xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 356d6b636b778fb256f8ae404021a1c70a6e6e53)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitstreamReader.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DataStream.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/ManagedStatic.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Support/StreamingMemoryObject.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <deque>
77 #include <limits>
78 #include <map>
79 #include <memory>
80 #include <string>
81 #include <system_error>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 
88 static cl::opt<bool> PrintSummaryGUIDs(
89     "print-summary-global-ids", cl::init(false), cl::Hidden,
90     cl::desc(
91         "Print the global id for each value when reading the module summary"));
92 
93 namespace {
94 
95 enum {
96   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
97 };
98 
99 class BitcodeReaderValueList {
100   std::vector<WeakVH> ValuePtrs;
101 
102   /// As we resolve forward-referenced constants, we add information about them
103   /// to this vector.  This allows us to resolve them in bulk instead of
104   /// resolving each reference at a time.  See the code in
105   /// ResolveConstantForwardRefs for more information about this.
106   ///
107   /// The key of this vector is the placeholder constant, the value is the slot
108   /// number that holds the resolved value.
109   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
110   ResolveConstantsTy ResolveConstants;
111   LLVMContext &Context;
112 
113 public:
114   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
115   ~BitcodeReaderValueList() {
116     assert(ResolveConstants.empty() && "Constants not resolved?");
117   }
118 
119   // vector compatibility methods
120   unsigned size() const { return ValuePtrs.size(); }
121   void resize(unsigned N) { ValuePtrs.resize(N); }
122   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
123 
124   void clear() {
125     assert(ResolveConstants.empty() && "Constants not resolved?");
126     ValuePtrs.clear();
127   }
128 
129   Value *operator[](unsigned i) const {
130     assert(i < ValuePtrs.size());
131     return ValuePtrs[i];
132   }
133 
134   Value *back() const { return ValuePtrs.back(); }
135   void pop_back() { ValuePtrs.pop_back(); }
136   bool empty() const { return ValuePtrs.empty(); }
137 
138   void shrinkTo(unsigned N) {
139     assert(N <= size() && "Invalid shrinkTo request!");
140     ValuePtrs.resize(N);
141   }
142 
143   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
144   Value *getValueFwdRef(unsigned Idx, Type *Ty);
145 
146   void assignValue(Value *V, unsigned Idx);
147 
148   /// Once all constants are read, this method bulk resolves any forward
149   /// references.
150   void resolveConstantForwardRefs();
151 };
152 
153 class BitcodeReaderMetadataList {
154   unsigned NumFwdRefs;
155   bool AnyFwdRefs;
156   unsigned MinFwdRef;
157   unsigned MaxFwdRef;
158 
159   /// Array of metadata references.
160   ///
161   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
162   /// move) on resize, and TrackingMDRef is very expensive to copy.
163   SmallVector<TrackingMDRef, 1> MetadataPtrs;
164 
165   /// Structures for resolving old type refs.
166   struct {
167     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
168     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
169     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
170     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
171   } OldTypeRefs;
172 
173   LLVMContext &Context;
174 
175 public:
176   BitcodeReaderMetadataList(LLVMContext &C)
177       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
178 
179   // vector compatibility methods
180   unsigned size() const { return MetadataPtrs.size(); }
181   void resize(unsigned N) { MetadataPtrs.resize(N); }
182   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
183   void clear() { MetadataPtrs.clear(); }
184   Metadata *back() const { return MetadataPtrs.back(); }
185   void pop_back() { MetadataPtrs.pop_back(); }
186   bool empty() const { return MetadataPtrs.empty(); }
187 
188   Metadata *operator[](unsigned i) const {
189     assert(i < MetadataPtrs.size());
190     return MetadataPtrs[i];
191   }
192 
193   Metadata *lookup(unsigned I) const {
194     if (I < MetadataPtrs.size())
195       return MetadataPtrs[I];
196     return nullptr;
197   }
198 
199   void shrinkTo(unsigned N) {
200     assert(N <= size() && "Invalid shrinkTo request!");
201     assert(!AnyFwdRefs && "Unexpected forward refs");
202     MetadataPtrs.resize(N);
203   }
204 
205   /// Return the given metadata, creating a replaceable forward reference if
206   /// necessary.
207   Metadata *getMetadataFwdRef(unsigned Idx);
208 
209   /// Return the the given metadata only if it is fully resolved.
210   ///
211   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
212   /// would give \c false.
213   Metadata *getMetadataIfResolved(unsigned Idx);
214 
215   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
216   void assignValue(Metadata *MD, unsigned Idx);
217   void tryToResolveCycles();
218   bool hasFwdRefs() const { return AnyFwdRefs; }
219 
220   /// Upgrade a type that had an MDString reference.
221   void addTypeRef(MDString &UUID, DICompositeType &CT);
222 
223   /// Upgrade a type that had an MDString reference.
224   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
225 
226   /// Upgrade a type ref array that may have MDString references.
227   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
228 
229 private:
230   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
231 };
232 
233 class BitcodeReader : public GVMaterializer {
234   LLVMContext &Context;
235   Module *TheModule = nullptr;
236   std::unique_ptr<MemoryBuffer> Buffer;
237   std::unique_ptr<BitstreamReader> StreamFile;
238   BitstreamCursor Stream;
239   // Next offset to start scanning for lazy parsing of function bodies.
240   uint64_t NextUnreadBit = 0;
241   // Last function offset found in the VST.
242   uint64_t LastFunctionBlockBit = 0;
243   bool SeenValueSymbolTable = false;
244   uint64_t VSTOffset = 0;
245   // Contains an arbitrary and optional string identifying the bitcode producer
246   std::string ProducerIdentification;
247 
248   std::vector<Type*> TypeList;
249   BitcodeReaderValueList ValueList;
250   BitcodeReaderMetadataList MetadataList;
251   std::vector<Comdat *> ComdatList;
252   SmallVector<Instruction *, 64> InstructionList;
253 
254   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
255   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
256   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
257   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
258   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
259 
260   SmallVector<Instruction*, 64> InstsWithTBAATag;
261 
262   bool HasSeenOldLoopTags = false;
263 
264   /// The set of attributes by index.  Index zero in the file is for null, and
265   /// is thus not represented here.  As such all indices are off by one.
266   std::vector<AttributeSet> MAttributes;
267 
268   /// The set of attribute groups.
269   std::map<unsigned, AttributeSet> MAttributeGroups;
270 
271   /// While parsing a function body, this is a list of the basic blocks for the
272   /// function.
273   std::vector<BasicBlock*> FunctionBBs;
274 
275   // When reading the module header, this list is populated with functions that
276   // have bodies later in the file.
277   std::vector<Function*> FunctionsWithBodies;
278 
279   // When intrinsic functions are encountered which require upgrading they are
280   // stored here with their replacement function.
281   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
282   UpdatedIntrinsicMap UpgradedIntrinsics;
283   // Intrinsics which were remangled because of types rename
284   UpdatedIntrinsicMap RemangledIntrinsics;
285 
286   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
287   DenseMap<unsigned, unsigned> MDKindMap;
288 
289   // Several operations happen after the module header has been read, but
290   // before function bodies are processed. This keeps track of whether
291   // we've done this yet.
292   bool SeenFirstFunctionBody = false;
293 
294   /// When function bodies are initially scanned, this map contains info about
295   /// where to find deferred function body in the stream.
296   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
297 
298   /// When Metadata block is initially scanned when parsing the module, we may
299   /// choose to defer parsing of the metadata. This vector contains info about
300   /// which Metadata blocks are deferred.
301   std::vector<uint64_t> DeferredMetadataInfo;
302 
303   /// These are basic blocks forward-referenced by block addresses.  They are
304   /// inserted lazily into functions when they're loaded.  The basic block ID is
305   /// its index into the vector.
306   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
307   std::deque<Function *> BasicBlockFwdRefQueue;
308 
309   /// Indicates that we are using a new encoding for instruction operands where
310   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
311   /// instruction number, for a more compact encoding.  Some instruction
312   /// operands are not relative to the instruction ID: basic block numbers, and
313   /// types. Once the old style function blocks have been phased out, we would
314   /// not need this flag.
315   bool UseRelativeIDs = false;
316 
317   /// True if all functions will be materialized, negating the need to process
318   /// (e.g.) blockaddress forward references.
319   bool WillMaterializeAllForwardRefs = false;
320 
321   /// True if any Metadata block has been materialized.
322   bool IsMetadataMaterialized = false;
323 
324   bool StripDebugInfo = false;
325 
326   /// Functions that need to be matched with subprograms when upgrading old
327   /// metadata.
328   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
329 
330   std::vector<std::string> BundleTags;
331 
332 public:
333   std::error_code error(BitcodeError E, const Twine &Message);
334   std::error_code error(const Twine &Message);
335 
336   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
337   BitcodeReader(LLVMContext &Context);
338   ~BitcodeReader() override { freeState(); }
339 
340   std::error_code materializeForwardReferencedFunctions();
341 
342   void freeState();
343 
344   void releaseBuffer();
345 
346   std::error_code materialize(GlobalValue *GV) override;
347   std::error_code materializeModule() override;
348   std::vector<StructType *> getIdentifiedStructTypes() const override;
349 
350   /// \brief Main interface to parsing a bitcode buffer.
351   /// \returns true if an error occurred.
352   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
353                                    Module *M,
354                                    bool ShouldLazyLoadMetadata = false);
355 
356   /// \brief Cheap mechanism to just extract module triple
357   /// \returns true if an error occurred.
358   ErrorOr<std::string> parseTriple();
359 
360   /// Cheap mechanism to just extract the identification block out of bitcode.
361   ErrorOr<std::string> parseIdentificationBlock();
362 
363   /// Peak at the module content and return true if any ObjC category or class
364   /// is found.
365   ErrorOr<bool> hasObjCCategory();
366 
367   static uint64_t decodeSignRotatedValue(uint64_t V);
368 
369   /// Materialize any deferred Metadata block.
370   std::error_code materializeMetadata() override;
371 
372   void setStripDebugInfo() override;
373 
374 private:
375   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
376   // ProducerIdentification data member, and do some basic enforcement on the
377   // "epoch" encoded in the bitcode.
378   std::error_code parseBitcodeVersion();
379 
380   std::vector<StructType *> IdentifiedStructTypes;
381   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
382   StructType *createIdentifiedStructType(LLVMContext &Context);
383 
384   Type *getTypeByID(unsigned ID);
385 
386   Value *getFnValueByID(unsigned ID, Type *Ty) {
387     if (Ty && Ty->isMetadataTy())
388       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
389     return ValueList.getValueFwdRef(ID, Ty);
390   }
391 
392   Metadata *getFnMetadataByID(unsigned ID) {
393     return MetadataList.getMetadataFwdRef(ID);
394   }
395 
396   BasicBlock *getBasicBlock(unsigned ID) const {
397     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
398     return FunctionBBs[ID];
399   }
400 
401   AttributeSet getAttributes(unsigned i) const {
402     if (i-1 < MAttributes.size())
403       return MAttributes[i-1];
404     return AttributeSet();
405   }
406 
407   /// Read a value/type pair out of the specified record from slot 'Slot'.
408   /// Increment Slot past the number of slots used in the record. Return true on
409   /// failure.
410   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
411                         unsigned InstNum, Value *&ResVal) {
412     if (Slot == Record.size()) return true;
413     unsigned ValNo = (unsigned)Record[Slot++];
414     // Adjust the ValNo, if it was encoded relative to the InstNum.
415     if (UseRelativeIDs)
416       ValNo = InstNum - ValNo;
417     if (ValNo < InstNum) {
418       // If this is not a forward reference, just return the value we already
419       // have.
420       ResVal = getFnValueByID(ValNo, nullptr);
421       return ResVal == nullptr;
422     }
423     if (Slot == Record.size())
424       return true;
425 
426     unsigned TypeNo = (unsigned)Record[Slot++];
427     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
428     return ResVal == nullptr;
429   }
430 
431   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
432   /// past the number of slots used by the value in the record. Return true if
433   /// there is an error.
434   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
435                 unsigned InstNum, Type *Ty, Value *&ResVal) {
436     if (getValue(Record, Slot, InstNum, Ty, ResVal))
437       return true;
438     // All values currently take a single record slot.
439     ++Slot;
440     return false;
441   }
442 
443   /// Like popValue, but does not increment the Slot number.
444   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
445                 unsigned InstNum, Type *Ty, Value *&ResVal) {
446     ResVal = getValue(Record, Slot, InstNum, Ty);
447     return ResVal == nullptr;
448   }
449 
450   /// Version of getValue that returns ResVal directly, or 0 if there is an
451   /// error.
452   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
453                   unsigned InstNum, Type *Ty) {
454     if (Slot == Record.size()) return nullptr;
455     unsigned ValNo = (unsigned)Record[Slot];
456     // Adjust the ValNo, if it was encoded relative to the InstNum.
457     if (UseRelativeIDs)
458       ValNo = InstNum - ValNo;
459     return getFnValueByID(ValNo, Ty);
460   }
461 
462   /// Like getValue, but decodes signed VBRs.
463   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
464                         unsigned InstNum, Type *Ty) {
465     if (Slot == Record.size()) return nullptr;
466     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
467     // Adjust the ValNo, if it was encoded relative to the InstNum.
468     if (UseRelativeIDs)
469       ValNo = InstNum - ValNo;
470     return getFnValueByID(ValNo, Ty);
471   }
472 
473   /// Converts alignment exponent (i.e. power of two (or zero)) to the
474   /// corresponding alignment to use. If alignment is too large, returns
475   /// a corresponding error code.
476   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
477   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
478   std::error_code parseModule(uint64_t ResumeBit,
479                               bool ShouldLazyLoadMetadata = false);
480   std::error_code parseAttributeBlock();
481   std::error_code parseAttributeGroupBlock();
482   std::error_code parseTypeTable();
483   std::error_code parseTypeTableBody();
484   std::error_code parseOperandBundleTags();
485 
486   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
487                                unsigned NameIndex, Triple &TT);
488   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
489   std::error_code parseConstants();
490   std::error_code rememberAndSkipFunctionBodies();
491   std::error_code rememberAndSkipFunctionBody();
492   /// Save the positions of the Metadata blocks and skip parsing the blocks.
493   std::error_code rememberAndSkipMetadata();
494   std::error_code parseFunctionBody(Function *F);
495   std::error_code globalCleanup();
496   std::error_code resolveGlobalAndIndirectSymbolInits();
497   std::error_code parseMetadata(bool ModuleLevel = false);
498   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
499                                        StringRef Blob,
500                                        unsigned &NextMetadataNo);
501   std::error_code parseMetadataKinds();
502   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
503   std::error_code
504   parseGlobalObjectAttachment(GlobalObject &GO,
505                               ArrayRef<uint64_t> Record);
506   std::error_code parseMetadataAttachment(Function &F);
507   ErrorOr<std::string> parseModuleTriple();
508   ErrorOr<bool> hasObjCCategoryInModule();
509   std::error_code parseUseLists();
510   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
511   std::error_code initStreamFromBuffer();
512   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
513   std::error_code findFunctionInStream(
514       Function *F,
515       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
516 };
517 
518 /// Class to manage reading and parsing function summary index bitcode
519 /// files/sections.
520 class ModuleSummaryIndexBitcodeReader {
521   DiagnosticHandlerFunction DiagnosticHandler;
522 
523   /// Eventually points to the module index built during parsing.
524   ModuleSummaryIndex *TheIndex = nullptr;
525 
526   std::unique_ptr<MemoryBuffer> Buffer;
527   std::unique_ptr<BitstreamReader> StreamFile;
528   BitstreamCursor Stream;
529 
530   /// Used to indicate whether caller only wants to check for the presence
531   /// of the global value summary bitcode section. All blocks are skipped,
532   /// but the SeenGlobalValSummary boolean is set.
533   bool CheckGlobalValSummaryPresenceOnly = false;
534 
535   /// Indicates whether we have encountered a global value summary section
536   /// yet during parsing, used when checking if file contains global value
537   /// summary section.
538   bool SeenGlobalValSummary = false;
539 
540   /// Indicates whether we have already parsed the VST, used for error checking.
541   bool SeenValueSymbolTable = false;
542 
543   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
544   /// Used to enable on-demand parsing of the VST.
545   uint64_t VSTOffset = 0;
546 
547   // Map to save ValueId to GUID association that was recorded in the
548   // ValueSymbolTable. It is used after the VST is parsed to convert
549   // call graph edges read from the function summary from referencing
550   // callees by their ValueId to using the GUID instead, which is how
551   // they are recorded in the summary index being built.
552   // We save a second GUID which is the same as the first one, but ignoring the
553   // linkage, i.e. for value other than local linkage they are identical.
554   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
555       ValueIdToCallGraphGUIDMap;
556 
557   /// Map populated during module path string table parsing, from the
558   /// module ID to a string reference owned by the index's module
559   /// path string table, used to correlate with combined index
560   /// summary records.
561   DenseMap<uint64_t, StringRef> ModuleIdMap;
562 
563   /// Original source file name recorded in a bitcode record.
564   std::string SourceFileName;
565 
566 public:
567   std::error_code error(const Twine &Message);
568 
569   ModuleSummaryIndexBitcodeReader(
570       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
571       bool CheckGlobalValSummaryPresenceOnly = false);
572   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
573 
574   void freeState();
575 
576   void releaseBuffer();
577 
578   /// Check if the parser has encountered a summary section.
579   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
580 
581   /// \brief Main interface to parsing a bitcode buffer.
582   /// \returns true if an error occurred.
583   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
584                                         ModuleSummaryIndex *I);
585 
586 private:
587   std::error_code parseModule();
588   std::error_code parseValueSymbolTable(
589       uint64_t Offset,
590       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
591   std::error_code parseEntireSummary();
592   std::error_code parseModuleStringTable();
593   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
594   std::error_code initStreamFromBuffer();
595   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
596   std::pair<GlobalValue::GUID, GlobalValue::GUID>
597 
598   getGUIDFromValueId(unsigned ValueId);
599 };
600 
601 } // end anonymous namespace
602 
603 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
604                                              DiagnosticSeverity Severity,
605                                              const Twine &Msg)
606     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
607 
608 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
609 
610 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
611                              std::error_code EC, const Twine &Message) {
612   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
613   DiagnosticHandler(DI);
614   return EC;
615 }
616 
617 static std::error_code error(LLVMContext &Context, std::error_code EC,
618                              const Twine &Message) {
619   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
620                Message);
621 }
622 
623 static std::error_code error(LLVMContext &Context, const Twine &Message) {
624   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
625                Message);
626 }
627 
628 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
629   if (!ProducerIdentification.empty()) {
630     return ::error(Context, make_error_code(E),
631                    Message + " (Producer: '" + ProducerIdentification +
632                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
633   }
634   return ::error(Context, make_error_code(E), Message);
635 }
636 
637 std::error_code BitcodeReader::error(const Twine &Message) {
638   if (!ProducerIdentification.empty()) {
639     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
640                    Message + " (Producer: '" + ProducerIdentification +
641                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
642   }
643   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
644                  Message);
645 }
646 
647 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
648     : Context(Context), Buffer(Buffer), ValueList(Context),
649       MetadataList(Context) {}
650 
651 BitcodeReader::BitcodeReader(LLVMContext &Context)
652     : Context(Context), Buffer(nullptr), ValueList(Context),
653       MetadataList(Context) {}
654 
655 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
656   if (WillMaterializeAllForwardRefs)
657     return std::error_code();
658 
659   // Prevent recursion.
660   WillMaterializeAllForwardRefs = true;
661 
662   while (!BasicBlockFwdRefQueue.empty()) {
663     Function *F = BasicBlockFwdRefQueue.front();
664     BasicBlockFwdRefQueue.pop_front();
665     assert(F && "Expected valid function");
666     if (!BasicBlockFwdRefs.count(F))
667       // Already materialized.
668       continue;
669 
670     // Check for a function that isn't materializable to prevent an infinite
671     // loop.  When parsing a blockaddress stored in a global variable, there
672     // isn't a trivial way to check if a function will have a body without a
673     // linear search through FunctionsWithBodies, so just check it here.
674     if (!F->isMaterializable())
675       return error("Never resolved function from blockaddress");
676 
677     // Try to materialize F.
678     if (std::error_code EC = materialize(F))
679       return EC;
680   }
681   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
682 
683   // Reset state.
684   WillMaterializeAllForwardRefs = false;
685   return std::error_code();
686 }
687 
688 void BitcodeReader::freeState() {
689   Buffer = nullptr;
690   std::vector<Type*>().swap(TypeList);
691   ValueList.clear();
692   MetadataList.clear();
693   std::vector<Comdat *>().swap(ComdatList);
694 
695   std::vector<AttributeSet>().swap(MAttributes);
696   std::vector<BasicBlock*>().swap(FunctionBBs);
697   std::vector<Function*>().swap(FunctionsWithBodies);
698   DeferredFunctionInfo.clear();
699   DeferredMetadataInfo.clear();
700   MDKindMap.clear();
701 
702   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
703   BasicBlockFwdRefQueue.clear();
704 }
705 
706 //===----------------------------------------------------------------------===//
707 //  Helper functions to implement forward reference resolution, etc.
708 //===----------------------------------------------------------------------===//
709 
710 /// Convert a string from a record into an std::string, return true on failure.
711 template <typename StrTy>
712 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
713                             StrTy &Result) {
714   if (Idx > Record.size())
715     return true;
716 
717   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
718     Result += (char)Record[i];
719   return false;
720 }
721 
722 static bool hasImplicitComdat(size_t Val) {
723   switch (Val) {
724   default:
725     return false;
726   case 1:  // Old WeakAnyLinkage
727   case 4:  // Old LinkOnceAnyLinkage
728   case 10: // Old WeakODRLinkage
729   case 11: // Old LinkOnceODRLinkage
730     return true;
731   }
732 }
733 
734 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
735   switch (Val) {
736   default: // Map unknown/new linkages to external
737   case 0:
738     return GlobalValue::ExternalLinkage;
739   case 2:
740     return GlobalValue::AppendingLinkage;
741   case 3:
742     return GlobalValue::InternalLinkage;
743   case 5:
744     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
745   case 6:
746     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
747   case 7:
748     return GlobalValue::ExternalWeakLinkage;
749   case 8:
750     return GlobalValue::CommonLinkage;
751   case 9:
752     return GlobalValue::PrivateLinkage;
753   case 12:
754     return GlobalValue::AvailableExternallyLinkage;
755   case 13:
756     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
757   case 14:
758     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
759   case 15:
760     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
761   case 1: // Old value with implicit comdat.
762   case 16:
763     return GlobalValue::WeakAnyLinkage;
764   case 10: // Old value with implicit comdat.
765   case 17:
766     return GlobalValue::WeakODRLinkage;
767   case 4: // Old value with implicit comdat.
768   case 18:
769     return GlobalValue::LinkOnceAnyLinkage;
770   case 11: // Old value with implicit comdat.
771   case 19:
772     return GlobalValue::LinkOnceODRLinkage;
773   }
774 }
775 
776 /// Decode the flags for GlobalValue in the summary.
777 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
778                                                             uint64_t Version) {
779   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
780   // like getDecodedLinkage() above. Any future change to the linkage enum and
781   // to getDecodedLinkage() will need to be taken into account here as above.
782   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
783   RawFlags = RawFlags >> 4;
784   bool HasSection = RawFlags & 0x1;
785   bool IsNotViableToInline = RawFlags & 0x2;
786   return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline);
787 }
788 
789 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
790   switch (Val) {
791   default: // Map unknown visibilities to default.
792   case 0: return GlobalValue::DefaultVisibility;
793   case 1: return GlobalValue::HiddenVisibility;
794   case 2: return GlobalValue::ProtectedVisibility;
795   }
796 }
797 
798 static GlobalValue::DLLStorageClassTypes
799 getDecodedDLLStorageClass(unsigned Val) {
800   switch (Val) {
801   default: // Map unknown values to default.
802   case 0: return GlobalValue::DefaultStorageClass;
803   case 1: return GlobalValue::DLLImportStorageClass;
804   case 2: return GlobalValue::DLLExportStorageClass;
805   }
806 }
807 
808 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
809   switch (Val) {
810     case 0: return GlobalVariable::NotThreadLocal;
811     default: // Map unknown non-zero value to general dynamic.
812     case 1: return GlobalVariable::GeneralDynamicTLSModel;
813     case 2: return GlobalVariable::LocalDynamicTLSModel;
814     case 3: return GlobalVariable::InitialExecTLSModel;
815     case 4: return GlobalVariable::LocalExecTLSModel;
816   }
817 }
818 
819 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
820   switch (Val) {
821     default: // Map unknown to UnnamedAddr::None.
822     case 0: return GlobalVariable::UnnamedAddr::None;
823     case 1: return GlobalVariable::UnnamedAddr::Global;
824     case 2: return GlobalVariable::UnnamedAddr::Local;
825   }
826 }
827 
828 static int getDecodedCastOpcode(unsigned Val) {
829   switch (Val) {
830   default: return -1;
831   case bitc::CAST_TRUNC   : return Instruction::Trunc;
832   case bitc::CAST_ZEXT    : return Instruction::ZExt;
833   case bitc::CAST_SEXT    : return Instruction::SExt;
834   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
835   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
836   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
837   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
838   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
839   case bitc::CAST_FPEXT   : return Instruction::FPExt;
840   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
841   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
842   case bitc::CAST_BITCAST : return Instruction::BitCast;
843   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
844   }
845 }
846 
847 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
848   bool IsFP = Ty->isFPOrFPVectorTy();
849   // BinOps are only valid for int/fp or vector of int/fp types
850   if (!IsFP && !Ty->isIntOrIntVectorTy())
851     return -1;
852 
853   switch (Val) {
854   default:
855     return -1;
856   case bitc::BINOP_ADD:
857     return IsFP ? Instruction::FAdd : Instruction::Add;
858   case bitc::BINOP_SUB:
859     return IsFP ? Instruction::FSub : Instruction::Sub;
860   case bitc::BINOP_MUL:
861     return IsFP ? Instruction::FMul : Instruction::Mul;
862   case bitc::BINOP_UDIV:
863     return IsFP ? -1 : Instruction::UDiv;
864   case bitc::BINOP_SDIV:
865     return IsFP ? Instruction::FDiv : Instruction::SDiv;
866   case bitc::BINOP_UREM:
867     return IsFP ? -1 : Instruction::URem;
868   case bitc::BINOP_SREM:
869     return IsFP ? Instruction::FRem : Instruction::SRem;
870   case bitc::BINOP_SHL:
871     return IsFP ? -1 : Instruction::Shl;
872   case bitc::BINOP_LSHR:
873     return IsFP ? -1 : Instruction::LShr;
874   case bitc::BINOP_ASHR:
875     return IsFP ? -1 : Instruction::AShr;
876   case bitc::BINOP_AND:
877     return IsFP ? -1 : Instruction::And;
878   case bitc::BINOP_OR:
879     return IsFP ? -1 : Instruction::Or;
880   case bitc::BINOP_XOR:
881     return IsFP ? -1 : Instruction::Xor;
882   }
883 }
884 
885 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
886   switch (Val) {
887   default: return AtomicRMWInst::BAD_BINOP;
888   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
889   case bitc::RMW_ADD: return AtomicRMWInst::Add;
890   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
891   case bitc::RMW_AND: return AtomicRMWInst::And;
892   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
893   case bitc::RMW_OR: return AtomicRMWInst::Or;
894   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
895   case bitc::RMW_MAX: return AtomicRMWInst::Max;
896   case bitc::RMW_MIN: return AtomicRMWInst::Min;
897   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
898   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
899   }
900 }
901 
902 static AtomicOrdering getDecodedOrdering(unsigned Val) {
903   switch (Val) {
904   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
905   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
906   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
907   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
908   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
909   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
910   default: // Map unknown orderings to sequentially-consistent.
