xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 30ab4b47882cbb414506378a91f0fbaac39b76d0)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110 
111   /// Array of metadata references.
112   ///
113   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
114   /// move) on resize, and TrackingMDRef is very expensive to copy.
115   SmallVector<TrackingMDRef, 1> MetadataPtrs;
116 
117   LLVMContext &Context;
118 public:
119   BitcodeReaderMetadataList(LLVMContext &C)
120       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
121 
122   // vector compatibility methods
123   unsigned size() const { return MetadataPtrs.size(); }
124   void resize(unsigned N) { MetadataPtrs.resize(N); }
125   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
126   void clear() { MetadataPtrs.clear(); }
127   Metadata *back() const { return MetadataPtrs.back(); }
128   void pop_back() { MetadataPtrs.pop_back(); }
129   bool empty() const { return MetadataPtrs.empty(); }
130 
131   Metadata *operator[](unsigned i) const {
132     assert(i < MetadataPtrs.size());
133     return MetadataPtrs[i];
134   }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     assert(!AnyFwdRefs && "Unexpected forward refs");
139     MetadataPtrs.resize(N);
140   }
141 
142   Metadata *getMetadataFwdRef(unsigned Idx);
143   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
144   void assignValue(Metadata *MD, unsigned Idx);
145   void tryToResolveCycles();
146   bool hasFwdRefs() const { return AnyFwdRefs; }
147 };
148 
149 class BitcodeReader : public GVMaterializer {
150   LLVMContext &Context;
151   Module *TheModule = nullptr;
152   std::unique_ptr<MemoryBuffer> Buffer;
153   std::unique_ptr<BitstreamReader> StreamFile;
154   BitstreamCursor Stream;
155   // Next offset to start scanning for lazy parsing of function bodies.
156   uint64_t NextUnreadBit = 0;
157   // Last function offset found in the VST.
158   uint64_t LastFunctionBlockBit = 0;
159   bool SeenValueSymbolTable = false;
160   uint64_t VSTOffset = 0;
161   // Contains an arbitrary and optional string identifying the bitcode producer
162   std::string ProducerIdentification;
163 
164   std::vector<Type*> TypeList;
165   BitcodeReaderValueList ValueList;
166   BitcodeReaderMetadataList MetadataList;
167   std::vector<Comdat *> ComdatList;
168   SmallVector<Instruction *, 64> InstructionList;
169 
170   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
171   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
172   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
173   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
174   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
175 
176   SmallVector<Instruction*, 64> InstsWithTBAATag;
177 
178   bool HasSeenOldLoopTags = false;
179 
180   /// The set of attributes by index.  Index zero in the file is for null, and
181   /// is thus not represented here.  As such all indices are off by one.
182   std::vector<AttributeSet> MAttributes;
183 
184   /// The set of attribute groups.
185   std::map<unsigned, AttributeSet> MAttributeGroups;
186 
187   /// While parsing a function body, this is a list of the basic blocks for the
188   /// function.
189   std::vector<BasicBlock*> FunctionBBs;
190 
191   // When reading the module header, this list is populated with functions that
192   // have bodies later in the file.
193   std::vector<Function*> FunctionsWithBodies;
194 
195   // When intrinsic functions are encountered which require upgrading they are
196   // stored here with their replacement function.
197   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
198   UpgradedIntrinsicMap UpgradedIntrinsics;
199 
200   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
201   DenseMap<unsigned, unsigned> MDKindMap;
202 
203   // Several operations happen after the module header has been read, but
204   // before function bodies are processed. This keeps track of whether
205   // we've done this yet.
206   bool SeenFirstFunctionBody = false;
207 
208   /// When function bodies are initially scanned, this map contains info about
209   /// where to find deferred function body in the stream.
210   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
211 
212   /// When Metadata block is initially scanned when parsing the module, we may
213   /// choose to defer parsing of the metadata. This vector contains info about
214   /// which Metadata blocks are deferred.
215   std::vector<uint64_t> DeferredMetadataInfo;
216 
217   /// These are basic blocks forward-referenced by block addresses.  They are
218   /// inserted lazily into functions when they're loaded.  The basic block ID is
219   /// its index into the vector.
220   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
221   std::deque<Function *> BasicBlockFwdRefQueue;
222 
223   /// Indicates that we are using a new encoding for instruction operands where
224   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
225   /// instruction number, for a more compact encoding.  Some instruction
226   /// operands are not relative to the instruction ID: basic block numbers, and
227   /// types. Once the old style function blocks have been phased out, we would
228   /// not need this flag.
229   bool UseRelativeIDs = false;
230 
231   /// True if all functions will be materialized, negating the need to process
232   /// (e.g.) blockaddress forward references.
233   bool WillMaterializeAllForwardRefs = false;
234 
235   /// True if any Metadata block has been materialized.
236   bool IsMetadataMaterialized = false;
237 
238   bool StripDebugInfo = false;
239 
240   /// Functions that need to be matched with subprograms when upgrading old
241   /// metadata.
242   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
243 
244   std::vector<std::string> BundleTags;
245 
246 public:
247   std::error_code error(BitcodeError E, const Twine &Message);
248   std::error_code error(BitcodeError E);
249   std::error_code error(const Twine &Message);
250 
251   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
252   BitcodeReader(LLVMContext &Context);
253   ~BitcodeReader() override { freeState(); }
254 
255   std::error_code materializeForwardReferencedFunctions();
256 
257   void freeState();
258 
259   void releaseBuffer();
260 
261   std::error_code materialize(GlobalValue *GV) override;
262   std::error_code materializeModule() override;
263   std::vector<StructType *> getIdentifiedStructTypes() const override;
264 
265   /// \brief Main interface to parsing a bitcode buffer.
266   /// \returns true if an error occurred.
267   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
268                                    Module *M,
269                                    bool ShouldLazyLoadMetadata = false);
270 
271   /// \brief Cheap mechanism to just extract module triple
272   /// \returns true if an error occurred.
273   ErrorOr<std::string> parseTriple();
274 
275   /// Cheap mechanism to just extract the identification block out of bitcode.
276   ErrorOr<std::string> parseIdentificationBlock();
277 
278   static uint64_t decodeSignRotatedValue(uint64_t V);
279 
280   /// Materialize any deferred Metadata block.
281   std::error_code materializeMetadata() override;
282 
283   void setStripDebugInfo() override;
284 
285 private:
286   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
287   // ProducerIdentification data member, and do some basic enforcement on the
288   // "epoch" encoded in the bitcode.
289   std::error_code parseBitcodeVersion();
290 
291   std::vector<StructType *> IdentifiedStructTypes;
292   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
293   StructType *createIdentifiedStructType(LLVMContext &Context);
294 
295   Type *getTypeByID(unsigned ID);
296   Value *getFnValueByID(unsigned ID, Type *Ty) {
297     if (Ty && Ty->isMetadataTy())
298       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
299     return ValueList.getValueFwdRef(ID, Ty);
300   }
301   Metadata *getFnMetadataByID(unsigned ID) {
302     return MetadataList.getMetadataFwdRef(ID);
303   }
304   BasicBlock *getBasicBlock(unsigned ID) const {
305     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
306     return FunctionBBs[ID];
307   }
308   AttributeSet getAttributes(unsigned i) const {
309     if (i-1 < MAttributes.size())
310       return MAttributes[i-1];
311     return AttributeSet();
312   }
313 
314   /// Read a value/type pair out of the specified record from slot 'Slot'.
315   /// Increment Slot past the number of slots used in the record. Return true on
316   /// failure.
317   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
318                         unsigned InstNum, Value *&ResVal) {
319     if (Slot == Record.size()) return true;
320     unsigned ValNo = (unsigned)Record[Slot++];
321     // Adjust the ValNo, if it was encoded relative to the InstNum.
322     if (UseRelativeIDs)
323       ValNo = InstNum - ValNo;
324     if (ValNo < InstNum) {
325       // If this is not a forward reference, just return the value we already
326       // have.
327       ResVal = getFnValueByID(ValNo, nullptr);
328       return ResVal == nullptr;
329     }
330     if (Slot == Record.size())
331       return true;
332 
333     unsigned TypeNo = (unsigned)Record[Slot++];
334     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
335     return ResVal == nullptr;
336   }
337 
338   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
339   /// past the number of slots used by the value in the record. Return true if
340   /// there is an error.
341   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
342                 unsigned InstNum, Type *Ty, Value *&ResVal) {
343     if (getValue(Record, Slot, InstNum, Ty, ResVal))
344       return true;
345     // All values currently take a single record slot.
346     ++Slot;
347     return false;
348   }
349 
350   /// Like popValue, but does not increment the Slot number.
351   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
352                 unsigned InstNum, Type *Ty, Value *&ResVal) {
353     ResVal = getValue(Record, Slot, InstNum, Ty);
354     return ResVal == nullptr;
355   }
356 
357   /// Version of getValue that returns ResVal directly, or 0 if there is an
358   /// error.
359   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
360                   unsigned InstNum, Type *Ty) {
361     if (Slot == Record.size()) return nullptr;
362     unsigned ValNo = (unsigned)Record[Slot];
363     // Adjust the ValNo, if it was encoded relative to the InstNum.
364     if (UseRelativeIDs)
365       ValNo = InstNum - ValNo;
366     return getFnValueByID(ValNo, Ty);
367   }
368 
369   /// Like getValue, but decodes signed VBRs.
370   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
371                         unsigned InstNum, Type *Ty) {
372     if (Slot == Record.size()) return nullptr;
373     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
374     // Adjust the ValNo, if it was encoded relative to the InstNum.
375     if (UseRelativeIDs)
376       ValNo = InstNum - ValNo;
377     return getFnValueByID(ValNo, Ty);
378   }
379 
380   /// Converts alignment exponent (i.e. power of two (or zero)) to the
381   /// corresponding alignment to use. If alignment is too large, returns
382   /// a corresponding error code.
383   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
384   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
385   std::error_code parseModule(uint64_t ResumeBit,
386                               bool ShouldLazyLoadMetadata = false);
387   std::error_code parseAttributeBlock();
388   std::error_code parseAttributeGroupBlock();
389   std::error_code parseTypeTable();
390   std::error_code parseTypeTableBody();
391   std::error_code parseOperandBundleTags();
392 
393   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
394                                unsigned NameIndex, Triple &TT);
395   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
396   std::error_code parseConstants();
397   std::error_code rememberAndSkipFunctionBodies();
398   std::error_code rememberAndSkipFunctionBody();
399   /// Save the positions of the Metadata blocks and skip parsing the blocks.
400   std::error_code rememberAndSkipMetadata();
401   std::error_code parseFunctionBody(Function *F);
402   std::error_code globalCleanup();
403   std::error_code resolveGlobalAndIndirectSymbolInits();
404   std::error_code parseMetadata(bool ModuleLevel = false);
405   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
406                                        StringRef Blob,
407                                        unsigned &NextMetadataNo);
408   std::error_code parseMetadataKinds();
409   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
410   std::error_code parseMetadataAttachment(Function &F);
411   ErrorOr<std::string> parseModuleTriple();
412   std::error_code parseUseLists();
413   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
414   std::error_code initStreamFromBuffer();
415   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
416   std::error_code findFunctionInStream(
417       Function *F,
418       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
419 };
420 
421 /// Class to manage reading and parsing function summary index bitcode
422 /// files/sections.
423 class ModuleSummaryIndexBitcodeReader {
424   DiagnosticHandlerFunction DiagnosticHandler;
425 
426   /// Eventually points to the module index built during parsing.
427   ModuleSummaryIndex *TheIndex = nullptr;
428 
429   std::unique_ptr<MemoryBuffer> Buffer;
430   std::unique_ptr<BitstreamReader> StreamFile;
431   BitstreamCursor Stream;
432 
433   /// Used to indicate whether caller only wants to check for the presence
434   /// of the global value summary bitcode section. All blocks are skipped,
435   /// but the SeenGlobalValSummary boolean is set.
436   bool CheckGlobalValSummaryPresenceOnly = false;
437 
438   /// Indicates whether we have encountered a global value summary section
439   /// yet during parsing, used when checking if file contains global value
440   /// summary section.
441   bool SeenGlobalValSummary = false;
442 
443   /// Indicates whether we have already parsed the VST, used for error checking.
444   bool SeenValueSymbolTable = false;
445 
446   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
447   /// Used to enable on-demand parsing of the VST.
448   uint64_t VSTOffset = 0;
449 
450   // Map to save ValueId to GUID association that was recorded in the
451   // ValueSymbolTable. It is used after the VST is parsed to convert
452   // call graph edges read from the function summary from referencing
453   // callees by their ValueId to using the GUID instead, which is how
454   // they are recorded in the summary index being built.
455   DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap;
456 
457   /// Map to save the association between summary offset in the VST to the
458   /// GlobalValueInfo object created when parsing it. Used to access the
459   /// info object when parsing the summary section.
460   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
461 
462   /// Map populated during module path string table parsing, from the
463   /// module ID to a string reference owned by the index's module
464   /// path string table, used to correlate with combined index
465   /// summary records.
466   DenseMap<uint64_t, StringRef> ModuleIdMap;
467 
468   /// Original source file name recorded in a bitcode record.
469   std::string SourceFileName;
470 
471 public:
472   std::error_code error(BitcodeError E, const Twine &Message);
473   std::error_code error(BitcodeError E);
474   std::error_code error(const Twine &Message);
475 
476   ModuleSummaryIndexBitcodeReader(
477       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
478       bool CheckGlobalValSummaryPresenceOnly = false);
479   ModuleSummaryIndexBitcodeReader(
480       DiagnosticHandlerFunction DiagnosticHandler,
481       bool CheckGlobalValSummaryPresenceOnly = false);
482   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
483 
484   void freeState();
485 
486   void releaseBuffer();
487 
488   /// Check if the parser has encountered a summary section.
489   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
490 
491   /// \brief Main interface to parsing a bitcode buffer.
492   /// \returns true if an error occurred.
493   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
494                                         ModuleSummaryIndex *I);
495 
496   /// \brief Interface for parsing a summary lazily.
497   std::error_code
498   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
499                           ModuleSummaryIndex *I, size_t SummaryOffset);
500 
501 private:
502   std::error_code parseModule();
503   std::error_code parseValueSymbolTable(
504       uint64_t Offset,
505       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
506   std::error_code parseEntireSummary();
507   std::error_code parseModuleStringTable();
508   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
509   std::error_code initStreamFromBuffer();
510   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
511   GlobalValue::GUID getGUIDFromValueId(unsigned ValueId);
512   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
513 };
514 } // end anonymous namespace
515 
516 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
517                                              DiagnosticSeverity Severity,
518                                              const Twine &Msg)
519     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
520 
521 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
522 
523 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
524                              std::error_code EC, const Twine &Message) {
525   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
526   DiagnosticHandler(DI);
527   return EC;
528 }
529 
530 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
531                              std::error_code EC) {
532   return error(DiagnosticHandler, EC, EC.message());
533 }
534 
535 static std::error_code error(LLVMContext &Context, std::error_code EC,
536                              const Twine &Message) {
537   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
538                Message);
539 }
540 
541 static std::error_code error(LLVMContext &Context, std::error_code EC) {
542   return error(Context, EC, EC.message());
543 }
544 
545 static std::error_code error(LLVMContext &Context, const Twine &Message) {
546   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
547                Message);
548 }
549 
550 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
551   if (!ProducerIdentification.empty()) {
552     return ::error(Context, make_error_code(E),
553                    Message + " (Producer: '" + ProducerIdentification +
554                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
555   }
556   return ::error(Context, make_error_code(E), Message);
557 }
558 
559 std::error_code BitcodeReader::error(const Twine &Message) {
560   if (!ProducerIdentification.empty()) {
561     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
562                    Message + " (Producer: '" + ProducerIdentification +
563                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
564   }
565   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
566                  Message);
567 }
568 
569 std::error_code BitcodeReader::error(BitcodeError E) {
570   return ::error(Context, make_error_code(E));
571 }
572 
573 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
574     : Context(Context), Buffer(Buffer), ValueList(Context),
575       MetadataList(Context) {}
576 
577 BitcodeReader::BitcodeReader(LLVMContext &Context)
578     : Context(Context), Buffer(nullptr), ValueList(Context),
579       MetadataList(Context) {}
580 
581 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
582   if (WillMaterializeAllForwardRefs)
583     return std::error_code();
584 
585   // Prevent recursion.
586   WillMaterializeAllForwardRefs = true;
587 
588   while (!BasicBlockFwdRefQueue.empty()) {
589     Function *F = BasicBlockFwdRefQueue.front();
590     BasicBlockFwdRefQueue.pop_front();
591     assert(F && "Expected valid function");
592     if (!BasicBlockFwdRefs.count(F))
593       // Already materialized.
594       continue;
595 
596     // Check for a function that isn't materializable to prevent an infinite
597     // loop.  When parsing a blockaddress stored in a global variable, there
598     // isn't a trivial way to check if a function will have a body without a
599     // linear search through FunctionsWithBodies, so just check it here.
600     if (!F->isMaterializable())
601       return error("Never resolved function from blockaddress");
602 
603     // Try to materialize F.
604     if (std::error_code EC = materialize(F))
605       return EC;
606   }
607   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
608 
609   // Reset state.
610   WillMaterializeAllForwardRefs = false;
611   return std::error_code();
612 }
613 
614 void BitcodeReader::freeState() {
615   Buffer = nullptr;
616   std::vector<Type*>().swap(TypeList);
617   ValueList.clear();
618   MetadataList.clear();
619   std::vector<Comdat *>().swap(ComdatList);
620 
621   std::vector<AttributeSet>().swap(MAttributes);
622   std::vector<BasicBlock*>().swap(FunctionBBs);
623   std::vector<Function*>().swap(FunctionsWithBodies);
624   DeferredFunctionInfo.clear();
625   DeferredMetadataInfo.clear();
626   MDKindMap.clear();
627 
628   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
629   BasicBlockFwdRefQueue.clear();
630 }
631 
632 //===----------------------------------------------------------------------===//
633 //  Helper functions to implement forward reference resolution, etc.
634 //===----------------------------------------------------------------------===//
635 
636 /// Convert a string from a record into an std::string, return true on failure.
637 template <typename StrTy>
638 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
639                             StrTy &Result) {
640   if (Idx > Record.size())
641     return true;
642 
643   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
644     Result += (char)Record[i];
645   return false;
646 }
647 
648 static bool hasImplicitComdat(size_t Val) {
649   switch (Val) {
650   default:
651     return false;
652   case 1:  // Old WeakAnyLinkage
653   case 4:  // Old LinkOnceAnyLinkage
654   case 10: // Old WeakODRLinkage
655   case 11: // Old LinkOnceODRLinkage
656     return true;
657   }
658 }
659 
660 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
661   switch (Val) {
662   default: // Map unknown/new linkages to external
663   case 0:
664     return GlobalValue::ExternalLinkage;
665   case 2:
666     return GlobalValue::AppendingLinkage;
667   case 3:
668     return GlobalValue::InternalLinkage;
669   case 5:
670     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
671   case 6:
672     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
673   case 7:
674     return GlobalValue::ExternalWeakLinkage;
675   case 8:
676     return GlobalValue::CommonLinkage;
677   case 9:
678     return GlobalValue::PrivateLinkage;
679   case 12:
680     return GlobalValue::AvailableExternallyLinkage;
681   case 13:
682     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
683   case 14:
684     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
685   case 15:
686     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
687   case 1: // Old value with implicit comdat.
688   case 16:
689     return GlobalValue::WeakAnyLinkage;
690   case 10: // Old value with implicit comdat.
691   case 17:
692     return GlobalValue::WeakODRLinkage;
693   case 4: // Old value with implicit comdat.
694   case 18:
695     return GlobalValue::LinkOnceAnyLinkage;
696   case 11: // Old value with implicit comdat.
697   case 19:
698     return GlobalValue::LinkOnceODRLinkage;
699   }
700 }
701 
702 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
703   switch (Val) {
704   default: // Map unknown visibilities to default.
705   case 0: return GlobalValue::DefaultVisibility;
706   case 1: return GlobalValue::HiddenVisibility;
707   case 2: return GlobalValue::ProtectedVisibility;
708   }
709 }
710 
711 static GlobalValue::DLLStorageClassTypes
712 getDecodedDLLStorageClass(unsigned Val) {
713   switch (Val) {
714   default: // Map unknown values to default.
715   case 0: return GlobalValue::DefaultStorageClass;
716   case 1: return GlobalValue::DLLImportStorageClass;
717   case 2: return GlobalValue::DLLExportStorageClass;
718   }
719 }
720 
721 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
722   switch (Val) {
723     case 0: return GlobalVariable::NotThreadLocal;
724     default: // Map unknown non-zero value to general dynamic.
725     case 1: return GlobalVariable::GeneralDynamicTLSModel;
726     case 2: return GlobalVariable::LocalDynamicTLSModel;
727     case 3: return GlobalVariable::InitialExecTLSModel;
728     case 4: return GlobalVariable::LocalExecTLSModel;
729   }
730 }
731 
732 static int getDecodedCastOpcode(unsigned Val) {
733   switch (Val) {
734   default: return -1;
735   case bitc::CAST_TRUNC   : return Instruction::Trunc;
736   case bitc::CAST_ZEXT    : return Instruction::ZExt;
737   case bitc::CAST_SEXT    : return Instruction::SExt;
738   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
739   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
740   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
741   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
742   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
743   case bitc::CAST_FPEXT   : return Instruction::FPExt;
744   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
745   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
746   case bitc::CAST_BITCAST : return Instruction::BitCast;
747   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
748   }
749 }
750 
751 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
752   bool IsFP = Ty->isFPOrFPVectorTy();
753   // BinOps are only valid for int/fp or vector of int/fp types
754   if (!IsFP && !Ty->isIntOrIntVectorTy())
755     return -1;
756 
757   switch (Val) {
758   default:
759     return -1;
760   case bitc::BINOP_ADD:
761     return IsFP ? Instruction::FAdd : Instruction::Add;
762   case bitc::BINOP_SUB:
763     return IsFP ? Instruction::FSub : Instruction::Sub;
764   case bitc::BINOP_MUL:
765     return IsFP ? Instruction::FMul : Instruction::Mul;
766   case bitc::BINOP_UDIV:
767     return IsFP ? -1 : Instruction::UDiv;
768   case bitc::BINOP_SDIV:
769     return IsFP ? Instruction::FDiv : Instruction::SDiv;
770   case bitc::BINOP_UREM:
771     return IsFP ? -1 : Instruction::URem;
772   case bitc::BINOP_SREM:
773     return IsFP ? Instruction::FRem : Instruction::SRem;
774   case bitc::BINOP_SHL:
775     return IsFP ? -1 : Instruction::Shl;
776   case bitc::BINOP_LSHR:
777     return IsFP ? -1 : Instruction::LShr;
778   case bitc::BINOP_ASHR:
779     return IsFP ? -1 : Instruction::AShr;
780   case bitc::BINOP_AND:
781     return IsFP ? -1 : Instruction::And;
782   case bitc::BINOP_OR:
783     return IsFP ? -1 : Instruction::Or;
784   case bitc::BINOP_XOR:
785     return IsFP ? -1 : Instruction::Xor;
786   }
787 }
788 
789 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
790   switch (Val) {
791   default: return AtomicRMWInst::BAD_BINOP;
792   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
793   case bitc::RMW_ADD: return AtomicRMWInst::Add;
794   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
795   case bitc::RMW_AND: return AtomicRMWInst::And;
796   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
797   case bitc::RMW_OR: return AtomicRMWInst::Or;
798   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
799   case bitc::RMW_MAX: return AtomicRMWInst::Max;
800   case bitc::RMW_MIN: return AtomicRMWInst::Min;
801   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
802   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
803   }
804 }
805 
806 static AtomicOrdering getDecodedOrdering(unsigned Val) {
807   switch (Val) {
808   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
809   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
810   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
811   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
812   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
813   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
814   default: // Map unknown orderings to sequentially-consistent.
815   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
816   }
817 }
818 
819 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
820   switch (Val) {
821   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
822   default: // Map unknown scopes to cross-thread.
823   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
824   }
825 }
826 
827 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
828   switch (Val) {
829   default: // Map unknown selection kinds to any.
830   case bitc::COMDAT_SELECTION_KIND_ANY:
831     return Comdat::Any;
832   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
833     return Comdat::ExactMatch;
834   case bitc::COMDAT_SELECTION_KIND_LARGEST:
835     return Comdat::Largest;
836   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
837     return Comdat::NoDuplicates;
838   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
839     return Comdat::SameSize;
840   }
841 }
842 
843 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
844   FastMathFlags FMF;
845   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
846     FMF.setUnsafeAlgebra();
847   if (0 != (Val & FastMathFlags::NoNaNs))
848     FMF.setNoNaNs();
849   if (0 != (Val & FastMathFlags::NoInfs))
850     FMF.setNoInfs();
851   if (0 != (Val & FastMathFlags::NoSignedZeros))
852     FMF.setNoSignedZeros();
853   if (0 != (Val & FastMathFlags::AllowReciprocal))
854     FMF.setAllowReciprocal();
855   return FMF;
856 }
857 
858 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
859   switch (Val) {
860   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
861   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
862   }
863 }
864 
865 namespace llvm {
866 namespace {
867 /// \brief A class for maintaining the slot number definition
868 /// as a placeholder for the actual definition for forward constants defs.
