1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 30 using namespace llvm; 31 32 enum { 33 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 34 }; 35 36 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 37 if (WillMaterializeAllForwardRefs) 38 return std::error_code(); 39 40 // Prevent recursion. 41 WillMaterializeAllForwardRefs = true; 42 43 while (!BasicBlockFwdRefQueue.empty()) { 44 Function *F = BasicBlockFwdRefQueue.front(); 45 BasicBlockFwdRefQueue.pop_front(); 46 assert(F && "Expected valid function"); 47 if (!BasicBlockFwdRefs.count(F)) 48 // Already materialized. 49 continue; 50 51 // Check for a function that isn't materializable to prevent an infinite 52 // loop. When parsing a blockaddress stored in a global variable, there 53 // isn't a trivial way to check if a function will have a body without a 54 // linear search through FunctionsWithBodies, so just check it here. 55 if (!F->isMaterializable()) 56 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 57 58 // Try to materialize F. 59 if (std::error_code EC = materialize(F)) 60 return EC; 61 } 62 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 63 64 // Reset state. 65 WillMaterializeAllForwardRefs = false; 66 return std::error_code(); 67 } 68 69 void BitcodeReader::FreeState() { 70 Buffer = nullptr; 71 std::vector<Type*>().swap(TypeList); 72 ValueList.clear(); 73 MDValueList.clear(); 74 std::vector<Comdat *>().swap(ComdatList); 75 76 std::vector<AttributeSet>().swap(MAttributes); 77 std::vector<BasicBlock*>().swap(FunctionBBs); 78 std::vector<Function*>().swap(FunctionsWithBodies); 79 DeferredFunctionInfo.clear(); 80 MDKindMap.clear(); 81 82 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 83 BasicBlockFwdRefQueue.clear(); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Helper functions to implement forward reference resolution, etc. 88 //===----------------------------------------------------------------------===// 89 90 /// ConvertToString - Convert a string from a record into an std::string, return 91 /// true on failure. 92 template<typename StrTy> 93 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 94 StrTy &Result) { 95 if (Idx > Record.size()) 96 return true; 97 98 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 99 Result += (char)Record[i]; 100 return false; 101 } 102 103 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 104 switch (Val) { 105 default: // Map unknown/new linkages to external 106 case 0: return GlobalValue::ExternalLinkage; 107 case 1: return GlobalValue::WeakAnyLinkage; 108 case 2: return GlobalValue::AppendingLinkage; 109 case 3: return GlobalValue::InternalLinkage; 110 case 4: return GlobalValue::LinkOnceAnyLinkage; 111 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 112 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 113 case 7: return GlobalValue::ExternalWeakLinkage; 114 case 8: return GlobalValue::CommonLinkage; 115 case 9: return GlobalValue::PrivateLinkage; 116 case 10: return GlobalValue::WeakODRLinkage; 117 case 11: return GlobalValue::LinkOnceODRLinkage; 118 case 12: return GlobalValue::AvailableExternallyLinkage; 119 case 13: 120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 121 case 14: 122 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 123 } 124 } 125 126 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 127 switch (Val) { 128 default: // Map unknown visibilities to default. 129 case 0: return GlobalValue::DefaultVisibility; 130 case 1: return GlobalValue::HiddenVisibility; 131 case 2: return GlobalValue::ProtectedVisibility; 132 } 133 } 134 135 static GlobalValue::DLLStorageClassTypes 136 GetDecodedDLLStorageClass(unsigned Val) { 137 switch (Val) { 138 default: // Map unknown values to default. 139 case 0: return GlobalValue::DefaultStorageClass; 140 case 1: return GlobalValue::DLLImportStorageClass; 141 case 2: return GlobalValue::DLLExportStorageClass; 142 } 143 } 144 145 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 146 switch (Val) { 147 case 0: return GlobalVariable::NotThreadLocal; 148 default: // Map unknown non-zero value to general dynamic. 149 case 1: return GlobalVariable::GeneralDynamicTLSModel; 150 case 2: return GlobalVariable::LocalDynamicTLSModel; 151 case 3: return GlobalVariable::InitialExecTLSModel; 152 case 4: return GlobalVariable::LocalExecTLSModel; 153 } 154 } 155 156 static int GetDecodedCastOpcode(unsigned Val) { 157 switch (Val) { 158 default: return -1; 159 case bitc::CAST_TRUNC : return Instruction::Trunc; 160 case bitc::CAST_ZEXT : return Instruction::ZExt; 161 case bitc::CAST_SEXT : return Instruction::SExt; 162 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 163 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 164 case bitc::CAST_UITOFP : return Instruction::UIToFP; 165 case bitc::CAST_SITOFP : return Instruction::SIToFP; 166 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 167 case bitc::CAST_FPEXT : return Instruction::FPExt; 168 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 169 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 170 case bitc::CAST_BITCAST : return Instruction::BitCast; 171 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 172 } 173 } 174 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 175 switch (Val) { 176 default: return -1; 177 case bitc::BINOP_ADD: 178 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 179 case bitc::BINOP_SUB: 180 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 181 case bitc::BINOP_MUL: 182 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 183 case bitc::BINOP_UDIV: return Instruction::UDiv; 184 case bitc::BINOP_SDIV: 185 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 186 case bitc::BINOP_UREM: return Instruction::URem; 187 case bitc::BINOP_SREM: 188 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 189 case bitc::BINOP_SHL: return Instruction::Shl; 190 case bitc::BINOP_LSHR: return Instruction::LShr; 191 case bitc::BINOP_ASHR: return Instruction::AShr; 192 case bitc::BINOP_AND: return Instruction::And; 193 case bitc::BINOP_OR: return Instruction::Or; 194 case bitc::BINOP_XOR: return Instruction::Xor; 195 } 196 } 197 198 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 199 switch (Val) { 200 default: return AtomicRMWInst::BAD_BINOP; 201 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 202 case bitc::RMW_ADD: return AtomicRMWInst::Add; 203 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 204 case bitc::RMW_AND: return AtomicRMWInst::And; 205 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 206 case bitc::RMW_OR: return AtomicRMWInst::Or; 207 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 208 case bitc::RMW_MAX: return AtomicRMWInst::Max; 209 case bitc::RMW_MIN: return AtomicRMWInst::Min; 210 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 211 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 212 } 213 } 214 215 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 216 switch (Val) { 217 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 218 case bitc::ORDERING_UNORDERED: return Unordered; 219 case bitc::ORDERING_MONOTONIC: return Monotonic; 220 case bitc::ORDERING_ACQUIRE: return Acquire; 221 case bitc::ORDERING_RELEASE: return Release; 222 case bitc::ORDERING_ACQREL: return AcquireRelease; 223 default: // Map unknown orderings to sequentially-consistent. 224 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 225 } 226 } 227 228 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 229 switch (Val) { 230 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 231 default: // Map unknown scopes to cross-thread. 232 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 233 } 234 } 235 236 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 237 switch (Val) { 238 default: // Map unknown selection kinds to any. 239 case bitc::COMDAT_SELECTION_KIND_ANY: 240 return Comdat::Any; 241 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 242 return Comdat::ExactMatch; 243 case bitc::COMDAT_SELECTION_KIND_LARGEST: 244 return Comdat::Largest; 245 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 246 return Comdat::NoDuplicates; 247 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 248 return Comdat::SameSize; 249 } 250 } 251 252 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 253 switch (Val) { 254 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 255 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 256 } 257 } 258 259 namespace llvm { 260 namespace { 261 /// @brief A class for maintaining the slot number definition 262 /// as a placeholder for the actual definition for forward constants defs. 263 class ConstantPlaceHolder : public ConstantExpr { 264 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 265 public: 266 // allocate space for exactly one operand 267 void *operator new(size_t s) { 268 return User::operator new(s, 1); 269 } 270 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 271 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 272 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 273 } 274 275 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 276 static bool classof(const Value *V) { 277 return isa<ConstantExpr>(V) && 278 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 279 } 280 281 282 /// Provide fast operand accessors 283 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 284 }; 285 } 286 287 // FIXME: can we inherit this from ConstantExpr? 288 template <> 289 struct OperandTraits<ConstantPlaceHolder> : 290 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 291 }; 292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 293 } 294 295 296 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 297 if (Idx == size()) { 298 push_back(V); 299 return; 300 } 301 302 if (Idx >= size()) 303 resize(Idx+1); 304 305 WeakVH &OldV = ValuePtrs[Idx]; 306 if (!OldV) { 307 OldV = V; 308 return; 309 } 310 311 // Handle constants and non-constants (e.g. instrs) differently for 312 // efficiency. 313 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 314 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 315 OldV = V; 316 } else { 317 // If there was a forward reference to this value, replace it. 318 Value *PrevVal = OldV; 319 OldV->replaceAllUsesWith(V); 320 delete PrevVal; 321 } 322 } 323 324 325 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 326 Type *Ty) { 327 if (Idx >= size()) 328 resize(Idx + 1); 329 330 if (Value *V = ValuePtrs[Idx]) { 331 assert(Ty == V->getType() && "Type mismatch in constant table!"); 332 return cast<Constant>(V); 333 } 334 335 // Create and return a placeholder, which will later be RAUW'd. 336 Constant *C = new ConstantPlaceHolder(Ty, Context); 337 ValuePtrs[Idx] = C; 338 return C; 339 } 340 341 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 342 if (Idx >= size()) 343 resize(Idx + 1); 344 345 if (Value *V = ValuePtrs[Idx]) { 346 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 347 return V; 348 } 349 350 // No type specified, must be invalid reference. 351 if (!Ty) return nullptr; 352 353 // Create and return a placeholder, which will later be RAUW'd. 354 Value *V = new Argument(Ty); 355 ValuePtrs[Idx] = V; 356 return V; 357 } 358 359 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 360 /// resolves any forward references. The idea behind this is that we sometimes 361 /// get constants (such as large arrays) which reference *many* forward ref 362 /// constants. Replacing each of these causes a lot of thrashing when 363 /// building/reuniquing the constant. Instead of doing this, we look at all the 364 /// uses and rewrite all the place holders at once for any constant that uses 365 /// a placeholder. 366 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 367 // Sort the values by-pointer so that they are efficient to look up with a 368 // binary search. 369 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 370 371 SmallVector<Constant*, 64> NewOps; 372 373 while (!ResolveConstants.empty()) { 374 Value *RealVal = operator[](ResolveConstants.back().second); 375 Constant *Placeholder = ResolveConstants.back().first; 376 ResolveConstants.pop_back(); 377 378 // Loop over all users of the placeholder, updating them to reference the 379 // new value. If they reference more than one placeholder, update them all 380 // at once. 381 while (!Placeholder->use_empty()) { 382 auto UI = Placeholder->user_begin(); 383 User *U = *UI; 384 385 // If the using object isn't uniqued, just update the operands. This 386 // handles instructions and initializers for global variables. 387 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 388 UI.getUse().set(RealVal); 389 continue; 390 } 391 392 // Otherwise, we have a constant that uses the placeholder. Replace that 393 // constant with a new constant that has *all* placeholder uses updated. 394 Constant *UserC = cast<Constant>(U); 395 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 396 I != E; ++I) { 397 Value *NewOp; 398 if (!isa<ConstantPlaceHolder>(*I)) { 399 // Not a placeholder reference. 400 NewOp = *I; 401 } else if (*I == Placeholder) { 402 // Common case is that it just references this one placeholder. 403 NewOp = RealVal; 404 } else { 405 // Otherwise, look up the placeholder in ResolveConstants. 406 ResolveConstantsTy::iterator It = 407 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 408 std::pair<Constant*, unsigned>(cast<Constant>(*I), 409 0)); 410 assert(It != ResolveConstants.end() && It->first == *I); 411 NewOp = operator[](It->second); 412 } 413 414 NewOps.push_back(cast<Constant>(NewOp)); 415 } 416 417 // Make the new constant. 418 Constant *NewC; 419 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 420 NewC = ConstantArray::get(UserCA->getType(), NewOps); 421 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 422 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 423 } else if (isa<ConstantVector>(UserC)) { 424 NewC = ConstantVector::get(NewOps); 425 } else { 426 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 427 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 428 } 429 430 UserC->replaceAllUsesWith(NewC); 431 UserC->destroyConstant(); 432 NewOps.clear(); 433 } 434 435 // Update all ValueHandles, they should be the only users at this point. 436 Placeholder->replaceAllUsesWith(RealVal); 437 delete Placeholder; 438 } 439 } 440 441 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 442 if (Idx == size()) { 443 push_back(V); 444 return; 445 } 446 447 if (Idx >= size()) 448 resize(Idx+1); 449 450 WeakVH &OldV = MDValuePtrs[Idx]; 451 if (!OldV) { 452 OldV = V; 453 return; 454 } 455 456 // If there was a forward reference to this value, replace it. 457 MDNode *PrevVal = cast<MDNode>(OldV); 458 OldV->replaceAllUsesWith(V); 459 MDNode::deleteTemporary(PrevVal); 460 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 461 // value for Idx. 462 MDValuePtrs[Idx] = V; 463 } 464 465 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 466 if (Idx >= size()) 467 resize(Idx + 1); 468 469 if (Value *V = MDValuePtrs[Idx]) { 470 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 471 return V; 472 } 473 474 // Create and return a placeholder, which will later be RAUW'd. 475 Value *V = MDNode::getTemporary(Context, None); 476 MDValuePtrs[Idx] = V; 477 return V; 478 } 479 480 Type *BitcodeReader::getTypeByID(unsigned ID) { 481 // The type table size is always specified correctly. 