911   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
912   }
913 }
914 
915 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
916   switch (Val) {
917   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
918   default: // Map unknown scopes to cross-thread.
919   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
920   }
921 }
922 
923 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
924   switch (Val) {
925   default: // Map unknown selection kinds to any.
926   case bitc::COMDAT_SELECTION_KIND_ANY:
927     return Comdat::Any;
928   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
929     return Comdat::ExactMatch;
930   case bitc::COMDAT_SELECTION_KIND_LARGEST:
931     return Comdat::Largest;
932   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
933     return Comdat::NoDuplicates;
934   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
935     return Comdat::SameSize;
936   }
937 }
938 
939 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
940   FastMathFlags FMF;
941   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
942     FMF.setUnsafeAlgebra();
943   if (0 != (Val & FastMathFlags::NoNaNs))
944     FMF.setNoNaNs();
945   if (0 != (Val & FastMathFlags::NoInfs))
946     FMF.setNoInfs();
947   if (0 != (Val & FastMathFlags::NoSignedZeros))
948     FMF.setNoSignedZeros();
949   if (0 != (Val & FastMathFlags::AllowReciprocal))
950     FMF.setAllowReciprocal();
951   return FMF;
952 }
953 
954 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
955   switch (Val) {
956   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
957   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
958   }
959 }
960 
961 namespace llvm {
962 namespace {
963 
964 /// \brief A class for maintaining the slot number definition
965 /// as a placeholder for the actual definition for forward constants defs.
966 class ConstantPlaceHolder : public ConstantExpr {
967   void operator=(const ConstantPlaceHolder &) = delete;
968 
969 public:
970   // allocate space for exactly one operand
971   void *operator new(size_t s) { return User::operator new(s, 1); }
972   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
973       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
974     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
975   }
976 
977   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
978   static bool classof(const Value *V) {
979     return isa<ConstantExpr>(V) &&
980            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
981   }
982 
983   /// Provide fast operand accessors
984   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
985 };
986 
987 } // end anonymous namespace
988 
989 // FIXME: can we inherit this from ConstantExpr?
990 template <>
991 struct OperandTraits<ConstantPlaceHolder> :
992   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
993 };
994 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
995 
996 } // end namespace llvm
997 
998 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
999   if (Idx == size()) {
1000     push_back(V);
1001     return;
1002   }
1003 
1004   if (Idx >= size())
1005     resize(Idx+1);
1006 
1007   WeakVH &OldV = ValuePtrs[Idx];
1008   if (!OldV) {
1009     OldV = V;
1010     return;
1011   }
1012 
1013   // Handle constants and non-constants (e.g. instrs) differently for
1014   // efficiency.
1015   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1016     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1017     OldV = V;
1018   } else {
1019     // If there was a forward reference to this value, replace it.
1020     Value *PrevVal = OldV;
1021     OldV->replaceAllUsesWith(V);
1022     delete PrevVal;
1023   }
1024 }
1025 
1026 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1027                                                     Type *Ty) {
1028   if (Idx >= size())
1029     resize(Idx + 1);
1030 
1031   if (Value *V = ValuePtrs[Idx]) {
1032     if (Ty != V->getType())
1033       report_fatal_error("Type mismatch in constant table!");
1034     return cast<Constant>(V);
1035   }
1036 
1037   // Create and return a placeholder, which will later be RAUW'd.
1038   Constant *C = new ConstantPlaceHolder(Ty, Context);
1039   ValuePtrs[Idx] = C;
1040   return C;
1041 }
1042 
1043 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1044   // Bail out for a clearly invalid value. This would make us call resize(0)
1045   if (Idx == std::numeric_limits<unsigned>::max())
1046     return nullptr;
1047 
1048   if (Idx >= size())
1049     resize(Idx + 1);
1050 
1051   if (Value *V = ValuePtrs[Idx]) {
1052     // If the types don't match, it's invalid.
1053     if (Ty && Ty != V->getType())
1054       return nullptr;
1055     return V;
1056   }
1057 
1058   // No type specified, must be invalid reference.
1059   if (!Ty) return nullptr;
1060 
1061   // Create and return a placeholder, which will later be RAUW'd.
1062   Value *V = new Argument(Ty);
1063   ValuePtrs[Idx] = V;
1064   return V;
1065 }
1066 
1067 /// Once all constants are read, this method bulk resolves any forward
1068 /// references.  The idea behind this is that we sometimes get constants (such
1069 /// as large arrays) which reference *many* forward ref constants.  Replacing
1070 /// each of these causes a lot of thrashing when building/reuniquing the
1071 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1072 /// the place holders at once for any constant that uses a placeholder.
1073 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1074   // Sort the values by-pointer so that they are efficient to look up with a
1075   // binary search.
1076   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1077 
1078   SmallVector<Constant*, 64> NewOps;
1079 
1080   while (!ResolveConstants.empty()) {
1081     Value *RealVal = operator[](ResolveConstants.back().second);
1082     Constant *Placeholder = ResolveConstants.back().first;
1083     ResolveConstants.pop_back();
1084 
1085     // Loop over all users of the placeholder, updating them to reference the
1086     // new value.  If they reference more than one placeholder, update them all
1087     // at once.
1088     while (!Placeholder->use_empty()) {
1089       auto UI = Placeholder->user_begin();
1090       User *U = *UI;
1091 
1092       // If the using object isn't uniqued, just update the operands.  This
1093       // handles instructions and initializers for global variables.
1094       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1095         UI.getUse().set(RealVal);
1096         continue;
1097       }
1098 
1099       // Otherwise, we have a constant that uses the placeholder.  Replace that
1100       // constant with a new constant that has *all* placeholder uses updated.
1101       Constant *UserC = cast<Constant>(U);
1102       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1103            I != E; ++I) {
1104         Value *NewOp;
1105         if (!isa<ConstantPlaceHolder>(*I)) {
1106           // Not a placeholder reference.
1107           NewOp = *I;
1108         } else if (*I == Placeholder) {
1109           // Common case is that it just references this one placeholder.
1110           NewOp = RealVal;
1111         } else {
1112           // Otherwise, look up the placeholder in ResolveConstants.
1113           ResolveConstantsTy::iterator It =
1114             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1115                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1116                                                             0));
1117           assert(It != ResolveConstants.end() && It->first == *I);
1118           NewOp = operator[](It->second);
1119         }
1120 
1121         NewOps.push_back(cast<Constant>(NewOp));
1122       }
1123 
1124       // Make the new constant.
1125       Constant *NewC;
1126       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1127         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1128       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1129         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1130       } else if (isa<ConstantVector>(UserC)) {
1131         NewC = ConstantVector::get(NewOps);
1132       } else {
1133         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1134         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1135       }
1136 
1137       UserC->replaceAllUsesWith(NewC);
1138       UserC->destroyConstant();
1139       NewOps.clear();
1140     }
1141 
1142     // Update all ValueHandles, they should be the only users at this point.
1143     Placeholder->replaceAllUsesWith(RealVal);
1144     delete Placeholder;
1145   }
1146 }
1147 
1148 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1149   if (Idx == size()) {
1150     push_back(MD);
1151     return;
1152   }
1153 
1154   if (Idx >= size())
1155     resize(Idx+1);
1156 
1157   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1158   if (!OldMD) {
1159     OldMD.reset(MD);
1160     return;
1161   }
1162 
1163   // If there was a forward reference to this value, replace it.
1164   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1165   PrevMD->replaceAllUsesWith(MD);
1166   --NumFwdRefs;
1167 }
1168 
1169 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1170   if (Idx >= size())
1171     resize(Idx + 1);
1172 
1173   if (Metadata *MD = MetadataPtrs[Idx])
1174     return MD;
1175 
1176   // Track forward refs to be resolved later.
1177   if (AnyFwdRefs) {
1178     MinFwdRef = std::min(MinFwdRef, Idx);
1179     MaxFwdRef = std::max(MaxFwdRef, Idx);
1180   } else {
1181     AnyFwdRefs = true;
1182     MinFwdRef = MaxFwdRef = Idx;
1183   }
1184   ++NumFwdRefs;
1185 
1186   // Create and return a placeholder, which will later be RAUW'd.
1187   Metadata *MD = MDNode::getTemporary(Context, None).release();
1188   MetadataPtrs[Idx].reset(MD);
1189   return MD;
1190 }
1191 
1192 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1193   Metadata *MD = lookup(Idx);
1194   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1195     if (!N->isResolved())
1196       return nullptr;
1197   return MD;
1198 }
1199 
1200 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1201   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1202 }
1203 
1204 void BitcodeReaderMetadataList::tryToResolveCycles() {
1205   if (NumFwdRefs)
1206     // Still forward references... can't resolve cycles.
1207     return;
1208 
1209   bool DidReplaceTypeRefs = false;
1210 
1211   // Give up on finding a full definition for any forward decls that remain.
1212   for (const auto &Ref : OldTypeRefs.FwdDecls)
1213     OldTypeRefs.Final.insert(Ref);
1214   OldTypeRefs.FwdDecls.clear();
1215 
1216   // Upgrade from old type ref arrays.  In strange cases, this could add to
1217   // OldTypeRefs.Unknown.
1218   for (const auto &Array : OldTypeRefs.Arrays) {
1219     DidReplaceTypeRefs = true;
1220     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1221   }
1222   OldTypeRefs.Arrays.clear();
1223 
1224   // Replace old string-based type refs with the resolved node, if possible.
1225   // If we haven't seen the node, leave it to the verifier to complain about
1226   // the invalid string reference.
1227   for (const auto &Ref : OldTypeRefs.Unknown) {
1228     DidReplaceTypeRefs = true;
1229     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1230       Ref.second->replaceAllUsesWith(CT);
1231     else
1232       Ref.second->replaceAllUsesWith(Ref.first);
1233   }
1234   OldTypeRefs.Unknown.clear();
1235 
1236   // Make sure all the upgraded types are resolved.
1237   if (DidReplaceTypeRefs) {
1238     AnyFwdRefs = true;
1239     MinFwdRef = 0;
1240     MaxFwdRef = MetadataPtrs.size() - 1;
1241   }
1242 
1243   if (!AnyFwdRefs)
1244     // Nothing to do.
1245     return;
1246 
1247   // Resolve any cycles.
1248   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1249     auto &MD = MetadataPtrs[I];
1250     auto *N = dyn_cast_or_null<MDNode>(MD);
1251     if (!N)
1252       continue;
1253 
1254     assert(!N->isTemporary() && "Unexpected forward reference");
1255     N->resolveCycles();
1256   }
1257 
1258   // Make sure we return early again until there's another forward ref.
1259   AnyFwdRefs = false;
1260 }
1261 
1262 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1263                                            DICompositeType &CT) {
1264   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1265   if (CT.isForwardDecl())
1266     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1267   else
1268     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1269 }
1270 
1271 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1272   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1273   if (LLVM_LIKELY(!UUID))
1274     return MaybeUUID;
1275 
1276   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1277     return CT;
1278 
1279   auto &Ref = OldTypeRefs.Unknown[UUID];
1280   if (!Ref)
1281     Ref = MDNode::getTemporary(Context, None);
1282   return Ref.get();
1283 }
1284 
1285 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1286   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1287   if (!Tuple || Tuple->isDistinct())
1288     return MaybeTuple;
1289 
1290   // Look through the array immediately if possible.
1291   if (!Tuple->isTemporary())
1292     return resolveTypeRefArray(Tuple);
1293 
1294   // Create and return a placeholder to use for now.  Eventually
1295   // resolveTypeRefArrays() will be resolve this forward reference.
1296   OldTypeRefs.Arrays.emplace_back(
1297       std::piecewise_construct, std::forward_as_tuple(Tuple),
1298       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1299   return OldTypeRefs.Arrays.back().second.get();
1300 }
1301 
1302 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1303   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1304   if (!Tuple || Tuple->isDistinct())
1305     return MaybeTuple;
1306 
1307   // Look through the DITypeRefArray, upgrading each DITypeRef.
1308   SmallVector<Metadata *, 32> Ops;
1309   Ops.reserve(Tuple->getNumOperands());
1310   for (Metadata *MD : Tuple->operands())
1311     Ops.push_back(upgradeTypeRef(MD));
1312 
1313   return MDTuple::get(Context, Ops);
1314 }
1315 
1316 Type *BitcodeReader::getTypeByID(unsigned ID) {
1317   // The type table size is always specified correctly.
1318   if (ID >= TypeList.size())
1319     return nullptr;
1320 
1321   if (Type *Ty = TypeList[ID])
1322     return Ty;
1323 
1324   // If we have a forward reference, the only possible case is when it is to a
1325   // named struct.  Just create a placeholder for now.
1326   return TypeList[ID] = createIdentifiedStructType(Context);
1327 }
1328 
1329 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1330                                                       StringRef Name) {
1331   auto *Ret = StructType::create(Context, Name);
1332   IdentifiedStructTypes.push_back(Ret);
1333   return Ret;
1334 }
1335 
1336 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1337   auto *Ret = StructType::create(Context);
1338   IdentifiedStructTypes.push_back(Ret);
1339   return Ret;
1340 }
1341 
1342 //===----------------------------------------------------------------------===//
1343 //  Functions for parsing blocks from the bitcode file
1344 //===----------------------------------------------------------------------===//
1345 
1346 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1347 /// been decoded from the given integer. This function must stay in sync with
1348 /// 'encodeLLVMAttributesForBitcode'.
1349 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1350                                            uint64_t EncodedAttrs) {
1351   // FIXME: Remove in 4.0.
1352 
1353   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1354   // the bits above 31 down by 11 bits.
1355   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1356   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1357          "Alignment must be a power of two.");
1358 
1359   if (Alignment)
1360     B.addAlignmentAttr(Alignment);
1361   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1362                 (EncodedAttrs & 0xffff));
1363 }
1364 
1365 std::error_code BitcodeReader::parseAttributeBlock() {
1366   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1367     return error("Invalid record");
1368 
1369   if (!MAttributes.empty())
1370     return error("Invalid multiple blocks");
1371 
1372   SmallVector<uint64_t, 64> Record;
1373 
1374   SmallVector<AttributeSet, 8> Attrs;
1375 
1376   // Read all the records.
1377   while (true) {
1378     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1379 
1380     switch (Entry.Kind) {
1381     case BitstreamEntry::SubBlock: // Handled for us already.
1382     case BitstreamEntry::Error:
1383       return error("Malformed block");
1384     case BitstreamEntry::EndBlock:
1385       return std::error_code();
1386     case BitstreamEntry::Record:
1387       // The interesting case.
1388       break;
1389     }
1390 
1391     // Read a record.
1392     Record.clear();
1393     switch (Stream.readRecord(Entry.ID, Record)) {
1394     default:  // Default behavior: ignore.
1395       break;
1396     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1397       // FIXME: Remove in 4.0.
1398       if (Record.size() & 1)
1399         return error("Invalid record");
1400 
1401       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1402         AttrBuilder B;
1403         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1404         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1405       }
1406 
1407       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1408       Attrs.clear();
1409       break;
1410     }
1411     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1412       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1413         Attrs.push_back(MAttributeGroups[Record[i]]);
1414 
1415       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1416       Attrs.clear();
1417       break;
1418     }
1419     }
1420   }
1421 }
1422 
1423 // Returns Attribute::None on unrecognized codes.
1424 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1425   switch (Code) {
1426   default:
1427     return Attribute::None;
1428   case bitc::ATTR_KIND_ALIGNMENT:
1429     return Attribute::Alignment;
1430   case bitc::ATTR_KIND_ALWAYS_INLINE:
1431     return Attribute::AlwaysInline;
1432   case bitc::ATTR_KIND_ARGMEMONLY:
1433     return Attribute::ArgMemOnly;
1434   case bitc::ATTR_KIND_BUILTIN:
1435     return Attribute::Builtin;
1436   case bitc::ATTR_KIND_BY_VAL:
1437     return Attribute::ByVal;
1438   case bitc::ATTR_KIND_IN_ALLOCA:
1439     return Attribute::InAlloca;
1440   case bitc::ATTR_KIND_COLD:
1441     return Attribute::Cold;
1442   case bitc::ATTR_KIND_CONVERGENT:
1443     return Attribute::Convergent;
1444   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1445     return Attribute::InaccessibleMemOnly;
1446   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1447     return Attribute::InaccessibleMemOrArgMemOnly;
1448   case bitc::ATTR_KIND_INLINE_HINT:
1449     return Attribute::InlineHint;
1450   case bitc::ATTR_KIND_IN_REG:
1451     return Attribute::InReg;
1452   case bitc::ATTR_KIND_JUMP_TABLE:
1453     return Attribute::JumpTable;
1454   case bitc::ATTR_KIND_MIN_SIZE:
1455     return Attribute::MinSize;
1456   case bitc::ATTR_KIND_NAKED:
1457     return Attribute::Naked;
1458   case bitc::ATTR_KIND_NEST:
1459     return Attribute::Nest;
1460   case bitc::ATTR_KIND_NO_ALIAS:
1461     return Attribute::NoAlias;
1462   case bitc::ATTR_KIND_NO_BUILTIN:
1463     return Attribute::NoBuiltin;
1464   case bitc::ATTR_KIND_NO_CAPTURE:
1465     return Attribute::NoCapture;
1466   case bitc::ATTR_KIND_NO_DUPLICATE:
1467     return Attribute::NoDuplicate;
1468   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1469     return Attribute::NoImplicitFloat;
1470   case bitc::ATTR_KIND_NO_INLINE:
1471     return Attribute::NoInline;
1472   case bitc::ATTR_KIND_NO_RECURSE:
1473     return Attribute::NoRecurse;
1474   case bitc::ATTR_KIND_NON_LAZY_BIND:
1475     return Attribute::NonLazyBind;
1476   case bitc::ATTR_KIND_NON_NULL:
1477     return Attribute::NonNull;
1478   case bitc::ATTR_KIND_DEREFERENCEABLE:
1479     return Attribute::Dereferenceable;
1480   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1481     return Attribute::DereferenceableOrNull;
1482   case bitc::ATTR_KIND_ALLOC_SIZE:
1483     return Attribute::AllocSize;
1484   case bitc::ATTR_KIND_NO_RED_ZONE:
1485     return Attribute::NoRedZone;
1486   case bitc::ATTR_KIND_NO_RETURN:
1487     return Attribute::NoReturn;
1488   case bitc::ATTR_KIND_NO_UNWIND:
1489     return Attribute::NoUnwind;
1490   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1491     return Attribute::OptimizeForSize;
1492   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1493     return Attribute::OptimizeNone;
1494   case bitc::ATTR_KIND_READ_NONE:
1495     return Attribute::ReadNone;
1496   case bitc::ATTR_KIND_READ_ONLY:
1497     return Attribute::ReadOnly;
1498   case bitc::ATTR_KIND_RETURNED:
1499     return Attribute::Returned;
1500   case bitc::ATTR_KIND_RETURNS_TWICE:
1501     return Attribute::ReturnsTwice;
1502   case bitc::ATTR_KIND_S_EXT:
1503     return Attribute::SExt;
1504   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1505     return Attribute::StackAlignment;
1506   case bitc::ATTR_KIND_STACK_PROTECT:
1507     return Attribute::StackProtect;
1508   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1509     return Attribute::StackProtectReq;
1510   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1511     return Attribute::StackProtectStrong;
1512   case bitc::ATTR_KIND_SAFESTACK:
1513     return Attribute::SafeStack;
1514   case bitc::ATTR_KIND_STRUCT_RET:
1515     return Attribute::StructRet;
1516   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1517     return Attribute::SanitizeAddress;
1518   case bitc::ATTR_KIND_SANITIZE_THREAD:
1519     return Attribute::SanitizeThread;
1520   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1521     return Attribute::SanitizeMemory;
1522   case bitc::ATTR_KIND_SWIFT_ERROR:
1523     return Attribute::SwiftError;
1524   case bitc::ATTR_KIND_SWIFT_SELF:
1525     return Attribute::SwiftSelf;
1526   case bitc::ATTR_KIND_UW_TABLE:
1527     return Attribute::UWTable;
1528   case bitc::ATTR_KIND_WRITEONLY:
1529     return Attribute::WriteOnly;
1530   case bitc::ATTR_KIND_Z_EXT:
1531     return Attribute::ZExt;
1532   }
1533 }
1534 
1535 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                                    unsigned &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1542   return std::error_code();
1543 }
1544 
1545 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1546                                              Attribute::AttrKind *Kind) {
1547   *Kind = getAttrFromCode(Code);
1548   if (*Kind == Attribute::None)
1549     return error(BitcodeError::CorruptedBitcode,
1550                  "Unknown attribute kind (" + Twine(Code) + ")");
1551   return std::error_code();
1552 }
1553 
1554 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1555   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1556     return error("Invalid record");
1557 
1558   if (!MAttributeGroups.empty())
1559     return error("Invalid multiple blocks");
1560 
1561   SmallVector<uint64_t, 64> Record;
1562 
1563   // Read all the records.
1564   while (true) {
1565     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1566 
1567     switch (Entry.Kind) {
1568     case BitstreamEntry::SubBlock: // Handled for us already.
1569     case BitstreamEntry::Error:
1570       return error("Malformed block");
1571     case BitstreamEntry::EndBlock:
1572       return std::error_code();
1573     case BitstreamEntry::Record:
1574       // The interesting case.
1575       break;
1576     }
1577 
1578     // Read a record.
1579     Record.clear();
1580     switch (Stream.readRecord(Entry.ID, Record)) {
1581     default:  // Default behavior: ignore.
1582       break;
1583     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1584       if (Record.size() < 3)
1585         return error("Invalid record");
1586 
1587       uint64_t GrpID = Record[0];
1588       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1589 
1590       AttrBuilder B;
1591       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1592         if (Record[i] == 0) {        // Enum attribute
1593           Attribute::AttrKind Kind;
1594           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1595             return EC;
1596 
1597           B.addAttribute(Kind);
1598         } else if (Record[i] == 1) { // Integer attribute
1599           Attribute::AttrKind Kind;
1600           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1601             return EC;
1602           if (Kind == Attribute::Alignment)
1603             B.addAlignmentAttr(Record[++i]);
1604           else if (Kind == Attribute::StackAlignment)
1605             B.addStackAlignmentAttr(Record[++i]);
1606           else if (Kind == Attribute::Dereferenceable)
1607             B.addDereferenceableAttr(Record[++i]);
1608           else if (Kind == Attribute::DereferenceableOrNull)
1609             B.addDereferenceableOrNullAttr(Record[++i]);
1610           else if (Kind == Attribute::AllocSize)
1611             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1612         } else {                     // String attribute
1613           assert((Record[i] == 3 || Record[i] == 4) &&
1614                  "Invalid attribute group entry");
1615           bool HasValue = (Record[i++] == 4);
1616           SmallString<64> KindStr;
1617           SmallString<64> ValStr;
1618 
1619           while (Record[i] != 0 && i != e)
1620             KindStr += Record[i++];
1621           assert(Record[i] == 0 && "Kind string not null terminated");
1622 
1623           if (HasValue) {
1624             // Has a value associated with it.
1625             ++i; // Skip the '0' that terminates the "kind" string.
1626             while (Record[i] != 0 && i != e)
1627               ValStr += Record[i++];
1628             assert(Record[i] == 0 && "Value string not null terminated");
1629           }
1630 
1631           B.addAttribute(KindStr.str(), ValStr.str());
1632         }
1633       }
1634 
1635       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1636       break;
1637     }
1638     }
1639   }
1640 }
1641 
1642 std::error_code BitcodeReader::parseTypeTable() {
1643   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1644     return error("Invalid record");
1645 
1646   return parseTypeTableBody();
1647 }
1648 
1649 std::error_code BitcodeReader::parseTypeTableBody() {
1650   if (!TypeList.empty())
1651     return error("Invalid multiple blocks");
1652 
1653   SmallVector<uint64_t, 64> Record;
1654   unsigned NumRecords = 0;
1655 
1656   SmallString<64> TypeName;
1657 
1658   // Read all the records for this type table.
1659   while (true) {
1660     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1661 
1662     switch (Entry.Kind) {
1663     case BitstreamEntry::SubBlock: // Handled for us already.
1664     case BitstreamEntry::Error:
1665       return error("Malformed block");
1666     case BitstreamEntry::EndBlock:
1667       if (NumRecords != TypeList.size())
1668         return error("Malformed block");
1669       return std::error_code();
1670     case BitstreamEntry::Record:
1671       // The interesting case.
1672       break;
1673     }
1674 
1675     // Read a record.
1676     Record.clear();
1677     Type *ResultTy = nullptr;
1678     switch (Stream.readRecord(Entry.ID, Record)) {
1679     default:
1680       return error("Invalid value");
1681     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1682       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1683       // type list.  This allows us to reserve space.
