1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 583 return None; 584 }); 585 586 static uint64_t decodeSignRotatedValue(uint64_t V); 587 588 /// Materialize any deferred Metadata block. 589 Error materializeMetadata() override; 590 591 void setStripDebugInfo() override; 592 593 private: 594 std::vector<StructType *> IdentifiedStructTypes; 595 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 596 StructType *createIdentifiedStructType(LLVMContext &Context); 597 598 /// Map all pointer types within \param Ty to the opaque pointer 599 /// type in the same address space if opaque pointers are being 600 /// used, otherwise nop. This converts a bitcode-reader internal 601 /// type into one suitable for use in a Value. 602 Type *flattenPointerTypes(Type *Ty) { 603 return Ty; 604 } 605 606 /// Given a fully structured pointer type (i.e. not opaque), return 607 /// the flattened form of its element, suitable for use in a Value. 608 Type *getPointerElementFlatType(Type *Ty) { 609 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 610 } 611 612 /// Given a fully structured pointer type, get its element type in 613 /// both fully structured form, and flattened form suitable for use 614 /// in a Value. 615 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 616 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 617 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 618 } 619 620 /// Return the flattened type (suitable for use in a Value) 621 /// specified by the given \param ID . 622 Type *getTypeByID(unsigned ID) { 623 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 624 } 625 626 /// Return the fully structured (bitcode-reader internal) type 627 /// corresponding to the given \param ID . 628 Type *getFullyStructuredTypeByID(unsigned ID); 629 630 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 631 if (Ty && Ty->isMetadataTy()) 632 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 633 return ValueList.getValueFwdRef(ID, Ty, FullTy); 634 } 635 636 Metadata *getFnMetadataByID(unsigned ID) { 637 return MDLoader->getMetadataFwdRefOrLoad(ID); 638 } 639 640 BasicBlock *getBasicBlock(unsigned ID) const { 641 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 642 return FunctionBBs[ID]; 643 } 644 645 AttributeList getAttributes(unsigned i) const { 646 if (i-1 < MAttributes.size()) 647 return MAttributes[i-1]; 648 return AttributeList(); 649 } 650 651 /// Read a value/type pair out of the specified record from slot 'Slot'. 652 /// Increment Slot past the number of slots used in the record. Return true on 653 /// failure. 654 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 655 unsigned InstNum, Value *&ResVal, 656 Type **FullTy = nullptr) { 657 if (Slot == Record.size()) return true; 658 unsigned ValNo = (unsigned)Record[Slot++]; 659 // Adjust the ValNo, if it was encoded relative to the InstNum. 660 if (UseRelativeIDs) 661 ValNo = InstNum - ValNo; 662 if (ValNo < InstNum) { 663 // If this is not a forward reference, just return the value we already 664 // have. 665 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 666 return ResVal == nullptr; 667 } 668 if (Slot == Record.size()) 669 return true; 670 671 unsigned TypeNo = (unsigned)Record[Slot++]; 672 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 673 if (FullTy) 674 *FullTy = getFullyStructuredTypeByID(TypeNo); 675 return ResVal == nullptr; 676 } 677 678 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 679 /// past the number of slots used by the value in the record. Return true if 680 /// there is an error. 681 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 682 unsigned InstNum, Type *Ty, Value *&ResVal) { 683 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 684 return true; 685 // All values currently take a single record slot. 686 ++Slot; 687 return false; 688 } 689 690 /// Like popValue, but does not increment the Slot number. 691 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 692 unsigned InstNum, Type *Ty, Value *&ResVal) { 693 ResVal = getValue(Record, Slot, InstNum, Ty); 694 return ResVal == nullptr; 695 } 696 697 /// Version of getValue that returns ResVal directly, or 0 if there is an 698 /// error. 699 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 700 unsigned InstNum, Type *Ty) { 701 if (Slot == Record.size()) return nullptr; 702 unsigned ValNo = (unsigned)Record[Slot]; 703 // Adjust the ValNo, if it was encoded relative to the InstNum. 704 if (UseRelativeIDs) 705 ValNo = InstNum - ValNo; 706 return getFnValueByID(ValNo, Ty); 707 } 708 709 /// Like getValue, but decodes signed VBRs. 710 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 711 unsigned InstNum, Type *Ty) { 712 if (Slot == Record.size()) return nullptr; 713 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 714 // Adjust the ValNo, if it was encoded relative to the InstNum. 715 if (UseRelativeIDs) 716 ValNo = InstNum - ValNo; 717 return getFnValueByID(ValNo, Ty); 718 } 719 720 /// Upgrades old-style typeless byval attributes by adding the corresponding 721 /// argument's pointee type. 722 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 723 724 /// Converts alignment exponent (i.e. power of two (or zero)) to the 725 /// corresponding alignment to use. If alignment is too large, returns 726 /// a corresponding error code. 727 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 728 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 729 Error parseModule( 730 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 731 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 732 733 Error parseComdatRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 735 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 736 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 737 ArrayRef<uint64_t> Record); 738 739 Error parseAttributeBlock(); 740 Error parseAttributeGroupBlock(); 741 Error parseTypeTable(); 742 Error parseTypeTableBody(); 743 Error parseOperandBundleTags(); 744 Error parseSyncScopeNames(); 745 746 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 747 unsigned NameIndex, Triple &TT); 748 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 749 ArrayRef<uint64_t> Record); 750 Error parseValueSymbolTable(uint64_t Offset = 0); 751 Error parseGlobalValueSymbolTable(); 752 Error parseConstants(); 753 Error rememberAndSkipFunctionBodies(); 754 Error rememberAndSkipFunctionBody(); 755 /// Save the positions of the Metadata blocks and skip parsing the blocks. 756 Error rememberAndSkipMetadata(); 757 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 758 Error parseFunctionBody(Function *F); 759 Error globalCleanup(); 760 Error resolveGlobalAndIndirectSymbolInits(); 761 Error parseUseLists(); 762 Error findFunctionInStream( 763 Function *F, 764 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 765 766 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 767 }; 768 769 /// Class to manage reading and parsing function summary index bitcode 770 /// files/sections. 771 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 772 /// The module index built during parsing. 773 ModuleSummaryIndex &TheIndex; 774 775 /// Indicates whether we have encountered a global value summary section 776 /// yet during parsing. 777 bool SeenGlobalValSummary = false; 778 779 /// Indicates whether we have already parsed the VST, used for error checking. 780 bool SeenValueSymbolTable = false; 781 782 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 783 /// Used to enable on-demand parsing of the VST. 784 uint64_t VSTOffset = 0; 785 786 // Map to save ValueId to ValueInfo association that was recorded in the 787 // ValueSymbolTable. It is used after the VST is parsed to convert 788 // call graph edges read from the function summary from referencing 789 // callees by their ValueId to using the ValueInfo instead, which is how 790 // they are recorded in the summary index being built. 791 // We save a GUID which refers to the same global as the ValueInfo, but 792 // ignoring the linkage, i.e. for values other than local linkage they are 793 // identical. 794 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 795 ValueIdToValueInfoMap; 796 797 /// Map populated during module path string table parsing, from the 798 /// module ID to a string reference owned by the index's module 799 /// path string table, used to correlate with combined index 800 /// summary records. 801 DenseMap<uint64_t, StringRef> ModuleIdMap; 802 803 /// Original source file name recorded in a bitcode record. 804 std::string SourceFileName; 805 806 /// The string identifier given to this module by the client, normally the 807 /// path to the bitcode file. 808 StringRef ModulePath; 809 810 /// For per-module summary indexes, the unique numerical identifier given to 811 /// this module by the client. 812 unsigned ModuleId; 813 814 public: 815 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 816 ModuleSummaryIndex &TheIndex, 817 StringRef ModulePath, unsigned ModuleId); 818 819 Error parseModule(); 820 821 private: 822 void setValueGUID(uint64_t ValueID, StringRef ValueName, 823 GlobalValue::LinkageTypes Linkage, 824 StringRef SourceFileName); 825 Error parseValueSymbolTable( 826 uint64_t Offset, 827 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 828 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 829 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 830 bool IsOldProfileFormat, 831 bool HasProfile, 832 bool HasRelBF); 833 Error parseEntireSummary(unsigned ID); 834 Error parseModuleStringTable(); 835 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 836 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 837 TypeIdCompatibleVtableInfo &TypeId); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // FIXME: Remove in 4.0. 1322 1323 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1324 // the bits above 31 down by 11 bits. 1325 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1326 assert((!Alignment || isPowerOf2_32(Alignment)) && 1327 "Alignment must be a power of two."); 1328 1329 if (Alignment) 1330 B.addAlignmentAttr(Alignment); 1331 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1332 (EncodedAttrs & 0xffff)); 1333 } 1334 1335 Error BitcodeReader::parseAttributeBlock() { 1336 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1337 return Err; 1338 1339 if (!MAttributes.empty()) 1340 return error("Invalid multiple blocks"); 1341 1342 SmallVector<uint64_t, 64> Record; 1343 1344 SmallVector<AttributeList, 8> Attrs; 1345 1346 // Read all the records. 1347 while (true) { 1348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1349 if (!MaybeEntry) 1350 return MaybeEntry.takeError(); 1351 BitstreamEntry Entry = MaybeEntry.get(); 1352 1353 switch (Entry.Kind) { 1354 case BitstreamEntry::SubBlock: // Handled for us already. 1355 case BitstreamEntry::Error: 1356 return error("Malformed block"); 1357 case BitstreamEntry::EndBlock: 1358 return Error::success(); 1359 case BitstreamEntry::Record: 1360 // The interesting case. 1361 break; 1362 } 1363 1364 // Read a record. 1365 Record.clear(); 1366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1367 if (!MaybeRecord) 1368 return MaybeRecord.takeError(); 1369 switch (MaybeRecord.get()) { 1370 default: // Default behavior: ignore. 1371 break; 1372 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1373 // FIXME: Remove in 4.0. 1374 if (Record.size() & 1) 1375 return error("Invalid record"); 1376 1377 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1378 AttrBuilder B; 1379 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1380 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1381 } 1382 1383 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1384 Attrs.clear(); 1385 break; 1386 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1387 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1388 Attrs.push_back(MAttributeGroups[Record[i]]); 1389 1390 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1391 Attrs.clear(); 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Returns Attribute::None on unrecognized codes. 1398 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1399 switch (Code) { 1400 default: 1401 return Attribute::None; 1402 case bitc::ATTR_KIND_ALIGNMENT: 1403 return Attribute::Alignment; 1404 case bitc::ATTR_KIND_ALWAYS_INLINE: 1405 return Attribute::AlwaysInline; 1406 case bitc::ATTR_KIND_ARGMEMONLY: 1407 return Attribute::ArgMemOnly; 1408 case bitc::ATTR_KIND_BUILTIN: 1409 return Attribute::Builtin; 1410 case bitc::ATTR_KIND_BY_VAL: 1411 return Attribute::ByVal; 1412 case bitc::ATTR_KIND_IN_ALLOCA: 1413 return Attribute::InAlloca; 1414 case bitc::ATTR_KIND_COLD: 1415 return Attribute::Cold; 1416 case bitc::ATTR_KIND_CONVERGENT: 1417 return Attribute::Convergent; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1419 return Attribute::InaccessibleMemOnly; 1420 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1421 return Attribute::InaccessibleMemOrArgMemOnly; 1422 case bitc::ATTR_KIND_INLINE_HINT: 1423 return Attribute::InlineHint; 1424 case bitc::ATTR_KIND_IN_REG: 1425 return Attribute::InReg; 1426 case bitc::ATTR_KIND_JUMP_TABLE: 1427 return Attribute::JumpTable; 1428 case bitc::ATTR_KIND_MIN_SIZE: 1429 return Attribute::MinSize; 1430 case bitc::ATTR_KIND_NAKED: 1431 return Attribute::Naked; 1432 case bitc::ATTR_KIND_NEST: 1433 return Attribute::Nest; 1434 case bitc::ATTR_KIND_NO_ALIAS: 1435 return Attribute::NoAlias; 1436 case bitc::ATTR_KIND_NO_BUILTIN: 1437 return Attribute::NoBuiltin; 1438 case bitc::ATTR_KIND_NO_CAPTURE: 1439 return Attribute::NoCapture; 1440 case bitc::ATTR_KIND_NO_DUPLICATE: 1441 return Attribute::NoDuplicate; 1442 case bitc::ATTR_KIND_NOFREE: 1443 return Attribute::NoFree; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NO_MERGE: 1451 return Attribute::NoMerge; 1452 case bitc::ATTR_KIND_NON_LAZY_BIND: 1453 return Attribute::NonLazyBind; 1454 case bitc::ATTR_KIND_NON_NULL: 1455 return Attribute::NonNull; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE: 1457 return Attribute::Dereferenceable; 1458 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1459 return Attribute::DereferenceableOrNull; 1460 case bitc::ATTR_KIND_ALLOC_SIZE: 1461 return Attribute::AllocSize; 1462 case bitc::ATTR_KIND_NO_RED_ZONE: 1463 return Attribute::NoRedZone; 1464 case bitc::ATTR_KIND_NO_RETURN: 1465 return Attribute::NoReturn; 1466 case bitc::ATTR_KIND_NOSYNC: 1467 return Attribute::NoSync; 1468 case bitc::ATTR_KIND_NOCF_CHECK: 1469 return Attribute::NoCfCheck; 1470 case bitc::ATTR_KIND_NO_UNWIND: 1471 return Attribute::NoUnwind; 1472 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1473 return Attribute::OptForFuzzing; 1474 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1475 return Attribute::OptimizeForSize; 1476 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1477 return Attribute::OptimizeNone; 1478 case bitc::ATTR_KIND_READ_NONE: 1479 return Attribute::ReadNone; 1480 case bitc::ATTR_KIND_READ_ONLY: 1481 return Attribute::ReadOnly; 1482 case bitc::ATTR_KIND_RETURNED: 1483 return Attribute::Returned; 1484 case bitc::ATTR_KIND_RETURNS_TWICE: 1485 return Attribute::ReturnsTwice; 1486 case bitc::ATTR_KIND_S_EXT: 1487 return Attribute::SExt; 1488 case bitc::ATTR_KIND_SPECULATABLE: 1489 return Attribute::Speculatable; 1490 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1491 return Attribute::StackAlignment; 1492 case bitc::ATTR_KIND_STACK_PROTECT: 1493 return Attribute::StackProtect; 1494 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1495 return Attribute::StackProtectReq; 1496 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1497 return Attribute::StackProtectStrong; 1498 case bitc::ATTR_KIND_SAFESTACK: 1499 return Attribute::SafeStack; 1500 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1501 return Attribute::ShadowCallStack; 1502 case bitc::ATTR_KIND_STRICT_FP: 1503 return Attribute::StrictFP; 1504 case bitc::ATTR_KIND_STRUCT_RET: 1505 return Attribute::StructRet; 1506 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1507 return Attribute::SanitizeAddress; 1508 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1509 return Attribute::SanitizeHWAddress; 1510 case bitc::ATTR_KIND_SANITIZE_THREAD: 1511 return Attribute::SanitizeThread; 1512 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1513 return Attribute::SanitizeMemory; 1514 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1515 return Attribute::SpeculativeLoadHardening; 1516 case bitc::ATTR_KIND_SWIFT_ERROR: 1517 return Attribute::SwiftError; 1518 case bitc::ATTR_KIND_SWIFT_SELF: 1519 return Attribute::SwiftSelf; 1520 case bitc::ATTR_KIND_UW_TABLE: 1521 return Attribute::UWTable; 1522 case bitc::ATTR_KIND_WILLRETURN: 1523 return Attribute::WillReturn; 1524 case bitc::ATTR_KIND_WRITEONLY: 1525 return Attribute::WriteOnly; 1526 case bitc::ATTR_KIND_Z_EXT: 1527 return Attribute::ZExt; 1528 case bitc::ATTR_KIND_IMMARG: 1529 return Attribute::ImmArg; 1530 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1531 return Attribute::SanitizeMemTag; 1532 case bitc::ATTR_KIND_PREALLOCATED: 1533 return Attribute::Preallocated; 1534 } 1535 } 1536 1537 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1538 MaybeAlign &Alignment) { 1539 // Note: Alignment in bitcode files is incremented by 1, so that zero 1540 // can be used for default alignment. 1541 if (Exponent > Value::MaxAlignmentExponent + 1) 1542 return error("Invalid alignment value"); 1543 Alignment = decodeMaybeAlign(Exponent); 1544 return Error::success(); 1545 } 1546 1547 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1548 *Kind = getAttrFromCode(Code); 1549 if (*Kind == Attribute::None) 1550 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1551 return Error::success(); 1552 } 1553 1554 Error BitcodeReader::parseAttributeGroupBlock() { 1555 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1556 return Err; 1557 1558 if (!MAttributeGroups.empty()) 1559 return error("Invalid multiple blocks"); 1560 1561 SmallVector<uint64_t, 64> Record; 1562 1563 // Read all the records. 1564 while (true) { 1565 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1566 if (!MaybeEntry) 1567 return MaybeEntry.takeError(); 1568 BitstreamEntry Entry = MaybeEntry.get(); 1569 1570 switch (Entry.Kind) { 1571 case BitstreamEntry::SubBlock: // Handled for us already. 1572 case BitstreamEntry::Error: 1573 return error("Malformed block"); 1574 case BitstreamEntry::EndBlock: 1575 return Error::success(); 1576 case BitstreamEntry::Record: 1577 // The interesting case. 1578 break; 1579 } 1580 1581 // Read a record. 1582 Record.clear(); 1583 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1584 if (!MaybeRecord) 1585 return MaybeRecord.takeError(); 1586 switch (MaybeRecord.get()) { 1587 default: // Default behavior: ignore. 1588 break; 1589 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1590 if (Record.size() < 3) 1591 return error("Invalid record"); 1592 1593 uint64_t GrpID = Record[0]; 1594 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1595 1596 AttrBuilder B; 1597 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1598 if (Record[i] == 0) { // Enum attribute 1599 Attribute::AttrKind Kind; 1600 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1601 return Err; 1602 1603 // Upgrade old-style byval attribute to one with a type, even if it's 1604 // nullptr. We will have to insert the real type when we associate 1605 // this AttributeList with a function. 1606 if (Kind == Attribute::ByVal) 1607 B.addByValAttr(nullptr); 1608 1609 B.addAttribute(Kind); 1610 } else if (Record[i] == 1) { // Integer attribute 1611 Attribute::AttrKind Kind; 1612 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1613 return Err; 1614 if (Kind == Attribute::Alignment) 1615 B.addAlignmentAttr(Record[++i]); 1616 else if (Kind == Attribute::StackAlignment) 1617 B.addStackAlignmentAttr(Record[++i]); 1618 else if (Kind == Attribute::Dereferenceable) 1619 B.addDereferenceableAttr(Record[++i]); 1620 else if (Kind == Attribute::DereferenceableOrNull) 1621 B.addDereferenceableOrNullAttr(Record[++i]); 1622 else if (Kind == Attribute::AllocSize) 1623 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1624 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1625 bool HasValue = (Record[i++] == 4); 1626 SmallString<64> KindStr; 1627 SmallString<64> ValStr; 1628 1629 while (Record[i] != 0 && i != e) 1630 KindStr += Record[i++]; 1631 assert(Record[i] == 0 && "Kind string not null terminated"); 1632 1633 if (HasValue) { 1634 // Has a value associated with it. 1635 ++i; // Skip the '0' that terminates the "kind" string. 1636 while (Record[i] != 0 && i != e) 1637 ValStr += Record[i++]; 1638 assert(Record[i] == 0 && "Value string not null terminated"); 1639 } 1640 1641 B.addAttribute(KindStr.str(), ValStr.str()); 1642 } else { 1643 assert((Record[i] == 5 || Record[i] == 6) && 1644 "Invalid attribute group entry"); 1645 bool HasType = Record[i] == 6; 1646 Attribute::AttrKind Kind; 1647 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1648 return Err; 1649 if (Kind == Attribute::ByVal) { 1650 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1651 } else if (Kind == Attribute::Preallocated) { 1652 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1653 } 1654 } 1655 } 1656 1657 UpgradeFramePointerAttributes(B); 1658 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1659 break; 1660 } 1661 } 1662 } 1663 } 1664 1665 Error BitcodeReader::parseTypeTable() { 1666 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1667 return Err; 1668 1669 return parseTypeTableBody(); 1670 } 1671 1672 Error BitcodeReader::parseTypeTableBody() { 1673 if (!TypeList.empty()) 1674 return error("Invalid multiple blocks"); 1675 1676 SmallVector<uint64_t, 64> Record; 1677 unsigned NumRecords = 0; 1678 1679 SmallString<64> TypeName; 1680 1681 // Read all the records for this type table. 1682 while (true) { 1683 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1684 if (!MaybeEntry) 1685 return MaybeEntry.takeError(); 1686 BitstreamEntry Entry = MaybeEntry.get(); 1687 1688 switch (Entry.Kind) { 1689 case BitstreamEntry::SubBlock: // Handled for us already. 1690 case BitstreamEntry::Error: 1691 return error("Malformed block"); 1692 case BitstreamEntry::EndBlock: 1693 if (NumRecords != TypeList.size()) 1694 return error("Malformed block"); 1695 return Error::success(); 1696 case BitstreamEntry::Record: 1697 // The interesting case. 1698 break; 1699 } 1700 1701 // Read a record. 1702 Record.clear(); 1703 Type *ResultTy = nullptr; 1704 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1705 if (!MaybeRecord) 1706 return MaybeRecord.takeError(); 1707 switch (MaybeRecord.get()) { 1708 default: 1709 return error("Invalid value"); 1710 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1711 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1712 // type list. This allows us to reserve space. 