1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/OperandTraits.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/DataStream.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 enum { 34 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 35 }; 36 37 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 38 DiagnosticSeverity Severity, 39 const Twine &Msg) 40 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 41 42 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 43 44 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 45 std::error_code EC, const Twine &Message) { 46 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 47 DiagnosticHandler(DI); 48 return EC; 49 } 50 51 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 52 std::error_code EC) { 53 return Error(DiagnosticHandler, EC, EC.message()); 54 } 55 56 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 57 return ::Error(DiagnosticHandler, make_error_code(E), Message); 58 } 59 60 std::error_code BitcodeReader::Error(const Twine &Message) { 61 return ::Error(DiagnosticHandler, 62 make_error_code(BitcodeError::CorruptedBitcode), Message); 63 } 64 65 std::error_code BitcodeReader::Error(BitcodeError E) { 66 return ::Error(DiagnosticHandler, make_error_code(E)); 67 } 68 69 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 70 LLVMContext &C) { 71 if (F) 72 return F; 73 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 74 } 75 76 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 77 DiagnosticHandlerFunction DiagnosticHandler) 78 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 79 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 80 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 81 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 82 WillMaterializeAllForwardRefs(false) {} 83 84 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 85 DiagnosticHandlerFunction DiagnosticHandler) 86 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 87 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 88 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 89 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 90 WillMaterializeAllForwardRefs(false) {} 91 92 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 93 if (WillMaterializeAllForwardRefs) 94 return std::error_code(); 95 96 // Prevent recursion. 97 WillMaterializeAllForwardRefs = true; 98 99 while (!BasicBlockFwdRefQueue.empty()) { 100 Function *F = BasicBlockFwdRefQueue.front(); 101 BasicBlockFwdRefQueue.pop_front(); 102 assert(F && "Expected valid function"); 103 if (!BasicBlockFwdRefs.count(F)) 104 // Already materialized. 105 continue; 106 107 // Check for a function that isn't materializable to prevent an infinite 108 // loop. When parsing a blockaddress stored in a global variable, there 109 // isn't a trivial way to check if a function will have a body without a 110 // linear search through FunctionsWithBodies, so just check it here. 111 if (!F->isMaterializable()) 112 return Error("Never resolved function from blockaddress"); 113 114 // Try to materialize F. 115 if (std::error_code EC = materialize(F)) 116 return EC; 117 } 118 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 119 120 // Reset state. 121 WillMaterializeAllForwardRefs = false; 122 return std::error_code(); 123 } 124 125 void BitcodeReader::FreeState() { 126 Buffer = nullptr; 127 std::vector<Type*>().swap(TypeList); 128 ValueList.clear(); 129 MDValueList.clear(); 130 std::vector<Comdat *>().swap(ComdatList); 131 132 std::vector<AttributeSet>().swap(MAttributes); 133 std::vector<BasicBlock*>().swap(FunctionBBs); 134 std::vector<Function*>().swap(FunctionsWithBodies); 135 DeferredFunctionInfo.clear(); 136 MDKindMap.clear(); 137 138 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 139 BasicBlockFwdRefQueue.clear(); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Helper functions to implement forward reference resolution, etc. 144 //===----------------------------------------------------------------------===// 145 146 /// ConvertToString - Convert a string from a record into an std::string, return 147 /// true on failure. 148 template<typename StrTy> 149 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 150 StrTy &Result) { 151 if (Idx > Record.size()) 152 return true; 153 154 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 155 Result += (char)Record[i]; 156 return false; 157 } 158 159 static bool hasImplicitComdat(size_t Val) { 160 switch (Val) { 161 default: 162 return false; 163 case 1: // Old WeakAnyLinkage 164 case 4: // Old LinkOnceAnyLinkage 165 case 10: // Old WeakODRLinkage 166 case 11: // Old LinkOnceODRLinkage 167 return true; 168 } 169 } 170 171 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 172 switch (Val) { 173 default: // Map unknown/new linkages to external 174 case 0: 175 return GlobalValue::ExternalLinkage; 176 case 2: 177 return GlobalValue::AppendingLinkage; 178 case 3: 179 return GlobalValue::InternalLinkage; 180 case 5: 181 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 182 case 6: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 184 case 7: 185 return GlobalValue::ExternalWeakLinkage; 186 case 8: 187 return GlobalValue::CommonLinkage; 188 case 9: 189 return GlobalValue::PrivateLinkage; 190 case 12: 191 return GlobalValue::AvailableExternallyLinkage; 192 case 13: 193 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 194 case 14: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 196 case 15: 197 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 198 case 1: // Old value with implicit comdat. 199 case 16: 200 return GlobalValue::WeakAnyLinkage; 201 case 10: // Old value with implicit comdat. 202 case 17: 203 return GlobalValue::WeakODRLinkage; 204 case 4: // Old value with implicit comdat. 205 case 18: 206 return GlobalValue::LinkOnceAnyLinkage; 207 case 11: // Old value with implicit comdat. 208 case 19: 209 return GlobalValue::LinkOnceODRLinkage; 210 } 211 } 212 213 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 214 switch (Val) { 215 default: // Map unknown visibilities to default. 216 case 0: return GlobalValue::DefaultVisibility; 217 case 1: return GlobalValue::HiddenVisibility; 218 case 2: return GlobalValue::ProtectedVisibility; 219 } 220 } 221 222 static GlobalValue::DLLStorageClassTypes 223 GetDecodedDLLStorageClass(unsigned Val) { 224 switch (Val) { 225 default: // Map unknown values to default. 226 case 0: return GlobalValue::DefaultStorageClass; 227 case 1: return GlobalValue::DLLImportStorageClass; 228 case 2: return GlobalValue::DLLExportStorageClass; 229 } 230 } 231 232 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 233 switch (Val) { 234 case 0: return GlobalVariable::NotThreadLocal; 235 default: // Map unknown non-zero value to general dynamic. 236 case 1: return GlobalVariable::GeneralDynamicTLSModel; 237 case 2: return GlobalVariable::LocalDynamicTLSModel; 238 case 3: return GlobalVariable::InitialExecTLSModel; 239 case 4: return GlobalVariable::LocalExecTLSModel; 240 } 241 } 242 243 static int GetDecodedCastOpcode(unsigned Val) { 244 switch (Val) { 245 default: return -1; 246 case bitc::CAST_TRUNC : return Instruction::Trunc; 247 case bitc::CAST_ZEXT : return Instruction::ZExt; 248 case bitc::CAST_SEXT : return Instruction::SExt; 249 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 250 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 251 case bitc::CAST_UITOFP : return Instruction::UIToFP; 252 case bitc::CAST_SITOFP : return Instruction::SIToFP; 253 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 254 case bitc::CAST_FPEXT : return Instruction::FPExt; 255 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 256 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 257 case bitc::CAST_BITCAST : return Instruction::BitCast; 258 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 259 } 260 } 261 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 262 switch (Val) { 263 default: return -1; 264 case bitc::BINOP_ADD: 265 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 266 case bitc::BINOP_SUB: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 268 case bitc::BINOP_MUL: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 270 case bitc::BINOP_UDIV: return Instruction::UDiv; 271 case bitc::BINOP_SDIV: 272 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 273 case bitc::BINOP_UREM: return Instruction::URem; 274 case bitc::BINOP_SREM: 275 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 276 case bitc::BINOP_SHL: return Instruction::Shl; 277 case bitc::BINOP_LSHR: return Instruction::LShr; 278 case bitc::BINOP_ASHR: return Instruction::AShr; 279 case bitc::BINOP_AND: return Instruction::And; 280 case bitc::BINOP_OR: return Instruction::Or; 281 case bitc::BINOP_XOR: return Instruction::Xor; 282 } 283 } 284 285 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 286 switch (Val) { 287 default: return AtomicRMWInst::BAD_BINOP; 288 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 289 case bitc::RMW_ADD: return AtomicRMWInst::Add; 290 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 291 case bitc::RMW_AND: return AtomicRMWInst::And; 292 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 293 case bitc::RMW_OR: return AtomicRMWInst::Or; 294 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 295 case bitc::RMW_MAX: return AtomicRMWInst::Max; 296 case bitc::RMW_MIN: return AtomicRMWInst::Min; 297 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 298 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 299 } 300 } 301 302 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 303 switch (Val) { 304 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 305 case bitc::ORDERING_UNORDERED: return Unordered; 306 case bitc::ORDERING_MONOTONIC: return Monotonic; 307 case bitc::ORDERING_ACQUIRE: return Acquire; 308 case bitc::ORDERING_RELEASE: return Release; 309 case bitc::ORDERING_ACQREL: return AcquireRelease; 310 default: // Map unknown orderings to sequentially-consistent. 311 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 312 } 313 } 314 315 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 316 switch (Val) { 317 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 318 default: // Map unknown scopes to cross-thread. 