1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 uint64_t NextUnreadBit = 0; 140 bool SeenValueSymbolTable = false; 141 142 std::vector<Type*> TypeList; 143 BitcodeReaderValueList ValueList; 144 BitcodeReaderMDValueList MDValueList; 145 std::vector<Comdat *> ComdatList; 146 SmallVector<Instruction *, 64> InstructionList; 147 148 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 149 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 150 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 152 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 245 Module *M, 246 bool ShouldLazyLoadMetadata = false); 247 248 /// \brief Cheap mechanism to just extract module triple 249 /// \returns true if an error occurred. 250 ErrorOr<std::string> parseTriple(); 251 252 static uint64_t decodeSignRotatedValue(uint64_t V); 253 254 /// Materialize any deferred Metadata block. 255 std::error_code materializeMetadata() override; 256 257 void setStripDebugInfo() override; 258 259 private: 260 std::vector<StructType *> IdentifiedStructTypes; 261 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 262 StructType *createIdentifiedStructType(LLVMContext &Context); 263 264 Type *getTypeByID(unsigned ID); 265 Value *getFnValueByID(unsigned ID, Type *Ty) { 266 if (Ty && Ty->isMetadataTy()) 267 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 268 return ValueList.getValueFwdRef(ID, Ty); 269 } 270 Metadata *getFnMetadataByID(unsigned ID) { 271 return MDValueList.getValueFwdRef(ID); 272 } 273 BasicBlock *getBasicBlock(unsigned ID) const { 274 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 275 return FunctionBBs[ID]; 276 } 277 AttributeSet getAttributes(unsigned i) const { 278 if (i-1 < MAttributes.size()) 279 return MAttributes[i-1]; 280 return AttributeSet(); 281 } 282 283 /// Read a value/type pair out of the specified record from slot 'Slot'. 284 /// Increment Slot past the number of slots used in the record. Return true on 285 /// failure. 286 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 287 unsigned InstNum, Value *&ResVal) { 288 if (Slot == Record.size()) return true; 289 unsigned ValNo = (unsigned)Record[Slot++]; 290 // Adjust the ValNo, if it was encoded relative to the InstNum. 291 if (UseRelativeIDs) 292 ValNo = InstNum - ValNo; 293 if (ValNo < InstNum) { 294 // If this is not a forward reference, just return the value we already 295 // have. 296 ResVal = getFnValueByID(ValNo, nullptr); 297 return ResVal == nullptr; 298 } 299 if (Slot == Record.size()) 300 return true; 301 302 unsigned TypeNo = (unsigned)Record[Slot++]; 303 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 304 return ResVal == nullptr; 305 } 306 307 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 308 /// past the number of slots used by the value in the record. Return true if 309 /// there is an error. 310 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Type *Ty, Value *&ResVal) { 312 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 313 return true; 314 // All values currently take a single record slot. 315 ++Slot; 316 return false; 317 } 318 319 /// Like popValue, but does not increment the Slot number. 320 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 321 unsigned InstNum, Type *Ty, Value *&ResVal) { 322 ResVal = getValue(Record, Slot, InstNum, Ty); 323 return ResVal == nullptr; 324 } 325 326 /// Version of getValue that returns ResVal directly, or 0 if there is an 327 /// error. 328 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 329 unsigned InstNum, Type *Ty) { 330 if (Slot == Record.size()) return nullptr; 331 unsigned ValNo = (unsigned)Record[Slot]; 332 // Adjust the ValNo, if it was encoded relative to the InstNum. 333 if (UseRelativeIDs) 334 ValNo = InstNum - ValNo; 335 return getFnValueByID(ValNo, Ty); 336 } 337 338 /// Like getValue, but decodes signed VBRs. 339 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty) { 341 if (Slot == Record.size()) return nullptr; 342 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 343 // Adjust the ValNo, if it was encoded relative to the InstNum. 344 if (UseRelativeIDs) 345 ValNo = InstNum - ValNo; 346 return getFnValueByID(ValNo, Ty); 347 } 348 349 /// Converts alignment exponent (i.e. power of two (or zero)) to the 350 /// corresponding alignment to use. If alignment is too large, returns 351 /// a corresponding error code. 352 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 353 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 354 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 355 std::error_code parseAttributeBlock(); 356 std::error_code parseAttributeGroupBlock(); 357 std::error_code parseTypeTable(); 358 std::error_code parseTypeTableBody(); 359 360 std::error_code parseValueSymbolTable(); 361 std::error_code parseConstants(); 362 std::error_code rememberAndSkipFunctionBody(); 363 /// Save the positions of the Metadata blocks and skip parsing the blocks. 364 std::error_code rememberAndSkipMetadata(); 365 std::error_code parseFunctionBody(Function *F); 366 std::error_code globalCleanup(); 367 std::error_code resolveGlobalAndAliasInits(); 368 std::error_code parseMetadata(); 369 std::error_code parseMetadataAttachment(Function &F); 370 ErrorOr<std::string> parseModuleTriple(); 371 std::error_code parseUseLists(); 372 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 373 std::error_code initStreamFromBuffer(); 374 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 375 std::error_code findFunctionInStream( 376 Function *F, 377 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 378 }; 379 } // namespace 380 381 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 382 DiagnosticSeverity Severity, 383 const Twine &Msg) 384 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 385 386 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 387 388 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 389 std::error_code EC, const Twine &Message) { 390 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 391 DiagnosticHandler(DI); 392 return EC; 393 } 394 395 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 396 std::error_code EC) { 397 return error(DiagnosticHandler, EC, EC.message()); 398 } 399 400 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 401 const Twine &Message) { 402 return error(DiagnosticHandler, 403 make_error_code(BitcodeError::CorruptedBitcode), Message); 404 } 405 406 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 407 return ::error(DiagnosticHandler, make_error_code(E), Message); 408 } 409 410 std::error_code BitcodeReader::error(const Twine &Message) { 411 return ::error(DiagnosticHandler, 412 make_error_code(BitcodeError::CorruptedBitcode), Message); 413 } 414 415 std::error_code BitcodeReader::error(BitcodeError E) { 416 return ::error(DiagnosticHandler, make_error_code(E)); 417 } 418 419 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 420 LLVMContext &C) { 421 if (F) 422 return F; 423 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 424 } 425 426 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 427 DiagnosticHandlerFunction DiagnosticHandler) 428 : Context(Context), 429 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 430 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 431 432 BitcodeReader::BitcodeReader(LLVMContext &Context, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(Context), 435 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 436 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 437 438 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 439 if (WillMaterializeAllForwardRefs) 440 return std::error_code(); 441 442 // Prevent recursion. 443 WillMaterializeAllForwardRefs = true; 444 445 while (!BasicBlockFwdRefQueue.empty()) { 446 Function *F = BasicBlockFwdRefQueue.front(); 447 BasicBlockFwdRefQueue.pop_front(); 448 assert(F && "Expected valid function"); 449 if (!BasicBlockFwdRefs.count(F)) 450 // Already materialized. 451 continue; 452 453 // Check for a function that isn't materializable to prevent an infinite 454 // loop. When parsing a blockaddress stored in a global variable, there 455 // isn't a trivial way to check if a function will have a body without a 456 // linear search through FunctionsWithBodies, so just check it here. 457 if (!F->isMaterializable()) 458 return error("Never resolved function from blockaddress"); 459 460 // Try to materialize F. 461 if (std::error_code EC = materialize(F)) 462 return EC; 463 } 464 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 465 466 // Reset state. 467 WillMaterializeAllForwardRefs = false; 468 return std::error_code(); 469 } 470 471 void BitcodeReader::freeState() { 472 Buffer = nullptr; 473 std::vector<Type*>().swap(TypeList); 474 ValueList.clear(); 475 MDValueList.clear(); 476 std::vector<Comdat *>().swap(ComdatList); 477 478 std::vector<AttributeSet>().swap(MAttributes); 479 std::vector<BasicBlock*>().swap(FunctionBBs); 480 std::vector<Function*>().swap(FunctionsWithBodies); 481 DeferredFunctionInfo.clear(); 482 DeferredMetadataInfo.clear(); 483 MDKindMap.clear(); 484 485 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 486 BasicBlockFwdRefQueue.clear(); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // Helper functions to implement forward reference resolution, etc. 491 //===----------------------------------------------------------------------===// 492 493 /// Convert a string from a record into an std::string, return true on failure. 494 template <typename StrTy> 495 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 496 StrTy &Result) { 497 if (Idx > Record.size()) 498 return true; 499 500 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 501 Result += (char)Record[i]; 502 return false; 503 } 504 505 static bool hasImplicitComdat(size_t Val) { 506 switch (Val) { 507 default: 508 return false; 509 case 1: // Old WeakAnyLinkage 510 case 4: // Old LinkOnceAnyLinkage 511 case 10: // Old WeakODRLinkage 512 case 11: // Old LinkOnceODRLinkage 513 return true; 514 } 515 } 516 517 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 518 switch (Val) { 519 default: // Map unknown/new linkages to external 520 case 0: 521 return GlobalValue::ExternalLinkage; 522 case 2: 523 return GlobalValue::AppendingLinkage; 524 case 3: 525 return GlobalValue::InternalLinkage; 526 case 5: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 528 case 6: 529 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 530 case 7: 531 return GlobalValue::ExternalWeakLinkage; 532 case 8: 533 return GlobalValue::CommonLinkage; 534 case 9: 535 return GlobalValue::PrivateLinkage; 536 case 12: 537 return GlobalValue::AvailableExternallyLinkage; 538 case 13: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 540 case 14: 541 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 542 case 15: 543 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 544 case 1: // Old value with implicit comdat. 545 case 16: 546 return GlobalValue::WeakAnyLinkage; 547 case 10: // Old value with implicit comdat. 548 case 17: 549 return GlobalValue::WeakODRLinkage; 550 case 4: // Old value with implicit comdat. 551 case 18: 552 return GlobalValue::LinkOnceAnyLinkage; 553 case 11: // Old value with implicit comdat. 554 case 19: 555 return GlobalValue::LinkOnceODRLinkage; 556 } 557 } 558 559 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 560 switch (Val) { 561 default: // Map unknown visibilities to default. 562 case 0: return GlobalValue::DefaultVisibility; 563 case 1: return GlobalValue::HiddenVisibility; 564 case 2: return GlobalValue::ProtectedVisibility; 565 } 566 } 567 568 static GlobalValue::DLLStorageClassTypes 569 getDecodedDLLStorageClass(unsigned Val) { 570 switch (Val) { 571 default: // Map unknown values to default. 572 case 0: return GlobalValue::DefaultStorageClass; 573 case 1: return GlobalValue::DLLImportStorageClass; 574 case 2: return GlobalValue::DLLExportStorageClass; 575 } 576 } 577 578 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 579 switch (Val) { 580 case 0: return GlobalVariable::NotThreadLocal; 581 default: // Map unknown non-zero value to general dynamic. 582 case 1: return GlobalVariable::GeneralDynamicTLSModel; 583 case 2: return GlobalVariable::LocalDynamicTLSModel; 584 case 3: return GlobalVariable::InitialExecTLSModel; 585 case 4: return GlobalVariable::LocalExecTLSModel; 586 } 587 } 588 589 static int getDecodedCastOpcode(unsigned Val) { 590 switch (Val) { 591 default: return -1; 592 case bitc::CAST_TRUNC : return Instruction::Trunc; 593 case bitc::CAST_ZEXT : return Instruction::ZExt; 594 case bitc::CAST_SEXT : return Instruction::SExt; 595 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 596 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 597 case bitc::CAST_UITOFP : return Instruction::UIToFP; 598 case bitc::CAST_SITOFP : return Instruction::SIToFP; 599 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 600 case bitc::CAST_FPEXT : return Instruction::FPExt; 601 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 602 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 603 case bitc::CAST_BITCAST : return Instruction::BitCast; 604 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 605 } 606 } 607 608 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 609 bool IsFP = Ty->isFPOrFPVectorTy(); 610 // BinOps are only valid for int/fp or vector of int/fp types 611 if (!IsFP && !Ty->isIntOrIntVectorTy()) 612 return -1; 613 614 switch (Val) { 615 default: 616 return -1; 617 case bitc::BINOP_ADD: 618 return IsFP ? Instruction::FAdd : Instruction::Add; 619 case bitc::BINOP_SUB: 620 return IsFP ? Instruction::FSub : Instruction::Sub; 621 case bitc::BINOP_MUL: 622 return IsFP ? Instruction::FMul : Instruction::Mul; 623 case bitc::BINOP_UDIV: 624 return IsFP ? -1 : Instruction::UDiv; 625 case bitc::BINOP_SDIV: 626 return IsFP ? Instruction::FDiv : Instruction::SDiv; 627 case bitc::BINOP_UREM: 628 return IsFP ? -1 : Instruction::URem; 629 case bitc::BINOP_SREM: 630 return IsFP ? Instruction::FRem : Instruction::SRem; 631 case bitc::BINOP_SHL: 632 return IsFP ? -1 : Instruction::Shl; 633 case bitc::BINOP_LSHR: 634 return IsFP ? -1 : Instruction::LShr; 635 case bitc::BINOP_ASHR: 636 return IsFP ? -1 : Instruction::AShr; 637 case bitc::BINOP_AND: 638 return IsFP ? -1 : Instruction::And; 639 case bitc::BINOP_OR: 640 return IsFP ? -1 : Instruction::Or; 641 case bitc::BINOP_XOR: 642 return IsFP ? -1 : Instruction::Xor; 643 } 644 } 645 646 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 647 switch (Val) { 648 default: return AtomicRMWInst::BAD_BINOP; 649 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 650 case bitc::RMW_ADD: return AtomicRMWInst::Add; 651 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 652 case bitc::RMW_AND: return AtomicRMWInst::And; 653 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 654 case bitc::RMW_OR: return AtomicRMWInst::Or; 655 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 656 case bitc::RMW_MAX: return AtomicRMWInst::Max; 657 case bitc::RMW_MIN: return AtomicRMWInst::Min; 658 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 659 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 660 } 661 } 662 663 static AtomicOrdering getDecodedOrdering(unsigned Val) { 664 switch (Val) { 665 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 666 case bitc::ORDERING_UNORDERED: return Unordered; 667 case bitc::ORDERING_MONOTONIC: return Monotonic; 668 case bitc::ORDERING_ACQUIRE: return Acquire; 669 case bitc::ORDERING_RELEASE: return Release; 670 case bitc::ORDERING_ACQREL: return AcquireRelease; 671 default: // Map unknown orderings to sequentially-consistent. 672 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 673 } 674 } 675 676 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 677 switch (Val) { 678 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 679 default: // Map unknown scopes to cross-thread. 680 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 681 } 682 } 683 684 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 685 switch (Val) { 686 default: // Map unknown selection kinds to any. 687 case bitc::COMDAT_SELECTION_KIND_ANY: 688 return Comdat::Any; 689 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 690 return Comdat::ExactMatch; 691 case bitc::COMDAT_SELECTION_KIND_LARGEST: 692 return Comdat::Largest; 693 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 694 return Comdat::NoDuplicates; 695 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 696 return Comdat::SameSize; 697 } 698 } 699 700 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 701 FastMathFlags FMF; 702 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 703 FMF.setUnsafeAlgebra(); 704 if (0 != (Val & FastMathFlags::NoNaNs)) 705 FMF.setNoNaNs(); 706 if (0 != (Val & FastMathFlags::NoInfs)) 707 FMF.setNoInfs(); 708 if (0 != (Val & FastMathFlags::NoSignedZeros)) 709 FMF.setNoSignedZeros(); 710 if (0 != (Val & FastMathFlags::AllowReciprocal)) 711 FMF.setAllowReciprocal(); 712 return FMF; 713 } 714 715 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 716 switch (Val) { 717 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 718 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 719 } 720 } 721 722 namespace llvm { 723 namespace { 724 /// \brief A class for maintaining the slot number definition 725 /// as a placeholder for the actual definition for forward constants defs. 726 class ConstantPlaceHolder : public ConstantExpr { 727 void operator=(const ConstantPlaceHolder &) = delete; 728 729 public: 730 // allocate space for exactly one operand 731 void *operator new(size_t s) { return User::operator new(s, 1); } 732 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 733 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 734 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 735 } 736 737 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 738 static bool classof(const Value *V) { 739 return isa<ConstantExpr>(V) && 740 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 741 } 742 743 /// Provide fast operand accessors 744 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 745 }; 746 } 747 748 // FIXME: can we inherit this from ConstantExpr? 749 template <> 750 struct OperandTraits<ConstantPlaceHolder> : 751 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 752 }; 753 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 754 } 755 756 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 757 if (Idx == size()) { 758 push_back(V); 759 return; 760 } 761 762 if (Idx >= size()) 763 resize(Idx+1); 764 765 WeakVH &OldV = ValuePtrs[Idx]; 766 if (!OldV) { 767 OldV = V; 768 return; 769 } 770 771 // Handle constants and non-constants (e.g. instrs) differently for 772 // efficiency. 