1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile); 747 Error parseEntireSummary(unsigned ID); 748 Error parseModuleStringTable(); 749 750 std::pair<ValueInfo, GlobalValue::GUID> 751 getValueInfoFromValueId(unsigned ValueId); 752 753 ModuleSummaryIndex::ModuleInfo *addThisModule(); 754 }; 755 756 } // end anonymous namespace 757 758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 759 Error Err) { 760 if (Err) { 761 std::error_code EC; 762 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 763 EC = EIB.convertToErrorCode(); 764 Ctx.emitError(EIB.message()); 765 }); 766 return EC; 767 } 768 return std::error_code(); 769 } 770 771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 772 StringRef ProducerIdentification, 773 LLVMContext &Context) 774 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 775 ValueList(Context) { 776 this->ProducerIdentification = ProducerIdentification; 777 } 778 779 Error BitcodeReader::materializeForwardReferencedFunctions() { 780 if (WillMaterializeAllForwardRefs) 781 return Error::success(); 782 783 // Prevent recursion. 784 WillMaterializeAllForwardRefs = true; 785 786 while (!BasicBlockFwdRefQueue.empty()) { 787 Function *F = BasicBlockFwdRefQueue.front(); 788 BasicBlockFwdRefQueue.pop_front(); 789 assert(F && "Expected valid function"); 790 if (!BasicBlockFwdRefs.count(F)) 791 // Already materialized. 792 continue; 793 794 // Check for a function that isn't materializable to prevent an infinite 795 // loop. When parsing a blockaddress stored in a global variable, there 796 // isn't a trivial way to check if a function will have a body without a 797 // linear search through FunctionsWithBodies, so just check it here. 798 if (!F->isMaterializable()) 799 return error("Never resolved function from blockaddress"); 800 801 // Try to materialize F. 802 if (Error Err = materialize(F)) 803 return Err; 804 } 805 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 806 807 // Reset state. 808 WillMaterializeAllForwardRefs = false; 809 return Error::success(); 810 } 811 812 //===----------------------------------------------------------------------===// 813 // Helper functions to implement forward reference resolution, etc. 814 //===----------------------------------------------------------------------===// 815 816 static bool hasImplicitComdat(size_t Val) { 817 switch (Val) { 818 default: 819 return false; 820 case 1: // Old WeakAnyLinkage 821 case 4: // Old LinkOnceAnyLinkage 822 case 10: // Old WeakODRLinkage 823 case 11: // Old LinkOnceODRLinkage 824 return true; 825 } 826 } 827 828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 829 switch (Val) { 830 default: // Map unknown/new linkages to external 831 case 0: 832 return GlobalValue::ExternalLinkage; 833 case 2: 834 return GlobalValue::AppendingLinkage; 835 case 3: 836 return GlobalValue::InternalLinkage; 837 case 5: 838 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 839 case 6: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 841 case 7: 842 return GlobalValue::ExternalWeakLinkage; 843 case 8: 844 return GlobalValue::CommonLinkage; 845 case 9: 846 return GlobalValue::PrivateLinkage; 847 case 12: 848 return GlobalValue::AvailableExternallyLinkage; 849 case 13: 850 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 851 case 14: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 853 case 15: 854 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 855 case 1: // Old value with implicit comdat. 856 case 16: 857 return GlobalValue::WeakAnyLinkage; 858 case 10: // Old value with implicit comdat. 859 case 17: 860 return GlobalValue::WeakODRLinkage; 861 case 4: // Old value with implicit comdat. 862 case 18: 863 return GlobalValue::LinkOnceAnyLinkage; 864 case 11: // Old value with implicit comdat. 865 case 19: 866 return GlobalValue::LinkOnceODRLinkage; 867 } 868 } 869 870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 871 FunctionSummary::FFlags Flags; 872 Flags.ReadNone = RawFlags & 0x1; 873 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 874 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 875 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 876 return Flags; 877 } 878 879 /// Decode the flags for GlobalValue in the summary. 880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 881 uint64_t Version) { 882 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 883 // like getDecodedLinkage() above. Any future change to the linkage enum and 884 // to getDecodedLinkage() will need to be taken into account here as above. 885 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 886 RawFlags = RawFlags >> 4; 887 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 888 // The Live flag wasn't introduced until version 3. For dead stripping 889 // to work correctly on earlier versions, we must conservatively treat all 890 // values as live. 891 bool Live = (RawFlags & 0x2) || Version < 3; 892 bool Local = (RawFlags & 0x4); 893 894 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 895 } 896 897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown visibilities to default. 900 case 0: return GlobalValue::DefaultVisibility; 901 case 1: return GlobalValue::HiddenVisibility; 902 case 2: return GlobalValue::ProtectedVisibility; 903 } 904 } 905 906 static GlobalValue::DLLStorageClassTypes 907 getDecodedDLLStorageClass(unsigned Val) { 908 switch (Val) { 909 default: // Map unknown values to default. 910 case 0: return GlobalValue::DefaultStorageClass; 911 case 1: return GlobalValue::DLLImportStorageClass; 912 case 2: return GlobalValue::DLLExportStorageClass; 913 } 914 } 915 916 static bool getDecodedDSOLocal(unsigned Val) { 917 switch(Val) { 918 default: // Map unknown values to preemptable. 919 case 0: return false; 920 case 1: return true; 921 } 922 } 923 924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 925 switch (Val) { 926 case 0: return GlobalVariable::NotThreadLocal; 927 default: // Map unknown non-zero value to general dynamic. 928 case 1: return GlobalVariable::GeneralDynamicTLSModel; 929 case 2: return GlobalVariable::LocalDynamicTLSModel; 930 case 3: return GlobalVariable::InitialExecTLSModel; 931 case 4: return GlobalVariable::LocalExecTLSModel; 932 } 933 } 934 935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 936 switch (Val) { 937 default: // Map unknown to UnnamedAddr::None. 938 case 0: return GlobalVariable::UnnamedAddr::None; 939 case 1: return GlobalVariable::UnnamedAddr::Global; 940 case 2: return GlobalVariable::UnnamedAddr::Local; 941 } 942 } 943 944 static int getDecodedCastOpcode(unsigned Val) { 945 switch (Val) { 946 default: return -1; 947 case bitc::CAST_TRUNC : return Instruction::Trunc; 948 case bitc::CAST_ZEXT : return Instruction::ZExt; 949 case bitc::CAST_SEXT : return Instruction::SExt; 950 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 951 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 952 case bitc::CAST_UITOFP : return Instruction::UIToFP; 953 case bitc::CAST_SITOFP : return Instruction::SIToFP; 954 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 955 case bitc::CAST_FPEXT : return Instruction::FPExt; 956 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 957 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 958 case bitc::CAST_BITCAST : return Instruction::BitCast; 959 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 960 } 961 } 962 963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 964 bool IsFP = Ty->isFPOrFPVectorTy(); 965 // BinOps are only valid for int/fp or vector of int/fp types 966 if (!IsFP && !Ty->isIntOrIntVectorTy()) 967 return -1; 968 969 switch (Val) { 970 default: 971 return -1; 972 case bitc::BINOP_ADD: 973 return IsFP ? Instruction::FAdd : Instruction::Add; 974 case bitc::BINOP_SUB: 975 return IsFP ? Instruction::FSub : Instruction::Sub; 976 case bitc::BINOP_MUL: 977 return IsFP ? Instruction::FMul : Instruction::Mul; 978 case bitc::BINOP_UDIV: 979 return IsFP ? -1 : Instruction::UDiv; 980 case bitc::BINOP_SDIV: 981 return IsFP ? Instruction::FDiv : Instruction::SDiv; 982 case bitc::BINOP_UREM: 983 return IsFP ? -1 : Instruction::URem; 984 case bitc::BINOP_SREM: 985 return IsFP ? Instruction::FRem : Instruction::SRem; 986 case bitc::BINOP_SHL: 987 return IsFP ? -1 : Instruction::Shl; 988 case bitc::BINOP_LSHR: 989 return IsFP ? -1 : Instruction::LShr; 990 case bitc::BINOP_ASHR: 991 return IsFP ? -1 : Instruction::AShr; 992 case bitc::BINOP_AND: 993 return IsFP ? -1 : Instruction::And; 994 case bitc::BINOP_OR: 995 return IsFP ? -1 : Instruction::Or; 996 case bitc::BINOP_XOR: 997 return IsFP ? -1 : Instruction::Xor; 998 } 999 } 1000 1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1002 switch (Val) { 1003 default: return AtomicRMWInst::BAD_BINOP; 1004 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1005 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1006 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1007 case bitc::RMW_AND: return AtomicRMWInst::And; 1008 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1009 case bitc::RMW_OR: return AtomicRMWInst::Or; 1010 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1011 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1012 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1013 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1014 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1015 } 1016 } 1017 1018 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1019 switch (Val) { 1020 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1021 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1022 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1023 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1024 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1025 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1026 default: // Map unknown orderings to sequentially-consistent. 1027 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1028 } 1029 } 1030 1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown selection kinds to any. 1034 case bitc::COMDAT_SELECTION_KIND_ANY: 1035 return Comdat::Any; 1036 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1037 return Comdat::ExactMatch; 1038 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1039 return Comdat::Largest; 1040 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1041 return Comdat::NoDuplicates; 1042 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1043 return Comdat::SameSize; 1044 } 1045 } 1046 1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1048 FastMathFlags FMF; 1049 if (0 != (Val & FastMathFlags::AllowReassoc)) 1050 FMF.setAllowReassoc(); 1051 if (0 != (Val & FastMathFlags::NoNaNs)) 1052 FMF.setNoNaNs(); 1053 if (0 != (Val & FastMathFlags::NoInfs)) 1054 FMF.setNoInfs(); 1055 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1056 FMF.setNoSignedZeros(); 1057 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1058 FMF.setAllowReciprocal(); 1059 if (0 != (Val & FastMathFlags::AllowContract)) 1060 FMF.setAllowContract(true); 1061 if (0 != (Val & FastMathFlags::ApproxFunc)) 1062 FMF.setApproxFunc(); 1063 return FMF; 1064 } 1065 1066 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1067 switch (Val) { 1068 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1069 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1070 } 1071 } 1072 1073 Type *BitcodeReader::getTypeByID(unsigned ID) { 1074 // The type table size is always specified correctly. 1075 if (ID >= TypeList.size()) 1076 return nullptr; 1077 1078 if (Type *Ty = TypeList[ID]) 1079 return Ty; 1080 1081 // If we have a forward reference, the only possible case is when it is to a 1082 // named struct. Just create a placeholder for now. 1083 return TypeList[ID] = createIdentifiedStructType(Context); 1084 } 1085 1086 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1087 StringRef Name) { 1088 auto *Ret = StructType::create(Context, Name); 1089 IdentifiedStructTypes.push_back(Ret); 1090 return Ret; 1091 } 1092 1093 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1094 auto *Ret = StructType::create(Context); 1095 IdentifiedStructTypes.push_back(Ret); 1096 return Ret; 1097 } 1098 1099 //===----------------------------------------------------------------------===// 1100 // Functions for parsing blocks from the bitcode file 1101 //===----------------------------------------------------------------------===// 1102 1103 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1104 switch (Val) { 1105 case Attribute::EndAttrKinds: 1106 llvm_unreachable("Synthetic enumerators which should never get here"); 1107 1108 case Attribute::None: return 0; 1109 case Attribute::ZExt: return 1 << 0; 1110 case Attribute::SExt: return 1 << 1; 1111 case Attribute::NoReturn: return 1 << 2; 1112 case Attribute::InReg: return 1 << 3; 1113 case Attribute::StructRet: return 1 << 4; 1114 case Attribute::NoUnwind: return 1 << 5; 1115 case Attribute::NoAlias: return 1 << 6; 1116 case Attribute::ByVal: return 1 << 7; 1117 case Attribute::Nest: return 1 << 8; 1118 case Attribute::ReadNone: return 1 << 9; 1119 case Attribute::ReadOnly: return 1 << 10; 1120 case Attribute::NoInline: return 1 << 11; 1121 case Attribute::AlwaysInline: return 1 << 12; 1122 case Attribute::OptimizeForSize: return 1 << 13; 1123 case Attribute::StackProtect: return 1 << 14; 1124 case Attribute::StackProtectReq: return 1 << 15; 1125 case Attribute::Alignment: return 31 << 16; 1126 case Attribute::NoCapture: return 1 << 21; 1127 case Attribute::NoRedZone: return 1 << 22; 1128 case Attribute::NoImplicitFloat: return 1 << 23; 1129 case Attribute::Naked: return 1 << 24; 1130 case Attribute::InlineHint: return 1 << 25; 1131 case Attribute::StackAlignment: return 7 << 26; 1132 case Attribute::ReturnsTwice: return 1 << 29; 1133 case Attribute::UWTable: return 1 << 30; 1134 case Attribute::NonLazyBind: return 1U << 31; 1135 case Attribute::SanitizeAddress: return 1ULL << 32; 1136 case Attribute::MinSize: return 1ULL << 33; 1137 case Attribute::NoDuplicate: return 1ULL << 34; 1138 case Attribute::StackProtectStrong: return 1ULL << 35; 1139 case Attribute::SanitizeThread: return 1ULL << 36; 1140 case Attribute::SanitizeMemory: return 1ULL << 37; 1141 case Attribute::NoBuiltin: return 1ULL << 38; 1142 case Attribute::Returned: return 1ULL << 39; 1143 case Attribute::Cold: return 1ULL << 40; 1144 case Attribute::Builtin: return 1ULL << 41; 1145 case Attribute::OptimizeNone: return 1ULL << 42; 1146 case Attribute::InAlloca: return 1ULL << 43; 1147 case Attribute::NonNull: return 1ULL << 44; 1148 case Attribute::JumpTable: return 1ULL << 45; 1149 case Attribute::Convergent: return 1ULL << 46; 1150 case Attribute::SafeStack: return 1ULL << 47; 1151 case Attribute::NoRecurse: return 1ULL << 48; 1152 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1153 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1154 case Attribute::SwiftSelf: return 1ULL << 51; 1155 case Attribute::SwiftError: return 1ULL << 52; 1156 case Attribute::WriteOnly: return 1ULL << 53; 1157 case Attribute::Speculatable: return 1ULL << 54; 1158 case Attribute::StrictFP: return 1ULL << 55; 1159 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1160 case Attribute::Dereferenceable: 1161 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1162 break; 1163 case Attribute::DereferenceableOrNull: 1164 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1165 "format"); 1166 break; 1167 case Attribute::ArgMemOnly: 1168 llvm_unreachable("argmemonly attribute not supported in raw format"); 1169 break; 1170 case Attribute::AllocSize: 1171 llvm_unreachable("allocsize not supported in raw format"); 1172 break; 1173 } 1174 llvm_unreachable("Unsupported attribute type"); 1175 } 1176 1177 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1178 if (!Val) return; 1179 1180 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1181 I = Attribute::AttrKind(I + 1)) { 1182 if (I == Attribute::Dereferenceable || 1183 I == Attribute::DereferenceableOrNull || 1184 I == Attribute::ArgMemOnly || 1185 I == Attribute::AllocSize) 1186 continue; 1187 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1188 if (I == Attribute::Alignment) 1189 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1190 else if (I == Attribute::StackAlignment) 1191 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1192 else 1193 B.addAttribute(I); 1194 } 1195 } 1196 } 1197 1198 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1199 /// been decoded from the given integer. This function must stay in sync with 1200 /// 'encodeLLVMAttributesForBitcode'. 1201 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1202 uint64_t EncodedAttrs) { 1203 // FIXME: Remove in 4.0. 1204 1205 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1206 // the bits above 31 down by 11 bits. 1207 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1208 assert((!Alignment || isPowerOf2_32(Alignment)) && 1209 "Alignment must be a power of two."); 1210 1211 if (Alignment) 1212 B.addAlignmentAttr(Alignment); 1213 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1214 (EncodedAttrs & 0xffff)); 1215 } 1216 1217 Error BitcodeReader::parseAttributeBlock() { 1218 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1219 return error("Invalid record"); 1220 1221 if (!MAttributes.empty()) 1222 return error("Invalid multiple blocks"); 1223 1224 SmallVector<uint64_t, 64> Record; 1225 1226 SmallVector<AttributeList, 8> Attrs; 1227 1228 // Read all the records. 1229 while (true) { 1230 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1231 1232 switch (Entry.Kind) { 1233 case BitstreamEntry::SubBlock: // Handled for us already. 1234 case BitstreamEntry::Error: 1235 return error("Malformed block"); 1236 case BitstreamEntry::EndBlock: 1237 return Error::success(); 1238 case BitstreamEntry::Record: 1239 // The interesting case. 1240 break; 1241 } 1242 1243 // Read a record. 1244 Record.clear(); 1245 switch (Stream.readRecord(Entry.ID, Record)) { 1246 default: // Default behavior: ignore. 1247 break; 1248 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1249 // FIXME: Remove in 4.0. 1250 if (Record.size() & 1) 1251 return error("Invalid record"); 1252 1253 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1254 AttrBuilder B; 1255 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1256 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1257 } 1258 1259 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1260 Attrs.clear(); 1261 break; 1262 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1263 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1264 Attrs.push_back(MAttributeGroups[Record[i]]); 1265 1266 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1267 Attrs.clear(); 1268 break; 1269 } 1270 } 1271 } 1272 1273 // Returns Attribute::None on unrecognized codes. 1274 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1275 switch (Code) { 1276 default: 1277 return Attribute::None; 1278 case bitc::ATTR_KIND_ALIGNMENT: 1279 return Attribute::Alignment; 1280 case bitc::ATTR_KIND_ALWAYS_INLINE: 1281 return Attribute::AlwaysInline; 1282 case bitc::ATTR_KIND_ARGMEMONLY: 1283 return Attribute::ArgMemOnly; 1284 case bitc::ATTR_KIND_BUILTIN: 1285 return Attribute::Builtin; 1286 case bitc::ATTR_KIND_BY_VAL: 1287 return Attribute::ByVal; 1288 case bitc::ATTR_KIND_IN_ALLOCA: 1289 return Attribute::InAlloca; 1290 case bitc::ATTR_KIND_COLD: 1291 return Attribute::Cold; 1292 case bitc::ATTR_KIND_CONVERGENT: 1293 return Attribute::Convergent; 1294 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1295 return Attribute::InaccessibleMemOnly; 1296 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1297 return Attribute::InaccessibleMemOrArgMemOnly; 1298 case bitc::ATTR_KIND_INLINE_HINT: 1299 return Attribute::InlineHint; 1300 case bitc::ATTR_KIND_IN_REG: 1301 return Attribute::InReg; 1302 case bitc::ATTR_KIND_JUMP_TABLE: 1303 return Attribute::JumpTable; 1304 case bitc::ATTR_KIND_MIN_SIZE: 1305 return Attribute::MinSize; 1306 case bitc::ATTR_KIND_NAKED: 1307 return Attribute::Naked; 1308 case bitc::ATTR_KIND_NEST: 1309 return Attribute::Nest; 1310 case bitc::ATTR_KIND_NO_ALIAS: 1311 return Attribute::NoAlias; 1312 case bitc::ATTR_KIND_NO_BUILTIN: 1313 return Attribute::NoBuiltin; 1314 case bitc::ATTR_KIND_NO_CAPTURE: 1315 return Attribute::NoCapture; 1316 case bitc::ATTR_KIND_NO_DUPLICATE: 1317 return Attribute::NoDuplicate; 1318 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1319 return Attribute::NoImplicitFloat; 1320 case bitc::ATTR_KIND_NO_INLINE: 1321 return Attribute::NoInline; 1322 case bitc::ATTR_KIND_NO_RECURSE: 1323 return Attribute::NoRecurse; 1324 case bitc::ATTR_KIND_NON_LAZY_BIND: 1325 return Attribute::NonLazyBind; 1326 case bitc::ATTR_KIND_NON_NULL: 1327 return Attribute::NonNull; 1328 case bitc::ATTR_KIND_DEREFERENCEABLE: 1329 return Attribute::Dereferenceable; 1330 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1331 return Attribute::DereferenceableOrNull; 1332 case bitc::ATTR_KIND_ALLOC_SIZE: 1333 return Attribute::AllocSize; 1334 case bitc::ATTR_KIND_NO_RED_ZONE: 1335 return Attribute::NoRedZone; 1336 case bitc::ATTR_KIND_NO_RETURN: 1337 return Attribute::NoReturn; 1338 case bitc::ATTR_KIND_NO_UNWIND: 1339 return Attribute::NoUnwind; 1340 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1341 return Attribute::OptimizeForSize; 1342 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1343 return Attribute::OptimizeNone; 1344 case bitc::ATTR_KIND_READ_NONE: 1345 return Attribute::ReadNone; 1346 case bitc::ATTR_KIND_READ_ONLY: 1347 return Attribute::ReadOnly; 1348 case bitc::ATTR_KIND_RETURNED: 1349 return Attribute::Returned; 1350 case bitc::ATTR_KIND_RETURNS_TWICE: 1351 return Attribute::ReturnsTwice; 1352 case bitc::ATTR_KIND_S_EXT: 1353 return Attribute::SExt; 1354 case bitc::ATTR_KIND_SPECULATABLE: 1355 return Attribute::Speculatable; 1356 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1357 return Attribute::StackAlignment; 1358 case bitc::ATTR_KIND_STACK_PROTECT: 1359 return Attribute::StackProtect; 1360 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1361 return Attribute::StackProtectReq; 1362 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1363 return Attribute::StackProtectStrong; 1364 case bitc::ATTR_KIND_SAFESTACK: 1365 return Attribute::SafeStack; 1366 case bitc::ATTR_KIND_STRICT_FP: 1367 return Attribute::StrictFP; 1368 case bitc::ATTR_KIND_STRUCT_RET: 1369 return Attribute::StructRet; 1370 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1371 return Attribute::SanitizeAddress; 1372 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1373 return Attribute::SanitizeHWAddress; 1374 case bitc::ATTR_KIND_SANITIZE_THREAD: 1375 return Attribute::SanitizeThread; 1376 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1377 return Attribute::SanitizeMemory; 1378 case bitc::ATTR_KIND_SWIFT_ERROR: 1379 return Attribute::SwiftError; 1380 case bitc::ATTR_KIND_SWIFT_SELF: 1381 return Attribute::SwiftSelf; 1382 case bitc::ATTR_KIND_UW_TABLE: 1383 return Attribute::UWTable; 1384 case bitc::ATTR_KIND_WRITEONLY: 1385 return Attribute::WriteOnly; 1386 case bitc::ATTR_KIND_Z_EXT: 1387 return Attribute::ZExt; 1388 } 1389 } 1390 1391 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1392 unsigned &Alignment) { 1393 // Note: Alignment in bitcode files is incremented by 1, so that zero 1394 // can be used for default alignment. 