319 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 320 } 321 } 322 323 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 324 switch (Val) { 325 default: // Map unknown selection kinds to any. 326 case bitc::COMDAT_SELECTION_KIND_ANY: 327 return Comdat::Any; 328 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 329 return Comdat::ExactMatch; 330 case bitc::COMDAT_SELECTION_KIND_LARGEST: 331 return Comdat::Largest; 332 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 333 return Comdat::NoDuplicates; 334 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 335 return Comdat::SameSize; 336 } 337 } 338 339 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 340 switch (Val) { 341 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 342 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 343 } 344 } 345 346 namespace llvm { 347 namespace { 348 /// @brief A class for maintaining the slot number definition 349 /// as a placeholder for the actual definition for forward constants defs. 350 class ConstantPlaceHolder : public ConstantExpr { 351 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 352 public: 353 // allocate space for exactly one operand 354 void *operator new(size_t s) { 355 return User::operator new(s, 1); 356 } 357 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 358 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 359 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 360 } 361 362 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 363 static bool classof(const Value *V) { 364 return isa<ConstantExpr>(V) && 365 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 366 } 367 368 369 /// Provide fast operand accessors 370 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 371 }; 372 } 373 374 // FIXME: can we inherit this from ConstantExpr? 375 template <> 376 struct OperandTraits<ConstantPlaceHolder> : 377 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 378 }; 379 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 380 } 381 382 383 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 384 if (Idx == size()) { 385 push_back(V); 386 return; 387 } 388 389 if (Idx >= size()) 390 resize(Idx+1); 391 392 WeakVH &OldV = ValuePtrs[Idx]; 393 if (!OldV) { 394 OldV = V; 395 return; 396 } 397 398 // Handle constants and non-constants (e.g. instrs) differently for 399 // efficiency. 400 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 401 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 402 OldV = V; 403 } else { 404 // If there was a forward reference to this value, replace it. 405 Value *PrevVal = OldV; 406 OldV->replaceAllUsesWith(V); 407 delete PrevVal; 408 } 409 } 410 411 412 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 413 Type *Ty) { 414 if (Idx >= size()) 415 resize(Idx + 1); 416 417 if (Value *V = ValuePtrs[Idx]) { 418 assert(Ty == V->getType() && "Type mismatch in constant table!"); 419 return cast<Constant>(V); 420 } 421 422 // Create and return a placeholder, which will later be RAUW'd. 423 Constant *C = new ConstantPlaceHolder(Ty, Context); 424 ValuePtrs[Idx] = C; 425 return C; 426 } 427 428 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 429 if (Idx >= size()) 430 resize(Idx + 1); 431 432 if (Value *V = ValuePtrs[Idx]) { 433 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 434 return V; 435 } 436 437 // No type specified, must be invalid reference. 438 if (!Ty) return nullptr; 439 440 // Create and return a placeholder, which will later be RAUW'd. 441 Value *V = new Argument(Ty); 442 ValuePtrs[Idx] = V; 443 return V; 444 } 445 446 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 447 /// resolves any forward references. The idea behind this is that we sometimes 448 /// get constants (such as large arrays) which reference *many* forward ref 449 /// constants. Replacing each of these causes a lot of thrashing when 450 /// building/reuniquing the constant. Instead of doing this, we look at all the 451 /// uses and rewrite all the place holders at once for any constant that uses 452 /// a placeholder. 453 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 454 // Sort the values by-pointer so that they are efficient to look up with a 455 // binary search. 456 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 457 458 SmallVector<Constant*, 64> NewOps; 459 460 while (!ResolveConstants.empty()) { 461 Value *RealVal = operator[](ResolveConstants.back().second); 462 Constant *Placeholder = ResolveConstants.back().first; 463 ResolveConstants.pop_back(); 464 465 // Loop over all users of the placeholder, updating them to reference the 466 // new value. If they reference more than one placeholder, update them all 467 // at once. 468 while (!Placeholder->use_empty()) { 469 auto UI = Placeholder->user_begin(); 470 User *U = *UI; 471 472 // If the using object isn't uniqued, just update the operands. This 473 // handles instructions and initializers for global variables. 474 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 475 UI.getUse().set(RealVal); 476 continue; 477 } 478 479 // Otherwise, we have a constant that uses the placeholder. Replace that 480 // constant with a new constant that has *all* placeholder uses updated. 481 Constant *UserC = cast<Constant>(U); 482 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 483 I != E; ++I) { 484 Value *NewOp; 485 if (!isa<ConstantPlaceHolder>(*I)) { 486 // Not a placeholder reference. 487 NewOp = *I; 488 } else if (*I == Placeholder) { 489 // Common case is that it just references this one placeholder. 490 NewOp = RealVal; 491 } else { 492 // Otherwise, look up the placeholder in ResolveConstants. 493 ResolveConstantsTy::iterator It = 494 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 495 std::pair<Constant*, unsigned>(cast<Constant>(*I), 496 0)); 497 assert(It != ResolveConstants.end() && It->first == *I); 498 NewOp = operator[](It->second); 499 } 500 501 NewOps.push_back(cast<Constant>(NewOp)); 502 } 503 504 // Make the new constant. 505 Constant *NewC; 506 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 507 NewC = ConstantArray::get(UserCA->getType(), NewOps); 508 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 509 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 510 } else if (isa<ConstantVector>(UserC)) { 511 NewC = ConstantVector::get(NewOps); 512 } else { 513 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 514 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 515 } 516 517 UserC->replaceAllUsesWith(NewC); 518 UserC->destroyConstant(); 519 NewOps.clear(); 520 } 521 522 // Update all ValueHandles, they should be the only users at this point. 523 Placeholder->replaceAllUsesWith(RealVal); 524 delete Placeholder; 525 } 526 } 527 528 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 529 if (Idx == size()) { 530 push_back(MD); 531 return; 532 } 533 534 if (Idx >= size()) 535 resize(Idx+1); 536 537 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 538 if (!OldMD) { 539 OldMD.reset(MD); 540 return; 541 } 542 543 // If there was a forward reference to this value, replace it. 544 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 545 PrevMD->replaceAllUsesWith(MD); 546 --NumFwdRefs; 547 } 548 549 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 550 if (Idx >= size()) 551 resize(Idx + 1); 552 553 if (Metadata *MD = MDValuePtrs[Idx]) 554 return MD; 555 556 // Create and return a placeholder, which will later be RAUW'd. 557 AnyFwdRefs = true; 558 ++NumFwdRefs; 559 Metadata *MD = MDNode::getTemporary(Context, None).release(); 560 MDValuePtrs[Idx].reset(MD); 561 return MD; 562 } 563 564 void BitcodeReaderMDValueList::tryToResolveCycles() { 565 if (!AnyFwdRefs) 566 // Nothing to do. 567 return; 568 569 if (NumFwdRefs) 570 // Still forward references... can't resolve cycles. 571 return; 572 573 // Resolve any cycles. 574 for (auto &MD : MDValuePtrs) { 575 auto *N = dyn_cast_or_null<MDNode>(MD); 576 if (!N) 577 continue; 578 579 assert(!N->isTemporary() && "Unexpected forward reference"); 580 N->resolveCycles(); 581 } 582 } 583 584 Type *BitcodeReader::getTypeByID(unsigned ID) { 585 // The type table size is always specified correctly. 586 if (ID >= TypeList.size()) 587 return nullptr; 588 589 if (Type *Ty = TypeList[ID]) 590 return Ty; 591 592 // If we have a forward reference, the only possible case is when it is to a 593 // named struct. Just create a placeholder for now. 594 return TypeList[ID] = createIdentifiedStructType(Context); 595 } 596 597 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 598 StringRef Name) { 599 auto *Ret = StructType::create(Context, Name); 600 IdentifiedStructTypes.push_back(Ret); 601 return Ret; 602 } 603 604 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 605 auto *Ret = StructType::create(Context); 606 IdentifiedStructTypes.push_back(Ret); 607 return Ret; 608 } 609 610 611 //===----------------------------------------------------------------------===// 612 // Functions for parsing blocks from the bitcode file 613 //===----------------------------------------------------------------------===// 614 615 616 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 617 /// been decoded from the given integer. This function must stay in sync with 618 /// 'encodeLLVMAttributesForBitcode'. 619 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 620 uint64_t EncodedAttrs) { 621 // FIXME: Remove in 4.0. 622 623 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 624 // the bits above 31 down by 11 bits. 625 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 626 assert((!Alignment || isPowerOf2_32(Alignment)) && 627 "Alignment must be a power of two."); 628 629 if (Alignment) 630 B.addAlignmentAttr(Alignment); 631 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 632 (EncodedAttrs & 0xffff)); 633 } 634 635 std::error_code BitcodeReader::ParseAttributeBlock() { 636 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 637 return Error("Invalid record"); 638 639 if (!MAttributes.empty()) 640 return Error("Invalid multiple blocks"); 641 642 SmallVector<uint64_t, 64> Record; 643 644 SmallVector<AttributeSet, 8> Attrs; 645 646 // Read all the records. 647 while (1) { 648 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 649 650 switch (Entry.Kind) { 651 case BitstreamEntry::SubBlock: // Handled for us already. 652 case BitstreamEntry::Error: 653 return Error("Malformed block"); 654 case BitstreamEntry::EndBlock: 655 return std::error_code(); 656 case BitstreamEntry::Record: 657 // The interesting case. 658 break; 659 } 660 661 // Read a record. 662 Record.clear(); 663 switch (Stream.readRecord(Entry.ID, Record)) { 664 default: // Default behavior: ignore. 665 break; 666 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 667 // FIXME: Remove in 4.0. 