1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1322 // the bits above 31 down by 11 bits. 1323 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1324 assert((!Alignment || isPowerOf2_32(Alignment)) && 1325 "Alignment must be a power of two."); 1326 1327 if (Alignment) 1328 B.addAlignmentAttr(Alignment); 1329 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1330 (EncodedAttrs & 0xffff)); 1331 } 1332 1333 Error BitcodeReader::parseAttributeBlock() { 1334 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1335 return Err; 1336 1337 if (!MAttributes.empty()) 1338 return error("Invalid multiple blocks"); 1339 1340 SmallVector<uint64_t, 64> Record; 1341 1342 SmallVector<AttributeList, 8> Attrs; 1343 1344 // Read all the records. 1345 while (true) { 1346 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1347 if (!MaybeEntry) 1348 return MaybeEntry.takeError(); 1349 BitstreamEntry Entry = MaybeEntry.get(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return Error::success(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1365 if (!MaybeRecord) 1366 return MaybeRecord.takeError(); 1367 switch (MaybeRecord.get()) { 1368 default: // Default behavior: ignore. 1369 break; 1370 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1371 // Deprecated, but still needed to read old bitcode files. 1372 if (Record.size() & 1) 1373 return error("Invalid record"); 1374 1375 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1376 AttrBuilder B; 1377 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1378 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1379 } 1380 1381 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1382 Attrs.clear(); 1383 break; 1384 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1385 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1386 Attrs.push_back(MAttributeGroups[Record[i]]); 1387 1388 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1389 Attrs.clear(); 1390 break; 1391 } 1392 } 1393 } 1394 1395 // Returns Attribute::None on unrecognized codes. 1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1397 switch (Code) { 1398 default: 1399 return Attribute::None; 1400 case bitc::ATTR_KIND_ALIGNMENT: 1401 return Attribute::Alignment; 1402 case bitc::ATTR_KIND_ALWAYS_INLINE: 1403 return Attribute::AlwaysInline; 1404 case bitc::ATTR_KIND_ARGMEMONLY: 1405 return Attribute::ArgMemOnly; 1406 case bitc::ATTR_KIND_BUILTIN: 1407 return Attribute::Builtin; 1408 case bitc::ATTR_KIND_BY_VAL: 1409 return Attribute::ByVal; 1410 case bitc::ATTR_KIND_IN_ALLOCA: 1411 return Attribute::InAlloca; 1412 case bitc::ATTR_KIND_COLD: 1413 return Attribute::Cold; 1414 case bitc::ATTR_KIND_CONVERGENT: 1415 return Attribute::Convergent; 1416 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1417 return Attribute::InaccessibleMemOnly; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1419 return Attribute::InaccessibleMemOrArgMemOnly; 1420 case bitc::ATTR_KIND_INLINE_HINT: 1421 return Attribute::InlineHint; 1422 case bitc::ATTR_KIND_IN_REG: 1423 return Attribute::InReg; 1424 case bitc::ATTR_KIND_JUMP_TABLE: 1425 return Attribute::JumpTable; 1426 case bitc::ATTR_KIND_MIN_SIZE: 1427 return Attribute::MinSize; 1428 case bitc::ATTR_KIND_NAKED: 1429 return Attribute::Naked; 1430 case bitc::ATTR_KIND_NEST: 1431 return Attribute::Nest; 1432 case bitc::ATTR_KIND_NO_ALIAS: 1433 return Attribute::NoAlias; 1434 case bitc::ATTR_KIND_NO_BUILTIN: 1435 return Attribute::NoBuiltin; 1436 case bitc::ATTR_KIND_NO_CALLBACK: 1437 return Attribute::NoCallback; 1438 case bitc::ATTR_KIND_NO_CAPTURE: 1439 return Attribute::NoCapture; 1440 case bitc::ATTR_KIND_NO_DUPLICATE: 1441 return Attribute::NoDuplicate; 1442 case bitc::ATTR_KIND_NOFREE: 1443 return Attribute::NoFree; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NO_MERGE: 1451 return Attribute::NoMerge; 1452 case bitc::ATTR_KIND_NON_LAZY_BIND: 1453 return Attribute::NonLazyBind; 1454 case bitc::ATTR_KIND_NON_NULL: 1455 return Attribute::NonNull; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE: 1457 return Attribute::Dereferenceable; 1458 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1459 return Attribute::DereferenceableOrNull; 1460 case bitc::ATTR_KIND_ALLOC_SIZE: 1461 return Attribute::AllocSize; 1462 case bitc::ATTR_KIND_NO_RED_ZONE: 1463 return Attribute::NoRedZone; 1464 case bitc::ATTR_KIND_NO_RETURN: 1465 return Attribute::NoReturn; 1466 case bitc::ATTR_KIND_NOSYNC: 1467 return Attribute::NoSync; 1468 case bitc::ATTR_KIND_NOCF_CHECK: 1469 return Attribute::NoCfCheck; 1470 case bitc::ATTR_KIND_NO_UNWIND: 1471 return Attribute::NoUnwind; 1472 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1473 return Attribute::NullPointerIsValid; 1474 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1475 return Attribute::OptForFuzzing; 1476 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1477 return Attribute::OptimizeForSize; 1478 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1479 return Attribute::OptimizeNone; 1480 case bitc::ATTR_KIND_READ_NONE: 1481 return Attribute::ReadNone; 1482 case bitc::ATTR_KIND_READ_ONLY: 1483 return Attribute::ReadOnly; 1484 case bitc::ATTR_KIND_RETURNED: 1485 return Attribute::Returned; 1486 case bitc::ATTR_KIND_RETURNS_TWICE: 1487 return Attribute::ReturnsTwice; 1488 case bitc::ATTR_KIND_S_EXT: 1489 return Attribute::SExt; 1490 case bitc::ATTR_KIND_SPECULATABLE: 1491 return Attribute::Speculatable; 1492 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1493 return Attribute::StackAlignment; 1494 case bitc::ATTR_KIND_STACK_PROTECT: 1495 return Attribute::StackProtect; 1496 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1497 return Attribute::StackProtectReq; 1498 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1499 return Attribute::StackProtectStrong; 1500 case bitc::ATTR_KIND_SAFESTACK: 1501 return Attribute::SafeStack; 1502 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1503 return Attribute::ShadowCallStack; 1504 case bitc::ATTR_KIND_STRICT_FP: 1505 return Attribute::StrictFP; 1506 case bitc::ATTR_KIND_STRUCT_RET: 1507 return Attribute::StructRet; 1508 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1509 return Attribute::SanitizeAddress; 1510 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1511 return Attribute::SanitizeHWAddress; 1512 case bitc::ATTR_KIND_SANITIZE_THREAD: 1513 return Attribute::SanitizeThread; 1514 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1515 return Attribute::SanitizeMemory; 1516 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1517 return Attribute::SpeculativeLoadHardening; 1518 case bitc::ATTR_KIND_SWIFT_ERROR: 1519 return Attribute::SwiftError; 1520 case bitc::ATTR_KIND_SWIFT_SELF: 1521 return Attribute::SwiftSelf; 1522 case bitc::ATTR_KIND_UW_TABLE: 1523 return Attribute::UWTable; 1524 case bitc::ATTR_KIND_WILLRETURN: 1525 return Attribute::WillReturn; 1526 case bitc::ATTR_KIND_WRITEONLY: 1527 return Attribute::WriteOnly; 1528 case bitc::ATTR_KIND_Z_EXT: 1529 return Attribute::ZExt; 1530 case bitc::ATTR_KIND_IMMARG: 1531 return Attribute::ImmArg; 1532 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1533 return Attribute::SanitizeMemTag; 1534 case bitc::ATTR_KIND_PREALLOCATED: 1535 return Attribute::Preallocated; 1536 case bitc::ATTR_KIND_NOUNDEF: 1537 return Attribute::NoUndef; 1538 case bitc::ATTR_KIND_BYREF: 1539 return Attribute::ByRef; 1540 case bitc::ATTR_KIND_MUSTPROGRESS: 1541 return Attribute::MustProgress; 1542 case bitc::ATTR_KIND_HOT: 1543 return Attribute::Hot; 1544 } 1545 } 1546 1547 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1548 MaybeAlign &Alignment) { 1549 // Note: Alignment in bitcode files is incremented by 1, so that zero 1550 // can be used for default alignment. 1551 if (Exponent > Value::MaxAlignmentExponent + 1) 1552 return error("Invalid alignment value"); 1553 Alignment = decodeMaybeAlign(Exponent); 1554 return Error::success(); 1555 } 1556 1557 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1558 *Kind = getAttrFromCode(Code); 1559 if (*Kind == Attribute::None) 1560 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1561 return Error::success(); 1562 } 1563 1564 Error BitcodeReader::parseAttributeGroupBlock() { 1565 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1566 return Err; 1567 1568 if (!MAttributeGroups.empty()) 1569 return error("Invalid multiple blocks"); 1570 1571 SmallVector<uint64_t, 64> Record; 1572 1573 // Read all the records. 1574 while (true) { 1575 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1576 if (!MaybeEntry) 1577 return MaybeEntry.takeError(); 1578 BitstreamEntry Entry = MaybeEntry.get(); 1579 1580 switch (Entry.Kind) { 1581 case BitstreamEntry::SubBlock: // Handled for us already. 1582 case BitstreamEntry::Error: 1583 return error("Malformed block"); 1584 case BitstreamEntry::EndBlock: 1585 return Error::success(); 1586 case BitstreamEntry::Record: 1587 // The interesting case. 1588 break; 1589 } 1590 1591 // Read a record. 1592 Record.clear(); 1593 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1594 if (!MaybeRecord) 1595 return MaybeRecord.takeError(); 1596 switch (MaybeRecord.get()) { 1597 default: // Default behavior: ignore. 1598 break; 1599 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1600 if (Record.size() < 3) 1601 return error("Invalid record"); 1602 1603 uint64_t GrpID = Record[0]; 1604 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1605 1606 AttrBuilder B; 1607 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1608 if (Record[i] == 0) { // Enum attribute 1609 Attribute::AttrKind Kind; 1610 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1611 return Err; 1612 1613 // Upgrade old-style byval attribute to one with a type, even if it's 1614 // nullptr. We will have to insert the real type when we associate 1615 // this AttributeList with a function. 1616 if (Kind == Attribute::ByVal) 1617 B.addByValAttr(nullptr); 1618 else if (Kind == Attribute::StructRet) 1619 B.addStructRetAttr(nullptr); 1620 1621 B.addAttribute(Kind); 1622 } else if (Record[i] == 1) { // Integer attribute 1623 Attribute::AttrKind Kind; 1624 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1625 return Err; 1626 if (Kind == Attribute::Alignment) 1627 B.addAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::StackAlignment) 1629 B.addStackAlignmentAttr(Record[++i]); 1630 else if (Kind == Attribute::Dereferenceable) 1631 B.addDereferenceableAttr(Record[++i]); 1632 else if (Kind == Attribute::DereferenceableOrNull) 1633 B.addDereferenceableOrNullAttr(Record[++i]); 1634 else if (Kind == Attribute::AllocSize) 1635 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1636 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1637 bool HasValue = (Record[i++] == 4); 1638 SmallString<64> KindStr; 1639 SmallString<64> ValStr; 1640 1641 while (Record[i] != 0 && i != e) 1642 KindStr += Record[i++]; 1643 assert(Record[i] == 0 && "Kind string not null terminated"); 1644 1645 if (HasValue) { 1646 // Has a value associated with it. 1647 ++i; // Skip the '0' that terminates the "kind" string. 1648 while (Record[i] != 0 && i != e) 1649 ValStr += Record[i++]; 1650 assert(Record[i] == 0 && "Value string not null terminated"); 1651 } 1652 1653 B.addAttribute(KindStr.str(), ValStr.str()); 1654 } else { 1655 assert((Record[i] == 5 || Record[i] == 6) && 1656 "Invalid attribute group entry"); 1657 bool HasType = Record[i] == 6; 1658 Attribute::AttrKind Kind; 1659 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1660 return Err; 1661 if (Kind == Attribute::ByVal) { 1662 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1663 } else if (Kind == Attribute::StructRet) { 1664 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } else if (Kind == Attribute::ByRef) { 1666 B.addByRefAttr(getTypeByID(Record[++i])); 1667 } else if (Kind == Attribute::Preallocated) { 1668 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1669 } 1670 } 1671 } 1672 1673 UpgradeAttributes(B); 1674 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1675 break; 1676 } 1677 } 1678 } 1679 } 1680 1681 Error BitcodeReader::parseTypeTable() { 1682 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1683 return Err; 1684 1685 return parseTypeTableBody(); 1686 } 1687 1688 Error BitcodeReader::parseTypeTableBody() { 1689 if (!TypeList.empty()) 1690 return error("Invalid multiple blocks"); 1691 1692 SmallVector<uint64_t, 64> Record; 1693 unsigned NumRecords = 0; 1694 1695 SmallString<64> TypeName; 1696 1697 // Read all the records for this type table. 1698 while (true) { 1699 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1700 if (!MaybeEntry) 1701 return MaybeEntry.takeError(); 1702 BitstreamEntry Entry = MaybeEntry.get(); 1703 1704 switch (Entry.Kind) { 1705 case BitstreamEntry::SubBlock: // Handled for us already. 1706 case BitstreamEntry::Error: 1707 return error("Malformed block"); 1708 case BitstreamEntry::EndBlock: 1709 if (NumRecords != TypeList.size()) 1710 return error("Malformed block"); 1711 return Error::success(); 1712 case BitstreamEntry::Record: 1713 // The interesting case. 1714 break; 1715 } 1716 1717 // Read a record. 1718 Record.clear(); 1719 Type *ResultTy = nullptr; 1720 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1721 if (!MaybeRecord) 1722 return MaybeRecord.takeError(); 1723 switch (MaybeRecord.get()) { 1724 default: 1725 return error("Invalid value"); 1726 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1727 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1728 // type list. This allows us to reserve space. 1729 if (Record.empty()) 1730 return error("Invalid record"); 1731 TypeList.resize(Record[0]); 1732 continue; 1733 case bitc::TYPE_CODE_VOID: // VOID 1734 ResultTy = Type::getVoidTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_HALF: // HALF 1737 ResultTy = Type::getHalfTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1740 ResultTy = Type::getBFloatTy(Context); 1741 break; 1742 case bitc::TYPE_CODE_FLOAT: // FLOAT 1743 ResultTy = Type::getFloatTy(Context); 1744 break; 1745 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1746 ResultTy = Type::getDoubleTy(Context); 1747 break; 1748 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1749 ResultTy = Type::getX86_FP80Ty(Context); 1750 break; 1751 case bitc::TYPE_CODE_FP128: // FP128 1752 ResultTy = Type::getFP128Ty(Context); 1753 break; 1754 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1755 ResultTy = Type::getPPC_FP128Ty(Context); 1756 break; 1757 case bitc::TYPE_CODE_LABEL: // LABEL 1758 ResultTy = Type::getLabelTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_METADATA: // METADATA 1761 ResultTy = Type::getMetadataTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1764 ResultTy = Type::getX86_MMXTy(Context); 1765 break; 1766 case bitc::TYPE_CODE_TOKEN: // TOKEN 1767 ResultTy = Type::getTokenTy(Context); 1768 break; 1769 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1770 if (Record.empty()) 1771 return error("Invalid record"); 1772 1773 uint64_t NumBits = Record[0]; 1774 if (NumBits < IntegerType::MIN_INT_BITS || 1775 NumBits > IntegerType::MAX_INT_BITS) 1776 return error("Bitwidth for integer type out of range"); 1777 ResultTy = IntegerType::get(Context, NumBits); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1781 // [pointee type, address space] 1782 if (Record.empty()) 1783 return error("Invalid record"); 1784 unsigned AddressSpace = 0; 1785 if (Record.size() == 2) 1786 AddressSpace = Record[1]; 1787 ResultTy = getTypeByID(Record[0]); 1788 if (!ResultTy || 1789 !PointerType::isValidElementType(ResultTy)) 1790 return error("Invalid type"); 1791 ResultTy = PointerType::get(ResultTy, AddressSpace); 1792 break; 1793 } 1794 case bitc::TYPE_CODE_FUNCTION_OLD: { 1795 // Deprecated, but still needed to read old bitcode files. 1796 // FUNCTION: [vararg, attrid, retty, paramty x N] 1797 if (Record.size() < 3) 1798 return error("Invalid record"); 1799 SmallVector<Type*, 8> ArgTys; 1800 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1801 if (Type *T = getTypeByID(Record[i])) 1802 ArgTys.push_back(T); 1803 else 1804 break; 1805 } 1806 1807 ResultTy = getTypeByID(Record[2]); 1808 if (!ResultTy || ArgTys.size() < Record.size()-3) 1809 return error("Invalid type"); 1810 1811 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1812 break; 1813 } 1814 case bitc::TYPE_CODE_FUNCTION: { 1815 // FUNCTION: [vararg, retty, paramty x N] 1816 if (Record.size() < 2) 1817 return error("Invalid record"); 1818 SmallVector<Type*, 8> ArgTys; 1819 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1820 if (Type *T = getTypeByID(Record[i])) { 1821 if (!FunctionType::isValidArgumentType(T)) 1822 return error("Invalid function argument type"); 1823 ArgTys.push_back(T); 1824 } 1825 else 1826 break; 1827 } 1828 1829 ResultTy = getTypeByID(Record[1]); 1830 if (!ResultTy || ArgTys.size() < Record.size()-2) 1831 return error("Invalid type"); 1832 1833 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1834 break; 1835 } 1836 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1837 if (Record.empty()) 1838 return error("Invalid record"); 1839 SmallVector<Type*, 8> EltTys; 1840 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1841 if (Type *T = getTypeByID(Record[i])) 1842 EltTys.push_back(T); 1843 else 1844 break; 1845 } 1846 if (EltTys.size() != Record.size()-1) 1847 return error("Invalid type"); 1848 ResultTy = StructType::get(Context, EltTys, Record[0]); 1849 break; 1850 } 1851 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1852 if (convertToString(Record, 0, TypeName)) 1853 return error("Invalid record"); 1854 continue; 1855 1856 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1857 if (Record.empty()) 1858 return error("Invalid record"); 1859 1860 if (NumRecords >= TypeList.size()) 1861 return error("Invalid TYPE table"); 1862 1863 // Check to see if this was forward referenced, if so fill in the temp. 1864 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1865 if (Res) { 1866 Res->setName(TypeName); 1867 TypeList[NumRecords] = nullptr; 1868 } else // Otherwise, create a new struct. 1869 Res = createIdentifiedStructType(Context, TypeName); 1870 TypeName.clear(); 1871 1872 SmallVector<Type*, 8> EltTys; 1873 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1874 if (Type *T = getTypeByID(Record[i])) 1875 EltTys.push_back(T); 1876 else 1877 break; 1878 } 1879 if (EltTys.size() != Record.size()-1) 1880 return error("Invalid record"); 1881 Res->setBody(EltTys, Record[0]); 1882 ResultTy = Res; 1883 break; 1884 } 1885 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1886 if (Record.size() != 1) 1887 return error("Invalid record"); 1888 1889 if (NumRecords >= TypeList.size()) 1890 return error("Invalid TYPE table"); 1891 1892 // Check to see if this was forward referenced, if so fill in the temp. 1893 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1894 if (Res) { 1895 Res->setName(TypeName); 1896 TypeList[NumRecords] = nullptr; 1897 } else // Otherwise, create a new struct with no body. 1898 Res = createIdentifiedStructType(Context, TypeName); 1899 TypeName.clear(); 1900 ResultTy = Res; 1901 break; 1902 } 1903 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1904 if (Record.size() < 2) 1905 return error("Invalid record"); 1906 ResultTy = getTypeByID(Record[1]); 1907 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1908 return error("Invalid type"); 1909 ResultTy = ArrayType::get(ResultTy, Record[0]); 1910 break; 1911 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1912 // [numelts, eltty, scalable] 1913 if (Record.size() < 2) 1914 return error("Invalid record"); 1915 if (Record[0] == 0) 1916 return error("Invalid vector length"); 1917 ResultTy = getTypeByID(Record[1]); 1918 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1919 return error("Invalid type"); 1920 bool Scalable = Record.size() > 2 ? Record[2] : false; 1921 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1922 break; 1923 } 1924 1925 if (NumRecords >= TypeList.size()) 1926 return error("Invalid TYPE table"); 1927 if (TypeList[NumRecords]) 1928 return error( 1929 "Invalid TYPE table: Only named structs can be forward referenced"); 1930 assert(ResultTy && "Didn't read a type?"); 1931 TypeList[NumRecords++] = ResultTy; 1932 } 1933 } 1934 1935 Error BitcodeReader::parseOperandBundleTags() { 1936 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1937 return Err; 1938 1939 if (!BundleTags.empty()) 1940 return error("Invalid multiple blocks"); 1941 1942 SmallVector<uint64_t, 64> Record; 1943 1944 while (true) { 1945 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1946 if (!MaybeEntry) 1947 return MaybeEntry.takeError(); 1948 BitstreamEntry Entry = MaybeEntry.get(); 1949 1950 switch (Entry.Kind) { 1951 case BitstreamEntry::SubBlock: // Handled for us already. 1952 case BitstreamEntry::Error: 1953 return error("Malformed block"); 1954 case BitstreamEntry::EndBlock: 1955 return Error::success(); 1956 case BitstreamEntry::Record: 1957 // The interesting case. 1958 break; 1959 } 1960 1961 // Tags are implicitly mapped to integers by their order. 1962 1963 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1964 if (!MaybeRecord) 1965 return MaybeRecord.takeError(); 1966 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1967 return error("Invalid record"); 1968 1969 // OPERAND_BUNDLE_TAG: [strchr x N] 1970 BundleTags.emplace_back(); 1971 if (convertToString(Record, 0, BundleTags.back())) 1972 return error("Invalid record"); 1973 Record.clear(); 1974 } 1975 } 1976 1977 Error BitcodeReader::parseSyncScopeNames() { 1978 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1979 return Err; 1980 1981 if (!SSIDs.empty()) 1982 return error("Invalid multiple synchronization scope names blocks"); 1983 1984 SmallVector<uint64_t, 64> Record; 1985 while (true) { 1986 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1987 if (!MaybeEntry) 1988 return MaybeEntry.takeError(); 1989 BitstreamEntry Entry = MaybeEntry.get(); 1990 1991 switch (Entry.Kind) { 1992 case BitstreamEntry::SubBlock: // Handled for us already. 1993 case BitstreamEntry::Error: 1994 return error("Malformed block"); 1995 case BitstreamEntry::EndBlock: 1996 if (SSIDs.empty()) 1997 return error("Invalid empty synchronization scope names block"); 1998 return Error::success(); 1999 case BitstreamEntry::Record: 2000 // The interesting case. 2001 break; 2002 } 2003 2004 // Synchronization scope names are implicitly mapped to synchronization 2005 // scope IDs by their order. 2006 2007 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2008 if (!MaybeRecord) 2009 return MaybeRecord.takeError(); 2010 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2011 return error("Invalid record"); 2012 2013 SmallString<16> SSN; 2014 if (convertToString(Record, 0, SSN)) 2015 return error("Invalid record"); 2016 2017 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2018 Record.clear(); 2019 } 2020 } 2021 2022 /// Associate a value with its name from the given index in the provided record. 2023 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2024 unsigned NameIndex, Triple &TT) { 2025 SmallString<128> ValueName; 2026 if (convertToString(Record, NameIndex, ValueName)) 2027 return error("Invalid record"); 2028 unsigned ValueID = Record[0]; 2029 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2030 return error("Invalid record"); 2031 Value *V = ValueList[ValueID]; 2032 2033 StringRef NameStr(ValueName.data(), ValueName.size()); 2034 if (NameStr.find_first_of(0) != StringRef::npos) 2035 return error("Invalid value name"); 2036 V->setName(NameStr); 2037 auto *GO = dyn_cast<GlobalObject>(V); 2038 if (GO) { 2039 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2040 if (TT.supportsCOMDAT()) 2041 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2042 else 2043 GO->setComdat(nullptr); 2044 } 2045 } 2046 return V; 2047 } 2048 2049 /// Helper to note and return the current location, and jump to the given 2050 /// offset. 2051 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2052 BitstreamCursor &Stream) { 2053 // Save the current parsing location so we can jump back at the end 2054 // of the VST read. 2055 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2056 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2057 return std::move(JumpFailed); 2058 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2059 if (!MaybeEntry) 2060 return MaybeEntry.takeError(); 2061 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2062 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2063 return CurrentBit; 2064 } 2065 2066 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2067 Function *F, 2068 ArrayRef<uint64_t> Record) { 2069 // Note that we subtract 1 here because the offset is relative to one word 2070 // before the start of the identification or module block, which was 2071 // historically always the start of the regular bitcode header. 