1713 if (Record.size() < 1) 1714 return error("Invalid record"); 1715 TypeList.resize(Record[0]); 1716 continue; 1717 case bitc::TYPE_CODE_VOID: // VOID 1718 ResultTy = Type::getVoidTy(Context); 1719 break; 1720 case bitc::TYPE_CODE_HALF: // HALF 1721 ResultTy = Type::getHalfTy(Context); 1722 break; 1723 case bitc::TYPE_CODE_FLOAT: // FLOAT 1724 ResultTy = Type::getFloatTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1727 ResultTy = Type::getDoubleTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1730 ResultTy = Type::getX86_FP80Ty(Context); 1731 break; 1732 case bitc::TYPE_CODE_FP128: // FP128 1733 ResultTy = Type::getFP128Ty(Context); 1734 break; 1735 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1736 ResultTy = Type::getPPC_FP128Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_LABEL: // LABEL 1739 ResultTy = Type::getLabelTy(Context); 1740 break; 1741 case bitc::TYPE_CODE_METADATA: // METADATA 1742 ResultTy = Type::getMetadataTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1745 ResultTy = Type::getX86_MMXTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_TOKEN: // TOKEN 1748 ResultTy = Type::getTokenTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1751 if (Record.size() < 1) 1752 return error("Invalid record"); 1753 1754 uint64_t NumBits = Record[0]; 1755 if (NumBits < IntegerType::MIN_INT_BITS || 1756 NumBits > IntegerType::MAX_INT_BITS) 1757 return error("Bitwidth for integer type out of range"); 1758 ResultTy = IntegerType::get(Context, NumBits); 1759 break; 1760 } 1761 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1762 // [pointee type, address space] 1763 if (Record.size() < 1) 1764 return error("Invalid record"); 1765 unsigned AddressSpace = 0; 1766 if (Record.size() == 2) 1767 AddressSpace = Record[1]; 1768 ResultTy = getTypeByID(Record[0]); 1769 if (!ResultTy || 1770 !PointerType::isValidElementType(ResultTy)) 1771 return error("Invalid type"); 1772 ResultTy = PointerType::get(ResultTy, AddressSpace); 1773 break; 1774 } 1775 case bitc::TYPE_CODE_FUNCTION_OLD: { 1776 // FIXME: attrid is dead, remove it in LLVM 4.0 1777 // FUNCTION: [vararg, attrid, retty, paramty x N] 1778 if (Record.size() < 3) 1779 return error("Invalid record"); 1780 SmallVector<Type*, 8> ArgTys; 1781 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1782 if (Type *T = getTypeByID(Record[i])) 1783 ArgTys.push_back(T); 1784 else 1785 break; 1786 } 1787 1788 ResultTy = getTypeByID(Record[2]); 1789 if (!ResultTy || ArgTys.size() < Record.size()-3) 1790 return error("Invalid type"); 1791 1792 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1793 break; 1794 } 1795 case bitc::TYPE_CODE_FUNCTION: { 1796 // FUNCTION: [vararg, retty, paramty x N] 1797 if (Record.size() < 2) 1798 return error("Invalid record"); 1799 SmallVector<Type*, 8> ArgTys; 1800 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1801 if (Type *T = getTypeByID(Record[i])) { 1802 if (!FunctionType::isValidArgumentType(T)) 1803 return error("Invalid function argument type"); 1804 ArgTys.push_back(T); 1805 } 1806 else 1807 break; 1808 } 1809 1810 ResultTy = getTypeByID(Record[1]); 1811 if (!ResultTy || ArgTys.size() < Record.size()-2) 1812 return error("Invalid type"); 1813 1814 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1815 break; 1816 } 1817 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1818 if (Record.size() < 1) 1819 return error("Invalid record"); 1820 SmallVector<Type*, 8> EltTys; 1821 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1822 if (Type *T = getTypeByID(Record[i])) 1823 EltTys.push_back(T); 1824 else 1825 break; 1826 } 1827 if (EltTys.size() != Record.size()-1) 1828 return error("Invalid type"); 1829 ResultTy = StructType::get(Context, EltTys, Record[0]); 1830 break; 1831 } 1832 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1833 if (convertToString(Record, 0, TypeName)) 1834 return error("Invalid record"); 1835 continue; 1836 1837 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1838 if (Record.size() < 1) 1839 return error("Invalid record"); 1840 1841 if (NumRecords >= TypeList.size()) 1842 return error("Invalid TYPE table"); 1843 1844 // Check to see if this was forward referenced, if so fill in the temp. 1845 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1846 if (Res) { 1847 Res->setName(TypeName); 1848 TypeList[NumRecords] = nullptr; 1849 } else // Otherwise, create a new struct. 1850 Res = createIdentifiedStructType(Context, TypeName); 1851 TypeName.clear(); 1852 1853 SmallVector<Type*, 8> EltTys; 1854 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1855 if (Type *T = getTypeByID(Record[i])) 1856 EltTys.push_back(T); 1857 else 1858 break; 1859 } 1860 if (EltTys.size() != Record.size()-1) 1861 return error("Invalid record"); 1862 Res->setBody(EltTys, Record[0]); 1863 ResultTy = Res; 1864 break; 1865 } 1866 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1867 if (Record.size() != 1) 1868 return error("Invalid record"); 1869 1870 if (NumRecords >= TypeList.size()) 1871 return error("Invalid TYPE table"); 1872 1873 // Check to see if this was forward referenced, if so fill in the temp. 1874 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1875 if (Res) { 1876 Res->setName(TypeName); 1877 TypeList[NumRecords] = nullptr; 1878 } else // Otherwise, create a new struct with no body. 1879 Res = createIdentifiedStructType(Context, TypeName); 1880 TypeName.clear(); 1881 ResultTy = Res; 1882 break; 1883 } 1884 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1885 if (Record.size() < 2) 1886 return error("Invalid record"); 1887 ResultTy = getTypeByID(Record[1]); 1888 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1889 return error("Invalid type"); 1890 ResultTy = ArrayType::get(ResultTy, Record[0]); 1891 break; 1892 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1893 // [numelts, eltty, scalable] 1894 if (Record.size() < 2) 1895 return error("Invalid record"); 1896 if (Record[0] == 0) 1897 return error("Invalid vector length"); 1898 ResultTy = getTypeByID(Record[1]); 1899 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1900 return error("Invalid type"); 1901 bool Scalable = Record.size() > 2 ? Record[2] : false; 1902 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1903 break; 1904 } 1905 1906 if (NumRecords >= TypeList.size()) 1907 return error("Invalid TYPE table"); 1908 if (TypeList[NumRecords]) 1909 return error( 1910 "Invalid TYPE table: Only named structs can be forward referenced"); 1911 assert(ResultTy && "Didn't read a type?"); 1912 TypeList[NumRecords++] = ResultTy; 1913 } 1914 } 1915 1916 Error BitcodeReader::parseOperandBundleTags() { 1917 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1918 return Err; 1919 1920 if (!BundleTags.empty()) 1921 return error("Invalid multiple blocks"); 1922 1923 SmallVector<uint64_t, 64> Record; 1924 1925 while (true) { 1926 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1927 if (!MaybeEntry) 1928 return MaybeEntry.takeError(); 1929 BitstreamEntry Entry = MaybeEntry.get(); 1930 1931 switch (Entry.Kind) { 1932 case BitstreamEntry::SubBlock: // Handled for us already. 1933 case BitstreamEntry::Error: 1934 return error("Malformed block"); 1935 case BitstreamEntry::EndBlock: 1936 return Error::success(); 1937 case BitstreamEntry::Record: 1938 // The interesting case. 1939 break; 1940 } 1941 1942 // Tags are implicitly mapped to integers by their order. 1943 1944 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1945 if (!MaybeRecord) 1946 return MaybeRecord.takeError(); 1947 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1948 return error("Invalid record"); 1949 1950 // OPERAND_BUNDLE_TAG: [strchr x N] 1951 BundleTags.emplace_back(); 1952 if (convertToString(Record, 0, BundleTags.back())) 1953 return error("Invalid record"); 1954 Record.clear(); 1955 } 1956 } 1957 1958 Error BitcodeReader::parseSyncScopeNames() { 1959 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1960 return Err; 1961 1962 if (!SSIDs.empty()) 1963 return error("Invalid multiple synchronization scope names blocks"); 1964 1965 SmallVector<uint64_t, 64> Record; 1966 while (true) { 1967 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1968 if (!MaybeEntry) 1969 return MaybeEntry.takeError(); 1970 BitstreamEntry Entry = MaybeEntry.get(); 1971 1972 switch (Entry.Kind) { 1973 case BitstreamEntry::SubBlock: // Handled for us already. 1974 case BitstreamEntry::Error: 1975 return error("Malformed block"); 1976 case BitstreamEntry::EndBlock: 1977 if (SSIDs.empty()) 1978 return error("Invalid empty synchronization scope names block"); 1979 return Error::success(); 1980 case BitstreamEntry::Record: 1981 // The interesting case. 1982 break; 1983 } 1984 1985 // Synchronization scope names are implicitly mapped to synchronization 1986 // scope IDs by their order. 1987 1988 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1989 if (!MaybeRecord) 1990 return MaybeRecord.takeError(); 1991 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1992 return error("Invalid record"); 1993 1994 SmallString<16> SSN; 1995 if (convertToString(Record, 0, SSN)) 1996 return error("Invalid record"); 1997 1998 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1999 Record.clear(); 2000 } 2001 } 2002 2003 /// Associate a value with its name from the given index in the provided record. 2004 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2005 unsigned NameIndex, Triple &TT) { 2006 SmallString<128> ValueName; 2007 if (convertToString(Record, NameIndex, ValueName)) 2008 return error("Invalid record"); 2009 unsigned ValueID = Record[0]; 2010 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2011 return error("Invalid record"); 2012 Value *V = ValueList[ValueID]; 2013 2014 StringRef NameStr(ValueName.data(), ValueName.size()); 2015 if (NameStr.find_first_of(0) != StringRef::npos) 2016 return error("Invalid value name"); 2017 V->setName(NameStr); 2018 auto *GO = dyn_cast<GlobalObject>(V); 2019 if (GO) { 2020 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2021 if (TT.supportsCOMDAT()) 2022 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2023 else 2024 GO->setComdat(nullptr); 2025 } 2026 } 2027 return V; 2028 } 2029 2030 /// Helper to note and return the current location, and jump to the given 2031 /// offset. 2032 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2033 BitstreamCursor &Stream) { 2034 // Save the current parsing location so we can jump back at the end 2035 // of the VST read. 2036 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2037 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2038 return std::move(JumpFailed); 2039 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2040 if (!MaybeEntry) 2041 return MaybeEntry.takeError(); 2042 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2043 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2044 return CurrentBit; 2045 } 2046 2047 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2048 Function *F, 2049 ArrayRef<uint64_t> Record) { 2050 // Note that we subtract 1 here because the offset is relative to one word 2051 // before the start of the identification or module block, which was 2052 // historically always the start of the regular bitcode header. 2053 uint64_t FuncWordOffset = Record[1] - 1; 2054 uint64_t FuncBitOffset = FuncWordOffset * 32; 2055 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2056 // Set the LastFunctionBlockBit to point to the last function block. 2057 // Later when parsing is resumed after function materialization, 2058 // we can simply skip that last function block. 2059 if (FuncBitOffset > LastFunctionBlockBit) 2060 LastFunctionBlockBit = FuncBitOffset; 2061 } 2062 2063 /// Read a new-style GlobalValue symbol table. 2064 Error BitcodeReader::parseGlobalValueSymbolTable() { 2065 unsigned FuncBitcodeOffsetDelta = 2066 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2067 2068 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2069 return Err; 2070 2071 SmallVector<uint64_t, 64> Record; 2072 while (true) { 2073 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2074 if (!MaybeEntry) 2075 return MaybeEntry.takeError(); 2076 BitstreamEntry Entry = MaybeEntry.get(); 2077 2078 switch (Entry.Kind) { 2079 case BitstreamEntry::SubBlock: 2080 case BitstreamEntry::Error: 2081 return error("Malformed block"); 2082 case BitstreamEntry::EndBlock: 2083 return Error::success(); 2084 case BitstreamEntry::Record: 2085 break; 2086 } 2087 2088 Record.clear(); 2089 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2090 if (!MaybeRecord) 2091 return MaybeRecord.takeError(); 2092 switch (MaybeRecord.get()) { 2093 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2094 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2095 cast<Function>(ValueList[Record[0]]), Record); 2096 break; 2097 } 2098 } 2099 } 2100 2101 /// Parse the value symbol table at either the current parsing location or 2102 /// at the given bit offset if provided. 2103 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2104 uint64_t CurrentBit; 2105 // Pass in the Offset to distinguish between calling for the module-level 2106 // VST (where we want to jump to the VST offset) and the function-level 2107 // VST (where we don't). 2108 if (Offset > 0) { 2109 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2110 if (!MaybeCurrentBit) 2111 return MaybeCurrentBit.takeError(); 2112 CurrentBit = MaybeCurrentBit.get(); 2113 // If this module uses a string table, read this as a module-level VST. 2114 if (UseStrtab) { 2115 if (Error Err = parseGlobalValueSymbolTable()) 2116 return Err; 2117 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2118 return JumpFailed; 2119 return Error::success(); 2120 } 2121 // Otherwise, the VST will be in a similar format to a function-level VST, 2122 // and will contain symbol names. 2123 } 2124 2125 // Compute the delta between the bitcode indices in the VST (the word offset 2126 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2127 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2128 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2129 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2130 // just before entering the VST subblock because: 1) the EnterSubBlock 2131 // changes the AbbrevID width; 2) the VST block is nested within the same 2132 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2133 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2134 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2135 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2136 unsigned FuncBitcodeOffsetDelta = 2137 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2138 2139 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2140 return Err; 2141 2142 SmallVector<uint64_t, 64> Record; 2143 2144 Triple TT(TheModule->getTargetTriple()); 2145 2146 // Read all the records for this value table. 2147 SmallString<128> ValueName; 2148 2149 while (true) { 2150 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2151 if (!MaybeEntry) 2152 return MaybeEntry.takeError(); 2153 BitstreamEntry Entry = MaybeEntry.get(); 2154 2155 switch (Entry.Kind) { 2156 case BitstreamEntry::SubBlock: // Handled for us already. 2157 case BitstreamEntry::Error: 2158 return error("Malformed block"); 2159 case BitstreamEntry::EndBlock: 2160 if (Offset > 0) 2161 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2162 return JumpFailed; 2163 return Error::success(); 2164 case BitstreamEntry::Record: 2165 // The interesting case. 2166 break; 2167 } 2168 2169 // Read a record. 2170 Record.clear(); 2171 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2172 if (!MaybeRecord) 2173 return MaybeRecord.takeError(); 2174 switch (MaybeRecord.get()) { 2175 default: // Default behavior: unknown type. 2176 break; 2177 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2178 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2179 if (Error Err = ValOrErr.takeError()) 2180 return Err; 2181 ValOrErr.get(); 2182 break; 2183 } 2184 case bitc::VST_CODE_FNENTRY: { 2185 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2186 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2187 if (Error Err = ValOrErr.takeError()) 2188 return Err; 2189 Value *V = ValOrErr.get(); 2190 2191 // Ignore function offsets emitted for aliases of functions in older 2192 // versions of LLVM. 2193 if (auto *F = dyn_cast<Function>(V)) 2194 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2195 break; 2196 } 2197 case bitc::VST_CODE_BBENTRY: { 2198 if (convertToString(Record, 1, ValueName)) 2199 return error("Invalid record"); 2200 BasicBlock *BB = getBasicBlock(Record[0]); 2201 if (!BB) 2202 return error("Invalid record"); 2203 2204 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2205 ValueName.clear(); 2206 break; 2207 } 2208 } 2209 } 2210 } 2211 2212 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2213 /// encoding. 2214 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2215 if ((V & 1) == 0) 2216 return V >> 1; 2217 if (V != 1) 2218 return -(V >> 1); 2219 // There is no such thing as -0 with integers. "-0" really means MININT. 2220 return 1ULL << 63; 2221 } 2222 2223 /// Resolve all of the initializers for global values and aliases that we can. 2224 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2225 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2226 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2227 IndirectSymbolInitWorklist; 2228 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2229 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2230 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2231 2232 GlobalInitWorklist.swap(GlobalInits); 2233 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2234 FunctionPrefixWorklist.swap(FunctionPrefixes); 2235 FunctionPrologueWorklist.swap(FunctionPrologues); 2236 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2237 2238 while (!GlobalInitWorklist.empty()) { 2239 unsigned ValID = GlobalInitWorklist.back().second; 2240 if (ValID >= ValueList.size()) { 2241 // Not ready to resolve this yet, it requires something later in the file. 2242 GlobalInits.push_back(GlobalInitWorklist.back()); 2243 } else { 2244 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2245 GlobalInitWorklist.back().first->setInitializer(C); 2246 else 2247 return error("Expected a constant"); 2248 } 2249 GlobalInitWorklist.pop_back(); 2250 } 2251 2252 while (!IndirectSymbolInitWorklist.empty()) { 2253 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2254 if (ValID >= ValueList.size()) { 2255 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2256 } else { 2257 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2258 if (!C) 2259 return error("Expected a constant"); 2260 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2261 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2262 return error("Alias and aliasee types don't match"); 2263 GIS->setIndirectSymbol(C); 2264 } 2265 IndirectSymbolInitWorklist.pop_back(); 2266 } 2267 2268 while (!FunctionPrefixWorklist.empty()) { 2269 unsigned ValID = FunctionPrefixWorklist.back().second; 2270 if (ValID >= ValueList.size()) { 2271 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2272 } else { 2273 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2274 FunctionPrefixWorklist.back().first->setPrefixData(C); 2275 else 2276 return error("Expected a constant"); 2277 } 2278 FunctionPrefixWorklist.pop_back(); 2279 } 2280 2281 while (!FunctionPrologueWorklist.empty()) { 2282 unsigned ValID = FunctionPrologueWorklist.back().second; 2283 if (ValID >= ValueList.size()) { 2284 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2285 } else { 2286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2287 FunctionPrologueWorklist.back().first->setPrologueData(C); 2288 else 2289 return error("Expected a constant"); 2290 } 2291 FunctionPrologueWorklist.pop_back(); 2292 } 2293 2294 while (!FunctionPersonalityFnWorklist.empty()) { 2295 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2296 if (ValID >= ValueList.size()) { 2297 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2298 } else { 2299 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2300 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2301 else 2302 return error("Expected a constant"); 2303 } 2304 FunctionPersonalityFnWorklist.pop_back(); 2305 } 2306 2307 return Error::success(); 2308 } 2309 2310 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2311 SmallVector<uint64_t, 8> Words(Vals.size()); 2312 transform(Vals, Words.begin(), 2313 BitcodeReader::decodeSignRotatedValue); 2314 2315 return APInt(TypeBits, Words); 2316 } 2317 2318 Error BitcodeReader::parseConstants() { 2319 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2320 return Err; 2321 2322 SmallVector<uint64_t, 64> Record; 2323 2324 // Read all the records for this value table. 2325 Type *CurTy = Type::getInt32Ty(Context); 2326 Type *CurFullTy = Type::getInt32Ty(Context); 2327 unsigned NextCstNo = ValueList.size(); 2328 2329 struct DelayedShufTy { 2330 VectorType *OpTy; 2331 VectorType *RTy; 2332 Type *CurFullTy; 2333 uint64_t Op0Idx; 2334 uint64_t Op1Idx; 2335 uint64_t Op2Idx; 2336 }; 2337 std::vector<DelayedShufTy> DelayedShuffles; 2338 while (true) { 2339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2340 if (!MaybeEntry) 2341 return MaybeEntry.takeError(); 2342 BitstreamEntry Entry = MaybeEntry.get(); 2343 2344 switch (Entry.Kind) { 2345 case BitstreamEntry::SubBlock: // Handled for us already. 2346 case BitstreamEntry::Error: 2347 return error("Malformed block"); 2348 case BitstreamEntry::EndBlock: 2349 if (NextCstNo != ValueList.size()) 2350 return error("Invalid constant reference"); 2351 2352 // Once all the constants have been read, go through and resolve forward 2353 // references. 2354 // 2355 // We have to treat shuffles specially because they don't have three 2356 // operands anymore. We need to convert the shuffle mask into an array, 2357 // and we can't convert a forward reference. 2358 for (auto &DelayedShuffle : DelayedShuffles) { 2359 VectorType *OpTy = DelayedShuffle.OpTy; 2360 VectorType *RTy = DelayedShuffle.RTy; 2361 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2362 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2363 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2364 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2365 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2366 Type *ShufTy = 2367 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2368 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2369 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2370 return error("Invalid shufflevector operands"); 2371 SmallVector<int, 16> Mask; 2372 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2373 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2374 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2375 ++NextCstNo; 2376 } 2377 ValueList.resolveConstantForwardRefs(); 2378 return Error::success(); 2379 case BitstreamEntry::Record: 2380 // The interesting case. 2381 break; 2382 } 2383 2384 // Read a record. 2385 Record.clear(); 2386 Type *VoidType = Type::getVoidTy(Context); 2387 Value *V = nullptr; 2388 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2389 if (!MaybeBitCode) 2390 return MaybeBitCode.takeError(); 2391 switch (unsigned BitCode = MaybeBitCode.get()) { 2392 default: // Default behavior: unknown constant 2393 case bitc::CST_CODE_UNDEF: // UNDEF 2394 V = UndefValue::get(CurTy); 2395 break; 2396 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2397 if (Record.empty()) 2398 return error("Invalid record"); 2399 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2400 return error("Invalid record"); 2401 if (TypeList[Record[0]] == VoidType) 2402 return error("Invalid constant type"); 2403 CurFullTy = TypeList[Record[0]]; 2404 CurTy = flattenPointerTypes(CurFullTy); 2405 continue; // Skip the ValueList manipulation. 2406 case bitc::CST_CODE_NULL: // NULL 2407 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2408 return error("Invalid type for a constant null value"); 2409 V = Constant::getNullValue(CurTy); 2410 break; 2411 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2412 if (!CurTy->isIntegerTy() || Record.empty()) 2413 return error("Invalid record"); 2414 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2415 break; 2416 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2417 if (!CurTy->isIntegerTy() || Record.empty()) 2418 return error("Invalid record"); 2419 2420 APInt VInt = 2421 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2422 V = ConstantInt::get(Context, VInt); 2423 2424 break; 2425 } 2426 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2427 if (Record.empty()) 2428 return error("Invalid record"); 2429 if (CurTy->isHalfTy()) 2430 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2431 APInt(16, (uint16_t)Record[0]))); 2432 else if (CurTy->isFloatTy()) 2433 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2434 APInt(32, (uint32_t)Record[0]))); 2435 else if (CurTy->isDoubleTy()) 2436 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2437 APInt(64, Record[0]))); 2438 else if (CurTy->isX86_FP80Ty()) { 2439 // Bits are not stored the same way as a normal i80 APInt, compensate. 