1684       if (Record.size() < 1)
1685         return error("Invalid record");
1686       TypeList.resize(Record[0]);
1687       continue;
1688     case bitc::TYPE_CODE_VOID:      // VOID
1689       ResultTy = Type::getVoidTy(Context);
1690       break;
1691     case bitc::TYPE_CODE_HALF:     // HALF
1692       ResultTy = Type::getHalfTy(Context);
1693       break;
1694     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1695       ResultTy = Type::getFloatTy(Context);
1696       break;
1697     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1698       ResultTy = Type::getDoubleTy(Context);
1699       break;
1700     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1701       ResultTy = Type::getX86_FP80Ty(Context);
1702       break;
1703     case bitc::TYPE_CODE_FP128:     // FP128
1704       ResultTy = Type::getFP128Ty(Context);
1705       break;
1706     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1707       ResultTy = Type::getPPC_FP128Ty(Context);
1708       break;
1709     case bitc::TYPE_CODE_LABEL:     // LABEL
1710       ResultTy = Type::getLabelTy(Context);
1711       break;
1712     case bitc::TYPE_CODE_METADATA:  // METADATA
1713       ResultTy = Type::getMetadataTy(Context);
1714       break;
1715     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1716       ResultTy = Type::getX86_MMXTy(Context);
1717       break;
1718     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1719       ResultTy = Type::getTokenTy(Context);
1720       break;
1721     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1722       if (Record.size() < 1)
1723         return error("Invalid record");
1724 
1725       uint64_t NumBits = Record[0];
1726       if (NumBits < IntegerType::MIN_INT_BITS ||
1727           NumBits > IntegerType::MAX_INT_BITS)
1728         return error("Bitwidth for integer type out of range");
1729       ResultTy = IntegerType::get(Context, NumBits);
1730       break;
1731     }
1732     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1733                                     //          [pointee type, address space]
1734       if (Record.size() < 1)
1735         return error("Invalid record");
1736       unsigned AddressSpace = 0;
1737       if (Record.size() == 2)
1738         AddressSpace = Record[1];
1739       ResultTy = getTypeByID(Record[0]);
1740       if (!ResultTy ||
1741           !PointerType::isValidElementType(ResultTy))
1742         return error("Invalid type");
1743       ResultTy = PointerType::get(ResultTy, AddressSpace);
1744       break;
1745     }
1746     case bitc::TYPE_CODE_FUNCTION_OLD: {
1747       // FIXME: attrid is dead, remove it in LLVM 4.0
1748       // FUNCTION: [vararg, attrid, retty, paramty x N]
1749       if (Record.size() < 3)
1750         return error("Invalid record");
1751       SmallVector<Type*, 8> ArgTys;
1752       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1753         if (Type *T = getTypeByID(Record[i]))
1754           ArgTys.push_back(T);
1755         else
1756           break;
1757       }
1758 
1759       ResultTy = getTypeByID(Record[2]);
1760       if (!ResultTy || ArgTys.size() < Record.size()-3)
1761         return error("Invalid type");
1762 
1763       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1764       break;
1765     }
1766     case bitc::TYPE_CODE_FUNCTION: {
1767       // FUNCTION: [vararg, retty, paramty x N]
1768       if (Record.size() < 2)
1769         return error("Invalid record");
1770       SmallVector<Type*, 8> ArgTys;
1771       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1772         if (Type *T = getTypeByID(Record[i])) {
1773           if (!FunctionType::isValidArgumentType(T))
1774             return error("Invalid function argument type");
1775           ArgTys.push_back(T);
1776         }
1777         else
1778           break;
1779       }
1780 
1781       ResultTy = getTypeByID(Record[1]);
1782       if (!ResultTy || ArgTys.size() < Record.size()-2)
1783         return error("Invalid type");
1784 
1785       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1789       if (Record.size() < 1)
1790         return error("Invalid record");
1791       SmallVector<Type*, 8> EltTys;
1792       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1793         if (Type *T = getTypeByID(Record[i]))
1794           EltTys.push_back(T);
1795         else
1796           break;
1797       }
1798       if (EltTys.size() != Record.size()-1)
1799         return error("Invalid type");
1800       ResultTy = StructType::get(Context, EltTys, Record[0]);
1801       break;
1802     }
1803     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1804       if (convertToString(Record, 0, TypeName))
1805         return error("Invalid record");
1806       continue;
1807 
1808     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1809       if (Record.size() < 1)
1810         return error("Invalid record");
1811 
1812       if (NumRecords >= TypeList.size())
1813         return error("Invalid TYPE table");
1814 
1815       // Check to see if this was forward referenced, if so fill in the temp.
1816       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1817       if (Res) {
1818         Res->setName(TypeName);
1819         TypeList[NumRecords] = nullptr;
1820       } else  // Otherwise, create a new struct.
1821         Res = createIdentifiedStructType(Context, TypeName);
1822       TypeName.clear();
1823 
1824       SmallVector<Type*, 8> EltTys;
1825       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1826         if (Type *T = getTypeByID(Record[i]))
1827           EltTys.push_back(T);
1828         else
1829           break;
1830       }
1831       if (EltTys.size() != Record.size()-1)
1832         return error("Invalid record");
1833       Res->setBody(EltTys, Record[0]);
1834       ResultTy = Res;
1835       break;
1836     }
1837     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1838       if (Record.size() != 1)
1839         return error("Invalid record");
1840 
1841       if (NumRecords >= TypeList.size())
1842         return error("Invalid TYPE table");
1843 
1844       // Check to see if this was forward referenced, if so fill in the temp.
1845       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1846       if (Res) {
1847         Res->setName(TypeName);
1848         TypeList[NumRecords] = nullptr;
1849       } else  // Otherwise, create a new struct with no body.
1850         Res = createIdentifiedStructType(Context, TypeName);
1851       TypeName.clear();
1852       ResultTy = Res;
1853       break;
1854     }
1855     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1856       if (Record.size() < 2)
1857         return error("Invalid record");
1858       ResultTy = getTypeByID(Record[1]);
1859       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1860         return error("Invalid type");
1861       ResultTy = ArrayType::get(ResultTy, Record[0]);
1862       break;
1863     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1864       if (Record.size() < 2)
1865         return error("Invalid record");
1866       if (Record[0] == 0)
1867         return error("Invalid vector length");
1868       ResultTy = getTypeByID(Record[1]);
1869       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1870         return error("Invalid type");
1871       ResultTy = VectorType::get(ResultTy, Record[0]);
1872       break;
1873     }
1874 
1875     if (NumRecords >= TypeList.size())
1876       return error("Invalid TYPE table");
1877     if (TypeList[NumRecords])
1878       return error(
1879           "Invalid TYPE table: Only named structs can be forward referenced");
1880     assert(ResultTy && "Didn't read a type?");
1881     TypeList[NumRecords++] = ResultTy;
1882   }
1883 }
1884 
1885 std::error_code BitcodeReader::parseOperandBundleTags() {
1886   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1887     return error("Invalid record");
1888 
1889   if (!BundleTags.empty())
1890     return error("Invalid multiple blocks");
1891 
1892   SmallVector<uint64_t, 64> Record;
1893 
1894   while (true) {
1895     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1896 
1897     switch (Entry.Kind) {
1898     case BitstreamEntry::SubBlock: // Handled for us already.
1899     case BitstreamEntry::Error:
1900       return error("Malformed block");
1901     case BitstreamEntry::EndBlock:
1902       return std::error_code();
1903     case BitstreamEntry::Record:
1904       // The interesting case.
1905       break;
1906     }
1907 
1908     // Tags are implicitly mapped to integers by their order.
1909 
1910     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1911       return error("Invalid record");
1912 
1913     // OPERAND_BUNDLE_TAG: [strchr x N]
1914     BundleTags.emplace_back();
1915     if (convertToString(Record, 0, BundleTags.back()))
1916       return error("Invalid record");
1917     Record.clear();
1918   }
1919 }
1920 
1921 /// Associate a value with its name from the given index in the provided record.
1922 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1923                                             unsigned NameIndex, Triple &TT) {
1924   SmallString<128> ValueName;
1925   if (convertToString(Record, NameIndex, ValueName))
1926     return error("Invalid record");
1927   unsigned ValueID = Record[0];
1928   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1929     return error("Invalid record");
1930   Value *V = ValueList[ValueID];
1931 
1932   StringRef NameStr(ValueName.data(), ValueName.size());
1933   if (NameStr.find_first_of(0) != StringRef::npos)
1934     return error("Invalid value name");
1935   V->setName(NameStr);
1936   auto *GO = dyn_cast<GlobalObject>(V);
1937   if (GO) {
1938     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1939       if (TT.isOSBinFormatMachO())
1940         GO->setComdat(nullptr);
1941       else
1942         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1943     }
1944   }
1945   return V;
1946 }
1947 
1948 /// Helper to note and return the current location, and jump to the given
1949 /// offset.
1950 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1951                                        BitstreamCursor &Stream) {
1952   // Save the current parsing location so we can jump back at the end
1953   // of the VST read.
1954   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1955   Stream.JumpToBit(Offset * 32);
1956 #ifndef NDEBUG
1957   // Do some checking if we are in debug mode.
1958   BitstreamEntry Entry = Stream.advance();
1959   assert(Entry.Kind == BitstreamEntry::SubBlock);
1960   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1961 #else
1962   // In NDEBUG mode ignore the output so we don't get an unused variable
1963   // warning.
1964   Stream.advance();
1965 #endif
1966   return CurrentBit;
1967 }
1968 
1969 /// Parse the value symbol table at either the current parsing location or
1970 /// at the given bit offset if provided.
1971 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1972   uint64_t CurrentBit;
1973   // Pass in the Offset to distinguish between calling for the module-level
1974   // VST (where we want to jump to the VST offset) and the function-level
1975   // VST (where we don't).
1976   if (Offset > 0)
1977     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1978 
1979   // Compute the delta between the bitcode indices in the VST (the word offset
1980   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1981   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1982   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1983   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1984   // just before entering the VST subblock because: 1) the EnterSubBlock
1985   // changes the AbbrevID width; 2) the VST block is nested within the same
1986   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1987   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1988   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1989   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1990   unsigned FuncBitcodeOffsetDelta =
1991       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1992 
1993   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1994     return error("Invalid record");
1995 
1996   SmallVector<uint64_t, 64> Record;
1997 
1998   Triple TT(TheModule->getTargetTriple());
1999 
2000   // Read all the records for this value table.
2001   SmallString<128> ValueName;
2002 
2003   while (true) {
2004     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2005 
2006     switch (Entry.Kind) {
2007     case BitstreamEntry::SubBlock: // Handled for us already.
2008     case BitstreamEntry::Error:
2009       return error("Malformed block");
2010     case BitstreamEntry::EndBlock:
2011       if (Offset > 0)
2012         Stream.JumpToBit(CurrentBit);
2013       return std::error_code();
2014     case BitstreamEntry::Record:
2015       // The interesting case.
2016       break;
2017     }
2018 
2019     // Read a record.
2020     Record.clear();
2021     switch (Stream.readRecord(Entry.ID, Record)) {
2022     default:  // Default behavior: unknown type.
2023       break;
2024     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2025       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
2026       if (std::error_code EC = ValOrErr.getError())
2027         return EC;
2028       ValOrErr.get();
2029       break;
2030     }
2031     case bitc::VST_CODE_FNENTRY: {
2032       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2033       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
2034       if (std::error_code EC = ValOrErr.getError())
2035         return EC;
2036       Value *V = ValOrErr.get();
2037 
2038       auto *GO = dyn_cast<GlobalObject>(V);
2039       if (!GO) {
2040         // If this is an alias, need to get the actual Function object
2041         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2042         auto *GA = dyn_cast<GlobalAlias>(V);
2043         if (GA)
2044           GO = GA->getBaseObject();
2045         assert(GO);
2046       }
2047 
2048       uint64_t FuncWordOffset = Record[1];
2049       Function *F = dyn_cast<Function>(GO);
2050       assert(F);
2051       uint64_t FuncBitOffset = FuncWordOffset * 32;
2052       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2053       // Set the LastFunctionBlockBit to point to the last function block.
2054       // Later when parsing is resumed after function materialization,
2055       // we can simply skip that last function block.
2056       if (FuncBitOffset > LastFunctionBlockBit)
2057         LastFunctionBlockBit = FuncBitOffset;
2058       break;
2059     }
2060     case bitc::VST_CODE_BBENTRY: {
2061       if (convertToString(Record, 1, ValueName))
2062         return error("Invalid record");
2063       BasicBlock *BB = getBasicBlock(Record[0]);
2064       if (!BB)
2065         return error("Invalid record");
2066 
2067       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2068       ValueName.clear();
2069       break;
2070     }
2071     }
2072   }
2073 }
2074 
2075 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2076 std::error_code
2077 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2078   if (Record.size() < 2)
2079     return error("Invalid record");
2080 
2081   unsigned Kind = Record[0];
2082   SmallString<8> Name(Record.begin() + 1, Record.end());
2083 
2084   unsigned NewKind = TheModule->getMDKindID(Name.str());
2085   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2086     return error("Conflicting METADATA_KIND records");
2087   return std::error_code();
2088 }
2089 
2090 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2091 
2092 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2093                                                     StringRef Blob,
2094                                                     unsigned &NextMetadataNo) {
2095   // All the MDStrings in the block are emitted together in a single
2096   // record.  The strings are concatenated and stored in a blob along with
2097   // their sizes.
2098   if (Record.size() != 2)
2099     return error("Invalid record: metadata strings layout");
2100 
2101   unsigned NumStrings = Record[0];
2102   unsigned StringsOffset = Record[1];
2103   if (!NumStrings)
2104     return error("Invalid record: metadata strings with no strings");
2105   if (StringsOffset > Blob.size())
2106     return error("Invalid record: metadata strings corrupt offset");
2107 
2108   StringRef Lengths = Blob.slice(0, StringsOffset);
2109   SimpleBitstreamCursor R(*StreamFile);
2110   R.jumpToPointer(Lengths.begin());
2111 
2112   // Ensure that Blob doesn't get invalidated, even if this is reading from
2113   // a StreamingMemoryObject with corrupt data.
2114   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2115 
2116   StringRef Strings = Blob.drop_front(StringsOffset);
2117   do {
2118     if (R.AtEndOfStream())
2119       return error("Invalid record: metadata strings bad length");
2120 
2121     unsigned Size = R.ReadVBR(6);
2122     if (Strings.size() < Size)
2123       return error("Invalid record: metadata strings truncated chars");
2124 
2125     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2126                              NextMetadataNo++);
2127     Strings = Strings.drop_front(Size);
2128   } while (--NumStrings);
2129 
2130   return std::error_code();
2131 }
2132 
2133 namespace {
2134 
2135 class PlaceholderQueue {
2136   // Placeholders would thrash around when moved, so store in a std::deque
2137   // instead of some sort of vector.
2138   std::deque<DistinctMDOperandPlaceholder> PHs;
2139 
2140 public:
2141   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2142   void flush(BitcodeReaderMetadataList &MetadataList);
2143 };
2144 
2145 } // end anonymous namespace
2146 
2147 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2148   PHs.emplace_back(ID);
2149   return PHs.back();
2150 }
2151 
2152 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2153   while (!PHs.empty()) {
2154     PHs.front().replaceUseWith(
2155         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2156     PHs.pop_front();
2157   }
2158 }
2159 
2160 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2161 /// module level metadata.
2162 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2163   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2164          "Must read all module-level metadata before function-level");
2165 
2166   IsMetadataMaterialized = true;
2167   unsigned NextMetadataNo = MetadataList.size();
2168 
2169   if (!ModuleLevel && MetadataList.hasFwdRefs())
2170     return error("Invalid metadata: fwd refs into function blocks");
2171 
2172   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2173     return error("Invalid record");
2174 
2175   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2176   SmallVector<uint64_t, 64> Record;
2177 
2178   PlaceholderQueue Placeholders;
2179   bool IsDistinct;
2180   auto getMD = [&](unsigned ID) -> Metadata * {
2181     if (!IsDistinct)
2182       return MetadataList.getMetadataFwdRef(ID);
2183     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2184       return MD;
2185     return &Placeholders.getPlaceholderOp(ID);
2186   };
2187   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2188     if (ID)
2189       return getMD(ID - 1);
2190     return nullptr;
2191   };
2192   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2193     if (ID)
2194       return MetadataList.getMetadataFwdRef(ID - 1);
2195     return nullptr;
2196   };
2197   auto getMDString = [&](unsigned ID) -> MDString *{
2198     // This requires that the ID is not really a forward reference.  In
2199     // particular, the MDString must already have been resolved.
2200     return cast_or_null<MDString>(getMDOrNull(ID));
2201   };
2202 
2203   // Support for old type refs.
2204   auto getDITypeRefOrNull = [&](unsigned ID) {
2205     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2206   };
2207 
2208 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2209   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2210 
2211   // Read all the records.
2212   while (true) {
2213     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2214 
2215     switch (Entry.Kind) {
2216     case BitstreamEntry::SubBlock: // Handled for us already.
2217     case BitstreamEntry::Error:
2218       return error("Malformed block");
2219     case BitstreamEntry::EndBlock:
2220       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2221       for (auto CU_SP : CUSubprograms)
2222         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2223           for (auto &Op : SPs->operands())
2224             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2225               SP->replaceOperandWith(7, CU_SP.first);
2226 
2227       MetadataList.tryToResolveCycles();
2228       Placeholders.flush(MetadataList);
2229       return std::error_code();
2230     case BitstreamEntry::Record:
2231       // The interesting case.
2232       break;
2233     }
2234 
2235     // Read a record.
2236     Record.clear();
2237     StringRef Blob;
2238     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2239     IsDistinct = false;
2240     switch (Code) {
2241     default:  // Default behavior: ignore.
2242       break;
2243     case bitc::METADATA_NAME: {
2244       // Read name of the named metadata.
2245       SmallString<8> Name(Record.begin(), Record.end());
2246       Record.clear();
2247       Code = Stream.ReadCode();
2248 
2249       unsigned NextBitCode = Stream.readRecord(Code, Record);
2250       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2251         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2252 
2253       // Read named metadata elements.
2254       unsigned Size = Record.size();
2255       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2256       for (unsigned i = 0; i != Size; ++i) {
2257         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2258         if (!MD)
2259           return error("Invalid record");
2260         NMD->addOperand(MD);
2261       }
2262       break;
2263     }
2264     case bitc::METADATA_OLD_FN_NODE: {
2265       // FIXME: Remove in 4.0.
2266       // This is a LocalAsMetadata record, the only type of function-local
2267       // metadata.
2268       if (Record.size() % 2 == 1)
2269         return error("Invalid record");
2270 
2271       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2272       // to be legal, but there's no upgrade path.
2273       auto dropRecord = [&] {
2274         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2275       };
2276       if (Record.size() != 2) {
2277         dropRecord();
2278         break;
2279       }
2280 
2281       Type *Ty = getTypeByID(Record[0]);
2282       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2283         dropRecord();
2284         break;
2285       }
2286 
2287       MetadataList.assignValue(
2288           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2289           NextMetadataNo++);
2290       break;
2291     }
2292     case bitc::METADATA_OLD_NODE: {
2293       // FIXME: Remove in 4.0.
2294       if (Record.size() % 2 == 1)
2295         return error("Invalid record");
2296 
2297       unsigned Size = Record.size();
2298       SmallVector<Metadata *, 8> Elts;
2299       for (unsigned i = 0; i != Size; i += 2) {
2300         Type *Ty = getTypeByID(Record[i]);
2301         if (!Ty)
2302           return error("Invalid record");
2303         if (Ty->isMetadataTy())
2304           Elts.push_back(getMD(Record[i + 1]));
2305         else if (!Ty->isVoidTy()) {
2306           auto *MD =
2307               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2308           assert(isa<ConstantAsMetadata>(MD) &&
2309                  "Expected non-function-local metadata");
2310           Elts.push_back(MD);
2311         } else
2312           Elts.push_back(nullptr);
2313       }
2314       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2315       break;
2316     }
2317     case bitc::METADATA_VALUE: {
2318       if (Record.size() != 2)
2319         return error("Invalid record");
2320 
2321       Type *Ty = getTypeByID(Record[0]);
2322       if (Ty->isMetadataTy() || Ty->isVoidTy())
2323         return error("Invalid record");
2324 
2325       MetadataList.assignValue(
2326           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2327           NextMetadataNo++);
2328       break;
2329     }
2330     case bitc::METADATA_DISTINCT_NODE:
2331       IsDistinct = true;
2332       LLVM_FALLTHROUGH;
2333     case bitc::METADATA_NODE: {
2334       SmallVector<Metadata *, 8> Elts;
2335       Elts.reserve(Record.size());
2336       for (unsigned ID : Record)
2337         Elts.push_back(getMDOrNull(ID));
2338       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2339                                           : MDNode::get(Context, Elts),
2340                                NextMetadataNo++);
2341       break;
2342     }
2343     case bitc::METADATA_LOCATION: {
2344       if (Record.size() != 5)
2345         return error("Invalid record");
2346 
2347       IsDistinct = Record[0];
2348       unsigned Line = Record[1];
2349       unsigned Column = Record[2];
2350       Metadata *Scope = getMD(Record[3]);
2351       Metadata *InlinedAt = getMDOrNull(Record[4]);
2352       MetadataList.assignValue(
2353           GET_OR_DISTINCT(DILocation,
2354                           (Context, Line, Column, Scope, InlinedAt)),
2355           NextMetadataNo++);
2356       break;
2357     }
2358     case bitc::METADATA_GENERIC_DEBUG: {
2359       if (Record.size() < 4)
2360         return error("Invalid record");
2361 
2362       IsDistinct = Record[0];
2363       unsigned Tag = Record[1];
2364       unsigned Version = Record[2];
2365 
2366       if (Tag >= 1u << 16 || Version != 0)
2367         return error("Invalid record");
2368 
2369       auto *Header = getMDString(Record[3]);
2370       SmallVector<Metadata *, 8> DwarfOps;
2371       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2372         DwarfOps.push_back(getMDOrNull(Record[I]));
2373       MetadataList.assignValue(
2374           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2375           NextMetadataNo++);
2376       break;
2377     }
2378     case bitc::METADATA_SUBRANGE: {
2379       if (Record.size() != 3)
2380         return error("Invalid record");
2381 
2382       IsDistinct = Record[0];
2383       MetadataList.assignValue(
2384           GET_OR_DISTINCT(DISubrange,
2385                           (Context, Record[1], unrotateSign(Record[2]))),
2386           NextMetadataNo++);
2387       break;
2388     }
2389     case bitc::METADATA_ENUMERATOR: {
2390       if (Record.size() != 3)
2391         return error("Invalid record");
2392 
2393       IsDistinct = Record[0];
2394       MetadataList.assignValue(
2395           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2396                                          getMDString(Record[2]))),
2397           NextMetadataNo++);
2398       break;
2399     }
2400     case bitc::METADATA_BASIC_TYPE: {
2401       if (Record.size() != 6)
2402         return error("Invalid record");
2403 
2404       IsDistinct = Record[0];
2405       MetadataList.assignValue(
2406           GET_OR_DISTINCT(DIBasicType,
2407                           (Context, Record[1], getMDString(Record[2]),
2408                            Record[3], Record[4], Record[5])),
2409           NextMetadataNo++);
2410       break;
2411     }
2412     case bitc::METADATA_DERIVED_TYPE: {
2413       if (Record.size() != 12)
2414         return error("Invalid record");
2415 
2416       IsDistinct = Record[0];
2417       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2418       MetadataList.assignValue(
2419           GET_OR_DISTINCT(DIDerivedType,
2420                           (Context, Record[1], getMDString(Record[2]),
2421                            getMDOrNull(Record[3]), Record[4],
2422                            getDITypeRefOrNull(Record[5]),
2423                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2424                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2425           NextMetadataNo++);
2426       break;
2427     }
2428     case bitc::METADATA_COMPOSITE_TYPE: {
2429       if (Record.size() != 16)
2430         return error("Invalid record");
2431 
2432       // If we have a UUID and this is not a forward declaration, lookup the
2433       // mapping.
2434       IsDistinct = Record[0] & 0x1;
2435       bool IsNotUsedInTypeRef = Record[0] >= 2;
2436       unsigned Tag = Record[1];
2437       MDString *Name = getMDString(Record[2]);
2438       Metadata *File = getMDOrNull(Record[3]);
2439       unsigned Line = Record[4];
2440       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2441       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2442       uint64_t SizeInBits = Record[7];
2443       uint64_t AlignInBits = Record[8];
2444       uint64_t OffsetInBits = Record[9];
2445       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2446       Metadata *Elements = getMDOrNull(Record[11]);
2447       unsigned RuntimeLang = Record[12];
2448       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2449       Metadata *TemplateParams = getMDOrNull(Record[14]);
2450       auto *Identifier = getMDString(Record[15]);
2451       DICompositeType *CT = nullptr;
2452       if (Identifier)
2453         CT = DICompositeType::buildODRType(
2454             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2455             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2456             VTableHolder, TemplateParams);
2457 
2458       // Create a node if we didn't get a lazy ODR type.
2459       if (!CT)
2460         CT = GET_OR_DISTINCT(DICompositeType,
2461                              (Context, Tag, Name, File, Line, Scope, BaseType,
2462                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2463                               Elements, RuntimeLang, VTableHolder,
2464                               TemplateParams, Identifier));
2465       if (!IsNotUsedInTypeRef && Identifier)
2466         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2467 
2468       MetadataList.assignValue(CT, NextMetadataNo++);
2469       break;
2470     }
2471     case bitc::METADATA_SUBROUTINE_TYPE: {
2472       if (Record.size() < 3 || Record.size() > 4)
2473         return error("Invalid record");
2474       bool IsOldTypeRefArray = Record[0] < 2;
2475       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2476 
2477       IsDistinct = Record[0] & 0x1;
2478       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2479       Metadata *Types = getMDOrNull(Record[2]);
2480       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2481         Types = MetadataList.upgradeTypeRefArray(Types);
2482 
2483       MetadataList.assignValue(
2484           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2485           NextMetadataNo++);
2486       break;
2487     }
2488 
2489     case bitc::METADATA_MODULE: {
2490       if (Record.size() != 6)
2491         return error("Invalid record");
2492 
2493       IsDistinct = Record[0];
2494       MetadataList.assignValue(
2495           GET_OR_DISTINCT(DIModule,
2496                           (Context, getMDOrNull(Record[1]),
2497                            getMDString(Record[2]), getMDString(Record[3]),
2498                            getMDString(Record[4]), getMDString(Record[5]))),
2499           NextMetadataNo++);
2500       break;
2501     }
2502 
2503     case bitc::METADATA_FILE: {
2504       if (Record.size() != 3)
2505         return error("Invalid record");
2506 
2507       IsDistinct = Record[0];
2508       MetadataList.assignValue(
2509           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2510                                    getMDString(Record[2]))),
2511           NextMetadataNo++);
2512       break;
2513     }
2514     case bitc::METADATA_COMPILE_UNIT: {
2515       if (Record.size() < 14 || Record.size() > 17)
2516         return error("Invalid record");
2517 
2518       // Ignore Record[0], which indicates whether this compile unit is
2519       // distinct.  It's always distinct.
2520       IsDistinct = true;
2521       auto *CU = DICompileUnit::getDistinct(
2522           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2523           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2524           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2525           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2526           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2527           Record.size() <= 14 ? 0 : Record[14],
2528           Record.size() <= 16 ? true : Record[16]);
2529 
2530       MetadataList.assignValue(CU, NextMetadataNo++);
2531 
2532       // Move the Upgrade the list of subprograms.
2533       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2534         CUSubprograms.push_back({CU, SPs});
2535       break;
2536     }
2537     case bitc::METADATA_SUBPROGRAM: {
2538       if (Record.size() < 18 || Record.size() > 20)
2539         return error("Invalid record");
2540 
2541       IsDistinct =
2542           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2543       // Version 1 has a Function as Record[15].
2544       // Version 2 has removed Record[15].