869 class ConstantPlaceHolder : public ConstantExpr {
870   void operator=(const ConstantPlaceHolder &) = delete;
871 
872 public:
873   // allocate space for exactly one operand
874   void *operator new(size_t s) { return User::operator new(s, 1); }
875   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
876       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
877     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
878   }
879 
880   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
881   static bool classof(const Value *V) {
882     return isa<ConstantExpr>(V) &&
883            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
884   }
885 
886   /// Provide fast operand accessors
887   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
888 };
889 } // end anonymous namespace
890 
891 // FIXME: can we inherit this from ConstantExpr?
892 template <>
893 struct OperandTraits<ConstantPlaceHolder> :
894   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
895 };
896 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
897 } // end namespace llvm
898 
899 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
900   if (Idx == size()) {
901     push_back(V);
902     return;
903   }
904 
905   if (Idx >= size())
906     resize(Idx+1);
907 
908   WeakVH &OldV = ValuePtrs[Idx];
909   if (!OldV) {
910     OldV = V;
911     return;
912   }
913 
914   // Handle constants and non-constants (e.g. instrs) differently for
915   // efficiency.
916   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
917     ResolveConstants.push_back(std::make_pair(PHC, Idx));
918     OldV = V;
919   } else {
920     // If there was a forward reference to this value, replace it.
921     Value *PrevVal = OldV;
922     OldV->replaceAllUsesWith(V);
923     delete PrevVal;
924   }
925 }
926 
927 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
928                                                     Type *Ty) {
929   if (Idx >= size())
930     resize(Idx + 1);
931 
932   if (Value *V = ValuePtrs[Idx]) {
933     if (Ty != V->getType())
934       report_fatal_error("Type mismatch in constant table!");
935     return cast<Constant>(V);
936   }
937 
938   // Create and return a placeholder, which will later be RAUW'd.
939   Constant *C = new ConstantPlaceHolder(Ty, Context);
940   ValuePtrs[Idx] = C;
941   return C;
942 }
943 
944 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
945   // Bail out for a clearly invalid value. This would make us call resize(0)
946   if (Idx == UINT_MAX)
947     return nullptr;
948 
949   if (Idx >= size())
950     resize(Idx + 1);
951 
952   if (Value *V = ValuePtrs[Idx]) {
953     // If the types don't match, it's invalid.
954     if (Ty && Ty != V->getType())
955       return nullptr;
956     return V;
957   }
958 
959   // No type specified, must be invalid reference.
960   if (!Ty) return nullptr;
961 
962   // Create and return a placeholder, which will later be RAUW'd.
963   Value *V = new Argument(Ty);
964   ValuePtrs[Idx] = V;
965   return V;
966 }
967 
968 /// Once all constants are read, this method bulk resolves any forward
969 /// references.  The idea behind this is that we sometimes get constants (such
970 /// as large arrays) which reference *many* forward ref constants.  Replacing
971 /// each of these causes a lot of thrashing when building/reuniquing the
972 /// constant.  Instead of doing this, we look at all the uses and rewrite all
973 /// the place holders at once for any constant that uses a placeholder.
974 void BitcodeReaderValueList::resolveConstantForwardRefs() {
975   // Sort the values by-pointer so that they are efficient to look up with a
976   // binary search.
977   std::sort(ResolveConstants.begin(), ResolveConstants.end());
978 
979   SmallVector<Constant*, 64> NewOps;
980 
981   while (!ResolveConstants.empty()) {
982     Value *RealVal = operator[](ResolveConstants.back().second);
983     Constant *Placeholder = ResolveConstants.back().first;
984     ResolveConstants.pop_back();
985 
986     // Loop over all users of the placeholder, updating them to reference the
987     // new value.  If they reference more than one placeholder, update them all
988     // at once.
989     while (!Placeholder->use_empty()) {
990       auto UI = Placeholder->user_begin();
991       User *U = *UI;
992 
993       // If the using object isn't uniqued, just update the operands.  This
994       // handles instructions and initializers for global variables.
995       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
996         UI.getUse().set(RealVal);
997         continue;
998       }
999 
1000       // Otherwise, we have a constant that uses the placeholder.  Replace that
1001       // constant with a new constant that has *all* placeholder uses updated.
1002       Constant *UserC = cast<Constant>(U);
1003       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1004            I != E; ++I) {
1005         Value *NewOp;
1006         if (!isa<ConstantPlaceHolder>(*I)) {
1007           // Not a placeholder reference.
1008           NewOp = *I;
1009         } else if (*I == Placeholder) {
1010           // Common case is that it just references this one placeholder.
1011           NewOp = RealVal;
1012         } else {
1013           // Otherwise, look up the placeholder in ResolveConstants.
1014           ResolveConstantsTy::iterator It =
1015             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1016                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1017                                                             0));
1018           assert(It != ResolveConstants.end() && It->first == *I);
1019           NewOp = operator[](It->second);
1020         }
1021 
1022         NewOps.push_back(cast<Constant>(NewOp));
1023       }
1024 
1025       // Make the new constant.
1026       Constant *NewC;
1027       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1028         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1029       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1030         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1031       } else if (isa<ConstantVector>(UserC)) {
1032         NewC = ConstantVector::get(NewOps);
1033       } else {
1034         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1035         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1036       }
1037 
1038       UserC->replaceAllUsesWith(NewC);
1039       UserC->destroyConstant();
1040       NewOps.clear();
1041     }
1042 
1043     // Update all ValueHandles, they should be the only users at this point.
1044     Placeholder->replaceAllUsesWith(RealVal);
1045     delete Placeholder;
1046   }
1047 }
1048 
1049 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1050   if (Idx == size()) {
1051     push_back(MD);
1052     return;
1053   }
1054 
1055   if (Idx >= size())
1056     resize(Idx+1);
1057 
1058   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1059   if (!OldMD) {
1060     OldMD.reset(MD);
1061     return;
1062   }
1063 
1064   // If there was a forward reference to this value, replace it.
1065   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1066   PrevMD->replaceAllUsesWith(MD);
1067   --NumFwdRefs;
1068 }
1069 
1070 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1071   if (Idx >= size())
1072     resize(Idx + 1);
1073 
1074   if (Metadata *MD = MetadataPtrs[Idx])
1075     return MD;
1076 
1077   // Track forward refs to be resolved later.
1078   if (AnyFwdRefs) {
1079     MinFwdRef = std::min(MinFwdRef, Idx);
1080     MaxFwdRef = std::max(MaxFwdRef, Idx);
1081   } else {
1082     AnyFwdRefs = true;
1083     MinFwdRef = MaxFwdRef = Idx;
1084   }
1085   ++NumFwdRefs;
1086 
1087   // Create and return a placeholder, which will later be RAUW'd.
1088   Metadata *MD = MDNode::getTemporary(Context, None).release();
1089   MetadataPtrs[Idx].reset(MD);
1090   return MD;
1091 }
1092 
1093 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1094   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1095 }
1096 
1097 void BitcodeReaderMetadataList::tryToResolveCycles() {
1098   if (!AnyFwdRefs)
1099     // Nothing to do.
1100     return;
1101 
1102   if (NumFwdRefs)
1103     // Still forward references... can't resolve cycles.
1104     return;
1105 
1106   // Resolve any cycles.
1107   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1108     auto &MD = MetadataPtrs[I];
1109     auto *N = dyn_cast_or_null<MDNode>(MD);
1110     if (!N)
1111       continue;
1112 
1113     assert(!N->isTemporary() && "Unexpected forward reference");
1114     N->resolveCycles();
1115   }
1116 
1117   // Make sure we return early again until there's another forward ref.
1118   AnyFwdRefs = false;
1119 }
1120 
1121 Type *BitcodeReader::getTypeByID(unsigned ID) {
1122   // The type table size is always specified correctly.
1123   if (ID >= TypeList.size())
1124     return nullptr;
1125 
1126   if (Type *Ty = TypeList[ID])
1127     return Ty;
1128 
1129   // If we have a forward reference, the only possible case is when it is to a
1130   // named struct.  Just create a placeholder for now.
1131   return TypeList[ID] = createIdentifiedStructType(Context);
1132 }
1133 
1134 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1135                                                       StringRef Name) {
1136   auto *Ret = StructType::create(Context, Name);
1137   IdentifiedStructTypes.push_back(Ret);
1138   return Ret;
1139 }
1140 
1141 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1142   auto *Ret = StructType::create(Context);
1143   IdentifiedStructTypes.push_back(Ret);
1144   return Ret;
1145 }
1146 
1147 //===----------------------------------------------------------------------===//
1148 //  Functions for parsing blocks from the bitcode file
1149 //===----------------------------------------------------------------------===//
1150 
1151 
1152 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1153 /// been decoded from the given integer. This function must stay in sync with
1154 /// 'encodeLLVMAttributesForBitcode'.
1155 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1156                                            uint64_t EncodedAttrs) {
1157   // FIXME: Remove in 4.0.
1158 
1159   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1160   // the bits above 31 down by 11 bits.
1161   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1162   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1163          "Alignment must be a power of two.");
1164 
1165   if (Alignment)
1166     B.addAlignmentAttr(Alignment);
1167   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1168                 (EncodedAttrs & 0xffff));
1169 }
1170 
1171 std::error_code BitcodeReader::parseAttributeBlock() {
1172   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1173     return error("Invalid record");
1174 
1175   if (!MAttributes.empty())
1176     return error("Invalid multiple blocks");
1177 
1178   SmallVector<uint64_t, 64> Record;
1179 
1180   SmallVector<AttributeSet, 8> Attrs;
1181 
1182   // Read all the records.
1183   while (1) {
1184     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1185 
1186     switch (Entry.Kind) {
1187     case BitstreamEntry::SubBlock: // Handled for us already.
1188     case BitstreamEntry::Error:
1189       return error("Malformed block");
1190     case BitstreamEntry::EndBlock:
1191       return std::error_code();
1192     case BitstreamEntry::Record:
1193       // The interesting case.
1194       break;
1195     }
1196 
1197     // Read a record.
1198     Record.clear();
1199     switch (Stream.readRecord(Entry.ID, Record)) {
1200     default:  // Default behavior: ignore.
1201       break;
1202     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1203       // FIXME: Remove in 4.0.
1204       if (Record.size() & 1)
1205         return error("Invalid record");
1206 
1207       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1208         AttrBuilder B;
1209         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1210         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1211       }
1212 
1213       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1214       Attrs.clear();
1215       break;
1216     }
1217     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1218       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1219         Attrs.push_back(MAttributeGroups[Record[i]]);
1220 
1221       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1222       Attrs.clear();
1223       break;
1224     }
1225     }
1226   }
1227 }
1228 
1229 // Returns Attribute::None on unrecognized codes.
1230 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1231   switch (Code) {
1232   default:
1233     return Attribute::None;
1234   case bitc::ATTR_KIND_ALIGNMENT:
1235     return Attribute::Alignment;
1236   case bitc::ATTR_KIND_ALWAYS_INLINE:
1237     return Attribute::AlwaysInline;
1238   case bitc::ATTR_KIND_ARGMEMONLY:
1239     return Attribute::ArgMemOnly;
1240   case bitc::ATTR_KIND_BUILTIN:
1241     return Attribute::Builtin;
1242   case bitc::ATTR_KIND_BY_VAL:
1243     return Attribute::ByVal;
1244   case bitc::ATTR_KIND_IN_ALLOCA:
1245     return Attribute::InAlloca;
1246   case bitc::ATTR_KIND_COLD:
1247     return Attribute::Cold;
1248   case bitc::ATTR_KIND_CONVERGENT:
1249     return Attribute::Convergent;
1250   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1251     return Attribute::InaccessibleMemOnly;
1252   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1253     return Attribute::InaccessibleMemOrArgMemOnly;
1254   case bitc::ATTR_KIND_INLINE_HINT:
1255     return Attribute::InlineHint;
1256   case bitc::ATTR_KIND_IN_REG:
1257     return Attribute::InReg;
1258   case bitc::ATTR_KIND_JUMP_TABLE:
1259     return Attribute::JumpTable;
1260   case bitc::ATTR_KIND_MIN_SIZE:
1261     return Attribute::MinSize;
1262   case bitc::ATTR_KIND_NAKED:
1263     return Attribute::Naked;
1264   case bitc::ATTR_KIND_NEST:
1265     return Attribute::Nest;
1266   case bitc::ATTR_KIND_NO_ALIAS:
1267     return Attribute::NoAlias;
1268   case bitc::ATTR_KIND_NO_BUILTIN:
1269     return Attribute::NoBuiltin;
1270   case bitc::ATTR_KIND_NO_CAPTURE:
1271     return Attribute::NoCapture;
1272   case bitc::ATTR_KIND_NO_DUPLICATE:
1273     return Attribute::NoDuplicate;
1274   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1275     return Attribute::NoImplicitFloat;
1276   case bitc::ATTR_KIND_NO_INLINE:
1277     return Attribute::NoInline;
1278   case bitc::ATTR_KIND_NO_RECURSE:
1279     return Attribute::NoRecurse;
1280   case bitc::ATTR_KIND_NON_LAZY_BIND:
1281     return Attribute::NonLazyBind;
1282   case bitc::ATTR_KIND_NON_NULL:
1283     return Attribute::NonNull;
1284   case bitc::ATTR_KIND_DEREFERENCEABLE:
1285     return Attribute::Dereferenceable;
1286   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1287     return Attribute::DereferenceableOrNull;
1288   case bitc::ATTR_KIND_ALLOC_SIZE:
1289     return Attribute::AllocSize;
1290   case bitc::ATTR_KIND_NO_RED_ZONE:
1291     return Attribute::NoRedZone;
1292   case bitc::ATTR_KIND_NO_RETURN:
1293     return Attribute::NoReturn;
1294   case bitc::ATTR_KIND_NO_UNWIND:
1295     return Attribute::NoUnwind;
1296   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1297     return Attribute::OptimizeForSize;
1298   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1299     return Attribute::OptimizeNone;
1300   case bitc::ATTR_KIND_READ_NONE:
1301     return Attribute::ReadNone;
1302   case bitc::ATTR_KIND_READ_ONLY:
1303     return Attribute::ReadOnly;
1304   case bitc::ATTR_KIND_RETURNED:
1305     return Attribute::Returned;
1306   case bitc::ATTR_KIND_RETURNS_TWICE:
1307     return Attribute::ReturnsTwice;
1308   case bitc::ATTR_KIND_S_EXT:
1309     return Attribute::SExt;
1310   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1311     return Attribute::StackAlignment;
1312   case bitc::ATTR_KIND_STACK_PROTECT:
1313     return Attribute::StackProtect;
1314   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1315     return Attribute::StackProtectReq;
1316   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1317     return Attribute::StackProtectStrong;
1318   case bitc::ATTR_KIND_SAFESTACK:
1319     return Attribute::SafeStack;
1320   case bitc::ATTR_KIND_STRUCT_RET:
1321     return Attribute::StructRet;
1322   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1323     return Attribute::SanitizeAddress;
1324   case bitc::ATTR_KIND_SANITIZE_THREAD:
1325     return Attribute::SanitizeThread;
1326   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1327     return Attribute::SanitizeMemory;
1328   case bitc::ATTR_KIND_SWIFT_ERROR:
1329     return Attribute::SwiftError;
1330   case bitc::ATTR_KIND_SWIFT_SELF:
1331     return Attribute::SwiftSelf;
1332   case bitc::ATTR_KIND_UW_TABLE:
1333     return Attribute::UWTable;
1334   case bitc::ATTR_KIND_Z_EXT:
1335     return Attribute::ZExt;
1336   }
1337 }
1338 
1339 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1340                                                    unsigned &Alignment) {
1341   // Note: Alignment in bitcode files is incremented by 1, so that zero
1342   // can be used for default alignment.
1343   if (Exponent > Value::MaxAlignmentExponent + 1)
1344     return error("Invalid alignment value");
1345   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1346   return std::error_code();
1347 }
1348 
1349 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1350                                              Attribute::AttrKind *Kind) {
1351   *Kind = getAttrFromCode(Code);
1352   if (*Kind == Attribute::None)
1353     return error(BitcodeError::CorruptedBitcode,
1354                  "Unknown attribute kind (" + Twine(Code) + ")");
1355   return std::error_code();
1356 }
1357 
1358 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1359   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1360     return error("Invalid record");
1361 
1362   if (!MAttributeGroups.empty())
1363     return error("Invalid multiple blocks");
1364 
1365   SmallVector<uint64_t, 64> Record;
1366 
1367   // Read all the records.
1368   while (1) {
1369     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1370 
1371     switch (Entry.Kind) {
1372     case BitstreamEntry::SubBlock: // Handled for us already.
1373     case BitstreamEntry::Error:
1374       return error("Malformed block");
1375     case BitstreamEntry::EndBlock:
1376       return std::error_code();
1377     case BitstreamEntry::Record:
1378       // The interesting case.
1379       break;
1380     }
1381 
1382     // Read a record.
1383     Record.clear();
1384     switch (Stream.readRecord(Entry.ID, Record)) {
1385     default:  // Default behavior: ignore.
1386       break;
1387     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1388       if (Record.size() < 3)
1389         return error("Invalid record");
1390 
1391       uint64_t GrpID = Record[0];
1392       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1393 
1394       AttrBuilder B;
1395       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1396         if (Record[i] == 0) {        // Enum attribute
1397           Attribute::AttrKind Kind;
1398           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1399             return EC;
1400 
1401           B.addAttribute(Kind);
1402         } else if (Record[i] == 1) { // Integer attribute
1403           Attribute::AttrKind Kind;
1404           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1405             return EC;
1406           if (Kind == Attribute::Alignment)
1407             B.addAlignmentAttr(Record[++i]);
1408           else if (Kind == Attribute::StackAlignment)
1409             B.addStackAlignmentAttr(Record[++i]);
1410           else if (Kind == Attribute::Dereferenceable)
1411             B.addDereferenceableAttr(Record[++i]);
1412           else if (Kind == Attribute::DereferenceableOrNull)
1413             B.addDereferenceableOrNullAttr(Record[++i]);
1414           else if (Kind == Attribute::AllocSize)
1415             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1416         } else {                     // String attribute
1417           assert((Record[i] == 3 || Record[i] == 4) &&
1418                  "Invalid attribute group entry");
1419           bool HasValue = (Record[i++] == 4);
1420           SmallString<64> KindStr;
1421           SmallString<64> ValStr;
1422 
1423           while (Record[i] != 0 && i != e)
1424             KindStr += Record[i++];
1425           assert(Record[i] == 0 && "Kind string not null terminated");
1426 
1427           if (HasValue) {
1428             // Has a value associated with it.
1429             ++i; // Skip the '0' that terminates the "kind" string.
1430             while (Record[i] != 0 && i != e)
1431               ValStr += Record[i++];
1432             assert(Record[i] == 0 && "Value string not null terminated");
1433           }
1434 
1435           B.addAttribute(KindStr.str(), ValStr.str());
1436         }
1437       }
1438 
1439       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1440       break;
1441     }
1442     }
1443   }
1444 }
1445 
1446 std::error_code BitcodeReader::parseTypeTable() {
1447   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1448     return error("Invalid record");
1449 
1450   return parseTypeTableBody();
1451 }
1452 
1453 std::error_code BitcodeReader::parseTypeTableBody() {
1454   if (!TypeList.empty())
1455     return error("Invalid multiple blocks");
1456 
1457   SmallVector<uint64_t, 64> Record;
1458   unsigned NumRecords = 0;
1459 
1460   SmallString<64> TypeName;
1461 
1462   // Read all the records for this type table.
1463   while (1) {
1464     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1465 
1466     switch (Entry.Kind) {
1467     case BitstreamEntry::SubBlock: // Handled for us already.
1468     case BitstreamEntry::Error:
1469       return error("Malformed block");
1470     case BitstreamEntry::EndBlock:
1471       if (NumRecords != TypeList.size())
1472         return error("Malformed block");
1473       return std::error_code();
1474     case BitstreamEntry::Record:
1475       // The interesting case.
1476       break;
1477     }
1478 
1479     // Read a record.
1480     Record.clear();
1481     Type *ResultTy = nullptr;
1482     switch (Stream.readRecord(Entry.ID, Record)) {
1483     default:
1484       return error("Invalid value");
1485     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1486       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1487       // type list.  This allows us to reserve space.
1488       if (Record.size() < 1)
1489         return error("Invalid record");
1490       TypeList.resize(Record[0]);
1491       continue;
1492     case bitc::TYPE_CODE_VOID:      // VOID
1493       ResultTy = Type::getVoidTy(Context);
1494       break;
1495     case bitc::TYPE_CODE_HALF:     // HALF
1496       ResultTy = Type::getHalfTy(Context);
1497       break;
1498     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1499       ResultTy = Type::getFloatTy(Context);
1500       break;
1501     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1502       ResultTy = Type::getDoubleTy(Context);
1503       break;
1504     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1505       ResultTy = Type::getX86_FP80Ty(Context);
1506       break;
1507     case bitc::TYPE_CODE_FP128:     // FP128
1508       ResultTy = Type::getFP128Ty(Context);
1509       break;
1510     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1511       ResultTy = Type::getPPC_FP128Ty(Context);
1512       break;
1513     case bitc::TYPE_CODE_LABEL:     // LABEL
1514       ResultTy = Type::getLabelTy(Context);
1515       break;
1516     case bitc::TYPE_CODE_METADATA:  // METADATA
1517       ResultTy = Type::getMetadataTy(Context);
1518       break;
1519     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1520       ResultTy = Type::getX86_MMXTy(Context);
1521       break;
1522     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1523       ResultTy = Type::getTokenTy(Context);
1524       break;
1525     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1526       if (Record.size() < 1)
1527         return error("Invalid record");
1528 
1529       uint64_t NumBits = Record[0];
1530       if (NumBits < IntegerType::MIN_INT_BITS ||
1531           NumBits > IntegerType::MAX_INT_BITS)
1532         return error("Bitwidth for integer type out of range");
1533       ResultTy = IntegerType::get(Context, NumBits);
1534       break;
1535     }
1536     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1537                                     //          [pointee type, address space]
1538       if (Record.size() < 1)
1539         return error("Invalid record");
1540       unsigned AddressSpace = 0;
1541       if (Record.size() == 2)
1542         AddressSpace = Record[1];
1543       ResultTy = getTypeByID(Record[0]);
1544       if (!ResultTy ||
1545           !PointerType::isValidElementType(ResultTy))
1546         return error("Invalid type");
1547       ResultTy = PointerType::get(ResultTy, AddressSpace);
1548       break;
1549     }
1550     case bitc::TYPE_CODE_FUNCTION_OLD: {
1551       // FIXME: attrid is dead, remove it in LLVM 4.0
1552       // FUNCTION: [vararg, attrid, retty, paramty x N]
1553       if (Record.size() < 3)
1554         return error("Invalid record");
1555       SmallVector<Type*, 8> ArgTys;
1556       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1557         if (Type *T = getTypeByID(Record[i]))
1558           ArgTys.push_back(T);
1559         else
1560           break;
1561       }
1562 
1563       ResultTy = getTypeByID(Record[2]);
1564       if (!ResultTy || ArgTys.size() < Record.size()-3)
1565         return error("Invalid type");
1566 
1567       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1568       break;
1569     }
1570     case bitc::TYPE_CODE_FUNCTION: {
1571       // FUNCTION: [vararg, retty, paramty x N]
1572       if (Record.size() < 2)
1573         return error("Invalid record");
1574       SmallVector<Type*, 8> ArgTys;
1575       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1576         if (Type *T = getTypeByID(Record[i])) {
1577           if (!FunctionType::isValidArgumentType(T))
1578             return error("Invalid function argument type");
1579           ArgTys.push_back(T);
1580         }
1581         else
1582           break;
1583       }
1584 
1585       ResultTy = getTypeByID(Record[1]);
1586       if (!ResultTy || ArgTys.size() < Record.size()-2)
1587         return error("Invalid type");
1588 
1589       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1590       break;
1591     }
1592     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1593       if (Record.size() < 1)
1594         return error("Invalid record");
1595       SmallVector<Type*, 8> EltTys;
1596       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1597         if (Type *T = getTypeByID(Record[i]))
1598           EltTys.push_back(T);
1599         else
1600           break;
1601       }
1602       if (EltTys.size() != Record.size()-1)
1603         return error("Invalid type");
1604       ResultTy = StructType::get(Context, EltTys, Record[0]);
1605       break;
1606     }
1607     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1608       if (convertToString(Record, 0, TypeName))
1609         return error("Invalid record");
1610       continue;
1611 
1612     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1613       if (Record.size() < 1)
1614         return error("Invalid record");
1615 
1616       if (NumRecords >= TypeList.size())
1617         return error("Invalid TYPE table");
1618 
1619       // Check to see if this was forward referenced, if so fill in the temp.
1620       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1621       if (Res) {
1622         Res->setName(TypeName);
1623         TypeList[NumRecords] = nullptr;
1624       } else  // Otherwise, create a new struct.