2440 uint64_t Rearrange[2]; 2441 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2442 Rearrange[1] = Record[0] >> 48; 2443 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2444 APInt(80, Rearrange))); 2445 } else if (CurTy->isFP128Ty()) 2446 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2447 APInt(128, Record))); 2448 else if (CurTy->isPPC_FP128Ty()) 2449 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2450 APInt(128, Record))); 2451 else 2452 V = UndefValue::get(CurTy); 2453 break; 2454 } 2455 2456 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2457 if (Record.empty()) 2458 return error("Invalid record"); 2459 2460 unsigned Size = Record.size(); 2461 SmallVector<Constant*, 16> Elts; 2462 2463 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2464 for (unsigned i = 0; i != Size; ++i) 2465 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2466 STy->getElementType(i))); 2467 V = ConstantStruct::get(STy, Elts); 2468 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2469 Type *EltTy = ATy->getElementType(); 2470 for (unsigned i = 0; i != Size; ++i) 2471 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2472 V = ConstantArray::get(ATy, Elts); 2473 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2474 Type *EltTy = VTy->getElementType(); 2475 for (unsigned i = 0; i != Size; ++i) 2476 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2477 V = ConstantVector::get(Elts); 2478 } else { 2479 V = UndefValue::get(CurTy); 2480 } 2481 break; 2482 } 2483 case bitc::CST_CODE_STRING: // STRING: [values] 2484 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2485 if (Record.empty()) 2486 return error("Invalid record"); 2487 2488 SmallString<16> Elts(Record.begin(), Record.end()); 2489 V = ConstantDataArray::getString(Context, Elts, 2490 BitCode == bitc::CST_CODE_CSTRING); 2491 break; 2492 } 2493 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2494 if (Record.empty()) 2495 return error("Invalid record"); 2496 2497 Type *EltTy; 2498 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2499 EltTy = Array->getElementType(); 2500 else 2501 EltTy = cast<VectorType>(CurTy)->getElementType(); 2502 if (EltTy->isIntegerTy(8)) { 2503 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2504 if (isa<VectorType>(CurTy)) 2505 V = ConstantDataVector::get(Context, Elts); 2506 else 2507 V = ConstantDataArray::get(Context, Elts); 2508 } else if (EltTy->isIntegerTy(16)) { 2509 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2510 if (isa<VectorType>(CurTy)) 2511 V = ConstantDataVector::get(Context, Elts); 2512 else 2513 V = ConstantDataArray::get(Context, Elts); 2514 } else if (EltTy->isIntegerTy(32)) { 2515 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2516 if (isa<VectorType>(CurTy)) 2517 V = ConstantDataVector::get(Context, Elts); 2518 else 2519 V = ConstantDataArray::get(Context, Elts); 2520 } else if (EltTy->isIntegerTy(64)) { 2521 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2522 if (isa<VectorType>(CurTy)) 2523 V = ConstantDataVector::get(Context, Elts); 2524 else 2525 V = ConstantDataArray::get(Context, Elts); 2526 } else if (EltTy->isHalfTy()) { 2527 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2528 if (isa<VectorType>(CurTy)) 2529 V = ConstantDataVector::getFP(Context, Elts); 2530 else 2531 V = ConstantDataArray::getFP(Context, Elts); 2532 } else if (EltTy->isFloatTy()) { 2533 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2534 if (isa<VectorType>(CurTy)) 2535 V = ConstantDataVector::getFP(Context, Elts); 2536 else 2537 V = ConstantDataArray::getFP(Context, Elts); 2538 } else if (EltTy->isDoubleTy()) { 2539 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2540 if (isa<VectorType>(CurTy)) 2541 V = ConstantDataVector::getFP(Context, Elts); 2542 else 2543 V = ConstantDataArray::getFP(Context, Elts); 2544 } else { 2545 return error("Invalid type for value"); 2546 } 2547 break; 2548 } 2549 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2550 if (Record.size() < 2) 2551 return error("Invalid record"); 2552 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2553 if (Opc < 0) { 2554 V = UndefValue::get(CurTy); // Unknown unop. 2555 } else { 2556 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2557 unsigned Flags = 0; 2558 V = ConstantExpr::get(Opc, LHS, Flags); 2559 } 2560 break; 2561 } 2562 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2563 if (Record.size() < 3) 2564 return error("Invalid record"); 2565 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2566 if (Opc < 0) { 2567 V = UndefValue::get(CurTy); // Unknown binop. 2568 } else { 2569 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2570 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2571 unsigned Flags = 0; 2572 if (Record.size() >= 4) { 2573 if (Opc == Instruction::Add || 2574 Opc == Instruction::Sub || 2575 Opc == Instruction::Mul || 2576 Opc == Instruction::Shl) { 2577 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2578 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2579 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2580 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2581 } else if (Opc == Instruction::SDiv || 2582 Opc == Instruction::UDiv || 2583 Opc == Instruction::LShr || 2584 Opc == Instruction::AShr) { 2585 if (Record[3] & (1 << bitc::PEO_EXACT)) 2586 Flags |= SDivOperator::IsExact; 2587 } 2588 } 2589 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2590 } 2591 break; 2592 } 2593 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2594 if (Record.size() < 3) 2595 return error("Invalid record"); 2596 int Opc = getDecodedCastOpcode(Record[0]); 2597 if (Opc < 0) { 2598 V = UndefValue::get(CurTy); // Unknown cast. 2599 } else { 2600 Type *OpTy = getTypeByID(Record[1]); 2601 if (!OpTy) 2602 return error("Invalid record"); 2603 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2604 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2605 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2606 } 2607 break; 2608 } 2609 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2610 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2611 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2612 // operands] 2613 unsigned OpNum = 0; 2614 Type *PointeeType = nullptr; 2615 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2616 Record.size() % 2) 2617 PointeeType = getTypeByID(Record[OpNum++]); 2618 2619 bool InBounds = false; 2620 Optional<unsigned> InRangeIndex; 2621 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2622 uint64_t Op = Record[OpNum++]; 2623 InBounds = Op & 1; 2624 InRangeIndex = Op >> 1; 2625 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2626 InBounds = true; 2627 2628 SmallVector<Constant*, 16> Elts; 2629 Type *Elt0FullTy = nullptr; 2630 while (OpNum != Record.size()) { 2631 if (!Elt0FullTy) 2632 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2633 Type *ElTy = getTypeByID(Record[OpNum++]); 2634 if (!ElTy) 2635 return error("Invalid record"); 2636 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2637 } 2638 2639 if (Elts.size() < 1) 2640 return error("Invalid gep with no operands"); 2641 2642 Type *ImplicitPointeeType = 2643 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2644 if (!PointeeType) 2645 PointeeType = ImplicitPointeeType; 2646 else if (PointeeType != ImplicitPointeeType) 2647 return error("Explicit gep operator type does not match pointee type " 2648 "of pointer operand"); 2649 2650 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2651 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2652 InBounds, InRangeIndex); 2653 break; 2654 } 2655 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2656 if (Record.size() < 3) 2657 return error("Invalid record"); 2658 2659 Type *SelectorTy = Type::getInt1Ty(Context); 2660 2661 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2662 // Get the type from the ValueList before getting a forward ref. 2663 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2664 if (Value *V = ValueList[Record[0]]) 2665 if (SelectorTy != V->getType()) 2666 SelectorTy = VectorType::get(SelectorTy, 2667 VTy->getElementCount()); 2668 2669 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2670 SelectorTy), 2671 ValueList.getConstantFwdRef(Record[1],CurTy), 2672 ValueList.getConstantFwdRef(Record[2],CurTy)); 2673 break; 2674 } 2675 case bitc::CST_CODE_CE_EXTRACTELT 2676 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2677 if (Record.size() < 3) 2678 return error("Invalid record"); 2679 VectorType *OpTy = 2680 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2681 if (!OpTy) 2682 return error("Invalid record"); 2683 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2684 Constant *Op1 = nullptr; 2685 if (Record.size() == 4) { 2686 Type *IdxTy = getTypeByID(Record[2]); 2687 if (!IdxTy) 2688 return error("Invalid record"); 2689 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2690 } else // TODO: Remove with llvm 4.0 2691 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2692 if (!Op1) 2693 return error("Invalid record"); 2694 V = ConstantExpr::getExtractElement(Op0, Op1); 2695 break; 2696 } 2697 case bitc::CST_CODE_CE_INSERTELT 2698 : { // CE_INSERTELT: [opval, opval, opty, opval] 2699 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2700 if (Record.size() < 3 || !OpTy) 2701 return error("Invalid record"); 2702 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2703 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2704 OpTy->getElementType()); 2705 Constant *Op2 = nullptr; 2706 if (Record.size() == 4) { 2707 Type *IdxTy = getTypeByID(Record[2]); 2708 if (!IdxTy) 2709 return error("Invalid record"); 2710 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2711 } else // TODO: Remove with llvm 4.0 2712 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2713 if (!Op2) 2714 return error("Invalid record"); 2715 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2716 break; 2717 } 2718 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2719 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2720 if (Record.size() < 3 || !OpTy) 2721 return error("Invalid record"); 2722 DelayedShuffles.push_back( 2723 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2724 continue; 2725 } 2726 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2727 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2728 VectorType *OpTy = 2729 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2730 if (Record.size() < 4 || !RTy || !OpTy) 2731 return error("Invalid record"); 2732 DelayedShuffles.push_back( 2733 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2734 continue; 2735 } 2736 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2737 if (Record.size() < 4) 2738 return error("Invalid record"); 2739 Type *OpTy = getTypeByID(Record[0]); 2740 if (!OpTy) 2741 return error("Invalid record"); 2742 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2743 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2744 2745 if (OpTy->isFPOrFPVectorTy()) 2746 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2747 else 2748 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2749 break; 2750 } 2751 // This maintains backward compatibility, pre-asm dialect keywords. 2752 // FIXME: Remove with the 4.0 release. 2753 case bitc::CST_CODE_INLINEASM_OLD: { 2754 if (Record.size() < 2) 2755 return error("Invalid record"); 2756 std::string AsmStr, ConstrStr; 2757 bool HasSideEffects = Record[0] & 1; 2758 bool IsAlignStack = Record[0] >> 1; 2759 unsigned AsmStrSize = Record[1]; 2760 if (2+AsmStrSize >= Record.size()) 2761 return error("Invalid record"); 2762 unsigned ConstStrSize = Record[2+AsmStrSize]; 2763 if (3+AsmStrSize+ConstStrSize > Record.size()) 2764 return error("Invalid record"); 2765 2766 for (unsigned i = 0; i != AsmStrSize; ++i) 2767 AsmStr += (char)Record[2+i]; 2768 for (unsigned i = 0; i != ConstStrSize; ++i) 2769 ConstrStr += (char)Record[3+AsmStrSize+i]; 2770 UpgradeInlineAsmString(&AsmStr); 2771 V = InlineAsm::get( 2772 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2773 ConstrStr, HasSideEffects, IsAlignStack); 2774 break; 2775 } 2776 // This version adds support for the asm dialect keywords (e.g., 2777 // inteldialect). 2778 case bitc::CST_CODE_INLINEASM: { 2779 if (Record.size() < 2) 2780 return error("Invalid record"); 2781 std::string AsmStr, ConstrStr; 2782 bool HasSideEffects = Record[0] & 1; 2783 bool IsAlignStack = (Record[0] >> 1) & 1; 2784 unsigned AsmDialect = Record[0] >> 2; 2785 unsigned AsmStrSize = Record[1]; 2786 if (2+AsmStrSize >= Record.size()) 2787 return error("Invalid record"); 2788 unsigned ConstStrSize = Record[2+AsmStrSize]; 2789 if (3+AsmStrSize+ConstStrSize > Record.size()) 2790 return error("Invalid record"); 2791 2792 for (unsigned i = 0; i != AsmStrSize; ++i) 2793 AsmStr += (char)Record[2+i]; 2794 for (unsigned i = 0; i != ConstStrSize; ++i) 2795 ConstrStr += (char)Record[3+AsmStrSize+i]; 2796 UpgradeInlineAsmString(&AsmStr); 2797 V = InlineAsm::get( 2798 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2799 ConstrStr, HasSideEffects, IsAlignStack, 2800 InlineAsm::AsmDialect(AsmDialect)); 2801 break; 2802 } 2803 case bitc::CST_CODE_BLOCKADDRESS:{ 2804 if (Record.size() < 3) 2805 return error("Invalid record"); 2806 Type *FnTy = getTypeByID(Record[0]); 2807 if (!FnTy) 2808 return error("Invalid record"); 2809 Function *Fn = 2810 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2811 if (!Fn) 2812 return error("Invalid record"); 2813 2814 // If the function is already parsed we can insert the block address right 2815 // away. 2816 BasicBlock *BB; 2817 unsigned BBID = Record[2]; 2818 if (!BBID) 2819 // Invalid reference to entry block. 2820 return error("Invalid ID"); 2821 if (!Fn->empty()) { 2822 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2823 for (size_t I = 0, E = BBID; I != E; ++I) { 2824 if (BBI == BBE) 2825 return error("Invalid ID"); 2826 ++BBI; 2827 } 2828 BB = &*BBI; 2829 } else { 2830 // Otherwise insert a placeholder and remember it so it can be inserted 2831 // when the function is parsed. 2832 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2833 if (FwdBBs.empty()) 2834 BasicBlockFwdRefQueue.push_back(Fn); 2835 if (FwdBBs.size() < BBID + 1) 2836 FwdBBs.resize(BBID + 1); 2837 if (!FwdBBs[BBID]) 2838 FwdBBs[BBID] = BasicBlock::Create(Context); 2839 BB = FwdBBs[BBID]; 2840 } 2841 V = BlockAddress::get(Fn, BB); 2842 break; 2843 } 2844 } 2845 2846 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2847 "Incorrect fully structured type provided for Constant"); 2848 ValueList.assignValue(V, NextCstNo, CurFullTy); 2849 ++NextCstNo; 2850 } 2851 } 2852 2853 Error BitcodeReader::parseUseLists() { 2854 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2855 return Err; 2856 2857 // Read all the records. 2858 SmallVector<uint64_t, 64> Record; 2859 2860 while (true) { 2861 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2862 if (!MaybeEntry) 2863 return MaybeEntry.takeError(); 2864 BitstreamEntry Entry = MaybeEntry.get(); 2865 2866 switch (Entry.Kind) { 2867 case BitstreamEntry::SubBlock: // Handled for us already. 2868 case BitstreamEntry::Error: 2869 return error("Malformed block"); 2870 case BitstreamEntry::EndBlock: 2871 return Error::success(); 2872 case BitstreamEntry::Record: 2873 // The interesting case. 2874 break; 2875 } 2876 2877 // Read a use list record. 2878 Record.clear(); 2879 bool IsBB = false; 2880 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2881 if (!MaybeRecord) 2882 return MaybeRecord.takeError(); 2883 switch (MaybeRecord.get()) { 2884 default: // Default behavior: unknown type. 2885 break; 2886 case bitc::USELIST_CODE_BB: 2887 IsBB = true; 2888 LLVM_FALLTHROUGH; 2889 case bitc::USELIST_CODE_DEFAULT: { 2890 unsigned RecordLength = Record.size(); 2891 if (RecordLength < 3) 2892 // Records should have at least an ID and two indexes. 2893 return error("Invalid record"); 2894 unsigned ID = Record.back(); 2895 Record.pop_back(); 2896 2897 Value *V; 2898 if (IsBB) { 2899 assert(ID < FunctionBBs.size() && "Basic block not found"); 2900 V = FunctionBBs[ID]; 2901 } else 2902 V = ValueList[ID]; 2903 unsigned NumUses = 0; 2904 SmallDenseMap<const Use *, unsigned, 16> Order; 2905 for (const Use &U : V->materialized_uses()) { 2906 if (++NumUses > Record.size()) 2907 break; 2908 Order[&U] = Record[NumUses - 1]; 2909 } 2910 if (Order.size() != Record.size() || NumUses > Record.size()) 2911 // Mismatches can happen if the functions are being materialized lazily 2912 // (out-of-order), or a value has been upgraded. 2913 break; 2914 2915 V->sortUseList([&](const Use &L, const Use &R) { 2916 return Order.lookup(&L) < Order.lookup(&R); 2917 }); 2918 break; 2919 } 2920 } 2921 } 2922 } 2923 2924 /// When we see the block for metadata, remember where it is and then skip it. 2925 /// This lets us lazily deserialize the metadata. 2926 Error BitcodeReader::rememberAndSkipMetadata() { 2927 // Save the current stream state. 2928 uint64_t CurBit = Stream.GetCurrentBitNo(); 2929 DeferredMetadataInfo.push_back(CurBit); 2930 2931 // Skip over the block for now. 2932 if (Error Err = Stream.SkipBlock()) 2933 return Err; 2934 return Error::success(); 2935 } 2936 2937 Error BitcodeReader::materializeMetadata() { 2938 for (uint64_t BitPos : DeferredMetadataInfo) { 2939 // Move the bit stream to the saved position. 2940 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2941 return JumpFailed; 2942 if (Error Err = MDLoader->parseModuleMetadata()) 2943 return Err; 2944 } 2945 2946 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2947 // metadata. 2948 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2949 NamedMDNode *LinkerOpts = 2950 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2951 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2952 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2953 } 2954 2955 DeferredMetadataInfo.clear(); 2956 return Error::success(); 2957 } 2958 2959 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2960 2961 /// When we see the block for a function body, remember where it is and then 2962 /// skip it. This lets us lazily deserialize the functions. 2963 Error BitcodeReader::rememberAndSkipFunctionBody() { 2964 // Get the function we are talking about. 2965 if (FunctionsWithBodies.empty()) 2966 return error("Insufficient function protos"); 2967 2968 Function *Fn = FunctionsWithBodies.back(); 2969 FunctionsWithBodies.pop_back(); 2970 2971 // Save the current stream state. 2972 uint64_t CurBit = Stream.GetCurrentBitNo(); 2973 assert( 2974 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2975 "Mismatch between VST and scanned function offsets"); 2976 DeferredFunctionInfo[Fn] = CurBit; 2977 2978 // Skip over the function block for now. 2979 if (Error Err = Stream.SkipBlock()) 2980 return Err; 2981 return Error::success(); 2982 } 2983 2984 Error BitcodeReader::globalCleanup() { 2985 // Patch the initializers for globals and aliases up. 2986 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2987 return Err; 2988 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2989 return error("Malformed global initializer set"); 2990 2991 // Look for intrinsic functions which need to be upgraded at some point 2992 for (Function &F : *TheModule) { 2993 MDLoader->upgradeDebugIntrinsics(F); 2994 Function *NewFn; 2995 if (UpgradeIntrinsicFunction(&F, NewFn)) 2996 UpgradedIntrinsics[&F] = NewFn; 2997 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2998 // Some types could be renamed during loading if several modules are 2999 // loaded in the same LLVMContext (LTO scenario). In this case we should 3000 // remangle intrinsics names as well. 3001 RemangledIntrinsics[&F] = Remangled.getValue(); 3002 } 3003 3004 // Look for global variables which need to be renamed. 3005 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3006 for (GlobalVariable &GV : TheModule->globals()) 3007 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3008 UpgradedVariables.emplace_back(&GV, Upgraded); 3009 for (auto &Pair : UpgradedVariables) { 3010 Pair.first->eraseFromParent(); 3011 TheModule->getGlobalList().push_back(Pair.second); 3012 } 3013 3014 // Force deallocation of memory for these vectors to favor the client that 3015 // want lazy deserialization. 3016 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3017 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3018 IndirectSymbolInits); 3019 return Error::success(); 3020 } 3021 3022 /// Support for lazy parsing of function bodies. This is required if we 3023 /// either have an old bitcode file without a VST forward declaration record, 3024 /// or if we have an anonymous function being materialized, since anonymous 3025 /// functions do not have a name and are therefore not in the VST. 3026 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3027 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3028 return JumpFailed; 3029 3030 if (Stream.AtEndOfStream()) 3031 return error("Could not find function in stream"); 3032 3033 if (!SeenFirstFunctionBody) 3034 return error("Trying to materialize functions before seeing function blocks"); 3035 3036 // An old bitcode file with the symbol table at the end would have 3037 // finished the parse greedily. 3038 assert(SeenValueSymbolTable); 3039 3040 SmallVector<uint64_t, 64> Record; 3041 3042 while (true) { 3043 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3044 if (!MaybeEntry) 3045 return MaybeEntry.takeError(); 3046 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3047 3048 switch (Entry.Kind) { 3049 default: 3050 return error("Expect SubBlock"); 3051 case BitstreamEntry::SubBlock: 3052 switch (Entry.ID) { 3053 default: 3054 return error("Expect function block"); 3055 case bitc::FUNCTION_BLOCK_ID: 3056 if (Error Err = rememberAndSkipFunctionBody()) 3057 return Err; 3058 NextUnreadBit = Stream.GetCurrentBitNo(); 3059 return Error::success(); 3060 } 3061 } 3062 } 3063 } 3064 3065 bool BitcodeReaderBase::readBlockInfo() { 3066 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3067 Stream.ReadBlockInfoBlock(); 3068 if (!MaybeNewBlockInfo) 3069 return true; // FIXME Handle the error. 3070 Optional<BitstreamBlockInfo> NewBlockInfo = 3071 std::move(MaybeNewBlockInfo.get()); 3072 if (!NewBlockInfo) 3073 return true; 3074 BlockInfo = std::move(*NewBlockInfo); 3075 return false; 3076 } 3077 3078 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3079 // v1: [selection_kind, name] 3080 // v2: [strtab_offset, strtab_size, selection_kind] 3081 StringRef Name; 3082 std::tie(Name, Record) = readNameFromStrtab(Record); 3083 3084 if (Record.empty()) 3085 return error("Invalid record"); 3086 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3087 std::string OldFormatName; 3088 if (!UseStrtab) { 3089 if (Record.size() < 2) 3090 return error("Invalid record"); 3091 unsigned ComdatNameSize = Record[1]; 3092 OldFormatName.reserve(ComdatNameSize); 3093 for (unsigned i = 0; i != ComdatNameSize; ++i) 3094 OldFormatName += (char)Record[2 + i]; 3095 Name = OldFormatName; 3096 } 3097 Comdat *C = TheModule->getOrInsertComdat(Name); 3098 C->setSelectionKind(SK); 3099 ComdatList.push_back(C); 3100 return Error::success(); 3101 } 3102 3103 static void inferDSOLocal(GlobalValue *GV) { 3104 // infer dso_local from linkage and visibility if it is not encoded. 3105 if (GV->hasLocalLinkage() || 3106 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3107 GV->setDSOLocal(true); 3108 } 3109 3110 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3111 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3112 // visibility, threadlocal, unnamed_addr, externally_initialized, 3113 // dllstorageclass, comdat, attributes, preemption specifier, 3114 // partition strtab offset, partition strtab size] (name in VST) 3115 // v2: [strtab_offset, strtab_size, v1] 3116 StringRef Name; 3117 std::tie(Name, Record) = readNameFromStrtab(Record); 3118 3119 if (Record.size() < 6) 3120 return error("Invalid record"); 3121 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3122 Type *Ty = flattenPointerTypes(FullTy); 3123 if (!Ty) 3124 return error("Invalid record"); 3125 bool isConstant = Record[1] & 1; 3126 bool explicitType = Record[1] & 2; 3127 unsigned AddressSpace; 3128 if (explicitType) { 3129 AddressSpace = Record[1] >> 2; 3130 } else { 3131 if (!Ty->isPointerTy()) 3132 return error("Invalid type for value"); 3133 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3134 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3135 } 3136 3137 uint64_t RawLinkage = Record[3]; 3138 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3139 MaybeAlign Alignment; 3140 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3141 return Err; 3142 std::string Section; 3143 if (Record[5]) { 3144 if (Record[5] - 1 >= SectionTable.size()) 3145 return error("Invalid ID"); 3146 Section = SectionTable[Record[5] - 1]; 3147 } 3148 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3149 // Local linkage must have default visibility. 3150 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3151 // FIXME: Change to an error if non-default in 4.0. 3152 Visibility = getDecodedVisibility(Record[6]); 3153 3154 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3155 if (Record.size() > 7) 3156 TLM = getDecodedThreadLocalMode(Record[7]); 3157 3158 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3159 if (Record.size() > 8) 3160 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3161 3162 bool ExternallyInitialized = false; 3163 if (Record.size() > 9) 3164 ExternallyInitialized = Record[9]; 3165 3166 GlobalVariable *NewGV = 3167 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3168 nullptr, TLM, AddressSpace, ExternallyInitialized); 3169 NewGV->setAlignment(Alignment); 3170 if (!Section.empty()) 3171 NewGV->setSection(Section); 3172 NewGV->setVisibility(Visibility); 3173 NewGV->setUnnamedAddr(UnnamedAddr); 3174 3175 if (Record.size() > 10) 3176 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3177 else 3178 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3179 3180 FullTy = PointerType::get(FullTy, AddressSpace); 3181 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3182 "Incorrect fully specified type for GlobalVariable"); 3183 ValueList.push_back(NewGV, FullTy); 3184 3185 // Remember which value to use for the global initializer. 