwdRefs = false; 598 } 599 600 Type *BitcodeReader::getTypeByID(unsigned ID) { 601 // The type table size is always specified correctly. 602 if (ID >= TypeList.size()) 603 return nullptr; 604 605 if (Type *Ty = TypeList[ID]) 606 return Ty; 607 608 // If we have a forward reference, the only possible case is when it is to a 609 // named struct. Just create a placeholder for now. 610 return TypeList[ID] = createIdentifiedStructType(Context); 611 } 612 613 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 614 StringRef Name) { 615 auto *Ret = StructType::create(Context, Name); 616 IdentifiedStructTypes.push_back(Ret); 617 return Ret; 618 } 619 620 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 621 auto *Ret = StructType::create(Context); 622 IdentifiedStructTypes.push_back(Ret); 623 return Ret; 624 } 625 626 627 //===----------------------------------------------------------------------===// 628 // Functions for parsing blocks from the bitcode file 629 //===----------------------------------------------------------------------===// 630 631 632 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 633 /// been decoded from the given integer. This function must stay in sync with 634 /// 'encodeLLVMAttributesForBitcode'. 635 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 636 uint64_t EncodedAttrs) { 637 // FIXME: Remove in 4.0. 638 639 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 640 // the bits above 31 down by 11 bits. 641 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 642 assert((!Alignment || isPowerOf2_32(Alignment)) && 643 "Alignment must be a power of two."); 644 645 if (Alignment) 646 B.addAlignmentAttr(Alignment); 647 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 648 (EncodedAttrs & 0xffff)); 649 } 650 651 std::error_code BitcodeReader::ParseAttributeBlock() { 652 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 653 return Error("Invalid record"); 654 655 if (!MAttributes.empty()) 656 return Error("Invalid multiple blocks"); 657 658 SmallVector<uint64_t, 64> Record; 659 660 SmallVector<AttributeSet, 8> Attrs; 661 662 // Read all the records. 663 while (1) { 664 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 665 666 switch (Entry.Kind) { 667 case BitstreamEntry::SubBlock: // Handled for us already. 668 case BitstreamEntry::Error: 669 return Error("Malformed block"); 670 case BitstreamEntry::EndBlock: 671 return std::error_code(); 672 case BitstreamEntry::Record: 673 // The interesting case. 674 break; 675 } 676 677 // Read a record. 678 Record.clear(); 679 switch (Stream.readRecord(Entry.ID, Record)) { 680 default: // Default behavior: ignore. 681 break; 682 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 683 // FIXME: Remove in 4.0. 684 if (Record.size() & 1) 685 return Error("Invalid record"); 686 687 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 688 AttrBuilder B; 689 decodeLLVMAttributesForBitcode(B, Record[i+1]); 690 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 691 } 692 693 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 694 Attrs.clear(); 695 break; 696 } 697 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 698 for (unsigned i = 0, e = Record.size(); i != e; ++i) 699 Attrs.push_back(MAttributeGroups[Record[i]]); 700 701 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 702 Attrs.clear(); 703 break; 704 } 705 } 706 } 707 } 708 709 // Returns Attribute::None on unrecognized codes. 710 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 711 switch (Code) { 712 default: 713 return Attribute::None; 714 case bitc::ATTR_KIND_ALIGNMENT: 715 return Attribute::Alignment; 716 case bitc::ATTR_KIND_ALWAYS_INLINE: 717 return Attribute::AlwaysInline; 718 case bitc::ATTR_KIND_BUILTIN: 719 return Attribute::Builtin; 720 case bitc::ATTR_KIND_BY_VAL: 721 return Attribute::ByVal; 722 case bitc::ATTR_KIND_IN_ALLOCA: 723 return Attribute::InAlloca; 724 case bitc::ATTR_KIND_COLD: 725 return Attribute::Cold; 726 case bitc::ATTR_KIND_INLINE_HINT: 727 return Attribute::InlineHint; 728 case bitc::ATTR_KIND_IN_REG: 729 return Attribute::InReg; 730 case bitc::ATTR_KIND_JUMP_TABLE: 731 return Attribute::JumpTable; 732 case bitc::ATTR_KIND_MIN_SIZE: 733 return Attribute::MinSize; 734 case bitc::ATTR_KIND_NAKED: 735 return Attribute::Naked; 736 case bitc::ATTR_KIND_NEST: 737 return Attribute::Nest; 738 case bitc::ATTR_KIND_NO_ALIAS: 739 return Attribute::NoAlias; 740 case bitc::ATTR_KIND_NO_BUILTIN: 741 return Attribute::NoBuiltin; 742 case bitc::ATTR_KIND_NO_CAPTURE: 743 return Attribute::NoCapture; 744 case bitc::ATTR_KIND_NO_DUPLICATE: 745 return Attribute::NoDuplicate; 746 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 747 return Attribute::NoImplicitFloat; 748 case bitc::ATTR_KIND_NO_INLINE: 749 return Attribute::NoInline; 750 case bitc::ATTR_KIND_NON_LAZY_BIND: 751 return Attribute::NonLazyBind; 752 case bitc::ATTR_KIND_NON_NULL: 753 return Attribute::NonNull; 754 case bitc::ATTR_KIND_DEREFERENCEABLE: 755 return Attribute::Dereferenceable; 756 case bitc::ATTR_KIND_NO_RED_ZONE: 757 return Attribute::NoRedZone; 758 case bitc::ATTR_KIND_NO_RETURN: 759 return Attribute::NoReturn; 760 case bitc::ATTR_KIND_NO_UNWIND: 761 return Attribute::NoUnwind; 762 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 763 return Attribute::OptimizeForSize; 764 case bitc::ATTR_KIND_OPTIMIZE_NONE: 765 return Attribute::OptimizeNone; 766 case bitc::ATTR_KIND_READ_NONE: 767 return Attribute::ReadNone; 768 case bitc::ATTR_KIND_READ_ONLY: 769 return Attribute::ReadOnly; 770 case bitc::ATTR_KIND_RETURNED: 771 return Attribute::Returned; 772 case bitc::ATTR_KIND_RETURNS_TWICE: 773 return Attribute::ReturnsTwice; 774 case bitc::ATTR_KIND_S_EXT: 775 return Attribute::SExt; 776 case bitc::ATTR_KIND_STACK_ALIGNMENT: 777 return Attribute::StackAlignment; 778 case bitc::ATTR_KIND_STACK_PROTECT: 779 return Attribute::StackProtect; 780 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 781 return Attribute::StackProtectReq; 782 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 783 return Attribute::StackProtectStrong; 784 case bitc::ATTR_KIND_STRUCT_RET: 785 return Attribute::StructRet; 786 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 787 return Attribute::SanitizeAddress; 788 case bitc::ATTR_KIND_SANITIZE_THREAD: 789 return Attribute::SanitizeThread; 790 case bitc::ATTR_KIND_SANITIZE_MEMORY: 791 return Attribute::SanitizeMemory; 792 case bitc::ATTR_KIND_UW_TABLE: 793 return Attribute::UWTable; 794 case bitc::ATTR_KIND_Z_EXT: 795 return Attribute::ZExt; 796 } 797 } 798 799 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 800 unsigned &Alignment) { 801 // Note: Alignment in bitcode files is incremented by 1, so that zero 802 // can be used for default alignment. 803 if (Exponent > Value::MaxAlignmentExponent + 1) 804 return Error("Invalid alignment value"); 805 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 806 return std::error_code(); 807 } 808 809 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 810 Attribute::AttrKind *Kind) { 811 *Kind = GetAttrFromCode(Code); 812 if (*Kind == Attribute::None) 813 return Error(BitcodeError::CorruptedBitcode, 814 "Unknown attribute kind (" + Twine(Code) + ")"); 815 return std::error_code(); 816 } 817 818 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 819 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 820 return Error("Invalid record"); 821 822 if (!MAttributeGroups.empty()) 823 return Error("Invalid multiple blocks"); 824 825 SmallVector<uint64_t, 64> Record; 826 827 // Read all the records. 828 while (1) { 829 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 830 831 switch (Entry.Kind) { 832 case BitstreamEntry::SubBlock: // Handled for us already. 833 case BitstreamEntry::Error: 834 return Error("Malformed block"); 835 case BitstreamEntry::EndBlock: 836 return std::error_code(); 837 case BitstreamEntry::Record: 838 // The interesting case. 839 break; 840 } 841 842 // Read a record. 843 Record.clear(); 844 switch (Stream.readRecord(Entry.ID, Record)) { 845 default: // Default behavior: ignore. 846 break; 847 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 848 if (Record.size() < 3) 849 return Error("Invalid record"); 850 851 uint64_t GrpID = Record[0]; 852 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 853 854 AttrBuilder B; 855 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 856 if (Record[i] == 0) { // Enum attribute 857 Attribute::AttrKind Kind; 858 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 859 return EC; 860 861 B.addAttribute(Kind); 862 } else if (Record[i] == 1) { // Integer attribute 863 Attribute::AttrKind Kind; 864 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 865 return EC; 866 if (Kind == Attribute::Alignment) 867 B.addAlignmentAttr(Record[++i]); 868 else if (Kind == Attribute::StackAlignment) 869 B.addStackAlignmentAttr(Record[++i]); 870 else if (Kind == Attribute::Dereferenceable) 871 B.addDereferenceableAttr(Record[++i]); 872 } else { // String attribute 873 assert((Record[i] == 3 || Record[i] == 4) && 874 "Invalid attribute group entry"); 875 bool HasValue = (Record[i++] == 4); 876 SmallString<64> KindStr; 877 SmallString<64> ValStr; 878 879 while (Record[i] != 0 && i != e) 880 KindStr += Record[i++]; 881 assert(Record[i] == 0 && "Kind string not null terminated"); 882 883 if (HasValue) { 884 // Has a value associated with it. 885 ++i; // Skip the '0' that terminates the "kind" string. 886 while (Record[i] != 0 && i != e) 887 ValStr += Record[i++]; 888 assert(Record[i] == 0 && "Value string not null terminated"); 889 } 890 891 B.addAttribute(KindStr.str(), ValStr.str()); 892 } 893 } 894 895 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 896 break; 897 } 898 } 899 } 900 } 901 902 std::error_code BitcodeReader::ParseTypeTable() { 903 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 904 return Error("Invalid record"); 905 906 return ParseTypeTableBody(); 907 } 908 909 std::error_code BitcodeReader::ParseTypeTableBody() { 910 if (!TypeList.empty()) 911 return Error("Invalid multiple blocks"); 912 913 SmallVector<uint64_t, 64> Record; 914 unsigned NumRecords = 0; 915 916 SmallString<64> TypeName; 917 918 // Read all the records for this type table. 919 while (1) { 920 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 921 922 switch (Entry.Kind) { 923 case BitstreamEntry::SubBlock: // Handled for us already. 924 case BitstreamEntry::Error: 925 return Error("Malformed block"); 926 case BitstreamEntry::EndBlock: 927 if (NumRecords != TypeList.size()) 928 return Error("Malformed block"); 929 return std::error_code(); 930 case BitstreamEntry::Record: 931 // The interesting case. 932 break; 933 } 934 935 // Read a record. 936 Record.clear(); 937 Type *ResultTy = nullptr; 938 switch (Stream.readRecord(Entry.ID, Record)) { 939 default: 940 return Error("Invalid value"); 941 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 942 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 943 // type list. This allows us to reserve space. 944 if (Record.size() < 1) 945 return Error("Invalid record"); 946 TypeList.resize(Record[0]); 947 continue; 948 case bitc::TYPE_CODE_VOID: // VOID 949 ResultTy = Type::getVoidTy(Context); 950 break; 951 case bitc::TYPE_CODE_HALF: // HALF 952 ResultTy = Type::getHalfTy(Context); 953 break; 954 case bitc::TYPE_CODE_FLOAT: // FLOAT 955 ResultTy = Type::getFloatTy(Context); 956 break; 957 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 958 ResultTy = Type::getDoubleTy(Context); 959 break; 960 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 961 ResultTy = Type::getX86_FP80Ty(Context); 962 break; 963 case bitc::TYPE_CODE_FP128: // FP128 964 ResultTy = Type::getFP128Ty(Context); 965 break; 966 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 967 ResultTy = Type::getPPC_FP128Ty(Context); 968 break; 969 case bitc::TYPE_CODE_LABEL: // LABEL 970 ResultTy = Type::getLabelTy(Context); 971 break; 972 case bitc::TYPE_CODE_METADATA: // METADATA 973 ResultTy = Type::getMetadataTy(Context); 974 break; 975 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 976 ResultTy = Type::getX86_MMXTy(Context); 977 break; 978 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 979 if (Record.size() < 1) 980 return Error("Invalid record"); 981 982 uint64_t NumBits = Record[0]; 983 if (NumBits < IntegerType::MIN_INT_BITS || 984 NumBits > IntegerType::MAX_INT_BITS) 985 return Error("Bitwidth for integer type out of range"); 986 ResultTy = IntegerType::get(Context, NumBits); 987 break; 988 } 989 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 990 // [pointee type, address space] 991 if (Record.size() < 1) 992 return Error("Invalid record"); 993 unsigned AddressSpace = 0; 994 if (Record.size() == 2) 995 AddressSpace = Record[1]; 996 ResultTy = getTypeByID(Record[0]); 997 if (!ResultTy) 998 return Error("Invalid type"); 999 ResultTy = PointerType::get(ResultTy, AddressSpace); 1000 break; 1001 } 1002 case bitc::TYPE_CODE_FUNCTION_OLD: { 1003 // FIXME: attrid is dead, remove it in LLVM 4.0 1004 // FUNCTION: [vararg, attrid, retty, paramty x N] 1005 if (Record.size() < 3) 1006 return Error("Invalid record"); 1007 SmallVector<Type*, 8> ArgTys; 1008 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1009 if (Type *T = getTypeByID(Record[i])) 1010 ArgTys.push_back(T); 1011 else 1012 break; 1013 } 1014 1015 ResultTy = getTypeByID(Record[2]); 1016 if (!ResultTy || ArgTys.size() < Record.size()-3) 1017 return Error("Invalid type"); 1018 1019 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1020 break; 1021 } 1022 case bitc::TYPE_CODE_FUNCTION: { 1023 // FUNCTION: [vararg, retty, paramty x N] 1024 if (Record.size() < 2) 1025 return Error("Invalid record"); 1026 SmallVector<Type*, 8> ArgTys; 1027 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1028 if (Type *T = getTypeByID(Record[i])) 1029 ArgTys.push_back(T); 1030 else 1031 break; 1032 } 1033 1034 ResultTy = getTypeByID(Record[1]); 1035 if (!ResultTy || ArgTys.size() < Record.size()-2) 1036 return Error("Invalid type"); 1037 1038 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1039 break; 1040 } 1041 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1042 if (Record.size() < 1) 1043 return Error("Invalid record"); 1044 SmallVector<Type*, 8> EltTys; 1045 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1046 if (Type *T = getTypeByID(Record[i])) 1047 EltTys.push_back(T); 1048 else 1049 break; 1050 } 1051 if (EltTys.size() != Record.size()-1) 1052 return Error("Invalid type"); 1053 ResultTy = StructType::get(Context, EltTys, Record[0]); 1054 break; 1055 } 1056 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1057 if (ConvertToString(Record, 0, TypeName)) 1058 return Error("Invalid record"); 1059 continue; 1060 1061 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1062 if (Record.size() < 1) 1063 return Error("Invalid record"); 1064 1065 if (NumRecords >= TypeList.size()) 1066 return Error("Invalid TYPE table"); 1067 1068 // Check to see if this was forward referenced, if so fill in the temp. 1069 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1070 if (Res) { 1071 Res->setName(TypeName); 1072 TypeList[NumRecords] = nullptr; 1073 } else // Otherwise, create a new struct. 