1625         Res = createIdentifiedStructType(Context, TypeName);
1626       TypeName.clear();
1627 
1628       SmallVector<Type*, 8> EltTys;
1629       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1630         if (Type *T = getTypeByID(Record[i]))
1631           EltTys.push_back(T);
1632         else
1633           break;
1634       }
1635       if (EltTys.size() != Record.size()-1)
1636         return error("Invalid record");
1637       Res->setBody(EltTys, Record[0]);
1638       ResultTy = Res;
1639       break;
1640     }
1641     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1642       if (Record.size() != 1)
1643         return error("Invalid record");
1644 
1645       if (NumRecords >= TypeList.size())
1646         return error("Invalid TYPE table");
1647 
1648       // Check to see if this was forward referenced, if so fill in the temp.
1649       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1650       if (Res) {
1651         Res->setName(TypeName);
1652         TypeList[NumRecords] = nullptr;
1653       } else  // Otherwise, create a new struct with no body.
1654         Res = createIdentifiedStructType(Context, TypeName);
1655       TypeName.clear();
1656       ResultTy = Res;
1657       break;
1658     }
1659     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1660       if (Record.size() < 2)
1661         return error("Invalid record");
1662       ResultTy = getTypeByID(Record[1]);
1663       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1664         return error("Invalid type");
1665       ResultTy = ArrayType::get(ResultTy, Record[0]);
1666       break;
1667     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1668       if (Record.size() < 2)
1669         return error("Invalid record");
1670       if (Record[0] == 0)
1671         return error("Invalid vector length");
1672       ResultTy = getTypeByID(Record[1]);
1673       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1674         return error("Invalid type");
1675       ResultTy = VectorType::get(ResultTy, Record[0]);
1676       break;
1677     }
1678 
1679     if (NumRecords >= TypeList.size())
1680       return error("Invalid TYPE table");
1681     if (TypeList[NumRecords])
1682       return error(
1683           "Invalid TYPE table: Only named structs can be forward referenced");
1684     assert(ResultTy && "Didn't read a type?");
1685     TypeList[NumRecords++] = ResultTy;
1686   }
1687 }
1688 
1689 std::error_code BitcodeReader::parseOperandBundleTags() {
1690   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1691     return error("Invalid record");
1692 
1693   if (!BundleTags.empty())
1694     return error("Invalid multiple blocks");
1695 
1696   SmallVector<uint64_t, 64> Record;
1697 
1698   while (1) {
1699     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1700 
1701     switch (Entry.Kind) {
1702     case BitstreamEntry::SubBlock: // Handled for us already.
1703     case BitstreamEntry::Error:
1704       return error("Malformed block");
1705     case BitstreamEntry::EndBlock:
1706       return std::error_code();
1707     case BitstreamEntry::Record:
1708       // The interesting case.
1709       break;
1710     }
1711 
1712     // Tags are implicitly mapped to integers by their order.
1713 
1714     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1715       return error("Invalid record");
1716 
1717     // OPERAND_BUNDLE_TAG: [strchr x N]
1718     BundleTags.emplace_back();
1719     if (convertToString(Record, 0, BundleTags.back()))
1720       return error("Invalid record");
1721     Record.clear();
1722   }
1723 }
1724 
1725 /// Associate a value with its name from the given index in the provided record.
1726 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1727                                             unsigned NameIndex, Triple &TT) {
1728   SmallString<128> ValueName;
1729   if (convertToString(Record, NameIndex, ValueName))
1730     return error("Invalid record");
1731   unsigned ValueID = Record[0];
1732   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1733     return error("Invalid record");
1734   Value *V = ValueList[ValueID];
1735 
1736   StringRef NameStr(ValueName.data(), ValueName.size());
1737   if (NameStr.find_first_of(0) != StringRef::npos)
1738     return error("Invalid value name");
1739   V->setName(NameStr);
1740   auto *GO = dyn_cast<GlobalObject>(V);
1741   if (GO) {
1742     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1743       if (TT.isOSBinFormatMachO())
1744         GO->setComdat(nullptr);
1745       else
1746         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1747     }
1748   }
1749   return V;
1750 }
1751 
1752 /// Helper to note and return the current location, and jump to the given
1753 /// offset.
1754 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1755                                        BitstreamCursor &Stream) {
1756   // Save the current parsing location so we can jump back at the end
1757   // of the VST read.
1758   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1759   Stream.JumpToBit(Offset * 32);
1760 #ifndef NDEBUG
1761   // Do some checking if we are in debug mode.
1762   BitstreamEntry Entry = Stream.advance();
1763   assert(Entry.Kind == BitstreamEntry::SubBlock);
1764   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1765 #else
1766   // In NDEBUG mode ignore the output so we don't get an unused variable
1767   // warning.
1768   Stream.advance();
1769 #endif
1770   return CurrentBit;
1771 }
1772 
1773 /// Parse the value symbol table at either the current parsing location or
1774 /// at the given bit offset if provided.
1775 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1776   uint64_t CurrentBit;
1777   // Pass in the Offset to distinguish between calling for the module-level
1778   // VST (where we want to jump to the VST offset) and the function-level
1779   // VST (where we don't).
1780   if (Offset > 0)
1781     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1782 
1783   // Compute the delta between the bitcode indices in the VST (the word offset
1784   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1785   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1786   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1787   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1788   // just before entering the VST subblock because: 1) the EnterSubBlock
1789   // changes the AbbrevID width; 2) the VST block is nested within the same
1790   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1791   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1792   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1793   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1794   unsigned FuncBitcodeOffsetDelta =
1795       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1796 
1797   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1798     return error("Invalid record");
1799 
1800   SmallVector<uint64_t, 64> Record;
1801 
1802   Triple TT(TheModule->getTargetTriple());
1803 
1804   // Read all the records for this value table.
1805   SmallString<128> ValueName;
1806   while (1) {
1807     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1808 
1809     switch (Entry.Kind) {
1810     case BitstreamEntry::SubBlock: // Handled for us already.
1811     case BitstreamEntry::Error:
1812       return error("Malformed block");
1813     case BitstreamEntry::EndBlock:
1814       if (Offset > 0)
1815         Stream.JumpToBit(CurrentBit);
1816       return std::error_code();
1817     case BitstreamEntry::Record:
1818       // The interesting case.
1819       break;
1820     }
1821 
1822     // Read a record.
1823     Record.clear();
1824     switch (Stream.readRecord(Entry.ID, Record)) {
1825     default:  // Default behavior: unknown type.
1826       break;
1827     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1828       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1829       if (std::error_code EC = ValOrErr.getError())
1830         return EC;
1831       ValOrErr.get();
1832       break;
1833     }
1834     case bitc::VST_CODE_FNENTRY: {
1835       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1836       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1837       if (std::error_code EC = ValOrErr.getError())
1838         return EC;
1839       Value *V = ValOrErr.get();
1840 
1841       auto *GO = dyn_cast<GlobalObject>(V);
1842       if (!GO) {
1843         // If this is an alias, need to get the actual Function object
1844         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1845         auto *GA = dyn_cast<GlobalAlias>(V);
1846         if (GA)
1847           GO = GA->getBaseObject();
1848         assert(GO);
1849       }
1850 
1851       uint64_t FuncWordOffset = Record[1];
1852       Function *F = dyn_cast<Function>(GO);
1853       assert(F);
1854       uint64_t FuncBitOffset = FuncWordOffset * 32;
1855       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1856       // Set the LastFunctionBlockBit to point to the last function block.
1857       // Later when parsing is resumed after function materialization,
1858       // we can simply skip that last function block.
1859       if (FuncBitOffset > LastFunctionBlockBit)
1860         LastFunctionBlockBit = FuncBitOffset;
1861       break;
1862     }
1863     case bitc::VST_CODE_BBENTRY: {
1864       if (convertToString(Record, 1, ValueName))
1865         return error("Invalid record");
1866       BasicBlock *BB = getBasicBlock(Record[0]);
1867       if (!BB)
1868         return error("Invalid record");
1869 
1870       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1871       ValueName.clear();
1872       break;
1873     }
1874     }
1875   }
1876 }
1877 
1878 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1879 std::error_code
1880 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1881   if (Record.size() < 2)
1882     return error("Invalid record");
1883 
1884   unsigned Kind = Record[0];
1885   SmallString<8> Name(Record.begin() + 1, Record.end());
1886 
1887   unsigned NewKind = TheModule->getMDKindID(Name.str());
1888   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1889     return error("Conflicting METADATA_KIND records");
1890   return std::error_code();
1891 }
1892 
1893 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1894 
1895 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1896                                                     StringRef Blob,
1897                                                     unsigned &NextMetadataNo) {
1898   // All the MDStrings in the block are emitted together in a single
1899   // record.  The strings are concatenated and stored in a blob along with
1900   // their sizes.
1901   if (Record.size() != 2)
1902     return error("Invalid record: metadata strings layout");
1903 
1904   unsigned NumStrings = Record[0];
1905   unsigned StringsOffset = Record[1];
1906   if (!NumStrings)
1907     return error("Invalid record: metadata strings with no strings");
1908   if (StringsOffset > Blob.size())
1909     return error("Invalid record: metadata strings corrupt offset");
1910 
1911   StringRef Lengths = Blob.slice(0, StringsOffset);
1912   SimpleBitstreamCursor R(*StreamFile);
1913   R.jumpToPointer(Lengths.begin());
1914 
1915   // Ensure that Blob doesn't get invalidated, even if this is reading from
1916   // a StreamingMemoryObject with corrupt data.
1917   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1918 
1919   StringRef Strings = Blob.drop_front(StringsOffset);
1920   do {
1921     if (R.AtEndOfStream())
1922       return error("Invalid record: metadata strings bad length");
1923 
1924     unsigned Size = R.ReadVBR(6);
1925     if (Strings.size() < Size)
1926       return error("Invalid record: metadata strings truncated chars");
1927 
1928     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1929                              NextMetadataNo++);
1930     Strings = Strings.drop_front(Size);
1931   } while (--NumStrings);
1932 
1933   return std::error_code();
1934 }
1935 
1936 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1937 /// module level metadata.
1938 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1939   IsMetadataMaterialized = true;
1940   unsigned NextMetadataNo = MetadataList.size();
1941 
1942   if (!ModuleLevel && MetadataList.hasFwdRefs())
1943     return error("Invalid metadata: fwd refs into function blocks");
1944 
1945   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1946     return error("Invalid record");
1947 
1948   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
1949   SmallVector<uint64_t, 64> Record;
1950 
1951   auto getMD = [&](unsigned ID) -> Metadata * {
1952     return MetadataList.getMetadataFwdRef(ID);
1953   };
1954   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1955     if (ID)
1956       return getMD(ID - 1);
1957     return nullptr;
1958   };
1959   auto getMDString = [&](unsigned ID) -> MDString *{
1960     // This requires that the ID is not really a forward reference.  In
1961     // particular, the MDString must already have been resolved.
1962     return cast_or_null<MDString>(getMDOrNull(ID));
1963   };
1964 
1965 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
1966   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1967 
1968   // Read all the records.
1969   while (1) {
1970     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1971 
1972     switch (Entry.Kind) {
1973     case BitstreamEntry::SubBlock: // Handled for us already.
1974     case BitstreamEntry::Error:
1975       return error("Malformed block");
1976     case BitstreamEntry::EndBlock:
1977       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
1978       for (auto CU_SP : CUSubprograms)
1979         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
1980           for (auto &Op : SPs->operands())
1981             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
1982               SP->replaceOperandWith(7, CU_SP.first);
1983 
1984       MetadataList.tryToResolveCycles();
1985       return std::error_code();
1986     case BitstreamEntry::Record:
1987       // The interesting case.
1988       break;
1989     }
1990 
1991     // Read a record.
1992     Record.clear();
1993     StringRef Blob;
1994     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
1995     bool IsDistinct = false;
1996     switch (Code) {
1997     default:  // Default behavior: ignore.
1998       break;
1999     case bitc::METADATA_NAME: {
2000       // Read name of the named metadata.
2001       SmallString<8> Name(Record.begin(), Record.end());
2002       Record.clear();
2003       Code = Stream.ReadCode();
2004 
2005       unsigned NextBitCode = Stream.readRecord(Code, Record);
2006       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2007         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2008 
2009       // Read named metadata elements.
2010       unsigned Size = Record.size();
2011       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2012       for (unsigned i = 0; i != Size; ++i) {
2013         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2014         if (!MD)
2015           return error("Invalid record");
2016         NMD->addOperand(MD);
2017       }
2018       break;
2019     }
2020     case bitc::METADATA_OLD_FN_NODE: {
2021       // FIXME: Remove in 4.0.
2022       // This is a LocalAsMetadata record, the only type of function-local
2023       // metadata.
2024       if (Record.size() % 2 == 1)
2025         return error("Invalid record");
2026 
2027       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2028       // to be legal, but there's no upgrade path.
2029       auto dropRecord = [&] {
2030         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2031       };
2032       if (Record.size() != 2) {
2033         dropRecord();
2034         break;
2035       }
2036 
2037       Type *Ty = getTypeByID(Record[0]);
2038       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2039         dropRecord();
2040         break;
2041       }
2042 
2043       MetadataList.assignValue(
2044           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2045           NextMetadataNo++);
2046       break;
2047     }
2048     case bitc::METADATA_OLD_NODE: {
2049       // FIXME: Remove in 4.0.
2050       if (Record.size() % 2 == 1)
2051         return error("Invalid record");
2052 
2053       unsigned Size = Record.size();
2054       SmallVector<Metadata *, 8> Elts;
2055       for (unsigned i = 0; i != Size; i += 2) {
2056         Type *Ty = getTypeByID(Record[i]);
2057         if (!Ty)
2058           return error("Invalid record");
2059         if (Ty->isMetadataTy())
2060           Elts.push_back(getMD(Record[i + 1]));
2061         else if (!Ty->isVoidTy()) {
2062           auto *MD =
2063               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2064           assert(isa<ConstantAsMetadata>(MD) &&
2065                  "Expected non-function-local metadata");
2066           Elts.push_back(MD);
2067         } else
2068           Elts.push_back(nullptr);
2069       }
2070       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2071       break;
2072     }
2073     case bitc::METADATA_VALUE: {
2074       if (Record.size() != 2)
2075         return error("Invalid record");
2076 
2077       Type *Ty = getTypeByID(Record[0]);
2078       if (Ty->isMetadataTy() || Ty->isVoidTy())
2079         return error("Invalid record");
2080 
2081       MetadataList.assignValue(
2082           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2083           NextMetadataNo++);
2084       break;
2085     }
2086     case bitc::METADATA_DISTINCT_NODE:
2087       IsDistinct = true;
2088       // fallthrough...
2089     case bitc::METADATA_NODE: {
2090       SmallVector<Metadata *, 8> Elts;
2091       Elts.reserve(Record.size());
2092       for (unsigned ID : Record)
2093         Elts.push_back(getMDOrNull(ID));
2094       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2095                                           : MDNode::get(Context, Elts),
2096                                NextMetadataNo++);
2097       break;
2098     }
2099     case bitc::METADATA_LOCATION: {
2100       if (Record.size() != 5)
2101         return error("Invalid record");
2102 
2103       IsDistinct = Record[0];
2104       unsigned Line = Record[1];
2105       unsigned Column = Record[2];
2106       Metadata *Scope = getMD(Record[3]);
2107       Metadata *InlinedAt = getMDOrNull(Record[4]);
2108       MetadataList.assignValue(
2109           GET_OR_DISTINCT(DILocation,
2110                           (Context, Line, Column, Scope, InlinedAt)),
2111           NextMetadataNo++);
2112       break;
2113     }
2114     case bitc::METADATA_GENERIC_DEBUG: {
2115       if (Record.size() < 4)
2116         return error("Invalid record");
2117 
2118       IsDistinct = Record[0];
2119       unsigned Tag = Record[1];
2120       unsigned Version = Record[2];
2121 
2122       if (Tag >= 1u << 16 || Version != 0)
2123         return error("Invalid record");
2124 
2125       auto *Header = getMDString(Record[3]);
2126       SmallVector<Metadata *, 8> DwarfOps;
2127       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2128         DwarfOps.push_back(getMDOrNull(Record[I]));
2129       MetadataList.assignValue(
2130           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2131           NextMetadataNo++);
2132       break;
2133     }
2134     case bitc::METADATA_SUBRANGE: {
2135       if (Record.size() != 3)
2136         return error("Invalid record");
2137 
2138       IsDistinct = Record[0];
2139       MetadataList.assignValue(
2140           GET_OR_DISTINCT(DISubrange,
2141                           (Context, Record[1], unrotateSign(Record[2]))),
2142           NextMetadataNo++);
2143       break;
2144     }
2145     case bitc::METADATA_ENUMERATOR: {
2146       if (Record.size() != 3)
2147         return error("Invalid record");
2148 
2149       IsDistinct = Record[0];
2150       MetadataList.assignValue(
2151           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2152                                          getMDString(Record[2]))),
2153           NextMetadataNo++);
2154       break;
2155     }
2156     case bitc::METADATA_BASIC_TYPE: {
2157       if (Record.size() != 6)
2158         return error("Invalid record");
2159 
2160       IsDistinct = Record[0];
2161       MetadataList.assignValue(
2162           GET_OR_DISTINCT(DIBasicType,
2163                           (Context, Record[1], getMDString(Record[2]),
2164                            Record[3], Record[4], Record[5])),
2165           NextMetadataNo++);
2166       break;
2167     }
2168     case bitc::METADATA_DERIVED_TYPE: {
2169       if (Record.size() != 12)
2170         return error("Invalid record");
2171 
2172       IsDistinct = Record[0];
2173       MetadataList.assignValue(
2174           GET_OR_DISTINCT(DIDerivedType,
2175                           (Context, Record[1], getMDString(Record[2]),
2176                            getMDOrNull(Record[3]), Record[4],
2177                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2178                            Record[7], Record[8], Record[9], Record[10],
2179                            getMDOrNull(Record[11]))),
2180           NextMetadataNo++);
2181       break;
2182     }
2183     case bitc::METADATA_COMPOSITE_TYPE: {
2184       if (Record.size() != 16)
2185         return error("Invalid record");
2186 
2187       // If we have a UUID and this is not a forward declaration, lookup the
2188       // mapping.
2189       IsDistinct = Record[0];
2190       unsigned Tag = Record[1];
2191       MDString *Name = getMDString(Record[2]);
2192       Metadata *File = getMDOrNull(Record[3]);
2193       unsigned Line = Record[4];
2194       Metadata *Scope = getMDOrNull(Record[5]);
2195       Metadata *BaseType = getMDOrNull(Record[6]);
2196       uint64_t SizeInBits = Record[7];
2197       uint64_t AlignInBits = Record[8];
2198       uint64_t OffsetInBits = Record[9];
2199       unsigned Flags = Record[10];
2200       Metadata *Elements = getMDOrNull(Record[11]);
2201       unsigned RuntimeLang = Record[12];
2202       Metadata *VTableHolder = getMDOrNull(Record[13]);
2203       Metadata *TemplateParams = getMDOrNull(Record[14]);
2204       auto *Identifier = getMDString(Record[15]);
2205       DICompositeType *CT = nullptr;
2206       if (Identifier)
2207         CT = DICompositeType::buildODRType(
2208             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2209             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2210             VTableHolder, TemplateParams);
2211 
2212       // Create a node if we didn't get a lazy ODR type.
2213       if (!CT)
2214         CT = GET_OR_DISTINCT(DICompositeType,
2215                              (Context, Tag, Name, File, Line, Scope, BaseType,
2216                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2217                               Elements, RuntimeLang, VTableHolder,
2218                               TemplateParams, Identifier));
2219 
2220       MetadataList.assignValue(CT, NextMetadataNo++);
2221       break;
2222     }
2223     case bitc::METADATA_SUBROUTINE_TYPE: {
2224       if (Record.size() != 3)
2225         return error("Invalid record");
2226 
2227       IsDistinct = Record[0];
2228       MetadataList.assignValue(
2229           GET_OR_DISTINCT(DISubroutineType,
2230                           (Context, Record[1], getMDOrNull(Record[2]))),
2231           NextMetadataNo++);
2232       break;
2233     }
2234 
2235     case bitc::METADATA_MODULE: {
2236       if (Record.size() != 6)
2237         return error("Invalid record");
2238 
2239       IsDistinct = Record[0];
2240       MetadataList.assignValue(
2241           GET_OR_DISTINCT(DIModule,
2242                           (Context, getMDOrNull(Record[1]),
2243                            getMDString(Record[2]), getMDString(Record[3]),
2244                            getMDString(Record[4]), getMDString(Record[5]))),
2245           NextMetadataNo++);
2246       break;
2247     }
2248 
2249     case bitc::METADATA_FILE: {
2250       if (Record.size() != 3)
2251         return error("Invalid record");
2252 
2253       IsDistinct = Record[0];
2254       MetadataList.assignValue(
2255           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2256                                    getMDString(Record[2]))),
2257           NextMetadataNo++);
2258       break;
2259     }
2260     case bitc::METADATA_COMPILE_UNIT: {
2261       if (Record.size() < 14 || Record.size() > 16)
2262         return error("Invalid record");
2263 
2264       // Ignore Record[0], which indicates whether this compile unit is
2265       // distinct.  It's always distinct.
2266       IsDistinct = true;
2267       auto *CU = DICompileUnit::getDistinct(
2268           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2269           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2270           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2271           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2272           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2273           Record.size() <= 14 ? 0 : Record[14]);
2274 
2275       MetadataList.assignValue(CU, NextMetadataNo++);
2276 
2277       // Move the Upgrade the list of subprograms.
2278       if (Metadata *SPs = getMDOrNull(Record[11]))
2279         CUSubprograms.push_back({CU, SPs});
2280       break;
2281     }
2282     case bitc::METADATA_SUBPROGRAM: {
2283       if (Record.size() != 18 && Record.size() != 19)
2284         return error("Invalid record");
2285 
2286       IsDistinct =
2287           Record[0] || Record[8]; // All definitions should be distinct.
2288       // Version 1 has a Function as Record[15].
2289       // Version 2 has removed Record[15].
2290       // Version 3 has the Unit as Record[15].
2291       Metadata *CUorFn = getMDOrNull(Record[15]);
2292       unsigned Offset = Record.size() == 19 ? 1 : 0;
2293       bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn);
2294       bool HasCU = Offset && !HasFn;
2295       DISubprogram *SP = GET_OR_DISTINCT(
2296           DISubprogram,
2297           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2298            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2299            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2300            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2301            Record[14], HasCU ? CUorFn : nullptr,
2302            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2303            getMDOrNull(Record[17 + Offset])));
2304       MetadataList.assignValue(SP, NextMetadataNo++);
2305 
2306       // Upgrade sp->function mapping to function->sp mapping.
2307       if (HasFn) {
2308         if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn))
2309           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2310             if (F->isMaterializable())
2311               // Defer until materialized; unmaterialized functions may not have
2312               // metadata.
2313               FunctionsWithSPs[F] = SP;
2314             else if (!F->empty())
2315               F->setSubprogram(SP);
2316           }
2317       }
2318       break;
2319     }
2320     case bitc::METADATA_LEXICAL_BLOCK: {
2321       if (Record.size() != 5)
2322         return error("Invalid record");
2323 
2324       IsDistinct = Record[0];
2325       MetadataList.assignValue(
2326           GET_OR_DISTINCT(DILexicalBlock,
2327                           (Context, getMDOrNull(Record[1]),
2328                            getMDOrNull(Record[2]), Record[3], Record[4])),
2329           NextMetadataNo++);
2330       break;
2331     }
2332     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2333       if (Record.size() != 4)
2334         return error("Invalid record");
2335 
2336       IsDistinct = Record[0];
2337       MetadataList.assignValue(
2338           GET_OR_DISTINCT(DILexicalBlockFile,
2339                           (Context, getMDOrNull(Record[1]),
2340                            getMDOrNull(Record[2]), Record[3])),
2341           NextMetadataNo++);
2342       break;
2343     }
2344     case bitc::METADATA_NAMESPACE: {
2345       if (Record.size() != 5)
2346         return error("Invalid record");
2347 
2348       IsDistinct = Record[0];
2349       MetadataList.assignValue(
2350           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2351                                         getMDOrNull(Record[2]),
2352                                         getMDString(Record[3]), Record[4])),
2353           NextMetadataNo++);
2354       break;
2355     }
2356     case bitc::METADATA_MACRO: {
2357       if (Record.size() != 5)
2358         return error("Invalid record");
2359 
2360       IsDistinct = Record[0];
2361       MetadataList.assignValue(
2362           GET_OR_DISTINCT(DIMacro,
2363                           (Context, Record[1], Record[2],
2364                            getMDString(Record[3]), getMDString(Record[4]))),
2365           NextMetadataNo++);
2366       break;
2367     }
2368     case bitc::METADATA_MACRO_FILE: {
2369       if (Record.size() != 5)
2370         return error("Invalid record");
2371 
2372       IsDistinct = Record[0];
2373       MetadataList.assignValue(
2374           GET_OR_DISTINCT(DIMacroFile,
2375                           (Context, Record[1], Record[2],
2376                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2377           NextMetadataNo++);
2378       break;
2379     }
2380     case bitc::METADATA_TEMPLATE_TYPE: {
2381       if (Record.size() != 3)
2382         return error("Invalid record");
2383 
2384       IsDistinct = Record[0];
2385       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2386                                                (Context, getMDString(Record[1]),
2387                                                 getMDOrNull(Record[2]))),
2388                                NextMetadataNo++);
2389       break;
2390     }
2391     case bitc::METADATA_TEMPLATE_VALUE: {
2392       if (Record.size() != 5)
2393         return error("Invalid record");
2394 
2395       IsDistinct = Record[0];
2396       MetadataList.assignValue(
2397           GET_OR_DISTINCT(DITemplateValueParameter,
2398                           (Context, Record[1], getMDString(Record[2]),
2399                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2400           NextMetadataNo++);
2401       break;
2402     }
2403     case bitc::METADATA_GLOBAL_VAR: {
2404       if (Record.size() != 11)
2405         return error("Invalid record");
2406 
2407       IsDistinct = Record[0];
2408       MetadataList.assignValue(
2409           GET_OR_DISTINCT(DIGlobalVariable,
2410                           (Context, getMDOrNull(Record[1]),
2411                            getMDString(Record[2]), getMDString(Record[3]),
2412                            getMDOrNull(Record[4]), Record[5],
2413                            getMDOrNull(Record[6]), Record[7], Record[8],
2414                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2415           NextMetadataNo++);
2416       break;
2417     }
2418     case bitc::METADATA_LOCAL_VAR: {
2419       // 10th field is for the obseleted 'inlinedAt:' field.