3186 if (unsigned InitID = Record[2]) 3187 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3188 3189 if (Record.size() > 11) { 3190 if (unsigned ComdatID = Record[11]) { 3191 if (ComdatID > ComdatList.size()) 3192 return error("Invalid global variable comdat ID"); 3193 NewGV->setComdat(ComdatList[ComdatID - 1]); 3194 } 3195 } else if (hasImplicitComdat(RawLinkage)) { 3196 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3197 } 3198 3199 if (Record.size() > 12) { 3200 auto AS = getAttributes(Record[12]).getFnAttributes(); 3201 NewGV->setAttributes(AS); 3202 } 3203 3204 if (Record.size() > 13) { 3205 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3206 } 3207 inferDSOLocal(NewGV); 3208 3209 // Check whether we have enough values to read a partition name. 3210 if (Record.size() > 15) 3211 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3212 3213 return Error::success(); 3214 } 3215 3216 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3217 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3218 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3219 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3220 // v2: [strtab_offset, strtab_size, v1] 3221 StringRef Name; 3222 std::tie(Name, Record) = readNameFromStrtab(Record); 3223 3224 if (Record.size() < 8) 3225 return error("Invalid record"); 3226 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3227 Type *FTy = flattenPointerTypes(FullFTy); 3228 if (!FTy) 3229 return error("Invalid record"); 3230 if (isa<PointerType>(FTy)) 3231 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3232 3233 if (!isa<FunctionType>(FTy)) 3234 return error("Invalid type for value"); 3235 auto CC = static_cast<CallingConv::ID>(Record[1]); 3236 if (CC & ~CallingConv::MaxID) 3237 return error("Invalid calling convention ID"); 3238 3239 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3240 if (Record.size() > 16) 3241 AddrSpace = Record[16]; 3242 3243 Function *Func = 3244 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3245 AddrSpace, Name, TheModule); 3246 3247 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3248 "Incorrect fully specified type provided for function"); 3249 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3250 3251 Func->setCallingConv(CC); 3252 bool isProto = Record[2]; 3253 uint64_t RawLinkage = Record[3]; 3254 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3255 Func->setAttributes(getAttributes(Record[4])); 3256 3257 // Upgrade any old-style byval without a type by propagating the argument's 3258 // pointee type. There should be no opaque pointers where the byval type is 3259 // implicit. 3260 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3261 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3262 continue; 3263 3264 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3265 Func->removeParamAttr(i, Attribute::ByVal); 3266 Func->addParamAttr(i, Attribute::getWithByValType( 3267 Context, getPointerElementFlatType(PTy))); 3268 } 3269 3270 MaybeAlign Alignment; 3271 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3272 return Err; 3273 Func->setAlignment(Alignment); 3274 if (Record[6]) { 3275 if (Record[6] - 1 >= SectionTable.size()) 3276 return error("Invalid ID"); 3277 Func->setSection(SectionTable[Record[6] - 1]); 3278 } 3279 // Local linkage must have default visibility. 3280 if (!Func->hasLocalLinkage()) 3281 // FIXME: Change to an error if non-default in 4.0. 3282 Func->setVisibility(getDecodedVisibility(Record[7])); 3283 if (Record.size() > 8 && Record[8]) { 3284 if (Record[8] - 1 >= GCTable.size()) 3285 return error("Invalid ID"); 3286 Func->setGC(GCTable[Record[8] - 1]); 3287 } 3288 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3289 if (Record.size() > 9) 3290 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3291 Func->setUnnamedAddr(UnnamedAddr); 3292 if (Record.size() > 10 && Record[10] != 0) 3293 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3294 3295 if (Record.size() > 11) 3296 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3297 else 3298 upgradeDLLImportExportLinkage(Func, RawLinkage); 3299 3300 if (Record.size() > 12) { 3301 if (unsigned ComdatID = Record[12]) { 3302 if (ComdatID > ComdatList.size()) 3303 return error("Invalid function comdat ID"); 3304 Func->setComdat(ComdatList[ComdatID - 1]); 3305 } 3306 } else if (hasImplicitComdat(RawLinkage)) { 3307 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3308 } 3309 3310 if (Record.size() > 13 && Record[13] != 0) 3311 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3312 3313 if (Record.size() > 14 && Record[14] != 0) 3314 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3315 3316 if (Record.size() > 15) { 3317 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3318 } 3319 inferDSOLocal(Func); 3320 3321 // Record[16] is the address space number. 3322 3323 // Check whether we have enough values to read a partition name. 3324 if (Record.size() > 18) 3325 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3326 3327 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3328 assert(Func->getType() == flattenPointerTypes(FullTy) && 3329 "Incorrect fully specified type provided for Function"); 3330 ValueList.push_back(Func, FullTy); 3331 3332 // If this is a function with a body, remember the prototype we are 3333 // creating now, so that we can match up the body with them later. 3334 if (!isProto) { 3335 Func->setIsMaterializable(true); 3336 FunctionsWithBodies.push_back(Func); 3337 DeferredFunctionInfo[Func] = 0; 3338 } 3339 return Error::success(); 3340 } 3341 3342 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3343 unsigned BitCode, ArrayRef<uint64_t> Record) { 3344 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3345 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3346 // dllstorageclass, threadlocal, unnamed_addr, 3347 // preemption specifier] (name in VST) 3348 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3349 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3350 // preemption specifier] (name in VST) 3351 // v2: [strtab_offset, strtab_size, v1] 3352 StringRef Name; 3353 std::tie(Name, Record) = readNameFromStrtab(Record); 3354 3355 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3356 if (Record.size() < (3 + (unsigned)NewRecord)) 3357 return error("Invalid record"); 3358 unsigned OpNum = 0; 3359 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3360 Type *Ty = flattenPointerTypes(FullTy); 3361 if (!Ty) 3362 return error("Invalid record"); 3363 3364 unsigned AddrSpace; 3365 if (!NewRecord) { 3366 auto *PTy = dyn_cast<PointerType>(Ty); 3367 if (!PTy) 3368 return error("Invalid type for value"); 3369 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3370 AddrSpace = PTy->getAddressSpace(); 3371 } else { 3372 AddrSpace = Record[OpNum++]; 3373 } 3374 3375 auto Val = Record[OpNum++]; 3376 auto Linkage = Record[OpNum++]; 3377 GlobalIndirectSymbol *NewGA; 3378 if (BitCode == bitc::MODULE_CODE_ALIAS || 3379 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3380 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3381 TheModule); 3382 else 3383 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3384 nullptr, TheModule); 3385 3386 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3387 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3388 // Old bitcode files didn't have visibility field. 3389 // Local linkage must have default visibility. 3390 if (OpNum != Record.size()) { 3391 auto VisInd = OpNum++; 3392 if (!NewGA->hasLocalLinkage()) 3393 // FIXME: Change to an error if non-default in 4.0. 3394 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3395 } 3396 if (BitCode == bitc::MODULE_CODE_ALIAS || 3397 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3398 if (OpNum != Record.size()) 3399 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3400 else 3401 upgradeDLLImportExportLinkage(NewGA, Linkage); 3402 if (OpNum != Record.size()) 3403 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3404 if (OpNum != Record.size()) 3405 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3406 } 3407 if (OpNum != Record.size()) 3408 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3409 inferDSOLocal(NewGA); 3410 3411 // Check whether we have enough values to read a partition name. 3412 if (OpNum + 1 < Record.size()) { 3413 NewGA->setPartition( 3414 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3415 OpNum += 2; 3416 } 3417 3418 FullTy = PointerType::get(FullTy, AddrSpace); 3419 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3420 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3421 ValueList.push_back(NewGA, FullTy); 3422 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3423 return Error::success(); 3424 } 3425 3426 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3427 bool ShouldLazyLoadMetadata, 3428 DataLayoutCallbackTy DataLayoutCallback) { 3429 if (ResumeBit) { 3430 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3431 return JumpFailed; 3432 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3433 return Err; 3434 3435 SmallVector<uint64_t, 64> Record; 3436 3437 // Parts of bitcode parsing depend on the datalayout. Make sure we 3438 // finalize the datalayout before we run any of that code. 3439 bool ResolvedDataLayout = false; 3440 auto ResolveDataLayout = [&] { 3441 if (ResolvedDataLayout) 3442 return; 3443 3444 // datalayout and triple can't be parsed after this point. 3445 ResolvedDataLayout = true; 3446 3447 // Upgrade data layout string. 3448 std::string DL = llvm::UpgradeDataLayoutString( 3449 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3450 TheModule->setDataLayout(DL); 3451 3452 if (auto LayoutOverride = 3453 DataLayoutCallback(TheModule->getTargetTriple())) 3454 TheModule->setDataLayout(*LayoutOverride); 3455 }; 3456 3457 // Read all the records for this module. 3458 while (true) { 3459 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3460 if (!MaybeEntry) 3461 return MaybeEntry.takeError(); 3462 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3463 3464 switch (Entry.Kind) { 3465 case BitstreamEntry::Error: 3466 return error("Malformed block"); 3467 case BitstreamEntry::EndBlock: 3468 ResolveDataLayout(); 3469 return globalCleanup(); 3470 3471 case BitstreamEntry::SubBlock: 3472 switch (Entry.ID) { 3473 default: // Skip unknown content. 3474 if (Error Err = Stream.SkipBlock()) 3475 return Err; 3476 break; 3477 case bitc::BLOCKINFO_BLOCK_ID: 3478 if (readBlockInfo()) 3479 return error("Malformed block"); 3480 break; 3481 case bitc::PARAMATTR_BLOCK_ID: 3482 if (Error Err = parseAttributeBlock()) 3483 return Err; 3484 break; 3485 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3486 if (Error Err = parseAttributeGroupBlock()) 3487 return Err; 3488 break; 3489 case bitc::TYPE_BLOCK_ID_NEW: 3490 if (Error Err = parseTypeTable()) 3491 return Err; 3492 break; 3493 case bitc::VALUE_SYMTAB_BLOCK_ID: 3494 if (!SeenValueSymbolTable) { 3495 // Either this is an old form VST without function index and an 3496 // associated VST forward declaration record (which would have caused 3497 // the VST to be jumped to and parsed before it was encountered 3498 // normally in the stream), or there were no function blocks to 3499 // trigger an earlier parsing of the VST. 3500 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3501 if (Error Err = parseValueSymbolTable()) 3502 return Err; 3503 SeenValueSymbolTable = true; 3504 } else { 3505 // We must have had a VST forward declaration record, which caused 3506 // the parser to jump to and parse the VST earlier. 3507 assert(VSTOffset > 0); 3508 if (Error Err = Stream.SkipBlock()) 3509 return Err; 3510 } 3511 break; 3512 case bitc::CONSTANTS_BLOCK_ID: 3513 if (Error Err = parseConstants()) 3514 return Err; 3515 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3516 return Err; 3517 break; 3518 case bitc::METADATA_BLOCK_ID: 3519 if (ShouldLazyLoadMetadata) { 3520 if (Error Err = rememberAndSkipMetadata()) 3521 return Err; 3522 break; 3523 } 3524 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3525 if (Error Err = MDLoader->parseModuleMetadata()) 3526 return Err; 3527 break; 3528 case bitc::METADATA_KIND_BLOCK_ID: 3529 if (Error Err = MDLoader->parseMetadataKinds()) 3530 return Err; 3531 break; 3532 case bitc::FUNCTION_BLOCK_ID: 3533 ResolveDataLayout(); 3534 3535 // If this is the first function body we've seen, reverse the 3536 // FunctionsWithBodies list. 3537 if (!SeenFirstFunctionBody) { 3538 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3539 if (Error Err = globalCleanup()) 3540 return Err; 3541 SeenFirstFunctionBody = true; 3542 } 3543 3544 if (VSTOffset > 0) { 3545 // If we have a VST forward declaration record, make sure we 3546 // parse the VST now if we haven't already. It is needed to 3547 // set up the DeferredFunctionInfo vector for lazy reading. 3548 if (!SeenValueSymbolTable) { 3549 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3550 return Err; 3551 SeenValueSymbolTable = true; 3552 // Fall through so that we record the NextUnreadBit below. 3553 // This is necessary in case we have an anonymous function that 3554 // is later materialized. Since it will not have a VST entry we 3555 // need to fall back to the lazy parse to find its offset. 3556 } else { 3557 // If we have a VST forward declaration record, but have already 3558 // parsed the VST (just above, when the first function body was 3559 // encountered here), then we are resuming the parse after 3560 // materializing functions. The ResumeBit points to the 3561 // start of the last function block recorded in the 3562 // DeferredFunctionInfo map. Skip it. 3563 if (Error Err = Stream.SkipBlock()) 3564 return Err; 3565 continue; 3566 } 3567 } 3568 3569 // Support older bitcode files that did not have the function 3570 // index in the VST, nor a VST forward declaration record, as 3571 // well as anonymous functions that do not have VST entries. 3572 // Build the DeferredFunctionInfo vector on the fly. 3573 if (Error Err = rememberAndSkipFunctionBody()) 3574 return Err; 3575 3576 // Suspend parsing when we reach the function bodies. Subsequent 3577 // materialization calls will resume it when necessary. If the bitcode 3578 // file is old, the symbol table will be at the end instead and will not 3579 // have been seen yet. In this case, just finish the parse now. 3580 if (SeenValueSymbolTable) { 3581 NextUnreadBit = Stream.GetCurrentBitNo(); 3582 // After the VST has been parsed, we need to make sure intrinsic name 3583 // are auto-upgraded. 3584 return globalCleanup(); 3585 } 3586 break; 3587 case bitc::USELIST_BLOCK_ID: 3588 if (Error Err = parseUseLists()) 3589 return Err; 3590 break; 3591 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3592 if (Error Err = parseOperandBundleTags()) 3593 return Err; 3594 break; 3595 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3596 if (Error Err = parseSyncScopeNames()) 3597 return Err; 3598 break; 3599 } 3600 continue; 3601 3602 case BitstreamEntry::Record: 3603 // The interesting case. 3604 break; 3605 } 3606 3607 // Read a record. 3608 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3609 if (!MaybeBitCode) 3610 return MaybeBitCode.takeError(); 3611 switch (unsigned BitCode = MaybeBitCode.get()) { 3612 default: break; // Default behavior, ignore unknown content. 3613 case bitc::MODULE_CODE_VERSION: { 3614 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3615 if (!VersionOrErr) 3616 return VersionOrErr.takeError(); 3617 UseRelativeIDs = *VersionOrErr >= 1; 3618 break; 3619 } 3620 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3621 if (ResolvedDataLayout) 3622 return error("target triple too late in module"); 3623 std::string S; 3624 if (convertToString(Record, 0, S)) 3625 return error("Invalid record"); 3626 TheModule->setTargetTriple(S); 3627 break; 3628 } 3629 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3630 if (ResolvedDataLayout) 3631 return error("datalayout too late in module"); 3632 std::string S; 3633 if (convertToString(Record, 0, S)) 3634 return error("Invalid record"); 3635 TheModule->setDataLayout(S); 3636 break; 3637 } 3638 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3639 std::string S; 3640 if (convertToString(Record, 0, S)) 3641 return error("Invalid record"); 3642 TheModule->setModuleInlineAsm(S); 3643 break; 3644 } 3645 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3646 // FIXME: Remove in 4.0. 3647 std::string S; 3648 if (convertToString(Record, 0, S)) 3649 return error("Invalid record"); 3650 // Ignore value. 3651 break; 3652 } 3653 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3654 std::string S; 3655 if (convertToString(Record, 0, S)) 3656 return error("Invalid record"); 3657 SectionTable.push_back(S); 3658 break; 3659 } 3660 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3661 std::string S; 3662 if (convertToString(Record, 0, S)) 3663 return error("Invalid record"); 3664 GCTable.push_back(S); 3665 break; 3666 } 3667 case bitc::MODULE_CODE_COMDAT: 3668 if (Error Err = parseComdatRecord(Record)) 3669 return Err; 3670 break; 3671 case bitc::MODULE_CODE_GLOBALVAR: 3672 if (Error Err = parseGlobalVarRecord(Record)) 3673 return Err; 3674 break; 3675 case bitc::MODULE_CODE_FUNCTION: 3676 ResolveDataLayout(); 3677 if (Error Err = parseFunctionRecord(Record)) 3678 return Err; 3679 break; 3680 case bitc::MODULE_CODE_IFUNC: 3681 case bitc::MODULE_CODE_ALIAS: 3682 case bitc::MODULE_CODE_ALIAS_OLD: 3683 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3684 return Err; 3685 break; 3686 /// MODULE_CODE_VSTOFFSET: [offset] 3687 case bitc::MODULE_CODE_VSTOFFSET: 3688 if (Record.size() < 1) 3689 return error("Invalid record"); 3690 // Note that we subtract 1 here because the offset is relative to one word 3691 // before the start of the identification or module block, which was 3692 // historically always the start of the regular bitcode header. 3693 VSTOffset = Record[0] - 1; 3694 break; 3695 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3696 case bitc::MODULE_CODE_SOURCE_FILENAME: 3697 SmallString<128> ValueName; 3698 if (convertToString(Record, 0, ValueName)) 3699 return error("Invalid record"); 3700 TheModule->setSourceFileName(ValueName); 3701 break; 3702 } 3703 Record.clear(); 3704 } 3705 } 3706 3707 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3708 bool IsImporting, 3709 DataLayoutCallbackTy DataLayoutCallback) { 3710 TheModule = M; 3711 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3712 [&](unsigned ID) { return getTypeByID(ID); }); 3713 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3714 } 3715 3716 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3717 if (!isa<PointerType>(PtrType)) 3718 return error("Load/Store operand is not a pointer type"); 3719 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3720 3721 if (ValType && ValType != ElemType) 3722 return error("Explicit load/store type does not match pointee " 3723 "type of pointer operand"); 3724 if (!PointerType::isLoadableOrStorableType(ElemType)) 3725 return error("Cannot load/store from pointer"); 3726 return Error::success(); 3727 } 3728 3729 void BitcodeReader::propagateByValTypes(CallBase *CB, 3730 ArrayRef<Type *> ArgsFullTys) { 3731 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3732 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3733 continue; 3734 3735 CB->removeParamAttr(i, Attribute::ByVal); 3736 CB->addParamAttr( 3737 i, Attribute::getWithByValType( 3738 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3739 } 3740 } 3741 3742 /// Lazily parse the specified function body block. 3743 Error BitcodeReader::parseFunctionBody(Function *F) { 3744 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3745 return Err; 3746 3747 // Unexpected unresolved metadata when parsing function. 3748 if (MDLoader->hasFwdRefs()) 3749 return error("Invalid function metadata: incoming forward references"); 3750 3751 InstructionList.clear(); 3752 unsigned ModuleValueListSize = ValueList.size(); 3753 unsigned ModuleMDLoaderSize = MDLoader->size(); 3754 3755 // Add all the function arguments to the value table. 3756 unsigned ArgNo = 0; 3757 FunctionType *FullFTy = FunctionTypes[F]; 3758 for (Argument &I : F->args()) { 3759 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3760 "Incorrect fully specified type for Function Argument"); 3761 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3762 } 3763 unsigned NextValueNo = ValueList.size(); 3764 BasicBlock *CurBB = nullptr; 3765 unsigned CurBBNo = 0; 3766 3767 DebugLoc LastLoc; 3768 auto getLastInstruction = [&]() -> Instruction * { 3769 if (CurBB && !CurBB->empty()) 3770 return &CurBB->back(); 3771 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3772 !FunctionBBs[CurBBNo - 1]->empty()) 3773 return &FunctionBBs[CurBBNo - 1]->back(); 3774 return nullptr; 3775 }; 3776 3777 std::vector<OperandBundleDef> OperandBundles; 3778 3779 // Read all the records. 3780 SmallVector<uint64_t, 64> Record; 3781 3782 while (true) { 3783 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3784 if (!MaybeEntry) 3785 return MaybeEntry.takeError(); 3786 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3787 3788 switch (Entry.Kind) { 3789 case BitstreamEntry::Error: 3790 return error("Malformed block"); 3791 case BitstreamEntry::EndBlock: 3792 goto OutOfRecordLoop; 3793 3794 case BitstreamEntry::SubBlock: 3795 switch (Entry.ID) { 3796 default: // Skip unknown content. 3797 if (Error Err = Stream.SkipBlock()) 3798 return Err; 3799 break; 3800 case bitc::CONSTANTS_BLOCK_ID: 3801 if (Error Err = parseConstants()) 3802 return Err; 3803 NextValueNo = ValueList.size(); 3804 break; 3805 case bitc::VALUE_SYMTAB_BLOCK_ID: 3806 if (Error Err = parseValueSymbolTable()) 3807 return Err; 3808 break; 3809 case bitc::METADATA_ATTACHMENT_ID: 3810 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3811 return Err; 3812 break; 3813 case bitc::METADATA_BLOCK_ID: 3814 assert(DeferredMetadataInfo.empty() && 3815 "Must read all module-level metadata before function-level"); 3816 if (Error Err = MDLoader->parseFunctionMetadata()) 3817 return Err; 3818 break; 3819 case bitc::USELIST_BLOCK_ID: 3820 if (Error Err = parseUseLists()) 3821 return Err; 3822 break; 3823 } 3824 continue; 3825 3826 case BitstreamEntry::Record: 3827 // The interesting case. 3828 break; 3829 } 3830 3831 // Read a record. 3832 Record.clear(); 3833 Instruction *I = nullptr; 3834 Type *FullTy = nullptr; 3835 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3836 if (!MaybeBitCode) 3837 return MaybeBitCode.takeError(); 3838 switch (unsigned BitCode = MaybeBitCode.get()) { 3839 default: // Default behavior: reject 3840 return error("Invalid value"); 3841 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3842 if (Record.size() < 1 || Record[0] == 0) 3843 return error("Invalid record"); 3844 // Create all the basic blocks for the function. 3845 FunctionBBs.resize(Record[0]); 3846 3847 // See if anything took the address of blocks in this function. 3848 auto BBFRI = BasicBlockFwdRefs.find(F); 3849 if (BBFRI == BasicBlockFwdRefs.end()) { 3850 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3851 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3852 } else { 3853 auto &BBRefs = BBFRI->second; 3854 // Check for invalid basic block references. 3855 if (BBRefs.size() > FunctionBBs.size()) 3856 return error("Invalid ID"); 3857 assert(!BBRefs.empty() && "Unexpected empty array"); 3858 assert(!BBRefs.front() && "Invalid reference to entry block"); 3859 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3860 ++I) 3861 if (I < RE && BBRefs[I]) { 3862 BBRefs[I]->insertInto(F); 3863 FunctionBBs[I] = BBRefs[I]; 3864 } else { 3865 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3866 } 3867 3868 // Erase from the table. 3869 BasicBlockFwdRefs.erase(BBFRI); 3870 } 3871 3872 CurBB = FunctionBBs[0]; 3873 continue; 3874 } 3875 3876 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3877 // This record indicates that the last instruction is at the same 3878 // location as the previous instruction with a location. 