1074 Res = createIdentifiedStructType(Context, TypeName); 1075 TypeName.clear(); 1076 1077 SmallVector<Type*, 8> EltTys; 1078 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1079 if (Type *T = getTypeByID(Record[i])) 1080 EltTys.push_back(T); 1081 else 1082 break; 1083 } 1084 if (EltTys.size() != Record.size()-1) 1085 return Error("Invalid record"); 1086 Res->setBody(EltTys, Record[0]); 1087 ResultTy = Res; 1088 break; 1089 } 1090 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1091 if (Record.size() != 1) 1092 return Error("Invalid record"); 1093 1094 if (NumRecords >= TypeList.size()) 1095 return Error("Invalid TYPE table"); 1096 1097 // Check to see if this was forward referenced, if so fill in the temp. 1098 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1099 if (Res) { 1100 Res->setName(TypeName); 1101 TypeList[NumRecords] = nullptr; 1102 } else // Otherwise, create a new struct with no body. 1103 Res = createIdentifiedStructType(Context, TypeName); 1104 TypeName.clear(); 1105 ResultTy = Res; 1106 break; 1107 } 1108 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1109 if (Record.size() < 2) 1110 return Error("Invalid record"); 1111 if ((ResultTy = getTypeByID(Record[1]))) 1112 ResultTy = ArrayType::get(ResultTy, Record[0]); 1113 else 1114 return Error("Invalid type"); 1115 break; 1116 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1117 if (Record.size() < 2) 1118 return Error("Invalid record"); 1119 if ((ResultTy = getTypeByID(Record[1]))) 1120 ResultTy = VectorType::get(ResultTy, Record[0]); 1121 else 1122 return Error("Invalid type"); 1123 break; 1124 } 1125 1126 if (NumRecords >= TypeList.size()) 1127 return Error("Invalid TYPE table"); 1128 if (TypeList[NumRecords]) 1129 return Error( 1130 "Invalid TYPE table: Only named structs can be forward referenced"); 1131 assert(ResultTy && "Didn't read a type?"); 1132 TypeList[NumRecords++] = ResultTy; 1133 } 1134 } 1135 1136 std::error_code BitcodeReader::ParseValueSymbolTable() { 1137 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1138 return Error("Invalid record"); 1139 1140 SmallVector<uint64_t, 64> Record; 1141 1142 Triple TT(TheModule->getTargetTriple()); 1143 1144 // Read all the records for this value table. 1145 SmallString<128> ValueName; 1146 while (1) { 1147 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1148 1149 switch (Entry.Kind) { 1150 case BitstreamEntry::SubBlock: // Handled for us already. 1151 case BitstreamEntry::Error: 1152 return Error("Malformed block"); 1153 case BitstreamEntry::EndBlock: 1154 return std::error_code(); 1155 case BitstreamEntry::Record: 1156 // The interesting case. 1157 break; 1158 } 1159 1160 // Read a record. 1161 Record.clear(); 1162 switch (Stream.readRecord(Entry.ID, Record)) { 1163 default: // Default behavior: unknown type. 1164 break; 1165 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1166 if (ConvertToString(Record, 1, ValueName)) 1167 return Error("Invalid record"); 1168 unsigned ValueID = Record[0]; 1169 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1170 return Error("Invalid record"); 1171 Value *V = ValueList[ValueID]; 1172 1173 V->setName(StringRef(ValueName.data(), ValueName.size())); 1174 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1175 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1176 if (TT.isOSBinFormatMachO()) 1177 GO->setComdat(nullptr); 1178 else 1179 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1180 } 1181 } 1182 ValueName.clear(); 1183 break; 1184 } 1185 case bitc::VST_CODE_BBENTRY: { 1186 if (ConvertToString(Record, 1, ValueName)) 1187 return Error("Invalid record"); 1188 BasicBlock *BB = getBasicBlock(Record[0]); 1189 if (!BB) 1190 return Error("Invalid record"); 1191 1192 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1193 ValueName.clear(); 1194 break; 1195 } 1196 } 1197 } 1198 } 1199 1200 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1201 1202 std::error_code BitcodeReader::ParseMetadata() { 1203 IsMetadataMaterialized = true; 1204 unsigned NextMDValueNo = MDValueList.size(); 1205 1206 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1207 return Error("Invalid record"); 1208 1209 SmallVector<uint64_t, 64> Record; 1210 1211 auto getMD = 1212 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1213 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1214 if (ID) 1215 return getMD(ID - 1); 1216 return nullptr; 1217 }; 1218 auto getMDString = [&](unsigned ID) -> MDString *{ 1219 // This requires that the ID is not really a forward reference. In 1220 // particular, the MDString must already have been resolved. 1221 return cast_or_null<MDString>(getMDOrNull(ID)); 1222 }; 1223 1224 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1225 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1226 1227 // Read all the records. 1228 while (1) { 1229 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1230 1231 switch (Entry.Kind) { 1232 case BitstreamEntry::SubBlock: // Handled for us already. 1233 case BitstreamEntry::Error: 1234 return Error("Malformed block"); 1235 case BitstreamEntry::EndBlock: 1236 MDValueList.tryToResolveCycles(); 1237 return std::error_code(); 1238 case BitstreamEntry::Record: 1239 // The interesting case. 1240 break; 1241 } 1242 1243 // Read a record. 1244 Record.clear(); 1245 unsigned Code = Stream.readRecord(Entry.ID, Record); 1246 bool IsDistinct = false; 1247 switch (Code) { 1248 default: // Default behavior: ignore. 1249 break; 1250 case bitc::METADATA_NAME: { 1251 // Read name of the named metadata. 1252 SmallString<8> Name(Record.begin(), Record.end()); 1253 Record.clear(); 1254 Code = Stream.ReadCode(); 1255 1256 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1257 unsigned NextBitCode = Stream.readRecord(Code, Record); 1258 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1259 1260 // Read named metadata elements. 1261 unsigned Size = Record.size(); 1262 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1263 for (unsigned i = 0; i != Size; ++i) { 1264 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1265 if (!MD) 1266 return Error("Invalid record"); 1267 NMD->addOperand(MD); 1268 } 1269 break; 1270 } 1271 case bitc::METADATA_OLD_FN_NODE: { 1272 // FIXME: Remove in 4.0. 1273 // This is a LocalAsMetadata record, the only type of function-local 1274 // metadata. 1275 if (Record.size() % 2 == 1) 1276 return Error("Invalid record"); 1277 1278 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1279 // to be legal, but there's no upgrade path. 1280 auto dropRecord = [&] { 1281 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1282 }; 1283 if (Record.size() != 2) { 1284 dropRecord(); 1285 break; 1286 } 1287 1288 Type *Ty = getTypeByID(Record[0]); 1289 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1290 dropRecord(); 1291 break; 1292 } 1293 1294 MDValueList.AssignValue( 1295 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1296 NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_OLD_NODE: { 1300 // FIXME: Remove in 4.0. 1301 if (Record.size() % 2 == 1) 1302 return Error("Invalid record"); 1303 1304 unsigned Size = Record.size(); 1305 SmallVector<Metadata *, 8> Elts; 1306 for (unsigned i = 0; i != Size; i += 2) { 1307 Type *Ty = getTypeByID(Record[i]); 1308 if (!Ty) 1309 return Error("Invalid record"); 1310 if (Ty->isMetadataTy()) 1311 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1312 else if (!Ty->isVoidTy()) { 1313 auto *MD = 1314 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1315 assert(isa<ConstantAsMetadata>(MD) && 1316 "Expected non-function-local metadata"); 1317 Elts.push_back(MD); 1318 } else 1319 Elts.push_back(nullptr); 1320 } 1321 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1322 break; 1323 } 1324 case bitc::METADATA_VALUE: { 1325 if (Record.size() != 2) 1326 return Error("Invalid record"); 1327 1328 Type *Ty = getTypeByID(Record[0]); 1329 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1330 return Error("Invalid record"); 1331 1332 MDValueList.AssignValue( 1333 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1334 NextMDValueNo++); 1335 break; 1336 } 1337 case bitc::METADATA_DISTINCT_NODE: 1338 IsDistinct = true; 1339 // fallthrough... 1340 case bitc::METADATA_NODE: { 1341 SmallVector<Metadata *, 8> Elts; 1342 Elts.reserve(Record.size()); 1343 for (unsigned ID : Record) 1344 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1345 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1346 : MDNode::get(Context, Elts), 1347 NextMDValueNo++); 1348 break; 1349 } 1350 case bitc::METADATA_LOCATION: { 1351 if (Record.size() != 5) 1352 return Error("Invalid record"); 1353 1354 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1355 unsigned Line = Record[1]; 1356 unsigned Column = Record[2]; 1357 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1358 Metadata *InlinedAt = 1359 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1360 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1361 NextMDValueNo++); 1362 break; 1363 } 1364 case bitc::METADATA_GENERIC_DEBUG: { 1365 if (Record.size() < 4) 1366 return Error("Invalid record"); 1367 1368 unsigned Tag = Record[1]; 1369 unsigned Version = Record[2]; 1370 1371 if (Tag >= 1u << 16 || Version != 0) 1372 return Error("Invalid record"); 1373 1374 auto *Header = getMDString(Record[3]); 1375 SmallVector<Metadata *, 8> DwarfOps; 1376 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1377 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1378 : nullptr); 1379 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1380 (Context, Tag, Header, DwarfOps)), 1381 NextMDValueNo++); 1382 break; 1383 } 1384 case bitc::METADATA_SUBRANGE: { 1385 if (Record.size() != 3) 1386 return Error("Invalid record"); 1387 1388 MDValueList.AssignValue( 1389 GET_OR_DISTINCT(MDSubrange, Record[0], 1390 (Context, Record[1], unrotateSign(Record[2]))), 1391 NextMDValueNo++); 1392 break; 1393 } 1394 case bitc::METADATA_ENUMERATOR: { 1395 if (Record.size() != 3) 1396 return Error("Invalid record"); 1397 1398 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1399 (Context, unrotateSign(Record[1]), 1400 getMDString(Record[2]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_BASIC_TYPE: { 1405 if (Record.size() != 6) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDBasicType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 Record[3], Record[4], Record[5])), 1412 NextMDValueNo++); 1413 break; 1414 } 1415 case bitc::METADATA_DERIVED_TYPE: { 1416 if (Record.size() != 12) 1417 return Error("Invalid record"); 1418 1419 MDValueList.AssignValue( 1420 GET_OR_DISTINCT(MDDerivedType, Record[0], 1421 (Context, Record[1], getMDString(Record[2]), 1422 getMDOrNull(Record[3]), Record[4], 1423 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1424 Record[7], Record[8], Record[9], Record[10], 1425 getMDOrNull(Record[11]))), 1426 NextMDValueNo++); 1427 break; 1428 } 1429 case bitc::METADATA_COMPOSITE_TYPE: { 1430 if (Record.size() != 16) 1431 return Error("Invalid record"); 1432 1433 MDValueList.AssignValue( 1434 GET_OR_DISTINCT(MDCompositeType, Record[0], 1435 (Context, Record[1], getMDString(Record[2]), 1436 getMDOrNull(Record[3]), Record[4], 1437 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1438 Record[7], Record[8], Record[9], Record[10], 1439 getMDOrNull(Record[11]), Record[12], 1440 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1441 getMDString(Record[15]))), 1442 NextMDValueNo++); 1443 break; 1444 } 1445 case bitc::METADATA_SUBROUTINE_TYPE: { 1446 if (Record.size() != 3) 1447 return Error("Invalid record"); 1448 1449 MDValueList.AssignValue( 1450 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1451 (Context, Record[1], getMDOrNull(Record[2]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_FILE: { 1456 if (Record.size() != 3) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1461 getMDString(Record[2]))), 1462 NextMDValueNo++); 1463 break; 1464 } 1465 case bitc::METADATA_COMPILE_UNIT: { 1466 if (Record.size() != 14) 1467 return Error("Invalid record"); 1468 1469 MDValueList.AssignValue( 1470 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1471 (Context, Record[1], getMDOrNull(Record[2]), 1472 getMDString(Record[3]), Record[4], 1473 getMDString(Record[5]), Record[6], 1474 getMDString(Record[7]), Record[8], 1475 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1476 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1477 getMDOrNull(Record[13]))), 1478 NextMDValueNo++); 1479 break; 1480 } 1481 case bitc::METADATA_SUBPROGRAM: { 1482 if (Record.size() != 19) 1483 return Error("Invalid record"); 1484 1485 MDValueList.AssignValue( 1486 GET_OR_DISTINCT( 1487 MDSubprogram, Record[0], 1488 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1489 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1490 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1491 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1492 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1493 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1494 NextMDValueNo++); 1495 break; 1496 } 1497 case bitc::METADATA_LEXICAL_BLOCK: { 1498 if (Record.size() != 5) 1499 return Error("Invalid record"); 1500 1501 MDValueList.AssignValue( 1502 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1503 (Context, getMDOrNull(Record[1]), 1504 getMDOrNull(Record[2]), Record[3], Record[4])), 1505 NextMDValueNo++); 1506 break; 1507 } 1508 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1509 if (Record.size() != 4) 1510 return Error("Invalid record"); 1511 1512 MDValueList.AssignValue( 1513 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1514 (Context, getMDOrNull(Record[1]), 1515 getMDOrNull(Record[2]), Record[3])), 1516 NextMDValueNo++); 1517 break; 1518 } 1519 case bitc::METADATA_NAMESPACE: { 1520 if (Record.size() != 5) 1521 return Error("Invalid record"); 1522 1523 MDValueList.AssignValue( 1524 GET_OR_DISTINCT(MDNamespace, Record[0], 1525 (Context, getMDOrNull(Record[1]), 1526 getMDOrNull(Record[2]), getMDString(Record[3]), 1527 Record[4])), 1528 NextMDValueNo++); 1529 break; 1530 } 1531 case bitc::METADATA_TEMPLATE_TYPE: { 1532 if (Record.size() != 3) 1533 return Error("Invalid record"); 1534 1535 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1536 Record[0], 1537 (Context, getMDString(Record[1]), 1538 getMDOrNull(Record[2]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_TEMPLATE_VALUE: { 1543 if (Record.size() != 5) 1544 return Error("Invalid record"); 1545 1546 MDValueList.AssignValue( 1547 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1548 (Context, Record[1], getMDString(Record[2]), 1549 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1550 NextMDValueNo++); 1551 break; 1552 } 1553 case bitc::METADATA_GLOBAL_VAR: { 1554 if (Record.size() != 11) 1555 return Error("Invalid record"); 1556 1557 MDValueList.AssignValue( 1558 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1559 (Context, getMDOrNull(Record[1]), 1560 getMDString(Record[2]), getMDString(Record[3]), 1561 getMDOrNull(Record[4]), Record[5], 1562 getMDOrNull(Record[6]), Record[7], Record[8], 1563 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1564 NextMDValueNo++); 1565 break; 1566 } 1567 case bitc::METADATA_LOCAL_VAR: { 1568 if (Record.size() != 10) 1569 return Error("Invalid record"); 1570 1571 MDValueList.AssignValue( 1572 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1573 (Context, Record[1], getMDOrNull(Record[2]), 1574 getMDString(Record[3]), getMDOrNull(Record[4]), 1575 Record[5], getMDOrNull(Record[6]), Record[7], 1576 Record[8], getMDOrNull(Record[9]))), 1577 NextMDValueNo++); 1578 break; 1579 } 1580 case bitc::METADATA_EXPRESSION: { 1581 if (Record.size() < 1) 1582 return Error("Invalid record"); 1583 1584 MDValueList.AssignValue( 1585 GET_OR_DISTINCT(MDExpression, Record[0], 1586 (Context, makeArrayRef(Record).slice(1))), 1587 NextMDValueNo++); 1588 break; 1589 } 1590 case bitc::METADATA_OBJC_PROPERTY: { 1591 if (Record.size() != 8) 1592 return Error("Invalid record"); 1593 1594 MDValueList.AssignValue( 1595 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1596 (Context, getMDString(Record[1]), 1597 getMDOrNull(Record[2]), Record[3], 1598 getMDString(Record[4]), getMDString(Record[5]), 1599 Record[6], getMDOrNull(Record[7]))), 1600 NextMDValueNo++); 1601 break; 1602 } 1603 case bitc::METADATA_IMPORTED_ENTITY: { 1604 if (Record.size() != 6) 1605 return Error("Invalid record"); 1606 1607 MDValueList.AssignValue( 1608 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1609 (Context, Record[1], getMDOrNull(Record[2]), 1610 getMDOrNull(Record[3]), Record[4], 1611 getMDString(Record[5]))), 1612 NextMDValueNo++); 1613 break; 1614 } 1615 case bitc::METADATA_STRING: { 1616 std::string String(Record.begin(), Record.end()); 1617 llvm::UpgradeMDStringConstant(String); 1618 Metadata *MD = MDString::get(Context, String); 1619 MDValueList.AssignValue(MD, NextMDValueNo++); 1620 break; 1621 } 1622 case bitc::METADATA_KIND: { 1623 if (Record.size() < 2) 1624 return Error("Invalid record"); 1625 1626 unsigned Kind = Record[0]; 1627 SmallString<8> Name(Record.begin()+1, Record.end()); 1628 1629 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1630 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1631 return Error("Conflicting METADATA_KIND records"); 1632 break; 1633 } 1634 } 1635 } 1636 #undef GET_OR_DISTINCT 1637 } 1638 1639 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1640 /// the LSB for dense VBR encoding. 1641 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1642 if ((V & 1) == 0) 1643 return V >> 1; 1644 if (V != 1) 1645 return -(V >> 1); 1646 // There is no such thing as -0 with integers. "-0" really means MININT. 1647 return 1ULL << 63; 1648 } 1649 1650 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1651 /// values and aliases that we can. 1652 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1653 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1654 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1655 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1656 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1657 1658 GlobalInitWorklist.swap(GlobalInits); 1659 AliasInitWorklist.swap(AliasInits); 1660 FunctionPrefixWorklist.swap(FunctionPrefixes); 1661 FunctionPrologueWorklist.swap(FunctionPrologues); 1662 1663 while (!GlobalInitWorklist.empty()) { 1664 unsigned ValID = GlobalInitWorklist.back().second; 1665 if (ValID >= ValueList.size()) { 1666 // Not ready to resolve this yet, it requires something later in the file. 1667 GlobalInits.push_back(GlobalInitWorklist.back()); 1668 } else { 1669 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1670 GlobalInitWorklist.back().first->setInitializer(C); 1671 else 1672 return Error("Expected a constant"); 1673 } 1674 GlobalInitWorklist.pop_back(); 1675 } 1676 1677 while (!AliasInitWorklist.empty()) { 1678 unsigned ValID = AliasInitWorklist.back().second; 1679 if (ValID >= ValueList.size()) { 1680 AliasInits.push_back(AliasInitWorklist.back()); 1681 } else { 1682 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1683 AliasInitWorklist.back().first->setAliasee(C); 1684 else 1685 return Error("Expected a constant"); 1686 } 1687 AliasInitWorklist.pop_back(); 1688 } 1689 1690 while (!FunctionPrefixWorklist.empty()) { 1691 unsigned ValID = FunctionPrefixWorklist.back().second; 1692 if (ValID >= ValueList.size()) { 1693 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1694 } else { 1695 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1696 FunctionPrefixWorklist.back().first->setPrefixData(C); 1697 else 1698 return Error("Expected a constant"); 1699 } 1700 FunctionPrefixWorklist.pop_back(); 1701 } 1702 1703 while (!FunctionPrologueWorklist.empty()) { 1704 unsigned ValID = FunctionPrologueWorklist.back().second; 1705 if (ValID >= ValueList.size()) { 1706 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1707 } else { 1708 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1709 FunctionPrologueWorklist.back().first->setPrologueData(C); 1710 else 1711 return Error("Expected a constant"); 1712 } 1713 FunctionPrologueWorklist.pop_back(); 1714 } 1715 1716 return std::error_code(); 1717 } 1718 1719 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1720 SmallVector<uint64_t, 8> Words(Vals.size()); 1721 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1722 BitcodeReader::decodeSignRotatedValue); 1723 1724 return APInt(TypeBits, Words); 1725 } 1726 1727 std::error_code BitcodeReader::ParseConstants() { 1728 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1729 return Error("Invalid record"); 1730 1731 SmallVector<uint64_t, 64> Record; 1732 1733 // Read all the records for this value table. 1734 Type *CurTy = Type::getInt32Ty(Context); 1735 unsigned NextCstNo = ValueList.size(); 1736 while (1) { 1737 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1738 1739 switch (Entry.Kind) { 1740 case BitstreamEntry::SubBlock: // Handled for us already. 1741 case BitstreamEntry::Error: 1742 return Error("Malformed block"); 1743 case BitstreamEntry::EndBlock: 1744 if (NextCstNo != ValueList.size()) 1745 return Error("Invalid ronstant reference"); 1746 1747 // Once all the constants have been read, go through and resolve forward 1748 // references. 1749 ValueList.ResolveConstantForwardRefs(); 1750 return std::error_code(); 1751 case BitstreamEntry::Record: 1752 // The interesting case. 1753 break; 1754 } 1755 1756 // Read a record. 1757 Record.clear(); 1758 Value *V = nullptr; 1759 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1760 switch (BitCode) { 1761 default: // Default behavior: unknown constant 1762 case bitc::CST_CODE_UNDEF: // UNDEF 1763 V = UndefValue::get(CurTy); 1764 break; 1765 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1766 if (Record.empty()) 1767 return Error("Invalid record"); 1768 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1769 return Error("Invalid record"); 1770 CurTy = TypeList[Record[0]]; 1771 continue; // Skip the ValueList manipulation. 1772 case bitc::CST_CODE_NULL: // NULL 1773 V = Constant::getNullValue(CurTy); 1774 break; 1775 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1776 if (!CurTy->isIntegerTy() || Record.empty()) 1777 return Error("Invalid record"); 1778 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1779 break; 1780 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1781 if (!CurTy->isIntegerTy() || Record.empty()) 1782 return Error("Invalid record"); 1783 1784 APInt VInt = ReadWideAPInt(Record, 1785 cast<IntegerType>(CurTy)->getBitWidth()); 1786 V = ConstantInt::get(Context, VInt); 1787 1788 break; 1789 } 1790 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1791 if (Record.empty()) 1792 return Error("Invalid record"); 1793 if (CurTy->isHalfTy()) 1794 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1795 APInt(16, (uint16_t)Record[0]))); 1796 else if (CurTy->isFloatTy()) 1797 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1798 APInt(32, (uint32_t)Record[0]))); 1799 else if (CurTy->isDoubleTy()) 1800 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1801 APInt(64, Record[0]))); 1802 else if (CurTy->isX86_FP80Ty()) { 1803 // Bits are not stored the same way as a normal i80 APInt, compensate. 1804 uint64_t Rearrange[2]; 1805 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1806 Rearrange[1] = Record[0] >> 48; 1807 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1808 APInt(80, Rearrange))); 1809 } else if (CurTy->isFP128Ty()) 1810 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1811 APInt(128, Record))); 1812 else if (CurTy->isPPC_FP128Ty()) 1813 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1814 APInt(128, Record))); 1815 else 1816 V = UndefValue::get(CurTy); 1817 break; 1818 } 1819 1820 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1821 if (Record.empty()) 1822 return Error("Invalid record"); 1823 1824 unsigned Size = Record.size(); 1825 SmallVector<Constant*, 16> Elts; 1826 1827 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1828 for (unsigned i = 0; i != Size; ++i) 1829 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1830 STy->getElementType(i))); 1831 V = ConstantStruct::get(STy, Elts); 1832 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1833 Type *EltTy = ATy->getElementType(); 1834 for (unsigned i = 0; i != Size; ++i) 1835 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1836 V = ConstantArray::get(ATy, Elts); 1837 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1838 Type *EltTy = VTy->getElementType(); 1839 for (unsigned i = 0; i != Size; ++i) 1840 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1841 V = ConstantVector::get(Elts); 1842 } else { 1843 V = UndefValue::get(CurTy); 1844 } 1845 break; 1846 } 1847 case bitc::CST_CODE_STRING: // STRING: [values] 1848 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1849 if (Record.empty()) 1850 return Error("Invalid record"); 1851 1852 SmallString<16> Elts(Record.begin(), Record.end()); 1853 V = ConstantDataArray::getString(Context, Elts, 1854 BitCode == bitc::CST_CODE_CSTRING); 1855 break; 1856 } 1857 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1858 if (Record.empty()) 1859 return Error("Invalid record"); 1860 1861 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1862 unsigned Size = Record.size(); 1863 1864 if (EltTy->isIntegerTy(8)) { 1865 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1866 if (isa<VectorType>(CurTy)) 1867 V = ConstantDataVector::get(Context, Elts); 1868 else 1869 V = ConstantDataArray::get(Context, Elts); 1870 } else if (EltTy->isIntegerTy(16)) { 1871 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1872 if (isa<VectorType>(CurTy)) 1873 V = ConstantDataVector::get(Context, Elts); 1874 else 1875 V = ConstantDataArray::get(Context, Elts); 1876 } else if (EltTy->isIntegerTy(32)) { 1877 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1878 if (isa<VectorType>(CurTy)) 1879 V = ConstantDataVector::get(Context, Elts); 1880 else 1881 V = ConstantDataArray::get(Context, Elts); 1882 } else if (EltTy->isIntegerTy(64)) { 1883 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1884 if (isa<VectorType>(CurTy)) 1885 V = ConstantDataVector::get(Context, Elts); 1886 else 1887 V = ConstantDataArray::get(Context, Elts); 1888 } else if (EltTy->isFloatTy()) { 1889 SmallVector<float, 16> Elts(Size); 1890 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1891 if (isa<VectorType>(CurTy)) 1892 V = ConstantDataVector::get(Context, Elts); 1893 else 1894 V = ConstantDataArray::get(Context, Elts); 1895 } else if (EltTy->isDoubleTy()) { 1896 SmallVector<double, 16> Elts(Size); 1897 std::transform(Record.begin(), Record.end(), Elts.begin(), 1898 BitsToDouble); 1899 if (isa<VectorType>(CurTy)) 1900 V = ConstantDataVector::get(Context, Elts); 1901 else 1902 V = ConstantDataArray::get(Context, Elts); 1903 } else { 1904 return Error("Invalid type for value"); 1905 } 1906 break; 1907 } 1908 1909 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1910 if (Record.size() < 3) 1911 return Error("Invalid record"); 1912 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1913 if (Opc < 0) { 1914 V = UndefValue::get(CurTy); // Unknown binop. 1915 } else { 1916 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1917 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1918 unsigned Flags = 0; 1919 if (Record.size() >= 4) { 1920 if (Opc == Instruction::Add || 1921 Opc == Instruction::Sub || 1922 Opc == Instruction::Mul || 1923 Opc == Instruction::Shl) { 1924 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1925 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1926 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1927 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1928 } else if (Opc == Instruction::SDiv || 1929 Opc == Instruction::UDiv || 1930 Opc == Instruction::LShr || 1931 Opc == Instruction::AShr) { 1932 if (Record[3] & (1 << bitc::PEO_EXACT)) 1933 Flags |= SDivOperator::IsExact; 1934 } 1935 } 1936 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1937 } 1938 break; 1939 } 1940 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1941 if (Record.size() < 3) 1942 return Error("Invalid record"); 1943 int Opc = GetDecodedCastOpcode(Record[0]); 1944 if (Opc < 0) { 1945 V = UndefValue::get(CurTy); // Unknown cast. 1946 } else { 1947 Type *OpTy = getTypeByID(Record[1]); 1948 if (!OpTy) 1949 return Error("Invalid record"); 1950 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1951 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1952 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1953 } 1954 break; 1955 } 1956 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1957 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1958 if (Record.size() & 1) 1959 return Error("Invalid record"); 1960 SmallVector<Constant*, 16> Elts; 1961 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1962 Type *ElTy = getTypeByID(Record[i]); 1963 if (!ElTy) 1964 return Error("Invalid record"); 1965 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1966 } 1967 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1968 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1969 BitCode == 1970 bitc::CST_CODE_CE_INBOUNDS_GEP); 1971 break; 1972 } 1973 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1974 if (Record.size() < 3) 1975 return Error("Invalid record"); 1976 1977 Type *SelectorTy = Type::getInt1Ty(Context); 1978 1979 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1980 // vector. Otherwise, it must be a single bit. 1981 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1982 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1983 VTy->getNumElements()); 1984 1985 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1986 SelectorTy), 1987 ValueList.getConstantFwdRef(Record[1],CurTy), 1988 ValueList.getConstantFwdRef(Record[2],CurTy)); 1989 break; 1990 } 1991 case bitc::CST_CODE_CE_EXTRACTELT 1992 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1993 