1395 if (Exponent > Value::MaxAlignmentExponent + 1) 1396 return error("Invalid alignment value"); 1397 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1398 return Error::success(); 1399 } 1400 1401 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1402 *Kind = getAttrFromCode(Code); 1403 if (*Kind == Attribute::None) 1404 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1405 return Error::success(); 1406 } 1407 1408 Error BitcodeReader::parseAttributeGroupBlock() { 1409 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1410 return error("Invalid record"); 1411 1412 if (!MAttributeGroups.empty()) 1413 return error("Invalid multiple blocks"); 1414 1415 SmallVector<uint64_t, 64> Record; 1416 1417 // Read all the records. 1418 while (true) { 1419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1420 1421 switch (Entry.Kind) { 1422 case BitstreamEntry::SubBlock: // Handled for us already. 1423 case BitstreamEntry::Error: 1424 return error("Malformed block"); 1425 case BitstreamEntry::EndBlock: 1426 return Error::success(); 1427 case BitstreamEntry::Record: 1428 // The interesting case. 1429 break; 1430 } 1431 1432 // Read a record. 1433 Record.clear(); 1434 switch (Stream.readRecord(Entry.ID, Record)) { 1435 default: // Default behavior: ignore. 1436 break; 1437 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1438 if (Record.size() < 3) 1439 return error("Invalid record"); 1440 1441 uint64_t GrpID = Record[0]; 1442 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1443 1444 AttrBuilder B; 1445 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1446 if (Record[i] == 0) { // Enum attribute 1447 Attribute::AttrKind Kind; 1448 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1449 return Err; 1450 1451 B.addAttribute(Kind); 1452 } else if (Record[i] == 1) { // Integer attribute 1453 Attribute::AttrKind Kind; 1454 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1455 return Err; 1456 if (Kind == Attribute::Alignment) 1457 B.addAlignmentAttr(Record[++i]); 1458 else if (Kind == Attribute::StackAlignment) 1459 B.addStackAlignmentAttr(Record[++i]); 1460 else if (Kind == Attribute::Dereferenceable) 1461 B.addDereferenceableAttr(Record[++i]); 1462 else if (Kind == Attribute::DereferenceableOrNull) 1463 B.addDereferenceableOrNullAttr(Record[++i]); 1464 else if (Kind == Attribute::AllocSize) 1465 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1466 } else { // String attribute 1467 assert((Record[i] == 3 || Record[i] == 4) && 1468 "Invalid attribute group entry"); 1469 bool HasValue = (Record[i++] == 4); 1470 SmallString<64> KindStr; 1471 SmallString<64> ValStr; 1472 1473 while (Record[i] != 0 && i != e) 1474 KindStr += Record[i++]; 1475 assert(Record[i] == 0 && "Kind string not null terminated"); 1476 1477 if (HasValue) { 1478 // Has a value associated with it. 1479 ++i; // Skip the '0' that terminates the "kind" string. 1480 while (Record[i] != 0 && i != e) 1481 ValStr += Record[i++]; 1482 assert(Record[i] == 0 && "Value string not null terminated"); 1483 } 1484 1485 B.addAttribute(KindStr.str(), ValStr.str()); 1486 } 1487 } 1488 1489 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1490 break; 1491 } 1492 } 1493 } 1494 } 1495 1496 Error BitcodeReader::parseTypeTable() { 1497 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1498 return error("Invalid record"); 1499 1500 return parseTypeTableBody(); 1501 } 1502 1503 Error BitcodeReader::parseTypeTableBody() { 1504 if (!TypeList.empty()) 1505 return error("Invalid multiple blocks"); 1506 1507 SmallVector<uint64_t, 64> Record; 1508 unsigned NumRecords = 0; 1509 1510 SmallString<64> TypeName; 1511 1512 // Read all the records for this type table. 1513 while (true) { 1514 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1515 1516 switch (Entry.Kind) { 1517 case BitstreamEntry::SubBlock: // Handled for us already. 1518 case BitstreamEntry::Error: 1519 return error("Malformed block"); 1520 case BitstreamEntry::EndBlock: 1521 if (NumRecords != TypeList.size()) 1522 return error("Malformed block"); 1523 return Error::success(); 1524 case BitstreamEntry::Record: 1525 // The interesting case. 1526 break; 1527 } 1528 1529 // Read a record. 1530 Record.clear(); 1531 Type *ResultTy = nullptr; 1532 switch (Stream.readRecord(Entry.ID, Record)) { 1533 default: 1534 return error("Invalid value"); 1535 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1536 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1537 // type list. This allows us to reserve space. 1538 if (Record.size() < 1) 1539 return error("Invalid record"); 1540 TypeList.resize(Record[0]); 1541 continue; 1542 case bitc::TYPE_CODE_VOID: // VOID 1543 ResultTy = Type::getVoidTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_HALF: // HALF 1546 ResultTy = Type::getHalfTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_FLOAT: // FLOAT 1549 ResultTy = Type::getFloatTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1552 ResultTy = Type::getDoubleTy(Context); 1553 break; 1554 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1555 ResultTy = Type::getX86_FP80Ty(Context); 1556 break; 1557 case bitc::TYPE_CODE_FP128: // FP128 1558 ResultTy = Type::getFP128Ty(Context); 1559 break; 1560 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1561 ResultTy = Type::getPPC_FP128Ty(Context); 1562 break; 1563 case bitc::TYPE_CODE_LABEL: // LABEL 1564 ResultTy = Type::getLabelTy(Context); 1565 break; 1566 case bitc::TYPE_CODE_METADATA: // METADATA 1567 ResultTy = Type::getMetadataTy(Context); 1568 break; 1569 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1570 ResultTy = Type::getX86_MMXTy(Context); 1571 break; 1572 case bitc::TYPE_CODE_TOKEN: // TOKEN 1573 ResultTy = Type::getTokenTy(Context); 1574 break; 1575 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1576 if (Record.size() < 1) 1577 return error("Invalid record"); 1578 1579 uint64_t NumBits = Record[0]; 1580 if (NumBits < IntegerType::MIN_INT_BITS || 1581 NumBits > IntegerType::MAX_INT_BITS) 1582 return error("Bitwidth for integer type out of range"); 1583 ResultTy = IntegerType::get(Context, NumBits); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1587 // [pointee type, address space] 1588 if (Record.size() < 1) 1589 return error("Invalid record"); 1590 unsigned AddressSpace = 0; 1591 if (Record.size() == 2) 1592 AddressSpace = Record[1]; 1593 ResultTy = getTypeByID(Record[0]); 1594 if (!ResultTy || 1595 !PointerType::isValidElementType(ResultTy)) 1596 return error("Invalid type"); 1597 ResultTy = PointerType::get(ResultTy, AddressSpace); 1598 break; 1599 } 1600 case bitc::TYPE_CODE_FUNCTION_OLD: { 1601 // FIXME: attrid is dead, remove it in LLVM 4.0 1602 // FUNCTION: [vararg, attrid, retty, paramty x N] 1603 if (Record.size() < 3) 1604 return error("Invalid record"); 1605 SmallVector<Type*, 8> ArgTys; 1606 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1607 if (Type *T = getTypeByID(Record[i])) 1608 ArgTys.push_back(T); 1609 else 1610 break; 1611 } 1612 1613 ResultTy = getTypeByID(Record[2]); 1614 if (!ResultTy || ArgTys.size() < Record.size()-3) 1615 return error("Invalid type"); 1616 1617 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1618 break; 1619 } 1620 case bitc::TYPE_CODE_FUNCTION: { 1621 // FUNCTION: [vararg, retty, paramty x N] 1622 if (Record.size() < 2) 1623 return error("Invalid record"); 1624 SmallVector<Type*, 8> ArgTys; 1625 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) { 1627 if (!FunctionType::isValidArgumentType(T)) 1628 return error("Invalid function argument type"); 1629 ArgTys.push_back(T); 1630 } 1631 else 1632 break; 1633 } 1634 1635 ResultTy = getTypeByID(Record[1]); 1636 if (!ResultTy || ArgTys.size() < Record.size()-2) 1637 return error("Invalid type"); 1638 1639 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1640 break; 1641 } 1642 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1643 if (Record.size() < 1) 1644 return error("Invalid record"); 1645 SmallVector<Type*, 8> EltTys; 1646 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1647 if (Type *T = getTypeByID(Record[i])) 1648 EltTys.push_back(T); 1649 else 1650 break; 1651 } 1652 if (EltTys.size() != Record.size()-1) 1653 return error("Invalid type"); 1654 ResultTy = StructType::get(Context, EltTys, Record[0]); 1655 break; 1656 } 1657 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1658 if (convertToString(Record, 0, TypeName)) 1659 return error("Invalid record"); 1660 continue; 1661 1662 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1663 if (Record.size() < 1) 1664 return error("Invalid record"); 1665 1666 if (NumRecords >= TypeList.size()) 1667 return error("Invalid TYPE table"); 1668 1669 // Check to see if this was forward referenced, if so fill in the temp. 1670 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1671 if (Res) { 1672 Res->setName(TypeName); 1673 TypeList[NumRecords] = nullptr; 1674 } else // Otherwise, create a new struct. 1675 Res = createIdentifiedStructType(Context, TypeName); 1676 TypeName.clear(); 1677 1678 SmallVector<Type*, 8> EltTys; 1679 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1680 if (Type *T = getTypeByID(Record[i])) 1681 EltTys.push_back(T); 1682 else 1683 break; 1684 } 1685 if (EltTys.size() != Record.size()-1) 1686 return error("Invalid record"); 1687 Res->setBody(EltTys, Record[0]); 1688 ResultTy = Res; 1689 break; 1690 } 1691 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1692 if (Record.size() != 1) 1693 return error("Invalid record"); 1694 1695 if (NumRecords >= TypeList.size()) 1696 return error("Invalid TYPE table"); 1697 1698 // Check to see if this was forward referenced, if so fill in the temp. 1699 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1700 if (Res) { 1701 Res->setName(TypeName); 1702 TypeList[NumRecords] = nullptr; 1703 } else // Otherwise, create a new struct with no body. 1704 Res = createIdentifiedStructType(Context, TypeName); 1705 TypeName.clear(); 1706 ResultTy = Res; 1707 break; 1708 } 1709 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1710 if (Record.size() < 2) 1711 return error("Invalid record"); 1712 ResultTy = getTypeByID(Record[1]); 1713 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1714 return error("Invalid type"); 1715 ResultTy = ArrayType::get(ResultTy, Record[0]); 1716 break; 1717 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1718 if (Record.size() < 2) 1719 return error("Invalid record"); 1720 if (Record[0] == 0) 1721 return error("Invalid vector length"); 1722 ResultTy = getTypeByID(Record[1]); 1723 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1724 return error("Invalid type"); 1725 ResultTy = VectorType::get(ResultTy, Record[0]); 1726 break; 1727 } 1728 1729 if (NumRecords >= TypeList.size()) 1730 return error("Invalid TYPE table"); 1731 if (TypeList[NumRecords]) 1732 return error( 1733 "Invalid TYPE table: Only named structs can be forward referenced"); 1734 assert(ResultTy && "Didn't read a type?"); 1735 TypeList[NumRecords++] = ResultTy; 1736 } 1737 } 1738 1739 Error BitcodeReader::parseOperandBundleTags() { 1740 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1741 return error("Invalid record"); 1742 1743 if (!BundleTags.empty()) 1744 return error("Invalid multiple blocks"); 1745 1746 SmallVector<uint64_t, 64> Record; 1747 1748 while (true) { 1749 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1750 1751 switch (Entry.Kind) { 1752 case BitstreamEntry::SubBlock: // Handled for us already. 1753 case BitstreamEntry::Error: 1754 return error("Malformed block"); 1755 case BitstreamEntry::EndBlock: 1756 return Error::success(); 1757 case BitstreamEntry::Record: 1758 // The interesting case. 1759 break; 1760 } 1761 1762 // Tags are implicitly mapped to integers by their order. 1763 1764 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1765 return error("Invalid record"); 1766 1767 // OPERAND_BUNDLE_TAG: [strchr x N] 1768 BundleTags.emplace_back(); 1769 if (convertToString(Record, 0, BundleTags.back())) 1770 return error("Invalid record"); 1771 Record.clear(); 1772 } 1773 } 1774 1775 Error BitcodeReader::parseSyncScopeNames() { 1776 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1777 return error("Invalid record"); 1778 1779 if (!SSIDs.empty()) 1780 return error("Invalid multiple synchronization scope names blocks"); 1781 1782 SmallVector<uint64_t, 64> Record; 1783 while (true) { 1784 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1785 switch (Entry.Kind) { 1786 case BitstreamEntry::SubBlock: // Handled for us already. 1787 case BitstreamEntry::Error: 1788 return error("Malformed block"); 1789 case BitstreamEntry::EndBlock: 1790 if (SSIDs.empty()) 1791 return error("Invalid empty synchronization scope names block"); 1792 return Error::success(); 1793 case BitstreamEntry::Record: 1794 // The interesting case. 1795 break; 1796 } 1797 1798 // Synchronization scope names are implicitly mapped to synchronization 1799 // scope IDs by their order. 1800 1801 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1802 return error("Invalid record"); 1803 1804 SmallString<16> SSN; 1805 if (convertToString(Record, 0, SSN)) 1806 return error("Invalid record"); 1807 1808 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1809 Record.clear(); 1810 } 1811 } 1812 1813 /// Associate a value with its name from the given index in the provided record. 1814 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1815 unsigned NameIndex, Triple &TT) { 1816 SmallString<128> ValueName; 1817 if (convertToString(Record, NameIndex, ValueName)) 1818 return error("Invalid record"); 1819 unsigned ValueID = Record[0]; 1820 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1821 return error("Invalid record"); 1822 Value *V = ValueList[ValueID]; 1823 1824 StringRef NameStr(ValueName.data(), ValueName.size()); 1825 if (NameStr.find_first_of(0) != StringRef::npos) 1826 return error("Invalid value name"); 1827 V->setName(NameStr); 1828 auto *GO = dyn_cast<GlobalObject>(V); 1829 if (GO) { 1830 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1831 if (TT.supportsCOMDAT()) 1832 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1833 else 1834 GO->setComdat(nullptr); 1835 } 1836 } 1837 return V; 1838 } 1839 1840 /// Helper to note and return the current location, and jump to the given 1841 /// offset. 1842 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1843 BitstreamCursor &Stream) { 1844 // Save the current parsing location so we can jump back at the end 1845 // of the VST read. 1846 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1847 Stream.JumpToBit(Offset * 32); 1848 #ifndef NDEBUG 1849 // Do some checking if we are in debug mode. 1850 BitstreamEntry Entry = Stream.advance(); 1851 assert(Entry.Kind == BitstreamEntry::SubBlock); 1852 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1853 #else 1854 // In NDEBUG mode ignore the output so we don't get an unused variable 1855 // warning. 1856 Stream.advance(); 1857 #endif 1858 return CurrentBit; 1859 } 1860 1861 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1862 Function *F, 1863 ArrayRef<uint64_t> Record) { 1864 // Note that we subtract 1 here because the offset is relative to one word 1865 // before the start of the identification or module block, which was 1866 // historically always the start of the regular bitcode header. 1867 uint64_t FuncWordOffset = Record[1] - 1; 1868 uint64_t FuncBitOffset = FuncWordOffset * 32; 1869 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1870 // Set the LastFunctionBlockBit to point to the last function block. 1871 // Later when parsing is resumed after function materialization, 1872 // we can simply skip that last function block. 1873 if (FuncBitOffset > LastFunctionBlockBit) 1874 LastFunctionBlockBit = FuncBitOffset; 1875 } 1876 1877 /// Read a new-style GlobalValue symbol table. 1878 Error BitcodeReader::parseGlobalValueSymbolTable() { 1879 unsigned FuncBitcodeOffsetDelta = 1880 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1881 1882 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1883 return error("Invalid record"); 1884 1885 SmallVector<uint64_t, 64> Record; 1886 while (true) { 1887 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1888 1889 switch (Entry.Kind) { 1890 case BitstreamEntry::SubBlock: 1891 case BitstreamEntry::Error: 1892 return error("Malformed block"); 1893 case BitstreamEntry::EndBlock: 1894 return Error::success(); 1895 case BitstreamEntry::Record: 1896 break; 1897 } 1898 1899 Record.clear(); 1900 switch (Stream.readRecord(Entry.ID, Record)) { 1901 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1902 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1903 cast<Function>(ValueList[Record[0]]), Record); 1904 break; 1905 } 1906 } 1907 } 1908 1909 /// Parse the value symbol table at either the current parsing location or 1910 /// at the given bit offset if provided. 1911 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1912 uint64_t CurrentBit; 1913 // Pass in the Offset to distinguish between calling for the module-level 1914 // VST (where we want to jump to the VST offset) and the function-level 1915 // VST (where we don't). 1916 if (Offset > 0) { 1917 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1918 // If this module uses a string table, read this as a module-level VST. 1919 if (UseStrtab) { 1920 if (Error Err = parseGlobalValueSymbolTable()) 1921 return Err; 1922 Stream.JumpToBit(CurrentBit); 1923 return Error::success(); 1924 } 1925 // Otherwise, the VST will be in a similar format to a function-level VST, 1926 // and will contain symbol names. 1927 } 1928 1929 // Compute the delta between the bitcode indices in the VST (the word offset 1930 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1931 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1932 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1933 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1934 // just before entering the VST subblock because: 1) the EnterSubBlock 1935 // changes the AbbrevID width; 2) the VST block is nested within the same 1936 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1937 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1938 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1939 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1940 unsigned FuncBitcodeOffsetDelta = 1941 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1942 1943 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1944 return error("Invalid record"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 Triple TT(TheModule->getTargetTriple()); 1949 1950 // Read all the records for this value table. 1951 SmallString<128> ValueName; 1952 1953 while (true) { 1954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1955 1956 switch (Entry.Kind) { 1957 case BitstreamEntry::SubBlock: // Handled for us already. 1958 case BitstreamEntry::Error: 1959 return error("Malformed block"); 1960 case BitstreamEntry::EndBlock: 1961 if (Offset > 0) 1962 Stream.JumpToBit(CurrentBit); 1963 return Error::success(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Read a record. 1970 Record.clear(); 1971 switch (Stream.readRecord(Entry.ID, Record)) { 1972 default: // Default behavior: unknown type. 1973 break; 1974 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1975 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1976 if (Error Err = ValOrErr.takeError()) 1977 return Err; 1978 ValOrErr.get(); 1979 break; 1980 } 1981 case bitc::VST_CODE_FNENTRY: { 1982 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1983 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1984 if (Error Err = ValOrErr.takeError()) 1985 return Err; 1986 Value *V = ValOrErr.get(); 1987 1988 // Ignore function offsets emitted for aliases of functions in older 1989 // versions of LLVM. 1990 if (auto *F = dyn_cast<Function>(V)) 1991 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 1992 break; 1993 } 1994 case bitc::VST_CODE_BBENTRY: { 1995 if (convertToString(Record, 1, ValueName)) 1996 return error("Invalid record"); 1997 BasicBlock *BB = getBasicBlock(Record[0]); 1998 if (!BB) 1999 return error("Invalid record"); 2000 2001 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2002 ValueName.clear(); 2003 break; 2004 } 2005 } 2006 } 2007 } 2008 2009 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2010 /// encoding. 2011 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2012 if ((V & 1) == 0) 2013 return V >> 1; 2014 if (V != 1) 2015 return -(V >> 1); 2016 // There is no such thing as -0 with integers. "-0" really means MININT. 