2072 uint64_t FuncWordOffset = Record[1] - 1; 2073 uint64_t FuncBitOffset = FuncWordOffset * 32; 2074 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2075 // Set the LastFunctionBlockBit to point to the last function block. 2076 // Later when parsing is resumed after function materialization, 2077 // we can simply skip that last function block. 2078 if (FuncBitOffset > LastFunctionBlockBit) 2079 LastFunctionBlockBit = FuncBitOffset; 2080 } 2081 2082 /// Read a new-style GlobalValue symbol table. 2083 Error BitcodeReader::parseGlobalValueSymbolTable() { 2084 unsigned FuncBitcodeOffsetDelta = 2085 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2086 2087 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2088 return Err; 2089 2090 SmallVector<uint64_t, 64> Record; 2091 while (true) { 2092 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2093 if (!MaybeEntry) 2094 return MaybeEntry.takeError(); 2095 BitstreamEntry Entry = MaybeEntry.get(); 2096 2097 switch (Entry.Kind) { 2098 case BitstreamEntry::SubBlock: 2099 case BitstreamEntry::Error: 2100 return error("Malformed block"); 2101 case BitstreamEntry::EndBlock: 2102 return Error::success(); 2103 case BitstreamEntry::Record: 2104 break; 2105 } 2106 2107 Record.clear(); 2108 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2109 if (!MaybeRecord) 2110 return MaybeRecord.takeError(); 2111 switch (MaybeRecord.get()) { 2112 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2113 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2114 cast<Function>(ValueList[Record[0]]), Record); 2115 break; 2116 } 2117 } 2118 } 2119 2120 /// Parse the value symbol table at either the current parsing location or 2121 /// at the given bit offset if provided. 2122 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2123 uint64_t CurrentBit; 2124 // Pass in the Offset to distinguish between calling for the module-level 2125 // VST (where we want to jump to the VST offset) and the function-level 2126 // VST (where we don't). 2127 if (Offset > 0) { 2128 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2129 if (!MaybeCurrentBit) 2130 return MaybeCurrentBit.takeError(); 2131 CurrentBit = MaybeCurrentBit.get(); 2132 // If this module uses a string table, read this as a module-level VST. 2133 if (UseStrtab) { 2134 if (Error Err = parseGlobalValueSymbolTable()) 2135 return Err; 2136 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2137 return JumpFailed; 2138 return Error::success(); 2139 } 2140 // Otherwise, the VST will be in a similar format to a function-level VST, 2141 // and will contain symbol names. 2142 } 2143 2144 // Compute the delta between the bitcode indices in the VST (the word offset 2145 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2146 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2147 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2148 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2149 // just before entering the VST subblock because: 1) the EnterSubBlock 2150 // changes the AbbrevID width; 2) the VST block is nested within the same 2151 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2152 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2153 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2154 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2155 unsigned FuncBitcodeOffsetDelta = 2156 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2157 2158 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2159 return Err; 2160 2161 SmallVector<uint64_t, 64> Record; 2162 2163 Triple TT(TheModule->getTargetTriple()); 2164 2165 // Read all the records for this value table. 2166 SmallString<128> ValueName; 2167 2168 while (true) { 2169 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2170 if (!MaybeEntry) 2171 return MaybeEntry.takeError(); 2172 BitstreamEntry Entry = MaybeEntry.get(); 2173 2174 switch (Entry.Kind) { 2175 case BitstreamEntry::SubBlock: // Handled for us already. 2176 case BitstreamEntry::Error: 2177 return error("Malformed block"); 2178 case BitstreamEntry::EndBlock: 2179 if (Offset > 0) 2180 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2181 return JumpFailed; 2182 return Error::success(); 2183 case BitstreamEntry::Record: 2184 // The interesting case. 2185 break; 2186 } 2187 2188 // Read a record. 2189 Record.clear(); 2190 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2191 if (!MaybeRecord) 2192 return MaybeRecord.takeError(); 2193 switch (MaybeRecord.get()) { 2194 default: // Default behavior: unknown type. 2195 break; 2196 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2197 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2198 if (Error Err = ValOrErr.takeError()) 2199 return Err; 2200 ValOrErr.get(); 2201 break; 2202 } 2203 case bitc::VST_CODE_FNENTRY: { 2204 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2205 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2206 if (Error Err = ValOrErr.takeError()) 2207 return Err; 2208 Value *V = ValOrErr.get(); 2209 2210 // Ignore function offsets emitted for aliases of functions in older 2211 // versions of LLVM. 2212 if (auto *F = dyn_cast<Function>(V)) 2213 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2214 break; 2215 } 2216 case bitc::VST_CODE_BBENTRY: { 2217 if (convertToString(Record, 1, ValueName)) 2218 return error("Invalid record"); 2219 BasicBlock *BB = getBasicBlock(Record[0]); 2220 if (!BB) 2221 return error("Invalid record"); 2222 2223 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2224 ValueName.clear(); 2225 break; 2226 } 2227 } 2228 } 2229 } 2230 2231 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2232 /// encoding. 2233 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2234 if ((V & 1) == 0) 2235 return V >> 1; 2236 if (V != 1) 2237 return -(V >> 1); 2238 // There is no such thing as -0 with integers. "-0" really means MININT. 2239 return 1ULL << 63; 2240 } 2241 2242 /// Resolve all of the initializers for global values and aliases that we can. 2243 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2244 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2245 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2246 IndirectSymbolInitWorklist; 2247 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2248 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2249 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2250 2251 GlobalInitWorklist.swap(GlobalInits); 2252 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2253 FunctionPrefixWorklist.swap(FunctionPrefixes); 2254 FunctionPrologueWorklist.swap(FunctionPrologues); 2255 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2256 2257 while (!GlobalInitWorklist.empty()) { 2258 unsigned ValID = GlobalInitWorklist.back().second; 2259 if (ValID >= ValueList.size()) { 2260 // Not ready to resolve this yet, it requires something later in the file. 2261 GlobalInits.push_back(GlobalInitWorklist.back()); 2262 } else { 2263 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2264 GlobalInitWorklist.back().first->setInitializer(C); 2265 else 2266 return error("Expected a constant"); 2267 } 2268 GlobalInitWorklist.pop_back(); 2269 } 2270 2271 while (!IndirectSymbolInitWorklist.empty()) { 2272 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2273 if (ValID >= ValueList.size()) { 2274 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2275 } else { 2276 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2277 if (!C) 2278 return error("Expected a constant"); 2279 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2280 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2281 return error("Alias and aliasee types don't match"); 2282 GIS->setIndirectSymbol(C); 2283 } 2284 IndirectSymbolInitWorklist.pop_back(); 2285 } 2286 2287 while (!FunctionPrefixWorklist.empty()) { 2288 unsigned ValID = FunctionPrefixWorklist.back().second; 2289 if (ValID >= ValueList.size()) { 2290 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2291 } else { 2292 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2293 FunctionPrefixWorklist.back().first->setPrefixData(C); 2294 else 2295 return error("Expected a constant"); 2296 } 2297 FunctionPrefixWorklist.pop_back(); 2298 } 2299 2300 while (!FunctionPrologueWorklist.empty()) { 2301 unsigned ValID = FunctionPrologueWorklist.back().second; 2302 if (ValID >= ValueList.size()) { 2303 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2304 } else { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 FunctionPrologueWorklist.back().first->setPrologueData(C); 2307 else 2308 return error("Expected a constant"); 2309 } 2310 FunctionPrologueWorklist.pop_back(); 2311 } 2312 2313 while (!FunctionPersonalityFnWorklist.empty()) { 2314 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2315 if (ValID >= ValueList.size()) { 2316 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2317 } else { 2318 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2319 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2320 else 2321 return error("Expected a constant"); 2322 } 2323 FunctionPersonalityFnWorklist.pop_back(); 2324 } 2325 2326 return Error::success(); 2327 } 2328 2329 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2330 SmallVector<uint64_t, 8> Words(Vals.size()); 2331 transform(Vals, Words.begin(), 2332 BitcodeReader::decodeSignRotatedValue); 2333 2334 return APInt(TypeBits, Words); 2335 } 2336 2337 Error BitcodeReader::parseConstants() { 2338 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2339 return Err; 2340 2341 SmallVector<uint64_t, 64> Record; 2342 2343 // Read all the records for this value table. 2344 Type *CurTy = Type::getInt32Ty(Context); 2345 Type *CurFullTy = Type::getInt32Ty(Context); 2346 unsigned NextCstNo = ValueList.size(); 2347 2348 struct DelayedShufTy { 2349 VectorType *OpTy; 2350 VectorType *RTy; 2351 Type *CurFullTy; 2352 uint64_t Op0Idx; 2353 uint64_t Op1Idx; 2354 uint64_t Op2Idx; 2355 unsigned CstNo; 2356 }; 2357 std::vector<DelayedShufTy> DelayedShuffles; 2358 while (true) { 2359 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2360 if (!MaybeEntry) 2361 return MaybeEntry.takeError(); 2362 BitstreamEntry Entry = MaybeEntry.get(); 2363 2364 switch (Entry.Kind) { 2365 case BitstreamEntry::SubBlock: // Handled for us already. 2366 case BitstreamEntry::Error: 2367 return error("Malformed block"); 2368 case BitstreamEntry::EndBlock: 2369 // Once all the constants have been read, go through and resolve forward 2370 // references. 2371 // 2372 // We have to treat shuffles specially because they don't have three 2373 // operands anymore. We need to convert the shuffle mask into an array, 2374 // and we can't convert a forward reference. 2375 for (auto &DelayedShuffle : DelayedShuffles) { 2376 VectorType *OpTy = DelayedShuffle.OpTy; 2377 VectorType *RTy = DelayedShuffle.RTy; 2378 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2379 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2380 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2381 uint64_t CstNo = DelayedShuffle.CstNo; 2382 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2383 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2384 Type *ShufTy = 2385 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2386 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2387 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2388 return error("Invalid shufflevector operands"); 2389 SmallVector<int, 16> Mask; 2390 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2391 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2392 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2393 } 2394 2395 if (NextCstNo != ValueList.size()) 2396 return error("Invalid constant reference"); 2397 2398 ValueList.resolveConstantForwardRefs(); 2399 return Error::success(); 2400 case BitstreamEntry::Record: 2401 // The interesting case. 2402 break; 2403 } 2404 2405 // Read a record. 2406 Record.clear(); 2407 Type *VoidType = Type::getVoidTy(Context); 2408 Value *V = nullptr; 2409 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2410 if (!MaybeBitCode) 2411 return MaybeBitCode.takeError(); 2412 switch (unsigned BitCode = MaybeBitCode.get()) { 2413 default: // Default behavior: unknown constant 2414 case bitc::CST_CODE_UNDEF: // UNDEF 2415 V = UndefValue::get(CurTy); 2416 break; 2417 case bitc::CST_CODE_POISON: // POISON 2418 V = PoisonValue::get(CurTy); 2419 break; 2420 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2421 if (Record.empty()) 2422 return error("Invalid record"); 2423 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2424 return error("Invalid record"); 2425 if (TypeList[Record[0]] == VoidType) 2426 return error("Invalid constant type"); 2427 CurFullTy = TypeList[Record[0]]; 2428 CurTy = flattenPointerTypes(CurFullTy); 2429 continue; // Skip the ValueList manipulation. 2430 case bitc::CST_CODE_NULL: // NULL 2431 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2432 return error("Invalid type for a constant null value"); 2433 V = Constant::getNullValue(CurTy); 2434 break; 2435 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2436 if (!CurTy->isIntegerTy() || Record.empty()) 2437 return error("Invalid record"); 2438 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2439 break; 2440 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2441 if (!CurTy->isIntegerTy() || Record.empty()) 2442 return error("Invalid record"); 2443 2444 APInt VInt = 2445 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2446 V = ConstantInt::get(Context, VInt); 2447 2448 break; 2449 } 2450 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2451 if (Record.empty()) 2452 return error("Invalid record"); 2453 if (CurTy->isHalfTy()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2455 APInt(16, (uint16_t)Record[0]))); 2456 else if (CurTy->isBFloatTy()) 2457 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2458 APInt(16, (uint32_t)Record[0]))); 2459 else if (CurTy->isFloatTy()) 2460 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2461 APInt(32, (uint32_t)Record[0]))); 2462 else if (CurTy->isDoubleTy()) 2463 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2464 APInt(64, Record[0]))); 2465 else if (CurTy->isX86_FP80Ty()) { 2466 // Bits are not stored the same way as a normal i80 APInt, compensate. 2467 uint64_t Rearrange[2]; 2468 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2469 Rearrange[1] = Record[0] >> 48; 2470 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2471 APInt(80, Rearrange))); 2472 } else if (CurTy->isFP128Ty()) 2473 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2474 APInt(128, Record))); 2475 else if (CurTy->isPPC_FP128Ty()) 2476 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2477 APInt(128, Record))); 2478 else 2479 V = UndefValue::get(CurTy); 2480 break; 2481 } 2482 2483 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2484 if (Record.empty()) 2485 return error("Invalid record"); 2486 2487 unsigned Size = Record.size(); 2488 SmallVector<Constant*, 16> Elts; 2489 2490 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2491 for (unsigned i = 0; i != Size; ++i) 2492 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2493 STy->getElementType(i))); 2494 V = ConstantStruct::get(STy, Elts); 2495 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2496 Type *EltTy = ATy->getElementType(); 2497 for (unsigned i = 0; i != Size; ++i) 2498 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2499 V = ConstantArray::get(ATy, Elts); 2500 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2501 Type *EltTy = VTy->getElementType(); 2502 for (unsigned i = 0; i != Size; ++i) 2503 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2504 V = ConstantVector::get(Elts); 2505 } else { 2506 V = UndefValue::get(CurTy); 2507 } 2508 break; 2509 } 2510 case bitc::CST_CODE_STRING: // STRING: [values] 2511 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 SmallString<16> Elts(Record.begin(), Record.end()); 2516 V = ConstantDataArray::getString(Context, Elts, 2517 BitCode == bitc::CST_CODE_CSTRING); 2518 break; 2519 } 2520 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2521 if (Record.empty()) 2522 return error("Invalid record"); 2523 2524 Type *EltTy; 2525 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2526 EltTy = Array->getElementType(); 2527 else 2528 EltTy = cast<VectorType>(CurTy)->getElementType(); 2529 if (EltTy->isIntegerTy(8)) { 2530 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2531 if (isa<VectorType>(CurTy)) 2532 V = ConstantDataVector::get(Context, Elts); 2533 else 2534 V = ConstantDataArray::get(Context, Elts); 2535 } else if (EltTy->isIntegerTy(16)) { 2536 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2537 if (isa<VectorType>(CurTy)) 2538 V = ConstantDataVector::get(Context, Elts); 2539 else 2540 V = ConstantDataArray::get(Context, Elts); 2541 } else if (EltTy->isIntegerTy(32)) { 2542 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2543 if (isa<VectorType>(CurTy)) 2544 V = ConstantDataVector::get(Context, Elts); 2545 else 2546 V = ConstantDataArray::get(Context, Elts); 2547 } else if (EltTy->isIntegerTy(64)) { 2548 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2549 if (isa<VectorType>(CurTy)) 2550 V = ConstantDataVector::get(Context, Elts); 2551 else 2552 V = ConstantDataArray::get(Context, Elts); 2553 } else if (EltTy->isHalfTy()) { 2554 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2555 if (isa<VectorType>(CurTy)) 2556 V = ConstantDataVector::getFP(EltTy, Elts); 2557 else 2558 V = ConstantDataArray::getFP(EltTy, Elts); 2559 } else if (EltTy->isBFloatTy()) { 2560 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2561 if (isa<VectorType>(CurTy)) 2562 V = ConstantDataVector::getFP(EltTy, Elts); 2563 else 2564 V = ConstantDataArray::getFP(EltTy, Elts); 2565 } else if (EltTy->isFloatTy()) { 2566 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2567 if (isa<VectorType>(CurTy)) 2568 V = ConstantDataVector::getFP(EltTy, Elts); 2569 else 2570 V = ConstantDataArray::getFP(EltTy, Elts); 2571 } else if (EltTy->isDoubleTy()) { 2572 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2573 if (isa<VectorType>(CurTy)) 2574 V = ConstantDataVector::getFP(EltTy, Elts); 2575 else 2576 V = ConstantDataArray::getFP(EltTy, Elts); 2577 } else { 2578 return error("Invalid type for value"); 2579 } 2580 break; 2581 } 2582 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2583 if (Record.size() < 2) 2584 return error("Invalid record"); 2585 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2586 if (Opc < 0) { 2587 V = UndefValue::get(CurTy); // Unknown unop. 2588 } else { 2589 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2590 unsigned Flags = 0; 2591 V = ConstantExpr::get(Opc, LHS, Flags); 2592 } 2593 break; 2594 } 2595 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2596 if (Record.size() < 3) 2597 return error("Invalid record"); 2598 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2599 if (Opc < 0) { 2600 V = UndefValue::get(CurTy); // Unknown binop. 2601 } else { 2602 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2603 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2604 unsigned Flags = 0; 2605 if (Record.size() >= 4) { 2606 if (Opc == Instruction::Add || 2607 Opc == Instruction::Sub || 2608 Opc == Instruction::Mul || 2609 Opc == Instruction::Shl) { 2610 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2611 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2612 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2613 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2614 } else if (Opc == Instruction::SDiv || 2615 Opc == Instruction::UDiv || 2616 Opc == Instruction::LShr || 2617 Opc == Instruction::AShr) { 2618 if (Record[3] & (1 << bitc::PEO_EXACT)) 2619 Flags |= SDivOperator::IsExact; 2620 } 2621 } 2622 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2623 } 2624 break; 2625 } 2626 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2627 if (Record.size() < 3) 2628 return error("Invalid record"); 2629 int Opc = getDecodedCastOpcode(Record[0]); 2630 if (Opc < 0) { 2631 V = UndefValue::get(CurTy); // Unknown cast. 2632 } else { 2633 Type *OpTy = getTypeByID(Record[1]); 2634 if (!OpTy) 2635 return error("Invalid record"); 2636 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2637 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2638 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2643 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2644 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2645 // operands] 2646 unsigned OpNum = 0; 2647 Type *PointeeType = nullptr; 2648 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2649 Record.size() % 2) 2650 PointeeType = getTypeByID(Record[OpNum++]); 2651 2652 bool InBounds = false; 2653 Optional<unsigned> InRangeIndex; 2654 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2655 uint64_t Op = Record[OpNum++]; 2656 InBounds = Op & 1; 2657 InRangeIndex = Op >> 1; 2658 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2659 InBounds = true; 2660 2661 SmallVector<Constant*, 16> Elts; 2662 Type *Elt0FullTy = nullptr; 2663 while (OpNum != Record.size()) { 2664 if (!Elt0FullTy) 2665 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2666 Type *ElTy = getTypeByID(Record[OpNum++]); 2667 if (!ElTy) 2668 return error("Invalid record"); 2669 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2670 } 2671 2672 if (Elts.size() < 1) 2673 return error("Invalid gep with no operands"); 2674 2675 Type *ImplicitPointeeType = 2676 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2677 if (!PointeeType) 2678 PointeeType = ImplicitPointeeType; 2679 else if (PointeeType != ImplicitPointeeType) 2680 return error("Explicit gep operator type does not match pointee type " 2681 "of pointer operand"); 2682 2683 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2684 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2685 InBounds, InRangeIndex); 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2689 if (Record.size() < 3) 2690 return error("Invalid record"); 2691 2692 Type *SelectorTy = Type::getInt1Ty(Context); 2693 2694 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2695 // Get the type from the ValueList before getting a forward ref. 2696 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2697 if (Value *V = ValueList[Record[0]]) 2698 if (SelectorTy != V->getType()) 2699 SelectorTy = VectorType::get(SelectorTy, 2700 VTy->getElementCount()); 2701 2702 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2703 SelectorTy), 2704 ValueList.getConstantFwdRef(Record[1],CurTy), 2705 ValueList.getConstantFwdRef(Record[2],CurTy)); 2706 break; 2707 } 2708 case bitc::CST_CODE_CE_EXTRACTELT 2709 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2710 if (Record.size() < 3) 2711 return error("Invalid record"); 2712 VectorType *OpTy = 2713 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2714 if (!OpTy) 2715 return error("Invalid record"); 2716 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2717 Constant *Op1 = nullptr; 2718 if (Record.size() == 4) { 2719 Type *IdxTy = getTypeByID(Record[2]); 2720 if (!IdxTy) 2721 return error("Invalid record"); 2722 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2723 } else { 2724 // Deprecated, but still needed to read old bitcode files. 2725 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2726 } 2727 if (!Op1) 2728 return error("Invalid record"); 2729 V = ConstantExpr::getExtractElement(Op0, Op1); 2730 break; 2731 } 2732 case bitc::CST_CODE_CE_INSERTELT 2733 : { // CE_INSERTELT: [opval, opval, opty, opval] 2734 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2735 if (Record.size() < 3 || !OpTy) 2736 return error("Invalid record"); 2737 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2738 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2739 OpTy->getElementType()); 2740 Constant *Op2 = nullptr; 2741 if (Record.size() == 4) { 2742 Type *IdxTy = getTypeByID(Record[2]); 2743 if (!IdxTy) 2744 return error("Invalid record"); 2745 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2746 } else { 2747 // Deprecated, but still needed to read old bitcode files. 