668 if (Record.size() & 1) 669 return Error("Invalid record"); 670 671 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 672 AttrBuilder B; 673 decodeLLVMAttributesForBitcode(B, Record[i+1]); 674 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 675 } 676 677 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 678 Attrs.clear(); 679 break; 680 } 681 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 682 for (unsigned i = 0, e = Record.size(); i != e; ++i) 683 Attrs.push_back(MAttributeGroups[Record[i]]); 684 685 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 686 Attrs.clear(); 687 break; 688 } 689 } 690 } 691 } 692 693 // Returns Attribute::None on unrecognized codes. 694 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 695 switch (Code) { 696 default: 697 return Attribute::None; 698 case bitc::ATTR_KIND_ALIGNMENT: 699 return Attribute::Alignment; 700 case bitc::ATTR_KIND_ALWAYS_INLINE: 701 return Attribute::AlwaysInline; 702 case bitc::ATTR_KIND_BUILTIN: 703 return Attribute::Builtin; 704 case bitc::ATTR_KIND_BY_VAL: 705 return Attribute::ByVal; 706 case bitc::ATTR_KIND_IN_ALLOCA: 707 return Attribute::InAlloca; 708 case bitc::ATTR_KIND_COLD: 709 return Attribute::Cold; 710 case bitc::ATTR_KIND_INLINE_HINT: 711 return Attribute::InlineHint; 712 case bitc::ATTR_KIND_IN_REG: 713 return Attribute::InReg; 714 case bitc::ATTR_KIND_JUMP_TABLE: 715 return Attribute::JumpTable; 716 case bitc::ATTR_KIND_MIN_SIZE: 717 return Attribute::MinSize; 718 case bitc::ATTR_KIND_NAKED: 719 return Attribute::Naked; 720 case bitc::ATTR_KIND_NEST: 721 return Attribute::Nest; 722 case bitc::ATTR_KIND_NO_ALIAS: 723 return Attribute::NoAlias; 724 case bitc::ATTR_KIND_NO_BUILTIN: 725 return Attribute::NoBuiltin; 726 case bitc::ATTR_KIND_NO_CAPTURE: 727 return Attribute::NoCapture; 728 case bitc::ATTR_KIND_NO_DUPLICATE: 729 return Attribute::NoDuplicate; 730 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 731 return Attribute::NoImplicitFloat; 732 case bitc::ATTR_KIND_NO_INLINE: 733 return Attribute::NoInline; 734 case bitc::ATTR_KIND_NON_LAZY_BIND: 735 return Attribute::NonLazyBind; 736 case bitc::ATTR_KIND_NON_NULL: 737 return Attribute::NonNull; 738 case bitc::ATTR_KIND_DEREFERENCEABLE: 739 return Attribute::Dereferenceable; 740 case bitc::ATTR_KIND_NO_RED_ZONE: 741 return Attribute::NoRedZone; 742 case bitc::ATTR_KIND_NO_RETURN: 743 return Attribute::NoReturn; 744 case bitc::ATTR_KIND_NO_UNWIND: 745 return Attribute::NoUnwind; 746 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 747 return Attribute::OptimizeForSize; 748 case bitc::ATTR_KIND_OPTIMIZE_NONE: 749 return Attribute::OptimizeNone; 750 case bitc::ATTR_KIND_READ_NONE: 751 return Attribute::ReadNone; 752 case bitc::ATTR_KIND_READ_ONLY: 753 return Attribute::ReadOnly; 754 case bitc::ATTR_KIND_RETURNED: 755 return Attribute::Returned; 756 case bitc::ATTR_KIND_RETURNS_TWICE: 757 return Attribute::ReturnsTwice; 758 case bitc::ATTR_KIND_S_EXT: 759 return Attribute::SExt; 760 case bitc::ATTR_KIND_STACK_ALIGNMENT: 761 return Attribute::StackAlignment; 762 case bitc::ATTR_KIND_STACK_PROTECT: 763 return Attribute::StackProtect; 764 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 765 return Attribute::StackProtectReq; 766 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 767 return Attribute::StackProtectStrong; 768 case bitc::ATTR_KIND_STRUCT_RET: 769 return Attribute::StructRet; 770 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 771 return Attribute::SanitizeAddress; 772 case bitc::ATTR_KIND_SANITIZE_THREAD: 773 return Attribute::SanitizeThread; 774 case bitc::ATTR_KIND_SANITIZE_MEMORY: 775 return Attribute::SanitizeMemory; 776 case bitc::ATTR_KIND_UW_TABLE: 777 return Attribute::UWTable; 778 case bitc::ATTR_KIND_Z_EXT: 779 return Attribute::ZExt; 780 } 781 } 782 783 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 784 Attribute::AttrKind *Kind) { 785 *Kind = GetAttrFromCode(Code); 786 if (*Kind == Attribute::None) 787 return Error(BitcodeError::CorruptedBitcode, 788 "Unknown attribute kind (" + Twine(Code) + ")"); 789 return std::error_code(); 790 } 791 792 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 793 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 794 return Error("Invalid record"); 795 796 if (!MAttributeGroups.empty()) 797 return Error("Invalid multiple blocks"); 798 799 SmallVector<uint64_t, 64> Record; 800 801 // Read all the records. 802 while (1) { 803 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 804 805 switch (Entry.Kind) { 806 case BitstreamEntry::SubBlock: // Handled for us already. 807 case BitstreamEntry::Error: 808 return Error("Malformed block"); 809 case BitstreamEntry::EndBlock: 810 return std::error_code(); 811 case BitstreamEntry::Record: 812 // The interesting case. 813 break; 814 } 815 816 // Read a record. 817 Record.clear(); 818 switch (Stream.readRecord(Entry.ID, Record)) { 819 default: // Default behavior: ignore. 820 break; 821 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 822 if (Record.size() < 3) 823 return Error("Invalid record"); 824 825 uint64_t GrpID = Record[0]; 826 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 827 828 AttrBuilder B; 829 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 830 if (Record[i] == 0) { // Enum attribute 831 Attribute::AttrKind Kind; 832 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 833 return EC; 834 835 B.addAttribute(Kind); 836 } else if (Record[i] == 1) { // Integer attribute 837 Attribute::AttrKind Kind; 838 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 839 return EC; 840 if (Kind == Attribute::Alignment) 841 B.addAlignmentAttr(Record[++i]); 842 else if (Kind == Attribute::StackAlignment) 843 B.addStackAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::Dereferenceable) 845 B.addDereferenceableAttr(Record[++i]); 846 } else { // String attribute 847 assert((Record[i] == 3 || Record[i] == 4) && 848 "Invalid attribute group entry"); 849 bool HasValue = (Record[i++] == 4); 850 SmallString<64> KindStr; 851 SmallString<64> ValStr; 852 853 while (Record[i] != 0 && i != e) 854 KindStr += Record[i++]; 855 assert(Record[i] == 0 && "Kind string not null terminated"); 856 857 if (HasValue) { 858 // Has a value associated with it. 859 ++i; // Skip the '0' that terminates the "kind" string. 860 while (Record[i] != 0 && i != e) 861 ValStr += Record[i++]; 862 assert(Record[i] == 0 && "Value string not null terminated"); 863 } 864 865 B.addAttribute(KindStr.str(), ValStr.str()); 866 } 867 } 868 869 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 870 break; 871 } 872 } 873 } 874 } 875 876 std::error_code BitcodeReader::ParseTypeTable() { 877 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 878 return Error("Invalid record"); 879 880 return ParseTypeTableBody(); 881 } 882 883 std::error_code BitcodeReader::ParseTypeTableBody() { 884 if (!TypeList.empty()) 885 return Error("Invalid multiple blocks"); 886 887 SmallVector<uint64_t, 64> Record; 888 unsigned NumRecords = 0; 889 890 SmallString<64> TypeName; 891 892 // Read all the records for this type table. 893 while (1) { 894 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 895 896 switch (Entry.Kind) { 897 case BitstreamEntry::SubBlock: // Handled for us already. 898 case BitstreamEntry::Error: 899 return Error("Malformed block"); 900 case BitstreamEntry::EndBlock: 901 if (NumRecords != TypeList.size()) 902 return Error("Malformed block"); 903 return std::error_code(); 904 case BitstreamEntry::Record: 905 // The interesting case. 906 break; 907 } 908 909 // Read a record. 910 Record.clear(); 911 Type *ResultTy = nullptr; 912 switch (Stream.readRecord(Entry.ID, Record)) { 913 default: 914 return Error("Invalid value"); 915 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 916 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 917 // type list. This allows us to reserve space. 918 if (Record.size() < 1) 919 return Error("Invalid record"); 920 TypeList.resize(Record[0]); 921 continue; 922 case bitc::TYPE_CODE_VOID: // VOID 923 ResultTy = Type::getVoidTy(Context); 924 break; 925 case bitc::TYPE_CODE_HALF: // HALF 926 ResultTy = Type::getHalfTy(Context); 927 break; 928 case bitc::TYPE_CODE_FLOAT: // FLOAT 929 ResultTy = Type::getFloatTy(Context); 930 break; 931 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 932 ResultTy = Type::getDoubleTy(Context); 933 break; 934 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 935 ResultTy = Type::getX86_FP80Ty(Context); 936 break; 937 case bitc::TYPE_CODE_FP128: // FP128 938 ResultTy = Type::getFP128Ty(Context); 939 break; 940 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 941 ResultTy = Type::getPPC_FP128Ty(Context); 942 break; 943 case bitc::TYPE_CODE_LABEL: // LABEL 944 ResultTy = Type::getLabelTy(Context); 945 break; 946 case bitc::TYPE_CODE_METADATA: // METADATA 947 ResultTy = Type::getMetadataTy(Context); 948 break; 949 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 950 ResultTy = Type::getX86_MMXTy(Context); 951 break; 952 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 953 if (Record.size() < 1) 954 return Error("Invalid record"); 955 956 ResultTy = IntegerType::get(Context, Record[0]); 957 break; 958 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 959 // [pointee type, address space] 960 if (Record.size() < 1) 961 return Error("Invalid record"); 962 unsigned AddressSpace = 0; 963 if (Record.size() == 2) 964 AddressSpace = Record[1]; 965 ResultTy = getTypeByID(Record[0]); 966 if (!ResultTy) 967 return Error("Invalid type"); 968 ResultTy = PointerType::get(ResultTy, AddressSpace); 969 break; 970 } 971 case bitc::TYPE_CODE_FUNCTION_OLD: { 972 // FIXME: attrid is dead, remove it in LLVM 4.0 973 // FUNCTION: [vararg, attrid, retty, paramty x N] 974 if (Record.size() < 3) 975 return Error("Invalid record"); 976 SmallVector<Type*, 8> ArgTys; 977 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 978 if (Type *T = getTypeByID(Record[i])) 979 ArgTys.push_back(T); 980 else 981 break; 982 } 983 984 ResultTy = getTypeByID(Record[2]); 985 if (!ResultTy || ArgTys.size() < Record.size()-3) 986 return Error("Invalid type"); 987 988 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 989 break; 990 } 991 case bitc::TYPE_CODE_FUNCTION: { 992 // FUNCTION: [vararg, retty, paramty x N] 993 if (Record.size() < 2) 994 return Error("Invalid record"); 995 SmallVector<Type*, 8> ArgTys; 996 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 997 if (Type *T = getTypeByID(Record[i])) 998 ArgTys.push_back(T); 999 else 1000 break; 1001 } 1002 1003 ResultTy = getTypeByID(Record[1]); 1004 if (!ResultTy || ArgTys.size() < Record.size()-2) 1005 return Error("Invalid type"); 1006 1007 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1008 break; 1009 } 1010 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1011 if (Record.size() < 1) 1012 return Error("Invalid record"); 1013 SmallVector<Type*, 8> EltTys; 1014 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1015 if (Type *T = getTypeByID(Record[i])) 1016 EltTys.push_back(T); 1017 else 1018 break; 1019 } 1020 if (EltTys.size() != Record.size()-1) 1021 return Error("Invalid type"); 1022 ResultTy = StructType::get(Context, EltTys, Record[0]); 1023 break; 1024 } 1025 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1026 if (ConvertToString(Record, 0, TypeName)) 1027 return Error("Invalid record"); 1028 continue; 1029 1030 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1031 if (Record.size() < 1) 1032 return Error("Invalid record"); 1033 1034 if (NumRecords >= TypeList.size()) 1035 return Error("Invalid TYPE table"); 1036 1037 // Check to see if this was forward referenced, if so fill in the temp. 1038 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1039 if (Res) { 1040 Res->setName(TypeName); 1041 TypeList[NumRecords] = nullptr; 1042 } else // Otherwise, create a new struct. 