2017 return 1ULL << 63; 2018 } 2019 2020 /// Resolve all of the initializers for global values and aliases that we can. 2021 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2022 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2023 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2024 IndirectSymbolInitWorklist; 2025 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2026 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2027 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2028 2029 GlobalInitWorklist.swap(GlobalInits); 2030 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2031 FunctionPrefixWorklist.swap(FunctionPrefixes); 2032 FunctionPrologueWorklist.swap(FunctionPrologues); 2033 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2034 2035 while (!GlobalInitWorklist.empty()) { 2036 unsigned ValID = GlobalInitWorklist.back().second; 2037 if (ValID >= ValueList.size()) { 2038 // Not ready to resolve this yet, it requires something later in the file. 2039 GlobalInits.push_back(GlobalInitWorklist.back()); 2040 } else { 2041 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2042 GlobalInitWorklist.back().first->setInitializer(C); 2043 else 2044 return error("Expected a constant"); 2045 } 2046 GlobalInitWorklist.pop_back(); 2047 } 2048 2049 while (!IndirectSymbolInitWorklist.empty()) { 2050 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2051 if (ValID >= ValueList.size()) { 2052 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2053 } else { 2054 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2055 if (!C) 2056 return error("Expected a constant"); 2057 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2058 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2059 return error("Alias and aliasee types don't match"); 2060 GIS->setIndirectSymbol(C); 2061 } 2062 IndirectSymbolInitWorklist.pop_back(); 2063 } 2064 2065 while (!FunctionPrefixWorklist.empty()) { 2066 unsigned ValID = FunctionPrefixWorklist.back().second; 2067 if (ValID >= ValueList.size()) { 2068 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2069 } else { 2070 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2071 FunctionPrefixWorklist.back().first->setPrefixData(C); 2072 else 2073 return error("Expected a constant"); 2074 } 2075 FunctionPrefixWorklist.pop_back(); 2076 } 2077 2078 while (!FunctionPrologueWorklist.empty()) { 2079 unsigned ValID = FunctionPrologueWorklist.back().second; 2080 if (ValID >= ValueList.size()) { 2081 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2082 } else { 2083 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2084 FunctionPrologueWorklist.back().first->setPrologueData(C); 2085 else 2086 return error("Expected a constant"); 2087 } 2088 FunctionPrologueWorklist.pop_back(); 2089 } 2090 2091 while (!FunctionPersonalityFnWorklist.empty()) { 2092 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2093 if (ValID >= ValueList.size()) { 2094 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2095 } else { 2096 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2097 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2098 else 2099 return error("Expected a constant"); 2100 } 2101 FunctionPersonalityFnWorklist.pop_back(); 2102 } 2103 2104 return Error::success(); 2105 } 2106 2107 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2108 SmallVector<uint64_t, 8> Words(Vals.size()); 2109 transform(Vals, Words.begin(), 2110 BitcodeReader::decodeSignRotatedValue); 2111 2112 return APInt(TypeBits, Words); 2113 } 2114 2115 Error BitcodeReader::parseConstants() { 2116 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2117 return error("Invalid record"); 2118 2119 SmallVector<uint64_t, 64> Record; 2120 2121 // Read all the records for this value table. 2122 Type *CurTy = Type::getInt32Ty(Context); 2123 unsigned NextCstNo = ValueList.size(); 2124 2125 while (true) { 2126 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2127 2128 switch (Entry.Kind) { 2129 case BitstreamEntry::SubBlock: // Handled for us already. 2130 case BitstreamEntry::Error: 2131 return error("Malformed block"); 2132 case BitstreamEntry::EndBlock: 2133 if (NextCstNo != ValueList.size()) 2134 return error("Invalid constant reference"); 2135 2136 // Once all the constants have been read, go through and resolve forward 2137 // references. 2138 ValueList.resolveConstantForwardRefs(); 2139 return Error::success(); 2140 case BitstreamEntry::Record: 2141 // The interesting case. 2142 break; 2143 } 2144 2145 // Read a record. 2146 Record.clear(); 2147 Type *VoidType = Type::getVoidTy(Context); 2148 Value *V = nullptr; 2149 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2150 switch (BitCode) { 2151 default: // Default behavior: unknown constant 2152 case bitc::CST_CODE_UNDEF: // UNDEF 2153 V = UndefValue::get(CurTy); 2154 break; 2155 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2156 if (Record.empty()) 2157 return error("Invalid record"); 2158 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2159 return error("Invalid record"); 2160 if (TypeList[Record[0]] == VoidType) 2161 return error("Invalid constant type"); 2162 CurTy = TypeList[Record[0]]; 2163 continue; // Skip the ValueList manipulation. 2164 case bitc::CST_CODE_NULL: // NULL 2165 V = Constant::getNullValue(CurTy); 2166 break; 2167 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2168 if (!CurTy->isIntegerTy() || Record.empty()) 2169 return error("Invalid record"); 2170 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2171 break; 2172 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2173 if (!CurTy->isIntegerTy() || Record.empty()) 2174 return error("Invalid record"); 2175 2176 APInt VInt = 2177 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2178 V = ConstantInt::get(Context, VInt); 2179 2180 break; 2181 } 2182 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2183 if (Record.empty()) 2184 return error("Invalid record"); 2185 if (CurTy->isHalfTy()) 2186 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2187 APInt(16, (uint16_t)Record[0]))); 2188 else if (CurTy->isFloatTy()) 2189 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2190 APInt(32, (uint32_t)Record[0]))); 2191 else if (CurTy->isDoubleTy()) 2192 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2193 APInt(64, Record[0]))); 2194 else if (CurTy->isX86_FP80Ty()) { 2195 // Bits are not stored the same way as a normal i80 APInt, compensate. 2196 uint64_t Rearrange[2]; 2197 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2198 Rearrange[1] = Record[0] >> 48; 2199 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2200 APInt(80, Rearrange))); 2201 } else if (CurTy->isFP128Ty()) 2202 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2203 APInt(128, Record))); 2204 else if (CurTy->isPPC_FP128Ty()) 2205 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2206 APInt(128, Record))); 2207 else 2208 V = UndefValue::get(CurTy); 2209 break; 2210 } 2211 2212 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2213 if (Record.empty()) 2214 return error("Invalid record"); 2215 2216 unsigned Size = Record.size(); 2217 SmallVector<Constant*, 16> Elts; 2218 2219 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2220 for (unsigned i = 0; i != Size; ++i) 2221 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2222 STy->getElementType(i))); 2223 V = ConstantStruct::get(STy, Elts); 2224 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2225 Type *EltTy = ATy->getElementType(); 2226 for (unsigned i = 0; i != Size; ++i) 2227 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2228 V = ConstantArray::get(ATy, Elts); 2229 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2230 Type *EltTy = VTy->getElementType(); 2231 for (unsigned i = 0; i != Size; ++i) 2232 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2233 V = ConstantVector::get(Elts); 2234 } else { 2235 V = UndefValue::get(CurTy); 2236 } 2237 break; 2238 } 2239 case bitc::CST_CODE_STRING: // STRING: [values] 2240 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2241 if (Record.empty()) 2242 return error("Invalid record"); 2243 2244 SmallString<16> Elts(Record.begin(), Record.end()); 2245 V = ConstantDataArray::getString(Context, Elts, 2246 BitCode == bitc::CST_CODE_CSTRING); 2247 break; 2248 } 2249 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2250 if (Record.empty()) 2251 return error("Invalid record"); 2252 2253 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2254 if (EltTy->isIntegerTy(8)) { 2255 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2256 if (isa<VectorType>(CurTy)) 2257 V = ConstantDataVector::get(Context, Elts); 2258 else 2259 V = ConstantDataArray::get(Context, Elts); 2260 } else if (EltTy->isIntegerTy(16)) { 2261 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2262 if (isa<VectorType>(CurTy)) 2263 V = ConstantDataVector::get(Context, Elts); 2264 else 2265 V = ConstantDataArray::get(Context, Elts); 2266 } else if (EltTy->isIntegerTy(32)) { 2267 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isIntegerTy(64)) { 2273 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isHalfTy()) { 2279 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::getFP(Context, Elts); 2282 else 2283 V = ConstantDataArray::getFP(Context, Elts); 2284 } else if (EltTy->isFloatTy()) { 2285 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::getFP(Context, Elts); 2288 else 2289 V = ConstantDataArray::getFP(Context, Elts); 2290 } else if (EltTy->isDoubleTy()) { 2291 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::getFP(Context, Elts); 2294 else 2295 V = ConstantDataArray::getFP(Context, Elts); 2296 } else { 2297 return error("Invalid type for value"); 2298 } 2299 break; 2300 } 2301 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2302 if (Record.size() < 3) 2303 return error("Invalid record"); 2304 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2305 if (Opc < 0) { 2306 V = UndefValue::get(CurTy); // Unknown binop. 2307 } else { 2308 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2309 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2310 unsigned Flags = 0; 2311 if (Record.size() >= 4) { 2312 if (Opc == Instruction::Add || 2313 Opc == Instruction::Sub || 2314 Opc == Instruction::Mul || 2315 Opc == Instruction::Shl) { 2316 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2317 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2318 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2319 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2320 } else if (Opc == Instruction::SDiv || 2321 Opc == Instruction::UDiv || 2322 Opc == Instruction::LShr || 2323 Opc == Instruction::AShr) { 2324 if (Record[3] & (1 << bitc::PEO_EXACT)) 2325 Flags |= SDivOperator::IsExact; 2326 } 2327 } 2328 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2329 } 2330 break; 2331 } 2332 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2333 if (Record.size() < 3) 2334 return error("Invalid record"); 2335 int Opc = getDecodedCastOpcode(Record[0]); 2336 if (Opc < 0) { 2337 V = UndefValue::get(CurTy); // Unknown cast. 2338 } else { 2339 Type *OpTy = getTypeByID(Record[1]); 2340 if (!OpTy) 2341 return error("Invalid record"); 2342 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2343 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2344 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2345 } 2346 break; 2347 } 2348 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2349 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2350 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2351 // operands] 2352 unsigned OpNum = 0; 2353 Type *PointeeType = nullptr; 2354 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2355 Record.size() % 2) 2356 PointeeType = getTypeByID(Record[OpNum++]); 2357 2358 bool InBounds = false; 2359 Optional<unsigned> InRangeIndex; 2360 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2361 uint64_t Op = Record[OpNum++]; 2362 InBounds = Op & 1; 2363 InRangeIndex = Op >> 1; 2364 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2365 InBounds = true; 2366 2367 SmallVector<Constant*, 16> Elts; 2368 while (OpNum != Record.size()) { 2369 Type *ElTy = getTypeByID(Record[OpNum++]); 2370 if (!ElTy) 2371 return error("Invalid record"); 2372 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2373 } 2374 2375 if (PointeeType && 2376 PointeeType != 2377 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2378 ->getElementType()) 2379 return error("Explicit gep operator type does not match pointee type " 2380 "of pointer operand"); 2381 2382 if (Elts.size() < 1) 2383 return error("Invalid gep with no operands"); 2384 2385 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2386 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2387 InBounds, InRangeIndex); 2388 break; 2389 } 2390 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2391 if (Record.size() < 3) 2392 return error("Invalid record"); 2393 2394 Type *SelectorTy = Type::getInt1Ty(Context); 2395 2396 // The selector might be an i1 or an <n x i1> 2397 // Get the type from the ValueList before getting a forward ref. 2398 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2399 if (Value *V = ValueList[Record[0]]) 2400 if (SelectorTy != V->getType()) 2401 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2402 2403 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2404 SelectorTy), 2405 ValueList.getConstantFwdRef(Record[1],CurTy), 2406 ValueList.getConstantFwdRef(Record[2],CurTy)); 2407 break; 2408 } 2409 case bitc::CST_CODE_CE_EXTRACTELT 2410 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2411 if (Record.size() < 3) 2412 return error("Invalid record"); 2413 VectorType *OpTy = 2414 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2415 if (!OpTy) 2416 return error("Invalid record"); 2417 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2418 Constant *Op1 = nullptr; 2419 if (Record.size() == 4) { 2420 Type *IdxTy = getTypeByID(Record[2]); 2421 if (!IdxTy) 2422 return error("Invalid record"); 2423 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2424 } else // TODO: Remove with llvm 4.0 2425 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2426 if (!Op1) 2427 return error("Invalid record"); 2428 V = ConstantExpr::getExtractElement(Op0, Op1); 2429 break; 2430 } 2431 case bitc::CST_CODE_CE_INSERTELT 2432 : { // CE_INSERTELT: [opval, opval, opty, opval] 2433 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2434 if (Record.size() < 3 || !OpTy) 2435 return error("Invalid record"); 2436 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2437 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2438 OpTy->getElementType()); 2439 Constant *Op2 = nullptr; 2440 if (Record.size() == 4) { 2441 Type *IdxTy = getTypeByID(Record[2]); 2442 if (!IdxTy) 2443 return error("Invalid record"); 2444 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2445 } else // TODO: Remove with llvm 4.0 2446 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2447 if (!Op2) 2448 return error("Invalid record"); 2449 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2450 break; 2451 } 2452 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2453 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2454 if (Record.size() < 3 || !OpTy) 2455 return error("Invalid record"); 2456 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2457 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2458 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2459 OpTy->getNumElements()); 2460 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2461 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2462 break; 2463 } 2464 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2465 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2466 VectorType *OpTy = 2467 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2468 if (Record.size() < 4 || !RTy || !OpTy) 2469 return error("Invalid record"); 2470 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2471 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2472 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2473 RTy->getNumElements()); 2474 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2475 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2476 break; 2477 } 2478 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2479 if (Record.size() < 4) 2480 return error("Invalid record"); 2481 Type *OpTy = getTypeByID(Record[0]); 2482 if (!OpTy) 2483 return error("Invalid record"); 2484 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2485 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2486 2487 if (OpTy->isFPOrFPVectorTy()) 2488 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2489 else 2490 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2491 break; 2492 } 2493 // This maintains backward compatibility, pre-asm dialect keywords. 2494 // FIXME: Remove with the 4.0 release. 2495 case bitc::CST_CODE_INLINEASM_OLD: { 2496 if (Record.size() < 2) 2497 return error("Invalid record"); 2498 std::string AsmStr, ConstrStr; 2499 bool HasSideEffects = Record[0] & 1; 2500 bool IsAlignStack = Record[0] >> 1; 2501 unsigned AsmStrSize = Record[1]; 2502 if (2+AsmStrSize >= Record.size()) 2503 return error("Invalid record"); 2504 unsigned ConstStrSize = Record[2+AsmStrSize]; 2505 if (3+AsmStrSize+ConstStrSize > Record.size()) 2506 return error("Invalid record"); 2507 2508 for (unsigned i = 0; i != AsmStrSize; ++i) 2509 AsmStr += (char)Record[2+i]; 2510 for (unsigned i = 0; i != ConstStrSize; ++i) 2511 ConstrStr += (char)Record[3+AsmStrSize+i]; 2512 PointerType *PTy = cast<PointerType>(CurTy); 2513 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2514 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2515 break; 2516 } 2517 // This version adds support for the asm dialect keywords (e.g., 2518 // inteldialect). 2519 case bitc::CST_CODE_INLINEASM: { 2520 if (Record.size() < 2) 2521 return error("Invalid record"); 2522 std::string AsmStr, ConstrStr; 2523 bool HasSideEffects = Record[0] & 1; 2524 bool IsAlignStack = (Record[0] >> 1) & 1; 2525 unsigned AsmDialect = Record[0] >> 2; 2526 unsigned AsmStrSize = Record[1]; 2527 if (2+AsmStrSize >= Record.size()) 2528 return error("Invalid record"); 2529 unsigned ConstStrSize = Record[2+AsmStrSize]; 2530 if (3+AsmStrSize+ConstStrSize > Record.size()) 2531 return error("Invalid record"); 2532 2533 for (unsigned i = 0; i != AsmStrSize; ++i) 2534 AsmStr += (char)Record[2+i]; 2535 for (unsigned i = 0; i != ConstStrSize; ++i) 2536 ConstrStr += (char)Record[3+AsmStrSize+i]; 2537 PointerType *PTy = cast<PointerType>(CurTy); 2538 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2539 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2540 InlineAsm::AsmDialect(AsmDialect)); 2541 break; 2542 } 2543 case bitc::CST_CODE_BLOCKADDRESS:{ 2544 if (Record.size() < 3) 2545 return error("Invalid record"); 2546 Type *FnTy = getTypeByID(Record[0]); 2547 if (!FnTy) 2548 return error("Invalid record"); 2549 Function *Fn = 2550 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2551 if (!Fn) 2552 return error("Invalid record"); 2553 2554 // If the function is already parsed we can insert the block address right 2555 // away. 2556 BasicBlock *BB; 2557 unsigned BBID = Record[2]; 2558 if (!BBID) 2559 // Invalid reference to entry block. 2560 return error("Invalid ID"); 2561 if (!Fn->empty()) { 2562 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2563 for (size_t I = 0, E = BBID; I != E; ++I) { 2564 if (BBI == BBE) 2565 return error("Invalid ID"); 2566 ++BBI; 2567 } 2568 BB = &*BBI; 2569 } else { 2570 // Otherwise insert a placeholder and remember it so it can be inserted 2571 // when the function is parsed. 2572 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2573 if (FwdBBs.empty()) 2574 BasicBlockFwdRefQueue.push_back(Fn); 2575 if (FwdBBs.size() < BBID + 1) 2576 FwdBBs.resize(BBID + 1); 2577 if (!FwdBBs[BBID]) 2578 FwdBBs[BBID] = BasicBlock::Create(Context); 2579 BB = FwdBBs[BBID]; 2580 } 2581 V = BlockAddress::get(Fn, BB); 2582 break; 2583 } 2584 } 2585 2586 ValueList.assignValue(V, NextCstNo); 2587 ++NextCstNo; 2588 } 2589 } 2590 2591 Error BitcodeReader::parseUseLists() { 2592 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2593 return error("Invalid record"); 2594 2595 // Read all the records. 2596 SmallVector<uint64_t, 64> Record; 2597 2598 while (true) { 2599 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2600 2601 switch (Entry.Kind) { 2602 case BitstreamEntry::SubBlock: // Handled for us already. 2603 case BitstreamEntry::Error: 2604 return error("Malformed block"); 2605 case BitstreamEntry::EndBlock: 2606 return Error::success(); 2607 case BitstreamEntry::Record: 2608 // The interesting case. 2609 break; 2610 } 2611 2612 // Read a use list record. 2613 Record.clear(); 2614 bool IsBB = false; 2615 switch (Stream.readRecord(Entry.ID, Record)) { 2616 default: // Default behavior: unknown type. 2617 break; 2618 case bitc::USELIST_CODE_BB: 2619 IsBB = true; 2620 LLVM_FALLTHROUGH; 2621 case bitc::USELIST_CODE_DEFAULT: { 2622 unsigned RecordLength = Record.size(); 2623 if (RecordLength < 3) 2624 // Records should have at least an ID and two indexes. 2625 return error("Invalid record"); 2626 unsigned ID = Record.back(); 2627 Record.pop_back(); 2628 2629 Value *V; 2630 if (IsBB) { 2631 assert(ID < FunctionBBs.size() && "Basic block not found"); 2632 V = FunctionBBs[ID]; 2633 } else 2634 V = ValueList[ID]; 2635 unsigned NumUses = 0; 2636 SmallDenseMap<const Use *, unsigned, 16> Order; 2637 for (const Use &U : V->materialized_uses()) { 2638 if (++NumUses > Record.size()) 2639 break; 2640 Order[&U] = Record[NumUses - 1]; 2641 } 2642 if (Order.size() != Record.size() || NumUses > Record.size()) 2643 // Mismatches can happen if the functions are being materialized lazily 2644 // (out-of-order), or a value has been upgraded. 2645 break; 2646 2647 V->sortUseList([&](const Use &L, const Use &R) { 2648 return Order.lookup(&L) < Order.lookup(&R); 2649 }); 2650 break; 2651 } 2652 } 2653 } 2654 } 2655 2656 /// When we see the block for metadata, remember where it is and then skip it. 2657 /// This lets us lazily deserialize the metadata. 2658 Error BitcodeReader::rememberAndSkipMetadata() { 2659 // Save the current stream state. 