if (Record.size() < 3) 1994 return Error("Invalid record"); 1995 VectorType *OpTy = 1996 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1997 if (!OpTy) 1998 return Error("Invalid record"); 1999 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2000 Constant *Op1 = nullptr; 2001 if (Record.size() == 4) { 2002 Type *IdxTy = getTypeByID(Record[2]); 2003 if (!IdxTy) 2004 return Error("Invalid record"); 2005 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2006 } else // TODO: Remove with llvm 4.0 2007 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2008 if (!Op1) 2009 return Error("Invalid record"); 2010 V = ConstantExpr::getExtractElement(Op0, Op1); 2011 break; 2012 } 2013 case bitc::CST_CODE_CE_INSERTELT 2014 : { // CE_INSERTELT: [opval, opval, opty, opval] 2015 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2016 if (Record.size() < 3 || !OpTy) 2017 return Error("Invalid record"); 2018 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2019 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2020 OpTy->getElementType()); 2021 Constant *Op2 = nullptr; 2022 if (Record.size() == 4) { 2023 Type *IdxTy = getTypeByID(Record[2]); 2024 if (!IdxTy) 2025 return Error("Invalid record"); 2026 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2027 } else // TODO: Remove with llvm 4.0 2028 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2029 if (!Op2) 2030 return Error("Invalid record"); 2031 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2032 break; 2033 } 2034 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2035 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2036 if (Record.size() < 3 || !OpTy) 2037 return Error("Invalid record"); 2038 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2039 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2040 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2041 OpTy->getNumElements()); 2042 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2043 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2044 break; 2045 } 2046 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2047 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2048 VectorType *OpTy = 2049 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2050 if (Record.size() < 4 || !RTy || !OpTy) 2051 return Error("Invalid record"); 2052 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2053 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2054 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2055 RTy->getNumElements()); 2056 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2057 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2058 break; 2059 } 2060 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2061 if (Record.size() < 4) 2062 return Error("Invalid record"); 2063 Type *OpTy = getTypeByID(Record[0]); 2064 if (!OpTy) 2065 return Error("Invalid record"); 2066 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2067 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2068 2069 if (OpTy->isFPOrFPVectorTy()) 2070 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2071 else 2072 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2073 break; 2074 } 2075 // This maintains backward compatibility, pre-asm dialect keywords. 2076 // FIXME: Remove with the 4.0 release. 2077 case bitc::CST_CODE_INLINEASM_OLD: { 2078 if (Record.size() < 2) 2079 return Error("Invalid record"); 2080 std::string AsmStr, ConstrStr; 2081 bool HasSideEffects = Record[0] & 1; 2082 bool IsAlignStack = Record[0] >> 1; 2083 unsigned AsmStrSize = Record[1]; 2084 if (2+AsmStrSize >= Record.size()) 2085 return Error("Invalid record"); 2086 unsigned ConstStrSize = Record[2+AsmStrSize]; 2087 if (3+AsmStrSize+ConstStrSize > Record.size()) 2088 return Error("Invalid record"); 2089 2090 for (unsigned i = 0; i != AsmStrSize; ++i) 2091 AsmStr += (char)Record[2+i]; 2092 for (unsigned i = 0; i != ConstStrSize; ++i) 2093 ConstrStr += (char)Record[3+AsmStrSize+i]; 2094 PointerType *PTy = cast<PointerType>(CurTy); 2095 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2096 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2097 break; 2098 } 2099 // This version adds support for the asm dialect keywords (e.g., 2100 // inteldialect). 2101 case bitc::CST_CODE_INLINEASM: { 2102 if (Record.size() < 2) 2103 return Error("Invalid record"); 2104 std::string AsmStr, ConstrStr; 2105 bool HasSideEffects = Record[0] & 1; 2106 bool IsAlignStack = (Record[0] >> 1) & 1; 2107 unsigned AsmDialect = Record[0] >> 2; 2108 unsigned AsmStrSize = Record[1]; 2109 if (2+AsmStrSize >= Record.size()) 2110 return Error("Invalid record"); 2111 unsigned ConstStrSize = Record[2+AsmStrSize]; 2112 if (3+AsmStrSize+ConstStrSize > Record.size()) 2113 return Error("Invalid record"); 2114 2115 for (unsigned i = 0; i != AsmStrSize; ++i) 2116 AsmStr += (char)Record[2+i]; 2117 for (unsigned i = 0; i != ConstStrSize; ++i) 2118 ConstrStr += (char)Record[3+AsmStrSize+i]; 2119 PointerType *PTy = cast<PointerType>(CurTy); 2120 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2121 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2122 InlineAsm::AsmDialect(AsmDialect)); 2123 break; 2124 } 2125 case bitc::CST_CODE_BLOCKADDRESS:{ 2126 if (Record.size() < 3) 2127 return Error("Invalid record"); 2128 Type *FnTy = getTypeByID(Record[0]); 2129 if (!FnTy) 2130 return Error("Invalid record"); 2131 Function *Fn = 2132 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2133 if (!Fn) 2134 return Error("Invalid record"); 2135 2136 // Don't let Fn get dematerialized. 2137 BlockAddressesTaken.insert(Fn); 2138 2139 // If the function is already parsed we can insert the block address right 2140 // away. 2141 BasicBlock *BB; 2142 unsigned BBID = Record[2]; 2143 if (!BBID) 2144 // Invalid reference to entry block. 2145 return Error("Invalid ID"); 2146 if (!Fn->empty()) { 2147 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2148 for (size_t I = 0, E = BBID; I != E; ++I) { 2149 if (BBI == BBE) 2150 return Error("Invalid ID"); 2151 ++BBI; 2152 } 2153 BB = BBI; 2154 } else { 2155 // Otherwise insert a placeholder and remember it so it can be inserted 2156 // when the function is parsed. 2157 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2158 if (FwdBBs.empty()) 2159 BasicBlockFwdRefQueue.push_back(Fn); 2160 if (FwdBBs.size() < BBID + 1) 2161 FwdBBs.resize(BBID + 1); 2162 if (!FwdBBs[BBID]) 2163 FwdBBs[BBID] = BasicBlock::Create(Context); 2164 BB = FwdBBs[BBID]; 2165 } 2166 V = BlockAddress::get(Fn, BB); 2167 break; 2168 } 2169 } 2170 2171 ValueList.AssignValue(V, NextCstNo); 2172 ++NextCstNo; 2173 } 2174 } 2175 2176 std::error_code BitcodeReader::ParseUseLists() { 2177 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2178 return Error("Invalid record"); 2179 2180 // Read all the records. 2181 SmallVector<uint64_t, 64> Record; 2182 while (1) { 2183 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2184 2185 switch (Entry.Kind) { 2186 case BitstreamEntry::SubBlock: // Handled for us already. 2187 case BitstreamEntry::Error: 2188 return Error("Malformed block"); 2189 case BitstreamEntry::EndBlock: 2190 return std::error_code(); 2191 case BitstreamEntry::Record: 2192 // The interesting case. 2193 break; 2194 } 2195 2196 // Read a use list record. 2197 Record.clear(); 2198 bool IsBB = false; 2199 switch (Stream.readRecord(Entry.ID, Record)) { 2200 default: // Default behavior: unknown type. 2201 break; 2202 case bitc::USELIST_CODE_BB: 2203 IsBB = true; 2204 // fallthrough 2205 case bitc::USELIST_CODE_DEFAULT: { 2206 unsigned RecordLength = Record.size(); 2207 if (RecordLength < 3) 2208 // Records should have at least an ID and two indexes. 2209 return Error("Invalid record"); 2210 unsigned ID = Record.back(); 2211 Record.pop_back(); 2212 2213 Value *V; 2214 if (IsBB) { 2215 assert(ID < FunctionBBs.size() && "Basic block not found"); 2216 V = FunctionBBs[ID]; 2217 } else 2218 V = ValueList[ID]; 2219 unsigned NumUses = 0; 2220 SmallDenseMap<const Use *, unsigned, 16> Order; 2221 for (const Use &U : V->uses()) { 2222 if (++NumUses > Record.size()) 2223 break; 2224 Order[&U] = Record[NumUses - 1]; 2225 } 2226 if (Order.size() != Record.size() || NumUses > Record.size()) 2227 // Mismatches can happen if the functions are being materialized lazily 2228 // (out-of-order), or a value has been upgraded. 2229 break; 2230 2231 V->sortUseList([&](const Use &L, const Use &R) { 2232 return Order.lookup(&L) < Order.lookup(&R); 2233 }); 2234 break; 2235 } 2236 } 2237 } 2238 } 2239 2240 /// When we see the block for metadata, remember where it is and then skip it. 2241 /// This lets us lazily deserialize the metadata. 2242 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2243 // Save the current stream state. 2244 uint64_t CurBit = Stream.GetCurrentBitNo(); 2245 DeferredMetadataInfo.push_back(CurBit); 2246 2247 // Skip over the block for now. 2248 if (Stream.SkipBlock()) 2249 return Error("Invalid record"); 2250 return std::error_code(); 2251 } 2252 2253 std::error_code BitcodeReader::materializeMetadata() { 2254 for (uint64_t BitPos : DeferredMetadataInfo) { 2255 // Move the bit stream to the saved position. 2256 Stream.JumpToBit(BitPos); 2257 if (std::error_code EC = ParseMetadata()) 2258 return EC; 2259 } 2260 DeferredMetadataInfo.clear(); 2261 return std::error_code(); 2262 } 2263 2264 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2265 /// remember where it is and then skip it. This lets us lazily deserialize the 2266 /// functions. 2267 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2268 // Get the function we are talking about. 2269 if (FunctionsWithBodies.empty()) 2270 return Error("Insufficient function protos"); 2271 2272 Function *Fn = FunctionsWithBodies.back(); 2273 FunctionsWithBodies.pop_back(); 2274 2275 // Save the current stream state. 2276 uint64_t CurBit = Stream.GetCurrentBitNo(); 2277 DeferredFunctionInfo[Fn] = CurBit; 2278 2279 // Skip over the function block for now. 2280 if (Stream.SkipBlock()) 2281 return Error("Invalid record"); 2282 return std::error_code(); 2283 } 2284 2285 std::error_code BitcodeReader::GlobalCleanup() { 2286 // Patch the initializers for globals and aliases up. 2287 ResolveGlobalAndAliasInits(); 2288 if (!GlobalInits.empty() || !AliasInits.empty()) 2289 return Error("Malformed global initializer set"); 2290 2291 // Look for intrinsic functions which need to be upgraded at some point 2292 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2293 FI != FE; ++FI) { 2294 Function *NewFn; 2295 if (UpgradeIntrinsicFunction(FI, NewFn)) 2296 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2297 } 2298 2299 // Look for global variables which need to be renamed. 2300 for (Module::global_iterator 2301 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2302 GI != GE;) { 2303 GlobalVariable *GV = GI++; 2304 UpgradeGlobalVariable(GV); 2305 } 2306 2307 // Force deallocation of memory for these vectors to favor the client that 2308 // want lazy deserialization. 2309 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2310 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2311 return std::error_code(); 2312 } 2313 2314 std::error_code BitcodeReader::ParseModule(bool Resume, 2315 bool ShouldLazyLoadMetadata) { 2316 if (Resume) 2317 Stream.JumpToBit(NextUnreadBit); 2318 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2319 return Error("Invalid record"); 2320 2321 SmallVector<uint64_t, 64> Record; 2322 std::vector<std::string> SectionTable; 2323 std::vector<std::string> GCTable; 2324 2325 // Read all the records for this module. 2326 while (1) { 2327 BitstreamEntry Entry = Stream.advance(); 2328 2329 switch (Entry.Kind) { 2330 case BitstreamEntry::Error: 2331 return Error("Malformed block"); 2332 case BitstreamEntry::EndBlock: 2333 return GlobalCleanup(); 2334 2335 case BitstreamEntry::SubBlock: 2336 switch (Entry.ID) { 2337 default: // Skip unknown content. 2338 if (Stream.SkipBlock()) 2339 return Error("Invalid record"); 2340 break; 2341 case bitc::BLOCKINFO_BLOCK_ID: 2342 if (Stream.ReadBlockInfoBlock()) 2343 return Error("Malformed block"); 2344 break; 2345 case bitc::PARAMATTR_BLOCK_ID: 2346 if (std::error_code EC = ParseAttributeBlock()) 2347 return EC; 2348 break; 2349 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2350 if (std::error_code EC = ParseAttributeGroupBlock()) 2351 return EC; 2352 break; 2353 case bitc::TYPE_BLOCK_ID_NEW: 2354 if (std::error_code EC = ParseTypeTable()) 2355 return EC; 2356 break; 2357 case bitc::VALUE_SYMTAB_BLOCK_ID: 2358 if (std::error_code EC = ParseValueSymbolTable()) 2359 return EC; 2360 SeenValueSymbolTable = true; 2361 break; 2362 case bitc::CONSTANTS_BLOCK_ID: 2363 if (std::error_code EC = ParseConstants()) 2364 return EC; 2365 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2366 return EC; 2367 break; 2368 case bitc::METADATA_BLOCK_ID: 2369 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2370 if (std::error_code EC = rememberAndSkipMetadata()) 2371 return EC; 2372 break; 2373 } 2374 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2375 if (std::error_code EC = ParseMetadata()) 2376 return EC; 2377 break; 2378 case bitc::FUNCTION_BLOCK_ID: 2379 // If this is the first function body we've seen, reverse the 2380 // FunctionsWithBodies list. 2381 if (!SeenFirstFunctionBody) { 2382 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2383 if (std::error_code EC = GlobalCleanup()) 2384 return EC; 2385 SeenFirstFunctionBody = true; 2386 } 2387 2388 if (std::error_code EC = RememberAndSkipFunctionBody()) 2389 return EC; 2390 // For streaming bitcode, suspend parsing when we reach the function 2391 // bodies. Subsequent materialization calls will resume it when 2392 // necessary. For streaming, the function bodies must be at the end of 2393 // the bitcode. If the bitcode file is old, the symbol table will be 2394 // at the end instead and will not have been seen yet. In this case, 2395 // just finish the parse now. 2396 if (LazyStreamer && SeenValueSymbolTable) { 2397 NextUnreadBit = Stream.GetCurrentBitNo(); 2398 return std::error_code(); 2399 } 2400 break; 2401 case bitc::USELIST_BLOCK_ID: 2402 if (std::error_code EC = ParseUseLists()) 2403 return EC; 2404 break; 2405 } 2406 continue; 2407 2408 case BitstreamEntry::Record: 2409 // The interesting case. 2410 break; 2411 } 2412 2413 2414 // Read a record. 2415 switch (Stream.readRecord(Entry.ID, Record)) { 2416 default: break; // Default behavior, ignore unknown content. 