773 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 774 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 775 OldV = V; 776 } else { 777 // If there was a forward reference to this value, replace it. 778 Value *PrevVal = OldV; 779 OldV->replaceAllUsesWith(V); 780 delete PrevVal; 781 } 782 } 783 784 785 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 786 Type *Ty) { 787 if (Idx >= size()) 788 resize(Idx + 1); 789 790 if (Value *V = ValuePtrs[Idx]) { 791 if (Ty != V->getType()) 792 report_fatal_error("Type mismatch in constant table!"); 793 return cast<Constant>(V); 794 } 795 796 // Create and return a placeholder, which will later be RAUW'd. 797 Constant *C = new ConstantPlaceHolder(Ty, Context); 798 ValuePtrs[Idx] = C; 799 return C; 800 } 801 802 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 803 // Bail out for a clearly invalid value. This would make us call resize(0) 804 if (Idx == UINT_MAX) 805 return nullptr; 806 807 if (Idx >= size()) 808 resize(Idx + 1); 809 810 if (Value *V = ValuePtrs[Idx]) { 811 // If the types don't match, it's invalid. 812 if (Ty && Ty != V->getType()) 813 return nullptr; 814 return V; 815 } 816 817 // No type specified, must be invalid reference. 818 if (!Ty) return nullptr; 819 820 // Create and return a placeholder, which will later be RAUW'd. 821 Value *V = new Argument(Ty); 822 ValuePtrs[Idx] = V; 823 return V; 824 } 825 826 /// Once all constants are read, this method bulk resolves any forward 827 /// references. The idea behind this is that we sometimes get constants (such 828 /// as large arrays) which reference *many* forward ref constants. Replacing 829 /// each of these causes a lot of thrashing when building/reuniquing the 830 /// constant. Instead of doing this, we look at all the uses and rewrite all 831 /// the place holders at once for any constant that uses a placeholder. 832 void BitcodeReaderValueList::resolveConstantForwardRefs() { 833 // Sort the values by-pointer so that they are efficient to look up with a 834 // binary search. 835 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 836 837 SmallVector<Constant*, 64> NewOps; 838 839 while (!ResolveConstants.empty()) { 840 Value *RealVal = operator[](ResolveConstants.back().second); 841 Constant *Placeholder = ResolveConstants.back().first; 842 ResolveConstants.pop_back(); 843 844 // Loop over all users of the placeholder, updating them to reference the 845 // new value. If they reference more than one placeholder, update them all 846 // at once. 847 while (!Placeholder->use_empty()) { 848 auto UI = Placeholder->user_begin(); 849 User *U = *UI; 850 851 // If the using object isn't uniqued, just update the operands. This 852 // handles instructions and initializers for global variables. 853 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 854 UI.getUse().set(RealVal); 855 continue; 856 } 857 858 // Otherwise, we have a constant that uses the placeholder. Replace that 859 // constant with a new constant that has *all* placeholder uses updated. 860 Constant *UserC = cast<Constant>(U); 861 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 862 I != E; ++I) { 863 Value *NewOp; 864 if (!isa<ConstantPlaceHolder>(*I)) { 865 // Not a placeholder reference. 866 NewOp = *I; 867 } else if (*I == Placeholder) { 868 // Common case is that it just references this one placeholder. 869 NewOp = RealVal; 870 } else { 871 // Otherwise, look up the placeholder in ResolveConstants. 872 ResolveConstantsTy::iterator It = 873 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 874 std::pair<Constant*, unsigned>(cast<Constant>(*I), 875 0)); 876 assert(It != ResolveConstants.end() && It->first == *I); 877 NewOp = operator[](It->second); 878 } 879 880 NewOps.push_back(cast<Constant>(NewOp)); 881 } 882 883 // Make the new constant. 884 Constant *NewC; 885 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 886 NewC = ConstantArray::get(UserCA->getType(), NewOps); 887 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 888 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 889 } else if (isa<ConstantVector>(UserC)) { 890 NewC = ConstantVector::get(NewOps); 891 } else { 892 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 893 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 894 } 895 896 UserC->replaceAllUsesWith(NewC); 897 UserC->destroyConstant(); 898 NewOps.clear(); 899 } 900 901 // Update all ValueHandles, they should be the only users at this point. 902 Placeholder->replaceAllUsesWith(RealVal); 903 delete Placeholder; 904 } 905 } 906 907 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 908 if (Idx == size()) { 909 push_back(MD); 910 return; 911 } 912 913 if (Idx >= size()) 914 resize(Idx+1); 915 916 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 917 if (!OldMD) { 918 OldMD.reset(MD); 919 return; 920 } 921 922 // If there was a forward reference to this value, replace it. 923 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 924 PrevMD->replaceAllUsesWith(MD); 925 --NumFwdRefs; 926 } 927 928 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 929 if (Idx >= size()) 930 resize(Idx + 1); 931 932 if (Metadata *MD = MDValuePtrs[Idx]) 933 return MD; 934 935 // Track forward refs to be resolved later. 936 if (AnyFwdRefs) { 937 MinFwdRef = std::min(MinFwdRef, Idx); 938 MaxFwdRef = std::max(MaxFwdRef, Idx); 939 } else { 940 AnyFwdRefs = true; 941 MinFwdRef = MaxFwdRef = Idx; 942 } 943 ++NumFwdRefs; 944 945 // Create and return a placeholder, which will later be RAUW'd. 946 Metadata *MD = MDNode::getTemporary(Context, None).release(); 947 MDValuePtrs[Idx].reset(MD); 948 return MD; 949 } 950 951 void BitcodeReaderMDValueList::tryToResolveCycles() { 952 if (!AnyFwdRefs) 953 // Nothing to do. 954 return; 955 956 if (NumFwdRefs) 957 // Still forward references... can't resolve cycles. 958 return; 959 960 // Resolve any cycles. 961 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 962 auto &MD = MDValuePtrs[I]; 963 auto *N = dyn_cast_or_null<MDNode>(MD); 964 if (!N) 965 continue; 966 967 assert(!N->isTemporary() && "Unexpected forward reference"); 968 N->resolveCycles(); 969 } 970 971 // Make sure we return early again until there's another forward ref. 972 AnyFwdRefs = false; 973 } 974 975 Type *BitcodeReader::getTypeByID(unsigned ID) { 976 // The type table size is always specified correctly. 977 if (ID >= TypeList.size()) 978 return nullptr; 979 980 if (Type *Ty = TypeList[ID]) 981 return Ty; 982 983 // If we have a forward reference, the only possible case is when it is to a 984 // named struct. Just create a placeholder for now. 985 return TypeList[ID] = createIdentifiedStructType(Context); 986 } 987 988 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 989 StringRef Name) { 990 auto *Ret = StructType::create(Context, Name); 991 IdentifiedStructTypes.push_back(Ret); 992 return Ret; 993 } 994 995 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 996 auto *Ret = StructType::create(Context); 997 IdentifiedStructTypes.push_back(Ret); 998 return Ret; 999 } 1000 1001 1002 //===----------------------------------------------------------------------===// 1003 // Functions for parsing blocks from the bitcode file 1004 //===----------------------------------------------------------------------===// 1005 1006 1007 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1008 /// been decoded from the given integer. This function must stay in sync with 1009 /// 'encodeLLVMAttributesForBitcode'. 1010 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1011 uint64_t EncodedAttrs) { 1012 // FIXME: Remove in 4.0. 1013 1014 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1015 // the bits above 31 down by 11 bits. 1016 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1017 assert((!Alignment || isPowerOf2_32(Alignment)) && 1018 "Alignment must be a power of two."); 1019 1020 if (Alignment) 1021 B.addAlignmentAttr(Alignment); 1022 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1023 (EncodedAttrs & 0xffff)); 1024 } 1025 1026 std::error_code BitcodeReader::parseAttributeBlock() { 1027 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1028 return error("Invalid record"); 1029 1030 if (!MAttributes.empty()) 1031 return error("Invalid multiple blocks"); 1032 1033 SmallVector<uint64_t, 64> Record; 1034 1035 SmallVector<AttributeSet, 8> Attrs; 1036 1037 // Read all the records. 1038 while (1) { 1039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1040 1041 switch (Entry.Kind) { 1042 case BitstreamEntry::SubBlock: // Handled for us already. 1043 case BitstreamEntry::Error: 1044 return error("Malformed block"); 1045 case BitstreamEntry::EndBlock: 1046 return std::error_code(); 1047 case BitstreamEntry::Record: 1048 // The interesting case. 1049 break; 1050 } 1051 1052 // Read a record. 1053 Record.clear(); 1054 switch (Stream.readRecord(Entry.ID, Record)) { 1055 default: // Default behavior: ignore. 1056 break; 1057 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1058 // FIXME: Remove in 4.0. 1059 if (Record.size() & 1) 1060 return error("Invalid record"); 1061 1062 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1063 AttrBuilder B; 1064 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1065 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1066 } 1067 1068 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1069 Attrs.clear(); 1070 break; 1071 } 1072 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1073 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1074 Attrs.push_back(MAttributeGroups[Record[i]]); 1075 1076 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1077 Attrs.clear(); 1078 break; 1079 } 1080 } 1081 } 1082 } 1083 1084 // Returns Attribute::None on unrecognized codes. 1085 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1086 switch (Code) { 1087 default: 1088 return Attribute::None; 1089 case bitc::ATTR_KIND_ALIGNMENT: 1090 return Attribute::Alignment; 1091 case bitc::ATTR_KIND_ALWAYS_INLINE: 1092 return Attribute::AlwaysInline; 1093 case bitc::ATTR_KIND_ARGMEMONLY: 1094 return Attribute::ArgMemOnly; 1095 case bitc::ATTR_KIND_BUILTIN: 1096 return Attribute::Builtin; 1097 case bitc::ATTR_KIND_BY_VAL: 1098 return Attribute::ByVal; 1099 case bitc::ATTR_KIND_IN_ALLOCA: 1100 return Attribute::InAlloca; 1101 case bitc::ATTR_KIND_COLD: 1102 return Attribute::Cold; 1103 case bitc::ATTR_KIND_CONVERGENT: 1104 return Attribute::Convergent; 1105 case bitc::ATTR_KIND_INLINE_HINT: 1106 return Attribute::InlineHint; 1107 case bitc::ATTR_KIND_IN_REG: 1108 return Attribute::InReg; 1109 case bitc::ATTR_KIND_JUMP_TABLE: 1110 return Attribute::JumpTable; 1111 case bitc::ATTR_KIND_MIN_SIZE: 1112 return Attribute::MinSize; 1113 case bitc::ATTR_KIND_NAKED: 1114 return Attribute::Naked; 1115 case bitc::ATTR_KIND_NEST: 1116 return Attribute::Nest; 1117 case bitc::ATTR_KIND_NO_ALIAS: 1118 return Attribute::NoAlias; 1119 case bitc::ATTR_KIND_NO_BUILTIN: 1120 return Attribute::NoBuiltin; 1121 case bitc::ATTR_KIND_NO_CAPTURE: 1122 return Attribute::NoCapture; 1123 case bitc::ATTR_KIND_NO_DUPLICATE: 1124 return Attribute::NoDuplicate; 1125 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1126 return Attribute::NoImplicitFloat; 1127 case bitc::ATTR_KIND_NO_INLINE: 1128 return Attribute::NoInline; 1129 case bitc::ATTR_KIND_NON_LAZY_BIND: 1130 return Attribute::NonLazyBind; 1131 case bitc::ATTR_KIND_NON_NULL: 1132 return Attribute::NonNull; 1133 case bitc::ATTR_KIND_DEREFERENCEABLE: 1134 return Attribute::Dereferenceable; 1135 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1136 return Attribute::DereferenceableOrNull; 1137 case bitc::ATTR_KIND_NO_RED_ZONE: 1138 return Attribute::NoRedZone; 1139 case bitc::ATTR_KIND_NO_RETURN: 1140 return Attribute::NoReturn; 1141 case bitc::ATTR_KIND_NO_UNWIND: 1142 return Attribute::NoUnwind; 1143 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1144 return Attribute::OptimizeForSize; 1145 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1146 return Attribute::OptimizeNone; 1147 case bitc::ATTR_KIND_READ_NONE: 1148 return Attribute::ReadNone; 1149 case bitc::ATTR_KIND_READ_ONLY: 1150 return Attribute::ReadOnly; 1151 case bitc::ATTR_KIND_RETURNED: 1152 return Attribute::Returned; 1153 case bitc::ATTR_KIND_RETURNS_TWICE: 1154 return Attribute::ReturnsTwice; 1155 case bitc::ATTR_KIND_S_EXT: 1156 return Attribute::SExt; 1157 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1158 return Attribute::StackAlignment; 1159 case bitc::ATTR_KIND_STACK_PROTECT: 1160 return Attribute::StackProtect; 1161 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1162 return Attribute::StackProtectReq; 1163 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1164 return Attribute::StackProtectStrong; 1165 case bitc::ATTR_KIND_SAFESTACK: 1166 return Attribute::SafeStack; 1167 case bitc::ATTR_KIND_STRUCT_RET: 1168 return Attribute::StructRet; 1169 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1170 return Attribute::SanitizeAddress; 1171 case bitc::ATTR_KIND_SANITIZE_THREAD: 1172 return Attribute::SanitizeThread; 1173 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1174 return Attribute::SanitizeMemory; 1175 case bitc::ATTR_KIND_UW_TABLE: 1176 return Attribute::UWTable; 1177 case bitc::ATTR_KIND_Z_EXT: 1178 return Attribute::ZExt; 1179 } 1180 } 1181 1182 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1183 unsigned &Alignment) { 1184 // Note: Alignment in bitcode files is incremented by 1, so that zero 1185 // can be used for default alignment. 1186 if (Exponent > Value::MaxAlignmentExponent + 1) 1187 return error("Invalid alignment value"); 1188 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1193 Attribute::AttrKind *Kind) { 1194 *Kind = getAttrFromCode(Code); 1195 if (*Kind == Attribute::None) 1196 return error(BitcodeError::CorruptedBitcode, 1197 "Unknown attribute kind (" + Twine(Code) + ")"); 1198 return std::error_code(); 1199 } 1200 1201 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1202 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1203 return error("Invalid record"); 1204 1205 if (!MAttributeGroups.empty()) 1206 return error("Invalid multiple blocks"); 1207 1208 SmallVector<uint64_t, 64> Record; 1209 1210 // Read all the records. 1211 while (1) { 1212 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1213 1214 switch (Entry.Kind) { 1215 case BitstreamEntry::SubBlock: // Handled for us already. 1216 case BitstreamEntry::Error: 1217 return error("Malformed block"); 1218 case BitstreamEntry::EndBlock: 1219 return std::error_code(); 1220 case BitstreamEntry::Record: 1221 // The interesting case. 1222 break; 1223 } 1224 1225 // Read a record. 1226 Record.clear(); 1227 switch (Stream.readRecord(Entry.ID, Record)) { 1228 default: // Default behavior: ignore. 1229 break; 1230 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1231 if (Record.size() < 3) 1232 return error("Invalid record"); 1233 1234 uint64_t GrpID = Record[0]; 1235 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1236 1237 AttrBuilder B; 1238 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1239 if (Record[i] == 0) { // Enum attribute 1240 Attribute::AttrKind Kind; 1241 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1242 return EC; 1243 1244 B.addAttribute(Kind); 1245 } else if (Record[i] == 1) { // Integer attribute 1246 Attribute::AttrKind Kind; 1247 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1248 return EC; 1249 if (Kind == Attribute::Alignment) 1250 B.addAlignmentAttr(Record[++i]); 1251 else if (Kind == Attribute::StackAlignment) 1252 B.addStackAlignmentAttr(Record[++i]); 1253 else if (Kind == Attribute::Dereferenceable) 1254 B.addDereferenceableAttr(Record[++i]); 1255 else if (Kind == Attribute::DereferenceableOrNull) 1256 B.addDereferenceableOrNullAttr(Record[++i]); 1257 } else { // String attribute 1258 assert((Record[i] == 3 || Record[i] == 4) && 1259 "Invalid attribute group entry"); 1260 bool HasValue = (Record[i++] == 4); 1261 SmallString<64> KindStr; 1262 SmallString<64> ValStr; 1263 1264 while (Record[i] != 0 && i != e) 1265 KindStr += Record[i++]; 1266 assert(Record[i] == 0 && "Kind string not null terminated"); 1267 1268 if (HasValue) { 1269 // Has a value associated with it. 1270 ++i; // Skip the '0' that terminates the "kind" string. 1271 while (Record[i] != 0 && i != e) 1272 ValStr += Record[i++]; 1273 assert(Record[i] == 0 && "Value string not null terminated"); 1274 } 1275 1276 B.addAttribute(KindStr.str(), ValStr.str()); 1277 } 1278 } 1279 1280 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1281 break; 1282 } 1283 } 1284 } 1285 } 1286 1287 std::error_code BitcodeReader::parseTypeTable() { 1288 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1289 return error("Invalid record"); 1290 1291 return parseTypeTableBody(); 1292 } 1293 1294 std::error_code BitcodeReader::parseTypeTableBody() { 1295 if (!TypeList.empty()) 1296 return error("Invalid multiple blocks"); 1297 1298 SmallVector<uint64_t, 64> Record; 1299 unsigned NumRecords = 0; 1300 1301 SmallString<64> TypeName; 1302 1303 // Read all the records for this type table. 1304 while (1) { 1305 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1306 1307 switch (Entry.Kind) { 1308 case BitstreamEntry::SubBlock: // Handled for us already. 1309 case BitstreamEntry::Error: 1310 return error("Malformed block"); 1311 case BitstreamEntry::EndBlock: 1312 if (NumRecords != TypeList.size()) 1313 return error("Malformed block"); 1314 return std::error_code(); 1315 case BitstreamEntry::Record: 1316 // The interesting case. 1317 break; 1318 } 1319 1320 // Read a record. 1321 Record.clear(); 1322 Type *ResultTy = nullptr; 1323 switch (Stream.readRecord(Entry.ID, Record)) { 1324 default: 1325 return error("Invalid value"); 1326 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1327 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1328 // type list. This allows us to reserve space. 