1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 // FIXME: This flag should either be removed or moved to clang as a driver flag. 97 static llvm::cl::opt<bool> IgnoreEmptyThinLTOIndexFile( 98 "ignore-empty-index-file", llvm::cl::ZeroOrMore, 99 llvm::cl::desc( 100 "Ignore an empty index file and perform non-ThinLTO compilation"), 101 llvm::cl::init(false)); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 Error error(const Twine &Message) { 110 return make_error<StringError>( 111 Message, make_error_code(BitcodeError::CorruptedBitcode)); 112 } 113 114 /// Helper to read the header common to all bitcode files. 115 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 116 // Sniff for the signature. 117 if (!Stream.canSkipToPos(4) || 118 Stream.Read(8) != 'B' || 119 Stream.Read(8) != 'C' || 120 Stream.Read(4) != 0x0 || 121 Stream.Read(4) != 0xC || 122 Stream.Read(4) != 0xE || 123 Stream.Read(4) != 0xD) 124 return false; 125 return true; 126 } 127 128 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (!hasValidBitcodeHeader(Stream)) 143 return error("Invalid bitcode signature"); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return error("Invalid record"); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry = Stream.advance(); 183 184 switch (Entry.Kind) { 185 default: 186 case BitstreamEntry::Error: 187 return error("Malformed block"); 188 case BitstreamEntry::EndBlock: 189 return ProducerIdentification; 190 case BitstreamEntry::Record: 191 // The interesting case. 192 break; 193 } 194 195 // Read a record. 196 Record.clear(); 197 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 198 switch (BitCode) { 199 default: // Default behavior: reject 200 return error("Invalid value"); 201 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 202 convertToString(Record, 0, ProducerIdentification); 203 break; 204 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 205 unsigned epoch = (unsigned)Record[0]; 206 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 207 return error( 208 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 209 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 210 } 211 } 212 } 213 } 214 } 215 216 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 217 // We expect a number of well-defined blocks, though we don't necessarily 218 // need to understand them all. 219 while (true) { 220 if (Stream.AtEndOfStream()) 221 return ""; 222 223 BitstreamEntry Entry = Stream.advance(); 224 switch (Entry.Kind) { 225 case BitstreamEntry::EndBlock: 226 case BitstreamEntry::Error: 227 return error("Malformed block"); 228 229 case BitstreamEntry::SubBlock: 230 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 231 return readIdentificationBlock(Stream); 232 233 // Ignore other sub-blocks. 234 if (Stream.SkipBlock()) 235 return error("Malformed block"); 236 continue; 237 case BitstreamEntry::Record: 238 Stream.skipRecord(Entry.ID); 239 continue; 240 } 241 } 242 } 243 244 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 245 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 246 return error("Invalid record"); 247 248 SmallVector<uint64_t, 64> Record; 249 // Read all the records for this module. 250 251 while (true) { 252 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::SubBlock: // Handled for us already. 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 case BitstreamEntry::EndBlock: 259 return false; 260 case BitstreamEntry::Record: 261 // The interesting case. 262 break; 263 } 264 265 // Read a record. 266 switch (Stream.readRecord(Entry.ID, Record)) { 267 default: 268 break; // Default behavior, ignore unknown content. 269 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 270 std::string S; 271 if (convertToString(Record, 0, S)) 272 return error("Invalid record"); 273 // Check for the i386 and other (x86_64, ARM) conventions 274 if (S.find("__DATA, __objc_catlist") != std::string::npos || 275 S.find("__OBJC,__category") != std::string::npos) 276 return true; 277 break; 278 } 279 } 280 Record.clear(); 281 } 282 llvm_unreachable("Exit infinite loop"); 283 } 284 285 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 286 // We expect a number of well-defined blocks, though we don't necessarily 287 // need to understand them all. 288 while (true) { 289 BitstreamEntry Entry = Stream.advance(); 290 291 switch (Entry.Kind) { 292 case BitstreamEntry::Error: 293 return error("Malformed block"); 294 case BitstreamEntry::EndBlock: 295 return false; 296 297 case BitstreamEntry::SubBlock: 298 if (Entry.ID == bitc::MODULE_BLOCK_ID) 299 return hasObjCCategoryInModule(Stream); 300 301 // Ignore other sub-blocks. 302 if (Stream.SkipBlock()) 303 return error("Malformed block"); 304 continue; 305 306 case BitstreamEntry::Record: 307 Stream.skipRecord(Entry.ID); 308 continue; 309 } 310 } 311 } 312 313 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 314 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 315 return error("Invalid record"); 316 317 SmallVector<uint64_t, 64> Record; 318 319 std::string Triple; 320 321 // Read all the records for this module. 322 while (true) { 323 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 324 325 switch (Entry.Kind) { 326 case BitstreamEntry::SubBlock: // Handled for us already. 327 case BitstreamEntry::Error: 328 return error("Malformed block"); 329 case BitstreamEntry::EndBlock: 330 return Triple; 331 case BitstreamEntry::Record: 332 // The interesting case. 333 break; 334 } 335 336 // Read a record. 337 switch (Stream.readRecord(Entry.ID, Record)) { 338 default: break; // Default behavior, ignore unknown content. 339 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 340 std::string S; 341 if (convertToString(Record, 0, S)) 342 return error("Invalid record"); 343 Triple = S; 344 break; 345 } 346 } 347 Record.clear(); 348 } 349 llvm_unreachable("Exit infinite loop"); 350 } 351 352 Expected<std::string> readTriple(BitstreamCursor &Stream) { 353 // We expect a number of well-defined blocks, though we don't necessarily 354 // need to understand them all. 355 while (true) { 356 BitstreamEntry Entry = Stream.advance(); 357 358 switch (Entry.Kind) { 359 case BitstreamEntry::Error: 360 return error("Malformed block"); 361 case BitstreamEntry::EndBlock: 362 return ""; 363 364 case BitstreamEntry::SubBlock: 365 if (Entry.ID == bitc::MODULE_BLOCK_ID) 366 return readModuleTriple(Stream); 367 368 // Ignore other sub-blocks. 369 if (Stream.SkipBlock()) 370 return error("Malformed block"); 371 continue; 372 373 case BitstreamEntry::Record: 374 Stream.skipRecord(Entry.ID); 375 continue; 376 } 377 } 378 } 379 380 class BitcodeReaderBase { 381 protected: 382 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 383 : Stream(std::move(Stream)), Strtab(Strtab) { 384 this->Stream.setBlockInfo(&BlockInfo); 385 } 386 387 BitstreamBlockInfo BlockInfo; 388 BitstreamCursor Stream; 389 StringRef Strtab; 390 391 /// In version 2 of the bitcode we store names of global values and comdats in 392 /// a string table rather than in the VST. 393 bool UseStrtab = false; 394 395 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 396 397 /// If this module uses a string table, pop the reference to the string table 398 /// and return the referenced string and the rest of the record. Otherwise 399 /// just return the record itself. 400 std::pair<StringRef, ArrayRef<uint64_t>> 401 readNameFromStrtab(ArrayRef<uint64_t> Record); 402 403 bool readBlockInfo(); 404 405 // Contains an arbitrary and optional string identifying the bitcode producer 406 std::string ProducerIdentification; 407 408 Error error(const Twine &Message); 409 }; 410 411 Error BitcodeReaderBase::error(const Twine &Message) { 412 std::string FullMsg = Message.str(); 413 if (!ProducerIdentification.empty()) 414 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 415 LLVM_VERSION_STRING "')"; 416 return ::error(FullMsg); 417 } 418 419 Expected<unsigned> 420 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 421 if (Record.size() < 1) 422 return error("Invalid record"); 423 unsigned ModuleVersion = Record[0]; 424 if (ModuleVersion > 2) 425 return error("Invalid value"); 426 UseStrtab = ModuleVersion >= 2; 427 return ModuleVersion; 428 } 429 430 std::pair<StringRef, ArrayRef<uint64_t>> 431 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 432 if (!UseStrtab) 433 return {"", Record}; 434 // Invalid reference. Let the caller complain about the record being empty. 435 if (Record[0] + Record[1] > Strtab.size()) 436 return {"", {}}; 437 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 438 } 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 461 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 462 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 463 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 524 public: 525 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 526 StringRef ProducerIdentification, LLVMContext &Context); 527 528 Error materializeForwardReferencedFunctions(); 529 530 Error materialize(GlobalValue *GV) override; 531 Error materializeModule() override; 532 std::vector<StructType *> getIdentifiedStructTypes() const override; 533 534 /// \brief Main interface to parsing a bitcode buffer. 535 /// \returns true if an error occurred. 536 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 537 bool IsImporting = false); 538 539 static uint64_t decodeSignRotatedValue(uint64_t V); 540 541 /// Materialize any deferred Metadata block. 542 Error materializeMetadata() override; 543 544 void setStripDebugInfo() override; 545 546 private: 547 std::vector<StructType *> IdentifiedStructTypes; 548 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 549 StructType *createIdentifiedStructType(LLVMContext &Context); 550 551 Type *getTypeByID(unsigned ID); 552 553 Value *getFnValueByID(unsigned ID, Type *Ty) { 554 if (Ty && Ty->isMetadataTy()) 555 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 556 return ValueList.getValueFwdRef(ID, Ty); 557 } 558 559 Metadata *getFnMetadataByID(unsigned ID) { 560 return MDLoader->getMetadataFwdRefOrLoad(ID); 561 } 562 563 BasicBlock *getBasicBlock(unsigned ID) const { 564 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 565 return FunctionBBs[ID]; 566 } 567 568 AttributeList getAttributes(unsigned i) const { 569 if (i-1 < MAttributes.size()) 570 return MAttributes[i-1]; 571 return AttributeList(); 572 } 573 574 /// Read a value/type pair out of the specified record from slot 'Slot'. 575 /// Increment Slot past the number of slots used in the record. Return true on 576 /// failure. 577 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 578 unsigned InstNum, Value *&ResVal) { 579 if (Slot == Record.size()) return true; 580 unsigned ValNo = (unsigned)Record[Slot++]; 581 // Adjust the ValNo, if it was encoded relative to the InstNum. 582 if (UseRelativeIDs) 583 ValNo = InstNum - ValNo; 584 if (ValNo < InstNum) { 585 // If this is not a forward reference, just return the value we already 586 // have. 587 ResVal = getFnValueByID(ValNo, nullptr); 588 return ResVal == nullptr; 589 } 590 if (Slot == Record.size()) 591 return true; 592 593 unsigned TypeNo = (unsigned)Record[Slot++]; 594 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 595 return ResVal == nullptr; 596 } 597 598 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 599 /// past the number of slots used by the value in the record. Return true if 600 /// there is an error. 601 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 602 unsigned InstNum, Type *Ty, Value *&ResVal) { 603 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 604 return true; 605 // All values currently take a single record slot. 606 ++Slot; 607 return false; 608 } 609 610 /// Like popValue, but does not increment the Slot number. 611 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 612 unsigned InstNum, Type *Ty, Value *&ResVal) { 613 ResVal = getValue(Record, Slot, InstNum, Ty); 614 return ResVal == nullptr; 615 } 616 617 /// Version of getValue that returns ResVal directly, or 0 if there is an 618 /// error. 619 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 620 unsigned InstNum, Type *Ty) { 621 if (Slot == Record.size()) return nullptr; 622 unsigned ValNo = (unsigned)Record[Slot]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 return getFnValueByID(ValNo, Ty); 627 } 628 629 /// Like getValue, but decodes signed VBRs. 630 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 631 unsigned InstNum, Type *Ty) { 632 if (Slot == Record.size()) return nullptr; 633 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 634 // Adjust the ValNo, if it was encoded relative to the InstNum. 635 if (UseRelativeIDs) 636 ValNo = InstNum - ValNo; 637 return getFnValueByID(ValNo, Ty); 638 } 639 640 /// Converts alignment exponent (i.e. power of two (or zero)) to the 641 /// corresponding alignment to use. If alignment is too large, returns 642 /// a corresponding error code. 643 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 644 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 645 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 646 647 Error parseComdatRecord(ArrayRef<uint64_t> Record); 648 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 649 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 651 ArrayRef<uint64_t> Record); 652 653 Error parseAttributeBlock(); 654 Error parseAttributeGroupBlock(); 655 Error parseTypeTable(); 656 Error parseTypeTableBody(); 657 Error parseOperandBundleTags(); 658 659 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 660 unsigned NameIndex, Triple &TT); 661 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 662 ArrayRef<uint64_t> Record); 663 Error parseValueSymbolTable(uint64_t Offset = 0); 664 Error parseGlobalValueSymbolTable(); 665 Error parseConstants(); 666 Error rememberAndSkipFunctionBodies(); 667 Error rememberAndSkipFunctionBody(); 668 /// Save the positions of the Metadata blocks and skip parsing the blocks. 669 Error rememberAndSkipMetadata(); 670 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 671 Error parseFunctionBody(Function *F); 672 Error globalCleanup(); 673 Error resolveGlobalAndIndirectSymbolInits(); 674 Error parseUseLists(); 675 Error findFunctionInStream( 676 Function *F, 677 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 678 }; 679 680 /// Class to manage reading and parsing function summary index bitcode 681 /// files/sections. 682 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 683 /// The module index built during parsing. 684 ModuleSummaryIndex &TheIndex; 685 686 /// Indicates whether we have encountered a global value summary section 687 /// yet during parsing. 688 bool SeenGlobalValSummary = false; 689 690 /// Indicates whether we have already parsed the VST, used for error checking. 691 bool SeenValueSymbolTable = false; 692 693 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 694 /// Used to enable on-demand parsing of the VST. 695 uint64_t VSTOffset = 0; 696 697 // Map to save ValueId to GUID association that was recorded in the 698 // ValueSymbolTable. It is used after the VST is parsed to convert 699 // call graph edges read from the function summary from referencing 700 // callees by their ValueId to using the GUID instead, which is how 701 // they are recorded in the summary index being built. 702 // We save a second GUID which is the same as the first one, but ignoring the 703 // linkage, i.e. for value other than local linkage they are identical. 704 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 705 ValueIdToCallGraphGUIDMap; 706 707 /// Map populated during module path string table parsing, from the 708 /// module ID to a string reference owned by the index's module 709 /// path string table, used to correlate with combined index 710 /// summary records. 711 DenseMap<uint64_t, StringRef> ModuleIdMap; 712 713 /// Original source file name recorded in a bitcode record. 714 std::string SourceFileName; 715 716 /// The string identifier given to this module by the client, normally the 717 /// path to the bitcode file. 718 StringRef ModulePath; 719 720 /// For per-module summary indexes, the unique numerical identifier given to 721 /// this module by the client. 722 unsigned ModuleId; 723 724 public: 725 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 726 ModuleSummaryIndex &TheIndex, 727 StringRef ModulePath, unsigned ModuleId); 728 729 Error parseModule(); 730 731 private: 732 void setValueGUID(uint64_t ValueID, StringRef ValueName, 733 GlobalValue::LinkageTypes Linkage, 734 StringRef SourceFileName); 735 Error parseValueSymbolTable( 736 uint64_t Offset, 737 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 738 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 739 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 740 bool IsOldProfileFormat, 741 bool HasProfile); 742 Error parseEntireSummary(); 743 Error parseModuleStringTable(); 744 745 std::pair<GlobalValue::GUID, GlobalValue::GUID> 746 getGUIDFromValueId(unsigned ValueId); 747 748 ModulePathStringTableTy::iterator addThisModulePath(); 749 }; 750 751 } // end anonymous namespace 752 753 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 754 Error Err) { 755 if (Err) { 756 std::error_code EC; 757 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 758 EC = EIB.convertToErrorCode(); 759 Ctx.emitError(EIB.message()); 760 }); 761 return EC; 762 } 763 return std::error_code(); 764 } 765 766 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 767 StringRef ProducerIdentification, 768 LLVMContext &Context) 769 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 770 ValueList(Context) { 771 this->ProducerIdentification = ProducerIdentification; 772 } 773 774 Error BitcodeReader::materializeForwardReferencedFunctions() { 775 if (WillMaterializeAllForwardRefs) 776 return Error::success(); 777 778 // Prevent recursion. 779 WillMaterializeAllForwardRefs = true; 780 781 while (!BasicBlockFwdRefQueue.empty()) { 782 Function *F = BasicBlockFwdRefQueue.front(); 783 BasicBlockFwdRefQueue.pop_front(); 784 assert(F && "Expected valid function"); 785 if (!BasicBlockFwdRefs.count(F)) 786 // Already materialized. 787 continue; 788 789 // Check for a function that isn't materializable to prevent an infinite 790 // loop. When parsing a blockaddress stored in a global variable, there 791 // isn't a trivial way to check if a function will have a body without a 792 // linear search through FunctionsWithBodies, so just check it here. 793 if (!F->isMaterializable()) 794 return error("Never resolved function from blockaddress"); 795 796 // Try to materialize F. 797 if (Error Err = materialize(F)) 798 return Err; 799 } 800 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 801 802 // Reset state. 803 WillMaterializeAllForwardRefs = false; 804 return Error::success(); 805 } 806 807 //===----------------------------------------------------------------------===// 808 // Helper functions to implement forward reference resolution, etc. 809 //===----------------------------------------------------------------------===// 810 811 static bool hasImplicitComdat(size_t Val) { 812 switch (Val) { 813 default: 814 return false; 815 case 1: // Old WeakAnyLinkage 816 case 4: // Old LinkOnceAnyLinkage 817 case 10: // Old WeakODRLinkage 818 case 11: // Old LinkOnceODRLinkage 819 return true; 820 } 821 } 822 823 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 824 switch (Val) { 825 default: // Map unknown/new linkages to external 826 case 0: 827 return GlobalValue::ExternalLinkage; 828 case 2: 829 return GlobalValue::AppendingLinkage; 830 case 3: 831 return GlobalValue::InternalLinkage; 832 case 5: 833 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 834 case 6: 835 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 836 case 7: 837 return GlobalValue::ExternalWeakLinkage; 838 case 8: 839 return GlobalValue::CommonLinkage; 840 case 9: 841 return GlobalValue::PrivateLinkage; 842 case 12: 843 return GlobalValue::AvailableExternallyLinkage; 844 case 13: 845 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 846 case 14: 847 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 848 case 15: 849 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 850 case 1: // Old value with implicit comdat. 851 case 16: 852 return GlobalValue::WeakAnyLinkage; 853 case 10: // Old value with implicit comdat. 854 case 17: 855 return GlobalValue::WeakODRLinkage; 856 case 4: // Old value with implicit comdat. 857 case 18: 858 return GlobalValue::LinkOnceAnyLinkage; 859 case 11: // Old value with implicit comdat. 860 case 19: 861 return GlobalValue::LinkOnceODRLinkage; 862 } 863 } 864 865 /// Decode the flags for GlobalValue in the summary. 866 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 867 uint64_t Version) { 868 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 869 // like getDecodedLinkage() above. Any future change to the linkage enum and 870 // to getDecodedLinkage() will need to be taken into account here as above. 871 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 872 RawFlags = RawFlags >> 4; 873 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 874 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 875 // to work correctly on earlier versions, we must conservatively treat all 876 // values as live. 877 bool LiveRoot = (RawFlags & 0x2) || Version < 3; 878 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot); 879 } 880 881 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 882 switch (Val) { 883 default: // Map unknown visibilities to default. 884 case 0: return GlobalValue::DefaultVisibility; 885 case 1: return GlobalValue::HiddenVisibility; 886 case 2: return GlobalValue::ProtectedVisibility; 887 } 888 } 889 890 static GlobalValue::DLLStorageClassTypes 891 getDecodedDLLStorageClass(unsigned Val) { 892 switch (Val) { 893 default: // Map unknown values to default. 894 case 0: return GlobalValue::DefaultStorageClass; 895 case 1: return GlobalValue::DLLImportStorageClass; 896 case 2: return GlobalValue::DLLExportStorageClass; 897 } 898 } 899 900 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 901 switch (Val) { 902 case 0: return GlobalVariable::NotThreadLocal; 903 default: // Map unknown non-zero value to general dynamic. 