1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 std::vector<TrackingMDRef> MetadataPtrs; 111 112 LLVMContext &Context; 113 public: 114 BitcodeReaderMetadataList(LLVMContext &C) 115 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 116 117 // vector compatibility methods 118 unsigned size() const { return MetadataPtrs.size(); } 119 void resize(unsigned N) { MetadataPtrs.resize(N); } 120 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 121 void clear() { MetadataPtrs.clear(); } 122 Metadata *back() const { return MetadataPtrs.back(); } 123 void pop_back() { MetadataPtrs.pop_back(); } 124 bool empty() const { return MetadataPtrs.empty(); } 125 126 Metadata *operator[](unsigned i) const { 127 assert(i < MetadataPtrs.size()); 128 return MetadataPtrs[i]; 129 } 130 131 void shrinkTo(unsigned N) { 132 assert(N <= size() && "Invalid shrinkTo request!"); 133 assert(!AnyFwdRefs && "Unexpected forward refs"); 134 MetadataPtrs.resize(N); 135 } 136 137 Metadata *getMetadataFwdRef(unsigned Idx); 138 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 139 void assignValue(Metadata *MD, unsigned Idx); 140 void tryToResolveCycles(); 141 bool hasFwdRefs() const { return AnyFwdRefs; } 142 }; 143 144 class BitcodeReader : public GVMaterializer { 145 LLVMContext &Context; 146 Module *TheModule = nullptr; 147 std::unique_ptr<MemoryBuffer> Buffer; 148 std::unique_ptr<BitstreamReader> StreamFile; 149 BitstreamCursor Stream; 150 // Next offset to start scanning for lazy parsing of function bodies. 151 uint64_t NextUnreadBit = 0; 152 // Last function offset found in the VST. 153 uint64_t LastFunctionBlockBit = 0; 154 bool SeenValueSymbolTable = false; 155 uint64_t VSTOffset = 0; 156 // Contains an arbitrary and optional string identifying the bitcode producer 157 std::string ProducerIdentification; 158 159 std::vector<Type*> TypeList; 160 BitcodeReaderValueList ValueList; 161 BitcodeReaderMetadataList MetadataList; 162 std::vector<Comdat *> ComdatList; 163 SmallVector<Instruction *, 64> InstructionList; 164 165 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 166 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 168 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 169 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 170 171 SmallVector<Instruction*, 64> InstsWithTBAATag; 172 173 bool HasSeenOldLoopTags = false; 174 175 /// The set of attributes by index. Index zero in the file is for null, and 176 /// is thus not represented here. As such all indices are off by one. 177 std::vector<AttributeSet> MAttributes; 178 179 /// The set of attribute groups. 180 std::map<unsigned, AttributeSet> MAttributeGroups; 181 182 /// While parsing a function body, this is a list of the basic blocks for the 183 /// function. 184 std::vector<BasicBlock*> FunctionBBs; 185 186 // When reading the module header, this list is populated with functions that 187 // have bodies later in the file. 188 std::vector<Function*> FunctionsWithBodies; 189 190 // When intrinsic functions are encountered which require upgrading they are 191 // stored here with their replacement function. 192 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 193 UpgradedIntrinsicMap UpgradedIntrinsics; 194 195 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 196 DenseMap<unsigned, unsigned> MDKindMap; 197 198 // Several operations happen after the module header has been read, but 199 // before function bodies are processed. This keeps track of whether 200 // we've done this yet. 201 bool SeenFirstFunctionBody = false; 202 203 /// When function bodies are initially scanned, this map contains info about 204 /// where to find deferred function body in the stream. 205 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 206 207 /// When Metadata block is initially scanned when parsing the module, we may 208 /// choose to defer parsing of the metadata. This vector contains info about 209 /// which Metadata blocks are deferred. 210 std::vector<uint64_t> DeferredMetadataInfo; 211 212 /// These are basic blocks forward-referenced by block addresses. They are 213 /// inserted lazily into functions when they're loaded. The basic block ID is 214 /// its index into the vector. 215 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 216 std::deque<Function *> BasicBlockFwdRefQueue; 217 218 /// Indicates that we are using a new encoding for instruction operands where 219 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 220 /// instruction number, for a more compact encoding. Some instruction 221 /// operands are not relative to the instruction ID: basic block numbers, and 222 /// types. Once the old style function blocks have been phased out, we would 223 /// not need this flag. 224 bool UseRelativeIDs = false; 225 226 /// True if all functions will be materialized, negating the need to process 227 /// (e.g.) blockaddress forward references. 228 bool WillMaterializeAllForwardRefs = false; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 247 BitcodeReader(LLVMContext &Context); 248 ~BitcodeReader() override { freeState(); } 249 250 std::error_code materializeForwardReferencedFunctions(); 251 252 void freeState(); 253 254 void releaseBuffer(); 255 256 std::error_code materialize(GlobalValue *GV) override; 257 std::error_code materializeModule() override; 258 std::vector<StructType *> getIdentifiedStructTypes() const override; 259 260 /// \brief Main interface to parsing a bitcode buffer. 261 /// \returns true if an error occurred. 262 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 263 Module *M, 264 bool ShouldLazyLoadMetadata = false); 265 266 /// \brief Cheap mechanism to just extract module triple 267 /// \returns true if an error occurred. 268 ErrorOr<std::string> parseTriple(); 269 270 /// Cheap mechanism to just extract the identification block out of bitcode. 271 ErrorOr<std::string> parseIdentificationBlock(); 272 273 static uint64_t decodeSignRotatedValue(uint64_t V); 274 275 /// Materialize any deferred Metadata block. 276 std::error_code materializeMetadata() override; 277 278 void setStripDebugInfo() override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getMetadataFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndIndirectSymbolInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 401 StringRef Blob, 402 unsigned &NextMetadataNo); 403 std::error_code parseMetadataKinds(); 404 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 405 std::error_code parseMetadataAttachment(Function &F); 406 ErrorOr<std::string> parseModuleTriple(); 407 std::error_code parseUseLists(); 408 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code initStreamFromBuffer(); 410 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 411 std::error_code findFunctionInStream( 412 Function *F, 413 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 414 }; 415 416 /// Class to manage reading and parsing function summary index bitcode 417 /// files/sections. 418 class ModuleSummaryIndexBitcodeReader { 419 DiagnosticHandlerFunction DiagnosticHandler; 420 421 /// Eventually points to the module index built during parsing. 422 ModuleSummaryIndex *TheIndex = nullptr; 423 424 std::unique_ptr<MemoryBuffer> Buffer; 425 std::unique_ptr<BitstreamReader> StreamFile; 426 BitstreamCursor Stream; 427 428 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 429 /// 430 /// If false, the summary section is fully parsed into the index during 431 /// the initial parse. Otherwise, if true, the caller is expected to 432 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 433 /// section is thus parsed lazily. 434 bool IsLazy = false; 435 436 /// Used to indicate whether caller only wants to check for the presence 437 /// of the global value summary bitcode section. All blocks are skipped, 438 /// but the SeenGlobalValSummary boolean is set. 439 bool CheckGlobalValSummaryPresenceOnly = false; 440 441 /// Indicates whether we have encountered a global value summary section 442 /// yet during parsing, used when checking if file contains global value 443 /// summary section. 444 bool SeenGlobalValSummary = false; 445 446 /// Indicates whether we have already parsed the VST, used for error checking. 447 bool SeenValueSymbolTable = false; 448 449 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 450 /// Used to enable on-demand parsing of the VST. 451 uint64_t VSTOffset = 0; 452 453 // Map to save ValueId to GUID association that was recorded in the 454 // ValueSymbolTable. It is used after the VST is parsed to convert 455 // call graph edges read from the function summary from referencing 456 // callees by their ValueId to using the GUID instead, which is how 457 // they are recorded in the summary index being built. 458 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 459 460 /// Map to save the association between summary offset in the VST to the 461 /// GlobalValueInfo object created when parsing it. Used to access the 462 /// info object when parsing the summary section. 463 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 464 465 /// Map populated during module path string table parsing, from the 466 /// module ID to a string reference owned by the index's module 467 /// path string table, used to correlate with combined index 468 /// summary records. 469 DenseMap<uint64_t, StringRef> ModuleIdMap; 470 471 /// Original source file name recorded in a bitcode record. 472 std::string SourceFileName; 473 474 public: 475 std::error_code error(BitcodeError E, const Twine &Message); 476 std::error_code error(BitcodeError E); 477 std::error_code error(const Twine &Message); 478 479 ModuleSummaryIndexBitcodeReader( 480 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 481 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 482 ModuleSummaryIndexBitcodeReader( 483 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 484 bool CheckGlobalValSummaryPresenceOnly = false); 485 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a summary section. 492 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 ModuleSummaryIndex *I); 498 499 /// \brief Interface for parsing a summary lazily. 500 std::error_code 501 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 502 ModuleSummaryIndex *I, size_t SummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable( 507 uint64_t Offset, 508 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 509 std::error_code parseEntireSummary(); 510 std::error_code parseModuleStringTable(); 511 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 512 std::error_code initStreamFromBuffer(); 513 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 514 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 515 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 516 }; 517 } // end anonymous namespace 518 519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 520 DiagnosticSeverity Severity, 521 const Twine &Msg) 522 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 523 524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 525 526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 527 std::error_code EC, const Twine &Message) { 528 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 529 DiagnosticHandler(DI); 530 return EC; 531 } 532 533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 534 std::error_code EC) { 535 return error(DiagnosticHandler, EC, EC.message()); 536 } 537 538 static std::error_code error(LLVMContext &Context, std::error_code EC, 539 const Twine &Message) { 540 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 541 Message); 542 } 543 544 static std::error_code error(LLVMContext &Context, std::error_code EC) { 545 return error(Context, EC, EC.message()); 546 } 547 548 static std::error_code error(LLVMContext &Context, const Twine &Message) { 549 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 550 Message); 551 } 552 553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 554 if (!ProducerIdentification.empty()) { 555 return ::error(Context, make_error_code(E), 556 Message + " (Producer: '" + ProducerIdentification + 557 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 558 } 559 return ::error(Context, make_error_code(E), Message); 560 } 561 562 std::error_code BitcodeReader::error(const Twine &Message) { 563 if (!ProducerIdentification.empty()) { 564 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 565 Message + " (Producer: '" + ProducerIdentification + 566 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 567 } 568 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 569 Message); 570 } 571 572 std::error_code BitcodeReader::error(BitcodeError E) { 573 return ::error(Context, make_error_code(E)); 574 } 575 576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 577 : Context(Context), Buffer(Buffer), ValueList(Context), 578 MetadataList(Context) {} 579 580 BitcodeReader::BitcodeReader(LLVMContext &Context) 581 : Context(Context), Buffer(nullptr), ValueList(Context), 582 MetadataList(Context) {} 583 584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 585 if (WillMaterializeAllForwardRefs) 586 return std::error_code(); 587 588 // Prevent recursion. 589 WillMaterializeAllForwardRefs = true; 590 591 while (!BasicBlockFwdRefQueue.empty()) { 592 Function *F = BasicBlockFwdRefQueue.front(); 593 BasicBlockFwdRefQueue.pop_front(); 594 assert(F && "Expected valid function"); 595 if (!BasicBlockFwdRefs.count(F)) 596 // Already materialized. 597 continue; 598 599 // Check for a function that isn't materializable to prevent an infinite 600 // loop. When parsing a blockaddress stored in a global variable, there 601 // isn't a trivial way to check if a function will have a body without a 602 // linear search through FunctionsWithBodies, so just check it here. 603 if (!F->isMaterializable()) 604 return error("Never resolved function from blockaddress"); 605 606 // Try to materialize F. 607 if (std::error_code EC = materialize(F)) 608 return EC; 609 } 610 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 611 612 // Reset state. 613 WillMaterializeAllForwardRefs = false; 614 return std::error_code(); 615 } 616 617 void BitcodeReader::freeState() { 618 Buffer = nullptr; 619 std::vector<Type*>().swap(TypeList); 620 ValueList.clear(); 621 MetadataList.clear(); 622 std::vector<Comdat *>().swap(ComdatList); 623 624 std::vector<AttributeSet>().swap(MAttributes); 625 std::vector<BasicBlock*>().swap(FunctionBBs); 626 std::vector<Function*>().swap(FunctionsWithBodies); 627 DeferredFunctionInfo.clear(); 628 DeferredMetadataInfo.clear(); 629 MDKindMap.clear(); 630 631 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 632 BasicBlockFwdRefQueue.clear(); 633 } 634 635 //===----------------------------------------------------------------------===// 636 // Helper functions to implement forward reference resolution, etc. 637 //===----------------------------------------------------------------------===// 638 639 /// Convert a string from a record into an std::string, return true on failure. 640 template <typename StrTy> 641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 642 StrTy &Result) { 643 if (Idx > Record.size()) 644 return true; 645 646 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 647 Result += (char)Record[i]; 648 return false; 649 } 650 651 static bool hasImplicitComdat(size_t Val) { 652 switch (Val) { 653 default: 654 return false; 655 case 1: // Old WeakAnyLinkage 656 case 4: // Old LinkOnceAnyLinkage 657 case 10: // Old WeakODRLinkage 658 case 11: // Old LinkOnceODRLinkage 659 return true; 660 } 661 } 662 663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 664 switch (Val) { 665 default: // Map unknown/new linkages to external 666 case 0: 667 return GlobalValue::ExternalLinkage; 668 case 2: 669 return GlobalValue::AppendingLinkage; 670 case 3: 671 return GlobalValue::InternalLinkage; 672 case 5: 673 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 674 case 6: 675 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 676 case 7: 677 return GlobalValue::ExternalWeakLinkage; 678 case 8: 679 return GlobalValue::CommonLinkage; 680 case 9: 681 return GlobalValue::PrivateLinkage; 682 case 12: 683 return GlobalValue::AvailableExternallyLinkage; 684 case 13: 685 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 686 case 14: 687 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 688 case 15: 689 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 690 case 1: // Old value with implicit comdat. 691 case 16: 692 return GlobalValue::WeakAnyLinkage; 693 case 10: // Old value with implicit comdat. 694 case 17: 695 return GlobalValue::WeakODRLinkage; 696 case 4: // Old value with implicit comdat. 697 case 18: 698 return GlobalValue::LinkOnceAnyLinkage; 699 case 11: // Old value with implicit comdat. 700 case 19: 701 return GlobalValue::LinkOnceODRLinkage; 702 } 703 } 704 705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 706 switch (Val) { 707 default: // Map unknown visibilities to default. 708 case 0: return GlobalValue::DefaultVisibility; 709 case 1: return GlobalValue::HiddenVisibility; 710 case 2: return GlobalValue::ProtectedVisibility; 711 } 712 } 713 714 static GlobalValue::DLLStorageClassTypes 715 getDecodedDLLStorageClass(unsigned Val) { 716 switch (Val) { 717 default: // Map unknown values to default. 718 case 0: return GlobalValue::DefaultStorageClass; 719 case 1: return GlobalValue::DLLImportStorageClass; 720 case 2: return GlobalValue::DLLExportStorageClass; 721 } 722 } 723 724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 725 switch (Val) { 726 case 0: return GlobalVariable::NotThreadLocal; 727 default: // Map unknown non-zero value to general dynamic. 728 case 1: return GlobalVariable::GeneralDynamicTLSModel; 729 case 2: return GlobalVariable::LocalDynamicTLSModel; 730 case 3: return GlobalVariable::InitialExecTLSModel; 731 case 4: return GlobalVariable::LocalExecTLSModel; 732 } 733 } 734 735 static int getDecodedCastOpcode(unsigned Val) { 736 switch (Val) { 737 default: return -1; 738 case bitc::CAST_TRUNC : return Instruction::Trunc; 739 case bitc::CAST_ZEXT : return Instruction::ZExt; 740 case bitc::CAST_SEXT : return Instruction::SExt; 741 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 742 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 743 case bitc::CAST_UITOFP : return Instruction::UIToFP; 744 case bitc::CAST_SITOFP : return Instruction::SIToFP; 745 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 746 case bitc::CAST_FPEXT : return Instruction::FPExt; 747 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 748 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 749 case bitc::CAST_BITCAST : return Instruction::BitCast; 750 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 751 } 752 } 753 754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 755 bool IsFP = Ty->isFPOrFPVectorTy(); 756 // BinOps are only valid for int/fp or vector of int/fp types 757 if (!IsFP && !Ty->isIntOrIntVectorTy()) 758 return -1; 759 760 switch (Val) { 761 default: 762 return -1; 763 case bitc::BINOP_ADD: 764 return IsFP ? Instruction::FAdd : Instruction::Add; 765 case bitc::BINOP_SUB: 766 return IsFP ? Instruction::FSub : Instruction::Sub; 767 case bitc::BINOP_MUL: 768 return IsFP ? Instruction::FMul : Instruction::Mul; 769 case bitc::BINOP_UDIV: 770 return IsFP ? -1 : Instruction::UDiv; 771 case bitc::BINOP_SDIV: 772 return IsFP ? Instruction::FDiv : Instruction::SDiv; 773 case bitc::BINOP_UREM: 774 return IsFP ? -1 : Instruction::URem; 775 case bitc::BINOP_SREM: 776 return IsFP ? Instruction::FRem : Instruction::SRem; 777 case bitc::BINOP_SHL: 778 return IsFP ? -1 : Instruction::Shl; 779 case bitc::BINOP_LSHR: 780 return IsFP ? -1 : Instruction::LShr; 781 case bitc::BINOP_ASHR: 782 return IsFP ? -1 : Instruction::AShr; 783 case bitc::BINOP_AND: 784 return IsFP ? -1 : Instruction::And; 785 case bitc::BINOP_OR: 786 return IsFP ? -1 : Instruction::Or; 787 case bitc::BINOP_XOR: 788 return IsFP ? -1 : Instruction::Xor; 789 } 790 } 791 792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 793 switch (Val) { 794 default: return AtomicRMWInst::BAD_BINOP; 795 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 796 case bitc::RMW_ADD: return AtomicRMWInst::Add; 797 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 798 case bitc::RMW_AND: return AtomicRMWInst::And; 799 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 800 case bitc::RMW_OR: return AtomicRMWInst::Or; 801 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 802 case bitc::RMW_MAX: return AtomicRMWInst::Max; 803 case bitc::RMW_MIN: return AtomicRMWInst::Min; 804 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 805 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 806 } 807 } 808 809 static AtomicOrdering getDecodedOrdering(unsigned Val) { 810 switch (Val) { 811 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 812 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 813 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 814 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 815 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 816 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 817 default: // Map unknown orderings to sequentially-consistent. 818 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 819 } 820 } 821 822 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 823 switch (Val) { 824 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 825 default: // Map unknown scopes to cross-thread. 826 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 827 } 828 } 829 830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown selection kinds to any. 833 case bitc::COMDAT_SELECTION_KIND_ANY: 834 return Comdat::Any; 835 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 836 return Comdat::ExactMatch; 837 case bitc::COMDAT_SELECTION_KIND_LARGEST: 838 return Comdat::Largest; 839 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 840 return Comdat::NoDuplicates; 841 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 842 return Comdat::SameSize; 843 } 844 } 845 846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 847 FastMathFlags FMF; 848 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 849 FMF.setUnsafeAlgebra(); 850 if (0 != (Val & FastMathFlags::NoNaNs)) 851 FMF.setNoNaNs(); 852 if (0 != (Val & FastMathFlags::NoInfs)) 853 FMF.setNoInfs(); 854 if (0 != (Val & FastMathFlags::NoSignedZeros)) 855 FMF.setNoSignedZeros(); 856 if (0 != (Val & FastMathFlags::AllowReciprocal)) 857 FMF.setAllowReciprocal(); 858 return FMF; 859 } 860 861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 862 switch (Val) { 863 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 864 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 865 } 866 } 867 868 namespace llvm { 869 namespace { 870 /// \brief A class for maintaining the slot number definition 871 /// as a placeholder for the actual definition for forward constants defs. 872 class ConstantPlaceHolder : public ConstantExpr { 873 void operator=(const ConstantPlaceHolder &) = delete; 874 875 public: 876 // allocate space for exactly one operand 877 void *operator new(size_t s) { return User::operator new(s, 1); } 878 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 879 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 880 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 881 } 882 883 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 884 static bool classof(const Value *V) { 885 return isa<ConstantExpr>(V) && 886 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 887 } 888 889 /// Provide fast operand accessors 890 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 891 }; 892 } // end anonymous namespace 893 894 // FIXME: can we inherit this from ConstantExpr? 895 template <> 896 struct OperandTraits<ConstantPlaceHolder> : 897 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 898 }; 899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 900 } // end namespace llvm 901 902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 903 if (Idx == size()) { 904 push_back(V); 905 return; 906 } 907 908 if (Idx >= size()) 909 resize(Idx+1); 910 911 WeakVH &OldV = ValuePtrs[Idx]; 912 if (!OldV) { 913 OldV = V; 914 return; 915 } 916 917 // Handle constants and non-constants (e.g. instrs) differently for 918 // efficiency. 919 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 920 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 921 OldV = V; 922 } else { 923 // If there was a forward reference to this value, replace it. 924 Value *PrevVal = OldV; 925 OldV->replaceAllUsesWith(V); 926 delete PrevVal; 927 } 928 } 929 930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 931 Type *Ty) { 932 if (Idx >= size()) 933 resize(Idx + 1); 934 935 if (Value *V = ValuePtrs[Idx]) { 936 if (Ty != V->getType()) 937 report_fatal_error("Type mismatch in constant table!"); 938 return cast<Constant>(V); 939 } 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Constant *C = new ConstantPlaceHolder(Ty, Context); 943 ValuePtrs[Idx] = C; 944 return C; 945 } 946 947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 948 // Bail out for a clearly invalid value. This would make us call resize(0) 949 if (Idx == UINT_MAX) 950 return nullptr; 951 952 if (Idx >= size()) 953 resize(Idx + 1); 954 955 if (Value *V = ValuePtrs[Idx]) { 956 // If the types don't match, it's invalid. 957 if (Ty && Ty != V->getType()) 958 return nullptr; 959 return V; 960 } 961 962 // No type specified, must be invalid reference. 963 if (!Ty) return nullptr; 964 965 // Create and return a placeholder, which will later be RAUW'd. 966 Value *V = new Argument(Ty); 967 ValuePtrs[Idx] = V; 968 return V; 969 } 970 971 /// Once all constants are read, this method bulk resolves any forward 972 /// references. The idea behind this is that we sometimes get constants (such 973 /// as large arrays) which reference *many* forward ref constants. Replacing 974 /// each of these causes a lot of thrashing when building/reuniquing the 975 /// constant. Instead of doing this, we look at all the uses and rewrite all 976 /// the place holders at once for any constant that uses a placeholder. 977 void BitcodeReaderValueList::resolveConstantForwardRefs() { 978 // Sort the values by-pointer so that they are efficient to look up with a 979 // binary search. 