2660 uint64_t CurBit = Stream.GetCurrentBitNo(); 2661 DeferredMetadataInfo.push_back(CurBit); 2662 2663 // Skip over the block for now. 2664 if (Stream.SkipBlock()) 2665 return error("Invalid record"); 2666 return Error::success(); 2667 } 2668 2669 Error BitcodeReader::materializeMetadata() { 2670 for (uint64_t BitPos : DeferredMetadataInfo) { 2671 // Move the bit stream to the saved position. 2672 Stream.JumpToBit(BitPos); 2673 if (Error Err = MDLoader->parseModuleMetadata()) 2674 return Err; 2675 } 2676 2677 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2678 // metadata. 2679 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2680 NamedMDNode *LinkerOpts = 2681 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2682 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2683 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2684 } 2685 2686 DeferredMetadataInfo.clear(); 2687 return Error::success(); 2688 } 2689 2690 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2691 2692 /// When we see the block for a function body, remember where it is and then 2693 /// skip it. This lets us lazily deserialize the functions. 2694 Error BitcodeReader::rememberAndSkipFunctionBody() { 2695 // Get the function we are talking about. 2696 if (FunctionsWithBodies.empty()) 2697 return error("Insufficient function protos"); 2698 2699 Function *Fn = FunctionsWithBodies.back(); 2700 FunctionsWithBodies.pop_back(); 2701 2702 // Save the current stream state. 2703 uint64_t CurBit = Stream.GetCurrentBitNo(); 2704 assert( 2705 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2706 "Mismatch between VST and scanned function offsets"); 2707 DeferredFunctionInfo[Fn] = CurBit; 2708 2709 // Skip over the function block for now. 2710 if (Stream.SkipBlock()) 2711 return error("Invalid record"); 2712 return Error::success(); 2713 } 2714 2715 Error BitcodeReader::globalCleanup() { 2716 // Patch the initializers for globals and aliases up. 2717 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2718 return Err; 2719 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2720 return error("Malformed global initializer set"); 2721 2722 // Look for intrinsic functions which need to be upgraded at some point 2723 for (Function &F : *TheModule) { 2724 MDLoader->upgradeDebugIntrinsics(F); 2725 Function *NewFn; 2726 if (UpgradeIntrinsicFunction(&F, NewFn)) 2727 UpgradedIntrinsics[&F] = NewFn; 2728 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2729 // Some types could be renamed during loading if several modules are 2730 // loaded in the same LLVMContext (LTO scenario). In this case we should 2731 // remangle intrinsics names as well. 2732 RemangledIntrinsics[&F] = Remangled.getValue(); 2733 } 2734 2735 // Look for global variables which need to be renamed. 2736 for (GlobalVariable &GV : TheModule->globals()) 2737 UpgradeGlobalVariable(&GV); 2738 2739 // Force deallocation of memory for these vectors to favor the client that 2740 // want lazy deserialization. 2741 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2742 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2743 IndirectSymbolInits); 2744 return Error::success(); 2745 } 2746 2747 /// Support for lazy parsing of function bodies. This is required if we 2748 /// either have an old bitcode file without a VST forward declaration record, 2749 /// or if we have an anonymous function being materialized, since anonymous 2750 /// functions do not have a name and are therefore not in the VST. 2751 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2752 Stream.JumpToBit(NextUnreadBit); 2753 2754 if (Stream.AtEndOfStream()) 2755 return error("Could not find function in stream"); 2756 2757 if (!SeenFirstFunctionBody) 2758 return error("Trying to materialize functions before seeing function blocks"); 2759 2760 // An old bitcode file with the symbol table at the end would have 2761 // finished the parse greedily. 2762 assert(SeenValueSymbolTable); 2763 2764 SmallVector<uint64_t, 64> Record; 2765 2766 while (true) { 2767 BitstreamEntry Entry = Stream.advance(); 2768 switch (Entry.Kind) { 2769 default: 2770 return error("Expect SubBlock"); 2771 case BitstreamEntry::SubBlock: 2772 switch (Entry.ID) { 2773 default: 2774 return error("Expect function block"); 2775 case bitc::FUNCTION_BLOCK_ID: 2776 if (Error Err = rememberAndSkipFunctionBody()) 2777 return Err; 2778 NextUnreadBit = Stream.GetCurrentBitNo(); 2779 return Error::success(); 2780 } 2781 } 2782 } 2783 } 2784 2785 bool BitcodeReaderBase::readBlockInfo() { 2786 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2787 if (!NewBlockInfo) 2788 return true; 2789 BlockInfo = std::move(*NewBlockInfo); 2790 return false; 2791 } 2792 2793 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2794 // v1: [selection_kind, name] 2795 // v2: [strtab_offset, strtab_size, selection_kind] 2796 StringRef Name; 2797 std::tie(Name, Record) = readNameFromStrtab(Record); 2798 2799 if (Record.empty()) 2800 return error("Invalid record"); 2801 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2802 std::string OldFormatName; 2803 if (!UseStrtab) { 2804 if (Record.size() < 2) 2805 return error("Invalid record"); 2806 unsigned ComdatNameSize = Record[1]; 2807 OldFormatName.reserve(ComdatNameSize); 2808 for (unsigned i = 0; i != ComdatNameSize; ++i) 2809 OldFormatName += (char)Record[2 + i]; 2810 Name = OldFormatName; 2811 } 2812 Comdat *C = TheModule->getOrInsertComdat(Name); 2813 C->setSelectionKind(SK); 2814 ComdatList.push_back(C); 2815 return Error::success(); 2816 } 2817 2818 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2819 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2820 // visibility, threadlocal, unnamed_addr, externally_initialized, 2821 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2822 // v2: [strtab_offset, strtab_size, v1] 2823 StringRef Name; 2824 std::tie(Name, Record) = readNameFromStrtab(Record); 2825 2826 if (Record.size() < 6) 2827 return error("Invalid record"); 2828 Type *Ty = getTypeByID(Record[0]); 2829 if (!Ty) 2830 return error("Invalid record"); 2831 bool isConstant = Record[1] & 1; 2832 bool explicitType = Record[1] & 2; 2833 unsigned AddressSpace; 2834 if (explicitType) { 2835 AddressSpace = Record[1] >> 2; 2836 } else { 2837 if (!Ty->isPointerTy()) 2838 return error("Invalid type for value"); 2839 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2840 Ty = cast<PointerType>(Ty)->getElementType(); 2841 } 2842 2843 uint64_t RawLinkage = Record[3]; 2844 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2845 unsigned Alignment; 2846 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2847 return Err; 2848 std::string Section; 2849 if (Record[5]) { 2850 if (Record[5] - 1 >= SectionTable.size()) 2851 return error("Invalid ID"); 2852 Section = SectionTable[Record[5] - 1]; 2853 } 2854 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2855 // Local linkage must have default visibility. 2856 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2857 // FIXME: Change to an error if non-default in 4.0. 2858 Visibility = getDecodedVisibility(Record[6]); 2859 2860 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2861 if (Record.size() > 7) 2862 TLM = getDecodedThreadLocalMode(Record[7]); 2863 2864 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2865 if (Record.size() > 8) 2866 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2867 2868 bool ExternallyInitialized = false; 2869 if (Record.size() > 9) 2870 ExternallyInitialized = Record[9]; 2871 2872 GlobalVariable *NewGV = 2873 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2874 nullptr, TLM, AddressSpace, ExternallyInitialized); 2875 NewGV->setAlignment(Alignment); 2876 if (!Section.empty()) 2877 NewGV->setSection(Section); 2878 NewGV->setVisibility(Visibility); 2879 NewGV->setUnnamedAddr(UnnamedAddr); 2880 2881 if (Record.size() > 10) 2882 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2883 else 2884 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2885 2886 ValueList.push_back(NewGV); 2887 2888 // Remember which value to use for the global initializer. 2889 if (unsigned InitID = Record[2]) 2890 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2891 2892 if (Record.size() > 11) { 2893 if (unsigned ComdatID = Record[11]) { 2894 if (ComdatID > ComdatList.size()) 2895 return error("Invalid global variable comdat ID"); 2896 NewGV->setComdat(ComdatList[ComdatID - 1]); 2897 } 2898 } else if (hasImplicitComdat(RawLinkage)) { 2899 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2900 } 2901 2902 if (Record.size() > 12) { 2903 auto AS = getAttributes(Record[12]).getFnAttributes(); 2904 NewGV->setAttributes(AS); 2905 } 2906 2907 if (Record.size() > 13) { 2908 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2909 } 2910 2911 return Error::success(); 2912 } 2913 2914 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2915 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2916 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2917 // prefixdata, personalityfn, preemption specifier] (name in VST) 2918 // v2: [strtab_offset, strtab_size, v1] 2919 StringRef Name; 2920 std::tie(Name, Record) = readNameFromStrtab(Record); 2921 2922 if (Record.size() < 8) 2923 return error("Invalid record"); 2924 Type *Ty = getTypeByID(Record[0]); 2925 if (!Ty) 2926 return error("Invalid record"); 2927 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2928 Ty = PTy->getElementType(); 2929 auto *FTy = dyn_cast<FunctionType>(Ty); 2930 if (!FTy) 2931 return error("Invalid type for value"); 2932 auto CC = static_cast<CallingConv::ID>(Record[1]); 2933 if (CC & ~CallingConv::MaxID) 2934 return error("Invalid calling convention ID"); 2935 2936 Function *Func = 2937 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2938 2939 Func->setCallingConv(CC); 2940 bool isProto = Record[2]; 2941 uint64_t RawLinkage = Record[3]; 2942 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2943 Func->setAttributes(getAttributes(Record[4])); 2944 2945 unsigned Alignment; 2946 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2947 return Err; 2948 Func->setAlignment(Alignment); 2949 if (Record[6]) { 2950 if (Record[6] - 1 >= SectionTable.size()) 2951 return error("Invalid ID"); 2952 Func->setSection(SectionTable[Record[6] - 1]); 2953 } 2954 // Local linkage must have default visibility. 2955 if (!Func->hasLocalLinkage()) 2956 // FIXME: Change to an error if non-default in 4.0. 2957 Func->setVisibility(getDecodedVisibility(Record[7])); 2958 if (Record.size() > 8 && Record[8]) { 2959 if (Record[8] - 1 >= GCTable.size()) 2960 return error("Invalid ID"); 2961 Func->setGC(GCTable[Record[8] - 1]); 2962 } 2963 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2964 if (Record.size() > 9) 2965 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2966 Func->setUnnamedAddr(UnnamedAddr); 2967 if (Record.size() > 10 && Record[10] != 0) 2968 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2969 2970 if (Record.size() > 11) 2971 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2972 else 2973 upgradeDLLImportExportLinkage(Func, RawLinkage); 2974 2975 if (Record.size() > 12) { 2976 if (unsigned ComdatID = Record[12]) { 2977 if (ComdatID > ComdatList.size()) 2978 return error("Invalid function comdat ID"); 2979 Func->setComdat(ComdatList[ComdatID - 1]); 2980 } 2981 } else if (hasImplicitComdat(RawLinkage)) { 2982 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2983 } 2984 2985 if (Record.size() > 13 && Record[13] != 0) 2986 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2987 2988 if (Record.size() > 14 && Record[14] != 0) 2989 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2990 2991 if (Record.size() > 15) { 2992 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 2993 } 2994 2995 ValueList.push_back(Func); 2996 2997 // If this is a function with a body, remember the prototype we are 2998 // creating now, so that we can match up the body with them later. 2999 if (!isProto) { 3000 Func->setIsMaterializable(true); 3001 FunctionsWithBodies.push_back(Func); 3002 DeferredFunctionInfo[Func] = 0; 3003 } 3004 return Error::success(); 3005 } 3006 3007 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3008 unsigned BitCode, ArrayRef<uint64_t> Record) { 3009 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3010 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3011 // dllstorageclass, threadlocal, unnamed_addr, 3012 // preemption specifier] (name in VST) 3013 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3014 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3015 // preemption specifier] (name in VST) 3016 // v2: [strtab_offset, strtab_size, v1] 3017 StringRef Name; 3018 std::tie(Name, Record) = readNameFromStrtab(Record); 3019 3020 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3021 if (Record.size() < (3 + (unsigned)NewRecord)) 3022 return error("Invalid record"); 3023 unsigned OpNum = 0; 3024 Type *Ty = getTypeByID(Record[OpNum++]); 3025 if (!Ty) 3026 return error("Invalid record"); 3027 3028 unsigned AddrSpace; 3029 if (!NewRecord) { 3030 auto *PTy = dyn_cast<PointerType>(Ty); 3031 if (!PTy) 3032 return error("Invalid type for value"); 3033 Ty = PTy->getElementType(); 3034 AddrSpace = PTy->getAddressSpace(); 3035 } else { 3036 AddrSpace = Record[OpNum++]; 3037 } 3038 3039 auto Val = Record[OpNum++]; 3040 auto Linkage = Record[OpNum++]; 3041 GlobalIndirectSymbol *NewGA; 3042 if (BitCode == bitc::MODULE_CODE_ALIAS || 3043 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3044 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3045 TheModule); 3046 else 3047 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3048 nullptr, TheModule); 3049 // Old bitcode files didn't have visibility field. 3050 // Local linkage must have default visibility. 3051 if (OpNum != Record.size()) { 3052 auto VisInd = OpNum++; 3053 if (!NewGA->hasLocalLinkage()) 3054 // FIXME: Change to an error if non-default in 4.0. 3055 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3056 } 3057 if (BitCode == bitc::MODULE_CODE_ALIAS || 3058 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3059 if (OpNum != Record.size()) 3060 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3061 else 3062 upgradeDLLImportExportLinkage(NewGA, Linkage); 3063 if (OpNum != Record.size()) 3064 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3065 if (OpNum != Record.size()) 3066 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3067 } 3068 if (OpNum != Record.size()) 3069 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3070 ValueList.push_back(NewGA); 3071 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3072 return Error::success(); 3073 } 3074 3075 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3076 bool ShouldLazyLoadMetadata) { 3077 if (ResumeBit) 3078 Stream.JumpToBit(ResumeBit); 3079 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3080 return error("Invalid record"); 3081 3082 SmallVector<uint64_t, 64> Record; 3083 3084 // Read all the records for this module. 3085 while (true) { 3086 BitstreamEntry Entry = Stream.advance(); 3087 3088 switch (Entry.Kind) { 3089 case BitstreamEntry::Error: 3090 return error("Malformed block"); 3091 case BitstreamEntry::EndBlock: 3092 return globalCleanup(); 3093 3094 case BitstreamEntry::SubBlock: 3095 switch (Entry.ID) { 3096 default: // Skip unknown content. 3097 if (Stream.SkipBlock()) 3098 return error("Invalid record"); 3099 break; 3100 case bitc::BLOCKINFO_BLOCK_ID: 3101 if (readBlockInfo()) 3102 return error("Malformed block"); 3103 break; 3104 case bitc::PARAMATTR_BLOCK_ID: 3105 if (Error Err = parseAttributeBlock()) 3106 return Err; 3107 break; 3108 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3109 if (Error Err = parseAttributeGroupBlock()) 3110 return Err; 3111 break; 3112 case bitc::TYPE_BLOCK_ID_NEW: 3113 if (Error Err = parseTypeTable()) 3114 return Err; 3115 break; 3116 case bitc::VALUE_SYMTAB_BLOCK_ID: 3117 if (!SeenValueSymbolTable) { 3118 // Either this is an old form VST without function index and an 3119 // associated VST forward declaration record (which would have caused 3120 // the VST to be jumped to and parsed before it was encountered 3121 // normally in the stream), or there were no function blocks to 3122 // trigger an earlier parsing of the VST. 3123 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3124 if (Error Err = parseValueSymbolTable()) 3125 return Err; 3126 SeenValueSymbolTable = true; 3127 } else { 3128 // We must have had a VST forward declaration record, which caused 3129 // the parser to jump to and parse the VST earlier. 3130 assert(VSTOffset > 0); 3131 if (Stream.SkipBlock()) 3132 return error("Invalid record"); 3133 } 3134 break; 3135 case bitc::CONSTANTS_BLOCK_ID: 3136 if (Error Err = parseConstants()) 3137 return Err; 3138 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3139 return Err; 3140 break; 3141 case bitc::METADATA_BLOCK_ID: 3142 if (ShouldLazyLoadMetadata) { 3143 if (Error Err = rememberAndSkipMetadata()) 3144 return Err; 3145 break; 3146 } 3147 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3148 if (Error Err = MDLoader->parseModuleMetadata()) 3149 return Err; 3150 break; 3151 case bitc::METADATA_KIND_BLOCK_ID: 3152 if (Error Err = MDLoader->parseMetadataKinds()) 3153 return Err; 3154 break; 3155 case bitc::FUNCTION_BLOCK_ID: 3156 // If this is the first function body we've seen, reverse the 3157 // FunctionsWithBodies list. 3158 if (!SeenFirstFunctionBody) { 3159 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3160 if (Error Err = globalCleanup()) 3161 return Err; 3162 SeenFirstFunctionBody = true; 3163 } 3164 3165 if (VSTOffset > 0) { 3166 // If we have a VST forward declaration record, make sure we 3167 // parse the VST now if we haven't already. It is needed to 3168 // set up the DeferredFunctionInfo vector for lazy reading. 3169 if (!SeenValueSymbolTable) { 3170 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3171 return Err; 3172 SeenValueSymbolTable = true; 3173 // Fall through so that we record the NextUnreadBit below. 3174 // This is necessary in case we have an anonymous function that 3175 // is later materialized. Since it will not have a VST entry we 3176 // need to fall back to the lazy parse to find its offset. 3177 } else { 3178 // If we have a VST forward declaration record, but have already 3179 // parsed the VST (just above, when the first function body was 3180 // encountered here), then we are resuming the parse after 3181 // materializing functions. The ResumeBit points to the 3182 // start of the last function block recorded in the 3183 // DeferredFunctionInfo map. Skip it. 3184 if (Stream.SkipBlock()) 3185 return error("Invalid record"); 3186 continue; 3187 } 3188 } 3189 3190 // Support older bitcode files that did not have the function 3191 // index in the VST, nor a VST forward declaration record, as 3192 // well as anonymous functions that do not have VST entries. 3193 // Build the DeferredFunctionInfo vector on the fly. 3194 if (Error Err = rememberAndSkipFunctionBody()) 3195 return Err; 3196 3197 // Suspend parsing when we reach the function bodies. Subsequent 3198 // materialization calls will resume it when necessary. If the bitcode 3199 // file is old, the symbol table will be at the end instead and will not 3200 // have been seen yet. In this case, just finish the parse now. 3201 if (SeenValueSymbolTable) { 3202 NextUnreadBit = Stream.GetCurrentBitNo(); 3203 // After the VST has been parsed, we need to make sure intrinsic name 3204 // are auto-upgraded. 3205 return globalCleanup(); 3206 } 3207 break; 3208 case bitc::USELIST_BLOCK_ID: 3209 if (Error Err = parseUseLists()) 3210 return Err; 3211 break; 3212 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3213 if (Error Err = parseOperandBundleTags()) 3214 return Err; 3215 break; 3216 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3217 if (Error Err = parseSyncScopeNames()) 3218 return Err; 3219 break; 3220 } 3221 continue; 3222 3223 case BitstreamEntry::Record: 3224 // The interesting case. 3225 break; 3226 } 3227 3228 // Read a record. 3229 auto BitCode = Stream.readRecord(Entry.ID, Record); 3230 switch (BitCode) { 3231 default: break; // Default behavior, ignore unknown content. 3232 case bitc::MODULE_CODE_VERSION: { 3233 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3234 if (!VersionOrErr) 3235 return VersionOrErr.takeError(); 3236 UseRelativeIDs = *VersionOrErr >= 1; 3237 break; 3238 } 3239 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3240 std::string S; 3241 if (convertToString(Record, 0, S)) 3242 return error("Invalid record"); 3243 TheModule->setTargetTriple(S); 3244 break; 3245 } 3246 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3247 std::string S; 3248 if (convertToString(Record, 0, S)) 3249 return error("Invalid record"); 3250 TheModule->setDataLayout(S); 3251 break; 3252 } 3253 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3254 std::string S; 3255 if (convertToString(Record, 0, S)) 3256 return error("Invalid record"); 3257 TheModule->setModuleInlineAsm(S); 3258 break; 3259 } 3260 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3261 // FIXME: Remove in 4.0. 3262 std::string S; 3263 if (convertToString(Record, 0, S)) 3264 return error("Invalid record"); 3265 // Ignore value. 3266 break; 3267 } 3268 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3269 std::string S; 3270 if (convertToString(Record, 0, S)) 3271 return error("Invalid record"); 3272 SectionTable.push_back(S); 3273 break; 3274 } 3275 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3276 std::string S; 3277 if (convertToString(Record, 0, S)) 3278 return error("Invalid record"); 3279 GCTable.push_back(S); 3280 break; 3281 } 3282 case bitc::MODULE_CODE_COMDAT: 3283 if (Error Err = parseComdatRecord(Record)) 3284 return Err; 3285 break; 3286 case bitc::MODULE_CODE_GLOBALVAR: 3287 if (Error Err = parseGlobalVarRecord(Record)) 3288 return Err; 3289 break; 3290 case bitc::MODULE_CODE_FUNCTION: 3291 if (Error Err = parseFunctionRecord(Record)) 3292 return Err; 3293 break; 3294 case bitc::MODULE_CODE_IFUNC: 3295 case bitc::MODULE_CODE_ALIAS: 3296 case bitc::MODULE_CODE_ALIAS_OLD: 3297 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3298 return Err; 3299 break; 3300 /// MODULE_CODE_VSTOFFSET: [offset] 3301 case bitc::MODULE_CODE_VSTOFFSET: 3302 if (Record.size() < 1) 3303 return error("Invalid record"); 3304 // Note that we subtract 1 here because the offset is relative to one word 3305 // before the start of the identification or module block, which was 3306 // historically always the start of the regular bitcode header. 