2417 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2418 if (Record.size() < 1) 2419 return Error("Invalid record"); 2420 // Only version #0 and #1 are supported so far. 2421 unsigned module_version = Record[0]; 2422 switch (module_version) { 2423 default: 2424 return Error("Invalid value"); 2425 case 0: 2426 UseRelativeIDs = false; 2427 break; 2428 case 1: 2429 UseRelativeIDs = true; 2430 break; 2431 } 2432 break; 2433 } 2434 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2435 std::string S; 2436 if (ConvertToString(Record, 0, S)) 2437 return Error("Invalid record"); 2438 TheModule->setTargetTriple(S); 2439 break; 2440 } 2441 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2442 std::string S; 2443 if (ConvertToString(Record, 0, S)) 2444 return Error("Invalid record"); 2445 TheModule->setDataLayout(S); 2446 break; 2447 } 2448 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2449 std::string S; 2450 if (ConvertToString(Record, 0, S)) 2451 return Error("Invalid record"); 2452 TheModule->setModuleInlineAsm(S); 2453 break; 2454 } 2455 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2456 // FIXME: Remove in 4.0. 2457 std::string S; 2458 if (ConvertToString(Record, 0, S)) 2459 return Error("Invalid record"); 2460 // Ignore value. 2461 break; 2462 } 2463 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2464 std::string S; 2465 if (ConvertToString(Record, 0, S)) 2466 return Error("Invalid record"); 2467 SectionTable.push_back(S); 2468 break; 2469 } 2470 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2471 std::string S; 2472 if (ConvertToString(Record, 0, S)) 2473 return Error("Invalid record"); 2474 GCTable.push_back(S); 2475 break; 2476 } 2477 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2478 if (Record.size() < 2) 2479 return Error("Invalid record"); 2480 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2481 unsigned ComdatNameSize = Record[1]; 2482 std::string ComdatName; 2483 ComdatName.reserve(ComdatNameSize); 2484 for (unsigned i = 0; i != ComdatNameSize; ++i) 2485 ComdatName += (char)Record[2 + i]; 2486 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2487 C->setSelectionKind(SK); 2488 ComdatList.push_back(C); 2489 break; 2490 } 2491 // GLOBALVAR: [pointer type, isconst, initid, 2492 // linkage, alignment, section, visibility, threadlocal, 2493 // unnamed_addr, externally_initialized, dllstorageclass, 2494 // comdat] 2495 case bitc::MODULE_CODE_GLOBALVAR: { 2496 if (Record.size() < 6) 2497 return Error("Invalid record"); 2498 Type *Ty = getTypeByID(Record[0]); 2499 if (!Ty) 2500 return Error("Invalid record"); 2501 if (!Ty->isPointerTy()) 2502 return Error("Invalid type for value"); 2503 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2504 Ty = cast<PointerType>(Ty)->getElementType(); 2505 2506 bool isConstant = Record[1]; 2507 uint64_t RawLinkage = Record[3]; 2508 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2509 unsigned Alignment; 2510 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2511 return EC; 2512 std::string Section; 2513 if (Record[5]) { 2514 if (Record[5]-1 >= SectionTable.size()) 2515 return Error("Invalid ID"); 2516 Section = SectionTable[Record[5]-1]; 2517 } 2518 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2519 // Local linkage must have default visibility. 2520 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2521 // FIXME: Change to an error if non-default in 4.0. 2522 Visibility = GetDecodedVisibility(Record[6]); 2523 2524 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2525 if (Record.size() > 7) 2526 TLM = GetDecodedThreadLocalMode(Record[7]); 2527 2528 bool UnnamedAddr = false; 2529 if (Record.size() > 8) 2530 UnnamedAddr = Record[8]; 2531 2532 bool ExternallyInitialized = false; 2533 if (Record.size() > 9) 2534 ExternallyInitialized = Record[9]; 2535 2536 GlobalVariable *NewGV = 2537 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2538 TLM, AddressSpace, ExternallyInitialized); 2539 NewGV->setAlignment(Alignment); 2540 if (!Section.empty()) 2541 NewGV->setSection(Section); 2542 NewGV->setVisibility(Visibility); 2543 NewGV->setUnnamedAddr(UnnamedAddr); 2544 2545 if (Record.size() > 10) 2546 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2547 else 2548 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2549 2550 ValueList.push_back(NewGV); 2551 2552 // Remember which value to use for the global initializer. 2553 if (unsigned InitID = Record[2]) 2554 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2555 2556 if (Record.size() > 11) { 2557 if (unsigned ComdatID = Record[11]) { 2558 assert(ComdatID <= ComdatList.size()); 2559 NewGV->setComdat(ComdatList[ComdatID - 1]); 2560 } 2561 } else if (hasImplicitComdat(RawLinkage)) { 2562 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2563 } 2564 break; 2565 } 2566 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2567 // alignment, section, visibility, gc, unnamed_addr, 2568 // prologuedata, dllstorageclass, comdat, prefixdata] 2569 case bitc::MODULE_CODE_FUNCTION: { 2570 if (Record.size() < 8) 2571 return Error("Invalid record"); 2572 Type *Ty = getTypeByID(Record[0]); 2573 if (!Ty) 2574 return Error("Invalid record"); 2575 if (!Ty->isPointerTy()) 2576 return Error("Invalid type for value"); 2577 FunctionType *FTy = 2578 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2579 if (!FTy) 2580 return Error("Invalid type for value"); 2581 2582 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2583 "", TheModule); 2584 2585 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2586 bool isProto = Record[2]; 2587 uint64_t RawLinkage = Record[3]; 2588 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2589 Func->setAttributes(getAttributes(Record[4])); 2590 2591 unsigned Alignment; 2592 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2593 return EC; 2594 Func->setAlignment(Alignment); 2595 if (Record[6]) { 2596 if (Record[6]-1 >= SectionTable.size()) 2597 return Error("Invalid ID"); 2598 Func->setSection(SectionTable[Record[6]-1]); 2599 } 2600 // Local linkage must have default visibility. 2601 if (!Func->hasLocalLinkage()) 2602 // FIXME: Change to an error if non-default in 4.0. 2603 Func->setVisibility(GetDecodedVisibility(Record[7])); 2604 if (Record.size() > 8 && Record[8]) { 2605 if (Record[8]-1 > GCTable.size()) 2606 return Error("Invalid ID"); 2607 Func->setGC(GCTable[Record[8]-1].c_str()); 2608 } 2609 bool UnnamedAddr = false; 2610 if (Record.size() > 9) 2611 UnnamedAddr = Record[9]; 2612 Func->setUnnamedAddr(UnnamedAddr); 2613 if (Record.size() > 10 && Record[10] != 0) 2614 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2615 2616 if (Record.size() > 11) 2617 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2618 else 2619 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2620 2621 if (Record.size() > 12) { 2622 if (unsigned ComdatID = Record[12]) { 2623 assert(ComdatID <= ComdatList.size()); 2624 Func->setComdat(ComdatList[ComdatID - 1]); 2625 } 2626 } else if (hasImplicitComdat(RawLinkage)) { 2627 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2628 } 2629 2630 if (Record.size() > 13 && Record[13] != 0) 2631 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2632 2633 ValueList.push_back(Func); 2634 2635 // If this is a function with a body, remember the prototype we are 2636 // creating now, so that we can match up the body with them later. 2637 if (!isProto) { 2638 Func->setIsMaterializable(true); 2639 FunctionsWithBodies.push_back(Func); 2640 if (LazyStreamer) 2641 DeferredFunctionInfo[Func] = 0; 2642 } 2643 break; 2644 } 2645 // ALIAS: [alias type, aliasee val#, linkage] 2646 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2647 case bitc::MODULE_CODE_ALIAS: { 2648 if (Record.size() < 3) 2649 return Error("Invalid record"); 2650 Type *Ty = getTypeByID(Record[0]); 2651 if (!Ty) 2652 return Error("Invalid record"); 2653 auto *PTy = dyn_cast<PointerType>(Ty); 2654 if (!PTy) 2655 return Error("Invalid type for value"); 2656 2657 auto *NewGA = 2658 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2659 getDecodedLinkage(Record[2]), "", TheModule); 2660 // Old bitcode files didn't have visibility field. 2661 // Local linkage must have default visibility. 2662 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2663 // FIXME: Change to an error if non-default in 4.0. 2664 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2665 if (Record.size() > 4) 2666 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2667 else 2668 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2669 if (Record.size() > 5) 2670 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2671 if (Record.size() > 6) 2672 NewGA->setUnnamedAddr(Record[6]); 2673 ValueList.push_back(NewGA); 2674 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2675 break; 2676 } 2677 /// MODULE_CODE_PURGEVALS: [numvals] 2678 case bitc::MODULE_CODE_PURGEVALS: 2679 // Trim down the value list to the specified size. 2680 if (Record.size() < 1 || Record[0] > ValueList.size()) 2681 return Error("Invalid record"); 2682 ValueList.shrinkTo(Record[0]); 2683 break; 2684 } 2685 Record.clear(); 2686 } 2687 } 2688 2689 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 2690 bool ShouldLazyLoadMetadata) { 2691 TheModule = nullptr; 2692 2693 if (std::error_code EC = InitStream()) 2694 return EC; 2695 2696 // Sniff for the signature. 2697 if (Stream.Read(8) != 'B' || 2698 Stream.Read(8) != 'C' || 2699 Stream.Read(4) != 0x0 || 2700 Stream.Read(4) != 0xC || 2701 Stream.Read(4) != 0xE || 2702 Stream.Read(4) != 0xD) 2703 return Error("Invalid bitcode signature"); 2704 2705 // We expect a number of well-defined blocks, though we don't necessarily 2706 // need to understand them all. 2707 while (1) { 2708 if (Stream.AtEndOfStream()) 2709 return std::error_code(); 2710 2711 BitstreamEntry Entry = 2712 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2713 2714 switch (Entry.Kind) { 2715 case BitstreamEntry::Error: 2716 return Error("Malformed block"); 2717 case BitstreamEntry::EndBlock: 2718 return std::error_code(); 2719 2720 case BitstreamEntry::SubBlock: 2721 switch (Entry.ID) { 2722 case bitc::BLOCKINFO_BLOCK_ID: 2723 if (Stream.ReadBlockInfoBlock()) 2724 return Error("Malformed block"); 2725 break; 2726 case bitc::MODULE_BLOCK_ID: 2727 // Reject multiple MODULE_BLOCK's in a single bitstream. 2728 if (TheModule) 2729 return Error("Invalid multiple blocks"); 2730 TheModule = M; 2731 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 2732 return EC; 2733 if (LazyStreamer) 2734 return std::error_code(); 2735 break; 2736 default: 2737 if (Stream.SkipBlock()) 2738 return Error("Invalid record"); 2739 break; 2740 } 2741 continue; 2742 case BitstreamEntry::Record: 2743 // There should be no records in the top-level of blocks. 2744 2745 // The ranlib in Xcode 4 will align archive members by appending newlines 2746 // to the end of them. If this file size is a multiple of 4 but not 8, we 2747 // have to read and ignore these final 4 bytes :-( 2748 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2749 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2750 Stream.AtEndOfStream()) 2751 return std::error_code(); 2752 2753 return Error("Invalid record"); 2754 } 2755 } 2756 } 2757 2758 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2759 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2760 return Error("Invalid record"); 2761 2762 SmallVector<uint64_t, 64> Record; 2763 2764 std::string Triple; 2765 // Read all the records for this module. 2766 while (1) { 2767 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2768 2769 switch (Entry.Kind) { 2770 case BitstreamEntry::SubBlock: // Handled for us already. 2771 case BitstreamEntry::Error: 2772 return Error("Malformed block"); 2773 case BitstreamEntry::EndBlock: 2774 return Triple; 2775 case BitstreamEntry::Record: 2776 // The interesting case. 2777 break; 2778 } 2779 2780 // Read a record. 2781 switch (Stream.readRecord(Entry.ID, Record)) { 2782 default: break; // Default behavior, ignore unknown content. 2783 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2784 std::string S; 2785 if (ConvertToString(Record, 0, S)) 2786 return Error("Invalid record"); 2787 Triple = S; 2788 break; 2789 } 2790 } 2791 Record.clear(); 2792 } 2793 llvm_unreachable("Exit infinite loop"); 2794 } 2795 2796 ErrorOr<std::string> BitcodeReader::parseTriple() { 2797 if (std::error_code EC = InitStream()) 2798 return EC; 2799 2800 // Sniff for the signature. 2801 if (Stream.Read(8) != 'B' || 2802 Stream.Read(8) != 'C' || 2803 Stream.Read(4) != 0x0 || 2804 Stream.Read(4) != 0xC || 2805 Stream.Read(4) != 0xE || 2806 Stream.Read(4) != 0xD) 2807 return Error("Invalid bitcode signature"); 2808 2809 // We expect a number of well-defined blocks, though we don't necessarily 2810 // need to understand them all. 2811 while (1) { 2812 BitstreamEntry Entry = Stream.advance(); 2813 2814 switch (Entry.Kind) { 2815 case BitstreamEntry::Error: 2816 return Error("Malformed block"); 2817 case BitstreamEntry::EndBlock: 2818 return std::error_code(); 2819 2820 case BitstreamEntry::SubBlock: 2821 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2822 return parseModuleTriple(); 2823 2824 // Ignore other sub-blocks. 2825 if (Stream.SkipBlock()) 2826 return Error("Malformed block"); 2827 continue; 2828 2829 case BitstreamEntry::Record: 2830 Stream.skipRecord(Entry.ID); 2831 continue; 2832 } 2833 } 2834 } 2835 2836 /// ParseMetadataAttachment - Parse metadata attachments. 2837 std::error_code BitcodeReader::ParseMetadataAttachment() { 2838 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2839 return Error("Invalid record"); 2840 2841 SmallVector<uint64_t, 64> Record; 2842 while (1) { 2843 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2844 2845 switch (Entry.Kind) { 2846 case BitstreamEntry::SubBlock: // Handled for us already. 2847 case BitstreamEntry::Error: 2848 return Error("Malformed block"); 2849 case BitstreamEntry::EndBlock: 2850 return std::error_code(); 2851 case BitstreamEntry::Record: 2852 // The interesting case. 2853 break; 2854 } 2855 2856 // Read a metadata attachment record. 2857 Record.clear(); 2858 switch (Stream.readRecord(Entry.ID, Record)) { 2859 default: // Default behavior: ignore. 2860 break; 2861 case bitc::METADATA_ATTACHMENT: { 2862 unsigned RecordLength = Record.size(); 2863 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2864 return Error("Invalid record"); 2865 Instruction *Inst = InstructionList[Record[0]]; 2866 for (unsigned i = 1; i != RecordLength; i = i+2) { 2867 unsigned Kind = Record[i]; 2868 DenseMap<unsigned, unsigned>::iterator I = 2869 MDKindMap.find(Kind); 2870 if (I == MDKindMap.end()) 2871 return Error("Invalid ID"); 2872 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2873 if (isa<LocalAsMetadata>(Node)) 2874 // Drop the attachment. This used to be legal, but there's no 2875 // upgrade path. 2876 break; 2877 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2878 if (I->second == LLVMContext::MD_tbaa) 2879 InstsWithTBAATag.push_back(Inst); 2880 } 2881 break; 2882 } 2883 } 2884 } 2885 } 2886 2887 /// ParseFunctionBody - Lazily parse the specified function body block. 2888 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2889 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2890 return Error("Invalid record"); 2891 2892 InstructionList.clear(); 2893 unsigned ModuleValueListSize = ValueList.size(); 2894 unsigned ModuleMDValueListSize = MDValueList.size(); 2895 2896 // Add all the function arguments to the value table. 