1329 if (Record.size() < 1) 1330 return error("Invalid record"); 1331 TypeList.resize(Record[0]); 1332 continue; 1333 case bitc::TYPE_CODE_VOID: // VOID 1334 ResultTy = Type::getVoidTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_HALF: // HALF 1337 ResultTy = Type::getHalfTy(Context); 1338 break; 1339 case bitc::TYPE_CODE_FLOAT: // FLOAT 1340 ResultTy = Type::getFloatTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1343 ResultTy = Type::getDoubleTy(Context); 1344 break; 1345 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1346 ResultTy = Type::getX86_FP80Ty(Context); 1347 break; 1348 case bitc::TYPE_CODE_FP128: // FP128 1349 ResultTy = Type::getFP128Ty(Context); 1350 break; 1351 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1352 ResultTy = Type::getPPC_FP128Ty(Context); 1353 break; 1354 case bitc::TYPE_CODE_LABEL: // LABEL 1355 ResultTy = Type::getLabelTy(Context); 1356 break; 1357 case bitc::TYPE_CODE_METADATA: // METADATA 1358 ResultTy = Type::getMetadataTy(Context); 1359 break; 1360 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1361 ResultTy = Type::getX86_MMXTy(Context); 1362 break; 1363 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1364 if (Record.size() < 1) 1365 return error("Invalid record"); 1366 1367 uint64_t NumBits = Record[0]; 1368 if (NumBits < IntegerType::MIN_INT_BITS || 1369 NumBits > IntegerType::MAX_INT_BITS) 1370 return error("Bitwidth for integer type out of range"); 1371 ResultTy = IntegerType::get(Context, NumBits); 1372 break; 1373 } 1374 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1375 // [pointee type, address space] 1376 if (Record.size() < 1) 1377 return error("Invalid record"); 1378 unsigned AddressSpace = 0; 1379 if (Record.size() == 2) 1380 AddressSpace = Record[1]; 1381 ResultTy = getTypeByID(Record[0]); 1382 if (!ResultTy || 1383 !PointerType::isValidElementType(ResultTy)) 1384 return error("Invalid type"); 1385 ResultTy = PointerType::get(ResultTy, AddressSpace); 1386 break; 1387 } 1388 case bitc::TYPE_CODE_FUNCTION_OLD: { 1389 // FIXME: attrid is dead, remove it in LLVM 4.0 1390 // FUNCTION: [vararg, attrid, retty, paramty x N] 1391 if (Record.size() < 3) 1392 return error("Invalid record"); 1393 SmallVector<Type*, 8> ArgTys; 1394 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1395 if (Type *T = getTypeByID(Record[i])) 1396 ArgTys.push_back(T); 1397 else 1398 break; 1399 } 1400 1401 ResultTy = getTypeByID(Record[2]); 1402 if (!ResultTy || ArgTys.size() < Record.size()-3) 1403 return error("Invalid type"); 1404 1405 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1406 break; 1407 } 1408 case bitc::TYPE_CODE_FUNCTION: { 1409 // FUNCTION: [vararg, retty, paramty x N] 1410 if (Record.size() < 2) 1411 return error("Invalid record"); 1412 SmallVector<Type*, 8> ArgTys; 1413 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1414 if (Type *T = getTypeByID(Record[i])) { 1415 if (!FunctionType::isValidArgumentType(T)) 1416 return error("Invalid function argument type"); 1417 ArgTys.push_back(T); 1418 } 1419 else 1420 break; 1421 } 1422 1423 ResultTy = getTypeByID(Record[1]); 1424 if (!ResultTy || ArgTys.size() < Record.size()-2) 1425 return error("Invalid type"); 1426 1427 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1428 break; 1429 } 1430 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1431 if (Record.size() < 1) 1432 return error("Invalid record"); 1433 SmallVector<Type*, 8> EltTys; 1434 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1435 if (Type *T = getTypeByID(Record[i])) 1436 EltTys.push_back(T); 1437 else 1438 break; 1439 } 1440 if (EltTys.size() != Record.size()-1) 1441 return error("Invalid type"); 1442 ResultTy = StructType::get(Context, EltTys, Record[0]); 1443 break; 1444 } 1445 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1446 if (convertToString(Record, 0, TypeName)) 1447 return error("Invalid record"); 1448 continue; 1449 1450 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1451 if (Record.size() < 1) 1452 return error("Invalid record"); 1453 1454 if (NumRecords >= TypeList.size()) 1455 return error("Invalid TYPE table"); 1456 1457 // Check to see if this was forward referenced, if so fill in the temp. 1458 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1459 if (Res) { 1460 Res->setName(TypeName); 1461 TypeList[NumRecords] = nullptr; 1462 } else // Otherwise, create a new struct. 1463 Res = createIdentifiedStructType(Context, TypeName); 1464 TypeName.clear(); 1465 1466 SmallVector<Type*, 8> EltTys; 1467 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1468 if (Type *T = getTypeByID(Record[i])) 1469 EltTys.push_back(T); 1470 else 1471 break; 1472 } 1473 if (EltTys.size() != Record.size()-1) 1474 return error("Invalid record"); 1475 Res->setBody(EltTys, Record[0]); 1476 ResultTy = Res; 1477 break; 1478 } 1479 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1480 if (Record.size() != 1) 1481 return error("Invalid record"); 1482 1483 if (NumRecords >= TypeList.size()) 1484 return error("Invalid TYPE table"); 1485 1486 // Check to see if this was forward referenced, if so fill in the temp. 1487 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1488 if (Res) { 1489 Res->setName(TypeName); 1490 TypeList[NumRecords] = nullptr; 1491 } else // Otherwise, create a new struct with no body. 1492 Res = createIdentifiedStructType(Context, TypeName); 1493 TypeName.clear(); 1494 ResultTy = Res; 1495 break; 1496 } 1497 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1498 if (Record.size() < 2) 1499 return error("Invalid record"); 1500 ResultTy = getTypeByID(Record[1]); 1501 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1502 return error("Invalid type"); 1503 ResultTy = ArrayType::get(ResultTy, Record[0]); 1504 break; 1505 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1506 if (Record.size() < 2) 1507 return error("Invalid record"); 1508 if (Record[0] == 0) 1509 return error("Invalid vector length"); 1510 ResultTy = getTypeByID(Record[1]); 1511 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1512 return error("Invalid type"); 1513 ResultTy = VectorType::get(ResultTy, Record[0]); 1514 break; 1515 } 1516 1517 if (NumRecords >= TypeList.size()) 1518 return error("Invalid TYPE table"); 1519 if (TypeList[NumRecords]) 1520 return error( 1521 "Invalid TYPE table: Only named structs can be forward referenced"); 1522 assert(ResultTy && "Didn't read a type?"); 1523 TypeList[NumRecords++] = ResultTy; 1524 } 1525 } 1526 1527 std::error_code BitcodeReader::parseValueSymbolTable() { 1528 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1529 return error("Invalid record"); 1530 1531 SmallVector<uint64_t, 64> Record; 1532 1533 Triple TT(TheModule->getTargetTriple()); 1534 1535 // Read all the records for this value table. 1536 SmallString<128> ValueName; 1537 while (1) { 1538 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1539 1540 switch (Entry.Kind) { 1541 case BitstreamEntry::SubBlock: // Handled for us already. 1542 case BitstreamEntry::Error: 1543 return error("Malformed block"); 1544 case BitstreamEntry::EndBlock: 1545 return std::error_code(); 1546 case BitstreamEntry::Record: 1547 // The interesting case. 1548 break; 1549 } 1550 1551 // Read a record. 1552 Record.clear(); 1553 switch (Stream.readRecord(Entry.ID, Record)) { 1554 default: // Default behavior: unknown type. 1555 break; 1556 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1557 if (convertToString(Record, 1, ValueName)) 1558 return error("Invalid record"); 1559 unsigned ValueID = Record[0]; 1560 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1561 return error("Invalid record"); 1562 Value *V = ValueList[ValueID]; 1563 1564 V->setName(StringRef(ValueName.data(), ValueName.size())); 1565 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1566 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1567 if (TT.isOSBinFormatMachO()) 1568 GO->setComdat(nullptr); 1569 else 1570 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1571 } 1572 } 1573 ValueName.clear(); 1574 break; 1575 } 1576 case bitc::VST_CODE_BBENTRY: { 1577 if (convertToString(Record, 1, ValueName)) 1578 return error("Invalid record"); 1579 BasicBlock *BB = getBasicBlock(Record[0]); 1580 if (!BB) 1581 return error("Invalid record"); 1582 1583 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1584 ValueName.clear(); 1585 break; 1586 } 1587 } 1588 } 1589 } 1590 1591 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1592 1593 std::error_code BitcodeReader::parseMetadata() { 1594 IsMetadataMaterialized = true; 1595 unsigned NextMDValueNo = MDValueList.size(); 1596 1597 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1598 return error("Invalid record"); 1599 1600 SmallVector<uint64_t, 64> Record; 1601 1602 auto getMD = 1603 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1604 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1605 if (ID) 1606 return getMD(ID - 1); 1607 return nullptr; 1608 }; 1609 auto getMDString = [&](unsigned ID) -> MDString *{ 1610 // This requires that the ID is not really a forward reference. In 1611 // particular, the MDString must already have been resolved. 1612 return cast_or_null<MDString>(getMDOrNull(ID)); 1613 }; 1614 1615 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1616 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1617 1618 // Read all the records. 1619 while (1) { 1620 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1621 1622 switch (Entry.Kind) { 1623 case BitstreamEntry::SubBlock: // Handled for us already. 1624 case BitstreamEntry::Error: 1625 return error("Malformed block"); 1626 case BitstreamEntry::EndBlock: 1627 MDValueList.tryToResolveCycles(); 1628 return std::error_code(); 1629 case BitstreamEntry::Record: 1630 // The interesting case. 1631 break; 1632 } 1633 1634 // Read a record. 1635 Record.clear(); 1636 unsigned Code = Stream.readRecord(Entry.ID, Record); 1637 bool IsDistinct = false; 1638 switch (Code) { 1639 default: // Default behavior: ignore. 1640 break; 1641 case bitc::METADATA_NAME: { 1642 // Read name of the named metadata. 1643 SmallString<8> Name(Record.begin(), Record.end()); 1644 Record.clear(); 1645 Code = Stream.ReadCode(); 1646 1647 unsigned NextBitCode = Stream.readRecord(Code, Record); 1648 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1649 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1650 1651 // Read named metadata elements. 1652 unsigned Size = Record.size(); 1653 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1654 for (unsigned i = 0; i != Size; ++i) { 1655 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1656 if (!MD) 1657 return error("Invalid record"); 1658 NMD->addOperand(MD); 1659 } 1660 break; 1661 } 1662 case bitc::METADATA_OLD_FN_NODE: { 1663 // FIXME: Remove in 4.0. 1664 // This is a LocalAsMetadata record, the only type of function-local 1665 // metadata. 1666 if (Record.size() % 2 == 1) 1667 return error("Invalid record"); 1668 1669 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1670 // to be legal, but there's no upgrade path. 1671 auto dropRecord = [&] { 1672 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1673 }; 1674 if (Record.size() != 2) { 1675 dropRecord(); 1676 break; 1677 } 1678 1679 Type *Ty = getTypeByID(Record[0]); 1680 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1681 dropRecord(); 1682 break; 1683 } 1684 1685 MDValueList.assignValue( 1686 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1687 NextMDValueNo++); 1688 break; 1689 } 1690 case bitc::METADATA_OLD_NODE: { 1691 // FIXME: Remove in 4.0. 1692 if (Record.size() % 2 == 1) 1693 return error("Invalid record"); 1694 1695 unsigned Size = Record.size(); 1696 SmallVector<Metadata *, 8> Elts; 1697 for (unsigned i = 0; i != Size; i += 2) { 1698 Type *Ty = getTypeByID(Record[i]); 1699 if (!Ty) 1700 return error("Invalid record"); 1701 if (Ty->isMetadataTy()) 1702 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1703 else if (!Ty->isVoidTy()) { 1704 auto *MD = 1705 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1706 assert(isa<ConstantAsMetadata>(MD) && 1707 "Expected non-function-local metadata"); 1708 Elts.push_back(MD); 1709 } else 1710 Elts.push_back(nullptr); 1711 } 1712 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1713 break; 1714 } 1715 case bitc::METADATA_VALUE: { 1716 if (Record.size() != 2) 1717 return error("Invalid record"); 1718 1719 Type *Ty = getTypeByID(Record[0]); 1720 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1721 return error("Invalid record"); 1722 1723 MDValueList.assignValue( 1724 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1725 NextMDValueNo++); 1726 break; 1727 } 1728 case bitc::METADATA_DISTINCT_NODE: 1729 IsDistinct = true; 1730 // fallthrough... 1731 case bitc::METADATA_NODE: { 1732 SmallVector<Metadata *, 8> Elts; 1733 Elts.reserve(Record.size()); 1734 for (unsigned ID : Record) 1735 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1736 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1737 : MDNode::get(Context, Elts), 1738 NextMDValueNo++); 1739 break; 1740 } 1741 case bitc::METADATA_LOCATION: { 1742 if (Record.size() != 5) 1743 return error("Invalid record"); 1744 1745 unsigned Line = Record[1]; 1746 unsigned Column = Record[2]; 1747 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1748 Metadata *InlinedAt = 1749 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1750 MDValueList.assignValue( 1751 GET_OR_DISTINCT(DILocation, Record[0], 1752 (Context, Line, Column, Scope, InlinedAt)), 1753 NextMDValueNo++); 1754 break; 1755 } 1756 case bitc::METADATA_GENERIC_DEBUG: { 1757 if (Record.size() < 4) 1758 return error("Invalid record"); 1759 1760 unsigned Tag = Record[1]; 1761 unsigned Version = Record[2]; 1762 1763 if (Tag >= 1u << 16 || Version != 0) 1764 return error("Invalid record"); 1765 1766 auto *Header = getMDString(Record[3]); 1767 SmallVector<Metadata *, 8> DwarfOps; 1768 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1769 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1770 : nullptr); 1771 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1772 (Context, Tag, Header, DwarfOps)), 1773 NextMDValueNo++); 1774 break; 1775 } 1776 case bitc::METADATA_SUBRANGE: { 1777 if (Record.size() != 3) 1778 return error("Invalid record"); 1779 1780 MDValueList.assignValue( 1781 GET_OR_DISTINCT(DISubrange, Record[0], 1782 (Context, Record[1], unrotateSign(Record[2]))), 1783 NextMDValueNo++); 1784 break; 1785 } 1786 case bitc::METADATA_ENUMERATOR: { 1787 if (Record.size() != 3) 1788 return error("Invalid record"); 1789 1790 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1791 (Context, unrotateSign(Record[1]), 1792 getMDString(Record[2]))), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_BASIC_TYPE: { 1797 if (Record.size() != 6) 1798 return error("Invalid record"); 1799 1800 MDValueList.assignValue( 1801 GET_OR_DISTINCT(DIBasicType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 Record[3], Record[4], Record[5])), 1804 NextMDValueNo++); 1805 break; 1806 } 1807 case bitc::METADATA_DERIVED_TYPE: { 1808 if (Record.size() != 12) 1809 return error("Invalid record"); 1810 1811 MDValueList.assignValue( 1812 GET_OR_DISTINCT(DIDerivedType, Record[0], 1813 (Context, Record[1], getMDString(Record[2]), 1814 getMDOrNull(Record[3]), Record[4], 1815 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1816 Record[7], Record[8], Record[9], Record[10], 1817 getMDOrNull(Record[11]))), 1818 NextMDValueNo++); 1819 break; 1820 } 1821 case bitc::METADATA_COMPOSITE_TYPE: { 1822 if (Record.size() != 16) 1823 return error("Invalid record"); 1824 1825 MDValueList.assignValue( 1826 GET_OR_DISTINCT(DICompositeType, Record[0], 1827 (Context, Record[1], getMDString(Record[2]), 1828 getMDOrNull(Record[3]), Record[4], 1829 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1830 Record[7], Record[8], Record[9], Record[10], 1831 getMDOrNull(Record[11]), Record[12], 1832 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1833 getMDString(Record[15]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_SUBROUTINE_TYPE: { 1838 if (Record.size() != 3) 1839 return error("Invalid record"); 1840 1841 MDValueList.assignValue( 1842 GET_OR_DISTINCT(DISubroutineType, Record[0], 1843 (Context, Record[1], getMDOrNull(Record[2]))), 1844 NextMDValueNo++); 1845 break; 1846 } 1847 1848 case bitc::METADATA_MODULE: { 1849 if (Record.size() != 6) 1850 return error("Invalid record"); 1851 1852 MDValueList.assignValue( 1853 GET_OR_DISTINCT(DIModule, Record[0], 1854 (Context, getMDOrNull(Record[1]), 1855 getMDString(Record[2]), getMDString(Record[3]), 1856 getMDString(Record[4]), getMDString(Record[5]))), 1857 NextMDValueNo++); 1858 break; 1859 } 1860 1861 case bitc::METADATA_FILE: { 1862 if (Record.size() != 3) 1863 return error("Invalid record"); 1864 1865 MDValueList.assignValue( 1866 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1867 getMDString(Record[2]))), 1868 NextMDValueNo++); 1869 break; 1870 } 1871 case bitc::METADATA_COMPILE_UNIT: { 1872 if (Record.size() < 14 || Record.size() > 15) 1873 return error("Invalid record"); 1874 1875 MDValueList.assignValue( 1876 GET_OR_DISTINCT( 1877 DICompileUnit, Record[0], 1878 (Context, Record[1], getMDOrNull(Record[2]), 1879 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1880 Record[6], getMDString(Record[7]), Record[8], 1881 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1882 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1883 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14])), 1884 NextMDValueNo++); 1885 break; 1886 } 1887 case bitc::METADATA_SUBPROGRAM: { 1888 if (Record.size() != 19) 1889 return error("Invalid record"); 1890 1891 MDValueList.assignValue( 1892 GET_OR_DISTINCT( 1893 DISubprogram, Record[0], 1894 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1895 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1896 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1897 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1898 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1899 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1900 NextMDValueNo++); 1901 break; 1902 } 1903 case bitc::METADATA_LEXICAL_BLOCK: { 1904 if (Record.size() != 5) 1905 return error("Invalid record"); 1906 1907 MDValueList.assignValue( 1908 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1909 (Context, getMDOrNull(Record[1]), 1910 getMDOrNull(Record[2]), Record[3], Record[4])), 1911 NextMDValueNo++); 1912 break; 1913 } 1914 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1915 if (Record.size() != 4) 1916 return error("Invalid record"); 1917 1918 MDValueList.assignValue( 1919 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1920 (Context, getMDOrNull(Record[1]), 1921 getMDOrNull(Record[2]), Record[3])), 1922 NextMDValueNo++); 1923 break; 1924 } 1925 case bitc::METADATA_NAMESPACE: { 1926 if (Record.size() != 5) 1927 return error("Invalid record"); 1928 1929 MDValueList.assignValue( 1930 GET_OR_DISTINCT(DINamespace, Record[0], 1931 (Context, getMDOrNull(Record[1]), 1932 getMDOrNull(Record[2]), getMDString(Record[3]), 1933 Record[4])), 1934 NextMDValueNo++); 1935 break; 1936 } 1937 case bitc::METADATA_TEMPLATE_TYPE: { 1938 if (Record.size() != 3) 1939 return error("Invalid record"); 1940 1941 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1942 Record[0], 1943 (Context, getMDString(Record[1]), 1944 getMDOrNull(Record[2]))), 1945 NextMDValueNo++); 1946 break; 1947 } 1948 case bitc::METADATA_TEMPLATE_VALUE: { 1949 if (Record.size() != 5) 1950 return error("Invalid record"); 1951 1952 MDValueList.assignValue( 1953 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1954 (Context, Record[1], getMDString(Record[2]), 1955 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1956 NextMDValueNo++); 1957 break; 1958 } 1959 case bitc::METADATA_GLOBAL_VAR: { 1960 if (Record.size() != 11) 1961 return error("Invalid record"); 1962 1963 MDValueList.assignValue( 1964 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1965 (Context, getMDOrNull(Record[1]), 1966 getMDString(Record[2]), getMDString(Record[3]), 1967 getMDOrNull(Record[4]), Record[5], 1968 getMDOrNull(Record[6]), Record[7], Record[8], 1969 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1970 NextMDValueNo++); 1971 break; 1972 } 1973 case bitc::METADATA_LOCAL_VAR: { 1974 // 10th field is for the obseleted 'inlinedAt:' field. 