1043 Res = createIdentifiedStructType(Context, TypeName); 1044 TypeName.clear(); 1045 1046 SmallVector<Type*, 8> EltTys; 1047 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1048 if (Type *T = getTypeByID(Record[i])) 1049 EltTys.push_back(T); 1050 else 1051 break; 1052 } 1053 if (EltTys.size() != Record.size()-1) 1054 return Error("Invalid record"); 1055 Res->setBody(EltTys, Record[0]); 1056 ResultTy = Res; 1057 break; 1058 } 1059 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1060 if (Record.size() != 1) 1061 return Error("Invalid record"); 1062 1063 if (NumRecords >= TypeList.size()) 1064 return Error("Invalid TYPE table"); 1065 1066 // Check to see if this was forward referenced, if so fill in the temp. 1067 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1068 if (Res) { 1069 Res->setName(TypeName); 1070 TypeList[NumRecords] = nullptr; 1071 } else // Otherwise, create a new struct with no body. 1072 Res = createIdentifiedStructType(Context, TypeName); 1073 TypeName.clear(); 1074 ResultTy = Res; 1075 break; 1076 } 1077 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1078 if (Record.size() < 2) 1079 return Error("Invalid record"); 1080 if ((ResultTy = getTypeByID(Record[1]))) 1081 ResultTy = ArrayType::get(ResultTy, Record[0]); 1082 else 1083 return Error("Invalid type"); 1084 break; 1085 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1086 if (Record.size() < 2) 1087 return Error("Invalid record"); 1088 if ((ResultTy = getTypeByID(Record[1]))) 1089 ResultTy = VectorType::get(ResultTy, Record[0]); 1090 else 1091 return Error("Invalid type"); 1092 break; 1093 } 1094 1095 if (NumRecords >= TypeList.size()) 1096 return Error("Invalid TYPE table"); 1097 assert(ResultTy && "Didn't read a type?"); 1098 assert(!TypeList[NumRecords] && "Already read type?"); 1099 TypeList[NumRecords++] = ResultTy; 1100 } 1101 } 1102 1103 std::error_code BitcodeReader::ParseValueSymbolTable() { 1104 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1105 return Error("Invalid record"); 1106 1107 SmallVector<uint64_t, 64> Record; 1108 1109 // Read all the records for this value table. 1110 SmallString<128> ValueName; 1111 while (1) { 1112 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1113 1114 switch (Entry.Kind) { 1115 case BitstreamEntry::SubBlock: // Handled for us already. 1116 case BitstreamEntry::Error: 1117 return Error("Malformed block"); 1118 case BitstreamEntry::EndBlock: 1119 return std::error_code(); 1120 case BitstreamEntry::Record: 1121 // The interesting case. 1122 break; 1123 } 1124 1125 // Read a record. 1126 Record.clear(); 1127 switch (Stream.readRecord(Entry.ID, Record)) { 1128 default: // Default behavior: unknown type. 1129 break; 1130 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1131 if (ConvertToString(Record, 1, ValueName)) 1132 return Error("Invalid record"); 1133 unsigned ValueID = Record[0]; 1134 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1135 return Error("Invalid record"); 1136 Value *V = ValueList[ValueID]; 1137 1138 V->setName(StringRef(ValueName.data(), ValueName.size())); 1139 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1140 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) 1141 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1142 } 1143 ValueName.clear(); 1144 break; 1145 } 1146 case bitc::VST_CODE_BBENTRY: { 1147 if (ConvertToString(Record, 1, ValueName)) 1148 return Error("Invalid record"); 1149 BasicBlock *BB = getBasicBlock(Record[0]); 1150 if (!BB) 1151 return Error("Invalid record"); 1152 1153 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1154 ValueName.clear(); 1155 break; 1156 } 1157 } 1158 } 1159 } 1160 1161 std::error_code BitcodeReader::ParseMetadata() { 1162 unsigned NextMDValueNo = MDValueList.size(); 1163 1164 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1165 return Error("Invalid record"); 1166 1167 SmallVector<uint64_t, 64> Record; 1168 1169 // Read all the records. 1170 while (1) { 1171 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1172 1173 switch (Entry.Kind) { 1174 case BitstreamEntry::SubBlock: // Handled for us already. 1175 case BitstreamEntry::Error: 1176 return Error("Malformed block"); 1177 case BitstreamEntry::EndBlock: 1178 MDValueList.tryToResolveCycles(); 1179 return std::error_code(); 1180 case BitstreamEntry::Record: 1181 // The interesting case. 1182 break; 1183 } 1184 1185 // Read a record. 1186 Record.clear(); 1187 unsigned Code = Stream.readRecord(Entry.ID, Record); 1188 bool IsDistinct = false; 1189 switch (Code) { 1190 default: // Default behavior: ignore. 1191 break; 1192 case bitc::METADATA_NAME: { 1193 // Read name of the named metadata. 1194 SmallString<8> Name(Record.begin(), Record.end()); 1195 Record.clear(); 1196 Code = Stream.ReadCode(); 1197 1198 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1199 unsigned NextBitCode = Stream.readRecord(Code, Record); 1200 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1201 1202 // Read named metadata elements. 1203 unsigned Size = Record.size(); 1204 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1205 for (unsigned i = 0; i != Size; ++i) { 1206 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1207 if (!MD) 1208 return Error("Invalid record"); 1209 NMD->addOperand(MD); 1210 } 1211 break; 1212 } 1213 case bitc::METADATA_OLD_FN_NODE: { 1214 // FIXME: Remove in 4.0. 1215 // This is a LocalAsMetadata record, the only type of function-local 1216 // metadata. 1217 if (Record.size() % 2 == 1) 1218 return Error("Invalid record"); 1219 1220 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1221 // to be legal, but there's no upgrade path. 1222 auto dropRecord = [&] { 1223 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1224 }; 1225 if (Record.size() != 2) { 1226 dropRecord(); 1227 break; 1228 } 1229 1230 Type *Ty = getTypeByID(Record[0]); 1231 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1232 dropRecord(); 1233 break; 1234 } 1235 1236 MDValueList.AssignValue( 1237 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1238 NextMDValueNo++); 1239 break; 1240 } 1241 case bitc::METADATA_OLD_NODE: { 1242 // FIXME: Remove in 4.0. 1243 if (Record.size() % 2 == 1) 1244 return Error("Invalid record"); 1245 1246 unsigned Size = Record.size(); 1247 SmallVector<Metadata *, 8> Elts; 1248 for (unsigned i = 0; i != Size; i += 2) { 1249 Type *Ty = getTypeByID(Record[i]); 1250 if (!Ty) 1251 return Error("Invalid record"); 1252 if (Ty->isMetadataTy()) 1253 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1254 else if (!Ty->isVoidTy()) { 1255 auto *MD = 1256 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1257 assert(isa<ConstantAsMetadata>(MD) && 1258 "Expected non-function-local metadata"); 1259 Elts.push_back(MD); 1260 } else 1261 Elts.push_back(nullptr); 1262 } 1263 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1264 break; 1265 } 1266 case bitc::METADATA_VALUE: { 1267 if (Record.size() != 2) 1268 return Error("Invalid record"); 1269 1270 Type *Ty = getTypeByID(Record[0]); 1271 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1272 return Error("Invalid record"); 1273 1274 MDValueList.AssignValue( 1275 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1276 NextMDValueNo++); 1277 break; 1278 } 1279 case bitc::METADATA_DISTINCT_NODE: 1280 IsDistinct = true; 1281 // fallthrough... 1282 case bitc::METADATA_NODE: { 1283 SmallVector<Metadata *, 8> Elts; 1284 Elts.reserve(Record.size()); 1285 for (unsigned ID : Record) 1286 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1287 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1288 : MDNode::get(Context, Elts), 1289 NextMDValueNo++); 1290 break; 1291 } 1292 case bitc::METADATA_LOCATION: { 1293 if (Record.size() != 5) 1294 return Error("Invalid record"); 1295 1296 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1297 unsigned Line = Record[1]; 1298 unsigned Column = Record[2]; 1299 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1300 Metadata *InlinedAt = 1301 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1302 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1303 NextMDValueNo++); 1304 break; 1305 } 1306 case bitc::METADATA_STRING: { 1307 std::string String(Record.begin(), Record.end()); 1308 llvm::UpgradeMDStringConstant(String); 1309 Metadata *MD = MDString::get(Context, String); 1310 MDValueList.AssignValue(MD, NextMDValueNo++); 1311 break; 1312 } 1313 case bitc::METADATA_KIND: { 1314 if (Record.size() < 2) 1315 return Error("Invalid record"); 1316 1317 unsigned Kind = Record[0]; 1318 SmallString<8> Name(Record.begin()+1, Record.end()); 1319 1320 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1321 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1322 return Error("Conflicting METADATA_KIND records"); 1323 break; 1324 } 1325 } 1326 } 1327 } 1328 1329 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1330 /// the LSB for dense VBR encoding. 1331 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1332 if ((V & 1) == 0) 1333 return V >> 1; 1334 if (V != 1) 1335 return -(V >> 1); 1336 // There is no such thing as -0 with integers. "-0" really means MININT. 