2420       if (Record.size() < 8 || Record.size() > 10)
2421         return error("Invalid record");
2422 
2423       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2424       // DW_TAG_arg_variable.
2425       IsDistinct = Record[0];
2426       bool HasTag = Record.size() > 8;
2427       MetadataList.assignValue(
2428           GET_OR_DISTINCT(DILocalVariable,
2429                           (Context, getMDOrNull(Record[1 + HasTag]),
2430                            getMDString(Record[2 + HasTag]),
2431                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2432                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2433                            Record[7 + HasTag])),
2434           NextMetadataNo++);
2435       break;
2436     }
2437     case bitc::METADATA_EXPRESSION: {
2438       if (Record.size() < 1)
2439         return error("Invalid record");
2440 
2441       IsDistinct = Record[0];
2442       MetadataList.assignValue(
2443           GET_OR_DISTINCT(DIExpression,
2444                           (Context, makeArrayRef(Record).slice(1))),
2445           NextMetadataNo++);
2446       break;
2447     }
2448     case bitc::METADATA_OBJC_PROPERTY: {
2449       if (Record.size() != 8)
2450         return error("Invalid record");
2451 
2452       IsDistinct = Record[0];
2453       MetadataList.assignValue(
2454           GET_OR_DISTINCT(DIObjCProperty,
2455                           (Context, getMDString(Record[1]),
2456                            getMDOrNull(Record[2]), Record[3],
2457                            getMDString(Record[4]), getMDString(Record[5]),
2458                            Record[6], getMDOrNull(Record[7]))),
2459           NextMetadataNo++);
2460       break;
2461     }
2462     case bitc::METADATA_IMPORTED_ENTITY: {
2463       if (Record.size() != 6)
2464         return error("Invalid record");
2465 
2466       IsDistinct = Record[0];
2467       MetadataList.assignValue(
2468           GET_OR_DISTINCT(DIImportedEntity,
2469                           (Context, Record[1], getMDOrNull(Record[2]),
2470                            getMDOrNull(Record[3]), Record[4],
2471                            getMDString(Record[5]))),
2472           NextMetadataNo++);
2473       break;
2474     }
2475     case bitc::METADATA_STRING_OLD: {
2476       std::string String(Record.begin(), Record.end());
2477 
2478       // Test for upgrading !llvm.loop.
2479       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2480 
2481       Metadata *MD = MDString::get(Context, String);
2482       MetadataList.assignValue(MD, NextMetadataNo++);
2483       break;
2484     }
2485     case bitc::METADATA_STRINGS:
2486       if (std::error_code EC =
2487               parseMetadataStrings(Record, Blob, NextMetadataNo))
2488         return EC;
2489       break;
2490     case bitc::METADATA_KIND: {
2491       // Support older bitcode files that had METADATA_KIND records in a
2492       // block with METADATA_BLOCK_ID.
2493       if (std::error_code EC = parseMetadataKindRecord(Record))
2494         return EC;
2495       break;
2496     }
2497     }
2498   }
2499 #undef GET_OR_DISTINCT
2500 }
2501 
2502 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2503 std::error_code BitcodeReader::parseMetadataKinds() {
2504   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2505     return error("Invalid record");
2506 
2507   SmallVector<uint64_t, 64> Record;
2508 
2509   // Read all the records.
2510   while (1) {
2511     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2512 
2513     switch (Entry.Kind) {
2514     case BitstreamEntry::SubBlock: // Handled for us already.
2515     case BitstreamEntry::Error:
2516       return error("Malformed block");
2517     case BitstreamEntry::EndBlock:
2518       return std::error_code();
2519     case BitstreamEntry::Record:
2520       // The interesting case.
2521       break;
2522     }
2523 
2524     // Read a record.
2525     Record.clear();
2526     unsigned Code = Stream.readRecord(Entry.ID, Record);
2527     switch (Code) {
2528     default: // Default behavior: ignore.
2529       break;
2530     case bitc::METADATA_KIND: {
2531       if (std::error_code EC = parseMetadataKindRecord(Record))
2532         return EC;
2533       break;
2534     }
2535     }
2536   }
2537 }
2538 
2539 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2540 /// encoding.
2541 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2542   if ((V & 1) == 0)
2543     return V >> 1;
2544   if (V != 1)
2545     return -(V >> 1);
2546   // There is no such thing as -0 with integers.  "-0" really means MININT.
2547   return 1ULL << 63;
2548 }
2549 
2550 /// Resolve all of the initializers for global values and aliases that we can.
2551 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2552   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2553   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2554       IndirectSymbolInitWorklist;
2555   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2556   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2557   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2558 
2559   GlobalInitWorklist.swap(GlobalInits);
2560   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2561   FunctionPrefixWorklist.swap(FunctionPrefixes);
2562   FunctionPrologueWorklist.swap(FunctionPrologues);
2563   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2564 
2565   while (!GlobalInitWorklist.empty()) {
2566     unsigned ValID = GlobalInitWorklist.back().second;
2567     if (ValID >= ValueList.size()) {
2568       // Not ready to resolve this yet, it requires something later in the file.
2569       GlobalInits.push_back(GlobalInitWorklist.back());
2570     } else {
2571       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2572         GlobalInitWorklist.back().first->setInitializer(C);
2573       else
2574         return error("Expected a constant");
2575     }
2576     GlobalInitWorklist.pop_back();
2577   }
2578 
2579   while (!IndirectSymbolInitWorklist.empty()) {
2580     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2581     if (ValID >= ValueList.size()) {
2582       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2583     } else {
2584       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2585       if (!C)
2586         return error("Expected a constant");
2587       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2588       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2589         return error("Alias and aliasee types don't match");
2590       GIS->setIndirectSymbol(C);
2591     }
2592     IndirectSymbolInitWorklist.pop_back();
2593   }
2594 
2595   while (!FunctionPrefixWorklist.empty()) {
2596     unsigned ValID = FunctionPrefixWorklist.back().second;
2597     if (ValID >= ValueList.size()) {
2598       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2599     } else {
2600       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2601         FunctionPrefixWorklist.back().first->setPrefixData(C);
2602       else
2603         return error("Expected a constant");
2604     }
2605     FunctionPrefixWorklist.pop_back();
2606   }
2607 
2608   while (!FunctionPrologueWorklist.empty()) {
2609     unsigned ValID = FunctionPrologueWorklist.back().second;
2610     if (ValID >= ValueList.size()) {
2611       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2612     } else {
2613       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2614         FunctionPrologueWorklist.back().first->setPrologueData(C);
2615       else
2616         return error("Expected a constant");
2617     }
2618     FunctionPrologueWorklist.pop_back();
2619   }
2620 
2621   while (!FunctionPersonalityFnWorklist.empty()) {
2622     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2623     if (ValID >= ValueList.size()) {
2624       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2625     } else {
2626       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2627         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2628       else
2629         return error("Expected a constant");
2630     }
2631     FunctionPersonalityFnWorklist.pop_back();
2632   }
2633 
2634   return std::error_code();
2635 }
2636 
2637 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2638   SmallVector<uint64_t, 8> Words(Vals.size());
2639   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2640                  BitcodeReader::decodeSignRotatedValue);
2641 
2642   return APInt(TypeBits, Words);
2643 }
2644 
2645 std::error_code BitcodeReader::parseConstants() {
2646   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2647     return error("Invalid record");
2648 
2649   SmallVector<uint64_t, 64> Record;
2650 
2651   // Read all the records for this value table.
2652   Type *CurTy = Type::getInt32Ty(Context);
2653   unsigned NextCstNo = ValueList.size();
2654   while (1) {
2655     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2656 
2657     switch (Entry.Kind) {
2658     case BitstreamEntry::SubBlock: // Handled for us already.
2659     case BitstreamEntry::Error:
2660       return error("Malformed block");
2661     case BitstreamEntry::EndBlock:
2662       if (NextCstNo != ValueList.size())
2663         return error("Invalid constant reference");
2664 
2665       // Once all the constants have been read, go through and resolve forward
2666       // references.
2667       ValueList.resolveConstantForwardRefs();
2668       return std::error_code();
2669     case BitstreamEntry::Record:
2670       // The interesting case.
2671       break;
2672     }
2673 
2674     // Read a record.
2675     Record.clear();
2676     Value *V = nullptr;
2677     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2678     switch (BitCode) {
2679     default:  // Default behavior: unknown constant
2680     case bitc::CST_CODE_UNDEF:     // UNDEF
2681       V = UndefValue::get(CurTy);
2682       break;
2683     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2684       if (Record.empty())
2685         return error("Invalid record");
2686       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2687         return error("Invalid record");
2688       CurTy = TypeList[Record[0]];
2689       continue;  // Skip the ValueList manipulation.
2690     case bitc::CST_CODE_NULL:      // NULL
2691       V = Constant::getNullValue(CurTy);
2692       break;
2693     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2694       if (!CurTy->isIntegerTy() || Record.empty())
2695         return error("Invalid record");
2696       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2697       break;
2698     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2699       if (!CurTy->isIntegerTy() || Record.empty())
2700         return error("Invalid record");
2701 
2702       APInt VInt =
2703           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2704       V = ConstantInt::get(Context, VInt);
2705 
2706       break;
2707     }
2708     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2709       if (Record.empty())
2710         return error("Invalid record");
2711       if (CurTy->isHalfTy())
2712         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2713                                              APInt(16, (uint16_t)Record[0])));
2714       else if (CurTy->isFloatTy())
2715         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2716                                              APInt(32, (uint32_t)Record[0])));
2717       else if (CurTy->isDoubleTy())
2718         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2719                                              APInt(64, Record[0])));
2720       else if (CurTy->isX86_FP80Ty()) {
2721         // Bits are not stored the same way as a normal i80 APInt, compensate.
2722         uint64_t Rearrange[2];
2723         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2724         Rearrange[1] = Record[0] >> 48;
2725         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2726                                              APInt(80, Rearrange)));
2727       } else if (CurTy->isFP128Ty())
2728         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2729                                              APInt(128, Record)));
2730       else if (CurTy->isPPC_FP128Ty())
2731         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2732                                              APInt(128, Record)));
2733       else
2734         V = UndefValue::get(CurTy);
2735       break;
2736     }
2737 
2738     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2739       if (Record.empty())
2740         return error("Invalid record");
2741 
2742       unsigned Size = Record.size();
2743       SmallVector<Constant*, 16> Elts;
2744 
2745       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2746         for (unsigned i = 0; i != Size; ++i)
2747           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2748                                                      STy->getElementType(i)));
2749         V = ConstantStruct::get(STy, Elts);
2750       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2751         Type *EltTy = ATy->getElementType();
2752         for (unsigned i = 0; i != Size; ++i)
2753           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2754         V = ConstantArray::get(ATy, Elts);
2755       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2756         Type *EltTy = VTy->getElementType();
2757         for (unsigned i = 0; i != Size; ++i)
2758           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2759         V = ConstantVector::get(Elts);
2760       } else {
2761         V = UndefValue::get(CurTy);
2762       }
2763       break;
2764     }
2765     case bitc::CST_CODE_STRING:    // STRING: [values]
2766     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2767       if (Record.empty())
2768         return error("Invalid record");
2769 
2770       SmallString<16> Elts(Record.begin(), Record.end());
2771       V = ConstantDataArray::getString(Context, Elts,
2772                                        BitCode == bitc::CST_CODE_CSTRING);
2773       break;
2774     }
2775     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2776       if (Record.empty())
2777         return error("Invalid record");
2778 
2779       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2780       if (EltTy->isIntegerTy(8)) {
2781         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2782         if (isa<VectorType>(CurTy))
2783           V = ConstantDataVector::get(Context, Elts);
2784         else
2785           V = ConstantDataArray::get(Context, Elts);
2786       } else if (EltTy->isIntegerTy(16)) {
2787         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2788         if (isa<VectorType>(CurTy))
2789           V = ConstantDataVector::get(Context, Elts);
2790         else
2791           V = ConstantDataArray::get(Context, Elts);
2792       } else if (EltTy->isIntegerTy(32)) {
2793         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2794         if (isa<VectorType>(CurTy))
2795           V = ConstantDataVector::get(Context, Elts);
2796         else
2797           V = ConstantDataArray::get(Context, Elts);
2798       } else if (EltTy->isIntegerTy(64)) {
2799         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2800         if (isa<VectorType>(CurTy))
2801           V = ConstantDataVector::get(Context, Elts);
2802         else
2803           V = ConstantDataArray::get(Context, Elts);
2804       } else if (EltTy->isHalfTy()) {
2805         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2806         if (isa<VectorType>(CurTy))
2807           V = ConstantDataVector::getFP(Context, Elts);
2808         else
2809           V = ConstantDataArray::getFP(Context, Elts);
2810       } else if (EltTy->isFloatTy()) {
2811         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2812         if (isa<VectorType>(CurTy))
2813           V = ConstantDataVector::getFP(Context, Elts);
2814         else
2815           V = ConstantDataArray::getFP(Context, Elts);
2816       } else if (EltTy->isDoubleTy()) {
2817         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2818         if (isa<VectorType>(CurTy))
2819           V = ConstantDataVector::getFP(Context, Elts);
2820         else
2821           V = ConstantDataArray::getFP(Context, Elts);
2822       } else {
2823         return error("Invalid type for value");
2824       }
2825       break;
2826     }
2827     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2828       if (Record.size() < 3)
2829         return error("Invalid record");
2830       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2831       if (Opc < 0) {
2832         V = UndefValue::get(CurTy);  // Unknown binop.
2833       } else {
2834         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2835         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2836         unsigned Flags = 0;
2837         if (Record.size() >= 4) {
2838           if (Opc == Instruction::Add ||
2839               Opc == Instruction::Sub ||
2840               Opc == Instruction::Mul ||
2841               Opc == Instruction::Shl) {
2842             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2843               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2844             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2845               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2846           } else if (Opc == Instruction::SDiv ||
2847                      Opc == Instruction::UDiv ||
2848                      Opc == Instruction::LShr ||
2849                      Opc == Instruction::AShr) {
2850             if (Record[3] & (1 << bitc::PEO_EXACT))
2851               Flags |= SDivOperator::IsExact;
2852           }
2853         }
2854         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2855       }
2856       break;
2857     }
2858     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2859       if (Record.size() < 3)
2860         return error("Invalid record");
2861       int Opc = getDecodedCastOpcode(Record[0]);
2862       if (Opc < 0) {
2863         V = UndefValue::get(CurTy);  // Unknown cast.
2864       } else {
2865         Type *OpTy = getTypeByID(Record[1]);
2866         if (!OpTy)
2867           return error("Invalid record");
2868         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2869         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2870         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2871       }
2872       break;
2873     }
2874     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2875     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2876       unsigned OpNum = 0;
2877       Type *PointeeType = nullptr;
2878       if (Record.size() % 2)
2879         PointeeType = getTypeByID(Record[OpNum++]);
2880       SmallVector<Constant*, 16> Elts;
2881       while (OpNum != Record.size()) {
2882         Type *ElTy = getTypeByID(Record[OpNum++]);
2883         if (!ElTy)
2884           return error("Invalid record");
2885         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2886       }
2887 
2888       if (PointeeType &&
2889           PointeeType !=
2890               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2891                   ->getElementType())
2892         return error("Explicit gep operator type does not match pointee type "
2893                      "of pointer operand");
2894 
2895       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2896       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2897                                          BitCode ==
2898                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2899       break;
2900     }
2901     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2902       if (Record.size() < 3)
2903         return error("Invalid record");
2904 
2905       Type *SelectorTy = Type::getInt1Ty(Context);
2906 
2907       // The selector might be an i1 or an <n x i1>
2908       // Get the type from the ValueList before getting a forward ref.
2909       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2910         if (Value *V = ValueList[Record[0]])
2911           if (SelectorTy != V->getType())
2912             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2913 
2914       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2915                                                               SelectorTy),
2916                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2917                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2918       break;
2919     }
2920     case bitc::CST_CODE_CE_EXTRACTELT
2921         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2922       if (Record.size() < 3)
2923         return error("Invalid record");
2924       VectorType *OpTy =
2925         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2926       if (!OpTy)
2927         return error("Invalid record");
2928       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2929       Constant *Op1 = nullptr;
2930       if (Record.size() == 4) {
2931         Type *IdxTy = getTypeByID(Record[2]);
2932         if (!IdxTy)
2933           return error("Invalid record");
2934         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2935       } else // TODO: Remove with llvm 4.0
2936         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2937       if (!Op1)
2938         return error("Invalid record");
2939       V = ConstantExpr::getExtractElement(Op0, Op1);
2940       break;
2941     }
2942     case bitc::CST_CODE_CE_INSERTELT
2943         : { // CE_INSERTELT: [opval, opval, opty, opval]
2944       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2945       if (Record.size() < 3 || !OpTy)
2946         return error("Invalid record");
2947       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2948       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2949                                                   OpTy->getElementType());
2950       Constant *Op2 = nullptr;
2951       if (Record.size() == 4) {
2952         Type *IdxTy = getTypeByID(Record[2]);
2953         if (!IdxTy)
2954           return error("Invalid record");
2955         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2956       } else // TODO: Remove with llvm 4.0
2957         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2958       if (!Op2)
2959         return error("Invalid record");
2960       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2961       break;
2962     }
2963     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2964       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2965       if (Record.size() < 3 || !OpTy)
2966         return error("Invalid record");
2967       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2968       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2969       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2970                                                  OpTy->getNumElements());
2971       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2972       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2973       break;
2974     }
2975     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2976       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2977       VectorType *OpTy =
2978         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2979       if (Record.size() < 4 || !RTy || !OpTy)
2980         return error("Invalid record");
2981       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2982       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2983       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2984                                                  RTy->getNumElements());
2985       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2986       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2987       break;
2988     }
2989     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2990       if (Record.size() < 4)
2991         return error("Invalid record");
2992       Type *OpTy = getTypeByID(Record[0]);
2993       if (!OpTy)
2994         return error("Invalid record");
2995       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2996       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2997 
2998       if (OpTy->isFPOrFPVectorTy())
2999         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3000       else
3001         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3002       break;
3003     }
3004     // This maintains backward compatibility, pre-asm dialect keywords.
3005     // FIXME: Remove with the 4.0 release.
3006     case bitc::CST_CODE_INLINEASM_OLD: {
3007       if (Record.size() < 2)
3008         return error("Invalid record");
3009       std::string AsmStr, ConstrStr;
3010       bool HasSideEffects = Record[0] & 1;
3011       bool IsAlignStack = Record[0] >> 1;
3012       unsigned AsmStrSize = Record[1];
3013       if (2+AsmStrSize >= Record.size())
3014         return error("Invalid record");
3015       unsigned ConstStrSize = Record[2+AsmStrSize];
3016       if (3+AsmStrSize+ConstStrSize > Record.size())
3017         return error("Invalid record");
3018 
3019       for (unsigned i = 0; i != AsmStrSize; ++i)
3020         AsmStr += (char)Record[2+i];
3021       for (unsigned i = 0; i != ConstStrSize; ++i)
3022         ConstrStr += (char)Record[3+AsmStrSize+i];
3023       PointerType *PTy = cast<PointerType>(CurTy);
3024       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3025                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3026       break;
3027     }
3028     // This version adds support for the asm dialect keywords (e.g.,
3029     // inteldialect).
3030     case bitc::CST_CODE_INLINEASM: {
3031       if (Record.size() < 2)
3032         return error("Invalid record");
3033       std::string AsmStr, ConstrStr;
3034       bool HasSideEffects = Record[0] & 1;
3035       bool IsAlignStack = (Record[0] >> 1) & 1;
3036       unsigned AsmDialect = Record[0] >> 2;
3037       unsigned AsmStrSize = Record[1];
3038       if (2+AsmStrSize >= Record.size())
3039         return error("Invalid record");
3040       unsigned ConstStrSize = Record[2+AsmStrSize];
3041       if (3+AsmStrSize+ConstStrSize > Record.size())
3042         return error("Invalid record");
3043 
3044       for (unsigned i = 0; i != AsmStrSize; ++i)
3045         AsmStr += (char)Record[2+i];
3046       for (unsigned i = 0; i != ConstStrSize; ++i)
3047         ConstrStr += (char)Record[3+AsmStrSize+i];
3048       PointerType *PTy = cast<PointerType>(CurTy);
3049       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3050                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3051                          InlineAsm::AsmDialect(AsmDialect));
3052       break;
3053     }
3054     case bitc::CST_CODE_BLOCKADDRESS:{
3055       if (Record.size() < 3)
3056         return error("Invalid record");
3057       Type *FnTy = getTypeByID(Record[0]);
3058       if (!FnTy)
3059         return error("Invalid record");
3060       Function *Fn =
3061         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3062       if (!Fn)
3063         return error("Invalid record");
3064 
3065       // If the function is already parsed we can insert the block address right
3066       // away.
3067       BasicBlock *BB;
3068       unsigned BBID = Record[2];
3069       if (!BBID)
3070         // Invalid reference to entry block.
3071         return error("Invalid ID");
3072       if (!Fn->empty()) {
3073         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3074         for (size_t I = 0, E = BBID; I != E; ++I) {
3075           if (BBI == BBE)
3076             return error("Invalid ID");
3077           ++BBI;
3078         }
3079         BB = &*BBI;
3080       } else {
3081         // Otherwise insert a placeholder and remember it so it can be inserted
3082         // when the function is parsed.
3083         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3084         if (FwdBBs.empty())
3085           BasicBlockFwdRefQueue.push_back(Fn);
3086         if (FwdBBs.size() < BBID + 1)
3087           FwdBBs.resize(BBID + 1);
3088         if (!FwdBBs[BBID])
3089           FwdBBs[BBID] = BasicBlock::Create(Context);
3090         BB = FwdBBs[BBID];
3091       }
3092       V = BlockAddress::get(Fn, BB);
3093       break;
3094     }
3095     }
3096 
3097     ValueList.assignValue(V, NextCstNo);
3098     ++NextCstNo;
3099   }
3100 }
3101 
3102 std::error_code BitcodeReader::parseUseLists() {
3103   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3104     return error("Invalid record");
3105 
3106   // Read all the records.
3107   SmallVector<uint64_t, 64> Record;
3108   while (1) {
3109     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3110 
3111     switch (Entry.Kind) {
3112     case BitstreamEntry::SubBlock: // Handled for us already.
3113     case BitstreamEntry::Error:
3114       return error("Malformed block");
3115     case BitstreamEntry::EndBlock:
3116       return std::error_code();
3117     case BitstreamEntry::Record:
3118       // The interesting case.
3119       break;
3120     }
3121 
3122     // Read a use list record.
3123     Record.clear();
3124     bool IsBB = false;
3125     switch (Stream.readRecord(Entry.ID, Record)) {
3126     default:  // Default behavior: unknown type.
3127       break;
3128     case bitc::USELIST_CODE_BB:
3129       IsBB = true;
3130       // fallthrough
3131     case bitc::USELIST_CODE_DEFAULT: {
3132       unsigned RecordLength = Record.size();
3133       if (RecordLength < 3)
3134         // Records should have at least an ID and two indexes.
3135         return error("Invalid record");
3136       unsigned ID = Record.back();
3137       Record.pop_back();
3138 
3139       Value *V;
3140       if (IsBB) {
3141         assert(ID < FunctionBBs.size() && "Basic block not found");
3142         V = FunctionBBs[ID];
3143       } else
3144         V = ValueList[ID];
3145       unsigned NumUses = 0;
3146       SmallDenseMap<const Use *, unsigned, 16> Order;
3147       for (const Use &U : V->materialized_uses()) {
3148         if (++NumUses > Record.size())
3149           break;
3150         Order[&U] = Record[NumUses - 1];
3151       }
3152       if (Order.size() != Record.size() || NumUses > Record.size())
3153         // Mismatches can happen if the functions are being materialized lazily
3154         // (out-of-order), or a value has been upgraded.
3155         break;
3156 
3157       V->sortUseList([&](const Use &L, const Use &R) {
3158         return Order.lookup(&L) < Order.lookup(&R);
3159       });
3160       break;
3161     }
3162     }
3163   }
3164 }
3165 
3166 /// When we see the block for metadata, remember where it is and then skip it.
3167 /// This lets us lazily deserialize the metadata.