1975 if (Record.size() != 9 && Record.size() != 10) 1976 return error("Invalid record"); 1977 1978 MDValueList.assignValue( 1979 GET_OR_DISTINCT(DILocalVariable, Record[0], 1980 (Context, Record[1], getMDOrNull(Record[2]), 1981 getMDString(Record[3]), getMDOrNull(Record[4]), 1982 Record[5], getMDOrNull(Record[6]), Record[7], 1983 Record[8])), 1984 NextMDValueNo++); 1985 break; 1986 } 1987 case bitc::METADATA_EXPRESSION: { 1988 if (Record.size() < 1) 1989 return error("Invalid record"); 1990 1991 MDValueList.assignValue( 1992 GET_OR_DISTINCT(DIExpression, Record[0], 1993 (Context, makeArrayRef(Record).slice(1))), 1994 NextMDValueNo++); 1995 break; 1996 } 1997 case bitc::METADATA_OBJC_PROPERTY: { 1998 if (Record.size() != 8) 1999 return error("Invalid record"); 2000 2001 MDValueList.assignValue( 2002 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2003 (Context, getMDString(Record[1]), 2004 getMDOrNull(Record[2]), Record[3], 2005 getMDString(Record[4]), getMDString(Record[5]), 2006 Record[6], getMDOrNull(Record[7]))), 2007 NextMDValueNo++); 2008 break; 2009 } 2010 case bitc::METADATA_IMPORTED_ENTITY: { 2011 if (Record.size() != 6) 2012 return error("Invalid record"); 2013 2014 MDValueList.assignValue( 2015 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2016 (Context, Record[1], getMDOrNull(Record[2]), 2017 getMDOrNull(Record[3]), Record[4], 2018 getMDString(Record[5]))), 2019 NextMDValueNo++); 2020 break; 2021 } 2022 case bitc::METADATA_STRING: { 2023 std::string String(Record.begin(), Record.end()); 2024 llvm::UpgradeMDStringConstant(String); 2025 Metadata *MD = MDString::get(Context, String); 2026 MDValueList.assignValue(MD, NextMDValueNo++); 2027 break; 2028 } 2029 case bitc::METADATA_KIND: { 2030 if (Record.size() < 2) 2031 return error("Invalid record"); 2032 2033 unsigned Kind = Record[0]; 2034 SmallString<8> Name(Record.begin()+1, Record.end()); 2035 2036 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2037 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2038 return error("Conflicting METADATA_KIND records"); 2039 break; 2040 } 2041 } 2042 } 2043 #undef GET_OR_DISTINCT 2044 } 2045 2046 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2047 /// encoding. 2048 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2049 if ((V & 1) == 0) 2050 return V >> 1; 2051 if (V != 1) 2052 return -(V >> 1); 2053 // There is no such thing as -0 with integers. "-0" really means MININT. 2054 return 1ULL << 63; 2055 } 2056 2057 /// Resolve all of the initializers for global values and aliases that we can. 2058 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2059 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2060 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2061 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2062 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2063 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2064 2065 GlobalInitWorklist.swap(GlobalInits); 2066 AliasInitWorklist.swap(AliasInits); 2067 FunctionPrefixWorklist.swap(FunctionPrefixes); 2068 FunctionPrologueWorklist.swap(FunctionPrologues); 2069 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2070 2071 while (!GlobalInitWorklist.empty()) { 2072 unsigned ValID = GlobalInitWorklist.back().second; 2073 if (ValID >= ValueList.size()) { 2074 // Not ready to resolve this yet, it requires something later in the file. 2075 GlobalInits.push_back(GlobalInitWorklist.back()); 2076 } else { 2077 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2078 GlobalInitWorklist.back().first->setInitializer(C); 2079 else 2080 return error("Expected a constant"); 2081 } 2082 GlobalInitWorklist.pop_back(); 2083 } 2084 2085 while (!AliasInitWorklist.empty()) { 2086 unsigned ValID = AliasInitWorklist.back().second; 2087 if (ValID >= ValueList.size()) { 2088 AliasInits.push_back(AliasInitWorklist.back()); 2089 } else { 2090 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2091 if (!C) 2092 return error("Expected a constant"); 2093 GlobalAlias *Alias = AliasInitWorklist.back().first; 2094 if (C->getType() != Alias->getType()) 2095 return error("Alias and aliasee types don't match"); 2096 Alias->setAliasee(C); 2097 } 2098 AliasInitWorklist.pop_back(); 2099 } 2100 2101 while (!FunctionPrefixWorklist.empty()) { 2102 unsigned ValID = FunctionPrefixWorklist.back().second; 2103 if (ValID >= ValueList.size()) { 2104 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2105 } else { 2106 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2107 FunctionPrefixWorklist.back().first->setPrefixData(C); 2108 else 2109 return error("Expected a constant"); 2110 } 2111 FunctionPrefixWorklist.pop_back(); 2112 } 2113 2114 while (!FunctionPrologueWorklist.empty()) { 2115 unsigned ValID = FunctionPrologueWorklist.back().second; 2116 if (ValID >= ValueList.size()) { 2117 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2118 } else { 2119 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2120 FunctionPrologueWorklist.back().first->setPrologueData(C); 2121 else 2122 return error("Expected a constant"); 2123 } 2124 FunctionPrologueWorklist.pop_back(); 2125 } 2126 2127 while (!FunctionPersonalityFnWorklist.empty()) { 2128 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2129 if (ValID >= ValueList.size()) { 2130 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2131 } else { 2132 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2133 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2134 else 2135 return error("Expected a constant"); 2136 } 2137 FunctionPersonalityFnWorklist.pop_back(); 2138 } 2139 2140 return std::error_code(); 2141 } 2142 2143 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2144 SmallVector<uint64_t, 8> Words(Vals.size()); 2145 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2146 BitcodeReader::decodeSignRotatedValue); 2147 2148 return APInt(TypeBits, Words); 2149 } 2150 2151 std::error_code BitcodeReader::parseConstants() { 2152 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2153 return error("Invalid record"); 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 // Read all the records for this value table. 2158 Type *CurTy = Type::getInt32Ty(Context); 2159 unsigned NextCstNo = ValueList.size(); 2160 while (1) { 2161 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2162 2163 switch (Entry.Kind) { 2164 case BitstreamEntry::SubBlock: // Handled for us already. 2165 case BitstreamEntry::Error: 2166 return error("Malformed block"); 2167 case BitstreamEntry::EndBlock: 2168 if (NextCstNo != ValueList.size()) 2169 return error("Invalid ronstant reference"); 2170 2171 // Once all the constants have been read, go through and resolve forward 2172 // references. 2173 ValueList.resolveConstantForwardRefs(); 2174 return std::error_code(); 2175 case BitstreamEntry::Record: 2176 // The interesting case. 2177 break; 2178 } 2179 2180 // Read a record. 2181 Record.clear(); 2182 Value *V = nullptr; 2183 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2184 switch (BitCode) { 2185 default: // Default behavior: unknown constant 2186 case bitc::CST_CODE_UNDEF: // UNDEF 2187 V = UndefValue::get(CurTy); 2188 break; 2189 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2190 if (Record.empty()) 2191 return error("Invalid record"); 2192 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2193 return error("Invalid record"); 2194 CurTy = TypeList[Record[0]]; 2195 continue; // Skip the ValueList manipulation. 2196 case bitc::CST_CODE_NULL: // NULL 2197 V = Constant::getNullValue(CurTy); 2198 break; 2199 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2200 if (!CurTy->isIntegerTy() || Record.empty()) 2201 return error("Invalid record"); 2202 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2203 break; 2204 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2205 if (!CurTy->isIntegerTy() || Record.empty()) 2206 return error("Invalid record"); 2207 2208 APInt VInt = 2209 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2210 V = ConstantInt::get(Context, VInt); 2211 2212 break; 2213 } 2214 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2215 if (Record.empty()) 2216 return error("Invalid record"); 2217 if (CurTy->isHalfTy()) 2218 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2219 APInt(16, (uint16_t)Record[0]))); 2220 else if (CurTy->isFloatTy()) 2221 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2222 APInt(32, (uint32_t)Record[0]))); 2223 else if (CurTy->isDoubleTy()) 2224 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2225 APInt(64, Record[0]))); 2226 else if (CurTy->isX86_FP80Ty()) { 2227 // Bits are not stored the same way as a normal i80 APInt, compensate. 2228 uint64_t Rearrange[2]; 2229 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2230 Rearrange[1] = Record[0] >> 48; 2231 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2232 APInt(80, Rearrange))); 2233 } else if (CurTy->isFP128Ty()) 2234 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2235 APInt(128, Record))); 2236 else if (CurTy->isPPC_FP128Ty()) 2237 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2238 APInt(128, Record))); 2239 else 2240 V = UndefValue::get(CurTy); 2241 break; 2242 } 2243 2244 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2245 if (Record.empty()) 2246 return error("Invalid record"); 2247 2248 unsigned Size = Record.size(); 2249 SmallVector<Constant*, 16> Elts; 2250 2251 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2252 for (unsigned i = 0; i != Size; ++i) 2253 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2254 STy->getElementType(i))); 2255 V = ConstantStruct::get(STy, Elts); 2256 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2257 Type *EltTy = ATy->getElementType(); 2258 for (unsigned i = 0; i != Size; ++i) 2259 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2260 V = ConstantArray::get(ATy, Elts); 2261 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2262 Type *EltTy = VTy->getElementType(); 2263 for (unsigned i = 0; i != Size; ++i) 2264 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2265 V = ConstantVector::get(Elts); 2266 } else { 2267 V = UndefValue::get(CurTy); 2268 } 2269 break; 2270 } 2271 case bitc::CST_CODE_STRING: // STRING: [values] 2272 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2273 if (Record.empty()) 2274 return error("Invalid record"); 2275 2276 SmallString<16> Elts(Record.begin(), Record.end()); 2277 V = ConstantDataArray::getString(Context, Elts, 2278 BitCode == bitc::CST_CODE_CSTRING); 2279 break; 2280 } 2281 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2282 if (Record.empty()) 2283 return error("Invalid record"); 2284 2285 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2286 unsigned Size = Record.size(); 2287 2288 if (EltTy->isIntegerTy(8)) { 2289 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2290 if (isa<VectorType>(CurTy)) 2291 V = ConstantDataVector::get(Context, Elts); 2292 else 2293 V = ConstantDataArray::get(Context, Elts); 2294 } else if (EltTy->isIntegerTy(16)) { 2295 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2296 if (isa<VectorType>(CurTy)) 2297 V = ConstantDataVector::get(Context, Elts); 2298 else 2299 V = ConstantDataArray::get(Context, Elts); 2300 } else if (EltTy->isIntegerTy(32)) { 2301 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2302 if (isa<VectorType>(CurTy)) 2303 V = ConstantDataVector::get(Context, Elts); 2304 else 2305 V = ConstantDataArray::get(Context, Elts); 2306 } else if (EltTy->isIntegerTy(64)) { 2307 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2308 if (isa<VectorType>(CurTy)) 2309 V = ConstantDataVector::get(Context, Elts); 2310 else 2311 V = ConstantDataArray::get(Context, Elts); 2312 } else if (EltTy->isFloatTy()) { 2313 SmallVector<float, 16> Elts(Size); 2314 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2315 if (isa<VectorType>(CurTy)) 2316 V = ConstantDataVector::get(Context, Elts); 2317 else 2318 V = ConstantDataArray::get(Context, Elts); 2319 } else if (EltTy->isDoubleTy()) { 2320 SmallVector<double, 16> Elts(Size); 2321 std::transform(Record.begin(), Record.end(), Elts.begin(), 2322 BitsToDouble); 2323 if (isa<VectorType>(CurTy)) 2324 V = ConstantDataVector::get(Context, Elts); 2325 else 2326 V = ConstantDataArray::get(Context, Elts); 2327 } else { 2328 return error("Invalid type for value"); 2329 } 2330 break; 2331 } 2332 2333 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2334 if (Record.size() < 3) 2335 return error("Invalid record"); 2336 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2337 if (Opc < 0) { 2338 V = UndefValue::get(CurTy); // Unknown binop. 2339 } else { 2340 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2341 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2342 unsigned Flags = 0; 2343 if (Record.size() >= 4) { 2344 if (Opc == Instruction::Add || 2345 Opc == Instruction::Sub || 2346 Opc == Instruction::Mul || 2347 Opc == Instruction::Shl) { 2348 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2349 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2350 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2351 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2352 } else if (Opc == Instruction::SDiv || 2353 Opc == Instruction::UDiv || 2354 Opc == Instruction::LShr || 2355 Opc == Instruction::AShr) { 2356 if (Record[3] & (1 << bitc::PEO_EXACT)) 2357 Flags |= SDivOperator::IsExact; 2358 } 2359 } 2360 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2361 } 2362 break; 2363 } 2364 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2365 if (Record.size() < 3) 2366 return error("Invalid record"); 2367 int Opc = getDecodedCastOpcode(Record[0]); 2368 if (Opc < 0) { 2369 V = UndefValue::get(CurTy); // Unknown cast. 2370 } else { 2371 Type *OpTy = getTypeByID(Record[1]); 2372 if (!OpTy) 2373 return error("Invalid record"); 2374 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2375 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2376 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2377 } 2378 break; 2379 } 2380 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2381 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2382 unsigned OpNum = 0; 2383 Type *PointeeType = nullptr; 2384 if (Record.size() % 2) 2385 PointeeType = getTypeByID(Record[OpNum++]); 2386 SmallVector<Constant*, 16> Elts; 2387 while (OpNum != Record.size()) { 2388 Type *ElTy = getTypeByID(Record[OpNum++]); 2389 if (!ElTy) 2390 return error("Invalid record"); 2391 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2392 } 2393 2394 if (PointeeType && 2395 PointeeType != 2396 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2397 ->getElementType()) 2398 return error("Explicit gep operator type does not match pointee type " 2399 "of pointer operand"); 2400 2401 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2402 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2403 BitCode == 2404 bitc::CST_CODE_CE_INBOUNDS_GEP); 2405 break; 2406 } 2407 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2408 if (Record.size() < 3) 2409 return error("Invalid record"); 2410 2411 Type *SelectorTy = Type::getInt1Ty(Context); 2412 2413 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2414 // vector. Otherwise, it must be a single bit. 2415 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2416 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2417 VTy->getNumElements()); 2418 2419 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2420 SelectorTy), 2421 ValueList.getConstantFwdRef(Record[1],CurTy), 2422 ValueList.getConstantFwdRef(Record[2],CurTy)); 2423 break; 2424 } 2425 case bitc::CST_CODE_CE_EXTRACTELT 2426 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2427 if (Record.size() < 3) 2428 return error("Invalid record"); 2429 VectorType *OpTy = 2430 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2431 if (!OpTy) 2432 return error("Invalid record"); 2433 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2434 Constant *Op1 = nullptr; 2435 if (Record.size() == 4) { 2436 Type *IdxTy = getTypeByID(Record[2]); 2437 if (!IdxTy) 2438 return error("Invalid record"); 2439 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2440 } else // TODO: Remove with llvm 4.0 2441 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2442 if (!Op1) 2443 return error("Invalid record"); 2444 V = ConstantExpr::getExtractElement(Op0, Op1); 2445 break; 2446 } 2447 case bitc::CST_CODE_CE_INSERTELT 2448 : { // CE_INSERTELT: [opval, opval, opty, opval] 2449 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2450 if (Record.size() < 3 || !OpTy) 2451 return error("Invalid record"); 2452 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2453 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2454 OpTy->getElementType()); 2455 Constant *Op2 = nullptr; 2456 if (Record.size() == 4) { 2457 Type *IdxTy = getTypeByID(Record[2]); 2458 if (!IdxTy) 2459 return error("Invalid record"); 2460 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2461 } else // TODO: Remove with llvm 4.0 2462 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2463 if (!Op2) 2464 return error("Invalid record"); 2465 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2466 break; 2467 } 2468 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2469 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2470 if (Record.size() < 3 || !OpTy) 2471 return error("Invalid record"); 2472 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2473 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2474 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2475 OpTy->getNumElements()); 2476 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2477 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2478 break; 2479 } 2480 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2481 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2482 VectorType *OpTy = 2483 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2484 if (Record.size() < 4 || !RTy || !OpTy) 2485 return error("Invalid record"); 2486 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2487 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2488 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2489 RTy->getNumElements()); 2490 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2491 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2492 break; 2493 } 2494 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2495 if (Record.size() < 4) 2496 return error("Invalid record"); 2497 Type *OpTy = getTypeByID(Record[0]); 2498 if (!OpTy) 2499 return error("Invalid record"); 2500 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2501 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2502 2503 if (OpTy->isFPOrFPVectorTy()) 2504 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2505 else 2506 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2507 break; 2508 } 2509 // This maintains backward compatibility, pre-asm dialect keywords. 