1337 return 1ULL << 63; 1338 } 1339 1340 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1341 /// values and aliases that we can. 1342 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1343 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1344 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1345 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1346 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1347 1348 GlobalInitWorklist.swap(GlobalInits); 1349 AliasInitWorklist.swap(AliasInits); 1350 FunctionPrefixWorklist.swap(FunctionPrefixes); 1351 FunctionPrologueWorklist.swap(FunctionPrologues); 1352 1353 while (!GlobalInitWorklist.empty()) { 1354 unsigned ValID = GlobalInitWorklist.back().second; 1355 if (ValID >= ValueList.size()) { 1356 // Not ready to resolve this yet, it requires something later in the file. 1357 GlobalInits.push_back(GlobalInitWorklist.back()); 1358 } else { 1359 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1360 GlobalInitWorklist.back().first->setInitializer(C); 1361 else 1362 return Error("Expected a constant"); 1363 } 1364 GlobalInitWorklist.pop_back(); 1365 } 1366 1367 while (!AliasInitWorklist.empty()) { 1368 unsigned ValID = AliasInitWorklist.back().second; 1369 if (ValID >= ValueList.size()) { 1370 AliasInits.push_back(AliasInitWorklist.back()); 1371 } else { 1372 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1373 AliasInitWorklist.back().first->setAliasee(C); 1374 else 1375 return Error("Expected a constant"); 1376 } 1377 AliasInitWorklist.pop_back(); 1378 } 1379 1380 while (!FunctionPrefixWorklist.empty()) { 1381 unsigned ValID = FunctionPrefixWorklist.back().second; 1382 if (ValID >= ValueList.size()) { 1383 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1384 } else { 1385 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1386 FunctionPrefixWorklist.back().first->setPrefixData(C); 1387 else 1388 return Error("Expected a constant"); 1389 } 1390 FunctionPrefixWorklist.pop_back(); 1391 } 1392 1393 while (!FunctionPrologueWorklist.empty()) { 1394 unsigned ValID = FunctionPrologueWorklist.back().second; 1395 if (ValID >= ValueList.size()) { 1396 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1397 } else { 1398 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1399 FunctionPrologueWorklist.back().first->setPrologueData(C); 1400 else 1401 return Error("Expected a constant"); 1402 } 1403 FunctionPrologueWorklist.pop_back(); 1404 } 1405 1406 return std::error_code(); 1407 } 1408 1409 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1410 SmallVector<uint64_t, 8> Words(Vals.size()); 1411 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1412 BitcodeReader::decodeSignRotatedValue); 1413 1414 return APInt(TypeBits, Words); 1415 } 1416 1417 std::error_code BitcodeReader::ParseConstants() { 1418 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1419 return Error("Invalid record"); 1420 1421 SmallVector<uint64_t, 64> Record; 1422 1423 // Read all the records for this value table. 1424 Type *CurTy = Type::getInt32Ty(Context); 1425 unsigned NextCstNo = ValueList.size(); 1426 while (1) { 1427 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1428 1429 switch (Entry.Kind) { 1430 case BitstreamEntry::SubBlock: // Handled for us already. 1431 case BitstreamEntry::Error: 1432 return Error("Malformed block"); 1433 case BitstreamEntry::EndBlock: 1434 if (NextCstNo != ValueList.size()) 1435 return Error("Invalid ronstant reference"); 1436 1437 // Once all the constants have been read, go through and resolve forward 1438 // references. 1439 ValueList.ResolveConstantForwardRefs(); 1440 return std::error_code(); 1441 case BitstreamEntry::Record: 1442 // The interesting case. 1443 break; 1444 } 1445 1446 // Read a record. 1447 Record.clear(); 1448 Value *V = nullptr; 1449 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1450 switch (BitCode) { 1451 default: // Default behavior: unknown constant 1452 case bitc::CST_CODE_UNDEF: // UNDEF 1453 V = UndefValue::get(CurTy); 1454 break; 1455 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1456 if (Record.empty()) 1457 return Error("Invalid record"); 1458 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1459 return Error("Invalid record"); 1460 CurTy = TypeList[Record[0]]; 1461 continue; // Skip the ValueList manipulation. 1462 case bitc::CST_CODE_NULL: // NULL 1463 V = Constant::getNullValue(CurTy); 1464 break; 1465 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1466 if (!CurTy->isIntegerTy() || Record.empty()) 1467 return Error("Invalid record"); 1468 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1469 break; 1470 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1471 if (!CurTy->isIntegerTy() || Record.empty()) 1472 return Error("Invalid record"); 1473 1474 APInt VInt = ReadWideAPInt(Record, 1475 cast<IntegerType>(CurTy)->getBitWidth()); 1476 V = ConstantInt::get(Context, VInt); 1477 1478 break; 1479 } 1480 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1481 if (Record.empty()) 1482 return Error("Invalid record"); 1483 if (CurTy->isHalfTy()) 1484 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1485 APInt(16, (uint16_t)Record[0]))); 1486 else if (CurTy->isFloatTy()) 1487 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1488 APInt(32, (uint32_t)Record[0]))); 1489 else if (CurTy->isDoubleTy()) 1490 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1491 APInt(64, Record[0]))); 1492 else if (CurTy->isX86_FP80Ty()) { 1493 // Bits are not stored the same way as a normal i80 APInt, compensate. 1494 uint64_t Rearrange[2]; 1495 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1496 Rearrange[1] = Record[0] >> 48; 1497 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1498 APInt(80, Rearrange))); 1499 } else if (CurTy->isFP128Ty()) 1500 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1501 APInt(128, Record))); 1502 else if (CurTy->isPPC_FP128Ty()) 1503 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1504 APInt(128, Record))); 1505 else 1506 V = UndefValue::get(CurTy); 1507 break; 1508 } 1509 1510 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1511 if (Record.empty()) 1512 return Error("Invalid record"); 1513 1514 unsigned Size = Record.size(); 1515 SmallVector<Constant*, 16> Elts; 1516 1517 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1518 for (unsigned i = 0; i != Size; ++i) 1519 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1520 STy->getElementType(i))); 1521 V = ConstantStruct::get(STy, Elts); 1522 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1523 Type *EltTy = ATy->getElementType(); 1524 for (unsigned i = 0; i != Size; ++i) 1525 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1526 V = ConstantArray::get(ATy, Elts); 1527 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1528 Type *EltTy = VTy->getElementType(); 1529 for (unsigned i = 0; i != Size; ++i) 1530 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1531 V = ConstantVector::get(Elts); 1532 } else { 1533 V = UndefValue::get(CurTy); 1534 } 1535 break; 1536 } 1537 case bitc::CST_CODE_STRING: // STRING: [values] 1538 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1539 if (Record.empty()) 1540 return Error("Invalid record"); 1541 1542 SmallString<16> Elts(Record.begin(), Record.end()); 1543 V = ConstantDataArray::getString(Context, Elts, 1544 BitCode == bitc::CST_CODE_CSTRING); 1545 break; 1546 } 1547 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1548 if (Record.empty()) 1549 return Error("Invalid record"); 1550 1551 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1552 unsigned Size = Record.size(); 1553 1554 if (EltTy->isIntegerTy(8)) { 1555 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1556 if (isa<VectorType>(CurTy)) 1557 V = ConstantDataVector::get(Context, Elts); 1558 else 1559 V = ConstantDataArray::get(Context, Elts); 1560 } else if (EltTy->isIntegerTy(16)) { 1561 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1562 if (isa<VectorType>(CurTy)) 1563 V = ConstantDataVector::get(Context, Elts); 1564 else 1565 V = ConstantDataArray::get(Context, Elts); 1566 } else if (EltTy->isIntegerTy(32)) { 1567 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1568 if (isa<VectorType>(CurTy)) 1569 V = ConstantDataVector::get(Context, Elts); 1570 else 1571 V = ConstantDataArray::get(Context, Elts); 1572 } else if (EltTy->isIntegerTy(64)) { 1573 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1574 if (isa<VectorType>(CurTy)) 1575 V = ConstantDataVector::get(Context, Elts); 1576 else 1577 V = ConstantDataArray::get(Context, Elts); 1578 } else if (EltTy->isFloatTy()) { 1579 SmallVector<float, 16> Elts(Size); 1580 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1581 if (isa<VectorType>(CurTy)) 1582 V = ConstantDataVector::get(Context, Elts); 1583 else 1584 V = ConstantDataArray::get(Context, Elts); 1585 } else if (EltTy->isDoubleTy()) { 1586 SmallVector<double, 16> Elts(Size); 1587 std::transform(Record.begin(), Record.end(), Elts.begin(), 1588 BitsToDouble); 1589 if (isa<VectorType>(CurTy)) 1590 V = ConstantDataVector::get(Context, Elts); 1591 else 1592 V = ConstantDataArray::get(Context, Elts); 1593 } else { 1594 return Error("Invalid type for value"); 1595 } 1596 break; 1597 } 1598 1599 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1600 if (Record.size() < 3) 1601 return Error("Invalid record"); 1602 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1603 if (Opc < 0) { 1604 V = UndefValue::get(CurTy); // Unknown binop. 