3168 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3169   // Save the current stream state.
3170   uint64_t CurBit = Stream.GetCurrentBitNo();
3171   DeferredMetadataInfo.push_back(CurBit);
3172 
3173   // Skip over the block for now.
3174   if (Stream.SkipBlock())
3175     return error("Invalid record");
3176   return std::error_code();
3177 }
3178 
3179 std::error_code BitcodeReader::materializeMetadata() {
3180   for (uint64_t BitPos : DeferredMetadataInfo) {
3181     // Move the bit stream to the saved position.
3182     Stream.JumpToBit(BitPos);
3183     if (std::error_code EC = parseMetadata(true))
3184       return EC;
3185   }
3186   DeferredMetadataInfo.clear();
3187   return std::error_code();
3188 }
3189 
3190 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3191 
3192 /// When we see the block for a function body, remember where it is and then
3193 /// skip it.  This lets us lazily deserialize the functions.
3194 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3195   // Get the function we are talking about.
3196   if (FunctionsWithBodies.empty())
3197     return error("Insufficient function protos");
3198 
3199   Function *Fn = FunctionsWithBodies.back();
3200   FunctionsWithBodies.pop_back();
3201 
3202   // Save the current stream state.
3203   uint64_t CurBit = Stream.GetCurrentBitNo();
3204   assert(
3205       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3206       "Mismatch between VST and scanned function offsets");
3207   DeferredFunctionInfo[Fn] = CurBit;
3208 
3209   // Skip over the function block for now.
3210   if (Stream.SkipBlock())
3211     return error("Invalid record");
3212   return std::error_code();
3213 }
3214 
3215 std::error_code BitcodeReader::globalCleanup() {
3216   // Patch the initializers for globals and aliases up.
3217   resolveGlobalAndIndirectSymbolInits();
3218   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3219     return error("Malformed global initializer set");
3220 
3221   // Look for intrinsic functions which need to be upgraded at some point
3222   for (Function &F : *TheModule) {
3223     Function *NewFn;
3224     if (UpgradeIntrinsicFunction(&F, NewFn))
3225       UpgradedIntrinsics[&F] = NewFn;
3226   }
3227 
3228   // Look for global variables which need to be renamed.
3229   for (GlobalVariable &GV : TheModule->globals())
3230     UpgradeGlobalVariable(&GV);
3231 
3232   // Force deallocation of memory for these vectors to favor the client that
3233   // want lazy deserialization.
3234   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3235   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3236       IndirectSymbolInits);
3237   return std::error_code();
3238 }
3239 
3240 /// Support for lazy parsing of function bodies. This is required if we
3241 /// either have an old bitcode file without a VST forward declaration record,
3242 /// or if we have an anonymous function being materialized, since anonymous
3243 /// functions do not have a name and are therefore not in the VST.
3244 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3245   Stream.JumpToBit(NextUnreadBit);
3246 
3247   if (Stream.AtEndOfStream())
3248     return error("Could not find function in stream");
3249 
3250   if (!SeenFirstFunctionBody)
3251     return error("Trying to materialize functions before seeing function blocks");
3252 
3253   // An old bitcode file with the symbol table at the end would have
3254   // finished the parse greedily.
3255   assert(SeenValueSymbolTable);
3256 
3257   SmallVector<uint64_t, 64> Record;
3258 
3259   while (1) {
3260     BitstreamEntry Entry = Stream.advance();
3261     switch (Entry.Kind) {
3262     default:
3263       return error("Expect SubBlock");
3264     case BitstreamEntry::SubBlock:
3265       switch (Entry.ID) {
3266       default:
3267         return error("Expect function block");
3268       case bitc::FUNCTION_BLOCK_ID:
3269         if (std::error_code EC = rememberAndSkipFunctionBody())
3270           return EC;
3271         NextUnreadBit = Stream.GetCurrentBitNo();
3272         return std::error_code();
3273       }
3274     }
3275   }
3276 }
3277 
3278 std::error_code BitcodeReader::parseBitcodeVersion() {
3279   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3280     return error("Invalid record");
3281 
3282   // Read all the records.
3283   SmallVector<uint64_t, 64> Record;
3284   while (1) {
3285     BitstreamEntry Entry = Stream.advance();
3286 
3287     switch (Entry.Kind) {
3288     default:
3289     case BitstreamEntry::Error:
3290       return error("Malformed block");
3291     case BitstreamEntry::EndBlock:
3292       return std::error_code();
3293     case BitstreamEntry::Record:
3294       // The interesting case.
3295       break;
3296     }
3297 
3298     // Read a record.
3299     Record.clear();
3300     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3301     switch (BitCode) {
3302     default: // Default behavior: reject
3303       return error("Invalid value");
3304     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3305                                              // N]
3306       convertToString(Record, 0, ProducerIdentification);
3307       break;
3308     }
3309     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3310       unsigned epoch = (unsigned)Record[0];
3311       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3312         return error(
3313           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3314           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3315       }
3316     }
3317     }
3318   }
3319 }
3320 
3321 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3322                                            bool ShouldLazyLoadMetadata) {
3323   if (ResumeBit)
3324     Stream.JumpToBit(ResumeBit);
3325   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3326     return error("Invalid record");
3327 
3328   SmallVector<uint64_t, 64> Record;
3329   std::vector<std::string> SectionTable;
3330   std::vector<std::string> GCTable;
3331 
3332   // Read all the records for this module.
3333   while (1) {
3334     BitstreamEntry Entry = Stream.advance();
3335 
3336     switch (Entry.Kind) {
3337     case BitstreamEntry::Error:
3338       return error("Malformed block");
3339     case BitstreamEntry::EndBlock:
3340       return globalCleanup();
3341 
3342     case BitstreamEntry::SubBlock:
3343       switch (Entry.ID) {
3344       default:  // Skip unknown content.
3345         if (Stream.SkipBlock())
3346           return error("Invalid record");
3347         break;
3348       case bitc::BLOCKINFO_BLOCK_ID:
3349         if (Stream.ReadBlockInfoBlock())
3350           return error("Malformed block");
3351         break;
3352       case bitc::PARAMATTR_BLOCK_ID:
3353         if (std::error_code EC = parseAttributeBlock())
3354           return EC;
3355         break;
3356       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3357         if (std::error_code EC = parseAttributeGroupBlock())
3358           return EC;
3359         break;
3360       case bitc::TYPE_BLOCK_ID_NEW:
3361         if (std::error_code EC = parseTypeTable())
3362           return EC;
3363         break;
3364       case bitc::VALUE_SYMTAB_BLOCK_ID:
3365         if (!SeenValueSymbolTable) {
3366           // Either this is an old form VST without function index and an
3367           // associated VST forward declaration record (which would have caused
3368           // the VST to be jumped to and parsed before it was encountered
3369           // normally in the stream), or there were no function blocks to
3370           // trigger an earlier parsing of the VST.
3371           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3372           if (std::error_code EC = parseValueSymbolTable())
3373             return EC;
3374           SeenValueSymbolTable = true;
3375         } else {
3376           // We must have had a VST forward declaration record, which caused
3377           // the parser to jump to and parse the VST earlier.
3378           assert(VSTOffset > 0);
3379           if (Stream.SkipBlock())
3380             return error("Invalid record");
3381         }
3382         break;
3383       case bitc::CONSTANTS_BLOCK_ID:
3384         if (std::error_code EC = parseConstants())
3385           return EC;
3386         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3387           return EC;
3388         break;
3389       case bitc::METADATA_BLOCK_ID:
3390         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3391           if (std::error_code EC = rememberAndSkipMetadata())
3392             return EC;
3393           break;
3394         }
3395         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3396         if (std::error_code EC = parseMetadata(true))
3397           return EC;
3398         break;
3399       case bitc::METADATA_KIND_BLOCK_ID:
3400         if (std::error_code EC = parseMetadataKinds())
3401           return EC;
3402         break;
3403       case bitc::FUNCTION_BLOCK_ID:
3404         // If this is the first function body we've seen, reverse the
3405         // FunctionsWithBodies list.
3406         if (!SeenFirstFunctionBody) {
3407           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3408           if (std::error_code EC = globalCleanup())
3409             return EC;
3410           SeenFirstFunctionBody = true;
3411         }
3412 
3413         if (VSTOffset > 0) {
3414           // If we have a VST forward declaration record, make sure we
3415           // parse the VST now if we haven't already. It is needed to
3416           // set up the DeferredFunctionInfo vector for lazy reading.
3417           if (!SeenValueSymbolTable) {
3418             if (std::error_code EC =
3419                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3420               return EC;
3421             SeenValueSymbolTable = true;
3422             // Fall through so that we record the NextUnreadBit below.
3423             // This is necessary in case we have an anonymous function that
3424             // is later materialized. Since it will not have a VST entry we
3425             // need to fall back to the lazy parse to find its offset.
3426           } else {
3427             // If we have a VST forward declaration record, but have already
3428             // parsed the VST (just above, when the first function body was
3429             // encountered here), then we are resuming the parse after
3430             // materializing functions. The ResumeBit points to the
3431             // start of the last function block recorded in the
3432             // DeferredFunctionInfo map. Skip it.
3433             if (Stream.SkipBlock())
3434               return error("Invalid record");
3435             continue;
3436           }
3437         }
3438 
3439         // Support older bitcode files that did not have the function
3440         // index in the VST, nor a VST forward declaration record, as
3441         // well as anonymous functions that do not have VST entries.
3442         // Build the DeferredFunctionInfo vector on the fly.
3443         if (std::error_code EC = rememberAndSkipFunctionBody())
3444           return EC;
3445 
3446         // Suspend parsing when we reach the function bodies. Subsequent
3447         // materialization calls will resume it when necessary. If the bitcode
3448         // file is old, the symbol table will be at the end instead and will not
3449         // have been seen yet. In this case, just finish the parse now.
3450         if (SeenValueSymbolTable) {
3451           NextUnreadBit = Stream.GetCurrentBitNo();
3452           return std::error_code();
3453         }
3454         break;
3455       case bitc::USELIST_BLOCK_ID:
3456         if (std::error_code EC = parseUseLists())
3457           return EC;
3458         break;
3459       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3460         if (std::error_code EC = parseOperandBundleTags())
3461           return EC;
3462         break;
3463       }
3464       continue;
3465 
3466     case BitstreamEntry::Record:
3467       // The interesting case.
3468       break;
3469     }
3470 
3471     // Read a record.
3472     auto BitCode = Stream.readRecord(Entry.ID, Record);
3473     switch (BitCode) {
3474     default: break;  // Default behavior, ignore unknown content.
3475     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3476       if (Record.size() < 1)
3477         return error("Invalid record");
3478       // Only version #0 and #1 are supported so far.
3479       unsigned module_version = Record[0];
3480       switch (module_version) {
3481         default:
3482           return error("Invalid value");
3483         case 0:
3484           UseRelativeIDs = false;
3485           break;
3486         case 1:
3487           UseRelativeIDs = true;
3488           break;
3489       }
3490       break;
3491     }
3492     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3493       std::string S;
3494       if (convertToString(Record, 0, S))
3495         return error("Invalid record");
3496       TheModule->setTargetTriple(S);
3497       break;
3498     }
3499     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3500       std::string S;
3501       if (convertToString(Record, 0, S))
3502         return error("Invalid record");
3503       TheModule->setDataLayout(S);
3504       break;
3505     }
3506     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3507       std::string S;
3508       if (convertToString(Record, 0, S))
3509         return error("Invalid record");
3510       TheModule->setModuleInlineAsm(S);
3511       break;
3512     }
3513     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3514       // FIXME: Remove in 4.0.
3515       std::string S;
3516       if (convertToString(Record, 0, S))
3517         return error("Invalid record");
3518       // Ignore value.
3519       break;
3520     }
3521     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3522       std::string S;
3523       if (convertToString(Record, 0, S))
3524         return error("Invalid record");
3525       SectionTable.push_back(S);
3526       break;
3527     }
3528     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3529       std::string S;
3530       if (convertToString(Record, 0, S))
3531         return error("Invalid record");
3532       GCTable.push_back(S);
3533       break;
3534     }
3535     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3536       if (Record.size() < 2)
3537         return error("Invalid record");
3538       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3539       unsigned ComdatNameSize = Record[1];
3540       std::string ComdatName;
3541       ComdatName.reserve(ComdatNameSize);
3542       for (unsigned i = 0; i != ComdatNameSize; ++i)
3543         ComdatName += (char)Record[2 + i];
3544       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3545       C->setSelectionKind(SK);
3546       ComdatList.push_back(C);
3547       break;
3548     }
3549     // GLOBALVAR: [pointer type, isconst, initid,
3550     //             linkage, alignment, section, visibility, threadlocal,
3551     //             unnamed_addr, externally_initialized, dllstorageclass,
3552     //             comdat]
3553     case bitc::MODULE_CODE_GLOBALVAR: {
3554       if (Record.size() < 6)
3555         return error("Invalid record");
3556       Type *Ty = getTypeByID(Record[0]);
3557       if (!Ty)
3558         return error("Invalid record");
3559       bool isConstant = Record[1] & 1;
3560       bool explicitType = Record[1] & 2;
3561       unsigned AddressSpace;
3562       if (explicitType) {
3563         AddressSpace = Record[1] >> 2;
3564       } else {
3565         if (!Ty->isPointerTy())
3566           return error("Invalid type for value");
3567         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3568         Ty = cast<PointerType>(Ty)->getElementType();
3569       }
3570 
3571       uint64_t RawLinkage = Record[3];
3572       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3573       unsigned Alignment;
3574       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3575         return EC;
3576       std::string Section;
3577       if (Record[5]) {
3578         if (Record[5]-1 >= SectionTable.size())
3579           return error("Invalid ID");
3580         Section = SectionTable[Record[5]-1];
3581       }
3582       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3583       // Local linkage must have default visibility.
3584       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3585         // FIXME: Change to an error if non-default in 4.0.
3586         Visibility = getDecodedVisibility(Record[6]);
3587 
3588       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3589       if (Record.size() > 7)
3590         TLM = getDecodedThreadLocalMode(Record[7]);
3591 
3592       bool UnnamedAddr = false;
3593       if (Record.size() > 8)
3594         UnnamedAddr = Record[8];
3595 
3596       bool ExternallyInitialized = false;
3597       if (Record.size() > 9)
3598         ExternallyInitialized = Record[9];
3599 
3600       GlobalVariable *NewGV =
3601         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3602                            TLM, AddressSpace, ExternallyInitialized);
3603       NewGV->setAlignment(Alignment);
3604       if (!Section.empty())
3605         NewGV->setSection(Section);
3606       NewGV->setVisibility(Visibility);
3607       NewGV->setUnnamedAddr(UnnamedAddr);
3608 
3609       if (Record.size() > 10)
3610         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3611       else
3612         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3613 
3614       ValueList.push_back(NewGV);
3615 
3616       // Remember which value to use for the global initializer.
3617       if (unsigned InitID = Record[2])
3618         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3619 
3620       if (Record.size() > 11) {
3621         if (unsigned ComdatID = Record[11]) {
3622           if (ComdatID > ComdatList.size())
3623             return error("Invalid global variable comdat ID");
3624           NewGV->setComdat(ComdatList[ComdatID - 1]);
3625         }
3626       } else if (hasImplicitComdat(RawLinkage)) {
3627         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3628       }
3629       break;
3630     }
3631     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3632     //             alignment, section, visibility, gc, unnamed_addr,
3633     //             prologuedata, dllstorageclass, comdat, prefixdata]
3634     case bitc::MODULE_CODE_FUNCTION: {
3635       if (Record.size() < 8)
3636         return error("Invalid record");
3637       Type *Ty = getTypeByID(Record[0]);
3638       if (!Ty)
3639         return error("Invalid record");
3640       if (auto *PTy = dyn_cast<PointerType>(Ty))
3641         Ty = PTy->getElementType();
3642       auto *FTy = dyn_cast<FunctionType>(Ty);
3643       if (!FTy)
3644         return error("Invalid type for value");
3645       auto CC = static_cast<CallingConv::ID>(Record[1]);
3646       if (CC & ~CallingConv::MaxID)
3647         return error("Invalid calling convention ID");
3648 
3649       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3650                                         "", TheModule);
3651 
3652       Func->setCallingConv(CC);
3653       bool isProto = Record[2];
3654       uint64_t RawLinkage = Record[3];
3655       Func->setLinkage(getDecodedLinkage(RawLinkage));
3656       Func->setAttributes(getAttributes(Record[4]));
3657 
3658       unsigned Alignment;
3659       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3660         return EC;
3661       Func->setAlignment(Alignment);
3662       if (Record[6]) {
3663         if (Record[6]-1 >= SectionTable.size())
3664           return error("Invalid ID");
3665         Func->setSection(SectionTable[Record[6]-1]);
3666       }
3667       // Local linkage must have default visibility.
3668       if (!Func->hasLocalLinkage())
3669         // FIXME: Change to an error if non-default in 4.0.
3670         Func->setVisibility(getDecodedVisibility(Record[7]));
3671       if (Record.size() > 8 && Record[8]) {
3672         if (Record[8]-1 >= GCTable.size())
3673           return error("Invalid ID");
3674         Func->setGC(GCTable[Record[8]-1].c_str());
3675       }
3676       bool UnnamedAddr = false;
3677       if (Record.size() > 9)
3678         UnnamedAddr = Record[9];
3679       Func->setUnnamedAddr(UnnamedAddr);
3680       if (Record.size() > 10 && Record[10] != 0)
3681         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3682 
3683       if (Record.size() > 11)
3684         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3685       else
3686         upgradeDLLImportExportLinkage(Func, RawLinkage);
3687 
3688       if (Record.size() > 12) {
3689         if (unsigned ComdatID = Record[12]) {
3690           if (ComdatID > ComdatList.size())
3691             return error("Invalid function comdat ID");
3692           Func->setComdat(ComdatList[ComdatID - 1]);
3693         }
3694       } else if (hasImplicitComdat(RawLinkage)) {
3695         Func->setComdat(reinterpret_cast<Comdat *>(1));
3696       }
3697 
3698       if (Record.size() > 13 && Record[13] != 0)
3699         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3700 
3701       if (Record.size() > 14 && Record[14] != 0)
3702         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3703 
3704       ValueList.push_back(Func);
3705 
3706       // If this is a function with a body, remember the prototype we are
3707       // creating now, so that we can match up the body with them later.
3708       if (!isProto) {
3709         Func->setIsMaterializable(true);
3710         FunctionsWithBodies.push_back(Func);
3711         DeferredFunctionInfo[Func] = 0;
3712       }
3713       break;
3714     }
3715     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3716     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3717     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3718     case bitc::MODULE_CODE_IFUNC:
3719     case bitc::MODULE_CODE_ALIAS:
3720     case bitc::MODULE_CODE_ALIAS_OLD: {
3721       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3722       if (Record.size() < (3 + (unsigned)NewRecord))
3723         return error("Invalid record");
3724       unsigned OpNum = 0;
3725       Type *Ty = getTypeByID(Record[OpNum++]);
3726       if (!Ty)
3727         return error("Invalid record");
3728 
3729       unsigned AddrSpace;
3730       if (!NewRecord) {
3731         auto *PTy = dyn_cast<PointerType>(Ty);
3732         if (!PTy)
3733           return error("Invalid type for value");
3734         Ty = PTy->getElementType();
3735         AddrSpace = PTy->getAddressSpace();
3736       } else {
3737         AddrSpace = Record[OpNum++];
3738       }
3739 
3740       auto Val = Record[OpNum++];
3741       auto Linkage = Record[OpNum++];
3742       GlobalIndirectSymbol *NewGA;
3743       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3744           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3745         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3746                                     "", TheModule);
3747       else
3748         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3749                                     "", nullptr, TheModule);
3750       // Old bitcode files didn't have visibility field.
3751       // Local linkage must have default visibility.
3752       if (OpNum != Record.size()) {
3753         auto VisInd = OpNum++;
3754         if (!NewGA->hasLocalLinkage())
3755           // FIXME: Change to an error if non-default in 4.0.
3756           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3757       }
3758       if (OpNum != Record.size())
3759         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3760       else
3761         upgradeDLLImportExportLinkage(NewGA, Linkage);
3762       if (OpNum != Record.size())
3763         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3764       if (OpNum != Record.size())
3765         NewGA->setUnnamedAddr(Record[OpNum++]);
3766       ValueList.push_back(NewGA);
3767       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3768       break;
3769     }
3770     /// MODULE_CODE_PURGEVALS: [numvals]
3771     case bitc::MODULE_CODE_PURGEVALS:
3772       // Trim down the value list to the specified size.
3773       if (Record.size() < 1 || Record[0] > ValueList.size())
3774         return error("Invalid record");
3775       ValueList.shrinkTo(Record[0]);
3776       break;
3777     /// MODULE_CODE_VSTOFFSET: [offset]
3778     case bitc::MODULE_CODE_VSTOFFSET:
3779       if (Record.size() < 1)
3780         return error("Invalid record");
3781       VSTOffset = Record[0];
3782       break;
3783     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3784     case bitc::MODULE_CODE_SOURCE_FILENAME:
3785       SmallString<128> ValueName;
3786       if (convertToString(Record, 0, ValueName))
3787         return error("Invalid record");
3788       TheModule->setSourceFileName(ValueName);
3789       break;
3790     }
3791     Record.clear();
3792   }
3793 }
3794 
3795 /// Helper to read the header common to all bitcode files.
3796 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3797   // Sniff for the signature.
3798   if (Stream.Read(8) != 'B' ||
3799       Stream.Read(8) != 'C' ||
3800       Stream.Read(4) != 0x0 ||
3801       Stream.Read(4) != 0xC ||
3802       Stream.Read(4) != 0xE ||
3803       Stream.Read(4) != 0xD)
3804     return false;
3805   return true;
3806 }
3807 
3808 std::error_code
3809 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3810                                 Module *M, bool ShouldLazyLoadMetadata) {
3811   TheModule = M;
3812 
3813   if (std::error_code EC = initStream(std::move(Streamer)))
3814     return EC;
3815 
3816   // Sniff for the signature.
3817   if (!hasValidBitcodeHeader(Stream))
3818     return error("Invalid bitcode signature");
3819 
3820   // We expect a number of well-defined blocks, though we don't necessarily
3821   // need to understand them all.
3822   while (1) {
3823     if (Stream.AtEndOfStream()) {
3824       // We didn't really read a proper Module.
3825       return error("Malformed IR file");
3826     }
3827 
3828     BitstreamEntry Entry =
3829       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3830 
3831     if (Entry.Kind != BitstreamEntry::SubBlock)
3832       return error("Malformed block");
3833 
3834     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3835       parseBitcodeVersion();
3836       continue;
3837     }
3838 
3839     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3840       return parseModule(0, ShouldLazyLoadMetadata);
3841 
3842     if (Stream.SkipBlock())
3843       return error("Invalid record");
3844   }
3845 }
3846 
3847 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3848   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3849     return error("Invalid record");
3850 
3851   SmallVector<uint64_t, 64> Record;
3852 
3853   std::string Triple;
3854   // Read all the records for this module.
3855   while (1) {
3856     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3857 
3858     switch (Entry.Kind) {
3859     case BitstreamEntry::SubBlock: // Handled for us already.
3860     case BitstreamEntry::Error:
3861       return error("Malformed block");
3862     case BitstreamEntry::EndBlock:
3863       return Triple;
3864     case BitstreamEntry::Record:
3865       // The interesting case.
3866       break;
3867     }
3868 
3869     // Read a record.
3870     switch (Stream.readRecord(Entry.ID, Record)) {
3871     default: break;  // Default behavior, ignore unknown content.
3872     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3873       std::string S;
3874       if (convertToString(Record, 0, S))
3875         return error("Invalid record");
3876       Triple = S;
3877       break;
3878     }
3879     }
3880     Record.clear();
3881   }
3882   llvm_unreachable("Exit infinite loop");
3883 }
3884 
3885 ErrorOr<std::string> BitcodeReader::parseTriple() {
3886   if (std::error_code EC = initStream(nullptr))
3887     return EC;
3888 
3889   // Sniff for the signature.
3890   if (!hasValidBitcodeHeader(Stream))
3891     return error("Invalid bitcode signature");
3892 
3893   // We expect a number of well-defined blocks, though we don't necessarily
3894   // need to understand them all.
3895   while (1) {
3896     BitstreamEntry Entry = Stream.advance();
3897 
3898     switch (Entry.Kind) {
3899     case BitstreamEntry::Error:
3900       return error("Malformed block");
3901     case BitstreamEntry::EndBlock:
3902       return std::error_code();
3903 
3904     case BitstreamEntry::SubBlock:
3905       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3906         return parseModuleTriple();
3907 
3908       // Ignore other sub-blocks.
3909       if (Stream.SkipBlock())
3910         return error("Malformed block");
3911       continue;
3912 
3913     case BitstreamEntry::Record:
3914       Stream.skipRecord(Entry.ID);
3915       continue;
3916     }
3917   }
3918 }
3919 
3920 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3921   if (std::error_code EC = initStream(nullptr))
3922     return EC;
3923 
3924   // Sniff for the signature.
3925   if (!hasValidBitcodeHeader(Stream))
3926     return error("Invalid bitcode signature");
3927 
3928   // We expect a number of well-defined blocks, though we don't necessarily
3929   // need to understand them all.