3307 VSTOffset = Record[0] - 1; 3308 break; 3309 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3310 case bitc::MODULE_CODE_SOURCE_FILENAME: 3311 SmallString<128> ValueName; 3312 if (convertToString(Record, 0, ValueName)) 3313 return error("Invalid record"); 3314 TheModule->setSourceFileName(ValueName); 3315 break; 3316 } 3317 Record.clear(); 3318 } 3319 } 3320 3321 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3322 bool IsImporting) { 3323 TheModule = M; 3324 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3325 [&](unsigned ID) { return getTypeByID(ID); }); 3326 return parseModule(0, ShouldLazyLoadMetadata); 3327 } 3328 3329 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3330 if (!isa<PointerType>(PtrType)) 3331 return error("Load/Store operand is not a pointer type"); 3332 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3333 3334 if (ValType && ValType != ElemType) 3335 return error("Explicit load/store type does not match pointee " 3336 "type of pointer operand"); 3337 if (!PointerType::isLoadableOrStorableType(ElemType)) 3338 return error("Cannot load/store from pointer"); 3339 return Error::success(); 3340 } 3341 3342 /// Lazily parse the specified function body block. 3343 Error BitcodeReader::parseFunctionBody(Function *F) { 3344 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3345 return error("Invalid record"); 3346 3347 // Unexpected unresolved metadata when parsing function. 3348 if (MDLoader->hasFwdRefs()) 3349 return error("Invalid function metadata: incoming forward references"); 3350 3351 InstructionList.clear(); 3352 unsigned ModuleValueListSize = ValueList.size(); 3353 unsigned ModuleMDLoaderSize = MDLoader->size(); 3354 3355 // Add all the function arguments to the value table. 3356 for (Argument &I : F->args()) 3357 ValueList.push_back(&I); 3358 3359 unsigned NextValueNo = ValueList.size(); 3360 BasicBlock *CurBB = nullptr; 3361 unsigned CurBBNo = 0; 3362 3363 DebugLoc LastLoc; 3364 auto getLastInstruction = [&]() -> Instruction * { 3365 if (CurBB && !CurBB->empty()) 3366 return &CurBB->back(); 3367 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3368 !FunctionBBs[CurBBNo - 1]->empty()) 3369 return &FunctionBBs[CurBBNo - 1]->back(); 3370 return nullptr; 3371 }; 3372 3373 std::vector<OperandBundleDef> OperandBundles; 3374 3375 // Read all the records. 3376 SmallVector<uint64_t, 64> Record; 3377 3378 while (true) { 3379 BitstreamEntry Entry = Stream.advance(); 3380 3381 switch (Entry.Kind) { 3382 case BitstreamEntry::Error: 3383 return error("Malformed block"); 3384 case BitstreamEntry::EndBlock: 3385 goto OutOfRecordLoop; 3386 3387 case BitstreamEntry::SubBlock: 3388 switch (Entry.ID) { 3389 default: // Skip unknown content. 3390 if (Stream.SkipBlock()) 3391 return error("Invalid record"); 3392 break; 3393 case bitc::CONSTANTS_BLOCK_ID: 3394 if (Error Err = parseConstants()) 3395 return Err; 3396 NextValueNo = ValueList.size(); 3397 break; 3398 case bitc::VALUE_SYMTAB_BLOCK_ID: 3399 if (Error Err = parseValueSymbolTable()) 3400 return Err; 3401 break; 3402 case bitc::METADATA_ATTACHMENT_ID: 3403 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3404 return Err; 3405 break; 3406 case bitc::METADATA_BLOCK_ID: 3407 assert(DeferredMetadataInfo.empty() && 3408 "Must read all module-level metadata before function-level"); 3409 if (Error Err = MDLoader->parseFunctionMetadata()) 3410 return Err; 3411 break; 3412 case bitc::USELIST_BLOCK_ID: 3413 if (Error Err = parseUseLists()) 3414 return Err; 3415 break; 3416 } 3417 continue; 3418 3419 case BitstreamEntry::Record: 3420 // The interesting case. 3421 break; 3422 } 3423 3424 // Read a record. 3425 Record.clear(); 3426 Instruction *I = nullptr; 3427 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3428 switch (BitCode) { 3429 default: // Default behavior: reject 3430 return error("Invalid value"); 3431 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3432 if (Record.size() < 1 || Record[0] == 0) 3433 return error("Invalid record"); 3434 // Create all the basic blocks for the function. 3435 FunctionBBs.resize(Record[0]); 3436 3437 // See if anything took the address of blocks in this function. 3438 auto BBFRI = BasicBlockFwdRefs.find(F); 3439 if (BBFRI == BasicBlockFwdRefs.end()) { 3440 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3441 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3442 } else { 3443 auto &BBRefs = BBFRI->second; 3444 // Check for invalid basic block references. 3445 if (BBRefs.size() > FunctionBBs.size()) 3446 return error("Invalid ID"); 3447 assert(!BBRefs.empty() && "Unexpected empty array"); 3448 assert(!BBRefs.front() && "Invalid reference to entry block"); 3449 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3450 ++I) 3451 if (I < RE && BBRefs[I]) { 3452 BBRefs[I]->insertInto(F); 3453 FunctionBBs[I] = BBRefs[I]; 3454 } else { 3455 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3456 } 3457 3458 // Erase from the table. 3459 BasicBlockFwdRefs.erase(BBFRI); 3460 } 3461 3462 CurBB = FunctionBBs[0]; 3463 continue; 3464 } 3465 3466 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3467 // This record indicates that the last instruction is at the same 3468 // location as the previous instruction with a location. 3469 I = getLastInstruction(); 3470 3471 if (!I) 3472 return error("Invalid record"); 3473 I->setDebugLoc(LastLoc); 3474 I = nullptr; 3475 continue; 3476 3477 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3478 I = getLastInstruction(); 3479 if (!I || Record.size() < 4) 3480 return error("Invalid record"); 3481 3482 unsigned Line = Record[0], Col = Record[1]; 3483 unsigned ScopeID = Record[2], IAID = Record[3]; 3484 3485 MDNode *Scope = nullptr, *IA = nullptr; 3486 if (ScopeID) { 3487 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3488 if (!Scope) 3489 return error("Invalid record"); 3490 } 3491 if (IAID) { 3492 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3493 if (!IA) 3494 return error("Invalid record"); 3495 } 3496 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3497 I->setDebugLoc(LastLoc); 3498 I = nullptr; 3499 continue; 3500 } 3501 3502 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3503 unsigned OpNum = 0; 3504 Value *LHS, *RHS; 3505 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3506 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3507 OpNum+1 > Record.size()) 3508 return error("Invalid record"); 3509 3510 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3511 if (Opc == -1) 3512 return error("Invalid record"); 3513 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3514 InstructionList.push_back(I); 3515 if (OpNum < Record.size()) { 3516 if (Opc == Instruction::Add || 3517 Opc == Instruction::Sub || 3518 Opc == Instruction::Mul || 3519 Opc == Instruction::Shl) { 3520 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3521 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3522 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3523 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3524 } else if (Opc == Instruction::SDiv || 3525 Opc == Instruction::UDiv || 3526 Opc == Instruction::LShr || 3527 Opc == Instruction::AShr) { 3528 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3529 cast<BinaryOperator>(I)->setIsExact(true); 3530 } else if (isa<FPMathOperator>(I)) { 3531 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3532 if (FMF.any()) 3533 I->setFastMathFlags(FMF); 3534 } 3535 3536 } 3537 break; 3538 } 3539 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3540 unsigned OpNum = 0; 3541 Value *Op; 3542 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3543 OpNum+2 != Record.size()) 3544 return error("Invalid record"); 3545 3546 Type *ResTy = getTypeByID(Record[OpNum]); 3547 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3548 if (Opc == -1 || !ResTy) 3549 return error("Invalid record"); 3550 Instruction *Temp = nullptr; 3551 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3552 if (Temp) { 3553 InstructionList.push_back(Temp); 3554 CurBB->getInstList().push_back(Temp); 3555 } 3556 } else { 3557 auto CastOp = (Instruction::CastOps)Opc; 3558 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3559 return error("Invalid cast"); 3560 I = CastInst::Create(CastOp, Op, ResTy); 3561 } 3562 InstructionList.push_back(I); 3563 break; 3564 } 3565 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3566 case bitc::FUNC_CODE_INST_GEP_OLD: 3567 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3568 unsigned OpNum = 0; 3569 3570 Type *Ty; 3571 bool InBounds; 3572 3573 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3574 InBounds = Record[OpNum++]; 3575 Ty = getTypeByID(Record[OpNum++]); 3576 } else { 3577 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3578 Ty = nullptr; 3579 } 3580 3581 Value *BasePtr; 3582 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3583 return error("Invalid record"); 3584 3585 if (!Ty) 3586 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3587 ->getElementType(); 3588 else if (Ty != 3589 cast<PointerType>(BasePtr->getType()->getScalarType()) 3590 ->getElementType()) 3591 return error( 3592 "Explicit gep type does not match pointee type of pointer operand"); 3593 3594 SmallVector<Value*, 16> GEPIdx; 3595 while (OpNum != Record.size()) { 3596 Value *Op; 3597 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3598 return error("Invalid record"); 3599 GEPIdx.push_back(Op); 3600 } 3601 3602 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3603 3604 InstructionList.push_back(I); 3605 if (InBounds) 3606 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3607 break; 3608 } 3609 3610 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3611 // EXTRACTVAL: [opty, opval, n x indices] 3612 unsigned OpNum = 0; 3613 Value *Agg; 3614 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3615 return error("Invalid record"); 3616 3617 unsigned RecSize = Record.size(); 3618 if (OpNum == RecSize) 3619 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3620 3621 SmallVector<unsigned, 4> EXTRACTVALIdx; 3622 Type *CurTy = Agg->getType(); 3623 for (; OpNum != RecSize; ++OpNum) { 3624 bool IsArray = CurTy->isArrayTy(); 3625 bool IsStruct = CurTy->isStructTy(); 3626 uint64_t Index = Record[OpNum]; 3627 3628 if (!IsStruct && !IsArray) 3629 return error("EXTRACTVAL: Invalid type"); 3630 if ((unsigned)Index != Index) 3631 return error("Invalid value"); 3632 if (IsStruct && Index >= CurTy->subtypes().size()) 3633 return error("EXTRACTVAL: Invalid struct index"); 3634 if (IsArray && Index >= CurTy->getArrayNumElements()) 3635 return error("EXTRACTVAL: Invalid array index"); 3636 EXTRACTVALIdx.push_back((unsigned)Index); 3637 3638 if (IsStruct) 3639 CurTy = CurTy->subtypes()[Index]; 3640 else 3641 CurTy = CurTy->subtypes()[0]; 3642 } 3643 3644 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3645 InstructionList.push_back(I); 3646 break; 3647 } 3648 3649 case bitc::FUNC_CODE_INST_INSERTVAL: { 3650 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3651 unsigned OpNum = 0; 3652 Value *Agg; 3653 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3654 return error("Invalid record"); 3655 Value *Val; 3656 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3657 return error("Invalid record"); 3658 3659 unsigned RecSize = Record.size(); 3660 if (OpNum == RecSize) 3661 return error("INSERTVAL: Invalid instruction with 0 indices"); 3662 3663 SmallVector<unsigned, 4> INSERTVALIdx; 3664 Type *CurTy = Agg->getType(); 3665 for (; OpNum != RecSize; ++OpNum) { 3666 bool IsArray = CurTy->isArrayTy(); 3667 bool IsStruct = CurTy->isStructTy(); 3668 uint64_t Index = Record[OpNum]; 3669 3670 if (!IsStruct && !IsArray) 3671 return error("INSERTVAL: Invalid type"); 3672 if ((unsigned)Index != Index) 3673 return error("Invalid value"); 3674 if (IsStruct && Index >= CurTy->subtypes().size()) 3675 return error("INSERTVAL: Invalid struct index"); 3676 if (IsArray && Index >= CurTy->getArrayNumElements()) 3677 return error("INSERTVAL: Invalid array index"); 3678 3679 INSERTVALIdx.push_back((unsigned)Index); 3680 if (IsStruct) 3681 CurTy = CurTy->subtypes()[Index]; 3682 else 3683 CurTy = CurTy->subtypes()[0]; 3684 } 3685 3686 if (CurTy != Val->getType()) 3687 return error("Inserted value type doesn't match aggregate type"); 3688 3689 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3690 InstructionList.push_back(I); 3691 break; 3692 } 3693 3694 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3695 // obsolete form of select 3696 // handles select i1 ... in old bitcode 3697 unsigned OpNum = 0; 3698 Value *TrueVal, *FalseVal, *Cond; 3699 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3700 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3701 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3702 return error("Invalid record"); 3703 3704 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3705 InstructionList.push_back(I); 3706 break; 3707 } 3708 3709 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3710 // new form of select 3711 // handles select i1 or select [N x i1] 3712 unsigned OpNum = 0; 3713 Value *TrueVal, *FalseVal, *Cond; 3714 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3715 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3716 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3717 return error("Invalid record"); 3718 3719 // select condition can be either i1 or [N x i1] 3720 if (VectorType* vector_type = 3721 dyn_cast<VectorType>(Cond->getType())) { 3722 // expect <n x i1> 3723 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3724 return error("Invalid type for value"); 3725 } else { 3726 // expect i1 3727 if (Cond->getType() != Type::getInt1Ty(Context)) 3728 return error("Invalid type for value"); 3729 } 3730 3731 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3732 InstructionList.push_back(I); 3733 break; 3734 } 3735 3736 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3737 unsigned OpNum = 0; 3738 Value *Vec, *Idx; 3739 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3740 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3741 return error("Invalid record"); 3742 if (!Vec->getType()->isVectorTy()) 3743 return error("Invalid type for value"); 3744 I = ExtractElementInst::Create(Vec, Idx); 3745 InstructionList.push_back(I); 3746 break; 3747 } 3748 3749 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3750 unsigned OpNum = 0; 3751 Value *Vec, *Elt, *Idx; 3752 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3753 return error("Invalid record"); 3754 if (!Vec->getType()->isVectorTy()) 3755 return error("Invalid type for value"); 3756 if (popValue(Record, OpNum, NextValueNo, 3757 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3758 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3759 return error("Invalid record"); 3760 I = InsertElementInst::Create(Vec, Elt, Idx); 3761 InstructionList.push_back(I); 3762 break; 3763 } 3764 3765 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3766 unsigned OpNum = 0; 3767 Value *Vec1, *Vec2, *Mask; 3768 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3769 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3770 return error("Invalid record"); 3771 3772 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3773 return error("Invalid record"); 3774 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3775 return error("Invalid type for value"); 3776 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3777 InstructionList.push_back(I); 3778 break; 3779 } 3780 3781 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3782 // Old form of ICmp/FCmp returning bool 3783 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3784 // both legal on vectors but had different behaviour. 3785 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3786 // FCmp/ICmp returning bool or vector of bool 3787 3788 unsigned OpNum = 0; 3789 Value *LHS, *RHS; 3790 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3791 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3792 return error("Invalid record"); 3793 3794 unsigned PredVal = Record[OpNum]; 3795 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3796 FastMathFlags FMF; 3797 if (IsFP && Record.size() > OpNum+1) 3798 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3799 3800 if (OpNum+1 != Record.size()) 3801 return error("Invalid record"); 3802 3803 if (LHS->getType()->isFPOrFPVectorTy()) 3804 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3805 else 3806 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3807 3808 if (FMF.any()) 3809 I->setFastMathFlags(FMF); 3810 InstructionList.push_back(I); 3811 break; 3812 } 3813 3814 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3815 { 3816 unsigned Size = Record.size(); 3817 if (Size == 0) { 3818 I = ReturnInst::Create(Context); 3819 InstructionList.push_back(I); 3820 break; 3821 } 3822 3823 unsigned OpNum = 0; 3824 Value *Op = nullptr; 3825 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3826 return error("Invalid record"); 3827 if (OpNum != Record.size()) 3828 return error("Invalid record"); 3829 3830 I = ReturnInst::Create(Context, Op); 3831 InstructionList.push_back(I); 3832 break; 3833 } 3834 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3835 if (Record.size() != 1 && Record.size() != 3) 3836 return error("Invalid record"); 3837 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3838 if (!TrueDest) 3839 return error("Invalid record"); 3840 3841 if (Record.size() == 1) { 3842 I = BranchInst::Create(TrueDest); 3843 InstructionList.push_back(I); 3844 } 3845 else { 3846 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3847 Value *Cond = getValue(Record, 2, NextValueNo, 3848 Type::getInt1Ty(Context)); 3849 if (!FalseDest || !Cond) 3850 return error("Invalid record"); 3851 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3852 InstructionList.push_back(I); 3853 } 3854 break; 3855 } 3856 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3857 if (Record.size() != 1 && Record.size() != 2) 3858 return error("Invalid record"); 3859 unsigned Idx = 0; 3860 Value *CleanupPad = 3861 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3862 if (!CleanupPad) 3863 return error("Invalid record"); 3864 BasicBlock *UnwindDest = nullptr; 3865 if (Record.size() == 2) { 3866 UnwindDest = getBasicBlock(Record[Idx++]); 3867 if (!UnwindDest) 3868 return error("Invalid record"); 3869 } 3870 3871 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3872 InstructionList.push_back(I); 3873 break; 3874 } 3875 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3876 if (Record.size() != 2) 3877 return error("Invalid record"); 3878 unsigned Idx = 0; 3879 Value *CatchPad = 3880 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3881 if (!CatchPad) 3882 return error("Invalid record"); 3883 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3884 if (!BB) 3885 return error("Invalid record"); 3886 3887 I = CatchReturnInst::Create(CatchPad, BB); 3888 InstructionList.push_back(I); 3889 break; 3890 } 3891 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3892 // We must have, at minimum, the outer scope and the number of arguments. 3893 if (Record.size() < 2) 3894 return error("Invalid record"); 3895 3896 unsigned Idx = 0; 3897 3898 Value *ParentPad = 3899 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3900 3901 unsigned NumHandlers = Record[Idx++]; 3902 3903 SmallVector<BasicBlock *, 2> Handlers; 3904 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3905 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3906 if (!BB) 3907 return error("Invalid record"); 3908 Handlers.push_back(BB); 3909 } 3910 3911 BasicBlock *UnwindDest = nullptr; 3912 if (Idx + 1 == Record.size()) { 3913 UnwindDest = getBasicBlock(Record[Idx++]); 3914 if (!UnwindDest) 3915 return error("Invalid record"); 3916 } 3917 3918 if (Record.size() != Idx) 3919 return error("Invalid record"); 3920 3921 auto *CatchSwitch = 3922 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3923 for (BasicBlock *Handler : Handlers) 3924 CatchSwitch->addHandler(Handler); 3925 I = CatchSwitch; 3926 InstructionList.push_back(I); 3927 break; 3928 } 3929 case bitc::FUNC_CODE_INST_CATCHPAD: 3930 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3931 // We must have, at minimum, the outer scope and the number of arguments. 3932 if (Record.size() < 2) 3933 return error("Invalid record"); 3934 3935 unsigned Idx = 0; 3936 3937 Value *ParentPad = 3938 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3939 3940 unsigned NumArgOperands = Record[Idx++]; 3941 3942 SmallVector<Value *, 2> Args; 3943 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3944 Value *Val; 3945 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3946 return error("Invalid record"); 3947 Args.push_back(Val); 3948 } 3949 3950 if (Record.size() != Idx) 3951 return error("Invalid record"); 3952 3953 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3954 I = CleanupPadInst::Create(ParentPad, Args); 3955 else 3956 I = CatchPadInst::Create(ParentPad, Args); 3957 InstructionList.push_back(I); 3958 break; 3959 } 3960 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3961 // Check magic 3962 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3963 // "New" SwitchInst format with case ranges. The changes to write this 3964 // format were reverted but we still recognize bitcode that uses it. 3965 // Hopefully someday we will have support for case ranges and can use 3966 // this format again. 