2748 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2749 } 2750 if (!Op2) 2751 return error("Invalid record"); 2752 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2753 break; 2754 } 2755 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2756 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2757 if (Record.size() < 3 || !OpTy) 2758 return error("Invalid record"); 2759 DelayedShuffles.push_back( 2760 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2761 ++NextCstNo; 2762 continue; 2763 } 2764 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2765 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2766 VectorType *OpTy = 2767 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2768 if (Record.size() < 4 || !RTy || !OpTy) 2769 return error("Invalid record"); 2770 DelayedShuffles.push_back( 2771 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2772 ++NextCstNo; 2773 continue; 2774 } 2775 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2776 if (Record.size() < 4) 2777 return error("Invalid record"); 2778 Type *OpTy = getTypeByID(Record[0]); 2779 if (!OpTy) 2780 return error("Invalid record"); 2781 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2782 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2783 2784 if (OpTy->isFPOrFPVectorTy()) 2785 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2786 else 2787 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2788 break; 2789 } 2790 // This maintains backward compatibility, pre-asm dialect keywords. 2791 // Deprecated, but still needed to read old bitcode files. 2792 case bitc::CST_CODE_INLINEASM_OLD: { 2793 if (Record.size() < 2) 2794 return error("Invalid record"); 2795 std::string AsmStr, ConstrStr; 2796 bool HasSideEffects = Record[0] & 1; 2797 bool IsAlignStack = Record[0] >> 1; 2798 unsigned AsmStrSize = Record[1]; 2799 if (2+AsmStrSize >= Record.size()) 2800 return error("Invalid record"); 2801 unsigned ConstStrSize = Record[2+AsmStrSize]; 2802 if (3+AsmStrSize+ConstStrSize > Record.size()) 2803 return error("Invalid record"); 2804 2805 for (unsigned i = 0; i != AsmStrSize; ++i) 2806 AsmStr += (char)Record[2+i]; 2807 for (unsigned i = 0; i != ConstStrSize; ++i) 2808 ConstrStr += (char)Record[3+AsmStrSize+i]; 2809 UpgradeInlineAsmString(&AsmStr); 2810 V = InlineAsm::get( 2811 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2812 ConstrStr, HasSideEffects, IsAlignStack); 2813 break; 2814 } 2815 // This version adds support for the asm dialect keywords (e.g., 2816 // inteldialect). 2817 case bitc::CST_CODE_INLINEASM: { 2818 if (Record.size() < 2) 2819 return error("Invalid record"); 2820 std::string AsmStr, ConstrStr; 2821 bool HasSideEffects = Record[0] & 1; 2822 bool IsAlignStack = (Record[0] >> 1) & 1; 2823 unsigned AsmDialect = Record[0] >> 2; 2824 unsigned AsmStrSize = Record[1]; 2825 if (2+AsmStrSize >= Record.size()) 2826 return error("Invalid record"); 2827 unsigned ConstStrSize = Record[2+AsmStrSize]; 2828 if (3+AsmStrSize+ConstStrSize > Record.size()) 2829 return error("Invalid record"); 2830 2831 for (unsigned i = 0; i != AsmStrSize; ++i) 2832 AsmStr += (char)Record[2+i]; 2833 for (unsigned i = 0; i != ConstStrSize; ++i) 2834 ConstrStr += (char)Record[3+AsmStrSize+i]; 2835 UpgradeInlineAsmString(&AsmStr); 2836 V = InlineAsm::get( 2837 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2838 ConstrStr, HasSideEffects, IsAlignStack, 2839 InlineAsm::AsmDialect(AsmDialect)); 2840 break; 2841 } 2842 case bitc::CST_CODE_BLOCKADDRESS:{ 2843 if (Record.size() < 3) 2844 return error("Invalid record"); 2845 Type *FnTy = getTypeByID(Record[0]); 2846 if (!FnTy) 2847 return error("Invalid record"); 2848 Function *Fn = 2849 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2850 if (!Fn) 2851 return error("Invalid record"); 2852 2853 // If the function is already parsed we can insert the block address right 2854 // away. 2855 BasicBlock *BB; 2856 unsigned BBID = Record[2]; 2857 if (!BBID) 2858 // Invalid reference to entry block. 2859 return error("Invalid ID"); 2860 if (!Fn->empty()) { 2861 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2862 for (size_t I = 0, E = BBID; I != E; ++I) { 2863 if (BBI == BBE) 2864 return error("Invalid ID"); 2865 ++BBI; 2866 } 2867 BB = &*BBI; 2868 } else { 2869 // Otherwise insert a placeholder and remember it so it can be inserted 2870 // when the function is parsed. 2871 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2872 if (FwdBBs.empty()) 2873 BasicBlockFwdRefQueue.push_back(Fn); 2874 if (FwdBBs.size() < BBID + 1) 2875 FwdBBs.resize(BBID + 1); 2876 if (!FwdBBs[BBID]) 2877 FwdBBs[BBID] = BasicBlock::Create(Context); 2878 BB = FwdBBs[BBID]; 2879 } 2880 V = BlockAddress::get(Fn, BB); 2881 break; 2882 } 2883 } 2884 2885 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2886 "Incorrect fully structured type provided for Constant"); 2887 ValueList.assignValue(V, NextCstNo, CurFullTy); 2888 ++NextCstNo; 2889 } 2890 } 2891 2892 Error BitcodeReader::parseUseLists() { 2893 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2894 return Err; 2895 2896 // Read all the records. 2897 SmallVector<uint64_t, 64> Record; 2898 2899 while (true) { 2900 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2901 if (!MaybeEntry) 2902 return MaybeEntry.takeError(); 2903 BitstreamEntry Entry = MaybeEntry.get(); 2904 2905 switch (Entry.Kind) { 2906 case BitstreamEntry::SubBlock: // Handled for us already. 2907 case BitstreamEntry::Error: 2908 return error("Malformed block"); 2909 case BitstreamEntry::EndBlock: 2910 return Error::success(); 2911 case BitstreamEntry::Record: 2912 // The interesting case. 2913 break; 2914 } 2915 2916 // Read a use list record. 2917 Record.clear(); 2918 bool IsBB = false; 2919 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2920 if (!MaybeRecord) 2921 return MaybeRecord.takeError(); 2922 switch (MaybeRecord.get()) { 2923 default: // Default behavior: unknown type. 2924 break; 2925 case bitc::USELIST_CODE_BB: 2926 IsBB = true; 2927 LLVM_FALLTHROUGH; 2928 case bitc::USELIST_CODE_DEFAULT: { 2929 unsigned RecordLength = Record.size(); 2930 if (RecordLength < 3) 2931 // Records should have at least an ID and two indexes. 2932 return error("Invalid record"); 2933 unsigned ID = Record.back(); 2934 Record.pop_back(); 2935 2936 Value *V; 2937 if (IsBB) { 2938 assert(ID < FunctionBBs.size() && "Basic block not found"); 2939 V = FunctionBBs[ID]; 2940 } else 2941 V = ValueList[ID]; 2942 unsigned NumUses = 0; 2943 SmallDenseMap<const Use *, unsigned, 16> Order; 2944 for (const Use &U : V->materialized_uses()) { 2945 if (++NumUses > Record.size()) 2946 break; 2947 Order[&U] = Record[NumUses - 1]; 2948 } 2949 if (Order.size() != Record.size() || NumUses > Record.size()) 2950 // Mismatches can happen if the functions are being materialized lazily 2951 // (out-of-order), or a value has been upgraded. 2952 break; 2953 2954 V->sortUseList([&](const Use &L, const Use &R) { 2955 return Order.lookup(&L) < Order.lookup(&R); 2956 }); 2957 break; 2958 } 2959 } 2960 } 2961 } 2962 2963 /// When we see the block for metadata, remember where it is and then skip it. 2964 /// This lets us lazily deserialize the metadata. 2965 Error BitcodeReader::rememberAndSkipMetadata() { 2966 // Save the current stream state. 2967 uint64_t CurBit = Stream.GetCurrentBitNo(); 2968 DeferredMetadataInfo.push_back(CurBit); 2969 2970 // Skip over the block for now. 2971 if (Error Err = Stream.SkipBlock()) 2972 return Err; 2973 return Error::success(); 2974 } 2975 2976 Error BitcodeReader::materializeMetadata() { 2977 for (uint64_t BitPos : DeferredMetadataInfo) { 2978 // Move the bit stream to the saved position. 2979 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2980 return JumpFailed; 2981 if (Error Err = MDLoader->parseModuleMetadata()) 2982 return Err; 2983 } 2984 2985 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2986 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 2987 // multiple times. 2988 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 2989 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2990 NamedMDNode *LinkerOpts = 2991 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2992 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2993 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2994 } 2995 } 2996 2997 DeferredMetadataInfo.clear(); 2998 return Error::success(); 2999 } 3000 3001 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3002 3003 /// When we see the block for a function body, remember where it is and then 3004 /// skip it. This lets us lazily deserialize the functions. 3005 Error BitcodeReader::rememberAndSkipFunctionBody() { 3006 // Get the function we are talking about. 3007 if (FunctionsWithBodies.empty()) 3008 return error("Insufficient function protos"); 3009 3010 Function *Fn = FunctionsWithBodies.back(); 3011 FunctionsWithBodies.pop_back(); 3012 3013 // Save the current stream state. 3014 uint64_t CurBit = Stream.GetCurrentBitNo(); 3015 assert( 3016 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3017 "Mismatch between VST and scanned function offsets"); 3018 DeferredFunctionInfo[Fn] = CurBit; 3019 3020 // Skip over the function block for now. 3021 if (Error Err = Stream.SkipBlock()) 3022 return Err; 3023 return Error::success(); 3024 } 3025 3026 Error BitcodeReader::globalCleanup() { 3027 // Patch the initializers for globals and aliases up. 3028 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3029 return Err; 3030 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3031 return error("Malformed global initializer set"); 3032 3033 // Look for intrinsic functions which need to be upgraded at some point 3034 // and functions that need to have their function attributes upgraded. 3035 for (Function &F : *TheModule) { 3036 MDLoader->upgradeDebugIntrinsics(F); 3037 Function *NewFn; 3038 if (UpgradeIntrinsicFunction(&F, NewFn)) 3039 UpgradedIntrinsics[&F] = NewFn; 3040 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3041 // Some types could be renamed during loading if several modules are 3042 // loaded in the same LLVMContext (LTO scenario). In this case we should 3043 // remangle intrinsics names as well. 3044 RemangledIntrinsics[&F] = Remangled.getValue(); 3045 // Look for functions that rely on old function attribute behavior. 3046 UpgradeFunctionAttributes(F); 3047 } 3048 3049 // Look for global variables which need to be renamed. 3050 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3051 for (GlobalVariable &GV : TheModule->globals()) 3052 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3053 UpgradedVariables.emplace_back(&GV, Upgraded); 3054 for (auto &Pair : UpgradedVariables) { 3055 Pair.first->eraseFromParent(); 3056 TheModule->getGlobalList().push_back(Pair.second); 3057 } 3058 3059 // Force deallocation of memory for these vectors to favor the client that 3060 // want lazy deserialization. 3061 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3062 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3063 IndirectSymbolInits); 3064 return Error::success(); 3065 } 3066 3067 /// Support for lazy parsing of function bodies. This is required if we 3068 /// either have an old bitcode file without a VST forward declaration record, 3069 /// or if we have an anonymous function being materialized, since anonymous 3070 /// functions do not have a name and are therefore not in the VST. 3071 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3072 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3073 return JumpFailed; 3074 3075 if (Stream.AtEndOfStream()) 3076 return error("Could not find function in stream"); 3077 3078 if (!SeenFirstFunctionBody) 3079 return error("Trying to materialize functions before seeing function blocks"); 3080 3081 // An old bitcode file with the symbol table at the end would have 3082 // finished the parse greedily. 3083 assert(SeenValueSymbolTable); 3084 3085 SmallVector<uint64_t, 64> Record; 3086 3087 while (true) { 3088 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3089 if (!MaybeEntry) 3090 return MaybeEntry.takeError(); 3091 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3092 3093 switch (Entry.Kind) { 3094 default: 3095 return error("Expect SubBlock"); 3096 case BitstreamEntry::SubBlock: 3097 switch (Entry.ID) { 3098 default: 3099 return error("Expect function block"); 3100 case bitc::FUNCTION_BLOCK_ID: 3101 if (Error Err = rememberAndSkipFunctionBody()) 3102 return Err; 3103 NextUnreadBit = Stream.GetCurrentBitNo(); 3104 return Error::success(); 3105 } 3106 } 3107 } 3108 } 3109 3110 bool BitcodeReaderBase::readBlockInfo() { 3111 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3112 Stream.ReadBlockInfoBlock(); 3113 if (!MaybeNewBlockInfo) 3114 return true; // FIXME Handle the error. 3115 Optional<BitstreamBlockInfo> NewBlockInfo = 3116 std::move(MaybeNewBlockInfo.get()); 3117 if (!NewBlockInfo) 3118 return true; 3119 BlockInfo = std::move(*NewBlockInfo); 3120 return false; 3121 } 3122 3123 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3124 // v1: [selection_kind, name] 3125 // v2: [strtab_offset, strtab_size, selection_kind] 3126 StringRef Name; 3127 std::tie(Name, Record) = readNameFromStrtab(Record); 3128 3129 if (Record.empty()) 3130 return error("Invalid record"); 3131 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3132 std::string OldFormatName; 3133 if (!UseStrtab) { 3134 if (Record.size() < 2) 3135 return error("Invalid record"); 3136 unsigned ComdatNameSize = Record[1]; 3137 OldFormatName.reserve(ComdatNameSize); 3138 for (unsigned i = 0; i != ComdatNameSize; ++i) 3139 OldFormatName += (char)Record[2 + i]; 3140 Name = OldFormatName; 3141 } 3142 Comdat *C = TheModule->getOrInsertComdat(Name); 3143 C->setSelectionKind(SK); 3144 ComdatList.push_back(C); 3145 return Error::success(); 3146 } 3147 3148 static void inferDSOLocal(GlobalValue *GV) { 3149 // infer dso_local from linkage and visibility if it is not encoded. 3150 if (GV->hasLocalLinkage() || 3151 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3152 GV->setDSOLocal(true); 3153 } 3154 3155 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3156 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3157 // visibility, threadlocal, unnamed_addr, externally_initialized, 3158 // dllstorageclass, comdat, attributes, preemption specifier, 3159 // partition strtab offset, partition strtab size] (name in VST) 3160 // v2: [strtab_offset, strtab_size, v1] 3161 StringRef Name; 3162 std::tie(Name, Record) = readNameFromStrtab(Record); 3163 3164 if (Record.size() < 6) 3165 return error("Invalid record"); 3166 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3167 Type *Ty = flattenPointerTypes(FullTy); 3168 if (!Ty) 3169 return error("Invalid record"); 3170 bool isConstant = Record[1] & 1; 3171 bool explicitType = Record[1] & 2; 3172 unsigned AddressSpace; 3173 if (explicitType) { 3174 AddressSpace = Record[1] >> 2; 3175 } else { 3176 if (!Ty->isPointerTy()) 3177 return error("Invalid type for value"); 3178 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3179 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3180 } 3181 3182 uint64_t RawLinkage = Record[3]; 3183 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3184 MaybeAlign Alignment; 3185 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3186 return Err; 3187 std::string Section; 3188 if (Record[5]) { 3189 if (Record[5] - 1 >= SectionTable.size()) 3190 return error("Invalid ID"); 3191 Section = SectionTable[Record[5] - 1]; 3192 } 3193 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3194 // Local linkage must have default visibility. 3195 // auto-upgrade `hidden` and `protected` for old bitcode. 3196 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3197 Visibility = getDecodedVisibility(Record[6]); 3198 3199 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3200 if (Record.size() > 7) 3201 TLM = getDecodedThreadLocalMode(Record[7]); 3202 3203 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3204 if (Record.size() > 8) 3205 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3206 3207 bool ExternallyInitialized = false; 3208 if (Record.size() > 9) 3209 ExternallyInitialized = Record[9]; 3210 3211 GlobalVariable *NewGV = 3212 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3213 nullptr, TLM, AddressSpace, ExternallyInitialized); 3214 NewGV->setAlignment(Alignment); 3215 if (!Section.empty()) 3216 NewGV->setSection(Section); 3217 NewGV->setVisibility(Visibility); 3218 NewGV->setUnnamedAddr(UnnamedAddr); 3219 3220 if (Record.size() > 10) 3221 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3222 else 3223 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3224 3225 FullTy = PointerType::get(FullTy, AddressSpace); 3226 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3227 "Incorrect fully specified type for GlobalVariable"); 3228 ValueList.push_back(NewGV, FullTy); 3229 3230 // Remember which value to use for the global initializer. 3231 if (unsigned InitID = Record[2]) 3232 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3233 3234 if (Record.size() > 11) { 3235 if (unsigned ComdatID = Record[11]) { 3236 if (ComdatID > ComdatList.size()) 3237 return error("Invalid global variable comdat ID"); 3238 NewGV->setComdat(ComdatList[ComdatID - 1]); 3239 } 3240 } else if (hasImplicitComdat(RawLinkage)) { 3241 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3242 } 3243 3244 if (Record.size() > 12) { 3245 auto AS = getAttributes(Record[12]).getFnAttributes(); 3246 NewGV->setAttributes(AS); 3247 } 3248 3249 if (Record.size() > 13) { 3250 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3251 } 3252 inferDSOLocal(NewGV); 3253 3254 // Check whether we have enough values to read a partition name. 3255 if (Record.size() > 15) 3256 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3257 3258 return Error::success(); 3259 } 3260 3261 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3262 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3263 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3264 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3265 // v2: [strtab_offset, strtab_size, v1] 3266 StringRef Name; 3267 std::tie(Name, Record) = readNameFromStrtab(Record); 3268 3269 if (Record.size() < 8) 3270 return error("Invalid record"); 3271 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3272 Type *FTy = flattenPointerTypes(FullFTy); 3273 if (!FTy) 3274 return error("Invalid record"); 3275 if (isa<PointerType>(FTy)) 3276 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3277 3278 if (!isa<FunctionType>(FTy)) 3279 return error("Invalid type for value"); 3280 auto CC = static_cast<CallingConv::ID>(Record[1]); 3281 if (CC & ~CallingConv::MaxID) 3282 return error("Invalid calling convention ID"); 3283 3284 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3285 if (Record.size() > 16) 3286 AddrSpace = Record[16]; 3287 3288 Function *Func = 3289 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3290 AddrSpace, Name, TheModule); 3291 3292 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3293 "Incorrect fully specified type provided for function"); 3294 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3295 3296 Func->setCallingConv(CC); 3297 bool isProto = Record[2]; 3298 uint64_t RawLinkage = Record[3]; 3299 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3300 Func->setAttributes(getAttributes(Record[4])); 3301 3302 // Upgrade any old-style byval or sret without a type by propagating the 3303 // argument's pointee type. There should be no opaque pointers where the byval 3304 // type is implicit. 3305 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3306 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3307 if (!Func->hasParamAttribute(i, Kind)) 3308 continue; 3309 3310 Func->removeParamAttr(i, Kind); 3311 3312 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3313 Type *PtrEltTy = getPointerElementFlatType(PTy); 3314 Attribute NewAttr = 3315 Kind == Attribute::ByVal 3316 ? Attribute::getWithByValType(Context, PtrEltTy) 3317 : Attribute::getWithStructRetType(Context, PtrEltTy); 3318 Func->addParamAttr(i, NewAttr); 3319 } 3320 } 3321 3322 MaybeAlign Alignment; 3323 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3324 return Err; 3325 Func->setAlignment(Alignment); 3326 if (Record[6]) { 3327 if (Record[6] - 1 >= SectionTable.size()) 3328 return error("Invalid ID"); 3329 Func->setSection(SectionTable[Record[6] - 1]); 3330 } 3331 // Local linkage must have default visibility. 3332 // auto-upgrade `hidden` and `protected` for old bitcode. 3333 if (!Func->hasLocalLinkage()) 3334 Func->setVisibility(getDecodedVisibility(Record[7])); 3335 if (Record.size() > 8 && Record[8]) { 3336 if (Record[8] - 1 >= GCTable.size()) 3337 return error("Invalid ID"); 3338 Func->setGC(GCTable[Record[8] - 1]); 3339 } 3340 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3341 if (Record.size() > 9) 3342 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3343 Func->setUnnamedAddr(UnnamedAddr); 3344 if (Record.size() > 10 && Record[10] != 0) 3345 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3346 3347 if (Record.size() > 11) 3348 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3349 else 3350 upgradeDLLImportExportLinkage(Func, RawLinkage); 3351 3352 if (Record.size() > 12) { 3353 if (unsigned ComdatID = Record[12]) { 3354 if (ComdatID > ComdatList.size()) 3355 return error("Invalid function comdat ID"); 3356 Func->setComdat(ComdatList[ComdatID - 1]); 3357 } 3358 } else if (hasImplicitComdat(RawLinkage)) { 3359 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3360 } 3361 3362 if (Record.size() > 13 && Record[13] != 0) 3363 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3364 3365 if (Record.size() > 14 && Record[14] != 0) 3366 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3367 3368 if (Record.size() > 15) { 3369 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3370 } 3371 inferDSOLocal(Func); 3372 3373 // Record[16] is the address space number. 3374 3375 // Check whether we have enough values to read a partition name. 3376 if (Record.size() > 18) 3377 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3378 3379 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3380 assert(Func->getType() == flattenPointerTypes(FullTy) && 3381 "Incorrect fully specified type provided for Function"); 3382 ValueList.push_back(Func, FullTy); 3383 3384 // If this is a function with a body, remember the prototype we are 3385 // creating now, so that we can match up the body with them later. 3386 if (!isProto) { 3387 Func->setIsMaterializable(true); 3388 FunctionsWithBodies.push_back(Func); 3389 DeferredFunctionInfo[Func] = 0; 3390 } 3391 return Error::success(); 3392 } 3393 3394 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3395 unsigned BitCode, ArrayRef<uint64_t> Record) { 3396 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3397 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3398 // dllstorageclass, threadlocal, unnamed_addr, 3399 // preemption specifier] (name in VST) 3400 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3401 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3402 // preemption specifier] (name in VST) 3403 // v2: [strtab_offset, strtab_size, v1] 3404 StringRef Name; 3405 std::tie(Name, Record) = readNameFromStrtab(Record); 3406 3407 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3408 if (Record.size() < (3 + (unsigned)NewRecord)) 3409 return error("Invalid record"); 3410 unsigned OpNum = 0; 3411 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3412 Type *Ty = flattenPointerTypes(FullTy); 3413 if (!Ty) 3414 return error("Invalid record"); 3415 3416 unsigned AddrSpace; 3417 if (!NewRecord) { 3418 auto *PTy = dyn_cast<PointerType>(Ty); 3419 if (!PTy) 3420 return error("Invalid type for value"); 3421 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3422 AddrSpace = PTy->getAddressSpace(); 3423 } else { 3424 AddrSpace = Record[OpNum++]; 3425 } 3426 3427 auto Val = Record[OpNum++]; 3428 auto Linkage = Record[OpNum++]; 3429 GlobalIndirectSymbol *NewGA; 3430 if (BitCode == bitc::MODULE_CODE_ALIAS || 3431 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3432 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3433 TheModule); 3434 else 3435 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3436 nullptr, TheModule); 3437 3438 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3439 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3440 // Local linkage must have default visibility. 3441 // auto-upgrade `hidden` and `protected` for old bitcode. 