980 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 981 982 SmallVector<Constant*, 64> NewOps; 983 984 while (!ResolveConstants.empty()) { 985 Value *RealVal = operator[](ResolveConstants.back().second); 986 Constant *Placeholder = ResolveConstants.back().first; 987 ResolveConstants.pop_back(); 988 989 // Loop over all users of the placeholder, updating them to reference the 990 // new value. If they reference more than one placeholder, update them all 991 // at once. 992 while (!Placeholder->use_empty()) { 993 auto UI = Placeholder->user_begin(); 994 User *U = *UI; 995 996 // If the using object isn't uniqued, just update the operands. This 997 // handles instructions and initializers for global variables. 998 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 999 UI.getUse().set(RealVal); 1000 continue; 1001 } 1002 1003 // Otherwise, we have a constant that uses the placeholder. Replace that 1004 // constant with a new constant that has *all* placeholder uses updated. 1005 Constant *UserC = cast<Constant>(U); 1006 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1007 I != E; ++I) { 1008 Value *NewOp; 1009 if (!isa<ConstantPlaceHolder>(*I)) { 1010 // Not a placeholder reference. 1011 NewOp = *I; 1012 } else if (*I == Placeholder) { 1013 // Common case is that it just references this one placeholder. 1014 NewOp = RealVal; 1015 } else { 1016 // Otherwise, look up the placeholder in ResolveConstants. 1017 ResolveConstantsTy::iterator It = 1018 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1019 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1020 0)); 1021 assert(It != ResolveConstants.end() && It->first == *I); 1022 NewOp = operator[](It->second); 1023 } 1024 1025 NewOps.push_back(cast<Constant>(NewOp)); 1026 } 1027 1028 // Make the new constant. 1029 Constant *NewC; 1030 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1031 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1032 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1033 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1034 } else if (isa<ConstantVector>(UserC)) { 1035 NewC = ConstantVector::get(NewOps); 1036 } else { 1037 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1038 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1039 } 1040 1041 UserC->replaceAllUsesWith(NewC); 1042 UserC->destroyConstant(); 1043 NewOps.clear(); 1044 } 1045 1046 // Update all ValueHandles, they should be the only users at this point. 1047 Placeholder->replaceAllUsesWith(RealVal); 1048 delete Placeholder; 1049 } 1050 } 1051 1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1053 if (Idx == size()) { 1054 push_back(MD); 1055 return; 1056 } 1057 1058 if (Idx >= size()) 1059 resize(Idx+1); 1060 1061 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1062 if (!OldMD) { 1063 OldMD.reset(MD); 1064 return; 1065 } 1066 1067 // If there was a forward reference to this value, replace it. 1068 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1069 PrevMD->replaceAllUsesWith(MD); 1070 --NumFwdRefs; 1071 } 1072 1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1074 if (Idx >= size()) 1075 resize(Idx + 1); 1076 1077 if (Metadata *MD = MetadataPtrs[Idx]) 1078 return MD; 1079 1080 // Track forward refs to be resolved later. 1081 if (AnyFwdRefs) { 1082 MinFwdRef = std::min(MinFwdRef, Idx); 1083 MaxFwdRef = std::max(MaxFwdRef, Idx); 1084 } else { 1085 AnyFwdRefs = true; 1086 MinFwdRef = MaxFwdRef = Idx; 1087 } 1088 ++NumFwdRefs; 1089 1090 // Create and return a placeholder, which will later be RAUW'd. 1091 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1092 MetadataPtrs[Idx].reset(MD); 1093 return MD; 1094 } 1095 1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1097 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1098 } 1099 1100 void BitcodeReaderMetadataList::tryToResolveCycles() { 1101 if (!AnyFwdRefs) 1102 // Nothing to do. 1103 return; 1104 1105 if (NumFwdRefs) 1106 // Still forward references... can't resolve cycles. 1107 return; 1108 1109 // Resolve any cycles. 1110 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1111 auto &MD = MetadataPtrs[I]; 1112 auto *N = dyn_cast_or_null<MDNode>(MD); 1113 if (!N) 1114 continue; 1115 1116 assert(!N->isTemporary() && "Unexpected forward reference"); 1117 N->resolveCycles(); 1118 } 1119 1120 // Make sure we return early again until there's another forward ref. 1121 AnyFwdRefs = false; 1122 } 1123 1124 Type *BitcodeReader::getTypeByID(unsigned ID) { 1125 // The type table size is always specified correctly. 1126 if (ID >= TypeList.size()) 1127 return nullptr; 1128 1129 if (Type *Ty = TypeList[ID]) 1130 return Ty; 1131 1132 // If we have a forward reference, the only possible case is when it is to a 1133 // named struct. Just create a placeholder for now. 1134 return TypeList[ID] = createIdentifiedStructType(Context); 1135 } 1136 1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1138 StringRef Name) { 1139 auto *Ret = StructType::create(Context, Name); 1140 IdentifiedStructTypes.push_back(Ret); 1141 return Ret; 1142 } 1143 1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1145 auto *Ret = StructType::create(Context); 1146 IdentifiedStructTypes.push_back(Ret); 1147 return Ret; 1148 } 1149 1150 //===----------------------------------------------------------------------===// 1151 // Functions for parsing blocks from the bitcode file 1152 //===----------------------------------------------------------------------===// 1153 1154 1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1156 /// been decoded from the given integer. This function must stay in sync with 1157 /// 'encodeLLVMAttributesForBitcode'. 1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1159 uint64_t EncodedAttrs) { 1160 // FIXME: Remove in 4.0. 1161 1162 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1163 // the bits above 31 down by 11 bits. 1164 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1165 assert((!Alignment || isPowerOf2_32(Alignment)) && 1166 "Alignment must be a power of two."); 1167 1168 if (Alignment) 1169 B.addAlignmentAttr(Alignment); 1170 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1171 (EncodedAttrs & 0xffff)); 1172 } 1173 1174 std::error_code BitcodeReader::parseAttributeBlock() { 1175 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1176 return error("Invalid record"); 1177 1178 if (!MAttributes.empty()) 1179 return error("Invalid multiple blocks"); 1180 1181 SmallVector<uint64_t, 64> Record; 1182 1183 SmallVector<AttributeSet, 8> Attrs; 1184 1185 // Read all the records. 1186 while (1) { 1187 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1188 1189 switch (Entry.Kind) { 1190 case BitstreamEntry::SubBlock: // Handled for us already. 1191 case BitstreamEntry::Error: 1192 return error("Malformed block"); 1193 case BitstreamEntry::EndBlock: 1194 return std::error_code(); 1195 case BitstreamEntry::Record: 1196 // The interesting case. 1197 break; 1198 } 1199 1200 // Read a record. 1201 Record.clear(); 1202 switch (Stream.readRecord(Entry.ID, Record)) { 1203 default: // Default behavior: ignore. 1204 break; 1205 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1206 // FIXME: Remove in 4.0. 1207 if (Record.size() & 1) 1208 return error("Invalid record"); 1209 1210 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1211 AttrBuilder B; 1212 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1213 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1214 } 1215 1216 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1217 Attrs.clear(); 1218 break; 1219 } 1220 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1221 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1222 Attrs.push_back(MAttributeGroups[Record[i]]); 1223 1224 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1225 Attrs.clear(); 1226 break; 1227 } 1228 } 1229 } 1230 } 1231 1232 // Returns Attribute::None on unrecognized codes. 1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1234 switch (Code) { 1235 default: 1236 return Attribute::None; 1237 case bitc::ATTR_KIND_ALIGNMENT: 1238 return Attribute::Alignment; 1239 case bitc::ATTR_KIND_ALWAYS_INLINE: 1240 return Attribute::AlwaysInline; 1241 case bitc::ATTR_KIND_ARGMEMONLY: 1242 return Attribute::ArgMemOnly; 1243 case bitc::ATTR_KIND_BUILTIN: 1244 return Attribute::Builtin; 1245 case bitc::ATTR_KIND_BY_VAL: 1246 return Attribute::ByVal; 1247 case bitc::ATTR_KIND_IN_ALLOCA: 1248 return Attribute::InAlloca; 1249 case bitc::ATTR_KIND_COLD: 1250 return Attribute::Cold; 1251 case bitc::ATTR_KIND_CONVERGENT: 1252 return Attribute::Convergent; 1253 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1254 return Attribute::InaccessibleMemOnly; 1255 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1256 return Attribute::InaccessibleMemOrArgMemOnly; 1257 case bitc::ATTR_KIND_INLINE_HINT: 1258 return Attribute::InlineHint; 1259 case bitc::ATTR_KIND_IN_REG: 1260 return Attribute::InReg; 1261 case bitc::ATTR_KIND_JUMP_TABLE: 1262 return Attribute::JumpTable; 1263 case bitc::ATTR_KIND_MIN_SIZE: 1264 return Attribute::MinSize; 1265 case bitc::ATTR_KIND_NAKED: 1266 return Attribute::Naked; 1267 case bitc::ATTR_KIND_NEST: 1268 return Attribute::Nest; 1269 case bitc::ATTR_KIND_NO_ALIAS: 1270 return Attribute::NoAlias; 1271 case bitc::ATTR_KIND_NO_BUILTIN: 1272 return Attribute::NoBuiltin; 1273 case bitc::ATTR_KIND_NO_CAPTURE: 1274 return Attribute::NoCapture; 1275 case bitc::ATTR_KIND_NO_DUPLICATE: 1276 return Attribute::NoDuplicate; 1277 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1278 return Attribute::NoImplicitFloat; 1279 case bitc::ATTR_KIND_NO_INLINE: 1280 return Attribute::NoInline; 1281 case bitc::ATTR_KIND_NO_RECURSE: 1282 return Attribute::NoRecurse; 1283 case bitc::ATTR_KIND_NON_LAZY_BIND: 1284 return Attribute::NonLazyBind; 1285 case bitc::ATTR_KIND_NON_NULL: 1286 return Attribute::NonNull; 1287 case bitc::ATTR_KIND_DEREFERENCEABLE: 1288 return Attribute::Dereferenceable; 1289 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1290 return Attribute::DereferenceableOrNull; 1291 case bitc::ATTR_KIND_ALLOC_SIZE: 1292 return Attribute::AllocSize; 1293 case bitc::ATTR_KIND_NO_RED_ZONE: 1294 return Attribute::NoRedZone; 1295 case bitc::ATTR_KIND_NO_RETURN: 1296 return Attribute::NoReturn; 1297 case bitc::ATTR_KIND_NO_UNWIND: 1298 return Attribute::NoUnwind; 1299 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1300 return Attribute::OptimizeForSize; 1301 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1302 return Attribute::OptimizeNone; 1303 case bitc::ATTR_KIND_READ_NONE: 1304 return Attribute::ReadNone; 1305 case bitc::ATTR_KIND_READ_ONLY: 1306 return Attribute::ReadOnly; 1307 case bitc::ATTR_KIND_RETURNED: 1308 return Attribute::Returned; 1309 case bitc::ATTR_KIND_RETURNS_TWICE: 1310 return Attribute::ReturnsTwice; 1311 case bitc::ATTR_KIND_S_EXT: 1312 return Attribute::SExt; 1313 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1314 return Attribute::StackAlignment; 1315 case bitc::ATTR_KIND_STACK_PROTECT: 1316 return Attribute::StackProtect; 1317 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1318 return Attribute::StackProtectReq; 1319 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1320 return Attribute::StackProtectStrong; 1321 case bitc::ATTR_KIND_SAFESTACK: 1322 return Attribute::SafeStack; 1323 case bitc::ATTR_KIND_STRUCT_RET: 1324 return Attribute::StructRet; 1325 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1326 return Attribute::SanitizeAddress; 1327 case bitc::ATTR_KIND_SANITIZE_THREAD: 1328 return Attribute::SanitizeThread; 1329 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1330 return Attribute::SanitizeMemory; 1331 case bitc::ATTR_KIND_SWIFT_ERROR: 1332 return Attribute::SwiftError; 1333 case bitc::ATTR_KIND_SWIFT_SELF: 1334 return Attribute::SwiftSelf; 1335 case bitc::ATTR_KIND_UW_TABLE: 1336 return Attribute::UWTable; 1337 case bitc::ATTR_KIND_Z_EXT: 1338 return Attribute::ZExt; 1339 } 1340 } 1341 1342 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1343 unsigned &Alignment) { 1344 // Note: Alignment in bitcode files is incremented by 1, so that zero 1345 // can be used for default alignment. 1346 if (Exponent > Value::MaxAlignmentExponent + 1) 1347 return error("Invalid alignment value"); 1348 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1349 return std::error_code(); 1350 } 1351 1352 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1353 Attribute::AttrKind *Kind) { 1354 *Kind = getAttrFromCode(Code); 1355 if (*Kind == Attribute::None) 1356 return error(BitcodeError::CorruptedBitcode, 1357 "Unknown attribute kind (" + Twine(Code) + ")"); 1358 return std::error_code(); 1359 } 1360 1361 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1362 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1363 return error("Invalid record"); 1364 1365 if (!MAttributeGroups.empty()) 1366 return error("Invalid multiple blocks"); 1367 1368 SmallVector<uint64_t, 64> Record; 1369 1370 // Read all the records. 1371 while (1) { 1372 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1373 1374 switch (Entry.Kind) { 1375 case BitstreamEntry::SubBlock: // Handled for us already. 1376 case BitstreamEntry::Error: 1377 return error("Malformed block"); 1378 case BitstreamEntry::EndBlock: 1379 return std::error_code(); 1380 case BitstreamEntry::Record: 1381 // The interesting case. 1382 break; 1383 } 1384 1385 // Read a record. 1386 Record.clear(); 1387 switch (Stream.readRecord(Entry.ID, Record)) { 1388 default: // Default behavior: ignore. 1389 break; 1390 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1391 if (Record.size() < 3) 1392 return error("Invalid record"); 1393 1394 uint64_t GrpID = Record[0]; 1395 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1396 1397 AttrBuilder B; 1398 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1399 if (Record[i] == 0) { // Enum attribute 1400 Attribute::AttrKind Kind; 1401 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1402 return EC; 1403 1404 B.addAttribute(Kind); 1405 } else if (Record[i] == 1) { // Integer attribute 1406 Attribute::AttrKind Kind; 1407 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1408 return EC; 1409 if (Kind == Attribute::Alignment) 1410 B.addAlignmentAttr(Record[++i]); 1411 else if (Kind == Attribute::StackAlignment) 1412 B.addStackAlignmentAttr(Record[++i]); 1413 else if (Kind == Attribute::Dereferenceable) 1414 B.addDereferenceableAttr(Record[++i]); 1415 else if (Kind == Attribute::DereferenceableOrNull) 1416 B.addDereferenceableOrNullAttr(Record[++i]); 1417 else if (Kind == Attribute::AllocSize) 1418 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1419 } else { // String attribute 1420 assert((Record[i] == 3 || Record[i] == 4) && 1421 "Invalid attribute group entry"); 1422 bool HasValue = (Record[i++] == 4); 1423 SmallString<64> KindStr; 1424 SmallString<64> ValStr; 1425 1426 while (Record[i] != 0 && i != e) 1427 KindStr += Record[i++]; 1428 assert(Record[i] == 0 && "Kind string not null terminated"); 1429 1430 if (HasValue) { 1431 // Has a value associated with it. 1432 ++i; // Skip the '0' that terminates the "kind" string. 1433 while (Record[i] != 0 && i != e) 1434 ValStr += Record[i++]; 1435 assert(Record[i] == 0 && "Value string not null terminated"); 1436 } 1437 1438 B.addAttribute(KindStr.str(), ValStr.str()); 1439 } 1440 } 1441 1442 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1443 break; 1444 } 1445 } 1446 } 1447 } 1448 1449 std::error_code BitcodeReader::parseTypeTable() { 1450 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1451 return error("Invalid record"); 1452 1453 return parseTypeTableBody(); 1454 } 1455 1456 std::error_code BitcodeReader::parseTypeTableBody() { 1457 if (!TypeList.empty()) 1458 return error("Invalid multiple blocks"); 1459 1460 SmallVector<uint64_t, 64> Record; 1461 unsigned NumRecords = 0; 1462 1463 SmallString<64> TypeName; 1464 1465 // Read all the records for this type table. 1466 while (1) { 1467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1468 1469 switch (Entry.Kind) { 1470 case BitstreamEntry::SubBlock: // Handled for us already. 1471 case BitstreamEntry::Error: 1472 return error("Malformed block"); 1473 case BitstreamEntry::EndBlock: 1474 if (NumRecords != TypeList.size()) 1475 return error("Malformed block"); 1476 return std::error_code(); 1477 case BitstreamEntry::Record: 1478 // The interesting case. 1479 break; 1480 } 1481 1482 // Read a record. 1483 Record.clear(); 1484 Type *ResultTy = nullptr; 1485 switch (Stream.readRecord(Entry.ID, Record)) { 1486 default: 1487 return error("Invalid value"); 1488 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1489 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1490 // type list. This allows us to reserve space. 1491 if (Record.size() < 1) 1492 return error("Invalid record"); 1493 TypeList.resize(Record[0]); 1494 continue; 1495 case bitc::TYPE_CODE_VOID: // VOID 1496 ResultTy = Type::getVoidTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_HALF: // HALF 1499 ResultTy = Type::getHalfTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_FLOAT: // FLOAT 1502 ResultTy = Type::getFloatTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1505 ResultTy = Type::getDoubleTy(Context); 1506 break; 1507 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1508 ResultTy = Type::getX86_FP80Ty(Context); 1509 break; 1510 case bitc::TYPE_CODE_FP128: // FP128 1511 ResultTy = Type::getFP128Ty(Context); 1512 break; 1513 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1514 ResultTy = Type::getPPC_FP128Ty(Context); 1515 break; 1516 case bitc::TYPE_CODE_LABEL: // LABEL 1517 ResultTy = Type::getLabelTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_METADATA: // METADATA 1520 ResultTy = Type::getMetadataTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1523 ResultTy = Type::getX86_MMXTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_TOKEN: // TOKEN 1526 ResultTy = Type::getTokenTy(Context); 1527 break; 1528 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1529 if (Record.size() < 1) 1530 return error("Invalid record"); 1531 1532 uint64_t NumBits = Record[0]; 1533 if (NumBits < IntegerType::MIN_INT_BITS || 1534 NumBits > IntegerType::MAX_INT_BITS) 1535 return error("Bitwidth for integer type out of range"); 1536 ResultTy = IntegerType::get(Context, NumBits); 1537 break; 1538 } 1539 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1540 // [pointee type, address space] 1541 if (Record.size() < 1) 1542 return error("Invalid record"); 1543 unsigned AddressSpace = 0; 1544 if (Record.size() == 2) 1545 AddressSpace = Record[1]; 1546 ResultTy = getTypeByID(Record[0]); 1547 if (!ResultTy || 1548 !PointerType::isValidElementType(ResultTy)) 1549 return error("Invalid type"); 1550 ResultTy = PointerType::get(ResultTy, AddressSpace); 1551 break; 1552 } 1553 case bitc::TYPE_CODE_FUNCTION_OLD: { 1554 // FIXME: attrid is dead, remove it in LLVM 4.0 1555 // FUNCTION: [vararg, attrid, retty, paramty x N] 1556 if (Record.size() < 3) 1557 return error("Invalid record"); 1558 SmallVector<Type*, 8> ArgTys; 1559 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1560 if (Type *T = getTypeByID(Record[i])) 1561 ArgTys.push_back(T); 1562 else 1563 break; 1564 } 1565 1566 ResultTy = getTypeByID(Record[2]); 1567 if (!ResultTy || ArgTys.size() < Record.size()-3) 1568 return error("Invalid type"); 1569 1570 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION: { 1574 // FUNCTION: [vararg, retty, paramty x N] 1575 if (Record.size() < 2) 1576 return error("Invalid record"); 1577 SmallVector<Type*, 8> ArgTys; 1578 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1579 if (Type *T = getTypeByID(Record[i])) { 1580 if (!FunctionType::isValidArgumentType(T)) 1581 return error("Invalid function argument type"); 1582 ArgTys.push_back(T); 1583 } 1584 else 1585 break; 1586 } 1587 1588 ResultTy = getTypeByID(Record[1]); 1589 if (!ResultTy || ArgTys.size() < Record.size()-2) 1590 return error("Invalid type"); 1591 1592 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1596 if (Record.size() < 1) 1597 return error("Invalid record"); 1598 SmallVector<Type*, 8> EltTys; 1599 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1600 if (Type *T = getTypeByID(Record[i])) 1601 EltTys.push_back(T); 1602 else 1603 break; 1604 } 1605 if (EltTys.size() != Record.size()-1) 1606 return error("Invalid type"); 1607 ResultTy = StructType::get(Context, EltTys, Record[0]); 1608 break; 1609 } 1610 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1611 if (convertToString(Record, 0, TypeName)) 1612 return error("Invalid record"); 1613 continue; 1614 1615 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 1619 if (NumRecords >= TypeList.size()) 1620 return error("Invalid TYPE table"); 1621 1622 // Check to see if this was forward referenced, if so fill in the temp. 1623 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1624 if (Res) { 1625 Res->setName(TypeName); 1626 TypeList[NumRecords] = nullptr; 1627 } else // Otherwise, create a new struct. 1628 Res = createIdentifiedStructType(Context, TypeName); 1629 TypeName.clear(); 1630 1631 SmallVector<Type*, 8> EltTys; 1632 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1633 if (Type *T = getTypeByID(Record[i])) 1634 EltTys.push_back(T); 1635 else 1636 break; 1637 } 1638 if (EltTys.size() != Record.size()-1) 1639 return error("Invalid record"); 1640 Res->setBody(EltTys, Record[0]); 1641 ResultTy = Res; 1642 break; 1643 } 1644 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1645 if (Record.size() != 1) 1646 return error("Invalid record"); 1647 1648 if (NumRecords >= TypeList.size()) 1649 return error("Invalid TYPE table"); 1650 1651 // Check to see if this was forward referenced, if so fill in the temp. 1652 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1653 if (Res) { 1654 Res->setName(TypeName); 1655 TypeList[NumRecords] = nullptr; 1656 } else // Otherwise, create a new struct with no body. 1657 Res = createIdentifiedStructType(Context, TypeName); 1658 TypeName.clear(); 1659 ResultTy = Res; 1660 break; 1661 } 1662 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1663 if (Record.size() < 2) 1664 return error("Invalid record"); 1665 ResultTy = getTypeByID(Record[1]); 1666 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1667 return error("Invalid type"); 1668 ResultTy = ArrayType::get(ResultTy, Record[0]); 1669 break; 1670 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1671 if (Record.size() < 2) 1672 return error("Invalid record"); 1673 if (Record[0] == 0) 1674 return error("Invalid vector length"); 1675 ResultTy = getTypeByID(Record[1]); 1676 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1677 return error("Invalid type"); 1678 ResultTy = VectorType::get(ResultTy, Record[0]); 1679 break; 1680 } 1681 1682 if (NumRecords >= TypeList.size()) 1683 return error("Invalid TYPE table"); 1684 if (TypeList[NumRecords]) 1685 return error( 1686 "Invalid TYPE table: Only named structs can be forward referenced"); 1687 assert(ResultTy && "Didn't read a type?"); 1688 TypeList[NumRecords++] = ResultTy; 1689 } 1690 } 1691 1692 std::error_code BitcodeReader::parseOperandBundleTags() { 1693 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1694 return error("Invalid record"); 1695 1696 if (!BundleTags.empty()) 1697 return error("Invalid multiple blocks"); 1698 1699 SmallVector<uint64_t, 64> Record; 1700 1701 while (1) { 1702 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1703 1704 switch (Entry.Kind) { 1705 case BitstreamEntry::SubBlock: // Handled for us already. 1706 case BitstreamEntry::Error: 1707 return error("Malformed block"); 1708 case BitstreamEntry::EndBlock: 1709 return std::error_code(); 1710 case BitstreamEntry::Record: 1711 // The interesting case. 1712 break; 1713 } 1714 1715 // Tags are implicitly mapped to integers by their order. 1716 1717 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1718 return error("Invalid record"); 1719 1720 // OPERAND_BUNDLE_TAG: [strchr x N] 1721 BundleTags.emplace_back(); 1722 if (convertToString(Record, 0, BundleTags.back())) 1723 return error("Invalid record"); 1724 Record.clear(); 1725 } 1726 } 1727 1728 /// Associate a value with its name from the given index in the provided record. 1729 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1730 unsigned NameIndex, Triple &TT) { 1731 SmallString<128> ValueName; 1732 if (convertToString(Record, NameIndex, ValueName)) 1733 return error("Invalid record"); 1734 unsigned ValueID = Record[0]; 1735 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1736 return error("Invalid record"); 1737 Value *V = ValueList[ValueID]; 1738 1739 StringRef NameStr(ValueName.data(), ValueName.size()); 1740 if (NameStr.find_first_of(0) != StringRef::npos) 1741 return error("Invalid value name"); 1742 V->setName(NameStr); 1743 auto *GO = dyn_cast<GlobalObject>(V); 1744 if (GO) { 1745 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1746 if (TT.isOSBinFormatMachO()) 1747 GO->setComdat(nullptr); 1748 else 1749 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1750 } 1751 } 1752 return V; 1753 } 1754 1755 /// Helper to note and return the current location, and jump to the given 1756 /// offset. 1757 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1758 BitstreamCursor &Stream) { 1759 // Save the current parsing location so we can jump back at the end 1760 // of the VST read. 1761 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1762 Stream.JumpToBit(Offset * 32); 1763 #ifndef NDEBUG 1764 // Do some checking if we are in debug mode. 1765 BitstreamEntry Entry = Stream.advance(); 1766 assert(Entry.Kind == BitstreamEntry::SubBlock); 1767 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1768 #else 1769 // In NDEBUG mode ignore the output so we don't get an unused variable 1770 // warning. 1771 Stream.advance(); 1772 #endif 1773 return CurrentBit; 1774 } 1775 1776 /// Parse the value symbol table at either the current parsing location or 1777 /// at the given bit offset if provided. 1778 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1779 uint64_t CurrentBit; 1780 // Pass in the Offset to distinguish between calling for the module-level 1781 // VST (where we want to jump to the VST offset) and the function-level 1782 // VST (where we don't). 