3967 3968 Type *OpTy = getTypeByID(Record[1]); 3969 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3970 3971 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3972 BasicBlock *Default = getBasicBlock(Record[3]); 3973 if (!OpTy || !Cond || !Default) 3974 return error("Invalid record"); 3975 3976 unsigned NumCases = Record[4]; 3977 3978 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3979 InstructionList.push_back(SI); 3980 3981 unsigned CurIdx = 5; 3982 for (unsigned i = 0; i != NumCases; ++i) { 3983 SmallVector<ConstantInt*, 1> CaseVals; 3984 unsigned NumItems = Record[CurIdx++]; 3985 for (unsigned ci = 0; ci != NumItems; ++ci) { 3986 bool isSingleNumber = Record[CurIdx++]; 3987 3988 APInt Low; 3989 unsigned ActiveWords = 1; 3990 if (ValueBitWidth > 64) 3991 ActiveWords = Record[CurIdx++]; 3992 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3993 ValueBitWidth); 3994 CurIdx += ActiveWords; 3995 3996 if (!isSingleNumber) { 3997 ActiveWords = 1; 3998 if (ValueBitWidth > 64) 3999 ActiveWords = Record[CurIdx++]; 4000 APInt High = readWideAPInt( 4001 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4002 CurIdx += ActiveWords; 4003 4004 // FIXME: It is not clear whether values in the range should be 4005 // compared as signed or unsigned values. The partially 4006 // implemented changes that used this format in the past used 4007 // unsigned comparisons. 4008 for ( ; Low.ule(High); ++Low) 4009 CaseVals.push_back(ConstantInt::get(Context, Low)); 4010 } else 4011 CaseVals.push_back(ConstantInt::get(Context, Low)); 4012 } 4013 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4014 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4015 cve = CaseVals.end(); cvi != cve; ++cvi) 4016 SI->addCase(*cvi, DestBB); 4017 } 4018 I = SI; 4019 break; 4020 } 4021 4022 // Old SwitchInst format without case ranges. 4023 4024 if (Record.size() < 3 || (Record.size() & 1) == 0) 4025 return error("Invalid record"); 4026 Type *OpTy = getTypeByID(Record[0]); 4027 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4028 BasicBlock *Default = getBasicBlock(Record[2]); 4029 if (!OpTy || !Cond || !Default) 4030 return error("Invalid record"); 4031 unsigned NumCases = (Record.size()-3)/2; 4032 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4033 InstructionList.push_back(SI); 4034 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4035 ConstantInt *CaseVal = 4036 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4037 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4038 if (!CaseVal || !DestBB) { 4039 delete SI; 4040 return error("Invalid record"); 4041 } 4042 SI->addCase(CaseVal, DestBB); 4043 } 4044 I = SI; 4045 break; 4046 } 4047 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4048 if (Record.size() < 2) 4049 return error("Invalid record"); 4050 Type *OpTy = getTypeByID(Record[0]); 4051 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4052 if (!OpTy || !Address) 4053 return error("Invalid record"); 4054 unsigned NumDests = Record.size()-2; 4055 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4056 InstructionList.push_back(IBI); 4057 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4058 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4059 IBI->addDestination(DestBB); 4060 } else { 4061 delete IBI; 4062 return error("Invalid record"); 4063 } 4064 } 4065 I = IBI; 4066 break; 4067 } 4068 4069 case bitc::FUNC_CODE_INST_INVOKE: { 4070 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4071 if (Record.size() < 4) 4072 return error("Invalid record"); 4073 unsigned OpNum = 0; 4074 AttributeList PAL = getAttributes(Record[OpNum++]); 4075 unsigned CCInfo = Record[OpNum++]; 4076 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4077 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4078 4079 FunctionType *FTy = nullptr; 4080 if (CCInfo >> 13 & 1 && 4081 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4082 return error("Explicit invoke type is not a function type"); 4083 4084 Value *Callee; 4085 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4086 return error("Invalid record"); 4087 4088 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4089 if (!CalleeTy) 4090 return error("Callee is not a pointer"); 4091 if (!FTy) { 4092 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4093 if (!FTy) 4094 return error("Callee is not of pointer to function type"); 4095 } else if (CalleeTy->getElementType() != FTy) 4096 return error("Explicit invoke type does not match pointee type of " 4097 "callee operand"); 4098 if (Record.size() < FTy->getNumParams() + OpNum) 4099 return error("Insufficient operands to call"); 4100 4101 SmallVector<Value*, 16> Ops; 4102 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4103 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4104 FTy->getParamType(i))); 4105 if (!Ops.back()) 4106 return error("Invalid record"); 4107 } 4108 4109 if (!FTy->isVarArg()) { 4110 if (Record.size() != OpNum) 4111 return error("Invalid record"); 4112 } else { 4113 // Read type/value pairs for varargs params. 4114 while (OpNum != Record.size()) { 4115 Value *Op; 4116 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4117 return error("Invalid record"); 4118 Ops.push_back(Op); 4119 } 4120 } 4121 4122 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4123 OperandBundles.clear(); 4124 InstructionList.push_back(I); 4125 cast<InvokeInst>(I)->setCallingConv( 4126 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4127 cast<InvokeInst>(I)->setAttributes(PAL); 4128 break; 4129 } 4130 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4131 unsigned Idx = 0; 4132 Value *Val = nullptr; 4133 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4134 return error("Invalid record"); 4135 I = ResumeInst::Create(Val); 4136 InstructionList.push_back(I); 4137 break; 4138 } 4139 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4140 I = new UnreachableInst(Context); 4141 InstructionList.push_back(I); 4142 break; 4143 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4144 if (Record.size() < 1 || ((Record.size()-1)&1)) 4145 return error("Invalid record"); 4146 Type *Ty = getTypeByID(Record[0]); 4147 if (!Ty) 4148 return error("Invalid record"); 4149 4150 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4151 InstructionList.push_back(PN); 4152 4153 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4154 Value *V; 4155 // With the new function encoding, it is possible that operands have 4156 // negative IDs (for forward references). Use a signed VBR 4157 // representation to keep the encoding small. 4158 if (UseRelativeIDs) 4159 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4160 else 4161 V = getValue(Record, 1+i, NextValueNo, Ty); 4162 BasicBlock *BB = getBasicBlock(Record[2+i]); 4163 if (!V || !BB) 4164 return error("Invalid record"); 4165 PN->addIncoming(V, BB); 4166 } 4167 I = PN; 4168 break; 4169 } 4170 4171 case bitc::FUNC_CODE_INST_LANDINGPAD: 4172 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4173 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4174 unsigned Idx = 0; 4175 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4176 if (Record.size() < 3) 4177 return error("Invalid record"); 4178 } else { 4179 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4180 if (Record.size() < 4) 4181 return error("Invalid record"); 4182 } 4183 Type *Ty = getTypeByID(Record[Idx++]); 4184 if (!Ty) 4185 return error("Invalid record"); 4186 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4187 Value *PersFn = nullptr; 4188 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4189 return error("Invalid record"); 4190 4191 if (!F->hasPersonalityFn()) 4192 F->setPersonalityFn(cast<Constant>(PersFn)); 4193 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4194 return error("Personality function mismatch"); 4195 } 4196 4197 bool IsCleanup = !!Record[Idx++]; 4198 unsigned NumClauses = Record[Idx++]; 4199 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4200 LP->setCleanup(IsCleanup); 4201 for (unsigned J = 0; J != NumClauses; ++J) { 4202 LandingPadInst::ClauseType CT = 4203 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4204 Value *Val; 4205 4206 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4207 delete LP; 4208 return error("Invalid record"); 4209 } 4210 4211 assert((CT != LandingPadInst::Catch || 4212 !isa<ArrayType>(Val->getType())) && 4213 "Catch clause has a invalid type!"); 4214 assert((CT != LandingPadInst::Filter || 4215 isa<ArrayType>(Val->getType())) && 4216 "Filter clause has invalid type!"); 4217 LP->addClause(cast<Constant>(Val)); 4218 } 4219 4220 I = LP; 4221 InstructionList.push_back(I); 4222 break; 4223 } 4224 4225 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4226 if (Record.size() != 4) 4227 return error("Invalid record"); 4228 uint64_t AlignRecord = Record[3]; 4229 const uint64_t InAllocaMask = uint64_t(1) << 5; 4230 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4231 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4232 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4233 SwiftErrorMask; 4234 bool InAlloca = AlignRecord & InAllocaMask; 4235 bool SwiftError = AlignRecord & SwiftErrorMask; 4236 Type *Ty = getTypeByID(Record[0]); 4237 if ((AlignRecord & ExplicitTypeMask) == 0) { 4238 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4239 if (!PTy) 4240 return error("Old-style alloca with a non-pointer type"); 4241 Ty = PTy->getElementType(); 4242 } 4243 Type *OpTy = getTypeByID(Record[1]); 4244 Value *Size = getFnValueByID(Record[2], OpTy); 4245 unsigned Align; 4246 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4247 return Err; 4248 } 4249 if (!Ty || !Size) 4250 return error("Invalid record"); 4251 4252 // FIXME: Make this an optional field. 4253 const DataLayout &DL = TheModule->getDataLayout(); 4254 unsigned AS = DL.getAllocaAddrSpace(); 4255 4256 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4257 AI->setUsedWithInAlloca(InAlloca); 4258 AI->setSwiftError(SwiftError); 4259 I = AI; 4260 InstructionList.push_back(I); 4261 break; 4262 } 4263 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4264 unsigned OpNum = 0; 4265 Value *Op; 4266 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4267 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4268 return error("Invalid record"); 4269 4270 Type *Ty = nullptr; 4271 if (OpNum + 3 == Record.size()) 4272 Ty = getTypeByID(Record[OpNum++]); 4273 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4274 return Err; 4275 if (!Ty) 4276 Ty = cast<PointerType>(Op->getType())->getElementType(); 4277 4278 unsigned Align; 4279 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4280 return Err; 4281 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4282 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4287 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4288 unsigned OpNum = 0; 4289 Value *Op; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4291 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4292 return error("Invalid record"); 4293 4294 Type *Ty = nullptr; 4295 if (OpNum + 5 == Record.size()) 4296 Ty = getTypeByID(Record[OpNum++]); 4297 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4298 return Err; 4299 if (!Ty) 4300 Ty = cast<PointerType>(Op->getType())->getElementType(); 4301 4302 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4303 if (Ordering == AtomicOrdering::NotAtomic || 4304 Ordering == AtomicOrdering::Release || 4305 Ordering == AtomicOrdering::AcquireRelease) 4306 return error("Invalid record"); 4307 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4308 return error("Invalid record"); 4309 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4310 4311 unsigned Align; 4312 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4313 return Err; 4314 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4315 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 case bitc::FUNC_CODE_INST_STORE: 4320 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4321 unsigned OpNum = 0; 4322 Value *Val, *Ptr; 4323 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4324 (BitCode == bitc::FUNC_CODE_INST_STORE 4325 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4326 : popValue(Record, OpNum, NextValueNo, 4327 cast<PointerType>(Ptr->getType())->getElementType(), 4328 Val)) || 4329 OpNum + 2 != Record.size()) 4330 return error("Invalid record"); 4331 4332 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4333 return Err; 4334 unsigned Align; 4335 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4336 return Err; 4337 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 case bitc::FUNC_CODE_INST_STOREATOMIC: 4342 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4343 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4344 unsigned OpNum = 0; 4345 Value *Val, *Ptr; 4346 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4347 !isa<PointerType>(Ptr->getType()) || 4348 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4349 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4350 : popValue(Record, OpNum, NextValueNo, 4351 cast<PointerType>(Ptr->getType())->getElementType(), 4352 Val)) || 4353 OpNum + 4 != Record.size()) 4354 return error("Invalid record"); 4355 4356 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4357 return Err; 4358 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4359 if (Ordering == AtomicOrdering::NotAtomic || 4360 Ordering == AtomicOrdering::Acquire || 4361 Ordering == AtomicOrdering::AcquireRelease) 4362 return error("Invalid record"); 4363 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4364 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4365 return error("Invalid record"); 4366 4367 unsigned Align; 4368 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4369 return Err; 4370 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4375 case bitc::FUNC_CODE_INST_CMPXCHG: { 4376 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4377 // failureordering?, isweak?] 4378 unsigned OpNum = 0; 4379 Value *Ptr, *Cmp, *New; 4380 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4381 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4382 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4383 : popValue(Record, OpNum, NextValueNo, 4384 cast<PointerType>(Ptr->getType())->getElementType(), 4385 Cmp)) || 4386 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4387 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4388 return error("Invalid record"); 4389 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4390 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4391 SuccessOrdering == AtomicOrdering::Unordered) 4392 return error("Invalid record"); 4393 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4394 4395 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4396 return Err; 4397 AtomicOrdering FailureOrdering; 4398 if (Record.size() < 7) 4399 FailureOrdering = 4400 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4401 else 4402 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4403 4404 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4405 SSID); 4406 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4407 4408 if (Record.size() < 8) { 4409 // Before weak cmpxchgs existed, the instruction simply returned the 4410 // value loaded from memory, so bitcode files from that era will be 4411 // expecting the first component of a modern cmpxchg. 4412 CurBB->getInstList().push_back(I); 4413 I = ExtractValueInst::Create(I, 0); 4414 } else { 4415 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4416 } 4417 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4422 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4423 unsigned OpNum = 0; 4424 Value *Ptr, *Val; 4425 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4426 !isa<PointerType>(Ptr->getType()) || 4427 popValue(Record, OpNum, NextValueNo, 4428 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4429 OpNum+4 != Record.size()) 4430 return error("Invalid record"); 4431 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4432 if (Operation < AtomicRMWInst::FIRST_BINOP || 4433 Operation > AtomicRMWInst::LAST_BINOP) 4434 return error("Invalid record"); 4435 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4436 if (Ordering == AtomicOrdering::NotAtomic || 4437 Ordering == AtomicOrdering::Unordered) 4438 return error("Invalid record"); 4439 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4440 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4441 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4442 InstructionList.push_back(I); 4443 break; 4444 } 4445 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4446 if (2 != Record.size()) 4447 return error("Invalid record"); 4448 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4449 if (Ordering == AtomicOrdering::NotAtomic || 4450 Ordering == AtomicOrdering::Unordered || 4451 Ordering == AtomicOrdering::Monotonic) 4452 return error("Invalid record"); 4453 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4454 I = new FenceInst(Context, Ordering, SSID); 4455 InstructionList.push_back(I); 4456 break; 4457 } 4458 case bitc::FUNC_CODE_INST_CALL: { 4459 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4460 if (Record.size() < 3) 4461 return error("Invalid record"); 4462 4463 unsigned OpNum = 0; 4464 AttributeList PAL = getAttributes(Record[OpNum++]); 4465 unsigned CCInfo = Record[OpNum++]; 4466 4467 FastMathFlags FMF; 4468 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4469 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4470 if (!FMF.any()) 4471 return error("Fast math flags indicator set for call with no FMF"); 4472 } 4473 4474 FunctionType *FTy = nullptr; 4475 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4476 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4477 return error("Explicit call type is not a function type"); 4478 4479 Value *Callee; 4480 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4481 return error("Invalid record"); 4482 4483 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4484 if (!OpTy) 4485 return error("Callee is not a pointer type"); 4486 if (!FTy) { 4487 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4488 if (!FTy) 4489 return error("Callee is not of pointer to function type"); 4490 } else if (OpTy->getElementType() != FTy) 4491 return error("Explicit call type does not match pointee type of " 4492 "callee operand"); 4493 if (Record.size() < FTy->getNumParams() + OpNum) 4494 return error("Insufficient operands to call"); 4495 4496 SmallVector<Value*, 16> Args; 4497 // Read the fixed params. 4498 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4499 if (FTy->getParamType(i)->isLabelTy()) 4500 Args.push_back(getBasicBlock(Record[OpNum])); 4501 else 4502 Args.push_back(getValue(Record, OpNum, NextValueNo, 4503 FTy->getParamType(i))); 4504 if (!Args.back()) 4505 return error("Invalid record"); 4506 } 4507 4508 // Read type/value pairs for varargs params. 4509 if (!FTy->isVarArg()) { 4510 if (OpNum != Record.size()) 4511 return error("Invalid record"); 4512 } else { 4513 while (OpNum != Record.size()) { 4514 Value *Op; 4515 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4516 return error("Invalid record"); 4517 Args.push_back(Op); 4518 } 4519 } 4520 4521 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4522 OperandBundles.clear(); 4523 InstructionList.push_back(I); 4524 cast<CallInst>(I)->setCallingConv( 4525 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4526 CallInst::TailCallKind TCK = CallInst::TCK_None; 4527 if (CCInfo & 1 << bitc::CALL_TAIL) 4528 TCK = CallInst::TCK_Tail; 4529 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4530 TCK = CallInst::TCK_MustTail; 4531 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4532 TCK = CallInst::TCK_NoTail; 4533 cast<CallInst>(I)->setTailCallKind(TCK); 4534 cast<CallInst>(I)->setAttributes(PAL); 4535 if (FMF.any()) { 4536 if (!isa<FPMathOperator>(I)) 4537 return error("Fast-math-flags specified for call without " 4538 "floating-point scalar or vector return type"); 4539 I->setFastMathFlags(FMF); 4540 } 4541 break; 4542 } 4543 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4544 if (Record.size() < 3) 4545 return error("Invalid record"); 4546 Type *OpTy = getTypeByID(Record[0]); 4547 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4548 Type *ResTy = getTypeByID(Record[2]); 4549 if (!OpTy || !Op || !ResTy) 4550 return error("Invalid record"); 4551 I = new VAArgInst(Op, ResTy); 4552 InstructionList.push_back(I); 4553 break; 4554 } 4555 4556 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4557 // A call or an invoke can be optionally prefixed with some variable 4558 // number of operand bundle blocks. These blocks are read into 4559 // OperandBundles and consumed at the next call or invoke instruction. 4560 4561 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4562 return error("Invalid record"); 4563 4564 std::vector<Value *> Inputs; 4565 4566 unsigned OpNum = 1; 4567 while (OpNum != Record.size()) { 4568 Value *Op; 4569 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4570 return error("Invalid record"); 4571 Inputs.push_back(Op); 4572 } 4573 4574 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4575 continue; 4576 } 4577 } 4578 4579 // Add instruction to end of current BB. If there is no current BB, reject 4580 // this file. 4581 if (!CurBB) { 4582 I->deleteValue(); 4583 return error("Invalid instruction with no BB"); 4584 } 4585 if (!OperandBundles.empty()) { 4586 I->deleteValue(); 4587 return error("Operand bundles found with no consumer"); 4588 } 4589 CurBB->getInstList().push_back(I); 4590 4591 // If this was a terminator instruction, move to the next block. 4592 if (isa<TerminatorInst>(I)) { 4593 ++CurBBNo; 4594 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4595 } 4596 4597 // Non-void values get registered in the value table for future use. 4598 if (I && !I->getType()->isVoidTy()) 4599 ValueList.assignValue(I, NextValueNo++); 4600 } 4601 4602 OutOfRecordLoop: 4603 4604 if (!OperandBundles.empty()) 4605 return error("Operand bundles found with no consumer"); 4606 4607 // Check the function list for unresolved values. 