2545       // Version 3 has the Unit as Record[15].
2546       // Version 4 added thisAdjustment.
2547       bool HasUnit = Record[0] >= 2;
2548       if (HasUnit && Record.size() < 19)
2549         return error("Invalid record");
2550       Metadata *CUorFn = getMDOrNull(Record[15]);
2551       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2552       bool HasFn = Offset && !HasUnit;
2553       bool HasThisAdj = Record.size() >= 20;
2554       DISubprogram *SP = GET_OR_DISTINCT(
2555           DISubprogram, (Context,
2556                          getDITypeRefOrNull(Record[1]),  // scope
2557                          getMDString(Record[2]),         // name
2558                          getMDString(Record[3]),         // linkageName
2559                          getMDOrNull(Record[4]),         // file
2560                          Record[5],                      // line
2561                          getMDOrNull(Record[6]),         // type
2562                          Record[7],                      // isLocal
2563                          Record[8],                      // isDefinition
2564                          Record[9],                      // scopeLine
2565                          getDITypeRefOrNull(Record[10]), // containingType
2566                          Record[11],                     // virtuality
2567                          Record[12],                     // virtualIndex
2568                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2569                          static_cast<DINode::DIFlags>(Record[13] // flags
2570                                                       ),
2571                          Record[14],                       // isOptimized
2572                          HasUnit ? CUorFn : nullptr,       // unit
2573                          getMDOrNull(Record[15 + Offset]), // templateParams
2574                          getMDOrNull(Record[16 + Offset]), // declaration
2575                          getMDOrNull(Record[17 + Offset])  // variables
2576                          ));
2577       MetadataList.assignValue(SP, NextMetadataNo++);
2578 
2579       // Upgrade sp->function mapping to function->sp mapping.
2580       if (HasFn) {
2581         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2582           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2583             if (F->isMaterializable())
2584               // Defer until materialized; unmaterialized functions may not have
2585               // metadata.
2586               FunctionsWithSPs[F] = SP;
2587             else if (!F->empty())
2588               F->setSubprogram(SP);
2589           }
2590       }
2591       break;
2592     }
2593     case bitc::METADATA_LEXICAL_BLOCK: {
2594       if (Record.size() != 5)
2595         return error("Invalid record");
2596 
2597       IsDistinct = Record[0];
2598       MetadataList.assignValue(
2599           GET_OR_DISTINCT(DILexicalBlock,
2600                           (Context, getMDOrNull(Record[1]),
2601                            getMDOrNull(Record[2]), Record[3], Record[4])),
2602           NextMetadataNo++);
2603       break;
2604     }
2605     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2606       if (Record.size() != 4)
2607         return error("Invalid record");
2608 
2609       IsDistinct = Record[0];
2610       MetadataList.assignValue(
2611           GET_OR_DISTINCT(DILexicalBlockFile,
2612                           (Context, getMDOrNull(Record[1]),
2613                            getMDOrNull(Record[2]), Record[3])),
2614           NextMetadataNo++);
2615       break;
2616     }
2617     case bitc::METADATA_NAMESPACE: {
2618       if (Record.size() != 5)
2619         return error("Invalid record");
2620 
2621       IsDistinct = Record[0];
2622       MetadataList.assignValue(
2623           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2624                                         getMDOrNull(Record[2]),
2625                                         getMDString(Record[3]), Record[4])),
2626           NextMetadataNo++);
2627       break;
2628     }
2629     case bitc::METADATA_MACRO: {
2630       if (Record.size() != 5)
2631         return error("Invalid record");
2632 
2633       IsDistinct = Record[0];
2634       MetadataList.assignValue(
2635           GET_OR_DISTINCT(DIMacro,
2636                           (Context, Record[1], Record[2],
2637                            getMDString(Record[3]), getMDString(Record[4]))),
2638           NextMetadataNo++);
2639       break;
2640     }
2641     case bitc::METADATA_MACRO_FILE: {
2642       if (Record.size() != 5)
2643         return error("Invalid record");
2644 
2645       IsDistinct = Record[0];
2646       MetadataList.assignValue(
2647           GET_OR_DISTINCT(DIMacroFile,
2648                           (Context, Record[1], Record[2],
2649                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2650           NextMetadataNo++);
2651       break;
2652     }
2653     case bitc::METADATA_TEMPLATE_TYPE: {
2654       if (Record.size() != 3)
2655         return error("Invalid record");
2656 
2657       IsDistinct = Record[0];
2658       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2659                                                (Context, getMDString(Record[1]),
2660                                                 getDITypeRefOrNull(Record[2]))),
2661                                NextMetadataNo++);
2662       break;
2663     }
2664     case bitc::METADATA_TEMPLATE_VALUE: {
2665       if (Record.size() != 5)
2666         return error("Invalid record");
2667 
2668       IsDistinct = Record[0];
2669       MetadataList.assignValue(
2670           GET_OR_DISTINCT(DITemplateValueParameter,
2671                           (Context, Record[1], getMDString(Record[2]),
2672                            getDITypeRefOrNull(Record[3]),
2673                            getMDOrNull(Record[4]))),
2674           NextMetadataNo++);
2675       break;
2676     }
2677     case bitc::METADATA_GLOBAL_VAR: {
2678       if (Record.size() != 11)
2679         return error("Invalid record");
2680 
2681       IsDistinct = Record[0];
2682       MetadataList.assignValue(
2683           GET_OR_DISTINCT(DIGlobalVariable,
2684                           (Context, getMDOrNull(Record[1]),
2685                            getMDString(Record[2]), getMDString(Record[3]),
2686                            getMDOrNull(Record[4]), Record[5],
2687                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2688                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2689           NextMetadataNo++);
2690       break;
2691     }
2692     case bitc::METADATA_LOCAL_VAR: {
2693       // 10th field is for the obseleted 'inlinedAt:' field.
2694       if (Record.size() < 8 || Record.size() > 10)
2695         return error("Invalid record");
2696 
2697       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2698       // DW_TAG_arg_variable.
2699       IsDistinct = Record[0];
2700       bool HasTag = Record.size() > 8;
2701       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2702       MetadataList.assignValue(
2703           GET_OR_DISTINCT(DILocalVariable,
2704                           (Context, getMDOrNull(Record[1 + HasTag]),
2705                            getMDString(Record[2 + HasTag]),
2706                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2707                            getDITypeRefOrNull(Record[5 + HasTag]),
2708                            Record[6 + HasTag], Flags)),
2709           NextMetadataNo++);
2710       break;
2711     }
2712     case bitc::METADATA_EXPRESSION: {
2713       if (Record.size() < 1)
2714         return error("Invalid record");
2715 
2716       IsDistinct = Record[0];
2717       MetadataList.assignValue(
2718           GET_OR_DISTINCT(DIExpression,
2719                           (Context, makeArrayRef(Record).slice(1))),
2720           NextMetadataNo++);
2721       break;
2722     }
2723     case bitc::METADATA_OBJC_PROPERTY: {
2724       if (Record.size() != 8)
2725         return error("Invalid record");
2726 
2727       IsDistinct = Record[0];
2728       MetadataList.assignValue(
2729           GET_OR_DISTINCT(DIObjCProperty,
2730                           (Context, getMDString(Record[1]),
2731                            getMDOrNull(Record[2]), Record[3],
2732                            getMDString(Record[4]), getMDString(Record[5]),
2733                            Record[6], getDITypeRefOrNull(Record[7]))),
2734           NextMetadataNo++);
2735       break;
2736     }
2737     case bitc::METADATA_IMPORTED_ENTITY: {
2738       if (Record.size() != 6)
2739         return error("Invalid record");
2740 
2741       IsDistinct = Record[0];
2742       MetadataList.assignValue(
2743           GET_OR_DISTINCT(DIImportedEntity,
2744                           (Context, Record[1], getMDOrNull(Record[2]),
2745                            getDITypeRefOrNull(Record[3]), Record[4],
2746                            getMDString(Record[5]))),
2747           NextMetadataNo++);
2748       break;
2749     }
2750     case bitc::METADATA_STRING_OLD: {
2751       std::string String(Record.begin(), Record.end());
2752 
2753       // Test for upgrading !llvm.loop.
2754       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2755 
2756       Metadata *MD = MDString::get(Context, String);
2757       MetadataList.assignValue(MD, NextMetadataNo++);
2758       break;
2759     }
2760     case bitc::METADATA_STRINGS:
2761       if (std::error_code EC =
2762               parseMetadataStrings(Record, Blob, NextMetadataNo))
2763         return EC;
2764       break;
2765     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2766       if (Record.size() % 2 == 0)
2767         return error("Invalid record");
2768       unsigned ValueID = Record[0];
2769       if (ValueID >= ValueList.size())
2770         return error("Invalid record");
2771       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2772         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2773       break;
2774     }
2775     case bitc::METADATA_KIND: {
2776       // Support older bitcode files that had METADATA_KIND records in a
2777       // block with METADATA_BLOCK_ID.
2778       if (std::error_code EC = parseMetadataKindRecord(Record))
2779         return EC;
2780       break;
2781     }
2782     }
2783   }
2784 
2785 #undef GET_OR_DISTINCT
2786 }
2787 
2788 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2789 std::error_code BitcodeReader::parseMetadataKinds() {
2790   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2791     return error("Invalid record");
2792 
2793   SmallVector<uint64_t, 64> Record;
2794 
2795   // Read all the records.
2796   while (true) {
2797     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2798 
2799     switch (Entry.Kind) {
2800     case BitstreamEntry::SubBlock: // Handled for us already.
2801     case BitstreamEntry::Error:
2802       return error("Malformed block");
2803     case BitstreamEntry::EndBlock:
2804       return std::error_code();
2805     case BitstreamEntry::Record:
2806       // The interesting case.
2807       break;
2808     }
2809 
2810     // Read a record.
2811     Record.clear();
2812     unsigned Code = Stream.readRecord(Entry.ID, Record);
2813     switch (Code) {
2814     default: // Default behavior: ignore.
2815       break;
2816     case bitc::METADATA_KIND: {
2817       if (std::error_code EC = parseMetadataKindRecord(Record))
2818         return EC;
2819       break;
2820     }
2821     }
2822   }
2823 }
2824 
2825 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2826 /// encoding.
2827 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2828   if ((V & 1) == 0)
2829     return V >> 1;
2830   if (V != 1)
2831     return -(V >> 1);
2832   // There is no such thing as -0 with integers.  "-0" really means MININT.
2833   return 1ULL << 63;
2834 }
2835 
2836 /// Resolve all of the initializers for global values and aliases that we can.
2837 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2838   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2839   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2840       IndirectSymbolInitWorklist;
2841   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2842   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2843   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2844 
2845   GlobalInitWorklist.swap(GlobalInits);
2846   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2847   FunctionPrefixWorklist.swap(FunctionPrefixes);
2848   FunctionPrologueWorklist.swap(FunctionPrologues);
2849   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2850 
2851   while (!GlobalInitWorklist.empty()) {
2852     unsigned ValID = GlobalInitWorklist.back().second;
2853     if (ValID >= ValueList.size()) {
2854       // Not ready to resolve this yet, it requires something later in the file.
2855       GlobalInits.push_back(GlobalInitWorklist.back());
2856     } else {
2857       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2858         GlobalInitWorklist.back().first->setInitializer(C);
2859       else
2860         return error("Expected a constant");
2861     }
2862     GlobalInitWorklist.pop_back();
2863   }
2864 
2865   while (!IndirectSymbolInitWorklist.empty()) {
2866     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2867     if (ValID >= ValueList.size()) {
2868       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2869     } else {
2870       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2871       if (!C)
2872         return error("Expected a constant");
2873       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2874       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2875         return error("Alias and aliasee types don't match");
2876       GIS->setIndirectSymbol(C);
2877     }
2878     IndirectSymbolInitWorklist.pop_back();
2879   }
2880 
2881   while (!FunctionPrefixWorklist.empty()) {
2882     unsigned ValID = FunctionPrefixWorklist.back().second;
2883     if (ValID >= ValueList.size()) {
2884       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2885     } else {
2886       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2887         FunctionPrefixWorklist.back().first->setPrefixData(C);
2888       else
2889         return error("Expected a constant");
2890     }
2891     FunctionPrefixWorklist.pop_back();
2892   }
2893 
2894   while (!FunctionPrologueWorklist.empty()) {
2895     unsigned ValID = FunctionPrologueWorklist.back().second;
2896     if (ValID >= ValueList.size()) {
2897       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2898     } else {
2899       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2900         FunctionPrologueWorklist.back().first->setPrologueData(C);
2901       else
2902         return error("Expected a constant");
2903     }
2904     FunctionPrologueWorklist.pop_back();
2905   }
2906 
2907   while (!FunctionPersonalityFnWorklist.empty()) {
2908     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2909     if (ValID >= ValueList.size()) {
2910       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2911     } else {
2912       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2913         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2914       else
2915         return error("Expected a constant");
2916     }
2917     FunctionPersonalityFnWorklist.pop_back();
2918   }
2919 
2920   return std::error_code();
2921 }
2922 
2923 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2924   SmallVector<uint64_t, 8> Words(Vals.size());
2925   transform(Vals, Words.begin(),
2926                  BitcodeReader::decodeSignRotatedValue);
2927 
2928   return APInt(TypeBits, Words);
2929 }
2930 
2931 std::error_code BitcodeReader::parseConstants() {
2932   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2933     return error("Invalid record");
2934 
2935   SmallVector<uint64_t, 64> Record;
2936 
2937   // Read all the records for this value table.
2938   Type *CurTy = Type::getInt32Ty(Context);
2939   unsigned NextCstNo = ValueList.size();
2940 
2941   while (true) {
2942     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2943 
2944     switch (Entry.Kind) {
2945     case BitstreamEntry::SubBlock: // Handled for us already.
2946     case BitstreamEntry::Error:
2947       return error("Malformed block");
2948     case BitstreamEntry::EndBlock:
2949       if (NextCstNo != ValueList.size())
2950         return error("Invalid constant reference");
2951 
2952       // Once all the constants have been read, go through and resolve forward
2953       // references.
2954       ValueList.resolveConstantForwardRefs();
2955       return std::error_code();
2956     case BitstreamEntry::Record:
2957       // The interesting case.
2958       break;
2959     }
2960 
2961     // Read a record.
2962     Record.clear();
2963     Type *VoidType = Type::getVoidTy(Context);
2964     Value *V = nullptr;
2965     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2966     switch (BitCode) {
2967     default:  // Default behavior: unknown constant
2968     case bitc::CST_CODE_UNDEF:     // UNDEF
2969       V = UndefValue::get(CurTy);
2970       break;
2971     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2972       if (Record.empty())
2973         return error("Invalid record");
2974       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2975         return error("Invalid record");
2976       if (TypeList[Record[0]] == VoidType)
2977         return error("Invalid constant type");
2978       CurTy = TypeList[Record[0]];
2979       continue;  // Skip the ValueList manipulation.
2980     case bitc::CST_CODE_NULL:      // NULL
2981       V = Constant::getNullValue(CurTy);
2982       break;
2983     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2984       if (!CurTy->isIntegerTy() || Record.empty())
2985         return error("Invalid record");
2986       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2987       break;
2988     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2989       if (!CurTy->isIntegerTy() || Record.empty())
2990         return error("Invalid record");
2991 
2992       APInt VInt =
2993           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2994       V = ConstantInt::get(Context, VInt);
2995 
2996       break;
2997     }
2998     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2999       if (Record.empty())
3000         return error("Invalid record");
3001       if (CurTy->isHalfTy())
3002         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3003                                              APInt(16, (uint16_t)Record[0])));
3004       else if (CurTy->isFloatTy())
3005         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3006                                              APInt(32, (uint32_t)Record[0])));
3007       else if (CurTy->isDoubleTy())
3008         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3009                                              APInt(64, Record[0])));
3010       else if (CurTy->isX86_FP80Ty()) {
3011         // Bits are not stored the same way as a normal i80 APInt, compensate.
3012         uint64_t Rearrange[2];
3013         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3014         Rearrange[1] = Record[0] >> 48;
3015         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3016                                              APInt(80, Rearrange)));
3017       } else if (CurTy->isFP128Ty())
3018         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3019                                              APInt(128, Record)));
3020       else if (CurTy->isPPC_FP128Ty())
3021         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3022                                              APInt(128, Record)));
3023       else
3024         V = UndefValue::get(CurTy);
3025       break;
3026     }
3027 
3028     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3029       if (Record.empty())
3030         return error("Invalid record");
3031 
3032       unsigned Size = Record.size();
3033       SmallVector<Constant*, 16> Elts;
3034 
3035       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3036         for (unsigned i = 0; i != Size; ++i)
3037           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3038                                                      STy->getElementType(i)));
3039         V = ConstantStruct::get(STy, Elts);
3040       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3041         Type *EltTy = ATy->getElementType();
3042         for (unsigned i = 0; i != Size; ++i)
3043           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3044         V = ConstantArray::get(ATy, Elts);
3045       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3046         Type *EltTy = VTy->getElementType();
3047         for (unsigned i = 0; i != Size; ++i)
3048           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3049         V = ConstantVector::get(Elts);
3050       } else {
3051         V = UndefValue::get(CurTy);
3052       }
3053       break;
3054     }
3055     case bitc::CST_CODE_STRING:    // STRING: [values]
3056     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3057       if (Record.empty())
3058         return error("Invalid record");
3059 
3060       SmallString<16> Elts(Record.begin(), Record.end());
3061       V = ConstantDataArray::getString(Context, Elts,
3062                                        BitCode == bitc::CST_CODE_CSTRING);
3063       break;
3064     }
3065     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3066       if (Record.empty())
3067         return error("Invalid record");
3068 
3069       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3070       if (EltTy->isIntegerTy(8)) {
3071         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3072         if (isa<VectorType>(CurTy))
3073           V = ConstantDataVector::get(Context, Elts);
3074         else
3075           V = ConstantDataArray::get(Context, Elts);
3076       } else if (EltTy->isIntegerTy(16)) {
3077         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3078         if (isa<VectorType>(CurTy))
3079           V = ConstantDataVector::get(Context, Elts);
3080         else
3081           V = ConstantDataArray::get(Context, Elts);
3082       } else if (EltTy->isIntegerTy(32)) {
3083         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3084         if (isa<VectorType>(CurTy))
3085           V = ConstantDataVector::get(Context, Elts);
3086         else
3087           V = ConstantDataArray::get(Context, Elts);
3088       } else if (EltTy->isIntegerTy(64)) {
3089         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3090         if (isa<VectorType>(CurTy))
3091           V = ConstantDataVector::get(Context, Elts);
3092         else
3093           V = ConstantDataArray::get(Context, Elts);
3094       } else if (EltTy->isHalfTy()) {
3095         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3096         if (isa<VectorType>(CurTy))
3097           V = ConstantDataVector::getFP(Context, Elts);
3098         else
3099           V = ConstantDataArray::getFP(Context, Elts);
3100       } else if (EltTy->isFloatTy()) {
3101         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3102         if (isa<VectorType>(CurTy))
3103           V = ConstantDataVector::getFP(Context, Elts);
3104         else
3105           V = ConstantDataArray::getFP(Context, Elts);
3106       } else if (EltTy->isDoubleTy()) {
3107         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3108         if (isa<VectorType>(CurTy))
3109           V = ConstantDataVector::getFP(Context, Elts);
3110         else
3111           V = ConstantDataArray::getFP(Context, Elts);
3112       } else {
3113         return error("Invalid type for value");
3114       }
3115       break;
3116     }
3117     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3118       if (Record.size() < 3)
3119         return error("Invalid record");
3120       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3121       if (Opc < 0) {
3122         V = UndefValue::get(CurTy);  // Unknown binop.
3123       } else {
3124         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3125         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3126         unsigned Flags = 0;
3127         if (Record.size() >= 4) {
3128           if (Opc == Instruction::Add ||
3129               Opc == Instruction::Sub ||
3130               Opc == Instruction::Mul ||
3131               Opc == Instruction::Shl) {
3132             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3133               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3134             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3135               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3136           } else if (Opc == Instruction::SDiv ||
3137                      Opc == Instruction::UDiv ||
3138                      Opc == Instruction::LShr ||
3139                      Opc == Instruction::AShr) {
3140             if (Record[3] & (1 << bitc::PEO_EXACT))
3141               Flags |= SDivOperator::IsExact;
3142           }
3143         }
3144         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3145       }
3146       break;
3147     }
3148     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3149       if (Record.size() < 3)
3150         return error("Invalid record");
3151       int Opc = getDecodedCastOpcode(Record[0]);
3152       if (Opc < 0) {
3153         V = UndefValue::get(CurTy);  // Unknown cast.
3154       } else {
3155         Type *OpTy = getTypeByID(Record[1]);
3156         if (!OpTy)
3157           return error("Invalid record");
3158         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3159         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3160         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3161       }
3162       break;
3163     }
3164     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3165     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3166       unsigned OpNum = 0;
3167       Type *PointeeType = nullptr;
3168       if (Record.size() % 2)
3169         PointeeType = getTypeByID(Record[OpNum++]);
3170       SmallVector<Constant*, 16> Elts;
3171       while (OpNum != Record.size()) {
3172         Type *ElTy = getTypeByID(Record[OpNum++]);
3173         if (!ElTy)
3174           return error("Invalid record");
3175         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3176       }
3177 
3178       if (PointeeType &&
3179           PointeeType !=
3180               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3181                   ->getElementType())
3182         return error("Explicit gep operator type does not match pointee type "
3183                      "of pointer operand");
3184 
3185       if (Elts.size() < 1)
3186         return error("Invalid gep with no operands");
3187 
3188       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3189       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3190                                          BitCode ==
3191                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3192       break;
3193     }
3194     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3195       if (Record.size() < 3)
3196         return error("Invalid record");
3197 
3198       Type *SelectorTy = Type::getInt1Ty(Context);
3199 
3200       // The selector might be an i1 or an <n x i1>
3201       // Get the type from the ValueList before getting a forward ref.
3202       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3203         if (Value *V = ValueList[Record[0]])
3204           if (SelectorTy != V->getType())
3205             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3206 
3207       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3208                                                               SelectorTy),
3209                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3210                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3211       break;
3212     }
3213     case bitc::CST_CODE_CE_EXTRACTELT
3214         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3215       if (Record.size() < 3)
3216         return error("Invalid record");
3217       VectorType *OpTy =
3218         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3219       if (!OpTy)
3220         return error("Invalid record");
3221       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3222       Constant *Op1 = nullptr;
3223       if (Record.size() == 4) {
3224         Type *IdxTy = getTypeByID(Record[2]);
3225         if (!IdxTy)
3226           return error("Invalid record");
3227         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3228       } else // TODO: Remove with llvm 4.0
3229         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3230       if (!Op1)
3231         return error("Invalid record");
3232       V = ConstantExpr::getExtractElement(Op0, Op1);
3233       break;
3234     }
3235     case bitc::CST_CODE_CE_INSERTELT
3236         : { // CE_INSERTELT: [opval, opval, opty, opval]
3237       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3238       if (Record.size() < 3 || !OpTy)
3239         return error("Invalid record");
3240       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3241       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3242                                                   OpTy->getElementType());
3243       Constant *Op2 = nullptr;
3244       if (Record.size() == 4) {
3245         Type *IdxTy = getTypeByID(Record[2]);
3246         if (!IdxTy)
3247           return error("Invalid record");
3248         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3249       } else // TODO: Remove with llvm 4.0
3250         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3251       if (!Op2)
3252         return error("Invalid record");
3253       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3254       break;
3255     }
3256     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3257       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3258       if (Record.size() < 3 || !OpTy)
3259         return error("Invalid record");
3260       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3261       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3262       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3263                                                  OpTy->getNumElements());
3264       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3265       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3266       break;
3267     }
3268     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3269       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3270       VectorType *OpTy =
3271         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3272       if (Record.size() < 4 || !RTy || !OpTy)
3273         return error("Invalid record");
3274       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3275       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3276       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3277                                                  RTy->getNumElements());
3278       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3279       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3280       break;
3281     }
3282     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3283       if (Record.size() < 4)
3284         return error("Invalid record");
3285       Type *OpTy = getTypeByID(Record[0]);
3286       if (!OpTy)
3287         return error("Invalid record");
3288       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3289       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3290 
3291       if (OpTy->isFPOrFPVectorTy())
3292         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3293       else
3294         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3295       break;
3296     }
3297     // This maintains backward compatibility, pre-asm dialect keywords.
3298     // FIXME: Remove with the 4.0 release.
3299     case bitc::CST_CODE_INLINEASM_OLD: {
3300       if (Record.size() < 2)
3301         return error("Invalid record");
3302       std::string AsmStr, ConstrStr;
3303       bool HasSideEffects = Record[0] & 1;
3304       bool IsAlignStack = Record[0] >> 1;
3305       unsigned AsmStrSize = Record[1];
3306       if (2+AsmStrSize >= Record.size())
3307         return error("Invalid record");
3308       unsigned ConstStrSize = Record[2+AsmStrSize];
3309       if (3+AsmStrSize+ConstStrSize > Record.size())
3310         return error("Invalid record");
3311 
3312       for (unsigned i = 0; i != AsmStrSize; ++i)
3313         AsmStr += (char)Record[2+i];
3314       for (unsigned i = 0; i != ConstStrSize; ++i)
3315         ConstrStr += (char)Record[3+AsmStrSize+i];
3316       PointerType *PTy = cast<PointerType>(CurTy);
3317       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3318                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3319       break;
3320     }
3321     // This version adds support for the asm dialect keywords (e.g.,
3322     // inteldialect).
3323     case bitc::CST_CODE_INLINEASM: {
3324       if (Record.size() < 2)
3325         return error("Invalid record");
3326       std::string AsmStr, ConstrStr;
3327       bool HasSideEffects = Record[0] & 1;
3328       bool IsAlignStack = (Record[0] >> 1) & 1;
3329       unsigned AsmDialect = Record[0] >> 2;
3330       unsigned AsmStrSize = Record[1];
3331       if (2+AsmStrSize >= Record.size())
3332         return error("Invalid record");
3333       unsigned ConstStrSize = Record[2+AsmStrSize];
3334       if (3+AsmStrSize+ConstStrSize > Record.size())
3335         return error("Invalid record");
3336 
3337       for (unsigned i = 0; i != AsmStrSize; ++i)
3338         AsmStr += (char)Record[2+i];
3339       for (unsigned i = 0; i != ConstStrSize; ++i)
3340         ConstrStr += (char)Record[3+AsmStrSize+i];
3341       PointerType *PTy = cast<PointerType>(CurTy);
3342       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3343                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3344                          InlineAsm::AsmDialect(AsmDialect));
3345       break;
3346     }
3347     case bitc::CST_CODE_BLOCKADDRESS:{
3348       if (Record.size() < 3)
3349         return error("Invalid record");
3350       Type *FnTy = getTypeByID(Record[0]);
3351       if (!FnTy)
3352         return error("Invalid record");
3353       Function *Fn =
3354         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3355       if (!Fn)
3356         return error("Invalid record");
3357 
3358       // If the function is already parsed we can insert the block address right
3359       // away.