1783 if (Offset > 0) 1784 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1785 1786 // Compute the delta between the bitcode indices in the VST (the word offset 1787 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1788 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1789 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1790 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1791 // just before entering the VST subblock because: 1) the EnterSubBlock 1792 // changes the AbbrevID width; 2) the VST block is nested within the same 1793 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1794 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1795 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1796 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1797 unsigned FuncBitcodeOffsetDelta = 1798 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1799 1800 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1801 return error("Invalid record"); 1802 1803 SmallVector<uint64_t, 64> Record; 1804 1805 Triple TT(TheModule->getTargetTriple()); 1806 1807 // Read all the records for this value table. 1808 SmallString<128> ValueName; 1809 while (1) { 1810 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1811 1812 switch (Entry.Kind) { 1813 case BitstreamEntry::SubBlock: // Handled for us already. 1814 case BitstreamEntry::Error: 1815 return error("Malformed block"); 1816 case BitstreamEntry::EndBlock: 1817 if (Offset > 0) 1818 Stream.JumpToBit(CurrentBit); 1819 return std::error_code(); 1820 case BitstreamEntry::Record: 1821 // The interesting case. 1822 break; 1823 } 1824 1825 // Read a record. 1826 Record.clear(); 1827 switch (Stream.readRecord(Entry.ID, Record)) { 1828 default: // Default behavior: unknown type. 1829 break; 1830 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1831 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1832 if (std::error_code EC = ValOrErr.getError()) 1833 return EC; 1834 ValOrErr.get(); 1835 break; 1836 } 1837 case bitc::VST_CODE_FNENTRY: { 1838 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1839 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1840 if (std::error_code EC = ValOrErr.getError()) 1841 return EC; 1842 Value *V = ValOrErr.get(); 1843 1844 auto *GO = dyn_cast<GlobalObject>(V); 1845 if (!GO) { 1846 // If this is an alias, need to get the actual Function object 1847 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1848 auto *GA = dyn_cast<GlobalAlias>(V); 1849 if (GA) 1850 GO = GA->getBaseObject(); 1851 assert(GO); 1852 } 1853 1854 uint64_t FuncWordOffset = Record[1]; 1855 Function *F = dyn_cast<Function>(GO); 1856 assert(F); 1857 uint64_t FuncBitOffset = FuncWordOffset * 32; 1858 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1859 // Set the LastFunctionBlockBit to point to the last function block. 1860 // Later when parsing is resumed after function materialization, 1861 // we can simply skip that last function block. 1862 if (FuncBitOffset > LastFunctionBlockBit) 1863 LastFunctionBlockBit = FuncBitOffset; 1864 break; 1865 } 1866 case bitc::VST_CODE_BBENTRY: { 1867 if (convertToString(Record, 1, ValueName)) 1868 return error("Invalid record"); 1869 BasicBlock *BB = getBasicBlock(Record[0]); 1870 if (!BB) 1871 return error("Invalid record"); 1872 1873 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1874 ValueName.clear(); 1875 break; 1876 } 1877 } 1878 } 1879 } 1880 1881 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1882 std::error_code 1883 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1884 if (Record.size() < 2) 1885 return error("Invalid record"); 1886 1887 unsigned Kind = Record[0]; 1888 SmallString<8> Name(Record.begin() + 1, Record.end()); 1889 1890 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1891 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1892 return error("Conflicting METADATA_KIND records"); 1893 return std::error_code(); 1894 } 1895 1896 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1897 1898 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1899 StringRef Blob, 1900 unsigned &NextMetadataNo) { 1901 // All the MDStrings in the block are emitted together in a single 1902 // record. The strings are concatenated and stored in a blob along with 1903 // their sizes. 1904 if (Record.size() != 2) 1905 return error("Invalid record: metadata strings layout"); 1906 1907 unsigned NumStrings = Record[0]; 1908 unsigned StringsOffset = Record[1]; 1909 if (!NumStrings) 1910 return error("Invalid record: metadata strings with no strings"); 1911 if (StringsOffset > Blob.size()) 1912 return error("Invalid record: metadata strings corrupt offset"); 1913 1914 StringRef Lengths = Blob.slice(0, StringsOffset); 1915 SimpleBitstreamCursor R(*StreamFile); 1916 R.jumpToPointer(Lengths.begin()); 1917 1918 // Ensure that Blob doesn't get invalidated, even if this is reading from 1919 // a StreamingMemoryObject with corrupt data. 1920 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1921 1922 StringRef Strings = Blob.drop_front(StringsOffset); 1923 do { 1924 if (R.AtEndOfStream()) 1925 return error("Invalid record: metadata strings bad length"); 1926 1927 unsigned Size = R.ReadVBR(6); 1928 if (Strings.size() < Size) 1929 return error("Invalid record: metadata strings truncated chars"); 1930 1931 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1932 NextMetadataNo++); 1933 Strings = Strings.drop_front(Size); 1934 } while (--NumStrings); 1935 1936 return std::error_code(); 1937 } 1938 1939 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1940 /// module level metadata. 1941 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1942 IsMetadataMaterialized = true; 1943 unsigned NextMetadataNo = MetadataList.size(); 1944 1945 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1946 return error("Invalid metadata: fwd refs into function blocks"); 1947 1948 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1949 return error("Invalid record"); 1950 1951 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1952 SmallVector<uint64_t, 64> Record; 1953 1954 auto getMD = [&](unsigned ID) -> Metadata * { 1955 return MetadataList.getMetadataFwdRef(ID); 1956 }; 1957 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1958 if (ID) 1959 return getMD(ID - 1); 1960 return nullptr; 1961 }; 1962 auto getMDString = [&](unsigned ID) -> MDString *{ 1963 // This requires that the ID is not really a forward reference. In 1964 // particular, the MDString must already have been resolved. 1965 return cast_or_null<MDString>(getMDOrNull(ID)); 1966 }; 1967 1968 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1969 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1970 1971 // Read all the records. 1972 while (1) { 1973 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1974 1975 switch (Entry.Kind) { 1976 case BitstreamEntry::SubBlock: // Handled for us already. 1977 case BitstreamEntry::Error: 1978 return error("Malformed block"); 1979 case BitstreamEntry::EndBlock: 1980 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 1981 for (auto CU_SP : CUSubprograms) 1982 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 1983 for (auto &Op : SPs->operands()) 1984 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 1985 SP->replaceOperandWith(7, CU_SP.first); 1986 1987 MetadataList.tryToResolveCycles(); 1988 return std::error_code(); 1989 case BitstreamEntry::Record: 1990 // The interesting case. 1991 break; 1992 } 1993 1994 // Read a record. 1995 Record.clear(); 1996 StringRef Blob; 1997 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1998 bool IsDistinct = false; 1999 switch (Code) { 2000 default: // Default behavior: ignore. 2001 break; 2002 case bitc::METADATA_NAME: { 2003 // Read name of the named metadata. 2004 SmallString<8> Name(Record.begin(), Record.end()); 2005 Record.clear(); 2006 Code = Stream.ReadCode(); 2007 2008 unsigned NextBitCode = Stream.readRecord(Code, Record); 2009 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2010 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2011 2012 // Read named metadata elements. 2013 unsigned Size = Record.size(); 2014 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2015 for (unsigned i = 0; i != Size; ++i) { 2016 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2017 if (!MD) 2018 return error("Invalid record"); 2019 NMD->addOperand(MD); 2020 } 2021 break; 2022 } 2023 case bitc::METADATA_OLD_FN_NODE: { 2024 // FIXME: Remove in 4.0. 2025 // This is a LocalAsMetadata record, the only type of function-local 2026 // metadata. 2027 if (Record.size() % 2 == 1) 2028 return error("Invalid record"); 2029 2030 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2031 // to be legal, but there's no upgrade path. 2032 auto dropRecord = [&] { 2033 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2034 }; 2035 if (Record.size() != 2) { 2036 dropRecord(); 2037 break; 2038 } 2039 2040 Type *Ty = getTypeByID(Record[0]); 2041 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2042 dropRecord(); 2043 break; 2044 } 2045 2046 MetadataList.assignValue( 2047 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2048 NextMetadataNo++); 2049 break; 2050 } 2051 case bitc::METADATA_OLD_NODE: { 2052 // FIXME: Remove in 4.0. 2053 if (Record.size() % 2 == 1) 2054 return error("Invalid record"); 2055 2056 unsigned Size = Record.size(); 2057 SmallVector<Metadata *, 8> Elts; 2058 for (unsigned i = 0; i != Size; i += 2) { 2059 Type *Ty = getTypeByID(Record[i]); 2060 if (!Ty) 2061 return error("Invalid record"); 2062 if (Ty->isMetadataTy()) 2063 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2064 else if (!Ty->isVoidTy()) { 2065 auto *MD = 2066 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2067 assert(isa<ConstantAsMetadata>(MD) && 2068 "Expected non-function-local metadata"); 2069 Elts.push_back(MD); 2070 } else 2071 Elts.push_back(nullptr); 2072 } 2073 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2074 break; 2075 } 2076 case bitc::METADATA_VALUE: { 2077 if (Record.size() != 2) 2078 return error("Invalid record"); 2079 2080 Type *Ty = getTypeByID(Record[0]); 2081 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2082 return error("Invalid record"); 2083 2084 MetadataList.assignValue( 2085 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2086 NextMetadataNo++); 2087 break; 2088 } 2089 case bitc::METADATA_DISTINCT_NODE: 2090 IsDistinct = true; 2091 // fallthrough... 2092 case bitc::METADATA_NODE: { 2093 SmallVector<Metadata *, 8> Elts; 2094 Elts.reserve(Record.size()); 2095 for (unsigned ID : Record) 2096 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2097 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2098 : MDNode::get(Context, Elts), 2099 NextMetadataNo++); 2100 break; 2101 } 2102 case bitc::METADATA_LOCATION: { 2103 if (Record.size() != 5) 2104 return error("Invalid record"); 2105 2106 unsigned Line = Record[1]; 2107 unsigned Column = Record[2]; 2108 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2109 if (!Scope) 2110 return error("Invalid record"); 2111 Metadata *InlinedAt = 2112 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2113 MetadataList.assignValue( 2114 GET_OR_DISTINCT(DILocation, Record[0], 2115 (Context, Line, Column, Scope, InlinedAt)), 2116 NextMetadataNo++); 2117 break; 2118 } 2119 case bitc::METADATA_GENERIC_DEBUG: { 2120 if (Record.size() < 4) 2121 return error("Invalid record"); 2122 2123 unsigned Tag = Record[1]; 2124 unsigned Version = Record[2]; 2125 2126 if (Tag >= 1u << 16 || Version != 0) 2127 return error("Invalid record"); 2128 2129 auto *Header = getMDString(Record[3]); 2130 SmallVector<Metadata *, 8> DwarfOps; 2131 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2132 DwarfOps.push_back(Record[I] 2133 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2134 : nullptr); 2135 MetadataList.assignValue( 2136 GET_OR_DISTINCT(GenericDINode, Record[0], 2137 (Context, Tag, Header, DwarfOps)), 2138 NextMetadataNo++); 2139 break; 2140 } 2141 case bitc::METADATA_SUBRANGE: { 2142 if (Record.size() != 3) 2143 return error("Invalid record"); 2144 2145 MetadataList.assignValue( 2146 GET_OR_DISTINCT(DISubrange, Record[0], 2147 (Context, Record[1], unrotateSign(Record[2]))), 2148 NextMetadataNo++); 2149 break; 2150 } 2151 case bitc::METADATA_ENUMERATOR: { 2152 if (Record.size() != 3) 2153 return error("Invalid record"); 2154 2155 MetadataList.assignValue( 2156 GET_OR_DISTINCT( 2157 DIEnumerator, Record[0], 2158 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2159 NextMetadataNo++); 2160 break; 2161 } 2162 case bitc::METADATA_BASIC_TYPE: { 2163 if (Record.size() != 6) 2164 return error("Invalid record"); 2165 2166 MetadataList.assignValue( 2167 GET_OR_DISTINCT(DIBasicType, Record[0], 2168 (Context, Record[1], getMDString(Record[2]), 2169 Record[3], Record[4], Record[5])), 2170 NextMetadataNo++); 2171 break; 2172 } 2173 case bitc::METADATA_DERIVED_TYPE: { 2174 if (Record.size() != 12) 2175 return error("Invalid record"); 2176 2177 MetadataList.assignValue( 2178 GET_OR_DISTINCT(DIDerivedType, Record[0], 2179 (Context, Record[1], getMDString(Record[2]), 2180 getMDOrNull(Record[3]), Record[4], 2181 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2182 Record[7], Record[8], Record[9], Record[10], 2183 getMDOrNull(Record[11]))), 2184 NextMetadataNo++); 2185 break; 2186 } 2187 case bitc::METADATA_COMPOSITE_TYPE: { 2188 if (Record.size() != 16) 2189 return error("Invalid record"); 2190 2191 MetadataList.assignValue( 2192 GET_OR_DISTINCT(DICompositeType, Record[0], 2193 (Context, Record[1], getMDString(Record[2]), 2194 getMDOrNull(Record[3]), Record[4], 2195 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2196 Record[7], Record[8], Record[9], Record[10], 2197 getMDOrNull(Record[11]), Record[12], 2198 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2199 getMDString(Record[15]))), 2200 NextMetadataNo++); 2201 break; 2202 } 2203 case bitc::METADATA_SUBROUTINE_TYPE: { 2204 if (Record.size() != 3) 2205 return error("Invalid record"); 2206 2207 MetadataList.assignValue( 2208 GET_OR_DISTINCT(DISubroutineType, Record[0], 2209 (Context, Record[1], getMDOrNull(Record[2]))), 2210 NextMetadataNo++); 2211 break; 2212 } 2213 2214 case bitc::METADATA_MODULE: { 2215 if (Record.size() != 6) 2216 return error("Invalid record"); 2217 2218 MetadataList.assignValue( 2219 GET_OR_DISTINCT(DIModule, Record[0], 2220 (Context, getMDOrNull(Record[1]), 2221 getMDString(Record[2]), getMDString(Record[3]), 2222 getMDString(Record[4]), getMDString(Record[5]))), 2223 NextMetadataNo++); 2224 break; 2225 } 2226 2227 case bitc::METADATA_FILE: { 2228 if (Record.size() != 3) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2233 getMDString(Record[2]))), 2234 NextMetadataNo++); 2235 break; 2236 } 2237 case bitc::METADATA_COMPILE_UNIT: { 2238 if (Record.size() < 14 || Record.size() > 16) 2239 return error("Invalid record"); 2240 2241 // Ignore Record[0], which indicates whether this compile unit is 2242 // distinct. It's always distinct. 2243 auto *CU = DICompileUnit::getDistinct( 2244 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2245 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2246 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2247 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2248 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2249 Record.size() <= 14 ? 0 : Record[14]); 2250 2251 MetadataList.assignValue(CU, NextMetadataNo++); 2252 2253 // Move the Upgrade the list of subprograms. 2254 if (Metadata *SPs = getMDOrNull(Record[11])) 2255 CUSubprograms.push_back({CU, SPs}); 2256 break; 2257 } 2258 case bitc::METADATA_SUBPROGRAM: { 2259 if (Record.size() != 18 && Record.size() != 19) 2260 return error("Invalid record"); 2261 2262 // Version 1 has a Function as Record[15]. 2263 // Version 2 has removed Record[15]. 2264 // Version 3 has the Unit as Record[15]. 2265 Metadata *CUorFn = getMDOrNull(Record[15]); 2266 unsigned Offset = Record.size() == 19 ? 1 : 0; 2267 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2268 bool HasCU = Offset && !HasFn; 2269 DISubprogram *SP = GET_OR_DISTINCT( 2270 DISubprogram, 2271 Record[0] || Record[8], // All definitions should be distinct. 2272 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2273 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2274 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2275 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2276 Record[14], HasCU ? CUorFn : nullptr, 2277 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2278 getMDOrNull(Record[17 + Offset]))); 2279 MetadataList.assignValue(SP, NextMetadataNo++); 2280 2281 // Upgrade sp->function mapping to function->sp mapping. 2282 if (HasFn) { 2283 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2284 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2285 if (F->isMaterializable()) 2286 // Defer until materialized; unmaterialized functions may not have 2287 // metadata. 2288 FunctionsWithSPs[F] = SP; 2289 else if (!F->empty()) 2290 F->setSubprogram(SP); 2291 } 2292 } 2293 break; 2294 } 2295 case bitc::METADATA_LEXICAL_BLOCK: { 2296 if (Record.size() != 5) 2297 return error("Invalid record"); 2298 2299 MetadataList.assignValue( 2300 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2301 (Context, getMDOrNull(Record[1]), 2302 getMDOrNull(Record[2]), Record[3], Record[4])), 2303 NextMetadataNo++); 2304 break; 2305 } 2306 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2307 if (Record.size() != 4) 2308 return error("Invalid record"); 2309 2310 MetadataList.assignValue( 2311 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2312 (Context, getMDOrNull(Record[1]), 2313 getMDOrNull(Record[2]), Record[3])), 2314 NextMetadataNo++); 2315 break; 2316 } 2317 case bitc::METADATA_NAMESPACE: { 2318 if (Record.size() != 5) 2319 return error("Invalid record"); 2320 2321 MetadataList.assignValue( 2322 GET_OR_DISTINCT(DINamespace, Record[0], 2323 (Context, getMDOrNull(Record[1]), 2324 getMDOrNull(Record[2]), getMDString(Record[3]), 2325 Record[4])), 2326 NextMetadataNo++); 2327 break; 2328 } 2329 case bitc::METADATA_MACRO: { 2330 if (Record.size() != 5) 2331 return error("Invalid record"); 2332 2333 MetadataList.assignValue( 2334 GET_OR_DISTINCT(DIMacro, Record[0], 2335 (Context, Record[1], Record[2], 2336 getMDString(Record[3]), getMDString(Record[4]))), 2337 NextMetadataNo++); 2338 break; 2339 } 2340 case bitc::METADATA_MACRO_FILE: { 2341 if (Record.size() != 5) 2342 return error("Invalid record"); 2343 2344 MetadataList.assignValue( 2345 GET_OR_DISTINCT(DIMacroFile, Record[0], 2346 (Context, Record[1], Record[2], 2347 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2348 NextMetadataNo++); 2349 break; 2350 } 2351 case bitc::METADATA_TEMPLATE_TYPE: { 2352 if (Record.size() != 3) 2353 return error("Invalid record"); 2354 2355 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2356 Record[0], 2357 (Context, getMDString(Record[1]), 2358 getMDOrNull(Record[2]))), 2359 NextMetadataNo++); 2360 break; 2361 } 2362 case bitc::METADATA_TEMPLATE_VALUE: { 2363 if (Record.size() != 5) 2364 return error("Invalid record"); 2365 2366 MetadataList.assignValue( 2367 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2368 (Context, Record[1], getMDString(Record[2]), 2369 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2370 NextMetadataNo++); 2371 break; 2372 } 2373 case bitc::METADATA_GLOBAL_VAR: { 2374 if (Record.size() != 11) 2375 return error("Invalid record"); 2376 2377 MetadataList.assignValue( 2378 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2379 (Context, getMDOrNull(Record[1]), 2380 getMDString(Record[2]), getMDString(Record[3]), 2381 getMDOrNull(Record[4]), Record[5], 2382 getMDOrNull(Record[6]), Record[7], Record[8], 2383 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2384 NextMetadataNo++); 2385 break; 2386 } 2387 case bitc::METADATA_LOCAL_VAR: { 2388 // 10th field is for the obseleted 'inlinedAt:' field. 2389 if (Record.size() < 8 || Record.size() > 10) 2390 return error("Invalid record"); 2391 2392 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2393 // DW_TAG_arg_variable. 2394 bool HasTag = Record.size() > 8; 2395 MetadataList.assignValue( 2396 GET_OR_DISTINCT(DILocalVariable, Record[0], 2397 (Context, getMDOrNull(Record[1 + HasTag]), 2398 getMDString(Record[2 + HasTag]), 2399 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2400 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2401 Record[7 + HasTag])), 2402 NextMetadataNo++); 2403 break; 2404 } 2405 case bitc::METADATA_EXPRESSION: { 2406 if (Record.size() < 1) 2407 return error("Invalid record"); 2408 2409 MetadataList.assignValue( 2410 GET_OR_DISTINCT(DIExpression, Record[0], 2411 (Context, makeArrayRef(Record).slice(1))), 2412 NextMetadataNo++); 2413 break; 2414 } 2415 case bitc::METADATA_OBJC_PROPERTY: { 2416 if (Record.size() != 8) 2417 return error("Invalid record"); 2418 2419 MetadataList.assignValue( 2420 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2421 (Context, getMDString(Record[1]), 2422 getMDOrNull(Record[2]), Record[3], 2423 getMDString(Record[4]), getMDString(Record[5]), 2424 Record[6], getMDOrNull(Record[7]))), 2425 NextMetadataNo++); 2426 break; 2427 } 2428 case bitc::METADATA_IMPORTED_ENTITY: { 2429 if (Record.size() != 6) 2430 return error("Invalid record"); 2431 2432 MetadataList.assignValue( 2433 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2434 (Context, Record[1], getMDOrNull(Record[2]), 2435 getMDOrNull(Record[3]), Record[4], 2436 getMDString(Record[5]))), 2437 NextMetadataNo++); 2438 break; 2439 } 2440 case bitc::METADATA_STRING_OLD: { 2441 std::string String(Record.begin(), Record.end()); 2442 2443 // Test for upgrading !llvm.loop. 2444 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2445 2446 Metadata *MD = MDString::get(Context, String); 2447 MetadataList.assignValue(MD, NextMetadataNo++); 2448 break; 2449 } 2450 case bitc::METADATA_STRINGS: 2451 if (std::error_code EC = 2452 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2453 return EC; 2454 break; 2455 case bitc::METADATA_KIND: { 2456 // Support older bitcode files that had METADATA_KIND records in a 2457 // block with METADATA_BLOCK_ID. 2458 if (std::error_code EC = parseMetadataKindRecord(Record)) 2459 return EC; 2460 break; 2461 } 2462 } 2463 } 2464 #undef GET_OR_DISTINCT 2465 } 2466 2467 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2468 std::error_code BitcodeReader::parseMetadataKinds() { 2469 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2470 return error("Invalid record"); 2471 2472 SmallVector<uint64_t, 64> Record; 2473 2474 // Read all the records. 2475 while (1) { 2476 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2477 2478 switch (Entry.Kind) { 2479 case BitstreamEntry::SubBlock: // Handled for us already. 2480 case BitstreamEntry::Error: 2481 return error("Malformed block"); 2482 case BitstreamEntry::EndBlock: 2483 return std::error_code(); 2484 case BitstreamEntry::Record: 2485 // The interesting case. 2486 break; 2487 } 2488 2489 // Read a record. 2490 Record.clear(); 2491 unsigned Code = Stream.readRecord(Entry.ID, Record); 2492 switch (Code) { 2493 default: // Default behavior: ignore. 2494 break; 2495 case bitc::METADATA_KIND: { 2496 if (std::error_code EC = parseMetadataKindRecord(Record)) 2497 return EC; 2498 break; 2499 } 2500 } 2501 } 2502 } 2503 2504 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2505 /// encoding. 2506 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2507 if ((V & 1) == 0) 2508 return V >> 1; 2509 if (V != 1) 2510 return -(V >> 1); 2511 // There is no such thing as -0 with integers. "-0" really means MININT. 2512 return 1ULL << 63; 2513 } 2514 2515 /// Resolve all of the initializers for global values and aliases that we can. 2516 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2517 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2518 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2519 IndirectSymbolInitWorklist; 2520 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2521 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2522 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2523 2524 GlobalInitWorklist.swap(GlobalInits); 2525 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2526 FunctionPrefixWorklist.swap(FunctionPrefixes); 2527 FunctionPrologueWorklist.swap(FunctionPrologues); 2528 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2529 2530 while (!GlobalInitWorklist.empty()) { 2531 unsigned ValID = GlobalInitWorklist.back().second; 2532 if (ValID >= ValueList.size()) { 2533 // Not ready to resolve this yet, it requires something later in the file. 2534 GlobalInits.push_back(GlobalInitWorklist.back()); 2535 } else { 2536 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2537 GlobalInitWorklist.back().first->setInitializer(C); 2538 else 2539 return error("Expected a constant"); 2540 } 2541 GlobalInitWorklist.pop_back(); 2542 } 2543 2544 while (!IndirectSymbolInitWorklist.empty()) { 2545 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2546 if (ValID >= ValueList.size()) { 2547 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2548 } else { 2549 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2550 if (!C) 2551 return error("Expected a constant"); 2552 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2553 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2554 return error("Alias and aliasee types don't match"); 2555 GIS->setIndirectSymbol(C); 2556 } 2557 IndirectSymbolInitWorklist.pop_back(); 2558 } 2559 2560 while (!FunctionPrefixWorklist.empty()) { 2561 unsigned ValID = FunctionPrefixWorklist.back().second; 2562 if (ValID >= ValueList.size()) { 2563 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2564 } else { 2565 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2566 FunctionPrefixWorklist.back().first->setPrefixData(C); 2567 else 2568 return error("Expected a constant"); 2569 } 2570 FunctionPrefixWorklist.pop_back(); 2571 } 2572 2573 while (!FunctionPrologueWorklist.empty()) { 2574 unsigned ValID = FunctionPrologueWorklist.back().second; 2575 if (ValID >= ValueList.size()) { 2576 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2577 } else { 2578 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2579 FunctionPrologueWorklist.back().first->setPrologueData(C); 2580 else 2581 return error("Expected a constant"); 2582 } 2583 FunctionPrologueWorklist.pop_back(); 2584 } 2585 2586 while (!FunctionPersonalityFnWorklist.empty()) { 2587 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2588 if (ValID >= ValueList.size()) { 2589 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2590 } else { 2591 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2592 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2593 else 2594 return error("Expected a constant"); 2595 } 2596 FunctionPersonalityFnWorklist.pop_back(); 2597 } 2598 2599 return std::error_code(); 2600 } 2601 2602 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2603 SmallVector<uint64_t, 8> Words(Vals.size()); 2604 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2605 BitcodeReader::decodeSignRotatedValue); 2606 2607 return APInt(TypeBits, Words); 2608 } 2609 2610 std::error_code BitcodeReader::parseConstants() { 2611 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2612 return error("Invalid record"); 2613 2614 SmallVector<uint64_t, 64> Record; 2615 2616 // Read all the records for this value table. 