482 if (ID >= TypeList.size()) 483 return nullptr; 484 485 if (Type *Ty = TypeList[ID]) 486 return Ty; 487 488 // If we have a forward reference, the only possible case is when it is to a 489 // named struct. Just create a placeholder for now. 490 return TypeList[ID] = createIdentifiedStructType(Context); 491 } 492 493 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 494 StringRef Name) { 495 auto *Ret = StructType::create(Context, Name); 496 IdentifiedStructTypes.push_back(Ret); 497 return Ret; 498 } 499 500 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 501 auto *Ret = StructType::create(Context); 502 IdentifiedStructTypes.push_back(Ret); 503 return Ret; 504 } 505 506 507 //===----------------------------------------------------------------------===// 508 // Functions for parsing blocks from the bitcode file 509 //===----------------------------------------------------------------------===// 510 511 512 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 513 /// been decoded from the given integer. This function must stay in sync with 514 /// 'encodeLLVMAttributesForBitcode'. 515 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 516 uint64_t EncodedAttrs) { 517 // FIXME: Remove in 4.0. 518 519 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 520 // the bits above 31 down by 11 bits. 521 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 522 assert((!Alignment || isPowerOf2_32(Alignment)) && 523 "Alignment must be a power of two."); 524 525 if (Alignment) 526 B.addAlignmentAttr(Alignment); 527 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 528 (EncodedAttrs & 0xffff)); 529 } 530 531 std::error_code BitcodeReader::ParseAttributeBlock() { 532 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 533 return Error(BitcodeError::InvalidRecord); 534 535 if (!MAttributes.empty()) 536 return Error(BitcodeError::InvalidMultipleBlocks); 537 538 SmallVector<uint64_t, 64> Record; 539 540 SmallVector<AttributeSet, 8> Attrs; 541 542 // Read all the records. 543 while (1) { 544 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 545 546 switch (Entry.Kind) { 547 case BitstreamEntry::SubBlock: // Handled for us already. 548 case BitstreamEntry::Error: 549 return Error(BitcodeError::MalformedBlock); 550 case BitstreamEntry::EndBlock: 551 return std::error_code(); 552 case BitstreamEntry::Record: 553 // The interesting case. 554 break; 555 } 556 557 // Read a record. 558 Record.clear(); 559 switch (Stream.readRecord(Entry.ID, Record)) { 560 default: // Default behavior: ignore. 561 break; 562 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 563 // FIXME: Remove in 4.0. 564 if (Record.size() & 1) 565 return Error(BitcodeError::InvalidRecord); 566 567 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 568 AttrBuilder B; 569 decodeLLVMAttributesForBitcode(B, Record[i+1]); 570 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 571 } 572 573 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 574 Attrs.clear(); 575 break; 576 } 577 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 578 for (unsigned i = 0, e = Record.size(); i != e; ++i) 579 Attrs.push_back(MAttributeGroups[Record[i]]); 580 581 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 582 Attrs.clear(); 583 break; 584 } 585 } 586 } 587 } 588 589 // Returns Attribute::None on unrecognized codes. 590 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 591 switch (Code) { 592 default: 593 return Attribute::None; 594 case bitc::ATTR_KIND_ALIGNMENT: 595 return Attribute::Alignment; 596 case bitc::ATTR_KIND_ALWAYS_INLINE: 597 return Attribute::AlwaysInline; 598 case bitc::ATTR_KIND_BUILTIN: 599 return Attribute::Builtin; 600 case bitc::ATTR_KIND_BY_VAL: 601 return Attribute::ByVal; 602 case bitc::ATTR_KIND_IN_ALLOCA: 603 return Attribute::InAlloca; 604 case bitc::ATTR_KIND_COLD: 605 return Attribute::Cold; 606 case bitc::ATTR_KIND_INLINE_HINT: 607 return Attribute::InlineHint; 608 case bitc::ATTR_KIND_IN_REG: 609 return Attribute::InReg; 610 case bitc::ATTR_KIND_JUMP_TABLE: 611 return Attribute::JumpTable; 612 case bitc::ATTR_KIND_MIN_SIZE: 613 return Attribute::MinSize; 614 case bitc::ATTR_KIND_NAKED: 615 return Attribute::Naked; 616 case bitc::ATTR_KIND_NEST: 617 return Attribute::Nest; 618 case bitc::ATTR_KIND_NO_ALIAS: 619 return Attribute::NoAlias; 620 case bitc::ATTR_KIND_NO_BUILTIN: 621 return Attribute::NoBuiltin; 622 case bitc::ATTR_KIND_NO_CAPTURE: 623 return Attribute::NoCapture; 624 case bitc::ATTR_KIND_NO_DUPLICATE: 625 return Attribute::NoDuplicate; 626 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 627 return Attribute::NoImplicitFloat; 628 case bitc::ATTR_KIND_NO_INLINE: 629 return Attribute::NoInline; 630 case bitc::ATTR_KIND_NON_LAZY_BIND: 631 return Attribute::NonLazyBind; 632 case bitc::ATTR_KIND_NON_NULL: 633 return Attribute::NonNull; 634 case bitc::ATTR_KIND_DEREFERENCEABLE: 635 return Attribute::Dereferenceable; 636 case bitc::ATTR_KIND_NO_RED_ZONE: 637 return Attribute::NoRedZone; 638 case bitc::ATTR_KIND_NO_RETURN: 639 return Attribute::NoReturn; 640 case bitc::ATTR_KIND_NO_UNWIND: 641 return Attribute::NoUnwind; 642 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 643 return Attribute::OptimizeForSize; 644 case bitc::ATTR_KIND_OPTIMIZE_NONE: 645 return Attribute::OptimizeNone; 646 case bitc::ATTR_KIND_READ_NONE: 647 return Attribute::ReadNone; 648 case bitc::ATTR_KIND_READ_ONLY: 649 return Attribute::ReadOnly; 650 case bitc::ATTR_KIND_RETURNED: 651 return Attribute::Returned; 652 case bitc::ATTR_KIND_RETURNS_TWICE: 653 return Attribute::ReturnsTwice; 654 case bitc::ATTR_KIND_S_EXT: 655 return Attribute::SExt; 656 case bitc::ATTR_KIND_STACK_ALIGNMENT: 657 return Attribute::StackAlignment; 658 case bitc::ATTR_KIND_STACK_PROTECT: 659 return Attribute::StackProtect; 660 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 661 return Attribute::StackProtectReq; 662 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 663 return Attribute::StackProtectStrong; 664 case bitc::ATTR_KIND_STRUCT_RET: 665 return Attribute::StructRet; 666 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 667 return Attribute::SanitizeAddress; 668 case bitc::ATTR_KIND_SANITIZE_THREAD: 669 return Attribute::SanitizeThread; 670 case bitc::ATTR_KIND_SANITIZE_MEMORY: 671 return Attribute::SanitizeMemory; 672 case bitc::ATTR_KIND_UW_TABLE: 673 return Attribute::UWTable; 674 case bitc::ATTR_KIND_Z_EXT: 675 return Attribute::ZExt; 676 } 677 } 678 679 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 680 Attribute::AttrKind *Kind) { 681 *Kind = GetAttrFromCode(Code); 682 if (*Kind == Attribute::None) 683 return Error(BitcodeError::InvalidValue); 684 return std::error_code(); 685 } 686 687 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 688 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 689 return Error(BitcodeError::InvalidRecord); 690 691 if (!MAttributeGroups.empty()) 692 return Error(BitcodeError::InvalidMultipleBlocks); 693 694 SmallVector<uint64_t, 64> Record; 695 696 // Read all the records. 697 while (1) { 698 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 699 700 switch (Entry.Kind) { 701 case BitstreamEntry::SubBlock: // Handled for us already. 702 case BitstreamEntry::Error: 703 return Error(BitcodeError::MalformedBlock); 704 case BitstreamEntry::EndBlock: 705 return std::error_code(); 706 case BitstreamEntry::Record: 707 // The interesting case. 708 break; 709 } 710 711 // Read a record. 712 Record.clear(); 713 switch (Stream.readRecord(Entry.ID, Record)) { 714 default: // Default behavior: ignore. 715 break; 716 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 717 if (Record.size() < 3) 718 return Error(BitcodeError::InvalidRecord); 719 720 uint64_t GrpID = Record[0]; 721 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 722 723 AttrBuilder B; 724 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 725 if (Record[i] == 0) { // Enum attribute 726 Attribute::AttrKind Kind; 727 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 728 return EC; 729 730 B.addAttribute(Kind); 731 } else if (Record[i] == 1) { // Integer attribute 732 Attribute::AttrKind Kind; 733 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 734 return EC; 735 if (Kind == Attribute::Alignment) 736 B.addAlignmentAttr(Record[++i]); 737 else if (Kind == Attribute::StackAlignment) 738 B.addStackAlignmentAttr(Record[++i]); 739 else if (Kind == Attribute::Dereferenceable) 740 B.addDereferenceableAttr(Record[++i]); 741 } else { // String attribute 742 assert((Record[i] == 3 || Record[i] == 4) && 743 "Invalid attribute group entry"); 744 bool HasValue = (Record[i++] == 4); 745 SmallString<64> KindStr; 746 SmallString<64> ValStr; 747 748 while (Record[i] != 0 && i != e) 749 KindStr += Record[i++]; 750 assert(Record[i] == 0 && "Kind string not null terminated"); 751 752 if (HasValue) { 753 // Has a value associated with it. 754 ++i; // Skip the '0' that terminates the "kind" string. 755 while (Record[i] != 0 && i != e) 756 ValStr += Record[i++]; 757 assert(Record[i] == 0 && "Value string not null terminated"); 758 } 759 760 B.addAttribute(KindStr.str(), ValStr.str()); 761 } 762 } 763 764 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 765 break; 766 } 767 } 768 } 769 } 770 771 std::error_code BitcodeReader::ParseTypeTable() { 772 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 773 return Error(BitcodeError::InvalidRecord); 774 775 return ParseTypeTableBody(); 776 } 777 778 std::error_code BitcodeReader::ParseTypeTableBody() { 779 if (!TypeList.empty()) 780 return Error(BitcodeError::InvalidMultipleBlocks); 781 782 SmallVector<uint64_t, 64> Record; 783 unsigned NumRecords = 0; 784 785 SmallString<64> TypeName; 786 787 // Read all the records for this type table. 788 while (1) { 789 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 790 791 switch (Entry.Kind) { 792 case BitstreamEntry::SubBlock: // Handled for us already. 793 case BitstreamEntry::Error: 794 return Error(BitcodeError::MalformedBlock); 795 case BitstreamEntry::EndBlock: 796 if (NumRecords != TypeList.size()) 797 return Error(BitcodeError::MalformedBlock); 798 return std::error_code(); 799 case BitstreamEntry::Record: 800 // The interesting case. 801 break; 802 } 803 804 // Read a record. 805 Record.clear(); 806 Type *ResultTy = nullptr; 807 switch (Stream.readRecord(Entry.ID, Record)) { 808 default: 809 return Error(BitcodeError::InvalidValue); 810 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 811 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 812 // type list. This allows us to reserve space. 813 if (Record.size() < 1) 814 return Error(BitcodeError::InvalidRecord); 815 TypeList.resize(Record[0]); 816 continue; 817 case bitc::TYPE_CODE_VOID: // VOID 818 ResultTy = Type::getVoidTy(Context); 819 break; 820 case bitc::TYPE_CODE_HALF: // HALF 821 ResultTy = Type::getHalfTy(Context); 822 break; 823 case bitc::TYPE_CODE_FLOAT: // FLOAT 824 ResultTy = Type::getFloatTy(Context); 825 break; 826 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 827 ResultTy = Type::getDoubleTy(Context); 828 break; 829 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 830 ResultTy = Type::getX86_FP80Ty(Context); 831 break; 832 case bitc::TYPE_CODE_FP128: // FP128 833 ResultTy = Type::getFP128Ty(Context); 834 break; 835 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 836 ResultTy = Type::getPPC_FP128Ty(Context); 837 break; 838 case bitc::TYPE_CODE_LABEL: // LABEL 839 ResultTy = Type::getLabelTy(Context); 840 break; 841 case bitc::TYPE_CODE_METADATA: // METADATA 842 ResultTy = Type::getMetadataTy(Context); 843 break; 844 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 845 ResultTy = Type::getX86_MMXTy(Context); 846 break; 847 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 848 if (Record.size() < 1) 849 return Error(BitcodeError::InvalidRecord); 850 851 ResultTy = IntegerType::get(Context, Record[0]); 852 break; 853 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 854 // [pointee type, address space] 855 if (Record.size() < 1) 856 return Error(BitcodeError::InvalidRecord); 857 unsigned AddressSpace = 0; 858 if (Record.size() == 2) 859 AddressSpace = Record[1]; 860 ResultTy = getTypeByID(Record[0]); 861 if (!ResultTy) 862 return Error(BitcodeError::InvalidType); 863 ResultTy = PointerType::get(ResultTy, AddressSpace); 864 break; 865 } 866 case bitc::TYPE_CODE_FUNCTION_OLD: { 867 // FIXME: attrid is dead, remove it in LLVM 4.0 868 // FUNCTION: [vararg, attrid, retty, paramty x N] 869 if (Record.size() < 3) 870 return Error(BitcodeError::InvalidRecord); 871 SmallVector<Type*, 8> ArgTys; 872 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 873 if (Type *T = getTypeByID(Record[i])) 874 ArgTys.push_back(T); 875 else 876 break; 877 } 878 879 ResultTy = getTypeByID(Record[2]); 880 if (!ResultTy || ArgTys.size() < Record.size()-3) 881 return Error(BitcodeError::InvalidType); 882 883 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 884 break; 885 } 886 case bitc::TYPE_CODE_FUNCTION: { 887 // FUNCTION: [vararg, retty, paramty x N] 888 if (Record.size() < 2) 889 return Error(BitcodeError::InvalidRecord); 890 SmallVector<Type*, 8> ArgTys; 891 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 892 if (Type *T = getTypeByID(Record[i])) 893 ArgTys.push_back(T); 894 else 895 break; 896 } 897 898 ResultTy = getTypeByID(Record[1]); 899 if (!ResultTy || ArgTys.size() < Record.size()-2) 900 return Error(BitcodeError::InvalidType); 901 902 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 903 break; 904 } 905 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 906 if (Record.size() < 1) 907 return Error(BitcodeError::InvalidRecord); 908 SmallVector<Type*, 8> EltTys; 909 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 910 if (Type *T = getTypeByID(Record[i])) 911 EltTys.push_back(T); 912 else 913 break; 914 } 915 if (EltTys.size() != Record.size()-1) 916 return Error(BitcodeError::InvalidType); 917 ResultTy = StructType::get(Context, EltTys, Record[0]); 918 break; 919 } 920 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 921 if (ConvertToString(Record, 0, TypeName)) 922 return Error(BitcodeError::InvalidRecord); 923 continue; 924 925 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 926 if (Record.size() < 1) 927 return Error(BitcodeError::InvalidRecord); 928 929 if (NumRecords >= TypeList.size()) 930 return Error(BitcodeError::InvalidTYPETable); 931 932 // Check to see if this was forward referenced, if so fill in the temp. 933 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 934 if (Res) { 935 Res->setName(TypeName); 936 TypeList[NumRecords] = nullptr; 937 } else // Otherwise, create a new struct. 