3879 I = getLastInstruction(); 3880 3881 if (!I) 3882 return error("Invalid record"); 3883 I->setDebugLoc(LastLoc); 3884 I = nullptr; 3885 continue; 3886 3887 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3888 I = getLastInstruction(); 3889 if (!I || Record.size() < 4) 3890 return error("Invalid record"); 3891 3892 unsigned Line = Record[0], Col = Record[1]; 3893 unsigned ScopeID = Record[2], IAID = Record[3]; 3894 bool isImplicitCode = Record.size() == 5 && Record[4]; 3895 3896 MDNode *Scope = nullptr, *IA = nullptr; 3897 if (ScopeID) { 3898 Scope = dyn_cast_or_null<MDNode>( 3899 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3900 if (!Scope) 3901 return error("Invalid record"); 3902 } 3903 if (IAID) { 3904 IA = dyn_cast_or_null<MDNode>( 3905 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3906 if (!IA) 3907 return error("Invalid record"); 3908 } 3909 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3910 I->setDebugLoc(LastLoc); 3911 I = nullptr; 3912 continue; 3913 } 3914 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3915 unsigned OpNum = 0; 3916 Value *LHS; 3917 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3918 OpNum+1 > Record.size()) 3919 return error("Invalid record"); 3920 3921 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3922 if (Opc == -1) 3923 return error("Invalid record"); 3924 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3925 InstructionList.push_back(I); 3926 if (OpNum < Record.size()) { 3927 if (isa<FPMathOperator>(I)) { 3928 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3929 if (FMF.any()) 3930 I->setFastMathFlags(FMF); 3931 } 3932 } 3933 break; 3934 } 3935 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3936 unsigned OpNum = 0; 3937 Value *LHS, *RHS; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3939 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3940 OpNum+1 > Record.size()) 3941 return error("Invalid record"); 3942 3943 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3944 if (Opc == -1) 3945 return error("Invalid record"); 3946 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3947 InstructionList.push_back(I); 3948 if (OpNum < Record.size()) { 3949 if (Opc == Instruction::Add || 3950 Opc == Instruction::Sub || 3951 Opc == Instruction::Mul || 3952 Opc == Instruction::Shl) { 3953 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3954 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3955 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3956 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3957 } else if (Opc == Instruction::SDiv || 3958 Opc == Instruction::UDiv || 3959 Opc == Instruction::LShr || 3960 Opc == Instruction::AShr) { 3961 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3962 cast<BinaryOperator>(I)->setIsExact(true); 3963 } else if (isa<FPMathOperator>(I)) { 3964 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3965 if (FMF.any()) 3966 I->setFastMathFlags(FMF); 3967 } 3968 3969 } 3970 break; 3971 } 3972 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3973 unsigned OpNum = 0; 3974 Value *Op; 3975 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3976 OpNum+2 != Record.size()) 3977 return error("Invalid record"); 3978 3979 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3980 Type *ResTy = flattenPointerTypes(FullTy); 3981 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3982 if (Opc == -1 || !ResTy) 3983 return error("Invalid record"); 3984 Instruction *Temp = nullptr; 3985 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3986 if (Temp) { 3987 InstructionList.push_back(Temp); 3988 assert(CurBB && "No current BB?"); 3989 CurBB->getInstList().push_back(Temp); 3990 } 3991 } else { 3992 auto CastOp = (Instruction::CastOps)Opc; 3993 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3994 return error("Invalid cast"); 3995 I = CastInst::Create(CastOp, Op, ResTy); 3996 } 3997 InstructionList.push_back(I); 3998 break; 3999 } 4000 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4001 case bitc::FUNC_CODE_INST_GEP_OLD: 4002 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4003 unsigned OpNum = 0; 4004 4005 Type *Ty; 4006 bool InBounds; 4007 4008 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4009 InBounds = Record[OpNum++]; 4010 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4011 Ty = flattenPointerTypes(FullTy); 4012 } else { 4013 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4014 Ty = nullptr; 4015 } 4016 4017 Value *BasePtr; 4018 Type *FullBaseTy = nullptr; 4019 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4020 return error("Invalid record"); 4021 4022 if (!Ty) { 4023 std::tie(FullTy, Ty) = 4024 getPointerElementTypes(FullBaseTy->getScalarType()); 4025 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4026 return error( 4027 "Explicit gep type does not match pointee type of pointer operand"); 4028 4029 SmallVector<Value*, 16> GEPIdx; 4030 while (OpNum != Record.size()) { 4031 Value *Op; 4032 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4033 return error("Invalid record"); 4034 GEPIdx.push_back(Op); 4035 } 4036 4037 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4038 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4039 4040 InstructionList.push_back(I); 4041 if (InBounds) 4042 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4043 break; 4044 } 4045 4046 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4047 // EXTRACTVAL: [opty, opval, n x indices] 4048 unsigned OpNum = 0; 4049 Value *Agg; 4050 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4051 return error("Invalid record"); 4052 4053 unsigned RecSize = Record.size(); 4054 if (OpNum == RecSize) 4055 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4056 4057 SmallVector<unsigned, 4> EXTRACTVALIdx; 4058 for (; OpNum != RecSize; ++OpNum) { 4059 bool IsArray = FullTy->isArrayTy(); 4060 bool IsStruct = FullTy->isStructTy(); 4061 uint64_t Index = Record[OpNum]; 4062 4063 if (!IsStruct && !IsArray) 4064 return error("EXTRACTVAL: Invalid type"); 4065 if ((unsigned)Index != Index) 4066 return error("Invalid value"); 4067 if (IsStruct && Index >= FullTy->getStructNumElements()) 4068 return error("EXTRACTVAL: Invalid struct index"); 4069 if (IsArray && Index >= FullTy->getArrayNumElements()) 4070 return error("EXTRACTVAL: Invalid array index"); 4071 EXTRACTVALIdx.push_back((unsigned)Index); 4072 4073 if (IsStruct) 4074 FullTy = FullTy->getStructElementType(Index); 4075 else 4076 FullTy = FullTy->getArrayElementType(); 4077 } 4078 4079 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4080 InstructionList.push_back(I); 4081 break; 4082 } 4083 4084 case bitc::FUNC_CODE_INST_INSERTVAL: { 4085 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4086 unsigned OpNum = 0; 4087 Value *Agg; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4089 return error("Invalid record"); 4090 Value *Val; 4091 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4092 return error("Invalid record"); 4093 4094 unsigned RecSize = Record.size(); 4095 if (OpNum == RecSize) 4096 return error("INSERTVAL: Invalid instruction with 0 indices"); 4097 4098 SmallVector<unsigned, 4> INSERTVALIdx; 4099 Type *CurTy = Agg->getType(); 4100 for (; OpNum != RecSize; ++OpNum) { 4101 bool IsArray = CurTy->isArrayTy(); 4102 bool IsStruct = CurTy->isStructTy(); 4103 uint64_t Index = Record[OpNum]; 4104 4105 if (!IsStruct && !IsArray) 4106 return error("INSERTVAL: Invalid type"); 4107 if ((unsigned)Index != Index) 4108 return error("Invalid value"); 4109 if (IsStruct && Index >= CurTy->getStructNumElements()) 4110 return error("INSERTVAL: Invalid struct index"); 4111 if (IsArray && Index >= CurTy->getArrayNumElements()) 4112 return error("INSERTVAL: Invalid array index"); 4113 4114 INSERTVALIdx.push_back((unsigned)Index); 4115 if (IsStruct) 4116 CurTy = CurTy->getStructElementType(Index); 4117 else 4118 CurTy = CurTy->getArrayElementType(); 4119 } 4120 4121 if (CurTy != Val->getType()) 4122 return error("Inserted value type doesn't match aggregate type"); 4123 4124 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4125 InstructionList.push_back(I); 4126 break; 4127 } 4128 4129 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4130 // obsolete form of select 4131 // handles select i1 ... in old bitcode 4132 unsigned OpNum = 0; 4133 Value *TrueVal, *FalseVal, *Cond; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4135 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4136 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4137 return error("Invalid record"); 4138 4139 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4140 InstructionList.push_back(I); 4141 break; 4142 } 4143 4144 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4145 // new form of select 4146 // handles select i1 or select [N x i1] 4147 unsigned OpNum = 0; 4148 Value *TrueVal, *FalseVal, *Cond; 4149 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4150 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4151 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4152 return error("Invalid record"); 4153 4154 // select condition can be either i1 or [N x i1] 4155 if (VectorType* vector_type = 4156 dyn_cast<VectorType>(Cond->getType())) { 4157 // expect <n x i1> 4158 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4159 return error("Invalid type for value"); 4160 } else { 4161 // expect i1 4162 if (Cond->getType() != Type::getInt1Ty(Context)) 4163 return error("Invalid type for value"); 4164 } 4165 4166 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4167 InstructionList.push_back(I); 4168 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4169 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4170 if (FMF.any()) 4171 I->setFastMathFlags(FMF); 4172 } 4173 break; 4174 } 4175 4176 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4177 unsigned OpNum = 0; 4178 Value *Vec, *Idx; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4180 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4181 return error("Invalid record"); 4182 if (!Vec->getType()->isVectorTy()) 4183 return error("Invalid type for value"); 4184 I = ExtractElementInst::Create(Vec, Idx); 4185 FullTy = cast<VectorType>(FullTy)->getElementType(); 4186 InstructionList.push_back(I); 4187 break; 4188 } 4189 4190 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4191 unsigned OpNum = 0; 4192 Value *Vec, *Elt, *Idx; 4193 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4194 return error("Invalid record"); 4195 if (!Vec->getType()->isVectorTy()) 4196 return error("Invalid type for value"); 4197 if (popValue(Record, OpNum, NextValueNo, 4198 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4199 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4200 return error("Invalid record"); 4201 I = InsertElementInst::Create(Vec, Elt, Idx); 4202 InstructionList.push_back(I); 4203 break; 4204 } 4205 4206 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4207 unsigned OpNum = 0; 4208 Value *Vec1, *Vec2, *Mask; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4210 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4211 return error("Invalid record"); 4212 4213 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4214 return error("Invalid record"); 4215 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4216 return error("Invalid type for value"); 4217 4218 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4219 FullTy = 4220 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4221 cast<VectorType>(Mask->getType())->getElementCount()); 4222 InstructionList.push_back(I); 4223 break; 4224 } 4225 4226 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4227 // Old form of ICmp/FCmp returning bool 4228 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4229 // both legal on vectors but had different behaviour. 4230 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4231 // FCmp/ICmp returning bool or vector of bool 4232 4233 unsigned OpNum = 0; 4234 Value *LHS, *RHS; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4236 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4237 return error("Invalid record"); 4238 4239 if (OpNum >= Record.size()) 4240 return error( 4241 "Invalid record: operand number exceeded available operands"); 4242 4243 unsigned PredVal = Record[OpNum]; 4244 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4245 FastMathFlags FMF; 4246 if (IsFP && Record.size() > OpNum+1) 4247 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4248 4249 if (OpNum+1 != Record.size()) 4250 return error("Invalid record"); 4251 4252 if (LHS->getType()->isFPOrFPVectorTy()) 4253 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4254 else 4255 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4256 4257 if (FMF.any()) 4258 I->setFastMathFlags(FMF); 4259 InstructionList.push_back(I); 4260 break; 4261 } 4262 4263 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4264 { 4265 unsigned Size = Record.size(); 4266 if (Size == 0) { 4267 I = ReturnInst::Create(Context); 4268 InstructionList.push_back(I); 4269 break; 4270 } 4271 4272 unsigned OpNum = 0; 4273 Value *Op = nullptr; 4274 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4275 return error("Invalid record"); 4276 if (OpNum != Record.size()) 4277 return error("Invalid record"); 4278 4279 I = ReturnInst::Create(Context, Op); 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4284 if (Record.size() != 1 && Record.size() != 3) 4285 return error("Invalid record"); 4286 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4287 if (!TrueDest) 4288 return error("Invalid record"); 4289 4290 if (Record.size() == 1) { 4291 I = BranchInst::Create(TrueDest); 4292 InstructionList.push_back(I); 4293 } 4294 else { 4295 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4296 Value *Cond = getValue(Record, 2, NextValueNo, 4297 Type::getInt1Ty(Context)); 4298 if (!FalseDest || !Cond) 4299 return error("Invalid record"); 4300 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4301 InstructionList.push_back(I); 4302 } 4303 break; 4304 } 4305 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4306 if (Record.size() != 1 && Record.size() != 2) 4307 return error("Invalid record"); 4308 unsigned Idx = 0; 4309 Value *CleanupPad = 4310 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4311 if (!CleanupPad) 4312 return error("Invalid record"); 4313 BasicBlock *UnwindDest = nullptr; 4314 if (Record.size() == 2) { 4315 UnwindDest = getBasicBlock(Record[Idx++]); 4316 if (!UnwindDest) 4317 return error("Invalid record"); 4318 } 4319 4320 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4325 if (Record.size() != 2) 4326 return error("Invalid record"); 4327 unsigned Idx = 0; 4328 Value *CatchPad = 4329 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4330 if (!CatchPad) 4331 return error("Invalid record"); 4332 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4333 if (!BB) 4334 return error("Invalid record"); 4335 4336 I = CatchReturnInst::Create(CatchPad, BB); 4337 InstructionList.push_back(I); 4338 break; 4339 } 4340 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4341 // We must have, at minimum, the outer scope and the number of arguments. 4342 if (Record.size() < 2) 4343 return error("Invalid record"); 4344 4345 unsigned Idx = 0; 4346 4347 Value *ParentPad = 4348 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4349 4350 unsigned NumHandlers = Record[Idx++]; 4351 4352 SmallVector<BasicBlock *, 2> Handlers; 4353 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4354 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4355 if (!BB) 4356 return error("Invalid record"); 4357 Handlers.push_back(BB); 4358 } 4359 4360 BasicBlock *UnwindDest = nullptr; 4361 if (Idx + 1 == Record.size()) { 4362 UnwindDest = getBasicBlock(Record[Idx++]); 4363 if (!UnwindDest) 4364 return error("Invalid record"); 4365 } 4366 4367 if (Record.size() != Idx) 4368 return error("Invalid record"); 4369 4370 auto *CatchSwitch = 4371 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4372 for (BasicBlock *Handler : Handlers) 4373 CatchSwitch->addHandler(Handler); 4374 I = CatchSwitch; 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 case bitc::FUNC_CODE_INST_CATCHPAD: 4379 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4380 // We must have, at minimum, the outer scope and the number of arguments. 4381 if (Record.size() < 2) 4382 return error("Invalid record"); 4383 4384 unsigned Idx = 0; 4385 4386 Value *ParentPad = 4387 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4388 4389 unsigned NumArgOperands = Record[Idx++]; 4390 4391 SmallVector<Value *, 2> Args; 4392 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4393 Value *Val; 4394 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4395 return error("Invalid record"); 4396 Args.push_back(Val); 4397 } 4398 4399 if (Record.size() != Idx) 4400 return error("Invalid record"); 4401 4402 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4403 I = CleanupPadInst::Create(ParentPad, Args); 4404 else 4405 I = CatchPadInst::Create(ParentPad, Args); 4406 InstructionList.push_back(I); 4407 break; 4408 } 4409 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4410 // Check magic 4411 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4412 // "New" SwitchInst format with case ranges. The changes to write this 4413 // format were reverted but we still recognize bitcode that uses it. 4414 // Hopefully someday we will have support for case ranges and can use 4415 // this format again. 4416 4417 Type *OpTy = getTypeByID(Record[1]); 4418 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4419 4420 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4421 BasicBlock *Default = getBasicBlock(Record[3]); 4422 if (!OpTy || !Cond || !Default) 4423 return error("Invalid record"); 4424 4425 unsigned NumCases = Record[4]; 4426 4427 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4428 InstructionList.push_back(SI); 4429 4430 unsigned CurIdx = 5; 4431 for (unsigned i = 0; i != NumCases; ++i) { 4432 SmallVector<ConstantInt*, 1> CaseVals; 4433 unsigned NumItems = Record[CurIdx++]; 4434 for (unsigned ci = 0; ci != NumItems; ++ci) { 4435 bool isSingleNumber = Record[CurIdx++]; 4436 4437 APInt Low; 4438 unsigned ActiveWords = 1; 4439 if (ValueBitWidth > 64) 4440 ActiveWords = Record[CurIdx++]; 4441 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4442 ValueBitWidth); 4443 CurIdx += ActiveWords; 4444 4445 if (!isSingleNumber) { 4446 ActiveWords = 1; 4447 if (ValueBitWidth > 64) 4448 ActiveWords = Record[CurIdx++]; 4449 APInt High = readWideAPInt( 4450 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4451 CurIdx += ActiveWords; 4452 4453 // FIXME: It is not clear whether values in the range should be 4454 // compared as signed or unsigned values. The partially 4455 // implemented changes that used this format in the past used 4456 // unsigned comparisons. 4457 for ( ; Low.ule(High); ++Low) 4458 CaseVals.push_back(ConstantInt::get(Context, Low)); 4459 } else 4460 CaseVals.push_back(ConstantInt::get(Context, Low)); 4461 } 4462 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4463 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4464 cve = CaseVals.end(); cvi != cve; ++cvi) 4465 SI->addCase(*cvi, DestBB); 4466 } 4467 I = SI; 4468 break; 4469 } 4470 4471 // Old SwitchInst format without case ranges. 4472 4473 if (Record.size() < 3 || (Record.size() & 1) == 0) 4474 return error("Invalid record"); 4475 Type *OpTy = getTypeByID(Record[0]); 4476 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4477 BasicBlock *Default = getBasicBlock(Record[2]); 4478 if (!OpTy || !Cond || !Default) 4479 return error("Invalid record"); 4480 unsigned NumCases = (Record.size()-3)/2; 4481 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4482 InstructionList.push_back(SI); 4483 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4484 ConstantInt *CaseVal = 4485 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4486 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4487 if (!CaseVal || !DestBB) { 4488 delete SI; 4489 return error("Invalid record"); 4490 } 4491 SI->addCase(CaseVal, DestBB); 4492 } 4493 I = SI; 4494 break; 4495 } 4496 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4497 if (Record.size() < 2) 4498 return error("Invalid record"); 4499 Type *OpTy = getTypeByID(Record[0]); 4500 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4501 if (!OpTy || !Address) 4502 return error("Invalid record"); 4503 unsigned NumDests = Record.size()-2; 4504 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4505 InstructionList.push_back(IBI); 4506 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4507 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4508 IBI->addDestination(DestBB); 4509 } else { 4510 delete IBI; 4511 return error("Invalid record"); 4512 } 4513 } 4514 I = IBI; 4515 break; 4516 } 4517 4518 case bitc::FUNC_CODE_INST_INVOKE: { 4519 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4520 if (Record.size() < 4) 4521 return error("Invalid record"); 4522 unsigned OpNum = 0; 4523 AttributeList PAL = getAttributes(Record[OpNum++]); 4524 unsigned CCInfo = Record[OpNum++]; 4525 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4526 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4527 4528 FunctionType *FTy = nullptr; 4529 FunctionType *FullFTy = nullptr; 4530 if ((CCInfo >> 13) & 1) { 4531 FullFTy = 4532 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4533 if (!FullFTy) 4534 return error("Explicit invoke type is not a function type"); 4535 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4536 } 4537 4538 Value *Callee; 4539 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4540 return error("Invalid record"); 4541 4542 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4543 if (!CalleeTy) 4544 return error("Callee is not a pointer"); 4545 if (!FTy) { 4546 FullFTy = 4547 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4548 if (!FullFTy) 4549 return error("Callee is not of pointer to function type"); 4550 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4551 } else if (getPointerElementFlatType(FullTy) != FTy) 4552 return error("Explicit invoke type does not match pointee type of " 4553 "callee operand"); 4554 if (Record.size() < FTy->getNumParams() + OpNum) 4555 return error("Insufficient operands to call"); 4556 4557 SmallVector<Value*, 16> Ops; 4558 SmallVector<Type *, 16> ArgsFullTys; 4559 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4560 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4561 FTy->getParamType(i))); 4562 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4563 if (!Ops.back()) 4564 return error("Invalid record"); 4565 } 4566 4567 if (!FTy->isVarArg()) { 4568 if (Record.size() != OpNum) 4569 return error("Invalid record"); 4570 } else { 4571 // Read type/value pairs for varargs params. 4572 while (OpNum != Record.size()) { 4573 Value *Op; 4574 Type *FullTy; 4575 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4576 return error("Invalid record"); 4577 Ops.push_back(Op); 4578 ArgsFullTys.push_back(FullTy); 4579 } 4580 } 4581 4582 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4583 OperandBundles); 4584 FullTy = FullFTy->getReturnType(); 4585 OperandBundles.clear(); 4586 InstructionList.push_back(I); 4587 cast<InvokeInst>(I)->setCallingConv( 4588 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4589 cast<InvokeInst>(I)->setAttributes(PAL); 4590 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4591 4592 break; 4593 } 4594 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4595 unsigned Idx = 0; 4596 Value *Val = nullptr; 4597 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4598 return error("Invalid record"); 4599 I = ResumeInst::Create(Val); 4600 InstructionList.push_back(I); 4601 break; 4602 } 4603 case bitc::FUNC_CODE_INST_CALLBR: { 4604 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4605 unsigned OpNum = 0; 4606 AttributeList PAL = getAttributes(Record[OpNum++]); 4607 unsigned CCInfo = Record[OpNum++]; 4608 4609 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4610 unsigned NumIndirectDests = Record[OpNum++]; 4611 SmallVector<BasicBlock *, 16> IndirectDests; 4612 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4613 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4614 4615 FunctionType *FTy = nullptr; 4616 FunctionType *FullFTy = nullptr; 4617 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4618 FullFTy = 4619 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4620 if (!FullFTy) 4621 return error("Explicit call type is not a function type"); 4622 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4623 } 4624 4625 Value *Callee; 4626 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4627 return error("Invalid record"); 4628 4629 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4630 if (!OpTy) 4631 return error("Callee is not a pointer type"); 4632 if (!FTy) { 4633 FullFTy = 4634 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4635 if (!FullFTy) 4636 return error("Callee is not of pointer to function type"); 4637 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4638 } else if (getPointerElementFlatType(FullTy) != FTy) 4639 return error("Explicit call type does not match pointee type of " 4640 "callee operand"); 4641 if (Record.size() < FTy->getNumParams() + OpNum) 4642 return error("Insufficient operands to call"); 4643 4644 SmallVector<Value*, 16> Args; 4645 // Read the fixed params. 4646 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4647 if (FTy->getParamType(i)->isLabelTy()) 4648 Args.push_back(getBasicBlock(Record[OpNum])); 4649 else 4650 Args.push_back(getValue(Record, OpNum, NextValueNo, 4651 FTy->getParamType(i))); 4652 if (!Args.back()) 4653 return error("Invalid record"); 4654 } 4655 4656 // Read type/value pairs for varargs params. 