2617 Type *CurTy = Type::getInt32Ty(Context); 2618 unsigned NextCstNo = ValueList.size(); 2619 while (1) { 2620 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2621 2622 switch (Entry.Kind) { 2623 case BitstreamEntry::SubBlock: // Handled for us already. 2624 case BitstreamEntry::Error: 2625 return error("Malformed block"); 2626 case BitstreamEntry::EndBlock: 2627 if (NextCstNo != ValueList.size()) 2628 return error("Invalid constant reference"); 2629 2630 // Once all the constants have been read, go through and resolve forward 2631 // references. 2632 ValueList.resolveConstantForwardRefs(); 2633 return std::error_code(); 2634 case BitstreamEntry::Record: 2635 // The interesting case. 2636 break; 2637 } 2638 2639 // Read a record. 2640 Record.clear(); 2641 Value *V = nullptr; 2642 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2643 switch (BitCode) { 2644 default: // Default behavior: unknown constant 2645 case bitc::CST_CODE_UNDEF: // UNDEF 2646 V = UndefValue::get(CurTy); 2647 break; 2648 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2649 if (Record.empty()) 2650 return error("Invalid record"); 2651 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2652 return error("Invalid record"); 2653 CurTy = TypeList[Record[0]]; 2654 continue; // Skip the ValueList manipulation. 2655 case bitc::CST_CODE_NULL: // NULL 2656 V = Constant::getNullValue(CurTy); 2657 break; 2658 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2659 if (!CurTy->isIntegerTy() || Record.empty()) 2660 return error("Invalid record"); 2661 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2662 break; 2663 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2664 if (!CurTy->isIntegerTy() || Record.empty()) 2665 return error("Invalid record"); 2666 2667 APInt VInt = 2668 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2669 V = ConstantInt::get(Context, VInt); 2670 2671 break; 2672 } 2673 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2674 if (Record.empty()) 2675 return error("Invalid record"); 2676 if (CurTy->isHalfTy()) 2677 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2678 APInt(16, (uint16_t)Record[0]))); 2679 else if (CurTy->isFloatTy()) 2680 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2681 APInt(32, (uint32_t)Record[0]))); 2682 else if (CurTy->isDoubleTy()) 2683 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2684 APInt(64, Record[0]))); 2685 else if (CurTy->isX86_FP80Ty()) { 2686 // Bits are not stored the same way as a normal i80 APInt, compensate. 2687 uint64_t Rearrange[2]; 2688 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2689 Rearrange[1] = Record[0] >> 48; 2690 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2691 APInt(80, Rearrange))); 2692 } else if (CurTy->isFP128Ty()) 2693 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2694 APInt(128, Record))); 2695 else if (CurTy->isPPC_FP128Ty()) 2696 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2697 APInt(128, Record))); 2698 else 2699 V = UndefValue::get(CurTy); 2700 break; 2701 } 2702 2703 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2704 if (Record.empty()) 2705 return error("Invalid record"); 2706 2707 unsigned Size = Record.size(); 2708 SmallVector<Constant*, 16> Elts; 2709 2710 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2711 for (unsigned i = 0; i != Size; ++i) 2712 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2713 STy->getElementType(i))); 2714 V = ConstantStruct::get(STy, Elts); 2715 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2716 Type *EltTy = ATy->getElementType(); 2717 for (unsigned i = 0; i != Size; ++i) 2718 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2719 V = ConstantArray::get(ATy, Elts); 2720 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2721 Type *EltTy = VTy->getElementType(); 2722 for (unsigned i = 0; i != Size; ++i) 2723 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2724 V = ConstantVector::get(Elts); 2725 } else { 2726 V = UndefValue::get(CurTy); 2727 } 2728 break; 2729 } 2730 case bitc::CST_CODE_STRING: // STRING: [values] 2731 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2732 if (Record.empty()) 2733 return error("Invalid record"); 2734 2735 SmallString<16> Elts(Record.begin(), Record.end()); 2736 V = ConstantDataArray::getString(Context, Elts, 2737 BitCode == bitc::CST_CODE_CSTRING); 2738 break; 2739 } 2740 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2741 if (Record.empty()) 2742 return error("Invalid record"); 2743 2744 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2745 if (EltTy->isIntegerTy(8)) { 2746 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2747 if (isa<VectorType>(CurTy)) 2748 V = ConstantDataVector::get(Context, Elts); 2749 else 2750 V = ConstantDataArray::get(Context, Elts); 2751 } else if (EltTy->isIntegerTy(16)) { 2752 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2753 if (isa<VectorType>(CurTy)) 2754 V = ConstantDataVector::get(Context, Elts); 2755 else 2756 V = ConstantDataArray::get(Context, Elts); 2757 } else if (EltTy->isIntegerTy(32)) { 2758 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2759 if (isa<VectorType>(CurTy)) 2760 V = ConstantDataVector::get(Context, Elts); 2761 else 2762 V = ConstantDataArray::get(Context, Elts); 2763 } else if (EltTy->isIntegerTy(64)) { 2764 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2765 if (isa<VectorType>(CurTy)) 2766 V = ConstantDataVector::get(Context, Elts); 2767 else 2768 V = ConstantDataArray::get(Context, Elts); 2769 } else if (EltTy->isHalfTy()) { 2770 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2771 if (isa<VectorType>(CurTy)) 2772 V = ConstantDataVector::getFP(Context, Elts); 2773 else 2774 V = ConstantDataArray::getFP(Context, Elts); 2775 } else if (EltTy->isFloatTy()) { 2776 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2777 if (isa<VectorType>(CurTy)) 2778 V = ConstantDataVector::getFP(Context, Elts); 2779 else 2780 V = ConstantDataArray::getFP(Context, Elts); 2781 } else if (EltTy->isDoubleTy()) { 2782 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2783 if (isa<VectorType>(CurTy)) 2784 V = ConstantDataVector::getFP(Context, Elts); 2785 else 2786 V = ConstantDataArray::getFP(Context, Elts); 2787 } else { 2788 return error("Invalid type for value"); 2789 } 2790 break; 2791 } 2792 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2793 if (Record.size() < 3) 2794 return error("Invalid record"); 2795 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2796 if (Opc < 0) { 2797 V = UndefValue::get(CurTy); // Unknown binop. 2798 } else { 2799 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2800 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2801 unsigned Flags = 0; 2802 if (Record.size() >= 4) { 2803 if (Opc == Instruction::Add || 2804 Opc == Instruction::Sub || 2805 Opc == Instruction::Mul || 2806 Opc == Instruction::Shl) { 2807 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2808 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2809 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2810 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2811 } else if (Opc == Instruction::SDiv || 2812 Opc == Instruction::UDiv || 2813 Opc == Instruction::LShr || 2814 Opc == Instruction::AShr) { 2815 if (Record[3] & (1 << bitc::PEO_EXACT)) 2816 Flags |= SDivOperator::IsExact; 2817 } 2818 } 2819 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2820 } 2821 break; 2822 } 2823 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2824 if (Record.size() < 3) 2825 return error("Invalid record"); 2826 int Opc = getDecodedCastOpcode(Record[0]); 2827 if (Opc < 0) { 2828 V = UndefValue::get(CurTy); // Unknown cast. 2829 } else { 2830 Type *OpTy = getTypeByID(Record[1]); 2831 if (!OpTy) 2832 return error("Invalid record"); 2833 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2834 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2835 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2836 } 2837 break; 2838 } 2839 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2840 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2841 unsigned OpNum = 0; 2842 Type *PointeeType = nullptr; 2843 if (Record.size() % 2) 2844 PointeeType = getTypeByID(Record[OpNum++]); 2845 SmallVector<Constant*, 16> Elts; 2846 while (OpNum != Record.size()) { 2847 Type *ElTy = getTypeByID(Record[OpNum++]); 2848 if (!ElTy) 2849 return error("Invalid record"); 2850 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2851 } 2852 2853 if (PointeeType && 2854 PointeeType != 2855 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2856 ->getElementType()) 2857 return error("Explicit gep operator type does not match pointee type " 2858 "of pointer operand"); 2859 2860 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2861 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2862 BitCode == 2863 bitc::CST_CODE_CE_INBOUNDS_GEP); 2864 break; 2865 } 2866 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2867 if (Record.size() < 3) 2868 return error("Invalid record"); 2869 2870 Type *SelectorTy = Type::getInt1Ty(Context); 2871 2872 // The selector might be an i1 or an <n x i1> 2873 // Get the type from the ValueList before getting a forward ref. 2874 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2875 if (Value *V = ValueList[Record[0]]) 2876 if (SelectorTy != V->getType()) 2877 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2878 2879 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2880 SelectorTy), 2881 ValueList.getConstantFwdRef(Record[1],CurTy), 2882 ValueList.getConstantFwdRef(Record[2],CurTy)); 2883 break; 2884 } 2885 case bitc::CST_CODE_CE_EXTRACTELT 2886 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2887 if (Record.size() < 3) 2888 return error("Invalid record"); 2889 VectorType *OpTy = 2890 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2891 if (!OpTy) 2892 return error("Invalid record"); 2893 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2894 Constant *Op1 = nullptr; 2895 if (Record.size() == 4) { 2896 Type *IdxTy = getTypeByID(Record[2]); 2897 if (!IdxTy) 2898 return error("Invalid record"); 2899 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2900 } else // TODO: Remove with llvm 4.0 2901 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2902 if (!Op1) 2903 return error("Invalid record"); 2904 V = ConstantExpr::getExtractElement(Op0, Op1); 2905 break; 2906 } 2907 case bitc::CST_CODE_CE_INSERTELT 2908 : { // CE_INSERTELT: [opval, opval, opty, opval] 2909 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2910 if (Record.size() < 3 || !OpTy) 2911 return error("Invalid record"); 2912 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2913 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2914 OpTy->getElementType()); 2915 Constant *Op2 = nullptr; 2916 if (Record.size() == 4) { 2917 Type *IdxTy = getTypeByID(Record[2]); 2918 if (!IdxTy) 2919 return error("Invalid record"); 2920 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2921 } else // TODO: Remove with llvm 4.0 2922 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2923 if (!Op2) 2924 return error("Invalid record"); 2925 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2926 break; 2927 } 2928 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2929 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2930 if (Record.size() < 3 || !OpTy) 2931 return error("Invalid record"); 2932 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2933 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2934 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2935 OpTy->getNumElements()); 2936 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2937 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2938 break; 2939 } 2940 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2941 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2942 VectorType *OpTy = 2943 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2944 if (Record.size() < 4 || !RTy || !OpTy) 2945 return error("Invalid record"); 2946 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2947 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2948 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2949 RTy->getNumElements()); 2950 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2951 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2952 break; 2953 } 2954 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2955 if (Record.size() < 4) 2956 return error("Invalid record"); 2957 Type *OpTy = getTypeByID(Record[0]); 2958 if (!OpTy) 2959 return error("Invalid record"); 2960 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2961 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2962 2963 if (OpTy->isFPOrFPVectorTy()) 2964 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2965 else 2966 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2967 break; 2968 } 2969 // This maintains backward compatibility, pre-asm dialect keywords. 2970 // FIXME: Remove with the 4.0 release. 2971 case bitc::CST_CODE_INLINEASM_OLD: { 2972 if (Record.size() < 2) 2973 return error("Invalid record"); 2974 std::string AsmStr, ConstrStr; 2975 bool HasSideEffects = Record[0] & 1; 2976 bool IsAlignStack = Record[0] >> 1; 2977 unsigned AsmStrSize = Record[1]; 2978 if (2+AsmStrSize >= Record.size()) 2979 return error("Invalid record"); 2980 unsigned ConstStrSize = Record[2+AsmStrSize]; 2981 if (3+AsmStrSize+ConstStrSize > Record.size()) 2982 return error("Invalid record"); 2983 2984 for (unsigned i = 0; i != AsmStrSize; ++i) 2985 AsmStr += (char)Record[2+i]; 2986 for (unsigned i = 0; i != ConstStrSize; ++i) 2987 ConstrStr += (char)Record[3+AsmStrSize+i]; 2988 PointerType *PTy = cast<PointerType>(CurTy); 2989 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2990 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2991 break; 2992 } 2993 // This version adds support for the asm dialect keywords (e.g., 2994 // inteldialect). 2995 case bitc::CST_CODE_INLINEASM: { 2996 if (Record.size() < 2) 2997 return error("Invalid record"); 2998 std::string AsmStr, ConstrStr; 2999 bool HasSideEffects = Record[0] & 1; 3000 bool IsAlignStack = (Record[0] >> 1) & 1; 3001 unsigned AsmDialect = Record[0] >> 2; 3002 unsigned AsmStrSize = Record[1]; 3003 if (2+AsmStrSize >= Record.size()) 3004 return error("Invalid record"); 3005 unsigned ConstStrSize = Record[2+AsmStrSize]; 3006 if (3+AsmStrSize+ConstStrSize > Record.size()) 3007 return error("Invalid record"); 3008 3009 for (unsigned i = 0; i != AsmStrSize; ++i) 3010 AsmStr += (char)Record[2+i]; 3011 for (unsigned i = 0; i != ConstStrSize; ++i) 3012 ConstrStr += (char)Record[3+AsmStrSize+i]; 3013 PointerType *PTy = cast<PointerType>(CurTy); 3014 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3015 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3016 InlineAsm::AsmDialect(AsmDialect)); 3017 break; 3018 } 3019 case bitc::CST_CODE_BLOCKADDRESS:{ 3020 if (Record.size() < 3) 3021 return error("Invalid record"); 3022 Type *FnTy = getTypeByID(Record[0]); 3023 if (!FnTy) 3024 return error("Invalid record"); 3025 Function *Fn = 3026 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3027 if (!Fn) 3028 return error("Invalid record"); 3029 3030 // If the function is already parsed we can insert the block address right 3031 // away. 3032 BasicBlock *BB; 3033 unsigned BBID = Record[2]; 3034 if (!BBID) 3035 // Invalid reference to entry block. 3036 return error("Invalid ID"); 3037 if (!Fn->empty()) { 3038 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3039 for (size_t I = 0, E = BBID; I != E; ++I) { 3040 if (BBI == BBE) 3041 return error("Invalid ID"); 3042 ++BBI; 3043 } 3044 BB = &*BBI; 3045 } else { 3046 // Otherwise insert a placeholder and remember it so it can be inserted 3047 // when the function is parsed. 3048 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3049 if (FwdBBs.empty()) 3050 BasicBlockFwdRefQueue.push_back(Fn); 3051 if (FwdBBs.size() < BBID + 1) 3052 FwdBBs.resize(BBID + 1); 3053 if (!FwdBBs[BBID]) 3054 FwdBBs[BBID] = BasicBlock::Create(Context); 3055 BB = FwdBBs[BBID]; 3056 } 3057 V = BlockAddress::get(Fn, BB); 3058 break; 3059 } 3060 } 3061 3062 ValueList.assignValue(V, NextCstNo); 3063 ++NextCstNo; 3064 } 3065 } 3066 3067 std::error_code BitcodeReader::parseUseLists() { 3068 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3069 return error("Invalid record"); 3070 3071 // Read all the records. 3072 SmallVector<uint64_t, 64> Record; 3073 while (1) { 3074 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3075 3076 switch (Entry.Kind) { 3077 case BitstreamEntry::SubBlock: // Handled for us already. 3078 case BitstreamEntry::Error: 3079 return error("Malformed block"); 3080 case BitstreamEntry::EndBlock: 3081 return std::error_code(); 3082 case BitstreamEntry::Record: 3083 // The interesting case. 3084 break; 3085 } 3086 3087 // Read a use list record. 3088 Record.clear(); 3089 bool IsBB = false; 3090 switch (Stream.readRecord(Entry.ID, Record)) { 3091 default: // Default behavior: unknown type. 3092 break; 3093 case bitc::USELIST_CODE_BB: 3094 IsBB = true; 3095 // fallthrough 3096 case bitc::USELIST_CODE_DEFAULT: { 3097 unsigned RecordLength = Record.size(); 3098 if (RecordLength < 3) 3099 // Records should have at least an ID and two indexes. 3100 return error("Invalid record"); 3101 unsigned ID = Record.back(); 3102 Record.pop_back(); 3103 3104 Value *V; 3105 if (IsBB) { 3106 assert(ID < FunctionBBs.size() && "Basic block not found"); 3107 V = FunctionBBs[ID]; 3108 } else 3109 V = ValueList[ID]; 3110 unsigned NumUses = 0; 3111 SmallDenseMap<const Use *, unsigned, 16> Order; 3112 for (const Use &U : V->materialized_uses()) { 3113 if (++NumUses > Record.size()) 3114 break; 3115 Order[&U] = Record[NumUses - 1]; 3116 } 3117 if (Order.size() != Record.size() || NumUses > Record.size()) 3118 // Mismatches can happen if the functions are being materialized lazily 3119 // (out-of-order), or a value has been upgraded. 3120 break; 3121 3122 V->sortUseList([&](const Use &L, const Use &R) { 3123 return Order.lookup(&L) < Order.lookup(&R); 3124 }); 3125 break; 3126 } 3127 } 3128 } 3129 } 3130 3131 /// When we see the block for metadata, remember where it is and then skip it. 3132 /// This lets us lazily deserialize the metadata. 3133 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3134 // Save the current stream state. 3135 uint64_t CurBit = Stream.GetCurrentBitNo(); 3136 DeferredMetadataInfo.push_back(CurBit); 3137 3138 // Skip over the block for now. 3139 if (Stream.SkipBlock()) 3140 return error("Invalid record"); 3141 return std::error_code(); 3142 } 3143 3144 std::error_code BitcodeReader::materializeMetadata() { 3145 for (uint64_t BitPos : DeferredMetadataInfo) { 3146 // Move the bit stream to the saved position. 3147 Stream.JumpToBit(BitPos); 3148 if (std::error_code EC = parseMetadata(true)) 3149 return EC; 3150 } 3151 DeferredMetadataInfo.clear(); 3152 return std::error_code(); 3153 } 3154 3155 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3156 3157 /// When we see the block for a function body, remember where it is and then 3158 /// skip it. This lets us lazily deserialize the functions. 3159 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3160 // Get the function we are talking about. 3161 if (FunctionsWithBodies.empty()) 3162 return error("Insufficient function protos"); 3163 3164 Function *Fn = FunctionsWithBodies.back(); 3165 FunctionsWithBodies.pop_back(); 3166 3167 // Save the current stream state. 3168 uint64_t CurBit = Stream.GetCurrentBitNo(); 3169 assert( 3170 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3171 "Mismatch between VST and scanned function offsets"); 3172 DeferredFunctionInfo[Fn] = CurBit; 3173 3174 // Skip over the function block for now. 3175 if (Stream.SkipBlock()) 3176 return error("Invalid record"); 3177 return std::error_code(); 3178 } 3179 3180 std::error_code BitcodeReader::globalCleanup() { 3181 // Patch the initializers for globals and aliases up. 3182 resolveGlobalAndIndirectSymbolInits(); 3183 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3184 return error("Malformed global initializer set"); 3185 3186 // Look for intrinsic functions which need to be upgraded at some point 3187 for (Function &F : *TheModule) { 3188 Function *NewFn; 3189 if (UpgradeIntrinsicFunction(&F, NewFn)) 3190 UpgradedIntrinsics[&F] = NewFn; 3191 } 3192 3193 // Look for global variables which need to be renamed. 3194 for (GlobalVariable &GV : TheModule->globals()) 3195 UpgradeGlobalVariable(&GV); 3196 3197 // Force deallocation of memory for these vectors to favor the client that 3198 // want lazy deserialization. 3199 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3200 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3201 IndirectSymbolInits); 3202 return std::error_code(); 3203 } 3204 3205 /// Support for lazy parsing of function bodies. This is required if we 3206 /// either have an old bitcode file without a VST forward declaration record, 3207 /// or if we have an anonymous function being materialized, since anonymous 3208 /// functions do not have a name and are therefore not in the VST. 3209 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3210 Stream.JumpToBit(NextUnreadBit); 3211 3212 if (Stream.AtEndOfStream()) 3213 return error("Could not find function in stream"); 3214 3215 if (!SeenFirstFunctionBody) 3216 return error("Trying to materialize functions before seeing function blocks"); 3217 3218 // An old bitcode file with the symbol table at the end would have 3219 // finished the parse greedily. 3220 assert(SeenValueSymbolTable); 3221 3222 SmallVector<uint64_t, 64> Record; 3223 3224 while (1) { 3225 BitstreamEntry Entry = Stream.advance(); 3226 switch (Entry.Kind) { 3227 default: 3228 return error("Expect SubBlock"); 3229 case BitstreamEntry::SubBlock: 3230 switch (Entry.ID) { 3231 default: 3232 return error("Expect function block"); 3233 case bitc::FUNCTION_BLOCK_ID: 3234 if (std::error_code EC = rememberAndSkipFunctionBody()) 3235 return EC; 3236 NextUnreadBit = Stream.GetCurrentBitNo(); 3237 return std::error_code(); 3238 } 3239 } 3240 } 3241 } 3242 3243 std::error_code BitcodeReader::parseBitcodeVersion() { 3244 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3245 return error("Invalid record"); 3246 3247 // Read all the records. 3248 SmallVector<uint64_t, 64> Record; 3249 while (1) { 3250 BitstreamEntry Entry = Stream.advance(); 3251 3252 switch (Entry.Kind) { 3253 default: 3254 case BitstreamEntry::Error: 3255 return error("Malformed block"); 3256 case BitstreamEntry::EndBlock: 3257 return std::error_code(); 3258 case BitstreamEntry::Record: 3259 // The interesting case. 3260 break; 3261 } 3262 3263 // Read a record. 3264 Record.clear(); 3265 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3266 switch (BitCode) { 3267 default: // Default behavior: reject 3268 return error("Invalid value"); 3269 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3270 // N] 3271 convertToString(Record, 0, ProducerIdentification); 3272 break; 3273 } 3274 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3275 unsigned epoch = (unsigned)Record[0]; 3276 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3277 return error( 3278 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3279 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3280 } 3281 } 3282 } 3283 } 3284 } 3285 3286 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3287 bool ShouldLazyLoadMetadata) { 3288 if (ResumeBit) 3289 Stream.JumpToBit(ResumeBit); 3290 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3291 return error("Invalid record"); 3292 3293 SmallVector<uint64_t, 64> Record; 3294 std::vector<std::string> SectionTable; 3295 std::vector<std::string> GCTable; 3296 3297 // Read all the records for this module. 3298 while (1) { 3299 BitstreamEntry Entry = Stream.advance(); 3300 3301 switch (Entry.Kind) { 3302 case BitstreamEntry::Error: 3303 return error("Malformed block"); 3304 case BitstreamEntry::EndBlock: 3305 return globalCleanup(); 3306 3307 case BitstreamEntry::SubBlock: 3308 switch (Entry.ID) { 3309 default: // Skip unknown content. 3310 if (Stream.SkipBlock()) 3311 return error("Invalid record"); 3312 break; 3313 case bitc::BLOCKINFO_BLOCK_ID: 3314 if (Stream.ReadBlockInfoBlock()) 3315 return error("Malformed block"); 3316 break; 3317 case bitc::PARAMATTR_BLOCK_ID: 3318 if (std::error_code EC = parseAttributeBlock()) 3319 return EC; 3320 break; 3321 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3322 if (std::error_code EC = parseAttributeGroupBlock()) 3323 return EC; 3324 break; 3325 case bitc::TYPE_BLOCK_ID_NEW: 3326 if (std::error_code EC = parseTypeTable()) 3327 return EC; 3328 break; 3329 case bitc::VALUE_SYMTAB_BLOCK_ID: 3330 if (!SeenValueSymbolTable) { 3331 // Either this is an old form VST without function index and an 3332 // associated VST forward declaration record (which would have caused 3333 // the VST to be jumped to and parsed before it was encountered 3334 // normally in the stream), or there were no function blocks to 3335 // trigger an earlier parsing of the VST. 3336 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3337 if (std::error_code EC = parseValueSymbolTable()) 3338 return EC; 3339 SeenValueSymbolTable = true; 3340 } else { 3341 // We must have had a VST forward declaration record, which caused 3342 // the parser to jump to and parse the VST earlier. 