938 Res = createIdentifiedStructType(Context, TypeName); 939 TypeName.clear(); 940 941 SmallVector<Type*, 8> EltTys; 942 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 943 if (Type *T = getTypeByID(Record[i])) 944 EltTys.push_back(T); 945 else 946 break; 947 } 948 if (EltTys.size() != Record.size()-1) 949 return Error(BitcodeError::InvalidRecord); 950 Res->setBody(EltTys, Record[0]); 951 ResultTy = Res; 952 break; 953 } 954 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 955 if (Record.size() != 1) 956 return Error(BitcodeError::InvalidRecord); 957 958 if (NumRecords >= TypeList.size()) 959 return Error(BitcodeError::InvalidTYPETable); 960 961 // Check to see if this was forward referenced, if so fill in the temp. 962 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 963 if (Res) { 964 Res->setName(TypeName); 965 TypeList[NumRecords] = nullptr; 966 } else // Otherwise, create a new struct with no body. 967 Res = createIdentifiedStructType(Context, TypeName); 968 TypeName.clear(); 969 ResultTy = Res; 970 break; 971 } 972 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 973 if (Record.size() < 2) 974 return Error(BitcodeError::InvalidRecord); 975 if ((ResultTy = getTypeByID(Record[1]))) 976 ResultTy = ArrayType::get(ResultTy, Record[0]); 977 else 978 return Error(BitcodeError::InvalidType); 979 break; 980 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 981 if (Record.size() < 2) 982 return Error(BitcodeError::InvalidRecord); 983 if ((ResultTy = getTypeByID(Record[1]))) 984 ResultTy = VectorType::get(ResultTy, Record[0]); 985 else 986 return Error(BitcodeError::InvalidType); 987 break; 988 } 989 990 if (NumRecords >= TypeList.size()) 991 return Error(BitcodeError::InvalidTYPETable); 992 assert(ResultTy && "Didn't read a type?"); 993 assert(!TypeList[NumRecords] && "Already read type?"); 994 TypeList[NumRecords++] = ResultTy; 995 } 996 } 997 998 std::error_code BitcodeReader::ParseValueSymbolTable() { 999 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1000 return Error(BitcodeError::InvalidRecord); 1001 1002 SmallVector<uint64_t, 64> Record; 1003 1004 // Read all the records for this value table. 1005 SmallString<128> ValueName; 1006 while (1) { 1007 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1008 1009 switch (Entry.Kind) { 1010 case BitstreamEntry::SubBlock: // Handled for us already. 1011 case BitstreamEntry::Error: 1012 return Error(BitcodeError::MalformedBlock); 1013 case BitstreamEntry::EndBlock: 1014 return std::error_code(); 1015 case BitstreamEntry::Record: 1016 // The interesting case. 1017 break; 1018 } 1019 1020 // Read a record. 1021 Record.clear(); 1022 switch (Stream.readRecord(Entry.ID, Record)) { 1023 default: // Default behavior: unknown type. 1024 break; 1025 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1026 if (ConvertToString(Record, 1, ValueName)) 1027 return Error(BitcodeError::InvalidRecord); 1028 unsigned ValueID = Record[0]; 1029 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1030 return Error(BitcodeError::InvalidRecord); 1031 Value *V = ValueList[ValueID]; 1032 1033 V->setName(StringRef(ValueName.data(), ValueName.size())); 1034 ValueName.clear(); 1035 break; 1036 } 1037 case bitc::VST_CODE_BBENTRY: { 1038 if (ConvertToString(Record, 1, ValueName)) 1039 return Error(BitcodeError::InvalidRecord); 1040 BasicBlock *BB = getBasicBlock(Record[0]); 1041 if (!BB) 1042 return Error(BitcodeError::InvalidRecord); 1043 1044 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1045 ValueName.clear(); 1046 break; 1047 } 1048 } 1049 } 1050 } 1051 1052 std::error_code BitcodeReader::ParseMetadata() { 1053 unsigned NextMDValueNo = MDValueList.size(); 1054 1055 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1056 return Error(BitcodeError::InvalidRecord); 1057 1058 SmallVector<uint64_t, 64> Record; 1059 1060 // Read all the records. 1061 while (1) { 1062 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1063 1064 switch (Entry.Kind) { 1065 case BitstreamEntry::SubBlock: // Handled for us already. 1066 case BitstreamEntry::Error: 1067 return Error(BitcodeError::MalformedBlock); 1068 case BitstreamEntry::EndBlock: 1069 return std::error_code(); 1070 case BitstreamEntry::Record: 1071 // The interesting case. 1072 break; 1073 } 1074 1075 bool IsFunctionLocal = false; 1076 // Read a record. 1077 Record.clear(); 1078 unsigned Code = Stream.readRecord(Entry.ID, Record); 1079 switch (Code) { 1080 default: // Default behavior: ignore. 1081 break; 1082 case bitc::METADATA_NAME: { 1083 // Read name of the named metadata. 1084 SmallString<8> Name(Record.begin(), Record.end()); 1085 Record.clear(); 1086 Code = Stream.ReadCode(); 1087 1088 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1089 unsigned NextBitCode = Stream.readRecord(Code, Record); 1090 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1091 1092 // Read named metadata elements. 1093 unsigned Size = Record.size(); 1094 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1095 for (unsigned i = 0; i != Size; ++i) { 1096 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1097 if (!MD) 1098 return Error(BitcodeError::InvalidRecord); 1099 NMD->addOperand(MD); 1100 } 1101 break; 1102 } 1103 case bitc::METADATA_FN_NODE: 1104 IsFunctionLocal = true; 1105 // fall-through 1106 case bitc::METADATA_NODE: { 1107 if (Record.size() % 2 == 1) 1108 return Error(BitcodeError::InvalidRecord); 1109 1110 unsigned Size = Record.size(); 1111 SmallVector<Value*, 8> Elts; 1112 for (unsigned i = 0; i != Size; i += 2) { 1113 Type *Ty = getTypeByID(Record[i]); 1114 if (!Ty) 1115 return Error(BitcodeError::InvalidRecord); 1116 if (Ty->isMetadataTy()) 1117 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1118 else if (!Ty->isVoidTy()) 1119 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1120 else 1121 Elts.push_back(nullptr); 1122 } 1123 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1124 IsFunctionLocal = false; 1125 MDValueList.AssignValue(V, NextMDValueNo++); 1126 break; 1127 } 1128 case bitc::METADATA_STRING: { 1129 std::string String(Record.begin(), Record.end()); 1130 llvm::UpgradeMDStringConstant(String); 1131 Value *V = MDString::get(Context, String); 1132 MDValueList.AssignValue(V, NextMDValueNo++); 1133 break; 1134 } 1135 case bitc::METADATA_KIND: { 1136 if (Record.size() < 2) 1137 return Error(BitcodeError::InvalidRecord); 1138 1139 unsigned Kind = Record[0]; 1140 SmallString<8> Name(Record.begin()+1, Record.end()); 1141 1142 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1143 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1144 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1145 break; 1146 } 1147 } 1148 } 1149 } 1150 1151 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1152 /// the LSB for dense VBR encoding. 1153 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1154 if ((V & 1) == 0) 1155 return V >> 1; 1156 if (V != 1) 1157 return -(V >> 1); 1158 // There is no such thing as -0 with integers. "-0" really means MININT. 1159 return 1ULL << 63; 1160 } 1161 1162 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1163 /// values and aliases that we can. 1164 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1165 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1166 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1167 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1168 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1169 1170 GlobalInitWorklist.swap(GlobalInits); 1171 AliasInitWorklist.swap(AliasInits); 1172 FunctionPrefixWorklist.swap(FunctionPrefixes); 1173 FunctionPrologueWorklist.swap(FunctionPrologues); 1174 1175 while (!GlobalInitWorklist.empty()) { 1176 unsigned ValID = GlobalInitWorklist.back().second; 1177 if (ValID >= ValueList.size()) { 1178 // Not ready to resolve this yet, it requires something later in the file. 1179 GlobalInits.push_back(GlobalInitWorklist.back()); 1180 } else { 1181 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1182 GlobalInitWorklist.back().first->setInitializer(C); 1183 else 1184 return Error(BitcodeError::ExpectedConstant); 1185 } 1186 GlobalInitWorklist.pop_back(); 1187 } 1188 1189 while (!AliasInitWorklist.empty()) { 1190 unsigned ValID = AliasInitWorklist.back().second; 1191 if (ValID >= ValueList.size()) { 1192 AliasInits.push_back(AliasInitWorklist.back()); 1193 } else { 1194 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1195 AliasInitWorklist.back().first->setAliasee(C); 1196 else 1197 return Error(BitcodeError::ExpectedConstant); 1198 } 1199 AliasInitWorklist.pop_back(); 1200 } 1201 1202 while (!FunctionPrefixWorklist.empty()) { 1203 unsigned ValID = FunctionPrefixWorklist.back().second; 1204 if (ValID >= ValueList.size()) { 1205 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1206 } else { 1207 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1208 FunctionPrefixWorklist.back().first->setPrefixData(C); 1209 else 1210 return Error(BitcodeError::ExpectedConstant); 1211 } 1212 FunctionPrefixWorklist.pop_back(); 1213 } 1214 1215 while (!FunctionPrologueWorklist.empty()) { 1216 unsigned ValID = FunctionPrologueWorklist.back().second; 1217 if (ValID >= ValueList.size()) { 1218 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1219 } else { 1220 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1221 FunctionPrologueWorklist.back().first->setPrologueData(C); 1222 else 1223 return Error(BitcodeError::ExpectedConstant); 1224 } 1225 FunctionPrologueWorklist.pop_back(); 1226 } 1227 1228 return std::error_code(); 1229 } 1230 1231 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1232 SmallVector<uint64_t, 8> Words(Vals.size()); 1233 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1234 BitcodeReader::decodeSignRotatedValue); 1235 1236 return APInt(TypeBits, Words); 1237 } 1238 1239 std::error_code BitcodeReader::ParseConstants() { 1240 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1241 return Error(BitcodeError::InvalidRecord); 1242 1243 SmallVector<uint64_t, 64> Record; 1244 1245 // Read all the records for this value table. 1246 Type *CurTy = Type::getInt32Ty(Context); 1247 unsigned NextCstNo = ValueList.size(); 1248 while (1) { 1249 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1250 1251 switch (Entry.Kind) { 1252 case BitstreamEntry::SubBlock: // Handled for us already. 1253 case BitstreamEntry::Error: 1254 return Error(BitcodeError::MalformedBlock); 1255 case BitstreamEntry::EndBlock: 1256 if (NextCstNo != ValueList.size()) 1257 return Error(BitcodeError::InvalidConstantReference); 1258 1259 // Once all the constants have been read, go through and resolve forward 1260 // references. 1261 ValueList.ResolveConstantForwardRefs(); 1262 return std::error_code(); 1263 case BitstreamEntry::Record: 1264 // The interesting case. 1265 break; 1266 } 1267 1268 // Read a record. 1269 Record.clear(); 1270 Value *V = nullptr; 1271 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1272 switch (BitCode) { 1273 default: // Default behavior: unknown constant 1274 case bitc::CST_CODE_UNDEF: // UNDEF 1275 V = UndefValue::get(CurTy); 1276 break; 1277 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1278 if (Record.empty()) 1279 return Error(BitcodeError::InvalidRecord); 1280 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1281 return Error(BitcodeError::InvalidRecord); 1282 CurTy = TypeList[Record[0]]; 1283 continue; // Skip the ValueList manipulation. 1284 case bitc::CST_CODE_NULL: // NULL 1285 V = Constant::getNullValue(CurTy); 1286 break; 1287 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1288 if (!CurTy->isIntegerTy() || Record.empty()) 1289 return Error(BitcodeError::InvalidRecord); 1290 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1291 break; 1292 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1293 if (!CurTy->isIntegerTy() || Record.empty()) 1294 return Error(BitcodeError::InvalidRecord); 1295 1296 APInt VInt = ReadWideAPInt(Record, 1297 cast<IntegerType>(CurTy)->getBitWidth()); 1298 V = ConstantInt::get(Context, VInt); 1299 1300 break; 1301 } 1302 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1303 if (Record.empty()) 1304 return Error(BitcodeError::InvalidRecord); 1305 if (CurTy->isHalfTy()) 1306 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1307 APInt(16, (uint16_t)Record[0]))); 1308 else if (CurTy->isFloatTy()) 1309 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1310 APInt(32, (uint32_t)Record[0]))); 1311 else if (CurTy->isDoubleTy()) 1312 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1313 APInt(64, Record[0]))); 1314 else if (CurTy->isX86_FP80Ty()) { 1315 // Bits are not stored the same way as a normal i80 APInt, compensate. 1316 uint64_t Rearrange[2]; 1317 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1318 Rearrange[1] = Record[0] >> 48; 1319 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1320 APInt(80, Rearrange))); 1321 } else if (CurTy->isFP128Ty()) 1322 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1323 APInt(128, Record))); 1324 else if (CurTy->isPPC_FP128Ty()) 1325 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1326 APInt(128, Record))); 1327 else 1328 V = UndefValue::get(CurTy); 1329 break; 1330 } 1331 1332 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1333 if (Record.empty()) 1334 return Error(BitcodeError::InvalidRecord); 1335 1336 unsigned Size = Record.size(); 1337 SmallVector<Constant*, 16> Elts; 1338 1339 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1340 for (unsigned i = 0; i != Size; ++i) 1341 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1342 STy->getElementType(i))); 1343 V = ConstantStruct::get(STy, Elts); 1344 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1345 Type *EltTy = ATy->getElementType(); 1346 for (unsigned i = 0; i != Size; ++i) 1347 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1348 V = ConstantArray::get(ATy, Elts); 1349 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1350 Type *EltTy = VTy->getElementType(); 1351 for (unsigned i = 0; i != Size; ++i) 1352 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1353 V = ConstantVector::get(Elts); 1354 } else { 1355 V = UndefValue::get(CurTy); 1356 } 1357 break; 1358 } 1359 case bitc::CST_CODE_STRING: // STRING: [values] 1360 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1361 if (Record.empty()) 1362 return Error(BitcodeError::InvalidRecord); 1363 1364 SmallString<16> Elts(Record.begin(), Record.end()); 1365 V = ConstantDataArray::getString(Context, Elts, 1366 BitCode == bitc::CST_CODE_CSTRING); 1367 break; 1368 } 1369 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1370 if (Record.empty()) 1371 return Error(BitcodeError::InvalidRecord); 1372 1373 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1374 unsigned Size = Record.size(); 1375 1376 if (EltTy->isIntegerTy(8)) { 1377 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1378 if (isa<VectorType>(CurTy)) 1379 V = ConstantDataVector::get(Context, Elts); 1380 else 1381 V = ConstantDataArray::get(Context, Elts); 1382 } else if (EltTy->isIntegerTy(16)) { 1383 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1384 if (isa<VectorType>(CurTy)) 1385 V = ConstantDataVector::get(Context, Elts); 1386 else 1387 V = ConstantDataArray::get(Context, Elts); 1388 } else if (EltTy->isIntegerTy(32)) { 1389 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1390 if (isa<VectorType>(CurTy)) 1391 V = ConstantDataVector::get(Context, Elts); 1392 else 1393 V = ConstantDataArray::get(Context, Elts); 1394 } else if (EltTy->isIntegerTy(64)) { 1395 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1396 if (isa<VectorType>(CurTy)) 1397 V = ConstantDataVector::get(Context, Elts); 1398 else 1399 V = ConstantDataArray::get(Context, Elts); 1400 } else if (EltTy->isFloatTy()) { 1401 SmallVector<float, 16> Elts(Size); 1402 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1403 if (isa<VectorType>(CurTy)) 1404 V = ConstantDataVector::get(Context, Elts); 1405 else 1406 V = ConstantDataArray::get(Context, Elts); 1407 } else if (EltTy->isDoubleTy()) { 1408 SmallVector<double, 16> Elts(Size); 1409 std::transform(Record.begin(), Record.end(), Elts.begin(), 1410 BitsToDouble); 1411 if (isa<VectorType>(CurTy)) 1412 V = ConstantDataVector::get(Context, Elts); 1413 else 1414 V = ConstantDataArray::get(Context, Elts); 1415 } else { 1416 return Error(BitcodeError::InvalidTypeForValue); 1417 } 1418 break; 1419 } 1420 1421 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1422 if (Record.size() < 3) 1423 return Error(BitcodeError::InvalidRecord); 1424 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1425 if (Opc < 0) { 1426 V = UndefValue::get(CurTy); // Unknown binop. 