2897 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2898 ValueList.push_back(I); 2899 2900 unsigned NextValueNo = ValueList.size(); 2901 BasicBlock *CurBB = nullptr; 2902 unsigned CurBBNo = 0; 2903 2904 DebugLoc LastLoc; 2905 auto getLastInstruction = [&]() -> Instruction * { 2906 if (CurBB && !CurBB->empty()) 2907 return &CurBB->back(); 2908 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2909 !FunctionBBs[CurBBNo - 1]->empty()) 2910 return &FunctionBBs[CurBBNo - 1]->back(); 2911 return nullptr; 2912 }; 2913 2914 // Read all the records. 2915 SmallVector<uint64_t, 64> Record; 2916 while (1) { 2917 BitstreamEntry Entry = Stream.advance(); 2918 2919 switch (Entry.Kind) { 2920 case BitstreamEntry::Error: 2921 return Error("Malformed block"); 2922 case BitstreamEntry::EndBlock: 2923 goto OutOfRecordLoop; 2924 2925 case BitstreamEntry::SubBlock: 2926 switch (Entry.ID) { 2927 default: // Skip unknown content. 2928 if (Stream.SkipBlock()) 2929 return Error("Invalid record"); 2930 break; 2931 case bitc::CONSTANTS_BLOCK_ID: 2932 if (std::error_code EC = ParseConstants()) 2933 return EC; 2934 NextValueNo = ValueList.size(); 2935 break; 2936 case bitc::VALUE_SYMTAB_BLOCK_ID: 2937 if (std::error_code EC = ParseValueSymbolTable()) 2938 return EC; 2939 break; 2940 case bitc::METADATA_ATTACHMENT_ID: 2941 if (std::error_code EC = ParseMetadataAttachment()) 2942 return EC; 2943 break; 2944 case bitc::METADATA_BLOCK_ID: 2945 if (std::error_code EC = ParseMetadata()) 2946 return EC; 2947 break; 2948 case bitc::USELIST_BLOCK_ID: 2949 if (std::error_code EC = ParseUseLists()) 2950 return EC; 2951 break; 2952 } 2953 continue; 2954 2955 case BitstreamEntry::Record: 2956 // The interesting case. 2957 break; 2958 } 2959 2960 // Read a record. 2961 Record.clear(); 2962 Instruction *I = nullptr; 2963 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2964 switch (BitCode) { 2965 default: // Default behavior: reject 2966 return Error("Invalid value"); 2967 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2968 if (Record.size() < 1 || Record[0] == 0) 2969 return Error("Invalid record"); 2970 // Create all the basic blocks for the function. 2971 FunctionBBs.resize(Record[0]); 2972 2973 // See if anything took the address of blocks in this function. 2974 auto BBFRI = BasicBlockFwdRefs.find(F); 2975 if (BBFRI == BasicBlockFwdRefs.end()) { 2976 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2977 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2978 } else { 2979 auto &BBRefs = BBFRI->second; 2980 // Check for invalid basic block references. 2981 if (BBRefs.size() > FunctionBBs.size()) 2982 return Error("Invalid ID"); 2983 assert(!BBRefs.empty() && "Unexpected empty array"); 2984 assert(!BBRefs.front() && "Invalid reference to entry block"); 2985 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2986 ++I) 2987 if (I < RE && BBRefs[I]) { 2988 BBRefs[I]->insertInto(F); 2989 FunctionBBs[I] = BBRefs[I]; 2990 } else { 2991 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2992 } 2993 2994 // Erase from the table. 2995 BasicBlockFwdRefs.erase(BBFRI); 2996 } 2997 2998 CurBB = FunctionBBs[0]; 2999 continue; 3000 } 3001 3002 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3003 // This record indicates that the last instruction is at the same 3004 // location as the previous instruction with a location. 3005 I = getLastInstruction(); 3006 3007 if (!I) 3008 return Error("Invalid record"); 3009 I->setDebugLoc(LastLoc); 3010 I = nullptr; 3011 continue; 3012 3013 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3014 I = getLastInstruction(); 3015 if (!I || Record.size() < 4) 3016 return Error("Invalid record"); 3017 3018 unsigned Line = Record[0], Col = Record[1]; 3019 unsigned ScopeID = Record[2], IAID = Record[3]; 3020 3021 MDNode *Scope = nullptr, *IA = nullptr; 3022 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3023 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3024 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3025 I->setDebugLoc(LastLoc); 3026 I = nullptr; 3027 continue; 3028 } 3029 3030 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3031 unsigned OpNum = 0; 3032 Value *LHS, *RHS; 3033 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3034 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3035 OpNum+1 > Record.size()) 3036 return Error("Invalid record"); 3037 3038 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3039 if (Opc == -1) 3040 return Error("Invalid record"); 3041 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3042 InstructionList.push_back(I); 3043 if (OpNum < Record.size()) { 3044 if (Opc == Instruction::Add || 3045 Opc == Instruction::Sub || 3046 Opc == Instruction::Mul || 3047 Opc == Instruction::Shl) { 3048 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3049 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3050 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3051 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3052 } else if (Opc == Instruction::SDiv || 3053 Opc == Instruction::UDiv || 3054 Opc == Instruction::LShr || 3055 Opc == Instruction::AShr) { 3056 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3057 cast<BinaryOperator>(I)->setIsExact(true); 3058 } else if (isa<FPMathOperator>(I)) { 3059 FastMathFlags FMF; 3060 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3061 FMF.setUnsafeAlgebra(); 3062 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3063 FMF.setNoNaNs(); 3064 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3065 FMF.setNoInfs(); 3066 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3067 FMF.setNoSignedZeros(); 3068 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3069 FMF.setAllowReciprocal(); 3070 if (FMF.any()) 3071 I->setFastMathFlags(FMF); 3072 } 3073 3074 } 3075 break; 3076 } 3077 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3078 unsigned OpNum = 0; 3079 Value *Op; 3080 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3081 OpNum+2 != Record.size()) 3082 return Error("Invalid record"); 3083 3084 Type *ResTy = getTypeByID(Record[OpNum]); 3085 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3086 if (Opc == -1 || !ResTy) 3087 return Error("Invalid record"); 3088 Instruction *Temp = nullptr; 3089 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3090 if (Temp) { 3091 InstructionList.push_back(Temp); 3092 CurBB->getInstList().push_back(Temp); 3093 } 3094 } else { 3095 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3096 } 3097 InstructionList.push_back(I); 3098 break; 3099 } 3100 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3101 case bitc::FUNC_CODE_INST_GEP_OLD: 3102 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3103 unsigned OpNum = 0; 3104 3105 Type *Ty; 3106 bool InBounds; 3107 3108 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3109 InBounds = Record[OpNum++]; 3110 Ty = getTypeByID(Record[OpNum++]); 3111 } else { 3112 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3113 Ty = nullptr; 3114 } 3115 3116 Value *BasePtr; 3117 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3118 return Error("Invalid record"); 3119 3120 SmallVector<Value*, 16> GEPIdx; 3121 while (OpNum != Record.size()) { 3122 Value *Op; 3123 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3124 return Error("Invalid record"); 3125 GEPIdx.push_back(Op); 3126 } 3127 3128 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3129 (void)Ty; 3130 assert(!Ty || Ty == cast<GetElementPtrInst>(I)->getSourceElementType()); 3131 InstructionList.push_back(I); 3132 if (InBounds) 3133 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3134 break; 3135 } 3136 3137 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3138 // EXTRACTVAL: [opty, opval, n x indices] 3139 unsigned OpNum = 0; 3140 Value *Agg; 3141 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3142 return Error("Invalid record"); 3143 3144 SmallVector<unsigned, 4> EXTRACTVALIdx; 3145 Type *CurTy = Agg->getType(); 3146 for (unsigned RecSize = Record.size(); 3147 OpNum != RecSize; ++OpNum) { 3148 bool IsArray = CurTy->isArrayTy(); 3149 bool IsStruct = CurTy->isStructTy(); 3150 uint64_t Index = Record[OpNum]; 3151 3152 if (!IsStruct && !IsArray) 3153 return Error("EXTRACTVAL: Invalid type"); 3154 if ((unsigned)Index != Index) 3155 return Error("Invalid value"); 3156 if (IsStruct && Index >= CurTy->subtypes().size()) 3157 return Error("EXTRACTVAL: Invalid struct index"); 3158 if (IsArray && Index >= CurTy->getArrayNumElements()) 3159 return Error("EXTRACTVAL: Invalid array index"); 3160 EXTRACTVALIdx.push_back((unsigned)Index); 3161 3162 if (IsStruct) 3163 CurTy = CurTy->subtypes()[Index]; 3164 else 3165 CurTy = CurTy->subtypes()[0]; 3166 } 3167 3168 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3169 InstructionList.push_back(I); 3170 break; 3171 } 3172 3173 case bitc::FUNC_CODE_INST_INSERTVAL: { 3174 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3175 unsigned OpNum = 0; 3176 Value *Agg; 3177 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3178 return Error("Invalid record"); 3179 Value *Val; 3180 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3181 return Error("Invalid record"); 3182 3183 SmallVector<unsigned, 4> INSERTVALIdx; 3184 Type *CurTy = Agg->getType(); 3185 for (unsigned RecSize = Record.size(); 3186 OpNum != RecSize; ++OpNum) { 3187 bool IsArray = CurTy->isArrayTy(); 3188 bool IsStruct = CurTy->isStructTy(); 3189 uint64_t Index = Record[OpNum]; 3190 3191 if (!IsStruct && !IsArray) 3192 return Error("INSERTVAL: Invalid type"); 3193 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3194 return Error("Invalid type"); 3195 if ((unsigned)Index != Index) 3196 return Error("Invalid value"); 3197 if (IsStruct && Index >= CurTy->subtypes().size()) 3198 return Error("INSERTVAL: Invalid struct index"); 3199 if (IsArray && Index >= CurTy->getArrayNumElements()) 3200 return Error("INSERTVAL: Invalid array index"); 3201 3202 INSERTVALIdx.push_back((unsigned)Index); 3203 if (IsStruct) 3204 CurTy = CurTy->subtypes()[Index]; 3205 else 3206 CurTy = CurTy->subtypes()[0]; 3207 } 3208 3209 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3210 InstructionList.push_back(I); 3211 break; 3212 } 3213 3214 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3215 // obsolete form of select 3216 // handles select i1 ... in old bitcode 3217 unsigned OpNum = 0; 3218 Value *TrueVal, *FalseVal, *Cond; 3219 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3220 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3221 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3222 return Error("Invalid record"); 3223 3224 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3225 InstructionList.push_back(I); 3226 break; 3227 } 3228 3229 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3230 // new form of select 3231 // handles select i1 or select [N x i1] 3232 unsigned OpNum = 0; 3233 Value *TrueVal, *FalseVal, *Cond; 3234 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3235 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3236 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3237 return Error("Invalid record"); 3238 3239 // select condition can be either i1 or [N x i1] 3240 if (VectorType* vector_type = 3241 dyn_cast<VectorType>(Cond->getType())) { 3242 // expect <n x i1> 3243 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3244 return Error("Invalid type for value"); 3245 } else { 3246 // expect i1 3247 if (Cond->getType() != Type::getInt1Ty(Context)) 3248 return Error("Invalid type for value"); 3249 } 3250 3251 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3252 InstructionList.push_back(I); 3253 break; 3254 } 3255 3256 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3257 unsigned OpNum = 0; 3258 Value *Vec, *Idx; 3259 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3260 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3261 return Error("Invalid record"); 3262 I = ExtractElementInst::Create(Vec, Idx); 3263 InstructionList.push_back(I); 3264 break; 3265 } 3266 3267 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3268 unsigned OpNum = 0; 3269 Value *Vec, *Elt, *Idx; 3270 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3271 popValue(Record, OpNum, NextValueNo, 3272 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3273 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3274 return Error("Invalid record"); 3275 I = InsertElementInst::Create(Vec, Elt, Idx); 3276 InstructionList.push_back(I); 3277 break; 3278 } 3279 3280 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3281 unsigned OpNum = 0; 3282 Value *Vec1, *Vec2, *Mask; 3283 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3284 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3285 return Error("Invalid record"); 3286 3287 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3288 return Error("Invalid record"); 3289 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3290 InstructionList.push_back(I); 3291 break; 3292 } 3293 3294 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3295 // Old form of ICmp/FCmp returning bool 3296 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3297 // both legal on vectors but had different behaviour. 3298 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3299 // FCmp/ICmp returning bool or vector of bool 3300 3301 unsigned OpNum = 0; 3302 Value *LHS, *RHS; 3303 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3304 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3305 OpNum+1 != Record.size()) 3306 return Error("Invalid record"); 3307 3308 if (LHS->getType()->isFPOrFPVectorTy()) 3309 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3310 else 3311 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3312 InstructionList.push_back(I); 3313 break; 3314 } 3315 3316 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3317 { 3318 unsigned Size = Record.size(); 3319 if (Size == 0) { 3320 I = ReturnInst::Create(Context); 3321 InstructionList.push_back(I); 3322 break; 3323 } 3324 3325 unsigned OpNum = 0; 3326 Value *Op = nullptr; 3327 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3328 return Error("Invalid record"); 3329 if (OpNum != Record.size()) 3330 return Error("Invalid record"); 3331 3332 I = ReturnInst::Create(Context, Op); 3333 InstructionList.push_back(I); 3334 break; 3335 } 3336 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3337 if (Record.size() != 1 && Record.size() != 3) 3338 return Error("Invalid record"); 3339 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3340 if (!TrueDest) 3341 return Error("Invalid record"); 3342 3343 if (Record.size() == 1) { 3344 I = BranchInst::Create(TrueDest); 3345 InstructionList.push_back(I); 3346 } 3347 else { 3348 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3349 Value *Cond = getValue(Record, 2, NextValueNo, 3350 Type::getInt1Ty(Context)); 3351 if (!FalseDest || !Cond) 3352 return Error("Invalid record"); 3353 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3354 InstructionList.push_back(I); 3355 } 3356 break; 3357 } 3358 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3359 // Check magic 3360 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3361 // "New" SwitchInst format with case ranges. The changes to write this 3362 // format were reverted but we still recognize bitcode that uses it. 3363 // Hopefully someday we will have support for case ranges and can use 3364 // this format again. 