3360       BasicBlock *BB;
3361       unsigned BBID = Record[2];
3362       if (!BBID)
3363         // Invalid reference to entry block.
3364         return error("Invalid ID");
3365       if (!Fn->empty()) {
3366         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3367         for (size_t I = 0, E = BBID; I != E; ++I) {
3368           if (BBI == BBE)
3369             return error("Invalid ID");
3370           ++BBI;
3371         }
3372         BB = &*BBI;
3373       } else {
3374         // Otherwise insert a placeholder and remember it so it can be inserted
3375         // when the function is parsed.
3376         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3377         if (FwdBBs.empty())
3378           BasicBlockFwdRefQueue.push_back(Fn);
3379         if (FwdBBs.size() < BBID + 1)
3380           FwdBBs.resize(BBID + 1);
3381         if (!FwdBBs[BBID])
3382           FwdBBs[BBID] = BasicBlock::Create(Context);
3383         BB = FwdBBs[BBID];
3384       }
3385       V = BlockAddress::get(Fn, BB);
3386       break;
3387     }
3388     }
3389 
3390     ValueList.assignValue(V, NextCstNo);
3391     ++NextCstNo;
3392   }
3393 }
3394 
3395 std::error_code BitcodeReader::parseUseLists() {
3396   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3397     return error("Invalid record");
3398 
3399   // Read all the records.
3400   SmallVector<uint64_t, 64> Record;
3401 
3402   while (true) {
3403     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3404 
3405     switch (Entry.Kind) {
3406     case BitstreamEntry::SubBlock: // Handled for us already.
3407     case BitstreamEntry::Error:
3408       return error("Malformed block");
3409     case BitstreamEntry::EndBlock:
3410       return std::error_code();
3411     case BitstreamEntry::Record:
3412       // The interesting case.
3413       break;
3414     }
3415 
3416     // Read a use list record.
3417     Record.clear();
3418     bool IsBB = false;
3419     switch (Stream.readRecord(Entry.ID, Record)) {
3420     default:  // Default behavior: unknown type.
3421       break;
3422     case bitc::USELIST_CODE_BB:
3423       IsBB = true;
3424       LLVM_FALLTHROUGH;
3425     case bitc::USELIST_CODE_DEFAULT: {
3426       unsigned RecordLength = Record.size();
3427       if (RecordLength < 3)
3428         // Records should have at least an ID and two indexes.
3429         return error("Invalid record");
3430       unsigned ID = Record.back();
3431       Record.pop_back();
3432 
3433       Value *V;
3434       if (IsBB) {
3435         assert(ID < FunctionBBs.size() && "Basic block not found");
3436         V = FunctionBBs[ID];
3437       } else
3438         V = ValueList[ID];
3439       unsigned NumUses = 0;
3440       SmallDenseMap<const Use *, unsigned, 16> Order;
3441       for (const Use &U : V->materialized_uses()) {
3442         if (++NumUses > Record.size())
3443           break;
3444         Order[&U] = Record[NumUses - 1];
3445       }
3446       if (Order.size() != Record.size() || NumUses > Record.size())
3447         // Mismatches can happen if the functions are being materialized lazily
3448         // (out-of-order), or a value has been upgraded.
3449         break;
3450 
3451       V->sortUseList([&](const Use &L, const Use &R) {
3452         return Order.lookup(&L) < Order.lookup(&R);
3453       });
3454       break;
3455     }
3456     }
3457   }
3458 }
3459 
3460 /// When we see the block for metadata, remember where it is and then skip it.
3461 /// This lets us lazily deserialize the metadata.
3462 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3463   // Save the current stream state.
3464   uint64_t CurBit = Stream.GetCurrentBitNo();
3465   DeferredMetadataInfo.push_back(CurBit);
3466 
3467   // Skip over the block for now.
3468   if (Stream.SkipBlock())
3469     return error("Invalid record");
3470   return std::error_code();
3471 }
3472 
3473 std::error_code BitcodeReader::materializeMetadata() {
3474   for (uint64_t BitPos : DeferredMetadataInfo) {
3475     // Move the bit stream to the saved position.
3476     Stream.JumpToBit(BitPos);
3477     if (std::error_code EC = parseMetadata(true))
3478       return EC;
3479   }
3480   DeferredMetadataInfo.clear();
3481   return std::error_code();
3482 }
3483 
3484 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3485 
3486 /// When we see the block for a function body, remember where it is and then
3487 /// skip it.  This lets us lazily deserialize the functions.
3488 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3489   // Get the function we are talking about.
3490   if (FunctionsWithBodies.empty())
3491     return error("Insufficient function protos");
3492 
3493   Function *Fn = FunctionsWithBodies.back();
3494   FunctionsWithBodies.pop_back();
3495 
3496   // Save the current stream state.
3497   uint64_t CurBit = Stream.GetCurrentBitNo();
3498   assert(
3499       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3500       "Mismatch between VST and scanned function offsets");
3501   DeferredFunctionInfo[Fn] = CurBit;
3502 
3503   // Skip over the function block for now.
3504   if (Stream.SkipBlock())
3505     return error("Invalid record");
3506   return std::error_code();
3507 }
3508 
3509 std::error_code BitcodeReader::globalCleanup() {
3510   // Patch the initializers for globals and aliases up.
3511   resolveGlobalAndIndirectSymbolInits();
3512   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3513     return error("Malformed global initializer set");
3514 
3515   // Look for intrinsic functions which need to be upgraded at some point
3516   for (Function &F : *TheModule) {
3517     Function *NewFn;
3518     if (UpgradeIntrinsicFunction(&F, NewFn))
3519       UpgradedIntrinsics[&F] = NewFn;
3520     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3521       // Some types could be renamed during loading if several modules are
3522       // loaded in the same LLVMContext (LTO scenario). In this case we should
3523       // remangle intrinsics names as well.
3524       RemangledIntrinsics[&F] = Remangled.getValue();
3525   }
3526 
3527   // Look for global variables which need to be renamed.
3528   for (GlobalVariable &GV : TheModule->globals())
3529     UpgradeGlobalVariable(&GV);
3530 
3531   // Force deallocation of memory for these vectors to favor the client that
3532   // want lazy deserialization.
3533   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3534   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3535       IndirectSymbolInits);
3536   return std::error_code();
3537 }
3538 
3539 /// Support for lazy parsing of function bodies. This is required if we
3540 /// either have an old bitcode file without a VST forward declaration record,
3541 /// or if we have an anonymous function being materialized, since anonymous
3542 /// functions do not have a name and are therefore not in the VST.
3543 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3544   Stream.JumpToBit(NextUnreadBit);
3545 
3546   if (Stream.AtEndOfStream())
3547     return error("Could not find function in stream");
3548 
3549   if (!SeenFirstFunctionBody)
3550     return error("Trying to materialize functions before seeing function blocks");
3551 
3552   // An old bitcode file with the symbol table at the end would have
3553   // finished the parse greedily.
3554   assert(SeenValueSymbolTable);
3555 
3556   SmallVector<uint64_t, 64> Record;
3557 
3558   while (true) {
3559     BitstreamEntry Entry = Stream.advance();
3560     switch (Entry.Kind) {
3561     default:
3562       return error("Expect SubBlock");
3563     case BitstreamEntry::SubBlock:
3564       switch (Entry.ID) {
3565       default:
3566         return error("Expect function block");
3567       case bitc::FUNCTION_BLOCK_ID:
3568         if (std::error_code EC = rememberAndSkipFunctionBody())
3569           return EC;
3570         NextUnreadBit = Stream.GetCurrentBitNo();
3571         return std::error_code();
3572       }
3573     }
3574   }
3575 }
3576 
3577 std::error_code BitcodeReader::parseBitcodeVersion() {
3578   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3579     return error("Invalid record");
3580 
3581   // Read all the records.
3582   SmallVector<uint64_t, 64> Record;
3583 
3584   while (true) {
3585     BitstreamEntry Entry = Stream.advance();
3586 
3587     switch (Entry.Kind) {
3588     default:
3589     case BitstreamEntry::Error:
3590       return error("Malformed block");
3591     case BitstreamEntry::EndBlock:
3592       return std::error_code();
3593     case BitstreamEntry::Record:
3594       // The interesting case.
3595       break;
3596     }
3597 
3598     // Read a record.
3599     Record.clear();
3600     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3601     switch (BitCode) {
3602     default: // Default behavior: reject
3603       return error("Invalid value");
3604     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3605                                              // N]
3606       convertToString(Record, 0, ProducerIdentification);
3607       break;
3608     }
3609     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3610       unsigned epoch = (unsigned)Record[0];
3611       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3612         return error(
3613           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3614           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3615       }
3616     }
3617     }
3618   }
3619 }
3620 
3621 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3622                                            bool ShouldLazyLoadMetadata) {
3623   if (ResumeBit)
3624     Stream.JumpToBit(ResumeBit);
3625   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3626     return error("Invalid record");
3627 
3628   SmallVector<uint64_t, 64> Record;
3629   std::vector<std::string> SectionTable;
3630   std::vector<std::string> GCTable;
3631 
3632   // Read all the records for this module.
3633   while (true) {
3634     BitstreamEntry Entry = Stream.advance();
3635 
3636     switch (Entry.Kind) {
3637     case BitstreamEntry::Error:
3638       return error("Malformed block");
3639     case BitstreamEntry::EndBlock:
3640       return globalCleanup();
3641 
3642     case BitstreamEntry::SubBlock:
3643       switch (Entry.ID) {
3644       default:  // Skip unknown content.
3645         if (Stream.SkipBlock())
3646           return error("Invalid record");
3647         break;
3648       case bitc::BLOCKINFO_BLOCK_ID:
3649         if (Stream.ReadBlockInfoBlock())
3650           return error("Malformed block");
3651         break;
3652       case bitc::PARAMATTR_BLOCK_ID:
3653         if (std::error_code EC = parseAttributeBlock())
3654           return EC;
3655         break;
3656       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3657         if (std::error_code EC = parseAttributeGroupBlock())
3658           return EC;
3659         break;
3660       case bitc::TYPE_BLOCK_ID_NEW:
3661         if (std::error_code EC = parseTypeTable())
3662           return EC;
3663         break;
3664       case bitc::VALUE_SYMTAB_BLOCK_ID:
3665         if (!SeenValueSymbolTable) {
3666           // Either this is an old form VST without function index and an
3667           // associated VST forward declaration record (which would have caused
3668           // the VST to be jumped to and parsed before it was encountered
3669           // normally in the stream), or there were no function blocks to
3670           // trigger an earlier parsing of the VST.
3671           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3672           if (std::error_code EC = parseValueSymbolTable())
3673             return EC;
3674           SeenValueSymbolTable = true;
3675         } else {
3676           // We must have had a VST forward declaration record, which caused
3677           // the parser to jump to and parse the VST earlier.
3678           assert(VSTOffset > 0);
3679           if (Stream.SkipBlock())
3680             return error("Invalid record");
3681         }
3682         break;
3683       case bitc::CONSTANTS_BLOCK_ID:
3684         if (std::error_code EC = parseConstants())
3685           return EC;
3686         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3687           return EC;
3688         break;
3689       case bitc::METADATA_BLOCK_ID:
3690         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3691           if (std::error_code EC = rememberAndSkipMetadata())
3692             return EC;
3693           break;
3694         }
3695         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3696         if (std::error_code EC = parseMetadata(true))
3697           return EC;
3698         break;
3699       case bitc::METADATA_KIND_BLOCK_ID:
3700         if (std::error_code EC = parseMetadataKinds())
3701           return EC;
3702         break;
3703       case bitc::FUNCTION_BLOCK_ID:
3704         // If this is the first function body we've seen, reverse the
3705         // FunctionsWithBodies list.
3706         if (!SeenFirstFunctionBody) {
3707           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3708           if (std::error_code EC = globalCleanup())
3709             return EC;
3710           SeenFirstFunctionBody = true;
3711         }
3712 
3713         if (VSTOffset > 0) {
3714           // If we have a VST forward declaration record, make sure we
3715           // parse the VST now if we haven't already. It is needed to
3716           // set up the DeferredFunctionInfo vector for lazy reading.
3717           if (!SeenValueSymbolTable) {
3718             if (std::error_code EC =
3719                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3720               return EC;
3721             SeenValueSymbolTable = true;
3722             // Fall through so that we record the NextUnreadBit below.
3723             // This is necessary in case we have an anonymous function that
3724             // is later materialized. Since it will not have a VST entry we
3725             // need to fall back to the lazy parse to find its offset.
3726           } else {
3727             // If we have a VST forward declaration record, but have already
3728             // parsed the VST (just above, when the first function body was
3729             // encountered here), then we are resuming the parse after
3730             // materializing functions. The ResumeBit points to the
3731             // start of the last function block recorded in the
3732             // DeferredFunctionInfo map. Skip it.
3733             if (Stream.SkipBlock())
3734               return error("Invalid record");
3735             continue;
3736           }
3737         }
3738 
3739         // Support older bitcode files that did not have the function
3740         // index in the VST, nor a VST forward declaration record, as
3741         // well as anonymous functions that do not have VST entries.
3742         // Build the DeferredFunctionInfo vector on the fly.
3743         if (std::error_code EC = rememberAndSkipFunctionBody())
3744           return EC;
3745 
3746         // Suspend parsing when we reach the function bodies. Subsequent
3747         // materialization calls will resume it when necessary. If the bitcode
3748         // file is old, the symbol table will be at the end instead and will not
3749         // have been seen yet. In this case, just finish the parse now.
3750         if (SeenValueSymbolTable) {
3751           NextUnreadBit = Stream.GetCurrentBitNo();
3752           // After the VST has been parsed, we need to make sure intrinsic name
3753           // are auto-upgraded.
3754           return globalCleanup();
3755         }
3756         break;
3757       case bitc::USELIST_BLOCK_ID:
3758         if (std::error_code EC = parseUseLists())
3759           return EC;
3760         break;
3761       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3762         if (std::error_code EC = parseOperandBundleTags())
3763           return EC;
3764         break;
3765       }
3766       continue;
3767 
3768     case BitstreamEntry::Record:
3769       // The interesting case.
3770       break;
3771     }
3772 
3773     // Read a record.
3774     auto BitCode = Stream.readRecord(Entry.ID, Record);
3775     switch (BitCode) {
3776     default: break;  // Default behavior, ignore unknown content.
3777     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3778       if (Record.size() < 1)
3779         return error("Invalid record");
3780       // Only version #0 and #1 are supported so far.
3781       unsigned module_version = Record[0];
3782       switch (module_version) {
3783         default:
3784           return error("Invalid value");
3785         case 0:
3786           UseRelativeIDs = false;
3787           break;
3788         case 1:
3789           UseRelativeIDs = true;
3790           break;
3791       }
3792       break;
3793     }
3794     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3795       std::string S;
3796       if (convertToString(Record, 0, S))
3797         return error("Invalid record");
3798       TheModule->setTargetTriple(S);
3799       break;
3800     }
3801     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3802       std::string S;
3803       if (convertToString(Record, 0, S))
3804         return error("Invalid record");
3805       TheModule->setDataLayout(S);
3806       break;
3807     }
3808     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3809       std::string S;
3810       if (convertToString(Record, 0, S))
3811         return error("Invalid record");
3812       TheModule->setModuleInlineAsm(S);
3813       break;
3814     }
3815     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3816       // FIXME: Remove in 4.0.
3817       std::string S;
3818       if (convertToString(Record, 0, S))
3819         return error("Invalid record");
3820       // Ignore value.
3821       break;
3822     }
3823     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3824       std::string S;
3825       if (convertToString(Record, 0, S))
3826         return error("Invalid record");
3827       SectionTable.push_back(S);
3828       break;
3829     }
3830     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3831       std::string S;
3832       if (convertToString(Record, 0, S))
3833         return error("Invalid record");
3834       GCTable.push_back(S);
3835       break;
3836     }
3837     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3838       if (Record.size() < 2)
3839         return error("Invalid record");
3840       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3841       unsigned ComdatNameSize = Record[1];
3842       std::string ComdatName;
3843       ComdatName.reserve(ComdatNameSize);
3844       for (unsigned i = 0; i != ComdatNameSize; ++i)
3845         ComdatName += (char)Record[2 + i];
3846       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3847       C->setSelectionKind(SK);
3848       ComdatList.push_back(C);
3849       break;
3850     }
3851     // GLOBALVAR: [pointer type, isconst, initid,
3852     //             linkage, alignment, section, visibility, threadlocal,
3853     //             unnamed_addr, externally_initialized, dllstorageclass,
3854     //             comdat]
3855     case bitc::MODULE_CODE_GLOBALVAR: {
3856       if (Record.size() < 6)
3857         return error("Invalid record");
3858       Type *Ty = getTypeByID(Record[0]);
3859       if (!Ty)
3860         return error("Invalid record");
3861       bool isConstant = Record[1] & 1;
3862       bool explicitType = Record[1] & 2;
3863       unsigned AddressSpace;
3864       if (explicitType) {
3865         AddressSpace = Record[1] >> 2;
3866       } else {
3867         if (!Ty->isPointerTy())
3868           return error("Invalid type for value");
3869         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3870         Ty = cast<PointerType>(Ty)->getElementType();
3871       }
3872 
3873       uint64_t RawLinkage = Record[3];
3874       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3875       unsigned Alignment;
3876       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3877         return EC;
3878       std::string Section;
3879       if (Record[5]) {
3880         if (Record[5]-1 >= SectionTable.size())
3881           return error("Invalid ID");
3882         Section = SectionTable[Record[5]-1];
3883       }
3884       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3885       // Local linkage must have default visibility.
3886       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3887         // FIXME: Change to an error if non-default in 4.0.
3888         Visibility = getDecodedVisibility(Record[6]);
3889 
3890       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3891       if (Record.size() > 7)
3892         TLM = getDecodedThreadLocalMode(Record[7]);
3893 
3894       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3895       if (Record.size() > 8)
3896         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3897 
3898       bool ExternallyInitialized = false;
3899       if (Record.size() > 9)
3900         ExternallyInitialized = Record[9];
3901 
3902       GlobalVariable *NewGV =
3903         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3904                            TLM, AddressSpace, ExternallyInitialized);
3905       NewGV->setAlignment(Alignment);
3906       if (!Section.empty())
3907         NewGV->setSection(Section);
3908       NewGV->setVisibility(Visibility);
3909       NewGV->setUnnamedAddr(UnnamedAddr);
3910 
3911       if (Record.size() > 10)
3912         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3913       else
3914         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3915 
3916       ValueList.push_back(NewGV);
3917 
3918       // Remember which value to use for the global initializer.
3919       if (unsigned InitID = Record[2])
3920         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3921 
3922       if (Record.size() > 11) {
3923         if (unsigned ComdatID = Record[11]) {
3924           if (ComdatID > ComdatList.size())
3925             return error("Invalid global variable comdat ID");
3926           NewGV->setComdat(ComdatList[ComdatID - 1]);
3927         }
3928       } else if (hasImplicitComdat(RawLinkage)) {
3929         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3930       }
3931 
3932       break;
3933     }
3934     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3935     //             alignment, section, visibility, gc, unnamed_addr,
3936     //             prologuedata, dllstorageclass, comdat, prefixdata]
3937     case bitc::MODULE_CODE_FUNCTION: {
3938       if (Record.size() < 8)
3939         return error("Invalid record");
3940       Type *Ty = getTypeByID(Record[0]);
3941       if (!Ty)
3942         return error("Invalid record");
3943       if (auto *PTy = dyn_cast<PointerType>(Ty))
3944         Ty = PTy->getElementType();
3945       auto *FTy = dyn_cast<FunctionType>(Ty);
3946       if (!FTy)
3947         return error("Invalid type for value");
3948       auto CC = static_cast<CallingConv::ID>(Record[1]);
3949       if (CC & ~CallingConv::MaxID)
3950         return error("Invalid calling convention ID");
3951 
3952       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3953                                         "", TheModule);
3954 
3955       Func->setCallingConv(CC);
3956       bool isProto = Record[2];
3957       uint64_t RawLinkage = Record[3];
3958       Func->setLinkage(getDecodedLinkage(RawLinkage));
3959       Func->setAttributes(getAttributes(Record[4]));
3960 
3961       unsigned Alignment;
3962       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3963         return EC;
3964       Func->setAlignment(Alignment);
3965       if (Record[6]) {
3966         if (Record[6]-1 >= SectionTable.size())
3967           return error("Invalid ID");
3968         Func->setSection(SectionTable[Record[6]-1]);
3969       }
3970       // Local linkage must have default visibility.
3971       if (!Func->hasLocalLinkage())
3972         // FIXME: Change to an error if non-default in 4.0.
3973         Func->setVisibility(getDecodedVisibility(Record[7]));
3974       if (Record.size() > 8 && Record[8]) {
3975         if (Record[8]-1 >= GCTable.size())
3976           return error("Invalid ID");
3977         Func->setGC(GCTable[Record[8] - 1]);
3978       }
3979       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3980       if (Record.size() > 9)
3981         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3982       Func->setUnnamedAddr(UnnamedAddr);
3983       if (Record.size() > 10 && Record[10] != 0)
3984         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3985 
3986       if (Record.size() > 11)
3987         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3988       else
3989         upgradeDLLImportExportLinkage(Func, RawLinkage);
3990 
3991       if (Record.size() > 12) {
3992         if (unsigned ComdatID = Record[12]) {
3993           if (ComdatID > ComdatList.size())
3994             return error("Invalid function comdat ID");
3995           Func->setComdat(ComdatList[ComdatID - 1]);
3996         }
3997       } else if (hasImplicitComdat(RawLinkage)) {
3998         Func->setComdat(reinterpret_cast<Comdat *>(1));
3999       }
4000 
4001       if (Record.size() > 13 && Record[13] != 0)
4002         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4003 
4004       if (Record.size() > 14 && Record[14] != 0)
4005         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4006 
4007       ValueList.push_back(Func);
4008 
4009       // If this is a function with a body, remember the prototype we are
4010       // creating now, so that we can match up the body with them later.
4011       if (!isProto) {
4012         Func->setIsMaterializable(true);
4013         FunctionsWithBodies.push_back(Func);
4014         DeferredFunctionInfo[Func] = 0;
4015       }
4016       break;
4017     }
4018     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4019     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4020     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4021     case bitc::MODULE_CODE_IFUNC:
4022     case bitc::MODULE_CODE_ALIAS:
4023     case bitc::MODULE_CODE_ALIAS_OLD: {
4024       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4025       if (Record.size() < (3 + (unsigned)NewRecord))
4026         return error("Invalid record");
4027       unsigned OpNum = 0;
4028       Type *Ty = getTypeByID(Record[OpNum++]);
4029       if (!Ty)
4030         return error("Invalid record");
4031 
4032       unsigned AddrSpace;
4033       if (!NewRecord) {
4034         auto *PTy = dyn_cast<PointerType>(Ty);
4035         if (!PTy)
4036           return error("Invalid type for value");
4037         Ty = PTy->getElementType();
4038         AddrSpace = PTy->getAddressSpace();
4039       } else {
4040         AddrSpace = Record[OpNum++];
4041       }
4042 
4043       auto Val = Record[OpNum++];
4044       auto Linkage = Record[OpNum++];
4045       GlobalIndirectSymbol *NewGA;
4046       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4047           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4048         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4049                                     "", TheModule);
4050       else
4051         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4052                                     "", nullptr, TheModule);
4053       // Old bitcode files didn't have visibility field.
4054       // Local linkage must have default visibility.
4055       if (OpNum != Record.size()) {
4056         auto VisInd = OpNum++;
4057         if (!NewGA->hasLocalLinkage())
4058           // FIXME: Change to an error if non-default in 4.0.
4059           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4060       }
4061       if (OpNum != Record.size())
4062         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4063       else
4064         upgradeDLLImportExportLinkage(NewGA, Linkage);
4065       if (OpNum != Record.size())
4066         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4067       if (OpNum != Record.size())
4068         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4069       ValueList.push_back(NewGA);
4070       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4071       break;
4072     }
4073     /// MODULE_CODE_PURGEVALS: [numvals]
4074     case bitc::MODULE_CODE_PURGEVALS:
4075       // Trim down the value list to the specified size.
4076       if (Record.size() < 1 || Record[0] > ValueList.size())
4077         return error("Invalid record");
4078       ValueList.shrinkTo(Record[0]);
4079       break;
4080     /// MODULE_CODE_VSTOFFSET: [offset]
4081     case bitc::MODULE_CODE_VSTOFFSET:
4082       if (Record.size() < 1)
4083         return error("Invalid record");
4084       VSTOffset = Record[0];
4085       break;
4086     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4087     case bitc::MODULE_CODE_SOURCE_FILENAME:
4088       SmallString<128> ValueName;
4089       if (convertToString(Record, 0, ValueName))
4090         return error("Invalid record");
4091       TheModule->setSourceFileName(ValueName);
4092       break;
4093     }
4094     Record.clear();
4095   }
4096 }
4097 
4098 /// Helper to read the header common to all bitcode files.
4099 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4100   // Sniff for the signature.
4101   if (Stream.Read(8) != 'B' ||
4102       Stream.Read(8) != 'C' ||
4103       Stream.Read(4) != 0x0 ||
4104       Stream.Read(4) != 0xC ||
4105       Stream.Read(4) != 0xE ||
4106       Stream.Read(4) != 0xD)
4107     return false;
4108   return true;
4109 }
4110 
4111 std::error_code
4112 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4113                                 Module *M, bool ShouldLazyLoadMetadata) {
4114   TheModule = M;
4115 
4116   if (std::error_code EC = initStream(std::move(Streamer)))
4117     return EC;
4118 
4119   // Sniff for the signature.
4120   if (!hasValidBitcodeHeader(Stream))
4121     return error("Invalid bitcode signature");
4122 
4123   // We expect a number of well-defined blocks, though we don't necessarily
4124   // need to understand them all.
4125   while (true) {
4126     if (Stream.AtEndOfStream()) {
4127       // We didn't really read a proper Module.
4128       return error("Malformed IR file");
4129     }
4130 
4131     BitstreamEntry Entry =
4132       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4133 
4134     if (Entry.Kind != BitstreamEntry::SubBlock)
4135       return error("Malformed block");
4136 
4137     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4138       parseBitcodeVersion();
4139       continue;
4140     }
4141 
4142     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4143       return parseModule(0, ShouldLazyLoadMetadata);
4144 
4145     if (Stream.SkipBlock())
4146       return error("Invalid record");
4147   }
4148 }
4149 
4150 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4151   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4152     return error("Invalid record");
4153 
4154   SmallVector<uint64_t, 64> Record;
4155 
4156   std::string Triple;
4157 
4158   // Read all the records for this module.