3930   while (1) {
3931     BitstreamEntry Entry = Stream.advance();
3932     switch (Entry.Kind) {
3933     case BitstreamEntry::Error:
3934       return error("Malformed block");
3935     case BitstreamEntry::EndBlock:
3936       return std::error_code();
3937 
3938     case BitstreamEntry::SubBlock:
3939       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3940         if (std::error_code EC = parseBitcodeVersion())
3941           return EC;
3942         return ProducerIdentification;
3943       }
3944       // Ignore other sub-blocks.
3945       if (Stream.SkipBlock())
3946         return error("Malformed block");
3947       continue;
3948     case BitstreamEntry::Record:
3949       Stream.skipRecord(Entry.ID);
3950       continue;
3951     }
3952   }
3953 }
3954 
3955 /// Parse metadata attachments.
3956 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3957   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3958     return error("Invalid record");
3959 
3960   SmallVector<uint64_t, 64> Record;
3961   while (1) {
3962     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3963 
3964     switch (Entry.Kind) {
3965     case BitstreamEntry::SubBlock: // Handled for us already.
3966     case BitstreamEntry::Error:
3967       return error("Malformed block");
3968     case BitstreamEntry::EndBlock:
3969       return std::error_code();
3970     case BitstreamEntry::Record:
3971       // The interesting case.
3972       break;
3973     }
3974 
3975     // Read a metadata attachment record.
3976     Record.clear();
3977     switch (Stream.readRecord(Entry.ID, Record)) {
3978     default:  // Default behavior: ignore.
3979       break;
3980     case bitc::METADATA_ATTACHMENT: {
3981       unsigned RecordLength = Record.size();
3982       if (Record.empty())
3983         return error("Invalid record");
3984       if (RecordLength % 2 == 0) {
3985         // A function attachment.
3986         for (unsigned I = 0; I != RecordLength; I += 2) {
3987           auto K = MDKindMap.find(Record[I]);
3988           if (K == MDKindMap.end())
3989             return error("Invalid ID");
3990           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3991           if (!MD)
3992             return error("Invalid metadata attachment");
3993           F.setMetadata(K->second, MD);
3994         }
3995         continue;
3996       }
3997 
3998       // An instruction attachment.
3999       Instruction *Inst = InstructionList[Record[0]];
4000       for (unsigned i = 1; i != RecordLength; i = i+2) {
4001         unsigned Kind = Record[i];
4002         DenseMap<unsigned, unsigned>::iterator I =
4003           MDKindMap.find(Kind);
4004         if (I == MDKindMap.end())
4005           return error("Invalid ID");
4006         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4007         if (isa<LocalAsMetadata>(Node))
4008           // Drop the attachment.  This used to be legal, but there's no
4009           // upgrade path.
4010           break;
4011         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4012         if (!MD)
4013           return error("Invalid metadata attachment");
4014 
4015         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4016           MD = upgradeInstructionLoopAttachment(*MD);
4017 
4018         Inst->setMetadata(I->second, MD);
4019         if (I->second == LLVMContext::MD_tbaa) {
4020           InstsWithTBAATag.push_back(Inst);
4021           continue;
4022         }
4023       }
4024       break;
4025     }
4026     }
4027   }
4028 }
4029 
4030 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4031   LLVMContext &Context = PtrType->getContext();
4032   if (!isa<PointerType>(PtrType))
4033     return error(Context, "Load/Store operand is not a pointer type");
4034   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4035 
4036   if (ValType && ValType != ElemType)
4037     return error(Context, "Explicit load/store type does not match pointee "
4038                           "type of pointer operand");
4039   if (!PointerType::isLoadableOrStorableType(ElemType))
4040     return error(Context, "Cannot load/store from pointer");
4041   return std::error_code();
4042 }
4043 
4044 /// Lazily parse the specified function body block.
4045 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4046   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4047     return error("Invalid record");
4048 
4049   // Unexpected unresolved metadata when parsing function.
4050   if (MetadataList.hasFwdRefs())
4051     return error("Invalid function metadata: incoming forward references");
4052 
4053   InstructionList.clear();
4054   unsigned ModuleValueListSize = ValueList.size();
4055   unsigned ModuleMetadataListSize = MetadataList.size();
4056 
4057   // Add all the function arguments to the value table.
4058   for (Argument &I : F->args())
4059     ValueList.push_back(&I);
4060 
4061   unsigned NextValueNo = ValueList.size();
4062   BasicBlock *CurBB = nullptr;
4063   unsigned CurBBNo = 0;
4064 
4065   DebugLoc LastLoc;
4066   auto getLastInstruction = [&]() -> Instruction * {
4067     if (CurBB && !CurBB->empty())
4068       return &CurBB->back();
4069     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4070              !FunctionBBs[CurBBNo - 1]->empty())
4071       return &FunctionBBs[CurBBNo - 1]->back();
4072     return nullptr;
4073   };
4074 
4075   std::vector<OperandBundleDef> OperandBundles;
4076 
4077   // Read all the records.
4078   SmallVector<uint64_t, 64> Record;
4079   while (1) {
4080     BitstreamEntry Entry = Stream.advance();
4081 
4082     switch (Entry.Kind) {
4083     case BitstreamEntry::Error:
4084       return error("Malformed block");
4085     case BitstreamEntry::EndBlock:
4086       goto OutOfRecordLoop;
4087 
4088     case BitstreamEntry::SubBlock:
4089       switch (Entry.ID) {
4090       default:  // Skip unknown content.
4091         if (Stream.SkipBlock())
4092           return error("Invalid record");
4093         break;
4094       case bitc::CONSTANTS_BLOCK_ID:
4095         if (std::error_code EC = parseConstants())
4096           return EC;
4097         NextValueNo = ValueList.size();
4098         break;
4099       case bitc::VALUE_SYMTAB_BLOCK_ID:
4100         if (std::error_code EC = parseValueSymbolTable())
4101           return EC;
4102         break;
4103       case bitc::METADATA_ATTACHMENT_ID:
4104         if (std::error_code EC = parseMetadataAttachment(*F))
4105           return EC;
4106         break;
4107       case bitc::METADATA_BLOCK_ID:
4108         if (std::error_code EC = parseMetadata())
4109           return EC;
4110         break;
4111       case bitc::USELIST_BLOCK_ID:
4112         if (std::error_code EC = parseUseLists())
4113           return EC;
4114         break;
4115       }
4116       continue;
4117 
4118     case BitstreamEntry::Record:
4119       // The interesting case.
4120       break;
4121     }
4122 
4123     // Read a record.
4124     Record.clear();
4125     Instruction *I = nullptr;
4126     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4127     switch (BitCode) {
4128     default: // Default behavior: reject
4129       return error("Invalid value");
4130     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4131       if (Record.size() < 1 || Record[0] == 0)
4132         return error("Invalid record");
4133       // Create all the basic blocks for the function.
4134       FunctionBBs.resize(Record[0]);
4135 
4136       // See if anything took the address of blocks in this function.
4137       auto BBFRI = BasicBlockFwdRefs.find(F);
4138       if (BBFRI == BasicBlockFwdRefs.end()) {
4139         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4140           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4141       } else {
4142         auto &BBRefs = BBFRI->second;
4143         // Check for invalid basic block references.
4144         if (BBRefs.size() > FunctionBBs.size())
4145           return error("Invalid ID");
4146         assert(!BBRefs.empty() && "Unexpected empty array");
4147         assert(!BBRefs.front() && "Invalid reference to entry block");
4148         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4149              ++I)
4150           if (I < RE && BBRefs[I]) {
4151             BBRefs[I]->insertInto(F);
4152             FunctionBBs[I] = BBRefs[I];
4153           } else {
4154             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4155           }
4156 
4157         // Erase from the table.
4158         BasicBlockFwdRefs.erase(BBFRI);
4159       }
4160 
4161       CurBB = FunctionBBs[0];
4162       continue;
4163     }
4164 
4165     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4166       // This record indicates that the last instruction is at the same
4167       // location as the previous instruction with a location.
4168       I = getLastInstruction();
4169 
4170       if (!I)
4171         return error("Invalid record");
4172       I->setDebugLoc(LastLoc);
4173       I = nullptr;
4174       continue;
4175 
4176     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4177       I = getLastInstruction();
4178       if (!I || Record.size() < 4)
4179         return error("Invalid record");
4180 
4181       unsigned Line = Record[0], Col = Record[1];
4182       unsigned ScopeID = Record[2], IAID = Record[3];
4183 
4184       MDNode *Scope = nullptr, *IA = nullptr;
4185       if (ScopeID) {
4186         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4187         if (!Scope)
4188           return error("Invalid record");
4189       }
4190       if (IAID) {
4191         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4192         if (!IA)
4193           return error("Invalid record");
4194       }
4195       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4196       I->setDebugLoc(LastLoc);
4197       I = nullptr;
4198       continue;
4199     }
4200 
4201     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4202       unsigned OpNum = 0;
4203       Value *LHS, *RHS;
4204       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4205           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4206           OpNum+1 > Record.size())
4207         return error("Invalid record");
4208 
4209       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4210       if (Opc == -1)
4211         return error("Invalid record");
4212       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4213       InstructionList.push_back(I);
4214       if (OpNum < Record.size()) {
4215         if (Opc == Instruction::Add ||
4216             Opc == Instruction::Sub ||
4217             Opc == Instruction::Mul ||
4218             Opc == Instruction::Shl) {
4219           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4220             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4221           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4222             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4223         } else if (Opc == Instruction::SDiv ||
4224                    Opc == Instruction::UDiv ||
4225                    Opc == Instruction::LShr ||
4226                    Opc == Instruction::AShr) {
4227           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4228             cast<BinaryOperator>(I)->setIsExact(true);
4229         } else if (isa<FPMathOperator>(I)) {
4230           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4231           if (FMF.any())
4232             I->setFastMathFlags(FMF);
4233         }
4234 
4235       }
4236       break;
4237     }
4238     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4239       unsigned OpNum = 0;
4240       Value *Op;
4241       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4242           OpNum+2 != Record.size())
4243         return error("Invalid record");
4244 
4245       Type *ResTy = getTypeByID(Record[OpNum]);
4246       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4247       if (Opc == -1 || !ResTy)
4248         return error("Invalid record");
4249       Instruction *Temp = nullptr;
4250       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4251         if (Temp) {
4252           InstructionList.push_back(Temp);
4253           CurBB->getInstList().push_back(Temp);
4254         }
4255       } else {
4256         auto CastOp = (Instruction::CastOps)Opc;
4257         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4258           return error("Invalid cast");
4259         I = CastInst::Create(CastOp, Op, ResTy);
4260       }
4261       InstructionList.push_back(I);
4262       break;
4263     }
4264     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4265     case bitc::FUNC_CODE_INST_GEP_OLD:
4266     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4267       unsigned OpNum = 0;
4268 
4269       Type *Ty;
4270       bool InBounds;
4271 
4272       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4273         InBounds = Record[OpNum++];
4274         Ty = getTypeByID(Record[OpNum++]);
4275       } else {
4276         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4277         Ty = nullptr;
4278       }
4279 
4280       Value *BasePtr;
4281       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4282         return error("Invalid record");
4283 
4284       if (!Ty)
4285         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4286                  ->getElementType();
4287       else if (Ty !=
4288                cast<SequentialType>(BasePtr->getType()->getScalarType())
4289                    ->getElementType())
4290         return error(
4291             "Explicit gep type does not match pointee type of pointer operand");
4292 
4293       SmallVector<Value*, 16> GEPIdx;
4294       while (OpNum != Record.size()) {
4295         Value *Op;
4296         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4297           return error("Invalid record");
4298         GEPIdx.push_back(Op);
4299       }
4300 
4301       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4302 
4303       InstructionList.push_back(I);
4304       if (InBounds)
4305         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4306       break;
4307     }
4308 
4309     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4310                                        // EXTRACTVAL: [opty, opval, n x indices]
4311       unsigned OpNum = 0;
4312       Value *Agg;
4313       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4314         return error("Invalid record");
4315 
4316       unsigned RecSize = Record.size();
4317       if (OpNum == RecSize)
4318         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4319 
4320       SmallVector<unsigned, 4> EXTRACTVALIdx;
4321       Type *CurTy = Agg->getType();
4322       for (; OpNum != RecSize; ++OpNum) {
4323         bool IsArray = CurTy->isArrayTy();
4324         bool IsStruct = CurTy->isStructTy();
4325         uint64_t Index = Record[OpNum];
4326 
4327         if (!IsStruct && !IsArray)
4328           return error("EXTRACTVAL: Invalid type");
4329         if ((unsigned)Index != Index)
4330           return error("Invalid value");
4331         if (IsStruct && Index >= CurTy->subtypes().size())
4332           return error("EXTRACTVAL: Invalid struct index");
4333         if (IsArray && Index >= CurTy->getArrayNumElements())
4334           return error("EXTRACTVAL: Invalid array index");
4335         EXTRACTVALIdx.push_back((unsigned)Index);
4336 
4337         if (IsStruct)
4338           CurTy = CurTy->subtypes()[Index];
4339         else
4340           CurTy = CurTy->subtypes()[0];
4341       }
4342 
4343       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4344       InstructionList.push_back(I);
4345       break;
4346     }
4347 
4348     case bitc::FUNC_CODE_INST_INSERTVAL: {
4349                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4350       unsigned OpNum = 0;
4351       Value *Agg;
4352       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4353         return error("Invalid record");
4354       Value *Val;
4355       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4356         return error("Invalid record");
4357 
4358       unsigned RecSize = Record.size();
4359       if (OpNum == RecSize)
4360         return error("INSERTVAL: Invalid instruction with 0 indices");
4361 
4362       SmallVector<unsigned, 4> INSERTVALIdx;
4363       Type *CurTy = Agg->getType();
4364       for (; OpNum != RecSize; ++OpNum) {
4365         bool IsArray = CurTy->isArrayTy();
4366         bool IsStruct = CurTy->isStructTy();
4367         uint64_t Index = Record[OpNum];
4368 
4369         if (!IsStruct && !IsArray)
4370           return error("INSERTVAL: Invalid type");
4371         if ((unsigned)Index != Index)
4372           return error("Invalid value");
4373         if (IsStruct && Index >= CurTy->subtypes().size())
4374           return error("INSERTVAL: Invalid struct index");
4375         if (IsArray && Index >= CurTy->getArrayNumElements())
4376           return error("INSERTVAL: Invalid array index");
4377 
4378         INSERTVALIdx.push_back((unsigned)Index);
4379         if (IsStruct)
4380           CurTy = CurTy->subtypes()[Index];
4381         else
4382           CurTy = CurTy->subtypes()[0];
4383       }
4384 
4385       if (CurTy != Val->getType())
4386         return error("Inserted value type doesn't match aggregate type");
4387 
4388       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4389       InstructionList.push_back(I);
4390       break;
4391     }
4392 
4393     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4394       // obsolete form of select
4395       // handles select i1 ... in old bitcode
4396       unsigned OpNum = 0;
4397       Value *TrueVal, *FalseVal, *Cond;
4398       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4399           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4400           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4401         return error("Invalid record");
4402 
4403       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4404       InstructionList.push_back(I);
4405       break;
4406     }
4407 
4408     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4409       // new form of select
4410       // handles select i1 or select [N x i1]
4411       unsigned OpNum = 0;
4412       Value *TrueVal, *FalseVal, *Cond;
4413       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4414           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4415           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4416         return error("Invalid record");
4417 
4418       // select condition can be either i1 or [N x i1]
4419       if (VectorType* vector_type =
4420           dyn_cast<VectorType>(Cond->getType())) {
4421         // expect <n x i1>
4422         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4423           return error("Invalid type for value");
4424       } else {
4425         // expect i1
4426         if (Cond->getType() != Type::getInt1Ty(Context))
4427           return error("Invalid type for value");
4428       }
4429 
4430       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4431       InstructionList.push_back(I);
4432       break;
4433     }
4434 
4435     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4436       unsigned OpNum = 0;
4437       Value *Vec, *Idx;
4438       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4439           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4440         return error("Invalid record");
4441       if (!Vec->getType()->isVectorTy())
4442         return error("Invalid type for value");
4443       I = ExtractElementInst::Create(Vec, Idx);
4444       InstructionList.push_back(I);
4445       break;
4446     }
4447 
4448     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4449       unsigned OpNum = 0;
4450       Value *Vec, *Elt, *Idx;
4451       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4452         return error("Invalid record");
4453       if (!Vec->getType()->isVectorTy())
4454         return error("Invalid type for value");
4455       if (popValue(Record, OpNum, NextValueNo,
4456                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4457           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4458         return error("Invalid record");
4459       I = InsertElementInst::Create(Vec, Elt, Idx);
4460       InstructionList.push_back(I);
4461       break;
4462     }
4463 
4464     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4465       unsigned OpNum = 0;
4466       Value *Vec1, *Vec2, *Mask;
4467       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4468           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4469         return error("Invalid record");
4470 
4471       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4472         return error("Invalid record");
4473       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4474         return error("Invalid type for value");
4475       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4476       InstructionList.push_back(I);
4477       break;
4478     }
4479 
4480     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4481       // Old form of ICmp/FCmp returning bool
4482       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4483       // both legal on vectors but had different behaviour.
4484     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4485       // FCmp/ICmp returning bool or vector of bool
4486 
4487       unsigned OpNum = 0;
4488       Value *LHS, *RHS;
4489       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4490           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4491         return error("Invalid record");
4492 
4493       unsigned PredVal = Record[OpNum];
4494       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4495       FastMathFlags FMF;
4496       if (IsFP && Record.size() > OpNum+1)
4497         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4498 
4499       if (OpNum+1 != Record.size())
4500         return error("Invalid record");
4501 
4502       if (LHS->getType()->isFPOrFPVectorTy())
4503         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4504       else
4505         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4506 
4507       if (FMF.any())
4508         I->setFastMathFlags(FMF);
4509       InstructionList.push_back(I);
4510       break;
4511     }
4512 
4513     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4514       {
4515         unsigned Size = Record.size();
4516         if (Size == 0) {
4517           I = ReturnInst::Create(Context);
4518           InstructionList.push_back(I);
4519           break;
4520         }
4521 
4522         unsigned OpNum = 0;
4523         Value *Op = nullptr;
4524         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4525           return error("Invalid record");
4526         if (OpNum != Record.size())
4527           return error("Invalid record");
4528 
4529         I = ReturnInst::Create(Context, Op);
4530         InstructionList.push_back(I);
4531         break;
4532       }
4533     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4534       if (Record.size() != 1 && Record.size() != 3)
4535         return error("Invalid record");
4536       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4537       if (!TrueDest)
4538         return error("Invalid record");
4539 
4540       if (Record.size() == 1) {
4541         I = BranchInst::Create(TrueDest);
4542         InstructionList.push_back(I);
4543       }
4544       else {
4545         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4546         Value *Cond = getValue(Record, 2, NextValueNo,
4547                                Type::getInt1Ty(Context));
4548         if (!FalseDest || !Cond)
4549           return error("Invalid record");
4550         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4551         InstructionList.push_back(I);
4552       }
4553       break;
4554     }
4555     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4556       if (Record.size() != 1 && Record.size() != 2)
4557         return error("Invalid record");
4558       unsigned Idx = 0;
4559       Value *CleanupPad =
4560           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4561       if (!CleanupPad)
4562         return error("Invalid record");
4563       BasicBlock *UnwindDest = nullptr;
4564       if (Record.size() == 2) {
4565         UnwindDest = getBasicBlock(Record[Idx++]);
4566         if (!UnwindDest)
4567           return error("Invalid record");
4568       }
4569 
4570       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4571       InstructionList.push_back(I);
4572       break;
4573     }
4574     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4575       if (Record.size() != 2)
4576         return error("Invalid record");
4577       unsigned Idx = 0;
4578       Value *CatchPad =
4579           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4580       if (!CatchPad)
4581         return error("Invalid record");
4582       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4583       if (!BB)
4584         return error("Invalid record");
4585 
4586       I = CatchReturnInst::Create(CatchPad, BB);
4587       InstructionList.push_back(I);
4588       break;
4589     }
4590     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4591       // We must have, at minimum, the outer scope and the number of arguments.
4592       if (Record.size() < 2)
4593         return error("Invalid record");
4594 
4595       unsigned Idx = 0;
4596 
4597       Value *ParentPad =
4598           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4599 
4600       unsigned NumHandlers = Record[Idx++];
4601 
4602       SmallVector<BasicBlock *, 2> Handlers;
4603       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4604         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4605         if (!BB)
4606           return error("Invalid record");
4607         Handlers.push_back(BB);
4608       }
4609 
4610       BasicBlock *UnwindDest = nullptr;
4611       if (Idx + 1 == Record.size()) {
4612         UnwindDest = getBasicBlock(Record[Idx++]);
4613         if (!UnwindDest)
4614           return error("Invalid record");
4615       }
4616 
4617       if (Record.size() != Idx)
4618         return error("Invalid record");
4619 
4620       auto *CatchSwitch =
4621           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4622       for (BasicBlock *Handler : Handlers)
4623         CatchSwitch->addHandler(Handler);
4624       I = CatchSwitch;
4625       InstructionList.push_back(I);
4626       break;
4627     }
4628     case bitc::FUNC_CODE_INST_CATCHPAD:
4629     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4630       // We must have, at minimum, the outer scope and the number of arguments.
4631       if (Record.size() < 2)
4632         return error("Invalid record");
4633 
4634       unsigned Idx = 0;
4635 
4636       Value *ParentPad =
4637           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4638 
4639       unsigned NumArgOperands = Record[Idx++];
4640 
4641       SmallVector<Value *, 2> Args;
4642       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4643         Value *Val;
4644         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4645           return error("Invalid record");
4646         Args.push_back(Val);
4647       }
4648 
4649       if (Record.size() != Idx)
4650         return error("Invalid record");
4651 
4652       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4653         I = CleanupPadInst::Create(ParentPad, Args);
4654       else
4655         I = CatchPadInst::Create(ParentPad, Args);
4656       InstructionList.push_back(I);
4657       break;
4658     }
4659     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4660       // Check magic
4661       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4662         // "New" SwitchInst format with case ranges. The changes to write this
4663         // format were reverted but we still recognize bitcode that uses it.
4664         // Hopefully someday we will have support for case ranges and can use
4665         // this format again.
4666 
4667         Type *OpTy = getTypeByID(Record[1]);
4668         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4669 
4670         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4671         BasicBlock *Default = getBasicBlock(Record[3]);
4672         if (!OpTy || !Cond || !Default)
4673           return error("Invalid record");
4674 
4675         unsigned NumCases = Record[4];
4676 
4677         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4678         InstructionList.push_back(SI);
4679 
4680         unsigned CurIdx = 5;
4681         for (unsigned i = 0; i != NumCases; ++i) {
4682           SmallVector<ConstantInt*, 1> CaseVals;
4683           unsigned NumItems = Record[CurIdx++];
4684           for (unsigned ci = 0; ci != NumItems; ++ci) {
4685             bool isSingleNumber = Record[CurIdx++];
4686 
4687             APInt Low;
4688             unsigned ActiveWords = 1;
4689             if (ValueBitWidth > 64)
4690               ActiveWords = Record[CurIdx++];
4691             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4692                                 ValueBitWidth);
4693             CurIdx += ActiveWords;
4694 
4695             if (!isSingleNumber) {
4696               ActiveWords = 1;
4697               if (ValueBitWidth > 64)
4698                 ActiveWords = Record[CurIdx++];
4699               APInt High = readWideAPInt(
4700                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4701               CurIdx += ActiveWords;
4702 
4703               // FIXME: It is not clear whether values in the range should be
4704               // compared as signed or unsigned values. The partially
4705               // implemented changes that used this format in the past used
4706               // unsigned comparisons.
4707               for ( ; Low.ule(High); ++Low)
4708                 CaseVals.push_back(ConstantInt::get(Context, Low));
4709             } else
4710               CaseVals.push_back(ConstantInt::get(Context, Low));
4711           }
4712           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4713           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4714                  cve = CaseVals.end(); cvi != cve; ++cvi)
4715             SI->addCase(*cvi, DestBB);
4716         }
4717         I = SI;
4718         break;
4719       }
4720 
4721       // Old SwitchInst format without case ranges.