904 case 1: return GlobalVariable::GeneralDynamicTLSModel; 905 case 2: return GlobalVariable::LocalDynamicTLSModel; 906 case 3: return GlobalVariable::InitialExecTLSModel; 907 case 4: return GlobalVariable::LocalExecTLSModel; 908 } 909 } 910 911 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 912 switch (Val) { 913 default: // Map unknown to UnnamedAddr::None. 914 case 0: return GlobalVariable::UnnamedAddr::None; 915 case 1: return GlobalVariable::UnnamedAddr::Global; 916 case 2: return GlobalVariable::UnnamedAddr::Local; 917 } 918 } 919 920 static int getDecodedCastOpcode(unsigned Val) { 921 switch (Val) { 922 default: return -1; 923 case bitc::CAST_TRUNC : return Instruction::Trunc; 924 case bitc::CAST_ZEXT : return Instruction::ZExt; 925 case bitc::CAST_SEXT : return Instruction::SExt; 926 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 927 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 928 case bitc::CAST_UITOFP : return Instruction::UIToFP; 929 case bitc::CAST_SITOFP : return Instruction::SIToFP; 930 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 931 case bitc::CAST_FPEXT : return Instruction::FPExt; 932 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 933 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 934 case bitc::CAST_BITCAST : return Instruction::BitCast; 935 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 936 } 937 } 938 939 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 940 bool IsFP = Ty->isFPOrFPVectorTy(); 941 // BinOps are only valid for int/fp or vector of int/fp types 942 if (!IsFP && !Ty->isIntOrIntVectorTy()) 943 return -1; 944 945 switch (Val) { 946 default: 947 return -1; 948 case bitc::BINOP_ADD: 949 return IsFP ? Instruction::FAdd : Instruction::Add; 950 case bitc::BINOP_SUB: 951 return IsFP ? Instruction::FSub : Instruction::Sub; 952 case bitc::BINOP_MUL: 953 return IsFP ? Instruction::FMul : Instruction::Mul; 954 case bitc::BINOP_UDIV: 955 return IsFP ? -1 : Instruction::UDiv; 956 case bitc::BINOP_SDIV: 957 return IsFP ? Instruction::FDiv : Instruction::SDiv; 958 case bitc::BINOP_UREM: 959 return IsFP ? -1 : Instruction::URem; 960 case bitc::BINOP_SREM: 961 return IsFP ? Instruction::FRem : Instruction::SRem; 962 case bitc::BINOP_SHL: 963 return IsFP ? -1 : Instruction::Shl; 964 case bitc::BINOP_LSHR: 965 return IsFP ? -1 : Instruction::LShr; 966 case bitc::BINOP_ASHR: 967 return IsFP ? -1 : Instruction::AShr; 968 case bitc::BINOP_AND: 969 return IsFP ? -1 : Instruction::And; 970 case bitc::BINOP_OR: 971 return IsFP ? -1 : Instruction::Or; 972 case bitc::BINOP_XOR: 973 return IsFP ? -1 : Instruction::Xor; 974 } 975 } 976 977 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 978 switch (Val) { 979 default: return AtomicRMWInst::BAD_BINOP; 980 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 981 case bitc::RMW_ADD: return AtomicRMWInst::Add; 982 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 983 case bitc::RMW_AND: return AtomicRMWInst::And; 984 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 985 case bitc::RMW_OR: return AtomicRMWInst::Or; 986 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 987 case bitc::RMW_MAX: return AtomicRMWInst::Max; 988 case bitc::RMW_MIN: return AtomicRMWInst::Min; 989 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 990 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 991 } 992 } 993 994 static AtomicOrdering getDecodedOrdering(unsigned Val) { 995 switch (Val) { 996 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 997 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 998 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 999 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1000 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1001 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1002 default: // Map unknown orderings to sequentially-consistent. 1003 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1004 } 1005 } 1006 1007 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1008 switch (Val) { 1009 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1010 default: // Map unknown scopes to cross-thread. 1011 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1012 } 1013 } 1014 1015 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1016 switch (Val) { 1017 default: // Map unknown selection kinds to any. 1018 case bitc::COMDAT_SELECTION_KIND_ANY: 1019 return Comdat::Any; 1020 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1021 return Comdat::ExactMatch; 1022 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1023 return Comdat::Largest; 1024 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1025 return Comdat::NoDuplicates; 1026 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1027 return Comdat::SameSize; 1028 } 1029 } 1030 1031 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1032 FastMathFlags FMF; 1033 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1034 FMF.setUnsafeAlgebra(); 1035 if (0 != (Val & FastMathFlags::NoNaNs)) 1036 FMF.setNoNaNs(); 1037 if (0 != (Val & FastMathFlags::NoInfs)) 1038 FMF.setNoInfs(); 1039 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1040 FMF.setNoSignedZeros(); 1041 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1042 FMF.setAllowReciprocal(); 1043 if (0 != (Val & FastMathFlags::AllowContract)) 1044 FMF.setAllowContract(true); 1045 return FMF; 1046 } 1047 1048 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1049 switch (Val) { 1050 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1051 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1052 } 1053 } 1054 1055 1056 Type *BitcodeReader::getTypeByID(unsigned ID) { 1057 // The type table size is always specified correctly. 1058 if (ID >= TypeList.size()) 1059 return nullptr; 1060 1061 if (Type *Ty = TypeList[ID]) 1062 return Ty; 1063 1064 // If we have a forward reference, the only possible case is when it is to a 1065 // named struct. Just create a placeholder for now. 1066 return TypeList[ID] = createIdentifiedStructType(Context); 1067 } 1068 1069 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1070 StringRef Name) { 1071 auto *Ret = StructType::create(Context, Name); 1072 IdentifiedStructTypes.push_back(Ret); 1073 return Ret; 1074 } 1075 1076 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1077 auto *Ret = StructType::create(Context); 1078 IdentifiedStructTypes.push_back(Ret); 1079 return Ret; 1080 } 1081 1082 //===----------------------------------------------------------------------===// 1083 // Functions for parsing blocks from the bitcode file 1084 //===----------------------------------------------------------------------===// 1085 1086 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1087 switch (Val) { 1088 case Attribute::EndAttrKinds: 1089 llvm_unreachable("Synthetic enumerators which should never get here"); 1090 1091 case Attribute::None: return 0; 1092 case Attribute::ZExt: return 1 << 0; 1093 case Attribute::SExt: return 1 << 1; 1094 case Attribute::NoReturn: return 1 << 2; 1095 case Attribute::InReg: return 1 << 3; 1096 case Attribute::StructRet: return 1 << 4; 1097 case Attribute::NoUnwind: return 1 << 5; 1098 case Attribute::NoAlias: return 1 << 6; 1099 case Attribute::ByVal: return 1 << 7; 1100 case Attribute::Nest: return 1 << 8; 1101 case Attribute::ReadNone: return 1 << 9; 1102 case Attribute::ReadOnly: return 1 << 10; 1103 case Attribute::NoInline: return 1 << 11; 1104 case Attribute::AlwaysInline: return 1 << 12; 1105 case Attribute::OptimizeForSize: return 1 << 13; 1106 case Attribute::StackProtect: return 1 << 14; 1107 case Attribute::StackProtectReq: return 1 << 15; 1108 case Attribute::Alignment: return 31 << 16; 1109 case Attribute::NoCapture: return 1 << 21; 1110 case Attribute::NoRedZone: return 1 << 22; 1111 case Attribute::NoImplicitFloat: return 1 << 23; 1112 case Attribute::Naked: return 1 << 24; 1113 case Attribute::InlineHint: return 1 << 25; 1114 case Attribute::StackAlignment: return 7 << 26; 1115 case Attribute::ReturnsTwice: return 1 << 29; 1116 case Attribute::UWTable: return 1 << 30; 1117 case Attribute::NonLazyBind: return 1U << 31; 1118 case Attribute::SanitizeAddress: return 1ULL << 32; 1119 case Attribute::MinSize: return 1ULL << 33; 1120 case Attribute::NoDuplicate: return 1ULL << 34; 1121 case Attribute::StackProtectStrong: return 1ULL << 35; 1122 case Attribute::SanitizeThread: return 1ULL << 36; 1123 case Attribute::SanitizeMemory: return 1ULL << 37; 1124 case Attribute::NoBuiltin: return 1ULL << 38; 1125 case Attribute::Returned: return 1ULL << 39; 1126 case Attribute::Cold: return 1ULL << 40; 1127 case Attribute::Builtin: return 1ULL << 41; 1128 case Attribute::OptimizeNone: return 1ULL << 42; 1129 case Attribute::InAlloca: return 1ULL << 43; 1130 case Attribute::NonNull: return 1ULL << 44; 1131 case Attribute::JumpTable: return 1ULL << 45; 1132 case Attribute::Convergent: return 1ULL << 46; 1133 case Attribute::SafeStack: return 1ULL << 47; 1134 case Attribute::NoRecurse: return 1ULL << 48; 1135 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1136 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1137 case Attribute::SwiftSelf: return 1ULL << 51; 1138 case Attribute::SwiftError: return 1ULL << 52; 1139 case Attribute::WriteOnly: return 1ULL << 53; 1140 case Attribute::Speculatable: return 1ULL << 54; 1141 case Attribute::Dereferenceable: 1142 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1143 break; 1144 case Attribute::DereferenceableOrNull: 1145 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1146 "format"); 1147 break; 1148 case Attribute::ArgMemOnly: 1149 llvm_unreachable("argmemonly attribute not supported in raw format"); 1150 break; 1151 case Attribute::AllocSize: 1152 llvm_unreachable("allocsize not supported in raw format"); 1153 break; 1154 } 1155 llvm_unreachable("Unsupported attribute type"); 1156 } 1157 1158 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1159 if (!Val) return; 1160 1161 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1162 I = Attribute::AttrKind(I + 1)) { 1163 if (I == Attribute::Dereferenceable || 1164 I == Attribute::DereferenceableOrNull || 1165 I == Attribute::ArgMemOnly || 1166 I == Attribute::AllocSize) 1167 continue; 1168 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1169 if (I == Attribute::Alignment) 1170 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1171 else if (I == Attribute::StackAlignment) 1172 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1173 else 1174 B.addAttribute(I); 1175 } 1176 } 1177 } 1178 1179 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1180 /// been decoded from the given integer. This function must stay in sync with 1181 /// 'encodeLLVMAttributesForBitcode'. 1182 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1183 uint64_t EncodedAttrs) { 1184 // FIXME: Remove in 4.0. 1185 1186 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1187 // the bits above 31 down by 11 bits. 1188 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1189 assert((!Alignment || isPowerOf2_32(Alignment)) && 1190 "Alignment must be a power of two."); 1191 1192 if (Alignment) 1193 B.addAlignmentAttr(Alignment); 1194 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1195 (EncodedAttrs & 0xffff)); 1196 } 1197 1198 Error BitcodeReader::parseAttributeBlock() { 1199 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1200 return error("Invalid record"); 1201 1202 if (!MAttributes.empty()) 1203 return error("Invalid multiple blocks"); 1204 1205 SmallVector<uint64_t, 64> Record; 1206 1207 SmallVector<AttributeList, 8> Attrs; 1208 1209 // Read all the records. 1210 while (true) { 1211 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1212 1213 switch (Entry.Kind) { 1214 case BitstreamEntry::SubBlock: // Handled for us already. 1215 case BitstreamEntry::Error: 1216 return error("Malformed block"); 1217 case BitstreamEntry::EndBlock: 1218 return Error::success(); 1219 case BitstreamEntry::Record: 1220 // The interesting case. 1221 break; 1222 } 1223 1224 // Read a record. 1225 Record.clear(); 1226 switch (Stream.readRecord(Entry.ID, Record)) { 1227 default: // Default behavior: ignore. 1228 break; 1229 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1230 // FIXME: Remove in 4.0. 1231 if (Record.size() & 1) 1232 return error("Invalid record"); 1233 1234 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1235 AttrBuilder B; 1236 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1237 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1238 } 1239 1240 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1241 Attrs.clear(); 1242 break; 1243 } 1244 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1245 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1246 Attrs.push_back(MAttributeGroups[Record[i]]); 1247 1248 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1249 Attrs.clear(); 1250 break; 1251 } 1252 } 1253 } 1254 } 1255 1256 // Returns Attribute::None on unrecognized codes. 1257 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1258 switch (Code) { 1259 default: 1260 return Attribute::None; 1261 case bitc::ATTR_KIND_ALIGNMENT: 1262 return Attribute::Alignment; 1263 case bitc::ATTR_KIND_ALWAYS_INLINE: 1264 return Attribute::AlwaysInline; 1265 case bitc::ATTR_KIND_ARGMEMONLY: 1266 return Attribute::ArgMemOnly; 1267 case bitc::ATTR_KIND_BUILTIN: 1268 return Attribute::Builtin; 1269 case bitc::ATTR_KIND_BY_VAL: 1270 return Attribute::ByVal; 1271 case bitc::ATTR_KIND_IN_ALLOCA: 1272 return Attribute::InAlloca; 1273 case bitc::ATTR_KIND_COLD: 1274 return Attribute::Cold; 1275 case bitc::ATTR_KIND_CONVERGENT: 1276 return Attribute::Convergent; 1277 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1278 return Attribute::InaccessibleMemOnly; 1279 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1280 return Attribute::InaccessibleMemOrArgMemOnly; 1281 case bitc::ATTR_KIND_INLINE_HINT: 1282 return Attribute::InlineHint; 1283 case bitc::ATTR_KIND_IN_REG: 1284 return Attribute::InReg; 1285 case bitc::ATTR_KIND_JUMP_TABLE: 1286 return Attribute::JumpTable; 1287 case bitc::ATTR_KIND_MIN_SIZE: 1288 return Attribute::MinSize; 1289 case bitc::ATTR_KIND_NAKED: 1290 return Attribute::Naked; 1291 case bitc::ATTR_KIND_NEST: 1292 return Attribute::Nest; 1293 case bitc::ATTR_KIND_NO_ALIAS: 1294 return Attribute::NoAlias; 1295 case bitc::ATTR_KIND_NO_BUILTIN: 1296 return Attribute::NoBuiltin; 1297 case bitc::ATTR_KIND_NO_CAPTURE: 1298 return Attribute::NoCapture; 1299 case bitc::ATTR_KIND_NO_DUPLICATE: 1300 return Attribute::NoDuplicate; 1301 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1302 return Attribute::NoImplicitFloat; 1303 case bitc::ATTR_KIND_NO_INLINE: 1304 return Attribute::NoInline; 1305 case bitc::ATTR_KIND_NO_RECURSE: 1306 return Attribute::NoRecurse; 1307 case bitc::ATTR_KIND_NON_LAZY_BIND: 1308 return Attribute::NonLazyBind; 1309 case bitc::ATTR_KIND_NON_NULL: 1310 return Attribute::NonNull; 1311 case bitc::ATTR_KIND_DEREFERENCEABLE: 1312 return Attribute::Dereferenceable; 1313 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1314 return Attribute::DereferenceableOrNull; 1315 case bitc::ATTR_KIND_ALLOC_SIZE: 1316 return Attribute::AllocSize; 1317 case bitc::ATTR_KIND_NO_RED_ZONE: 1318 return Attribute::NoRedZone; 1319 case bitc::ATTR_KIND_NO_RETURN: 1320 return Attribute::NoReturn; 1321 case bitc::ATTR_KIND_NO_UNWIND: 1322 return Attribute::NoUnwind; 1323 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1324 return Attribute::OptimizeForSize; 1325 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1326 return Attribute::OptimizeNone; 1327 case bitc::ATTR_KIND_READ_NONE: 1328 return Attribute::ReadNone; 1329 case bitc::ATTR_KIND_READ_ONLY: 1330 return Attribute::ReadOnly; 1331 case bitc::ATTR_KIND_RETURNED: 1332 return Attribute::Returned; 1333 case bitc::ATTR_KIND_RETURNS_TWICE: 1334 return Attribute::ReturnsTwice; 1335 case bitc::ATTR_KIND_S_EXT: 1336 return Attribute::SExt; 1337 case bitc::ATTR_KIND_SPECULATABLE: 1338 return Attribute::Speculatable; 1339 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1340 return Attribute::StackAlignment; 1341 case bitc::ATTR_KIND_STACK_PROTECT: 1342 return Attribute::StackProtect; 1343 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1344 return Attribute::StackProtectReq; 1345 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1346 return Attribute::StackProtectStrong; 1347 case bitc::ATTR_KIND_SAFESTACK: 1348 return Attribute::SafeStack; 1349 case bitc::ATTR_KIND_STRUCT_RET: 1350 return Attribute::StructRet; 1351 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1352 return Attribute::SanitizeAddress; 1353 case bitc::ATTR_KIND_SANITIZE_THREAD: 1354 return Attribute::SanitizeThread; 1355 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1356 return Attribute::SanitizeMemory; 1357 case bitc::ATTR_KIND_SWIFT_ERROR: 1358 return Attribute::SwiftError; 1359 case bitc::ATTR_KIND_SWIFT_SELF: 1360 return Attribute::SwiftSelf; 1361 case bitc::ATTR_KIND_UW_TABLE: 1362 return Attribute::UWTable; 1363 case bitc::ATTR_KIND_WRITEONLY: 1364 return Attribute::WriteOnly; 1365 case bitc::ATTR_KIND_Z_EXT: 1366 return Attribute::ZExt; 1367 } 1368 } 1369 1370 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1371 unsigned &Alignment) { 1372 // Note: Alignment in bitcode files is incremented by 1, so that zero 1373 // can be used for default alignment. 1374 if (Exponent > Value::MaxAlignmentExponent + 1) 1375 return error("Invalid alignment value"); 1376 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1377 return Error::success(); 1378 } 1379 1380 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1381 *Kind = getAttrFromCode(Code); 1382 if (*Kind == Attribute::None) 1383 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1384 return Error::success(); 1385 } 1386 1387 Error BitcodeReader::parseAttributeGroupBlock() { 1388 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1389 return error("Invalid record"); 1390 1391 if (!MAttributeGroups.empty()) 1392 return error("Invalid multiple blocks"); 1393 1394 SmallVector<uint64_t, 64> Record; 1395 1396 // Read all the records. 1397 while (true) { 1398 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1399 1400 switch (Entry.Kind) { 1401 case BitstreamEntry::SubBlock: // Handled for us already. 1402 case BitstreamEntry::Error: 1403 return error("Malformed block"); 1404 case BitstreamEntry::EndBlock: 1405 return Error::success(); 1406 case BitstreamEntry::Record: 1407 // The interesting case. 1408 break; 1409 } 1410 1411 // Read a record. 1412 Record.clear(); 1413 switch (Stream.readRecord(Entry.ID, Record)) { 1414 default: // Default behavior: ignore. 1415 break; 1416 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1417 if (Record.size() < 3) 1418 return error("Invalid record"); 1419 1420 uint64_t GrpID = Record[0]; 1421 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1422 1423 AttrBuilder B; 1424 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1425 if (Record[i] == 0) { // Enum attribute 1426 Attribute::AttrKind Kind; 1427 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1428 return Err; 1429 1430 B.addAttribute(Kind); 1431 } else if (Record[i] == 1) { // Integer attribute 1432 Attribute::AttrKind Kind; 1433 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1434 return Err; 1435 if (Kind == Attribute::Alignment) 1436 B.addAlignmentAttr(Record[++i]); 1437 else if (Kind == Attribute::StackAlignment) 1438 B.addStackAlignmentAttr(Record[++i]); 1439 else if (Kind == Attribute::Dereferenceable) 1440 B.addDereferenceableAttr(Record[++i]); 1441 else if (Kind == Attribute::DereferenceableOrNull) 1442 B.addDereferenceableOrNullAttr(Record[++i]); 1443 else if (Kind == Attribute::AllocSize) 1444 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1445 } else { // String attribute 1446 assert((Record[i] == 3 || Record[i] == 4) && 1447 "Invalid attribute group entry"); 1448 bool HasValue = (Record[i++] == 4); 1449 SmallString<64> KindStr; 1450 SmallString<64> ValStr; 1451 1452 while (Record[i] != 0 && i != e) 1453 KindStr += Record[i++]; 1454 assert(Record[i] == 0 && "Kind string not null terminated"); 1455 1456 if (HasValue) { 1457 // Has a value associated with it. 1458 ++i; // Skip the '0' that terminates the "kind" string. 1459 while (Record[i] != 0 && i != e) 1460 ValStr += Record[i++]; 1461 assert(Record[i] == 0 && "Value string not null terminated"); 1462 } 1463 1464 B.addAttribute(KindStr.str(), ValStr.str()); 1465 } 1466 } 1467 1468 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1469 break; 1470 } 1471 } 1472 } 1473 } 1474 1475 Error BitcodeReader::parseTypeTable() { 1476 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1477 return error("Invalid record"); 1478 1479 return parseTypeTableBody(); 1480 } 1481 1482 Error BitcodeReader::parseTypeTableBody() { 1483 if (!TypeList.empty()) 1484 return error("Invalid multiple blocks"); 1485 1486 SmallVector<uint64_t, 64> Record; 1487 unsigned NumRecords = 0; 1488 1489 SmallString<64> TypeName; 1490 1491 // Read all the records for this type table. 1492 while (true) { 1493 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1494 1495 switch (Entry.Kind) { 1496 case BitstreamEntry::SubBlock: // Handled for us already. 1497 case BitstreamEntry::Error: 1498 return error("Malformed block"); 1499 case BitstreamEntry::EndBlock: 1500 if (NumRecords != TypeList.size()) 1501 return error("Malformed block"); 1502 return Error::success(); 1503 case BitstreamEntry::Record: 1504 // The interesting case. 1505 break; 1506 } 1507 1508 // Read a record. 1509 Record.clear(); 1510 Type *ResultTy = nullptr; 1511 switch (Stream.readRecord(Entry.ID, Record)) { 1512 default: 1513 return error("Invalid value"); 1514 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1515 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1516 // type list. This allows us to reserve space. 1517 if (Record.size() < 1) 1518 return error("Invalid record"); 1519 TypeList.resize(Record[0]); 1520 continue; 1521 case bitc::TYPE_CODE_VOID: // VOID 1522 ResultTy = Type::getVoidTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_HALF: // HALF 1525 ResultTy = Type::getHalfTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_FLOAT: // FLOAT 1528 ResultTy = Type::getFloatTy(Context); 1529 break; 1530 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1531 ResultTy = Type::getDoubleTy(Context); 1532 break; 1533 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1534 ResultTy = Type::getX86_FP80Ty(Context); 1535 break; 1536 case bitc::TYPE_CODE_FP128: // FP128 1537 ResultTy = Type::getFP128Ty(Context); 1538 break; 1539 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1540 ResultTy = Type::getPPC_FP128Ty(Context); 1541 break; 1542 case bitc::TYPE_CODE_LABEL: // LABEL 1543 ResultTy = Type::getLabelTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_METADATA: // METADATA 1546 ResultTy = Type::getMetadataTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1549 ResultTy = Type::getX86_MMXTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_TOKEN: // TOKEN 1552 ResultTy = Type::getTokenTy(Context); 1553 break; 1554 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1555 if (Record.size() < 1) 1556 return error("Invalid record"); 1557 1558 uint64_t NumBits = Record[0]; 1559 if (NumBits < IntegerType::MIN_INT_BITS || 1560 NumBits > IntegerType::MAX_INT_BITS) 1561 return error("Bitwidth for integer type out of range"); 1562 ResultTy = IntegerType::get(Context, NumBits); 1563 break; 1564 } 1565 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1566 // [pointee type, address space] 1567 if (Record.size() < 1) 1568 return error("Invalid record"); 1569 unsigned AddressSpace = 0; 1570 if (Record.size() == 2) 1571 AddressSpace = Record[1]; 1572 ResultTy = getTypeByID(Record[0]); 1573 if (!ResultTy || 1574 !PointerType::isValidElementType(ResultTy)) 1575 return error("Invalid type"); 1576 ResultTy = PointerType::get(ResultTy, AddressSpace); 1577 break; 1578 } 1579 case bitc::TYPE_CODE_FUNCTION_OLD: { 1580 // FIXME: attrid is dead, remove it in LLVM 4.0 1581 // FUNCTION: [vararg, attrid, retty, paramty x N] 1582 if (Record.size() < 3) 1583 return error("Invalid record"); 1584 SmallVector<Type*, 8> ArgTys; 1585 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1586 if (Type *T = getTypeByID(Record[i])) 1587 ArgTys.push_back(T); 1588 else 1589 break; 1590 } 1591 1592 ResultTy = getTypeByID(Record[2]); 1593 if (!ResultTy || ArgTys.size() < Record.size()-3) 1594 return error("Invalid type"); 1595 1596 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1597 break; 1598 } 1599 case bitc::TYPE_CODE_FUNCTION: { 1600 // FUNCTION: [vararg, retty, paramty x N] 1601 if (Record.size() < 2) 1602 return error("Invalid record"); 1603 SmallVector<Type*, 8> ArgTys; 1604 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1605 if (Type *T = getTypeByID(Record[i])) { 1606 if (!FunctionType::isValidArgumentType(T)) 1607 return error("Invalid function argument type"); 1608 ArgTys.push_back(T); 1609 } 1610 else 1611 break; 1612 } 1613 1614 ResultTy = getTypeByID(Record[1]); 1615 if (!ResultTy || ArgTys.size() < Record.size()-2) 1616 return error("Invalid type"); 1617 1618 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1619 break; 1620 } 1621 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1622 if (Record.size() < 1) 1623 return error("Invalid record"); 1624 SmallVector<Type*, 8> EltTys; 1625 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) 1627 EltTys.push_back(T); 1628 else 1629 break; 1630 } 1631 if (EltTys.size() != Record.size()-1) 1632 return error("Invalid type"); 1633 ResultTy = StructType::get(Context, EltTys, Record[0]); 1634 break; 1635 } 1636 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1637 if (convertToString(Record, 0, TypeName)) 1638 return error("Invalid record"); 1639 continue; 1640 1641 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1642 if (Record.size() < 1) 1643 return error("Invalid record"); 1644 1645 if (NumRecords >= TypeList.size()) 1646 return error("Invalid TYPE table"); 1647 1648 // Check to see if this was forward referenced, if so fill in the temp. 1649 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1650 if (Res) { 1651 Res->setName(TypeName); 1652 TypeList[NumRecords] = nullptr; 1653 } else // Otherwise, create a new struct. 