3442 if (OpNum != Record.size()) { 3443 auto VisInd = OpNum++; 3444 if (!NewGA->hasLocalLinkage()) 3445 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3446 } 3447 if (BitCode == bitc::MODULE_CODE_ALIAS || 3448 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3449 if (OpNum != Record.size()) 3450 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3451 else 3452 upgradeDLLImportExportLinkage(NewGA, Linkage); 3453 if (OpNum != Record.size()) 3454 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3455 if (OpNum != Record.size()) 3456 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3457 } 3458 if (OpNum != Record.size()) 3459 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3460 inferDSOLocal(NewGA); 3461 3462 // Check whether we have enough values to read a partition name. 3463 if (OpNum + 1 < Record.size()) { 3464 NewGA->setPartition( 3465 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3466 OpNum += 2; 3467 } 3468 3469 FullTy = PointerType::get(FullTy, AddrSpace); 3470 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3471 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3472 ValueList.push_back(NewGA, FullTy); 3473 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3474 return Error::success(); 3475 } 3476 3477 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3478 bool ShouldLazyLoadMetadata, 3479 DataLayoutCallbackTy DataLayoutCallback) { 3480 if (ResumeBit) { 3481 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3482 return JumpFailed; 3483 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3484 return Err; 3485 3486 SmallVector<uint64_t, 64> Record; 3487 3488 // Parts of bitcode parsing depend on the datalayout. Make sure we 3489 // finalize the datalayout before we run any of that code. 3490 bool ResolvedDataLayout = false; 3491 auto ResolveDataLayout = [&] { 3492 if (ResolvedDataLayout) 3493 return; 3494 3495 // datalayout and triple can't be parsed after this point. 3496 ResolvedDataLayout = true; 3497 3498 // Upgrade data layout string. 3499 std::string DL = llvm::UpgradeDataLayoutString( 3500 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3501 TheModule->setDataLayout(DL); 3502 3503 if (auto LayoutOverride = 3504 DataLayoutCallback(TheModule->getTargetTriple())) 3505 TheModule->setDataLayout(*LayoutOverride); 3506 }; 3507 3508 // Read all the records for this module. 3509 while (true) { 3510 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3511 if (!MaybeEntry) 3512 return MaybeEntry.takeError(); 3513 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3514 3515 switch (Entry.Kind) { 3516 case BitstreamEntry::Error: 3517 return error("Malformed block"); 3518 case BitstreamEntry::EndBlock: 3519 ResolveDataLayout(); 3520 return globalCleanup(); 3521 3522 case BitstreamEntry::SubBlock: 3523 switch (Entry.ID) { 3524 default: // Skip unknown content. 3525 if (Error Err = Stream.SkipBlock()) 3526 return Err; 3527 break; 3528 case bitc::BLOCKINFO_BLOCK_ID: 3529 if (readBlockInfo()) 3530 return error("Malformed block"); 3531 break; 3532 case bitc::PARAMATTR_BLOCK_ID: 3533 if (Error Err = parseAttributeBlock()) 3534 return Err; 3535 break; 3536 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3537 if (Error Err = parseAttributeGroupBlock()) 3538 return Err; 3539 break; 3540 case bitc::TYPE_BLOCK_ID_NEW: 3541 if (Error Err = parseTypeTable()) 3542 return Err; 3543 break; 3544 case bitc::VALUE_SYMTAB_BLOCK_ID: 3545 if (!SeenValueSymbolTable) { 3546 // Either this is an old form VST without function index and an 3547 // associated VST forward declaration record (which would have caused 3548 // the VST to be jumped to and parsed before it was encountered 3549 // normally in the stream), or there were no function blocks to 3550 // trigger an earlier parsing of the VST. 3551 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3552 if (Error Err = parseValueSymbolTable()) 3553 return Err; 3554 SeenValueSymbolTable = true; 3555 } else { 3556 // We must have had a VST forward declaration record, which caused 3557 // the parser to jump to and parse the VST earlier. 3558 assert(VSTOffset > 0); 3559 if (Error Err = Stream.SkipBlock()) 3560 return Err; 3561 } 3562 break; 3563 case bitc::CONSTANTS_BLOCK_ID: 3564 if (Error Err = parseConstants()) 3565 return Err; 3566 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3567 return Err; 3568 break; 3569 case bitc::METADATA_BLOCK_ID: 3570 if (ShouldLazyLoadMetadata) { 3571 if (Error Err = rememberAndSkipMetadata()) 3572 return Err; 3573 break; 3574 } 3575 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3576 if (Error Err = MDLoader->parseModuleMetadata()) 3577 return Err; 3578 break; 3579 case bitc::METADATA_KIND_BLOCK_ID: 3580 if (Error Err = MDLoader->parseMetadataKinds()) 3581 return Err; 3582 break; 3583 case bitc::FUNCTION_BLOCK_ID: 3584 ResolveDataLayout(); 3585 3586 // If this is the first function body we've seen, reverse the 3587 // FunctionsWithBodies list. 3588 if (!SeenFirstFunctionBody) { 3589 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3590 if (Error Err = globalCleanup()) 3591 return Err; 3592 SeenFirstFunctionBody = true; 3593 } 3594 3595 if (VSTOffset > 0) { 3596 // If we have a VST forward declaration record, make sure we 3597 // parse the VST now if we haven't already. It is needed to 3598 // set up the DeferredFunctionInfo vector for lazy reading. 3599 if (!SeenValueSymbolTable) { 3600 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3601 return Err; 3602 SeenValueSymbolTable = true; 3603 // Fall through so that we record the NextUnreadBit below. 3604 // This is necessary in case we have an anonymous function that 3605 // is later materialized. Since it will not have a VST entry we 3606 // need to fall back to the lazy parse to find its offset. 3607 } else { 3608 // If we have a VST forward declaration record, but have already 3609 // parsed the VST (just above, when the first function body was 3610 // encountered here), then we are resuming the parse after 3611 // materializing functions. The ResumeBit points to the 3612 // start of the last function block recorded in the 3613 // DeferredFunctionInfo map. Skip it. 3614 if (Error Err = Stream.SkipBlock()) 3615 return Err; 3616 continue; 3617 } 3618 } 3619 3620 // Support older bitcode files that did not have the function 3621 // index in the VST, nor a VST forward declaration record, as 3622 // well as anonymous functions that do not have VST entries. 3623 // Build the DeferredFunctionInfo vector on the fly. 3624 if (Error Err = rememberAndSkipFunctionBody()) 3625 return Err; 3626 3627 // Suspend parsing when we reach the function bodies. Subsequent 3628 // materialization calls will resume it when necessary. If the bitcode 3629 // file is old, the symbol table will be at the end instead and will not 3630 // have been seen yet. In this case, just finish the parse now. 3631 if (SeenValueSymbolTable) { 3632 NextUnreadBit = Stream.GetCurrentBitNo(); 3633 // After the VST has been parsed, we need to make sure intrinsic name 3634 // are auto-upgraded. 3635 return globalCleanup(); 3636 } 3637 break; 3638 case bitc::USELIST_BLOCK_ID: 3639 if (Error Err = parseUseLists()) 3640 return Err; 3641 break; 3642 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3643 if (Error Err = parseOperandBundleTags()) 3644 return Err; 3645 break; 3646 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3647 if (Error Err = parseSyncScopeNames()) 3648 return Err; 3649 break; 3650 } 3651 continue; 3652 3653 case BitstreamEntry::Record: 3654 // The interesting case. 3655 break; 3656 } 3657 3658 // Read a record. 3659 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3660 if (!MaybeBitCode) 3661 return MaybeBitCode.takeError(); 3662 switch (unsigned BitCode = MaybeBitCode.get()) { 3663 default: break; // Default behavior, ignore unknown content. 3664 case bitc::MODULE_CODE_VERSION: { 3665 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3666 if (!VersionOrErr) 3667 return VersionOrErr.takeError(); 3668 UseRelativeIDs = *VersionOrErr >= 1; 3669 break; 3670 } 3671 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3672 if (ResolvedDataLayout) 3673 return error("target triple too late in module"); 3674 std::string S; 3675 if (convertToString(Record, 0, S)) 3676 return error("Invalid record"); 3677 TheModule->setTargetTriple(S); 3678 break; 3679 } 3680 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3681 if (ResolvedDataLayout) 3682 return error("datalayout too late in module"); 3683 std::string S; 3684 if (convertToString(Record, 0, S)) 3685 return error("Invalid record"); 3686 TheModule->setDataLayout(S); 3687 break; 3688 } 3689 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3690 std::string S; 3691 if (convertToString(Record, 0, S)) 3692 return error("Invalid record"); 3693 TheModule->setModuleInlineAsm(S); 3694 break; 3695 } 3696 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3697 // Deprecated, but still needed to read old bitcode files. 3698 std::string S; 3699 if (convertToString(Record, 0, S)) 3700 return error("Invalid record"); 3701 // Ignore value. 3702 break; 3703 } 3704 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3705 std::string S; 3706 if (convertToString(Record, 0, S)) 3707 return error("Invalid record"); 3708 SectionTable.push_back(S); 3709 break; 3710 } 3711 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3712 std::string S; 3713 if (convertToString(Record, 0, S)) 3714 return error("Invalid record"); 3715 GCTable.push_back(S); 3716 break; 3717 } 3718 case bitc::MODULE_CODE_COMDAT: 3719 if (Error Err = parseComdatRecord(Record)) 3720 return Err; 3721 break; 3722 case bitc::MODULE_CODE_GLOBALVAR: 3723 if (Error Err = parseGlobalVarRecord(Record)) 3724 return Err; 3725 break; 3726 case bitc::MODULE_CODE_FUNCTION: 3727 ResolveDataLayout(); 3728 if (Error Err = parseFunctionRecord(Record)) 3729 return Err; 3730 break; 3731 case bitc::MODULE_CODE_IFUNC: 3732 case bitc::MODULE_CODE_ALIAS: 3733 case bitc::MODULE_CODE_ALIAS_OLD: 3734 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3735 return Err; 3736 break; 3737 /// MODULE_CODE_VSTOFFSET: [offset] 3738 case bitc::MODULE_CODE_VSTOFFSET: 3739 if (Record.empty()) 3740 return error("Invalid record"); 3741 // Note that we subtract 1 here because the offset is relative to one word 3742 // before the start of the identification or module block, which was 3743 // historically always the start of the regular bitcode header. 3744 VSTOffset = Record[0] - 1; 3745 break; 3746 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3747 case bitc::MODULE_CODE_SOURCE_FILENAME: 3748 SmallString<128> ValueName; 3749 if (convertToString(Record, 0, ValueName)) 3750 return error("Invalid record"); 3751 TheModule->setSourceFileName(ValueName); 3752 break; 3753 } 3754 Record.clear(); 3755 } 3756 } 3757 3758 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3759 bool IsImporting, 3760 DataLayoutCallbackTy DataLayoutCallback) { 3761 TheModule = M; 3762 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3763 [&](unsigned ID) { return getTypeByID(ID); }); 3764 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3765 } 3766 3767 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3768 if (!isa<PointerType>(PtrType)) 3769 return error("Load/Store operand is not a pointer type"); 3770 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3771 3772 if (ValType && ValType != ElemType) 3773 return error("Explicit load/store type does not match pointee " 3774 "type of pointer operand"); 3775 if (!PointerType::isLoadableOrStorableType(ElemType)) 3776 return error("Cannot load/store from pointer"); 3777 return Error::success(); 3778 } 3779 3780 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3781 ArrayRef<Type *> ArgsFullTys) { 3782 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3783 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3784 if (!CB->paramHasAttr(i, Kind)) 3785 continue; 3786 3787 CB->removeParamAttr(i, Kind); 3788 3789 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3790 Attribute NewAttr = 3791 Kind == Attribute::ByVal 3792 ? Attribute::getWithByValType(Context, PtrEltTy) 3793 : Attribute::getWithStructRetType(Context, PtrEltTy); 3794 CB->addParamAttr(i, NewAttr); 3795 } 3796 } 3797 } 3798 3799 /// Lazily parse the specified function body block. 3800 Error BitcodeReader::parseFunctionBody(Function *F) { 3801 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3802 return Err; 3803 3804 // Unexpected unresolved metadata when parsing function. 3805 if (MDLoader->hasFwdRefs()) 3806 return error("Invalid function metadata: incoming forward references"); 3807 3808 InstructionList.clear(); 3809 unsigned ModuleValueListSize = ValueList.size(); 3810 unsigned ModuleMDLoaderSize = MDLoader->size(); 3811 3812 // Add all the function arguments to the value table. 3813 unsigned ArgNo = 0; 3814 FunctionType *FullFTy = FunctionTypes[F]; 3815 for (Argument &I : F->args()) { 3816 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3817 "Incorrect fully specified type for Function Argument"); 3818 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3819 } 3820 unsigned NextValueNo = ValueList.size(); 3821 BasicBlock *CurBB = nullptr; 3822 unsigned CurBBNo = 0; 3823 3824 DebugLoc LastLoc; 3825 auto getLastInstruction = [&]() -> Instruction * { 3826 if (CurBB && !CurBB->empty()) 3827 return &CurBB->back(); 3828 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3829 !FunctionBBs[CurBBNo - 1]->empty()) 3830 return &FunctionBBs[CurBBNo - 1]->back(); 3831 return nullptr; 3832 }; 3833 3834 std::vector<OperandBundleDef> OperandBundles; 3835 3836 // Read all the records. 3837 SmallVector<uint64_t, 64> Record; 3838 3839 while (true) { 3840 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3841 if (!MaybeEntry) 3842 return MaybeEntry.takeError(); 3843 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3844 3845 switch (Entry.Kind) { 3846 case BitstreamEntry::Error: 3847 return error("Malformed block"); 3848 case BitstreamEntry::EndBlock: 3849 goto OutOfRecordLoop; 3850 3851 case BitstreamEntry::SubBlock: 3852 switch (Entry.ID) { 3853 default: // Skip unknown content. 3854 if (Error Err = Stream.SkipBlock()) 3855 return Err; 3856 break; 3857 case bitc::CONSTANTS_BLOCK_ID: 3858 if (Error Err = parseConstants()) 3859 return Err; 3860 NextValueNo = ValueList.size(); 3861 break; 3862 case bitc::VALUE_SYMTAB_BLOCK_ID: 3863 if (Error Err = parseValueSymbolTable()) 3864 return Err; 3865 break; 3866 case bitc::METADATA_ATTACHMENT_ID: 3867 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3868 return Err; 3869 break; 3870 case bitc::METADATA_BLOCK_ID: 3871 assert(DeferredMetadataInfo.empty() && 3872 "Must read all module-level metadata before function-level"); 3873 if (Error Err = MDLoader->parseFunctionMetadata()) 3874 return Err; 3875 break; 3876 case bitc::USELIST_BLOCK_ID: 3877 if (Error Err = parseUseLists()) 3878 return Err; 3879 break; 3880 } 3881 continue; 3882 3883 case BitstreamEntry::Record: 3884 // The interesting case. 3885 break; 3886 } 3887 3888 // Read a record. 3889 Record.clear(); 3890 Instruction *I = nullptr; 3891 Type *FullTy = nullptr; 3892 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3893 if (!MaybeBitCode) 3894 return MaybeBitCode.takeError(); 3895 switch (unsigned BitCode = MaybeBitCode.get()) { 3896 default: // Default behavior: reject 3897 return error("Invalid value"); 3898 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3899 if (Record.empty() || Record[0] == 0) 3900 return error("Invalid record"); 3901 // Create all the basic blocks for the function. 3902 FunctionBBs.resize(Record[0]); 3903 3904 // See if anything took the address of blocks in this function. 3905 auto BBFRI = BasicBlockFwdRefs.find(F); 3906 if (BBFRI == BasicBlockFwdRefs.end()) { 3907 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3908 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3909 } else { 3910 auto &BBRefs = BBFRI->second; 3911 // Check for invalid basic block references. 3912 if (BBRefs.size() > FunctionBBs.size()) 3913 return error("Invalid ID"); 3914 assert(!BBRefs.empty() && "Unexpected empty array"); 3915 assert(!BBRefs.front() && "Invalid reference to entry block"); 3916 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3917 ++I) 3918 if (I < RE && BBRefs[I]) { 3919 BBRefs[I]->insertInto(F); 3920 FunctionBBs[I] = BBRefs[I]; 3921 } else { 3922 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3923 } 3924 3925 // Erase from the table. 3926 BasicBlockFwdRefs.erase(BBFRI); 3927 } 3928 3929 CurBB = FunctionBBs[0]; 3930 continue; 3931 } 3932 3933 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3934 // This record indicates that the last instruction is at the same 3935 // location as the previous instruction with a location. 3936 I = getLastInstruction(); 3937 3938 if (!I) 3939 return error("Invalid record"); 3940 I->setDebugLoc(LastLoc); 3941 I = nullptr; 3942 continue; 3943 3944 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3945 I = getLastInstruction(); 3946 if (!I || Record.size() < 4) 3947 return error("Invalid record"); 3948 3949 unsigned Line = Record[0], Col = Record[1]; 3950 unsigned ScopeID = Record[2], IAID = Record[3]; 3951 bool isImplicitCode = Record.size() == 5 && Record[4]; 3952 3953 MDNode *Scope = nullptr, *IA = nullptr; 3954 if (ScopeID) { 3955 Scope = dyn_cast_or_null<MDNode>( 3956 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3957 if (!Scope) 3958 return error("Invalid record"); 3959 } 3960 if (IAID) { 3961 IA = dyn_cast_or_null<MDNode>( 3962 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3963 if (!IA) 3964 return error("Invalid record"); 3965 } 3966 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 3967 isImplicitCode); 3968 I->setDebugLoc(LastLoc); 3969 I = nullptr; 3970 continue; 3971 } 3972 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3973 unsigned OpNum = 0; 3974 Value *LHS; 3975 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3976 OpNum+1 > Record.size()) 3977 return error("Invalid record"); 3978 3979 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3980 if (Opc == -1) 3981 return error("Invalid record"); 3982 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3983 InstructionList.push_back(I); 3984 if (OpNum < Record.size()) { 3985 if (isa<FPMathOperator>(I)) { 3986 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3987 if (FMF.any()) 3988 I->setFastMathFlags(FMF); 3989 } 3990 } 3991 break; 3992 } 3993 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3994 unsigned OpNum = 0; 3995 Value *LHS, *RHS; 3996 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3997 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3998 OpNum+1 > Record.size()) 3999 return error("Invalid record"); 4000 4001 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4002 if (Opc == -1) 4003 return error("Invalid record"); 4004 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4005 InstructionList.push_back(I); 4006 if (OpNum < Record.size()) { 4007 if (Opc == Instruction::Add || 4008 Opc == Instruction::Sub || 4009 Opc == Instruction::Mul || 4010 Opc == Instruction::Shl) { 4011 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4012 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4013 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4014 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4015 } else if (Opc == Instruction::SDiv || 4016 Opc == Instruction::UDiv || 4017 Opc == Instruction::LShr || 4018 Opc == Instruction::AShr) { 4019 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4020 cast<BinaryOperator>(I)->setIsExact(true); 4021 } else if (isa<FPMathOperator>(I)) { 4022 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4023 if (FMF.any()) 4024 I->setFastMathFlags(FMF); 4025 } 4026 4027 } 4028 break; 4029 } 4030 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4031 unsigned OpNum = 0; 4032 Value *Op; 4033 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4034 OpNum+2 != Record.size()) 4035 return error("Invalid record"); 4036 4037 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4038 Type *ResTy = flattenPointerTypes(FullTy); 4039 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4040 if (Opc == -1 || !ResTy) 4041 return error("Invalid record"); 4042 Instruction *Temp = nullptr; 4043 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4044 if (Temp) { 4045 InstructionList.push_back(Temp); 4046 assert(CurBB && "No current BB?"); 4047 CurBB->getInstList().push_back(Temp); 4048 } 4049 } else { 4050 auto CastOp = (Instruction::CastOps)Opc; 4051 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4052 return error("Invalid cast"); 4053 I = CastInst::Create(CastOp, Op, ResTy); 4054 } 4055 InstructionList.push_back(I); 4056 break; 4057 } 4058 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4059 case bitc::FUNC_CODE_INST_GEP_OLD: 4060 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4061 unsigned OpNum = 0; 4062 4063 Type *Ty; 4064 bool InBounds; 4065 4066 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4067 InBounds = Record[OpNum++]; 4068 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4069 Ty = flattenPointerTypes(FullTy); 4070 } else { 4071 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4072 Ty = nullptr; 4073 } 4074 4075 Value *BasePtr; 4076 Type *FullBaseTy = nullptr; 4077 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4078 return error("Invalid record"); 4079 4080 if (!Ty) { 4081 std::tie(FullTy, Ty) = 4082 getPointerElementTypes(FullBaseTy->getScalarType()); 4083 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4084 return error( 4085 "Explicit gep type does not match pointee type of pointer operand"); 4086 4087 SmallVector<Value*, 16> GEPIdx; 4088 while (OpNum != Record.size()) { 4089 Value *Op; 4090 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4091 return error("Invalid record"); 4092 GEPIdx.push_back(Op); 4093 } 4094 4095 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4096 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4097 4098 InstructionList.push_back(I); 4099 if (InBounds) 4100 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4101 break; 4102 } 4103 4104 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4105 // EXTRACTVAL: [opty, opval, n x indices] 4106 unsigned OpNum = 0; 4107 Value *Agg; 4108 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4109 return error("Invalid record"); 4110 4111 unsigned RecSize = Record.size(); 4112 if (OpNum == RecSize) 4113 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4114 4115 SmallVector<unsigned, 4> EXTRACTVALIdx; 4116 for (; OpNum != RecSize; ++OpNum) { 4117 bool IsArray = FullTy->isArrayTy(); 4118 bool IsStruct = FullTy->isStructTy(); 4119 uint64_t Index = Record[OpNum]; 4120 4121 if (!IsStruct && !IsArray) 4122 return error("EXTRACTVAL: Invalid type"); 4123 if ((unsigned)Index != Index) 4124 return error("Invalid value"); 4125 if (IsStruct && Index >= FullTy->getStructNumElements()) 4126 return error("EXTRACTVAL: Invalid struct index"); 4127 if (IsArray && Index >= FullTy->getArrayNumElements()) 4128 return error("EXTRACTVAL: Invalid array index"); 4129 EXTRACTVALIdx.push_back((unsigned)Index); 4130 4131 if (IsStruct) 4132 FullTy = FullTy->getStructElementType(Index); 4133 else 4134 FullTy = FullTy->getArrayElementType(); 4135 } 4136 4137 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4138 InstructionList.push_back(I); 4139 break; 4140 } 4141 4142 case bitc::FUNC_CODE_INST_INSERTVAL: { 4143 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4144 unsigned OpNum = 0; 4145 Value *Agg; 4146 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4147 return error("Invalid record"); 4148 Value *Val; 4149 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4150 return error("Invalid record"); 4151 4152 unsigned RecSize = Record.size(); 4153 if (OpNum == RecSize) 4154 return error("INSERTVAL: Invalid instruction with 0 indices"); 4155 4156 SmallVector<unsigned, 4> INSERTVALIdx; 4157 Type *CurTy = Agg->getType(); 4158 for (; OpNum != RecSize; ++OpNum) { 4159 bool IsArray = CurTy->isArrayTy(); 4160 bool IsStruct = CurTy->isStructTy(); 4161 uint64_t Index = Record[OpNum]; 4162 4163 if (!IsStruct && !IsArray) 4164 return error("INSERTVAL: Invalid type"); 4165 if ((unsigned)Index != Index) 4166 return error("Invalid value"); 4167 if (IsStruct && Index >= CurTy->getStructNumElements()) 4168 return error("INSERTVAL: Invalid struct index"); 4169 if (IsArray && Index >= CurTy->getArrayNumElements()) 4170 return error("INSERTVAL: Invalid array index"); 4171 4172 INSERTVALIdx.push_back((unsigned)Index); 