1427 } else { 1428 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1429 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1430 unsigned Flags = 0; 1431 if (Record.size() >= 4) { 1432 if (Opc == Instruction::Add || 1433 Opc == Instruction::Sub || 1434 Opc == Instruction::Mul || 1435 Opc == Instruction::Shl) { 1436 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1437 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1438 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1439 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1440 } else if (Opc == Instruction::SDiv || 1441 Opc == Instruction::UDiv || 1442 Opc == Instruction::LShr || 1443 Opc == Instruction::AShr) { 1444 if (Record[3] & (1 << bitc::PEO_EXACT)) 1445 Flags |= SDivOperator::IsExact; 1446 } 1447 } 1448 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1449 } 1450 break; 1451 } 1452 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1453 if (Record.size() < 3) 1454 return Error(BitcodeError::InvalidRecord); 1455 int Opc = GetDecodedCastOpcode(Record[0]); 1456 if (Opc < 0) { 1457 V = UndefValue::get(CurTy); // Unknown cast. 1458 } else { 1459 Type *OpTy = getTypeByID(Record[1]); 1460 if (!OpTy) 1461 return Error(BitcodeError::InvalidRecord); 1462 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1463 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1464 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1465 } 1466 break; 1467 } 1468 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1469 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1470 if (Record.size() & 1) 1471 return Error(BitcodeError::InvalidRecord); 1472 SmallVector<Constant*, 16> Elts; 1473 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1474 Type *ElTy = getTypeByID(Record[i]); 1475 if (!ElTy) 1476 return Error(BitcodeError::InvalidRecord); 1477 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1478 } 1479 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1480 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1481 BitCode == 1482 bitc::CST_CODE_CE_INBOUNDS_GEP); 1483 break; 1484 } 1485 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1486 if (Record.size() < 3) 1487 return Error(BitcodeError::InvalidRecord); 1488 1489 Type *SelectorTy = Type::getInt1Ty(Context); 1490 1491 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1492 // vector. Otherwise, it must be a single bit. 1493 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1494 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1495 VTy->getNumElements()); 1496 1497 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1498 SelectorTy), 1499 ValueList.getConstantFwdRef(Record[1],CurTy), 1500 ValueList.getConstantFwdRef(Record[2],CurTy)); 1501 break; 1502 } 1503 case bitc::CST_CODE_CE_EXTRACTELT 1504 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1505 if (Record.size() < 3) 1506 return Error(BitcodeError::InvalidRecord); 1507 VectorType *OpTy = 1508 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1509 if (!OpTy) 1510 return Error(BitcodeError::InvalidRecord); 1511 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1512 Constant *Op1 = nullptr; 1513 if (Record.size() == 4) { 1514 Type *IdxTy = getTypeByID(Record[2]); 1515 if (!IdxTy) 1516 return Error(BitcodeError::InvalidRecord); 1517 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1518 } else // TODO: Remove with llvm 4.0 1519 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1520 if (!Op1) 1521 return Error(BitcodeError::InvalidRecord); 1522 V = ConstantExpr::getExtractElement(Op0, Op1); 1523 break; 1524 } 1525 case bitc::CST_CODE_CE_INSERTELT 1526 : { // CE_INSERTELT: [opval, opval, opty, opval] 1527 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1528 if (Record.size() < 3 || !OpTy) 1529 return Error(BitcodeError::InvalidRecord); 1530 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1531 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1532 OpTy->getElementType()); 1533 Constant *Op2 = nullptr; 1534 if (Record.size() == 4) { 1535 Type *IdxTy = getTypeByID(Record[2]); 1536 if (!IdxTy) 1537 return Error(BitcodeError::InvalidRecord); 1538 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1539 } else // TODO: Remove with llvm 4.0 1540 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1541 if (!Op2) 1542 return Error(BitcodeError::InvalidRecord); 1543 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1544 break; 1545 } 1546 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1547 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1548 if (Record.size() < 3 || !OpTy) 1549 return Error(BitcodeError::InvalidRecord); 1550 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1551 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1552 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1553 OpTy->getNumElements()); 1554 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1555 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1556 break; 1557 } 1558 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1559 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1560 VectorType *OpTy = 1561 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1562 if (Record.size() < 4 || !RTy || !OpTy) 1563 return Error(BitcodeError::InvalidRecord); 1564 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1565 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1566 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1567 RTy->getNumElements()); 1568 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1569 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1570 break; 1571 } 1572 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1573 if (Record.size() < 4) 1574 return Error(BitcodeError::InvalidRecord); 1575 Type *OpTy = getTypeByID(Record[0]); 1576 if (!OpTy) 1577 return Error(BitcodeError::InvalidRecord); 1578 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1579 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1580 1581 if (OpTy->isFPOrFPVectorTy()) 1582 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1583 else 1584 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1585 break; 1586 } 1587 // This maintains backward compatibility, pre-asm dialect keywords. 1588 // FIXME: Remove with the 4.0 release. 1589 case bitc::CST_CODE_INLINEASM_OLD: { 1590 if (Record.size() < 2) 1591 return Error(BitcodeError::InvalidRecord); 1592 std::string AsmStr, ConstrStr; 1593 bool HasSideEffects = Record[0] & 1; 1594 bool IsAlignStack = Record[0] >> 1; 1595 unsigned AsmStrSize = Record[1]; 1596 if (2+AsmStrSize >= Record.size()) 1597 return Error(BitcodeError::InvalidRecord); 1598 unsigned ConstStrSize = Record[2+AsmStrSize]; 1599 if (3+AsmStrSize+ConstStrSize > Record.size()) 1600 return Error(BitcodeError::InvalidRecord); 1601 1602 for (unsigned i = 0; i != AsmStrSize; ++i) 1603 AsmStr += (char)Record[2+i]; 1604 for (unsigned i = 0; i != ConstStrSize; ++i) 1605 ConstrStr += (char)Record[3+AsmStrSize+i]; 1606 PointerType *PTy = cast<PointerType>(CurTy); 1607 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1608 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1609 break; 1610 } 1611 // This version adds support for the asm dialect keywords (e.g., 1612 // inteldialect). 1613 case bitc::CST_CODE_INLINEASM: { 1614 if (Record.size() < 2) 1615 return Error(BitcodeError::InvalidRecord); 1616 std::string AsmStr, ConstrStr; 1617 bool HasSideEffects = Record[0] & 1; 1618 bool IsAlignStack = (Record[0] >> 1) & 1; 1619 unsigned AsmDialect = Record[0] >> 2; 1620 unsigned AsmStrSize = Record[1]; 1621 if (2+AsmStrSize >= Record.size()) 1622 return Error(BitcodeError::InvalidRecord); 1623 unsigned ConstStrSize = Record[2+AsmStrSize]; 1624 if (3+AsmStrSize+ConstStrSize > Record.size()) 1625 return Error(BitcodeError::InvalidRecord); 1626 1627 for (unsigned i = 0; i != AsmStrSize; ++i) 1628 AsmStr += (char)Record[2+i]; 1629 for (unsigned i = 0; i != ConstStrSize; ++i) 1630 ConstrStr += (char)Record[3+AsmStrSize+i]; 1631 PointerType *PTy = cast<PointerType>(CurTy); 1632 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1633 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1634 InlineAsm::AsmDialect(AsmDialect)); 1635 break; 1636 } 1637 case bitc::CST_CODE_BLOCKADDRESS:{ 1638 if (Record.size() < 3) 1639 return Error(BitcodeError::InvalidRecord); 1640 Type *FnTy = getTypeByID(Record[0]); 1641 if (!FnTy) 1642 return Error(BitcodeError::InvalidRecord); 1643 Function *Fn = 1644 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1645 if (!Fn) 1646 return Error(BitcodeError::InvalidRecord); 1647 1648 // Don't let Fn get dematerialized. 1649 BlockAddressesTaken.insert(Fn); 1650 1651 // If the function is already parsed we can insert the block address right 1652 // away. 1653 BasicBlock *BB; 1654 unsigned BBID = Record[2]; 1655 if (!BBID) 1656 // Invalid reference to entry block. 1657 return Error(BitcodeError::InvalidID); 1658 if (!Fn->empty()) { 1659 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1660 for (size_t I = 0, E = BBID; I != E; ++I) { 1661 if (BBI == BBE) 1662 return Error(BitcodeError::InvalidID); 1663 ++BBI; 1664 } 1665 BB = BBI; 1666 } else { 1667 // Otherwise insert a placeholder and remember it so it can be inserted 1668 // when the function is parsed. 1669 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1670 if (FwdBBs.empty()) 1671 BasicBlockFwdRefQueue.push_back(Fn); 1672 if (FwdBBs.size() < BBID + 1) 1673 FwdBBs.resize(BBID + 1); 1674 if (!FwdBBs[BBID]) 1675 FwdBBs[BBID] = BasicBlock::Create(Context); 1676 BB = FwdBBs[BBID]; 1677 } 1678 V = BlockAddress::get(Fn, BB); 1679 break; 1680 } 1681 } 1682 1683 ValueList.AssignValue(V, NextCstNo); 1684 ++NextCstNo; 1685 } 1686 } 1687 1688 std::error_code BitcodeReader::ParseUseLists() { 1689 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1690 return Error(BitcodeError::InvalidRecord); 1691 1692 // Read all the records. 1693 SmallVector<uint64_t, 64> Record; 1694 while (1) { 1695 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1696 1697 switch (Entry.Kind) { 1698 case BitstreamEntry::SubBlock: // Handled for us already. 1699 case BitstreamEntry::Error: 1700 return Error(BitcodeError::MalformedBlock); 1701 case BitstreamEntry::EndBlock: 1702 return std::error_code(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a use list record. 1709 Record.clear(); 1710 bool IsBB = false; 1711 switch (Stream.readRecord(Entry.ID, Record)) { 1712 default: // Default behavior: unknown type. 1713 break; 1714 case bitc::USELIST_CODE_BB: 1715 IsBB = true; 1716 // fallthrough 1717 case bitc::USELIST_CODE_DEFAULT: { 1718 unsigned RecordLength = Record.size(); 1719 if (RecordLength < 3) 1720 // Records should have at least an ID and two indexes. 1721 return Error(BitcodeError::InvalidRecord); 1722 unsigned ID = Record.back(); 1723 Record.pop_back(); 1724 1725 Value *V; 1726 if (IsBB) { 1727 assert(ID < FunctionBBs.size() && "Basic block not found"); 1728 V = FunctionBBs[ID]; 1729 } else 1730 V = ValueList[ID]; 1731 unsigned NumUses = 0; 1732 SmallDenseMap<const Use *, unsigned, 16> Order; 1733 for (const Use &U : V->uses()) { 1734 if (++NumUses > Record.size()) 1735 break; 1736 Order[&U] = Record[NumUses - 1]; 1737 } 1738 if (Order.size() != Record.size() || NumUses > Record.size()) 1739 // Mismatches can happen if the functions are being materialized lazily 1740 // (out-of-order), or a value has been upgraded. 1741 break; 1742 1743 V->sortUseList([&](const Use &L, const Use &R) { 1744 return Order.lookup(&L) < Order.lookup(&R); 1745 }); 1746 break; 1747 } 1748 } 1749 } 1750 } 1751 1752 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1753 /// remember where it is and then skip it. This lets us lazily deserialize the 1754 /// functions. 1755 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1756 // Get the function we are talking about. 1757 if (FunctionsWithBodies.empty()) 1758 return Error(BitcodeError::InsufficientFunctionProtos); 1759 1760 Function *Fn = FunctionsWithBodies.back(); 1761 FunctionsWithBodies.pop_back(); 1762 1763 // Save the current stream state. 1764 uint64_t CurBit = Stream.GetCurrentBitNo(); 1765 DeferredFunctionInfo[Fn] = CurBit; 1766 1767 // Skip over the function block for now. 1768 if (Stream.SkipBlock()) 1769 return Error(BitcodeError::InvalidRecord); 1770 return std::error_code(); 1771 } 1772 1773 std::error_code BitcodeReader::GlobalCleanup() { 1774 // Patch the initializers for globals and aliases up. 1775 ResolveGlobalAndAliasInits(); 1776 if (!GlobalInits.empty() || !AliasInits.empty()) 1777 return Error(BitcodeError::MalformedGlobalInitializerSet); 1778 1779 // Look for intrinsic functions which need to be upgraded at some point 1780 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1781 FI != FE; ++FI) { 1782 Function *NewFn; 1783 if (UpgradeIntrinsicFunction(FI, NewFn)) 1784 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1785 } 1786 1787 // Look for global variables which need to be renamed. 1788 for (Module::global_iterator 1789 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1790 GI != GE;) { 1791 GlobalVariable *GV = GI++; 1792 UpgradeGlobalVariable(GV); 1793 } 1794 1795 // Force deallocation of memory for these vectors to favor the client that 1796 // want lazy deserialization. 1797 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1798 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1799 return std::error_code(); 1800 } 1801 1802 std::error_code BitcodeReader::ParseModule(bool Resume) { 1803 if (Resume) 1804 Stream.JumpToBit(NextUnreadBit); 1805 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1806 return Error(BitcodeError::InvalidRecord); 1807 1808 SmallVector<uint64_t, 64> Record; 1809 std::vector<std::string> SectionTable; 1810 std::vector<std::string> GCTable; 1811 1812 // Read all the records for this module. 1813 while (1) { 1814 BitstreamEntry Entry = Stream.advance(); 1815 1816 switch (Entry.Kind) { 1817 case BitstreamEntry::Error: 1818 return Error(BitcodeError::MalformedBlock); 1819 case BitstreamEntry::EndBlock: 1820 return GlobalCleanup(); 1821 1822 case BitstreamEntry::SubBlock: 1823 switch (Entry.ID) { 1824 default: // Skip unknown content. 