1654 Res = createIdentifiedStructType(Context, TypeName); 1655 TypeName.clear(); 1656 1657 SmallVector<Type*, 8> EltTys; 1658 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1659 if (Type *T = getTypeByID(Record[i])) 1660 EltTys.push_back(T); 1661 else 1662 break; 1663 } 1664 if (EltTys.size() != Record.size()-1) 1665 return error("Invalid record"); 1666 Res->setBody(EltTys, Record[0]); 1667 ResultTy = Res; 1668 break; 1669 } 1670 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1671 if (Record.size() != 1) 1672 return error("Invalid record"); 1673 1674 if (NumRecords >= TypeList.size()) 1675 return error("Invalid TYPE table"); 1676 1677 // Check to see if this was forward referenced, if so fill in the temp. 1678 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1679 if (Res) { 1680 Res->setName(TypeName); 1681 TypeList[NumRecords] = nullptr; 1682 } else // Otherwise, create a new struct with no body. 1683 Res = createIdentifiedStructType(Context, TypeName); 1684 TypeName.clear(); 1685 ResultTy = Res; 1686 break; 1687 } 1688 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1689 if (Record.size() < 2) 1690 return error("Invalid record"); 1691 ResultTy = getTypeByID(Record[1]); 1692 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1693 return error("Invalid type"); 1694 ResultTy = ArrayType::get(ResultTy, Record[0]); 1695 break; 1696 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1697 if (Record.size() < 2) 1698 return error("Invalid record"); 1699 if (Record[0] == 0) 1700 return error("Invalid vector length"); 1701 ResultTy = getTypeByID(Record[1]); 1702 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1703 return error("Invalid type"); 1704 ResultTy = VectorType::get(ResultTy, Record[0]); 1705 break; 1706 } 1707 1708 if (NumRecords >= TypeList.size()) 1709 return error("Invalid TYPE table"); 1710 if (TypeList[NumRecords]) 1711 return error( 1712 "Invalid TYPE table: Only named structs can be forward referenced"); 1713 assert(ResultTy && "Didn't read a type?"); 1714 TypeList[NumRecords++] = ResultTy; 1715 } 1716 } 1717 1718 Error BitcodeReader::parseOperandBundleTags() { 1719 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1720 return error("Invalid record"); 1721 1722 if (!BundleTags.empty()) 1723 return error("Invalid multiple blocks"); 1724 1725 SmallVector<uint64_t, 64> Record; 1726 1727 while (true) { 1728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1729 1730 switch (Entry.Kind) { 1731 case BitstreamEntry::SubBlock: // Handled for us already. 1732 case BitstreamEntry::Error: 1733 return error("Malformed block"); 1734 case BitstreamEntry::EndBlock: 1735 return Error::success(); 1736 case BitstreamEntry::Record: 1737 // The interesting case. 1738 break; 1739 } 1740 1741 // Tags are implicitly mapped to integers by their order. 1742 1743 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1744 return error("Invalid record"); 1745 1746 // OPERAND_BUNDLE_TAG: [strchr x N] 1747 BundleTags.emplace_back(); 1748 if (convertToString(Record, 0, BundleTags.back())) 1749 return error("Invalid record"); 1750 Record.clear(); 1751 } 1752 } 1753 1754 /// Associate a value with its name from the given index in the provided record. 1755 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1756 unsigned NameIndex, Triple &TT) { 1757 SmallString<128> ValueName; 1758 if (convertToString(Record, NameIndex, ValueName)) 1759 return error("Invalid record"); 1760 unsigned ValueID = Record[0]; 1761 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1762 return error("Invalid record"); 1763 Value *V = ValueList[ValueID]; 1764 1765 StringRef NameStr(ValueName.data(), ValueName.size()); 1766 if (NameStr.find_first_of(0) != StringRef::npos) 1767 return error("Invalid value name"); 1768 V->setName(NameStr); 1769 auto *GO = dyn_cast<GlobalObject>(V); 1770 if (GO) { 1771 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1772 if (TT.isOSBinFormatMachO()) 1773 GO->setComdat(nullptr); 1774 else 1775 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1776 } 1777 } 1778 return V; 1779 } 1780 1781 /// Helper to note and return the current location, and jump to the given 1782 /// offset. 1783 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1784 BitstreamCursor &Stream) { 1785 // Save the current parsing location so we can jump back at the end 1786 // of the VST read. 1787 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1788 Stream.JumpToBit(Offset * 32); 1789 #ifndef NDEBUG 1790 // Do some checking if we are in debug mode. 1791 BitstreamEntry Entry = Stream.advance(); 1792 assert(Entry.Kind == BitstreamEntry::SubBlock); 1793 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1794 #else 1795 // In NDEBUG mode ignore the output so we don't get an unused variable 1796 // warning. 1797 Stream.advance(); 1798 #endif 1799 return CurrentBit; 1800 } 1801 1802 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1803 Function *F, 1804 ArrayRef<uint64_t> Record) { 1805 // Note that we subtract 1 here because the offset is relative to one word 1806 // before the start of the identification or module block, which was 1807 // historically always the start of the regular bitcode header. 1808 uint64_t FuncWordOffset = Record[1] - 1; 1809 uint64_t FuncBitOffset = FuncWordOffset * 32; 1810 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1811 // Set the LastFunctionBlockBit to point to the last function block. 1812 // Later when parsing is resumed after function materialization, 1813 // we can simply skip that last function block. 1814 if (FuncBitOffset > LastFunctionBlockBit) 1815 LastFunctionBlockBit = FuncBitOffset; 1816 } 1817 1818 /// Read a new-style GlobalValue symbol table. 1819 Error BitcodeReader::parseGlobalValueSymbolTable() { 1820 unsigned FuncBitcodeOffsetDelta = 1821 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1822 1823 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1824 return error("Invalid record"); 1825 1826 SmallVector<uint64_t, 64> Record; 1827 while (true) { 1828 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1829 1830 switch (Entry.Kind) { 1831 case BitstreamEntry::SubBlock: 1832 case BitstreamEntry::Error: 1833 return error("Malformed block"); 1834 case BitstreamEntry::EndBlock: 1835 return Error::success(); 1836 case BitstreamEntry::Record: 1837 break; 1838 } 1839 1840 Record.clear(); 1841 switch (Stream.readRecord(Entry.ID, Record)) { 1842 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1843 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1844 cast<Function>(ValueList[Record[0]]), Record); 1845 break; 1846 } 1847 } 1848 } 1849 1850 /// Parse the value symbol table at either the current parsing location or 1851 /// at the given bit offset if provided. 1852 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1853 uint64_t CurrentBit; 1854 // Pass in the Offset to distinguish between calling for the module-level 1855 // VST (where we want to jump to the VST offset) and the function-level 1856 // VST (where we don't). 1857 if (Offset > 0) { 1858 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1859 // If this module uses a string table, read this as a module-level VST. 1860 if (UseStrtab) { 1861 if (Error Err = parseGlobalValueSymbolTable()) 1862 return Err; 1863 Stream.JumpToBit(CurrentBit); 1864 return Error::success(); 1865 } 1866 // Otherwise, the VST will be in a similar format to a function-level VST, 1867 // and will contain symbol names. 1868 } 1869 1870 // Compute the delta between the bitcode indices in the VST (the word offset 1871 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1872 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1873 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1874 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1875 // just before entering the VST subblock because: 1) the EnterSubBlock 1876 // changes the AbbrevID width; 2) the VST block is nested within the same 1877 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1878 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1879 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1880 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1881 unsigned FuncBitcodeOffsetDelta = 1882 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1883 1884 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1885 return error("Invalid record"); 1886 1887 SmallVector<uint64_t, 64> Record; 1888 1889 Triple TT(TheModule->getTargetTriple()); 1890 1891 // Read all the records for this value table. 1892 SmallString<128> ValueName; 1893 1894 while (true) { 1895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1896 1897 switch (Entry.Kind) { 1898 case BitstreamEntry::SubBlock: // Handled for us already. 1899 case BitstreamEntry::Error: 1900 return error("Malformed block"); 1901 case BitstreamEntry::EndBlock: 1902 if (Offset > 0) 1903 Stream.JumpToBit(CurrentBit); 1904 return Error::success(); 1905 case BitstreamEntry::Record: 1906 // The interesting case. 1907 break; 1908 } 1909 1910 // Read a record. 1911 Record.clear(); 1912 switch (Stream.readRecord(Entry.ID, Record)) { 1913 default: // Default behavior: unknown type. 1914 break; 1915 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1916 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1917 if (Error Err = ValOrErr.takeError()) 1918 return Err; 1919 ValOrErr.get(); 1920 break; 1921 } 1922 case bitc::VST_CODE_FNENTRY: { 1923 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1924 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1925 if (Error Err = ValOrErr.takeError()) 1926 return Err; 1927 Value *V = ValOrErr.get(); 1928 1929 // Ignore function offsets emitted for aliases of functions in older 1930 // versions of LLVM. 1931 if (auto *F = dyn_cast<Function>(V)) 1932 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1933 break; 1934 } 1935 case bitc::VST_CODE_BBENTRY: { 1936 if (convertToString(Record, 1, ValueName)) 1937 return error("Invalid record"); 1938 BasicBlock *BB = getBasicBlock(Record[0]); 1939 if (!BB) 1940 return error("Invalid record"); 1941 1942 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1943 ValueName.clear(); 1944 break; 1945 } 1946 } 1947 } 1948 } 1949 1950 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1951 /// encoding. 1952 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1953 if ((V & 1) == 0) 1954 return V >> 1; 1955 if (V != 1) 1956 return -(V >> 1); 1957 // There is no such thing as -0 with integers. "-0" really means MININT. 1958 return 1ULL << 63; 1959 } 1960 1961 /// Resolve all of the initializers for global values and aliases that we can. 1962 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1963 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1964 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1965 IndirectSymbolInitWorklist; 1966 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1967 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1968 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1969 1970 GlobalInitWorklist.swap(GlobalInits); 1971 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1972 FunctionPrefixWorklist.swap(FunctionPrefixes); 1973 FunctionPrologueWorklist.swap(FunctionPrologues); 1974 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1975 1976 while (!GlobalInitWorklist.empty()) { 1977 unsigned ValID = GlobalInitWorklist.back().second; 1978 if (ValID >= ValueList.size()) { 1979 // Not ready to resolve this yet, it requires something later in the file. 1980 GlobalInits.push_back(GlobalInitWorklist.back()); 1981 } else { 1982 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1983 GlobalInitWorklist.back().first->setInitializer(C); 1984 else 1985 return error("Expected a constant"); 1986 } 1987 GlobalInitWorklist.pop_back(); 1988 } 1989 1990 while (!IndirectSymbolInitWorklist.empty()) { 1991 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1992 if (ValID >= ValueList.size()) { 1993 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1994 } else { 1995 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1996 if (!C) 1997 return error("Expected a constant"); 1998 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1999 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2000 return error("Alias and aliasee types don't match"); 2001 GIS->setIndirectSymbol(C); 2002 } 2003 IndirectSymbolInitWorklist.pop_back(); 2004 } 2005 2006 while (!FunctionPrefixWorklist.empty()) { 2007 unsigned ValID = FunctionPrefixWorklist.back().second; 2008 if (ValID >= ValueList.size()) { 2009 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2010 } else { 2011 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2012 FunctionPrefixWorklist.back().first->setPrefixData(C); 2013 else 2014 return error("Expected a constant"); 2015 } 2016 FunctionPrefixWorklist.pop_back(); 2017 } 2018 2019 while (!FunctionPrologueWorklist.empty()) { 2020 unsigned ValID = FunctionPrologueWorklist.back().second; 2021 if (ValID >= ValueList.size()) { 2022 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2023 } else { 2024 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2025 FunctionPrologueWorklist.back().first->setPrologueData(C); 2026 else 2027 return error("Expected a constant"); 2028 } 2029 FunctionPrologueWorklist.pop_back(); 2030 } 2031 2032 while (!FunctionPersonalityFnWorklist.empty()) { 2033 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2034 if (ValID >= ValueList.size()) { 2035 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2036 } else { 2037 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2038 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2039 else 2040 return error("Expected a constant"); 2041 } 2042 FunctionPersonalityFnWorklist.pop_back(); 2043 } 2044 2045 return Error::success(); 2046 } 2047 2048 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2049 SmallVector<uint64_t, 8> Words(Vals.size()); 2050 transform(Vals, Words.begin(), 2051 BitcodeReader::decodeSignRotatedValue); 2052 2053 return APInt(TypeBits, Words); 2054 } 2055 2056 Error BitcodeReader::parseConstants() { 2057 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2058 return error("Invalid record"); 2059 2060 SmallVector<uint64_t, 64> Record; 2061 2062 // Read all the records for this value table. 2063 Type *CurTy = Type::getInt32Ty(Context); 2064 unsigned NextCstNo = ValueList.size(); 2065 2066 while (true) { 2067 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2068 2069 switch (Entry.Kind) { 2070 case BitstreamEntry::SubBlock: // Handled for us already. 2071 case BitstreamEntry::Error: 2072 return error("Malformed block"); 2073 case BitstreamEntry::EndBlock: 2074 if (NextCstNo != ValueList.size()) 2075 return error("Invalid constant reference"); 2076 2077 // Once all the constants have been read, go through and resolve forward 2078 // references. 2079 ValueList.resolveConstantForwardRefs(); 2080 return Error::success(); 2081 case BitstreamEntry::Record: 2082 // The interesting case. 2083 break; 2084 } 2085 2086 // Read a record. 2087 Record.clear(); 2088 Type *VoidType = Type::getVoidTy(Context); 2089 Value *V = nullptr; 2090 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2091 switch (BitCode) { 2092 default: // Default behavior: unknown constant 2093 case bitc::CST_CODE_UNDEF: // UNDEF 2094 V = UndefValue::get(CurTy); 2095 break; 2096 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2097 if (Record.empty()) 2098 return error("Invalid record"); 2099 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2100 return error("Invalid record"); 2101 if (TypeList[Record[0]] == VoidType) 2102 return error("Invalid constant type"); 2103 CurTy = TypeList[Record[0]]; 2104 continue; // Skip the ValueList manipulation. 2105 case bitc::CST_CODE_NULL: // NULL 2106 V = Constant::getNullValue(CurTy); 2107 break; 2108 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2109 if (!CurTy->isIntegerTy() || Record.empty()) 2110 return error("Invalid record"); 2111 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2112 break; 2113 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2114 if (!CurTy->isIntegerTy() || Record.empty()) 2115 return error("Invalid record"); 2116 2117 APInt VInt = 2118 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2119 V = ConstantInt::get(Context, VInt); 2120 2121 break; 2122 } 2123 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2124 if (Record.empty()) 2125 return error("Invalid record"); 2126 if (CurTy->isHalfTy()) 2127 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2128 APInt(16, (uint16_t)Record[0]))); 2129 else if (CurTy->isFloatTy()) 2130 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2131 APInt(32, (uint32_t)Record[0]))); 2132 else if (CurTy->isDoubleTy()) 2133 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2134 APInt(64, Record[0]))); 2135 else if (CurTy->isX86_FP80Ty()) { 2136 // Bits are not stored the same way as a normal i80 APInt, compensate. 2137 uint64_t Rearrange[2]; 2138 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2139 Rearrange[1] = Record[0] >> 48; 2140 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2141 APInt(80, Rearrange))); 2142 } else if (CurTy->isFP128Ty()) 2143 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2144 APInt(128, Record))); 2145 else if (CurTy->isPPC_FP128Ty()) 2146 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2147 APInt(128, Record))); 2148 else 2149 V = UndefValue::get(CurTy); 2150 break; 2151 } 2152 2153 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2154 if (Record.empty()) 2155 return error("Invalid record"); 2156 2157 unsigned Size = Record.size(); 2158 SmallVector<Constant*, 16> Elts; 2159 2160 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2161 for (unsigned i = 0; i != Size; ++i) 2162 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2163 STy->getElementType(i))); 2164 V = ConstantStruct::get(STy, Elts); 2165 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2166 Type *EltTy = ATy->getElementType(); 2167 for (unsigned i = 0; i != Size; ++i) 2168 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2169 V = ConstantArray::get(ATy, Elts); 2170 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2171 Type *EltTy = VTy->getElementType(); 2172 for (unsigned i = 0; i != Size; ++i) 2173 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2174 V = ConstantVector::get(Elts); 2175 } else { 2176 V = UndefValue::get(CurTy); 2177 } 2178 break; 2179 } 2180 case bitc::CST_CODE_STRING: // STRING: [values] 2181 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2182 if (Record.empty()) 2183 return error("Invalid record"); 2184 2185 SmallString<16> Elts(Record.begin(), Record.end()); 2186 V = ConstantDataArray::getString(Context, Elts, 2187 BitCode == bitc::CST_CODE_CSTRING); 2188 break; 2189 } 2190 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2191 if (Record.empty()) 2192 return error("Invalid record"); 2193 2194 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2195 if (EltTy->isIntegerTy(8)) { 2196 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2197 if (isa<VectorType>(CurTy)) 2198 V = ConstantDataVector::get(Context, Elts); 2199 else 2200 V = ConstantDataArray::get(Context, Elts); 2201 } else if (EltTy->isIntegerTy(16)) { 2202 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2203 if (isa<VectorType>(CurTy)) 2204 V = ConstantDataVector::get(Context, Elts); 2205 else 2206 V = ConstantDataArray::get(Context, Elts); 2207 } else if (EltTy->isIntegerTy(32)) { 2208 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2209 if (isa<VectorType>(CurTy)) 2210 V = ConstantDataVector::get(Context, Elts); 2211 else 2212 V = ConstantDataArray::get(Context, Elts); 2213 } else if (EltTy->isIntegerTy(64)) { 2214 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2215 if (isa<VectorType>(CurTy)) 2216 V = ConstantDataVector::get(Context, Elts); 2217 else 2218 V = ConstantDataArray::get(Context, Elts); 2219 } else if (EltTy->isHalfTy()) { 2220 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2221 if (isa<VectorType>(CurTy)) 2222 V = ConstantDataVector::getFP(Context, Elts); 2223 else 2224 V = ConstantDataArray::getFP(Context, Elts); 2225 } else if (EltTy->isFloatTy()) { 2226 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2227 if (isa<VectorType>(CurTy)) 2228 V = ConstantDataVector::getFP(Context, Elts); 2229 else 2230 V = ConstantDataArray::getFP(Context, Elts); 2231 } else if (EltTy->isDoubleTy()) { 2232 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2233 if (isa<VectorType>(CurTy)) 2234 V = ConstantDataVector::getFP(Context, Elts); 2235 else 2236 V = ConstantDataArray::getFP(Context, Elts); 2237 } else { 2238 return error("Invalid type for value"); 2239 } 2240 break; 2241 } 2242 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2243 if (Record.size() < 3) 2244 return error("Invalid record"); 2245 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2246 if (Opc < 0) { 2247 V = UndefValue::get(CurTy); // Unknown binop. 