3343 assert(VSTOffset > 0); 3344 if (Stream.SkipBlock()) 3345 return error("Invalid record"); 3346 } 3347 break; 3348 case bitc::CONSTANTS_BLOCK_ID: 3349 if (std::error_code EC = parseConstants()) 3350 return EC; 3351 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3352 return EC; 3353 break; 3354 case bitc::METADATA_BLOCK_ID: 3355 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3356 if (std::error_code EC = rememberAndSkipMetadata()) 3357 return EC; 3358 break; 3359 } 3360 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3361 if (std::error_code EC = parseMetadata(true)) 3362 return EC; 3363 break; 3364 case bitc::METADATA_KIND_BLOCK_ID: 3365 if (std::error_code EC = parseMetadataKinds()) 3366 return EC; 3367 break; 3368 case bitc::FUNCTION_BLOCK_ID: 3369 // If this is the first function body we've seen, reverse the 3370 // FunctionsWithBodies list. 3371 if (!SeenFirstFunctionBody) { 3372 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3373 if (std::error_code EC = globalCleanup()) 3374 return EC; 3375 SeenFirstFunctionBody = true; 3376 } 3377 3378 if (VSTOffset > 0) { 3379 // If we have a VST forward declaration record, make sure we 3380 // parse the VST now if we haven't already. It is needed to 3381 // set up the DeferredFunctionInfo vector for lazy reading. 3382 if (!SeenValueSymbolTable) { 3383 if (std::error_code EC = 3384 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3385 return EC; 3386 SeenValueSymbolTable = true; 3387 // Fall through so that we record the NextUnreadBit below. 3388 // This is necessary in case we have an anonymous function that 3389 // is later materialized. Since it will not have a VST entry we 3390 // need to fall back to the lazy parse to find its offset. 3391 } else { 3392 // If we have a VST forward declaration record, but have already 3393 // parsed the VST (just above, when the first function body was 3394 // encountered here), then we are resuming the parse after 3395 // materializing functions. The ResumeBit points to the 3396 // start of the last function block recorded in the 3397 // DeferredFunctionInfo map. Skip it. 3398 if (Stream.SkipBlock()) 3399 return error("Invalid record"); 3400 continue; 3401 } 3402 } 3403 3404 // Support older bitcode files that did not have the function 3405 // index in the VST, nor a VST forward declaration record, as 3406 // well as anonymous functions that do not have VST entries. 3407 // Build the DeferredFunctionInfo vector on the fly. 3408 if (std::error_code EC = rememberAndSkipFunctionBody()) 3409 return EC; 3410 3411 // Suspend parsing when we reach the function bodies. Subsequent 3412 // materialization calls will resume it when necessary. If the bitcode 3413 // file is old, the symbol table will be at the end instead and will not 3414 // have been seen yet. In this case, just finish the parse now. 3415 if (SeenValueSymbolTable) { 3416 NextUnreadBit = Stream.GetCurrentBitNo(); 3417 return std::error_code(); 3418 } 3419 break; 3420 case bitc::USELIST_BLOCK_ID: 3421 if (std::error_code EC = parseUseLists()) 3422 return EC; 3423 break; 3424 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3425 if (std::error_code EC = parseOperandBundleTags()) 3426 return EC; 3427 break; 3428 } 3429 continue; 3430 3431 case BitstreamEntry::Record: 3432 // The interesting case. 3433 break; 3434 } 3435 3436 // Read a record. 3437 auto BitCode = Stream.readRecord(Entry.ID, Record); 3438 switch (BitCode) { 3439 default: break; // Default behavior, ignore unknown content. 3440 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3441 if (Record.size() < 1) 3442 return error("Invalid record"); 3443 // Only version #0 and #1 are supported so far. 3444 unsigned module_version = Record[0]; 3445 switch (module_version) { 3446 default: 3447 return error("Invalid value"); 3448 case 0: 3449 UseRelativeIDs = false; 3450 break; 3451 case 1: 3452 UseRelativeIDs = true; 3453 break; 3454 } 3455 break; 3456 } 3457 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3458 std::string S; 3459 if (convertToString(Record, 0, S)) 3460 return error("Invalid record"); 3461 TheModule->setTargetTriple(S); 3462 break; 3463 } 3464 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3465 std::string S; 3466 if (convertToString(Record, 0, S)) 3467 return error("Invalid record"); 3468 TheModule->setDataLayout(S); 3469 break; 3470 } 3471 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3472 std::string S; 3473 if (convertToString(Record, 0, S)) 3474 return error("Invalid record"); 3475 TheModule->setModuleInlineAsm(S); 3476 break; 3477 } 3478 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3479 // FIXME: Remove in 4.0. 3480 std::string S; 3481 if (convertToString(Record, 0, S)) 3482 return error("Invalid record"); 3483 // Ignore value. 3484 break; 3485 } 3486 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3487 std::string S; 3488 if (convertToString(Record, 0, S)) 3489 return error("Invalid record"); 3490 SectionTable.push_back(S); 3491 break; 3492 } 3493 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3494 std::string S; 3495 if (convertToString(Record, 0, S)) 3496 return error("Invalid record"); 3497 GCTable.push_back(S); 3498 break; 3499 } 3500 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3501 if (Record.size() < 2) 3502 return error("Invalid record"); 3503 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3504 unsigned ComdatNameSize = Record[1]; 3505 std::string ComdatName; 3506 ComdatName.reserve(ComdatNameSize); 3507 for (unsigned i = 0; i != ComdatNameSize; ++i) 3508 ComdatName += (char)Record[2 + i]; 3509 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3510 C->setSelectionKind(SK); 3511 ComdatList.push_back(C); 3512 break; 3513 } 3514 // GLOBALVAR: [pointer type, isconst, initid, 3515 // linkage, alignment, section, visibility, threadlocal, 3516 // unnamed_addr, externally_initialized, dllstorageclass, 3517 // comdat] 3518 case bitc::MODULE_CODE_GLOBALVAR: { 3519 if (Record.size() < 6) 3520 return error("Invalid record"); 3521 Type *Ty = getTypeByID(Record[0]); 3522 if (!Ty) 3523 return error("Invalid record"); 3524 bool isConstant = Record[1] & 1; 3525 bool explicitType = Record[1] & 2; 3526 unsigned AddressSpace; 3527 if (explicitType) { 3528 AddressSpace = Record[1] >> 2; 3529 } else { 3530 if (!Ty->isPointerTy()) 3531 return error("Invalid type for value"); 3532 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3533 Ty = cast<PointerType>(Ty)->getElementType(); 3534 } 3535 3536 uint64_t RawLinkage = Record[3]; 3537 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3538 unsigned Alignment; 3539 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3540 return EC; 3541 std::string Section; 3542 if (Record[5]) { 3543 if (Record[5]-1 >= SectionTable.size()) 3544 return error("Invalid ID"); 3545 Section = SectionTable[Record[5]-1]; 3546 } 3547 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3548 // Local linkage must have default visibility. 3549 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3550 // FIXME: Change to an error if non-default in 4.0. 3551 Visibility = getDecodedVisibility(Record[6]); 3552 3553 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3554 if (Record.size() > 7) 3555 TLM = getDecodedThreadLocalMode(Record[7]); 3556 3557 bool UnnamedAddr = false; 3558 if (Record.size() > 8) 3559 UnnamedAddr = Record[8]; 3560 3561 bool ExternallyInitialized = false; 3562 if (Record.size() > 9) 3563 ExternallyInitialized = Record[9]; 3564 3565 GlobalVariable *NewGV = 3566 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3567 TLM, AddressSpace, ExternallyInitialized); 3568 NewGV->setAlignment(Alignment); 3569 if (!Section.empty()) 3570 NewGV->setSection(Section); 3571 NewGV->setVisibility(Visibility); 3572 NewGV->setUnnamedAddr(UnnamedAddr); 3573 3574 if (Record.size() > 10) 3575 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3576 else 3577 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3578 3579 ValueList.push_back(NewGV); 3580 3581 // Remember which value to use for the global initializer. 3582 if (unsigned InitID = Record[2]) 3583 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3584 3585 if (Record.size() > 11) { 3586 if (unsigned ComdatID = Record[11]) { 3587 if (ComdatID > ComdatList.size()) 3588 return error("Invalid global variable comdat ID"); 3589 NewGV->setComdat(ComdatList[ComdatID - 1]); 3590 } 3591 } else if (hasImplicitComdat(RawLinkage)) { 3592 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3593 } 3594 break; 3595 } 3596 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3597 // alignment, section, visibility, gc, unnamed_addr, 3598 // prologuedata, dllstorageclass, comdat, prefixdata] 3599 case bitc::MODULE_CODE_FUNCTION: { 3600 if (Record.size() < 8) 3601 return error("Invalid record"); 3602 Type *Ty = getTypeByID(Record[0]); 3603 if (!Ty) 3604 return error("Invalid record"); 3605 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3606 Ty = PTy->getElementType(); 3607 auto *FTy = dyn_cast<FunctionType>(Ty); 3608 if (!FTy) 3609 return error("Invalid type for value"); 3610 auto CC = static_cast<CallingConv::ID>(Record[1]); 3611 if (CC & ~CallingConv::MaxID) 3612 return error("Invalid calling convention ID"); 3613 3614 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3615 "", TheModule); 3616 3617 Func->setCallingConv(CC); 3618 bool isProto = Record[2]; 3619 uint64_t RawLinkage = Record[3]; 3620 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3621 Func->setAttributes(getAttributes(Record[4])); 3622 3623 unsigned Alignment; 3624 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3625 return EC; 3626 Func->setAlignment(Alignment); 3627 if (Record[6]) { 3628 if (Record[6]-1 >= SectionTable.size()) 3629 return error("Invalid ID"); 3630 Func->setSection(SectionTable[Record[6]-1]); 3631 } 3632 // Local linkage must have default visibility. 3633 if (!Func->hasLocalLinkage()) 3634 // FIXME: Change to an error if non-default in 4.0. 3635 Func->setVisibility(getDecodedVisibility(Record[7])); 3636 if (Record.size() > 8 && Record[8]) { 3637 if (Record[8]-1 >= GCTable.size()) 3638 return error("Invalid ID"); 3639 Func->setGC(GCTable[Record[8]-1].c_str()); 3640 } 3641 bool UnnamedAddr = false; 3642 if (Record.size() > 9) 3643 UnnamedAddr = Record[9]; 3644 Func->setUnnamedAddr(UnnamedAddr); 3645 if (Record.size() > 10 && Record[10] != 0) 3646 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3647 3648 if (Record.size() > 11) 3649 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3650 else 3651 upgradeDLLImportExportLinkage(Func, RawLinkage); 3652 3653 if (Record.size() > 12) { 3654 if (unsigned ComdatID = Record[12]) { 3655 if (ComdatID > ComdatList.size()) 3656 return error("Invalid function comdat ID"); 3657 Func->setComdat(ComdatList[ComdatID - 1]); 3658 } 3659 } else if (hasImplicitComdat(RawLinkage)) { 3660 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3661 } 3662 3663 if (Record.size() > 13 && Record[13] != 0) 3664 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3665 3666 if (Record.size() > 14 && Record[14] != 0) 3667 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3668 3669 ValueList.push_back(Func); 3670 3671 // If this is a function with a body, remember the prototype we are 3672 // creating now, so that we can match up the body with them later. 3673 if (!isProto) { 3674 Func->setIsMaterializable(true); 3675 FunctionsWithBodies.push_back(Func); 3676 DeferredFunctionInfo[Func] = 0; 3677 } 3678 break; 3679 } 3680 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3681 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3682 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3683 case bitc::MODULE_CODE_IFUNC: 3684 case bitc::MODULE_CODE_ALIAS: 3685 case bitc::MODULE_CODE_ALIAS_OLD: { 3686 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3687 if (Record.size() < (3 + (unsigned)NewRecord)) 3688 return error("Invalid record"); 3689 unsigned OpNum = 0; 3690 Type *Ty = getTypeByID(Record[OpNum++]); 3691 if (!Ty) 3692 return error("Invalid record"); 3693 3694 unsigned AddrSpace; 3695 if (!NewRecord) { 3696 auto *PTy = dyn_cast<PointerType>(Ty); 3697 if (!PTy) 3698 return error("Invalid type for value"); 3699 Ty = PTy->getElementType(); 3700 AddrSpace = PTy->getAddressSpace(); 3701 } else { 3702 AddrSpace = Record[OpNum++]; 3703 } 3704 3705 auto Val = Record[OpNum++]; 3706 auto Linkage = Record[OpNum++]; 3707 GlobalIndirectSymbol *NewGA; 3708 if (BitCode == bitc::MODULE_CODE_ALIAS || 3709 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3710 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3711 "", TheModule); 3712 else 3713 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3714 "", nullptr, TheModule); 3715 // Old bitcode files didn't have visibility field. 3716 // Local linkage must have default visibility. 3717 if (OpNum != Record.size()) { 3718 auto VisInd = OpNum++; 3719 if (!NewGA->hasLocalLinkage()) 3720 // FIXME: Change to an error if non-default in 4.0. 3721 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3722 } 3723 if (OpNum != Record.size()) 3724 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3725 else 3726 upgradeDLLImportExportLinkage(NewGA, Linkage); 3727 if (OpNum != Record.size()) 3728 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3729 if (OpNum != Record.size()) 3730 NewGA->setUnnamedAddr(Record[OpNum++]); 3731 ValueList.push_back(NewGA); 3732 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3733 break; 3734 } 3735 /// MODULE_CODE_PURGEVALS: [numvals] 3736 case bitc::MODULE_CODE_PURGEVALS: 3737 // Trim down the value list to the specified size. 3738 if (Record.size() < 1 || Record[0] > ValueList.size()) 3739 return error("Invalid record"); 3740 ValueList.shrinkTo(Record[0]); 3741 break; 3742 /// MODULE_CODE_VSTOFFSET: [offset] 3743 case bitc::MODULE_CODE_VSTOFFSET: 3744 if (Record.size() < 1) 3745 return error("Invalid record"); 3746 VSTOffset = Record[0]; 3747 break; 3748 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3749 case bitc::MODULE_CODE_SOURCE_FILENAME: 3750 SmallString<128> ValueName; 3751 if (convertToString(Record, 0, ValueName)) 3752 return error("Invalid record"); 3753 TheModule->setSourceFileName(ValueName); 3754 break; 3755 } 3756 Record.clear(); 3757 } 3758 } 3759 3760 /// Helper to read the header common to all bitcode files. 3761 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3762 // Sniff for the signature. 3763 if (Stream.Read(8) != 'B' || 3764 Stream.Read(8) != 'C' || 3765 Stream.Read(4) != 0x0 || 3766 Stream.Read(4) != 0xC || 3767 Stream.Read(4) != 0xE || 3768 Stream.Read(4) != 0xD) 3769 return false; 3770 return true; 3771 } 3772 3773 std::error_code 3774 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3775 Module *M, bool ShouldLazyLoadMetadata) { 3776 TheModule = M; 3777 3778 if (std::error_code EC = initStream(std::move(Streamer))) 3779 return EC; 3780 3781 // Sniff for the signature. 3782 if (!hasValidBitcodeHeader(Stream)) 3783 return error("Invalid bitcode signature"); 3784 3785 // We expect a number of well-defined blocks, though we don't necessarily 3786 // need to understand them all. 3787 while (1) { 3788 if (Stream.AtEndOfStream()) { 3789 // We didn't really read a proper Module. 3790 return error("Malformed IR file"); 3791 } 3792 3793 BitstreamEntry Entry = 3794 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3795 3796 if (Entry.Kind != BitstreamEntry::SubBlock) 3797 return error("Malformed block"); 3798 3799 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3800 parseBitcodeVersion(); 3801 continue; 3802 } 3803 3804 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3805 return parseModule(0, ShouldLazyLoadMetadata); 3806 3807 if (Stream.SkipBlock()) 3808 return error("Invalid record"); 3809 } 3810 } 3811 3812 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3813 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3814 return error("Invalid record"); 3815 3816 SmallVector<uint64_t, 64> Record; 3817 3818 std::string Triple; 3819 // Read all the records for this module. 3820 while (1) { 3821 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3822 3823 switch (Entry.Kind) { 3824 case BitstreamEntry::SubBlock: // Handled for us already. 3825 case BitstreamEntry::Error: 3826 return error("Malformed block"); 3827 case BitstreamEntry::EndBlock: 3828 return Triple; 3829 case BitstreamEntry::Record: 3830 // The interesting case. 3831 break; 3832 } 3833 3834 // Read a record. 3835 switch (Stream.readRecord(Entry.ID, Record)) { 3836 default: break; // Default behavior, ignore unknown content. 3837 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3838 std::string S; 3839 if (convertToString(Record, 0, S)) 3840 return error("Invalid record"); 3841 Triple = S; 3842 break; 3843 } 3844 } 3845 Record.clear(); 3846 } 3847 llvm_unreachable("Exit infinite loop"); 3848 } 3849 3850 ErrorOr<std::string> BitcodeReader::parseTriple() { 3851 if (std::error_code EC = initStream(nullptr)) 3852 return EC; 3853 3854 // Sniff for the signature. 3855 if (!hasValidBitcodeHeader(Stream)) 3856 return error("Invalid bitcode signature"); 3857 3858 // We expect a number of well-defined blocks, though we don't necessarily 3859 // need to understand them all. 3860 while (1) { 3861 BitstreamEntry Entry = Stream.advance(); 3862 3863 switch (Entry.Kind) { 3864 case BitstreamEntry::Error: 3865 return error("Malformed block"); 3866 case BitstreamEntry::EndBlock: 3867 return std::error_code(); 3868 3869 case BitstreamEntry::SubBlock: 3870 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3871 return parseModuleTriple(); 3872 3873 // Ignore other sub-blocks. 3874 if (Stream.SkipBlock()) 3875 return error("Malformed block"); 3876 continue; 3877 3878 case BitstreamEntry::Record: 3879 Stream.skipRecord(Entry.ID); 3880 continue; 3881 } 3882 } 3883 } 3884 3885 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3886 if (std::error_code EC = initStream(nullptr)) 3887 return EC; 3888 3889 // Sniff for the signature. 3890 if (!hasValidBitcodeHeader(Stream)) 3891 return error("Invalid bitcode signature"); 3892 3893 // We expect a number of well-defined blocks, though we don't necessarily 3894 // need to understand them all. 3895 while (1) { 3896 BitstreamEntry Entry = Stream.advance(); 3897 switch (Entry.Kind) { 3898 case BitstreamEntry::Error: 3899 return error("Malformed block"); 3900 case BitstreamEntry::EndBlock: 3901 return std::error_code(); 3902 3903 case BitstreamEntry::SubBlock: 3904 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3905 if (std::error_code EC = parseBitcodeVersion()) 3906 return EC; 3907 return ProducerIdentification; 3908 } 3909 // Ignore other sub-blocks. 3910 if (Stream.SkipBlock()) 3911 return error("Malformed block"); 3912 continue; 3913 case BitstreamEntry::Record: 3914 Stream.skipRecord(Entry.ID); 3915 continue; 3916 } 3917 } 3918 } 3919 3920 /// Parse metadata attachments. 3921 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3922 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3923 return error("Invalid record"); 3924 3925 SmallVector<uint64_t, 64> Record; 3926 while (1) { 3927 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3928 3929 switch (Entry.Kind) { 3930 case BitstreamEntry::SubBlock: // Handled for us already. 3931 case BitstreamEntry::Error: 3932 return error("Malformed block"); 3933 case BitstreamEntry::EndBlock: 3934 return std::error_code(); 3935 case BitstreamEntry::Record: 3936 // The interesting case. 3937 break; 3938 } 3939 3940 // Read a metadata attachment record. 3941 Record.clear(); 3942 switch (Stream.readRecord(Entry.ID, Record)) { 3943 default: // Default behavior: ignore. 3944 break; 3945 case bitc::METADATA_ATTACHMENT: { 3946 unsigned RecordLength = Record.size(); 3947 if (Record.empty()) 3948 return error("Invalid record"); 3949 if (RecordLength % 2 == 0) { 3950 // A function attachment. 3951 for (unsigned I = 0; I != RecordLength; I += 2) { 3952 auto K = MDKindMap.find(Record[I]); 3953 if (K == MDKindMap.end()) 3954 return error("Invalid ID"); 3955 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3956 if (!MD) 3957 return error("Invalid metadata attachment"); 3958 F.setMetadata(K->second, MD); 3959 } 3960 continue; 3961 } 3962 3963 // An instruction attachment. 3964 Instruction *Inst = InstructionList[Record[0]]; 3965 for (unsigned i = 1; i != RecordLength; i = i+2) { 3966 unsigned Kind = Record[i]; 3967 DenseMap<unsigned, unsigned>::iterator I = 3968 MDKindMap.find(Kind); 3969 if (I == MDKindMap.end()) 3970 return error("Invalid ID"); 3971 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3972 if (isa<LocalAsMetadata>(Node)) 3973 // Drop the attachment. This used to be legal, but there's no 3974 // upgrade path. 3975 break; 3976 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3977 if (!MD) 3978 return error("Invalid metadata attachment"); 3979 3980 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3981 MD = upgradeInstructionLoopAttachment(*MD); 3982 3983 Inst->setMetadata(I->second, MD); 3984 if (I->second == LLVMContext::MD_tbaa) { 3985 InstsWithTBAATag.push_back(Inst); 3986 continue; 3987 } 3988 } 3989 break; 3990 } 3991 } 3992 } 3993 } 3994 3995 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3996 LLVMContext &Context = PtrType->getContext(); 3997 if (!isa<PointerType>(PtrType)) 3998 return error(Context, "Load/Store operand is not a pointer type"); 3999 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4000 4001 if (ValType && ValType != ElemType) 4002 return error(Context, "Explicit load/store type does not match pointee " 4003 "type of pointer operand"); 4004 if (!PointerType::isLoadableOrStorableType(ElemType)) 4005 return error(Context, "Cannot load/store from pointer"); 4006 return std::error_code(); 4007 } 4008 4009 /// Lazily parse the specified function body block. 4010 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4011 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4012 return error("Invalid record"); 4013 4014 // Unexpected unresolved metadata when parsing function. 4015 if (MetadataList.hasFwdRefs()) 4016 return error("Invalid function metadata: incoming forward references"); 4017 4018 InstructionList.clear(); 4019 unsigned ModuleValueListSize = ValueList.size(); 4020 unsigned ModuleMetadataListSize = MetadataList.size(); 4021 4022 // Add all the function arguments to the value table. 4023 for (Argument &I : F->args()) 4024 ValueList.push_back(&I); 4025 4026 unsigned NextValueNo = ValueList.size(); 4027 BasicBlock *CurBB = nullptr; 4028 unsigned CurBBNo = 0; 4029 4030 DebugLoc LastLoc; 4031 auto getLastInstruction = [&]() -> Instruction * { 4032 if (CurBB && !CurBB->empty()) 4033 return &CurBB->back(); 4034 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4035 !FunctionBBs[CurBBNo - 1]->empty()) 4036 return &FunctionBBs[CurBBNo - 1]->back(); 4037 return nullptr; 4038 }; 4039 4040 std::vector<OperandBundleDef> OperandBundles; 4041 4042 // Read all the records. 4043 SmallVector<uint64_t, 64> Record; 4044 while (1) { 4045 BitstreamEntry Entry = Stream.advance(); 4046 4047 switch (Entry.Kind) { 4048 case BitstreamEntry::Error: 4049 return error("Malformed block"); 4050 case BitstreamEntry::EndBlock: 4051 goto OutOfRecordLoop; 4052 4053 case BitstreamEntry::SubBlock: 4054 switch (Entry.ID) { 4055 default: // Skip unknown content. 4056 if (Stream.SkipBlock()) 4057 return error("Invalid record"); 4058 break; 4059 case bitc::CONSTANTS_BLOCK_ID: 4060 if (std::error_code EC = parseConstants()) 4061 return EC; 4062 NextValueNo = ValueList.size(); 4063 break; 4064 case bitc::VALUE_SYMTAB_BLOCK_ID: 4065 if (std::error_code EC = parseValueSymbolTable()) 4066 return EC; 4067 break; 4068 case bitc::METADATA_ATTACHMENT_ID: 4069 if (std::error_code EC = parseMetadataAttachment(*F)) 4070 return EC; 4071 break; 4072 case bitc::METADATA_BLOCK_ID: 4073 if (std::error_code EC = parseMetadata()) 4074 return EC; 4075 break; 4076 case bitc::USELIST_BLOCK_ID: 4077 if (std::error_code EC = parseUseLists()) 4078 return EC; 4079 break; 4080 } 4081 continue; 4082 4083 case BitstreamEntry::Record: 4084 // The interesting case. 4085 break; 4086 } 4087 4088 // Read a record. 4089 Record.clear(); 4090 Instruction *I = nullptr; 4091 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4092 switch (BitCode) { 4093 default: // Default behavior: reject 4094 return error("Invalid value"); 4095 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4096 if (Record.size() < 1 || Record[0] == 0) 4097 return error("Invalid record"); 4098 // Create all the basic blocks for the function. 4099 FunctionBBs.resize(Record[0]); 4100 4101 // See if anything took the address of blocks in this function. 4102 auto BBFRI = BasicBlockFwdRefs.find(F); 4103 if (BBFRI == BasicBlockFwdRefs.end()) { 4104 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4105 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4106 } else { 4107 auto &BBRefs = BBFRI->second; 4108 // Check for invalid basic block references. 4109 if (BBRefs.size() > FunctionBBs.size()) 4110 return error("Invalid ID"); 4111 assert(!BBRefs.empty() && "Unexpected empty array"); 4112 assert(!BBRefs.front() && "Invalid reference to entry block"); 4113 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4114 ++I) 4115 if (I < RE && BBRefs[I]) { 4116 BBRefs[I]->insertInto(F); 4117 FunctionBBs[I] = BBRefs[I]; 4118 } else { 4119 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4120 } 4121 4122 // Erase from the table. 4123 BasicBlockFwdRefs.erase(BBFRI); 4124 } 4125 4126 CurBB = FunctionBBs[0]; 4127 continue; 4128 } 4129 4130 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4131 // This record indicates that the last instruction is at the same 4132 // location as the previous instruction with a location. 