1605 } else { 1606 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1607 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1608 unsigned Flags = 0; 1609 if (Record.size() >= 4) { 1610 if (Opc == Instruction::Add || 1611 Opc == Instruction::Sub || 1612 Opc == Instruction::Mul || 1613 Opc == Instruction::Shl) { 1614 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1615 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1616 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1617 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1618 } else if (Opc == Instruction::SDiv || 1619 Opc == Instruction::UDiv || 1620 Opc == Instruction::LShr || 1621 Opc == Instruction::AShr) { 1622 if (Record[3] & (1 << bitc::PEO_EXACT)) 1623 Flags |= SDivOperator::IsExact; 1624 } 1625 } 1626 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1627 } 1628 break; 1629 } 1630 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1631 if (Record.size() < 3) 1632 return Error("Invalid record"); 1633 int Opc = GetDecodedCastOpcode(Record[0]); 1634 if (Opc < 0) { 1635 V = UndefValue::get(CurTy); // Unknown cast. 1636 } else { 1637 Type *OpTy = getTypeByID(Record[1]); 1638 if (!OpTy) 1639 return Error("Invalid record"); 1640 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1641 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1642 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1643 } 1644 break; 1645 } 1646 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1647 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1648 if (Record.size() & 1) 1649 return Error("Invalid record"); 1650 SmallVector<Constant*, 16> Elts; 1651 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1652 Type *ElTy = getTypeByID(Record[i]); 1653 if (!ElTy) 1654 return Error("Invalid record"); 1655 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1656 } 1657 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1658 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1659 BitCode == 1660 bitc::CST_CODE_CE_INBOUNDS_GEP); 1661 break; 1662 } 1663 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1664 if (Record.size() < 3) 1665 return Error("Invalid record"); 1666 1667 Type *SelectorTy = Type::getInt1Ty(Context); 1668 1669 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1670 // vector. Otherwise, it must be a single bit. 1671 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1672 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1673 VTy->getNumElements()); 1674 1675 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1676 SelectorTy), 1677 ValueList.getConstantFwdRef(Record[1],CurTy), 1678 ValueList.getConstantFwdRef(Record[2],CurTy)); 1679 break; 1680 } 1681 case bitc::CST_CODE_CE_EXTRACTELT 1682 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1683 if (Record.size() < 3) 1684 return Error("Invalid record"); 1685 VectorType *OpTy = 1686 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1687 if (!OpTy) 1688 return Error("Invalid record"); 1689 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1690 Constant *Op1 = nullptr; 1691 if (Record.size() == 4) { 1692 Type *IdxTy = getTypeByID(Record[2]); 1693 if (!IdxTy) 1694 return Error("Invalid record"); 1695 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1696 } else // TODO: Remove with llvm 4.0 1697 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1698 if (!Op1) 1699 return Error("Invalid record"); 1700 V = ConstantExpr::getExtractElement(Op0, Op1); 1701 break; 1702 } 1703 case bitc::CST_CODE_CE_INSERTELT 1704 : { // CE_INSERTELT: [opval, opval, opty, opval] 1705 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1706 if (Record.size() < 3 || !OpTy) 1707 return Error("Invalid record"); 1708 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1709 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1710 OpTy->getElementType()); 1711 Constant *Op2 = nullptr; 1712 if (Record.size() == 4) { 1713 Type *IdxTy = getTypeByID(Record[2]); 1714 if (!IdxTy) 1715 return Error("Invalid record"); 1716 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1717 } else // TODO: Remove with llvm 4.0 1718 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1719 if (!Op2) 1720 return Error("Invalid record"); 1721 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1722 break; 1723 } 1724 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1725 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1726 if (Record.size() < 3 || !OpTy) 1727 return Error("Invalid record"); 1728 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1729 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1730 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1731 OpTy->getNumElements()); 1732 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1733 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1734 break; 1735 } 1736 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1737 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1738 VectorType *OpTy = 1739 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1740 if (Record.size() < 4 || !RTy || !OpTy) 1741 return Error("Invalid record"); 1742 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1743 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1744 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1745 RTy->getNumElements()); 1746 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1747 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1748 break; 1749 } 1750 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1751 if (Record.size() < 4) 1752 return Error("Invalid record"); 1753 Type *OpTy = getTypeByID(Record[0]); 1754 if (!OpTy) 1755 return Error("Invalid record"); 1756 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1757 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1758 1759 if (OpTy->isFPOrFPVectorTy()) 1760 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1761 else 1762 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1763 break; 1764 } 1765 // This maintains backward compatibility, pre-asm dialect keywords. 1766 // FIXME: Remove with the 4.0 release. 1767 case bitc::CST_CODE_INLINEASM_OLD: { 1768 if (Record.size() < 2) 1769 return Error("Invalid record"); 1770 std::string AsmStr, ConstrStr; 1771 bool HasSideEffects = Record[0] & 1; 1772 bool IsAlignStack = Record[0] >> 1; 1773 unsigned AsmStrSize = Record[1]; 1774 if (2+AsmStrSize >= Record.size()) 1775 return Error("Invalid record"); 1776 unsigned ConstStrSize = Record[2+AsmStrSize]; 1777 if (3+AsmStrSize+ConstStrSize > Record.size()) 1778 return Error("Invalid record"); 1779 1780 for (unsigned i = 0; i != AsmStrSize; ++i) 1781 AsmStr += (char)Record[2+i]; 1782 for (unsigned i = 0; i != ConstStrSize; ++i) 1783 ConstrStr += (char)Record[3+AsmStrSize+i]; 1784 PointerType *PTy = cast<PointerType>(CurTy); 1785 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1786 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1787 break; 1788 } 1789 // This version adds support for the asm dialect keywords (e.g., 1790 // inteldialect). 1791 case bitc::CST_CODE_INLINEASM: { 1792 if (Record.size() < 2) 1793 return Error("Invalid record"); 1794 std::string AsmStr, ConstrStr; 1795 bool HasSideEffects = Record[0] & 1; 1796 bool IsAlignStack = (Record[0] >> 1) & 1; 1797 unsigned AsmDialect = Record[0] >> 2; 1798 unsigned AsmStrSize = Record[1]; 1799 if (2+AsmStrSize >= Record.size()) 1800 return Error("Invalid record"); 1801 unsigned ConstStrSize = Record[2+AsmStrSize]; 1802 if (3+AsmStrSize+ConstStrSize > Record.size()) 1803 return Error("Invalid record"); 1804 1805 for (unsigned i = 0; i != AsmStrSize; ++i) 1806 AsmStr += (char)Record[2+i]; 1807 for (unsigned i = 0; i != ConstStrSize; ++i) 1808 ConstrStr += (char)Record[3+AsmStrSize+i]; 1809 PointerType *PTy = cast<PointerType>(CurTy); 1810 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1811 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1812 InlineAsm::AsmDialect(AsmDialect)); 1813 break; 1814 } 1815 case bitc::CST_CODE_BLOCKADDRESS:{ 1816 if (Record.size() < 3) 1817 return Error("Invalid record"); 1818 Type *FnTy = getTypeByID(Record[0]); 1819 if (!FnTy) 1820 return Error("Invalid record"); 1821 Function *Fn = 1822 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1823 if (!Fn) 1824 return Error("Invalid record"); 1825 1826 // Don't let Fn get dematerialized. 1827 BlockAddressesTaken.insert(Fn); 1828 1829 // If the function is already parsed we can insert the block address right 1830 // away. 1831 BasicBlock *BB; 1832 unsigned BBID = Record[2]; 1833 if (!BBID) 1834 // Invalid reference to entry block. 1835 return Error("Invalid ID"); 1836 if (!Fn->empty()) { 1837 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1838 for (size_t I = 0, E = BBID; I != E; ++I) { 1839 if (BBI == BBE) 1840 return Error("Invalid ID"); 1841 ++BBI; 1842 } 1843 BB = BBI; 1844 } else { 1845 // Otherwise insert a placeholder and remember it so it can be inserted 1846 // when the function is parsed. 1847 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1848 if (FwdBBs.empty()) 1849 BasicBlockFwdRefQueue.push_back(Fn); 1850 if (FwdBBs.size() < BBID + 1) 1851 FwdBBs.resize(BBID + 1); 1852 if (!FwdBBs[BBID]) 1853 FwdBBs[BBID] = BasicBlock::Create(Context); 1854 BB = FwdBBs[BBID]; 1855 } 1856 V = BlockAddress::get(Fn, BB); 1857 break; 1858 } 1859 } 1860 1861 ValueList.AssignValue(V, NextCstNo); 1862 ++NextCstNo; 1863 } 1864 } 1865 1866 std::error_code BitcodeReader::ParseUseLists() { 1867 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1868 return Error("Invalid record"); 1869 1870 // Read all the records. 1871 SmallVector<uint64_t, 64> Record; 1872 while (1) { 1873 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1874 1875 switch (Entry.Kind) { 1876 case BitstreamEntry::SubBlock: // Handled for us already. 1877 case BitstreamEntry::Error: 1878 return Error("Malformed block"); 1879 case BitstreamEntry::EndBlock: 1880 return std::error_code(); 1881 case BitstreamEntry::Record: 1882 // The interesting case. 1883 break; 1884 } 1885 1886 // Read a use list record. 1887 Record.clear(); 1888 bool IsBB = false; 1889 switch (Stream.readRecord(Entry.ID, Record)) { 1890 default: // Default behavior: unknown type. 1891 break; 1892 case bitc::USELIST_CODE_BB: 1893 IsBB = true; 1894 // fallthrough 1895 case bitc::USELIST_CODE_DEFAULT: { 1896 unsigned RecordLength = Record.size(); 1897 if (RecordLength < 3) 1898 // Records should have at least an ID and two indexes. 1899 return Error("Invalid record"); 1900 unsigned ID = Record.back(); 1901 Record.pop_back(); 1902 1903 Value *V; 1904 if (IsBB) { 1905 assert(ID < FunctionBBs.size() && "Basic block not found"); 1906 V = FunctionBBs[ID]; 1907 } else 1908 V = ValueList[ID]; 1909 unsigned NumUses = 0; 1910 SmallDenseMap<const Use *, unsigned, 16> Order; 1911 for (const Use &U : V->uses()) { 1912 if (++NumUses > Record.size()) 1913 break; 1914 Order[&U] = Record[NumUses - 1]; 1915 } 1916 if (Order.size() != Record.size() || NumUses > Record.size()) 1917 // Mismatches can happen if the functions are being materialized lazily 1918 // (out-of-order), or a value has been upgraded. 1919 break; 1920 1921 V->sortUseList([&](const Use &L, const Use &R) { 1922 return Order.lookup(&L) < Order.lookup(&R); 1923 }); 1924 break; 1925 } 1926 } 1927 } 1928 } 1929 1930 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1931 /// remember where it is and then skip it. This lets us lazily deserialize the 1932 /// functions. 1933 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1934 // Get the function we are talking about. 1935 if (FunctionsWithBodies.empty()) 1936 return Error("Insufficient function protos"); 1937 1938 Function *Fn = FunctionsWithBodies.back(); 1939 FunctionsWithBodies.pop_back(); 1940 1941 // Save the current stream state. 