4173 if (IsStruct) 4174 CurTy = CurTy->getStructElementType(Index); 4175 else 4176 CurTy = CurTy->getArrayElementType(); 4177 } 4178 4179 if (CurTy != Val->getType()) 4180 return error("Inserted value type doesn't match aggregate type"); 4181 4182 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4183 InstructionList.push_back(I); 4184 break; 4185 } 4186 4187 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4188 // obsolete form of select 4189 // handles select i1 ... in old bitcode 4190 unsigned OpNum = 0; 4191 Value *TrueVal, *FalseVal, *Cond; 4192 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4193 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4194 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4195 return error("Invalid record"); 4196 4197 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4198 InstructionList.push_back(I); 4199 break; 4200 } 4201 4202 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4203 // new form of select 4204 // handles select i1 or select [N x i1] 4205 unsigned OpNum = 0; 4206 Value *TrueVal, *FalseVal, *Cond; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4208 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4209 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4210 return error("Invalid record"); 4211 4212 // select condition can be either i1 or [N x i1] 4213 if (VectorType* vector_type = 4214 dyn_cast<VectorType>(Cond->getType())) { 4215 // expect <n x i1> 4216 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4217 return error("Invalid type for value"); 4218 } else { 4219 // expect i1 4220 if (Cond->getType() != Type::getInt1Ty(Context)) 4221 return error("Invalid type for value"); 4222 } 4223 4224 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4225 InstructionList.push_back(I); 4226 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4227 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4228 if (FMF.any()) 4229 I->setFastMathFlags(FMF); 4230 } 4231 break; 4232 } 4233 4234 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4235 unsigned OpNum = 0; 4236 Value *Vec, *Idx; 4237 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4238 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4239 return error("Invalid record"); 4240 if (!Vec->getType()->isVectorTy()) 4241 return error("Invalid type for value"); 4242 I = ExtractElementInst::Create(Vec, Idx); 4243 FullTy = cast<VectorType>(FullTy)->getElementType(); 4244 InstructionList.push_back(I); 4245 break; 4246 } 4247 4248 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4249 unsigned OpNum = 0; 4250 Value *Vec, *Elt, *Idx; 4251 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4252 return error("Invalid record"); 4253 if (!Vec->getType()->isVectorTy()) 4254 return error("Invalid type for value"); 4255 if (popValue(Record, OpNum, NextValueNo, 4256 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4257 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4258 return error("Invalid record"); 4259 I = InsertElementInst::Create(Vec, Elt, Idx); 4260 InstructionList.push_back(I); 4261 break; 4262 } 4263 4264 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4265 unsigned OpNum = 0; 4266 Value *Vec1, *Vec2, *Mask; 4267 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4268 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4269 return error("Invalid record"); 4270 4271 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4272 return error("Invalid record"); 4273 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4274 return error("Invalid type for value"); 4275 4276 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4277 FullTy = 4278 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4279 cast<VectorType>(Mask->getType())->getElementCount()); 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 4284 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4285 // Old form of ICmp/FCmp returning bool 4286 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4287 // both legal on vectors but had different behaviour. 4288 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4289 // FCmp/ICmp returning bool or vector of bool 4290 4291 unsigned OpNum = 0; 4292 Value *LHS, *RHS; 4293 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4294 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4295 return error("Invalid record"); 4296 4297 if (OpNum >= Record.size()) 4298 return error( 4299 "Invalid record: operand number exceeded available operands"); 4300 4301 unsigned PredVal = Record[OpNum]; 4302 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4303 FastMathFlags FMF; 4304 if (IsFP && Record.size() > OpNum+1) 4305 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4306 4307 if (OpNum+1 != Record.size()) 4308 return error("Invalid record"); 4309 4310 if (LHS->getType()->isFPOrFPVectorTy()) 4311 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4312 else 4313 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4314 4315 if (FMF.any()) 4316 I->setFastMathFlags(FMF); 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 4321 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4322 { 4323 unsigned Size = Record.size(); 4324 if (Size == 0) { 4325 I = ReturnInst::Create(Context); 4326 InstructionList.push_back(I); 4327 break; 4328 } 4329 4330 unsigned OpNum = 0; 4331 Value *Op = nullptr; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4333 return error("Invalid record"); 4334 if (OpNum != Record.size()) 4335 return error("Invalid record"); 4336 4337 I = ReturnInst::Create(Context, Op); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4342 if (Record.size() != 1 && Record.size() != 3) 4343 return error("Invalid record"); 4344 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4345 if (!TrueDest) 4346 return error("Invalid record"); 4347 4348 if (Record.size() == 1) { 4349 I = BranchInst::Create(TrueDest); 4350 InstructionList.push_back(I); 4351 } 4352 else { 4353 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4354 Value *Cond = getValue(Record, 2, NextValueNo, 4355 Type::getInt1Ty(Context)); 4356 if (!FalseDest || !Cond) 4357 return error("Invalid record"); 4358 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4359 InstructionList.push_back(I); 4360 } 4361 break; 4362 } 4363 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4364 if (Record.size() != 1 && Record.size() != 2) 4365 return error("Invalid record"); 4366 unsigned Idx = 0; 4367 Value *CleanupPad = 4368 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4369 if (!CleanupPad) 4370 return error("Invalid record"); 4371 BasicBlock *UnwindDest = nullptr; 4372 if (Record.size() == 2) { 4373 UnwindDest = getBasicBlock(Record[Idx++]); 4374 if (!UnwindDest) 4375 return error("Invalid record"); 4376 } 4377 4378 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4379 InstructionList.push_back(I); 4380 break; 4381 } 4382 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4383 if (Record.size() != 2) 4384 return error("Invalid record"); 4385 unsigned Idx = 0; 4386 Value *CatchPad = 4387 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4388 if (!CatchPad) 4389 return error("Invalid record"); 4390 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4391 if (!BB) 4392 return error("Invalid record"); 4393 4394 I = CatchReturnInst::Create(CatchPad, BB); 4395 InstructionList.push_back(I); 4396 break; 4397 } 4398 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4399 // We must have, at minimum, the outer scope and the number of arguments. 4400 if (Record.size() < 2) 4401 return error("Invalid record"); 4402 4403 unsigned Idx = 0; 4404 4405 Value *ParentPad = 4406 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4407 4408 unsigned NumHandlers = Record[Idx++]; 4409 4410 SmallVector<BasicBlock *, 2> Handlers; 4411 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4412 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4413 if (!BB) 4414 return error("Invalid record"); 4415 Handlers.push_back(BB); 4416 } 4417 4418 BasicBlock *UnwindDest = nullptr; 4419 if (Idx + 1 == Record.size()) { 4420 UnwindDest = getBasicBlock(Record[Idx++]); 4421 if (!UnwindDest) 4422 return error("Invalid record"); 4423 } 4424 4425 if (Record.size() != Idx) 4426 return error("Invalid record"); 4427 4428 auto *CatchSwitch = 4429 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4430 for (BasicBlock *Handler : Handlers) 4431 CatchSwitch->addHandler(Handler); 4432 I = CatchSwitch; 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CATCHPAD: 4437 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4438 // We must have, at minimum, the outer scope and the number of arguments. 4439 if (Record.size() < 2) 4440 return error("Invalid record"); 4441 4442 unsigned Idx = 0; 4443 4444 Value *ParentPad = 4445 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4446 4447 unsigned NumArgOperands = Record[Idx++]; 4448 4449 SmallVector<Value *, 2> Args; 4450 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4451 Value *Val; 4452 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4453 return error("Invalid record"); 4454 Args.push_back(Val); 4455 } 4456 4457 if (Record.size() != Idx) 4458 return error("Invalid record"); 4459 4460 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4461 I = CleanupPadInst::Create(ParentPad, Args); 4462 else 4463 I = CatchPadInst::Create(ParentPad, Args); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4468 // Check magic 4469 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4470 // "New" SwitchInst format with case ranges. The changes to write this 4471 // format were reverted but we still recognize bitcode that uses it. 4472 // Hopefully someday we will have support for case ranges and can use 4473 // this format again. 4474 4475 Type *OpTy = getTypeByID(Record[1]); 4476 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4477 4478 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4479 BasicBlock *Default = getBasicBlock(Record[3]); 4480 if (!OpTy || !Cond || !Default) 4481 return error("Invalid record"); 4482 4483 unsigned NumCases = Record[4]; 4484 4485 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4486 InstructionList.push_back(SI); 4487 4488 unsigned CurIdx = 5; 4489 for (unsigned i = 0; i != NumCases; ++i) { 4490 SmallVector<ConstantInt*, 1> CaseVals; 4491 unsigned NumItems = Record[CurIdx++]; 4492 for (unsigned ci = 0; ci != NumItems; ++ci) { 4493 bool isSingleNumber = Record[CurIdx++]; 4494 4495 APInt Low; 4496 unsigned ActiveWords = 1; 4497 if (ValueBitWidth > 64) 4498 ActiveWords = Record[CurIdx++]; 4499 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4500 ValueBitWidth); 4501 CurIdx += ActiveWords; 4502 4503 if (!isSingleNumber) { 4504 ActiveWords = 1; 4505 if (ValueBitWidth > 64) 4506 ActiveWords = Record[CurIdx++]; 4507 APInt High = readWideAPInt( 4508 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4509 CurIdx += ActiveWords; 4510 4511 // FIXME: It is not clear whether values in the range should be 4512 // compared as signed or unsigned values. The partially 4513 // implemented changes that used this format in the past used 4514 // unsigned comparisons. 4515 for ( ; Low.ule(High); ++Low) 4516 CaseVals.push_back(ConstantInt::get(Context, Low)); 4517 } else 4518 CaseVals.push_back(ConstantInt::get(Context, Low)); 4519 } 4520 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4521 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4522 cve = CaseVals.end(); cvi != cve; ++cvi) 4523 SI->addCase(*cvi, DestBB); 4524 } 4525 I = SI; 4526 break; 4527 } 4528 4529 // Old SwitchInst format without case ranges. 4530 4531 if (Record.size() < 3 || (Record.size() & 1) == 0) 4532 return error("Invalid record"); 4533 Type *OpTy = getTypeByID(Record[0]); 4534 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4535 BasicBlock *Default = getBasicBlock(Record[2]); 4536 if (!OpTy || !Cond || !Default) 4537 return error("Invalid record"); 4538 unsigned NumCases = (Record.size()-3)/2; 4539 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4540 InstructionList.push_back(SI); 4541 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4542 ConstantInt *CaseVal = 4543 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4544 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4545 if (!CaseVal || !DestBB) { 4546 delete SI; 4547 return error("Invalid record"); 4548 } 4549 SI->addCase(CaseVal, DestBB); 4550 } 4551 I = SI; 4552 break; 4553 } 4554 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4555 if (Record.size() < 2) 4556 return error("Invalid record"); 4557 Type *OpTy = getTypeByID(Record[0]); 4558 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4559 if (!OpTy || !Address) 4560 return error("Invalid record"); 4561 unsigned NumDests = Record.size()-2; 4562 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4563 InstructionList.push_back(IBI); 4564 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4565 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4566 IBI->addDestination(DestBB); 4567 } else { 4568 delete IBI; 4569 return error("Invalid record"); 4570 } 4571 } 4572 I = IBI; 4573 break; 4574 } 4575 4576 case bitc::FUNC_CODE_INST_INVOKE: { 4577 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4578 if (Record.size() < 4) 4579 return error("Invalid record"); 4580 unsigned OpNum = 0; 4581 AttributeList PAL = getAttributes(Record[OpNum++]); 4582 unsigned CCInfo = Record[OpNum++]; 4583 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4584 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4585 4586 FunctionType *FTy = nullptr; 4587 FunctionType *FullFTy = nullptr; 4588 if ((CCInfo >> 13) & 1) { 4589 FullFTy = 4590 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4591 if (!FullFTy) 4592 return error("Explicit invoke type is not a function type"); 4593 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4594 } 4595 4596 Value *Callee; 4597 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4598 return error("Invalid record"); 4599 4600 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4601 if (!CalleeTy) 4602 return error("Callee is not a pointer"); 4603 if (!FTy) { 4604 FullFTy = 4605 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4606 if (!FullFTy) 4607 return error("Callee is not of pointer to function type"); 4608 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4609 } else if (getPointerElementFlatType(FullTy) != FTy) 4610 return error("Explicit invoke type does not match pointee type of " 4611 "callee operand"); 4612 if (Record.size() < FTy->getNumParams() + OpNum) 4613 return error("Insufficient operands to call"); 4614 4615 SmallVector<Value*, 16> Ops; 4616 SmallVector<Type *, 16> ArgsFullTys; 4617 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4618 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4619 FTy->getParamType(i))); 4620 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4621 if (!Ops.back()) 4622 return error("Invalid record"); 4623 } 4624 4625 if (!FTy->isVarArg()) { 4626 if (Record.size() != OpNum) 4627 return error("Invalid record"); 4628 } else { 4629 // Read type/value pairs for varargs params. 4630 while (OpNum != Record.size()) { 4631 Value *Op; 4632 Type *FullTy; 4633 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4634 return error("Invalid record"); 4635 Ops.push_back(Op); 4636 ArgsFullTys.push_back(FullTy); 4637 } 4638 } 4639 4640 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4641 OperandBundles); 4642 FullTy = FullFTy->getReturnType(); 4643 OperandBundles.clear(); 4644 InstructionList.push_back(I); 4645 cast<InvokeInst>(I)->setCallingConv( 4646 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4647 cast<InvokeInst>(I)->setAttributes(PAL); 4648 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4649 4650 break; 4651 } 4652 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4653 unsigned Idx = 0; 4654 Value *Val = nullptr; 4655 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4656 return error("Invalid record"); 4657 I = ResumeInst::Create(Val); 4658 InstructionList.push_back(I); 4659 break; 4660 } 4661 case bitc::FUNC_CODE_INST_CALLBR: { 4662 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4663 unsigned OpNum = 0; 4664 AttributeList PAL = getAttributes(Record[OpNum++]); 4665 unsigned CCInfo = Record[OpNum++]; 4666 4667 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4668 unsigned NumIndirectDests = Record[OpNum++]; 4669 SmallVector<BasicBlock *, 16> IndirectDests; 4670 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4671 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4672 4673 FunctionType *FTy = nullptr; 4674 FunctionType *FullFTy = nullptr; 4675 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4676 FullFTy = 4677 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4678 if (!FullFTy) 4679 return error("Explicit call type is not a function type"); 4680 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4681 } 4682 4683 Value *Callee; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4685 return error("Invalid record"); 4686 4687 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4688 if (!OpTy) 4689 return error("Callee is not a pointer type"); 4690 if (!FTy) { 4691 FullFTy = 4692 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4693 if (!FullFTy) 4694 return error("Callee is not of pointer to function type"); 4695 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4696 } else if (getPointerElementFlatType(FullTy) != FTy) 4697 return error("Explicit call type does not match pointee type of " 4698 "callee operand"); 4699 if (Record.size() < FTy->getNumParams() + OpNum) 4700 return error("Insufficient operands to call"); 4701 4702 SmallVector<Value*, 16> Args; 4703 // Read the fixed params. 4704 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4705 if (FTy->getParamType(i)->isLabelTy()) 4706 Args.push_back(getBasicBlock(Record[OpNum])); 4707 else 4708 Args.push_back(getValue(Record, OpNum, NextValueNo, 4709 FTy->getParamType(i))); 4710 if (!Args.back()) 4711 return error("Invalid record"); 4712 } 4713 4714 // Read type/value pairs for varargs params. 4715 if (!FTy->isVarArg()) { 4716 if (OpNum != Record.size()) 4717 return error("Invalid record"); 4718 } else { 4719 while (OpNum != Record.size()) { 4720 Value *Op; 4721 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4722 return error("Invalid record"); 4723 Args.push_back(Op); 4724 } 4725 } 4726 4727 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4728 OperandBundles); 4729 FullTy = FullFTy->getReturnType(); 4730 OperandBundles.clear(); 4731 InstructionList.push_back(I); 4732 cast<CallBrInst>(I)->setCallingConv( 4733 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4734 cast<CallBrInst>(I)->setAttributes(PAL); 4735 break; 4736 } 4737 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4738 I = new UnreachableInst(Context); 4739 InstructionList.push_back(I); 4740 break; 4741 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4742 if (Record.empty()) 4743 return error("Invalid record"); 4744 // The first record specifies the type. 4745 FullTy = getFullyStructuredTypeByID(Record[0]); 4746 Type *Ty = flattenPointerTypes(FullTy); 4747 if (!Ty) 4748 return error("Invalid record"); 4749 4750 // Phi arguments are pairs of records of [value, basic block]. 4751 // There is an optional final record for fast-math-flags if this phi has a 4752 // floating-point type. 4753 size_t NumArgs = (Record.size() - 1) / 2; 4754 PHINode *PN = PHINode::Create(Ty, NumArgs); 4755 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4756 return error("Invalid record"); 4757 InstructionList.push_back(PN); 4758 4759 for (unsigned i = 0; i != NumArgs; i++) { 4760 Value *V; 4761 // With the new function encoding, it is possible that operands have 4762 // negative IDs (for forward references). Use a signed VBR 4763 // representation to keep the encoding small. 4764 if (UseRelativeIDs) 4765 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4766 else 4767 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4768 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4769 if (!V || !BB) 4770 return error("Invalid record"); 4771 PN->addIncoming(V, BB); 4772 } 4773 I = PN; 4774 4775 // If there are an even number of records, the final record must be FMF. 4776 if (Record.size() % 2 == 0) { 4777 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4778 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4779 if (FMF.any()) 4780 I->setFastMathFlags(FMF); 4781 } 4782 4783 break; 4784 } 4785 4786 case bitc::FUNC_CODE_INST_LANDINGPAD: 4787 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4788 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4789 unsigned Idx = 0; 4790 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4791 if (Record.size() < 3) 4792 return error("Invalid record"); 4793 } else { 4794 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4795 if (Record.size() < 4) 4796 return error("Invalid record"); 4797 } 4798 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4799 Type *Ty = flattenPointerTypes(FullTy); 4800 if (!Ty) 4801 return error("Invalid record"); 4802 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4803 Value *PersFn = nullptr; 4804 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4805 return error("Invalid record"); 4806 4807 if (!F->hasPersonalityFn()) 4808 F->setPersonalityFn(cast<Constant>(PersFn)); 4809 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4810 return error("Personality function mismatch"); 4811 } 4812 4813 bool IsCleanup = !!Record[Idx++]; 4814 unsigned NumClauses = Record[Idx++]; 4815 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4816 LP->setCleanup(IsCleanup); 4817 for (unsigned J = 0; J != NumClauses; ++J) { 4818 LandingPadInst::ClauseType CT = 4819 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4820 Value *Val; 4821 4822 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4823 delete LP; 4824 return error("Invalid record"); 4825 } 4826 4827 assert((CT != LandingPadInst::Catch || 4828 !isa<ArrayType>(Val->getType())) && 4829 "Catch clause has a invalid type!"); 4830 assert((CT != LandingPadInst::Filter || 4831 isa<ArrayType>(Val->getType())) && 4832 "Filter clause has invalid type!"); 4833 LP->addClause(cast<Constant>(Val)); 4834 } 4835 4836 I = LP; 4837 InstructionList.push_back(I); 4838 break; 4839 } 4840 4841 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4842 if (Record.size() != 4) 4843 return error("Invalid record"); 4844 using APV = AllocaPackedValues; 4845 const uint64_t Rec = Record[3]; 4846 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4847 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4848 FullTy = getFullyStructuredTypeByID(Record[0]); 4849 Type *Ty = flattenPointerTypes(FullTy); 4850 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4851 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4852 if (!PTy) 4853 return error("Old-style alloca with a non-pointer type"); 4854 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4855 } 4856 Type *OpTy = getTypeByID(Record[1]); 4857 Value *Size = getFnValueByID(Record[2], OpTy); 4858 MaybeAlign Align; 4859 if (Error Err = 4860 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4861 return Err; 4862 } 4863 if (!Ty || !Size) 4864 return error("Invalid record"); 4865 4866 // FIXME: Make this an optional field. 