4159   while (true) {
4160     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4161 
4162     switch (Entry.Kind) {
4163     case BitstreamEntry::SubBlock: // Handled for us already.
4164     case BitstreamEntry::Error:
4165       return error("Malformed block");
4166     case BitstreamEntry::EndBlock:
4167       return Triple;
4168     case BitstreamEntry::Record:
4169       // The interesting case.
4170       break;
4171     }
4172 
4173     // Read a record.
4174     switch (Stream.readRecord(Entry.ID, Record)) {
4175     default: break;  // Default behavior, ignore unknown content.
4176     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4177       std::string S;
4178       if (convertToString(Record, 0, S))
4179         return error("Invalid record");
4180       Triple = S;
4181       break;
4182     }
4183     }
4184     Record.clear();
4185   }
4186   llvm_unreachable("Exit infinite loop");
4187 }
4188 
4189 ErrorOr<std::string> BitcodeReader::parseTriple() {
4190   if (std::error_code EC = initStream(nullptr))
4191     return EC;
4192 
4193   // Sniff for the signature.
4194   if (!hasValidBitcodeHeader(Stream))
4195     return error("Invalid bitcode signature");
4196 
4197   // We expect a number of well-defined blocks, though we don't necessarily
4198   // need to understand them all.
4199   while (true) {
4200     BitstreamEntry Entry = Stream.advance();
4201 
4202     switch (Entry.Kind) {
4203     case BitstreamEntry::Error:
4204       return error("Malformed block");
4205     case BitstreamEntry::EndBlock:
4206       return std::error_code();
4207 
4208     case BitstreamEntry::SubBlock:
4209       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4210         return parseModuleTriple();
4211 
4212       // Ignore other sub-blocks.
4213       if (Stream.SkipBlock())
4214         return error("Malformed block");
4215       continue;
4216 
4217     case BitstreamEntry::Record:
4218       Stream.skipRecord(Entry.ID);
4219       continue;
4220     }
4221   }
4222 }
4223 
4224 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4225   if (std::error_code EC = initStream(nullptr))
4226     return EC;
4227 
4228   // Sniff for the signature.
4229   if (!hasValidBitcodeHeader(Stream))
4230     return error("Invalid bitcode signature");
4231 
4232   // We expect a number of well-defined blocks, though we don't necessarily
4233   // need to understand them all.
4234   while (true) {
4235     BitstreamEntry Entry = Stream.advance();
4236     switch (Entry.Kind) {
4237     case BitstreamEntry::Error:
4238       return error("Malformed block");
4239     case BitstreamEntry::EndBlock:
4240       return std::error_code();
4241 
4242     case BitstreamEntry::SubBlock:
4243       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4244         if (std::error_code EC = parseBitcodeVersion())
4245           return EC;
4246         return ProducerIdentification;
4247       }
4248       // Ignore other sub-blocks.
4249       if (Stream.SkipBlock())
4250         return error("Malformed block");
4251       continue;
4252     case BitstreamEntry::Record:
4253       Stream.skipRecord(Entry.ID);
4254       continue;
4255     }
4256   }
4257 }
4258 
4259 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4260     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4261   assert(Record.size() % 2 == 0);
4262   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4263     auto K = MDKindMap.find(Record[I]);
4264     if (K == MDKindMap.end())
4265       return error("Invalid ID");
4266     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4267     if (!MD)
4268       return error("Invalid metadata attachment");
4269     GO.addMetadata(K->second, *MD);
4270   }
4271   return std::error_code();
4272 }
4273 
4274 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4275   if (std::error_code EC = initStream(nullptr))
4276     return EC;
4277 
4278   // Sniff for the signature.
4279   if (!hasValidBitcodeHeader(Stream))
4280     return error("Invalid bitcode signature");
4281 
4282   // We expect a number of well-defined blocks, though we don't necessarily
4283   // need to understand them all.
4284   while (true) {
4285     BitstreamEntry Entry = Stream.advance();
4286 
4287     switch (Entry.Kind) {
4288     case BitstreamEntry::Error:
4289       return error("Malformed block");
4290     case BitstreamEntry::EndBlock:
4291       return std::error_code();
4292 
4293     case BitstreamEntry::SubBlock:
4294       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4295         return hasObjCCategoryInModule();
4296 
4297       // Ignore other sub-blocks.
4298       if (Stream.SkipBlock())
4299         return error("Malformed block");
4300       continue;
4301 
4302     case BitstreamEntry::Record:
4303       Stream.skipRecord(Entry.ID);
4304       continue;
4305     }
4306   }
4307 }
4308 
4309 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4310   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4311     return error("Invalid record");
4312 
4313   SmallVector<uint64_t, 64> Record;
4314   // Read all the records for this module.
4315 
4316   while (true) {
4317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4318 
4319     switch (Entry.Kind) {
4320     case BitstreamEntry::SubBlock: // Handled for us already.
4321     case BitstreamEntry::Error:
4322       return error("Malformed block");
4323     case BitstreamEntry::EndBlock:
4324       return false;
4325     case BitstreamEntry::Record:
4326       // The interesting case.
4327       break;
4328     }
4329 
4330     // Read a record.
4331     switch (Stream.readRecord(Entry.ID, Record)) {
4332     default:
4333       break; // Default behavior, ignore unknown content.
4334     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4335       std::string S;
4336       if (convertToString(Record, 0, S))
4337         return error("Invalid record");
4338       // Check for the i386 and other (x86_64, ARM) conventions
4339       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4340           S.find("__OBJC,__category") != std::string::npos)
4341         return true;
4342       break;
4343     }
4344     }
4345     Record.clear();
4346   }
4347   llvm_unreachable("Exit infinite loop");
4348 }
4349 
4350 /// Parse metadata attachments.
4351 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4352   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4353     return error("Invalid record");
4354 
4355   SmallVector<uint64_t, 64> Record;
4356 
4357   while (true) {
4358     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4359 
4360     switch (Entry.Kind) {
4361     case BitstreamEntry::SubBlock: // Handled for us already.
4362     case BitstreamEntry::Error:
4363       return error("Malformed block");
4364     case BitstreamEntry::EndBlock:
4365       return std::error_code();
4366     case BitstreamEntry::Record:
4367       // The interesting case.
4368       break;
4369     }
4370 
4371     // Read a metadata attachment record.
4372     Record.clear();
4373     switch (Stream.readRecord(Entry.ID, Record)) {
4374     default:  // Default behavior: ignore.
4375       break;
4376     case bitc::METADATA_ATTACHMENT: {
4377       unsigned RecordLength = Record.size();
4378       if (Record.empty())
4379         return error("Invalid record");
4380       if (RecordLength % 2 == 0) {
4381         // A function attachment.
4382         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4383           return EC;
4384         continue;
4385       }
4386 
4387       // An instruction attachment.
4388       Instruction *Inst = InstructionList[Record[0]];
4389       for (unsigned i = 1; i != RecordLength; i = i+2) {
4390         unsigned Kind = Record[i];
4391         DenseMap<unsigned, unsigned>::iterator I =
4392           MDKindMap.find(Kind);
4393         if (I == MDKindMap.end())
4394           return error("Invalid ID");
4395         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4396         if (isa<LocalAsMetadata>(Node))
4397           // Drop the attachment.  This used to be legal, but there's no
4398           // upgrade path.
4399           break;
4400         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4401         if (!MD)
4402           return error("Invalid metadata attachment");
4403 
4404         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4405           MD = upgradeInstructionLoopAttachment(*MD);
4406 
4407         Inst->setMetadata(I->second, MD);
4408         if (I->second == LLVMContext::MD_tbaa) {
4409           InstsWithTBAATag.push_back(Inst);
4410           continue;
4411         }
4412       }
4413       break;
4414     }
4415     }
4416   }
4417 }
4418 
4419 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4420   LLVMContext &Context = PtrType->getContext();
4421   if (!isa<PointerType>(PtrType))
4422     return error(Context, "Load/Store operand is not a pointer type");
4423   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4424 
4425   if (ValType && ValType != ElemType)
4426     return error(Context, "Explicit load/store type does not match pointee "
4427                           "type of pointer operand");
4428   if (!PointerType::isLoadableOrStorableType(ElemType))
4429     return error(Context, "Cannot load/store from pointer");
4430   return std::error_code();
4431 }
4432 
4433 /// Lazily parse the specified function body block.
4434 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4435   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4436     return error("Invalid record");
4437 
4438   // Unexpected unresolved metadata when parsing function.
4439   if (MetadataList.hasFwdRefs())
4440     return error("Invalid function metadata: incoming forward references");
4441 
4442   InstructionList.clear();
4443   unsigned ModuleValueListSize = ValueList.size();
4444   unsigned ModuleMetadataListSize = MetadataList.size();
4445 
4446   // Add all the function arguments to the value table.
4447   for (Argument &I : F->args())
4448     ValueList.push_back(&I);
4449 
4450   unsigned NextValueNo = ValueList.size();
4451   BasicBlock *CurBB = nullptr;
4452   unsigned CurBBNo = 0;
4453 
4454   DebugLoc LastLoc;
4455   auto getLastInstruction = [&]() -> Instruction * {
4456     if (CurBB && !CurBB->empty())
4457       return &CurBB->back();
4458     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4459              !FunctionBBs[CurBBNo - 1]->empty())
4460       return &FunctionBBs[CurBBNo - 1]->back();
4461     return nullptr;
4462   };
4463 
4464   std::vector<OperandBundleDef> OperandBundles;
4465 
4466   // Read all the records.
4467   SmallVector<uint64_t, 64> Record;
4468 
4469   while (true) {
4470     BitstreamEntry Entry = Stream.advance();
4471 
4472     switch (Entry.Kind) {
4473     case BitstreamEntry::Error:
4474       return error("Malformed block");
4475     case BitstreamEntry::EndBlock:
4476       goto OutOfRecordLoop;
4477 
4478     case BitstreamEntry::SubBlock:
4479       switch (Entry.ID) {
4480       default:  // Skip unknown content.
4481         if (Stream.SkipBlock())
4482           return error("Invalid record");
4483         break;
4484       case bitc::CONSTANTS_BLOCK_ID:
4485         if (std::error_code EC = parseConstants())
4486           return EC;
4487         NextValueNo = ValueList.size();
4488         break;
4489       case bitc::VALUE_SYMTAB_BLOCK_ID:
4490         if (std::error_code EC = parseValueSymbolTable())
4491           return EC;
4492         break;
4493       case bitc::METADATA_ATTACHMENT_ID:
4494         if (std::error_code EC = parseMetadataAttachment(*F))
4495           return EC;
4496         break;
4497       case bitc::METADATA_BLOCK_ID:
4498         if (std::error_code EC = parseMetadata())
4499           return EC;
4500         break;
4501       case bitc::USELIST_BLOCK_ID:
4502         if (std::error_code EC = parseUseLists())
4503           return EC;
4504         break;
4505       }
4506       continue;
4507 
4508     case BitstreamEntry::Record:
4509       // The interesting case.
4510       break;
4511     }
4512 
4513     // Read a record.
4514     Record.clear();
4515     Instruction *I = nullptr;
4516     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4517     switch (BitCode) {
4518     default: // Default behavior: reject
4519       return error("Invalid value");
4520     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4521       if (Record.size() < 1 || Record[0] == 0)
4522         return error("Invalid record");
4523       // Create all the basic blocks for the function.
4524       FunctionBBs.resize(Record[0]);
4525 
4526       // See if anything took the address of blocks in this function.
4527       auto BBFRI = BasicBlockFwdRefs.find(F);
4528       if (BBFRI == BasicBlockFwdRefs.end()) {
4529         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4530           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4531       } else {
4532         auto &BBRefs = BBFRI->second;
4533         // Check for invalid basic block references.
4534         if (BBRefs.size() > FunctionBBs.size())
4535           return error("Invalid ID");
4536         assert(!BBRefs.empty() && "Unexpected empty array");
4537         assert(!BBRefs.front() && "Invalid reference to entry block");
4538         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4539              ++I)
4540           if (I < RE && BBRefs[I]) {
4541             BBRefs[I]->insertInto(F);
4542             FunctionBBs[I] = BBRefs[I];
4543           } else {
4544             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4545           }
4546 
4547         // Erase from the table.
4548         BasicBlockFwdRefs.erase(BBFRI);
4549       }
4550 
4551       CurBB = FunctionBBs[0];
4552       continue;
4553     }
4554 
4555     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4556       // This record indicates that the last instruction is at the same
4557       // location as the previous instruction with a location.
4558       I = getLastInstruction();
4559 
4560       if (!I)
4561         return error("Invalid record");
4562       I->setDebugLoc(LastLoc);
4563       I = nullptr;
4564       continue;
4565 
4566     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4567       I = getLastInstruction();
4568       if (!I || Record.size() < 4)
4569         return error("Invalid record");
4570 
4571       unsigned Line = Record[0], Col = Record[1];
4572       unsigned ScopeID = Record[2], IAID = Record[3];
4573 
4574       MDNode *Scope = nullptr, *IA = nullptr;
4575       if (ScopeID) {
4576         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4577         if (!Scope)
4578           return error("Invalid record");
4579       }
4580       if (IAID) {
4581         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4582         if (!IA)
4583           return error("Invalid record");
4584       }
4585       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4586       I->setDebugLoc(LastLoc);
4587       I = nullptr;
4588       continue;
4589     }
4590 
4591     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4592       unsigned OpNum = 0;
4593       Value *LHS, *RHS;
4594       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4595           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4596           OpNum+1 > Record.size())
4597         return error("Invalid record");
4598 
4599       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4600       if (Opc == -1)
4601         return error("Invalid record");
4602       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4603       InstructionList.push_back(I);
4604       if (OpNum < Record.size()) {
4605         if (Opc == Instruction::Add ||
4606             Opc == Instruction::Sub ||
4607             Opc == Instruction::Mul ||
4608             Opc == Instruction::Shl) {
4609           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4610             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4611           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4612             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4613         } else if (Opc == Instruction::SDiv ||
4614                    Opc == Instruction::UDiv ||
4615                    Opc == Instruction::LShr ||
4616                    Opc == Instruction::AShr) {
4617           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4618             cast<BinaryOperator>(I)->setIsExact(true);
4619         } else if (isa<FPMathOperator>(I)) {
4620           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4621           if (FMF.any())
4622             I->setFastMathFlags(FMF);
4623         }
4624 
4625       }
4626       break;
4627     }
4628     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4629       unsigned OpNum = 0;
4630       Value *Op;
4631       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4632           OpNum+2 != Record.size())
4633         return error("Invalid record");
4634 
4635       Type *ResTy = getTypeByID(Record[OpNum]);
4636       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4637       if (Opc == -1 || !ResTy)
4638         return error("Invalid record");
4639       Instruction *Temp = nullptr;
4640       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4641         if (Temp) {
4642           InstructionList.push_back(Temp);
4643           CurBB->getInstList().push_back(Temp);
4644         }
4645       } else {
4646         auto CastOp = (Instruction::CastOps)Opc;
4647         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4648           return error("Invalid cast");
4649         I = CastInst::Create(CastOp, Op, ResTy);
4650       }
4651       InstructionList.push_back(I);
4652       break;
4653     }
4654     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4655     case bitc::FUNC_CODE_INST_GEP_OLD:
4656     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4657       unsigned OpNum = 0;
4658 
4659       Type *Ty;
4660       bool InBounds;
4661 
4662       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4663         InBounds = Record[OpNum++];
4664         Ty = getTypeByID(Record[OpNum++]);
4665       } else {
4666         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4667         Ty = nullptr;
4668       }
4669 
4670       Value *BasePtr;
4671       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4672         return error("Invalid record");
4673 
4674       if (!Ty)
4675         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4676                  ->getElementType();
4677       else if (Ty !=
4678                cast<SequentialType>(BasePtr->getType()->getScalarType())
4679                    ->getElementType())
4680         return error(
4681             "Explicit gep type does not match pointee type of pointer operand");
4682 
4683       SmallVector<Value*, 16> GEPIdx;
4684       while (OpNum != Record.size()) {
4685         Value *Op;
4686         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4687           return error("Invalid record");
4688         GEPIdx.push_back(Op);
4689       }
4690 
4691       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4692 
4693       InstructionList.push_back(I);
4694       if (InBounds)
4695         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4696       break;
4697     }
4698 
4699     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4700                                        // EXTRACTVAL: [opty, opval, n x indices]
4701       unsigned OpNum = 0;
4702       Value *Agg;
4703       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4704         return error("Invalid record");
4705 
4706       unsigned RecSize = Record.size();
4707       if (OpNum == RecSize)
4708         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4709 
4710       SmallVector<unsigned, 4> EXTRACTVALIdx;
4711       Type *CurTy = Agg->getType();
4712       for (; OpNum != RecSize; ++OpNum) {
4713         bool IsArray = CurTy->isArrayTy();
4714         bool IsStruct = CurTy->isStructTy();
4715         uint64_t Index = Record[OpNum];
4716 
4717         if (!IsStruct && !IsArray)
4718           return error("EXTRACTVAL: Invalid type");
4719         if ((unsigned)Index != Index)
4720           return error("Invalid value");
4721         if (IsStruct && Index >= CurTy->subtypes().size())
4722           return error("EXTRACTVAL: Invalid struct index");
4723         if (IsArray && Index >= CurTy->getArrayNumElements())
4724           return error("EXTRACTVAL: Invalid array index");
4725         EXTRACTVALIdx.push_back((unsigned)Index);
4726 
4727         if (IsStruct)
4728           CurTy = CurTy->subtypes()[Index];
4729         else
4730           CurTy = CurTy->subtypes()[0];
4731       }
4732 
4733       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4734       InstructionList.push_back(I);
4735       break;
4736     }
4737 
4738     case bitc::FUNC_CODE_INST_INSERTVAL: {
4739                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4740       unsigned OpNum = 0;
4741       Value *Agg;
4742       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4743         return error("Invalid record");
4744       Value *Val;
4745       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4746         return error("Invalid record");
4747 
4748       unsigned RecSize = Record.size();
4749       if (OpNum == RecSize)
4750         return error("INSERTVAL: Invalid instruction with 0 indices");
4751 
4752       SmallVector<unsigned, 4> INSERTVALIdx;
4753       Type *CurTy = Agg->getType();
4754       for (; OpNum != RecSize; ++OpNum) {
4755         bool IsArray = CurTy->isArrayTy();
4756         bool IsStruct = CurTy->isStructTy();
4757         uint64_t Index = Record[OpNum];
4758 
4759         if (!IsStruct && !IsArray)
4760           return error("INSERTVAL: Invalid type");
4761         if ((unsigned)Index != Index)
4762           return error("Invalid value");
4763         if (IsStruct && Index >= CurTy->subtypes().size())
4764           return error("INSERTVAL: Invalid struct index");
4765         if (IsArray && Index >= CurTy->getArrayNumElements())
4766           return error("INSERTVAL: Invalid array index");
4767 
4768         INSERTVALIdx.push_back((unsigned)Index);
4769         if (IsStruct)
4770           CurTy = CurTy->subtypes()[Index];
4771         else
4772           CurTy = CurTy->subtypes()[0];
4773       }
4774 
4775       if (CurTy != Val->getType())
4776         return error("Inserted value type doesn't match aggregate type");
4777 
4778       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4779       InstructionList.push_back(I);
4780       break;
4781     }
4782 
4783     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4784       // obsolete form of select
4785       // handles select i1 ... in old bitcode
4786       unsigned OpNum = 0;
4787       Value *TrueVal, *FalseVal, *Cond;
4788       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4789           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4790           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4791         return error("Invalid record");
4792 
4793       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4794       InstructionList.push_back(I);
4795       break;
4796     }
4797 
4798     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4799       // new form of select
4800       // handles select i1 or select [N x i1]
4801       unsigned OpNum = 0;
4802       Value *TrueVal, *FalseVal, *Cond;
4803       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4804           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4805           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4806         return error("Invalid record");
4807 
4808       // select condition can be either i1 or [N x i1]
4809       if (VectorType* vector_type =
4810           dyn_cast<VectorType>(Cond->getType())) {
4811         // expect <n x i1>
4812         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4813           return error("Invalid type for value");
4814       } else {
4815         // expect i1
4816         if (Cond->getType() != Type::getInt1Ty(Context))
4817           return error("Invalid type for value");
4818       }
4819 
4820       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4821       InstructionList.push_back(I);
4822       break;
4823     }
4824 
4825     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4826       unsigned OpNum = 0;
4827       Value *Vec, *Idx;
4828       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4829           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4830         return error("Invalid record");
4831       if (!Vec->getType()->isVectorTy())
4832         return error("Invalid type for value");
4833       I = ExtractElementInst::Create(Vec, Idx);
4834       InstructionList.push_back(I);
4835       break;
4836     }
4837 
4838     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4839       unsigned OpNum = 0;
4840       Value *Vec, *Elt, *Idx;
4841       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4842         return error("Invalid record");
4843       if (!Vec->getType()->isVectorTy())
4844         return error("Invalid type for value");
4845       if (popValue(Record, OpNum, NextValueNo,
4846                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4847           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4848         return error("Invalid record");
4849       I = InsertElementInst::Create(Vec, Elt, Idx);
4850       InstructionList.push_back(I);
4851       break;
4852     }
4853 
4854     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4855       unsigned OpNum = 0;
4856       Value *Vec1, *Vec2, *Mask;
4857       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4858           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4859         return error("Invalid record");
4860 
4861       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4862         return error("Invalid record");
4863       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4864         return error("Invalid type for value");
4865       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4866       InstructionList.push_back(I);
4867       break;
4868     }
4869 
4870     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4871       // Old form of ICmp/FCmp returning bool
4872       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4873       // both legal on vectors but had different behaviour.
4874     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4875       // FCmp/ICmp returning bool or vector of bool
4876 
4877       unsigned OpNum = 0;
4878       Value *LHS, *RHS;
4879       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4880           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4881         return error("Invalid record");
4882 
4883       unsigned PredVal = Record[OpNum];
4884       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4885       FastMathFlags FMF;
4886       if (IsFP && Record.size() > OpNum+1)
4887         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4888 
4889       if (OpNum+1 != Record.size())
4890         return error("Invalid record");
4891 
4892       if (LHS->getType()->isFPOrFPVectorTy())
4893         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4894       else
4895         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4896 
4897       if (FMF.any())
4898         I->setFastMathFlags(FMF);
4899       InstructionList.push_back(I);
4900       break;
4901     }
4902 
4903     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4904       {
4905         unsigned Size = Record.size();
4906         if (Size == 0) {
4907           I = ReturnInst::Create(Context);
4908           InstructionList.push_back(I);
4909           break;
4910         }
4911 
4912         unsigned OpNum = 0;
4913         Value *Op = nullptr;
4914         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4915           return error("Invalid record");
4916         if (OpNum != Record.size())
4917           return error("Invalid record");
4918 
4919         I = ReturnInst::Create(Context, Op);
4920         InstructionList.push_back(I);
4921         break;
4922       }
4923     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4924       if (Record.size() != 1 && Record.size() != 3)
4925         return error("Invalid record");
4926       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4927       if (!TrueDest)
4928         return error("Invalid record");
4929 
4930       if (Record.size() == 1) {
4931         I = BranchInst::Create(TrueDest);
4932         InstructionList.push_back(I);
4933       }
4934       else {
4935         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4936         Value *Cond = getValue(Record, 2, NextValueNo,
4937                                Type::getInt1Ty(Context));
4938         if (!FalseDest || !Cond)
4939           return error("Invalid record");
4940         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4941         InstructionList.push_back(I);
4942       }
4943       break;
4944     }
4945     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4946       if (Record.size() != 1 && Record.size() != 2)
4947         return error("Invalid record");
4948       unsigned Idx = 0;
4949       Value *CleanupPad =
4950           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4951       if (!CleanupPad)
4952         return error("Invalid record");
4953       BasicBlock *UnwindDest = nullptr;
4954       if (Record.size() == 2) {
4955         UnwindDest = getBasicBlock(Record[Idx++]);
4956         if (!UnwindDest)
4957           return error("Invalid record");
4958       }
4959 
4960       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4961       InstructionList.push_back(I);
4962       break;
4963     }
4964     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4965       if (Record.size() != 2)
4966         return error("Invalid record");
4967       unsigned Idx = 0;
4968       Value *CatchPad =
4969           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4970       if (!CatchPad)
4971         return error("Invalid record");
4972       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4973       if (!BB)
4974         return error("Invalid record");
4975 
4976       I = CatchReturnInst::Create(CatchPad, BB);
4977       InstructionList.push_back(I);
4978       break;
4979     }
4980     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4981       // We must have, at minimum, the outer scope and the number of arguments.
4982       if (Record.size() < 2)
4983         return error("Invalid record");
4984 
4985       unsigned Idx = 0;
4986 
4987       Value *ParentPad =
4988           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4989 
4990       unsigned NumHandlers = Record[Idx++];
4991 
4992       SmallVector<BasicBlock *, 2> Handlers;
4993       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4994         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4995         if (!BB)
4996           return error("Invalid record");
4997         Handlers.push_back(BB);
4998       }
4999 
5000       BasicBlock *UnwindDest = nullptr;
5001       if (Idx + 1 == Record.size()) {
5002         UnwindDest = getBasicBlock(Record[Idx++]);
5003         if (!UnwindDest)
5004           return error("Invalid record");
5005       }
5006 
5007       if (Record.size() != Idx)
5008         return error("Invalid record");
5009 
5010       auto *CatchSwitch =
5011           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5012       for (BasicBlock *Handler : Handlers)
5013         CatchSwitch->addHandler(Handler);
5014       I = CatchSwitch;
5015       InstructionList.push_back(I);
5016       break;
5017     }
5018     case bitc::FUNC_CODE_INST_CATCHPAD:
5019     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5020       // We must have, at minimum, the outer scope and the number of arguments.
5021       if (Record.size() < 2)
5022         return error("Invalid record");
5023 
5024       unsigned Idx = 0;
5025 
5026       Value *ParentPad =
5027           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5028 
5029       unsigned NumArgOperands = Record[Idx++];
5030 
5031       SmallVector<Value *, 2> Args;
5032       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5033         Value *Val;
5034         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5035           return error("Invalid record");
5036         Args.push_back(Val);
5037       }
5038 
5039       if (Record.size() != Idx)
5040         return error("Invalid record");
5041 
5042       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5043         I = CleanupPadInst::Create(ParentPad, Args);
5044       else
5045         I = CatchPadInst::Create(ParentPad, Args);
5046       InstructionList.push_back(I);
5047       break;
5048     }
5049     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5050       // Check magic
5051       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5052         // "New" SwitchInst format with case ranges. The changes to write this
5053         // format were reverted but we still recognize bitcode that uses it.
5054         // Hopefully someday we will have support for case ranges and can use
5055         // this format again.