4608 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4609 if (!A->getParent()) { 4610 // We found at least one unresolved value. Nuke them all to avoid leaks. 4611 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4612 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4613 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4614 delete A; 4615 } 4616 } 4617 return error("Never resolved value found in function"); 4618 } 4619 } 4620 4621 // Unexpected unresolved metadata about to be dropped. 4622 if (MDLoader->hasFwdRefs()) 4623 return error("Invalid function metadata: outgoing forward refs"); 4624 4625 // Trim the value list down to the size it was before we parsed this function. 4626 ValueList.shrinkTo(ModuleValueListSize); 4627 MDLoader->shrinkTo(ModuleMDLoaderSize); 4628 std::vector<BasicBlock*>().swap(FunctionBBs); 4629 return Error::success(); 4630 } 4631 4632 /// Find the function body in the bitcode stream 4633 Error BitcodeReader::findFunctionInStream( 4634 Function *F, 4635 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4636 while (DeferredFunctionInfoIterator->second == 0) { 4637 // This is the fallback handling for the old format bitcode that 4638 // didn't contain the function index in the VST, or when we have 4639 // an anonymous function which would not have a VST entry. 4640 // Assert that we have one of those two cases. 4641 assert(VSTOffset == 0 || !F->hasName()); 4642 // Parse the next body in the stream and set its position in the 4643 // DeferredFunctionInfo map. 4644 if (Error Err = rememberAndSkipFunctionBodies()) 4645 return Err; 4646 } 4647 return Error::success(); 4648 } 4649 4650 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4651 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4652 return SyncScope::ID(Val); 4653 if (Val >= SSIDs.size()) 4654 return SyncScope::System; // Map unknown synchronization scopes to system. 4655 return SSIDs[Val]; 4656 } 4657 4658 //===----------------------------------------------------------------------===// 4659 // GVMaterializer implementation 4660 //===----------------------------------------------------------------------===// 4661 4662 Error BitcodeReader::materialize(GlobalValue *GV) { 4663 Function *F = dyn_cast<Function>(GV); 4664 // If it's not a function or is already material, ignore the request. 4665 if (!F || !F->isMaterializable()) 4666 return Error::success(); 4667 4668 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4669 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4670 // If its position is recorded as 0, its body is somewhere in the stream 4671 // but we haven't seen it yet. 4672 if (DFII->second == 0) 4673 if (Error Err = findFunctionInStream(F, DFII)) 4674 return Err; 4675 4676 // Materialize metadata before parsing any function bodies. 4677 if (Error Err = materializeMetadata()) 4678 return Err; 4679 4680 // Move the bit stream to the saved position of the deferred function body. 4681 Stream.JumpToBit(DFII->second); 4682 4683 if (Error Err = parseFunctionBody(F)) 4684 return Err; 4685 F->setIsMaterializable(false); 4686 4687 if (StripDebugInfo) 4688 stripDebugInfo(*F); 4689 4690 // Upgrade any old intrinsic calls in the function. 4691 for (auto &I : UpgradedIntrinsics) { 4692 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4693 UI != UE;) { 4694 User *U = *UI; 4695 ++UI; 4696 if (CallInst *CI = dyn_cast<CallInst>(U)) 4697 UpgradeIntrinsicCall(CI, I.second); 4698 } 4699 } 4700 4701 // Update calls to the remangled intrinsics 4702 for (auto &I : RemangledIntrinsics) 4703 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4704 UI != UE;) 4705 // Don't expect any other users than call sites 4706 CallSite(*UI++).setCalledFunction(I.second); 4707 4708 // Finish fn->subprogram upgrade for materialized functions. 4709 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4710 F->setSubprogram(SP); 4711 4712 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4713 if (!MDLoader->isStrippingTBAA()) { 4714 for (auto &I : instructions(F)) { 4715 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4716 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4717 continue; 4718 MDLoader->setStripTBAA(true); 4719 stripTBAA(F->getParent()); 4720 } 4721 } 4722 4723 // Bring in any functions that this function forward-referenced via 4724 // blockaddresses. 4725 return materializeForwardReferencedFunctions(); 4726 } 4727 4728 Error BitcodeReader::materializeModule() { 4729 if (Error Err = materializeMetadata()) 4730 return Err; 4731 4732 // Promise to materialize all forward references. 4733 WillMaterializeAllForwardRefs = true; 4734 4735 // Iterate over the module, deserializing any functions that are still on 4736 // disk. 4737 for (Function &F : *TheModule) { 4738 if (Error Err = materialize(&F)) 4739 return Err; 4740 } 4741 // At this point, if there are any function bodies, parse the rest of 4742 // the bits in the module past the last function block we have recorded 4743 // through either lazy scanning or the VST. 4744 if (LastFunctionBlockBit || NextUnreadBit) 4745 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4746 ? LastFunctionBlockBit 4747 : NextUnreadBit)) 4748 return Err; 4749 4750 // Check that all block address forward references got resolved (as we 4751 // promised above). 4752 if (!BasicBlockFwdRefs.empty()) 4753 return error("Never resolved function from blockaddress"); 4754 4755 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4756 // delete the old functions to clean up. We can't do this unless the entire 4757 // module is materialized because there could always be another function body 4758 // with calls to the old function. 4759 for (auto &I : UpgradedIntrinsics) { 4760 for (auto *U : I.first->users()) { 4761 if (CallInst *CI = dyn_cast<CallInst>(U)) 4762 UpgradeIntrinsicCall(CI, I.second); 4763 } 4764 if (!I.first->use_empty()) 4765 I.first->replaceAllUsesWith(I.second); 4766 I.first->eraseFromParent(); 4767 } 4768 UpgradedIntrinsics.clear(); 4769 // Do the same for remangled intrinsics 4770 for (auto &I : RemangledIntrinsics) { 4771 I.first->replaceAllUsesWith(I.second); 4772 I.first->eraseFromParent(); 4773 } 4774 RemangledIntrinsics.clear(); 4775 4776 UpgradeDebugInfo(*TheModule); 4777 4778 UpgradeModuleFlags(*TheModule); 4779 return Error::success(); 4780 } 4781 4782 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4783 return IdentifiedStructTypes; 4784 } 4785 4786 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4787 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4788 StringRef ModulePath, unsigned ModuleId) 4789 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4790 ModulePath(ModulePath), ModuleId(ModuleId) {} 4791 4792 ModuleSummaryIndex::ModuleInfo * 4793 ModuleSummaryIndexBitcodeReader::addThisModule() { 4794 return TheIndex.addModule(ModulePath, ModuleId); 4795 } 4796 4797 std::pair<ValueInfo, GlobalValue::GUID> 4798 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4799 auto VGI = ValueIdToValueInfoMap[ValueId]; 4800 assert(VGI.first); 4801 return VGI; 4802 } 4803 4804 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4805 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4806 StringRef SourceFileName) { 4807 std::string GlobalId = 4808 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4809 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4810 auto OriginalNameID = ValueGUID; 4811 if (GlobalValue::isLocalLinkage(Linkage)) 4812 OriginalNameID = GlobalValue::getGUID(ValueName); 4813 if (PrintSummaryGUIDs) 4814 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4815 << ValueName << "\n"; 4816 ValueIdToValueInfoMap[ValueID] = 4817 std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID); 4818 } 4819 4820 // Specialized value symbol table parser used when reading module index 4821 // blocks where we don't actually create global values. The parsed information 4822 // is saved in the bitcode reader for use when later parsing summaries. 4823 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4824 uint64_t Offset, 4825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4826 // With a strtab the VST is not required to parse the summary. 4827 if (UseStrtab) 4828 return Error::success(); 4829 4830 assert(Offset > 0 && "Expected non-zero VST offset"); 4831 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4832 4833 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4834 return error("Invalid record"); 4835 4836 SmallVector<uint64_t, 64> Record; 4837 4838 // Read all the records for this value table. 4839 SmallString<128> ValueName; 4840 4841 while (true) { 4842 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4843 4844 switch (Entry.Kind) { 4845 case BitstreamEntry::SubBlock: // Handled for us already. 4846 case BitstreamEntry::Error: 4847 return error("Malformed block"); 4848 case BitstreamEntry::EndBlock: 4849 // Done parsing VST, jump back to wherever we came from. 4850 Stream.JumpToBit(CurrentBit); 4851 return Error::success(); 4852 case BitstreamEntry::Record: 4853 // The interesting case. 4854 break; 4855 } 4856 4857 // Read a record. 4858 Record.clear(); 4859 switch (Stream.readRecord(Entry.ID, Record)) { 4860 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4861 break; 4862 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4863 if (convertToString(Record, 1, ValueName)) 4864 return error("Invalid record"); 4865 unsigned ValueID = Record[0]; 4866 assert(!SourceFileName.empty()); 4867 auto VLI = ValueIdToLinkageMap.find(ValueID); 4868 assert(VLI != ValueIdToLinkageMap.end() && 4869 "No linkage found for VST entry?"); 4870 auto Linkage = VLI->second; 4871 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4872 ValueName.clear(); 4873 break; 4874 } 4875 case bitc::VST_CODE_FNENTRY: { 4876 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4877 if (convertToString(Record, 2, ValueName)) 4878 return error("Invalid record"); 4879 unsigned ValueID = Record[0]; 4880 assert(!SourceFileName.empty()); 4881 auto VLI = ValueIdToLinkageMap.find(ValueID); 4882 assert(VLI != ValueIdToLinkageMap.end() && 4883 "No linkage found for VST entry?"); 4884 auto Linkage = VLI->second; 4885 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4886 ValueName.clear(); 4887 break; 4888 } 4889 case bitc::VST_CODE_COMBINED_ENTRY: { 4890 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4891 unsigned ValueID = Record[0]; 4892 GlobalValue::GUID RefGUID = Record[1]; 4893 // The "original name", which is the second value of the pair will be 4894 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4895 ValueIdToValueInfoMap[ValueID] = 4896 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4897 break; 4898 } 4899 } 4900 } 4901 } 4902 4903 // Parse just the blocks needed for building the index out of the module. 4904 // At the end of this routine the module Index is populated with a map 4905 // from global value id to GlobalValueSummary objects. 4906 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4907 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4908 return error("Invalid record"); 4909 4910 SmallVector<uint64_t, 64> Record; 4911 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4912 unsigned ValueId = 0; 4913 4914 // Read the index for this module. 4915 while (true) { 4916 BitstreamEntry Entry = Stream.advance(); 4917 4918 switch (Entry.Kind) { 4919 case BitstreamEntry::Error: 4920 return error("Malformed block"); 4921 case BitstreamEntry::EndBlock: 4922 return Error::success(); 4923 4924 case BitstreamEntry::SubBlock: 4925 switch (Entry.ID) { 4926 default: // Skip unknown content. 4927 if (Stream.SkipBlock()) 4928 return error("Invalid record"); 4929 break; 4930 case bitc::BLOCKINFO_BLOCK_ID: 4931 // Need to parse these to get abbrev ids (e.g. for VST) 4932 if (readBlockInfo()) 4933 return error("Malformed block"); 4934 break; 4935 case bitc::VALUE_SYMTAB_BLOCK_ID: 4936 // Should have been parsed earlier via VSTOffset, unless there 4937 // is no summary section. 4938 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4939 !SeenGlobalValSummary) && 4940 "Expected early VST parse via VSTOffset record"); 4941 if (Stream.SkipBlock()) 4942 return error("Invalid record"); 4943 break; 4944 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4945 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4946 assert(!SeenValueSymbolTable && 4947 "Already read VST when parsing summary block?"); 4948 // We might not have a VST if there were no values in the 4949 // summary. An empty summary block generated when we are 4950 // performing ThinLTO compiles so we don't later invoke 4951 // the regular LTO process on them. 4952 if (VSTOffset > 0) { 4953 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4954 return Err; 4955 SeenValueSymbolTable = true; 4956 } 4957 SeenGlobalValSummary = true; 4958 if (Error Err = parseEntireSummary(Entry.ID)) 4959 return Err; 4960 break; 4961 case bitc::MODULE_STRTAB_BLOCK_ID: 4962 if (Error Err = parseModuleStringTable()) 4963 return Err; 4964 break; 4965 } 4966 continue; 4967 4968 case BitstreamEntry::Record: { 4969 Record.clear(); 4970 auto BitCode = Stream.readRecord(Entry.ID, Record); 4971 switch (BitCode) { 4972 default: 4973 break; // Default behavior, ignore unknown content. 4974 case bitc::MODULE_CODE_VERSION: { 4975 if (Error Err = parseVersionRecord(Record).takeError()) 4976 return Err; 4977 break; 4978 } 4979 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4980 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4981 SmallString<128> ValueName; 4982 if (convertToString(Record, 0, ValueName)) 4983 return error("Invalid record"); 4984 SourceFileName = ValueName.c_str(); 4985 break; 4986 } 4987 /// MODULE_CODE_HASH: [5*i32] 4988 case bitc::MODULE_CODE_HASH: { 4989 if (Record.size() != 5) 4990 return error("Invalid hash length " + Twine(Record.size()).str()); 4991 auto &Hash = addThisModule()->second.second; 4992 int Pos = 0; 4993 for (auto &Val : Record) { 4994 assert(!(Val >> 32) && "Unexpected high bits set"); 4995 Hash[Pos++] = Val; 4996 } 4997 break; 4998 } 4999 /// MODULE_CODE_VSTOFFSET: [offset] 5000 case bitc::MODULE_CODE_VSTOFFSET: 5001 if (Record.size() < 1) 5002 return error("Invalid record"); 5003 // Note that we subtract 1 here because the offset is relative to one 5004 // word before the start of the identification or module block, which 5005 // was historically always the start of the regular bitcode header. 5006 VSTOffset = Record[0] - 1; 5007 break; 5008 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5009 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5010 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5011 // v2: [strtab offset, strtab size, v1] 5012 case bitc::MODULE_CODE_GLOBALVAR: 5013 case bitc::MODULE_CODE_FUNCTION: 5014 case bitc::MODULE_CODE_ALIAS: { 5015 StringRef Name; 5016 ArrayRef<uint64_t> GVRecord; 5017 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5018 if (GVRecord.size() <= 3) 5019 return error("Invalid record"); 5020 uint64_t RawLinkage = GVRecord[3]; 5021 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5022 if (!UseStrtab) { 5023 ValueIdToLinkageMap[ValueId++] = Linkage; 5024 break; 5025 } 5026 5027 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5028 break; 5029 } 5030 } 5031 } 5032 continue; 5033 } 5034 } 5035 } 5036 5037 std::vector<ValueInfo> 5038 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5039 std::vector<ValueInfo> Ret; 5040 Ret.reserve(Record.size()); 5041 for (uint64_t RefValueId : Record) 5042 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5043 return Ret; 5044 } 5045 5046 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 5047 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 5048 std::vector<FunctionSummary::EdgeTy> Ret; 5049 Ret.reserve(Record.size()); 5050 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5051 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5052 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5053 if (IsOldProfileFormat) { 5054 I += 1; // Skip old callsitecount field 5055 if (HasProfile) 5056 I += 1; // Skip old profilecount field 5057 } else if (HasProfile) 5058 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5059 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}}); 5060 } 5061 return Ret; 5062 } 5063 5064 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5065 // objects in the index. 5066 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5067 if (Stream.EnterSubBlock(ID)) 5068 return error("Invalid record"); 5069 SmallVector<uint64_t, 64> Record; 5070 5071 // Parse version 5072 { 5073 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5074 if (Entry.Kind != BitstreamEntry::Record) 5075 return error("Invalid Summary Block: record for version expected"); 5076 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5077 return error("Invalid Summary Block: version expected"); 5078 } 5079 const uint64_t Version = Record[0]; 5080 const bool IsOldProfileFormat = Version == 1; 5081 if (Version < 1 || Version > 4) 5082 return error("Invalid summary version " + Twine(Version) + 5083 ", 1, 2, 3 or 4 expected"); 5084 Record.clear(); 5085 5086 // Keep around the last seen summary to be used when we see an optional 5087 // "OriginalName" attachement. 5088 GlobalValueSummary *LastSeenSummary = nullptr; 5089 GlobalValue::GUID LastSeenGUID = 0; 5090 5091 // We can expect to see any number of type ID information records before 5092 // each function summary records; these variables store the information 5093 // collected so far so that it can be used to create the summary object. 5094 std::vector<GlobalValue::GUID> PendingTypeTests; 5095 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5096 PendingTypeCheckedLoadVCalls; 5097 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5098 PendingTypeCheckedLoadConstVCalls; 5099 5100 while (true) { 5101 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5102 5103 switch (Entry.Kind) { 5104 case BitstreamEntry::SubBlock: // Handled for us already. 5105 case BitstreamEntry::Error: 5106 return error("Malformed block"); 5107 case BitstreamEntry::EndBlock: 5108 return Error::success(); 5109 case BitstreamEntry::Record: 5110 // The interesting case. 5111 break; 5112 } 5113 5114 // Read a record. The record format depends on whether this 5115 // is a per-module index or a combined index file. In the per-module 5116 // case the records contain the associated value's ID for correlation 5117 // with VST entries. In the combined index the correlation is done 5118 // via the bitcode offset of the summary records (which were saved 5119 // in the combined index VST entries). The records also contain 5120 // information used for ThinLTO renaming and importing. 5121 Record.clear(); 5122 auto BitCode = Stream.readRecord(Entry.ID, Record); 5123 switch (BitCode) { 5124 default: // Default behavior: ignore. 5125 break; 5126 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5127 uint64_t ValueID = Record[0]; 5128 GlobalValue::GUID RefGUID = Record[1]; 5129 ValueIdToValueInfoMap[ValueID] = 5130 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5131 break; 5132 } 5133 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5134 // numrefs x valueid, n x (valueid)] 5135 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5136 // numrefs x valueid, 5137 // n x (valueid, hotness)] 5138 case bitc::FS_PERMODULE: 5139 case bitc::FS_PERMODULE_PROFILE: { 5140 unsigned ValueID = Record[0]; 5141 uint64_t RawFlags = Record[1]; 5142 unsigned InstCount = Record[2]; 5143 uint64_t RawFunFlags = 0; 5144 unsigned NumRefs = Record[3]; 5145 int RefListStartIndex = 4; 5146 if (Version >= 4) { 5147 RawFunFlags = Record[3]; 5148 NumRefs = Record[4]; 5149 RefListStartIndex = 5; 5150 } 5151 5152 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5153 // The module path string ref set in the summary must be owned by the 5154 // index's module string table. Since we don't have a module path 5155 // string table section in the per-module index, we create a single 5156 // module path string table entry with an empty (0) ID to take 5157 // ownership. 5158 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5159 assert(Record.size() >= RefListStartIndex + NumRefs && 5160 "Record size inconsistent with number of references"); 5161 std::vector<ValueInfo> Refs = makeRefList( 5162 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5163 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5164 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5165 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5166 IsOldProfileFormat, HasProfile); 5167 auto FS = llvm::make_unique<FunctionSummary>( 5168 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5169 std::move(Calls), std::move(PendingTypeTests), 5170 std::move(PendingTypeTestAssumeVCalls), 5171 std::move(PendingTypeCheckedLoadVCalls), 5172 std::move(PendingTypeTestAssumeConstVCalls), 5173 std::move(PendingTypeCheckedLoadConstVCalls)); 5174 PendingTypeTests.clear(); 5175 PendingTypeTestAssumeVCalls.clear(); 5176 PendingTypeCheckedLoadVCalls.clear(); 5177 PendingTypeTestAssumeConstVCalls.clear(); 5178 PendingTypeCheckedLoadConstVCalls.clear(); 5179 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5180 FS->setModulePath(addThisModule()->first()); 5181 FS->setOriginalName(VIAndOriginalGUID.second); 5182 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5183 break; 5184 } 5185 // FS_ALIAS: [valueid, flags, valueid] 5186 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5187 // they expect all aliasee summaries to be available. 5188 case bitc::FS_ALIAS: { 5189 unsigned ValueID = Record[0]; 5190 uint64_t RawFlags = Record[1]; 5191 unsigned AliaseeID = Record[2]; 5192 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5193 auto AS = llvm::make_unique<AliasSummary>(Flags); 5194 // The module path string ref set in the summary must be owned by the 5195 // index's module string table. Since we don't have a module path 5196 // string table section in the per-module index, we create a single 5197 // module path string table entry with an empty (0) ID to take 5198 // ownership. 