2248 } else { 2249 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2250 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2251 unsigned Flags = 0; 2252 if (Record.size() >= 4) { 2253 if (Opc == Instruction::Add || 2254 Opc == Instruction::Sub || 2255 Opc == Instruction::Mul || 2256 Opc == Instruction::Shl) { 2257 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2258 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2259 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2260 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2261 } else if (Opc == Instruction::SDiv || 2262 Opc == Instruction::UDiv || 2263 Opc == Instruction::LShr || 2264 Opc == Instruction::AShr) { 2265 if (Record[3] & (1 << bitc::PEO_EXACT)) 2266 Flags |= SDivOperator::IsExact; 2267 } 2268 } 2269 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2270 } 2271 break; 2272 } 2273 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2274 if (Record.size() < 3) 2275 return error("Invalid record"); 2276 int Opc = getDecodedCastOpcode(Record[0]); 2277 if (Opc < 0) { 2278 V = UndefValue::get(CurTy); // Unknown cast. 2279 } else { 2280 Type *OpTy = getTypeByID(Record[1]); 2281 if (!OpTy) 2282 return error("Invalid record"); 2283 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2284 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2285 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2286 } 2287 break; 2288 } 2289 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2290 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2291 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2292 // operands] 2293 unsigned OpNum = 0; 2294 Type *PointeeType = nullptr; 2295 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2296 Record.size() % 2) 2297 PointeeType = getTypeByID(Record[OpNum++]); 2298 2299 bool InBounds = false; 2300 Optional<unsigned> InRangeIndex; 2301 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2302 uint64_t Op = Record[OpNum++]; 2303 InBounds = Op & 1; 2304 InRangeIndex = Op >> 1; 2305 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2306 InBounds = true; 2307 2308 SmallVector<Constant*, 16> Elts; 2309 while (OpNum != Record.size()) { 2310 Type *ElTy = getTypeByID(Record[OpNum++]); 2311 if (!ElTy) 2312 return error("Invalid record"); 2313 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2314 } 2315 2316 if (PointeeType && 2317 PointeeType != 2318 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2319 ->getElementType()) 2320 return error("Explicit gep operator type does not match pointee type " 2321 "of pointer operand"); 2322 2323 if (Elts.size() < 1) 2324 return error("Invalid gep with no operands"); 2325 2326 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2327 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2328 InBounds, InRangeIndex); 2329 break; 2330 } 2331 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2332 if (Record.size() < 3) 2333 return error("Invalid record"); 2334 2335 Type *SelectorTy = Type::getInt1Ty(Context); 2336 2337 // The selector might be an i1 or an <n x i1> 2338 // Get the type from the ValueList before getting a forward ref. 2339 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2340 if (Value *V = ValueList[Record[0]]) 2341 if (SelectorTy != V->getType()) 2342 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2343 2344 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2345 SelectorTy), 2346 ValueList.getConstantFwdRef(Record[1],CurTy), 2347 ValueList.getConstantFwdRef(Record[2],CurTy)); 2348 break; 2349 } 2350 case bitc::CST_CODE_CE_EXTRACTELT 2351 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2352 if (Record.size() < 3) 2353 return error("Invalid record"); 2354 VectorType *OpTy = 2355 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2356 if (!OpTy) 2357 return error("Invalid record"); 2358 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2359 Constant *Op1 = nullptr; 2360 if (Record.size() == 4) { 2361 Type *IdxTy = getTypeByID(Record[2]); 2362 if (!IdxTy) 2363 return error("Invalid record"); 2364 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2365 } else // TODO: Remove with llvm 4.0 2366 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2367 if (!Op1) 2368 return error("Invalid record"); 2369 V = ConstantExpr::getExtractElement(Op0, Op1); 2370 break; 2371 } 2372 case bitc::CST_CODE_CE_INSERTELT 2373 : { // CE_INSERTELT: [opval, opval, opty, opval] 2374 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2375 if (Record.size() < 3 || !OpTy) 2376 return error("Invalid record"); 2377 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2378 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2379 OpTy->getElementType()); 2380 Constant *Op2 = nullptr; 2381 if (Record.size() == 4) { 2382 Type *IdxTy = getTypeByID(Record[2]); 2383 if (!IdxTy) 2384 return error("Invalid record"); 2385 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2386 } else // TODO: Remove with llvm 4.0 2387 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2388 if (!Op2) 2389 return error("Invalid record"); 2390 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2391 break; 2392 } 2393 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2394 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2395 if (Record.size() < 3 || !OpTy) 2396 return error("Invalid record"); 2397 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2398 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2399 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2400 OpTy->getNumElements()); 2401 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2402 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2403 break; 2404 } 2405 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2406 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2407 VectorType *OpTy = 2408 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2409 if (Record.size() < 4 || !RTy || !OpTy) 2410 return error("Invalid record"); 2411 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2412 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2413 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2414 RTy->getNumElements()); 2415 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2416 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2417 break; 2418 } 2419 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2420 if (Record.size() < 4) 2421 return error("Invalid record"); 2422 Type *OpTy = getTypeByID(Record[0]); 2423 if (!OpTy) 2424 return error("Invalid record"); 2425 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2426 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2427 2428 if (OpTy->isFPOrFPVectorTy()) 2429 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2430 else 2431 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2432 break; 2433 } 2434 // This maintains backward compatibility, pre-asm dialect keywords. 2435 // FIXME: Remove with the 4.0 release. 2436 case bitc::CST_CODE_INLINEASM_OLD: { 2437 if (Record.size() < 2) 2438 return error("Invalid record"); 2439 std::string AsmStr, ConstrStr; 2440 bool HasSideEffects = Record[0] & 1; 2441 bool IsAlignStack = Record[0] >> 1; 2442 unsigned AsmStrSize = Record[1]; 2443 if (2+AsmStrSize >= Record.size()) 2444 return error("Invalid record"); 2445 unsigned ConstStrSize = Record[2+AsmStrSize]; 2446 if (3+AsmStrSize+ConstStrSize > Record.size()) 2447 return error("Invalid record"); 2448 2449 for (unsigned i = 0; i != AsmStrSize; ++i) 2450 AsmStr += (char)Record[2+i]; 2451 for (unsigned i = 0; i != ConstStrSize; ++i) 2452 ConstrStr += (char)Record[3+AsmStrSize+i]; 2453 PointerType *PTy = cast<PointerType>(CurTy); 2454 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2455 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2456 break; 2457 } 2458 // This version adds support for the asm dialect keywords (e.g., 2459 // inteldialect). 2460 case bitc::CST_CODE_INLINEASM: { 2461 if (Record.size() < 2) 2462 return error("Invalid record"); 2463 std::string AsmStr, ConstrStr; 2464 bool HasSideEffects = Record[0] & 1; 2465 bool IsAlignStack = (Record[0] >> 1) & 1; 2466 unsigned AsmDialect = Record[0] >> 2; 2467 unsigned AsmStrSize = Record[1]; 2468 if (2+AsmStrSize >= Record.size()) 2469 return error("Invalid record"); 2470 unsigned ConstStrSize = Record[2+AsmStrSize]; 2471 if (3+AsmStrSize+ConstStrSize > Record.size()) 2472 return error("Invalid record"); 2473 2474 for (unsigned i = 0; i != AsmStrSize; ++i) 2475 AsmStr += (char)Record[2+i]; 2476 for (unsigned i = 0; i != ConstStrSize; ++i) 2477 ConstrStr += (char)Record[3+AsmStrSize+i]; 2478 PointerType *PTy = cast<PointerType>(CurTy); 2479 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2480 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2481 InlineAsm::AsmDialect(AsmDialect)); 2482 break; 2483 } 2484 case bitc::CST_CODE_BLOCKADDRESS:{ 2485 if (Record.size() < 3) 2486 return error("Invalid record"); 2487 Type *FnTy = getTypeByID(Record[0]); 2488 if (!FnTy) 2489 return error("Invalid record"); 2490 Function *Fn = 2491 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2492 if (!Fn) 2493 return error("Invalid record"); 2494 2495 // If the function is already parsed we can insert the block address right 2496 // away. 2497 BasicBlock *BB; 2498 unsigned BBID = Record[2]; 2499 if (!BBID) 2500 // Invalid reference to entry block. 2501 return error("Invalid ID"); 2502 if (!Fn->empty()) { 2503 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2504 for (size_t I = 0, E = BBID; I != E; ++I) { 2505 if (BBI == BBE) 2506 return error("Invalid ID"); 2507 ++BBI; 2508 } 2509 BB = &*BBI; 2510 } else { 2511 // Otherwise insert a placeholder and remember it so it can be inserted 2512 // when the function is parsed. 2513 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2514 if (FwdBBs.empty()) 2515 BasicBlockFwdRefQueue.push_back(Fn); 2516 if (FwdBBs.size() < BBID + 1) 2517 FwdBBs.resize(BBID + 1); 2518 if (!FwdBBs[BBID]) 2519 FwdBBs[BBID] = BasicBlock::Create(Context); 2520 BB = FwdBBs[BBID]; 2521 } 2522 V = BlockAddress::get(Fn, BB); 2523 break; 2524 } 2525 } 2526 2527 ValueList.assignValue(V, NextCstNo); 2528 ++NextCstNo; 2529 } 2530 } 2531 2532 Error BitcodeReader::parseUseLists() { 2533 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2534 return error("Invalid record"); 2535 2536 // Read all the records. 2537 SmallVector<uint64_t, 64> Record; 2538 2539 while (true) { 2540 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2541 2542 switch (Entry.Kind) { 2543 case BitstreamEntry::SubBlock: // Handled for us already. 2544 case BitstreamEntry::Error: 2545 return error("Malformed block"); 2546 case BitstreamEntry::EndBlock: 2547 return Error::success(); 2548 case BitstreamEntry::Record: 2549 // The interesting case. 2550 break; 2551 } 2552 2553 // Read a use list record. 2554 Record.clear(); 2555 bool IsBB = false; 2556 switch (Stream.readRecord(Entry.ID, Record)) { 2557 default: // Default behavior: unknown type. 2558 break; 2559 case bitc::USELIST_CODE_BB: 2560 IsBB = true; 2561 LLVM_FALLTHROUGH; 2562 case bitc::USELIST_CODE_DEFAULT: { 2563 unsigned RecordLength = Record.size(); 2564 if (RecordLength < 3) 2565 // Records should have at least an ID and two indexes. 2566 return error("Invalid record"); 2567 unsigned ID = Record.back(); 2568 Record.pop_back(); 2569 2570 Value *V; 2571 if (IsBB) { 2572 assert(ID < FunctionBBs.size() && "Basic block not found"); 2573 V = FunctionBBs[ID]; 2574 } else 2575 V = ValueList[ID]; 2576 unsigned NumUses = 0; 2577 SmallDenseMap<const Use *, unsigned, 16> Order; 2578 for (const Use &U : V->materialized_uses()) { 2579 if (++NumUses > Record.size()) 2580 break; 2581 Order[&U] = Record[NumUses - 1]; 2582 } 2583 if (Order.size() != Record.size() || NumUses > Record.size()) 2584 // Mismatches can happen if the functions are being materialized lazily 2585 // (out-of-order), or a value has been upgraded. 2586 break; 2587 2588 V->sortUseList([&](const Use &L, const Use &R) { 2589 return Order.lookup(&L) < Order.lookup(&R); 2590 }); 2591 break; 2592 } 2593 } 2594 } 2595 } 2596 2597 /// When we see the block for metadata, remember where it is and then skip it. 2598 /// This lets us lazily deserialize the metadata. 2599 Error BitcodeReader::rememberAndSkipMetadata() { 2600 // Save the current stream state. 2601 uint64_t CurBit = Stream.GetCurrentBitNo(); 2602 DeferredMetadataInfo.push_back(CurBit); 2603 2604 // Skip over the block for now. 2605 if (Stream.SkipBlock()) 2606 return error("Invalid record"); 2607 return Error::success(); 2608 } 2609 2610 Error BitcodeReader::materializeMetadata() { 2611 for (uint64_t BitPos : DeferredMetadataInfo) { 2612 // Move the bit stream to the saved position. 2613 Stream.JumpToBit(BitPos); 2614 if (Error Err = MDLoader->parseModuleMetadata()) 2615 return Err; 2616 } 2617 DeferredMetadataInfo.clear(); 2618 return Error::success(); 2619 } 2620 2621 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2622 2623 /// When we see the block for a function body, remember where it is and then 2624 /// skip it. This lets us lazily deserialize the functions. 2625 Error BitcodeReader::rememberAndSkipFunctionBody() { 2626 // Get the function we are talking about. 2627 if (FunctionsWithBodies.empty()) 2628 return error("Insufficient function protos"); 2629 2630 Function *Fn = FunctionsWithBodies.back(); 2631 FunctionsWithBodies.pop_back(); 2632 2633 // Save the current stream state. 2634 uint64_t CurBit = Stream.GetCurrentBitNo(); 2635 assert( 2636 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2637 "Mismatch between VST and scanned function offsets"); 2638 DeferredFunctionInfo[Fn] = CurBit; 2639 2640 // Skip over the function block for now. 2641 if (Stream.SkipBlock()) 2642 return error("Invalid record"); 2643 return Error::success(); 2644 } 2645 2646 Error BitcodeReader::globalCleanup() { 2647 // Patch the initializers for globals and aliases up. 2648 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2649 return Err; 2650 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2651 return error("Malformed global initializer set"); 2652 2653 // Look for intrinsic functions which need to be upgraded at some point 2654 for (Function &F : *TheModule) { 2655 MDLoader->upgradeDebugIntrinsics(F); 2656 Function *NewFn; 2657 if (UpgradeIntrinsicFunction(&F, NewFn)) 2658 UpgradedIntrinsics[&F] = NewFn; 2659 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2660 // Some types could be renamed during loading if several modules are 2661 // loaded in the same LLVMContext (LTO scenario). In this case we should 2662 // remangle intrinsics names as well. 2663 RemangledIntrinsics[&F] = Remangled.getValue(); 2664 } 2665 2666 // Look for global variables which need to be renamed. 2667 for (GlobalVariable &GV : TheModule->globals()) 2668 UpgradeGlobalVariable(&GV); 2669 2670 // Force deallocation of memory for these vectors to favor the client that 2671 // want lazy deserialization. 2672 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2673 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2674 IndirectSymbolInits); 2675 return Error::success(); 2676 } 2677 2678 /// Support for lazy parsing of function bodies. This is required if we 2679 /// either have an old bitcode file without a VST forward declaration record, 2680 /// or if we have an anonymous function being materialized, since anonymous 2681 /// functions do not have a name and are therefore not in the VST. 2682 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2683 Stream.JumpToBit(NextUnreadBit); 2684 2685 if (Stream.AtEndOfStream()) 2686 return error("Could not find function in stream"); 2687 2688 if (!SeenFirstFunctionBody) 2689 return error("Trying to materialize functions before seeing function blocks"); 2690 2691 // An old bitcode file with the symbol table at the end would have 2692 // finished the parse greedily. 2693 assert(SeenValueSymbolTable); 2694 2695 SmallVector<uint64_t, 64> Record; 2696 2697 while (true) { 2698 BitstreamEntry Entry = Stream.advance(); 2699 switch (Entry.Kind) { 2700 default: 2701 return error("Expect SubBlock"); 2702 case BitstreamEntry::SubBlock: 2703 switch (Entry.ID) { 2704 default: 2705 return error("Expect function block"); 2706 case bitc::FUNCTION_BLOCK_ID: 2707 if (Error Err = rememberAndSkipFunctionBody()) 2708 return Err; 2709 NextUnreadBit = Stream.GetCurrentBitNo(); 2710 return Error::success(); 2711 } 2712 } 2713 } 2714 } 2715 2716 bool BitcodeReaderBase::readBlockInfo() { 2717 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2718 if (!NewBlockInfo) 2719 return true; 2720 BlockInfo = std::move(*NewBlockInfo); 2721 return false; 2722 } 2723 2724 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2725 // v1: [selection_kind, name] 2726 // v2: [strtab_offset, strtab_size, selection_kind] 2727 StringRef Name; 2728 std::tie(Name, Record) = readNameFromStrtab(Record); 2729 2730 if (Record.size() < 1) 2731 return error("Invalid record"); 2732 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2733 std::string OldFormatName; 2734 if (!UseStrtab) { 2735 if (Record.size() < 2) 2736 return error("Invalid record"); 2737 unsigned ComdatNameSize = Record[1]; 2738 OldFormatName.reserve(ComdatNameSize); 2739 for (unsigned i = 0; i != ComdatNameSize; ++i) 2740 OldFormatName += (char)Record[2 + i]; 2741 Name = OldFormatName; 2742 } 2743 Comdat *C = TheModule->getOrInsertComdat(Name); 2744 C->setSelectionKind(SK); 2745 ComdatList.push_back(C); 2746 return Error::success(); 2747 } 2748 2749 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2750 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2751 // visibility, threadlocal, unnamed_addr, externally_initialized, 2752 // dllstorageclass, comdat] (name in VST) 2753 // v2: [strtab_offset, strtab_size, v1] 2754 StringRef Name; 2755 std::tie(Name, Record) = readNameFromStrtab(Record); 2756 2757 if (Record.size() < 6) 2758 return error("Invalid record"); 2759 Type *Ty = getTypeByID(Record[0]); 2760 if (!Ty) 2761 return error("Invalid record"); 2762 bool isConstant = Record[1] & 1; 2763 bool explicitType = Record[1] & 2; 2764 unsigned AddressSpace; 2765 if (explicitType) { 2766 AddressSpace = Record[1] >> 2; 2767 } else { 2768 if (!Ty->isPointerTy()) 2769 return error("Invalid type for value"); 2770 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2771 Ty = cast<PointerType>(Ty)->getElementType(); 2772 } 2773 2774 uint64_t RawLinkage = Record[3]; 2775 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2776 unsigned Alignment; 2777 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2778 return Err; 2779 std::string Section; 2780 if (Record[5]) { 2781 if (Record[5] - 1 >= SectionTable.size()) 2782 return error("Invalid ID"); 2783 Section = SectionTable[Record[5] - 1]; 2784 } 2785 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2786 // Local linkage must have default visibility. 2787 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2788 // FIXME: Change to an error if non-default in 4.0. 2789 Visibility = getDecodedVisibility(Record[6]); 2790 2791 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2792 if (Record.size() > 7) 2793 TLM = getDecodedThreadLocalMode(Record[7]); 2794 2795 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2796 if (Record.size() > 8) 2797 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2798 2799 bool ExternallyInitialized = false; 2800 if (Record.size() > 9) 2801 ExternallyInitialized = Record[9]; 2802 2803 GlobalVariable *NewGV = 2804 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2805 nullptr, TLM, AddressSpace, ExternallyInitialized); 2806 NewGV->setAlignment(Alignment); 2807 if (!Section.empty()) 2808 NewGV->setSection(Section); 2809 NewGV->setVisibility(Visibility); 2810 NewGV->setUnnamedAddr(UnnamedAddr); 2811 2812 if (Record.size() > 10) 2813 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2814 else 2815 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2816 2817 ValueList.push_back(NewGV); 2818 2819 // Remember which value to use for the global initializer. 2820 if (unsigned InitID = Record[2]) 2821 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2822 2823 if (Record.size() > 11) { 2824 if (unsigned ComdatID = Record[11]) { 2825 if (ComdatID > ComdatList.size()) 2826 return error("Invalid global variable comdat ID"); 2827 NewGV->setComdat(ComdatList[ComdatID - 1]); 2828 } 2829 } else if (hasImplicitComdat(RawLinkage)) { 2830 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2831 } 2832 return Error::success(); 2833 } 2834 2835 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2836 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2837 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2838 // prefixdata] (name in VST) 2839 // v2: [strtab_offset, strtab_size, v1] 2840 StringRef Name; 2841 std::tie(Name, Record) = readNameFromStrtab(Record); 2842 2843 if (Record.size() < 8) 2844 return error("Invalid record"); 2845 Type *Ty = getTypeByID(Record[0]); 2846 if (!Ty) 2847 return error("Invalid record"); 2848 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2849 Ty = PTy->getElementType(); 2850 auto *FTy = dyn_cast<FunctionType>(Ty); 2851 if (!FTy) 2852 return error("Invalid type for value"); 2853 auto CC = static_cast<CallingConv::ID>(Record[1]); 2854 if (CC & ~CallingConv::MaxID) 2855 return error("Invalid calling convention ID"); 2856 2857 Function *Func = 2858 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2859 2860 Func->setCallingConv(CC); 2861 bool isProto = Record[2]; 2862 uint64_t RawLinkage = Record[3]; 2863 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2864 Func->setAttributes(getAttributes(Record[4])); 2865 2866 unsigned Alignment; 2867 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2868 return Err; 2869 Func->setAlignment(Alignment); 2870 if (Record[6]) { 2871 if (Record[6] - 1 >= SectionTable.size()) 2872 return error("Invalid ID"); 2873 Func->setSection(SectionTable[Record[6] - 1]); 2874 } 2875 // Local linkage must have default visibility. 2876 if (!Func->hasLocalLinkage()) 2877 // FIXME: Change to an error if non-default in 4.0. 2878 Func->setVisibility(getDecodedVisibility(Record[7])); 2879 if (Record.size() > 8 && Record[8]) { 2880 if (Record[8] - 1 >= GCTable.size()) 2881 return error("Invalid ID"); 2882 Func->setGC(GCTable[Record[8] - 1]); 2883 } 2884 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2885 if (Record.size() > 9) 2886 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2887 Func->setUnnamedAddr(UnnamedAddr); 2888 if (Record.size() > 10 && Record[10] != 0) 2889 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2890 2891 if (Record.size() > 11) 2892 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2893 else 2894 upgradeDLLImportExportLinkage(Func, RawLinkage); 2895 2896 if (Record.size() > 12) { 2897 if (unsigned ComdatID = Record[12]) { 2898 if (ComdatID > ComdatList.size()) 2899 return error("Invalid function comdat ID"); 2900 Func->setComdat(ComdatList[ComdatID - 1]); 2901 } 2902 } else if (hasImplicitComdat(RawLinkage)) { 2903 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2904 } 2905 2906 if (Record.size() > 13 && Record[13] != 0) 2907 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2908 2909 if (Record.size() > 14 && Record[14] != 0) 2910 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2911 2912 ValueList.push_back(Func); 2913 2914 // If this is a function with a body, remember the prototype we are 2915 // creating now, so that we can match up the body with them later. 2916 if (!isProto) { 2917 Func->setIsMaterializable(true); 2918 FunctionsWithBodies.push_back(Func); 2919 DeferredFunctionInfo[Func] = 0; 2920 } 2921 return Error::success(); 2922 } 2923 2924 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2925 unsigned BitCode, ArrayRef<uint64_t> Record) { 2926 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 2927 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2928 // dllstorageclass] (name in VST) 2929 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 2930 // visibility, dllstorageclass] (name in VST) 2931 // v2: [strtab_offset, strtab_size, v1] 2932 StringRef Name; 2933 std::tie(Name, Record) = readNameFromStrtab(Record); 2934 2935 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2936 if (Record.size() < (3 + (unsigned)NewRecord)) 2937 return error("Invalid record"); 2938 unsigned OpNum = 0; 2939 Type *Ty = getTypeByID(Record[OpNum++]); 2940 if (!Ty) 2941 return error("Invalid record"); 2942 2943 unsigned AddrSpace; 2944 if (!NewRecord) { 2945 auto *PTy = dyn_cast<PointerType>(Ty); 2946 if (!PTy) 2947 return error("Invalid type for value"); 2948 Ty = PTy->getElementType(); 2949 AddrSpace = PTy->getAddressSpace(); 2950 } else { 2951 AddrSpace = Record[OpNum++]; 2952 } 2953 2954 auto Val = Record[OpNum++]; 2955 auto Linkage = Record[OpNum++]; 2956 GlobalIndirectSymbol *NewGA; 2957 if (BitCode == bitc::MODULE_CODE_ALIAS || 2958 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2959 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2960 TheModule); 2961 else 2962 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 2963 nullptr, TheModule); 2964 // Old bitcode files didn't have visibility field. 