5056 
5057         Type *OpTy = getTypeByID(Record[1]);
5058         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5059 
5060         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5061         BasicBlock *Default = getBasicBlock(Record[3]);
5062         if (!OpTy || !Cond || !Default)
5063           return error("Invalid record");
5064 
5065         unsigned NumCases = Record[4];
5066 
5067         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5068         InstructionList.push_back(SI);
5069 
5070         unsigned CurIdx = 5;
5071         for (unsigned i = 0; i != NumCases; ++i) {
5072           SmallVector<ConstantInt*, 1> CaseVals;
5073           unsigned NumItems = Record[CurIdx++];
5074           for (unsigned ci = 0; ci != NumItems; ++ci) {
5075             bool isSingleNumber = Record[CurIdx++];
5076 
5077             APInt Low;
5078             unsigned ActiveWords = 1;
5079             if (ValueBitWidth > 64)
5080               ActiveWords = Record[CurIdx++];
5081             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5082                                 ValueBitWidth);
5083             CurIdx += ActiveWords;
5084 
5085             if (!isSingleNumber) {
5086               ActiveWords = 1;
5087               if (ValueBitWidth > 64)
5088                 ActiveWords = Record[CurIdx++];
5089               APInt High = readWideAPInt(
5090                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5091               CurIdx += ActiveWords;
5092 
5093               // FIXME: It is not clear whether values in the range should be
5094               // compared as signed or unsigned values. The partially
5095               // implemented changes that used this format in the past used
5096               // unsigned comparisons.
5097               for ( ; Low.ule(High); ++Low)
5098                 CaseVals.push_back(ConstantInt::get(Context, Low));
5099             } else
5100               CaseVals.push_back(ConstantInt::get(Context, Low));
5101           }
5102           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5103           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5104                  cve = CaseVals.end(); cvi != cve; ++cvi)
5105             SI->addCase(*cvi, DestBB);
5106         }
5107         I = SI;
5108         break;
5109       }
5110 
5111       // Old SwitchInst format without case ranges.
5112 
5113       if (Record.size() < 3 || (Record.size() & 1) == 0)
5114         return error("Invalid record");
5115       Type *OpTy = getTypeByID(Record[0]);
5116       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5117       BasicBlock *Default = getBasicBlock(Record[2]);
5118       if (!OpTy || !Cond || !Default)
5119         return error("Invalid record");
5120       unsigned NumCases = (Record.size()-3)/2;
5121       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5122       InstructionList.push_back(SI);
5123       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5124         ConstantInt *CaseVal =
5125           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5126         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5127         if (!CaseVal || !DestBB) {
5128           delete SI;
5129           return error("Invalid record");
5130         }
5131         SI->addCase(CaseVal, DestBB);
5132       }
5133       I = SI;
5134       break;
5135     }
5136     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5137       if (Record.size() < 2)
5138         return error("Invalid record");
5139       Type *OpTy = getTypeByID(Record[0]);
5140       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5141       if (!OpTy || !Address)
5142         return error("Invalid record");
5143       unsigned NumDests = Record.size()-2;
5144       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5145       InstructionList.push_back(IBI);
5146       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5147         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5148           IBI->addDestination(DestBB);
5149         } else {
5150           delete IBI;
5151           return error("Invalid record");
5152         }
5153       }
5154       I = IBI;
5155       break;
5156     }
5157 
5158     case bitc::FUNC_CODE_INST_INVOKE: {
5159       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5160       if (Record.size() < 4)
5161         return error("Invalid record");
5162       unsigned OpNum = 0;
5163       AttributeSet PAL = getAttributes(Record[OpNum++]);
5164       unsigned CCInfo = Record[OpNum++];
5165       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5166       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5167 
5168       FunctionType *FTy = nullptr;
5169       if (CCInfo >> 13 & 1 &&
5170           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5171         return error("Explicit invoke type is not a function type");
5172 
5173       Value *Callee;
5174       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5175         return error("Invalid record");
5176 
5177       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5178       if (!CalleeTy)
5179         return error("Callee is not a pointer");
5180       if (!FTy) {
5181         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5182         if (!FTy)
5183           return error("Callee is not of pointer to function type");
5184       } else if (CalleeTy->getElementType() != FTy)
5185         return error("Explicit invoke type does not match pointee type of "
5186                      "callee operand");
5187       if (Record.size() < FTy->getNumParams() + OpNum)
5188         return error("Insufficient operands to call");
5189 
5190       SmallVector<Value*, 16> Ops;
5191       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5192         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5193                                FTy->getParamType(i)));
5194         if (!Ops.back())
5195           return error("Invalid record");
5196       }
5197 
5198       if (!FTy->isVarArg()) {
5199         if (Record.size() != OpNum)
5200           return error("Invalid record");
5201       } else {
5202         // Read type/value pairs for varargs params.
5203         while (OpNum != Record.size()) {
5204           Value *Op;
5205           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5206             return error("Invalid record");
5207           Ops.push_back(Op);
5208         }
5209       }
5210 
5211       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5212       OperandBundles.clear();
5213       InstructionList.push_back(I);
5214       cast<InvokeInst>(I)->setCallingConv(
5215           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5216       cast<InvokeInst>(I)->setAttributes(PAL);
5217       break;
5218     }
5219     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5220       unsigned Idx = 0;
5221       Value *Val = nullptr;
5222       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5223         return error("Invalid record");
5224       I = ResumeInst::Create(Val);
5225       InstructionList.push_back(I);
5226       break;
5227     }
5228     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5229       I = new UnreachableInst(Context);
5230       InstructionList.push_back(I);
5231       break;
5232     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5233       if (Record.size() < 1 || ((Record.size()-1)&1))
5234         return error("Invalid record");
5235       Type *Ty = getTypeByID(Record[0]);
5236       if (!Ty)
5237         return error("Invalid record");
5238 
5239       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5240       InstructionList.push_back(PN);
5241 
5242       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5243         Value *V;
5244         // With the new function encoding, it is possible that operands have
5245         // negative IDs (for forward references).  Use a signed VBR
5246         // representation to keep the encoding small.
5247         if (UseRelativeIDs)
5248           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5249         else
5250           V = getValue(Record, 1+i, NextValueNo, Ty);
5251         BasicBlock *BB = getBasicBlock(Record[2+i]);
5252         if (!V || !BB)
5253           return error("Invalid record");
5254         PN->addIncoming(V, BB);
5255       }
5256       I = PN;
5257       break;
5258     }
5259 
5260     case bitc::FUNC_CODE_INST_LANDINGPAD:
5261     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5262       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5263       unsigned Idx = 0;
5264       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5265         if (Record.size() < 3)
5266           return error("Invalid record");
5267       } else {
5268         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5269         if (Record.size() < 4)
5270           return error("Invalid record");
5271       }
5272       Type *Ty = getTypeByID(Record[Idx++]);
5273       if (!Ty)
5274         return error("Invalid record");
5275       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5276         Value *PersFn = nullptr;
5277         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5278           return error("Invalid record");
5279 
5280         if (!F->hasPersonalityFn())
5281           F->setPersonalityFn(cast<Constant>(PersFn));
5282         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5283           return error("Personality function mismatch");
5284       }
5285 
5286       bool IsCleanup = !!Record[Idx++];
5287       unsigned NumClauses = Record[Idx++];
5288       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5289       LP->setCleanup(IsCleanup);
5290       for (unsigned J = 0; J != NumClauses; ++J) {
5291         LandingPadInst::ClauseType CT =
5292           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5293         Value *Val;
5294 
5295         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5296           delete LP;
5297           return error("Invalid record");
5298         }
5299 
5300         assert((CT != LandingPadInst::Catch ||
5301                 !isa<ArrayType>(Val->getType())) &&
5302                "Catch clause has a invalid type!");
5303         assert((CT != LandingPadInst::Filter ||
5304                 isa<ArrayType>(Val->getType())) &&
5305                "Filter clause has invalid type!");
5306         LP->addClause(cast<Constant>(Val));
5307       }
5308 
5309       I = LP;
5310       InstructionList.push_back(I);
5311       break;
5312     }
5313 
5314     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5315       if (Record.size() != 4)
5316         return error("Invalid record");
5317       uint64_t AlignRecord = Record[3];
5318       const uint64_t InAllocaMask = uint64_t(1) << 5;
5319       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5320       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5321       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5322                                 SwiftErrorMask;
5323       bool InAlloca = AlignRecord & InAllocaMask;
5324       bool SwiftError = AlignRecord & SwiftErrorMask;
5325       Type *Ty = getTypeByID(Record[0]);
5326       if ((AlignRecord & ExplicitTypeMask) == 0) {
5327         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5328         if (!PTy)
5329           return error("Old-style alloca with a non-pointer type");
5330         Ty = PTy->getElementType();
5331       }
5332       Type *OpTy = getTypeByID(Record[1]);
5333       Value *Size = getFnValueByID(Record[2], OpTy);
5334       unsigned Align;
5335       if (std::error_code EC =
5336               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5337         return EC;
5338       }
5339       if (!Ty || !Size)
5340         return error("Invalid record");
5341       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5342       AI->setUsedWithInAlloca(InAlloca);
5343       AI->setSwiftError(SwiftError);
5344       I = AI;
5345       InstructionList.push_back(I);
5346       break;
5347     }
5348     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5349       unsigned OpNum = 0;
5350       Value *Op;
5351       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5352           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5353         return error("Invalid record");
5354 
5355       Type *Ty = nullptr;
5356       if (OpNum + 3 == Record.size())
5357         Ty = getTypeByID(Record[OpNum++]);
5358       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5359         return EC;
5360       if (!Ty)
5361         Ty = cast<PointerType>(Op->getType())->getElementType();
5362 
5363       unsigned Align;
5364       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5365         return EC;
5366       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5367 
5368       InstructionList.push_back(I);
5369       break;
5370     }
5371     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5372        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5373       unsigned OpNum = 0;
5374       Value *Op;
5375       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5376           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5377         return error("Invalid record");
5378 
5379       Type *Ty = nullptr;
5380       if (OpNum + 5 == Record.size())
5381         Ty = getTypeByID(Record[OpNum++]);
5382       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5383         return EC;
5384       if (!Ty)
5385         Ty = cast<PointerType>(Op->getType())->getElementType();
5386 
5387       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5388       if (Ordering == AtomicOrdering::NotAtomic ||
5389           Ordering == AtomicOrdering::Release ||
5390           Ordering == AtomicOrdering::AcquireRelease)
5391         return error("Invalid record");
5392       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5393         return error("Invalid record");
5394       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5395 
5396       unsigned Align;
5397       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5398         return EC;
5399       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5400 
5401       InstructionList.push_back(I);
5402       break;
5403     }
5404     case bitc::FUNC_CODE_INST_STORE:
5405     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5406       unsigned OpNum = 0;
5407       Value *Val, *Ptr;
5408       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5409           (BitCode == bitc::FUNC_CODE_INST_STORE
5410                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5411                : popValue(Record, OpNum, NextValueNo,
5412                           cast<PointerType>(Ptr->getType())->getElementType(),
5413                           Val)) ||
5414           OpNum + 2 != Record.size())
5415         return error("Invalid record");
5416 
5417       if (std::error_code EC =
5418               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5419         return EC;
5420       unsigned Align;
5421       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5422         return EC;
5423       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5424       InstructionList.push_back(I);
5425       break;
5426     }
5427     case bitc::FUNC_CODE_INST_STOREATOMIC:
5428     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5429       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5430       unsigned OpNum = 0;
5431       Value *Val, *Ptr;
5432       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5433           !isa<PointerType>(Ptr->getType()) ||
5434           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5435                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5436                : popValue(Record, OpNum, NextValueNo,
5437                           cast<PointerType>(Ptr->getType())->getElementType(),
5438                           Val)) ||
5439           OpNum + 4 != Record.size())
5440         return error("Invalid record");
5441 
5442       if (std::error_code EC =
5443               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5444         return EC;
5445       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5446       if (Ordering == AtomicOrdering::NotAtomic ||
5447           Ordering == AtomicOrdering::Acquire ||
5448           Ordering == AtomicOrdering::AcquireRelease)
5449         return error("Invalid record");
5450       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5451       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5452         return error("Invalid record");
5453 
5454       unsigned Align;
5455       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5456         return EC;
5457       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5458       InstructionList.push_back(I);
5459       break;
5460     }
5461     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5462     case bitc::FUNC_CODE_INST_CMPXCHG: {
5463       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5464       //          failureordering?, isweak?]
5465       unsigned OpNum = 0;
5466       Value *Ptr, *Cmp, *New;
5467       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5468           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5469                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5470                : popValue(Record, OpNum, NextValueNo,
5471                           cast<PointerType>(Ptr->getType())->getElementType(),
5472                           Cmp)) ||
5473           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5474           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5475         return error("Invalid record");
5476       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5477       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5478           SuccessOrdering == AtomicOrdering::Unordered)
5479         return error("Invalid record");
5480       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5481 
5482       if (std::error_code EC =
5483               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5484         return EC;
5485       AtomicOrdering FailureOrdering;
5486       if (Record.size() < 7)
5487         FailureOrdering =
5488             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5489       else
5490         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5491 
5492       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5493                                 SynchScope);
5494       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5495 
5496       if (Record.size() < 8) {
5497         // Before weak cmpxchgs existed, the instruction simply returned the
5498         // value loaded from memory, so bitcode files from that era will be
5499         // expecting the first component of a modern cmpxchg.
5500         CurBB->getInstList().push_back(I);
5501         I = ExtractValueInst::Create(I, 0);
5502       } else {
5503         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5504       }
5505 
5506       InstructionList.push_back(I);
5507       break;
5508     }
5509     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5510       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5511       unsigned OpNum = 0;
5512       Value *Ptr, *Val;
5513       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5514           !isa<PointerType>(Ptr->getType()) ||
5515           popValue(Record, OpNum, NextValueNo,
5516                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5517           OpNum+4 != Record.size())
5518         return error("Invalid record");
5519       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5520       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5521           Operation > AtomicRMWInst::LAST_BINOP)
5522         return error("Invalid record");
5523       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5524       if (Ordering == AtomicOrdering::NotAtomic ||
5525           Ordering == AtomicOrdering::Unordered)
5526         return error("Invalid record");
5527       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5528       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5529       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5530       InstructionList.push_back(I);
5531       break;
5532     }
5533     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5534       if (2 != Record.size())
5535         return error("Invalid record");
5536       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5537       if (Ordering == AtomicOrdering::NotAtomic ||
5538           Ordering == AtomicOrdering::Unordered ||
5539           Ordering == AtomicOrdering::Monotonic)
5540         return error("Invalid record");
5541       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5542       I = new FenceInst(Context, Ordering, SynchScope);
5543       InstructionList.push_back(I);
5544       break;
5545     }
5546     case bitc::FUNC_CODE_INST_CALL: {
5547       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5548       if (Record.size() < 3)
5549         return error("Invalid record");
5550 
5551       unsigned OpNum = 0;
5552       AttributeSet PAL = getAttributes(Record[OpNum++]);
5553       unsigned CCInfo = Record[OpNum++];
5554 
5555       FastMathFlags FMF;
5556       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5557         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5558         if (!FMF.any())
5559           return error("Fast math flags indicator set for call with no FMF");
5560       }
5561 
5562       FunctionType *FTy = nullptr;
5563       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5564           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5565         return error("Explicit call type is not a function type");
5566 
5567       Value *Callee;
5568       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5569         return error("Invalid record");
5570 
5571       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5572       if (!OpTy)
5573         return error("Callee is not a pointer type");
5574       if (!FTy) {
5575         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5576         if (!FTy)
5577           return error("Callee is not of pointer to function type");
5578       } else if (OpTy->getElementType() != FTy)
5579         return error("Explicit call type does not match pointee type of "
5580                      "callee operand");
5581       if (Record.size() < FTy->getNumParams() + OpNum)
5582         return error("Insufficient operands to call");
5583 
5584       SmallVector<Value*, 16> Args;
5585       // Read the fixed params.
5586       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5587         if (FTy->getParamType(i)->isLabelTy())
5588           Args.push_back(getBasicBlock(Record[OpNum]));
5589         else
5590           Args.push_back(getValue(Record, OpNum, NextValueNo,
5591                                   FTy->getParamType(i)));
5592         if (!Args.back())
5593           return error("Invalid record");
5594       }
5595 
5596       // Read type/value pairs for varargs params.
5597       if (!FTy->isVarArg()) {
5598         if (OpNum != Record.size())
5599           return error("Invalid record");
5600       } else {
5601         while (OpNum != Record.size()) {
5602           Value *Op;
5603           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5604             return error("Invalid record");
5605           Args.push_back(Op);
5606         }
5607       }
5608 
5609       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5610       OperandBundles.clear();
5611       InstructionList.push_back(I);
5612       cast<CallInst>(I)->setCallingConv(
5613           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5614       CallInst::TailCallKind TCK = CallInst::TCK_None;
5615       if (CCInfo & 1 << bitc::CALL_TAIL)
5616         TCK = CallInst::TCK_Tail;
5617       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5618         TCK = CallInst::TCK_MustTail;
5619       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5620         TCK = CallInst::TCK_NoTail;
5621       cast<CallInst>(I)->setTailCallKind(TCK);
5622       cast<CallInst>(I)->setAttributes(PAL);
5623       if (FMF.any()) {
5624         if (!isa<FPMathOperator>(I))
5625           return error("Fast-math-flags specified for call without "
5626                        "floating-point scalar or vector return type");
5627         I->setFastMathFlags(FMF);
5628       }
5629       break;
5630     }
5631     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5632       if (Record.size() < 3)
5633         return error("Invalid record");
5634       Type *OpTy = getTypeByID(Record[0]);
5635       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5636       Type *ResTy = getTypeByID(Record[2]);
5637       if (!OpTy || !Op || !ResTy)
5638         return error("Invalid record");
5639       I = new VAArgInst(Op, ResTy);
5640       InstructionList.push_back(I);
5641       break;
5642     }
5643 
5644     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5645       // A call or an invoke can be optionally prefixed with some variable
5646       // number of operand bundle blocks.  These blocks are read into
5647       // OperandBundles and consumed at the next call or invoke instruction.
5648 
5649       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5650         return error("Invalid record");
5651 
5652       std::vector<Value *> Inputs;
5653 
5654       unsigned OpNum = 1;
5655       while (OpNum != Record.size()) {
5656         Value *Op;
5657         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5658           return error("Invalid record");
5659         Inputs.push_back(Op);
5660       }
5661 
5662       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5663       continue;
5664     }
5665     }
5666 
5667     // Add instruction to end of current BB.  If there is no current BB, reject
5668     // this file.
5669     if (!CurBB) {
5670       delete I;
5671       return error("Invalid instruction with no BB");
5672     }
5673     if (!OperandBundles.empty()) {
5674       delete I;
5675       return error("Operand bundles found with no consumer");
5676     }
5677     CurBB->getInstList().push_back(I);
5678 
5679     // If this was a terminator instruction, move to the next block.
5680     if (isa<TerminatorInst>(I)) {
5681       ++CurBBNo;
5682       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5683     }
5684 
5685     // Non-void values get registered in the value table for future use.
5686     if (I && !I->getType()->isVoidTy())
5687       ValueList.assignValue(I, NextValueNo++);
5688   }
5689 
5690 OutOfRecordLoop:
5691 
5692   if (!OperandBundles.empty())
5693     return error("Operand bundles found with no consumer");
5694 
5695   // Check the function list for unresolved values.
5696   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5697     if (!A->getParent()) {
5698       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5699       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5700         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5701           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5702           delete A;
5703         }
5704       }
5705       return error("Never resolved value found in function");
5706     }
5707   }
5708 
5709   // Unexpected unresolved metadata about to be dropped.
5710   if (MetadataList.hasFwdRefs())
5711     return error("Invalid function metadata: outgoing forward refs");
5712 
5713   // Trim the value list down to the size it was before we parsed this function.
5714   ValueList.shrinkTo(ModuleValueListSize);
5715   MetadataList.shrinkTo(ModuleMetadataListSize);
5716   std::vector<BasicBlock*>().swap(FunctionBBs);
5717   return std::error_code();
5718 }
5719 
5720 /// Find the function body in the bitcode stream
5721 std::error_code BitcodeReader::findFunctionInStream(
5722     Function *F,
5723     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5724   while (DeferredFunctionInfoIterator->second == 0) {
5725     // This is the fallback handling for the old format bitcode that
5726     // didn't contain the function index in the VST, or when we have
5727     // an anonymous function which would not have a VST entry.
5728     // Assert that we have one of those two cases.
5729     assert(VSTOffset == 0 || !F->hasName());
5730     // Parse the next body in the stream and set its position in the
5731     // DeferredFunctionInfo map.
5732     if (std::error_code EC = rememberAndSkipFunctionBodies())
5733       return EC;
5734   }
5735   return std::error_code();
5736 }
5737 
5738 //===----------------------------------------------------------------------===//
5739 // GVMaterializer implementation
5740 //===----------------------------------------------------------------------===//
5741 
5742 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5743 
5744 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5745   Function *F = dyn_cast<Function>(GV);
5746   // If it's not a function or is already material, ignore the request.
5747   if (!F || !F->isMaterializable())
5748     return std::error_code();
5749 
5750   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5751   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5752   // If its position is recorded as 0, its body is somewhere in the stream
5753   // but we haven't seen it yet.
5754   if (DFII->second == 0)
5755     if (std::error_code EC = findFunctionInStream(F, DFII))
5756       return EC;
5757 
5758   // Materialize metadata before parsing any function bodies.
5759   if (std::error_code EC = materializeMetadata())
5760     return EC;
5761 
5762   // Move the bit stream to the saved position of the deferred function body.
5763   Stream.JumpToBit(DFII->second);
5764 
5765   if (std::error_code EC = parseFunctionBody(F))
5766     return EC;
5767   F->setIsMaterializable(false);
5768 
5769   if (StripDebugInfo)
5770     stripDebugInfo(*F);
5771 
5772   // Upgrade any old intrinsic calls in the function.
5773   for (auto &I : UpgradedIntrinsics) {
5774     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5775          UI != UE;) {
5776       User *U = *UI;
5777       ++UI;
5778       if (CallInst *CI = dyn_cast<CallInst>(U))
5779         UpgradeIntrinsicCall(CI, I.second);
5780     }
5781   }
5782 
5783   // Update calls to the remangled intrinsics
5784   for (auto &I : RemangledIntrinsics)
5785     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5786          UI != UE;)
5787       // Don't expect any other users than call sites
5788       CallSite(*UI++).setCalledFunction(I.second);
5789 
5790   // Finish fn->subprogram upgrade for materialized functions.
5791   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5792     F->setSubprogram(SP);
5793 
5794   // Bring in any functions that this function forward-referenced via
5795   // blockaddresses.
5796   return materializeForwardReferencedFunctions();
5797 }
5798 
5799 std::error_code BitcodeReader::materializeModule() {
5800   if (std::error_code EC = materializeMetadata())
5801     return EC;
5802 
5803   // Promise to materialize all forward references.
5804   WillMaterializeAllForwardRefs = true;
5805 
5806   // Iterate over the module, deserializing any functions that are still on
5807   // disk.
5808   for (Function &F : *TheModule) {
5809     if (std::error_code EC = materialize(&F))
5810       return EC;
5811   }
5812   // At this point, if there are any function bodies, parse the rest of
5813   // the bits in the module past the last function block we have recorded
5814   // through either lazy scanning or the VST.
5815   if (LastFunctionBlockBit || NextUnreadBit)
5816     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5817                                                      : NextUnreadBit);
5818 
5819   // Check that all block address forward references got resolved (as we
5820   // promised above).
5821   if (!BasicBlockFwdRefs.empty())
5822     return error("Never resolved function from blockaddress");
5823 
5824   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5825   // to prevent this instructions with TBAA tags should be upgraded first.
5826   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5827     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5828 
5829   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5830   // delete the old functions to clean up. We can't do this unless the entire
5831   // module is materialized because there could always be another function body
5832   // with calls to the old function.
5833   for (auto &I : UpgradedIntrinsics) {
5834     for (auto *U : I.first->users()) {
5835       if (CallInst *CI = dyn_cast<CallInst>(U))
5836         UpgradeIntrinsicCall(CI, I.second);
5837     }
5838     if (!I.first->use_empty())
5839       I.first->replaceAllUsesWith(I.second);
5840     I.first->eraseFromParent();
5841   }
5842   UpgradedIntrinsics.clear();
5843   // Do the same for remangled intrinsics
5844   for (auto &I : RemangledIntrinsics) {
5845     I.first->replaceAllUsesWith(I.second);
5846     I.first->eraseFromParent();
5847   }
5848   RemangledIntrinsics.clear();
5849 
5850   UpgradeDebugInfo(*TheModule);
5851 
5852   UpgradeModuleFlags(*TheModule);
5853   return std::error_code();
5854 }
5855 
5856 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5857   return IdentifiedStructTypes;
5858 }
5859 
5860 std::error_code
5861 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5862   if (Streamer)
5863     return initLazyStream(std::move(Streamer));
5864   return initStreamFromBuffer();
5865 }
5866 
5867 std::error_code BitcodeReader::initStreamFromBuffer() {
5868   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5869   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5870 
5871   if (Buffer->getBufferSize() & 3)
5872     return error("Invalid bitcode signature");
5873 
5874   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5875   // The magic number is 0x0B17C0DE stored in little endian.
5876   if (isBitcodeWrapper(BufPtr, BufEnd))
5877     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5878       return error("Invalid bitcode wrapper header");
5879 
5880   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5881   Stream.init(&*StreamFile);
5882 
5883   return std::error_code();
5884 }
5885 
5886 std::error_code
5887 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5888   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5889   // see it.
5890   auto OwnedBytes =
5891       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5892   StreamingMemoryObject &Bytes = *OwnedBytes;
5893   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5894   Stream.init(&*StreamFile);
5895 
5896   unsigned char buf[16];
5897   if (Bytes.readBytes(buf, 16, 0) != 16)
5898     return error("Invalid bitcode signature");
5899 
5900   if (!isBitcode(buf, buf + 16))
5901     return error("Invalid bitcode signature");
5902 
5903   if (isBitcodeWrapper(buf, buf + 4)) {
5904     const unsigned char *bitcodeStart = buf;
5905     const unsigned char *bitcodeEnd = buf + 16;
5906     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5907     Bytes.dropLeadingBytes(bitcodeStart - buf);
5908     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5909   }
5910   return std::error_code();
5911 }
5912 
5913 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5914   return ::error(DiagnosticHandler,
5915                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5916 }
5917 
5918 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5919     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5920     bool CheckGlobalValSummaryPresenceOnly)
5921     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer),
5922       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5923 
5924 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5925 
5926 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5927 
5928 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5929 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5930   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5931   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5932   return VGI->second;
5933 }
5934 
5935 // Specialized value symbol table parser used when reading module index
5936 // blocks where we don't actually create global values. The parsed information
5937 // is saved in the bitcode reader for use when later parsing summaries.