4722 
4723       if (Record.size() < 3 || (Record.size() & 1) == 0)
4724         return error("Invalid record");
4725       Type *OpTy = getTypeByID(Record[0]);
4726       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4727       BasicBlock *Default = getBasicBlock(Record[2]);
4728       if (!OpTy || !Cond || !Default)
4729         return error("Invalid record");
4730       unsigned NumCases = (Record.size()-3)/2;
4731       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4732       InstructionList.push_back(SI);
4733       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4734         ConstantInt *CaseVal =
4735           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4736         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4737         if (!CaseVal || !DestBB) {
4738           delete SI;
4739           return error("Invalid record");
4740         }
4741         SI->addCase(CaseVal, DestBB);
4742       }
4743       I = SI;
4744       break;
4745     }
4746     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4747       if (Record.size() < 2)
4748         return error("Invalid record");
4749       Type *OpTy = getTypeByID(Record[0]);
4750       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4751       if (!OpTy || !Address)
4752         return error("Invalid record");
4753       unsigned NumDests = Record.size()-2;
4754       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4755       InstructionList.push_back(IBI);
4756       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4757         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4758           IBI->addDestination(DestBB);
4759         } else {
4760           delete IBI;
4761           return error("Invalid record");
4762         }
4763       }
4764       I = IBI;
4765       break;
4766     }
4767 
4768     case bitc::FUNC_CODE_INST_INVOKE: {
4769       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4770       if (Record.size() < 4)
4771         return error("Invalid record");
4772       unsigned OpNum = 0;
4773       AttributeSet PAL = getAttributes(Record[OpNum++]);
4774       unsigned CCInfo = Record[OpNum++];
4775       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4776       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4777 
4778       FunctionType *FTy = nullptr;
4779       if (CCInfo >> 13 & 1 &&
4780           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4781         return error("Explicit invoke type is not a function type");
4782 
4783       Value *Callee;
4784       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4785         return error("Invalid record");
4786 
4787       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4788       if (!CalleeTy)
4789         return error("Callee is not a pointer");
4790       if (!FTy) {
4791         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4792         if (!FTy)
4793           return error("Callee is not of pointer to function type");
4794       } else if (CalleeTy->getElementType() != FTy)
4795         return error("Explicit invoke type does not match pointee type of "
4796                      "callee operand");
4797       if (Record.size() < FTy->getNumParams() + OpNum)
4798         return error("Insufficient operands to call");
4799 
4800       SmallVector<Value*, 16> Ops;
4801       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4802         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4803                                FTy->getParamType(i)));
4804         if (!Ops.back())
4805           return error("Invalid record");
4806       }
4807 
4808       if (!FTy->isVarArg()) {
4809         if (Record.size() != OpNum)
4810           return error("Invalid record");
4811       } else {
4812         // Read type/value pairs for varargs params.
4813         while (OpNum != Record.size()) {
4814           Value *Op;
4815           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4816             return error("Invalid record");
4817           Ops.push_back(Op);
4818         }
4819       }
4820 
4821       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4822       OperandBundles.clear();
4823       InstructionList.push_back(I);
4824       cast<InvokeInst>(I)->setCallingConv(
4825           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4826       cast<InvokeInst>(I)->setAttributes(PAL);
4827       break;
4828     }
4829     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4830       unsigned Idx = 0;
4831       Value *Val = nullptr;
4832       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4833         return error("Invalid record");
4834       I = ResumeInst::Create(Val);
4835       InstructionList.push_back(I);
4836       break;
4837     }
4838     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4839       I = new UnreachableInst(Context);
4840       InstructionList.push_back(I);
4841       break;
4842     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4843       if (Record.size() < 1 || ((Record.size()-1)&1))
4844         return error("Invalid record");
4845       Type *Ty = getTypeByID(Record[0]);
4846       if (!Ty)
4847         return error("Invalid record");
4848 
4849       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4850       InstructionList.push_back(PN);
4851 
4852       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4853         Value *V;
4854         // With the new function encoding, it is possible that operands have
4855         // negative IDs (for forward references).  Use a signed VBR
4856         // representation to keep the encoding small.
4857         if (UseRelativeIDs)
4858           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4859         else
4860           V = getValue(Record, 1+i, NextValueNo, Ty);
4861         BasicBlock *BB = getBasicBlock(Record[2+i]);
4862         if (!V || !BB)
4863           return error("Invalid record");
4864         PN->addIncoming(V, BB);
4865       }
4866       I = PN;
4867       break;
4868     }
4869 
4870     case bitc::FUNC_CODE_INST_LANDINGPAD:
4871     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4872       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4873       unsigned Idx = 0;
4874       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4875         if (Record.size() < 3)
4876           return error("Invalid record");
4877       } else {
4878         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4879         if (Record.size() < 4)
4880           return error("Invalid record");
4881       }
4882       Type *Ty = getTypeByID(Record[Idx++]);
4883       if (!Ty)
4884         return error("Invalid record");
4885       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4886         Value *PersFn = nullptr;
4887         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4888           return error("Invalid record");
4889 
4890         if (!F->hasPersonalityFn())
4891           F->setPersonalityFn(cast<Constant>(PersFn));
4892         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4893           return error("Personality function mismatch");
4894       }
4895 
4896       bool IsCleanup = !!Record[Idx++];
4897       unsigned NumClauses = Record[Idx++];
4898       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4899       LP->setCleanup(IsCleanup);
4900       for (unsigned J = 0; J != NumClauses; ++J) {
4901         LandingPadInst::ClauseType CT =
4902           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4903         Value *Val;
4904 
4905         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4906           delete LP;
4907           return error("Invalid record");
4908         }
4909 
4910         assert((CT != LandingPadInst::Catch ||
4911                 !isa<ArrayType>(Val->getType())) &&
4912                "Catch clause has a invalid type!");
4913         assert((CT != LandingPadInst::Filter ||
4914                 isa<ArrayType>(Val->getType())) &&
4915                "Filter clause has invalid type!");
4916         LP->addClause(cast<Constant>(Val));
4917       }
4918 
4919       I = LP;
4920       InstructionList.push_back(I);
4921       break;
4922     }
4923 
4924     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4925       if (Record.size() != 4)
4926         return error("Invalid record");
4927       uint64_t AlignRecord = Record[3];
4928       const uint64_t InAllocaMask = uint64_t(1) << 5;
4929       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4930       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4931       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4932                                 SwiftErrorMask;
4933       bool InAlloca = AlignRecord & InAllocaMask;
4934       bool SwiftError = AlignRecord & SwiftErrorMask;
4935       Type *Ty = getTypeByID(Record[0]);
4936       if ((AlignRecord & ExplicitTypeMask) == 0) {
4937         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4938         if (!PTy)
4939           return error("Old-style alloca with a non-pointer type");
4940         Ty = PTy->getElementType();
4941       }
4942       Type *OpTy = getTypeByID(Record[1]);
4943       Value *Size = getFnValueByID(Record[2], OpTy);
4944       unsigned Align;
4945       if (std::error_code EC =
4946               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4947         return EC;
4948       }
4949       if (!Ty || !Size)
4950         return error("Invalid record");
4951       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4952       AI->setUsedWithInAlloca(InAlloca);
4953       AI->setSwiftError(SwiftError);
4954       I = AI;
4955       InstructionList.push_back(I);
4956       break;
4957     }
4958     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4959       unsigned OpNum = 0;
4960       Value *Op;
4961       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4962           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4963         return error("Invalid record");
4964 
4965       Type *Ty = nullptr;
4966       if (OpNum + 3 == Record.size())
4967         Ty = getTypeByID(Record[OpNum++]);
4968       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4969         return EC;
4970       if (!Ty)
4971         Ty = cast<PointerType>(Op->getType())->getElementType();
4972 
4973       unsigned Align;
4974       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4975         return EC;
4976       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4977 
4978       InstructionList.push_back(I);
4979       break;
4980     }
4981     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4982        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4983       unsigned OpNum = 0;
4984       Value *Op;
4985       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4986           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4987         return error("Invalid record");
4988 
4989       Type *Ty = nullptr;
4990       if (OpNum + 5 == Record.size())
4991         Ty = getTypeByID(Record[OpNum++]);
4992       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4993         return EC;
4994       if (!Ty)
4995         Ty = cast<PointerType>(Op->getType())->getElementType();
4996 
4997       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4998       if (Ordering == AtomicOrdering::NotAtomic ||
4999           Ordering == AtomicOrdering::Release ||
5000           Ordering == AtomicOrdering::AcquireRelease)
5001         return error("Invalid record");
5002       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5003         return error("Invalid record");
5004       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5005 
5006       unsigned Align;
5007       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5008         return EC;
5009       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5010 
5011       InstructionList.push_back(I);
5012       break;
5013     }
5014     case bitc::FUNC_CODE_INST_STORE:
5015     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5016       unsigned OpNum = 0;
5017       Value *Val, *Ptr;
5018       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5019           (BitCode == bitc::FUNC_CODE_INST_STORE
5020                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5021                : popValue(Record, OpNum, NextValueNo,
5022                           cast<PointerType>(Ptr->getType())->getElementType(),
5023                           Val)) ||
5024           OpNum + 2 != Record.size())
5025         return error("Invalid record");
5026 
5027       if (std::error_code EC =
5028               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5029         return EC;
5030       unsigned Align;
5031       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5032         return EC;
5033       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5034       InstructionList.push_back(I);
5035       break;
5036     }
5037     case bitc::FUNC_CODE_INST_STOREATOMIC:
5038     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5039       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5040       unsigned OpNum = 0;
5041       Value *Val, *Ptr;
5042       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5043           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5044                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5045                : popValue(Record, OpNum, NextValueNo,
5046                           cast<PointerType>(Ptr->getType())->getElementType(),
5047                           Val)) ||
5048           OpNum + 4 != Record.size())
5049         return error("Invalid record");
5050 
5051       if (std::error_code EC =
5052               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5053         return EC;
5054       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5055       if (Ordering == AtomicOrdering::NotAtomic ||
5056           Ordering == AtomicOrdering::Acquire ||
5057           Ordering == AtomicOrdering::AcquireRelease)
5058         return error("Invalid record");
5059       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5060       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5061         return error("Invalid record");
5062 
5063       unsigned Align;
5064       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5065         return EC;
5066       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5067       InstructionList.push_back(I);
5068       break;
5069     }
5070     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5071     case bitc::FUNC_CODE_INST_CMPXCHG: {
5072       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5073       //          failureordering?, isweak?]
5074       unsigned OpNum = 0;
5075       Value *Ptr, *Cmp, *New;
5076       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5077           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5078                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5079                : popValue(Record, OpNum, NextValueNo,
5080                           cast<PointerType>(Ptr->getType())->getElementType(),
5081                           Cmp)) ||
5082           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5083           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5084         return error("Invalid record");
5085       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5086       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5087           SuccessOrdering == AtomicOrdering::Unordered)
5088         return error("Invalid record");
5089       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5090 
5091       if (std::error_code EC =
5092               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5093         return EC;
5094       AtomicOrdering FailureOrdering;
5095       if (Record.size() < 7)
5096         FailureOrdering =
5097             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5098       else
5099         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5100 
5101       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5102                                 SynchScope);
5103       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5104 
5105       if (Record.size() < 8) {
5106         // Before weak cmpxchgs existed, the instruction simply returned the
5107         // value loaded from memory, so bitcode files from that era will be
5108         // expecting the first component of a modern cmpxchg.
5109         CurBB->getInstList().push_back(I);
5110         I = ExtractValueInst::Create(I, 0);
5111       } else {
5112         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5113       }
5114 
5115       InstructionList.push_back(I);
5116       break;
5117     }
5118     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5119       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5120       unsigned OpNum = 0;
5121       Value *Ptr, *Val;
5122       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5123           popValue(Record, OpNum, NextValueNo,
5124                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5125           OpNum+4 != Record.size())
5126         return error("Invalid record");
5127       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5128       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5129           Operation > AtomicRMWInst::LAST_BINOP)
5130         return error("Invalid record");
5131       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5132       if (Ordering == AtomicOrdering::NotAtomic ||
5133           Ordering == AtomicOrdering::Unordered)
5134         return error("Invalid record");
5135       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5136       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5137       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5138       InstructionList.push_back(I);
5139       break;
5140     }
5141     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5142       if (2 != Record.size())
5143         return error("Invalid record");
5144       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5145       if (Ordering == AtomicOrdering::NotAtomic ||
5146           Ordering == AtomicOrdering::Unordered ||
5147           Ordering == AtomicOrdering::Monotonic)
5148         return error("Invalid record");
5149       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5150       I = new FenceInst(Context, Ordering, SynchScope);
5151       InstructionList.push_back(I);
5152       break;
5153     }
5154     case bitc::FUNC_CODE_INST_CALL: {
5155       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5156       if (Record.size() < 3)
5157         return error("Invalid record");
5158 
5159       unsigned OpNum = 0;
5160       AttributeSet PAL = getAttributes(Record[OpNum++]);
5161       unsigned CCInfo = Record[OpNum++];
5162 
5163       FastMathFlags FMF;
5164       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5165         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5166         if (!FMF.any())
5167           return error("Fast math flags indicator set for call with no FMF");
5168       }
5169 
5170       FunctionType *FTy = nullptr;
5171       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5172           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5173         return error("Explicit call type is not a function type");
5174 
5175       Value *Callee;
5176       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5177         return error("Invalid record");
5178 
5179       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5180       if (!OpTy)
5181         return error("Callee is not a pointer type");
5182       if (!FTy) {
5183         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5184         if (!FTy)
5185           return error("Callee is not of pointer to function type");
5186       } else if (OpTy->getElementType() != FTy)
5187         return error("Explicit call type does not match pointee type of "
5188                      "callee operand");
5189       if (Record.size() < FTy->getNumParams() + OpNum)
5190         return error("Insufficient operands to call");
5191 
5192       SmallVector<Value*, 16> Args;
5193       // Read the fixed params.
5194       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5195         if (FTy->getParamType(i)->isLabelTy())
5196           Args.push_back(getBasicBlock(Record[OpNum]));
5197         else
5198           Args.push_back(getValue(Record, OpNum, NextValueNo,
5199                                   FTy->getParamType(i)));
5200         if (!Args.back())
5201           return error("Invalid record");
5202       }
5203 
5204       // Read type/value pairs for varargs params.
5205       if (!FTy->isVarArg()) {
5206         if (OpNum != Record.size())
5207           return error("Invalid record");
5208       } else {
5209         while (OpNum != Record.size()) {
5210           Value *Op;
5211           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5212             return error("Invalid record");
5213           Args.push_back(Op);
5214         }
5215       }
5216 
5217       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5218       OperandBundles.clear();
5219       InstructionList.push_back(I);
5220       cast<CallInst>(I)->setCallingConv(
5221           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5222       CallInst::TailCallKind TCK = CallInst::TCK_None;
5223       if (CCInfo & 1 << bitc::CALL_TAIL)
5224         TCK = CallInst::TCK_Tail;
5225       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5226         TCK = CallInst::TCK_MustTail;
5227       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5228         TCK = CallInst::TCK_NoTail;
5229       cast<CallInst>(I)->setTailCallKind(TCK);
5230       cast<CallInst>(I)->setAttributes(PAL);
5231       if (FMF.any()) {
5232         if (!isa<FPMathOperator>(I))
5233           return error("Fast-math-flags specified for call without "
5234                        "floating-point scalar or vector return type");
5235         I->setFastMathFlags(FMF);
5236       }
5237       break;
5238     }
5239     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5240       if (Record.size() < 3)
5241         return error("Invalid record");
5242       Type *OpTy = getTypeByID(Record[0]);
5243       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5244       Type *ResTy = getTypeByID(Record[2]);
5245       if (!OpTy || !Op || !ResTy)
5246         return error("Invalid record");
5247       I = new VAArgInst(Op, ResTy);
5248       InstructionList.push_back(I);
5249       break;
5250     }
5251 
5252     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5253       // A call or an invoke can be optionally prefixed with some variable
5254       // number of operand bundle blocks.  These blocks are read into
5255       // OperandBundles and consumed at the next call or invoke instruction.
5256 
5257       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5258         return error("Invalid record");
5259 
5260       std::vector<Value *> Inputs;
5261 
5262       unsigned OpNum = 1;
5263       while (OpNum != Record.size()) {
5264         Value *Op;
5265         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5266           return error("Invalid record");
5267         Inputs.push_back(Op);
5268       }
5269 
5270       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5271       continue;
5272     }
5273     }
5274 
5275     // Add instruction to end of current BB.  If there is no current BB, reject
5276     // this file.
5277     if (!CurBB) {
5278       delete I;
5279       return error("Invalid instruction with no BB");
5280     }
5281     if (!OperandBundles.empty()) {
5282       delete I;
5283       return error("Operand bundles found with no consumer");
5284     }
5285     CurBB->getInstList().push_back(I);
5286 
5287     // If this was a terminator instruction, move to the next block.
5288     if (isa<TerminatorInst>(I)) {
5289       ++CurBBNo;
5290       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5291     }
5292 
5293     // Non-void values get registered in the value table for future use.
5294     if (I && !I->getType()->isVoidTy())
5295       ValueList.assignValue(I, NextValueNo++);
5296   }
5297 
5298 OutOfRecordLoop:
5299 
5300   if (!OperandBundles.empty())
5301     return error("Operand bundles found with no consumer");
5302 
5303   // Check the function list for unresolved values.
5304   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5305     if (!A->getParent()) {
5306       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5307       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5308         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5309           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5310           delete A;
5311         }
5312       }
5313       return error("Never resolved value found in function");
5314     }
5315   }
5316 
5317   // Unexpected unresolved metadata about to be dropped.
5318   if (MetadataList.hasFwdRefs())
5319     return error("Invalid function metadata: outgoing forward refs");
5320 
5321   // Trim the value list down to the size it was before we parsed this function.
5322   ValueList.shrinkTo(ModuleValueListSize);
5323   MetadataList.shrinkTo(ModuleMetadataListSize);
5324   std::vector<BasicBlock*>().swap(FunctionBBs);
5325   return std::error_code();
5326 }
5327 
5328 /// Find the function body in the bitcode stream
5329 std::error_code BitcodeReader::findFunctionInStream(
5330     Function *F,
5331     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5332   while (DeferredFunctionInfoIterator->second == 0) {
5333     // This is the fallback handling for the old format bitcode that
5334     // didn't contain the function index in the VST, or when we have
5335     // an anonymous function which would not have a VST entry.
5336     // Assert that we have one of those two cases.
5337     assert(VSTOffset == 0 || !F->hasName());
5338     // Parse the next body in the stream and set its position in the
5339     // DeferredFunctionInfo map.
5340     if (std::error_code EC = rememberAndSkipFunctionBodies())
5341       return EC;
5342   }
5343   return std::error_code();
5344 }
5345 
5346 //===----------------------------------------------------------------------===//
5347 // GVMaterializer implementation
5348 //===----------------------------------------------------------------------===//
5349 
5350 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5351 
5352 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5353   if (std::error_code EC = materializeMetadata())
5354     return EC;
5355 
5356   Function *F = dyn_cast<Function>(GV);
5357   // If it's not a function or is already material, ignore the request.
5358   if (!F || !F->isMaterializable())
5359     return std::error_code();
5360 
5361   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5362   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5363   // If its position is recorded as 0, its body is somewhere in the stream
5364   // but we haven't seen it yet.
5365   if (DFII->second == 0)
5366     if (std::error_code EC = findFunctionInStream(F, DFII))
5367       return EC;
5368 
5369   // Move the bit stream to the saved position of the deferred function body.
5370   Stream.JumpToBit(DFII->second);
5371 
5372   if (std::error_code EC = parseFunctionBody(F))
5373     return EC;
5374   F->setIsMaterializable(false);
5375 
5376   if (StripDebugInfo)
5377     stripDebugInfo(*F);
5378 
5379   // Upgrade any old intrinsic calls in the function.
5380   for (auto &I : UpgradedIntrinsics) {
5381     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5382          UI != UE;) {
5383       User *U = *UI;
5384       ++UI;
5385       if (CallInst *CI = dyn_cast<CallInst>(U))
5386         UpgradeIntrinsicCall(CI, I.second);
5387     }
5388   }
5389 
5390   // Finish fn->subprogram upgrade for materialized functions.
5391   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5392     F->setSubprogram(SP);
5393 
5394   // Bring in any functions that this function forward-referenced via
5395   // blockaddresses.
5396   return materializeForwardReferencedFunctions();
5397 }
5398 
5399 std::error_code BitcodeReader::materializeModule() {
5400   if (std::error_code EC = materializeMetadata())
5401     return EC;
5402 
5403   // Promise to materialize all forward references.
5404   WillMaterializeAllForwardRefs = true;
5405 
5406   // Iterate over the module, deserializing any functions that are still on
5407   // disk.
5408   for (Function &F : *TheModule) {
5409     if (std::error_code EC = materialize(&F))
5410       return EC;
5411   }
5412   // At this point, if there are any function bodies, parse the rest of
5413   // the bits in the module past the last function block we have recorded
5414   // through either lazy scanning or the VST.
5415   if (LastFunctionBlockBit || NextUnreadBit)
5416     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5417                                                      : NextUnreadBit);
5418 
5419   // Check that all block address forward references got resolved (as we
5420   // promised above).
5421   if (!BasicBlockFwdRefs.empty())
5422     return error("Never resolved function from blockaddress");
5423 
5424   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5425   // to prevent this instructions with TBAA tags should be upgraded first.
5426   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5427     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5428 
5429   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5430   // delete the old functions to clean up. We can't do this unless the entire
5431   // module is materialized because there could always be another function body
5432   // with calls to the old function.
5433   for (auto &I : UpgradedIntrinsics) {
5434     for (auto *U : I.first->users()) {
5435       if (CallInst *CI = dyn_cast<CallInst>(U))
5436         UpgradeIntrinsicCall(CI, I.second);
5437     }
5438     if (!I.first->use_empty())
5439       I.first->replaceAllUsesWith(I.second);
5440     I.first->eraseFromParent();
5441   }
5442   UpgradedIntrinsics.clear();
5443 
5444   UpgradeDebugInfo(*TheModule);
5445   return std::error_code();
5446 }
5447 
5448 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5449   return IdentifiedStructTypes;
5450 }
5451 
5452 std::error_code
5453 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5454   if (Streamer)
5455     return initLazyStream(std::move(Streamer));
5456   return initStreamFromBuffer();
5457 }
5458 
5459 std::error_code BitcodeReader::initStreamFromBuffer() {
5460   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5461   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5462 
5463   if (Buffer->getBufferSize() & 3)
5464     return error("Invalid bitcode signature");
5465 
5466   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5467   // The magic number is 0x0B17C0DE stored in little endian.
5468   if (isBitcodeWrapper(BufPtr, BufEnd))
5469     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5470       return error("Invalid bitcode wrapper header");
5471 
5472   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5473   Stream.init(&*StreamFile);
5474 
5475   return std::error_code();
5476 }
5477 
5478 std::error_code
5479 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5480   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5481   // see it.
5482   auto OwnedBytes =
5483       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5484   StreamingMemoryObject &Bytes = *OwnedBytes;
5485   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5486   Stream.init(&*StreamFile);
5487 
5488   unsigned char buf[16];
5489   if (Bytes.readBytes(buf, 16, 0) != 16)
5490     return error("Invalid bitcode signature");
5491 
5492   if (!isBitcode(buf, buf + 16))
5493     return error("Invalid bitcode signature");
5494 
5495   if (isBitcodeWrapper(buf, buf + 4)) {
5496     const unsigned char *bitcodeStart = buf;
5497     const unsigned char *bitcodeEnd = buf + 16;
5498     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5499     Bytes.dropLeadingBytes(bitcodeStart - buf);
5500     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5501   }
5502   return std::error_code();
5503 }
5504 
5505 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5506                                                        const Twine &Message) {
5507   return ::error(DiagnosticHandler, make_error_code(E), Message);
5508 }
5509 
5510 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5511   return ::error(DiagnosticHandler,
5512                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5513 }
5514 
5515 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5516   return ::error(DiagnosticHandler, make_error_code(E));
5517 }
5518 
5519 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5520     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5521     bool CheckGlobalValSummaryPresenceOnly)
5522     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer),
5523       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5524 
5525 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5526     DiagnosticHandlerFunction DiagnosticHandler,
5527     bool CheckGlobalValSummaryPresenceOnly)
5528     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr),
5529       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5530 
5531 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5532 
5533 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5534 
5535 GlobalValue::GUID
5536 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5537   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5538   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5539   return VGI->second;
5540 }
5541 
5542 GlobalValueInfo *
5543 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5544   auto I = SummaryOffsetToInfoMap.find(Offset);
5545   assert(I != SummaryOffsetToInfoMap.end());
5546   return I->second;
5547 }
5548 
5549 // Specialized value symbol table parser used when reading module index
5550 // blocks where we don't actually create global values.
5551 // At the end of this routine the module index is populated with a map
5552 // from global value name to GlobalValueInfo. The global value info contains
5553 // the function block's bitcode offset (if applicable), or the offset into the
5554 // summary section for the combined index.
5555 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5556     uint64_t Offset,
5557     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5558   assert(Offset > 0 && "Expected non-zero VST offset");
5559   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5560 
5561   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5562     return error("Invalid record");
5563 
5564   SmallVector<uint64_t, 64> Record;
5565 
5566   // Read all the records for this value table.
5567   SmallString<128> ValueName;
5568   while (1) {
5569     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5570 
5571     switch (Entry.Kind) {
5572     case BitstreamEntry::SubBlock: // Handled for us already.
5573     case BitstreamEntry::Error:
5574       return error("Malformed block");
5575     case BitstreamEntry::EndBlock:
5576       // Done parsing VST, jump back to wherever we came from.
5577       Stream.JumpToBit(CurrentBit);
5578       return std::error_code();
5579     case BitstreamEntry::Record:
5580       // The interesting case.
5581       break;
5582     }
5583 
5584     // Read a record.