1825 if (Stream.SkipBlock()) 1826 return Error(BitcodeError::InvalidRecord); 1827 break; 1828 case bitc::BLOCKINFO_BLOCK_ID: 1829 if (Stream.ReadBlockInfoBlock()) 1830 return Error(BitcodeError::MalformedBlock); 1831 break; 1832 case bitc::PARAMATTR_BLOCK_ID: 1833 if (std::error_code EC = ParseAttributeBlock()) 1834 return EC; 1835 break; 1836 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1837 if (std::error_code EC = ParseAttributeGroupBlock()) 1838 return EC; 1839 break; 1840 case bitc::TYPE_BLOCK_ID_NEW: 1841 if (std::error_code EC = ParseTypeTable()) 1842 return EC; 1843 break; 1844 case bitc::VALUE_SYMTAB_BLOCK_ID: 1845 if (std::error_code EC = ParseValueSymbolTable()) 1846 return EC; 1847 SeenValueSymbolTable = true; 1848 break; 1849 case bitc::CONSTANTS_BLOCK_ID: 1850 if (std::error_code EC = ParseConstants()) 1851 return EC; 1852 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1853 return EC; 1854 break; 1855 case bitc::METADATA_BLOCK_ID: 1856 if (std::error_code EC = ParseMetadata()) 1857 return EC; 1858 break; 1859 case bitc::FUNCTION_BLOCK_ID: 1860 // If this is the first function body we've seen, reverse the 1861 // FunctionsWithBodies list. 1862 if (!SeenFirstFunctionBody) { 1863 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1864 if (std::error_code EC = GlobalCleanup()) 1865 return EC; 1866 SeenFirstFunctionBody = true; 1867 } 1868 1869 if (std::error_code EC = RememberAndSkipFunctionBody()) 1870 return EC; 1871 // For streaming bitcode, suspend parsing when we reach the function 1872 // bodies. Subsequent materialization calls will resume it when 1873 // necessary. For streaming, the function bodies must be at the end of 1874 // the bitcode. If the bitcode file is old, the symbol table will be 1875 // at the end instead and will not have been seen yet. In this case, 1876 // just finish the parse now. 1877 if (LazyStreamer && SeenValueSymbolTable) { 1878 NextUnreadBit = Stream.GetCurrentBitNo(); 1879 return std::error_code(); 1880 } 1881 break; 1882 case bitc::USELIST_BLOCK_ID: 1883 if (std::error_code EC = ParseUseLists()) 1884 return EC; 1885 break; 1886 } 1887 continue; 1888 1889 case BitstreamEntry::Record: 1890 // The interesting case. 1891 break; 1892 } 1893 1894 1895 // Read a record. 1896 switch (Stream.readRecord(Entry.ID, Record)) { 1897 default: break; // Default behavior, ignore unknown content. 1898 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1899 if (Record.size() < 1) 1900 return Error(BitcodeError::InvalidRecord); 1901 // Only version #0 and #1 are supported so far. 1902 unsigned module_version = Record[0]; 1903 switch (module_version) { 1904 default: 1905 return Error(BitcodeError::InvalidValue); 1906 case 0: 1907 UseRelativeIDs = false; 1908 break; 1909 case 1: 1910 UseRelativeIDs = true; 1911 break; 1912 } 1913 break; 1914 } 1915 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1916 std::string S; 1917 if (ConvertToString(Record, 0, S)) 1918 return Error(BitcodeError::InvalidRecord); 1919 TheModule->setTargetTriple(S); 1920 break; 1921 } 1922 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1923 std::string S; 1924 if (ConvertToString(Record, 0, S)) 1925 return Error(BitcodeError::InvalidRecord); 1926 TheModule->setDataLayout(S); 1927 break; 1928 } 1929 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1930 std::string S; 1931 if (ConvertToString(Record, 0, S)) 1932 return Error(BitcodeError::InvalidRecord); 1933 TheModule->setModuleInlineAsm(S); 1934 break; 1935 } 1936 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1937 // FIXME: Remove in 4.0. 1938 std::string S; 1939 if (ConvertToString(Record, 0, S)) 1940 return Error(BitcodeError::InvalidRecord); 1941 // Ignore value. 1942 break; 1943 } 1944 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1945 std::string S; 1946 if (ConvertToString(Record, 0, S)) 1947 return Error(BitcodeError::InvalidRecord); 1948 SectionTable.push_back(S); 1949 break; 1950 } 1951 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1952 std::string S; 1953 if (ConvertToString(Record, 0, S)) 1954 return Error(BitcodeError::InvalidRecord); 1955 GCTable.push_back(S); 1956 break; 1957 } 1958 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 1959 if (Record.size() < 2) 1960 return Error(BitcodeError::InvalidRecord); 1961 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 1962 unsigned ComdatNameSize = Record[1]; 1963 std::string ComdatName; 1964 ComdatName.reserve(ComdatNameSize); 1965 for (unsigned i = 0; i != ComdatNameSize; ++i) 1966 ComdatName += (char)Record[2 + i]; 1967 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 1968 C->setSelectionKind(SK); 1969 ComdatList.push_back(C); 1970 break; 1971 } 1972 // GLOBALVAR: [pointer type, isconst, initid, 1973 // linkage, alignment, section, visibility, threadlocal, 1974 // unnamed_addr, dllstorageclass] 1975 case bitc::MODULE_CODE_GLOBALVAR: { 1976 if (Record.size() < 6) 1977 return Error(BitcodeError::InvalidRecord); 1978 Type *Ty = getTypeByID(Record[0]); 1979 if (!Ty) 1980 return Error(BitcodeError::InvalidRecord); 1981 if (!Ty->isPointerTy()) 1982 return Error(BitcodeError::InvalidTypeForValue); 1983 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1984 Ty = cast<PointerType>(Ty)->getElementType(); 1985 1986 bool isConstant = Record[1]; 1987 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1988 unsigned Alignment = (1 << Record[4]) >> 1; 1989 std::string Section; 1990 if (Record[5]) { 1991 if (Record[5]-1 >= SectionTable.size()) 1992 return Error(BitcodeError::InvalidID); 1993 Section = SectionTable[Record[5]-1]; 1994 } 1995 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1996 // Local linkage must have default visibility. 1997 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1998 // FIXME: Change to an error if non-default in 4.0. 1999 Visibility = GetDecodedVisibility(Record[6]); 2000 2001 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2002 if (Record.size() > 7) 2003 TLM = GetDecodedThreadLocalMode(Record[7]); 2004 2005 bool UnnamedAddr = false; 2006 if (Record.size() > 8) 2007 UnnamedAddr = Record[8]; 2008 2009 bool ExternallyInitialized = false; 2010 if (Record.size() > 9) 2011 ExternallyInitialized = Record[9]; 2012 2013 GlobalVariable *NewGV = 2014 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2015 TLM, AddressSpace, ExternallyInitialized); 2016 NewGV->setAlignment(Alignment); 2017 if (!Section.empty()) 2018 NewGV->setSection(Section); 2019 NewGV->setVisibility(Visibility); 2020 NewGV->setUnnamedAddr(UnnamedAddr); 2021 2022 if (Record.size() > 10) 2023 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2024 else 2025 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 2026 2027 ValueList.push_back(NewGV); 2028 2029 // Remember which value to use for the global initializer. 2030 if (unsigned InitID = Record[2]) 2031 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2032 2033 if (Record.size() > 11) 2034 if (unsigned ComdatID = Record[11]) { 2035 assert(ComdatID <= ComdatList.size()); 2036 NewGV->setComdat(ComdatList[ComdatID - 1]); 2037 } 2038 break; 2039 } 2040 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2041 // alignment, section, visibility, gc, unnamed_addr, 2042 // prologuedata, dllstorageclass, comdat, prefixdata] 2043 case bitc::MODULE_CODE_FUNCTION: { 2044 if (Record.size() < 8) 2045 return Error(BitcodeError::InvalidRecord); 2046 Type *Ty = getTypeByID(Record[0]); 2047 if (!Ty) 2048 return Error(BitcodeError::InvalidRecord); 2049 if (!Ty->isPointerTy()) 2050 return Error(BitcodeError::InvalidTypeForValue); 2051 FunctionType *FTy = 2052 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2053 if (!FTy) 2054 return Error(BitcodeError::InvalidTypeForValue); 2055 2056 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2057 "", TheModule); 2058 2059 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2060 bool isProto = Record[2]; 2061 Func->setLinkage(GetDecodedLinkage(Record[3])); 2062 Func->setAttributes(getAttributes(Record[4])); 2063 2064 Func->setAlignment((1 << Record[5]) >> 1); 2065 if (Record[6]) { 2066 if (Record[6]-1 >= SectionTable.size()) 2067 return Error(BitcodeError::InvalidID); 2068 Func->setSection(SectionTable[Record[6]-1]); 2069 } 2070 // Local linkage must have default visibility. 2071 if (!Func->hasLocalLinkage()) 2072 // FIXME: Change to an error if non-default in 4.0. 2073 Func->setVisibility(GetDecodedVisibility(Record[7])); 2074 if (Record.size() > 8 && Record[8]) { 2075 if (Record[8]-1 > GCTable.size()) 2076 return Error(BitcodeError::InvalidID); 2077 Func->setGC(GCTable[Record[8]-1].c_str()); 2078 } 2079 bool UnnamedAddr = false; 2080 if (Record.size() > 9) 2081 UnnamedAddr = Record[9]; 2082 Func->setUnnamedAddr(UnnamedAddr); 2083 if (Record.size() > 10 && Record[10] != 0) 2084 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2085 2086 if (Record.size() > 11) 2087 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2088 else 2089 UpgradeDLLImportExportLinkage(Func, Record[3]); 2090 2091 if (Record.size() > 12) 2092 if (unsigned ComdatID = Record[12]) { 2093 assert(ComdatID <= ComdatList.size()); 2094 Func->setComdat(ComdatList[ComdatID - 1]); 2095 } 2096 2097 if (Record.size() > 13 && Record[13] != 0) 2098 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2099 2100 ValueList.push_back(Func); 2101 2102 // If this is a function with a body, remember the prototype we are 2103 // creating now, so that we can match up the body with them later. 2104 if (!isProto) { 2105 Func->setIsMaterializable(true); 2106 FunctionsWithBodies.push_back(Func); 2107 if (LazyStreamer) 2108 DeferredFunctionInfo[Func] = 0; 2109 } 2110 break; 2111 } 2112 // ALIAS: [alias type, aliasee val#, linkage] 2113 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2114 case bitc::MODULE_CODE_ALIAS: { 2115 if (Record.size() < 3) 2116 return Error(BitcodeError::InvalidRecord); 2117 Type *Ty = getTypeByID(Record[0]); 2118 if (!Ty) 2119 return Error(BitcodeError::InvalidRecord); 2120 auto *PTy = dyn_cast<PointerType>(Ty); 2121 if (!PTy) 2122 return Error(BitcodeError::InvalidTypeForValue); 2123 2124 auto *NewGA = 2125 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2126 GetDecodedLinkage(Record[2]), "", TheModule); 2127 // Old bitcode files didn't have visibility field. 2128 // Local linkage must have default visibility. 2129 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2130 // FIXME: Change to an error if non-default in 4.0. 2131 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2132 if (Record.size() > 4) 2133 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2134 else 2135 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2136 if (Record.size() > 5) 2137 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2138 if (Record.size() > 6) 2139 NewGA->setUnnamedAddr(Record[6]); 2140 ValueList.push_back(NewGA); 2141 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2142 break; 2143 } 2144 /// MODULE_CODE_PURGEVALS: [numvals] 2145 case bitc::MODULE_CODE_PURGEVALS: 2146 // Trim down the value list to the specified size. 2147 if (Record.size() < 1 || Record[0] > ValueList.size()) 2148 return Error(BitcodeError::InvalidRecord); 2149 ValueList.shrinkTo(Record[0]); 2150 break; 2151 } 2152 Record.clear(); 2153 } 2154 } 2155 2156 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2157 TheModule = nullptr; 2158 2159 if (std::error_code EC = InitStream()) 2160 return EC; 2161 2162 // Sniff for the signature. 2163 if (Stream.Read(8) != 'B' || 2164 Stream.Read(8) != 'C' || 2165 Stream.Read(4) != 0x0 || 2166 Stream.Read(4) != 0xC || 2167 Stream.Read(4) != 0xE || 2168 Stream.Read(4) != 0xD) 2169 return Error(BitcodeError::InvalidBitcodeSignature); 2170 2171 // We expect a number of well-defined blocks, though we don't necessarily 2172 // need to understand them all. 2173 while (1) { 2174 if (Stream.AtEndOfStream()) 2175 return std::error_code(); 2176 2177 BitstreamEntry Entry = 2178 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2179 2180 switch (Entry.Kind) { 2181 case BitstreamEntry::Error: 2182 return Error(BitcodeError::MalformedBlock); 2183 case BitstreamEntry::EndBlock: 2184 return std::error_code(); 2185 2186 case BitstreamEntry::SubBlock: 2187 switch (Entry.ID) { 2188 case bitc::BLOCKINFO_BLOCK_ID: 2189 if (Stream.ReadBlockInfoBlock()) 2190 return Error(BitcodeError::MalformedBlock); 2191 break; 2192 case bitc::MODULE_BLOCK_ID: 2193 // Reject multiple MODULE_BLOCK's in a single bitstream. 2194 if (TheModule) 2195 return Error(BitcodeError::InvalidMultipleBlocks); 2196 TheModule = M; 2197 if (std::error_code EC = ParseModule(false)) 2198 return EC; 2199 if (LazyStreamer) 2200 return std::error_code(); 2201 break; 2202 default: 2203 if (Stream.SkipBlock()) 2204 return Error(BitcodeError::InvalidRecord); 2205 break; 2206 } 2207 continue; 2208 case BitstreamEntry::Record: 2209 // There should be no records in the top-level of blocks. 2210 2211 // The ranlib in Xcode 4 will align archive members by appending newlines 2212 // to the end of them. If this file size is a multiple of 4 but not 8, we 2213 // have to read and ignore these final 4 bytes :-( 2214 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2215 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2216 Stream.AtEndOfStream()) 2217 return std::error_code(); 2218 2219 return Error(BitcodeError::InvalidRecord); 2220 } 2221 } 2222 } 2223 2224 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2225 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2226 return Error(BitcodeError::InvalidRecord); 2227 2228 SmallVector<uint64_t, 64> Record; 2229 2230 std::string Triple; 2231 // Read all the records for this module. 2232 while (1) { 2233 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2234 2235 switch (Entry.Kind) { 2236 case BitstreamEntry::SubBlock: // Handled for us already. 2237 case BitstreamEntry::Error: 2238 return Error(BitcodeError::MalformedBlock); 2239 case BitstreamEntry::EndBlock: 2240 return Triple; 2241 case BitstreamEntry::Record: 2242 // The interesting case. 2243 break; 2244 } 2245 2246 // Read a record. 2247 switch (Stream.readRecord(Entry.ID, Record)) { 2248 default: break; // Default behavior, ignore unknown content. 2249 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2250 std::string S; 2251 if (ConvertToString(Record, 0, S)) 2252 return Error(BitcodeError::InvalidRecord); 2253 Triple = S; 2254 break; 2255 } 2256 } 2257 Record.clear(); 2258 } 2259 llvm_unreachable("Exit infinite loop"); 2260 } 2261 2262 ErrorOr<std::string> BitcodeReader::parseTriple() { 2263 if (std::error_code EC = InitStream()) 2264 return EC; 2265 2266 // Sniff for the signature. 2267 if (Stream.Read(8) != 'B' || 2268 Stream.Read(8) != 'C' || 2269 Stream.Read(4) != 0x0 || 2270 Stream.Read(4) != 0xC || 2271 Stream.Read(4) != 0xE || 2272 Stream.Read(4) != 0xD) 2273 return Error(BitcodeError::InvalidBitcodeSignature); 2274 2275 // We expect a number of well-defined blocks, though we don't necessarily 2276 // need to understand them all. 2277 while (1) { 2278 BitstreamEntry Entry = Stream.advance(); 2279 2280 switch (Entry.Kind) { 2281 case BitstreamEntry::Error: 2282 return Error(BitcodeError::MalformedBlock); 2283 case BitstreamEntry::EndBlock: 2284 return std::error_code(); 2285 2286 case BitstreamEntry::SubBlock: 2287 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2288 return parseModuleTriple(); 2289 2290 // Ignore other sub-blocks. 2291 if (Stream.SkipBlock()) 2292 return Error(BitcodeError::MalformedBlock); 2293 continue; 2294 2295 case BitstreamEntry::Record: 2296 Stream.skipRecord(Entry.ID); 2297 continue; 2298 } 2299 } 2300 } 2301 2302 /// ParseMetadataAttachment - Parse metadata attachments. 2303 std::error_code BitcodeReader::ParseMetadataAttachment() { 2304 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2305 return Error(BitcodeError::InvalidRecord); 2306 2307 SmallVector<uint64_t, 64> Record; 2308 while (1) { 2309 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2310 2311 switch (Entry.Kind) { 2312 case BitstreamEntry::SubBlock: // Handled for us already. 