5199 AS->setModulePath(addThisModule()->first()); 5200 5201 GlobalValue::GUID AliaseeGUID = 5202 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5203 auto AliaseeInModule = 5204 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5205 if (!AliaseeInModule) 5206 return error("Alias expects aliasee summary to be parsed"); 5207 AS->setAliasee(AliaseeInModule); 5208 AS->setAliaseeGUID(AliaseeGUID); 5209 5210 auto GUID = getValueInfoFromValueId(ValueID); 5211 AS->setOriginalName(GUID.second); 5212 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5213 break; 5214 } 5215 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5216 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5217 unsigned ValueID = Record[0]; 5218 uint64_t RawFlags = Record[1]; 5219 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5220 std::vector<ValueInfo> Refs = 5221 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5222 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5223 FS->setModulePath(addThisModule()->first()); 5224 auto GUID = getValueInfoFromValueId(ValueID); 5225 FS->setOriginalName(GUID.second); 5226 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5227 break; 5228 } 5229 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5230 // numrefs x valueid, n x (valueid)] 5231 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5232 // numrefs x valueid, n x (valueid, hotness)] 5233 case bitc::FS_COMBINED: 5234 case bitc::FS_COMBINED_PROFILE: { 5235 unsigned ValueID = Record[0]; 5236 uint64_t ModuleId = Record[1]; 5237 uint64_t RawFlags = Record[2]; 5238 unsigned InstCount = Record[3]; 5239 uint64_t RawFunFlags = 0; 5240 unsigned NumRefs = Record[4]; 5241 int RefListStartIndex = 5; 5242 5243 if (Version >= 4) { 5244 RawFunFlags = Record[4]; 5245 NumRefs = Record[5]; 5246 RefListStartIndex = 6; 5247 } 5248 5249 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5250 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5251 assert(Record.size() >= RefListStartIndex + NumRefs && 5252 "Record size inconsistent with number of references"); 5253 std::vector<ValueInfo> Refs = makeRefList( 5254 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5255 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5256 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5257 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5258 IsOldProfileFormat, HasProfile); 5259 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5260 auto FS = llvm::make_unique<FunctionSummary>( 5261 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5262 std::move(Edges), std::move(PendingTypeTests), 5263 std::move(PendingTypeTestAssumeVCalls), 5264 std::move(PendingTypeCheckedLoadVCalls), 5265 std::move(PendingTypeTestAssumeConstVCalls), 5266 std::move(PendingTypeCheckedLoadConstVCalls)); 5267 PendingTypeTests.clear(); 5268 PendingTypeTestAssumeVCalls.clear(); 5269 PendingTypeCheckedLoadVCalls.clear(); 5270 PendingTypeTestAssumeConstVCalls.clear(); 5271 PendingTypeCheckedLoadConstVCalls.clear(); 5272 LastSeenSummary = FS.get(); 5273 LastSeenGUID = VI.getGUID(); 5274 FS->setModulePath(ModuleIdMap[ModuleId]); 5275 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5276 break; 5277 } 5278 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5279 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5280 // they expect all aliasee summaries to be available. 5281 case bitc::FS_COMBINED_ALIAS: { 5282 unsigned ValueID = Record[0]; 5283 uint64_t ModuleId = Record[1]; 5284 uint64_t RawFlags = Record[2]; 5285 unsigned AliaseeValueId = Record[3]; 5286 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5287 auto AS = llvm::make_unique<AliasSummary>(Flags); 5288 LastSeenSummary = AS.get(); 5289 AS->setModulePath(ModuleIdMap[ModuleId]); 5290 5291 auto AliaseeGUID = 5292 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5293 auto AliaseeInModule = 5294 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5295 AS->setAliasee(AliaseeInModule); 5296 AS->setAliaseeGUID(AliaseeGUID); 5297 5298 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5299 LastSeenGUID = VI.getGUID(); 5300 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5301 break; 5302 } 5303 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5304 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5305 unsigned ValueID = Record[0]; 5306 uint64_t ModuleId = Record[1]; 5307 uint64_t RawFlags = Record[2]; 5308 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5309 std::vector<ValueInfo> Refs = 5310 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5311 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5312 LastSeenSummary = FS.get(); 5313 FS->setModulePath(ModuleIdMap[ModuleId]); 5314 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5315 LastSeenGUID = VI.getGUID(); 5316 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5317 break; 5318 } 5319 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5320 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5321 uint64_t OriginalName = Record[0]; 5322 if (!LastSeenSummary) 5323 return error("Name attachment that does not follow a combined record"); 5324 LastSeenSummary->setOriginalName(OriginalName); 5325 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5326 // Reset the LastSeenSummary 5327 LastSeenSummary = nullptr; 5328 LastSeenGUID = 0; 5329 break; 5330 } 5331 case bitc::FS_TYPE_TESTS: 5332 assert(PendingTypeTests.empty()); 5333 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5334 Record.end()); 5335 break; 5336 5337 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5338 assert(PendingTypeTestAssumeVCalls.empty()); 5339 for (unsigned I = 0; I != Record.size(); I += 2) 5340 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5341 break; 5342 5343 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5344 assert(PendingTypeCheckedLoadVCalls.empty()); 5345 for (unsigned I = 0; I != Record.size(); I += 2) 5346 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5347 break; 5348 5349 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5350 PendingTypeTestAssumeConstVCalls.push_back( 5351 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5352 break; 5353 5354 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5355 PendingTypeCheckedLoadConstVCalls.push_back( 5356 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5357 break; 5358 5359 case bitc::FS_CFI_FUNCTION_DEFS: { 5360 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5361 for (unsigned I = 0; I != Record.size(); I += 2) 5362 CfiFunctionDefs.insert( 5363 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5364 break; 5365 } 5366 case bitc::FS_CFI_FUNCTION_DECLS: { 5367 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5368 for (unsigned I = 0; I != Record.size(); I += 2) 5369 CfiFunctionDecls.insert( 5370 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5371 break; 5372 } 5373 } 5374 } 5375 llvm_unreachable("Exit infinite loop"); 5376 } 5377 5378 // Parse the module string table block into the Index. 5379 // This populates the ModulePathStringTable map in the index. 5380 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5381 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5382 return error("Invalid record"); 5383 5384 SmallVector<uint64_t, 64> Record; 5385 5386 SmallString<128> ModulePath; 5387 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5388 5389 while (true) { 5390 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5391 5392 switch (Entry.Kind) { 5393 case BitstreamEntry::SubBlock: // Handled for us already. 5394 case BitstreamEntry::Error: 5395 return error("Malformed block"); 5396 case BitstreamEntry::EndBlock: 5397 return Error::success(); 5398 case BitstreamEntry::Record: 5399 // The interesting case. 5400 break; 5401 } 5402 5403 Record.clear(); 5404 switch (Stream.readRecord(Entry.ID, Record)) { 5405 default: // Default behavior: ignore. 5406 break; 5407 case bitc::MST_CODE_ENTRY: { 5408 // MST_ENTRY: [modid, namechar x N] 5409 uint64_t ModuleId = Record[0]; 5410 5411 if (convertToString(Record, 1, ModulePath)) 5412 return error("Invalid record"); 5413 5414 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5415 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5416 5417 ModulePath.clear(); 5418 break; 5419 } 5420 /// MST_CODE_HASH: [5*i32] 5421 case bitc::MST_CODE_HASH: { 5422 if (Record.size() != 5) 5423 return error("Invalid hash length " + Twine(Record.size()).str()); 5424 if (!LastSeenModule) 5425 return error("Invalid hash that does not follow a module path"); 5426 int Pos = 0; 5427 for (auto &Val : Record) { 5428 assert(!(Val >> 32) && "Unexpected high bits set"); 5429 LastSeenModule->second.second[Pos++] = Val; 5430 } 5431 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5432 LastSeenModule = nullptr; 5433 break; 5434 } 5435 } 5436 } 5437 llvm_unreachable("Exit infinite loop"); 5438 } 5439 5440 namespace { 5441 5442 // FIXME: This class is only here to support the transition to llvm::Error. It 5443 // will be removed once this transition is complete. Clients should prefer to 5444 // deal with the Error value directly, rather than converting to error_code. 5445 class BitcodeErrorCategoryType : public std::error_category { 5446 const char *name() const noexcept override { 5447 return "llvm.bitcode"; 5448 } 5449 5450 std::string message(int IE) const override { 5451 BitcodeError E = static_cast<BitcodeError>(IE); 5452 switch (E) { 5453 case BitcodeError::CorruptedBitcode: 5454 return "Corrupted bitcode"; 5455 } 5456 llvm_unreachable("Unknown error type!"); 5457 } 5458 }; 5459 5460 } // end anonymous namespace 5461 5462 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5463 5464 const std::error_category &llvm::BitcodeErrorCategory() { 5465 return *ErrorCategory; 5466 } 5467 5468 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5469 unsigned Block, unsigned RecordID) { 5470 if (Stream.EnterSubBlock(Block)) 5471 return error("Invalid record"); 5472 5473 StringRef Strtab; 5474 while (true) { 5475 BitstreamEntry Entry = Stream.advance(); 5476 switch (Entry.Kind) { 5477 case BitstreamEntry::EndBlock: 5478 return Strtab; 5479 5480 case BitstreamEntry::Error: 5481 return error("Malformed block"); 5482 5483 case BitstreamEntry::SubBlock: 5484 if (Stream.SkipBlock()) 5485 return error("Malformed block"); 5486 break; 5487 5488 case BitstreamEntry::Record: 5489 StringRef Blob; 5490 SmallVector<uint64_t, 1> Record; 5491 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5492 Strtab = Blob; 5493 break; 5494 } 5495 } 5496 } 5497 5498 //===----------------------------------------------------------------------===// 5499 // External interface 5500 //===----------------------------------------------------------------------===// 5501 5502 Expected<std::vector<BitcodeModule>> 5503 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5504 auto FOrErr = getBitcodeFileContents(Buffer); 5505 if (!FOrErr) 5506 return FOrErr.takeError(); 5507 return std::move(FOrErr->Mods); 5508 } 5509 5510 Expected<BitcodeFileContents> 5511 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5512 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5513 if (!StreamOrErr) 5514 return StreamOrErr.takeError(); 5515 BitstreamCursor &Stream = *StreamOrErr; 5516 5517 BitcodeFileContents F; 5518 while (true) { 5519 uint64_t BCBegin = Stream.getCurrentByteNo(); 5520 5521 // We may be consuming bitcode from a client that leaves garbage at the end 5522 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5523 // the end that there cannot possibly be another module, stop looking. 5524 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5525 return F; 5526 5527 BitstreamEntry Entry = Stream.advance(); 5528 switch (Entry.Kind) { 5529 case BitstreamEntry::EndBlock: 5530 case BitstreamEntry::Error: 5531 return error("Malformed block"); 5532 5533 case BitstreamEntry::SubBlock: { 5534 uint64_t IdentificationBit = -1ull; 5535 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5536 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5537 if (Stream.SkipBlock()) 5538 return error("Malformed block"); 5539 5540 Entry = Stream.advance(); 5541 if (Entry.Kind != BitstreamEntry::SubBlock || 5542 Entry.ID != bitc::MODULE_BLOCK_ID) 5543 return error("Malformed block"); 5544 } 5545 5546 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5547 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5548 if (Stream.SkipBlock()) 5549 return error("Malformed block"); 5550 5551 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5552 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5553 Buffer.getBufferIdentifier(), IdentificationBit, 5554 ModuleBit}); 5555 continue; 5556 } 5557 5558 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5559 Expected<StringRef> Strtab = 5560 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5561 if (!Strtab) 5562 return Strtab.takeError(); 5563 // This string table is used by every preceding bitcode module that does 5564 // not have its own string table. A bitcode file may have multiple 5565 // string tables if it was created by binary concatenation, for example 5566 // with "llvm-cat -b". 5567 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5568 if (!I->Strtab.empty()) 5569 break; 5570 I->Strtab = *Strtab; 5571 } 5572 // Similarly, the string table is used by every preceding symbol table; 5573 // normally there will be just one unless the bitcode file was created 5574 // by binary concatenation. 5575 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5576 F.StrtabForSymtab = *Strtab; 5577 continue; 5578 } 5579 5580 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5581 Expected<StringRef> SymtabOrErr = 5582 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5583 if (!SymtabOrErr) 5584 return SymtabOrErr.takeError(); 5585 5586 // We can expect the bitcode file to have multiple symbol tables if it 5587 // was created by binary concatenation. In that case we silently 5588 // ignore any subsequent symbol tables, which is fine because this is a 5589 // low level function. The client is expected to notice that the number 5590 // of modules in the symbol table does not match the number of modules 5591 // in the input file and regenerate the symbol table. 5592 if (F.Symtab.empty()) 5593 F.Symtab = *SymtabOrErr; 5594 continue; 5595 } 5596 5597 if (Stream.SkipBlock()) 5598 return error("Malformed block"); 5599 continue; 5600 } 5601 case BitstreamEntry::Record: 5602 Stream.skipRecord(Entry.ID); 5603 continue; 5604 } 5605 } 5606 } 5607 5608 /// \brief Get a lazy one-at-time loading module from bitcode. 5609 /// 5610 /// This isn't always used in a lazy context. In particular, it's also used by 5611 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5612 /// in forward-referenced functions from block address references. 5613 /// 5614 /// \param[in] MaterializeAll Set to \c true if we should materialize 5615 /// everything. 5616 Expected<std::unique_ptr<Module>> 5617 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5618 bool ShouldLazyLoadMetadata, bool IsImporting) { 5619 BitstreamCursor Stream(Buffer); 5620 5621 std::string ProducerIdentification; 5622 if (IdentificationBit != -1ull) { 5623 Stream.JumpToBit(IdentificationBit); 5624 Expected<std::string> ProducerIdentificationOrErr = 5625 readIdentificationBlock(Stream); 5626 if (!ProducerIdentificationOrErr) 5627 return ProducerIdentificationOrErr.takeError(); 5628 5629 ProducerIdentification = *ProducerIdentificationOrErr; 5630 } 5631 5632 Stream.JumpToBit(ModuleBit); 5633 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5634 Context); 5635 5636 std::unique_ptr<Module> M = 5637 llvm::make_unique<Module>(ModuleIdentifier, Context); 5638 M->setMaterializer(R); 5639 5640 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5641 if (Error Err = 5642 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5643 return std::move(Err); 5644 5645 if (MaterializeAll) { 5646 // Read in the entire module, and destroy the BitcodeReader. 5647 if (Error Err = M->materializeAll()) 5648 return std::move(Err); 5649 } else { 5650 // Resolve forward references from blockaddresses. 5651 if (Error Err = R->materializeForwardReferencedFunctions()) 5652 return std::move(Err); 5653 } 5654 return std::move(M); 5655 } 5656 5657 Expected<std::unique_ptr<Module>> 5658 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5659 bool IsImporting) { 5660 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5661 } 5662 5663 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5664 // We don't use ModuleIdentifier here because the client may need to control the 5665 // module path used in the combined summary (e.g. when reading summaries for 5666 // regular LTO modules). 5667 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5668 StringRef ModulePath, uint64_t ModuleId) { 5669 BitstreamCursor Stream(Buffer); 5670 Stream.JumpToBit(ModuleBit); 5671 5672 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5673 ModulePath, ModuleId); 5674 return R.parseModule(); 5675 } 5676 5677 // Parse the specified bitcode buffer, returning the function info index. 5678 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5679 BitstreamCursor Stream(Buffer); 5680 Stream.JumpToBit(ModuleBit); 5681 5682 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5683 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5684 ModuleIdentifier, 0); 5685 5686 if (Error Err = R.parseModule()) 5687 return std::move(Err); 5688 5689 return std::move(Index); 5690 } 5691 5692 // Check if the given bitcode buffer contains a global value summary block. 5693 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5694 BitstreamCursor Stream(Buffer); 5695 Stream.JumpToBit(ModuleBit); 5696 5697 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5698 return error("Invalid record"); 5699 5700 while (true) { 5701 BitstreamEntry Entry = Stream.advance(); 5702 5703 switch (Entry.Kind) { 5704 case BitstreamEntry::Error: 5705 return error("Malformed block"); 5706 case BitstreamEntry::EndBlock: 5707 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5708 5709 case BitstreamEntry::SubBlock: 5710 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5711 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5712 5713 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5714 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5715 5716 // Ignore other sub-blocks. 5717 if (Stream.SkipBlock()) 5718 return error("Malformed block"); 5719 continue; 5720 5721 case BitstreamEntry::Record: 5722 Stream.skipRecord(Entry.ID); 5723 continue; 5724 } 5725 } 5726 } 5727 5728 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5729 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5730 if (!MsOrErr) 5731 return MsOrErr.takeError(); 5732 5733 if (MsOrErr->size() != 1) 5734 return error("Expected a single module"); 5735 5736 return (*MsOrErr)[0]; 5737 } 5738 5739 Expected<std::unique_ptr<Module>> 5740 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5741 bool ShouldLazyLoadMetadata, bool IsImporting) { 5742 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5743 if (!BM) 5744 return BM.takeError(); 5745 5746 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5747 } 5748 5749 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5750 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5751 bool ShouldLazyLoadMetadata, bool IsImporting) { 5752 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5753 IsImporting); 5754 if (MOrErr) 5755 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5756 return MOrErr; 5757 } 5758 5759 Expected<std::unique_ptr<Module>> 5760 BitcodeModule::parseModule(LLVMContext &Context) { 5761 return getModuleImpl(Context, true, false, false); 5762 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5763 // written. We must defer until the Module has been fully materialized. 5764 } 5765 5766 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5767 LLVMContext &Context) { 5768 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5769 if (!BM) 5770 return BM.takeError(); 5771 5772 return BM->parseModule(Context); 5773 } 5774 5775 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5776 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5777 if (!StreamOrErr) 5778 return StreamOrErr.takeError(); 5779 5780 return readTriple(*StreamOrErr); 5781 } 5782 5783 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5784 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5785 if (!StreamOrErr) 5786 return StreamOrErr.takeError(); 5787 5788 return hasObjCCategory(*StreamOrErr); 5789 } 5790 5791 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5792 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5793 if (!StreamOrErr) 5794 return StreamOrErr.takeError(); 5795 5796 return readIdentificationCode(*StreamOrErr); 5797 } 5798 5799 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5800 ModuleSummaryIndex &CombinedIndex, 5801 uint64_t ModuleId) { 5802 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5803 if (!BM) 5804 return BM.takeError(); 5805 5806 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5807 } 5808 5809 Expected<std::unique_ptr<ModuleSummaryIndex>> 5810 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5811 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5812 if (!BM) 5813 return BM.takeError(); 5814 5815 return BM->getSummary(); 5816 } 5817 5818 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5819 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5820 if (!BM) 5821 return BM.takeError(); 5822 5823 return BM->getLTOInfo(); 5824 } 5825 5826 Expected<std::unique_ptr<ModuleSummaryIndex>> 5827 llvm::getModuleSummaryIndexForFile(StringRef Path, 5828 bool IgnoreEmptyThinLTOIndexFile) { 5829 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5830 MemoryBuffer::getFileOrSTDIN(Path); 5831 if (!FileOrErr) 5832 return errorCodeToError(FileOrErr.getError()); 5833 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5834 return nullptr; 5835 return getModuleSummaryIndex(**FileOrErr); 5836 } 5837