3365 3366 Type *OpTy = getTypeByID(Record[1]); 3367 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3368 3369 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3370 BasicBlock *Default = getBasicBlock(Record[3]); 3371 if (!OpTy || !Cond || !Default) 3372 return Error("Invalid record"); 3373 3374 unsigned NumCases = Record[4]; 3375 3376 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3377 InstructionList.push_back(SI); 3378 3379 unsigned CurIdx = 5; 3380 for (unsigned i = 0; i != NumCases; ++i) { 3381 SmallVector<ConstantInt*, 1> CaseVals; 3382 unsigned NumItems = Record[CurIdx++]; 3383 for (unsigned ci = 0; ci != NumItems; ++ci) { 3384 bool isSingleNumber = Record[CurIdx++]; 3385 3386 APInt Low; 3387 unsigned ActiveWords = 1; 3388 if (ValueBitWidth > 64) 3389 ActiveWords = Record[CurIdx++]; 3390 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3391 ValueBitWidth); 3392 CurIdx += ActiveWords; 3393 3394 if (!isSingleNumber) { 3395 ActiveWords = 1; 3396 if (ValueBitWidth > 64) 3397 ActiveWords = Record[CurIdx++]; 3398 APInt High = 3399 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3400 ValueBitWidth); 3401 CurIdx += ActiveWords; 3402 3403 // FIXME: It is not clear whether values in the range should be 3404 // compared as signed or unsigned values. The partially 3405 // implemented changes that used this format in the past used 3406 // unsigned comparisons. 3407 for ( ; Low.ule(High); ++Low) 3408 CaseVals.push_back(ConstantInt::get(Context, Low)); 3409 } else 3410 CaseVals.push_back(ConstantInt::get(Context, Low)); 3411 } 3412 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3413 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3414 cve = CaseVals.end(); cvi != cve; ++cvi) 3415 SI->addCase(*cvi, DestBB); 3416 } 3417 I = SI; 3418 break; 3419 } 3420 3421 // Old SwitchInst format without case ranges. 3422 3423 if (Record.size() < 3 || (Record.size() & 1) == 0) 3424 return Error("Invalid record"); 3425 Type *OpTy = getTypeByID(Record[0]); 3426 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3427 BasicBlock *Default = getBasicBlock(Record[2]); 3428 if (!OpTy || !Cond || !Default) 3429 return Error("Invalid record"); 3430 unsigned NumCases = (Record.size()-3)/2; 3431 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3432 InstructionList.push_back(SI); 3433 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3434 ConstantInt *CaseVal = 3435 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3436 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3437 if (!CaseVal || !DestBB) { 3438 delete SI; 3439 return Error("Invalid record"); 3440 } 3441 SI->addCase(CaseVal, DestBB); 3442 } 3443 I = SI; 3444 break; 3445 } 3446 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3447 if (Record.size() < 2) 3448 return Error("Invalid record"); 3449 Type *OpTy = getTypeByID(Record[0]); 3450 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3451 if (!OpTy || !Address) 3452 return Error("Invalid record"); 3453 unsigned NumDests = Record.size()-2; 3454 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3455 InstructionList.push_back(IBI); 3456 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3457 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3458 IBI->addDestination(DestBB); 3459 } else { 3460 delete IBI; 3461 return Error("Invalid record"); 3462 } 3463 } 3464 I = IBI; 3465 break; 3466 } 3467 3468 case bitc::FUNC_CODE_INST_INVOKE: { 3469 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3470 if (Record.size() < 4) 3471 return Error("Invalid record"); 3472 AttributeSet PAL = getAttributes(Record[0]); 3473 unsigned CCInfo = Record[1]; 3474 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3475 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3476 3477 unsigned OpNum = 4; 3478 Value *Callee; 3479 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3480 return Error("Invalid record"); 3481 3482 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3483 FunctionType *FTy = !CalleeTy ? nullptr : 3484 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3485 3486 // Check that the right number of fixed parameters are here. 3487 if (!FTy || !NormalBB || !UnwindBB || 3488 Record.size() < OpNum+FTy->getNumParams()) 3489 return Error("Invalid record"); 3490 3491 SmallVector<Value*, 16> Ops; 3492 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3493 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3494 FTy->getParamType(i))); 3495 if (!Ops.back()) 3496 return Error("Invalid record"); 3497 } 3498 3499 if (!FTy->isVarArg()) { 3500 if (Record.size() != OpNum) 3501 return Error("Invalid record"); 3502 } else { 3503 // Read type/value pairs for varargs params. 3504 while (OpNum != Record.size()) { 3505 Value *Op; 3506 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3507 return Error("Invalid record"); 3508 Ops.push_back(Op); 3509 } 3510 } 3511 3512 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3513 InstructionList.push_back(I); 3514 cast<InvokeInst>(I)->setCallingConv( 3515 static_cast<CallingConv::ID>(CCInfo)); 3516 cast<InvokeInst>(I)->setAttributes(PAL); 3517 break; 3518 } 3519 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3520 unsigned Idx = 0; 3521 Value *Val = nullptr; 3522 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3523 return Error("Invalid record"); 3524 I = ResumeInst::Create(Val); 3525 InstructionList.push_back(I); 3526 break; 3527 } 3528 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3529 I = new UnreachableInst(Context); 3530 InstructionList.push_back(I); 3531 break; 3532 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3533 if (Record.size() < 1 || ((Record.size()-1)&1)) 3534 return Error("Invalid record"); 3535 Type *Ty = getTypeByID(Record[0]); 3536 if (!Ty) 3537 return Error("Invalid record"); 3538 3539 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3540 InstructionList.push_back(PN); 3541 3542 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3543 Value *V; 3544 // With the new function encoding, it is possible that operands have 3545 // negative IDs (for forward references). Use a signed VBR 3546 // representation to keep the encoding small. 3547 if (UseRelativeIDs) 3548 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3549 else 3550 V = getValue(Record, 1+i, NextValueNo, Ty); 3551 BasicBlock *BB = getBasicBlock(Record[2+i]); 3552 if (!V || !BB) 3553 return Error("Invalid record"); 3554 PN->addIncoming(V, BB); 3555 } 3556 I = PN; 3557 break; 3558 } 3559 3560 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3561 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3562 unsigned Idx = 0; 3563 if (Record.size() < 4) 3564 return Error("Invalid record"); 3565 Type *Ty = getTypeByID(Record[Idx++]); 3566 if (!Ty) 3567 return Error("Invalid record"); 3568 Value *PersFn = nullptr; 3569 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3570 return Error("Invalid record"); 3571 3572 bool IsCleanup = !!Record[Idx++]; 3573 unsigned NumClauses = Record[Idx++]; 3574 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3575 LP->setCleanup(IsCleanup); 3576 for (unsigned J = 0; J != NumClauses; ++J) { 3577 LandingPadInst::ClauseType CT = 3578 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3579 Value *Val; 3580 3581 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3582 delete LP; 3583 return Error("Invalid record"); 3584 } 3585 3586 assert((CT != LandingPadInst::Catch || 3587 !isa<ArrayType>(Val->getType())) && 3588 "Catch clause has a invalid type!"); 3589 assert((CT != LandingPadInst::Filter || 3590 isa<ArrayType>(Val->getType())) && 3591 "Filter clause has invalid type!"); 3592 LP->addClause(cast<Constant>(Val)); 3593 } 3594 3595 I = LP; 3596 InstructionList.push_back(I); 3597 break; 3598 } 3599 3600 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3601 if (Record.size() != 4) 3602 return Error("Invalid record"); 3603 PointerType *Ty = 3604 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3605 Type *OpTy = getTypeByID(Record[1]); 3606 Value *Size = getFnValueByID(Record[2], OpTy); 3607 uint64_t AlignRecord = Record[3]; 3608 const uint64_t InAllocaMask = uint64_t(1) << 5; 3609 bool InAlloca = AlignRecord & InAllocaMask; 3610 unsigned Align; 3611 if (std::error_code EC = 3612 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3613 return EC; 3614 } 3615 if (!Ty || !Size) 3616 return Error("Invalid record"); 3617 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3618 AI->setUsedWithInAlloca(InAlloca); 3619 I = AI; 3620 InstructionList.push_back(I); 3621 break; 3622 } 3623 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3624 unsigned OpNum = 0; 3625 Value *Op; 3626 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3627 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3628 return Error("Invalid record"); 3629 3630 Type *Ty = nullptr; 3631 if (OpNum + 3 == Record.size()) 3632 Ty = getTypeByID(Record[OpNum++]); 3633 3634 unsigned Align; 3635 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3636 return EC; 3637 I = new LoadInst(Op, "", Record[OpNum+1], Align); 3638 3639 (void)Ty; 3640 assert((!Ty || Ty == I->getType()) && 3641 "Explicit type doesn't match pointee type of the first operand"); 3642 3643 InstructionList.push_back(I); 3644 break; 3645 } 3646 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3647 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3648 unsigned OpNum = 0; 3649 Value *Op; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3651 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 3652 return Error("Invalid record"); 3653 3654 Type *Ty = nullptr; 3655 if (OpNum + 5 == Record.size()) 3656 Ty = getTypeByID(Record[OpNum++]); 3657 3658 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3659 if (Ordering == NotAtomic || Ordering == Release || 3660 Ordering == AcquireRelease) 3661 return Error("Invalid record"); 3662 if (Ordering != NotAtomic && Record[OpNum] == 0) 3663 return Error("Invalid record"); 3664 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3665 3666 unsigned Align; 3667 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3668 return EC; 3669 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 3670 3671 (void)Ty; 3672 assert((!Ty || Ty == I->getType()) && 3673 "Explicit type doesn't match pointee type of the first operand"); 3674 3675 InstructionList.push_back(I); 3676 break; 3677 } 3678 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3679 unsigned OpNum = 0; 3680 Value *Val, *Ptr; 3681 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3682 popValue(Record, OpNum, NextValueNo, 3683 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3684 OpNum+2 != Record.size()) 3685 return Error("Invalid record"); 3686 unsigned Align; 3687 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3688 return EC; 3689 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 3690 InstructionList.push_back(I); 3691 break; 3692 } 3693 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3694 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3695 unsigned OpNum = 0; 3696 Value *Val, *Ptr; 3697 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3698 popValue(Record, OpNum, NextValueNo, 3699 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3700 OpNum+4 != Record.size()) 3701 return Error("Invalid record"); 3702 3703 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3704 if (Ordering == NotAtomic || Ordering == Acquire || 3705 Ordering == AcquireRelease) 3706 return Error("Invalid record"); 3707 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3708 if (Ordering != NotAtomic && Record[OpNum] == 0) 3709 return Error("Invalid record"); 3710 3711 unsigned Align; 3712 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3713 return EC; 3714 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 3715 InstructionList.push_back(I); 3716 break; 3717 } 3718 case bitc::FUNC_CODE_INST_CMPXCHG: { 3719 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3720 // failureordering?, isweak?] 3721 unsigned OpNum = 0; 3722 Value *Ptr, *Cmp, *New; 3723 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3724 popValue(Record, OpNum, NextValueNo, 3725 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3726 popValue(Record, OpNum, NextValueNo, 3727 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3728 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3729 return Error("Invalid record"); 3730 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3731 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3732 return Error("Invalid record"); 3733 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3734 3735 AtomicOrdering FailureOrdering; 3736 if (Record.size() < 7) 3737 FailureOrdering = 3738 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3739 else 3740 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3741 3742 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3743 SynchScope); 3744 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3745 3746 if (Record.size() < 8) { 3747 // Before weak cmpxchgs existed, the instruction simply returned the 3748 // value loaded from memory, so bitcode files from that era will be 3749 // expecting the first component of a modern cmpxchg. 3750 CurBB->getInstList().push_back(I); 3751 I = ExtractValueInst::Create(I, 0); 3752 } else { 3753 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3754 } 3755 3756 InstructionList.push_back(I); 3757 break; 3758 } 3759 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3760 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3761 unsigned OpNum = 0; 3762 Value *Ptr, *Val; 3763 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3764 popValue(Record, OpNum, NextValueNo, 3765 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3766 OpNum+4 != Record.size()) 3767 return Error("Invalid record"); 3768 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3769 if (Operation < AtomicRMWInst::FIRST_BINOP || 3770 Operation > AtomicRMWInst::LAST_BINOP) 3771 return Error("Invalid record"); 3772 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3773 if (Ordering == NotAtomic || Ordering == Unordered) 3774 return Error("Invalid record"); 3775 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3776 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3777 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3778 InstructionList.push_back(I); 3779 break; 3780 } 3781 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3782 if (2 != Record.size()) 3783 return Error("Invalid record"); 3784 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3785 if (Ordering == NotAtomic || Ordering == Unordered || 3786 Ordering == Monotonic) 3787 return Error("Invalid record"); 3788 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3789 I = new FenceInst(Context, Ordering, SynchScope); 3790 InstructionList.push_back(I); 3791 break; 3792 } 3793 case bitc::FUNC_CODE_INST_CALL: { 3794 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3795 if (Record.size() < 3) 3796 return Error("Invalid record"); 3797 3798 AttributeSet PAL = getAttributes(Record[0]); 3799 unsigned CCInfo = Record[1]; 3800 3801 unsigned OpNum = 2; 3802 Value *Callee; 3803 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3804 return Error("Invalid record"); 3805 3806 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3807 FunctionType *FTy = nullptr; 3808 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3809 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3810 return Error("Invalid record"); 3811 3812 SmallVector<Value*, 16> Args; 3813 // Read the fixed params. 