2510 // FIXME: Remove with the 4.0 release. 2511 case bitc::CST_CODE_INLINEASM_OLD: { 2512 if (Record.size() < 2) 2513 return error("Invalid record"); 2514 std::string AsmStr, ConstrStr; 2515 bool HasSideEffects = Record[0] & 1; 2516 bool IsAlignStack = Record[0] >> 1; 2517 unsigned AsmStrSize = Record[1]; 2518 if (2+AsmStrSize >= Record.size()) 2519 return error("Invalid record"); 2520 unsigned ConstStrSize = Record[2+AsmStrSize]; 2521 if (3+AsmStrSize+ConstStrSize > Record.size()) 2522 return error("Invalid record"); 2523 2524 for (unsigned i = 0; i != AsmStrSize; ++i) 2525 AsmStr += (char)Record[2+i]; 2526 for (unsigned i = 0; i != ConstStrSize; ++i) 2527 ConstrStr += (char)Record[3+AsmStrSize+i]; 2528 PointerType *PTy = cast<PointerType>(CurTy); 2529 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2530 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2531 break; 2532 } 2533 // This version adds support for the asm dialect keywords (e.g., 2534 // inteldialect). 2535 case bitc::CST_CODE_INLINEASM: { 2536 if (Record.size() < 2) 2537 return error("Invalid record"); 2538 std::string AsmStr, ConstrStr; 2539 bool HasSideEffects = Record[0] & 1; 2540 bool IsAlignStack = (Record[0] >> 1) & 1; 2541 unsigned AsmDialect = Record[0] >> 2; 2542 unsigned AsmStrSize = Record[1]; 2543 if (2+AsmStrSize >= Record.size()) 2544 return error("Invalid record"); 2545 unsigned ConstStrSize = Record[2+AsmStrSize]; 2546 if (3+AsmStrSize+ConstStrSize > Record.size()) 2547 return error("Invalid record"); 2548 2549 for (unsigned i = 0; i != AsmStrSize; ++i) 2550 AsmStr += (char)Record[2+i]; 2551 for (unsigned i = 0; i != ConstStrSize; ++i) 2552 ConstrStr += (char)Record[3+AsmStrSize+i]; 2553 PointerType *PTy = cast<PointerType>(CurTy); 2554 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2555 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2556 InlineAsm::AsmDialect(AsmDialect)); 2557 break; 2558 } 2559 case bitc::CST_CODE_BLOCKADDRESS:{ 2560 if (Record.size() < 3) 2561 return error("Invalid record"); 2562 Type *FnTy = getTypeByID(Record[0]); 2563 if (!FnTy) 2564 return error("Invalid record"); 2565 Function *Fn = 2566 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2567 if (!Fn) 2568 return error("Invalid record"); 2569 2570 // Don't let Fn get dematerialized. 2571 BlockAddressesTaken.insert(Fn); 2572 2573 // If the function is already parsed we can insert the block address right 2574 // away. 2575 BasicBlock *BB; 2576 unsigned BBID = Record[2]; 2577 if (!BBID) 2578 // Invalid reference to entry block. 2579 return error("Invalid ID"); 2580 if (!Fn->empty()) { 2581 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2582 for (size_t I = 0, E = BBID; I != E; ++I) { 2583 if (BBI == BBE) 2584 return error("Invalid ID"); 2585 ++BBI; 2586 } 2587 BB = BBI; 2588 } else { 2589 // Otherwise insert a placeholder and remember it so it can be inserted 2590 // when the function is parsed. 2591 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2592 if (FwdBBs.empty()) 2593 BasicBlockFwdRefQueue.push_back(Fn); 2594 if (FwdBBs.size() < BBID + 1) 2595 FwdBBs.resize(BBID + 1); 2596 if (!FwdBBs[BBID]) 2597 FwdBBs[BBID] = BasicBlock::Create(Context); 2598 BB = FwdBBs[BBID]; 2599 } 2600 V = BlockAddress::get(Fn, BB); 2601 break; 2602 } 2603 } 2604 2605 ValueList.assignValue(V, NextCstNo); 2606 ++NextCstNo; 2607 } 2608 } 2609 2610 std::error_code BitcodeReader::parseUseLists() { 2611 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2612 return error("Invalid record"); 2613 2614 // Read all the records. 2615 SmallVector<uint64_t, 64> Record; 2616 while (1) { 2617 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2618 2619 switch (Entry.Kind) { 2620 case BitstreamEntry::SubBlock: // Handled for us already. 2621 case BitstreamEntry::Error: 2622 return error("Malformed block"); 2623 case BitstreamEntry::EndBlock: 2624 return std::error_code(); 2625 case BitstreamEntry::Record: 2626 // The interesting case. 2627 break; 2628 } 2629 2630 // Read a use list record. 2631 Record.clear(); 2632 bool IsBB = false; 2633 switch (Stream.readRecord(Entry.ID, Record)) { 2634 default: // Default behavior: unknown type. 2635 break; 2636 case bitc::USELIST_CODE_BB: 2637 IsBB = true; 2638 // fallthrough 2639 case bitc::USELIST_CODE_DEFAULT: { 2640 unsigned RecordLength = Record.size(); 2641 if (RecordLength < 3) 2642 // Records should have at least an ID and two indexes. 2643 return error("Invalid record"); 2644 unsigned ID = Record.back(); 2645 Record.pop_back(); 2646 2647 Value *V; 2648 if (IsBB) { 2649 assert(ID < FunctionBBs.size() && "Basic block not found"); 2650 V = FunctionBBs[ID]; 2651 } else 2652 V = ValueList[ID]; 2653 unsigned NumUses = 0; 2654 SmallDenseMap<const Use *, unsigned, 16> Order; 2655 for (const Use &U : V->uses()) { 2656 if (++NumUses > Record.size()) 2657 break; 2658 Order[&U] = Record[NumUses - 1]; 2659 } 2660 if (Order.size() != Record.size() || NumUses > Record.size()) 2661 // Mismatches can happen if the functions are being materialized lazily 2662 // (out-of-order), or a value has been upgraded. 2663 break; 2664 2665 V->sortUseList([&](const Use &L, const Use &R) { 2666 return Order.lookup(&L) < Order.lookup(&R); 2667 }); 2668 break; 2669 } 2670 } 2671 } 2672 } 2673 2674 /// When we see the block for metadata, remember where it is and then skip it. 2675 /// This lets us lazily deserialize the metadata. 2676 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2677 // Save the current stream state. 2678 uint64_t CurBit = Stream.GetCurrentBitNo(); 2679 DeferredMetadataInfo.push_back(CurBit); 2680 2681 // Skip over the block for now. 2682 if (Stream.SkipBlock()) 2683 return error("Invalid record"); 2684 return std::error_code(); 2685 } 2686 2687 std::error_code BitcodeReader::materializeMetadata() { 2688 for (uint64_t BitPos : DeferredMetadataInfo) { 2689 // Move the bit stream to the saved position. 2690 Stream.JumpToBit(BitPos); 2691 if (std::error_code EC = parseMetadata()) 2692 return EC; 2693 } 2694 DeferredMetadataInfo.clear(); 2695 return std::error_code(); 2696 } 2697 2698 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2699 2700 /// When we see the block for a function body, remember where it is and then 2701 /// skip it. This lets us lazily deserialize the functions. 2702 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2703 // Get the function we are talking about. 2704 if (FunctionsWithBodies.empty()) 2705 return error("Insufficient function protos"); 2706 2707 Function *Fn = FunctionsWithBodies.back(); 2708 FunctionsWithBodies.pop_back(); 2709 2710 // Save the current stream state. 2711 uint64_t CurBit = Stream.GetCurrentBitNo(); 2712 DeferredFunctionInfo[Fn] = CurBit; 2713 2714 // Skip over the function block for now. 2715 if (Stream.SkipBlock()) 2716 return error("Invalid record"); 2717 return std::error_code(); 2718 } 2719 2720 std::error_code BitcodeReader::globalCleanup() { 2721 // Patch the initializers for globals and aliases up. 2722 resolveGlobalAndAliasInits(); 2723 if (!GlobalInits.empty() || !AliasInits.empty()) 2724 return error("Malformed global initializer set"); 2725 2726 // Look for intrinsic functions which need to be upgraded at some point 2727 for (Function &F : *TheModule) { 2728 Function *NewFn; 2729 if (UpgradeIntrinsicFunction(&F, NewFn)) 2730 UpgradedIntrinsics[&F] = NewFn; 2731 } 2732 2733 // Look for global variables which need to be renamed. 2734 for (GlobalVariable &GV : TheModule->globals()) 2735 UpgradeGlobalVariable(&GV); 2736 2737 // Force deallocation of memory for these vectors to favor the client that 2738 // want lazy deserialization. 2739 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2740 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2741 return std::error_code(); 2742 } 2743 2744 std::error_code BitcodeReader::parseModule(bool Resume, 2745 bool ShouldLazyLoadMetadata) { 2746 if (Resume) 2747 Stream.JumpToBit(NextUnreadBit); 2748 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2749 return error("Invalid record"); 2750 2751 SmallVector<uint64_t, 64> Record; 2752 std::vector<std::string> SectionTable; 2753 std::vector<std::string> GCTable; 2754 2755 // Read all the records for this module. 2756 while (1) { 2757 BitstreamEntry Entry = Stream.advance(); 2758 2759 switch (Entry.Kind) { 2760 case BitstreamEntry::Error: 2761 return error("Malformed block"); 2762 case BitstreamEntry::EndBlock: 2763 return globalCleanup(); 2764 2765 case BitstreamEntry::SubBlock: 2766 switch (Entry.ID) { 2767 default: // Skip unknown content. 2768 if (Stream.SkipBlock()) 2769 return error("Invalid record"); 2770 break; 2771 case bitc::BLOCKINFO_BLOCK_ID: 2772 if (Stream.ReadBlockInfoBlock()) 2773 return error("Malformed block"); 2774 break; 2775 case bitc::PARAMATTR_BLOCK_ID: 2776 if (std::error_code EC = parseAttributeBlock()) 2777 return EC; 2778 break; 2779 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2780 if (std::error_code EC = parseAttributeGroupBlock()) 2781 return EC; 2782 break; 2783 case bitc::TYPE_BLOCK_ID_NEW: 2784 if (std::error_code EC = parseTypeTable()) 2785 return EC; 2786 break; 2787 case bitc::VALUE_SYMTAB_BLOCK_ID: 2788 if (std::error_code EC = parseValueSymbolTable()) 2789 return EC; 2790 SeenValueSymbolTable = true; 2791 break; 2792 case bitc::CONSTANTS_BLOCK_ID: 2793 if (std::error_code EC = parseConstants()) 2794 return EC; 2795 if (std::error_code EC = resolveGlobalAndAliasInits()) 2796 return EC; 2797 break; 2798 case bitc::METADATA_BLOCK_ID: 2799 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2800 if (std::error_code EC = rememberAndSkipMetadata()) 2801 return EC; 2802 break; 2803 } 2804 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2805 if (std::error_code EC = parseMetadata()) 2806 return EC; 2807 break; 2808 case bitc::FUNCTION_BLOCK_ID: 2809 // If this is the first function body we've seen, reverse the 2810 // FunctionsWithBodies list. 2811 if (!SeenFirstFunctionBody) { 2812 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2813 if (std::error_code EC = globalCleanup()) 2814 return EC; 2815 SeenFirstFunctionBody = true; 2816 } 2817 2818 if (std::error_code EC = rememberAndSkipFunctionBody()) 2819 return EC; 2820 // Suspend parsing when we reach the function bodies. Subsequent 2821 // materialization calls will resume it when necessary. If the bitcode 2822 // file is old, the symbol table will be at the end instead and will not 2823 // have been seen yet. In this case, just finish the parse now. 2824 if (SeenValueSymbolTable) { 2825 NextUnreadBit = Stream.GetCurrentBitNo(); 2826 return std::error_code(); 2827 } 2828 break; 2829 case bitc::USELIST_BLOCK_ID: 2830 if (std::error_code EC = parseUseLists()) 2831 return EC; 2832 break; 2833 } 2834 continue; 2835 2836 case BitstreamEntry::Record: 2837 // The interesting case. 2838 break; 2839 } 2840 2841 2842 // Read a record. 2843 switch (Stream.readRecord(Entry.ID, Record)) { 2844 default: break; // Default behavior, ignore unknown content. 2845 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2846 if (Record.size() < 1) 2847 return error("Invalid record"); 2848 // Only version #0 and #1 are supported so far. 2849 unsigned module_version = Record[0]; 2850 switch (module_version) { 2851 default: 2852 return error("Invalid value"); 2853 case 0: 2854 UseRelativeIDs = false; 2855 break; 2856 case 1: 2857 UseRelativeIDs = true; 2858 break; 2859 } 2860 break; 2861 } 2862 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2863 std::string S; 2864 if (convertToString(Record, 0, S)) 2865 return error("Invalid record"); 2866 TheModule->setTargetTriple(S); 2867 break; 2868 } 2869 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2870 std::string S; 2871 if (convertToString(Record, 0, S)) 2872 return error("Invalid record"); 2873 TheModule->setDataLayout(S); 2874 break; 2875 } 2876 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2877 std::string S; 2878 if (convertToString(Record, 0, S)) 2879 return error("Invalid record"); 2880 TheModule->setModuleInlineAsm(S); 2881 break; 2882 } 2883 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2884 // FIXME: Remove in 4.0. 2885 std::string S; 2886 if (convertToString(Record, 0, S)) 2887 return error("Invalid record"); 2888 // Ignore value. 2889 break; 2890 } 2891 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2892 std::string S; 2893 if (convertToString(Record, 0, S)) 2894 return error("Invalid record"); 2895 SectionTable.push_back(S); 2896 break; 2897 } 2898 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2899 std::string S; 2900 if (convertToString(Record, 0, S)) 2901 return error("Invalid record"); 2902 GCTable.push_back(S); 2903 break; 2904 } 2905 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2906 if (Record.size() < 2) 2907 return error("Invalid record"); 2908 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2909 unsigned ComdatNameSize = Record[1]; 2910 std::string ComdatName; 2911 ComdatName.reserve(ComdatNameSize); 2912 for (unsigned i = 0; i != ComdatNameSize; ++i) 2913 ComdatName += (char)Record[2 + i]; 2914 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2915 C->setSelectionKind(SK); 2916 ComdatList.push_back(C); 2917 break; 2918 } 2919 // GLOBALVAR: [pointer type, isconst, initid, 2920 // linkage, alignment, section, visibility, threadlocal, 2921 // unnamed_addr, externally_initialized, dllstorageclass, 2922 // comdat] 2923 case bitc::MODULE_CODE_GLOBALVAR: { 2924 if (Record.size() < 6) 2925 return error("Invalid record"); 2926 Type *Ty = getTypeByID(Record[0]); 2927 if (!Ty) 2928 return error("Invalid record"); 2929 bool isConstant = Record[1] & 1; 2930 bool explicitType = Record[1] & 2; 2931 unsigned AddressSpace; 2932 if (explicitType) { 2933 AddressSpace = Record[1] >> 2; 2934 } else { 2935 if (!Ty->isPointerTy()) 2936 return error("Invalid type for value"); 2937 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2938 Ty = cast<PointerType>(Ty)->getElementType(); 2939 } 2940 2941 uint64_t RawLinkage = Record[3]; 2942 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2943 unsigned Alignment; 2944 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2945 return EC; 2946 std::string Section; 2947 if (Record[5]) { 2948 if (Record[5]-1 >= SectionTable.size()) 2949 return error("Invalid ID"); 2950 Section = SectionTable[Record[5]-1]; 2951 } 2952 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2953 // Local linkage must have default visibility. 2954 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2955 // FIXME: Change to an error if non-default in 4.0. 2956 Visibility = getDecodedVisibility(Record[6]); 2957 2958 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2959 if (Record.size() > 7) 2960 TLM = getDecodedThreadLocalMode(Record[7]); 2961 2962 bool UnnamedAddr = false; 2963 if (Record.size() > 8) 2964 UnnamedAddr = Record[8]; 2965 2966 bool ExternallyInitialized = false; 2967 if (Record.size() > 9) 2968 ExternallyInitialized = Record[9]; 2969 2970 GlobalVariable *NewGV = 2971 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2972 TLM, AddressSpace, ExternallyInitialized); 2973 NewGV->setAlignment(Alignment); 2974 if (!Section.empty()) 2975 NewGV->setSection(Section); 2976 NewGV->setVisibility(Visibility); 2977 NewGV->setUnnamedAddr(UnnamedAddr); 2978 2979 if (Record.size() > 10) 2980 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2981 else 2982 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2983 2984 ValueList.push_back(NewGV); 2985 2986 // Remember which value to use for the global initializer. 2987 if (unsigned InitID = Record[2]) 2988 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2989 2990 if (Record.size() > 11) { 2991 if (unsigned ComdatID = Record[11]) { 2992 if (ComdatID > ComdatList.size()) 2993 return error("Invalid global variable comdat ID"); 2994 NewGV->setComdat(ComdatList[ComdatID - 1]); 2995 } 2996 } else if (hasImplicitComdat(RawLinkage)) { 2997 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2998 } 2999 break; 3000 } 3001 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3002 // alignment, section, visibility, gc, unnamed_addr, 3003 // prologuedata, dllstorageclass, comdat, prefixdata] 3004 case bitc::MODULE_CODE_FUNCTION: { 3005 if (Record.size() < 8) 3006 return error("Invalid record"); 3007 Type *Ty = getTypeByID(Record[0]); 3008 if (!Ty) 3009 return error("Invalid record"); 3010 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3011 Ty = PTy->getElementType(); 3012 auto *FTy = dyn_cast<FunctionType>(Ty); 3013 if (!FTy) 3014 return error("Invalid type for value"); 3015 3016 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3017 "", TheModule); 3018 3019 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 3020 bool isProto = Record[2]; 3021 uint64_t RawLinkage = Record[3]; 3022 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3023 Func->setAttributes(getAttributes(Record[4])); 3024 3025 unsigned Alignment; 3026 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3027 return EC; 3028 Func->setAlignment(Alignment); 3029 if (Record[6]) { 3030 if (Record[6]-1 >= SectionTable.size()) 3031 return error("Invalid ID"); 3032 Func->setSection(SectionTable[Record[6]-1]); 3033 } 3034 // Local linkage must have default visibility. 3035 if (!Func->hasLocalLinkage()) 3036 // FIXME: Change to an error if non-default in 4.0. 3037 Func->setVisibility(getDecodedVisibility(Record[7])); 3038 if (Record.size() > 8 && Record[8]) { 3039 if (Record[8]-1 >= GCTable.size()) 3040 return error("Invalid ID"); 3041 Func->setGC(GCTable[Record[8]-1].c_str()); 3042 } 3043 bool UnnamedAddr = false; 3044 if (Record.size() > 9) 3045 UnnamedAddr = Record[9]; 3046 Func->setUnnamedAddr(UnnamedAddr); 3047 if (Record.size() > 10 && Record[10] != 0) 3048 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3049 3050 if (Record.size() > 11) 3051 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3052 else 3053 upgradeDLLImportExportLinkage(Func, RawLinkage); 3054 3055 if (Record.size() > 12) { 3056 if (unsigned ComdatID = Record[12]) { 3057 if (ComdatID > ComdatList.size()) 3058 return error("Invalid function comdat ID"); 3059 Func->setComdat(ComdatList[ComdatID - 1]); 3060 } 3061 } else if (hasImplicitComdat(RawLinkage)) { 3062 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3063 } 3064 3065 if (Record.size() > 13 && Record[13] != 0) 3066 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3067 3068 if (Record.size() > 14 && Record[14] != 0) 3069 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3070 3071 ValueList.push_back(Func); 3072 3073 // If this is a function with a body, remember the prototype we are 3074 // creating now, so that we can match up the body with them later. 