1942 uint64_t CurBit = Stream.GetCurrentBitNo(); 1943 DeferredFunctionInfo[Fn] = CurBit; 1944 1945 // Skip over the function block for now. 1946 if (Stream.SkipBlock()) 1947 return Error("Invalid record"); 1948 return std::error_code(); 1949 } 1950 1951 std::error_code BitcodeReader::GlobalCleanup() { 1952 // Patch the initializers for globals and aliases up. 1953 ResolveGlobalAndAliasInits(); 1954 if (!GlobalInits.empty() || !AliasInits.empty()) 1955 return Error("Malformed global initializer set"); 1956 1957 // Look for intrinsic functions which need to be upgraded at some point 1958 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1959 FI != FE; ++FI) { 1960 Function *NewFn; 1961 if (UpgradeIntrinsicFunction(FI, NewFn)) 1962 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1963 } 1964 1965 // Look for global variables which need to be renamed. 1966 for (Module::global_iterator 1967 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1968 GI != GE;) { 1969 GlobalVariable *GV = GI++; 1970 UpgradeGlobalVariable(GV); 1971 } 1972 1973 // Force deallocation of memory for these vectors to favor the client that 1974 // want lazy deserialization. 1975 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1976 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1977 return std::error_code(); 1978 } 1979 1980 std::error_code BitcodeReader::ParseModule(bool Resume) { 1981 if (Resume) 1982 Stream.JumpToBit(NextUnreadBit); 1983 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1984 return Error("Invalid record"); 1985 1986 SmallVector<uint64_t, 64> Record; 1987 std::vector<std::string> SectionTable; 1988 std::vector<std::string> GCTable; 1989 1990 // Read all the records for this module. 1991 while (1) { 1992 BitstreamEntry Entry = Stream.advance(); 1993 1994 switch (Entry.Kind) { 1995 case BitstreamEntry::Error: 1996 return Error("Malformed block"); 1997 case BitstreamEntry::EndBlock: 1998 return GlobalCleanup(); 1999 2000 case BitstreamEntry::SubBlock: 2001 switch (Entry.ID) { 2002 default: // Skip unknown content. 2003 if (Stream.SkipBlock()) 2004 return Error("Invalid record"); 2005 break; 2006 case bitc::BLOCKINFO_BLOCK_ID: 2007 if (Stream.ReadBlockInfoBlock()) 2008 return Error("Malformed block"); 2009 break; 2010 case bitc::PARAMATTR_BLOCK_ID: 2011 if (std::error_code EC = ParseAttributeBlock()) 2012 return EC; 2013 break; 2014 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2015 if (std::error_code EC = ParseAttributeGroupBlock()) 2016 return EC; 2017 break; 2018 case bitc::TYPE_BLOCK_ID_NEW: 2019 if (std::error_code EC = ParseTypeTable()) 2020 return EC; 2021 break; 2022 case bitc::VALUE_SYMTAB_BLOCK_ID: 2023 if (std::error_code EC = ParseValueSymbolTable()) 2024 return EC; 2025 SeenValueSymbolTable = true; 2026 break; 2027 case bitc::CONSTANTS_BLOCK_ID: 2028 if (std::error_code EC = ParseConstants()) 2029 return EC; 2030 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2031 return EC; 2032 break; 2033 case bitc::METADATA_BLOCK_ID: 2034 if (std::error_code EC = ParseMetadata()) 2035 return EC; 2036 break; 2037 case bitc::FUNCTION_BLOCK_ID: 2038 // If this is the first function body we've seen, reverse the 2039 // FunctionsWithBodies list. 2040 if (!SeenFirstFunctionBody) { 2041 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2042 if (std::error_code EC = GlobalCleanup()) 2043 return EC; 2044 SeenFirstFunctionBody = true; 2045 } 2046 2047 if (std::error_code EC = RememberAndSkipFunctionBody()) 2048 return EC; 2049 // For streaming bitcode, suspend parsing when we reach the function 2050 // bodies. Subsequent materialization calls will resume it when 2051 // necessary. For streaming, the function bodies must be at the end of 2052 // the bitcode. If the bitcode file is old, the symbol table will be 2053 // at the end instead and will not have been seen yet. In this case, 2054 // just finish the parse now. 2055 if (LazyStreamer && SeenValueSymbolTable) { 2056 NextUnreadBit = Stream.GetCurrentBitNo(); 2057 return std::error_code(); 2058 } 2059 break; 2060 case bitc::USELIST_BLOCK_ID: 2061 if (std::error_code EC = ParseUseLists()) 2062 return EC; 2063 break; 2064 } 2065 continue; 2066 2067 case BitstreamEntry::Record: 2068 // The interesting case. 2069 break; 2070 } 2071 2072 2073 // Read a record. 2074 switch (Stream.readRecord(Entry.ID, Record)) { 2075 default: break; // Default behavior, ignore unknown content. 2076 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2077 if (Record.size() < 1) 2078 return Error("Invalid record"); 2079 // Only version #0 and #1 are supported so far. 2080 unsigned module_version = Record[0]; 2081 switch (module_version) { 2082 default: 2083 return Error("Invalid value"); 2084 case 0: 2085 UseRelativeIDs = false; 2086 break; 2087 case 1: 2088 UseRelativeIDs = true; 2089 break; 2090 } 2091 break; 2092 } 2093 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2094 std::string S; 2095 if (ConvertToString(Record, 0, S)) 2096 return Error("Invalid record"); 2097 TheModule->setTargetTriple(S); 2098 break; 2099 } 2100 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2101 std::string S; 2102 if (ConvertToString(Record, 0, S)) 2103 return Error("Invalid record"); 2104 TheModule->setDataLayout(S); 2105 break; 2106 } 2107 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2108 std::string S; 2109 if (ConvertToString(Record, 0, S)) 2110 return Error("Invalid record"); 2111 TheModule->setModuleInlineAsm(S); 2112 break; 2113 } 2114 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2115 // FIXME: Remove in 4.0. 2116 std::string S; 2117 if (ConvertToString(Record, 0, S)) 2118 return Error("Invalid record"); 2119 // Ignore value. 2120 break; 2121 } 2122 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2123 std::string S; 2124 if (ConvertToString(Record, 0, S)) 2125 return Error("Invalid record"); 2126 SectionTable.push_back(S); 2127 break; 2128 } 2129 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2130 std::string S; 2131 if (ConvertToString(Record, 0, S)) 2132 return Error("Invalid record"); 2133 GCTable.push_back(S); 2134 break; 2135 } 2136 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2137 if (Record.size() < 2) 2138 return Error("Invalid record"); 2139 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2140 unsigned ComdatNameSize = Record[1]; 2141 std::string ComdatName; 2142 ComdatName.reserve(ComdatNameSize); 2143 for (unsigned i = 0; i != ComdatNameSize; ++i) 2144 ComdatName += (char)Record[2 + i]; 2145 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2146 C->setSelectionKind(SK); 2147 ComdatList.push_back(C); 2148 break; 2149 } 2150 // GLOBALVAR: [pointer type, isconst, initid, 2151 // linkage, alignment, section, visibility, threadlocal, 2152 // unnamed_addr, dllstorageclass] 2153 case bitc::MODULE_CODE_GLOBALVAR: { 2154 if (Record.size() < 6) 2155 return Error("Invalid record"); 2156 Type *Ty = getTypeByID(Record[0]); 2157 if (!Ty) 2158 return Error("Invalid record"); 2159 if (!Ty->isPointerTy()) 2160 return Error("Invalid type for value"); 2161 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2162 Ty = cast<PointerType>(Ty)->getElementType(); 2163 2164 bool isConstant = Record[1]; 2165 uint64_t RawLinkage = Record[3]; 2166 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2167 unsigned Alignment = (1 << Record[4]) >> 1; 2168 std::string Section; 2169 if (Record[5]) { 2170 if (Record[5]-1 >= SectionTable.size()) 2171 return Error("Invalid ID"); 2172 Section = SectionTable[Record[5]-1]; 2173 } 2174 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2175 // Local linkage must have default visibility. 2176 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2177 // FIXME: Change to an error if non-default in 4.0. 2178 Visibility = GetDecodedVisibility(Record[6]); 2179 2180 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2181 if (Record.size() > 7) 2182 TLM = GetDecodedThreadLocalMode(Record[7]); 2183 2184 bool UnnamedAddr = false; 2185 if (Record.size() > 8) 2186 UnnamedAddr = Record[8]; 2187 2188 bool ExternallyInitialized = false; 2189 if (Record.size() > 9) 2190 ExternallyInitialized = Record[9]; 2191 2192 GlobalVariable *NewGV = 2193 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2194 TLM, AddressSpace, ExternallyInitialized); 2195 NewGV->setAlignment(Alignment); 2196 if (!Section.empty()) 2197 NewGV->setSection(Section); 2198 NewGV->setVisibility(Visibility); 2199 NewGV->setUnnamedAddr(UnnamedAddr); 2200 2201 if (Record.size() > 10) 2202 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2203 else 2204 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2205 2206 ValueList.push_back(NewGV); 2207 2208 // Remember which value to use for the global initializer. 2209 if (unsigned InitID = Record[2]) 2210 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2211 2212 if (Record.size() > 11) { 2213 if (unsigned ComdatID = Record[11]) { 2214 assert(ComdatID <= ComdatList.size()); 2215 NewGV->setComdat(ComdatList[ComdatID - 1]); 2216 } 2217 } else if (hasImplicitComdat(RawLinkage)) { 2218 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2219 } 2220 break; 2221 } 2222 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2223 // alignment, section, visibility, gc, unnamed_addr, 2224 // prologuedata, dllstorageclass, comdat, prefixdata] 2225 case bitc::MODULE_CODE_FUNCTION: { 2226 if (Record.size() < 8) 2227 return Error("Invalid record"); 2228 Type *Ty = getTypeByID(Record[0]); 2229 if (!Ty) 2230 return Error("Invalid record"); 2231 if (!Ty->isPointerTy()) 2232 return Error("Invalid type for value"); 2233 FunctionType *FTy = 2234 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2235 if (!FTy) 2236 return Error("Invalid type for value"); 2237 2238 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2239 "", TheModule); 2240 2241 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2242 bool isProto = Record[2]; 2243 uint64_t RawLinkage = Record[3]; 2244 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2245 Func->setAttributes(getAttributes(Record[4])); 2246 2247 Func->setAlignment((1 << Record[5]) >> 1); 2248 if (Record[6]) { 2249 if (Record[6]-1 >= SectionTable.size()) 2250 return Error("Invalid ID"); 2251 Func->setSection(SectionTable[Record[6]-1]); 2252 } 2253 // Local linkage must have default visibility. 2254 if (!Func->hasLocalLinkage()) 2255 // FIXME: Change to an error if non-default in 4.0. 2256 Func->setVisibility(GetDecodedVisibility(Record[7])); 2257 if (Record.size() > 8 && Record[8]) { 2258 if (Record[8]-1 > GCTable.size()) 2259 return Error("Invalid ID"); 2260 Func->setGC(GCTable[Record[8]-1].c_str()); 2261 } 2262 bool UnnamedAddr = false; 2263 if (Record.size() > 9) 2264 UnnamedAddr = Record[9]; 2265 Func->setUnnamedAddr(UnnamedAddr); 2266 if (Record.size() > 10 && Record[10] != 0) 2267 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2268 2269 if (Record.size() > 11) 2270 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2271 else 2272 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2273 2274 if (Record.size() > 12) { 2275 if (unsigned ComdatID = Record[12]) { 2276 assert(ComdatID <= ComdatList.size()); 2277 Func->setComdat(ComdatList[ComdatID - 1]); 2278 } 2279 } else if (hasImplicitComdat(RawLinkage)) { 2280 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2281 } 2282 2283 if (Record.size() > 13 && Record[13] != 0) 2284 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2285 2286 ValueList.push_back(Func); 2287 2288 // If this is a function with a body, remember the prototype we are 2289 // creating now, so that we can match up the body with them later. 