4133 I = getLastInstruction(); 4134 4135 if (!I) 4136 return error("Invalid record"); 4137 I->setDebugLoc(LastLoc); 4138 I = nullptr; 4139 continue; 4140 4141 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4142 I = getLastInstruction(); 4143 if (!I || Record.size() < 4) 4144 return error("Invalid record"); 4145 4146 unsigned Line = Record[0], Col = Record[1]; 4147 unsigned ScopeID = Record[2], IAID = Record[3]; 4148 4149 MDNode *Scope = nullptr, *IA = nullptr; 4150 if (ScopeID) { 4151 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4152 if (!Scope) 4153 return error("Invalid record"); 4154 } 4155 if (IAID) { 4156 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4157 if (!IA) 4158 return error("Invalid record"); 4159 } 4160 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4161 I->setDebugLoc(LastLoc); 4162 I = nullptr; 4163 continue; 4164 } 4165 4166 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4167 unsigned OpNum = 0; 4168 Value *LHS, *RHS; 4169 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4170 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4171 OpNum+1 > Record.size()) 4172 return error("Invalid record"); 4173 4174 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4175 if (Opc == -1) 4176 return error("Invalid record"); 4177 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4178 InstructionList.push_back(I); 4179 if (OpNum < Record.size()) { 4180 if (Opc == Instruction::Add || 4181 Opc == Instruction::Sub || 4182 Opc == Instruction::Mul || 4183 Opc == Instruction::Shl) { 4184 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4185 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4186 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4187 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4188 } else if (Opc == Instruction::SDiv || 4189 Opc == Instruction::UDiv || 4190 Opc == Instruction::LShr || 4191 Opc == Instruction::AShr) { 4192 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4193 cast<BinaryOperator>(I)->setIsExact(true); 4194 } else if (isa<FPMathOperator>(I)) { 4195 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4196 if (FMF.any()) 4197 I->setFastMathFlags(FMF); 4198 } 4199 4200 } 4201 break; 4202 } 4203 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4204 unsigned OpNum = 0; 4205 Value *Op; 4206 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4207 OpNum+2 != Record.size()) 4208 return error("Invalid record"); 4209 4210 Type *ResTy = getTypeByID(Record[OpNum]); 4211 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4212 if (Opc == -1 || !ResTy) 4213 return error("Invalid record"); 4214 Instruction *Temp = nullptr; 4215 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4216 if (Temp) { 4217 InstructionList.push_back(Temp); 4218 CurBB->getInstList().push_back(Temp); 4219 } 4220 } else { 4221 auto CastOp = (Instruction::CastOps)Opc; 4222 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4223 return error("Invalid cast"); 4224 I = CastInst::Create(CastOp, Op, ResTy); 4225 } 4226 InstructionList.push_back(I); 4227 break; 4228 } 4229 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4230 case bitc::FUNC_CODE_INST_GEP_OLD: 4231 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4232 unsigned OpNum = 0; 4233 4234 Type *Ty; 4235 bool InBounds; 4236 4237 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4238 InBounds = Record[OpNum++]; 4239 Ty = getTypeByID(Record[OpNum++]); 4240 } else { 4241 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4242 Ty = nullptr; 4243 } 4244 4245 Value *BasePtr; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4247 return error("Invalid record"); 4248 4249 if (!Ty) 4250 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4251 ->getElementType(); 4252 else if (Ty != 4253 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4254 ->getElementType()) 4255 return error( 4256 "Explicit gep type does not match pointee type of pointer operand"); 4257 4258 SmallVector<Value*, 16> GEPIdx; 4259 while (OpNum != Record.size()) { 4260 Value *Op; 4261 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4262 return error("Invalid record"); 4263 GEPIdx.push_back(Op); 4264 } 4265 4266 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4267 4268 InstructionList.push_back(I); 4269 if (InBounds) 4270 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4271 break; 4272 } 4273 4274 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4275 // EXTRACTVAL: [opty, opval, n x indices] 4276 unsigned OpNum = 0; 4277 Value *Agg; 4278 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4279 return error("Invalid record"); 4280 4281 unsigned RecSize = Record.size(); 4282 if (OpNum == RecSize) 4283 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4284 4285 SmallVector<unsigned, 4> EXTRACTVALIdx; 4286 Type *CurTy = Agg->getType(); 4287 for (; OpNum != RecSize; ++OpNum) { 4288 bool IsArray = CurTy->isArrayTy(); 4289 bool IsStruct = CurTy->isStructTy(); 4290 uint64_t Index = Record[OpNum]; 4291 4292 if (!IsStruct && !IsArray) 4293 return error("EXTRACTVAL: Invalid type"); 4294 if ((unsigned)Index != Index) 4295 return error("Invalid value"); 4296 if (IsStruct && Index >= CurTy->subtypes().size()) 4297 return error("EXTRACTVAL: Invalid struct index"); 4298 if (IsArray && Index >= CurTy->getArrayNumElements()) 4299 return error("EXTRACTVAL: Invalid array index"); 4300 EXTRACTVALIdx.push_back((unsigned)Index); 4301 4302 if (IsStruct) 4303 CurTy = CurTy->subtypes()[Index]; 4304 else 4305 CurTy = CurTy->subtypes()[0]; 4306 } 4307 4308 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4309 InstructionList.push_back(I); 4310 break; 4311 } 4312 4313 case bitc::FUNC_CODE_INST_INSERTVAL: { 4314 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4315 unsigned OpNum = 0; 4316 Value *Agg; 4317 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4318 return error("Invalid record"); 4319 Value *Val; 4320 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4321 return error("Invalid record"); 4322 4323 unsigned RecSize = Record.size(); 4324 if (OpNum == RecSize) 4325 return error("INSERTVAL: Invalid instruction with 0 indices"); 4326 4327 SmallVector<unsigned, 4> INSERTVALIdx; 4328 Type *CurTy = Agg->getType(); 4329 for (; OpNum != RecSize; ++OpNum) { 4330 bool IsArray = CurTy->isArrayTy(); 4331 bool IsStruct = CurTy->isStructTy(); 4332 uint64_t Index = Record[OpNum]; 4333 4334 if (!IsStruct && !IsArray) 4335 return error("INSERTVAL: Invalid type"); 4336 if ((unsigned)Index != Index) 4337 return error("Invalid value"); 4338 if (IsStruct && Index >= CurTy->subtypes().size()) 4339 return error("INSERTVAL: Invalid struct index"); 4340 if (IsArray && Index >= CurTy->getArrayNumElements()) 4341 return error("INSERTVAL: Invalid array index"); 4342 4343 INSERTVALIdx.push_back((unsigned)Index); 4344 if (IsStruct) 4345 CurTy = CurTy->subtypes()[Index]; 4346 else 4347 CurTy = CurTy->subtypes()[0]; 4348 } 4349 4350 if (CurTy != Val->getType()) 4351 return error("Inserted value type doesn't match aggregate type"); 4352 4353 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 4358 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4359 // obsolete form of select 4360 // handles select i1 ... in old bitcode 4361 unsigned OpNum = 0; 4362 Value *TrueVal, *FalseVal, *Cond; 4363 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4364 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4365 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4366 return error("Invalid record"); 4367 4368 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4369 InstructionList.push_back(I); 4370 break; 4371 } 4372 4373 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4374 // new form of select 4375 // handles select i1 or select [N x i1] 4376 unsigned OpNum = 0; 4377 Value *TrueVal, *FalseVal, *Cond; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4379 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4380 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4381 return error("Invalid record"); 4382 4383 // select condition can be either i1 or [N x i1] 4384 if (VectorType* vector_type = 4385 dyn_cast<VectorType>(Cond->getType())) { 4386 // expect <n x i1> 4387 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4388 return error("Invalid type for value"); 4389 } else { 4390 // expect i1 4391 if (Cond->getType() != Type::getInt1Ty(Context)) 4392 return error("Invalid type for value"); 4393 } 4394 4395 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4396 InstructionList.push_back(I); 4397 break; 4398 } 4399 4400 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4401 unsigned OpNum = 0; 4402 Value *Vec, *Idx; 4403 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4404 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4405 return error("Invalid record"); 4406 if (!Vec->getType()->isVectorTy()) 4407 return error("Invalid type for value"); 4408 I = ExtractElementInst::Create(Vec, Idx); 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 4413 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4414 unsigned OpNum = 0; 4415 Value *Vec, *Elt, *Idx; 4416 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4417 return error("Invalid record"); 4418 if (!Vec->getType()->isVectorTy()) 4419 return error("Invalid type for value"); 4420 if (popValue(Record, OpNum, NextValueNo, 4421 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4422 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4423 return error("Invalid record"); 4424 I = InsertElementInst::Create(Vec, Elt, Idx); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 4429 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4430 unsigned OpNum = 0; 4431 Value *Vec1, *Vec2, *Mask; 4432 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4433 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4434 return error("Invalid record"); 4435 4436 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4437 return error("Invalid record"); 4438 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4439 return error("Invalid type for value"); 4440 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4441 InstructionList.push_back(I); 4442 break; 4443 } 4444 4445 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4446 // Old form of ICmp/FCmp returning bool 4447 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4448 // both legal on vectors but had different behaviour. 4449 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4450 // FCmp/ICmp returning bool or vector of bool 4451 4452 unsigned OpNum = 0; 4453 Value *LHS, *RHS; 4454 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4455 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4456 return error("Invalid record"); 4457 4458 unsigned PredVal = Record[OpNum]; 4459 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4460 FastMathFlags FMF; 4461 if (IsFP && Record.size() > OpNum+1) 4462 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4463 4464 if (OpNum+1 != Record.size()) 4465 return error("Invalid record"); 4466 4467 if (LHS->getType()->isFPOrFPVectorTy()) 4468 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4469 else 4470 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4471 4472 if (FMF.any()) 4473 I->setFastMathFlags(FMF); 4474 InstructionList.push_back(I); 4475 break; 4476 } 4477 4478 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4479 { 4480 unsigned Size = Record.size(); 4481 if (Size == 0) { 4482 I = ReturnInst::Create(Context); 4483 InstructionList.push_back(I); 4484 break; 4485 } 4486 4487 unsigned OpNum = 0; 4488 Value *Op = nullptr; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4490 return error("Invalid record"); 4491 if (OpNum != Record.size()) 4492 return error("Invalid record"); 4493 4494 I = ReturnInst::Create(Context, Op); 4495 InstructionList.push_back(I); 4496 break; 4497 } 4498 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4499 if (Record.size() != 1 && Record.size() != 3) 4500 return error("Invalid record"); 4501 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4502 if (!TrueDest) 4503 return error("Invalid record"); 4504 4505 if (Record.size() == 1) { 4506 I = BranchInst::Create(TrueDest); 4507 InstructionList.push_back(I); 4508 } 4509 else { 4510 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4511 Value *Cond = getValue(Record, 2, NextValueNo, 4512 Type::getInt1Ty(Context)); 4513 if (!FalseDest || !Cond) 4514 return error("Invalid record"); 4515 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4516 InstructionList.push_back(I); 4517 } 4518 break; 4519 } 4520 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4521 if (Record.size() != 1 && Record.size() != 2) 4522 return error("Invalid record"); 4523 unsigned Idx = 0; 4524 Value *CleanupPad = 4525 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4526 if (!CleanupPad) 4527 return error("Invalid record"); 4528 BasicBlock *UnwindDest = nullptr; 4529 if (Record.size() == 2) { 4530 UnwindDest = getBasicBlock(Record[Idx++]); 4531 if (!UnwindDest) 4532 return error("Invalid record"); 4533 } 4534 4535 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4536 InstructionList.push_back(I); 4537 break; 4538 } 4539 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4540 if (Record.size() != 2) 4541 return error("Invalid record"); 4542 unsigned Idx = 0; 4543 Value *CatchPad = 4544 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4545 if (!CatchPad) 4546 return error("Invalid record"); 4547 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4548 if (!BB) 4549 return error("Invalid record"); 4550 4551 I = CatchReturnInst::Create(CatchPad, BB); 4552 InstructionList.push_back(I); 4553 break; 4554 } 4555 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4556 // We must have, at minimum, the outer scope and the number of arguments. 4557 if (Record.size() < 2) 4558 return error("Invalid record"); 4559 4560 unsigned Idx = 0; 4561 4562 Value *ParentPad = 4563 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4564 4565 unsigned NumHandlers = Record[Idx++]; 4566 4567 SmallVector<BasicBlock *, 2> Handlers; 4568 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4569 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4570 if (!BB) 4571 return error("Invalid record"); 4572 Handlers.push_back(BB); 4573 } 4574 4575 BasicBlock *UnwindDest = nullptr; 4576 if (Idx + 1 == Record.size()) { 4577 UnwindDest = getBasicBlock(Record[Idx++]); 4578 if (!UnwindDest) 4579 return error("Invalid record"); 4580 } 4581 4582 if (Record.size() != Idx) 4583 return error("Invalid record"); 4584 4585 auto *CatchSwitch = 4586 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4587 for (BasicBlock *Handler : Handlers) 4588 CatchSwitch->addHandler(Handler); 4589 I = CatchSwitch; 4590 InstructionList.push_back(I); 4591 break; 4592 } 4593 case bitc::FUNC_CODE_INST_CATCHPAD: 4594 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4595 // We must have, at minimum, the outer scope and the number of arguments. 4596 if (Record.size() < 2) 4597 return error("Invalid record"); 4598 4599 unsigned Idx = 0; 4600 4601 Value *ParentPad = 4602 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4603 4604 unsigned NumArgOperands = Record[Idx++]; 4605 4606 SmallVector<Value *, 2> Args; 4607 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4608 Value *Val; 4609 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4610 return error("Invalid record"); 4611 Args.push_back(Val); 4612 } 4613 4614 if (Record.size() != Idx) 4615 return error("Invalid record"); 4616 4617 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4618 I = CleanupPadInst::Create(ParentPad, Args); 4619 else 4620 I = CatchPadInst::Create(ParentPad, Args); 4621 InstructionList.push_back(I); 4622 break; 4623 } 4624 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4625 // Check magic 4626 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4627 // "New" SwitchInst format with case ranges. The changes to write this 4628 // format were reverted but we still recognize bitcode that uses it. 4629 // Hopefully someday we will have support for case ranges and can use 4630 // this format again. 4631 4632 Type *OpTy = getTypeByID(Record[1]); 4633 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4634 4635 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4636 BasicBlock *Default = getBasicBlock(Record[3]); 4637 if (!OpTy || !Cond || !Default) 4638 return error("Invalid record"); 4639 4640 unsigned NumCases = Record[4]; 4641 4642 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4643 InstructionList.push_back(SI); 4644 4645 unsigned CurIdx = 5; 4646 for (unsigned i = 0; i != NumCases; ++i) { 4647 SmallVector<ConstantInt*, 1> CaseVals; 4648 unsigned NumItems = Record[CurIdx++]; 4649 for (unsigned ci = 0; ci != NumItems; ++ci) { 4650 bool isSingleNumber = Record[CurIdx++]; 4651 4652 APInt Low; 4653 unsigned ActiveWords = 1; 4654 if (ValueBitWidth > 64) 4655 ActiveWords = Record[CurIdx++]; 4656 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4657 ValueBitWidth); 4658 CurIdx += ActiveWords; 4659 4660 if (!isSingleNumber) { 4661 ActiveWords = 1; 4662 if (ValueBitWidth > 64) 4663 ActiveWords = Record[CurIdx++]; 4664 APInt High = readWideAPInt( 4665 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4666 CurIdx += ActiveWords; 4667 4668 // FIXME: It is not clear whether values in the range should be 4669 // compared as signed or unsigned values. The partially 4670 // implemented changes that used this format in the past used 4671 // unsigned comparisons. 4672 for ( ; Low.ule(High); ++Low) 4673 CaseVals.push_back(ConstantInt::get(Context, Low)); 4674 } else 4675 CaseVals.push_back(ConstantInt::get(Context, Low)); 4676 } 4677 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4678 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4679 cve = CaseVals.end(); cvi != cve; ++cvi) 4680 SI->addCase(*cvi, DestBB); 4681 } 4682 I = SI; 4683 break; 4684 } 4685 4686 // Old SwitchInst format without case ranges. 4687 4688 if (Record.size() < 3 || (Record.size() & 1) == 0) 4689 return error("Invalid record"); 4690 Type *OpTy = getTypeByID(Record[0]); 4691 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4692 BasicBlock *Default = getBasicBlock(Record[2]); 4693 if (!OpTy || !Cond || !Default) 4694 return error("Invalid record"); 4695 unsigned NumCases = (Record.size()-3)/2; 4696 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4697 InstructionList.push_back(SI); 4698 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4699 ConstantInt *CaseVal = 4700 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4701 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4702 if (!CaseVal || !DestBB) { 4703 delete SI; 4704 return error("Invalid record"); 4705 } 4706 SI->addCase(CaseVal, DestBB); 4707 } 4708 I = SI; 4709 break; 4710 } 4711 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4712 if (Record.size() < 2) 4713 return error("Invalid record"); 4714 Type *OpTy = getTypeByID(Record[0]); 4715 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4716 if (!OpTy || !Address) 4717 return error("Invalid record"); 4718 unsigned NumDests = Record.size()-2; 4719 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4720 InstructionList.push_back(IBI); 4721 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4722 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4723 IBI->addDestination(DestBB); 4724 } else { 4725 delete IBI; 4726 return error("Invalid record"); 4727 } 4728 } 4729 I = IBI; 4730 break; 4731 } 4732 4733 case bitc::FUNC_CODE_INST_INVOKE: { 4734 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4735 if (Record.size() < 4) 4736 return error("Invalid record"); 4737 unsigned OpNum = 0; 4738 AttributeSet PAL = getAttributes(Record[OpNum++]); 4739 unsigned CCInfo = Record[OpNum++]; 4740 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4741 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4742 4743 FunctionType *FTy = nullptr; 4744 if (CCInfo >> 13 & 1 && 4745 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4746 return error("Explicit invoke type is not a function type"); 4747 4748 Value *Callee; 4749 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4750 return error("Invalid record"); 4751 4752 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4753 if (!CalleeTy) 4754 return error("Callee is not a pointer"); 4755 if (!FTy) { 4756 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4757 if (!FTy) 4758 return error("Callee is not of pointer to function type"); 4759 } else if (CalleeTy->getElementType() != FTy) 4760 return error("Explicit invoke type does not match pointee type of " 4761 "callee operand"); 4762 if (Record.size() < FTy->getNumParams() + OpNum) 4763 return error("Insufficient operands to call"); 4764 4765 SmallVector<Value*, 16> Ops; 4766 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4767 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4768 FTy->getParamType(i))); 4769 if (!Ops.back()) 4770 return error("Invalid record"); 4771 } 4772 4773 if (!FTy->isVarArg()) { 4774 if (Record.size() != OpNum) 4775 return error("Invalid record"); 4776 } else { 4777 // Read type/value pairs for varargs params. 4778 while (OpNum != Record.size()) { 4779 Value *Op; 4780 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4781 return error("Invalid record"); 4782 Ops.push_back(Op); 4783 } 4784 } 4785 4786 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4787 OperandBundles.clear(); 4788 InstructionList.push_back(I); 4789 cast<InvokeInst>(I)->setCallingConv( 4790 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4791 cast<InvokeInst>(I)->setAttributes(PAL); 4792 break; 4793 } 4794 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4795 unsigned Idx = 0; 4796 Value *Val = nullptr; 4797 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4798 return error("Invalid record"); 4799 I = ResumeInst::Create(Val); 4800 InstructionList.push_back(I); 4801 break; 4802 } 4803 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4804 I = new UnreachableInst(Context); 4805 InstructionList.push_back(I); 4806 break; 4807 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4808 if (Record.size() < 1 || ((Record.size()-1)&1)) 4809 return error("Invalid record"); 4810 Type *Ty = getTypeByID(Record[0]); 4811 if (!Ty) 4812 return error("Invalid record"); 4813 4814 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4815 InstructionList.push_back(PN); 4816 4817 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4818 Value *V; 4819 // With the new function encoding, it is possible that operands have 4820 // negative IDs (for forward references). Use a signed VBR 4821 // representation to keep the encoding small. 4822 if (UseRelativeIDs) 4823 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4824 else 4825 V = getValue(Record, 1+i, NextValueNo, Ty); 4826 BasicBlock *BB = getBasicBlock(Record[2+i]); 4827 if (!V || !BB) 4828 return error("Invalid record"); 4829 PN->addIncoming(V, BB); 4830 } 4831 I = PN; 4832 break; 4833 } 4834 4835 case bitc::FUNC_CODE_INST_LANDINGPAD: 4836 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4837 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4838 unsigned Idx = 0; 4839 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4840 if (Record.size() < 3) 4841 return error("Invalid record"); 4842 } else { 4843 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4844 if (Record.size() < 4) 4845 return error("Invalid record"); 4846 } 4847 Type *Ty = getTypeByID(Record[Idx++]); 4848 if (!Ty) 4849 return error("Invalid record"); 4850 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4851 Value *PersFn = nullptr; 4852 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4853 return error("Invalid record"); 4854 4855 if (!F->hasPersonalityFn()) 4856 F->setPersonalityFn(cast<Constant>(PersFn)); 4857 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4858 return error("Personality function mismatch"); 4859 } 4860 4861 bool IsCleanup = !!Record[Idx++]; 4862 unsigned NumClauses = Record[Idx++]; 4863 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4864 LP->setCleanup(IsCleanup); 4865 for (unsigned J = 0; J != NumClauses; ++J) { 4866 LandingPadInst::ClauseType CT = 4867 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4868 Value *Val; 4869 4870 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4871 delete LP; 4872 return error("Invalid record"); 4873 } 4874 4875 assert((CT != LandingPadInst::Catch || 4876 !isa<ArrayType>(Val->getType())) && 4877 "Catch clause has a invalid type!"); 4878 assert((CT != LandingPadInst::Filter || 4879 isa<ArrayType>(Val->getType())) && 4880 "Filter clause has invalid type!"); 4881 LP->addClause(cast<Constant>(Val)); 4882 } 4883 4884 I = LP; 4885 InstructionList.push_back(I); 4886 break; 4887 } 4888 4889 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4890 if (Record.size() != 4) 4891 return error("Invalid record"); 4892 uint64_t AlignRecord = Record[3]; 4893 const uint64_t InAllocaMask = uint64_t(1) << 5; 4894 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4895 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4896 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4897 SwiftErrorMask; 4898 bool InAlloca = AlignRecord & InAllocaMask; 4899 bool SwiftError = AlignRecord & SwiftErrorMask; 4900 Type *Ty = getTypeByID(Record[0]); 4901 if ((AlignRecord & ExplicitTypeMask) == 0) { 4902 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4903 if (!PTy) 4904 return error("Old-style alloca with a non-pointer type"); 4905 Ty = PTy->getElementType(); 4906 } 4907 Type *OpTy = getTypeByID(Record[1]); 4908 Value *Size = getFnValueByID(Record[2], OpTy); 4909 unsigned Align; 4910 if (std::error_code EC = 4911 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4912 return EC; 4913 } 4914 if (!Ty || !Size) 4915 return error("Invalid record"); 4916 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4917 AI->setUsedWithInAlloca(InAlloca); 4918 AI->setSwiftError(SwiftError); 4919 I = AI; 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4924 unsigned OpNum = 0; 4925 Value *Op; 4926 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4927 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4928 return error("Invalid record"); 4929 4930 Type *Ty = nullptr; 4931 if (OpNum + 3 == Record.size()) 4932 Ty = getTypeByID(Record[OpNum++]); 4933 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4934 return EC; 4935 if (!Ty) 4936 Ty = cast<PointerType>(Op->getType())->getElementType(); 4937 4938 unsigned Align; 4939 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4940 return EC; 4941 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4942 4943 InstructionList.push_back(I); 4944 break; 4945 } 4946 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4947 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4948 unsigned OpNum = 0; 4949 Value *Op; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4951 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4952 return error("Invalid record"); 4953 4954 Type *Ty = nullptr; 4955 if (OpNum + 5 == Record.size()) 4956 Ty = getTypeByID(Record[OpNum++]); 4957 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4958 return EC; 4959 if (!Ty) 4960 Ty = cast<PointerType>(Op->getType())->getElementType(); 4961 4962 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4963 if (Ordering == AtomicOrdering::NotAtomic || 4964 Ordering == AtomicOrdering::Release || 4965 Ordering == AtomicOrdering::AcquireRelease) 4966 return error("Invalid record"); 4967 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4968 return error("Invalid record"); 4969 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4970 4971 unsigned Align; 4972 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4973 return EC; 4974 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4975 4976 InstructionList.push_back(I); 4977 break; 4978 } 4979 case bitc::FUNC_CODE_INST_STORE: 4980 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4981 unsigned OpNum = 0; 4982 Value *Val, *Ptr; 4983 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4984 (BitCode == bitc::FUNC_CODE_INST_STORE 4985 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4986 : popValue(Record, OpNum, NextValueNo, 4987 cast<PointerType>(Ptr->getType())->getElementType(), 4988 Val)) || 4989 OpNum + 2 != Record.size()) 4990 return error("Invalid record"); 4991 4992 if (std::error_code EC = 4993 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4994 return EC; 4995 unsigned Align; 4996 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4997 return EC; 4998 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4999 InstructionList.push_back(I); 5000 break; 5001 } 5002 case bitc::FUNC_CODE_INST_STOREATOMIC: 5003 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5004 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5005 unsigned OpNum = 0; 5006 Value *Val, *Ptr; 5007 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5008 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5009 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5010 : popValue(Record, OpNum, NextValueNo, 5011 cast<PointerType>(Ptr->getType())->getElementType(), 5012 Val)) || 5013 OpNum + 4 != Record.size()) 5014 return error("Invalid record"); 5015 5016 if (std::error_code EC = 5017 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5018 return EC; 5019 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5020 if (Ordering == AtomicOrdering::NotAtomic || 5021 Ordering == AtomicOrdering::Acquire || 5022 Ordering == AtomicOrdering::AcquireRelease) 5023 return error("Invalid record"); 5024 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5025 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5026 return error("Invalid record"); 5027 5028 unsigned Align; 5029 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5030 return EC; 5031 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5032 InstructionList.push_back(I); 5033 break; 5034 } 5035 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5036 case bitc::FUNC_CODE_INST_CMPXCHG: { 5037 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5038 // failureordering?, isweak?] 