3075 if (!isProto) { 3076 Func->setIsMaterializable(true); 3077 FunctionsWithBodies.push_back(Func); 3078 DeferredFunctionInfo[Func] = 0; 3079 } 3080 break; 3081 } 3082 // ALIAS: [alias type, aliasee val#, linkage] 3083 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3084 case bitc::MODULE_CODE_ALIAS: { 3085 if (Record.size() < 3) 3086 return error("Invalid record"); 3087 Type *Ty = getTypeByID(Record[0]); 3088 if (!Ty) 3089 return error("Invalid record"); 3090 auto *PTy = dyn_cast<PointerType>(Ty); 3091 if (!PTy) 3092 return error("Invalid type for value"); 3093 3094 auto *NewGA = 3095 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3096 // Old bitcode files didn't have visibility field. 3097 // Local linkage must have default visibility. 3098 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3099 // FIXME: Change to an error if non-default in 4.0. 3100 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3101 if (Record.size() > 4) 3102 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3103 else 3104 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3105 if (Record.size() > 5) 3106 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3107 if (Record.size() > 6) 3108 NewGA->setUnnamedAddr(Record[6]); 3109 ValueList.push_back(NewGA); 3110 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3111 break; 3112 } 3113 /// MODULE_CODE_PURGEVALS: [numvals] 3114 case bitc::MODULE_CODE_PURGEVALS: 3115 // Trim down the value list to the specified size. 3116 if (Record.size() < 1 || Record[0] > ValueList.size()) 3117 return error("Invalid record"); 3118 ValueList.shrinkTo(Record[0]); 3119 break; 3120 } 3121 Record.clear(); 3122 } 3123 } 3124 3125 std::error_code 3126 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3127 Module *M, bool ShouldLazyLoadMetadata) { 3128 TheModule = M; 3129 3130 if (std::error_code EC = initStream(std::move(Streamer))) 3131 return EC; 3132 3133 // Sniff for the signature. 3134 if (Stream.Read(8) != 'B' || 3135 Stream.Read(8) != 'C' || 3136 Stream.Read(4) != 0x0 || 3137 Stream.Read(4) != 0xC || 3138 Stream.Read(4) != 0xE || 3139 Stream.Read(4) != 0xD) 3140 return error("Invalid bitcode signature"); 3141 3142 // We expect a number of well-defined blocks, though we don't necessarily 3143 // need to understand them all. 3144 while (1) { 3145 if (Stream.AtEndOfStream()) { 3146 // We didn't really read a proper Module. 3147 return error("Malformed IR file"); 3148 } 3149 3150 BitstreamEntry Entry = 3151 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3152 3153 if (Entry.Kind != BitstreamEntry::SubBlock) 3154 return error("Malformed block"); 3155 3156 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3157 return parseModule(false, ShouldLazyLoadMetadata); 3158 3159 if (Stream.SkipBlock()) 3160 return error("Invalid record"); 3161 } 3162 } 3163 3164 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3165 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3166 return error("Invalid record"); 3167 3168 SmallVector<uint64_t, 64> Record; 3169 3170 std::string Triple; 3171 // Read all the records for this module. 3172 while (1) { 3173 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3174 3175 switch (Entry.Kind) { 3176 case BitstreamEntry::SubBlock: // Handled for us already. 3177 case BitstreamEntry::Error: 3178 return error("Malformed block"); 3179 case BitstreamEntry::EndBlock: 3180 return Triple; 3181 case BitstreamEntry::Record: 3182 // The interesting case. 3183 break; 3184 } 3185 3186 // Read a record. 3187 switch (Stream.readRecord(Entry.ID, Record)) { 3188 default: break; // Default behavior, ignore unknown content. 3189 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3190 std::string S; 3191 if (convertToString(Record, 0, S)) 3192 return error("Invalid record"); 3193 Triple = S; 3194 break; 3195 } 3196 } 3197 Record.clear(); 3198 } 3199 llvm_unreachable("Exit infinite loop"); 3200 } 3201 3202 ErrorOr<std::string> BitcodeReader::parseTriple() { 3203 if (std::error_code EC = initStream(nullptr)) 3204 return EC; 3205 3206 // Sniff for the signature. 3207 if (Stream.Read(8) != 'B' || 3208 Stream.Read(8) != 'C' || 3209 Stream.Read(4) != 0x0 || 3210 Stream.Read(4) != 0xC || 3211 Stream.Read(4) != 0xE || 3212 Stream.Read(4) != 0xD) 3213 return error("Invalid bitcode signature"); 3214 3215 // We expect a number of well-defined blocks, though we don't necessarily 3216 // need to understand them all. 3217 while (1) { 3218 BitstreamEntry Entry = Stream.advance(); 3219 3220 switch (Entry.Kind) { 3221 case BitstreamEntry::Error: 3222 return error("Malformed block"); 3223 case BitstreamEntry::EndBlock: 3224 return std::error_code(); 3225 3226 case BitstreamEntry::SubBlock: 3227 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3228 return parseModuleTriple(); 3229 3230 // Ignore other sub-blocks. 3231 if (Stream.SkipBlock()) 3232 return error("Malformed block"); 3233 continue; 3234 3235 case BitstreamEntry::Record: 3236 Stream.skipRecord(Entry.ID); 3237 continue; 3238 } 3239 } 3240 } 3241 3242 /// Parse metadata attachments. 3243 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3244 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3245 return error("Invalid record"); 3246 3247 SmallVector<uint64_t, 64> Record; 3248 while (1) { 3249 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3250 3251 switch (Entry.Kind) { 3252 case BitstreamEntry::SubBlock: // Handled for us already. 3253 case BitstreamEntry::Error: 3254 return error("Malformed block"); 3255 case BitstreamEntry::EndBlock: 3256 return std::error_code(); 3257 case BitstreamEntry::Record: 3258 // The interesting case. 3259 break; 3260 } 3261 3262 // Read a metadata attachment record. 3263 Record.clear(); 3264 switch (Stream.readRecord(Entry.ID, Record)) { 3265 default: // Default behavior: ignore. 3266 break; 3267 case bitc::METADATA_ATTACHMENT: { 3268 unsigned RecordLength = Record.size(); 3269 if (Record.empty()) 3270 return error("Invalid record"); 3271 if (RecordLength % 2 == 0) { 3272 // A function attachment. 3273 for (unsigned I = 0; I != RecordLength; I += 2) { 3274 auto K = MDKindMap.find(Record[I]); 3275 if (K == MDKindMap.end()) 3276 return error("Invalid ID"); 3277 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3278 F.setMetadata(K->second, cast<MDNode>(MD)); 3279 } 3280 continue; 3281 } 3282 3283 // An instruction attachment. 3284 Instruction *Inst = InstructionList[Record[0]]; 3285 for (unsigned i = 1; i != RecordLength; i = i+2) { 3286 unsigned Kind = Record[i]; 3287 DenseMap<unsigned, unsigned>::iterator I = 3288 MDKindMap.find(Kind); 3289 if (I == MDKindMap.end()) 3290 return error("Invalid ID"); 3291 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3292 if (isa<LocalAsMetadata>(Node)) 3293 // Drop the attachment. This used to be legal, but there's no 3294 // upgrade path. 3295 break; 3296 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3297 if (I->second == LLVMContext::MD_tbaa) 3298 InstsWithTBAATag.push_back(Inst); 3299 } 3300 break; 3301 } 3302 } 3303 } 3304 } 3305 3306 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3307 Type *ValType, Type *PtrType) { 3308 if (!isa<PointerType>(PtrType)) 3309 return error(DH, "Load/Store operand is not a pointer type"); 3310 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3311 3312 if (ValType && ValType != ElemType) 3313 return error(DH, "Explicit load/store type does not match pointee type of " 3314 "pointer operand"); 3315 if (!PointerType::isLoadableOrStorableType(ElemType)) 3316 return error(DH, "Cannot load/store from pointer"); 3317 return std::error_code(); 3318 } 3319 3320 /// Lazily parse the specified function body block. 3321 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3322 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3323 return error("Invalid record"); 3324 3325 InstructionList.clear(); 3326 unsigned ModuleValueListSize = ValueList.size(); 3327 unsigned ModuleMDValueListSize = MDValueList.size(); 3328 3329 // Add all the function arguments to the value table. 3330 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3331 ValueList.push_back(I); 3332 3333 unsigned NextValueNo = ValueList.size(); 3334 BasicBlock *CurBB = nullptr; 3335 unsigned CurBBNo = 0; 3336 3337 DebugLoc LastLoc; 3338 auto getLastInstruction = [&]() -> Instruction * { 3339 if (CurBB && !CurBB->empty()) 3340 return &CurBB->back(); 3341 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3342 !FunctionBBs[CurBBNo - 1]->empty()) 3343 return &FunctionBBs[CurBBNo - 1]->back(); 3344 return nullptr; 3345 }; 3346 3347 // Read all the records. 3348 SmallVector<uint64_t, 64> Record; 3349 while (1) { 3350 BitstreamEntry Entry = Stream.advance(); 3351 3352 switch (Entry.Kind) { 3353 case BitstreamEntry::Error: 3354 return error("Malformed block"); 3355 case BitstreamEntry::EndBlock: 3356 goto OutOfRecordLoop; 3357 3358 case BitstreamEntry::SubBlock: 3359 switch (Entry.ID) { 3360 default: // Skip unknown content. 3361 if (Stream.SkipBlock()) 3362 return error("Invalid record"); 3363 break; 3364 case bitc::CONSTANTS_BLOCK_ID: 3365 if (std::error_code EC = parseConstants()) 3366 return EC; 3367 NextValueNo = ValueList.size(); 3368 break; 3369 case bitc::VALUE_SYMTAB_BLOCK_ID: 3370 if (std::error_code EC = parseValueSymbolTable()) 3371 return EC; 3372 break; 3373 case bitc::METADATA_ATTACHMENT_ID: 3374 if (std::error_code EC = parseMetadataAttachment(*F)) 3375 return EC; 3376 break; 3377 case bitc::METADATA_BLOCK_ID: 3378 if (std::error_code EC = parseMetadata()) 3379 return EC; 3380 break; 3381 case bitc::USELIST_BLOCK_ID: 3382 if (std::error_code EC = parseUseLists()) 3383 return EC; 3384 break; 3385 } 3386 continue; 3387 3388 case BitstreamEntry::Record: 3389 // The interesting case. 3390 break; 3391 } 3392 3393 // Read a record. 3394 Record.clear(); 3395 Instruction *I = nullptr; 3396 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3397 switch (BitCode) { 3398 default: // Default behavior: reject 3399 return error("Invalid value"); 3400 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3401 if (Record.size() < 1 || Record[0] == 0) 3402 return error("Invalid record"); 3403 // Create all the basic blocks for the function. 3404 FunctionBBs.resize(Record[0]); 3405 3406 // See if anything took the address of blocks in this function. 3407 auto BBFRI = BasicBlockFwdRefs.find(F); 3408 if (BBFRI == BasicBlockFwdRefs.end()) { 3409 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3410 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3411 } else { 3412 auto &BBRefs = BBFRI->second; 3413 // Check for invalid basic block references. 3414 if (BBRefs.size() > FunctionBBs.size()) 3415 return error("Invalid ID"); 3416 assert(!BBRefs.empty() && "Unexpected empty array"); 3417 assert(!BBRefs.front() && "Invalid reference to entry block"); 3418 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3419 ++I) 3420 if (I < RE && BBRefs[I]) { 3421 BBRefs[I]->insertInto(F); 3422 FunctionBBs[I] = BBRefs[I]; 3423 } else { 3424 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3425 } 3426 3427 // Erase from the table. 3428 BasicBlockFwdRefs.erase(BBFRI); 3429 } 3430 3431 CurBB = FunctionBBs[0]; 3432 continue; 3433 } 3434 3435 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3436 // This record indicates that the last instruction is at the same 3437 // location as the previous instruction with a location. 3438 I = getLastInstruction(); 3439 3440 if (!I) 3441 return error("Invalid record"); 3442 I->setDebugLoc(LastLoc); 3443 I = nullptr; 3444 continue; 3445 3446 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3447 I = getLastInstruction(); 3448 if (!I || Record.size() < 4) 3449 return error("Invalid record"); 3450 3451 unsigned Line = Record[0], Col = Record[1]; 3452 unsigned ScopeID = Record[2], IAID = Record[3]; 3453 3454 MDNode *Scope = nullptr, *IA = nullptr; 3455 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3456 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3457 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3458 I->setDebugLoc(LastLoc); 3459 I = nullptr; 3460 continue; 3461 } 3462 3463 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3464 unsigned OpNum = 0; 3465 Value *LHS, *RHS; 3466 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3467 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3468 OpNum+1 > Record.size()) 3469 return error("Invalid record"); 3470 3471 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3472 if (Opc == -1) 3473 return error("Invalid record"); 3474 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3475 InstructionList.push_back(I); 3476 if (OpNum < Record.size()) { 3477 if (Opc == Instruction::Add || 3478 Opc == Instruction::Sub || 3479 Opc == Instruction::Mul || 3480 Opc == Instruction::Shl) { 3481 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3482 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3483 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3484 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3485 } else if (Opc == Instruction::SDiv || 3486 Opc == Instruction::UDiv || 3487 Opc == Instruction::LShr || 3488 Opc == Instruction::AShr) { 3489 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3490 cast<BinaryOperator>(I)->setIsExact(true); 3491 } else if (isa<FPMathOperator>(I)) { 3492 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3493 if (FMF.any()) 3494 I->setFastMathFlags(FMF); 3495 } 3496 3497 } 3498 break; 3499 } 3500 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3501 unsigned OpNum = 0; 3502 Value *Op; 3503 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3504 OpNum+2 != Record.size()) 3505 return error("Invalid record"); 3506 3507 Type *ResTy = getTypeByID(Record[OpNum]); 3508 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3509 if (Opc == -1 || !ResTy) 3510 return error("Invalid record"); 3511 Instruction *Temp = nullptr; 3512 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3513 if (Temp) { 3514 InstructionList.push_back(Temp); 3515 CurBB->getInstList().push_back(Temp); 3516 } 3517 } else { 3518 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3519 } 3520 InstructionList.push_back(I); 3521 break; 3522 } 3523 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3524 case bitc::FUNC_CODE_INST_GEP_OLD: 3525 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3526 unsigned OpNum = 0; 3527 3528 Type *Ty; 3529 bool InBounds; 3530 3531 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3532 InBounds = Record[OpNum++]; 3533 Ty = getTypeByID(Record[OpNum++]); 3534 } else { 3535 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3536 Ty = nullptr; 3537 } 3538 3539 Value *BasePtr; 3540 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3541 return error("Invalid record"); 3542 3543 if (!Ty) 3544 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3545 ->getElementType(); 3546 else if (Ty != 3547 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3548 ->getElementType()) 3549 return error( 3550 "Explicit gep type does not match pointee type of pointer operand"); 3551 3552 SmallVector<Value*, 16> GEPIdx; 3553 while (OpNum != Record.size()) { 3554 Value *Op; 3555 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3556 return error("Invalid record"); 3557 GEPIdx.push_back(Op); 3558 } 3559 3560 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3561 3562 InstructionList.push_back(I); 3563 if (InBounds) 3564 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3565 break; 3566 } 3567 3568 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3569 // EXTRACTVAL: [opty, opval, n x indices] 3570 unsigned OpNum = 0; 3571 Value *Agg; 3572 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3573 return error("Invalid record"); 3574 3575 unsigned RecSize = Record.size(); 3576 if (OpNum == RecSize) 3577 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3578 3579 SmallVector<unsigned, 4> EXTRACTVALIdx; 3580 Type *CurTy = Agg->getType(); 3581 for (; OpNum != RecSize; ++OpNum) { 3582 bool IsArray = CurTy->isArrayTy(); 3583 bool IsStruct = CurTy->isStructTy(); 3584 uint64_t Index = Record[OpNum]; 3585 3586 if (!IsStruct && !IsArray) 3587 return error("EXTRACTVAL: Invalid type"); 3588 if ((unsigned)Index != Index) 3589 return error("Invalid value"); 3590 if (IsStruct && Index >= CurTy->subtypes().size()) 3591 return error("EXTRACTVAL: Invalid struct index"); 3592 if (IsArray && Index >= CurTy->getArrayNumElements()) 3593 return error("EXTRACTVAL: Invalid array index"); 3594 EXTRACTVALIdx.push_back((unsigned)Index); 3595 3596 if (IsStruct) 3597 CurTy = CurTy->subtypes()[Index]; 3598 else 3599 CurTy = CurTy->subtypes()[0]; 3600 } 3601 3602 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3603 InstructionList.push_back(I); 3604 break; 3605 } 3606 3607 case bitc::FUNC_CODE_INST_INSERTVAL: { 3608 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3609 unsigned OpNum = 0; 3610 Value *Agg; 3611 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3612 return error("Invalid record"); 3613 Value *Val; 3614 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3615 return error("Invalid record"); 3616 3617 unsigned RecSize = Record.size(); 3618 if (OpNum == RecSize) 3619 return error("INSERTVAL: Invalid instruction with 0 indices"); 3620 3621 SmallVector<unsigned, 4> INSERTVALIdx; 3622 Type *CurTy = Agg->getType(); 3623 for (; OpNum != RecSize; ++OpNum) { 3624 bool IsArray = CurTy->isArrayTy(); 3625 bool IsStruct = CurTy->isStructTy(); 3626 uint64_t Index = Record[OpNum]; 3627 3628 if (!IsStruct && !IsArray) 3629 return error("INSERTVAL: Invalid type"); 3630 if ((unsigned)Index != Index) 3631 return error("Invalid value"); 3632 if (IsStruct && Index >= CurTy->subtypes().size()) 3633 return error("INSERTVAL: Invalid struct index"); 3634 if (IsArray && Index >= CurTy->getArrayNumElements()) 3635 return error("INSERTVAL: Invalid array index"); 3636 3637 INSERTVALIdx.push_back((unsigned)Index); 3638 if (IsStruct) 3639 CurTy = CurTy->subtypes()[Index]; 3640 else 3641 CurTy = CurTy->subtypes()[0]; 3642 } 3643 3644 if (CurTy != Val->getType()) 3645 return error("Inserted value type doesn't match aggregate type"); 3646 3647 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3648 InstructionList.push_back(I); 3649 break; 3650 } 3651 3652 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3653 // obsolete form of select 3654 // handles select i1 ... in old bitcode 3655 unsigned OpNum = 0; 3656 Value *TrueVal, *FalseVal, *Cond; 3657 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3658 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3659 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3660 return error("Invalid record"); 3661 3662 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3663 InstructionList.push_back(I); 3664 break; 3665 } 3666 3667 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3668 // new form of select 3669 // handles select i1 or select [N x i1] 3670 unsigned OpNum = 0; 3671 Value *TrueVal, *FalseVal, *Cond; 3672 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3673 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3674 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3675 return error("Invalid record"); 3676 3677 // select condition can be either i1 or [N x i1] 3678 if (VectorType* vector_type = 3679 dyn_cast<VectorType>(Cond->getType())) { 3680 // expect <n x i1> 3681 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3682 return error("Invalid type for value"); 3683 } else { 3684 // expect i1 3685 if (Cond->getType() != Type::getInt1Ty(Context)) 3686 return error("Invalid type for value"); 3687 } 3688 3689 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3690 InstructionList.push_back(I); 3691 break; 3692 } 3693 3694 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3695 unsigned OpNum = 0; 3696 Value *Vec, *Idx; 3697 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3698 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3699 return error("Invalid record"); 3700 if (!Vec->getType()->isVectorTy()) 3701 return error("Invalid type for value"); 3702 I = ExtractElementInst::Create(Vec, Idx); 3703 InstructionList.push_back(I); 3704 break; 3705 } 3706 3707 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3708 unsigned OpNum = 0; 3709 Value *Vec, *Elt, *Idx; 3710 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3711 return error("Invalid record"); 3712 if (!Vec->getType()->isVectorTy()) 3713 return error("Invalid type for value"); 3714 if (popValue(Record, OpNum, NextValueNo, 3715 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3716 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3717 return error("Invalid record"); 3718 I = InsertElementInst::Create(Vec, Elt, Idx); 3719 InstructionList.push_back(I); 3720 break; 3721 } 3722 3723 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3724 unsigned OpNum = 0; 3725 Value *Vec1, *Vec2, *Mask; 3726 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3727 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3728 return error("Invalid record"); 3729 3730 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3731 return error("Invalid record"); 3732 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3733 return error("Invalid type for value"); 3734 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3735 InstructionList.push_back(I); 3736 break; 3737 } 3738 3739 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3740 // Old form of ICmp/FCmp returning bool 3741 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3742 // both legal on vectors but had different behaviour. 