4867 const DataLayout &DL = TheModule->getDataLayout(); 4868 unsigned AS = DL.getAllocaAddrSpace(); 4869 4870 SmallPtrSet<Type *, 4> Visited; 4871 if (!Align && !Ty->isSized(&Visited)) 4872 return error("alloca of unsized type"); 4873 if (!Align) 4874 Align = DL.getPrefTypeAlign(Ty); 4875 4876 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4877 AI->setUsedWithInAlloca(InAlloca); 4878 AI->setSwiftError(SwiftError); 4879 I = AI; 4880 FullTy = PointerType::get(FullTy, AS); 4881 InstructionList.push_back(I); 4882 break; 4883 } 4884 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4885 unsigned OpNum = 0; 4886 Value *Op; 4887 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4888 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4889 return error("Invalid record"); 4890 4891 if (!isa<PointerType>(Op->getType())) 4892 return error("Load operand is not a pointer type"); 4893 4894 Type *Ty = nullptr; 4895 if (OpNum + 3 == Record.size()) { 4896 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4897 Ty = flattenPointerTypes(FullTy); 4898 } else 4899 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4900 4901 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4902 return Err; 4903 4904 MaybeAlign Align; 4905 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4906 return Err; 4907 SmallPtrSet<Type *, 4> Visited; 4908 if (!Align && !Ty->isSized(&Visited)) 4909 return error("load of unsized type"); 4910 if (!Align) 4911 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4912 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4913 InstructionList.push_back(I); 4914 break; 4915 } 4916 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4917 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4918 unsigned OpNum = 0; 4919 Value *Op; 4920 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4921 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4922 return error("Invalid record"); 4923 4924 if (!isa<PointerType>(Op->getType())) 4925 return error("Load operand is not a pointer type"); 4926 4927 Type *Ty = nullptr; 4928 if (OpNum + 5 == Record.size()) { 4929 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4930 Ty = flattenPointerTypes(FullTy); 4931 } else 4932 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4933 4934 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4935 return Err; 4936 4937 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4938 if (Ordering == AtomicOrdering::NotAtomic || 4939 Ordering == AtomicOrdering::Release || 4940 Ordering == AtomicOrdering::AcquireRelease) 4941 return error("Invalid record"); 4942 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4943 return error("Invalid record"); 4944 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4945 4946 MaybeAlign Align; 4947 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4948 return Err; 4949 if (!Align) 4950 return error("Alignment missing from atomic load"); 4951 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4952 InstructionList.push_back(I); 4953 break; 4954 } 4955 case bitc::FUNC_CODE_INST_STORE: 4956 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4957 unsigned OpNum = 0; 4958 Value *Val, *Ptr; 4959 Type *FullTy; 4960 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4961 (BitCode == bitc::FUNC_CODE_INST_STORE 4962 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4963 : popValue(Record, OpNum, NextValueNo, 4964 getPointerElementFlatType(FullTy), Val)) || 4965 OpNum + 2 != Record.size()) 4966 return error("Invalid record"); 4967 4968 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4969 return Err; 4970 MaybeAlign Align; 4971 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4972 return Err; 4973 SmallPtrSet<Type *, 4> Visited; 4974 if (!Align && !Val->getType()->isSized(&Visited)) 4975 return error("store of unsized type"); 4976 if (!Align) 4977 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4978 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4979 InstructionList.push_back(I); 4980 break; 4981 } 4982 case bitc::FUNC_CODE_INST_STOREATOMIC: 4983 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4984 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4985 unsigned OpNum = 0; 4986 Value *Val, *Ptr; 4987 Type *FullTy; 4988 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4989 !isa<PointerType>(Ptr->getType()) || 4990 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4991 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4992 : popValue(Record, OpNum, NextValueNo, 4993 getPointerElementFlatType(FullTy), Val)) || 4994 OpNum + 4 != Record.size()) 4995 return error("Invalid record"); 4996 4997 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4998 return Err; 4999 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5000 if (Ordering == AtomicOrdering::NotAtomic || 5001 Ordering == AtomicOrdering::Acquire || 5002 Ordering == AtomicOrdering::AcquireRelease) 5003 return error("Invalid record"); 5004 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5005 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5006 return error("Invalid record"); 5007 5008 MaybeAlign Align; 5009 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5010 return Err; 5011 if (!Align) 5012 return error("Alignment missing from atomic store"); 5013 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5014 InstructionList.push_back(I); 5015 break; 5016 } 5017 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5018 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5019 // failure_ordering?, weak?] 5020 const size_t NumRecords = Record.size(); 5021 unsigned OpNum = 0; 5022 Value *Ptr = nullptr; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5024 return error("Invalid record"); 5025 5026 if (!isa<PointerType>(Ptr->getType())) 5027 return error("Cmpxchg operand is not a pointer type"); 5028 5029 Value *Cmp = nullptr; 5030 if (popValue(Record, OpNum, NextValueNo, 5031 getPointerElementFlatType(FullTy), Cmp)) 5032 return error("Invalid record"); 5033 5034 FullTy = cast<PointerType>(FullTy)->getElementType(); 5035 5036 Value *New = nullptr; 5037 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5038 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5039 return error("Invalid record"); 5040 5041 const AtomicOrdering SuccessOrdering = 5042 getDecodedOrdering(Record[OpNum + 1]); 5043 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5044 SuccessOrdering == AtomicOrdering::Unordered) 5045 return error("Invalid record"); 5046 5047 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5048 5049 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5050 return Err; 5051 5052 const AtomicOrdering FailureOrdering = 5053 NumRecords < 7 5054 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5055 : getDecodedOrdering(Record[OpNum + 3]); 5056 5057 const Align Alignment( 5058 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5059 5060 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5061 FailureOrdering, SSID); 5062 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5063 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5064 5065 if (NumRecords < 8) { 5066 // Before weak cmpxchgs existed, the instruction simply returned the 5067 // value loaded from memory, so bitcode files from that era will be 5068 // expecting the first component of a modern cmpxchg. 5069 CurBB->getInstList().push_back(I); 5070 I = ExtractValueInst::Create(I, 0); 5071 FullTy = cast<StructType>(FullTy)->getElementType(0); 5072 } else { 5073 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5074 } 5075 5076 InstructionList.push_back(I); 5077 break; 5078 } 5079 case bitc::FUNC_CODE_INST_CMPXCHG: { 5080 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5081 // failure_ordering, weak] 5082 const size_t NumRecords = Record.size(); 5083 unsigned OpNum = 0; 5084 Value *Ptr = nullptr; 5085 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5086 return error("Invalid record"); 5087 5088 if (!isa<PointerType>(Ptr->getType())) 5089 return error("Cmpxchg operand is not a pointer type"); 5090 5091 Value *Cmp = nullptr; 5092 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5093 return error("Invalid record"); 5094 5095 Value *Val = nullptr; 5096 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) || 5097 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5098 return error("Invalid record"); 5099 5100 const AtomicOrdering SuccessOrdering = 5101 getDecodedOrdering(Record[OpNum + 1]); 5102 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5103 SuccessOrdering == AtomicOrdering::Unordered) 5104 return error("Invalid record"); 5105 5106 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5107 5108 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5109 return Err; 5110 5111 const AtomicOrdering FailureOrdering = 5112 getDecodedOrdering(Record[OpNum + 3]); 5113 5114 const Align Alignment( 5115 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5116 5117 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering, 5118 FailureOrdering, SSID); 5119 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5120 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5121 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5122 5123 InstructionList.push_back(I); 5124 break; 5125 } 5126 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5127 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5128 unsigned OpNum = 0; 5129 Value *Ptr, *Val; 5130 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5131 !isa<PointerType>(Ptr->getType()) || 5132 popValue(Record, OpNum, NextValueNo, 5133 getPointerElementFlatType(FullTy), Val) || 5134 OpNum + 4 != Record.size()) 5135 return error("Invalid record"); 5136 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5137 if (Operation < AtomicRMWInst::FIRST_BINOP || 5138 Operation > AtomicRMWInst::LAST_BINOP) 5139 return error("Invalid record"); 5140 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5141 if (Ordering == AtomicOrdering::NotAtomic || 5142 Ordering == AtomicOrdering::Unordered) 5143 return error("Invalid record"); 5144 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5145 Align Alignment( 5146 TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5147 I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 5148 FullTy = getPointerElementFlatType(FullTy); 5149 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5150 InstructionList.push_back(I); 5151 break; 5152 } 5153 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5154 if (2 != Record.size()) 5155 return error("Invalid record"); 5156 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5157 if (Ordering == AtomicOrdering::NotAtomic || 5158 Ordering == AtomicOrdering::Unordered || 5159 Ordering == AtomicOrdering::Monotonic) 5160 return error("Invalid record"); 5161 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5162 I = new FenceInst(Context, Ordering, SSID); 5163 InstructionList.push_back(I); 5164 break; 5165 } 5166 case bitc::FUNC_CODE_INST_CALL: { 5167 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5168 if (Record.size() < 3) 5169 return error("Invalid record"); 5170 5171 unsigned OpNum = 0; 5172 AttributeList PAL = getAttributes(Record[OpNum++]); 5173 unsigned CCInfo = Record[OpNum++]; 5174 5175 FastMathFlags FMF; 5176 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5177 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5178 if (!FMF.any()) 5179 return error("Fast math flags indicator set for call with no FMF"); 5180 } 5181 5182 FunctionType *FTy = nullptr; 5183 FunctionType *FullFTy = nullptr; 5184 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5185 FullFTy = 5186 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5187 if (!FullFTy) 5188 return error("Explicit call type is not a function type"); 5189 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5190 } 5191 5192 Value *Callee; 5193 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5194 return error("Invalid record"); 5195 5196 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5197 if (!OpTy) 5198 return error("Callee is not a pointer type"); 5199 if (!FTy) { 5200 FullFTy = 5201 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5202 if (!FullFTy) 5203 return error("Callee is not of pointer to function type"); 5204 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5205 } else if (getPointerElementFlatType(FullTy) != FTy) 5206 return error("Explicit call type does not match pointee type of " 5207 "callee operand"); 5208 if (Record.size() < FTy->getNumParams() + OpNum) 5209 return error("Insufficient operands to call"); 5210 5211 SmallVector<Value*, 16> Args; 5212 SmallVector<Type*, 16> ArgsFullTys; 5213 // Read the fixed params. 5214 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5215 if (FTy->getParamType(i)->isLabelTy()) 5216 Args.push_back(getBasicBlock(Record[OpNum])); 5217 else 5218 Args.push_back(getValue(Record, OpNum, NextValueNo, 5219 FTy->getParamType(i))); 5220 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5221 if (!Args.back()) 5222 return error("Invalid record"); 5223 } 5224 5225 // Read type/value pairs for varargs params. 5226 if (!FTy->isVarArg()) { 5227 if (OpNum != Record.size()) 5228 return error("Invalid record"); 5229 } else { 5230 while (OpNum != Record.size()) { 5231 Value *Op; 5232 Type *FullTy; 5233 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5234 return error("Invalid record"); 5235 Args.push_back(Op); 5236 ArgsFullTys.push_back(FullTy); 5237 } 5238 } 5239 5240 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5241 FullTy = FullFTy->getReturnType(); 5242 OperandBundles.clear(); 5243 InstructionList.push_back(I); 5244 cast<CallInst>(I)->setCallingConv( 5245 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5246 CallInst::TailCallKind TCK = CallInst::TCK_None; 5247 if (CCInfo & 1 << bitc::CALL_TAIL) 5248 TCK = CallInst::TCK_Tail; 5249 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5250 TCK = CallInst::TCK_MustTail; 5251 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5252 TCK = CallInst::TCK_NoTail; 5253 cast<CallInst>(I)->setTailCallKind(TCK); 5254 cast<CallInst>(I)->setAttributes(PAL); 5255 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5256 if (FMF.any()) { 5257 if (!isa<FPMathOperator>(I)) 5258 return error("Fast-math-flags specified for call without " 5259 "floating-point scalar or vector return type"); 5260 I->setFastMathFlags(FMF); 5261 } 5262 break; 5263 } 5264 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5265 if (Record.size() < 3) 5266 return error("Invalid record"); 5267 Type *OpTy = getTypeByID(Record[0]); 5268 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5269 FullTy = getFullyStructuredTypeByID(Record[2]); 5270 Type *ResTy = flattenPointerTypes(FullTy); 5271 if (!OpTy || !Op || !ResTy) 5272 return error("Invalid record"); 5273 I = new VAArgInst(Op, ResTy); 5274 InstructionList.push_back(I); 5275 break; 5276 } 5277 5278 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5279 // A call or an invoke can be optionally prefixed with some variable 5280 // number of operand bundle blocks. These blocks are read into 5281 // OperandBundles and consumed at the next call or invoke instruction. 5282 5283 if (Record.empty() || Record[0] >= BundleTags.size()) 5284 return error("Invalid record"); 5285 5286 std::vector<Value *> Inputs; 5287 5288 unsigned OpNum = 1; 5289 while (OpNum != Record.size()) { 5290 Value *Op; 5291 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5292 return error("Invalid record"); 5293 Inputs.push_back(Op); 5294 } 5295 5296 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5297 continue; 5298 } 5299 5300 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5301 unsigned OpNum = 0; 5302 Value *Op = nullptr; 5303 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5304 return error("Invalid record"); 5305 if (OpNum != Record.size()) 5306 return error("Invalid record"); 5307 5308 I = new FreezeInst(Op); 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 } 5313 5314 // Add instruction to end of current BB. If there is no current BB, reject 5315 // this file. 5316 if (!CurBB) { 5317 I->deleteValue(); 5318 return error("Invalid instruction with no BB"); 5319 } 5320 if (!OperandBundles.empty()) { 5321 I->deleteValue(); 5322 return error("Operand bundles found with no consumer"); 5323 } 5324 CurBB->getInstList().push_back(I); 5325 5326 // If this was a terminator instruction, move to the next block. 5327 if (I->isTerminator()) { 5328 ++CurBBNo; 5329 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5330 } 5331 5332 // Non-void values get registered in the value table for future use. 5333 if (!I->getType()->isVoidTy()) { 5334 if (!FullTy) { 5335 FullTy = I->getType(); 5336 assert( 5337 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5338 !isa<ArrayType>(FullTy) && 5339 (!isa<VectorType>(FullTy) || 5340 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5341 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5342 "Structured types must be assigned with corresponding non-opaque " 5343 "pointer type"); 5344 } 5345 5346 assert(I->getType() == flattenPointerTypes(FullTy) && 5347 "Incorrect fully structured type provided for Instruction"); 5348 ValueList.assignValue(I, NextValueNo++, FullTy); 5349 } 5350 } 5351 5352 OutOfRecordLoop: 5353 5354 if (!OperandBundles.empty()) 5355 return error("Operand bundles found with no consumer"); 5356 5357 // Check the function list for unresolved values. 5358 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5359 if (!A->getParent()) { 5360 // We found at least one unresolved value. Nuke them all to avoid leaks. 5361 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5362 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5363 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5364 delete A; 5365 } 5366 } 5367 return error("Never resolved value found in function"); 5368 } 5369 } 5370 5371 // Unexpected unresolved metadata about to be dropped. 5372 if (MDLoader->hasFwdRefs()) 5373 return error("Invalid function metadata: outgoing forward refs"); 5374 5375 // Trim the value list down to the size it was before we parsed this function. 5376 ValueList.shrinkTo(ModuleValueListSize); 5377 MDLoader->shrinkTo(ModuleMDLoaderSize); 5378 std::vector<BasicBlock*>().swap(FunctionBBs); 5379 return Error::success(); 5380 } 5381 5382 /// Find the function body in the bitcode stream 5383 Error BitcodeReader::findFunctionInStream( 5384 Function *F, 5385 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5386 while (DeferredFunctionInfoIterator->second == 0) { 5387 // This is the fallback handling for the old format bitcode that 5388 // didn't contain the function index in the VST, or when we have 5389 // an anonymous function which would not have a VST entry. 5390 // Assert that we have one of those two cases. 5391 assert(VSTOffset == 0 || !F->hasName()); 5392 // Parse the next body in the stream and set its position in the 5393 // DeferredFunctionInfo map. 5394 if (Error Err = rememberAndSkipFunctionBodies()) 5395 return Err; 5396 } 5397 return Error::success(); 5398 } 5399 5400 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5401 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5402 return SyncScope::ID(Val); 5403 if (Val >= SSIDs.size()) 5404 return SyncScope::System; // Map unknown synchronization scopes to system. 5405 return SSIDs[Val]; 5406 } 5407 5408 //===----------------------------------------------------------------------===// 5409 // GVMaterializer implementation 5410 //===----------------------------------------------------------------------===// 5411 5412 Error BitcodeReader::materialize(GlobalValue *GV) { 5413 Function *F = dyn_cast<Function>(GV); 5414 // If it's not a function or is already material, ignore the request. 5415 if (!F || !F->isMaterializable()) 5416 return Error::success(); 5417 5418 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5419 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5420 // If its position is recorded as 0, its body is somewhere in the stream 5421 // but we haven't seen it yet. 5422 if (DFII->second == 0) 5423 if (Error Err = findFunctionInStream(F, DFII)) 5424 return Err; 5425 5426 // Materialize metadata before parsing any function bodies. 5427 if (Error Err = materializeMetadata()) 5428 return Err; 5429 5430 // Move the bit stream to the saved position of the deferred function body. 5431 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5432 return JumpFailed; 5433 if (Error Err = parseFunctionBody(F)) 5434 return Err; 5435 F->setIsMaterializable(false); 5436 5437 if (StripDebugInfo) 5438 stripDebugInfo(*F); 5439 5440 // Upgrade any old intrinsic calls in the function. 5441 for (auto &I : UpgradedIntrinsics) { 5442 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5443 UI != UE;) { 5444 User *U = *UI; 5445 ++UI; 5446 if (CallInst *CI = dyn_cast<CallInst>(U)) 5447 UpgradeIntrinsicCall(CI, I.second); 5448 } 5449 } 5450 5451 // Update calls to the remangled intrinsics 5452 for (auto &I : RemangledIntrinsics) 5453 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5454 UI != UE;) 5455 // Don't expect any other users than call sites 5456 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5457 5458 // Finish fn->subprogram upgrade for materialized functions. 5459 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5460 F->setSubprogram(SP); 5461 5462 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5463 if (!MDLoader->isStrippingTBAA()) { 5464 for (auto &I : instructions(F)) { 5465 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5466 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5467 continue; 5468 MDLoader->setStripTBAA(true); 5469 stripTBAA(F->getParent()); 5470 } 5471 } 5472 5473 // "Upgrade" older incorrect branch weights by dropping them. 5474 for (auto &I : instructions(F)) { 5475 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5476 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5477 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5478 StringRef ProfName = MDS->getString(); 5479 // Check consistency of !prof branch_weights metadata. 5480 if (!ProfName.equals("branch_weights")) 5481 continue; 5482 unsigned ExpectedNumOperands = 0; 5483 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5484 ExpectedNumOperands = BI->getNumSuccessors(); 5485 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5486 ExpectedNumOperands = SI->getNumSuccessors(); 5487 else if (isa<CallInst>(&I)) 5488 ExpectedNumOperands = 1; 5489 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5490 ExpectedNumOperands = IBI->getNumDestinations(); 5491 else if (isa<SelectInst>(&I)) 5492 ExpectedNumOperands = 2; 5493 else 5494 continue; // ignore and continue. 5495 5496 // If branch weight doesn't match, just strip branch weight. 5497 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5498 I.setMetadata(LLVMContext::MD_prof, nullptr); 5499 } 5500 } 5501 } 5502 5503 // Look for functions that rely on old function attribute behavior. 5504 UpgradeFunctionAttributes(*F); 5505 5506 // Bring in any functions that this function forward-referenced via 5507 // blockaddresses. 5508 return materializeForwardReferencedFunctions(); 5509 } 5510 5511 Error BitcodeReader::materializeModule() { 5512 if (Error Err = materializeMetadata()) 5513 return Err; 5514 5515 // Promise to materialize all forward references. 5516 WillMaterializeAllForwardRefs = true; 5517 5518 // Iterate over the module, deserializing any functions that are still on 5519 // disk. 5520 for (Function &F : *TheModule) { 5521 if (Error Err = materialize(&F)) 5522 return Err; 5523 } 5524 // At this point, if there are any function bodies, parse the rest of 5525 // the bits in the module past the last function block we have recorded 5526 // through either lazy scanning or the VST. 5527 if (LastFunctionBlockBit || NextUnreadBit) 5528 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5529 ? LastFunctionBlockBit 5530 : NextUnreadBit)) 5531 return Err; 5532 5533 // Check that all block address forward references got resolved (as we 5534 // promised above). 5535 if (!BasicBlockFwdRefs.empty()) 5536 return error("Never resolved function from blockaddress"); 5537 5538 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5539 // delete the old functions to clean up. We can't do this unless the entire 5540 // module is materialized because there could always be another function body 5541 // with calls to the old function. 5542 for (auto &I : UpgradedIntrinsics) { 5543 for (auto *U : I.first->users()) { 5544 if (CallInst *CI = dyn_cast<CallInst>(U)) 5545 UpgradeIntrinsicCall(CI, I.second); 5546 } 5547 if (!I.first->use_empty()) 5548 I.first->replaceAllUsesWith(I.second); 5549 I.first->eraseFromParent(); 5550 } 5551 UpgradedIntrinsics.clear(); 5552 // Do the same for remangled intrinsics 5553 for (auto &I : RemangledIntrinsics) { 5554 I.first->replaceAllUsesWith(I.second); 5555 I.first->eraseFromParent(); 5556 } 5557 RemangledIntrinsics.clear(); 5558 5559 UpgradeDebugInfo(*TheModule); 5560 5561 UpgradeModuleFlags(*TheModule); 5562 5563 UpgradeARCRuntime(*TheModule); 5564 5565 return Error::success(); 5566 } 5567 5568 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5569 return IdentifiedStructTypes; 5570 } 5571 5572 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5573 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5574 StringRef ModulePath, unsigned ModuleId) 5575 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5576 ModulePath(ModulePath), ModuleId(ModuleId) {} 5577 5578 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5579 TheIndex.addModule(ModulePath, ModuleId); 5580 } 5581 5582 ModuleSummaryIndex::ModuleInfo * 5583 ModuleSummaryIndexBitcodeReader::getThisModule() { 5584 return TheIndex.getModule(ModulePath); 5585 } 5586 5587 std::pair<ValueInfo, GlobalValue::GUID> 5588 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5589 auto VGI = ValueIdToValueInfoMap[ValueId]; 5590 assert(VGI.first); 5591 return VGI; 5592 } 5593 5594 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5595 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5596 StringRef SourceFileName) { 5597 std::string GlobalId = 5598 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5599 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5600 auto OriginalNameID = ValueGUID; 5601 if (GlobalValue::isLocalLinkage(Linkage)) 5602 OriginalNameID = GlobalValue::getGUID(ValueName); 5603 if (PrintSummaryGUIDs) 5604 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5605 << ValueName << "\n"; 5606 5607 // UseStrtab is false for legacy summary formats and value names are 5608 // created on stack. In that case we save the name in a string saver in 5609 // the index so that the value name can be recorded. 