5039 unsigned OpNum = 0; 5040 Value *Ptr, *Cmp, *New; 5041 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5042 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5043 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5044 : popValue(Record, OpNum, NextValueNo, 5045 cast<PointerType>(Ptr->getType())->getElementType(), 5046 Cmp)) || 5047 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5048 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5049 return error("Invalid record"); 5050 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5051 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5052 SuccessOrdering == AtomicOrdering::Unordered) 5053 return error("Invalid record"); 5054 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5055 5056 if (std::error_code EC = 5057 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5058 return EC; 5059 AtomicOrdering FailureOrdering; 5060 if (Record.size() < 7) 5061 FailureOrdering = 5062 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5063 else 5064 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5065 5066 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5067 SynchScope); 5068 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5069 5070 if (Record.size() < 8) { 5071 // Before weak cmpxchgs existed, the instruction simply returned the 5072 // value loaded from memory, so bitcode files from that era will be 5073 // expecting the first component of a modern cmpxchg. 5074 CurBB->getInstList().push_back(I); 5075 I = ExtractValueInst::Create(I, 0); 5076 } else { 5077 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5078 } 5079 5080 InstructionList.push_back(I); 5081 break; 5082 } 5083 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5084 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5085 unsigned OpNum = 0; 5086 Value *Ptr, *Val; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5088 popValue(Record, OpNum, NextValueNo, 5089 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5090 OpNum+4 != Record.size()) 5091 return error("Invalid record"); 5092 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5093 if (Operation < AtomicRMWInst::FIRST_BINOP || 5094 Operation > AtomicRMWInst::LAST_BINOP) 5095 return error("Invalid record"); 5096 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5097 if (Ordering == AtomicOrdering::NotAtomic || 5098 Ordering == AtomicOrdering::Unordered) 5099 return error("Invalid record"); 5100 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5101 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5102 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5103 InstructionList.push_back(I); 5104 break; 5105 } 5106 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5107 if (2 != Record.size()) 5108 return error("Invalid record"); 5109 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5110 if (Ordering == AtomicOrdering::NotAtomic || 5111 Ordering == AtomicOrdering::Unordered || 5112 Ordering == AtomicOrdering::Monotonic) 5113 return error("Invalid record"); 5114 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5115 I = new FenceInst(Context, Ordering, SynchScope); 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 case bitc::FUNC_CODE_INST_CALL: { 5120 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5121 if (Record.size() < 3) 5122 return error("Invalid record"); 5123 5124 unsigned OpNum = 0; 5125 AttributeSet PAL = getAttributes(Record[OpNum++]); 5126 unsigned CCInfo = Record[OpNum++]; 5127 5128 FastMathFlags FMF; 5129 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5130 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5131 if (!FMF.any()) 5132 return error("Fast math flags indicator set for call with no FMF"); 5133 } 5134 5135 FunctionType *FTy = nullptr; 5136 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5137 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5138 return error("Explicit call type is not a function type"); 5139 5140 Value *Callee; 5141 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5142 return error("Invalid record"); 5143 5144 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5145 if (!OpTy) 5146 return error("Callee is not a pointer type"); 5147 if (!FTy) { 5148 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5149 if (!FTy) 5150 return error("Callee is not of pointer to function type"); 5151 } else if (OpTy->getElementType() != FTy) 5152 return error("Explicit call type does not match pointee type of " 5153 "callee operand"); 5154 if (Record.size() < FTy->getNumParams() + OpNum) 5155 return error("Insufficient operands to call"); 5156 5157 SmallVector<Value*, 16> Args; 5158 // Read the fixed params. 5159 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5160 if (FTy->getParamType(i)->isLabelTy()) 5161 Args.push_back(getBasicBlock(Record[OpNum])); 5162 else 5163 Args.push_back(getValue(Record, OpNum, NextValueNo, 5164 FTy->getParamType(i))); 5165 if (!Args.back()) 5166 return error("Invalid record"); 5167 } 5168 5169 // Read type/value pairs for varargs params. 5170 if (!FTy->isVarArg()) { 5171 if (OpNum != Record.size()) 5172 return error("Invalid record"); 5173 } else { 5174 while (OpNum != Record.size()) { 5175 Value *Op; 5176 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5177 return error("Invalid record"); 5178 Args.push_back(Op); 5179 } 5180 } 5181 5182 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5183 OperandBundles.clear(); 5184 InstructionList.push_back(I); 5185 cast<CallInst>(I)->setCallingConv( 5186 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5187 CallInst::TailCallKind TCK = CallInst::TCK_None; 5188 if (CCInfo & 1 << bitc::CALL_TAIL) 5189 TCK = CallInst::TCK_Tail; 5190 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5191 TCK = CallInst::TCK_MustTail; 5192 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5193 TCK = CallInst::TCK_NoTail; 5194 cast<CallInst>(I)->setTailCallKind(TCK); 5195 cast<CallInst>(I)->setAttributes(PAL); 5196 if (FMF.any()) { 5197 if (!isa<FPMathOperator>(I)) 5198 return error("Fast-math-flags specified for call without " 5199 "floating-point scalar or vector return type"); 5200 I->setFastMathFlags(FMF); 5201 } 5202 break; 5203 } 5204 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5205 if (Record.size() < 3) 5206 return error("Invalid record"); 5207 Type *OpTy = getTypeByID(Record[0]); 5208 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5209 Type *ResTy = getTypeByID(Record[2]); 5210 if (!OpTy || !Op || !ResTy) 5211 return error("Invalid record"); 5212 I = new VAArgInst(Op, ResTy); 5213 InstructionList.push_back(I); 5214 break; 5215 } 5216 5217 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5218 // A call or an invoke can be optionally prefixed with some variable 5219 // number of operand bundle blocks. These blocks are read into 5220 // OperandBundles and consumed at the next call or invoke instruction. 5221 5222 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5223 return error("Invalid record"); 5224 5225 std::vector<Value *> Inputs; 5226 5227 unsigned OpNum = 1; 5228 while (OpNum != Record.size()) { 5229 Value *Op; 5230 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5231 return error("Invalid record"); 5232 Inputs.push_back(Op); 5233 } 5234 5235 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5236 continue; 5237 } 5238 } 5239 5240 // Add instruction to end of current BB. If there is no current BB, reject 5241 // this file. 5242 if (!CurBB) { 5243 delete I; 5244 return error("Invalid instruction with no BB"); 5245 } 5246 if (!OperandBundles.empty()) { 5247 delete I; 5248 return error("Operand bundles found with no consumer"); 5249 } 5250 CurBB->getInstList().push_back(I); 5251 5252 // If this was a terminator instruction, move to the next block. 5253 if (isa<TerminatorInst>(I)) { 5254 ++CurBBNo; 5255 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5256 } 5257 5258 // Non-void values get registered in the value table for future use. 5259 if (I && !I->getType()->isVoidTy()) 5260 ValueList.assignValue(I, NextValueNo++); 5261 } 5262 5263 OutOfRecordLoop: 5264 5265 if (!OperandBundles.empty()) 5266 return error("Operand bundles found with no consumer"); 5267 5268 // Check the function list for unresolved values. 5269 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5270 if (!A->getParent()) { 5271 // We found at least one unresolved value. Nuke them all to avoid leaks. 5272 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5273 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5274 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5275 delete A; 5276 } 5277 } 5278 return error("Never resolved value found in function"); 5279 } 5280 } 5281 5282 // Unexpected unresolved metadata about to be dropped. 5283 if (MetadataList.hasFwdRefs()) 5284 return error("Invalid function metadata: outgoing forward refs"); 5285 5286 // Trim the value list down to the size it was before we parsed this function. 5287 ValueList.shrinkTo(ModuleValueListSize); 5288 MetadataList.shrinkTo(ModuleMetadataListSize); 5289 std::vector<BasicBlock*>().swap(FunctionBBs); 5290 return std::error_code(); 5291 } 5292 5293 /// Find the function body in the bitcode stream 5294 std::error_code BitcodeReader::findFunctionInStream( 5295 Function *F, 5296 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5297 while (DeferredFunctionInfoIterator->second == 0) { 5298 // This is the fallback handling for the old format bitcode that 5299 // didn't contain the function index in the VST, or when we have 5300 // an anonymous function which would not have a VST entry. 5301 // Assert that we have one of those two cases. 5302 assert(VSTOffset == 0 || !F->hasName()); 5303 // Parse the next body in the stream and set its position in the 5304 // DeferredFunctionInfo map. 5305 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5306 return EC; 5307 } 5308 return std::error_code(); 5309 } 5310 5311 //===----------------------------------------------------------------------===// 5312 // GVMaterializer implementation 5313 //===----------------------------------------------------------------------===// 5314 5315 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5316 5317 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5318 if (std::error_code EC = materializeMetadata()) 5319 return EC; 5320 5321 Function *F = dyn_cast<Function>(GV); 5322 // If it's not a function or is already material, ignore the request. 5323 if (!F || !F->isMaterializable()) 5324 return std::error_code(); 5325 5326 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5327 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5328 // If its position is recorded as 0, its body is somewhere in the stream 5329 // but we haven't seen it yet. 5330 if (DFII->second == 0) 5331 if (std::error_code EC = findFunctionInStream(F, DFII)) 5332 return EC; 5333 5334 // Move the bit stream to the saved position of the deferred function body. 5335 Stream.JumpToBit(DFII->second); 5336 5337 if (std::error_code EC = parseFunctionBody(F)) 5338 return EC; 5339 F->setIsMaterializable(false); 5340 5341 if (StripDebugInfo) 5342 stripDebugInfo(*F); 5343 5344 // Upgrade any old intrinsic calls in the function. 5345 for (auto &I : UpgradedIntrinsics) { 5346 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5347 UI != UE;) { 5348 User *U = *UI; 5349 ++UI; 5350 if (CallInst *CI = dyn_cast<CallInst>(U)) 5351 UpgradeIntrinsicCall(CI, I.second); 5352 } 5353 } 5354 5355 // Finish fn->subprogram upgrade for materialized functions. 5356 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5357 F->setSubprogram(SP); 5358 5359 // Bring in any functions that this function forward-referenced via 5360 // blockaddresses. 5361 return materializeForwardReferencedFunctions(); 5362 } 5363 5364 std::error_code BitcodeReader::materializeModule() { 5365 if (std::error_code EC = materializeMetadata()) 5366 return EC; 5367 5368 // Promise to materialize all forward references. 5369 WillMaterializeAllForwardRefs = true; 5370 5371 // Iterate over the module, deserializing any functions that are still on 5372 // disk. 5373 for (Function &F : *TheModule) { 5374 if (std::error_code EC = materialize(&F)) 5375 return EC; 5376 } 5377 // At this point, if there are any function bodies, parse the rest of 5378 // the bits in the module past the last function block we have recorded 5379 // through either lazy scanning or the VST. 5380 if (LastFunctionBlockBit || NextUnreadBit) 5381 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5382 : NextUnreadBit); 5383 5384 // Check that all block address forward references got resolved (as we 5385 // promised above). 5386 if (!BasicBlockFwdRefs.empty()) 5387 return error("Never resolved function from blockaddress"); 5388 5389 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5390 // to prevent this instructions with TBAA tags should be upgraded first. 5391 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5392 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5393 5394 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5395 // delete the old functions to clean up. We can't do this unless the entire 5396 // module is materialized because there could always be another function body 5397 // with calls to the old function. 5398 for (auto &I : UpgradedIntrinsics) { 5399 for (auto *U : I.first->users()) { 5400 if (CallInst *CI = dyn_cast<CallInst>(U)) 5401 UpgradeIntrinsicCall(CI, I.second); 5402 } 5403 if (!I.first->use_empty()) 5404 I.first->replaceAllUsesWith(I.second); 5405 I.first->eraseFromParent(); 5406 } 5407 UpgradedIntrinsics.clear(); 5408 5409 UpgradeDebugInfo(*TheModule); 5410 return std::error_code(); 5411 } 5412 5413 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5414 return IdentifiedStructTypes; 5415 } 5416 5417 std::error_code 5418 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5419 if (Streamer) 5420 return initLazyStream(std::move(Streamer)); 5421 return initStreamFromBuffer(); 5422 } 5423 5424 std::error_code BitcodeReader::initStreamFromBuffer() { 5425 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5426 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5427 5428 if (Buffer->getBufferSize() & 3) 5429 return error("Invalid bitcode signature"); 5430 5431 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5432 // The magic number is 0x0B17C0DE stored in little endian. 5433 if (isBitcodeWrapper(BufPtr, BufEnd)) 5434 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5435 return error("Invalid bitcode wrapper header"); 5436 5437 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5438 Stream.init(&*StreamFile); 5439 5440 return std::error_code(); 5441 } 5442 5443 std::error_code 5444 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5445 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5446 // see it. 5447 auto OwnedBytes = 5448 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5449 StreamingMemoryObject &Bytes = *OwnedBytes; 5450 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5451 Stream.init(&*StreamFile); 5452 5453 unsigned char buf[16]; 5454 if (Bytes.readBytes(buf, 16, 0) != 16) 5455 return error("Invalid bitcode signature"); 5456 5457 if (!isBitcode(buf, buf + 16)) 5458 return error("Invalid bitcode signature"); 5459 5460 if (isBitcodeWrapper(buf, buf + 4)) { 5461 const unsigned char *bitcodeStart = buf; 5462 const unsigned char *bitcodeEnd = buf + 16; 5463 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5464 Bytes.dropLeadingBytes(bitcodeStart - buf); 5465 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5466 } 5467 return std::error_code(); 5468 } 5469 5470 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5471 const Twine &Message) { 5472 return ::error(DiagnosticHandler, make_error_code(E), Message); 5473 } 5474 5475 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5476 return ::error(DiagnosticHandler, 5477 make_error_code(BitcodeError::CorruptedBitcode), Message); 5478 } 5479 5480 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5481 return ::error(DiagnosticHandler, make_error_code(E)); 5482 } 5483 5484 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5485 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5486 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5487 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5488 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5489 5490 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5491 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5492 bool CheckGlobalValSummaryPresenceOnly) 5493 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5494 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5495 5496 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5497 5498 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5499 5500 GlobalValue::GUID 5501 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5502 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5503 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5504 return VGI->second; 5505 } 5506 5507 GlobalValueInfo * 5508 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5509 auto I = SummaryOffsetToInfoMap.find(Offset); 5510 assert(I != SummaryOffsetToInfoMap.end()); 5511 return I->second; 5512 } 5513 5514 // Specialized value symbol table parser used when reading module index 5515 // blocks where we don't actually create global values. 5516 // At the end of this routine the module index is populated with a map 5517 // from global value name to GlobalValueInfo. The global value info contains 5518 // the function block's bitcode offset (if applicable), or the offset into the 5519 // summary section for the combined index. 5520 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5521 uint64_t Offset, 5522 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5523 assert(Offset > 0 && "Expected non-zero VST offset"); 5524 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5525 5526 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5527 return error("Invalid record"); 5528 5529 SmallVector<uint64_t, 64> Record; 5530 5531 // Read all the records for this value table. 5532 SmallString<128> ValueName; 5533 while (1) { 5534 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5535 5536 switch (Entry.Kind) { 5537 case BitstreamEntry::SubBlock: // Handled for us already. 5538 case BitstreamEntry::Error: 5539 return error("Malformed block"); 5540 case BitstreamEntry::EndBlock: 5541 // Done parsing VST, jump back to wherever we came from. 5542 Stream.JumpToBit(CurrentBit); 5543 return std::error_code(); 5544 case BitstreamEntry::Record: 5545 // The interesting case. 5546 break; 5547 } 5548 5549 // Read a record. 5550 Record.clear(); 5551 switch (Stream.readRecord(Entry.ID, Record)) { 5552 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5553 break; 5554 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5555 if (convertToString(Record, 1, ValueName)) 5556 return error("Invalid record"); 5557 unsigned ValueID = Record[0]; 5558 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5559 llvm::make_unique<GlobalValueInfo>(); 5560 assert(!SourceFileName.empty()); 5561 auto VLI = ValueIdToLinkageMap.find(ValueID); 5562 assert(VLI != ValueIdToLinkageMap.end() && 5563 "No linkage found for VST entry?"); 5564 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5565 ValueName, VLI->second, SourceFileName); 5566 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5567 if (PrintSummaryGUIDs) 5568 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5569 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5570 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5571 ValueName.clear(); 5572 break; 5573 } 5574 case bitc::VST_CODE_FNENTRY: { 5575 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5576 if (convertToString(Record, 2, ValueName)) 5577 return error("Invalid record"); 5578 unsigned ValueID = Record[0]; 5579 uint64_t FuncOffset = Record[1]; 5580 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5581 std::unique_ptr<GlobalValueInfo> FuncInfo = 5582 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5583 assert(!SourceFileName.empty()); 5584 auto VLI = ValueIdToLinkageMap.find(ValueID); 5585 assert(VLI != ValueIdToLinkageMap.end() && 5586 "No linkage found for VST entry?"); 5587 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5588 ValueName, VLI->second, SourceFileName); 5589 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5590 if (PrintSummaryGUIDs) 5591 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5592 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5593 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5594 5595 ValueName.clear(); 5596 break; 5597 } 5598 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5599 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5600 unsigned ValueID = Record[0]; 5601 uint64_t GlobalValSummaryOffset = Record[1]; 5602 GlobalValue::GUID GlobalValGUID = Record[2]; 5603 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5604 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5605 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5606 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5607 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5608 break; 5609 } 5610 case bitc::VST_CODE_COMBINED_ENTRY: { 5611 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5612 unsigned ValueID = Record[0]; 5613 GlobalValue::GUID RefGUID = Record[1]; 5614 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5615 break; 5616 } 5617 } 5618 } 5619 } 5620 5621 // Parse just the blocks needed for building the index out of the module. 5622 // At the end of this routine the module Index is populated with a map 5623 // from global value name to GlobalValueInfo. The global value info contains 5624 // either the parsed summary information (when parsing summaries 5625 // eagerly), or just to the summary record's offset 5626 // if parsing lazily (IsLazy). 5627 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5628 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5629 return error("Invalid record"); 5630 5631 SmallVector<uint64_t, 64> Record; 5632 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5633 unsigned ValueId = 0; 5634 5635 // Read the index for this module. 5636 while (1) { 5637 BitstreamEntry Entry = Stream.advance(); 5638 5639 switch (Entry.Kind) { 5640 case BitstreamEntry::Error: 5641 return error("Malformed block"); 5642 case BitstreamEntry::EndBlock: 5643 return std::error_code(); 5644 5645 case BitstreamEntry::SubBlock: 5646 if (CheckGlobalValSummaryPresenceOnly) { 5647 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5648 SeenGlobalValSummary = true; 5649 // No need to parse the rest since we found the summary. 5650 return std::error_code(); 5651 } 5652 if (Stream.SkipBlock()) 5653 return error("Invalid record"); 5654 continue; 5655 } 5656 switch (Entry.ID) { 5657 default: // Skip unknown content. 5658 if (Stream.SkipBlock()) 5659 return error("Invalid record"); 5660 break; 5661 case bitc::BLOCKINFO_BLOCK_ID: 5662 // Need to parse these to get abbrev ids (e.g. for VST) 5663 if (Stream.ReadBlockInfoBlock()) 5664 return error("Malformed block"); 5665 break; 5666 case bitc::VALUE_SYMTAB_BLOCK_ID: 5667 // Should have been parsed earlier via VSTOffset, unless there 5668 // is no summary section. 5669 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5670 !SeenGlobalValSummary) && 5671 "Expected early VST parse via VSTOffset record"); 5672 if (Stream.SkipBlock()) 5673 return error("Invalid record"); 5674 break; 5675 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5676 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5677 assert(!SeenValueSymbolTable && 5678 "Already read VST when parsing summary block?"); 5679 if (std::error_code EC = 5680 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5681 return EC; 5682 SeenValueSymbolTable = true; 5683 SeenGlobalValSummary = true; 5684 if (IsLazy) { 5685 // Lazy parsing of summary info, skip it. 5686 if (Stream.SkipBlock()) 5687 return error("Invalid record"); 5688 } else if (std::error_code EC = parseEntireSummary()) 5689 return EC; 5690 break; 5691 case bitc::MODULE_STRTAB_BLOCK_ID: 5692 if (std::error_code EC = parseModuleStringTable()) 5693 return EC; 5694 break; 5695 } 5696 continue; 5697 5698 case BitstreamEntry::Record: { 5699 Record.clear(); 5700 auto BitCode = Stream.readRecord(Entry.ID, Record); 5701 switch (BitCode) { 5702 default: 5703 break; // Default behavior, ignore unknown content. 