5585     Record.clear();
5586     switch (Stream.readRecord(Entry.ID, Record)) {
5587     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5588       break;
5589     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5590       if (convertToString(Record, 1, ValueName))
5591         return error("Invalid record");
5592       unsigned ValueID = Record[0];
5593       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5594           llvm::make_unique<GlobalValueInfo>();
5595       assert(!SourceFileName.empty());
5596       auto VLI = ValueIdToLinkageMap.find(ValueID);
5597       assert(VLI != ValueIdToLinkageMap.end() &&
5598              "No linkage found for VST entry?");
5599       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5600           ValueName, VLI->second, SourceFileName);
5601       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5602       if (PrintSummaryGUIDs)
5603         dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n";
5604       TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo));
5605       ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID;
5606       ValueName.clear();
5607       break;
5608     }
5609     case bitc::VST_CODE_FNENTRY: {
5610       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5611       if (convertToString(Record, 2, ValueName))
5612         return error("Invalid record");
5613       unsigned ValueID = Record[0];
5614       uint64_t FuncOffset = Record[1];
5615       std::unique_ptr<GlobalValueInfo> FuncInfo =
5616           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5617       assert(!SourceFileName.empty());
5618       auto VLI = ValueIdToLinkageMap.find(ValueID);
5619       assert(VLI != ValueIdToLinkageMap.end() &&
5620              "No linkage found for VST entry?");
5621       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5622           ValueName, VLI->second, SourceFileName);
5623       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5624       if (PrintSummaryGUIDs)
5625         dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n";
5626       TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo));
5627       ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID;
5628 
5629       ValueName.clear();
5630       break;
5631     }
5632     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5633       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5634       unsigned ValueID = Record[0];
5635       uint64_t GlobalValSummaryOffset = Record[1];
5636       GlobalValue::GUID GlobalValGUID = Record[2];
5637       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5638           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5639       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5640       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5641       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5642       break;
5643     }
5644     case bitc::VST_CODE_COMBINED_ENTRY: {
5645       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5646       unsigned ValueID = Record[0];
5647       GlobalValue::GUID RefGUID = Record[1];
5648       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5649       break;
5650     }
5651     }
5652   }
5653 }
5654 
5655 // Parse just the blocks needed for building the index out of the module.
5656 // At the end of this routine the module Index is populated with a map
5657 // from global value name to GlobalValueInfo. The global value info contains
5658 // the parsed summary information (when parsing summaries eagerly).
5659 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5660   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5661     return error("Invalid record");
5662 
5663   SmallVector<uint64_t, 64> Record;
5664   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5665   unsigned ValueId = 0;
5666 
5667   // Read the index for this module.
5668   while (1) {
5669     BitstreamEntry Entry = Stream.advance();
5670 
5671     switch (Entry.Kind) {
5672     case BitstreamEntry::Error:
5673       return error("Malformed block");
5674     case BitstreamEntry::EndBlock:
5675       return std::error_code();
5676 
5677     case BitstreamEntry::SubBlock:
5678       if (CheckGlobalValSummaryPresenceOnly) {
5679         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5680           SeenGlobalValSummary = true;
5681           // No need to parse the rest since we found the summary.
5682           return std::error_code();
5683         }
5684         if (Stream.SkipBlock())
5685           return error("Invalid record");
5686         continue;
5687       }
5688       switch (Entry.ID) {
5689       default: // Skip unknown content.
5690         if (Stream.SkipBlock())
5691           return error("Invalid record");
5692         break;
5693       case bitc::BLOCKINFO_BLOCK_ID:
5694         // Need to parse these to get abbrev ids (e.g. for VST)
5695         if (Stream.ReadBlockInfoBlock())
5696           return error("Malformed block");
5697         break;
5698       case bitc::VALUE_SYMTAB_BLOCK_ID:
5699         // Should have been parsed earlier via VSTOffset, unless there
5700         // is no summary section.
5701         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5702                 !SeenGlobalValSummary) &&
5703                "Expected early VST parse via VSTOffset record");
5704         if (Stream.SkipBlock())
5705           return error("Invalid record");
5706         break;
5707       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5708         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5709         assert(!SeenValueSymbolTable &&
5710                "Already read VST when parsing summary block?");
5711         if (std::error_code EC =
5712                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5713           return EC;
5714         SeenValueSymbolTable = true;
5715         SeenGlobalValSummary = true;
5716         if (std::error_code EC = parseEntireSummary())
5717           return EC;
5718         break;
5719       case bitc::MODULE_STRTAB_BLOCK_ID:
5720         if (std::error_code EC = parseModuleStringTable())
5721           return EC;
5722         break;
5723       }
5724       continue;
5725 
5726     case BitstreamEntry::Record: {
5727         Record.clear();
5728         auto BitCode = Stream.readRecord(Entry.ID, Record);
5729         switch (BitCode) {
5730         default:
5731           break; // Default behavior, ignore unknown content.
5732         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5733         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5734           SmallString<128> ValueName;
5735           if (convertToString(Record, 0, ValueName))
5736             return error("Invalid record");
5737           SourceFileName = ValueName.c_str();
5738           break;
5739         }
5740         /// MODULE_CODE_HASH: [5*i32]
5741         case bitc::MODULE_CODE_HASH: {
5742           if (Record.size() != 5)
5743             return error("Invalid hash length " + Twine(Record.size()).str());
5744           if (!TheIndex)
5745             break;
5746           if (TheIndex->modulePaths().empty())
5747             // Does not have any summary emitted.
5748             break;
5749           if (TheIndex->modulePaths().size() != 1)
5750             return error("Don't expect multiple modules defined?");
5751           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5752           int Pos = 0;
5753           for (auto &Val : Record) {
5754             assert(!(Val >> 32) && "Unexpected high bits set");
5755             Hash[Pos++] = Val;
5756           }
5757           break;
5758         }
5759         /// MODULE_CODE_VSTOFFSET: [offset]
5760         case bitc::MODULE_CODE_VSTOFFSET:
5761           if (Record.size() < 1)
5762             return error("Invalid record");
5763           VSTOffset = Record[0];
5764           break;
5765         // GLOBALVAR: [pointer type, isconst, initid,
5766         //             linkage, alignment, section, visibility, threadlocal,
5767         //             unnamed_addr, externally_initialized, dllstorageclass,
5768         //             comdat]
5769         case bitc::MODULE_CODE_GLOBALVAR: {
5770           if (Record.size() < 6)
5771             return error("Invalid record");
5772           uint64_t RawLinkage = Record[3];
5773           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5774           ValueIdToLinkageMap[ValueId++] = Linkage;
5775           break;
5776         }
5777         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5778         //             alignment, section, visibility, gc, unnamed_addr,
5779         //             prologuedata, dllstorageclass, comdat, prefixdata]
5780         case bitc::MODULE_CODE_FUNCTION: {
5781           if (Record.size() < 8)
5782             return error("Invalid record");
5783           uint64_t RawLinkage = Record[3];
5784           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5785           ValueIdToLinkageMap[ValueId++] = Linkage;
5786           break;
5787         }
5788         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5789         // dllstorageclass]
5790         case bitc::MODULE_CODE_ALIAS: {
5791           if (Record.size() < 6)
5792             return error("Invalid record");
5793           uint64_t RawLinkage = Record[3];
5794           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5795           ValueIdToLinkageMap[ValueId++] = Linkage;
5796           break;
5797         }
5798         }
5799       }
5800       continue;
5801     }
5802   }
5803 }
5804 
5805 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5806 // objects in the index.
5807 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5808   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5809     return error("Invalid record");
5810 
5811   SmallVector<uint64_t, 64> Record;
5812 
5813   bool Combined = false;
5814   while (1) {
5815     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5816 
5817     switch (Entry.Kind) {
5818     case BitstreamEntry::SubBlock: // Handled for us already.
5819     case BitstreamEntry::Error:
5820       return error("Malformed block");
5821     case BitstreamEntry::EndBlock:
5822       // For a per-module index, remove any entries that still have empty
5823       // summaries. The VST parsing creates entries eagerly for all symbols,
5824       // but not all have associated summaries (e.g. it doesn't know how to
5825       // distinguish between VST_CODE_ENTRY for function declarations vs global
5826       // variables with initializers that end up with a summary). Remove those
5827       // entries now so that we don't need to rely on the combined index merger
5828       // to clean them up (especially since that may not run for the first
5829       // module's index if we merge into that).
5830       if (!Combined)
5831         TheIndex->removeEmptySummaryEntries();
5832       return std::error_code();
5833     case BitstreamEntry::Record:
5834       // The interesting case.
5835       break;
5836     }
5837 
5838     // Read a record. The record format depends on whether this
5839     // is a per-module index or a combined index file. In the per-module
5840     // case the records contain the associated value's ID for correlation
5841     // with VST entries. In the combined index the correlation is done
5842     // via the bitcode offset of the summary records (which were saved
5843     // in the combined index VST entries). The records also contain
5844     // information used for ThinLTO renaming and importing.
5845     Record.clear();
5846     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5847     auto BitCode = Stream.readRecord(Entry.ID, Record);
5848     switch (BitCode) {
5849     default: // Default behavior: ignore.
5850       break;
5851     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5852     //                n x (valueid, callsitecount)]
5853     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5854     //                        numrefs x valueid,
5855     //                        n x (valueid, callsitecount, profilecount)]
5856     case bitc::FS_PERMODULE:
5857     case bitc::FS_PERMODULE_PROFILE: {
5858       unsigned ValueID = Record[0];
5859       uint64_t RawLinkage = Record[1];
5860       unsigned InstCount = Record[2];
5861       unsigned NumRefs = Record[3];
5862       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5863           getDecodedLinkage(RawLinkage), InstCount);
5864       // The module path string ref set in the summary must be owned by the
5865       // index's module string table. Since we don't have a module path
5866       // string table section in the per-module index, we create a single
5867       // module path string table entry with an empty (0) ID to take
5868       // ownership.
5869       FS->setModulePath(
5870           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5871       static int RefListStartIndex = 4;
5872       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5873       assert(Record.size() >= RefListStartIndex + NumRefs &&
5874              "Record size inconsistent with number of references");
5875       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5876         unsigned RefValueId = Record[I];
5877         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5878         FS->addRefEdge(RefGUID);
5879       }
5880       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5881       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5882            ++I) {
5883         unsigned CalleeValueId = Record[I];
5884         unsigned CallsiteCount = Record[++I];
5885         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5886         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5887         FS->addCallGraphEdge(CalleeGUID,
5888                              CalleeInfo(CallsiteCount, ProfileCount));
5889       }
5890       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5891       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5892       assert(!Info->summary() && "Expected a single summary per VST entry");
5893       Info->setSummary(std::move(FS));
5894       break;
5895     }
5896     // FS_ALIAS: [valueid, linkage, valueid]
5897     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5898     // they expect all aliasee summaries to be available.
5899     case bitc::FS_ALIAS: {
5900       unsigned ValueID = Record[0];
5901       uint64_t RawLinkage = Record[1];
5902       unsigned AliaseeID = Record[2];
5903       std::unique_ptr<AliasSummary> AS =
5904           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
5905       // The module path string ref set in the summary must be owned by the
5906       // index's module string table. Since we don't have a module path
5907       // string table section in the per-module index, we create a single
5908       // module path string table entry with an empty (0) ID to take
5909       // ownership.
5910       AS->setModulePath(
5911           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5912 
5913       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID);
5914       auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID);
5915       if (!AliaseeInfo->summary())
5916         return error("Alias expects aliasee summary to be parsed");
5917       AS->setAliasee(AliaseeInfo->summary());
5918 
5919       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5920       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5921       assert(!Info->summary() && "Expected a single summary per VST entry");
5922       Info->setSummary(std::move(AS));
5923       break;
5924     }
5925     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5926     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5927       unsigned ValueID = Record[0];
5928       uint64_t RawLinkage = Record[1];
5929       std::unique_ptr<GlobalVarSummary> FS =
5930           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5931       FS->setModulePath(
5932           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5933       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5934         unsigned RefValueId = Record[I];
5935         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5936         FS->addRefEdge(RefGUID);
5937       }
5938       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5939       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5940       assert(!Info->summary() && "Expected a single summary per VST entry");
5941       Info->setSummary(std::move(FS));
5942       break;
5943     }
5944     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5945     //               n x (valueid, callsitecount)]
5946     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5947     //                       numrefs x valueid,
5948     //                       n x (valueid, callsitecount, profilecount)]
5949     case bitc::FS_COMBINED:
5950     case bitc::FS_COMBINED_PROFILE: {
5951       uint64_t ModuleId = Record[0];
5952       uint64_t RawLinkage = Record[1];
5953       unsigned InstCount = Record[2];
5954       unsigned NumRefs = Record[3];
5955       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5956           getDecodedLinkage(RawLinkage), InstCount);
5957       FS->setModulePath(ModuleIdMap[ModuleId]);
5958       static int RefListStartIndex = 4;
5959       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5960       assert(Record.size() >= RefListStartIndex + NumRefs &&
5961              "Record size inconsistent with number of references");
5962       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5963         unsigned RefValueId = Record[I];
5964         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5965         FS->addRefEdge(RefGUID);
5966       }
5967       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5968       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5969            ++I) {
5970         unsigned CalleeValueId = Record[I];
5971         unsigned CallsiteCount = Record[++I];
5972         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5973         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5974         FS->addCallGraphEdge(CalleeGUID,
5975                              CalleeInfo(CallsiteCount, ProfileCount));
5976       }
5977       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5978       assert(!Info->summary() && "Expected a single summary per VST entry");
5979       Info->setSummary(std::move(FS));
5980       Combined = true;
5981       break;
5982     }
5983     // FS_COMBINED_ALIAS: [modid, linkage, offset]
5984     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5985     // they expect all aliasee summaries to be available.
5986     case bitc::FS_COMBINED_ALIAS: {
5987       uint64_t ModuleId = Record[0];
5988       uint64_t RawLinkage = Record[1];
5989       uint64_t AliaseeSummaryOffset = Record[2];
5990       std::unique_ptr<AliasSummary> AS =
5991           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
5992       AS->setModulePath(ModuleIdMap[ModuleId]);
5993 
5994       auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset);
5995       if (!AliaseeInfo->summary())
5996         return error("Alias expects aliasee summary to be parsed");
5997       AS->setAliasee(AliaseeInfo->summary());
5998 
5999       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6000       assert(!Info->summary() && "Expected a single summary per VST entry");
6001       Info->setSummary(std::move(AS));
6002       Combined = true;
6003       break;
6004     }
6005     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
6006     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6007       uint64_t ModuleId = Record[0];
6008       uint64_t RawLinkage = Record[1];
6009       std::unique_ptr<GlobalVarSummary> FS =
6010           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
6011       FS->setModulePath(ModuleIdMap[ModuleId]);
6012       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6013         unsigned RefValueId = Record[I];
6014         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
6015         FS->addRefEdge(RefGUID);
6016       }
6017       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6018       assert(!Info->summary() && "Expected a single summary per VST entry");
6019       Info->setSummary(std::move(FS));
6020       Combined = true;
6021       break;
6022     }
6023     }
6024   }
6025   llvm_unreachable("Exit infinite loop");
6026 }
6027 
6028 // Parse the  module string table block into the Index.
6029 // This populates the ModulePathStringTable map in the index.
6030 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6031   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6032     return error("Invalid record");
6033 
6034   SmallVector<uint64_t, 64> Record;
6035 
6036   SmallString<128> ModulePath;
6037   ModulePathStringTableTy::iterator LastSeenModulePath;
6038   while (1) {
6039     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6040 
6041     switch (Entry.Kind) {
6042     case BitstreamEntry::SubBlock: // Handled for us already.
6043     case BitstreamEntry::Error:
6044       return error("Malformed block");
6045     case BitstreamEntry::EndBlock:
6046       return std::error_code();
6047     case BitstreamEntry::Record:
6048       // The interesting case.
6049       break;
6050     }
6051 
6052     Record.clear();
6053     switch (Stream.readRecord(Entry.ID, Record)) {
6054     default: // Default behavior: ignore.
6055       break;
6056     case bitc::MST_CODE_ENTRY: {
6057       // MST_ENTRY: [modid, namechar x N]
6058       uint64_t ModuleId = Record[0];
6059 
6060       if (convertToString(Record, 1, ModulePath))
6061         return error("Invalid record");
6062 
6063       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6064       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6065 
6066       ModulePath.clear();
6067       break;
6068     }
6069     /// MST_CODE_HASH: [5*i32]
6070     case bitc::MST_CODE_HASH: {
6071       if (Record.size() != 5)
6072         return error("Invalid hash length " + Twine(Record.size()).str());
6073       if (LastSeenModulePath == TheIndex->modulePaths().end())
6074         return error("Invalid hash that does not follow a module path");
6075       int Pos = 0;
6076       for (auto &Val : Record) {
6077         assert(!(Val >> 32) && "Unexpected high bits set");
6078         LastSeenModulePath->second.second[Pos++] = Val;
6079       }
6080       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6081       LastSeenModulePath = TheIndex->modulePaths().end();
6082       break;
6083     }
6084     }
6085   }
6086   llvm_unreachable("Exit infinite loop");
6087 }
6088 
6089 // Parse the function info index from the bitcode streamer into the given index.
6090 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6091     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6092   TheIndex = I;
6093 
6094   if (std::error_code EC = initStream(std::move(Streamer)))
6095     return EC;
6096 
6097   // Sniff for the signature.
6098   if (!hasValidBitcodeHeader(Stream))
6099     return error("Invalid bitcode signature");
6100 
6101   // We expect a number of well-defined blocks, though we don't necessarily
6102   // need to understand them all.
6103   while (1) {
6104     if (Stream.AtEndOfStream()) {
6105       // We didn't really read a proper Module block.
6106       return error("Malformed block");
6107     }
6108 
6109     BitstreamEntry Entry =
6110         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6111 
6112     if (Entry.Kind != BitstreamEntry::SubBlock)
6113       return error("Malformed block");
6114 
6115     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6116     // building the function summary index.
6117     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6118       return parseModule();
6119 
6120     if (Stream.SkipBlock())
6121       return error("Invalid record");
6122   }
6123 }
6124 
6125 // Parse the summary information at the given offset in the buffer into
6126 // the index. Used to support lazy parsing of summaries from the
6127 // combined index during importing.
6128 // TODO: This function is not yet complete as it won't have a consumer
6129 // until ThinLTO function importing is added.
6130 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6131     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6132     size_t SummaryOffset) {
6133   TheIndex = I;
6134 
6135   if (std::error_code EC = initStream(std::move(Streamer)))
6136     return EC;
6137 
6138   // Sniff for the signature.
6139   if (!hasValidBitcodeHeader(Stream))
6140     return error("Invalid bitcode signature");
6141 
6142   Stream.JumpToBit(SummaryOffset);
6143 
6144   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6145 
6146   switch (Entry.Kind) {
6147   default:
6148     return error("Malformed block");
6149   case BitstreamEntry::Record:
6150     // The expected case.
6151     break;
6152   }
6153 
6154   // TODO: Read a record. This interface will be completed when ThinLTO
6155   // importing is added so that it can be tested.
6156   SmallVector<uint64_t, 64> Record;
6157   switch (Stream.readRecord(Entry.ID, Record)) {
6158   case bitc::FS_COMBINED:
6159   case bitc::FS_COMBINED_PROFILE:
6160   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6161   default:
6162     return error("Invalid record");
6163   }
6164 
6165   return std::error_code();
6166 }
6167 
6168 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6169     std::unique_ptr<DataStreamer> Streamer) {
6170   if (Streamer)
6171     return initLazyStream(std::move(Streamer));
6172   return initStreamFromBuffer();
6173 }
6174 
6175 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6176   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6177   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6178 
6179   if (Buffer->getBufferSize() & 3)
6180     return error("Invalid bitcode signature");
6181 
6182   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6183   // The magic number is 0x0B17C0DE stored in little endian.
6184   if (isBitcodeWrapper(BufPtr, BufEnd))
6185     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6186       return error("Invalid bitcode wrapper header");
6187 
6188   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6189   Stream.init(&*StreamFile);
6190 
6191   return std::error_code();
6192 }
6193 
6194 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6195     std::unique_ptr<DataStreamer> Streamer) {
6196   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6197   // see it.
6198   auto OwnedBytes =
6199       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6200   StreamingMemoryObject &Bytes = *OwnedBytes;
6201   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6202   Stream.init(&*StreamFile);
6203 
6204   unsigned char buf[16];
6205   if (Bytes.readBytes(buf, 16, 0) != 16)
6206     return error("Invalid bitcode signature");
6207 
6208   if (!isBitcode(buf, buf + 16))
6209     return error("Invalid bitcode signature");
6210 
6211   if (isBitcodeWrapper(buf, buf + 4)) {
6212     const unsigned char *bitcodeStart = buf;
6213     const unsigned char *bitcodeEnd = buf + 16;
6214     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6215     Bytes.dropLeadingBytes(bitcodeStart - buf);
6216     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6217   }
6218   return std::error_code();
6219 }
6220 
6221 namespace {
6222 class BitcodeErrorCategoryType : public std::error_category {
6223   const char *name() const LLVM_NOEXCEPT override {
6224     return "llvm.bitcode";
6225   }
6226   std::string message(int IE) const override {
6227     BitcodeError E = static_cast<BitcodeError>(IE);
6228     switch (E) {
6229     case BitcodeError::InvalidBitcodeSignature:
6230       return "Invalid bitcode signature";
6231     case BitcodeError::CorruptedBitcode:
6232       return "Corrupted bitcode";
6233     }
6234     llvm_unreachable("Unknown error type!");
6235   }
6236 };
6237 } // end anonymous namespace
6238 
6239 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6240 
6241 const std::error_category &llvm::BitcodeErrorCategory() {
6242   return *ErrorCategory;
6243 }
6244 
6245 //===----------------------------------------------------------------------===//
6246 // External interface
6247 //===----------------------------------------------------------------------===//
6248 
6249 static ErrorOr<std::unique_ptr<Module>>
6250 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6251                      BitcodeReader *R, LLVMContext &Context,
6252                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6253   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6254   M->setMaterializer(R);
6255 
6256   auto cleanupOnError = [&](std::error_code EC) {
6257     R->releaseBuffer(); // Never take ownership on error.
6258     return EC;
6259   };
6260 
6261   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6262   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6263                                                ShouldLazyLoadMetadata))
6264     return cleanupOnError(EC);
6265 
6266   if (MaterializeAll) {
6267     // Read in the entire module, and destroy the BitcodeReader.
6268     if (std::error_code EC = M->materializeAll())
6269       return cleanupOnError(EC);
6270   } else {
6271     // Resolve forward references from blockaddresses.
6272     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6273       return cleanupOnError(EC);
6274   }
6275   return std::move(M);
6276 }
6277 
6278 /// \brief Get a lazy one-at-time loading module from bitcode.
6279 ///
6280 /// This isn't always used in a lazy context.  In particular, it's also used by
6281 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6282 /// in forward-referenced functions from block address references.
6283 ///
6284 /// \param[in] MaterializeAll Set to \c true if we should materialize
6285 /// everything.
6286 static ErrorOr<std::unique_ptr<Module>>
6287 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6288                          LLVMContext &Context, bool MaterializeAll,
6289                          bool ShouldLazyLoadMetadata = false) {
6290   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6291 
6292   ErrorOr<std::unique_ptr<Module>> Ret =
6293       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6294                            MaterializeAll, ShouldLazyLoadMetadata);
6295   if (!Ret)
6296     return Ret;
6297 
6298   Buffer.release(); // The BitcodeReader owns it now.
6299   return Ret;
6300 }
6301 
6302 ErrorOr<std::unique_ptr<Module>>
6303 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6304                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6305   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6306                                   ShouldLazyLoadMetadata);
6307 }
6308 
6309 ErrorOr<std::unique_ptr<Module>>
6310 llvm::getStreamedBitcodeModule(StringRef Name,
6311                                std::unique_ptr<DataStreamer> Streamer,
6312                                LLVMContext &Context) {
6313   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6314   BitcodeReader *R = new BitcodeReader(Context);
6315 
6316   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6317                               false);
6318 }
6319 
6320 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6321                                                         LLVMContext &Context) {
6322   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6323   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6324   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6325   // written.  We must defer until the Module has been fully materialized.
6326 }
6327 
6328 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6329                                          LLVMContext &Context) {
6330   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6331   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6332   ErrorOr<std::string> Triple = R->parseTriple();
6333   if (Triple.getError())
6334     return "";
6335   return Triple.get();
6336 }
6337 
6338 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6339                                            LLVMContext &Context) {
6340   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6341   BitcodeReader R(Buf.release(), Context);
6342   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6343   if (ProducerString.getError())
6344     return "";
6345   return ProducerString.get();
6346 }
6347 
6348 // Parse the specified bitcode buffer, returning the function info index.
6349 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6350 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6351                             DiagnosticHandlerFunction DiagnosticHandler) {
6352   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6353   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6354 
6355   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6356 
6357   auto cleanupOnError = [&](std::error_code EC) {
6358     R.releaseBuffer(); // Never take ownership on error.
6359     return EC;
6360   };
6361 
6362   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6363     return cleanupOnError(EC);
6364 
6365   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6366   return std::move(Index);
6367 }
6368 
6369 // Check if the given bitcode buffer contains a global value summary block.
6370 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6371                                  DiagnosticHandlerFunction DiagnosticHandler) {
6372   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6373   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6374 
6375   auto cleanupOnError = [&](std::error_code EC) {
6376     R.releaseBuffer(); // Never take ownership on error.
6377     return false;
6378   };
6379 
6380   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6381     return cleanupOnError(EC);
6382 
6383   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6384   return R.foundGlobalValSummary();
6385 }
6386