4657 if (!FTy->isVarArg()) { 4658 if (OpNum != Record.size()) 4659 return error("Invalid record"); 4660 } else { 4661 while (OpNum != Record.size()) { 4662 Value *Op; 4663 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4664 return error("Invalid record"); 4665 Args.push_back(Op); 4666 } 4667 } 4668 4669 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4670 OperandBundles); 4671 FullTy = FullFTy->getReturnType(); 4672 OperandBundles.clear(); 4673 InstructionList.push_back(I); 4674 cast<CallBrInst>(I)->setCallingConv( 4675 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4676 cast<CallBrInst>(I)->setAttributes(PAL); 4677 break; 4678 } 4679 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4680 I = new UnreachableInst(Context); 4681 InstructionList.push_back(I); 4682 break; 4683 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4684 if (Record.size() < 1) 4685 return error("Invalid record"); 4686 // The first record specifies the type. 4687 FullTy = getFullyStructuredTypeByID(Record[0]); 4688 Type *Ty = flattenPointerTypes(FullTy); 4689 if (!Ty) 4690 return error("Invalid record"); 4691 4692 // Phi arguments are pairs of records of [value, basic block]. 4693 // There is an optional final record for fast-math-flags if this phi has a 4694 // floating-point type. 4695 size_t NumArgs = (Record.size() - 1) / 2; 4696 PHINode *PN = PHINode::Create(Ty, NumArgs); 4697 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4698 return error("Invalid record"); 4699 InstructionList.push_back(PN); 4700 4701 for (unsigned i = 0; i != NumArgs; i++) { 4702 Value *V; 4703 // With the new function encoding, it is possible that operands have 4704 // negative IDs (for forward references). Use a signed VBR 4705 // representation to keep the encoding small. 4706 if (UseRelativeIDs) 4707 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4708 else 4709 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4710 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4711 if (!V || !BB) 4712 return error("Invalid record"); 4713 PN->addIncoming(V, BB); 4714 } 4715 I = PN; 4716 4717 // If there are an even number of records, the final record must be FMF. 4718 if (Record.size() % 2 == 0) { 4719 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4720 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4721 if (FMF.any()) 4722 I->setFastMathFlags(FMF); 4723 } 4724 4725 break; 4726 } 4727 4728 case bitc::FUNC_CODE_INST_LANDINGPAD: 4729 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4730 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4731 unsigned Idx = 0; 4732 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4733 if (Record.size() < 3) 4734 return error("Invalid record"); 4735 } else { 4736 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4737 if (Record.size() < 4) 4738 return error("Invalid record"); 4739 } 4740 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4741 Type *Ty = flattenPointerTypes(FullTy); 4742 if (!Ty) 4743 return error("Invalid record"); 4744 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4745 Value *PersFn = nullptr; 4746 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4747 return error("Invalid record"); 4748 4749 if (!F->hasPersonalityFn()) 4750 F->setPersonalityFn(cast<Constant>(PersFn)); 4751 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4752 return error("Personality function mismatch"); 4753 } 4754 4755 bool IsCleanup = !!Record[Idx++]; 4756 unsigned NumClauses = Record[Idx++]; 4757 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4758 LP->setCleanup(IsCleanup); 4759 for (unsigned J = 0; J != NumClauses; ++J) { 4760 LandingPadInst::ClauseType CT = 4761 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4762 Value *Val; 4763 4764 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4765 delete LP; 4766 return error("Invalid record"); 4767 } 4768 4769 assert((CT != LandingPadInst::Catch || 4770 !isa<ArrayType>(Val->getType())) && 4771 "Catch clause has a invalid type!"); 4772 assert((CT != LandingPadInst::Filter || 4773 isa<ArrayType>(Val->getType())) && 4774 "Filter clause has invalid type!"); 4775 LP->addClause(cast<Constant>(Val)); 4776 } 4777 4778 I = LP; 4779 InstructionList.push_back(I); 4780 break; 4781 } 4782 4783 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4784 if (Record.size() != 4) 4785 return error("Invalid record"); 4786 uint64_t AlignRecord = Record[3]; 4787 const uint64_t InAllocaMask = uint64_t(1) << 5; 4788 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4789 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4790 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4791 SwiftErrorMask; 4792 bool InAlloca = AlignRecord & InAllocaMask; 4793 bool SwiftError = AlignRecord & SwiftErrorMask; 4794 FullTy = getFullyStructuredTypeByID(Record[0]); 4795 Type *Ty = flattenPointerTypes(FullTy); 4796 if ((AlignRecord & ExplicitTypeMask) == 0) { 4797 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4798 if (!PTy) 4799 return error("Old-style alloca with a non-pointer type"); 4800 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4801 } 4802 Type *OpTy = getTypeByID(Record[1]); 4803 Value *Size = getFnValueByID(Record[2], OpTy); 4804 MaybeAlign Align; 4805 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4806 return Err; 4807 } 4808 if (!Ty || !Size) 4809 return error("Invalid record"); 4810 4811 // FIXME: Make this an optional field. 4812 const DataLayout &DL = TheModule->getDataLayout(); 4813 unsigned AS = DL.getAllocaAddrSpace(); 4814 4815 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4816 AI->setUsedWithInAlloca(InAlloca); 4817 AI->setSwiftError(SwiftError); 4818 I = AI; 4819 FullTy = PointerType::get(FullTy, AS); 4820 InstructionList.push_back(I); 4821 break; 4822 } 4823 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4824 unsigned OpNum = 0; 4825 Value *Op; 4826 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4827 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4828 return error("Invalid record"); 4829 4830 if (!isa<PointerType>(Op->getType())) 4831 return error("Load operand is not a pointer type"); 4832 4833 Type *Ty = nullptr; 4834 if (OpNum + 3 == Record.size()) { 4835 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4836 Ty = flattenPointerTypes(FullTy); 4837 } else 4838 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4839 4840 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4841 return Err; 4842 4843 MaybeAlign Align; 4844 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4845 return Err; 4846 if (!Align && !Ty->isSized()) 4847 return error("load of unsized type"); 4848 if (!Align) 4849 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4850 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4851 InstructionList.push_back(I); 4852 break; 4853 } 4854 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4855 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4856 unsigned OpNum = 0; 4857 Value *Op; 4858 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4859 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4860 return error("Invalid record"); 4861 4862 if (!isa<PointerType>(Op->getType())) 4863 return error("Load operand is not a pointer type"); 4864 4865 Type *Ty = nullptr; 4866 if (OpNum + 5 == Record.size()) { 4867 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4868 Ty = flattenPointerTypes(FullTy); 4869 } else 4870 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4871 4872 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4873 return Err; 4874 4875 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4876 if (Ordering == AtomicOrdering::NotAtomic || 4877 Ordering == AtomicOrdering::Release || 4878 Ordering == AtomicOrdering::AcquireRelease) 4879 return error("Invalid record"); 4880 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4881 return error("Invalid record"); 4882 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4883 4884 MaybeAlign Align; 4885 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4886 return Err; 4887 if (!Align) 4888 return error("Alignment missing from atomic load"); 4889 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_STORE: 4894 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4895 unsigned OpNum = 0; 4896 Value *Val, *Ptr; 4897 Type *FullTy; 4898 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4899 (BitCode == bitc::FUNC_CODE_INST_STORE 4900 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4901 : popValue(Record, OpNum, NextValueNo, 4902 getPointerElementFlatType(FullTy), Val)) || 4903 OpNum + 2 != Record.size()) 4904 return error("Invalid record"); 4905 4906 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4907 return Err; 4908 MaybeAlign Align; 4909 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4910 return Err; 4911 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4912 InstructionList.push_back(I); 4913 break; 4914 } 4915 case bitc::FUNC_CODE_INST_STOREATOMIC: 4916 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4917 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4918 unsigned OpNum = 0; 4919 Value *Val, *Ptr; 4920 Type *FullTy; 4921 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4922 !isa<PointerType>(Ptr->getType()) || 4923 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4924 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4925 : popValue(Record, OpNum, NextValueNo, 4926 getPointerElementFlatType(FullTy), Val)) || 4927 OpNum + 4 != Record.size()) 4928 return error("Invalid record"); 4929 4930 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4931 return Err; 4932 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4933 if (Ordering == AtomicOrdering::NotAtomic || 4934 Ordering == AtomicOrdering::Acquire || 4935 Ordering == AtomicOrdering::AcquireRelease) 4936 return error("Invalid record"); 4937 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4938 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4939 return error("Invalid record"); 4940 4941 MaybeAlign Align; 4942 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4943 return Err; 4944 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4949 case bitc::FUNC_CODE_INST_CMPXCHG: { 4950 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4951 // failureordering?, isweak?] 4952 unsigned OpNum = 0; 4953 Value *Ptr, *Cmp, *New; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4955 return error("Invalid record"); 4956 4957 if (!isa<PointerType>(Ptr->getType())) 4958 return error("Cmpxchg operand is not a pointer type"); 4959 4960 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4962 return error("Invalid record"); 4963 } else if (popValue(Record, OpNum, NextValueNo, 4964 getPointerElementFlatType(FullTy), Cmp)) 4965 return error("Invalid record"); 4966 else 4967 FullTy = cast<PointerType>(FullTy)->getElementType(); 4968 4969 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4970 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4971 return error("Invalid record"); 4972 4973 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4974 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4975 SuccessOrdering == AtomicOrdering::Unordered) 4976 return error("Invalid record"); 4977 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4978 4979 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4980 return Err; 4981 AtomicOrdering FailureOrdering; 4982 if (Record.size() < 7) 4983 FailureOrdering = 4984 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4985 else 4986 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4987 4988 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4989 SSID); 4990 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4991 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4992 4993 if (Record.size() < 8) { 4994 // Before weak cmpxchgs existed, the instruction simply returned the 4995 // value loaded from memory, so bitcode files from that era will be 4996 // expecting the first component of a modern cmpxchg. 4997 CurBB->getInstList().push_back(I); 4998 I = ExtractValueInst::Create(I, 0); 4999 FullTy = cast<StructType>(FullTy)->getElementType(0); 5000 } else { 5001 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5002 } 5003 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5008 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5009 unsigned OpNum = 0; 5010 Value *Ptr, *Val; 5011 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5012 !isa<PointerType>(Ptr->getType()) || 5013 popValue(Record, OpNum, NextValueNo, 5014 getPointerElementFlatType(FullTy), Val) || 5015 OpNum + 4 != Record.size()) 5016 return error("Invalid record"); 5017 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5018 if (Operation < AtomicRMWInst::FIRST_BINOP || 5019 Operation > AtomicRMWInst::LAST_BINOP) 5020 return error("Invalid record"); 5021 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5022 if (Ordering == AtomicOrdering::NotAtomic || 5023 Ordering == AtomicOrdering::Unordered) 5024 return error("Invalid record"); 5025 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5026 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5027 FullTy = getPointerElementFlatType(FullTy); 5028 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5029 InstructionList.push_back(I); 5030 break; 5031 } 5032 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5033 if (2 != Record.size()) 5034 return error("Invalid record"); 5035 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5036 if (Ordering == AtomicOrdering::NotAtomic || 5037 Ordering == AtomicOrdering::Unordered || 5038 Ordering == AtomicOrdering::Monotonic) 5039 return error("Invalid record"); 5040 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5041 I = new FenceInst(Context, Ordering, SSID); 5042 InstructionList.push_back(I); 5043 break; 5044 } 5045 case bitc::FUNC_CODE_INST_CALL: { 5046 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5047 if (Record.size() < 3) 5048 return error("Invalid record"); 5049 5050 unsigned OpNum = 0; 5051 AttributeList PAL = getAttributes(Record[OpNum++]); 5052 unsigned CCInfo = Record[OpNum++]; 5053 5054 FastMathFlags FMF; 5055 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5056 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5057 if (!FMF.any()) 5058 return error("Fast math flags indicator set for call with no FMF"); 5059 } 5060 5061 FunctionType *FTy = nullptr; 5062 FunctionType *FullFTy = nullptr; 5063 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5064 FullFTy = 5065 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5066 if (!FullFTy) 5067 return error("Explicit call type is not a function type"); 5068 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5069 } 5070 5071 Value *Callee; 5072 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5073 return error("Invalid record"); 5074 5075 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5076 if (!OpTy) 5077 return error("Callee is not a pointer type"); 5078 if (!FTy) { 5079 FullFTy = 5080 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5081 if (!FullFTy) 5082 return error("Callee is not of pointer to function type"); 5083 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5084 } else if (getPointerElementFlatType(FullTy) != FTy) 5085 return error("Explicit call type does not match pointee type of " 5086 "callee operand"); 5087 if (Record.size() < FTy->getNumParams() + OpNum) 5088 return error("Insufficient operands to call"); 5089 5090 SmallVector<Value*, 16> Args; 5091 SmallVector<Type*, 16> ArgsFullTys; 5092 // Read the fixed params. 5093 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5094 if (FTy->getParamType(i)->isLabelTy()) 5095 Args.push_back(getBasicBlock(Record[OpNum])); 5096 else 5097 Args.push_back(getValue(Record, OpNum, NextValueNo, 5098 FTy->getParamType(i))); 5099 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5100 if (!Args.back()) 5101 return error("Invalid record"); 5102 } 5103 5104 // Read type/value pairs for varargs params. 5105 if (!FTy->isVarArg()) { 5106 if (OpNum != Record.size()) 5107 return error("Invalid record"); 5108 } else { 5109 while (OpNum != Record.size()) { 5110 Value *Op; 5111 Type *FullTy; 5112 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5113 return error("Invalid record"); 5114 Args.push_back(Op); 5115 ArgsFullTys.push_back(FullTy); 5116 } 5117 } 5118 5119 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5120 FullTy = FullFTy->getReturnType(); 5121 OperandBundles.clear(); 5122 InstructionList.push_back(I); 5123 cast<CallInst>(I)->setCallingConv( 5124 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5125 CallInst::TailCallKind TCK = CallInst::TCK_None; 5126 if (CCInfo & 1 << bitc::CALL_TAIL) 5127 TCK = CallInst::TCK_Tail; 5128 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5129 TCK = CallInst::TCK_MustTail; 5130 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5131 TCK = CallInst::TCK_NoTail; 5132 cast<CallInst>(I)->setTailCallKind(TCK); 5133 cast<CallInst>(I)->setAttributes(PAL); 5134 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5135 if (FMF.any()) { 5136 if (!isa<FPMathOperator>(I)) 5137 return error("Fast-math-flags specified for call without " 5138 "floating-point scalar or vector return type"); 5139 I->setFastMathFlags(FMF); 5140 } 5141 break; 5142 } 5143 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5144 if (Record.size() < 3) 5145 return error("Invalid record"); 5146 Type *OpTy = getTypeByID(Record[0]); 5147 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5148 FullTy = getFullyStructuredTypeByID(Record[2]); 5149 Type *ResTy = flattenPointerTypes(FullTy); 5150 if (!OpTy || !Op || !ResTy) 5151 return error("Invalid record"); 5152 I = new VAArgInst(Op, ResTy); 5153 InstructionList.push_back(I); 5154 break; 5155 } 5156 5157 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5158 // A call or an invoke can be optionally prefixed with some variable 5159 // number of operand bundle blocks. These blocks are read into 5160 // OperandBundles and consumed at the next call or invoke instruction. 5161 5162 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5163 return error("Invalid record"); 5164 5165 std::vector<Value *> Inputs; 5166 5167 unsigned OpNum = 1; 5168 while (OpNum != Record.size()) { 5169 Value *Op; 5170 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5171 return error("Invalid record"); 5172 Inputs.push_back(Op); 5173 } 5174 5175 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5176 continue; 5177 } 5178 5179 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5180 unsigned OpNum = 0; 5181 Value *Op = nullptr; 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5183 return error("Invalid record"); 5184 if (OpNum != Record.size()) 5185 return error("Invalid record"); 5186 5187 I = new FreezeInst(Op); 5188 InstructionList.push_back(I); 5189 break; 5190 } 5191 } 5192 5193 // Add instruction to end of current BB. If there is no current BB, reject 5194 // this file. 5195 if (!CurBB) { 5196 I->deleteValue(); 5197 return error("Invalid instruction with no BB"); 5198 } 5199 if (!OperandBundles.empty()) { 5200 I->deleteValue(); 5201 return error("Operand bundles found with no consumer"); 5202 } 5203 CurBB->getInstList().push_back(I); 5204 5205 // If this was a terminator instruction, move to the next block. 5206 if (I->isTerminator()) { 5207 ++CurBBNo; 5208 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5209 } 5210 5211 // Non-void values get registered in the value table for future use. 5212 if (!I->getType()->isVoidTy()) { 5213 if (!FullTy) { 5214 FullTy = I->getType(); 5215 assert( 5216 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5217 !isa<ArrayType>(FullTy) && 5218 (!isa<VectorType>(FullTy) || 5219 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5220 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5221 "Structured types must be assigned with corresponding non-opaque " 5222 "pointer type"); 5223 } 5224 5225 assert(I->getType() == flattenPointerTypes(FullTy) && 5226 "Incorrect fully structured type provided for Instruction"); 5227 ValueList.assignValue(I, NextValueNo++, FullTy); 5228 } 5229 } 5230 5231 OutOfRecordLoop: 5232 5233 if (!OperandBundles.empty()) 5234 return error("Operand bundles found with no consumer"); 5235 5236 // Check the function list for unresolved values. 5237 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5238 if (!A->getParent()) { 5239 // We found at least one unresolved value. Nuke them all to avoid leaks. 5240 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5241 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5242 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5243 delete A; 5244 } 5245 } 5246 return error("Never resolved value found in function"); 5247 } 5248 } 5249 5250 // Unexpected unresolved metadata about to be dropped. 5251 if (MDLoader->hasFwdRefs()) 5252 return error("Invalid function metadata: outgoing forward refs"); 5253 5254 // Trim the value list down to the size it was before we parsed this function. 5255 ValueList.shrinkTo(ModuleValueListSize); 5256 MDLoader->shrinkTo(ModuleMDLoaderSize); 5257 std::vector<BasicBlock*>().swap(FunctionBBs); 5258 return Error::success(); 5259 } 5260 5261 /// Find the function body in the bitcode stream 5262 Error BitcodeReader::findFunctionInStream( 5263 Function *F, 5264 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5265 while (DeferredFunctionInfoIterator->second == 0) { 5266 // This is the fallback handling for the old format bitcode that 5267 // didn't contain the function index in the VST, or when we have 5268 // an anonymous function which would not have a VST entry. 5269 // Assert that we have one of those two cases. 5270 assert(VSTOffset == 0 || !F->hasName()); 5271 // Parse the next body in the stream and set its position in the 5272 // DeferredFunctionInfo map. 5273 if (Error Err = rememberAndSkipFunctionBodies()) 5274 return Err; 5275 } 5276 return Error::success(); 5277 } 5278 5279 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5280 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5281 return SyncScope::ID(Val); 5282 if (Val >= SSIDs.size()) 5283 return SyncScope::System; // Map unknown synchronization scopes to system. 5284 return SSIDs[Val]; 5285 } 5286 5287 //===----------------------------------------------------------------------===// 5288 // GVMaterializer implementation 5289 //===----------------------------------------------------------------------===// 5290 5291 Error BitcodeReader::materialize(GlobalValue *GV) { 5292 Function *F = dyn_cast<Function>(GV); 5293 // If it's not a function or is already material, ignore the request. 5294 if (!F || !F->isMaterializable()) 5295 return Error::success(); 5296 5297 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5298 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5299 // If its position is recorded as 0, its body is somewhere in the stream 5300 // but we haven't seen it yet. 5301 if (DFII->second == 0) 5302 if (Error Err = findFunctionInStream(F, DFII)) 5303 return Err; 5304 5305 // Materialize metadata before parsing any function bodies. 5306 if (Error Err = materializeMetadata()) 5307 return Err; 5308 5309 // Move the bit stream to the saved position of the deferred function body. 5310 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5311 return JumpFailed; 5312 if (Error Err = parseFunctionBody(F)) 5313 return Err; 5314 F->setIsMaterializable(false); 5315 5316 if (StripDebugInfo) 5317 stripDebugInfo(*F); 5318 5319 // Upgrade any old intrinsic calls in the function. 5320 for (auto &I : UpgradedIntrinsics) { 5321 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5322 UI != UE;) { 5323 User *U = *UI; 5324 ++UI; 5325 if (CallInst *CI = dyn_cast<CallInst>(U)) 5326 UpgradeIntrinsicCall(CI, I.second); 5327 } 5328 } 5329 5330 // Update calls to the remangled intrinsics 5331 for (auto &I : RemangledIntrinsics) 5332 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5333 UI != UE;) 5334 // Don't expect any other users than call sites 5335 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5336 5337 // Finish fn->subprogram upgrade for materialized functions. 5338 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5339 F->setSubprogram(SP); 5340 5341 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5342 if (!MDLoader->isStrippingTBAA()) { 5343 for (auto &I : instructions(F)) { 5344 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5345 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5346 continue; 5347 MDLoader->setStripTBAA(true); 5348 stripTBAA(F->getParent()); 5349 } 5350 } 5351 5352 // Bring in any functions that this function forward-referenced via 5353 // blockaddresses. 5354 return materializeForwardReferencedFunctions(); 5355 } 5356 5357 Error BitcodeReader::materializeModule() { 5358 if (Error Err = materializeMetadata()) 5359 return Err; 5360 5361 // Promise to materialize all forward references. 