2965 // Local linkage must have default visibility. 2966 if (OpNum != Record.size()) { 2967 auto VisInd = OpNum++; 2968 if (!NewGA->hasLocalLinkage()) 2969 // FIXME: Change to an error if non-default in 4.0. 2970 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2971 } 2972 if (OpNum != Record.size()) 2973 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2974 else 2975 upgradeDLLImportExportLinkage(NewGA, Linkage); 2976 if (OpNum != Record.size()) 2977 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2978 if (OpNum != Record.size()) 2979 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2980 ValueList.push_back(NewGA); 2981 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2982 return Error::success(); 2983 } 2984 2985 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2986 bool ShouldLazyLoadMetadata) { 2987 if (ResumeBit) 2988 Stream.JumpToBit(ResumeBit); 2989 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2990 return error("Invalid record"); 2991 2992 SmallVector<uint64_t, 64> Record; 2993 2994 // Read all the records for this module. 2995 while (true) { 2996 BitstreamEntry Entry = Stream.advance(); 2997 2998 switch (Entry.Kind) { 2999 case BitstreamEntry::Error: 3000 return error("Malformed block"); 3001 case BitstreamEntry::EndBlock: 3002 return globalCleanup(); 3003 3004 case BitstreamEntry::SubBlock: 3005 switch (Entry.ID) { 3006 default: // Skip unknown content. 3007 if (Stream.SkipBlock()) 3008 return error("Invalid record"); 3009 break; 3010 case bitc::BLOCKINFO_BLOCK_ID: 3011 if (readBlockInfo()) 3012 return error("Malformed block"); 3013 break; 3014 case bitc::PARAMATTR_BLOCK_ID: 3015 if (Error Err = parseAttributeBlock()) 3016 return Err; 3017 break; 3018 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3019 if (Error Err = parseAttributeGroupBlock()) 3020 return Err; 3021 break; 3022 case bitc::TYPE_BLOCK_ID_NEW: 3023 if (Error Err = parseTypeTable()) 3024 return Err; 3025 break; 3026 case bitc::VALUE_SYMTAB_BLOCK_ID: 3027 if (!SeenValueSymbolTable) { 3028 // Either this is an old form VST without function index and an 3029 // associated VST forward declaration record (which would have caused 3030 // the VST to be jumped to and parsed before it was encountered 3031 // normally in the stream), or there were no function blocks to 3032 // trigger an earlier parsing of the VST. 3033 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3034 if (Error Err = parseValueSymbolTable()) 3035 return Err; 3036 SeenValueSymbolTable = true; 3037 } else { 3038 // We must have had a VST forward declaration record, which caused 3039 // the parser to jump to and parse the VST earlier. 3040 assert(VSTOffset > 0); 3041 if (Stream.SkipBlock()) 3042 return error("Invalid record"); 3043 } 3044 break; 3045 case bitc::CONSTANTS_BLOCK_ID: 3046 if (Error Err = parseConstants()) 3047 return Err; 3048 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3049 return Err; 3050 break; 3051 case bitc::METADATA_BLOCK_ID: 3052 if (ShouldLazyLoadMetadata) { 3053 if (Error Err = rememberAndSkipMetadata()) 3054 return Err; 3055 break; 3056 } 3057 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3058 if (Error Err = MDLoader->parseModuleMetadata()) 3059 return Err; 3060 break; 3061 case bitc::METADATA_KIND_BLOCK_ID: 3062 if (Error Err = MDLoader->parseMetadataKinds()) 3063 return Err; 3064 break; 3065 case bitc::FUNCTION_BLOCK_ID: 3066 // If this is the first function body we've seen, reverse the 3067 // FunctionsWithBodies list. 3068 if (!SeenFirstFunctionBody) { 3069 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3070 if (Error Err = globalCleanup()) 3071 return Err; 3072 SeenFirstFunctionBody = true; 3073 } 3074 3075 if (VSTOffset > 0) { 3076 // If we have a VST forward declaration record, make sure we 3077 // parse the VST now if we haven't already. It is needed to 3078 // set up the DeferredFunctionInfo vector for lazy reading. 3079 if (!SeenValueSymbolTable) { 3080 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3081 return Err; 3082 SeenValueSymbolTable = true; 3083 // Fall through so that we record the NextUnreadBit below. 3084 // This is necessary in case we have an anonymous function that 3085 // is later materialized. Since it will not have a VST entry we 3086 // need to fall back to the lazy parse to find its offset. 3087 } else { 3088 // If we have a VST forward declaration record, but have already 3089 // parsed the VST (just above, when the first function body was 3090 // encountered here), then we are resuming the parse after 3091 // materializing functions. The ResumeBit points to the 3092 // start of the last function block recorded in the 3093 // DeferredFunctionInfo map. Skip it. 3094 if (Stream.SkipBlock()) 3095 return error("Invalid record"); 3096 continue; 3097 } 3098 } 3099 3100 // Support older bitcode files that did not have the function 3101 // index in the VST, nor a VST forward declaration record, as 3102 // well as anonymous functions that do not have VST entries. 3103 // Build the DeferredFunctionInfo vector on the fly. 3104 if (Error Err = rememberAndSkipFunctionBody()) 3105 return Err; 3106 3107 // Suspend parsing when we reach the function bodies. Subsequent 3108 // materialization calls will resume it when necessary. If the bitcode 3109 // file is old, the symbol table will be at the end instead and will not 3110 // have been seen yet. In this case, just finish the parse now. 3111 if (SeenValueSymbolTable) { 3112 NextUnreadBit = Stream.GetCurrentBitNo(); 3113 // After the VST has been parsed, we need to make sure intrinsic name 3114 // are auto-upgraded. 3115 return globalCleanup(); 3116 } 3117 break; 3118 case bitc::USELIST_BLOCK_ID: 3119 if (Error Err = parseUseLists()) 3120 return Err; 3121 break; 3122 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3123 if (Error Err = parseOperandBundleTags()) 3124 return Err; 3125 break; 3126 } 3127 continue; 3128 3129 case BitstreamEntry::Record: 3130 // The interesting case. 3131 break; 3132 } 3133 3134 // Read a record. 3135 auto BitCode = Stream.readRecord(Entry.ID, Record); 3136 switch (BitCode) { 3137 default: break; // Default behavior, ignore unknown content. 3138 case bitc::MODULE_CODE_VERSION: { 3139 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3140 if (!VersionOrErr) 3141 return VersionOrErr.takeError(); 3142 UseRelativeIDs = *VersionOrErr >= 1; 3143 break; 3144 } 3145 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3146 std::string S; 3147 if (convertToString(Record, 0, S)) 3148 return error("Invalid record"); 3149 TheModule->setTargetTriple(S); 3150 break; 3151 } 3152 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3153 std::string S; 3154 if (convertToString(Record, 0, S)) 3155 return error("Invalid record"); 3156 TheModule->setDataLayout(S); 3157 break; 3158 } 3159 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3160 std::string S; 3161 if (convertToString(Record, 0, S)) 3162 return error("Invalid record"); 3163 TheModule->setModuleInlineAsm(S); 3164 break; 3165 } 3166 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3167 // FIXME: Remove in 4.0. 3168 std::string S; 3169 if (convertToString(Record, 0, S)) 3170 return error("Invalid record"); 3171 // Ignore value. 3172 break; 3173 } 3174 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3175 std::string S; 3176 if (convertToString(Record, 0, S)) 3177 return error("Invalid record"); 3178 SectionTable.push_back(S); 3179 break; 3180 } 3181 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3182 std::string S; 3183 if (convertToString(Record, 0, S)) 3184 return error("Invalid record"); 3185 GCTable.push_back(S); 3186 break; 3187 } 3188 case bitc::MODULE_CODE_COMDAT: { 3189 if (Error Err = parseComdatRecord(Record)) 3190 return Err; 3191 break; 3192 } 3193 case bitc::MODULE_CODE_GLOBALVAR: { 3194 if (Error Err = parseGlobalVarRecord(Record)) 3195 return Err; 3196 break; 3197 } 3198 case bitc::MODULE_CODE_FUNCTION: { 3199 if (Error Err = parseFunctionRecord(Record)) 3200 return Err; 3201 break; 3202 } 3203 case bitc::MODULE_CODE_IFUNC: 3204 case bitc::MODULE_CODE_ALIAS: 3205 case bitc::MODULE_CODE_ALIAS_OLD: { 3206 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3207 return Err; 3208 break; 3209 } 3210 /// MODULE_CODE_VSTOFFSET: [offset] 3211 case bitc::MODULE_CODE_VSTOFFSET: 3212 if (Record.size() < 1) 3213 return error("Invalid record"); 3214 // Note that we subtract 1 here because the offset is relative to one word 3215 // before the start of the identification or module block, which was 3216 // historically always the start of the regular bitcode header. 3217 VSTOffset = Record[0] - 1; 3218 break; 3219 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3220 case bitc::MODULE_CODE_SOURCE_FILENAME: 3221 SmallString<128> ValueName; 3222 if (convertToString(Record, 0, ValueName)) 3223 return error("Invalid record"); 3224 TheModule->setSourceFileName(ValueName); 3225 break; 3226 } 3227 Record.clear(); 3228 } 3229 } 3230 3231 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3232 bool IsImporting) { 3233 TheModule = M; 3234 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3235 [&](unsigned ID) { return getTypeByID(ID); }); 3236 return parseModule(0, ShouldLazyLoadMetadata); 3237 } 3238 3239 3240 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3241 if (!isa<PointerType>(PtrType)) 3242 return error("Load/Store operand is not a pointer type"); 3243 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3244 3245 if (ValType && ValType != ElemType) 3246 return error("Explicit load/store type does not match pointee " 3247 "type of pointer operand"); 3248 if (!PointerType::isLoadableOrStorableType(ElemType)) 3249 return error("Cannot load/store from pointer"); 3250 return Error::success(); 3251 } 3252 3253 /// Lazily parse the specified function body block. 3254 Error BitcodeReader::parseFunctionBody(Function *F) { 3255 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3256 return error("Invalid record"); 3257 3258 // Unexpected unresolved metadata when parsing function. 3259 if (MDLoader->hasFwdRefs()) 3260 return error("Invalid function metadata: incoming forward references"); 3261 3262 InstructionList.clear(); 3263 unsigned ModuleValueListSize = ValueList.size(); 3264 unsigned ModuleMDLoaderSize = MDLoader->size(); 3265 3266 // Add all the function arguments to the value table. 3267 for (Argument &I : F->args()) 3268 ValueList.push_back(&I); 3269 3270 unsigned NextValueNo = ValueList.size(); 3271 BasicBlock *CurBB = nullptr; 3272 unsigned CurBBNo = 0; 3273 3274 DebugLoc LastLoc; 3275 auto getLastInstruction = [&]() -> Instruction * { 3276 if (CurBB && !CurBB->empty()) 3277 return &CurBB->back(); 3278 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3279 !FunctionBBs[CurBBNo - 1]->empty()) 3280 return &FunctionBBs[CurBBNo - 1]->back(); 3281 return nullptr; 3282 }; 3283 3284 std::vector<OperandBundleDef> OperandBundles; 3285 3286 // Read all the records. 3287 SmallVector<uint64_t, 64> Record; 3288 3289 while (true) { 3290 BitstreamEntry Entry = Stream.advance(); 3291 3292 switch (Entry.Kind) { 3293 case BitstreamEntry::Error: 3294 return error("Malformed block"); 3295 case BitstreamEntry::EndBlock: 3296 goto OutOfRecordLoop; 3297 3298 case BitstreamEntry::SubBlock: 3299 switch (Entry.ID) { 3300 default: // Skip unknown content. 3301 if (Stream.SkipBlock()) 3302 return error("Invalid record"); 3303 break; 3304 case bitc::CONSTANTS_BLOCK_ID: 3305 if (Error Err = parseConstants()) 3306 return Err; 3307 NextValueNo = ValueList.size(); 3308 break; 3309 case bitc::VALUE_SYMTAB_BLOCK_ID: 3310 if (Error Err = parseValueSymbolTable()) 3311 return Err; 3312 break; 3313 case bitc::METADATA_ATTACHMENT_ID: 3314 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3315 return Err; 3316 break; 3317 case bitc::METADATA_BLOCK_ID: 3318 assert(DeferredMetadataInfo.empty() && 3319 "Must read all module-level metadata before function-level"); 3320 if (Error Err = MDLoader->parseFunctionMetadata()) 3321 return Err; 3322 break; 3323 case bitc::USELIST_BLOCK_ID: 3324 if (Error Err = parseUseLists()) 3325 return Err; 3326 break; 3327 } 3328 continue; 3329 3330 case BitstreamEntry::Record: 3331 // The interesting case. 3332 break; 3333 } 3334 3335 // Read a record. 3336 Record.clear(); 3337 Instruction *I = nullptr; 3338 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3339 switch (BitCode) { 3340 default: // Default behavior: reject 3341 return error("Invalid value"); 3342 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3343 if (Record.size() < 1 || Record[0] == 0) 3344 return error("Invalid record"); 3345 // Create all the basic blocks for the function. 3346 FunctionBBs.resize(Record[0]); 3347 3348 // See if anything took the address of blocks in this function. 3349 auto BBFRI = BasicBlockFwdRefs.find(F); 3350 if (BBFRI == BasicBlockFwdRefs.end()) { 3351 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3352 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3353 } else { 3354 auto &BBRefs = BBFRI->second; 3355 // Check for invalid basic block references. 3356 if (BBRefs.size() > FunctionBBs.size()) 3357 return error("Invalid ID"); 3358 assert(!BBRefs.empty() && "Unexpected empty array"); 3359 assert(!BBRefs.front() && "Invalid reference to entry block"); 3360 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3361 ++I) 3362 if (I < RE && BBRefs[I]) { 3363 BBRefs[I]->insertInto(F); 3364 FunctionBBs[I] = BBRefs[I]; 3365 } else { 3366 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3367 } 3368 3369 // Erase from the table. 3370 BasicBlockFwdRefs.erase(BBFRI); 3371 } 3372 3373 CurBB = FunctionBBs[0]; 3374 continue; 3375 } 3376 3377 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3378 // This record indicates that the last instruction is at the same 3379 // location as the previous instruction with a location. 3380 I = getLastInstruction(); 3381 3382 if (!I) 3383 return error("Invalid record"); 3384 I->setDebugLoc(LastLoc); 3385 I = nullptr; 3386 continue; 3387 3388 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3389 I = getLastInstruction(); 3390 if (!I || Record.size() < 4) 3391 return error("Invalid record"); 3392 3393 unsigned Line = Record[0], Col = Record[1]; 3394 unsigned ScopeID = Record[2], IAID = Record[3]; 3395 3396 MDNode *Scope = nullptr, *IA = nullptr; 3397 if (ScopeID) { 3398 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3399 if (!Scope) 3400 return error("Invalid record"); 3401 } 3402 if (IAID) { 3403 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3404 if (!IA) 3405 return error("Invalid record"); 3406 } 3407 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3408 I->setDebugLoc(LastLoc); 3409 I = nullptr; 3410 continue; 3411 } 3412 3413 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3414 unsigned OpNum = 0; 3415 Value *LHS, *RHS; 3416 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3417 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3418 OpNum+1 > Record.size()) 3419 return error("Invalid record"); 3420 3421 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3422 if (Opc == -1) 3423 return error("Invalid record"); 3424 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3425 InstructionList.push_back(I); 3426 if (OpNum < Record.size()) { 3427 if (Opc == Instruction::Add || 3428 Opc == Instruction::Sub || 3429 Opc == Instruction::Mul || 3430 Opc == Instruction::Shl) { 3431 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3432 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3433 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3434 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3435 } else if (Opc == Instruction::SDiv || 3436 Opc == Instruction::UDiv || 3437 Opc == Instruction::LShr || 3438 Opc == Instruction::AShr) { 3439 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3440 cast<BinaryOperator>(I)->setIsExact(true); 3441 } else if (isa<FPMathOperator>(I)) { 3442 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3443 if (FMF.any()) 3444 I->setFastMathFlags(FMF); 3445 } 3446 3447 } 3448 break; 3449 } 3450 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3451 unsigned OpNum = 0; 3452 Value *Op; 3453 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3454 OpNum+2 != Record.size()) 3455 return error("Invalid record"); 3456 3457 Type *ResTy = getTypeByID(Record[OpNum]); 3458 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3459 if (Opc == -1 || !ResTy) 3460 return error("Invalid record"); 3461 Instruction *Temp = nullptr; 3462 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3463 if (Temp) { 3464 InstructionList.push_back(Temp); 3465 CurBB->getInstList().push_back(Temp); 3466 } 3467 } else { 3468 auto CastOp = (Instruction::CastOps)Opc; 3469 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3470 return error("Invalid cast"); 3471 I = CastInst::Create(CastOp, Op, ResTy); 3472 } 3473 InstructionList.push_back(I); 3474 break; 3475 } 3476 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3477 case bitc::FUNC_CODE_INST_GEP_OLD: 3478 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3479 unsigned OpNum = 0; 3480 3481 Type *Ty; 3482 bool InBounds; 3483 3484 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3485 InBounds = Record[OpNum++]; 3486 Ty = getTypeByID(Record[OpNum++]); 3487 } else { 3488 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3489 Ty = nullptr; 3490 } 3491 3492 Value *BasePtr; 3493 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3494 return error("Invalid record"); 3495 3496 if (!Ty) 3497 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3498 ->getElementType(); 3499 else if (Ty != 3500 cast<PointerType>(BasePtr->getType()->getScalarType()) 3501 ->getElementType()) 3502 return error( 3503 "Explicit gep type does not match pointee type of pointer operand"); 3504 3505 SmallVector<Value*, 16> GEPIdx; 3506 while (OpNum != Record.size()) { 3507 Value *Op; 3508 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3509 return error("Invalid record"); 3510 GEPIdx.push_back(Op); 3511 } 3512 3513 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3514 3515 InstructionList.push_back(I); 3516 if (InBounds) 3517 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3518 break; 3519 } 3520 3521 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3522 // EXTRACTVAL: [opty, opval, n x indices] 3523 unsigned OpNum = 0; 3524 Value *Agg; 3525 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3526 return error("Invalid record"); 3527 3528 unsigned RecSize = Record.size(); 3529 if (OpNum == RecSize) 3530 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3531 3532 SmallVector<unsigned, 4> EXTRACTVALIdx; 3533 Type *CurTy = Agg->getType(); 3534 for (; OpNum != RecSize; ++OpNum) { 3535 bool IsArray = CurTy->isArrayTy(); 3536 bool IsStruct = CurTy->isStructTy(); 3537 uint64_t Index = Record[OpNum]; 3538 3539 if (!IsStruct && !IsArray) 3540 return error("EXTRACTVAL: Invalid type"); 3541 if ((unsigned)Index != Index) 3542 return error("Invalid value"); 3543 if (IsStruct && Index >= CurTy->subtypes().size()) 3544 return error("EXTRACTVAL: Invalid struct index"); 3545 if (IsArray && Index >= CurTy->getArrayNumElements()) 3546 return error("EXTRACTVAL: Invalid array index"); 3547 EXTRACTVALIdx.push_back((unsigned)Index); 3548 3549 if (IsStruct) 3550 CurTy = CurTy->subtypes()[Index]; 3551 else 3552 CurTy = CurTy->subtypes()[0]; 3553 } 3554 3555 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3556 InstructionList.push_back(I); 3557 break; 3558 } 3559 3560 case bitc::FUNC_CODE_INST_INSERTVAL: { 3561 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3562 unsigned OpNum = 0; 3563 Value *Agg; 3564 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3565 return error("Invalid record"); 3566 Value *Val; 3567 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3568 return error("Invalid record"); 3569 3570 unsigned RecSize = Record.size(); 3571 if (OpNum == RecSize) 3572 return error("INSERTVAL: Invalid instruction with 0 indices"); 3573 3574 SmallVector<unsigned, 4> INSERTVALIdx; 3575 Type *CurTy = Agg->getType(); 3576 for (; OpNum != RecSize; ++OpNum) { 3577 bool IsArray = CurTy->isArrayTy(); 3578 bool IsStruct = CurTy->isStructTy(); 3579 uint64_t Index = Record[OpNum]; 3580 3581 if (!IsStruct && !IsArray) 3582 return error("INSERTVAL: Invalid type"); 3583 if ((unsigned)Index != Index) 3584 return error("Invalid value"); 3585 if (IsStruct && Index >= CurTy->subtypes().size()) 3586 return error("INSERTVAL: Invalid struct index"); 3587 if (IsArray && Index >= CurTy->getArrayNumElements()) 3588 return error("INSERTVAL: Invalid array index"); 3589 3590 INSERTVALIdx.push_back((unsigned)Index); 3591 if (IsStruct) 3592 CurTy = CurTy->subtypes()[Index]; 3593 else 3594 CurTy = CurTy->subtypes()[0]; 3595 } 3596 3597 if (CurTy != Val->getType()) 3598 return error("Inserted value type doesn't match aggregate type"); 3599 3600 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3601 InstructionList.push_back(I); 3602 break; 3603 } 3604 3605 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3606 // obsolete form of select 3607 // handles select i1 ... in old bitcode 3608 unsigned OpNum = 0; 3609 Value *TrueVal, *FalseVal, *Cond; 3610 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3611 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3612 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3613 return error("Invalid record"); 3614 3615 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3616 InstructionList.push_back(I); 3617 break; 3618 } 3619 3620 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3621 // new form of select 3622 // handles select i1 or select [N x i1] 3623 unsigned OpNum = 0; 3624 Value *TrueVal, *FalseVal, *Cond; 3625 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3626 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3627 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3628 return error("Invalid record"); 3629 3630 // select condition can be either i1 or [N x i1] 3631 if (VectorType* vector_type = 3632 dyn_cast<VectorType>(Cond->getType())) { 3633 // expect <n x i1> 3634 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3635 return error("Invalid type for value"); 3636 } else { 3637 // expect i1 3638 if (Cond->getType() != Type::getInt1Ty(Context)) 3639 return error("Invalid type for value"); 3640 } 3641 3642 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3643 InstructionList.push_back(I); 3644 break; 3645 } 3646 3647 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3648 unsigned OpNum = 0; 3649 Value *Vec, *Idx; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3651 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3652 return error("Invalid record"); 3653 if (!Vec->getType()->isVectorTy()) 3654 return error("Invalid type for value"); 3655 I = ExtractElementInst::Create(Vec, Idx); 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 3660 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3661 unsigned OpNum = 0; 3662 Value *Vec, *Elt, *Idx; 3663 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3664 return error("Invalid record"); 3665 if (!Vec->getType()->isVectorTy()) 3666 return error("Invalid type for value"); 3667 if (popValue(Record, OpNum, NextValueNo, 3668 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3669 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3670 return error("Invalid record"); 3671 I = InsertElementInst::Create(Vec, Elt, Idx); 3672 InstructionList.push_back(I); 3673 break; 3674 } 3675 3676 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3677 unsigned OpNum = 0; 3678 Value *Vec1, *Vec2, *Mask; 3679 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3680 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3681 return error("Invalid record"); 3682 3683 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3684 return error("Invalid record"); 3685 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3686 return error("Invalid type for value"); 3687 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3688 InstructionList.push_back(I); 3689 break; 3690 } 3691 3692 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3693 // Old form of ICmp/FCmp returning bool 3694 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3695 // both legal on vectors but had different behaviour. 