2313 case BitstreamEntry::Error: 2314 return Error(BitcodeError::MalformedBlock); 2315 case BitstreamEntry::EndBlock: 2316 return std::error_code(); 2317 case BitstreamEntry::Record: 2318 // The interesting case. 2319 break; 2320 } 2321 2322 // Read a metadata attachment record. 2323 Record.clear(); 2324 switch (Stream.readRecord(Entry.ID, Record)) { 2325 default: // Default behavior: ignore. 2326 break; 2327 case bitc::METADATA_ATTACHMENT: { 2328 unsigned RecordLength = Record.size(); 2329 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2330 return Error(BitcodeError::InvalidRecord); 2331 Instruction *Inst = InstructionList[Record[0]]; 2332 for (unsigned i = 1; i != RecordLength; i = i+2) { 2333 unsigned Kind = Record[i]; 2334 DenseMap<unsigned, unsigned>::iterator I = 2335 MDKindMap.find(Kind); 2336 if (I == MDKindMap.end()) 2337 return Error(BitcodeError::InvalidID); 2338 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2339 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2340 if (I->second == LLVMContext::MD_tbaa) 2341 InstsWithTBAATag.push_back(Inst); 2342 } 2343 break; 2344 } 2345 } 2346 } 2347 } 2348 2349 /// ParseFunctionBody - Lazily parse the specified function body block. 2350 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2351 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2352 return Error(BitcodeError::InvalidRecord); 2353 2354 InstructionList.clear(); 2355 unsigned ModuleValueListSize = ValueList.size(); 2356 unsigned ModuleMDValueListSize = MDValueList.size(); 2357 2358 // Add all the function arguments to the value table. 2359 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2360 ValueList.push_back(I); 2361 2362 unsigned NextValueNo = ValueList.size(); 2363 BasicBlock *CurBB = nullptr; 2364 unsigned CurBBNo = 0; 2365 2366 DebugLoc LastLoc; 2367 2368 // Read all the records. 2369 SmallVector<uint64_t, 64> Record; 2370 while (1) { 2371 BitstreamEntry Entry = Stream.advance(); 2372 2373 switch (Entry.Kind) { 2374 case BitstreamEntry::Error: 2375 return Error(BitcodeError::MalformedBlock); 2376 case BitstreamEntry::EndBlock: 2377 goto OutOfRecordLoop; 2378 2379 case BitstreamEntry::SubBlock: 2380 switch (Entry.ID) { 2381 default: // Skip unknown content. 2382 if (Stream.SkipBlock()) 2383 return Error(BitcodeError::InvalidRecord); 2384 break; 2385 case bitc::CONSTANTS_BLOCK_ID: 2386 if (std::error_code EC = ParseConstants()) 2387 return EC; 2388 NextValueNo = ValueList.size(); 2389 break; 2390 case bitc::VALUE_SYMTAB_BLOCK_ID: 2391 if (std::error_code EC = ParseValueSymbolTable()) 2392 return EC; 2393 break; 2394 case bitc::METADATA_ATTACHMENT_ID: 2395 if (std::error_code EC = ParseMetadataAttachment()) 2396 return EC; 2397 break; 2398 case bitc::METADATA_BLOCK_ID: 2399 if (std::error_code EC = ParseMetadata()) 2400 return EC; 2401 break; 2402 case bitc::USELIST_BLOCK_ID: 2403 if (std::error_code EC = ParseUseLists()) 2404 return EC; 2405 break; 2406 } 2407 continue; 2408 2409 case BitstreamEntry::Record: 2410 // The interesting case. 2411 break; 2412 } 2413 2414 // Read a record. 2415 Record.clear(); 2416 Instruction *I = nullptr; 2417 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2418 switch (BitCode) { 2419 default: // Default behavior: reject 2420 return Error(BitcodeError::InvalidValue); 2421 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2422 if (Record.size() < 1 || Record[0] == 0) 2423 return Error(BitcodeError::InvalidRecord); 2424 // Create all the basic blocks for the function. 2425 FunctionBBs.resize(Record[0]); 2426 2427 // See if anything took the address of blocks in this function. 2428 auto BBFRI = BasicBlockFwdRefs.find(F); 2429 if (BBFRI == BasicBlockFwdRefs.end()) { 2430 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2431 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2432 } else { 2433 auto &BBRefs = BBFRI->second; 2434 // Check for invalid basic block references. 2435 if (BBRefs.size() > FunctionBBs.size()) 2436 return Error(BitcodeError::InvalidID); 2437 assert(!BBRefs.empty() && "Unexpected empty array"); 2438 assert(!BBRefs.front() && "Invalid reference to entry block"); 2439 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2440 ++I) 2441 if (I < RE && BBRefs[I]) { 2442 BBRefs[I]->insertInto(F); 2443 FunctionBBs[I] = BBRefs[I]; 2444 } else { 2445 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2446 } 2447 2448 // Erase from the table. 2449 BasicBlockFwdRefs.erase(BBFRI); 2450 } 2451 2452 CurBB = FunctionBBs[0]; 2453 continue; 2454 } 2455 2456 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2457 // This record indicates that the last instruction is at the same 2458 // location as the previous instruction with a location. 2459 I = nullptr; 2460 2461 // Get the last instruction emitted. 2462 if (CurBB && !CurBB->empty()) 2463 I = &CurBB->back(); 2464 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2465 !FunctionBBs[CurBBNo-1]->empty()) 2466 I = &FunctionBBs[CurBBNo-1]->back(); 2467 2468 if (!I) 2469 return Error(BitcodeError::InvalidRecord); 2470 I->setDebugLoc(LastLoc); 2471 I = nullptr; 2472 continue; 2473 2474 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2475 I = nullptr; // Get the last instruction emitted. 2476 if (CurBB && !CurBB->empty()) 2477 I = &CurBB->back(); 2478 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2479 !FunctionBBs[CurBBNo-1]->empty()) 2480 I = &FunctionBBs[CurBBNo-1]->back(); 2481 if (!I || Record.size() < 4) 2482 return Error(BitcodeError::InvalidRecord); 2483 2484 unsigned Line = Record[0], Col = Record[1]; 2485 unsigned ScopeID = Record[2], IAID = Record[3]; 2486 2487 MDNode *Scope = nullptr, *IA = nullptr; 2488 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2489 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2490 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2491 I->setDebugLoc(LastLoc); 2492 I = nullptr; 2493 continue; 2494 } 2495 2496 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2497 unsigned OpNum = 0; 2498 Value *LHS, *RHS; 2499 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2500 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2501 OpNum+1 > Record.size()) 2502 return Error(BitcodeError::InvalidRecord); 2503 2504 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2505 if (Opc == -1) 2506 return Error(BitcodeError::InvalidRecord); 2507 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2508 InstructionList.push_back(I); 2509 if (OpNum < Record.size()) { 2510 if (Opc == Instruction::Add || 2511 Opc == Instruction::Sub || 2512 Opc == Instruction::Mul || 2513 Opc == Instruction::Shl) { 2514 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2515 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2516 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2517 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2518 } else if (Opc == Instruction::SDiv || 2519 Opc == Instruction::UDiv || 2520 Opc == Instruction::LShr || 2521 Opc == Instruction::AShr) { 2522 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2523 cast<BinaryOperator>(I)->setIsExact(true); 2524 } else if (isa<FPMathOperator>(I)) { 2525 FastMathFlags FMF; 2526 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2527 FMF.setUnsafeAlgebra(); 2528 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2529 FMF.setNoNaNs(); 2530 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2531 FMF.setNoInfs(); 2532 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2533 FMF.setNoSignedZeros(); 2534 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2535 FMF.setAllowReciprocal(); 2536 if (FMF.any()) 2537 I->setFastMathFlags(FMF); 2538 } 2539 2540 } 2541 break; 2542 } 2543 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2544 unsigned OpNum = 0; 2545 Value *Op; 2546 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2547 OpNum+2 != Record.size()) 2548 return Error(BitcodeError::InvalidRecord); 2549 2550 Type *ResTy = getTypeByID(Record[OpNum]); 2551 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2552 if (Opc == -1 || !ResTy) 2553 return Error(BitcodeError::InvalidRecord); 2554 Instruction *Temp = nullptr; 2555 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2556 if (Temp) { 2557 InstructionList.push_back(Temp); 2558 CurBB->getInstList().push_back(Temp); 2559 } 2560 } else { 2561 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2562 } 2563 InstructionList.push_back(I); 2564 break; 2565 } 2566 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2567 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2568 unsigned OpNum = 0; 2569 Value *BasePtr; 2570 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2571 return Error(BitcodeError::InvalidRecord); 2572 2573 SmallVector<Value*, 16> GEPIdx; 2574 while (OpNum != Record.size()) { 2575 Value *Op; 2576 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2577 return Error(BitcodeError::InvalidRecord); 2578 GEPIdx.push_back(Op); 2579 } 2580 2581 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2582 InstructionList.push_back(I); 2583 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2584 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2585 break; 2586 } 2587 2588 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2589 // EXTRACTVAL: [opty, opval, n x indices] 2590 unsigned OpNum = 0; 2591 Value *Agg; 2592 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2593 return Error(BitcodeError::InvalidRecord); 2594 2595 SmallVector<unsigned, 4> EXTRACTVALIdx; 2596 for (unsigned RecSize = Record.size(); 2597 OpNum != RecSize; ++OpNum) { 2598 uint64_t Index = Record[OpNum]; 2599 if ((unsigned)Index != Index) 2600 return Error(BitcodeError::InvalidValue); 2601 EXTRACTVALIdx.push_back((unsigned)Index); 2602 } 2603 2604 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2605 InstructionList.push_back(I); 2606 break; 2607 } 2608 2609 case bitc::FUNC_CODE_INST_INSERTVAL: { 2610 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2611 unsigned OpNum = 0; 2612 Value *Agg; 2613 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2614 return Error(BitcodeError::InvalidRecord); 2615 Value *Val; 2616 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2617 return Error(BitcodeError::InvalidRecord); 2618 2619 SmallVector<unsigned, 4> INSERTVALIdx; 2620 for (unsigned RecSize = Record.size(); 2621 OpNum != RecSize; ++OpNum) { 2622 uint64_t Index = Record[OpNum]; 2623 if ((unsigned)Index != Index) 2624 return Error(BitcodeError::InvalidValue); 2625 INSERTVALIdx.push_back((unsigned)Index); 2626 } 2627 2628 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2629 InstructionList.push_back(I); 2630 break; 2631 } 2632 2633 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2634 // obsolete form of select 2635 // handles select i1 ... in old bitcode 2636 unsigned OpNum = 0; 2637 Value *TrueVal, *FalseVal, *Cond; 2638 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2639 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2640 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2641 return Error(BitcodeError::InvalidRecord); 2642 2643 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2644 InstructionList.push_back(I); 2645 break; 2646 } 2647 2648 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2649 // new form of select 2650 // handles select i1 or select [N x i1] 2651 unsigned OpNum = 0; 2652 Value *TrueVal, *FalseVal, *Cond; 2653 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2654 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2655 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2656 return Error(BitcodeError::InvalidRecord); 2657 2658 // select condition can be either i1 or [N x i1] 2659 if (VectorType* vector_type = 2660 dyn_cast<VectorType>(Cond->getType())) { 2661 // expect <n x i1> 2662 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2663 return Error(BitcodeError::InvalidTypeForValue); 2664 } else { 2665 // expect i1 2666 if (Cond->getType() != Type::getInt1Ty(Context)) 2667 return Error(BitcodeError::InvalidTypeForValue); 2668 } 2669 2670 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2671 InstructionList.push_back(I); 2672 break; 2673 } 2674 2675 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2676 unsigned OpNum = 0; 2677 Value *Vec, *Idx; 2678 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2679 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2680 return Error(BitcodeError::InvalidRecord); 2681 I = ExtractElementInst::Create(Vec, Idx); 2682 InstructionList.push_back(I); 2683 break; 2684 } 2685 2686 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2687 unsigned OpNum = 0; 2688 Value *Vec, *Elt, *Idx; 2689 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2690 popValue(Record, OpNum, NextValueNo, 2691 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2692 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2693 return Error(BitcodeError::InvalidRecord); 2694 I = InsertElementInst::Create(Vec, Elt, Idx); 2695 InstructionList.push_back(I); 2696 break; 2697 } 2698 2699 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2700 unsigned OpNum = 0; 2701 Value *Vec1, *Vec2, *Mask; 2702 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2703 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2704 return Error(BitcodeError::InvalidRecord); 2705 2706 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2707 return Error(BitcodeError::InvalidRecord); 2708 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2709 InstructionList.push_back(I); 2710 break; 2711 } 2712 2713 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2714 // Old form of ICmp/FCmp returning bool 2715 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2716 // both legal on vectors but had different behaviour. 2717 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2718 // FCmp/ICmp returning bool or vector of bool 2719 2720 unsigned OpNum = 0; 2721 Value *LHS, *RHS; 2722 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2723 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2724 OpNum+1 != Record.size()) 2725 return Error(BitcodeError::InvalidRecord); 2726 2727 if (LHS->getType()->isFPOrFPVectorTy()) 2728 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2729 else 2730 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2731 InstructionList.push_back(I); 2732 break; 2733 } 2734 2735 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2736 { 2737 unsigned Size = Record.size(); 2738 if (Size == 0) { 2739 I = ReturnInst::Create(Context); 2740 InstructionList.push_back(I); 2741 break; 2742 } 2743 2744 unsigned OpNum = 0; 2745 Value *Op = nullptr; 2746 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2747 return Error(BitcodeError::InvalidRecord); 2748 if (OpNum != Record.size()) 2749 return Error(BitcodeError::InvalidRecord); 2750 2751 I = ReturnInst::Create(Context, Op); 2752 InstructionList.push_back(I); 2753 break; 2754 } 2755 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2756 if (Record.size() != 1 && Record.size() != 3) 2757 return Error(BitcodeError::InvalidRecord); 2758 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2759 if (!TrueDest) 2760 return Error(BitcodeError::InvalidRecord); 2761 2762 if (Record.size() == 1) { 2763 I = BranchInst::Create(TrueDest); 2764 InstructionList.push_back(I); 2765 } 2766 else { 2767 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2768 Value *Cond = getValue(Record, 2, NextValueNo, 2769 Type::getInt1Ty(Context)); 2770 if (!FalseDest || !Cond) 2771 return Error(BitcodeError::InvalidRecord); 2772 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2773 InstructionList.push_back(I); 2774 } 2775 break; 2776 } 2777 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2778 // Check magic 2779 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2780 // "New" SwitchInst format with case ranges. The changes to write this 2781 // format were reverted but we still recognize bitcode that uses it. 2782 // Hopefully someday we will have support for case ranges and can use 2783 // this format again. 