3743 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3744 // FCmp/ICmp returning bool or vector of bool 3745 3746 unsigned OpNum = 0; 3747 Value *LHS, *RHS; 3748 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3749 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3750 return error("Invalid record"); 3751 3752 unsigned PredVal = Record[OpNum]; 3753 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3754 FastMathFlags FMF; 3755 if (IsFP && Record.size() > OpNum+1) 3756 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3757 3758 if (OpNum+1 != Record.size()) 3759 return error("Invalid record"); 3760 3761 if (LHS->getType()->isFPOrFPVectorTy()) 3762 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3763 else 3764 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3765 3766 if (FMF.any()) 3767 I->setFastMathFlags(FMF); 3768 InstructionList.push_back(I); 3769 break; 3770 } 3771 3772 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3773 { 3774 unsigned Size = Record.size(); 3775 if (Size == 0) { 3776 I = ReturnInst::Create(Context); 3777 InstructionList.push_back(I); 3778 break; 3779 } 3780 3781 unsigned OpNum = 0; 3782 Value *Op = nullptr; 3783 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3784 return error("Invalid record"); 3785 if (OpNum != Record.size()) 3786 return error("Invalid record"); 3787 3788 I = ReturnInst::Create(Context, Op); 3789 InstructionList.push_back(I); 3790 break; 3791 } 3792 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3793 if (Record.size() != 1 && Record.size() != 3) 3794 return error("Invalid record"); 3795 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3796 if (!TrueDest) 3797 return error("Invalid record"); 3798 3799 if (Record.size() == 1) { 3800 I = BranchInst::Create(TrueDest); 3801 InstructionList.push_back(I); 3802 } 3803 else { 3804 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3805 Value *Cond = getValue(Record, 2, NextValueNo, 3806 Type::getInt1Ty(Context)); 3807 if (!FalseDest || !Cond) 3808 return error("Invalid record"); 3809 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3810 InstructionList.push_back(I); 3811 } 3812 break; 3813 } 3814 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3815 // Check magic 3816 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3817 // "New" SwitchInst format with case ranges. The changes to write this 3818 // format were reverted but we still recognize bitcode that uses it. 3819 // Hopefully someday we will have support for case ranges and can use 3820 // this format again. 3821 3822 Type *OpTy = getTypeByID(Record[1]); 3823 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3824 3825 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3826 BasicBlock *Default = getBasicBlock(Record[3]); 3827 if (!OpTy || !Cond || !Default) 3828 return error("Invalid record"); 3829 3830 unsigned NumCases = Record[4]; 3831 3832 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3833 InstructionList.push_back(SI); 3834 3835 unsigned CurIdx = 5; 3836 for (unsigned i = 0; i != NumCases; ++i) { 3837 SmallVector<ConstantInt*, 1> CaseVals; 3838 unsigned NumItems = Record[CurIdx++]; 3839 for (unsigned ci = 0; ci != NumItems; ++ci) { 3840 bool isSingleNumber = Record[CurIdx++]; 3841 3842 APInt Low; 3843 unsigned ActiveWords = 1; 3844 if (ValueBitWidth > 64) 3845 ActiveWords = Record[CurIdx++]; 3846 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3847 ValueBitWidth); 3848 CurIdx += ActiveWords; 3849 3850 if (!isSingleNumber) { 3851 ActiveWords = 1; 3852 if (ValueBitWidth > 64) 3853 ActiveWords = Record[CurIdx++]; 3854 APInt High = readWideAPInt( 3855 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3856 CurIdx += ActiveWords; 3857 3858 // FIXME: It is not clear whether values in the range should be 3859 // compared as signed or unsigned values. The partially 3860 // implemented changes that used this format in the past used 3861 // unsigned comparisons. 3862 for ( ; Low.ule(High); ++Low) 3863 CaseVals.push_back(ConstantInt::get(Context, Low)); 3864 } else 3865 CaseVals.push_back(ConstantInt::get(Context, Low)); 3866 } 3867 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3868 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3869 cve = CaseVals.end(); cvi != cve; ++cvi) 3870 SI->addCase(*cvi, DestBB); 3871 } 3872 I = SI; 3873 break; 3874 } 3875 3876 // Old SwitchInst format without case ranges. 3877 3878 if (Record.size() < 3 || (Record.size() & 1) == 0) 3879 return error("Invalid record"); 3880 Type *OpTy = getTypeByID(Record[0]); 3881 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3882 BasicBlock *Default = getBasicBlock(Record[2]); 3883 if (!OpTy || !Cond || !Default) 3884 return error("Invalid record"); 3885 unsigned NumCases = (Record.size()-3)/2; 3886 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3887 InstructionList.push_back(SI); 3888 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3889 ConstantInt *CaseVal = 3890 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3891 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3892 if (!CaseVal || !DestBB) { 3893 delete SI; 3894 return error("Invalid record"); 3895 } 3896 SI->addCase(CaseVal, DestBB); 3897 } 3898 I = SI; 3899 break; 3900 } 3901 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3902 if (Record.size() < 2) 3903 return error("Invalid record"); 3904 Type *OpTy = getTypeByID(Record[0]); 3905 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3906 if (!OpTy || !Address) 3907 return error("Invalid record"); 3908 unsigned NumDests = Record.size()-2; 3909 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3910 InstructionList.push_back(IBI); 3911 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3912 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3913 IBI->addDestination(DestBB); 3914 } else { 3915 delete IBI; 3916 return error("Invalid record"); 3917 } 3918 } 3919 I = IBI; 3920 break; 3921 } 3922 3923 case bitc::FUNC_CODE_INST_INVOKE: { 3924 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3925 if (Record.size() < 4) 3926 return error("Invalid record"); 3927 unsigned OpNum = 0; 3928 AttributeSet PAL = getAttributes(Record[OpNum++]); 3929 unsigned CCInfo = Record[OpNum++]; 3930 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3931 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3932 3933 FunctionType *FTy = nullptr; 3934 if (CCInfo >> 13 & 1 && 3935 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3936 return error("Explicit invoke type is not a function type"); 3937 3938 Value *Callee; 3939 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3940 return error("Invalid record"); 3941 3942 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3943 if (!CalleeTy) 3944 return error("Callee is not a pointer"); 3945 if (!FTy) { 3946 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3947 if (!FTy) 3948 return error("Callee is not of pointer to function type"); 3949 } else if (CalleeTy->getElementType() != FTy) 3950 return error("Explicit invoke type does not match pointee type of " 3951 "callee operand"); 3952 if (Record.size() < FTy->getNumParams() + OpNum) 3953 return error("Insufficient operands to call"); 3954 3955 SmallVector<Value*, 16> Ops; 3956 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3957 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3958 FTy->getParamType(i))); 3959 if (!Ops.back()) 3960 return error("Invalid record"); 3961 } 3962 3963 if (!FTy->isVarArg()) { 3964 if (Record.size() != OpNum) 3965 return error("Invalid record"); 3966 } else { 3967 // Read type/value pairs for varargs params. 3968 while (OpNum != Record.size()) { 3969 Value *Op; 3970 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3971 return error("Invalid record"); 3972 Ops.push_back(Op); 3973 } 3974 } 3975 3976 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3977 InstructionList.push_back(I); 3978 cast<InvokeInst>(I) 3979 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3980 cast<InvokeInst>(I)->setAttributes(PAL); 3981 break; 3982 } 3983 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3984 unsigned Idx = 0; 3985 Value *Val = nullptr; 3986 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3987 return error("Invalid record"); 3988 I = ResumeInst::Create(Val); 3989 InstructionList.push_back(I); 3990 break; 3991 } 3992 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3993 I = new UnreachableInst(Context); 3994 InstructionList.push_back(I); 3995 break; 3996 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3997 if (Record.size() < 1 || ((Record.size()-1)&1)) 3998 return error("Invalid record"); 3999 Type *Ty = getTypeByID(Record[0]); 4000 if (!Ty) 4001 return error("Invalid record"); 4002 4003 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4004 InstructionList.push_back(PN); 4005 4006 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4007 Value *V; 4008 // With the new function encoding, it is possible that operands have 4009 // negative IDs (for forward references). Use a signed VBR 4010 // representation to keep the encoding small. 4011 if (UseRelativeIDs) 4012 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4013 else 4014 V = getValue(Record, 1+i, NextValueNo, Ty); 4015 BasicBlock *BB = getBasicBlock(Record[2+i]); 4016 if (!V || !BB) 4017 return error("Invalid record"); 4018 PN->addIncoming(V, BB); 4019 } 4020 I = PN; 4021 break; 4022 } 4023 4024 case bitc::FUNC_CODE_INST_LANDINGPAD: 4025 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4026 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4027 unsigned Idx = 0; 4028 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4029 if (Record.size() < 3) 4030 return error("Invalid record"); 4031 } else { 4032 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4033 if (Record.size() < 4) 4034 return error("Invalid record"); 4035 } 4036 Type *Ty = getTypeByID(Record[Idx++]); 4037 if (!Ty) 4038 return error("Invalid record"); 4039 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4040 Value *PersFn = nullptr; 4041 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4042 return error("Invalid record"); 4043 4044 if (!F->hasPersonalityFn()) 4045 F->setPersonalityFn(cast<Constant>(PersFn)); 4046 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4047 return error("Personality function mismatch"); 4048 } 4049 4050 bool IsCleanup = !!Record[Idx++]; 4051 unsigned NumClauses = Record[Idx++]; 4052 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4053 LP->setCleanup(IsCleanup); 4054 for (unsigned J = 0; J != NumClauses; ++J) { 4055 LandingPadInst::ClauseType CT = 4056 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4057 Value *Val; 4058 4059 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4060 delete LP; 4061 return error("Invalid record"); 4062 } 4063 4064 assert((CT != LandingPadInst::Catch || 4065 !isa<ArrayType>(Val->getType())) && 4066 "Catch clause has a invalid type!"); 4067 assert((CT != LandingPadInst::Filter || 4068 isa<ArrayType>(Val->getType())) && 4069 "Filter clause has invalid type!"); 4070 LP->addClause(cast<Constant>(Val)); 4071 } 4072 4073 I = LP; 4074 InstructionList.push_back(I); 4075 break; 4076 } 4077 4078 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4079 if (Record.size() != 4) 4080 return error("Invalid record"); 4081 uint64_t AlignRecord = Record[3]; 4082 const uint64_t InAllocaMask = uint64_t(1) << 5; 4083 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4084 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4085 bool InAlloca = AlignRecord & InAllocaMask; 4086 Type *Ty = getTypeByID(Record[0]); 4087 if ((AlignRecord & ExplicitTypeMask) == 0) { 4088 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4089 if (!PTy) 4090 return error("Old-style alloca with a non-pointer type"); 4091 Ty = PTy->getElementType(); 4092 } 4093 Type *OpTy = getTypeByID(Record[1]); 4094 Value *Size = getFnValueByID(Record[2], OpTy); 4095 unsigned Align; 4096 if (std::error_code EC = 4097 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4098 return EC; 4099 } 4100 if (!Ty || !Size) 4101 return error("Invalid record"); 4102 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4103 AI->setUsedWithInAlloca(InAlloca); 4104 I = AI; 4105 InstructionList.push_back(I); 4106 break; 4107 } 4108 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4109 unsigned OpNum = 0; 4110 Value *Op; 4111 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4112 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4113 return error("Invalid record"); 4114 4115 Type *Ty = nullptr; 4116 if (OpNum + 3 == Record.size()) 4117 Ty = getTypeByID(Record[OpNum++]); 4118 if (std::error_code EC = 4119 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4120 return EC; 4121 if (!Ty) 4122 Ty = cast<PointerType>(Op->getType())->getElementType(); 4123 4124 unsigned Align; 4125 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4126 return EC; 4127 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4128 4129 InstructionList.push_back(I); 4130 break; 4131 } 4132 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4133 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4134 unsigned OpNum = 0; 4135 Value *Op; 4136 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4137 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4138 return error("Invalid record"); 4139 4140 Type *Ty = nullptr; 4141 if (OpNum + 5 == Record.size()) 4142 Ty = getTypeByID(Record[OpNum++]); 4143 if (std::error_code EC = 4144 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4145 return EC; 4146 if (!Ty) 4147 Ty = cast<PointerType>(Op->getType())->getElementType(); 4148 4149 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4150 if (Ordering == NotAtomic || Ordering == Release || 4151 Ordering == AcquireRelease) 4152 return error("Invalid record"); 4153 if (Ordering != NotAtomic && Record[OpNum] == 0) 4154 return error("Invalid record"); 4155 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4156 4157 unsigned Align; 4158 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4159 return EC; 4160 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4161 4162 InstructionList.push_back(I); 4163 break; 4164 } 4165 case bitc::FUNC_CODE_INST_STORE: 4166 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4167 unsigned OpNum = 0; 4168 Value *Val, *Ptr; 4169 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4170 (BitCode == bitc::FUNC_CODE_INST_STORE 4171 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4172 : popValue(Record, OpNum, NextValueNo, 4173 cast<PointerType>(Ptr->getType())->getElementType(), 4174 Val)) || 4175 OpNum + 2 != Record.size()) 4176 return error("Invalid record"); 4177 4178 if (std::error_code EC = typeCheckLoadStoreInst( 4179 DiagnosticHandler, Val->getType(), Ptr->getType())) 4180 return EC; 4181 unsigned Align; 4182 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4183 return EC; 4184 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4185 InstructionList.push_back(I); 4186 break; 4187 } 4188 case bitc::FUNC_CODE_INST_STOREATOMIC: 4189 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4190 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4191 unsigned OpNum = 0; 4192 Value *Val, *Ptr; 4193 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4194 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4195 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4196 : popValue(Record, OpNum, NextValueNo, 4197 cast<PointerType>(Ptr->getType())->getElementType(), 4198 Val)) || 4199 OpNum + 4 != Record.size()) 4200 return error("Invalid record"); 4201 4202 if (std::error_code EC = typeCheckLoadStoreInst( 4203 DiagnosticHandler, Val->getType(), Ptr->getType())) 4204 return EC; 4205 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4206 if (Ordering == NotAtomic || Ordering == Acquire || 4207 Ordering == AcquireRelease) 4208 return error("Invalid record"); 4209 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4210 if (Ordering != NotAtomic && Record[OpNum] == 0) 4211 return error("Invalid record"); 4212 4213 unsigned Align; 4214 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4215 return EC; 4216 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4217 InstructionList.push_back(I); 4218 break; 4219 } 4220 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4221 case bitc::FUNC_CODE_INST_CMPXCHG: { 4222 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4223 // failureordering?, isweak?] 