3814 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3815 if (FTy->getParamType(i)->isLabelTy()) 3816 Args.push_back(getBasicBlock(Record[OpNum])); 3817 else 3818 Args.push_back(getValue(Record, OpNum, NextValueNo, 3819 FTy->getParamType(i))); 3820 if (!Args.back()) 3821 return Error("Invalid record"); 3822 } 3823 3824 // Read type/value pairs for varargs params. 3825 if (!FTy->isVarArg()) { 3826 if (OpNum != Record.size()) 3827 return Error("Invalid record"); 3828 } else { 3829 while (OpNum != Record.size()) { 3830 Value *Op; 3831 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3832 return Error("Invalid record"); 3833 Args.push_back(Op); 3834 } 3835 } 3836 3837 I = CallInst::Create(Callee, Args); 3838 InstructionList.push_back(I); 3839 cast<CallInst>(I)->setCallingConv( 3840 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3841 CallInst::TailCallKind TCK = CallInst::TCK_None; 3842 if (CCInfo & 1) 3843 TCK = CallInst::TCK_Tail; 3844 if (CCInfo & (1 << 14)) 3845 TCK = CallInst::TCK_MustTail; 3846 cast<CallInst>(I)->setTailCallKind(TCK); 3847 cast<CallInst>(I)->setAttributes(PAL); 3848 break; 3849 } 3850 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3851 if (Record.size() < 3) 3852 return Error("Invalid record"); 3853 Type *OpTy = getTypeByID(Record[0]); 3854 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3855 Type *ResTy = getTypeByID(Record[2]); 3856 if (!OpTy || !Op || !ResTy) 3857 return Error("Invalid record"); 3858 I = new VAArgInst(Op, ResTy); 3859 InstructionList.push_back(I); 3860 break; 3861 } 3862 } 3863 3864 // Add instruction to end of current BB. If there is no current BB, reject 3865 // this file. 3866 if (!CurBB) { 3867 delete I; 3868 return Error("Invalid instruction with no BB"); 3869 } 3870 CurBB->getInstList().push_back(I); 3871 3872 // If this was a terminator instruction, move to the next block. 3873 if (isa<TerminatorInst>(I)) { 3874 ++CurBBNo; 3875 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3876 } 3877 3878 // Non-void values get registered in the value table for future use. 3879 if (I && !I->getType()->isVoidTy()) 3880 ValueList.AssignValue(I, NextValueNo++); 3881 } 3882 3883 OutOfRecordLoop: 3884 3885 // Check the function list for unresolved values. 3886 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3887 if (!A->getParent()) { 3888 // We found at least one unresolved value. Nuke them all to avoid leaks. 3889 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3890 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3891 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3892 delete A; 3893 } 3894 } 3895 return Error("Never resolved value found in function"); 3896 } 3897 } 3898 3899 // FIXME: Check for unresolved forward-declared metadata references 3900 // and clean up leaks. 3901 3902 // Trim the value list down to the size it was before we parsed this function. 3903 ValueList.shrinkTo(ModuleValueListSize); 3904 MDValueList.shrinkTo(ModuleMDValueListSize); 3905 std::vector<BasicBlock*>().swap(FunctionBBs); 3906 return std::error_code(); 3907 } 3908 3909 /// Find the function body in the bitcode stream 3910 std::error_code BitcodeReader::FindFunctionInStream( 3911 Function *F, 3912 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3913 while (DeferredFunctionInfoIterator->second == 0) { 3914 if (Stream.AtEndOfStream()) 3915 return Error("Could not find function in stream"); 3916 // ParseModule will parse the next body in the stream and set its 3917 // position in the DeferredFunctionInfo map. 3918 if (std::error_code EC = ParseModule(true)) 3919 return EC; 3920 } 3921 return std::error_code(); 3922 } 3923 3924 //===----------------------------------------------------------------------===// 3925 // GVMaterializer implementation 3926 //===----------------------------------------------------------------------===// 3927 3928 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3929 3930 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3931 if (std::error_code EC = materializeMetadata()) 3932 return EC; 3933 3934 Function *F = dyn_cast<Function>(GV); 3935 // If it's not a function or is already material, ignore the request. 3936 if (!F || !F->isMaterializable()) 3937 return std::error_code(); 3938 3939 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3940 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3941 // If its position is recorded as 0, its body is somewhere in the stream 3942 // but we haven't seen it yet. 3943 if (DFII->second == 0 && LazyStreamer) 3944 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3945 return EC; 3946 3947 // Move the bit stream to the saved position of the deferred function body. 3948 Stream.JumpToBit(DFII->second); 3949 3950 if (std::error_code EC = ParseFunctionBody(F)) 3951 return EC; 3952 F->setIsMaterializable(false); 3953 3954 // Upgrade any old intrinsic calls in the function. 3955 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3956 E = UpgradedIntrinsics.end(); I != E; ++I) { 3957 if (I->first != I->second) { 3958 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3959 UI != UE;) { 3960 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3961 UpgradeIntrinsicCall(CI, I->second); 3962 } 3963 } 3964 } 3965 3966 // Bring in any functions that this function forward-referenced via 3967 // blockaddresses. 3968 return materializeForwardReferencedFunctions(); 3969 } 3970 3971 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3972 const Function *F = dyn_cast<Function>(GV); 3973 if (!F || F->isDeclaration()) 3974 return false; 3975 3976 // Dematerializing F would leave dangling references that wouldn't be 3977 // reconnected on re-materialization. 3978 if (BlockAddressesTaken.count(F)) 3979 return false; 3980 3981 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3982 } 3983 3984 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3985 Function *F = dyn_cast<Function>(GV); 3986 // If this function isn't dematerializable, this is a noop. 3987 if (!F || !isDematerializable(F)) 3988 return; 3989 3990 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3991 3992 // Just forget the function body, we can remat it later. 3993 F->dropAllReferences(); 3994 F->setIsMaterializable(true); 3995 } 3996 3997 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3998 assert(M == TheModule && 3999 "Can only Materialize the Module this BitcodeReader is attached to."); 4000 4001 if (std::error_code EC = materializeMetadata()) 4002 return EC; 4003 4004 // Promise to materialize all forward references. 4005 WillMaterializeAllForwardRefs = true; 4006 4007 // Iterate over the module, deserializing any functions that are still on 4008 // disk. 4009 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4010 F != E; ++F) { 4011 if (std::error_code EC = materialize(F)) 4012 return EC; 4013 } 4014 // At this point, if there are any function bodies, the current bit is 4015 // pointing to the END_BLOCK record after them. Now make sure the rest 4016 // of the bits in the module have been read. 4017 if (NextUnreadBit) 4018 ParseModule(true); 4019 4020 // Check that all block address forward references got resolved (as we 4021 // promised above). 4022 if (!BasicBlockFwdRefs.empty()) 4023 return Error("Never resolved function from blockaddress"); 4024 4025 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4026 // delete the old functions to clean up. We can't do this unless the entire 4027 // module is materialized because there could always be another function body 4028 // with calls to the old function. 4029 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4030 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4031 if (I->first != I->second) { 4032 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4033 UI != UE;) { 4034 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4035 UpgradeIntrinsicCall(CI, I->second); 4036 } 4037 if (!I->first->use_empty()) 4038 I->first->replaceAllUsesWith(I->second); 4039 I->first->eraseFromParent(); 4040 } 4041 } 4042 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4043 4044 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4045 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4046 4047 UpgradeDebugInfo(*M); 4048 return std::error_code(); 4049 } 4050 4051 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4052 return IdentifiedStructTypes; 4053 } 4054 4055 std::error_code BitcodeReader::InitStream() { 4056 if (LazyStreamer) 4057 return InitLazyStream(); 4058 return InitStreamFromBuffer(); 4059 } 4060 4061 std::error_code BitcodeReader::InitStreamFromBuffer() { 4062 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4063 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4064 4065 if (Buffer->getBufferSize() & 3) 4066 return Error("Invalid bitcode signature"); 4067 4068 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4069 // The magic number is 0x0B17C0DE stored in little endian. 4070 if (isBitcodeWrapper(BufPtr, BufEnd)) 4071 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4072 return Error("Invalid bitcode wrapper header"); 4073 4074 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4075 Stream.init(&*StreamFile); 4076 4077 return std::error_code(); 4078 } 4079 4080 std::error_code BitcodeReader::InitLazyStream() { 4081 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4082 // see it. 4083 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4084 StreamingMemoryObject &Bytes = *OwnedBytes; 4085 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4086 Stream.init(&*StreamFile); 4087 4088 unsigned char buf[16]; 4089 if (Bytes.readBytes(buf, 16, 0) != 16) 4090 return Error("Invalid bitcode signature"); 4091 4092 if (!isBitcode(buf, buf + 16)) 4093 return Error("Invalid bitcode signature"); 4094 4095 if (isBitcodeWrapper(buf, buf + 4)) { 4096 const unsigned char *bitcodeStart = buf; 4097 const unsigned char *bitcodeEnd = buf + 16; 4098 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4099 Bytes.dropLeadingBytes(bitcodeStart - buf); 4100 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4101 } 4102 return std::error_code(); 4103 } 4104 4105 namespace { 4106 class BitcodeErrorCategoryType : public std::error_category { 4107 const char *name() const LLVM_NOEXCEPT override { 4108 return "llvm.bitcode"; 4109 } 4110 std::string message(int IE) const override { 4111 BitcodeError E = static_cast<BitcodeError>(IE); 4112 switch (E) { 4113 case BitcodeError::InvalidBitcodeSignature: 4114 return "Invalid bitcode signature"; 4115 case BitcodeError::CorruptedBitcode: 4116 return "Corrupted bitcode"; 4117 } 4118 llvm_unreachable("Unknown error type!"); 4119 } 4120 }; 4121 } 4122 4123 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4124 4125 const std::error_category &llvm::BitcodeErrorCategory() { 4126 return *ErrorCategory; 4127 } 4128 4129 //===----------------------------------------------------------------------===// 4130 // External interface 4131 //===----------------------------------------------------------------------===// 4132 4133 /// \brief Get a lazy one-at-time loading module from bitcode. 4134 /// 4135 /// This isn't always used in a lazy context. In particular, it's also used by 4136 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4137 /// in forward-referenced functions from block address references. 4138 /// 4139 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4140 /// materialize everything -- in particular, if this isn't truly lazy. 4141 static ErrorOr<Module *> 4142 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4143 LLVMContext &Context, bool WillMaterializeAll, 4144 DiagnosticHandlerFunction DiagnosticHandler, 4145 bool ShouldLazyLoadMetadata = false) { 4146 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4147 BitcodeReader *R = 4148 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4149 M->setMaterializer(R); 4150 4151 auto cleanupOnError = [&](std::error_code EC) { 4152 R->releaseBuffer(); // Never take ownership on error. 4153 delete M; // Also deletes R. 4154 return EC; 4155 }; 4156 4157 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4158 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4159 return cleanupOnError(EC); 4160 4161 if (!WillMaterializeAll) 4162 // Resolve forward references from blockaddresses. 4163 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4164 return cleanupOnError(EC); 4165 4166 Buffer.release(); // The BitcodeReader owns it now. 4167 return M; 4168 } 4169 4170 ErrorOr<Module *> 4171 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4172 LLVMContext &Context, 4173 DiagnosticHandlerFunction DiagnosticHandler, 4174 bool ShouldLazyLoadMetadata) { 4175 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4176 DiagnosticHandler, ShouldLazyLoadMetadata); 4177 } 4178 4179 ErrorOr<std::unique_ptr<Module>> 4180 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4181 LLVMContext &Context, 4182 DiagnosticHandlerFunction DiagnosticHandler) { 4183 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4184 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4185 M->setMaterializer(R); 4186 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4187 return EC; 4188 return std::move(M); 4189 } 4190 4191 ErrorOr<Module *> 4192 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4193 DiagnosticHandlerFunction DiagnosticHandler) { 4194 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4195 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4196 std::move(Buf), Context, true, DiagnosticHandler); 4197 if (!ModuleOrErr) 4198 return ModuleOrErr; 4199 Module *M = ModuleOrErr.get(); 4200 // Read in the entire module, and destroy the BitcodeReader. 4201 if (std::error_code EC = M->materializeAllPermanently()) { 4202 delete M; 4203 return EC; 4204 } 4205 4206 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4207 // written. We must defer until the Module has been fully materialized. 4208 4209 return M; 4210 } 4211 4212 std::string 4213 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4214 DiagnosticHandlerFunction DiagnosticHandler) { 4215 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4216 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4217 DiagnosticHandler); 4218 ErrorOr<std::string> Triple = R->parseTriple(); 4219 if (Triple.getError()) 4220 return ""; 4221 return Triple.get(); 4222 } 4223