5704 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5705 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5706 SmallString<128> ValueName; 5707 if (convertToString(Record, 0, ValueName)) 5708 return error("Invalid record"); 5709 SourceFileName = ValueName.c_str(); 5710 break; 5711 } 5712 /// MODULE_CODE_HASH: [5*i32] 5713 case bitc::MODULE_CODE_HASH: { 5714 if (Record.size() != 5) 5715 return error("Invalid hash length " + Twine(Record.size()).str()); 5716 if (!TheIndex) 5717 break; 5718 if (TheIndex->modulePaths().empty()) 5719 // Does not have any summary emitted. 5720 break; 5721 if (TheIndex->modulePaths().size() != 1) 5722 return error("Don't expect multiple modules defined?"); 5723 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5724 int Pos = 0; 5725 for (auto &Val : Record) { 5726 assert(!(Val >> 32) && "Unexpected high bits set"); 5727 Hash[Pos++] = Val; 5728 } 5729 break; 5730 } 5731 /// MODULE_CODE_VSTOFFSET: [offset] 5732 case bitc::MODULE_CODE_VSTOFFSET: 5733 if (Record.size() < 1) 5734 return error("Invalid record"); 5735 VSTOffset = Record[0]; 5736 break; 5737 // GLOBALVAR: [pointer type, isconst, initid, 5738 // linkage, alignment, section, visibility, threadlocal, 5739 // unnamed_addr, externally_initialized, dllstorageclass, 5740 // comdat] 5741 case bitc::MODULE_CODE_GLOBALVAR: { 5742 if (Record.size() < 6) 5743 return error("Invalid record"); 5744 uint64_t RawLinkage = Record[3]; 5745 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5746 ValueIdToLinkageMap[ValueId++] = Linkage; 5747 break; 5748 } 5749 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5750 // alignment, section, visibility, gc, unnamed_addr, 5751 // prologuedata, dllstorageclass, comdat, prefixdata] 5752 case bitc::MODULE_CODE_FUNCTION: { 5753 if (Record.size() < 8) 5754 return error("Invalid record"); 5755 uint64_t RawLinkage = Record[3]; 5756 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5757 ValueIdToLinkageMap[ValueId++] = Linkage; 5758 break; 5759 } 5760 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5761 // dllstorageclass] 5762 case bitc::MODULE_CODE_ALIAS: { 5763 if (Record.size() < 6) 5764 return error("Invalid record"); 5765 uint64_t RawLinkage = Record[3]; 5766 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5767 ValueIdToLinkageMap[ValueId++] = Linkage; 5768 break; 5769 } 5770 } 5771 } 5772 continue; 5773 } 5774 } 5775 } 5776 5777 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5778 // objects in the index. 5779 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5780 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5781 return error("Invalid record"); 5782 5783 SmallVector<uint64_t, 64> Record; 5784 5785 bool Combined = false; 5786 while (1) { 5787 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5788 5789 switch (Entry.Kind) { 5790 case BitstreamEntry::SubBlock: // Handled for us already. 5791 case BitstreamEntry::Error: 5792 return error("Malformed block"); 5793 case BitstreamEntry::EndBlock: 5794 // For a per-module index, remove any entries that still have empty 5795 // summaries. The VST parsing creates entries eagerly for all symbols, 5796 // but not all have associated summaries (e.g. it doesn't know how to 5797 // distinguish between VST_CODE_ENTRY for function declarations vs global 5798 // variables with initializers that end up with a summary). Remove those 5799 // entries now so that we don't need to rely on the combined index merger 5800 // to clean them up (especially since that may not run for the first 5801 // module's index if we merge into that). 5802 if (!Combined) 5803 TheIndex->removeEmptySummaryEntries(); 5804 return std::error_code(); 5805 case BitstreamEntry::Record: 5806 // The interesting case. 5807 break; 5808 } 5809 5810 // Read a record. The record format depends on whether this 5811 // is a per-module index or a combined index file. In the per-module 5812 // case the records contain the associated value's ID for correlation 5813 // with VST entries. In the combined index the correlation is done 5814 // via the bitcode offset of the summary records (which were saved 5815 // in the combined index VST entries). The records also contain 5816 // information used for ThinLTO renaming and importing. 5817 Record.clear(); 5818 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5819 auto BitCode = Stream.readRecord(Entry.ID, Record); 5820 switch (BitCode) { 5821 default: // Default behavior: ignore. 5822 break; 5823 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5824 // n x (valueid, callsitecount)] 5825 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5826 // numrefs x valueid, 5827 // n x (valueid, callsitecount, profilecount)] 5828 case bitc::FS_PERMODULE: 5829 case bitc::FS_PERMODULE_PROFILE: { 5830 unsigned ValueID = Record[0]; 5831 uint64_t RawLinkage = Record[1]; 5832 unsigned InstCount = Record[2]; 5833 unsigned NumRefs = Record[3]; 5834 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5835 getDecodedLinkage(RawLinkage), InstCount); 5836 // The module path string ref set in the summary must be owned by the 5837 // index's module string table. Since we don't have a module path 5838 // string table section in the per-module index, we create a single 5839 // module path string table entry with an empty (0) ID to take 5840 // ownership. 5841 FS->setModulePath( 5842 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5843 static int RefListStartIndex = 4; 5844 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5845 assert(Record.size() >= RefListStartIndex + NumRefs && 5846 "Record size inconsistent with number of references"); 5847 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5848 unsigned RefValueId = Record[I]; 5849 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5850 FS->addRefEdge(RefGUID); 5851 } 5852 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5853 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5854 ++I) { 5855 unsigned CalleeValueId = Record[I]; 5856 unsigned CallsiteCount = Record[++I]; 5857 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5858 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5859 FS->addCallGraphEdge(CalleeGUID, 5860 CalleeInfo(CallsiteCount, ProfileCount)); 5861 } 5862 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5863 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5864 assert(!Info->summary() && "Expected a single summary per VST entry"); 5865 Info->setSummary(std::move(FS)); 5866 break; 5867 } 5868 // FS_ALIAS: [valueid, linkage, valueid] 5869 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5870 // they expect all aliasee summaries to be available. 5871 case bitc::FS_ALIAS: { 5872 unsigned ValueID = Record[0]; 5873 uint64_t RawLinkage = Record[1]; 5874 unsigned AliaseeID = Record[2]; 5875 std::unique_ptr<AliasSummary> AS = 5876 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5877 // The module path string ref set in the summary must be owned by the 5878 // index's module string table. Since we don't have a module path 5879 // string table section in the per-module index, we create a single 5880 // module path string table entry with an empty (0) ID to take 5881 // ownership. 5882 AS->setModulePath( 5883 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5884 5885 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5886 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5887 if (!AliaseeInfo->summary()) 5888 return error("Alias expects aliasee summary to be parsed"); 5889 AS->setAliasee(AliaseeInfo->summary()); 5890 5891 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5892 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5893 assert(!Info->summary() && "Expected a single summary per VST entry"); 5894 Info->setSummary(std::move(AS)); 5895 break; 5896 } 5897 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5898 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5899 unsigned ValueID = Record[0]; 5900 uint64_t RawLinkage = Record[1]; 5901 std::unique_ptr<GlobalVarSummary> FS = 5902 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5903 FS->setModulePath( 5904 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5905 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5906 unsigned RefValueId = Record[I]; 5907 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5908 FS->addRefEdge(RefGUID); 5909 } 5910 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5911 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5912 assert(!Info->summary() && "Expected a single summary per VST entry"); 5913 Info->setSummary(std::move(FS)); 5914 break; 5915 } 5916 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5917 // n x (valueid, callsitecount)] 5918 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5919 // numrefs x valueid, 5920 // n x (valueid, callsitecount, profilecount)] 5921 case bitc::FS_COMBINED: 5922 case bitc::FS_COMBINED_PROFILE: { 5923 uint64_t ModuleId = Record[0]; 5924 uint64_t RawLinkage = Record[1]; 5925 unsigned InstCount = Record[2]; 5926 unsigned NumRefs = Record[3]; 5927 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5928 getDecodedLinkage(RawLinkage), InstCount); 5929 FS->setModulePath(ModuleIdMap[ModuleId]); 5930 static int RefListStartIndex = 4; 5931 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5932 assert(Record.size() >= RefListStartIndex + NumRefs && 5933 "Record size inconsistent with number of references"); 5934 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5935 unsigned RefValueId = Record[I]; 5936 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5937 FS->addRefEdge(RefGUID); 5938 } 5939 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5940 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5941 ++I) { 5942 unsigned CalleeValueId = Record[I]; 5943 unsigned CallsiteCount = Record[++I]; 5944 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5945 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5946 FS->addCallGraphEdge(CalleeGUID, 5947 CalleeInfo(CallsiteCount, ProfileCount)); 5948 } 5949 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5950 assert(!Info->summary() && "Expected a single summary per VST entry"); 5951 Info->setSummary(std::move(FS)); 5952 Combined = true; 5953 break; 5954 } 5955 // FS_COMBINED_ALIAS: [modid, linkage, offset] 5956 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5957 // they expect all aliasee summaries to be available. 5958 case bitc::FS_COMBINED_ALIAS: { 5959 uint64_t ModuleId = Record[0]; 5960 uint64_t RawLinkage = Record[1]; 5961 uint64_t AliaseeSummaryOffset = Record[2]; 5962 std::unique_ptr<AliasSummary> AS = 5963 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5964 AS->setModulePath(ModuleIdMap[ModuleId]); 5965 5966 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 5967 if (!AliaseeInfo->summary()) 5968 return error("Alias expects aliasee summary to be parsed"); 5969 AS->setAliasee(AliaseeInfo->summary()); 5970 5971 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5972 assert(!Info->summary() && "Expected a single summary per VST entry"); 5973 Info->setSummary(std::move(AS)); 5974 Combined = true; 5975 break; 5976 } 5977 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5978 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5979 uint64_t ModuleId = Record[0]; 5980 uint64_t RawLinkage = Record[1]; 5981 std::unique_ptr<GlobalVarSummary> FS = 5982 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5983 FS->setModulePath(ModuleIdMap[ModuleId]); 5984 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5985 unsigned RefValueId = Record[I]; 5986 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5987 FS->addRefEdge(RefGUID); 5988 } 5989 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5990 assert(!Info->summary() && "Expected a single summary per VST entry"); 5991 Info->setSummary(std::move(FS)); 5992 Combined = true; 5993 break; 5994 } 5995 } 5996 } 5997 llvm_unreachable("Exit infinite loop"); 5998 } 5999 6000 // Parse the module string table block into the Index. 6001 // This populates the ModulePathStringTable map in the index. 6002 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6003 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6004 return error("Invalid record"); 6005 6006 SmallVector<uint64_t, 64> Record; 6007 6008 SmallString<128> ModulePath; 6009 ModulePathStringTableTy::iterator LastSeenModulePath; 6010 while (1) { 6011 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6012 6013 switch (Entry.Kind) { 6014 case BitstreamEntry::SubBlock: // Handled for us already. 6015 case BitstreamEntry::Error: 6016 return error("Malformed block"); 6017 case BitstreamEntry::EndBlock: 6018 return std::error_code(); 6019 case BitstreamEntry::Record: 6020 // The interesting case. 6021 break; 6022 } 6023 6024 Record.clear(); 6025 switch (Stream.readRecord(Entry.ID, Record)) { 6026 default: // Default behavior: ignore. 6027 break; 6028 case bitc::MST_CODE_ENTRY: { 6029 // MST_ENTRY: [modid, namechar x N] 6030 uint64_t ModuleId = Record[0]; 6031 6032 if (convertToString(Record, 1, ModulePath)) 6033 return error("Invalid record"); 6034 6035 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6036 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6037 6038 ModulePath.clear(); 6039 break; 6040 } 6041 /// MST_CODE_HASH: [5*i32] 6042 case bitc::MST_CODE_HASH: { 6043 if (Record.size() != 5) 6044 return error("Invalid hash length " + Twine(Record.size()).str()); 6045 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6046 return error("Invalid hash that does not follow a module path"); 6047 int Pos = 0; 6048 for (auto &Val : Record) { 6049 assert(!(Val >> 32) && "Unexpected high bits set"); 6050 LastSeenModulePath->second.second[Pos++] = Val; 6051 } 6052 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6053 LastSeenModulePath = TheIndex->modulePaths().end(); 6054 break; 6055 } 6056 } 6057 } 6058 llvm_unreachable("Exit infinite loop"); 6059 } 6060 6061 // Parse the function info index from the bitcode streamer into the given index. 6062 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6063 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6064 TheIndex = I; 6065 6066 if (std::error_code EC = initStream(std::move(Streamer))) 6067 return EC; 6068 6069 // Sniff for the signature. 6070 if (!hasValidBitcodeHeader(Stream)) 6071 return error("Invalid bitcode signature"); 6072 6073 // We expect a number of well-defined blocks, though we don't necessarily 6074 // need to understand them all. 6075 while (1) { 6076 if (Stream.AtEndOfStream()) { 6077 // We didn't really read a proper Module block. 6078 return error("Malformed block"); 6079 } 6080 6081 BitstreamEntry Entry = 6082 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6083 6084 if (Entry.Kind != BitstreamEntry::SubBlock) 6085 return error("Malformed block"); 6086 6087 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6088 // building the function summary index. 6089 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6090 return parseModule(); 6091 6092 if (Stream.SkipBlock()) 6093 return error("Invalid record"); 6094 } 6095 } 6096 6097 // Parse the summary information at the given offset in the buffer into 6098 // the index. Used to support lazy parsing of summaries from the 6099 // combined index during importing. 6100 // TODO: This function is not yet complete as it won't have a consumer 6101 // until ThinLTO function importing is added. 6102 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6103 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6104 size_t SummaryOffset) { 6105 TheIndex = I; 6106 6107 if (std::error_code EC = initStream(std::move(Streamer))) 6108 return EC; 6109 6110 // Sniff for the signature. 6111 if (!hasValidBitcodeHeader(Stream)) 6112 return error("Invalid bitcode signature"); 6113 6114 Stream.JumpToBit(SummaryOffset); 6115 6116 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6117 6118 switch (Entry.Kind) { 6119 default: 6120 return error("Malformed block"); 6121 case BitstreamEntry::Record: 6122 // The expected case. 6123 break; 6124 } 6125 6126 // TODO: Read a record. This interface will be completed when ThinLTO 6127 // importing is added so that it can be tested. 6128 SmallVector<uint64_t, 64> Record; 6129 switch (Stream.readRecord(Entry.ID, Record)) { 6130 case bitc::FS_COMBINED: 6131 case bitc::FS_COMBINED_PROFILE: 6132 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6133 default: 6134 return error("Invalid record"); 6135 } 6136 6137 return std::error_code(); 6138 } 6139 6140 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6141 std::unique_ptr<DataStreamer> Streamer) { 6142 if (Streamer) 6143 return initLazyStream(std::move(Streamer)); 6144 return initStreamFromBuffer(); 6145 } 6146 6147 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6148 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6149 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6150 6151 if (Buffer->getBufferSize() & 3) 6152 return error("Invalid bitcode signature"); 6153 6154 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6155 // The magic number is 0x0B17C0DE stored in little endian. 6156 if (isBitcodeWrapper(BufPtr, BufEnd)) 6157 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6158 return error("Invalid bitcode wrapper header"); 6159 6160 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6161 Stream.init(&*StreamFile); 6162 6163 return std::error_code(); 6164 } 6165 6166 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6167 std::unique_ptr<DataStreamer> Streamer) { 6168 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6169 // see it. 6170 auto OwnedBytes = 6171 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6172 StreamingMemoryObject &Bytes = *OwnedBytes; 6173 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6174 Stream.init(&*StreamFile); 6175 6176 unsigned char buf[16]; 6177 if (Bytes.readBytes(buf, 16, 0) != 16) 6178 return error("Invalid bitcode signature"); 6179 6180 if (!isBitcode(buf, buf + 16)) 6181 return error("Invalid bitcode signature"); 6182 6183 if (isBitcodeWrapper(buf, buf + 4)) { 6184 const unsigned char *bitcodeStart = buf; 6185 const unsigned char *bitcodeEnd = buf + 16; 6186 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6187 Bytes.dropLeadingBytes(bitcodeStart - buf); 6188 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6189 } 6190 return std::error_code(); 6191 } 6192 6193 namespace { 6194 class BitcodeErrorCategoryType : public std::error_category { 6195 const char *name() const LLVM_NOEXCEPT override { 6196 return "llvm.bitcode"; 6197 } 6198 std::string message(int IE) const override { 6199 BitcodeError E = static_cast<BitcodeError>(IE); 6200 switch (E) { 6201 case BitcodeError::InvalidBitcodeSignature: 6202 return "Invalid bitcode signature"; 6203 case BitcodeError::CorruptedBitcode: 6204 return "Corrupted bitcode"; 6205 } 6206 llvm_unreachable("Unknown error type!"); 6207 } 6208 }; 6209 } // end anonymous namespace 6210 6211 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6212 6213 const std::error_category &llvm::BitcodeErrorCategory() { 6214 return *ErrorCategory; 6215 } 6216 6217 //===----------------------------------------------------------------------===// 6218 // External interface 6219 //===----------------------------------------------------------------------===// 6220 6221 static ErrorOr<std::unique_ptr<Module>> 6222 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6223 BitcodeReader *R, LLVMContext &Context, 6224 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6225 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6226 M->setMaterializer(R); 6227 6228 auto cleanupOnError = [&](std::error_code EC) { 6229 R->releaseBuffer(); // Never take ownership on error. 6230 return EC; 6231 }; 6232 6233 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6234 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6235 ShouldLazyLoadMetadata)) 6236 return cleanupOnError(EC); 6237 6238 if (MaterializeAll) { 6239 // Read in the entire module, and destroy the BitcodeReader. 6240 if (std::error_code EC = M->materializeAll()) 6241 return cleanupOnError(EC); 6242 } else { 6243 // Resolve forward references from blockaddresses. 6244 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6245 return cleanupOnError(EC); 6246 } 6247 return std::move(M); 6248 } 6249 6250 /// \brief Get a lazy one-at-time loading module from bitcode. 6251 /// 6252 /// This isn't always used in a lazy context. In particular, it's also used by 6253 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6254 /// in forward-referenced functions from block address references. 6255 /// 6256 /// \param[in] MaterializeAll Set to \c true if we should materialize 6257 /// everything. 6258 static ErrorOr<std::unique_ptr<Module>> 6259 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6260 LLVMContext &Context, bool MaterializeAll, 6261 bool ShouldLazyLoadMetadata = false) { 6262 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6263 6264 ErrorOr<std::unique_ptr<Module>> Ret = 6265 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6266 MaterializeAll, ShouldLazyLoadMetadata); 6267 if (!Ret) 6268 return Ret; 6269 6270 Buffer.release(); // The BitcodeReader owns it now. 6271 return Ret; 6272 } 6273 6274 ErrorOr<std::unique_ptr<Module>> 6275 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6276 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6277 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6278 ShouldLazyLoadMetadata); 6279 } 6280 6281 ErrorOr<std::unique_ptr<Module>> 6282 llvm::getStreamedBitcodeModule(StringRef Name, 6283 std::unique_ptr<DataStreamer> Streamer, 6284 LLVMContext &Context) { 6285 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6286 BitcodeReader *R = new BitcodeReader(Context); 6287 6288 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6289 false); 6290 } 6291 6292 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6293 LLVMContext &Context) { 6294 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6295 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6296 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6297 // written. We must defer until the Module has been fully materialized. 6298 } 6299 6300 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6301 LLVMContext &Context) { 6302 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6303 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6304 ErrorOr<std::string> Triple = R->parseTriple(); 6305 if (Triple.getError()) 6306 return ""; 6307 return Triple.get(); 6308 } 6309 6310 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6311 LLVMContext &Context) { 6312 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6313 BitcodeReader R(Buf.release(), Context); 6314 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6315 if (ProducerString.getError()) 6316 return ""; 6317 return ProducerString.get(); 6318 } 6319 6320 // Parse the specified bitcode buffer, returning the function info index. 6321 // If IsLazy is false, parse the entire function summary into 6322 // the index. Otherwise skip the function summary section, and only create 6323 // an index object with a map from function name to function summary offset. 6324 // The index is used to perform lazy function summary reading later. 6325 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6326 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6327 DiagnosticHandlerFunction DiagnosticHandler, 6328 bool IsLazy) { 6329 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6330 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6331 6332 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6333 6334 auto cleanupOnError = [&](std::error_code EC) { 6335 R.releaseBuffer(); // Never take ownership on error. 6336 return EC; 6337 }; 6338 6339 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6340 return cleanupOnError(EC); 6341 6342 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6343 return std::move(Index); 6344 } 6345 6346 // Check if the given bitcode buffer contains a global value summary block. 6347 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6348 DiagnosticHandlerFunction DiagnosticHandler) { 6349 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6350 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6351 6352 auto cleanupOnError = [&](std::error_code EC) { 6353 R.releaseBuffer(); // Never take ownership on error. 6354 return false; 6355 }; 6356 6357 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6358 return cleanupOnError(EC); 6359 6360 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6361 return R.foundGlobalValSummary(); 6362 } 6363 6364 // This method supports lazy reading of summary data from the combined 6365 // index during ThinLTO function importing. When reading the combined index 6366 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6367 // Then this method is called for each value considered for importing, 6368 // to parse the summary information for the given value name into 6369 // the index. 6370 std::error_code llvm::readGlobalValueSummary( 6371 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6372 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6373 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6374 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6375 6376 auto cleanupOnError = [&](std::error_code EC) { 6377 R.releaseBuffer(); // Never take ownership on error. 6378 return EC; 6379 }; 6380 6381 // Lookup the given value name in the GlobalValueMap, which may 6382 // contain a list of global value infos in the case of a COMDAT. Walk through 6383 // and parse each summary info at the summary offset 6384 // recorded when parsing the value symbol table. 6385 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6386 size_t SummaryOffset = FI->bitcodeIndex(); 6387 if (std::error_code EC = 6388 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6389 return cleanupOnError(EC); 6390 } 6391 6392 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6393 return std::error_code(); 6394 } 6395