3696 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3697 // FCmp/ICmp returning bool or vector of bool 3698 3699 unsigned OpNum = 0; 3700 Value *LHS, *RHS; 3701 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3702 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3703 return error("Invalid record"); 3704 3705 unsigned PredVal = Record[OpNum]; 3706 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3707 FastMathFlags FMF; 3708 if (IsFP && Record.size() > OpNum+1) 3709 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3710 3711 if (OpNum+1 != Record.size()) 3712 return error("Invalid record"); 3713 3714 if (LHS->getType()->isFPOrFPVectorTy()) 3715 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3716 else 3717 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3718 3719 if (FMF.any()) 3720 I->setFastMathFlags(FMF); 3721 InstructionList.push_back(I); 3722 break; 3723 } 3724 3725 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3726 { 3727 unsigned Size = Record.size(); 3728 if (Size == 0) { 3729 I = ReturnInst::Create(Context); 3730 InstructionList.push_back(I); 3731 break; 3732 } 3733 3734 unsigned OpNum = 0; 3735 Value *Op = nullptr; 3736 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3737 return error("Invalid record"); 3738 if (OpNum != Record.size()) 3739 return error("Invalid record"); 3740 3741 I = ReturnInst::Create(Context, Op); 3742 InstructionList.push_back(I); 3743 break; 3744 } 3745 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3746 if (Record.size() != 1 && Record.size() != 3) 3747 return error("Invalid record"); 3748 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3749 if (!TrueDest) 3750 return error("Invalid record"); 3751 3752 if (Record.size() == 1) { 3753 I = BranchInst::Create(TrueDest); 3754 InstructionList.push_back(I); 3755 } 3756 else { 3757 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3758 Value *Cond = getValue(Record, 2, NextValueNo, 3759 Type::getInt1Ty(Context)); 3760 if (!FalseDest || !Cond) 3761 return error("Invalid record"); 3762 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3763 InstructionList.push_back(I); 3764 } 3765 break; 3766 } 3767 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3768 if (Record.size() != 1 && Record.size() != 2) 3769 return error("Invalid record"); 3770 unsigned Idx = 0; 3771 Value *CleanupPad = 3772 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3773 if (!CleanupPad) 3774 return error("Invalid record"); 3775 BasicBlock *UnwindDest = nullptr; 3776 if (Record.size() == 2) { 3777 UnwindDest = getBasicBlock(Record[Idx++]); 3778 if (!UnwindDest) 3779 return error("Invalid record"); 3780 } 3781 3782 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3783 InstructionList.push_back(I); 3784 break; 3785 } 3786 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3787 if (Record.size() != 2) 3788 return error("Invalid record"); 3789 unsigned Idx = 0; 3790 Value *CatchPad = 3791 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3792 if (!CatchPad) 3793 return error("Invalid record"); 3794 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3795 if (!BB) 3796 return error("Invalid record"); 3797 3798 I = CatchReturnInst::Create(CatchPad, BB); 3799 InstructionList.push_back(I); 3800 break; 3801 } 3802 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3803 // We must have, at minimum, the outer scope and the number of arguments. 3804 if (Record.size() < 2) 3805 return error("Invalid record"); 3806 3807 unsigned Idx = 0; 3808 3809 Value *ParentPad = 3810 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3811 3812 unsigned NumHandlers = Record[Idx++]; 3813 3814 SmallVector<BasicBlock *, 2> Handlers; 3815 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3816 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3817 if (!BB) 3818 return error("Invalid record"); 3819 Handlers.push_back(BB); 3820 } 3821 3822 BasicBlock *UnwindDest = nullptr; 3823 if (Idx + 1 == Record.size()) { 3824 UnwindDest = getBasicBlock(Record[Idx++]); 3825 if (!UnwindDest) 3826 return error("Invalid record"); 3827 } 3828 3829 if (Record.size() != Idx) 3830 return error("Invalid record"); 3831 3832 auto *CatchSwitch = 3833 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3834 for (BasicBlock *Handler : Handlers) 3835 CatchSwitch->addHandler(Handler); 3836 I = CatchSwitch; 3837 InstructionList.push_back(I); 3838 break; 3839 } 3840 case bitc::FUNC_CODE_INST_CATCHPAD: 3841 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3842 // We must have, at minimum, the outer scope and the number of arguments. 3843 if (Record.size() < 2) 3844 return error("Invalid record"); 3845 3846 unsigned Idx = 0; 3847 3848 Value *ParentPad = 3849 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3850 3851 unsigned NumArgOperands = Record[Idx++]; 3852 3853 SmallVector<Value *, 2> Args; 3854 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3855 Value *Val; 3856 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3857 return error("Invalid record"); 3858 Args.push_back(Val); 3859 } 3860 3861 if (Record.size() != Idx) 3862 return error("Invalid record"); 3863 3864 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3865 I = CleanupPadInst::Create(ParentPad, Args); 3866 else 3867 I = CatchPadInst::Create(ParentPad, Args); 3868 InstructionList.push_back(I); 3869 break; 3870 } 3871 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3872 // Check magic 3873 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3874 // "New" SwitchInst format with case ranges. The changes to write this 3875 // format were reverted but we still recognize bitcode that uses it. 3876 // Hopefully someday we will have support for case ranges and can use 3877 // this format again. 3878 3879 Type *OpTy = getTypeByID(Record[1]); 3880 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3881 3882 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3883 BasicBlock *Default = getBasicBlock(Record[3]); 3884 if (!OpTy || !Cond || !Default) 3885 return error("Invalid record"); 3886 3887 unsigned NumCases = Record[4]; 3888 3889 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3890 InstructionList.push_back(SI); 3891 3892 unsigned CurIdx = 5; 3893 for (unsigned i = 0; i != NumCases; ++i) { 3894 SmallVector<ConstantInt*, 1> CaseVals; 3895 unsigned NumItems = Record[CurIdx++]; 3896 for (unsigned ci = 0; ci != NumItems; ++ci) { 3897 bool isSingleNumber = Record[CurIdx++]; 3898 3899 APInt Low; 3900 unsigned ActiveWords = 1; 3901 if (ValueBitWidth > 64) 3902 ActiveWords = Record[CurIdx++]; 3903 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3904 ValueBitWidth); 3905 CurIdx += ActiveWords; 3906 3907 if (!isSingleNumber) { 3908 ActiveWords = 1; 3909 if (ValueBitWidth > 64) 3910 ActiveWords = Record[CurIdx++]; 3911 APInt High = readWideAPInt( 3912 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3913 CurIdx += ActiveWords; 3914 3915 // FIXME: It is not clear whether values in the range should be 3916 // compared as signed or unsigned values. The partially 3917 // implemented changes that used this format in the past used 3918 // unsigned comparisons. 3919 for ( ; Low.ule(High); ++Low) 3920 CaseVals.push_back(ConstantInt::get(Context, Low)); 3921 } else 3922 CaseVals.push_back(ConstantInt::get(Context, Low)); 3923 } 3924 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3925 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3926 cve = CaseVals.end(); cvi != cve; ++cvi) 3927 SI->addCase(*cvi, DestBB); 3928 } 3929 I = SI; 3930 break; 3931 } 3932 3933 // Old SwitchInst format without case ranges. 3934 3935 if (Record.size() < 3 || (Record.size() & 1) == 0) 3936 return error("Invalid record"); 3937 Type *OpTy = getTypeByID(Record[0]); 3938 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3939 BasicBlock *Default = getBasicBlock(Record[2]); 3940 if (!OpTy || !Cond || !Default) 3941 return error("Invalid record"); 3942 unsigned NumCases = (Record.size()-3)/2; 3943 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3944 InstructionList.push_back(SI); 3945 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3946 ConstantInt *CaseVal = 3947 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3948 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3949 if (!CaseVal || !DestBB) { 3950 delete SI; 3951 return error("Invalid record"); 3952 } 3953 SI->addCase(CaseVal, DestBB); 3954 } 3955 I = SI; 3956 break; 3957 } 3958 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3959 if (Record.size() < 2) 3960 return error("Invalid record"); 3961 Type *OpTy = getTypeByID(Record[0]); 3962 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3963 if (!OpTy || !Address) 3964 return error("Invalid record"); 3965 unsigned NumDests = Record.size()-2; 3966 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3967 InstructionList.push_back(IBI); 3968 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3969 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3970 IBI->addDestination(DestBB); 3971 } else { 3972 delete IBI; 3973 return error("Invalid record"); 3974 } 3975 } 3976 I = IBI; 3977 break; 3978 } 3979 3980 case bitc::FUNC_CODE_INST_INVOKE: { 3981 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3982 if (Record.size() < 4) 3983 return error("Invalid record"); 3984 unsigned OpNum = 0; 3985 AttributeList PAL = getAttributes(Record[OpNum++]); 3986 unsigned CCInfo = Record[OpNum++]; 3987 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3988 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3989 3990 FunctionType *FTy = nullptr; 3991 if (CCInfo >> 13 & 1 && 3992 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3993 return error("Explicit invoke type is not a function type"); 3994 3995 Value *Callee; 3996 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3997 return error("Invalid record"); 3998 3999 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4000 if (!CalleeTy) 4001 return error("Callee is not a pointer"); 4002 if (!FTy) { 4003 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4004 if (!FTy) 4005 return error("Callee is not of pointer to function type"); 4006 } else if (CalleeTy->getElementType() != FTy) 4007 return error("Explicit invoke type does not match pointee type of " 4008 "callee operand"); 4009 if (Record.size() < FTy->getNumParams() + OpNum) 4010 return error("Insufficient operands to call"); 4011 4012 SmallVector<Value*, 16> Ops; 4013 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4014 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4015 FTy->getParamType(i))); 4016 if (!Ops.back()) 4017 return error("Invalid record"); 4018 } 4019 4020 if (!FTy->isVarArg()) { 4021 if (Record.size() != OpNum) 4022 return error("Invalid record"); 4023 } else { 4024 // Read type/value pairs for varargs params. 4025 while (OpNum != Record.size()) { 4026 Value *Op; 4027 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4028 return error("Invalid record"); 4029 Ops.push_back(Op); 4030 } 4031 } 4032 4033 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4034 OperandBundles.clear(); 4035 InstructionList.push_back(I); 4036 cast<InvokeInst>(I)->setCallingConv( 4037 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4038 cast<InvokeInst>(I)->setAttributes(PAL); 4039 break; 4040 } 4041 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4042 unsigned Idx = 0; 4043 Value *Val = nullptr; 4044 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4045 return error("Invalid record"); 4046 I = ResumeInst::Create(Val); 4047 InstructionList.push_back(I); 4048 break; 4049 } 4050 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4051 I = new UnreachableInst(Context); 4052 InstructionList.push_back(I); 4053 break; 4054 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4055 if (Record.size() < 1 || ((Record.size()-1)&1)) 4056 return error("Invalid record"); 4057 Type *Ty = getTypeByID(Record[0]); 4058 if (!Ty) 4059 return error("Invalid record"); 4060 4061 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4062 InstructionList.push_back(PN); 4063 4064 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4065 Value *V; 4066 // With the new function encoding, it is possible that operands have 4067 // negative IDs (for forward references). Use a signed VBR 4068 // representation to keep the encoding small. 4069 if (UseRelativeIDs) 4070 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4071 else 4072 V = getValue(Record, 1+i, NextValueNo, Ty); 4073 BasicBlock *BB = getBasicBlock(Record[2+i]); 4074 if (!V || !BB) 4075 return error("Invalid record"); 4076 PN->addIncoming(V, BB); 4077 } 4078 I = PN; 4079 break; 4080 } 4081 4082 case bitc::FUNC_CODE_INST_LANDINGPAD: 4083 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4084 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4085 unsigned Idx = 0; 4086 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4087 if (Record.size() < 3) 4088 return error("Invalid record"); 4089 } else { 4090 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4091 if (Record.size() < 4) 4092 return error("Invalid record"); 4093 } 4094 Type *Ty = getTypeByID(Record[Idx++]); 4095 if (!Ty) 4096 return error("Invalid record"); 4097 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4098 Value *PersFn = nullptr; 4099 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4100 return error("Invalid record"); 4101 4102 if (!F->hasPersonalityFn()) 4103 F->setPersonalityFn(cast<Constant>(PersFn)); 4104 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4105 return error("Personality function mismatch"); 4106 } 4107 4108 bool IsCleanup = !!Record[Idx++]; 4109 unsigned NumClauses = Record[Idx++]; 4110 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4111 LP->setCleanup(IsCleanup); 4112 for (unsigned J = 0; J != NumClauses; ++J) { 4113 LandingPadInst::ClauseType CT = 4114 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4115 Value *Val; 4116 4117 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4118 delete LP; 4119 return error("Invalid record"); 4120 } 4121 4122 assert((CT != LandingPadInst::Catch || 4123 !isa<ArrayType>(Val->getType())) && 4124 "Catch clause has a invalid type!"); 4125 assert((CT != LandingPadInst::Filter || 4126 isa<ArrayType>(Val->getType())) && 4127 "Filter clause has invalid type!"); 4128 LP->addClause(cast<Constant>(Val)); 4129 } 4130 4131 I = LP; 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 4136 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4137 if (Record.size() != 4) 4138 return error("Invalid record"); 4139 uint64_t AlignRecord = Record[3]; 4140 const uint64_t InAllocaMask = uint64_t(1) << 5; 4141 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4142 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4143 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4144 SwiftErrorMask; 4145 bool InAlloca = AlignRecord & InAllocaMask; 4146 bool SwiftError = AlignRecord & SwiftErrorMask; 4147 Type *Ty = getTypeByID(Record[0]); 4148 if ((AlignRecord & ExplicitTypeMask) == 0) { 4149 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4150 if (!PTy) 4151 return error("Old-style alloca with a non-pointer type"); 4152 Ty = PTy->getElementType(); 4153 } 4154 Type *OpTy = getTypeByID(Record[1]); 4155 Value *Size = getFnValueByID(Record[2], OpTy); 4156 unsigned Align; 4157 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4158 return Err; 4159 } 4160 if (!Ty || !Size) 4161 return error("Invalid record"); 4162 4163 // FIXME: Make this an optional field. 4164 const DataLayout &DL = TheModule->getDataLayout(); 4165 unsigned AS = DL.getAllocaAddrSpace(); 4166 4167 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4168 AI->setUsedWithInAlloca(InAlloca); 4169 AI->setSwiftError(SwiftError); 4170 I = AI; 4171 InstructionList.push_back(I); 4172 break; 4173 } 4174 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4175 unsigned OpNum = 0; 4176 Value *Op; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4178 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4179 return error("Invalid record"); 4180 4181 Type *Ty = nullptr; 4182 if (OpNum + 3 == Record.size()) 4183 Ty = getTypeByID(Record[OpNum++]); 4184 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4185 return Err; 4186 if (!Ty) 4187 Ty = cast<PointerType>(Op->getType())->getElementType(); 4188 4189 unsigned Align; 4190 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4191 return Err; 4192 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4193 4194 InstructionList.push_back(I); 4195 break; 4196 } 4197 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4198 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4199 unsigned OpNum = 0; 4200 Value *Op; 4201 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4202 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4203 return error("Invalid record"); 4204 4205 Type *Ty = nullptr; 4206 if (OpNum + 5 == Record.size()) 4207 Ty = getTypeByID(Record[OpNum++]); 4208 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4209 return Err; 4210 if (!Ty) 4211 Ty = cast<PointerType>(Op->getType())->getElementType(); 4212 4213 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4214 if (Ordering == AtomicOrdering::NotAtomic || 4215 Ordering == AtomicOrdering::Release || 4216 Ordering == AtomicOrdering::AcquireRelease) 4217 return error("Invalid record"); 4218 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4219 return error("Invalid record"); 4220 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4221 4222 unsigned Align; 4223 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4224 return Err; 4225 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4226 4227 InstructionList.push_back(I); 4228 break; 4229 } 4230 case bitc::FUNC_CODE_INST_STORE: 4231 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4232 unsigned OpNum = 0; 4233 Value *Val, *Ptr; 4234 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4235 (BitCode == bitc::FUNC_CODE_INST_STORE 4236 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4237 : popValue(Record, OpNum, NextValueNo, 4238 cast<PointerType>(Ptr->getType())->getElementType(), 4239 Val)) || 4240 OpNum + 2 != Record.size()) 4241 return error("Invalid record"); 4242 4243 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4244 return Err; 4245 unsigned Align; 4246 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4247 return Err; 4248 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 case bitc::FUNC_CODE_INST_STOREATOMIC: 4253 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4254 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4255 unsigned OpNum = 0; 4256 Value *Val, *Ptr; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4258 !isa<PointerType>(Ptr->getType()) || 4259 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4260 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4261 : popValue(Record, OpNum, NextValueNo, 4262 cast<PointerType>(Ptr->getType())->getElementType(), 4263 Val)) || 4264 OpNum + 4 != Record.size()) 4265 return error("Invalid record"); 4266 4267 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4268 return Err; 4269 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4270 if (Ordering == AtomicOrdering::NotAtomic || 4271 Ordering == AtomicOrdering::Acquire || 4272 Ordering == AtomicOrdering::AcquireRelease) 4273 return error("Invalid record"); 4274 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4275 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4276 return error("Invalid record"); 4277 4278 unsigned Align; 4279 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4280 return Err; 4281 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4286 case bitc::FUNC_CODE_INST_CMPXCHG: { 4287 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4288 // failureordering?, isweak?] 4289 unsigned OpNum = 0; 4290 Value *Ptr, *Cmp, *New; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4292 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4293 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4294 : popValue(Record, OpNum, NextValueNo, 4295 cast<PointerType>(Ptr->getType())->getElementType(), 4296 Cmp)) || 4297 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4298 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4299 return error("Invalid record"); 4300 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4301 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4302 SuccessOrdering == AtomicOrdering::Unordered) 4303 return error("Invalid record"); 4304 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4305 4306 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4307 return Err; 4308 AtomicOrdering FailureOrdering; 4309 if (Record.size() < 7) 4310 FailureOrdering = 4311 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4312 else 4313 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4314 4315 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4316 SynchScope); 4317 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4318 4319 if (Record.size() < 8) { 4320 // Before weak cmpxchgs existed, the instruction simply returned the 4321 // value loaded from memory, so bitcode files from that era will be 4322 // expecting the first component of a modern cmpxchg. 