5362 WillMaterializeAllForwardRefs = true; 5363 5364 // Iterate over the module, deserializing any functions that are still on 5365 // disk. 5366 for (Function &F : *TheModule) { 5367 if (Error Err = materialize(&F)) 5368 return Err; 5369 } 5370 // At this point, if there are any function bodies, parse the rest of 5371 // the bits in the module past the last function block we have recorded 5372 // through either lazy scanning or the VST. 5373 if (LastFunctionBlockBit || NextUnreadBit) 5374 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5375 ? LastFunctionBlockBit 5376 : NextUnreadBit)) 5377 return Err; 5378 5379 // Check that all block address forward references got resolved (as we 5380 // promised above). 5381 if (!BasicBlockFwdRefs.empty()) 5382 return error("Never resolved function from blockaddress"); 5383 5384 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5385 // delete the old functions to clean up. We can't do this unless the entire 5386 // module is materialized because there could always be another function body 5387 // with calls to the old function. 5388 for (auto &I : UpgradedIntrinsics) { 5389 for (auto *U : I.first->users()) { 5390 if (CallInst *CI = dyn_cast<CallInst>(U)) 5391 UpgradeIntrinsicCall(CI, I.second); 5392 } 5393 if (!I.first->use_empty()) 5394 I.first->replaceAllUsesWith(I.second); 5395 I.first->eraseFromParent(); 5396 } 5397 UpgradedIntrinsics.clear(); 5398 // Do the same for remangled intrinsics 5399 for (auto &I : RemangledIntrinsics) { 5400 I.first->replaceAllUsesWith(I.second); 5401 I.first->eraseFromParent(); 5402 } 5403 RemangledIntrinsics.clear(); 5404 5405 UpgradeDebugInfo(*TheModule); 5406 5407 UpgradeModuleFlags(*TheModule); 5408 5409 UpgradeARCRuntime(*TheModule); 5410 5411 return Error::success(); 5412 } 5413 5414 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5415 return IdentifiedStructTypes; 5416 } 5417 5418 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5419 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5420 StringRef ModulePath, unsigned ModuleId) 5421 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5422 ModulePath(ModulePath), ModuleId(ModuleId) {} 5423 5424 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5425 TheIndex.addModule(ModulePath, ModuleId); 5426 } 5427 5428 ModuleSummaryIndex::ModuleInfo * 5429 ModuleSummaryIndexBitcodeReader::getThisModule() { 5430 return TheIndex.getModule(ModulePath); 5431 } 5432 5433 std::pair<ValueInfo, GlobalValue::GUID> 5434 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5435 auto VGI = ValueIdToValueInfoMap[ValueId]; 5436 assert(VGI.first); 5437 return VGI; 5438 } 5439 5440 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5441 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5442 StringRef SourceFileName) { 5443 std::string GlobalId = 5444 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5445 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5446 auto OriginalNameID = ValueGUID; 5447 if (GlobalValue::isLocalLinkage(Linkage)) 5448 OriginalNameID = GlobalValue::getGUID(ValueName); 5449 if (PrintSummaryGUIDs) 5450 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5451 << ValueName << "\n"; 5452 5453 // UseStrtab is false for legacy summary formats and value names are 5454 // created on stack. In that case we save the name in a string saver in 5455 // the index so that the value name can be recorded. 5456 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5457 TheIndex.getOrInsertValueInfo( 5458 ValueGUID, 5459 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5460 OriginalNameID); 5461 } 5462 5463 // Specialized value symbol table parser used when reading module index 5464 // blocks where we don't actually create global values. The parsed information 5465 // is saved in the bitcode reader for use when later parsing summaries. 5466 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5467 uint64_t Offset, 5468 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5469 // With a strtab the VST is not required to parse the summary. 5470 if (UseStrtab) 5471 return Error::success(); 5472 5473 assert(Offset > 0 && "Expected non-zero VST offset"); 5474 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5475 if (!MaybeCurrentBit) 5476 return MaybeCurrentBit.takeError(); 5477 uint64_t CurrentBit = MaybeCurrentBit.get(); 5478 5479 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5480 return Err; 5481 5482 SmallVector<uint64_t, 64> Record; 5483 5484 // Read all the records for this value table. 5485 SmallString<128> ValueName; 5486 5487 while (true) { 5488 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5489 if (!MaybeEntry) 5490 return MaybeEntry.takeError(); 5491 BitstreamEntry Entry = MaybeEntry.get(); 5492 5493 switch (Entry.Kind) { 5494 case BitstreamEntry::SubBlock: // Handled for us already. 5495 case BitstreamEntry::Error: 5496 return error("Malformed block"); 5497 case BitstreamEntry::EndBlock: 5498 // Done parsing VST, jump back to wherever we came from. 5499 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5500 return JumpFailed; 5501 return Error::success(); 5502 case BitstreamEntry::Record: 5503 // The interesting case. 5504 break; 5505 } 5506 5507 // Read a record. 5508 Record.clear(); 5509 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5510 if (!MaybeRecord) 5511 return MaybeRecord.takeError(); 5512 switch (MaybeRecord.get()) { 5513 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5514 break; 5515 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5516 if (convertToString(Record, 1, ValueName)) 5517 return error("Invalid record"); 5518 unsigned ValueID = Record[0]; 5519 assert(!SourceFileName.empty()); 5520 auto VLI = ValueIdToLinkageMap.find(ValueID); 5521 assert(VLI != ValueIdToLinkageMap.end() && 5522 "No linkage found for VST entry?"); 5523 auto Linkage = VLI->second; 5524 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5525 ValueName.clear(); 5526 break; 5527 } 5528 case bitc::VST_CODE_FNENTRY: { 5529 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5530 if (convertToString(Record, 2, ValueName)) 5531 return error("Invalid record"); 5532 unsigned ValueID = Record[0]; 5533 assert(!SourceFileName.empty()); 5534 auto VLI = ValueIdToLinkageMap.find(ValueID); 5535 assert(VLI != ValueIdToLinkageMap.end() && 5536 "No linkage found for VST entry?"); 5537 auto Linkage = VLI->second; 5538 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5539 ValueName.clear(); 5540 break; 5541 } 5542 case bitc::VST_CODE_COMBINED_ENTRY: { 5543 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5544 unsigned ValueID = Record[0]; 5545 GlobalValue::GUID RefGUID = Record[1]; 5546 // The "original name", which is the second value of the pair will be 5547 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5548 ValueIdToValueInfoMap[ValueID] = 5549 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5550 break; 5551 } 5552 } 5553 } 5554 } 5555 5556 // Parse just the blocks needed for building the index out of the module. 5557 // At the end of this routine the module Index is populated with a map 5558 // from global value id to GlobalValueSummary objects. 5559 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5560 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5561 return Err; 5562 5563 SmallVector<uint64_t, 64> Record; 5564 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5565 unsigned ValueId = 0; 5566 5567 // Read the index for this module. 5568 while (true) { 5569 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5570 if (!MaybeEntry) 5571 return MaybeEntry.takeError(); 5572 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5573 5574 switch (Entry.Kind) { 5575 case BitstreamEntry::Error: 5576 return error("Malformed block"); 5577 case BitstreamEntry::EndBlock: 5578 return Error::success(); 5579 5580 case BitstreamEntry::SubBlock: 5581 switch (Entry.ID) { 5582 default: // Skip unknown content. 5583 if (Error Err = Stream.SkipBlock()) 5584 return Err; 5585 break; 5586 case bitc::BLOCKINFO_BLOCK_ID: 5587 // Need to parse these to get abbrev ids (e.g. for VST) 5588 if (readBlockInfo()) 5589 return error("Malformed block"); 5590 break; 5591 case bitc::VALUE_SYMTAB_BLOCK_ID: 5592 // Should have been parsed earlier via VSTOffset, unless there 5593 // is no summary section. 5594 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5595 !SeenGlobalValSummary) && 5596 "Expected early VST parse via VSTOffset record"); 5597 if (Error Err = Stream.SkipBlock()) 5598 return Err; 5599 break; 5600 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5601 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5602 // Add the module if it is a per-module index (has a source file name). 5603 if (!SourceFileName.empty()) 5604 addThisModule(); 5605 assert(!SeenValueSymbolTable && 5606 "Already read VST when parsing summary block?"); 5607 // We might not have a VST if there were no values in the 5608 // summary. An empty summary block generated when we are 5609 // performing ThinLTO compiles so we don't later invoke 5610 // the regular LTO process on them. 5611 if (VSTOffset > 0) { 5612 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5613 return Err; 5614 SeenValueSymbolTable = true; 5615 } 5616 SeenGlobalValSummary = true; 5617 if (Error Err = parseEntireSummary(Entry.ID)) 5618 return Err; 5619 break; 5620 case bitc::MODULE_STRTAB_BLOCK_ID: 5621 if (Error Err = parseModuleStringTable()) 5622 return Err; 5623 break; 5624 } 5625 continue; 5626 5627 case BitstreamEntry::Record: { 5628 Record.clear(); 5629 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5630 if (!MaybeBitCode) 5631 return MaybeBitCode.takeError(); 5632 switch (MaybeBitCode.get()) { 5633 default: 5634 break; // Default behavior, ignore unknown content. 5635 case bitc::MODULE_CODE_VERSION: { 5636 if (Error Err = parseVersionRecord(Record).takeError()) 5637 return Err; 5638 break; 5639 } 5640 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5641 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5642 SmallString<128> ValueName; 5643 if (convertToString(Record, 0, ValueName)) 5644 return error("Invalid record"); 5645 SourceFileName = ValueName.c_str(); 5646 break; 5647 } 5648 /// MODULE_CODE_HASH: [5*i32] 5649 case bitc::MODULE_CODE_HASH: { 5650 if (Record.size() != 5) 5651 return error("Invalid hash length " + Twine(Record.size()).str()); 5652 auto &Hash = getThisModule()->second.second; 5653 int Pos = 0; 5654 for (auto &Val : Record) { 5655 assert(!(Val >> 32) && "Unexpected high bits set"); 5656 Hash[Pos++] = Val; 5657 } 5658 break; 5659 } 5660 /// MODULE_CODE_VSTOFFSET: [offset] 5661 case bitc::MODULE_CODE_VSTOFFSET: 5662 if (Record.size() < 1) 5663 return error("Invalid record"); 5664 // Note that we subtract 1 here because the offset is relative to one 5665 // word before the start of the identification or module block, which 5666 // was historically always the start of the regular bitcode header. 5667 VSTOffset = Record[0] - 1; 5668 break; 5669 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5670 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5671 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5672 // v2: [strtab offset, strtab size, v1] 5673 case bitc::MODULE_CODE_GLOBALVAR: 5674 case bitc::MODULE_CODE_FUNCTION: 5675 case bitc::MODULE_CODE_ALIAS: { 5676 StringRef Name; 5677 ArrayRef<uint64_t> GVRecord; 5678 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5679 if (GVRecord.size() <= 3) 5680 return error("Invalid record"); 5681 uint64_t RawLinkage = GVRecord[3]; 5682 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5683 if (!UseStrtab) { 5684 ValueIdToLinkageMap[ValueId++] = Linkage; 5685 break; 5686 } 5687 5688 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5689 break; 5690 } 5691 } 5692 } 5693 continue; 5694 } 5695 } 5696 } 5697 5698 std::vector<ValueInfo> 5699 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5700 std::vector<ValueInfo> Ret; 5701 Ret.reserve(Record.size()); 5702 for (uint64_t RefValueId : Record) 5703 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5704 return Ret; 5705 } 5706 5707 std::vector<FunctionSummary::EdgeTy> 5708 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5709 bool IsOldProfileFormat, 5710 bool HasProfile, bool HasRelBF) { 5711 std::vector<FunctionSummary::EdgeTy> Ret; 5712 Ret.reserve(Record.size()); 5713 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5714 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5715 uint64_t RelBF = 0; 5716 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5717 if (IsOldProfileFormat) { 5718 I += 1; // Skip old callsitecount field 5719 if (HasProfile) 5720 I += 1; // Skip old profilecount field 5721 } else if (HasProfile) 5722 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5723 else if (HasRelBF) 5724 RelBF = Record[++I]; 5725 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5726 } 5727 return Ret; 5728 } 5729 5730 static void 5731 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5732 WholeProgramDevirtResolution &Wpd) { 5733 uint64_t ArgNum = Record[Slot++]; 5734 WholeProgramDevirtResolution::ByArg &B = 5735 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5736 Slot += ArgNum; 5737 5738 B.TheKind = 5739 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5740 B.Info = Record[Slot++]; 5741 B.Byte = Record[Slot++]; 5742 B.Bit = Record[Slot++]; 5743 } 5744 5745 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5746 StringRef Strtab, size_t &Slot, 5747 TypeIdSummary &TypeId) { 5748 uint64_t Id = Record[Slot++]; 5749 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5750 5751 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5752 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5753 static_cast<size_t>(Record[Slot + 1])}; 5754 Slot += 2; 5755 5756 uint64_t ResByArgNum = Record[Slot++]; 5757 for (uint64_t I = 0; I != ResByArgNum; ++I) 5758 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5759 } 5760 5761 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5762 StringRef Strtab, 5763 ModuleSummaryIndex &TheIndex) { 5764 size_t Slot = 0; 5765 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5766 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5767 Slot += 2; 5768 5769 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5770 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5771 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5772 TypeId.TTRes.SizeM1 = Record[Slot++]; 5773 TypeId.TTRes.BitMask = Record[Slot++]; 5774 TypeId.TTRes.InlineBits = Record[Slot++]; 5775 5776 while (Slot < Record.size()) 5777 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5778 } 5779 5780 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5781 ArrayRef<uint64_t> Record, size_t &Slot, 5782 TypeIdCompatibleVtableInfo &TypeId) { 5783 uint64_t Offset = Record[Slot++]; 5784 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5785 TypeId.push_back({Offset, Callee}); 5786 } 5787 5788 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5789 ArrayRef<uint64_t> Record) { 5790 size_t Slot = 0; 5791 TypeIdCompatibleVtableInfo &TypeId = 5792 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5793 {Strtab.data() + Record[Slot], 5794 static_cast<size_t>(Record[Slot + 1])}); 5795 Slot += 2; 5796 5797 while (Slot < Record.size()) 5798 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5799 } 5800 5801 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5802 unsigned WOCnt) { 5803 // Readonly and writeonly refs are in the end of the refs list. 5804 assert(ROCnt + WOCnt <= Refs.size()); 5805 unsigned FirstWORef = Refs.size() - WOCnt; 5806 unsigned RefNo = FirstWORef - ROCnt; 5807 for (; RefNo < FirstWORef; ++RefNo) 5808 Refs[RefNo].setReadOnly(); 5809 for (; RefNo < Refs.size(); ++RefNo) 5810 Refs[RefNo].setWriteOnly(); 5811 } 5812 5813 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5814 // objects in the index. 5815 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5816 if (Error Err = Stream.EnterSubBlock(ID)) 5817 return Err; 5818 SmallVector<uint64_t, 64> Record; 5819 5820 // Parse version 5821 { 5822 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5823 if (!MaybeEntry) 5824 return MaybeEntry.takeError(); 5825 BitstreamEntry Entry = MaybeEntry.get(); 5826 5827 if (Entry.Kind != BitstreamEntry::Record) 5828 return error("Invalid Summary Block: record for version expected"); 5829 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5830 if (!MaybeRecord) 5831 return MaybeRecord.takeError(); 5832 if (MaybeRecord.get() != bitc::FS_VERSION) 5833 return error("Invalid Summary Block: version expected"); 5834 } 5835 const uint64_t Version = Record[0]; 5836 const bool IsOldProfileFormat = Version == 1; 5837 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5838 return error("Invalid summary version " + Twine(Version) + 5839 ". Version should be in the range [1-" + 5840 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5841 "]."); 5842 Record.clear(); 5843 5844 // Keep around the last seen summary to be used when we see an optional 5845 // "OriginalName" attachement. 5846 GlobalValueSummary *LastSeenSummary = nullptr; 5847 GlobalValue::GUID LastSeenGUID = 0; 5848 5849 // We can expect to see any number of type ID information records before 5850 // each function summary records; these variables store the information 5851 // collected so far so that it can be used to create the summary object. 5852 std::vector<GlobalValue::GUID> PendingTypeTests; 5853 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5854 PendingTypeCheckedLoadVCalls; 5855 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5856 PendingTypeCheckedLoadConstVCalls; 5857 5858 while (true) { 5859 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5860 if (!MaybeEntry) 5861 return MaybeEntry.takeError(); 5862 BitstreamEntry Entry = MaybeEntry.get(); 5863 5864 switch (Entry.Kind) { 5865 case BitstreamEntry::SubBlock: // Handled for us already. 5866 case BitstreamEntry::Error: 5867 return error("Malformed block"); 5868 case BitstreamEntry::EndBlock: 5869 return Error::success(); 5870 case BitstreamEntry::Record: 5871 // The interesting case. 5872 break; 5873 } 5874 5875 // Read a record. The record format depends on whether this 5876 // is a per-module index or a combined index file. In the per-module 5877 // case the records contain the associated value's ID for correlation 5878 // with VST entries. In the combined index the correlation is done 5879 // via the bitcode offset of the summary records (which were saved 5880 // in the combined index VST entries). The records also contain 5881 // information used for ThinLTO renaming and importing. 5882 Record.clear(); 5883 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5884 if (!MaybeBitCode) 5885 return MaybeBitCode.takeError(); 5886 switch (unsigned BitCode = MaybeBitCode.get()) { 5887 default: // Default behavior: ignore. 5888 break; 5889 case bitc::FS_FLAGS: { // [flags] 5890 TheIndex.setFlags(Record[0]); 5891 break; 5892 } 5893 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5894 uint64_t ValueID = Record[0]; 5895 GlobalValue::GUID RefGUID = Record[1]; 5896 ValueIdToValueInfoMap[ValueID] = 5897 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5898 break; 5899 } 5900 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5901 // numrefs x valueid, n x (valueid)] 5902 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5903 // numrefs x valueid, 5904 // n x (valueid, hotness)] 5905 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5906 // numrefs x valueid, 5907 // n x (valueid, relblockfreq)] 5908 case bitc::FS_PERMODULE: 5909 case bitc::FS_PERMODULE_RELBF: 5910 case bitc::FS_PERMODULE_PROFILE: { 5911 unsigned ValueID = Record[0]; 5912 uint64_t RawFlags = Record[1]; 5913 unsigned InstCount = Record[2]; 5914 uint64_t RawFunFlags = 0; 5915 unsigned NumRefs = Record[3]; 5916 unsigned NumRORefs = 0, NumWORefs = 0; 5917 int RefListStartIndex = 4; 5918 if (Version >= 4) { 5919 RawFunFlags = Record[3]; 5920 NumRefs = Record[4]; 5921 RefListStartIndex = 5; 5922 if (Version >= 5) { 5923 NumRORefs = Record[5]; 5924 RefListStartIndex = 6; 5925 if (Version >= 7) { 5926 NumWORefs = Record[6]; 5927 RefListStartIndex = 7; 5928 } 5929 } 5930 } 5931 5932 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5933 // The module path string ref set in the summary must be owned by the 5934 // index's module string table. Since we don't have a module path 5935 // string table section in the per-module index, we create a single 5936 // module path string table entry with an empty (0) ID to take 5937 // ownership. 5938 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5939 assert(Record.size() >= RefListStartIndex + NumRefs && 5940 "Record size inconsistent with number of references"); 5941 std::vector<ValueInfo> Refs = makeRefList( 5942 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5943 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5944 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5945 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5946 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5947 IsOldProfileFormat, HasProfile, HasRelBF); 5948 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5949 auto FS = std::make_unique<FunctionSummary>( 5950 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5951 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5952 std::move(PendingTypeTestAssumeVCalls), 5953 std::move(PendingTypeCheckedLoadVCalls), 5954 std::move(PendingTypeTestAssumeConstVCalls), 5955 std::move(PendingTypeCheckedLoadConstVCalls)); 5956 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5957 FS->setModulePath(getThisModule()->first()); 5958 FS->setOriginalName(VIAndOriginalGUID.second); 5959 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5960 break; 5961 } 5962 // FS_ALIAS: [valueid, flags, valueid] 5963 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5964 // they expect all aliasee summaries to be available. 5965 case bitc::FS_ALIAS: { 5966 unsigned ValueID = Record[0]; 5967 uint64_t RawFlags = Record[1]; 5968 unsigned AliaseeID = Record[2]; 5969 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5970 auto AS = std::make_unique<AliasSummary>(Flags); 5971 // The module path string ref set in the summary must be owned by the 5972 // index's module string table. Since we don't have a module path 5973 // string table section in the per-module index, we create a single 5974 // module path string table entry with an empty (0) ID to take 5975 // ownership. 