4224 unsigned OpNum = 0; 4225 Value *Ptr, *Cmp, *New; 4226 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4227 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4228 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4229 : popValue(Record, OpNum, NextValueNo, 4230 cast<PointerType>(Ptr->getType())->getElementType(), 4231 Cmp)) || 4232 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4233 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4234 return error("Invalid record"); 4235 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4236 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4237 return error("Invalid record"); 4238 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4239 4240 if (std::error_code EC = typeCheckLoadStoreInst( 4241 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4242 return EC; 4243 AtomicOrdering FailureOrdering; 4244 if (Record.size() < 7) 4245 FailureOrdering = 4246 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4247 else 4248 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4249 4250 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4251 SynchScope); 4252 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4253 4254 if (Record.size() < 8) { 4255 // Before weak cmpxchgs existed, the instruction simply returned the 4256 // value loaded from memory, so bitcode files from that era will be 4257 // expecting the first component of a modern cmpxchg. 4258 CurBB->getInstList().push_back(I); 4259 I = ExtractValueInst::Create(I, 0); 4260 } else { 4261 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4262 } 4263 4264 InstructionList.push_back(I); 4265 break; 4266 } 4267 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4268 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4269 unsigned OpNum = 0; 4270 Value *Ptr, *Val; 4271 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4272 popValue(Record, OpNum, NextValueNo, 4273 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4274 OpNum+4 != Record.size()) 4275 return error("Invalid record"); 4276 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4277 if (Operation < AtomicRMWInst::FIRST_BINOP || 4278 Operation > AtomicRMWInst::LAST_BINOP) 4279 return error("Invalid record"); 4280 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4281 if (Ordering == NotAtomic || Ordering == Unordered) 4282 return error("Invalid record"); 4283 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4284 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4285 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4286 InstructionList.push_back(I); 4287 break; 4288 } 4289 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4290 if (2 != Record.size()) 4291 return error("Invalid record"); 4292 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4293 if (Ordering == NotAtomic || Ordering == Unordered || 4294 Ordering == Monotonic) 4295 return error("Invalid record"); 4296 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4297 I = new FenceInst(Context, Ordering, SynchScope); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 case bitc::FUNC_CODE_INST_CALL: { 4302 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4303 if (Record.size() < 3) 4304 return error("Invalid record"); 4305 4306 unsigned OpNum = 0; 4307 AttributeSet PAL = getAttributes(Record[OpNum++]); 4308 unsigned CCInfo = Record[OpNum++]; 4309 4310 FunctionType *FTy = nullptr; 4311 if (CCInfo >> 15 & 1 && 4312 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4313 return error("Explicit call type is not a function type"); 4314 4315 Value *Callee; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4317 return error("Invalid record"); 4318 4319 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4320 if (!OpTy) 4321 return error("Callee is not a pointer type"); 4322 if (!FTy) { 4323 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4324 if (!FTy) 4325 return error("Callee is not of pointer to function type"); 4326 } else if (OpTy->getElementType() != FTy) 4327 return error("Explicit call type does not match pointee type of " 4328 "callee operand"); 4329 if (Record.size() < FTy->getNumParams() + OpNum) 4330 return error("Insufficient operands to call"); 4331 4332 SmallVector<Value*, 16> Args; 4333 // Read the fixed params. 4334 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4335 if (FTy->getParamType(i)->isLabelTy()) 4336 Args.push_back(getBasicBlock(Record[OpNum])); 4337 else 4338 Args.push_back(getValue(Record, OpNum, NextValueNo, 4339 FTy->getParamType(i))); 4340 if (!Args.back()) 4341 return error("Invalid record"); 4342 } 4343 4344 // Read type/value pairs for varargs params. 4345 if (!FTy->isVarArg()) { 4346 if (OpNum != Record.size()) 4347 return error("Invalid record"); 4348 } else { 4349 while (OpNum != Record.size()) { 4350 Value *Op; 4351 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4352 return error("Invalid record"); 4353 Args.push_back(Op); 4354 } 4355 } 4356 4357 I = CallInst::Create(FTy, Callee, Args); 4358 InstructionList.push_back(I); 4359 cast<CallInst>(I)->setCallingConv( 4360 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4361 CallInst::TailCallKind TCK = CallInst::TCK_None; 4362 if (CCInfo & 1) 4363 TCK = CallInst::TCK_Tail; 4364 if (CCInfo & (1 << 14)) 4365 TCK = CallInst::TCK_MustTail; 4366 cast<CallInst>(I)->setTailCallKind(TCK); 4367 cast<CallInst>(I)->setAttributes(PAL); 4368 break; 4369 } 4370 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4371 if (Record.size() < 3) 4372 return error("Invalid record"); 4373 Type *OpTy = getTypeByID(Record[0]); 4374 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4375 Type *ResTy = getTypeByID(Record[2]); 4376 if (!OpTy || !Op || !ResTy) 4377 return error("Invalid record"); 4378 I = new VAArgInst(Op, ResTy); 4379 InstructionList.push_back(I); 4380 break; 4381 } 4382 } 4383 4384 // Add instruction to end of current BB. If there is no current BB, reject 4385 // this file. 4386 if (!CurBB) { 4387 delete I; 4388 return error("Invalid instruction with no BB"); 4389 } 4390 CurBB->getInstList().push_back(I); 4391 4392 // If this was a terminator instruction, move to the next block. 4393 if (isa<TerminatorInst>(I)) { 4394 ++CurBBNo; 4395 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4396 } 4397 4398 // Non-void values get registered in the value table for future use. 4399 if (I && !I->getType()->isVoidTy()) 4400 ValueList.assignValue(I, NextValueNo++); 4401 } 4402 4403 OutOfRecordLoop: 4404 4405 // Check the function list for unresolved values. 4406 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4407 if (!A->getParent()) { 4408 // We found at least one unresolved value. Nuke them all to avoid leaks. 4409 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4410 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4411 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4412 delete A; 4413 } 4414 } 4415 return error("Never resolved value found in function"); 4416 } 4417 } 4418 4419 // FIXME: Check for unresolved forward-declared metadata references 4420 // and clean up leaks. 4421 4422 // Trim the value list down to the size it was before we parsed this function. 4423 ValueList.shrinkTo(ModuleValueListSize); 4424 MDValueList.shrinkTo(ModuleMDValueListSize); 4425 std::vector<BasicBlock*>().swap(FunctionBBs); 4426 return std::error_code(); 4427 } 4428 4429 /// Find the function body in the bitcode stream 4430 std::error_code BitcodeReader::findFunctionInStream( 4431 Function *F, 4432 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4433 while (DeferredFunctionInfoIterator->second == 0) { 4434 if (Stream.AtEndOfStream()) 4435 return error("Could not find function in stream"); 4436 // ParseModule will parse the next body in the stream and set its 4437 // position in the DeferredFunctionInfo map. 4438 if (std::error_code EC = parseModule(true)) 4439 return EC; 4440 } 4441 return std::error_code(); 4442 } 4443 4444 //===----------------------------------------------------------------------===// 4445 // GVMaterializer implementation 4446 //===----------------------------------------------------------------------===// 4447 4448 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4449 4450 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4451 if (std::error_code EC = materializeMetadata()) 4452 return EC; 4453 4454 Function *F = dyn_cast<Function>(GV); 4455 // If it's not a function or is already material, ignore the request. 4456 if (!F || !F->isMaterializable()) 4457 return std::error_code(); 4458 4459 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4460 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4461 // If its position is recorded as 0, its body is somewhere in the stream 4462 // but we haven't seen it yet. 4463 if (DFII->second == 0) 4464 if (std::error_code EC = findFunctionInStream(F, DFII)) 4465 return EC; 4466 4467 // Move the bit stream to the saved position of the deferred function body. 4468 Stream.JumpToBit(DFII->second); 4469 4470 if (std::error_code EC = parseFunctionBody(F)) 4471 return EC; 4472 F->setIsMaterializable(false); 4473 4474 if (StripDebugInfo) 4475 stripDebugInfo(*F); 4476 4477 // Upgrade any old intrinsic calls in the function. 4478 for (auto &I : UpgradedIntrinsics) { 4479 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 4480 User *U = *UI; 4481 ++UI; 4482 if (CallInst *CI = dyn_cast<CallInst>(U)) 4483 UpgradeIntrinsicCall(CI, I.second); 4484 } 4485 } 4486 4487 // Bring in any functions that this function forward-referenced via 4488 // blockaddresses. 4489 return materializeForwardReferencedFunctions(); 4490 } 4491 4492 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4493 const Function *F = dyn_cast<Function>(GV); 4494 if (!F || F->isDeclaration()) 4495 return false; 4496 4497 // Dematerializing F would leave dangling references that wouldn't be 4498 // reconnected on re-materialization. 4499 if (BlockAddressesTaken.count(F)) 4500 return false; 4501 4502 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4503 } 4504 4505 void BitcodeReader::dematerialize(GlobalValue *GV) { 4506 Function *F = dyn_cast<Function>(GV); 4507 // If this function isn't dematerializable, this is a noop. 4508 if (!F || !isDematerializable(F)) 4509 return; 4510 4511 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4512 4513 // Just forget the function body, we can remat it later. 4514 F->dropAllReferences(); 4515 F->setIsMaterializable(true); 4516 } 4517 4518 std::error_code BitcodeReader::materializeModule(Module *M) { 4519 assert(M == TheModule && 4520 "Can only Materialize the Module this BitcodeReader is attached to."); 4521 4522 if (std::error_code EC = materializeMetadata()) 4523 return EC; 4524 4525 // Promise to materialize all forward references. 4526 WillMaterializeAllForwardRefs = true; 4527 4528 // Iterate over the module, deserializing any functions that are still on 4529 // disk. 4530 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4531 F != E; ++F) { 4532 if (std::error_code EC = materialize(F)) 4533 return EC; 4534 } 4535 // At this point, if there are any function bodies, the current bit is 4536 // pointing to the END_BLOCK record after them. Now make sure the rest 4537 // of the bits in the module have been read. 4538 if (NextUnreadBit) 4539 parseModule(true); 4540 4541 // Check that all block address forward references got resolved (as we 4542 // promised above). 4543 if (!BasicBlockFwdRefs.empty()) 4544 return error("Never resolved function from blockaddress"); 4545 4546 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4547 // delete the old functions to clean up. We can't do this unless the entire 4548 // module is materialized because there could always be another function body 4549 // with calls to the old function. 4550 for (auto &I : UpgradedIntrinsics) { 4551 for (auto *U : I.first->users()) { 4552 if (CallInst *CI = dyn_cast<CallInst>(U)) 4553 UpgradeIntrinsicCall(CI, I.second); 4554 } 4555 if (!I.first->use_empty()) 4556 I.first->replaceAllUsesWith(I.second); 4557 I.first->eraseFromParent(); 4558 } 4559 UpgradedIntrinsics.clear(); 4560 4561 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4562 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4563 4564 UpgradeDebugInfo(*M); 4565 return std::error_code(); 4566 } 4567 4568 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4569 return IdentifiedStructTypes; 4570 } 4571 4572 std::error_code 4573 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4574 if (Streamer) 4575 return initLazyStream(std::move(Streamer)); 4576 return initStreamFromBuffer(); 4577 } 4578 4579 std::error_code BitcodeReader::initStreamFromBuffer() { 4580 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4581 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4582 4583 if (Buffer->getBufferSize() & 3) 4584 return error("Invalid bitcode signature"); 4585 4586 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4587 // The magic number is 0x0B17C0DE stored in little endian. 4588 if (isBitcodeWrapper(BufPtr, BufEnd)) 4589 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4590 return error("Invalid bitcode wrapper header"); 4591 4592 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4593 Stream.init(&*StreamFile); 4594 4595 return std::error_code(); 4596 } 4597 4598 std::error_code 4599 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4600 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4601 // see it. 4602 auto OwnedBytes = 4603 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4604 StreamingMemoryObject &Bytes = *OwnedBytes; 4605 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4606 Stream.init(&*StreamFile); 4607 4608 unsigned char buf[16]; 4609 if (Bytes.readBytes(buf, 16, 0) != 16) 4610 return error("Invalid bitcode signature"); 4611 4612 if (!isBitcode(buf, buf + 16)) 4613 return error("Invalid bitcode signature"); 4614 4615 if (isBitcodeWrapper(buf, buf + 4)) { 4616 const unsigned char *bitcodeStart = buf; 4617 const unsigned char *bitcodeEnd = buf + 16; 4618 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4619 Bytes.dropLeadingBytes(bitcodeStart - buf); 4620 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4621 } 4622 return std::error_code(); 4623 } 4624 4625 namespace { 4626 class BitcodeErrorCategoryType : public std::error_category { 4627 const char *name() const LLVM_NOEXCEPT override { 4628 return "llvm.bitcode"; 4629 } 4630 std::string message(int IE) const override { 4631 BitcodeError E = static_cast<BitcodeError>(IE); 4632 switch (E) { 4633 case BitcodeError::InvalidBitcodeSignature: 4634 return "Invalid bitcode signature"; 4635 case BitcodeError::CorruptedBitcode: 4636 return "Corrupted bitcode"; 4637 } 4638 llvm_unreachable("Unknown error type!"); 4639 } 4640 }; 4641 } 4642 4643 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4644 4645 const std::error_category &llvm::BitcodeErrorCategory() { 4646 return *ErrorCategory; 4647 } 4648 4649 //===----------------------------------------------------------------------===// 4650 // External interface 4651 //===----------------------------------------------------------------------===// 4652 4653 static ErrorOr<std::unique_ptr<Module>> 4654 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 4655 BitcodeReader *R, LLVMContext &Context, 4656 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 4657 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4658 M->setMaterializer(R); 4659 4660 auto cleanupOnError = [&](std::error_code EC) { 4661 R->releaseBuffer(); // Never take ownership on error. 4662 return EC; 4663 }; 4664 4665 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4666 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 4667 ShouldLazyLoadMetadata)) 4668 return cleanupOnError(EC); 4669 4670 if (MaterializeAll) { 4671 // Read in the entire module, and destroy the BitcodeReader. 4672 if (std::error_code EC = M->materializeAllPermanently()) 4673 return cleanupOnError(EC); 4674 } else { 4675 // Resolve forward references from blockaddresses. 4676 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4677 return cleanupOnError(EC); 4678 } 4679 return std::move(M); 4680 } 4681 4682 /// \brief Get a lazy one-at-time loading module from bitcode. 4683 /// 4684 /// This isn't always used in a lazy context. In particular, it's also used by 4685 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4686 /// in forward-referenced functions from block address references. 4687 /// 4688 /// \param[in] MaterializeAll Set to \c true if we should materialize 4689 /// everything. 4690 static ErrorOr<std::unique_ptr<Module>> 4691 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4692 LLVMContext &Context, bool MaterializeAll, 4693 DiagnosticHandlerFunction DiagnosticHandler, 4694 bool ShouldLazyLoadMetadata = false) { 4695 BitcodeReader *R = 4696 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4697 4698 ErrorOr<std::unique_ptr<Module>> Ret = 4699 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 4700 MaterializeAll, ShouldLazyLoadMetadata); 4701 if (!Ret) 4702 return Ret; 4703 4704 Buffer.release(); // The BitcodeReader owns it now. 4705 return Ret; 4706 } 4707 4708 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4709 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4710 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4711 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4712 DiagnosticHandler, ShouldLazyLoadMetadata); 4713 } 4714 4715 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4716 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4717 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4718 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4719 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4720 4721 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 4722 false); 4723 } 4724 4725 ErrorOr<std::unique_ptr<Module>> 4726 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4727 DiagnosticHandlerFunction DiagnosticHandler) { 4728 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4729 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4730 DiagnosticHandler); 4731 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4732 // written. We must defer until the Module has been fully materialized. 4733 } 4734 4735 std::string 4736 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4737 DiagnosticHandlerFunction DiagnosticHandler) { 4738 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4739 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4740 DiagnosticHandler); 4741 ErrorOr<std::string> Triple = R->parseTriple(); 4742 if (Triple.getError()) 4743 return ""; 4744 return Triple.get(); 4745 } 4746