2784 2785 Type *OpTy = getTypeByID(Record[1]); 2786 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2787 2788 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2789 BasicBlock *Default = getBasicBlock(Record[3]); 2790 if (!OpTy || !Cond || !Default) 2791 return Error(BitcodeError::InvalidRecord); 2792 2793 unsigned NumCases = Record[4]; 2794 2795 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2796 InstructionList.push_back(SI); 2797 2798 unsigned CurIdx = 5; 2799 for (unsigned i = 0; i != NumCases; ++i) { 2800 SmallVector<ConstantInt*, 1> CaseVals; 2801 unsigned NumItems = Record[CurIdx++]; 2802 for (unsigned ci = 0; ci != NumItems; ++ci) { 2803 bool isSingleNumber = Record[CurIdx++]; 2804 2805 APInt Low; 2806 unsigned ActiveWords = 1; 2807 if (ValueBitWidth > 64) 2808 ActiveWords = Record[CurIdx++]; 2809 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2810 ValueBitWidth); 2811 CurIdx += ActiveWords; 2812 2813 if (!isSingleNumber) { 2814 ActiveWords = 1; 2815 if (ValueBitWidth > 64) 2816 ActiveWords = Record[CurIdx++]; 2817 APInt High = 2818 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2819 ValueBitWidth); 2820 CurIdx += ActiveWords; 2821 2822 // FIXME: It is not clear whether values in the range should be 2823 // compared as signed or unsigned values. The partially 2824 // implemented changes that used this format in the past used 2825 // unsigned comparisons. 2826 for ( ; Low.ule(High); ++Low) 2827 CaseVals.push_back(ConstantInt::get(Context, Low)); 2828 } else 2829 CaseVals.push_back(ConstantInt::get(Context, Low)); 2830 } 2831 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2832 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2833 cve = CaseVals.end(); cvi != cve; ++cvi) 2834 SI->addCase(*cvi, DestBB); 2835 } 2836 I = SI; 2837 break; 2838 } 2839 2840 // Old SwitchInst format without case ranges. 2841 2842 if (Record.size() < 3 || (Record.size() & 1) == 0) 2843 return Error(BitcodeError::InvalidRecord); 2844 Type *OpTy = getTypeByID(Record[0]); 2845 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2846 BasicBlock *Default = getBasicBlock(Record[2]); 2847 if (!OpTy || !Cond || !Default) 2848 return Error(BitcodeError::InvalidRecord); 2849 unsigned NumCases = (Record.size()-3)/2; 2850 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2851 InstructionList.push_back(SI); 2852 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2853 ConstantInt *CaseVal = 2854 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2855 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2856 if (!CaseVal || !DestBB) { 2857 delete SI; 2858 return Error(BitcodeError::InvalidRecord); 2859 } 2860 SI->addCase(CaseVal, DestBB); 2861 } 2862 I = SI; 2863 break; 2864 } 2865 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2866 if (Record.size() < 2) 2867 return Error(BitcodeError::InvalidRecord); 2868 Type *OpTy = getTypeByID(Record[0]); 2869 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2870 if (!OpTy || !Address) 2871 return Error(BitcodeError::InvalidRecord); 2872 unsigned NumDests = Record.size()-2; 2873 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2874 InstructionList.push_back(IBI); 2875 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2876 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2877 IBI->addDestination(DestBB); 2878 } else { 2879 delete IBI; 2880 return Error(BitcodeError::InvalidRecord); 2881 } 2882 } 2883 I = IBI; 2884 break; 2885 } 2886 2887 case bitc::FUNC_CODE_INST_INVOKE: { 2888 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2889 if (Record.size() < 4) 2890 return Error(BitcodeError::InvalidRecord); 2891 AttributeSet PAL = getAttributes(Record[0]); 2892 unsigned CCInfo = Record[1]; 2893 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2894 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2895 2896 unsigned OpNum = 4; 2897 Value *Callee; 2898 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2899 return Error(BitcodeError::InvalidRecord); 2900 2901 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2902 FunctionType *FTy = !CalleeTy ? nullptr : 2903 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2904 2905 // Check that the right number of fixed parameters are here. 2906 if (!FTy || !NormalBB || !UnwindBB || 2907 Record.size() < OpNum+FTy->getNumParams()) 2908 return Error(BitcodeError::InvalidRecord); 2909 2910 SmallVector<Value*, 16> Ops; 2911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2912 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2913 FTy->getParamType(i))); 2914 if (!Ops.back()) 2915 return Error(BitcodeError::InvalidRecord); 2916 } 2917 2918 if (!FTy->isVarArg()) { 2919 if (Record.size() != OpNum) 2920 return Error(BitcodeError::InvalidRecord); 2921 } else { 2922 // Read type/value pairs for varargs params. 2923 while (OpNum != Record.size()) { 2924 Value *Op; 2925 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2926 return Error(BitcodeError::InvalidRecord); 2927 Ops.push_back(Op); 2928 } 2929 } 2930 2931 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2932 InstructionList.push_back(I); 2933 cast<InvokeInst>(I)->setCallingConv( 2934 static_cast<CallingConv::ID>(CCInfo)); 2935 cast<InvokeInst>(I)->setAttributes(PAL); 2936 break; 2937 } 2938 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2939 unsigned Idx = 0; 2940 Value *Val = nullptr; 2941 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2942 return Error(BitcodeError::InvalidRecord); 2943 I = ResumeInst::Create(Val); 2944 InstructionList.push_back(I); 2945 break; 2946 } 2947 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2948 I = new UnreachableInst(Context); 2949 InstructionList.push_back(I); 2950 break; 2951 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2952 if (Record.size() < 1 || ((Record.size()-1)&1)) 2953 return Error(BitcodeError::InvalidRecord); 2954 Type *Ty = getTypeByID(Record[0]); 2955 if (!Ty) 2956 return Error(BitcodeError::InvalidRecord); 2957 2958 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2959 InstructionList.push_back(PN); 2960 2961 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2962 Value *V; 2963 // With the new function encoding, it is possible that operands have 2964 // negative IDs (for forward references). Use a signed VBR 2965 // representation to keep the encoding small. 2966 if (UseRelativeIDs) 2967 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2968 else 2969 V = getValue(Record, 1+i, NextValueNo, Ty); 2970 BasicBlock *BB = getBasicBlock(Record[2+i]); 2971 if (!V || !BB) 2972 return Error(BitcodeError::InvalidRecord); 2973 PN->addIncoming(V, BB); 2974 } 2975 I = PN; 2976 break; 2977 } 2978 2979 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2980 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2981 unsigned Idx = 0; 2982 if (Record.size() < 4) 2983 return Error(BitcodeError::InvalidRecord); 2984 Type *Ty = getTypeByID(Record[Idx++]); 2985 if (!Ty) 2986 return Error(BitcodeError::InvalidRecord); 2987 Value *PersFn = nullptr; 2988 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2989 return Error(BitcodeError::InvalidRecord); 2990 2991 bool IsCleanup = !!Record[Idx++]; 2992 unsigned NumClauses = Record[Idx++]; 2993 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2994 LP->setCleanup(IsCleanup); 2995 for (unsigned J = 0; J != NumClauses; ++J) { 2996 LandingPadInst::ClauseType CT = 2997 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2998 Value *Val; 2999 3000 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3001 delete LP; 3002 return Error(BitcodeError::InvalidRecord); 3003 } 3004 3005 assert((CT != LandingPadInst::Catch || 3006 !isa<ArrayType>(Val->getType())) && 3007 "Catch clause has a invalid type!"); 3008 assert((CT != LandingPadInst::Filter || 3009 isa<ArrayType>(Val->getType())) && 3010 "Filter clause has invalid type!"); 3011 LP->addClause(cast<Constant>(Val)); 3012 } 3013 3014 I = LP; 3015 InstructionList.push_back(I); 3016 break; 3017 } 3018 3019 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3020 if (Record.size() != 4) 3021 return Error(BitcodeError::InvalidRecord); 3022 PointerType *Ty = 3023 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3024 Type *OpTy = getTypeByID(Record[1]); 3025 Value *Size = getFnValueByID(Record[2], OpTy); 3026 unsigned AlignRecord = Record[3]; 3027 bool InAlloca = AlignRecord & (1 << 5); 3028 unsigned Align = AlignRecord & ((1 << 5) - 1); 3029 if (!Ty || !Size) 3030 return Error(BitcodeError::InvalidRecord); 3031 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3032 AI->setUsedWithInAlloca(InAlloca); 3033 I = AI; 3034 InstructionList.push_back(I); 3035 break; 3036 } 3037 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3038 unsigned OpNum = 0; 3039 Value *Op; 3040 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3041 OpNum+2 != Record.size()) 3042 return Error(BitcodeError::InvalidRecord); 3043 3044 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3045 InstructionList.push_back(I); 3046 break; 3047 } 3048 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3049 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3050 unsigned OpNum = 0; 3051 Value *Op; 3052 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3053 OpNum+4 != Record.size()) 3054 return Error(BitcodeError::InvalidRecord); 3055 3056 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3057 if (Ordering == NotAtomic || Ordering == Release || 3058 Ordering == AcquireRelease) 3059 return Error(BitcodeError::InvalidRecord); 3060 if (Ordering != NotAtomic && Record[OpNum] == 0) 3061 return Error(BitcodeError::InvalidRecord); 3062 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3063 3064 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3065 Ordering, SynchScope); 3066 InstructionList.push_back(I); 3067 break; 3068 } 3069 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3070 unsigned OpNum = 0; 3071 Value *Val, *Ptr; 3072 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3073 popValue(Record, OpNum, NextValueNo, 3074 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3075 OpNum+2 != Record.size()) 3076 return Error(BitcodeError::InvalidRecord); 3077 3078 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3079 InstructionList.push_back(I); 3080 break; 3081 } 3082 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3083 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3084 unsigned OpNum = 0; 3085 Value *Val, *Ptr; 3086 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3087 popValue(Record, OpNum, NextValueNo, 3088 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3089 OpNum+4 != Record.size()) 3090 return Error(BitcodeError::InvalidRecord); 3091 3092 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3093 if (Ordering == NotAtomic || Ordering == Acquire || 3094 Ordering == AcquireRelease) 3095 return Error(BitcodeError::InvalidRecord); 3096 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3097 if (Ordering != NotAtomic && Record[OpNum] == 0) 3098 return Error(BitcodeError::InvalidRecord); 3099 3100 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3101 Ordering, SynchScope); 3102 InstructionList.push_back(I); 3103 break; 3104 } 3105 case bitc::FUNC_CODE_INST_CMPXCHG: { 3106 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3107 // failureordering?, isweak?] 3108 unsigned OpNum = 0; 3109 Value *Ptr, *Cmp, *New; 3110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3111 popValue(Record, OpNum, NextValueNo, 3112 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3113 popValue(Record, OpNum, NextValueNo, 3114 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3115 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3116 return Error(BitcodeError::InvalidRecord); 3117 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3118 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3119 return Error(BitcodeError::InvalidRecord); 3120 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3121 3122 AtomicOrdering FailureOrdering; 3123 if (Record.size() < 7) 3124 FailureOrdering = 3125 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3126 else 3127 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3128 3129 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3130 SynchScope); 3131 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3132 3133 if (Record.size() < 8) { 3134 // Before weak cmpxchgs existed, the instruction simply returned the 3135 // value loaded from memory, so bitcode files from that era will be 3136 // expecting the first component of a modern cmpxchg. 3137 CurBB->getInstList().push_back(I); 3138 I = ExtractValueInst::Create(I, 0); 3139 } else { 3140 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3141 } 3142 3143 InstructionList.push_back(I); 3144 break; 3145 } 3146 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3147 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3148 unsigned OpNum = 0; 3149 Value *Ptr, *Val; 3150 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3151 popValue(Record, OpNum, NextValueNo, 3152 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3153 OpNum+4 != Record.size()) 3154 return Error(BitcodeError::InvalidRecord); 3155 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3156 if (Operation < AtomicRMWInst::FIRST_BINOP || 3157 Operation > AtomicRMWInst::LAST_BINOP) 3158 return Error(BitcodeError::InvalidRecord); 3159 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3160 if (Ordering == NotAtomic || Ordering == Unordered) 3161 return Error(BitcodeError::InvalidRecord); 3162 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3163 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3164 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3165 InstructionList.push_back(I); 3166 break; 3167 } 3168 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3169 if (2 != Record.size()) 3170 return Error(BitcodeError::InvalidRecord); 3171 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3172 if (Ordering == NotAtomic || Ordering == Unordered || 3173 Ordering == Monotonic) 3174 return Error(BitcodeError::InvalidRecord); 3175 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3176 I = new FenceInst(Context, Ordering, SynchScope); 3177 InstructionList.push_back(I); 3178 break; 3179 } 3180 case bitc::FUNC_CODE_INST_CALL: { 3181 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3182 if (Record.size() < 3) 3183 return Error(BitcodeError::InvalidRecord); 3184 3185 AttributeSet PAL = getAttributes(Record[0]); 3186 unsigned CCInfo = Record[1]; 3187 3188 unsigned OpNum = 2; 3189 Value *Callee; 3190 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3191 return Error(BitcodeError::InvalidRecord); 3192 3193 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3194 FunctionType *FTy = nullptr; 3195 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3196 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3197 return Error(BitcodeError::InvalidRecord); 3198 3199 SmallVector<Value*, 16> Args; 3200 // Read the fixed params. 