4323 CurBB->getInstList().push_back(I); 4324 I = ExtractValueInst::Create(I, 0); 4325 } else { 4326 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4327 } 4328 4329 InstructionList.push_back(I); 4330 break; 4331 } 4332 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4333 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4334 unsigned OpNum = 0; 4335 Value *Ptr, *Val; 4336 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4337 !isa<PointerType>(Ptr->getType()) || 4338 popValue(Record, OpNum, NextValueNo, 4339 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4340 OpNum+4 != Record.size()) 4341 return error("Invalid record"); 4342 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4343 if (Operation < AtomicRMWInst::FIRST_BINOP || 4344 Operation > AtomicRMWInst::LAST_BINOP) 4345 return error("Invalid record"); 4346 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4347 if (Ordering == AtomicOrdering::NotAtomic || 4348 Ordering == AtomicOrdering::Unordered) 4349 return error("Invalid record"); 4350 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4351 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4352 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4357 if (2 != Record.size()) 4358 return error("Invalid record"); 4359 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4360 if (Ordering == AtomicOrdering::NotAtomic || 4361 Ordering == AtomicOrdering::Unordered || 4362 Ordering == AtomicOrdering::Monotonic) 4363 return error("Invalid record"); 4364 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4365 I = new FenceInst(Context, Ordering, SynchScope); 4366 InstructionList.push_back(I); 4367 break; 4368 } 4369 case bitc::FUNC_CODE_INST_CALL: { 4370 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4371 if (Record.size() < 3) 4372 return error("Invalid record"); 4373 4374 unsigned OpNum = 0; 4375 AttributeList PAL = getAttributes(Record[OpNum++]); 4376 unsigned CCInfo = Record[OpNum++]; 4377 4378 FastMathFlags FMF; 4379 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4380 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4381 if (!FMF.any()) 4382 return error("Fast math flags indicator set for call with no FMF"); 4383 } 4384 4385 FunctionType *FTy = nullptr; 4386 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4387 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4388 return error("Explicit call type is not a function type"); 4389 4390 Value *Callee; 4391 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4392 return error("Invalid record"); 4393 4394 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4395 if (!OpTy) 4396 return error("Callee is not a pointer type"); 4397 if (!FTy) { 4398 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4399 if (!FTy) 4400 return error("Callee is not of pointer to function type"); 4401 } else if (OpTy->getElementType() != FTy) 4402 return error("Explicit call type does not match pointee type of " 4403 "callee operand"); 4404 if (Record.size() < FTy->getNumParams() + OpNum) 4405 return error("Insufficient operands to call"); 4406 4407 SmallVector<Value*, 16> Args; 4408 // Read the fixed params. 4409 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4410 if (FTy->getParamType(i)->isLabelTy()) 4411 Args.push_back(getBasicBlock(Record[OpNum])); 4412 else 4413 Args.push_back(getValue(Record, OpNum, NextValueNo, 4414 FTy->getParamType(i))); 4415 if (!Args.back()) 4416 return error("Invalid record"); 4417 } 4418 4419 // Read type/value pairs for varargs params. 4420 if (!FTy->isVarArg()) { 4421 if (OpNum != Record.size()) 4422 return error("Invalid record"); 4423 } else { 4424 while (OpNum != Record.size()) { 4425 Value *Op; 4426 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4427 return error("Invalid record"); 4428 Args.push_back(Op); 4429 } 4430 } 4431 4432 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4433 OperandBundles.clear(); 4434 InstructionList.push_back(I); 4435 cast<CallInst>(I)->setCallingConv( 4436 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4437 CallInst::TailCallKind TCK = CallInst::TCK_None; 4438 if (CCInfo & 1 << bitc::CALL_TAIL) 4439 TCK = CallInst::TCK_Tail; 4440 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4441 TCK = CallInst::TCK_MustTail; 4442 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4443 TCK = CallInst::TCK_NoTail; 4444 cast<CallInst>(I)->setTailCallKind(TCK); 4445 cast<CallInst>(I)->setAttributes(PAL); 4446 if (FMF.any()) { 4447 if (!isa<FPMathOperator>(I)) 4448 return error("Fast-math-flags specified for call without " 4449 "floating-point scalar or vector return type"); 4450 I->setFastMathFlags(FMF); 4451 } 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4455 if (Record.size() < 3) 4456 return error("Invalid record"); 4457 Type *OpTy = getTypeByID(Record[0]); 4458 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4459 Type *ResTy = getTypeByID(Record[2]); 4460 if (!OpTy || !Op || !ResTy) 4461 return error("Invalid record"); 4462 I = new VAArgInst(Op, ResTy); 4463 InstructionList.push_back(I); 4464 break; 4465 } 4466 4467 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4468 // A call or an invoke can be optionally prefixed with some variable 4469 // number of operand bundle blocks. These blocks are read into 4470 // OperandBundles and consumed at the next call or invoke instruction. 4471 4472 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4473 return error("Invalid record"); 4474 4475 std::vector<Value *> Inputs; 4476 4477 unsigned OpNum = 1; 4478 while (OpNum != Record.size()) { 4479 Value *Op; 4480 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4481 return error("Invalid record"); 4482 Inputs.push_back(Op); 4483 } 4484 4485 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4486 continue; 4487 } 4488 } 4489 4490 // Add instruction to end of current BB. If there is no current BB, reject 4491 // this file. 4492 if (!CurBB) { 4493 delete I; 4494 return error("Invalid instruction with no BB"); 4495 } 4496 if (!OperandBundles.empty()) { 4497 delete I; 4498 return error("Operand bundles found with no consumer"); 4499 } 4500 CurBB->getInstList().push_back(I); 4501 4502 // If this was a terminator instruction, move to the next block. 4503 if (isa<TerminatorInst>(I)) { 4504 ++CurBBNo; 4505 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4506 } 4507 4508 // Non-void values get registered in the value table for future use. 4509 if (I && !I->getType()->isVoidTy()) 4510 ValueList.assignValue(I, NextValueNo++); 4511 } 4512 4513 OutOfRecordLoop: 4514 4515 if (!OperandBundles.empty()) 4516 return error("Operand bundles found with no consumer"); 4517 4518 // Check the function list for unresolved values. 4519 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4520 if (!A->getParent()) { 4521 // We found at least one unresolved value. Nuke them all to avoid leaks. 4522 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4523 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4524 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4525 delete A; 4526 } 4527 } 4528 return error("Never resolved value found in function"); 4529 } 4530 } 4531 4532 // Unexpected unresolved metadata about to be dropped. 4533 if (MDLoader->hasFwdRefs()) 4534 return error("Invalid function metadata: outgoing forward refs"); 4535 4536 // Trim the value list down to the size it was before we parsed this function. 4537 ValueList.shrinkTo(ModuleValueListSize); 4538 MDLoader->shrinkTo(ModuleMDLoaderSize); 4539 std::vector<BasicBlock*>().swap(FunctionBBs); 4540 return Error::success(); 4541 } 4542 4543 /// Find the function body in the bitcode stream 4544 Error BitcodeReader::findFunctionInStream( 4545 Function *F, 4546 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4547 while (DeferredFunctionInfoIterator->second == 0) { 4548 // This is the fallback handling for the old format bitcode that 4549 // didn't contain the function index in the VST, or when we have 4550 // an anonymous function which would not have a VST entry. 4551 // Assert that we have one of those two cases. 4552 assert(VSTOffset == 0 || !F->hasName()); 4553 // Parse the next body in the stream and set its position in the 4554 // DeferredFunctionInfo map. 4555 if (Error Err = rememberAndSkipFunctionBodies()) 4556 return Err; 4557 } 4558 return Error::success(); 4559 } 4560 4561 //===----------------------------------------------------------------------===// 4562 // GVMaterializer implementation 4563 //===----------------------------------------------------------------------===// 4564 4565 Error BitcodeReader::materialize(GlobalValue *GV) { 4566 Function *F = dyn_cast<Function>(GV); 4567 // If it's not a function or is already material, ignore the request. 4568 if (!F || !F->isMaterializable()) 4569 return Error::success(); 4570 4571 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4572 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4573 // If its position is recorded as 0, its body is somewhere in the stream 4574 // but we haven't seen it yet. 4575 if (DFII->second == 0) 4576 if (Error Err = findFunctionInStream(F, DFII)) 4577 return Err; 4578 4579 // Materialize metadata before parsing any function bodies. 4580 if (Error Err = materializeMetadata()) 4581 return Err; 4582 4583 // Move the bit stream to the saved position of the deferred function body. 4584 Stream.JumpToBit(DFII->second); 4585 4586 if (Error Err = parseFunctionBody(F)) 4587 return Err; 4588 F->setIsMaterializable(false); 4589 4590 if (StripDebugInfo) 4591 stripDebugInfo(*F); 4592 4593 // Upgrade any old intrinsic calls in the function. 4594 for (auto &I : UpgradedIntrinsics) { 4595 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4596 UI != UE;) { 4597 User *U = *UI; 4598 ++UI; 4599 if (CallInst *CI = dyn_cast<CallInst>(U)) 4600 UpgradeIntrinsicCall(CI, I.second); 4601 } 4602 } 4603 4604 // Update calls to the remangled intrinsics 4605 for (auto &I : RemangledIntrinsics) 4606 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4607 UI != UE;) 4608 // Don't expect any other users than call sites 4609 CallSite(*UI++).setCalledFunction(I.second); 4610 4611 // Finish fn->subprogram upgrade for materialized functions. 4612 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4613 F->setSubprogram(SP); 4614 4615 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4616 if (!MDLoader->isStrippingTBAA()) { 4617 for (auto &I : instructions(F)) { 4618 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4619 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4620 continue; 4621 MDLoader->setStripTBAA(true); 4622 stripTBAA(F->getParent()); 4623 } 4624 } 4625 4626 // Bring in any functions that this function forward-referenced via 4627 // blockaddresses. 4628 return materializeForwardReferencedFunctions(); 4629 } 4630 4631 Error BitcodeReader::materializeModule() { 4632 if (Error Err = materializeMetadata()) 4633 return Err; 4634 4635 // Promise to materialize all forward references. 4636 WillMaterializeAllForwardRefs = true; 4637 4638 // Iterate over the module, deserializing any functions that are still on 4639 // disk. 4640 for (Function &F : *TheModule) { 4641 if (Error Err = materialize(&F)) 4642 return Err; 4643 } 4644 // At this point, if there are any function bodies, parse the rest of 4645 // the bits in the module past the last function block we have recorded 4646 // through either lazy scanning or the VST. 4647 if (LastFunctionBlockBit || NextUnreadBit) 4648 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4649 ? LastFunctionBlockBit 4650 : NextUnreadBit)) 4651 return Err; 4652 4653 // Check that all block address forward references got resolved (as we 4654 // promised above). 4655 if (!BasicBlockFwdRefs.empty()) 4656 return error("Never resolved function from blockaddress"); 4657 4658 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4659 // delete the old functions to clean up. We can't do this unless the entire 4660 // module is materialized because there could always be another function body 4661 // with calls to the old function. 4662 for (auto &I : UpgradedIntrinsics) { 4663 for (auto *U : I.first->users()) { 4664 if (CallInst *CI = dyn_cast<CallInst>(U)) 4665 UpgradeIntrinsicCall(CI, I.second); 4666 } 4667 if (!I.first->use_empty()) 4668 I.first->replaceAllUsesWith(I.second); 4669 I.first->eraseFromParent(); 4670 } 4671 UpgradedIntrinsics.clear(); 4672 // Do the same for remangled intrinsics 4673 for (auto &I : RemangledIntrinsics) { 4674 I.first->replaceAllUsesWith(I.second); 4675 I.first->eraseFromParent(); 4676 } 4677 RemangledIntrinsics.clear(); 4678 4679 UpgradeDebugInfo(*TheModule); 4680 4681 UpgradeModuleFlags(*TheModule); 4682 return Error::success(); 4683 } 4684 4685 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4686 return IdentifiedStructTypes; 4687 } 4688 4689 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4690 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4691 StringRef ModulePath, unsigned ModuleId) 4692 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4693 ModulePath(ModulePath), ModuleId(ModuleId) {} 4694 4695 ModulePathStringTableTy::iterator 4696 ModuleSummaryIndexBitcodeReader::addThisModulePath() { 4697 return TheIndex.addModulePath(ModulePath, ModuleId); 4698 } 4699 4700 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4701 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4702 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4703 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4704 return VGI->second; 4705 } 4706 4707 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4708 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4709 StringRef SourceFileName) { 4710 std::string GlobalId = 4711 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4712 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4713 auto OriginalNameID = ValueGUID; 4714 if (GlobalValue::isLocalLinkage(Linkage)) 4715 OriginalNameID = GlobalValue::getGUID(ValueName); 4716 if (PrintSummaryGUIDs) 4717 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4718 << ValueName << "\n"; 4719 ValueIdToCallGraphGUIDMap[ValueID] = 4720 std::make_pair(ValueGUID, OriginalNameID); 4721 } 4722 4723 // Specialized value symbol table parser used when reading module index 4724 // blocks where we don't actually create global values. The parsed information 4725 // is saved in the bitcode reader for use when later parsing summaries. 4726 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4727 uint64_t Offset, 4728 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4729 // With a strtab the VST is not required to parse the summary. 4730 if (UseStrtab) 4731 return Error::success(); 4732 4733 assert(Offset > 0 && "Expected non-zero VST offset"); 4734 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4735 4736 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4737 return error("Invalid record"); 4738 4739 SmallVector<uint64_t, 64> Record; 4740 4741 // Read all the records for this value table. 4742 SmallString<128> ValueName; 4743 4744 while (true) { 4745 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4746 4747 switch (Entry.Kind) { 4748 case BitstreamEntry::SubBlock: // Handled for us already. 4749 case BitstreamEntry::Error: 4750 return error("Malformed block"); 4751 case BitstreamEntry::EndBlock: 4752 // Done parsing VST, jump back to wherever we came from. 4753 Stream.JumpToBit(CurrentBit); 4754 return Error::success(); 4755 case BitstreamEntry::Record: 4756 // The interesting case. 4757 break; 4758 } 4759 4760 // Read a record. 4761 Record.clear(); 4762 switch (Stream.readRecord(Entry.ID, Record)) { 4763 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4764 break; 4765 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4766 if (convertToString(Record, 1, ValueName)) 4767 return error("Invalid record"); 4768 unsigned ValueID = Record[0]; 4769 assert(!SourceFileName.empty()); 4770 auto VLI = ValueIdToLinkageMap.find(ValueID); 4771 assert(VLI != ValueIdToLinkageMap.end() && 4772 "No linkage found for VST entry?"); 4773 auto Linkage = VLI->second; 4774 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4775 ValueName.clear(); 4776 break; 4777 } 4778 case bitc::VST_CODE_FNENTRY: { 4779 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4780 if (convertToString(Record, 2, ValueName)) 4781 return error("Invalid record"); 4782 unsigned ValueID = Record[0]; 4783 assert(!SourceFileName.empty()); 4784 auto VLI = ValueIdToLinkageMap.find(ValueID); 4785 assert(VLI != ValueIdToLinkageMap.end() && 4786 "No linkage found for VST entry?"); 4787 auto Linkage = VLI->second; 4788 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4789 ValueName.clear(); 4790 break; 4791 } 4792 case bitc::VST_CODE_COMBINED_ENTRY: { 4793 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4794 unsigned ValueID = Record[0]; 4795 GlobalValue::GUID RefGUID = Record[1]; 4796 // The "original name", which is the second value of the pair will be 4797 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4798 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4799 break; 4800 } 4801 } 4802 } 4803 } 4804 4805 // Parse just the blocks needed for building the index out of the module. 4806 // At the end of this routine the module Index is populated with a map 4807 // from global value id to GlobalValueSummary objects. 4808 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4809 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4810 return error("Invalid record"); 4811 4812 SmallVector<uint64_t, 64> Record; 4813 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4814 unsigned ValueId = 0; 4815 4816 // Read the index for this module. 4817 while (true) { 4818 BitstreamEntry Entry = Stream.advance(); 4819 4820 switch (Entry.Kind) { 4821 case BitstreamEntry::Error: 4822 return error("Malformed block"); 4823 case BitstreamEntry::EndBlock: 4824 return Error::success(); 4825 4826 case BitstreamEntry::SubBlock: 4827 switch (Entry.ID) { 4828 default: // Skip unknown content. 4829 if (Stream.SkipBlock()) 4830 return error("Invalid record"); 4831 break; 4832 case bitc::BLOCKINFO_BLOCK_ID: 4833 // Need to parse these to get abbrev ids (e.g. for VST) 4834 if (readBlockInfo()) 4835 return error("Malformed block"); 4836 break; 4837 case bitc::VALUE_SYMTAB_BLOCK_ID: 4838 // Should have been parsed earlier via VSTOffset, unless there 4839 // is no summary section. 4840 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4841 !SeenGlobalValSummary) && 4842 "Expected early VST parse via VSTOffset record"); 4843 if (Stream.SkipBlock()) 4844 return error("Invalid record"); 4845 break; 4846 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4847 assert(!SeenValueSymbolTable && 4848 "Already read VST when parsing summary block?"); 4849 // We might not have a VST if there were no values in the 4850 // summary. An empty summary block generated when we are 4851 // performing ThinLTO compiles so we don't later invoke 4852 // the regular LTO process on them. 4853 if (VSTOffset > 0) { 4854 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4855 return Err; 4856 SeenValueSymbolTable = true; 4857 } 4858 SeenGlobalValSummary = true; 4859 if (Error Err = parseEntireSummary()) 4860 return Err; 4861 break; 4862 case bitc::MODULE_STRTAB_BLOCK_ID: 4863 if (Error Err = parseModuleStringTable()) 4864 return Err; 4865 break; 4866 } 4867 continue; 4868 4869 case BitstreamEntry::Record: { 4870 Record.clear(); 4871 auto BitCode = Stream.readRecord(Entry.ID, Record); 4872 switch (BitCode) { 4873 default: 4874 break; // Default behavior, ignore unknown content. 4875 case bitc::MODULE_CODE_VERSION: { 4876 if (Error Err = parseVersionRecord(Record).takeError()) 4877 return Err; 4878 break; 4879 } 4880 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4881 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4882 SmallString<128> ValueName; 4883 if (convertToString(Record, 0, ValueName)) 4884 return error("Invalid record"); 4885 SourceFileName = ValueName.c_str(); 4886 break; 4887 } 4888 /// MODULE_CODE_HASH: [5*i32] 4889 case bitc::MODULE_CODE_HASH: { 4890 if (Record.size() != 5) 4891 return error("Invalid hash length " + Twine(Record.size()).str()); 4892 auto &Hash = addThisModulePath()->second.second; 4893 int Pos = 0; 4894 for (auto &Val : Record) { 4895 assert(!(Val >> 32) && "Unexpected high bits set"); 4896 Hash[Pos++] = Val; 4897 } 4898 break; 4899 } 4900 /// MODULE_CODE_VSTOFFSET: [offset] 4901 case bitc::MODULE_CODE_VSTOFFSET: 4902 if (Record.size() < 1) 4903 return error("Invalid record"); 4904 // Note that we subtract 1 here because the offset is relative to one 4905 // word before the start of the identification or module block, which 4906 // was historically always the start of the regular bitcode header. 4907 VSTOffset = Record[0] - 1; 4908 break; 4909 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4910 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 4911 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4912 // v2: [strtab offset, strtab size, v1] 4913 case bitc::MODULE_CODE_GLOBALVAR: 4914 case bitc::MODULE_CODE_FUNCTION: 4915 case bitc::MODULE_CODE_ALIAS: { 4916 StringRef Name; 4917 ArrayRef<uint64_t> GVRecord; 4918 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 4919 if (GVRecord.size() <= 3) 4920 return error("Invalid record"); 4921 uint64_t RawLinkage = GVRecord[3]; 4922 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4923 if (!UseStrtab) { 4924 ValueIdToLinkageMap[ValueId++] = Linkage; 4925 break; 4926 } 4927 4928 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 4929 break; 4930 } 4931 } 4932 } 4933 continue; 4934 } 4935 } 4936 } 4937 4938 std::vector<ValueInfo> 4939 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4940 std::vector<ValueInfo> Ret; 4941 Ret.reserve(Record.size()); 4942 for (uint64_t RefValueId : Record) 4943 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4944 return Ret; 4945 } 4946 4947 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4948 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4949 std::vector<FunctionSummary::EdgeTy> Ret; 4950 Ret.reserve(Record.size()); 4951 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4952 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4953 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4954 if (IsOldProfileFormat) { 4955 I += 1; // Skip old callsitecount field 4956 if (HasProfile) 4957 I += 1; // Skip old profilecount field 4958 } else if (HasProfile) 4959 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4960 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4961 } 4962 return Ret; 4963 } 4964 4965 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4966 // objects in the index. 4967 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 4968 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4969 return error("Invalid record"); 4970 SmallVector<uint64_t, 64> Record; 4971 4972 // Parse version 4973 { 4974 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4975 if (Entry.Kind != BitstreamEntry::Record) 4976 return error("Invalid Summary Block: record for version expected"); 4977 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4978 return error("Invalid Summary Block: version expected"); 4979 } 4980 const uint64_t Version = Record[0]; 4981 const bool IsOldProfileFormat = Version == 1; 4982 if (Version < 1 || Version > 3) 4983 return error("Invalid summary version " + Twine(Version) + 4984 ", 1, 2 or 3 expected"); 4985 Record.clear(); 4986 4987 // Keep around the last seen summary to be used when we see an optional 4988 // "OriginalName" attachement. 4989 GlobalValueSummary *LastSeenSummary = nullptr; 4990 GlobalValue::GUID LastSeenGUID = 0; 4991 4992 // We can expect to see any number of type ID information records before 4993 // each function summary records; these variables store the information 4994 // collected so far so that it can be used to create the summary object. 4995 std::vector<GlobalValue::GUID> PendingTypeTests; 4996 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 4997 PendingTypeCheckedLoadVCalls; 4998 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 4999 PendingTypeCheckedLoadConstVCalls; 5000 5001 while (true) { 5002 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5003 5004 switch (Entry.Kind) { 5005 case BitstreamEntry::SubBlock: // Handled for us already. 