5976 AS->setModulePath(getThisModule()->first()); 5977 5978 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5979 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5980 if (!AliaseeInModule) 5981 return error("Alias expects aliasee summary to be parsed"); 5982 AS->setAliasee(AliaseeVI, AliaseeInModule); 5983 5984 auto GUID = getValueInfoFromValueId(ValueID); 5985 AS->setOriginalName(GUID.second); 5986 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5987 break; 5988 } 5989 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5990 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5991 unsigned ValueID = Record[0]; 5992 uint64_t RawFlags = Record[1]; 5993 unsigned RefArrayStart = 2; 5994 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5995 /* WriteOnly */ false, 5996 /* Constant */ false, 5997 GlobalObject::VCallVisibilityPublic); 5998 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5999 if (Version >= 5) { 6000 GVF = getDecodedGVarFlags(Record[2]); 6001 RefArrayStart = 3; 6002 } 6003 std::vector<ValueInfo> Refs = 6004 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6005 auto FS = 6006 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6007 FS->setModulePath(getThisModule()->first()); 6008 auto GUID = getValueInfoFromValueId(ValueID); 6009 FS->setOriginalName(GUID.second); 6010 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6011 break; 6012 } 6013 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6014 // numrefs, numrefs x valueid, 6015 // n x (valueid, offset)] 6016 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6017 unsigned ValueID = Record[0]; 6018 uint64_t RawFlags = Record[1]; 6019 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6020 unsigned NumRefs = Record[3]; 6021 unsigned RefListStartIndex = 4; 6022 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6023 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6024 std::vector<ValueInfo> Refs = makeRefList( 6025 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6026 VTableFuncList VTableFuncs; 6027 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6028 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6029 uint64_t Offset = Record[++I]; 6030 VTableFuncs.push_back({Callee, Offset}); 6031 } 6032 auto VS = 6033 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6034 VS->setModulePath(getThisModule()->first()); 6035 VS->setVTableFuncs(VTableFuncs); 6036 auto GUID = getValueInfoFromValueId(ValueID); 6037 VS->setOriginalName(GUID.second); 6038 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6039 break; 6040 } 6041 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6042 // numrefs x valueid, n x (valueid)] 6043 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6044 // numrefs x valueid, n x (valueid, hotness)] 6045 case bitc::FS_COMBINED: 6046 case bitc::FS_COMBINED_PROFILE: { 6047 unsigned ValueID = Record[0]; 6048 uint64_t ModuleId = Record[1]; 6049 uint64_t RawFlags = Record[2]; 6050 unsigned InstCount = Record[3]; 6051 uint64_t RawFunFlags = 0; 6052 uint64_t EntryCount = 0; 6053 unsigned NumRefs = Record[4]; 6054 unsigned NumRORefs = 0, NumWORefs = 0; 6055 int RefListStartIndex = 5; 6056 6057 if (Version >= 4) { 6058 RawFunFlags = Record[4]; 6059 RefListStartIndex = 6; 6060 size_t NumRefsIndex = 5; 6061 if (Version >= 5) { 6062 unsigned NumRORefsOffset = 1; 6063 RefListStartIndex = 7; 6064 if (Version >= 6) { 6065 NumRefsIndex = 6; 6066 EntryCount = Record[5]; 6067 RefListStartIndex = 8; 6068 if (Version >= 7) { 6069 RefListStartIndex = 9; 6070 NumWORefs = Record[8]; 6071 NumRORefsOffset = 2; 6072 } 6073 } 6074 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6075 } 6076 NumRefs = Record[NumRefsIndex]; 6077 } 6078 6079 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6080 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6081 assert(Record.size() >= RefListStartIndex + NumRefs && 6082 "Record size inconsistent with number of references"); 6083 std::vector<ValueInfo> Refs = makeRefList( 6084 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6085 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6086 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6087 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6088 IsOldProfileFormat, HasProfile, false); 6089 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6090 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6091 auto FS = std::make_unique<FunctionSummary>( 6092 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6093 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6094 std::move(PendingTypeTestAssumeVCalls), 6095 std::move(PendingTypeCheckedLoadVCalls), 6096 std::move(PendingTypeTestAssumeConstVCalls), 6097 std::move(PendingTypeCheckedLoadConstVCalls)); 6098 LastSeenSummary = FS.get(); 6099 LastSeenGUID = VI.getGUID(); 6100 FS->setModulePath(ModuleIdMap[ModuleId]); 6101 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6102 break; 6103 } 6104 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6105 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6106 // they expect all aliasee summaries to be available. 6107 case bitc::FS_COMBINED_ALIAS: { 6108 unsigned ValueID = Record[0]; 6109 uint64_t ModuleId = Record[1]; 6110 uint64_t RawFlags = Record[2]; 6111 unsigned AliaseeValueId = Record[3]; 6112 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6113 auto AS = std::make_unique<AliasSummary>(Flags); 6114 LastSeenSummary = AS.get(); 6115 AS->setModulePath(ModuleIdMap[ModuleId]); 6116 6117 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6118 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6119 AS->setAliasee(AliaseeVI, AliaseeInModule); 6120 6121 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6122 LastSeenGUID = VI.getGUID(); 6123 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6124 break; 6125 } 6126 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6127 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6128 unsigned ValueID = Record[0]; 6129 uint64_t ModuleId = Record[1]; 6130 uint64_t RawFlags = Record[2]; 6131 unsigned RefArrayStart = 3; 6132 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6133 /* WriteOnly */ false, 6134 /* Constant */ false, 6135 GlobalObject::VCallVisibilityPublic); 6136 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6137 if (Version >= 5) { 6138 GVF = getDecodedGVarFlags(Record[3]); 6139 RefArrayStart = 4; 6140 } 6141 std::vector<ValueInfo> Refs = 6142 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6143 auto FS = 6144 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6145 LastSeenSummary = FS.get(); 6146 FS->setModulePath(ModuleIdMap[ModuleId]); 6147 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6148 LastSeenGUID = VI.getGUID(); 6149 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6150 break; 6151 } 6152 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6153 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6154 uint64_t OriginalName = Record[0]; 6155 if (!LastSeenSummary) 6156 return error("Name attachment that does not follow a combined record"); 6157 LastSeenSummary->setOriginalName(OriginalName); 6158 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6159 // Reset the LastSeenSummary 6160 LastSeenSummary = nullptr; 6161 LastSeenGUID = 0; 6162 break; 6163 } 6164 case bitc::FS_TYPE_TESTS: 6165 assert(PendingTypeTests.empty()); 6166 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6167 Record.end()); 6168 break; 6169 6170 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6171 assert(PendingTypeTestAssumeVCalls.empty()); 6172 for (unsigned I = 0; I != Record.size(); I += 2) 6173 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6174 break; 6175 6176 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6177 assert(PendingTypeCheckedLoadVCalls.empty()); 6178 for (unsigned I = 0; I != Record.size(); I += 2) 6179 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6180 break; 6181 6182 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6183 PendingTypeTestAssumeConstVCalls.push_back( 6184 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6185 break; 6186 6187 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6188 PendingTypeCheckedLoadConstVCalls.push_back( 6189 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6190 break; 6191 6192 case bitc::FS_CFI_FUNCTION_DEFS: { 6193 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6194 for (unsigned I = 0; I != Record.size(); I += 2) 6195 CfiFunctionDefs.insert( 6196 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6197 break; 6198 } 6199 6200 case bitc::FS_CFI_FUNCTION_DECLS: { 6201 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6202 for (unsigned I = 0; I != Record.size(); I += 2) 6203 CfiFunctionDecls.insert( 6204 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6205 break; 6206 } 6207 6208 case bitc::FS_TYPE_ID: 6209 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6210 break; 6211 6212 case bitc::FS_TYPE_ID_METADATA: 6213 parseTypeIdCompatibleVtableSummaryRecord(Record); 6214 break; 6215 } 6216 } 6217 llvm_unreachable("Exit infinite loop"); 6218 } 6219 6220 // Parse the module string table block into the Index. 6221 // This populates the ModulePathStringTable map in the index. 6222 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6223 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6224 return Err; 6225 6226 SmallVector<uint64_t, 64> Record; 6227 6228 SmallString<128> ModulePath; 6229 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6230 6231 while (true) { 6232 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6233 if (!MaybeEntry) 6234 return MaybeEntry.takeError(); 6235 BitstreamEntry Entry = MaybeEntry.get(); 6236 6237 switch (Entry.Kind) { 6238 case BitstreamEntry::SubBlock: // Handled for us already. 6239 case BitstreamEntry::Error: 6240 return error("Malformed block"); 6241 case BitstreamEntry::EndBlock: 6242 return Error::success(); 6243 case BitstreamEntry::Record: 6244 // The interesting case. 6245 break; 6246 } 6247 6248 Record.clear(); 6249 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6250 if (!MaybeRecord) 6251 return MaybeRecord.takeError(); 6252 switch (MaybeRecord.get()) { 6253 default: // Default behavior: ignore. 6254 break; 6255 case bitc::MST_CODE_ENTRY: { 6256 // MST_ENTRY: [modid, namechar x N] 6257 uint64_t ModuleId = Record[0]; 6258 6259 if (convertToString(Record, 1, ModulePath)) 6260 return error("Invalid record"); 6261 6262 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6263 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6264 6265 ModulePath.clear(); 6266 break; 6267 } 6268 /// MST_CODE_HASH: [5*i32] 6269 case bitc::MST_CODE_HASH: { 6270 if (Record.size() != 5) 6271 return error("Invalid hash length " + Twine(Record.size()).str()); 6272 if (!LastSeenModule) 6273 return error("Invalid hash that does not follow a module path"); 6274 int Pos = 0; 6275 for (auto &Val : Record) { 6276 assert(!(Val >> 32) && "Unexpected high bits set"); 6277 LastSeenModule->second.second[Pos++] = Val; 6278 } 6279 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6280 LastSeenModule = nullptr; 6281 break; 6282 } 6283 } 6284 } 6285 llvm_unreachable("Exit infinite loop"); 6286 } 6287 6288 namespace { 6289 6290 // FIXME: This class is only here to support the transition to llvm::Error. It 6291 // will be removed once this transition is complete. Clients should prefer to 6292 // deal with the Error value directly, rather than converting to error_code. 6293 class BitcodeErrorCategoryType : public std::error_category { 6294 const char *name() const noexcept override { 6295 return "llvm.bitcode"; 6296 } 6297 6298 std::string message(int IE) const override { 6299 BitcodeError E = static_cast<BitcodeError>(IE); 6300 switch (E) { 6301 case BitcodeError::CorruptedBitcode: 6302 return "Corrupted bitcode"; 6303 } 6304 llvm_unreachable("Unknown error type!"); 6305 } 6306 }; 6307 6308 } // end anonymous namespace 6309 6310 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6311 6312 const std::error_category &llvm::BitcodeErrorCategory() { 6313 return *ErrorCategory; 6314 } 6315 6316 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6317 unsigned Block, unsigned RecordID) { 6318 if (Error Err = Stream.EnterSubBlock(Block)) 6319 return std::move(Err); 6320 6321 StringRef Strtab; 6322 while (true) { 6323 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6324 if (!MaybeEntry) 6325 return MaybeEntry.takeError(); 6326 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6327 6328 switch (Entry.Kind) { 6329 case BitstreamEntry::EndBlock: 6330 return Strtab; 6331 6332 case BitstreamEntry::Error: 6333 return error("Malformed block"); 6334 6335 case BitstreamEntry::SubBlock: 6336 if (Error Err = Stream.SkipBlock()) 6337 return std::move(Err); 6338 break; 6339 6340 case BitstreamEntry::Record: 6341 StringRef Blob; 6342 SmallVector<uint64_t, 1> Record; 6343 Expected<unsigned> MaybeRecord = 6344 Stream.readRecord(Entry.ID, Record, &Blob); 6345 if (!MaybeRecord) 6346 return MaybeRecord.takeError(); 6347 if (MaybeRecord.get() == RecordID) 6348 Strtab = Blob; 6349 break; 6350 } 6351 } 6352 } 6353 6354 //===----------------------------------------------------------------------===// 6355 // External interface 6356 //===----------------------------------------------------------------------===// 6357 6358 Expected<std::vector<BitcodeModule>> 6359 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6360 auto FOrErr = getBitcodeFileContents(Buffer); 6361 if (!FOrErr) 6362 return FOrErr.takeError(); 6363 return std::move(FOrErr->Mods); 6364 } 6365 6366 Expected<BitcodeFileContents> 6367 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6368 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6369 if (!StreamOrErr) 6370 return StreamOrErr.takeError(); 6371 BitstreamCursor &Stream = *StreamOrErr; 6372 6373 BitcodeFileContents F; 6374 while (true) { 6375 uint64_t BCBegin = Stream.getCurrentByteNo(); 6376 6377 // We may be consuming bitcode from a client that leaves garbage at the end 6378 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6379 // the end that there cannot possibly be another module, stop looking. 6380 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6381 return F; 6382 6383 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6384 if (!MaybeEntry) 6385 return MaybeEntry.takeError(); 6386 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6387 6388 switch (Entry.Kind) { 6389 case BitstreamEntry::EndBlock: 6390 case BitstreamEntry::Error: 6391 return error("Malformed block"); 6392 6393 case BitstreamEntry::SubBlock: { 6394 uint64_t IdentificationBit = -1ull; 6395 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6396 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6397 if (Error Err = Stream.SkipBlock()) 6398 return std::move(Err); 6399 6400 { 6401 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6402 if (!MaybeEntry) 6403 return MaybeEntry.takeError(); 6404 Entry = MaybeEntry.get(); 6405 } 6406 6407 if (Entry.Kind != BitstreamEntry::SubBlock || 6408 Entry.ID != bitc::MODULE_BLOCK_ID) 6409 return error("Malformed block"); 6410 } 6411 6412 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6413 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6414 if (Error Err = Stream.SkipBlock()) 6415 return std::move(Err); 6416 6417 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6418 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6419 Buffer.getBufferIdentifier(), IdentificationBit, 6420 ModuleBit}); 6421 continue; 6422 } 6423 6424 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6425 Expected<StringRef> Strtab = 6426 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6427 if (!Strtab) 6428 return Strtab.takeError(); 6429 // This string table is used by every preceding bitcode module that does 6430 // not have its own string table. A bitcode file may have multiple 6431 // string tables if it was created by binary concatenation, for example 6432 // with "llvm-cat -b". 6433 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6434 if (!I->Strtab.empty()) 6435 break; 6436 I->Strtab = *Strtab; 6437 } 6438 // Similarly, the string table is used by every preceding symbol table; 6439 // normally there will be just one unless the bitcode file was created 6440 // by binary concatenation. 6441 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6442 F.StrtabForSymtab = *Strtab; 6443 continue; 6444 } 6445 6446 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6447 Expected<StringRef> SymtabOrErr = 6448 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6449 if (!SymtabOrErr) 6450 return SymtabOrErr.takeError(); 6451 6452 // We can expect the bitcode file to have multiple symbol tables if it 6453 // was created by binary concatenation. In that case we silently 6454 // ignore any subsequent symbol tables, which is fine because this is a 6455 // low level function. The client is expected to notice that the number 6456 // of modules in the symbol table does not match the number of modules 6457 // in the input file and regenerate the symbol table. 6458 if (F.Symtab.empty()) 6459 F.Symtab = *SymtabOrErr; 6460 continue; 6461 } 6462 6463 if (Error Err = Stream.SkipBlock()) 6464 return std::move(Err); 6465 continue; 6466 } 6467 case BitstreamEntry::Record: 6468 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6469 continue; 6470 else 6471 return StreamFailed.takeError(); 6472 } 6473 } 6474 } 6475 6476 /// Get a lazy one-at-time loading module from bitcode. 6477 /// 6478 /// This isn't always used in a lazy context. In particular, it's also used by 6479 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6480 /// in forward-referenced functions from block address references. 6481 /// 6482 /// \param[in] MaterializeAll Set to \c true if we should materialize 6483 /// everything. 6484 Expected<std::unique_ptr<Module>> 6485 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6486 bool ShouldLazyLoadMetadata, bool IsImporting, 6487 DataLayoutCallbackTy DataLayoutCallback) { 6488 BitstreamCursor Stream(Buffer); 6489 6490 std::string ProducerIdentification; 6491 if (IdentificationBit != -1ull) { 6492 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6493 return std::move(JumpFailed); 6494 Expected<std::string> ProducerIdentificationOrErr = 6495 readIdentificationBlock(Stream); 6496 if (!ProducerIdentificationOrErr) 6497 return ProducerIdentificationOrErr.takeError(); 6498 6499 ProducerIdentification = *ProducerIdentificationOrErr; 6500 } 6501 6502 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6503 return std::move(JumpFailed); 6504 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6505 Context); 6506 6507 std::unique_ptr<Module> M = 6508 std::make_unique<Module>(ModuleIdentifier, Context); 6509 M->setMaterializer(R); 6510 6511 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6512 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6513 IsImporting, DataLayoutCallback)) 6514 return std::move(Err); 6515 6516 if (MaterializeAll) { 6517 // Read in the entire module, and destroy the BitcodeReader. 6518 if (Error Err = M->materializeAll()) 6519 return std::move(Err); 6520 } else { 6521 // Resolve forward references from blockaddresses. 6522 if (Error Err = R->materializeForwardReferencedFunctions()) 6523 return std::move(Err); 6524 } 6525 return std::move(M); 6526 } 6527 6528 Expected<std::unique_ptr<Module>> 6529 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6530 bool IsImporting) { 6531 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6532 [](StringRef) { return None; }); 6533 } 6534 6535 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6536 // We don't use ModuleIdentifier here because the client may need to control the 6537 // module path used in the combined summary (e.g. when reading summaries for 6538 // regular LTO modules). 6539 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6540 StringRef ModulePath, uint64_t ModuleId) { 6541 BitstreamCursor Stream(Buffer); 6542 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6543 return JumpFailed; 6544 6545 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6546 ModulePath, ModuleId); 6547 return R.parseModule(); 6548 } 6549 6550 // Parse the specified bitcode buffer, returning the function info index. 6551 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6552 BitstreamCursor Stream(Buffer); 6553 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6554 return std::move(JumpFailed); 6555 6556 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6557 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6558 ModuleIdentifier, 0); 6559 6560 if (Error Err = R.parseModule()) 6561 return std::move(Err); 6562 6563 return std::move(Index); 6564 } 6565 6566 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6567 unsigned ID) { 6568 if (Error Err = Stream.EnterSubBlock(ID)) 6569 return std::move(Err); 6570 SmallVector<uint64_t, 64> Record; 6571 6572 while (true) { 6573 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6574 if (!MaybeEntry) 6575 return MaybeEntry.takeError(); 6576 BitstreamEntry Entry = MaybeEntry.get(); 6577 6578 switch (Entry.Kind) { 6579 case BitstreamEntry::SubBlock: // Handled for us already. 6580 case BitstreamEntry::Error: 6581 return error("Malformed block"); 6582 case BitstreamEntry::EndBlock: 6583 // If no flags record found, conservatively return true to mimic 6584 // behavior before this flag was added. 6585 return true; 6586 case BitstreamEntry::Record: 6587 // The interesting case. 6588 break; 6589 } 6590 6591 // Look for the FS_FLAGS record. 6592 Record.clear(); 6593 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6594 if (!MaybeBitCode) 6595 return MaybeBitCode.takeError(); 6596 switch (MaybeBitCode.get()) { 6597 default: // Default behavior: ignore. 6598 break; 6599 case bitc::FS_FLAGS: { // [flags] 6600 uint64_t Flags = Record[0]; 6601 // Scan flags. 6602 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6603 6604 return Flags & 0x8; 6605 } 6606 } 6607 } 6608 llvm_unreachable("Exit infinite loop"); 6609 } 6610 6611 // Check if the given bitcode buffer contains a global value summary block. 6612 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6613 BitstreamCursor Stream(Buffer); 6614 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6615 return std::move(JumpFailed); 6616 6617 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6618 return std::move(Err); 6619 6620 while (true) { 6621 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6622 if (!MaybeEntry) 6623 return MaybeEntry.takeError(); 6624 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6625 6626 switch (Entry.Kind) { 6627 case BitstreamEntry::Error: 6628 return error("Malformed block"); 6629 case BitstreamEntry::EndBlock: 6630 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6631 /*EnableSplitLTOUnit=*/false}; 6632 6633 case BitstreamEntry::SubBlock: 6634 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6635 Expected<bool> EnableSplitLTOUnit = 6636 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6637 if (!EnableSplitLTOUnit) 6638 return EnableSplitLTOUnit.takeError(); 6639 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6640 *EnableSplitLTOUnit}; 6641 } 6642 6643 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6644 Expected<bool> EnableSplitLTOUnit = 6645 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6646 if (!EnableSplitLTOUnit) 6647 return EnableSplitLTOUnit.takeError(); 6648 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6649 *EnableSplitLTOUnit}; 6650 } 6651 6652 // Ignore other sub-blocks. 6653 if (Error Err = Stream.SkipBlock()) 6654 return std::move(Err); 6655 continue; 6656 6657 case BitstreamEntry::Record: 6658 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6659 continue; 6660 else 6661 return StreamFailed.takeError(); 6662 } 6663 } 6664 } 6665 6666 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6667 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6668 if (!MsOrErr) 6669 return MsOrErr.takeError(); 6670 6671 if (MsOrErr->size() != 1) 6672 return error("Expected a single module"); 6673 6674 return (*MsOrErr)[0]; 6675 } 6676 6677 Expected<std::unique_ptr<Module>> 6678 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6679 bool ShouldLazyLoadMetadata, bool IsImporting) { 6680 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6681 if (!BM) 6682 return BM.takeError(); 6683 6684 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6685 } 6686 6687 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6688 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6689 bool ShouldLazyLoadMetadata, bool IsImporting) { 6690 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6691 IsImporting); 6692 if (MOrErr) 6693 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6694 return MOrErr; 6695 } 6696 6697 Expected<std::unique_ptr<Module>> 6698 BitcodeModule::parseModule(LLVMContext &Context, 6699 DataLayoutCallbackTy DataLayoutCallback) { 6700 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6701 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6702 // written. We must defer until the Module has been fully materialized. 6703 } 6704 6705 Expected<std::unique_ptr<Module>> 6706 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6707 DataLayoutCallbackTy DataLayoutCallback) { 6708 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6709 if (!BM) 6710 return BM.takeError(); 6711 6712 return BM->parseModule(Context, DataLayoutCallback); 6713 } 6714 6715 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6716 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6717 if (!StreamOrErr) 6718 return StreamOrErr.takeError(); 6719 6720 return readTriple(*StreamOrErr); 6721 } 6722 6723 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6724 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6725 if (!StreamOrErr) 6726 return StreamOrErr.takeError(); 6727 6728 return hasObjCCategory(*StreamOrErr); 6729 } 6730 6731 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6732 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6733 if (!StreamOrErr) 6734 return StreamOrErr.takeError(); 6735 6736 return readIdentificationCode(*StreamOrErr); 6737 } 6738 6739 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6740 ModuleSummaryIndex &CombinedIndex, 6741 uint64_t ModuleId) { 6742 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6743 if (!BM) 6744 return BM.takeError(); 6745 6746 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6747 } 6748 6749 Expected<std::unique_ptr<ModuleSummaryIndex>> 6750 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6751 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6752 if (!BM) 6753 return BM.takeError(); 6754 6755 return BM->getSummary(); 6756 } 6757 6758 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6759 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6760 if (!BM) 6761 return BM.takeError(); 6762 6763 return BM->getLTOInfo(); 6764 } 6765 6766 Expected<std::unique_ptr<ModuleSummaryIndex>> 6767 llvm::getModuleSummaryIndexForFile(StringRef Path, 6768 bool IgnoreEmptyThinLTOIndexFile) { 6769 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6770 MemoryBuffer::getFileOrSTDIN(Path); 6771 if (!FileOrErr) 6772 return errorCodeToError(FileOrErr.getError()); 6773 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6774 return nullptr; 6775 return getModuleSummaryIndex(**FileOrErr); 6776 } 6777