3201 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3202 if (FTy->getParamType(i)->isLabelTy()) 3203 Args.push_back(getBasicBlock(Record[OpNum])); 3204 else 3205 Args.push_back(getValue(Record, OpNum, NextValueNo, 3206 FTy->getParamType(i))); 3207 if (!Args.back()) 3208 return Error(BitcodeError::InvalidRecord); 3209 } 3210 3211 // Read type/value pairs for varargs params. 3212 if (!FTy->isVarArg()) { 3213 if (OpNum != Record.size()) 3214 return Error(BitcodeError::InvalidRecord); 3215 } else { 3216 while (OpNum != Record.size()) { 3217 Value *Op; 3218 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3219 return Error(BitcodeError::InvalidRecord); 3220 Args.push_back(Op); 3221 } 3222 } 3223 3224 I = CallInst::Create(Callee, Args); 3225 InstructionList.push_back(I); 3226 cast<CallInst>(I)->setCallingConv( 3227 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3228 CallInst::TailCallKind TCK = CallInst::TCK_None; 3229 if (CCInfo & 1) 3230 TCK = CallInst::TCK_Tail; 3231 if (CCInfo & (1 << 14)) 3232 TCK = CallInst::TCK_MustTail; 3233 cast<CallInst>(I)->setTailCallKind(TCK); 3234 cast<CallInst>(I)->setAttributes(PAL); 3235 break; 3236 } 3237 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3238 if (Record.size() < 3) 3239 return Error(BitcodeError::InvalidRecord); 3240 Type *OpTy = getTypeByID(Record[0]); 3241 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3242 Type *ResTy = getTypeByID(Record[2]); 3243 if (!OpTy || !Op || !ResTy) 3244 return Error(BitcodeError::InvalidRecord); 3245 I = new VAArgInst(Op, ResTy); 3246 InstructionList.push_back(I); 3247 break; 3248 } 3249 } 3250 3251 // Add instruction to end of current BB. If there is no current BB, reject 3252 // this file. 3253 if (!CurBB) { 3254 delete I; 3255 return Error(BitcodeError::InvalidInstructionWithNoBB); 3256 } 3257 CurBB->getInstList().push_back(I); 3258 3259 // If this was a terminator instruction, move to the next block. 3260 if (isa<TerminatorInst>(I)) { 3261 ++CurBBNo; 3262 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3263 } 3264 3265 // Non-void values get registered in the value table for future use. 3266 if (I && !I->getType()->isVoidTy()) 3267 ValueList.AssignValue(I, NextValueNo++); 3268 } 3269 3270 OutOfRecordLoop: 3271 3272 // Check the function list for unresolved values. 3273 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3274 if (!A->getParent()) { 3275 // We found at least one unresolved value. Nuke them all to avoid leaks. 3276 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3277 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3278 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3279 delete A; 3280 } 3281 } 3282 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3283 } 3284 } 3285 3286 // FIXME: Check for unresolved forward-declared metadata references 3287 // and clean up leaks. 3288 3289 // Trim the value list down to the size it was before we parsed this function. 3290 ValueList.shrinkTo(ModuleValueListSize); 3291 MDValueList.shrinkTo(ModuleMDValueListSize); 3292 std::vector<BasicBlock*>().swap(FunctionBBs); 3293 return std::error_code(); 3294 } 3295 3296 /// Find the function body in the bitcode stream 3297 std::error_code BitcodeReader::FindFunctionInStream( 3298 Function *F, 3299 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3300 while (DeferredFunctionInfoIterator->second == 0) { 3301 if (Stream.AtEndOfStream()) 3302 return Error(BitcodeError::CouldNotFindFunctionInStream); 3303 // ParseModule will parse the next body in the stream and set its 3304 // position in the DeferredFunctionInfo map. 3305 if (std::error_code EC = ParseModule(true)) 3306 return EC; 3307 } 3308 return std::error_code(); 3309 } 3310 3311 //===----------------------------------------------------------------------===// 3312 // GVMaterializer implementation 3313 //===----------------------------------------------------------------------===// 3314 3315 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3316 3317 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3318 Function *F = dyn_cast<Function>(GV); 3319 // If it's not a function or is already material, ignore the request. 3320 if (!F || !F->isMaterializable()) 3321 return std::error_code(); 3322 3323 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3324 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3325 // If its position is recorded as 0, its body is somewhere in the stream 3326 // but we haven't seen it yet. 3327 if (DFII->second == 0 && LazyStreamer) 3328 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3329 return EC; 3330 3331 // Move the bit stream to the saved position of the deferred function body. 3332 Stream.JumpToBit(DFII->second); 3333 3334 if (std::error_code EC = ParseFunctionBody(F)) 3335 return EC; 3336 F->setIsMaterializable(false); 3337 3338 // Upgrade any old intrinsic calls in the function. 3339 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3340 E = UpgradedIntrinsics.end(); I != E; ++I) { 3341 if (I->first != I->second) { 3342 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3343 UI != UE;) { 3344 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3345 UpgradeIntrinsicCall(CI, I->second); 3346 } 3347 } 3348 } 3349 3350 // Bring in any functions that this function forward-referenced via 3351 // blockaddresses. 3352 return materializeForwardReferencedFunctions(); 3353 } 3354 3355 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3356 const Function *F = dyn_cast<Function>(GV); 3357 if (!F || F->isDeclaration()) 3358 return false; 3359 3360 // Dematerializing F would leave dangling references that wouldn't be 3361 // reconnected on re-materialization. 3362 if (BlockAddressesTaken.count(F)) 3363 return false; 3364 3365 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3366 } 3367 3368 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3369 Function *F = dyn_cast<Function>(GV); 3370 // If this function isn't dematerializable, this is a noop. 3371 if (!F || !isDematerializable(F)) 3372 return; 3373 3374 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3375 3376 // Just forget the function body, we can remat it later. 3377 F->dropAllReferences(); 3378 F->setIsMaterializable(true); 3379 } 3380 3381 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3382 assert(M == TheModule && 3383 "Can only Materialize the Module this BitcodeReader is attached to."); 3384 3385 // Promise to materialize all forward references. 3386 WillMaterializeAllForwardRefs = true; 3387 3388 // Iterate over the module, deserializing any functions that are still on 3389 // disk. 3390 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3391 F != E; ++F) { 3392 if (std::error_code EC = materialize(F)) 3393 return EC; 3394 } 3395 // At this point, if there are any function bodies, the current bit is 3396 // pointing to the END_BLOCK record after them. Now make sure the rest 3397 // of the bits in the module have been read. 3398 if (NextUnreadBit) 3399 ParseModule(true); 3400 3401 // Check that all block address forward references got resolved (as we 3402 // promised above). 3403 if (!BasicBlockFwdRefs.empty()) 3404 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3405 3406 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3407 // delete the old functions to clean up. We can't do this unless the entire 3408 // module is materialized because there could always be another function body 3409 // with calls to the old function. 3410 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3411 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3412 if (I->first != I->second) { 3413 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3414 UI != UE;) { 3415 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3416 UpgradeIntrinsicCall(CI, I->second); 3417 } 3418 if (!I->first->use_empty()) 3419 I->first->replaceAllUsesWith(I->second); 3420 I->first->eraseFromParent(); 3421 } 3422 } 3423 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3424 3425 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3426 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3427 3428 UpgradeDebugInfo(*M); 3429 return std::error_code(); 3430 } 3431 3432 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3433 return IdentifiedStructTypes; 3434 } 3435 3436 std::error_code BitcodeReader::InitStream() { 3437 if (LazyStreamer) 3438 return InitLazyStream(); 3439 return InitStreamFromBuffer(); 3440 } 3441 3442 std::error_code BitcodeReader::InitStreamFromBuffer() { 3443 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3444 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3445 3446 if (Buffer->getBufferSize() & 3) 3447 return Error(BitcodeError::InvalidBitcodeSignature); 3448 3449 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3450 // The magic number is 0x0B17C0DE stored in little endian. 3451 if (isBitcodeWrapper(BufPtr, BufEnd)) 3452 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3453 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3454 3455 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3456 Stream.init(&*StreamFile); 3457 3458 return std::error_code(); 3459 } 3460 3461 std::error_code BitcodeReader::InitLazyStream() { 3462 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3463 // see it. 3464 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3465 StreamFile.reset(new BitstreamReader(Bytes)); 3466 Stream.init(&*StreamFile); 3467 3468 unsigned char buf[16]; 3469 if (Bytes->readBytes(buf, 16, 0) != 16) 3470 return Error(BitcodeError::InvalidBitcodeSignature); 3471 3472 if (!isBitcode(buf, buf + 16)) 3473 return Error(BitcodeError::InvalidBitcodeSignature); 3474 3475 if (isBitcodeWrapper(buf, buf + 4)) { 3476 const unsigned char *bitcodeStart = buf; 3477 const unsigned char *bitcodeEnd = buf + 16; 3478 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3479 Bytes->dropLeadingBytes(bitcodeStart - buf); 3480 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3481 } 3482 return std::error_code(); 3483 } 3484 3485 namespace { 3486 class BitcodeErrorCategoryType : public std::error_category { 3487 const char *name() const LLVM_NOEXCEPT override { 3488 return "llvm.bitcode"; 3489 } 3490 std::string message(int IE) const override { 3491 BitcodeError E = static_cast<BitcodeError>(IE); 3492 switch (E) { 3493 case BitcodeError::ConflictingMETADATA_KINDRecords: 3494 return "Conflicting METADATA_KIND records"; 3495 case BitcodeError::CouldNotFindFunctionInStream: 3496 return "Could not find function in stream"; 3497 case BitcodeError::ExpectedConstant: 3498 return "Expected a constant"; 3499 case BitcodeError::InsufficientFunctionProtos: 3500 return "Insufficient function protos"; 3501 case BitcodeError::InvalidBitcodeSignature: 3502 return "Invalid bitcode signature"; 3503 case BitcodeError::InvalidBitcodeWrapperHeader: 3504 return "Invalid bitcode wrapper header"; 3505 case BitcodeError::InvalidConstantReference: 3506 return "Invalid ronstant reference"; 3507 case BitcodeError::InvalidID: 3508 return "Invalid ID"; 3509 case BitcodeError::InvalidInstructionWithNoBB: 3510 return "Invalid instruction with no BB"; 3511 case BitcodeError::InvalidRecord: 3512 return "Invalid record"; 3513 case BitcodeError::InvalidTypeForValue: 3514 return "Invalid type for value"; 3515 case BitcodeError::InvalidTYPETable: 3516 return "Invalid TYPE table"; 3517 case BitcodeError::InvalidType: 3518 return "Invalid type"; 3519 case BitcodeError::MalformedBlock: 3520 return "Malformed block"; 3521 case BitcodeError::MalformedGlobalInitializerSet: 3522 return "Malformed global initializer set"; 3523 case BitcodeError::InvalidMultipleBlocks: 3524 return "Invalid multiple blocks"; 3525 case BitcodeError::NeverResolvedValueFoundInFunction: 3526 return "Never resolved value found in function"; 3527 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3528 return "Never resolved function from blockaddress"; 3529 case BitcodeError::InvalidValue: 3530 return "Invalid value"; 3531 } 3532 llvm_unreachable("Unknown error type!"); 3533 } 3534 }; 3535 } 3536 3537 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3538 3539 const std::error_category &llvm::BitcodeErrorCategory() { 3540 return *ErrorCategory; 3541 } 3542 3543 //===----------------------------------------------------------------------===// 3544 // External interface 3545 //===----------------------------------------------------------------------===// 3546 3547 /// \brief Get a lazy one-at-time loading module from bitcode. 3548 /// 3549 /// This isn't always used in a lazy context. In particular, it's also used by 3550 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3551 /// in forward-referenced functions from block address references. 3552 /// 3553 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3554 /// materialize everything -- in particular, if this isn't truly lazy. 3555 static ErrorOr<Module *> 3556 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3557 LLVMContext &Context, bool WillMaterializeAll) { 3558 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3559 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 3560 M->setMaterializer(R); 3561 3562 auto cleanupOnError = [&](std::error_code EC) { 3563 R->releaseBuffer(); // Never take ownership on error. 3564 delete M; // Also deletes R. 3565 return EC; 3566 }; 3567 3568 if (std::error_code EC = R->ParseBitcodeInto(M)) 3569 return cleanupOnError(EC); 3570 3571 if (!WillMaterializeAll) 3572 // Resolve forward references from blockaddresses. 3573 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3574 return cleanupOnError(EC); 3575 3576 Buffer.release(); // The BitcodeReader owns it now. 3577 return M; 3578 } 3579 3580 ErrorOr<Module *> 3581 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3582 LLVMContext &Context) { 3583 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false); 3584 } 3585 3586 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3587 DataStreamer *streamer, 3588 LLVMContext &Context, 3589 std::string *ErrMsg) { 3590 Module *M = new Module(name, Context); 3591 BitcodeReader *R = new BitcodeReader(streamer, Context); 3592 M->setMaterializer(R); 3593 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3594 if (ErrMsg) 3595 *ErrMsg = EC.message(); 3596 delete M; // Also deletes R. 3597 return nullptr; 3598 } 3599 return M; 3600 } 3601 3602 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3603 LLVMContext &Context) { 3604 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3605 ErrorOr<Module *> ModuleOrErr = 3606 getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 3607 if (!ModuleOrErr) 3608 return ModuleOrErr; 3609 Module *M = ModuleOrErr.get(); 3610 // Read in the entire module, and destroy the BitcodeReader. 3611 if (std::error_code EC = M->materializeAllPermanently()) { 3612 delete M; 3613 return EC; 3614 } 3615 3616 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3617 // written. We must defer until the Module has been fully materialized. 3618 3619 return M; 3620 } 3621 3622 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3623 LLVMContext &Context) { 3624 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3625 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 3626 ErrorOr<std::string> Triple = R->parseTriple(); 3627 if (Triple.getError()) 3628 return ""; 3629 return Triple.get(); 3630 } 3631