5610 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5611 TheIndex.getOrInsertValueInfo( 5612 ValueGUID, 5613 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5614 OriginalNameID); 5615 } 5616 5617 // Specialized value symbol table parser used when reading module index 5618 // blocks where we don't actually create global values. The parsed information 5619 // is saved in the bitcode reader for use when later parsing summaries. 5620 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5621 uint64_t Offset, 5622 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5623 // With a strtab the VST is not required to parse the summary. 5624 if (UseStrtab) 5625 return Error::success(); 5626 5627 assert(Offset > 0 && "Expected non-zero VST offset"); 5628 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5629 if (!MaybeCurrentBit) 5630 return MaybeCurrentBit.takeError(); 5631 uint64_t CurrentBit = MaybeCurrentBit.get(); 5632 5633 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5634 return Err; 5635 5636 SmallVector<uint64_t, 64> Record; 5637 5638 // Read all the records for this value table. 5639 SmallString<128> ValueName; 5640 5641 while (true) { 5642 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5643 if (!MaybeEntry) 5644 return MaybeEntry.takeError(); 5645 BitstreamEntry Entry = MaybeEntry.get(); 5646 5647 switch (Entry.Kind) { 5648 case BitstreamEntry::SubBlock: // Handled for us already. 5649 case BitstreamEntry::Error: 5650 return error("Malformed block"); 5651 case BitstreamEntry::EndBlock: 5652 // Done parsing VST, jump back to wherever we came from. 5653 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5654 return JumpFailed; 5655 return Error::success(); 5656 case BitstreamEntry::Record: 5657 // The interesting case. 5658 break; 5659 } 5660 5661 // Read a record. 5662 Record.clear(); 5663 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5664 if (!MaybeRecord) 5665 return MaybeRecord.takeError(); 5666 switch (MaybeRecord.get()) { 5667 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5668 break; 5669 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5670 if (convertToString(Record, 1, ValueName)) 5671 return error("Invalid record"); 5672 unsigned ValueID = Record[0]; 5673 assert(!SourceFileName.empty()); 5674 auto VLI = ValueIdToLinkageMap.find(ValueID); 5675 assert(VLI != ValueIdToLinkageMap.end() && 5676 "No linkage found for VST entry?"); 5677 auto Linkage = VLI->second; 5678 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5679 ValueName.clear(); 5680 break; 5681 } 5682 case bitc::VST_CODE_FNENTRY: { 5683 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5684 if (convertToString(Record, 2, ValueName)) 5685 return error("Invalid record"); 5686 unsigned ValueID = Record[0]; 5687 assert(!SourceFileName.empty()); 5688 auto VLI = ValueIdToLinkageMap.find(ValueID); 5689 assert(VLI != ValueIdToLinkageMap.end() && 5690 "No linkage found for VST entry?"); 5691 auto Linkage = VLI->second; 5692 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5693 ValueName.clear(); 5694 break; 5695 } 5696 case bitc::VST_CODE_COMBINED_ENTRY: { 5697 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5698 unsigned ValueID = Record[0]; 5699 GlobalValue::GUID RefGUID = Record[1]; 5700 // The "original name", which is the second value of the pair will be 5701 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5702 ValueIdToValueInfoMap[ValueID] = 5703 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5704 break; 5705 } 5706 } 5707 } 5708 } 5709 5710 // Parse just the blocks needed for building the index out of the module. 5711 // At the end of this routine the module Index is populated with a map 5712 // from global value id to GlobalValueSummary objects. 5713 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5714 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5715 return Err; 5716 5717 SmallVector<uint64_t, 64> Record; 5718 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5719 unsigned ValueId = 0; 5720 5721 // Read the index for this module. 5722 while (true) { 5723 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5724 if (!MaybeEntry) 5725 return MaybeEntry.takeError(); 5726 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5727 5728 switch (Entry.Kind) { 5729 case BitstreamEntry::Error: 5730 return error("Malformed block"); 5731 case BitstreamEntry::EndBlock: 5732 return Error::success(); 5733 5734 case BitstreamEntry::SubBlock: 5735 switch (Entry.ID) { 5736 default: // Skip unknown content. 5737 if (Error Err = Stream.SkipBlock()) 5738 return Err; 5739 break; 5740 case bitc::BLOCKINFO_BLOCK_ID: 5741 // Need to parse these to get abbrev ids (e.g. for VST) 5742 if (readBlockInfo()) 5743 return error("Malformed block"); 5744 break; 5745 case bitc::VALUE_SYMTAB_BLOCK_ID: 5746 // Should have been parsed earlier via VSTOffset, unless there 5747 // is no summary section. 5748 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5749 !SeenGlobalValSummary) && 5750 "Expected early VST parse via VSTOffset record"); 5751 if (Error Err = Stream.SkipBlock()) 5752 return Err; 5753 break; 5754 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5755 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5756 // Add the module if it is a per-module index (has a source file name). 5757 if (!SourceFileName.empty()) 5758 addThisModule(); 5759 assert(!SeenValueSymbolTable && 5760 "Already read VST when parsing summary block?"); 5761 // We might not have a VST if there were no values in the 5762 // summary. An empty summary block generated when we are 5763 // performing ThinLTO compiles so we don't later invoke 5764 // the regular LTO process on them. 5765 if (VSTOffset > 0) { 5766 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5767 return Err; 5768 SeenValueSymbolTable = true; 5769 } 5770 SeenGlobalValSummary = true; 5771 if (Error Err = parseEntireSummary(Entry.ID)) 5772 return Err; 5773 break; 5774 case bitc::MODULE_STRTAB_BLOCK_ID: 5775 if (Error Err = parseModuleStringTable()) 5776 return Err; 5777 break; 5778 } 5779 continue; 5780 5781 case BitstreamEntry::Record: { 5782 Record.clear(); 5783 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5784 if (!MaybeBitCode) 5785 return MaybeBitCode.takeError(); 5786 switch (MaybeBitCode.get()) { 5787 default: 5788 break; // Default behavior, ignore unknown content. 5789 case bitc::MODULE_CODE_VERSION: { 5790 if (Error Err = parseVersionRecord(Record).takeError()) 5791 return Err; 5792 break; 5793 } 5794 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5795 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5796 SmallString<128> ValueName; 5797 if (convertToString(Record, 0, ValueName)) 5798 return error("Invalid record"); 5799 SourceFileName = ValueName.c_str(); 5800 break; 5801 } 5802 /// MODULE_CODE_HASH: [5*i32] 5803 case bitc::MODULE_CODE_HASH: { 5804 if (Record.size() != 5) 5805 return error("Invalid hash length " + Twine(Record.size()).str()); 5806 auto &Hash = getThisModule()->second.second; 5807 int Pos = 0; 5808 for (auto &Val : Record) { 5809 assert(!(Val >> 32) && "Unexpected high bits set"); 5810 Hash[Pos++] = Val; 5811 } 5812 break; 5813 } 5814 /// MODULE_CODE_VSTOFFSET: [offset] 5815 case bitc::MODULE_CODE_VSTOFFSET: 5816 if (Record.empty()) 5817 return error("Invalid record"); 5818 // Note that we subtract 1 here because the offset is relative to one 5819 // word before the start of the identification or module block, which 5820 // was historically always the start of the regular bitcode header. 5821 VSTOffset = Record[0] - 1; 5822 break; 5823 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5824 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5825 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5826 // v2: [strtab offset, strtab size, v1] 5827 case bitc::MODULE_CODE_GLOBALVAR: 5828 case bitc::MODULE_CODE_FUNCTION: 5829 case bitc::MODULE_CODE_ALIAS: { 5830 StringRef Name; 5831 ArrayRef<uint64_t> GVRecord; 5832 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5833 if (GVRecord.size() <= 3) 5834 return error("Invalid record"); 5835 uint64_t RawLinkage = GVRecord[3]; 5836 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5837 if (!UseStrtab) { 5838 ValueIdToLinkageMap[ValueId++] = Linkage; 5839 break; 5840 } 5841 5842 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5843 break; 5844 } 5845 } 5846 } 5847 continue; 5848 } 5849 } 5850 } 5851 5852 std::vector<ValueInfo> 5853 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5854 std::vector<ValueInfo> Ret; 5855 Ret.reserve(Record.size()); 5856 for (uint64_t RefValueId : Record) 5857 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5858 return Ret; 5859 } 5860 5861 std::vector<FunctionSummary::EdgeTy> 5862 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5863 bool IsOldProfileFormat, 5864 bool HasProfile, bool HasRelBF) { 5865 std::vector<FunctionSummary::EdgeTy> Ret; 5866 Ret.reserve(Record.size()); 5867 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5868 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5869 uint64_t RelBF = 0; 5870 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5871 if (IsOldProfileFormat) { 5872 I += 1; // Skip old callsitecount field 5873 if (HasProfile) 5874 I += 1; // Skip old profilecount field 5875 } else if (HasProfile) 5876 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5877 else if (HasRelBF) 5878 RelBF = Record[++I]; 5879 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5880 } 5881 return Ret; 5882 } 5883 5884 static void 5885 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5886 WholeProgramDevirtResolution &Wpd) { 5887 uint64_t ArgNum = Record[Slot++]; 5888 WholeProgramDevirtResolution::ByArg &B = 5889 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5890 Slot += ArgNum; 5891 5892 B.TheKind = 5893 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5894 B.Info = Record[Slot++]; 5895 B.Byte = Record[Slot++]; 5896 B.Bit = Record[Slot++]; 5897 } 5898 5899 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5900 StringRef Strtab, size_t &Slot, 5901 TypeIdSummary &TypeId) { 5902 uint64_t Id = Record[Slot++]; 5903 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5904 5905 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5906 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5907 static_cast<size_t>(Record[Slot + 1])}; 5908 Slot += 2; 5909 5910 uint64_t ResByArgNum = Record[Slot++]; 5911 for (uint64_t I = 0; I != ResByArgNum; ++I) 5912 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5913 } 5914 5915 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5916 StringRef Strtab, 5917 ModuleSummaryIndex &TheIndex) { 5918 size_t Slot = 0; 5919 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5920 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5921 Slot += 2; 5922 5923 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5924 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5925 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5926 TypeId.TTRes.SizeM1 = Record[Slot++]; 5927 TypeId.TTRes.BitMask = Record[Slot++]; 5928 TypeId.TTRes.InlineBits = Record[Slot++]; 5929 5930 while (Slot < Record.size()) 5931 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5932 } 5933 5934 std::vector<FunctionSummary::ParamAccess> 5935 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5936 auto ReadRange = [&]() { 5937 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5938 BitcodeReader::decodeSignRotatedValue(Record.front())); 5939 Record = Record.drop_front(); 5940 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5941 BitcodeReader::decodeSignRotatedValue(Record.front())); 5942 Record = Record.drop_front(); 5943 ConstantRange Range{Lower, Upper}; 5944 assert(!Range.isFullSet()); 5945 assert(!Range.isUpperSignWrapped()); 5946 return Range; 5947 }; 5948 5949 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5950 while (!Record.empty()) { 5951 PendingParamAccesses.emplace_back(); 5952 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5953 ParamAccess.ParamNo = Record.front(); 5954 Record = Record.drop_front(); 5955 ParamAccess.Use = ReadRange(); 5956 ParamAccess.Calls.resize(Record.front()); 5957 Record = Record.drop_front(); 5958 for (auto &Call : ParamAccess.Calls) { 5959 Call.ParamNo = Record.front(); 5960 Record = Record.drop_front(); 5961 Call.Callee = getValueInfoFromValueId(Record.front()).first; 5962 Record = Record.drop_front(); 5963 Call.Offsets = ReadRange(); 5964 } 5965 } 5966 return PendingParamAccesses; 5967 } 5968 5969 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5970 ArrayRef<uint64_t> Record, size_t &Slot, 5971 TypeIdCompatibleVtableInfo &TypeId) { 5972 uint64_t Offset = Record[Slot++]; 5973 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5974 TypeId.push_back({Offset, Callee}); 5975 } 5976 5977 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5978 ArrayRef<uint64_t> Record) { 5979 size_t Slot = 0; 5980 TypeIdCompatibleVtableInfo &TypeId = 5981 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5982 {Strtab.data() + Record[Slot], 5983 static_cast<size_t>(Record[Slot + 1])}); 5984 Slot += 2; 5985 5986 while (Slot < Record.size()) 5987 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5988 } 5989 5990 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5991 unsigned WOCnt) { 5992 // Readonly and writeonly refs are in the end of the refs list. 5993 assert(ROCnt + WOCnt <= Refs.size()); 5994 unsigned FirstWORef = Refs.size() - WOCnt; 5995 unsigned RefNo = FirstWORef - ROCnt; 5996 for (; RefNo < FirstWORef; ++RefNo) 5997 Refs[RefNo].setReadOnly(); 5998 for (; RefNo < Refs.size(); ++RefNo) 5999 Refs[RefNo].setWriteOnly(); 6000 } 6001 6002 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6003 // objects in the index. 6004 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6005 if (Error Err = Stream.EnterSubBlock(ID)) 6006 return Err; 6007 SmallVector<uint64_t, 64> Record; 6008 6009 // Parse version 6010 { 6011 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6012 if (!MaybeEntry) 6013 return MaybeEntry.takeError(); 6014 BitstreamEntry Entry = MaybeEntry.get(); 6015 6016 if (Entry.Kind != BitstreamEntry::Record) 6017 return error("Invalid Summary Block: record for version expected"); 6018 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6019 if (!MaybeRecord) 6020 return MaybeRecord.takeError(); 6021 if (MaybeRecord.get() != bitc::FS_VERSION) 6022 return error("Invalid Summary Block: version expected"); 6023 } 6024 const uint64_t Version = Record[0]; 6025 const bool IsOldProfileFormat = Version == 1; 6026 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6027 return error("Invalid summary version " + Twine(Version) + 6028 ". Version should be in the range [1-" + 6029 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6030 "]."); 6031 Record.clear(); 6032 6033 // Keep around the last seen summary to be used when we see an optional 6034 // "OriginalName" attachement. 6035 GlobalValueSummary *LastSeenSummary = nullptr; 6036 GlobalValue::GUID LastSeenGUID = 0; 6037 6038 // We can expect to see any number of type ID information records before 6039 // each function summary records; these variables store the information 6040 // collected so far so that it can be used to create the summary object. 6041 std::vector<GlobalValue::GUID> PendingTypeTests; 6042 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6043 PendingTypeCheckedLoadVCalls; 6044 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6045 PendingTypeCheckedLoadConstVCalls; 6046 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6047 6048 while (true) { 6049 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6050 if (!MaybeEntry) 6051 return MaybeEntry.takeError(); 6052 BitstreamEntry Entry = MaybeEntry.get(); 6053 6054 switch (Entry.Kind) { 6055 case BitstreamEntry::SubBlock: // Handled for us already. 6056 case BitstreamEntry::Error: 6057 return error("Malformed block"); 6058 case BitstreamEntry::EndBlock: 6059 return Error::success(); 6060 case BitstreamEntry::Record: 6061 // The interesting case. 6062 break; 6063 } 6064 6065 // Read a record. The record format depends on whether this 6066 // is a per-module index or a combined index file. In the per-module 6067 // case the records contain the associated value's ID for correlation 6068 // with VST entries. In the combined index the correlation is done 6069 // via the bitcode offset of the summary records (which were saved 6070 // in the combined index VST entries). The records also contain 6071 // information used for ThinLTO renaming and importing. 6072 Record.clear(); 6073 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6074 if (!MaybeBitCode) 6075 return MaybeBitCode.takeError(); 6076 switch (unsigned BitCode = MaybeBitCode.get()) { 6077 default: // Default behavior: ignore. 6078 break; 6079 case bitc::FS_FLAGS: { // [flags] 6080 TheIndex.setFlags(Record[0]); 6081 break; 6082 } 6083 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6084 uint64_t ValueID = Record[0]; 6085 GlobalValue::GUID RefGUID = Record[1]; 6086 ValueIdToValueInfoMap[ValueID] = 6087 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6088 break; 6089 } 6090 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6091 // numrefs x valueid, n x (valueid)] 6092 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6093 // numrefs x valueid, 6094 // n x (valueid, hotness)] 6095 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6096 // numrefs x valueid, 6097 // n x (valueid, relblockfreq)] 6098 case bitc::FS_PERMODULE: 6099 case bitc::FS_PERMODULE_RELBF: 6100 case bitc::FS_PERMODULE_PROFILE: { 6101 unsigned ValueID = Record[0]; 6102 uint64_t RawFlags = Record[1]; 6103 unsigned InstCount = Record[2]; 6104 uint64_t RawFunFlags = 0; 6105 unsigned NumRefs = Record[3]; 6106 unsigned NumRORefs = 0, NumWORefs = 0; 6107 int RefListStartIndex = 4; 6108 if (Version >= 4) { 6109 RawFunFlags = Record[3]; 6110 NumRefs = Record[4]; 6111 RefListStartIndex = 5; 6112 if (Version >= 5) { 6113 NumRORefs = Record[5]; 6114 RefListStartIndex = 6; 6115 if (Version >= 7) { 6116 NumWORefs = Record[6]; 6117 RefListStartIndex = 7; 6118 } 6119 } 6120 } 6121 6122 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6123 // The module path string ref set in the summary must be owned by the 6124 // index's module string table. Since we don't have a module path 6125 // string table section in the per-module index, we create a single 6126 // module path string table entry with an empty (0) ID to take 6127 // ownership. 6128 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6129 assert(Record.size() >= RefListStartIndex + NumRefs && 6130 "Record size inconsistent with number of references"); 6131 std::vector<ValueInfo> Refs = makeRefList( 6132 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6133 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6134 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6135 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6136 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6137 IsOldProfileFormat, HasProfile, HasRelBF); 6138 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6139 auto FS = std::make_unique<FunctionSummary>( 6140 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6141 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6142 std::move(PendingTypeTestAssumeVCalls), 6143 std::move(PendingTypeCheckedLoadVCalls), 6144 std::move(PendingTypeTestAssumeConstVCalls), 6145 std::move(PendingTypeCheckedLoadConstVCalls), 6146 std::move(PendingParamAccesses)); 6147 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6148 FS->setModulePath(getThisModule()->first()); 6149 FS->setOriginalName(VIAndOriginalGUID.second); 6150 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6151 break; 6152 } 6153 // FS_ALIAS: [valueid, flags, valueid] 6154 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6155 // they expect all aliasee summaries to be available. 6156 case bitc::FS_ALIAS: { 6157 unsigned ValueID = Record[0]; 6158 uint64_t RawFlags = Record[1]; 6159 unsigned AliaseeID = Record[2]; 6160 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6161 auto AS = std::make_unique<AliasSummary>(Flags); 6162 // The module path string ref set in the summary must be owned by the 6163 // index's module string table. Since we don't have a module path 6164 // string table section in the per-module index, we create a single 6165 // module path string table entry with an empty (0) ID to take 6166 // ownership. 6167 AS->setModulePath(getThisModule()->first()); 6168 6169 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6170 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6171 if (!AliaseeInModule) 6172 return error("Alias expects aliasee summary to be parsed"); 6173 AS->setAliasee(AliaseeVI, AliaseeInModule); 6174 6175 auto GUID = getValueInfoFromValueId(ValueID); 6176 AS->setOriginalName(GUID.second); 6177 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6178 break; 6179 } 6180 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6181 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6182 unsigned ValueID = Record[0]; 6183 uint64_t RawFlags = Record[1]; 6184 unsigned RefArrayStart = 2; 6185 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6186 /* WriteOnly */ false, 6187 /* Constant */ false, 6188 GlobalObject::VCallVisibilityPublic); 6189 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6190 if (Version >= 5) { 6191 GVF = getDecodedGVarFlags(Record[2]); 6192 RefArrayStart = 3; 6193 } 6194 std::vector<ValueInfo> Refs = 6195 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6196 auto FS = 6197 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6198 FS->setModulePath(getThisModule()->first()); 6199 auto GUID = getValueInfoFromValueId(ValueID); 6200 FS->setOriginalName(GUID.second); 6201 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6202 break; 6203 } 6204 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6205 // numrefs, numrefs x valueid, 6206 // n x (valueid, offset)] 6207 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6208 unsigned ValueID = Record[0]; 6209 uint64_t RawFlags = Record[1]; 6210 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6211 unsigned NumRefs = Record[3]; 6212 unsigned RefListStartIndex = 4; 6213 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6214 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6215 std::vector<ValueInfo> Refs = makeRefList( 6216 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6217 VTableFuncList VTableFuncs; 6218 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6219 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6220 uint64_t Offset = Record[++I]; 6221 VTableFuncs.push_back({Callee, Offset}); 6222 } 6223 auto VS = 6224 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6225 VS->setModulePath(getThisModule()->first()); 6226 VS->setVTableFuncs(VTableFuncs); 6227 auto GUID = getValueInfoFromValueId(ValueID); 6228 VS->setOriginalName(GUID.second); 6229 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6230 break; 6231 } 6232 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6233 // numrefs x valueid, n x (valueid)] 6234 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6235 // numrefs x valueid, n x (valueid, hotness)] 6236 case bitc::FS_COMBINED: 6237 case bitc::FS_COMBINED_PROFILE: { 6238 unsigned ValueID = Record[0]; 6239 uint64_t ModuleId = Record[1]; 6240 uint64_t RawFlags = Record[2]; 6241 unsigned InstCount = Record[3]; 6242 uint64_t RawFunFlags = 0; 6243 uint64_t EntryCount = 0; 6244 unsigned NumRefs = Record[4]; 6245 unsigned NumRORefs = 0, NumWORefs = 0; 6246 int RefListStartIndex = 5; 6247 6248 if (Version >= 4) { 6249 RawFunFlags = Record[4]; 6250 RefListStartIndex = 6; 6251 size_t NumRefsIndex = 5; 6252 if (Version >= 5) { 6253 unsigned NumRORefsOffset = 1; 6254 RefListStartIndex = 7; 6255 if (Version >= 6) { 6256 NumRefsIndex = 6; 6257 EntryCount = Record[5]; 6258 RefListStartIndex = 8; 6259 if (Version >= 7) { 6260 RefListStartIndex = 9; 6261 NumWORefs = Record[8]; 6262 NumRORefsOffset = 2; 6263 } 6264 } 6265 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6266 } 6267 NumRefs = Record[NumRefsIndex]; 6268 } 6269 6270 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6271 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6272 assert(Record.size() >= RefListStartIndex + NumRefs && 6273 "Record size inconsistent with number of references"); 6274 std::vector<ValueInfo> Refs = makeRefList( 6275 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6276 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6277 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6278 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6279 IsOldProfileFormat, HasProfile, false); 6280 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6281 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6282 auto FS = std::make_unique<FunctionSummary>( 6283 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6284 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6285 std::move(PendingTypeTestAssumeVCalls), 6286 std::move(PendingTypeCheckedLoadVCalls), 6287 std::move(PendingTypeTestAssumeConstVCalls), 6288 std::move(PendingTypeCheckedLoadConstVCalls), 6289 std::move(PendingParamAccesses)); 6290 LastSeenSummary = FS.get(); 6291 LastSeenGUID = VI.getGUID(); 6292 FS->setModulePath(ModuleIdMap[ModuleId]); 6293 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6294 break; 6295 } 6296 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6297 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6298 // they expect all aliasee summaries to be available. 