5938 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5939     uint64_t Offset,
5940     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5941   assert(Offset > 0 && "Expected non-zero VST offset");
5942   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5943 
5944   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5945     return error("Invalid record");
5946 
5947   SmallVector<uint64_t, 64> Record;
5948 
5949   // Read all the records for this value table.
5950   SmallString<128> ValueName;
5951 
5952   while (true) {
5953     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5954 
5955     switch (Entry.Kind) {
5956     case BitstreamEntry::SubBlock: // Handled for us already.
5957     case BitstreamEntry::Error:
5958       return error("Malformed block");
5959     case BitstreamEntry::EndBlock:
5960       // Done parsing VST, jump back to wherever we came from.
5961       Stream.JumpToBit(CurrentBit);
5962       return std::error_code();
5963     case BitstreamEntry::Record:
5964       // The interesting case.
5965       break;
5966     }
5967 
5968     // Read a record.
5969     Record.clear();
5970     switch (Stream.readRecord(Entry.ID, Record)) {
5971     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5972       break;
5973     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5974       if (convertToString(Record, 1, ValueName))
5975         return error("Invalid record");
5976       unsigned ValueID = Record[0];
5977       assert(!SourceFileName.empty());
5978       auto VLI = ValueIdToLinkageMap.find(ValueID);
5979       assert(VLI != ValueIdToLinkageMap.end() &&
5980              "No linkage found for VST entry?");
5981       auto Linkage = VLI->second;
5982       std::string GlobalId =
5983           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5984       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5985       auto OriginalNameID = ValueGUID;
5986       if (GlobalValue::isLocalLinkage(Linkage))
5987         OriginalNameID = GlobalValue::getGUID(ValueName);
5988       if (PrintSummaryGUIDs)
5989         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5990                << ValueName << "\n";
5991       ValueIdToCallGraphGUIDMap[ValueID] =
5992           std::make_pair(ValueGUID, OriginalNameID);
5993       ValueName.clear();
5994       break;
5995     }
5996     case bitc::VST_CODE_FNENTRY: {
5997       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5998       if (convertToString(Record, 2, ValueName))
5999         return error("Invalid record");
6000       unsigned ValueID = Record[0];
6001       assert(!SourceFileName.empty());
6002       auto VLI = ValueIdToLinkageMap.find(ValueID);
6003       assert(VLI != ValueIdToLinkageMap.end() &&
6004              "No linkage found for VST entry?");
6005       auto Linkage = VLI->second;
6006       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
6007           ValueName, VLI->second, SourceFileName);
6008       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
6009       auto OriginalNameID = FunctionGUID;
6010       if (GlobalValue::isLocalLinkage(Linkage))
6011         OriginalNameID = GlobalValue::getGUID(ValueName);
6012       if (PrintSummaryGUIDs)
6013         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
6014                << ValueName << "\n";
6015       ValueIdToCallGraphGUIDMap[ValueID] =
6016           std::make_pair(FunctionGUID, OriginalNameID);
6017 
6018       ValueName.clear();
6019       break;
6020     }
6021     case bitc::VST_CODE_COMBINED_ENTRY: {
6022       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6023       unsigned ValueID = Record[0];
6024       GlobalValue::GUID RefGUID = Record[1];
6025       // The "original name", which is the second value of the pair will be
6026       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6027       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
6028       break;
6029     }
6030     }
6031   }
6032 }
6033 
6034 // Parse just the blocks needed for building the index out of the module.
6035 // At the end of this routine the module Index is populated with a map
6036 // from global value id to GlobalValueSummary objects.
6037 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
6038   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6039     return error("Invalid record");
6040 
6041   SmallVector<uint64_t, 64> Record;
6042   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6043   unsigned ValueId = 0;
6044 
6045   // Read the index for this module.
6046   while (true) {
6047     BitstreamEntry Entry = Stream.advance();
6048 
6049     switch (Entry.Kind) {
6050     case BitstreamEntry::Error:
6051       return error("Malformed block");
6052     case BitstreamEntry::EndBlock:
6053       return std::error_code();
6054 
6055     case BitstreamEntry::SubBlock:
6056       if (CheckGlobalValSummaryPresenceOnly) {
6057         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6058           SeenGlobalValSummary = true;
6059           // No need to parse the rest since we found the summary.
6060           return std::error_code();
6061         }
6062         if (Stream.SkipBlock())
6063           return error("Invalid record");
6064         continue;
6065       }
6066       switch (Entry.ID) {
6067       default: // Skip unknown content.
6068         if (Stream.SkipBlock())
6069           return error("Invalid record");
6070         break;
6071       case bitc::BLOCKINFO_BLOCK_ID:
6072         // Need to parse these to get abbrev ids (e.g. for VST)
6073         if (Stream.ReadBlockInfoBlock())
6074           return error("Malformed block");
6075         break;
6076       case bitc::VALUE_SYMTAB_BLOCK_ID:
6077         // Should have been parsed earlier via VSTOffset, unless there
6078         // is no summary section.
6079         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6080                 !SeenGlobalValSummary) &&
6081                "Expected early VST parse via VSTOffset record");
6082         if (Stream.SkipBlock())
6083           return error("Invalid record");
6084         break;
6085       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6086         assert(VSTOffset > 0 && "Expected non-zero VST offset");
6087         assert(!SeenValueSymbolTable &&
6088                "Already read VST when parsing summary block?");
6089         if (std::error_code EC =
6090                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6091           return EC;
6092         SeenValueSymbolTable = true;
6093         SeenGlobalValSummary = true;
6094         if (std::error_code EC = parseEntireSummary())
6095           return EC;
6096         break;
6097       case bitc::MODULE_STRTAB_BLOCK_ID:
6098         if (std::error_code EC = parseModuleStringTable())
6099           return EC;
6100         break;
6101       }
6102       continue;
6103 
6104     case BitstreamEntry::Record: {
6105         Record.clear();
6106         auto BitCode = Stream.readRecord(Entry.ID, Record);
6107         switch (BitCode) {
6108         default:
6109           break; // Default behavior, ignore unknown content.
6110         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6111         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6112           SmallString<128> ValueName;
6113           if (convertToString(Record, 0, ValueName))
6114             return error("Invalid record");
6115           SourceFileName = ValueName.c_str();
6116           break;
6117         }
6118         /// MODULE_CODE_HASH: [5*i32]
6119         case bitc::MODULE_CODE_HASH: {
6120           if (Record.size() != 5)
6121             return error("Invalid hash length " + Twine(Record.size()).str());
6122           if (!TheIndex)
6123             break;
6124           if (TheIndex->modulePaths().empty())
6125             // Does not have any summary emitted.
6126             break;
6127           if (TheIndex->modulePaths().size() != 1)
6128             return error("Don't expect multiple modules defined?");
6129           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6130           int Pos = 0;
6131           for (auto &Val : Record) {
6132             assert(!(Val >> 32) && "Unexpected high bits set");
6133             Hash[Pos++] = Val;
6134           }
6135           break;
6136         }
6137         /// MODULE_CODE_VSTOFFSET: [offset]
6138         case bitc::MODULE_CODE_VSTOFFSET:
6139           if (Record.size() < 1)
6140             return error("Invalid record");
6141           VSTOffset = Record[0];
6142           break;
6143         // GLOBALVAR: [pointer type, isconst, initid,
6144         //             linkage, alignment, section, visibility, threadlocal,
6145         //             unnamed_addr, externally_initialized, dllstorageclass,
6146         //             comdat]
6147         case bitc::MODULE_CODE_GLOBALVAR: {
6148           if (Record.size() < 6)
6149             return error("Invalid record");
6150           uint64_t RawLinkage = Record[3];
6151           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6152           ValueIdToLinkageMap[ValueId++] = Linkage;
6153           break;
6154         }
6155         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6156         //             alignment, section, visibility, gc, unnamed_addr,
6157         //             prologuedata, dllstorageclass, comdat, prefixdata]
6158         case bitc::MODULE_CODE_FUNCTION: {
6159           if (Record.size() < 8)
6160             return error("Invalid record");
6161           uint64_t RawLinkage = Record[3];
6162           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6163           ValueIdToLinkageMap[ValueId++] = Linkage;
6164           break;
6165         }
6166         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6167         // dllstorageclass]
6168         case bitc::MODULE_CODE_ALIAS: {
6169           if (Record.size() < 6)
6170             return error("Invalid record");
6171           uint64_t RawLinkage = Record[3];
6172           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6173           ValueIdToLinkageMap[ValueId++] = Linkage;
6174           break;
6175         }
6176         }
6177       }
6178       continue;
6179     }
6180   }
6181 }
6182 
6183 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6184 // objects in the index.
6185 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6186   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6187     return error("Invalid record");
6188   SmallVector<uint64_t, 64> Record;
6189 
6190   // Parse version
6191   {
6192     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6193     if (Entry.Kind != BitstreamEntry::Record)
6194       return error("Invalid Summary Block: record for version expected");
6195     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6196       return error("Invalid Summary Block: version expected");
6197   }
6198   const uint64_t Version = Record[0];
6199   if (Version != 1)
6200     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6201   Record.clear();
6202 
6203   // Keep around the last seen summary to be used when we see an optional
6204   // "OriginalName" attachement.
6205   GlobalValueSummary *LastSeenSummary = nullptr;
6206   bool Combined = false;
6207 
6208   while (true) {
6209     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6210 
6211     switch (Entry.Kind) {
6212     case BitstreamEntry::SubBlock: // Handled for us already.
6213     case BitstreamEntry::Error:
6214       return error("Malformed block");
6215     case BitstreamEntry::EndBlock:
6216       // For a per-module index, remove any entries that still have empty
6217       // summaries. The VST parsing creates entries eagerly for all symbols,
6218       // but not all have associated summaries (e.g. it doesn't know how to
6219       // distinguish between VST_CODE_ENTRY for function declarations vs global
6220       // variables with initializers that end up with a summary). Remove those
6221       // entries now so that we don't need to rely on the combined index merger
6222       // to clean them up (especially since that may not run for the first
6223       // module's index if we merge into that).
6224       if (!Combined)
6225         TheIndex->removeEmptySummaryEntries();
6226       return std::error_code();
6227     case BitstreamEntry::Record:
6228       // The interesting case.
6229       break;
6230     }
6231 
6232     // Read a record. The record format depends on whether this
6233     // is a per-module index or a combined index file. In the per-module
6234     // case the records contain the associated value's ID for correlation
6235     // with VST entries. In the combined index the correlation is done
6236     // via the bitcode offset of the summary records (which were saved
6237     // in the combined index VST entries). The records also contain
6238     // information used for ThinLTO renaming and importing.
6239     Record.clear();
6240     auto BitCode = Stream.readRecord(Entry.ID, Record);
6241     switch (BitCode) {
6242     default: // Default behavior: ignore.
6243       break;
6244     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6245     //                n x (valueid, callsitecount)]
6246     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6247     //                        numrefs x valueid,
6248     //                        n x (valueid, callsitecount, profilecount)]
6249     case bitc::FS_PERMODULE:
6250     case bitc::FS_PERMODULE_PROFILE: {
6251       unsigned ValueID = Record[0];
6252       uint64_t RawFlags = Record[1];
6253       unsigned InstCount = Record[2];
6254       unsigned NumRefs = Record[3];
6255       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6256       std::unique_ptr<FunctionSummary> FS =
6257           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6258       // The module path string ref set in the summary must be owned by the
6259       // index's module string table. Since we don't have a module path
6260       // string table section in the per-module index, we create a single
6261       // module path string table entry with an empty (0) ID to take
6262       // ownership.
6263       FS->setModulePath(
6264           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6265       static int RefListStartIndex = 4;
6266       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6267       assert(Record.size() >= RefListStartIndex + NumRefs &&
6268              "Record size inconsistent with number of references");
6269       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6270         unsigned RefValueId = Record[I];
6271         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6272         FS->addRefEdge(RefGUID);
6273       }
6274       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6275       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6276            ++I) {
6277         unsigned CalleeValueId = Record[I];
6278         unsigned CallsiteCount = Record[++I];
6279         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6280         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6281         FS->addCallGraphEdge(CalleeGUID,
6282                              CalleeInfo(CallsiteCount, ProfileCount));
6283       }
6284       auto GUID = getGUIDFromValueId(ValueID);
6285       FS->setOriginalName(GUID.second);
6286       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6287       break;
6288     }
6289     // FS_ALIAS: [valueid, flags, valueid]
6290     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6291     // they expect all aliasee summaries to be available.
6292     case bitc::FS_ALIAS: {
6293       unsigned ValueID = Record[0];
6294       uint64_t RawFlags = Record[1];
6295       unsigned AliaseeID = Record[2];
6296       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6297       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6298       // The module path string ref set in the summary must be owned by the
6299       // index's module string table. Since we don't have a module path
6300       // string table section in the per-module index, we create a single
6301       // module path string table entry with an empty (0) ID to take
6302       // ownership.
6303       AS->setModulePath(
6304           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6305 
6306       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6307       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6308       if (!AliaseeSummary)
6309         return error("Alias expects aliasee summary to be parsed");
6310       AS->setAliasee(AliaseeSummary);
6311 
6312       auto GUID = getGUIDFromValueId(ValueID);
6313       AS->setOriginalName(GUID.second);
6314       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6315       break;
6316     }
6317     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6318     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6319       unsigned ValueID = Record[0];
6320       uint64_t RawFlags = Record[1];
6321       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6322       std::unique_ptr<GlobalVarSummary> FS =
6323           llvm::make_unique<GlobalVarSummary>(Flags);
6324       FS->setModulePath(
6325           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6326       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6327         unsigned RefValueId = Record[I];
6328         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6329         FS->addRefEdge(RefGUID);
6330       }
6331       auto GUID = getGUIDFromValueId(ValueID);
6332       FS->setOriginalName(GUID.second);
6333       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6334       break;
6335     }
6336     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6337     //               numrefs x valueid, n x (valueid, callsitecount)]
6338     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6339     //                       numrefs x valueid,
6340     //                       n x (valueid, callsitecount, profilecount)]
6341     case bitc::FS_COMBINED:
6342     case bitc::FS_COMBINED_PROFILE: {
6343       unsigned ValueID = Record[0];
6344       uint64_t ModuleId = Record[1];
6345       uint64_t RawFlags = Record[2];
6346       unsigned InstCount = Record[3];
6347       unsigned NumRefs = Record[4];
6348       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6349       std::unique_ptr<FunctionSummary> FS =
6350           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6351       LastSeenSummary = FS.get();
6352       FS->setModulePath(ModuleIdMap[ModuleId]);
6353       static int RefListStartIndex = 5;
6354       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6355       assert(Record.size() >= RefListStartIndex + NumRefs &&
6356              "Record size inconsistent with number of references");
6357       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6358            ++I) {
6359         unsigned RefValueId = Record[I];
6360         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6361         FS->addRefEdge(RefGUID);
6362       }
6363       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6364       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6365            ++I) {
6366         unsigned CalleeValueId = Record[I];
6367         unsigned CallsiteCount = Record[++I];
6368         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6369         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6370         FS->addCallGraphEdge(CalleeGUID,
6371                              CalleeInfo(CallsiteCount, ProfileCount));
6372       }
6373       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6374       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6375       Combined = true;
6376       break;
6377     }
6378     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6379     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6380     // they expect all aliasee summaries to be available.
6381     case bitc::FS_COMBINED_ALIAS: {
6382       unsigned ValueID = Record[0];
6383       uint64_t ModuleId = Record[1];
6384       uint64_t RawFlags = Record[2];
6385       unsigned AliaseeValueId = Record[3];
6386       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6387       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6388       LastSeenSummary = AS.get();
6389       AS->setModulePath(ModuleIdMap[ModuleId]);
6390 
6391       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6392       auto AliaseeInModule =
6393           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6394       if (!AliaseeInModule)
6395         return error("Alias expects aliasee summary to be parsed");
6396       AS->setAliasee(AliaseeInModule);
6397 
6398       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6399       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6400       Combined = true;
6401       break;
6402     }
6403     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6404     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6405       unsigned ValueID = Record[0];
6406       uint64_t ModuleId = Record[1];
6407       uint64_t RawFlags = Record[2];
6408       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6409       std::unique_ptr<GlobalVarSummary> FS =
6410           llvm::make_unique<GlobalVarSummary>(Flags);
6411       LastSeenSummary = FS.get();
6412       FS->setModulePath(ModuleIdMap[ModuleId]);
6413       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6414         unsigned RefValueId = Record[I];
6415         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6416         FS->addRefEdge(RefGUID);
6417       }
6418       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6419       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6420       Combined = true;
6421       break;
6422     }
6423     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6424     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6425       uint64_t OriginalName = Record[0];
6426       if (!LastSeenSummary)
6427         return error("Name attachment that does not follow a combined record");
6428       LastSeenSummary->setOriginalName(OriginalName);
6429       // Reset the LastSeenSummary
6430       LastSeenSummary = nullptr;
6431     }
6432     }
6433   }
6434   llvm_unreachable("Exit infinite loop");
6435 }
6436 
6437 // Parse the  module string table block into the Index.
6438 // This populates the ModulePathStringTable map in the index.
6439 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6440   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6441     return error("Invalid record");
6442 
6443   SmallVector<uint64_t, 64> Record;
6444 
6445   SmallString<128> ModulePath;
6446   ModulePathStringTableTy::iterator LastSeenModulePath;
6447 
6448   while (true) {
6449     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6450 
6451     switch (Entry.Kind) {
6452     case BitstreamEntry::SubBlock: // Handled for us already.
6453     case BitstreamEntry::Error:
6454       return error("Malformed block");
6455     case BitstreamEntry::EndBlock:
6456       return std::error_code();
6457     case BitstreamEntry::Record:
6458       // The interesting case.
6459       break;
6460     }
6461 
6462     Record.clear();
6463     switch (Stream.readRecord(Entry.ID, Record)) {
6464     default: // Default behavior: ignore.
6465       break;
6466     case bitc::MST_CODE_ENTRY: {
6467       // MST_ENTRY: [modid, namechar x N]
6468       uint64_t ModuleId = Record[0];
6469 
6470       if (convertToString(Record, 1, ModulePath))
6471         return error("Invalid record");
6472 
6473       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6474       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6475 
6476       ModulePath.clear();
6477       break;
6478     }
6479     /// MST_CODE_HASH: [5*i32]
6480     case bitc::MST_CODE_HASH: {
6481       if (Record.size() != 5)
6482         return error("Invalid hash length " + Twine(Record.size()).str());
6483       if (LastSeenModulePath == TheIndex->modulePaths().end())
6484         return error("Invalid hash that does not follow a module path");
6485       int Pos = 0;
6486       for (auto &Val : Record) {
6487         assert(!(Val >> 32) && "Unexpected high bits set");
6488         LastSeenModulePath->second.second[Pos++] = Val;
6489       }
6490       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6491       LastSeenModulePath = TheIndex->modulePaths().end();
6492       break;
6493     }
6494     }
6495   }
6496   llvm_unreachable("Exit infinite loop");
6497 }
6498 
6499 // Parse the function info index from the bitcode streamer into the given index.
6500 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6501     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6502   TheIndex = I;
6503 
6504   if (std::error_code EC = initStream(std::move(Streamer)))
6505     return EC;
6506 
6507   // Sniff for the signature.
6508   if (!hasValidBitcodeHeader(Stream))
6509     return error("Invalid bitcode signature");
6510 
6511   // We expect a number of well-defined blocks, though we don't necessarily
6512   // need to understand them all.
6513   while (true) {
6514     if (Stream.AtEndOfStream()) {
6515       // We didn't really read a proper Module block.
6516       return error("Malformed block");
6517     }
6518 
6519     BitstreamEntry Entry =
6520         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6521 
6522     if (Entry.Kind != BitstreamEntry::SubBlock)
6523       return error("Malformed block");
6524 
6525     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6526     // building the function summary index.
6527     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6528       return parseModule();
6529 
6530     if (Stream.SkipBlock())
6531       return error("Invalid record");
6532   }
6533 }
6534 
6535 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6536     std::unique_ptr<DataStreamer> Streamer) {
6537   if (Streamer)
6538     return initLazyStream(std::move(Streamer));
6539   return initStreamFromBuffer();
6540 }
6541 
6542 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6543   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6544   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6545 
6546   if (Buffer->getBufferSize() & 3)
6547     return error("Invalid bitcode signature");
6548 
6549   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6550   // The magic number is 0x0B17C0DE stored in little endian.
6551   if (isBitcodeWrapper(BufPtr, BufEnd))
6552     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6553       return error("Invalid bitcode wrapper header");
6554 
6555   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6556   Stream.init(&*StreamFile);
6557 
6558   return std::error_code();
6559 }
6560 
6561 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6562     std::unique_ptr<DataStreamer> Streamer) {
6563   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6564   // see it.
6565   auto OwnedBytes =
6566       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6567   StreamingMemoryObject &Bytes = *OwnedBytes;
6568   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6569   Stream.init(&*StreamFile);
6570 
6571   unsigned char buf[16];
6572   if (Bytes.readBytes(buf, 16, 0) != 16)
6573     return error("Invalid bitcode signature");
6574 
6575   if (!isBitcode(buf, buf + 16))
6576     return error("Invalid bitcode signature");
6577 
6578   if (isBitcodeWrapper(buf, buf + 4)) {
6579     const unsigned char *bitcodeStart = buf;
6580     const unsigned char *bitcodeEnd = buf + 16;
6581     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6582     Bytes.dropLeadingBytes(bitcodeStart - buf);
6583     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6584   }
6585   return std::error_code();
6586 }
6587 
6588 namespace {
6589 
6590 // FIXME: This class is only here to support the transition to llvm::Error. It
6591 // will be removed once this transition is complete. Clients should prefer to
6592 // deal with the Error value directly, rather than converting to error_code.
6593 class BitcodeErrorCategoryType : public std::error_category {
6594   const char *name() const LLVM_NOEXCEPT override {
6595     return "llvm.bitcode";
6596   }
6597   std::string message(int IE) const override {
6598     BitcodeError E = static_cast<BitcodeError>(IE);
6599     switch (E) {
6600     case BitcodeError::InvalidBitcodeSignature:
6601       return "Invalid bitcode signature";
6602     case BitcodeError::CorruptedBitcode:
6603       return "Corrupted bitcode";
6604     }
6605     llvm_unreachable("Unknown error type!");
6606   }
6607 };
6608 
6609 } // end anonymous namespace
6610 
6611 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6612 
6613 const std::error_category &llvm::BitcodeErrorCategory() {
6614   return *ErrorCategory;
6615 }
6616 
6617 //===----------------------------------------------------------------------===//
6618 // External interface
6619 //===----------------------------------------------------------------------===//
6620 
6621 static ErrorOr<std::unique_ptr<Module>>
6622 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6623                      BitcodeReader *R, LLVMContext &Context,
6624                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6625   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6626   M->setMaterializer(R);
6627 
6628   auto cleanupOnError = [&](std::error_code EC) {
6629     R->releaseBuffer(); // Never take ownership on error.
6630     return EC;
6631   };
6632 
6633   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6634   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6635                                                ShouldLazyLoadMetadata))
6636     return cleanupOnError(EC);
6637 
6638   if (MaterializeAll) {
6639     // Read in the entire module, and destroy the BitcodeReader.
6640     if (std::error_code EC = M->materializeAll())
6641       return cleanupOnError(EC);
6642   } else {
6643     // Resolve forward references from blockaddresses.
6644     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6645       return cleanupOnError(EC);
6646   }
6647   return std::move(M);
6648 }
6649 
6650 /// \brief Get a lazy one-at-time loading module from bitcode.
6651 ///
6652 /// This isn't always used in a lazy context.  In particular, it's also used by
6653 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6654 /// in forward-referenced functions from block address references.
6655 ///
6656 /// \param[in] MaterializeAll Set to \c true if we should materialize
6657 /// everything.
6658 static ErrorOr<std::unique_ptr<Module>>
6659 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6660                          LLVMContext &Context, bool MaterializeAll,
6661                          bool ShouldLazyLoadMetadata = false) {
6662   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6663 
6664   ErrorOr<std::unique_ptr<Module>> Ret =
6665       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6666                            MaterializeAll, ShouldLazyLoadMetadata);
6667   if (!Ret)
6668     return Ret;
6669 
6670   Buffer.release(); // The BitcodeReader owns it now.
6671   return Ret;
6672 }
6673 
6674 ErrorOr<std::unique_ptr<Module>>
6675 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6676                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6677   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6678                                   ShouldLazyLoadMetadata);
6679 }
6680 
6681 ErrorOr<std::unique_ptr<Module>>
6682 llvm::getStreamedBitcodeModule(StringRef Name,
6683                                std::unique_ptr<DataStreamer> Streamer,
6684                                LLVMContext &Context) {
6685   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6686   BitcodeReader *R = new BitcodeReader(Context);
6687 
6688   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6689                               false);
6690 }
6691 
6692 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6693                                                         LLVMContext &Context) {
6694   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6695   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6696   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6697   // written.  We must defer until the Module has been fully materialized.
6698 }
6699 
6700 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6701                                          LLVMContext &Context) {
6702   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6703   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6704   ErrorOr<std::string> Triple = R->parseTriple();
6705   if (Triple.getError())
6706     return "";
6707   return Triple.get();
6708 }
6709 
6710 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6711                                            LLVMContext &Context) {
6712   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6713   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6714   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6715   if (hasObjCCategory.getError())
6716     return false;
6717   return hasObjCCategory.get();
6718 }
6719 
6720 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6721                                            LLVMContext &Context) {
6722   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6723   BitcodeReader R(Buf.release(), Context);
6724   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6725   if (ProducerString.getError())
6726     return "";
6727   return ProducerString.get();
6728 }
6729 
6730 // Parse the specified bitcode buffer, returning the function info index.
6731 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6732     MemoryBufferRef Buffer,
6733     const DiagnosticHandlerFunction &DiagnosticHandler) {
6734   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6735   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6736 
6737   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6738 
6739   auto cleanupOnError = [&](std::error_code EC) {
6740     R.releaseBuffer(); // Never take ownership on error.
6741     return EC;
6742   };
6743 
6744   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6745     return cleanupOnError(EC);
6746 
6747   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6748   return std::move(Index);
6749 }
6750 
6751 // Check if the given bitcode buffer contains a global value summary block.
6752 bool llvm::hasGlobalValueSummary(
6753     MemoryBufferRef Buffer,
6754     const DiagnosticHandlerFunction &DiagnosticHandler) {
6755   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6756   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6757 
6758   auto cleanupOnError = [&](std::error_code EC) {
6759     R.releaseBuffer(); // Never take ownership on error.
6760     return false;
6761   };
6762 
6763   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6764     return cleanupOnError(EC);
6765 
6766   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6767   return R.foundGlobalValSummary();
6768 }
6769