5006 case BitstreamEntry::Error: 5007 return error("Malformed block"); 5008 case BitstreamEntry::EndBlock: 5009 return Error::success(); 5010 case BitstreamEntry::Record: 5011 // The interesting case. 5012 break; 5013 } 5014 5015 // Read a record. The record format depends on whether this 5016 // is a per-module index or a combined index file. In the per-module 5017 // case the records contain the associated value's ID for correlation 5018 // with VST entries. In the combined index the correlation is done 5019 // via the bitcode offset of the summary records (which were saved 5020 // in the combined index VST entries). The records also contain 5021 // information used for ThinLTO renaming and importing. 5022 Record.clear(); 5023 auto BitCode = Stream.readRecord(Entry.ID, Record); 5024 switch (BitCode) { 5025 default: // Default behavior: ignore. 5026 break; 5027 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5028 uint64_t ValueID = Record[0]; 5029 GlobalValue::GUID RefGUID = Record[1]; 5030 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5031 break; 5032 } 5033 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 5034 // n x (valueid)] 5035 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 5036 // numrefs x valueid, 5037 // n x (valueid, hotness)] 5038 case bitc::FS_PERMODULE: 5039 case bitc::FS_PERMODULE_PROFILE: { 5040 unsigned ValueID = Record[0]; 5041 uint64_t RawFlags = Record[1]; 5042 unsigned InstCount = Record[2]; 5043 unsigned NumRefs = Record[3]; 5044 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5045 // The module path string ref set in the summary must be owned by the 5046 // index's module string table. Since we don't have a module path 5047 // string table section in the per-module index, we create a single 5048 // module path string table entry with an empty (0) ID to take 5049 // ownership. 5050 static int RefListStartIndex = 4; 5051 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5052 assert(Record.size() >= RefListStartIndex + NumRefs && 5053 "Record size inconsistent with number of references"); 5054 std::vector<ValueInfo> Refs = makeRefList( 5055 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5056 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5057 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5058 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5059 IsOldProfileFormat, HasProfile); 5060 auto FS = llvm::make_unique<FunctionSummary>( 5061 Flags, InstCount, std::move(Refs), std::move(Calls), 5062 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5063 std::move(PendingTypeCheckedLoadVCalls), 5064 std::move(PendingTypeTestAssumeConstVCalls), 5065 std::move(PendingTypeCheckedLoadConstVCalls)); 5066 PendingTypeTests.clear(); 5067 PendingTypeTestAssumeVCalls.clear(); 5068 PendingTypeCheckedLoadVCalls.clear(); 5069 PendingTypeTestAssumeConstVCalls.clear(); 5070 PendingTypeCheckedLoadConstVCalls.clear(); 5071 auto GUID = getGUIDFromValueId(ValueID); 5072 FS->setModulePath(addThisModulePath()->first()); 5073 FS->setOriginalName(GUID.second); 5074 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5075 break; 5076 } 5077 // FS_ALIAS: [valueid, flags, valueid] 5078 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5079 // they expect all aliasee summaries to be available. 5080 case bitc::FS_ALIAS: { 5081 unsigned ValueID = Record[0]; 5082 uint64_t RawFlags = Record[1]; 5083 unsigned AliaseeID = Record[2]; 5084 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5085 auto AS = 5086 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5087 // The module path string ref set in the summary must be owned by the 5088 // index's module string table. Since we don't have a module path 5089 // string table section in the per-module index, we create a single 5090 // module path string table entry with an empty (0) ID to take 5091 // ownership. 5092 AS->setModulePath(addThisModulePath()->first()); 5093 5094 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 5095 auto AliaseeInModule = 5096 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5097 if (!AliaseeInModule) 5098 return error("Alias expects aliasee summary to be parsed"); 5099 AS->setAliasee(AliaseeInModule); 5100 5101 auto GUID = getGUIDFromValueId(ValueID); 5102 AS->setOriginalName(GUID.second); 5103 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5104 break; 5105 } 5106 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5107 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5108 unsigned ValueID = Record[0]; 5109 uint64_t RawFlags = Record[1]; 5110 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5111 std::vector<ValueInfo> Refs = 5112 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5113 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5114 FS->setModulePath(addThisModulePath()->first()); 5115 auto GUID = getGUIDFromValueId(ValueID); 5116 FS->setOriginalName(GUID.second); 5117 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5118 break; 5119 } 5120 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 5121 // numrefs x valueid, n x (valueid)] 5122 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 5123 // numrefs x valueid, n x (valueid, hotness)] 5124 case bitc::FS_COMBINED: 5125 case bitc::FS_COMBINED_PROFILE: { 5126 unsigned ValueID = Record[0]; 5127 uint64_t ModuleId = Record[1]; 5128 uint64_t RawFlags = Record[2]; 5129 unsigned InstCount = Record[3]; 5130 unsigned NumRefs = Record[4]; 5131 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5132 static int RefListStartIndex = 5; 5133 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5134 assert(Record.size() >= RefListStartIndex + NumRefs && 5135 "Record size inconsistent with number of references"); 5136 std::vector<ValueInfo> Refs = makeRefList( 5137 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5138 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5139 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5140 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5141 IsOldProfileFormat, HasProfile); 5142 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5143 auto FS = llvm::make_unique<FunctionSummary>( 5144 Flags, InstCount, std::move(Refs), std::move(Edges), 5145 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5146 std::move(PendingTypeCheckedLoadVCalls), 5147 std::move(PendingTypeTestAssumeConstVCalls), 5148 std::move(PendingTypeCheckedLoadConstVCalls)); 5149 PendingTypeTests.clear(); 5150 PendingTypeTestAssumeVCalls.clear(); 5151 PendingTypeCheckedLoadVCalls.clear(); 5152 PendingTypeTestAssumeConstVCalls.clear(); 5153 PendingTypeCheckedLoadConstVCalls.clear(); 5154 LastSeenSummary = FS.get(); 5155 LastSeenGUID = GUID; 5156 FS->setModulePath(ModuleIdMap[ModuleId]); 5157 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5158 break; 5159 } 5160 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5161 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5162 // they expect all aliasee summaries to be available. 5163 case bitc::FS_COMBINED_ALIAS: { 5164 unsigned ValueID = Record[0]; 5165 uint64_t ModuleId = Record[1]; 5166 uint64_t RawFlags = Record[2]; 5167 unsigned AliaseeValueId = Record[3]; 5168 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5169 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5170 LastSeenSummary = AS.get(); 5171 AS->setModulePath(ModuleIdMap[ModuleId]); 5172 5173 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5174 auto AliaseeInModule = 5175 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5176 if (!AliaseeInModule) 5177 return error("Alias expects aliasee summary to be parsed"); 5178 AS->setAliasee(AliaseeInModule); 5179 5180 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5181 LastSeenGUID = GUID; 5182 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5183 break; 5184 } 5185 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5186 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5187 unsigned ValueID = Record[0]; 5188 uint64_t ModuleId = Record[1]; 5189 uint64_t RawFlags = Record[2]; 5190 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5191 std::vector<ValueInfo> Refs = 5192 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5193 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5194 LastSeenSummary = FS.get(); 5195 FS->setModulePath(ModuleIdMap[ModuleId]); 5196 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5197 LastSeenGUID = GUID; 5198 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5199 break; 5200 } 5201 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5202 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5203 uint64_t OriginalName = Record[0]; 5204 if (!LastSeenSummary) 5205 return error("Name attachment that does not follow a combined record"); 5206 LastSeenSummary->setOriginalName(OriginalName); 5207 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5208 // Reset the LastSeenSummary 5209 LastSeenSummary = nullptr; 5210 LastSeenGUID = 0; 5211 break; 5212 } 5213 case bitc::FS_TYPE_TESTS: { 5214 assert(PendingTypeTests.empty()); 5215 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5216 Record.end()); 5217 break; 5218 } 5219 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5220 assert(PendingTypeTestAssumeVCalls.empty()); 5221 for (unsigned I = 0; I != Record.size(); I += 2) 5222 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5223 break; 5224 } 5225 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5226 assert(PendingTypeCheckedLoadVCalls.empty()); 5227 for (unsigned I = 0; I != Record.size(); I += 2) 5228 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5229 break; 5230 } 5231 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5232 PendingTypeTestAssumeConstVCalls.push_back( 5233 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5234 break; 5235 } 5236 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5237 PendingTypeCheckedLoadConstVCalls.push_back( 5238 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5239 break; 5240 } 5241 } 5242 } 5243 llvm_unreachable("Exit infinite loop"); 5244 } 5245 5246 // Parse the module string table block into the Index. 5247 // This populates the ModulePathStringTable map in the index. 5248 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5249 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5250 return error("Invalid record"); 5251 5252 SmallVector<uint64_t, 64> Record; 5253 5254 SmallString<128> ModulePath; 5255 ModulePathStringTableTy::iterator LastSeenModulePath; 5256 5257 while (true) { 5258 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5259 5260 switch (Entry.Kind) { 5261 case BitstreamEntry::SubBlock: // Handled for us already. 5262 case BitstreamEntry::Error: 5263 return error("Malformed block"); 5264 case BitstreamEntry::EndBlock: 5265 return Error::success(); 5266 case BitstreamEntry::Record: 5267 // The interesting case. 5268 break; 5269 } 5270 5271 Record.clear(); 5272 switch (Stream.readRecord(Entry.ID, Record)) { 5273 default: // Default behavior: ignore. 5274 break; 5275 case bitc::MST_CODE_ENTRY: { 5276 // MST_ENTRY: [modid, namechar x N] 5277 uint64_t ModuleId = Record[0]; 5278 5279 if (convertToString(Record, 1, ModulePath)) 5280 return error("Invalid record"); 5281 5282 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5283 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5284 5285 ModulePath.clear(); 5286 break; 5287 } 5288 /// MST_CODE_HASH: [5*i32] 5289 case bitc::MST_CODE_HASH: { 5290 if (Record.size() != 5) 5291 return error("Invalid hash length " + Twine(Record.size()).str()); 5292 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5293 return error("Invalid hash that does not follow a module path"); 5294 int Pos = 0; 5295 for (auto &Val : Record) { 5296 assert(!(Val >> 32) && "Unexpected high bits set"); 5297 LastSeenModulePath->second.second[Pos++] = Val; 5298 } 5299 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5300 LastSeenModulePath = TheIndex.modulePaths().end(); 5301 break; 5302 } 5303 } 5304 } 5305 llvm_unreachable("Exit infinite loop"); 5306 } 5307 5308 namespace { 5309 5310 // FIXME: This class is only here to support the transition to llvm::Error. It 5311 // will be removed once this transition is complete. Clients should prefer to 5312 // deal with the Error value directly, rather than converting to error_code. 5313 class BitcodeErrorCategoryType : public std::error_category { 5314 const char *name() const noexcept override { 5315 return "llvm.bitcode"; 5316 } 5317 std::string message(int IE) const override { 5318 BitcodeError E = static_cast<BitcodeError>(IE); 5319 switch (E) { 5320 case BitcodeError::CorruptedBitcode: 5321 return "Corrupted bitcode"; 5322 } 5323 llvm_unreachable("Unknown error type!"); 5324 } 5325 }; 5326 5327 } // end anonymous namespace 5328 5329 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5330 5331 const std::error_category &llvm::BitcodeErrorCategory() { 5332 return *ErrorCategory; 5333 } 5334 5335 static Expected<StringRef> readStrtab(BitstreamCursor &Stream) { 5336 if (Stream.EnterSubBlock(bitc::STRTAB_BLOCK_ID)) 5337 return error("Invalid record"); 5338 5339 StringRef Strtab; 5340 while (1) { 5341 BitstreamEntry Entry = Stream.advance(); 5342 switch (Entry.Kind) { 5343 case BitstreamEntry::EndBlock: 5344 return Strtab; 5345 5346 case BitstreamEntry::Error: 5347 return error("Malformed block"); 5348 5349 case BitstreamEntry::SubBlock: 5350 if (Stream.SkipBlock()) 5351 return error("Malformed block"); 5352 break; 5353 5354 case BitstreamEntry::Record: 5355 StringRef Blob; 5356 SmallVector<uint64_t, 1> Record; 5357 if (Stream.readRecord(Entry.ID, Record, &Blob) == bitc::STRTAB_BLOB) 5358 Strtab = Blob; 5359 break; 5360 } 5361 } 5362 } 5363 5364 //===----------------------------------------------------------------------===// 5365 // External interface 5366 //===----------------------------------------------------------------------===// 5367 5368 Expected<std::vector<BitcodeModule>> 5369 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5370 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5371 if (!StreamOrErr) 5372 return StreamOrErr.takeError(); 5373 BitstreamCursor &Stream = *StreamOrErr; 5374 5375 std::vector<BitcodeModule> Modules; 5376 while (true) { 5377 uint64_t BCBegin = Stream.getCurrentByteNo(); 5378 5379 // We may be consuming bitcode from a client that leaves garbage at the end 5380 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5381 // the end that there cannot possibly be another module, stop looking. 5382 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5383 return Modules; 5384 5385 BitstreamEntry Entry = Stream.advance(); 5386 switch (Entry.Kind) { 5387 case BitstreamEntry::EndBlock: 5388 case BitstreamEntry::Error: 5389 return error("Malformed block"); 5390 5391 case BitstreamEntry::SubBlock: { 5392 uint64_t IdentificationBit = -1ull; 5393 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5394 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5395 if (Stream.SkipBlock()) 5396 return error("Malformed block"); 5397 5398 Entry = Stream.advance(); 5399 if (Entry.Kind != BitstreamEntry::SubBlock || 5400 Entry.ID != bitc::MODULE_BLOCK_ID) 5401 return error("Malformed block"); 5402 } 5403 5404 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5405 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5406 if (Stream.SkipBlock()) 5407 return error("Malformed block"); 5408 5409 Modules.push_back({Stream.getBitcodeBytes().slice( 5410 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5411 Buffer.getBufferIdentifier(), IdentificationBit, 5412 ModuleBit}); 5413 continue; 5414 } 5415 5416 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5417 Expected<StringRef> Strtab = readStrtab(Stream); 5418 if (!Strtab) 5419 return Strtab.takeError(); 5420 // This string table is used by every preceding bitcode module that does 5421 // not have its own string table. A bitcode file may have multiple 5422 // string tables if it was created by binary concatenation, for example 5423 // with "llvm-cat -b". 5424 for (auto I = Modules.rbegin(), E = Modules.rend(); I != E; ++I) { 5425 if (!I->Strtab.empty()) 5426 break; 5427 I->Strtab = *Strtab; 5428 } 5429 continue; 5430 } 5431 5432 if (Stream.SkipBlock()) 5433 return error("Malformed block"); 5434 continue; 5435 } 5436 case BitstreamEntry::Record: 5437 Stream.skipRecord(Entry.ID); 5438 continue; 5439 } 5440 } 5441 } 5442 5443 /// \brief Get a lazy one-at-time loading module from bitcode. 5444 /// 5445 /// This isn't always used in a lazy context. In particular, it's also used by 5446 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5447 /// in forward-referenced functions from block address references. 5448 /// 5449 /// \param[in] MaterializeAll Set to \c true if we should materialize 5450 /// everything. 5451 Expected<std::unique_ptr<Module>> 5452 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5453 bool ShouldLazyLoadMetadata, bool IsImporting) { 5454 BitstreamCursor Stream(Buffer); 5455 5456 std::string ProducerIdentification; 5457 if (IdentificationBit != -1ull) { 5458 Stream.JumpToBit(IdentificationBit); 5459 Expected<std::string> ProducerIdentificationOrErr = 5460 readIdentificationBlock(Stream); 5461 if (!ProducerIdentificationOrErr) 5462 return ProducerIdentificationOrErr.takeError(); 5463 5464 ProducerIdentification = *ProducerIdentificationOrErr; 5465 } 5466 5467 Stream.JumpToBit(ModuleBit); 5468 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5469 Context); 5470 5471 std::unique_ptr<Module> M = 5472 llvm::make_unique<Module>(ModuleIdentifier, Context); 5473 M->setMaterializer(R); 5474 5475 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5476 if (Error Err = 5477 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5478 return std::move(Err); 5479 5480 if (MaterializeAll) { 5481 // Read in the entire module, and destroy the BitcodeReader. 5482 if (Error Err = M->materializeAll()) 5483 return std::move(Err); 5484 } else { 5485 // Resolve forward references from blockaddresses. 5486 if (Error Err = R->materializeForwardReferencedFunctions()) 5487 return std::move(Err); 5488 } 5489 return std::move(M); 5490 } 5491 5492 Expected<std::unique_ptr<Module>> 5493 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5494 bool IsImporting) { 5495 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5496 } 5497 5498 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5499 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5500 unsigned ModuleId) { 5501 BitstreamCursor Stream(Buffer); 5502 Stream.JumpToBit(ModuleBit); 5503 5504 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5505 ModuleIdentifier, ModuleId); 5506 return R.parseModule(); 5507 } 5508 5509 // Parse the specified bitcode buffer, returning the function info index. 5510 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5511 BitstreamCursor Stream(Buffer); 5512 Stream.JumpToBit(ModuleBit); 5513 5514 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5515 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5516 ModuleIdentifier, 0); 5517 5518 if (Error Err = R.parseModule()) 5519 return std::move(Err); 5520 5521 return std::move(Index); 5522 } 5523 5524 // Check if the given bitcode buffer contains a global value summary block. 5525 Expected<bool> BitcodeModule::hasSummary() { 5526 BitstreamCursor Stream(Buffer); 5527 Stream.JumpToBit(ModuleBit); 5528 5529 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5530 return error("Invalid record"); 5531 5532 while (true) { 5533 BitstreamEntry Entry = Stream.advance(); 5534 5535 switch (Entry.Kind) { 5536 case BitstreamEntry::Error: 5537 return error("Malformed block"); 5538 case BitstreamEntry::EndBlock: 5539 return false; 5540 5541 case BitstreamEntry::SubBlock: 5542 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5543 return true; 5544 5545 // Ignore other sub-blocks. 5546 if (Stream.SkipBlock()) 5547 return error("Malformed block"); 5548 continue; 5549 5550 case BitstreamEntry::Record: 5551 Stream.skipRecord(Entry.ID); 5552 continue; 5553 } 5554 } 5555 } 5556 5557 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5558 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5559 if (!MsOrErr) 5560 return MsOrErr.takeError(); 5561 5562 if (MsOrErr->size() != 1) 5563 return error("Expected a single module"); 5564 5565 return (*MsOrErr)[0]; 5566 } 5567 5568 Expected<std::unique_ptr<Module>> 5569 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5570 bool ShouldLazyLoadMetadata, bool IsImporting) { 5571 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5572 if (!BM) 5573 return BM.takeError(); 5574 5575 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5576 } 5577 5578 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5579 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5580 bool ShouldLazyLoadMetadata, bool IsImporting) { 5581 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5582 IsImporting); 5583 if (MOrErr) 5584 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5585 return MOrErr; 5586 } 5587 5588 Expected<std::unique_ptr<Module>> 5589 BitcodeModule::parseModule(LLVMContext &Context) { 5590 return getModuleImpl(Context, true, false, false); 5591 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5592 // written. We must defer until the Module has been fully materialized. 5593 } 5594 5595 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5596 LLVMContext &Context) { 5597 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5598 if (!BM) 5599 return BM.takeError(); 5600 5601 return BM->parseModule(Context); 5602 } 5603 5604 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5605 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5606 if (!StreamOrErr) 5607 return StreamOrErr.takeError(); 5608 5609 return readTriple(*StreamOrErr); 5610 } 5611 5612 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5613 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5614 if (!StreamOrErr) 5615 return StreamOrErr.takeError(); 5616 5617 return hasObjCCategory(*StreamOrErr); 5618 } 5619 5620 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5621 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5622 if (!StreamOrErr) 5623 return StreamOrErr.takeError(); 5624 5625 return readIdentificationCode(*StreamOrErr); 5626 } 5627 5628 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5629 ModuleSummaryIndex &CombinedIndex, 5630 unsigned ModuleId) { 5631 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5632 if (!BM) 5633 return BM.takeError(); 5634 5635 return BM->readSummary(CombinedIndex, ModuleId); 5636 } 5637 5638 Expected<std::unique_ptr<ModuleSummaryIndex>> 5639 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5640 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5641 if (!BM) 5642 return BM.takeError(); 5643 5644 return BM->getSummary(); 5645 } 5646 5647 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5648 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5649 if (!BM) 5650 return BM.takeError(); 5651 5652 return BM->hasSummary(); 5653 } 5654 5655 Expected<std::unique_ptr<ModuleSummaryIndex>> 5656 llvm::getModuleSummaryIndexForFile(StringRef Path) { 5657 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5658 MemoryBuffer::getFileOrSTDIN(Path); 5659 if (!FileOrErr) 5660 return errorCodeToError(FileOrErr.getError()); 5661 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5662 return nullptr; 5663 return getModuleSummaryIndex(**FileOrErr); 5664 } 5665