6299 case bitc::FS_COMBINED_ALIAS: { 6300 unsigned ValueID = Record[0]; 6301 uint64_t ModuleId = Record[1]; 6302 uint64_t RawFlags = Record[2]; 6303 unsigned AliaseeValueId = Record[3]; 6304 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6305 auto AS = std::make_unique<AliasSummary>(Flags); 6306 LastSeenSummary = AS.get(); 6307 AS->setModulePath(ModuleIdMap[ModuleId]); 6308 6309 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6310 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6311 AS->setAliasee(AliaseeVI, AliaseeInModule); 6312 6313 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6314 LastSeenGUID = VI.getGUID(); 6315 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6316 break; 6317 } 6318 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6319 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6320 unsigned ValueID = Record[0]; 6321 uint64_t ModuleId = Record[1]; 6322 uint64_t RawFlags = Record[2]; 6323 unsigned RefArrayStart = 3; 6324 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6325 /* WriteOnly */ false, 6326 /* Constant */ false, 6327 GlobalObject::VCallVisibilityPublic); 6328 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6329 if (Version >= 5) { 6330 GVF = getDecodedGVarFlags(Record[3]); 6331 RefArrayStart = 4; 6332 } 6333 std::vector<ValueInfo> Refs = 6334 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6335 auto FS = 6336 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6337 LastSeenSummary = FS.get(); 6338 FS->setModulePath(ModuleIdMap[ModuleId]); 6339 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6340 LastSeenGUID = VI.getGUID(); 6341 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6342 break; 6343 } 6344 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6345 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6346 uint64_t OriginalName = Record[0]; 6347 if (!LastSeenSummary) 6348 return error("Name attachment that does not follow a combined record"); 6349 LastSeenSummary->setOriginalName(OriginalName); 6350 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6351 // Reset the LastSeenSummary 6352 LastSeenSummary = nullptr; 6353 LastSeenGUID = 0; 6354 break; 6355 } 6356 case bitc::FS_TYPE_TESTS: 6357 assert(PendingTypeTests.empty()); 6358 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6359 Record.end()); 6360 break; 6361 6362 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6363 assert(PendingTypeTestAssumeVCalls.empty()); 6364 for (unsigned I = 0; I != Record.size(); I += 2) 6365 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6366 break; 6367 6368 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6369 assert(PendingTypeCheckedLoadVCalls.empty()); 6370 for (unsigned I = 0; I != Record.size(); I += 2) 6371 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6372 break; 6373 6374 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6375 PendingTypeTestAssumeConstVCalls.push_back( 6376 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6377 break; 6378 6379 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6380 PendingTypeCheckedLoadConstVCalls.push_back( 6381 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6382 break; 6383 6384 case bitc::FS_CFI_FUNCTION_DEFS: { 6385 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6386 for (unsigned I = 0; I != Record.size(); I += 2) 6387 CfiFunctionDefs.insert( 6388 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6389 break; 6390 } 6391 6392 case bitc::FS_CFI_FUNCTION_DECLS: { 6393 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6394 for (unsigned I = 0; I != Record.size(); I += 2) 6395 CfiFunctionDecls.insert( 6396 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6397 break; 6398 } 6399 6400 case bitc::FS_TYPE_ID: 6401 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6402 break; 6403 6404 case bitc::FS_TYPE_ID_METADATA: 6405 parseTypeIdCompatibleVtableSummaryRecord(Record); 6406 break; 6407 6408 case bitc::FS_BLOCK_COUNT: 6409 TheIndex.addBlockCount(Record[0]); 6410 break; 6411 6412 case bitc::FS_PARAM_ACCESS: { 6413 PendingParamAccesses = parseParamAccesses(Record); 6414 break; 6415 } 6416 } 6417 } 6418 llvm_unreachable("Exit infinite loop"); 6419 } 6420 6421 // Parse the module string table block into the Index. 6422 // This populates the ModulePathStringTable map in the index. 6423 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6424 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6425 return Err; 6426 6427 SmallVector<uint64_t, 64> Record; 6428 6429 SmallString<128> ModulePath; 6430 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6431 6432 while (true) { 6433 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6434 if (!MaybeEntry) 6435 return MaybeEntry.takeError(); 6436 BitstreamEntry Entry = MaybeEntry.get(); 6437 6438 switch (Entry.Kind) { 6439 case BitstreamEntry::SubBlock: // Handled for us already. 6440 case BitstreamEntry::Error: 6441 return error("Malformed block"); 6442 case BitstreamEntry::EndBlock: 6443 return Error::success(); 6444 case BitstreamEntry::Record: 6445 // The interesting case. 6446 break; 6447 } 6448 6449 Record.clear(); 6450 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6451 if (!MaybeRecord) 6452 return MaybeRecord.takeError(); 6453 switch (MaybeRecord.get()) { 6454 default: // Default behavior: ignore. 6455 break; 6456 case bitc::MST_CODE_ENTRY: { 6457 // MST_ENTRY: [modid, namechar x N] 6458 uint64_t ModuleId = Record[0]; 6459 6460 if (convertToString(Record, 1, ModulePath)) 6461 return error("Invalid record"); 6462 6463 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6464 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6465 6466 ModulePath.clear(); 6467 break; 6468 } 6469 /// MST_CODE_HASH: [5*i32] 6470 case bitc::MST_CODE_HASH: { 6471 if (Record.size() != 5) 6472 return error("Invalid hash length " + Twine(Record.size()).str()); 6473 if (!LastSeenModule) 6474 return error("Invalid hash that does not follow a module path"); 6475 int Pos = 0; 6476 for (auto &Val : Record) { 6477 assert(!(Val >> 32) && "Unexpected high bits set"); 6478 LastSeenModule->second.second[Pos++] = Val; 6479 } 6480 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6481 LastSeenModule = nullptr; 6482 break; 6483 } 6484 } 6485 } 6486 llvm_unreachable("Exit infinite loop"); 6487 } 6488 6489 namespace { 6490 6491 // FIXME: This class is only here to support the transition to llvm::Error. It 6492 // will be removed once this transition is complete. Clients should prefer to 6493 // deal with the Error value directly, rather than converting to error_code. 6494 class BitcodeErrorCategoryType : public std::error_category { 6495 const char *name() const noexcept override { 6496 return "llvm.bitcode"; 6497 } 6498 6499 std::string message(int IE) const override { 6500 BitcodeError E = static_cast<BitcodeError>(IE); 6501 switch (E) { 6502 case BitcodeError::CorruptedBitcode: 6503 return "Corrupted bitcode"; 6504 } 6505 llvm_unreachable("Unknown error type!"); 6506 } 6507 }; 6508 6509 } // end anonymous namespace 6510 6511 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6512 6513 const std::error_category &llvm::BitcodeErrorCategory() { 6514 return *ErrorCategory; 6515 } 6516 6517 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6518 unsigned Block, unsigned RecordID) { 6519 if (Error Err = Stream.EnterSubBlock(Block)) 6520 return std::move(Err); 6521 6522 StringRef Strtab; 6523 while (true) { 6524 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6525 if (!MaybeEntry) 6526 return MaybeEntry.takeError(); 6527 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6528 6529 switch (Entry.Kind) { 6530 case BitstreamEntry::EndBlock: 6531 return Strtab; 6532 6533 case BitstreamEntry::Error: 6534 return error("Malformed block"); 6535 6536 case BitstreamEntry::SubBlock: 6537 if (Error Err = Stream.SkipBlock()) 6538 return std::move(Err); 6539 break; 6540 6541 case BitstreamEntry::Record: 6542 StringRef Blob; 6543 SmallVector<uint64_t, 1> Record; 6544 Expected<unsigned> MaybeRecord = 6545 Stream.readRecord(Entry.ID, Record, &Blob); 6546 if (!MaybeRecord) 6547 return MaybeRecord.takeError(); 6548 if (MaybeRecord.get() == RecordID) 6549 Strtab = Blob; 6550 break; 6551 } 6552 } 6553 } 6554 6555 //===----------------------------------------------------------------------===// 6556 // External interface 6557 //===----------------------------------------------------------------------===// 6558 6559 Expected<std::vector<BitcodeModule>> 6560 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6561 auto FOrErr = getBitcodeFileContents(Buffer); 6562 if (!FOrErr) 6563 return FOrErr.takeError(); 6564 return std::move(FOrErr->Mods); 6565 } 6566 6567 Expected<BitcodeFileContents> 6568 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6569 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6570 if (!StreamOrErr) 6571 return StreamOrErr.takeError(); 6572 BitstreamCursor &Stream = *StreamOrErr; 6573 6574 BitcodeFileContents F; 6575 while (true) { 6576 uint64_t BCBegin = Stream.getCurrentByteNo(); 6577 6578 // We may be consuming bitcode from a client that leaves garbage at the end 6579 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6580 // the end that there cannot possibly be another module, stop looking. 6581 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6582 return F; 6583 6584 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6585 if (!MaybeEntry) 6586 return MaybeEntry.takeError(); 6587 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6588 6589 switch (Entry.Kind) { 6590 case BitstreamEntry::EndBlock: 6591 case BitstreamEntry::Error: 6592 return error("Malformed block"); 6593 6594 case BitstreamEntry::SubBlock: { 6595 uint64_t IdentificationBit = -1ull; 6596 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6597 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6598 if (Error Err = Stream.SkipBlock()) 6599 return std::move(Err); 6600 6601 { 6602 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6603 if (!MaybeEntry) 6604 return MaybeEntry.takeError(); 6605 Entry = MaybeEntry.get(); 6606 } 6607 6608 if (Entry.Kind != BitstreamEntry::SubBlock || 6609 Entry.ID != bitc::MODULE_BLOCK_ID) 6610 return error("Malformed block"); 6611 } 6612 6613 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6614 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6615 if (Error Err = Stream.SkipBlock()) 6616 return std::move(Err); 6617 6618 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6619 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6620 Buffer.getBufferIdentifier(), IdentificationBit, 6621 ModuleBit}); 6622 continue; 6623 } 6624 6625 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6626 Expected<StringRef> Strtab = 6627 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6628 if (!Strtab) 6629 return Strtab.takeError(); 6630 // This string table is used by every preceding bitcode module that does 6631 // not have its own string table. A bitcode file may have multiple 6632 // string tables if it was created by binary concatenation, for example 6633 // with "llvm-cat -b". 6634 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6635 if (!I->Strtab.empty()) 6636 break; 6637 I->Strtab = *Strtab; 6638 } 6639 // Similarly, the string table is used by every preceding symbol table; 6640 // normally there will be just one unless the bitcode file was created 6641 // by binary concatenation. 6642 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6643 F.StrtabForSymtab = *Strtab; 6644 continue; 6645 } 6646 6647 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6648 Expected<StringRef> SymtabOrErr = 6649 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6650 if (!SymtabOrErr) 6651 return SymtabOrErr.takeError(); 6652 6653 // We can expect the bitcode file to have multiple symbol tables if it 6654 // was created by binary concatenation. In that case we silently 6655 // ignore any subsequent symbol tables, which is fine because this is a 6656 // low level function. The client is expected to notice that the number 6657 // of modules in the symbol table does not match the number of modules 6658 // in the input file and regenerate the symbol table. 6659 if (F.Symtab.empty()) 6660 F.Symtab = *SymtabOrErr; 6661 continue; 6662 } 6663 6664 if (Error Err = Stream.SkipBlock()) 6665 return std::move(Err); 6666 continue; 6667 } 6668 case BitstreamEntry::Record: 6669 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6670 continue; 6671 else 6672 return StreamFailed.takeError(); 6673 } 6674 } 6675 } 6676 6677 /// Get a lazy one-at-time loading module from bitcode. 6678 /// 6679 /// This isn't always used in a lazy context. In particular, it's also used by 6680 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6681 /// in forward-referenced functions from block address references. 6682 /// 6683 /// \param[in] MaterializeAll Set to \c true if we should materialize 6684 /// everything. 6685 Expected<std::unique_ptr<Module>> 6686 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6687 bool ShouldLazyLoadMetadata, bool IsImporting, 6688 DataLayoutCallbackTy DataLayoutCallback) { 6689 BitstreamCursor Stream(Buffer); 6690 6691 std::string ProducerIdentification; 6692 if (IdentificationBit != -1ull) { 6693 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6694 return std::move(JumpFailed); 6695 Expected<std::string> ProducerIdentificationOrErr = 6696 readIdentificationBlock(Stream); 6697 if (!ProducerIdentificationOrErr) 6698 return ProducerIdentificationOrErr.takeError(); 6699 6700 ProducerIdentification = *ProducerIdentificationOrErr; 6701 } 6702 6703 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6704 return std::move(JumpFailed); 6705 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6706 Context); 6707 6708 std::unique_ptr<Module> M = 6709 std::make_unique<Module>(ModuleIdentifier, Context); 6710 M->setMaterializer(R); 6711 6712 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6713 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6714 IsImporting, DataLayoutCallback)) 6715 return std::move(Err); 6716 6717 if (MaterializeAll) { 6718 // Read in the entire module, and destroy the BitcodeReader. 6719 if (Error Err = M->materializeAll()) 6720 return std::move(Err); 6721 } else { 6722 // Resolve forward references from blockaddresses. 6723 if (Error Err = R->materializeForwardReferencedFunctions()) 6724 return std::move(Err); 6725 } 6726 return std::move(M); 6727 } 6728 6729 Expected<std::unique_ptr<Module>> 6730 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6731 bool IsImporting) { 6732 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6733 [](StringRef) { return None; }); 6734 } 6735 6736 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6737 // We don't use ModuleIdentifier here because the client may need to control the 6738 // module path used in the combined summary (e.g. when reading summaries for 6739 // regular LTO modules). 6740 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6741 StringRef ModulePath, uint64_t ModuleId) { 6742 BitstreamCursor Stream(Buffer); 6743 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6744 return JumpFailed; 6745 6746 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6747 ModulePath, ModuleId); 6748 return R.parseModule(); 6749 } 6750 6751 // Parse the specified bitcode buffer, returning the function info index. 6752 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6753 BitstreamCursor Stream(Buffer); 6754 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6755 return std::move(JumpFailed); 6756 6757 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6758 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6759 ModuleIdentifier, 0); 6760 6761 if (Error Err = R.parseModule()) 6762 return std::move(Err); 6763 6764 return std::move(Index); 6765 } 6766 6767 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6768 unsigned ID) { 6769 if (Error Err = Stream.EnterSubBlock(ID)) 6770 return std::move(Err); 6771 SmallVector<uint64_t, 64> Record; 6772 6773 while (true) { 6774 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6775 if (!MaybeEntry) 6776 return MaybeEntry.takeError(); 6777 BitstreamEntry Entry = MaybeEntry.get(); 6778 6779 switch (Entry.Kind) { 6780 case BitstreamEntry::SubBlock: // Handled for us already. 6781 case BitstreamEntry::Error: 6782 return error("Malformed block"); 6783 case BitstreamEntry::EndBlock: 6784 // If no flags record found, conservatively return true to mimic 6785 // behavior before this flag was added. 6786 return true; 6787 case BitstreamEntry::Record: 6788 // The interesting case. 6789 break; 6790 } 6791 6792 // Look for the FS_FLAGS record. 6793 Record.clear(); 6794 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6795 if (!MaybeBitCode) 6796 return MaybeBitCode.takeError(); 6797 switch (MaybeBitCode.get()) { 6798 default: // Default behavior: ignore. 6799 break; 6800 case bitc::FS_FLAGS: { // [flags] 6801 uint64_t Flags = Record[0]; 6802 // Scan flags. 6803 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6804 6805 return Flags & 0x8; 6806 } 6807 } 6808 } 6809 llvm_unreachable("Exit infinite loop"); 6810 } 6811 6812 // Check if the given bitcode buffer contains a global value summary block. 6813 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6814 BitstreamCursor Stream(Buffer); 6815 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6816 return std::move(JumpFailed); 6817 6818 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6819 return std::move(Err); 6820 6821 while (true) { 6822 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6823 if (!MaybeEntry) 6824 return MaybeEntry.takeError(); 6825 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6826 6827 switch (Entry.Kind) { 6828 case BitstreamEntry::Error: 6829 return error("Malformed block"); 6830 case BitstreamEntry::EndBlock: 6831 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6832 /*EnableSplitLTOUnit=*/false}; 6833 6834 case BitstreamEntry::SubBlock: 6835 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6836 Expected<bool> EnableSplitLTOUnit = 6837 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6838 if (!EnableSplitLTOUnit) 6839 return EnableSplitLTOUnit.takeError(); 6840 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6841 *EnableSplitLTOUnit}; 6842 } 6843 6844 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6845 Expected<bool> EnableSplitLTOUnit = 6846 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6847 if (!EnableSplitLTOUnit) 6848 return EnableSplitLTOUnit.takeError(); 6849 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6850 *EnableSplitLTOUnit}; 6851 } 6852 6853 // Ignore other sub-blocks. 6854 if (Error Err = Stream.SkipBlock()) 6855 return std::move(Err); 6856 continue; 6857 6858 case BitstreamEntry::Record: 6859 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6860 continue; 6861 else 6862 return StreamFailed.takeError(); 6863 } 6864 } 6865 } 6866 6867 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6868 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6869 if (!MsOrErr) 6870 return MsOrErr.takeError(); 6871 6872 if (MsOrErr->size() != 1) 6873 return error("Expected a single module"); 6874 6875 return (*MsOrErr)[0]; 6876 } 6877 6878 Expected<std::unique_ptr<Module>> 6879 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6880 bool ShouldLazyLoadMetadata, bool IsImporting) { 6881 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6882 if (!BM) 6883 return BM.takeError(); 6884 6885 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6886 } 6887 6888 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6889 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6890 bool ShouldLazyLoadMetadata, bool IsImporting) { 6891 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6892 IsImporting); 6893 if (MOrErr) 6894 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6895 return MOrErr; 6896 } 6897 6898 Expected<std::unique_ptr<Module>> 6899 BitcodeModule::parseModule(LLVMContext &Context, 6900 DataLayoutCallbackTy DataLayoutCallback) { 6901 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6902 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6903 // written. We must defer until the Module has been fully materialized. 6904 } 6905 6906 Expected<std::unique_ptr<Module>> 6907 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6908 DataLayoutCallbackTy DataLayoutCallback) { 6909 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6910 if (!BM) 6911 return BM.takeError(); 6912 6913 return BM->parseModule(Context, DataLayoutCallback); 6914 } 6915 6916 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6917 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6918 if (!StreamOrErr) 6919 return StreamOrErr.takeError(); 6920 6921 return readTriple(*StreamOrErr); 6922 } 6923 6924 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6925 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6926 if (!StreamOrErr) 6927 return StreamOrErr.takeError(); 6928 6929 return hasObjCCategory(*StreamOrErr); 6930 } 6931 6932 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6933 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6934 if (!StreamOrErr) 6935 return StreamOrErr.takeError(); 6936 6937 return readIdentificationCode(*StreamOrErr); 6938 } 6939 6940 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6941 ModuleSummaryIndex &CombinedIndex, 6942 uint64_t ModuleId) { 6943 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6944 if (!BM) 6945 return BM.takeError(); 6946 6947 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6948 } 6949 6950 Expected<std::unique_ptr<ModuleSummaryIndex>> 6951 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6952 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6953 if (!BM) 6954 return BM.takeError(); 6955 6956 return BM->getSummary(); 6957 } 6958 6959 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6960 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6961 if (!BM) 6962 return BM.takeError(); 6963 6964 return BM->getLTOInfo(); 6965 } 6966 6967 Expected<std::unique_ptr<ModuleSummaryIndex>> 6968 llvm::getModuleSummaryIndexForFile(StringRef Path, 6969 bool IgnoreEmptyThinLTOIndexFile) { 6970 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6971 MemoryBuffer::getFileOrSTDIN(Path); 6972 if (!FileOrErr) 6973 return errorCodeToError(FileOrErr.getError()); 6974 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6975 return nullptr; 6976 return getModuleSummaryIndex(**FileOrErr); 6977 } 6978