2290 if (!isProto) { 2291 Func->setIsMaterializable(true); 2292 FunctionsWithBodies.push_back(Func); 2293 if (LazyStreamer) 2294 DeferredFunctionInfo[Func] = 0; 2295 } 2296 break; 2297 } 2298 // ALIAS: [alias type, aliasee val#, linkage] 2299 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2300 case bitc::MODULE_CODE_ALIAS: { 2301 if (Record.size() < 3) 2302 return Error("Invalid record"); 2303 Type *Ty = getTypeByID(Record[0]); 2304 if (!Ty) 2305 return Error("Invalid record"); 2306 auto *PTy = dyn_cast<PointerType>(Ty); 2307 if (!PTy) 2308 return Error("Invalid type for value"); 2309 2310 auto *NewGA = 2311 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2312 getDecodedLinkage(Record[2]), "", TheModule); 2313 // Old bitcode files didn't have visibility field. 2314 // Local linkage must have default visibility. 2315 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2316 // FIXME: Change to an error if non-default in 4.0. 2317 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2318 if (Record.size() > 4) 2319 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2320 else 2321 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2322 if (Record.size() > 5) 2323 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2324 if (Record.size() > 6) 2325 NewGA->setUnnamedAddr(Record[6]); 2326 ValueList.push_back(NewGA); 2327 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2328 break; 2329 } 2330 /// MODULE_CODE_PURGEVALS: [numvals] 2331 case bitc::MODULE_CODE_PURGEVALS: 2332 // Trim down the value list to the specified size. 2333 if (Record.size() < 1 || Record[0] > ValueList.size()) 2334 return Error("Invalid record"); 2335 ValueList.shrinkTo(Record[0]); 2336 break; 2337 } 2338 Record.clear(); 2339 } 2340 } 2341 2342 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2343 TheModule = nullptr; 2344 2345 if (std::error_code EC = InitStream()) 2346 return EC; 2347 2348 // Sniff for the signature. 2349 if (Stream.Read(8) != 'B' || 2350 Stream.Read(8) != 'C' || 2351 Stream.Read(4) != 0x0 || 2352 Stream.Read(4) != 0xC || 2353 Stream.Read(4) != 0xE || 2354 Stream.Read(4) != 0xD) 2355 return Error("Invalid bitcode signature"); 2356 2357 // We expect a number of well-defined blocks, though we don't necessarily 2358 // need to understand them all. 2359 while (1) { 2360 if (Stream.AtEndOfStream()) 2361 return std::error_code(); 2362 2363 BitstreamEntry Entry = 2364 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2365 2366 switch (Entry.Kind) { 2367 case BitstreamEntry::Error: 2368 return Error("Malformed block"); 2369 case BitstreamEntry::EndBlock: 2370 return std::error_code(); 2371 2372 case BitstreamEntry::SubBlock: 2373 switch (Entry.ID) { 2374 case bitc::BLOCKINFO_BLOCK_ID: 2375 if (Stream.ReadBlockInfoBlock()) 2376 return Error("Malformed block"); 2377 break; 2378 case bitc::MODULE_BLOCK_ID: 2379 // Reject multiple MODULE_BLOCK's in a single bitstream. 2380 if (TheModule) 2381 return Error("Invalid multiple blocks"); 2382 TheModule = M; 2383 if (std::error_code EC = ParseModule(false)) 2384 return EC; 2385 if (LazyStreamer) 2386 return std::error_code(); 2387 break; 2388 default: 2389 if (Stream.SkipBlock()) 2390 return Error("Invalid record"); 2391 break; 2392 } 2393 continue; 2394 case BitstreamEntry::Record: 2395 // There should be no records in the top-level of blocks. 2396 2397 // The ranlib in Xcode 4 will align archive members by appending newlines 2398 // to the end of them. If this file size is a multiple of 4 but not 8, we 2399 // have to read and ignore these final 4 bytes :-( 2400 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2401 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2402 Stream.AtEndOfStream()) 2403 return std::error_code(); 2404 2405 return Error("Invalid record"); 2406 } 2407 } 2408 } 2409 2410 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2411 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2412 return Error("Invalid record"); 2413 2414 SmallVector<uint64_t, 64> Record; 2415 2416 std::string Triple; 2417 // Read all the records for this module. 2418 while (1) { 2419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2420 2421 switch (Entry.Kind) { 2422 case BitstreamEntry::SubBlock: // Handled for us already. 2423 case BitstreamEntry::Error: 2424 return Error("Malformed block"); 2425 case BitstreamEntry::EndBlock: 2426 return Triple; 2427 case BitstreamEntry::Record: 2428 // The interesting case. 2429 break; 2430 } 2431 2432 // Read a record. 2433 switch (Stream.readRecord(Entry.ID, Record)) { 2434 default: break; // Default behavior, ignore unknown content. 2435 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2436 std::string S; 2437 if (ConvertToString(Record, 0, S)) 2438 return Error("Invalid record"); 2439 Triple = S; 2440 break; 2441 } 2442 } 2443 Record.clear(); 2444 } 2445 llvm_unreachable("Exit infinite loop"); 2446 } 2447 2448 ErrorOr<std::string> BitcodeReader::parseTriple() { 2449 if (std::error_code EC = InitStream()) 2450 return EC; 2451 2452 // Sniff for the signature. 2453 if (Stream.Read(8) != 'B' || 2454 Stream.Read(8) != 'C' || 2455 Stream.Read(4) != 0x0 || 2456 Stream.Read(4) != 0xC || 2457 Stream.Read(4) != 0xE || 2458 Stream.Read(4) != 0xD) 2459 return Error("Invalid bitcode signature"); 2460 2461 // We expect a number of well-defined blocks, though we don't necessarily 2462 // need to understand them all. 2463 while (1) { 2464 BitstreamEntry Entry = Stream.advance(); 2465 2466 switch (Entry.Kind) { 2467 case BitstreamEntry::Error: 2468 return Error("Malformed block"); 2469 case BitstreamEntry::EndBlock: 2470 return std::error_code(); 2471 2472 case BitstreamEntry::SubBlock: 2473 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2474 return parseModuleTriple(); 2475 2476 // Ignore other sub-blocks. 2477 if (Stream.SkipBlock()) 2478 return Error("Malformed block"); 2479 continue; 2480 2481 case BitstreamEntry::Record: 2482 Stream.skipRecord(Entry.ID); 2483 continue; 2484 } 2485 } 2486 } 2487 2488 /// ParseMetadataAttachment - Parse metadata attachments. 2489 std::error_code BitcodeReader::ParseMetadataAttachment() { 2490 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2491 return Error("Invalid record"); 2492 2493 SmallVector<uint64_t, 64> Record; 2494 while (1) { 2495 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2496 2497 switch (Entry.Kind) { 2498 case BitstreamEntry::SubBlock: // Handled for us already. 2499 case BitstreamEntry::Error: 2500 return Error("Malformed block"); 2501 case BitstreamEntry::EndBlock: 2502 return std::error_code(); 2503 case BitstreamEntry::Record: 2504 // The interesting case. 2505 break; 2506 } 2507 2508 // Read a metadata attachment record. 2509 Record.clear(); 2510 switch (Stream.readRecord(Entry.ID, Record)) { 2511 default: // Default behavior: ignore. 2512 break; 2513 case bitc::METADATA_ATTACHMENT: { 2514 unsigned RecordLength = Record.size(); 2515 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2516 return Error("Invalid record"); 2517 Instruction *Inst = InstructionList[Record[0]]; 2518 for (unsigned i = 1; i != RecordLength; i = i+2) { 2519 unsigned Kind = Record[i]; 2520 DenseMap<unsigned, unsigned>::iterator I = 2521 MDKindMap.find(Kind); 2522 if (I == MDKindMap.end()) 2523 return Error("Invalid ID"); 2524 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2525 if (isa<LocalAsMetadata>(Node)) 2526 // Drop the attachment. This used to be legal, but there's no 2527 // upgrade path. 2528 break; 2529 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2530 if (I->second == LLVMContext::MD_tbaa) 2531 InstsWithTBAATag.push_back(Inst); 2532 } 2533 break; 2534 } 2535 } 2536 } 2537 } 2538 2539 /// ParseFunctionBody - Lazily parse the specified function body block. 2540 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2541 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2542 return Error("Invalid record"); 2543 2544 InstructionList.clear(); 2545 unsigned ModuleValueListSize = ValueList.size(); 2546 unsigned ModuleMDValueListSize = MDValueList.size(); 2547 2548 // Add all the function arguments to the value table. 2549 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2550 ValueList.push_back(I); 2551 2552 unsigned NextValueNo = ValueList.size(); 2553 BasicBlock *CurBB = nullptr; 2554 unsigned CurBBNo = 0; 2555 2556 DebugLoc LastLoc; 2557 auto getLastInstruction = [&]() -> Instruction * { 2558 if (CurBB && !CurBB->empty()) 2559 return &CurBB->back(); 2560 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2561 !FunctionBBs[CurBBNo - 1]->empty()) 2562 return &FunctionBBs[CurBBNo - 1]->back(); 2563 return nullptr; 2564 }; 2565 2566 // Read all the records. 2567 SmallVector<uint64_t, 64> Record; 2568 while (1) { 2569 BitstreamEntry Entry = Stream.advance(); 2570 2571 switch (Entry.Kind) { 2572 case BitstreamEntry::Error: 2573 return Error("Malformed block"); 2574 case BitstreamEntry::EndBlock: 2575 goto OutOfRecordLoop; 2576 2577 case BitstreamEntry::SubBlock: 2578 switch (Entry.ID) { 2579 default: // Skip unknown content. 2580 if (Stream.SkipBlock()) 2581 return Error("Invalid record"); 2582 break; 2583 case bitc::CONSTANTS_BLOCK_ID: 2584 if (std::error_code EC = ParseConstants()) 2585 return EC; 2586 NextValueNo = ValueList.size(); 2587 break; 2588 case bitc::VALUE_SYMTAB_BLOCK_ID: 2589 if (std::error_code EC = ParseValueSymbolTable()) 2590 return EC; 2591 break; 2592 case bitc::METADATA_ATTACHMENT_ID: 2593 if (std::error_code EC = ParseMetadataAttachment()) 2594 return EC; 2595 break; 2596 case bitc::METADATA_BLOCK_ID: 2597 if (std::error_code EC = ParseMetadata()) 2598 return EC; 2599 break; 2600 case bitc::USELIST_BLOCK_ID: 2601 if (std::error_code EC = ParseUseLists()) 2602 return EC; 2603 break; 2604 } 2605 continue; 2606 2607 case BitstreamEntry::Record: 2608 // The interesting case. 2609 break; 2610 } 2611 2612 // Read a record. 2613 Record.clear(); 2614 Instruction *I = nullptr; 2615 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2616 switch (BitCode) { 2617 default: // Default behavior: reject 2618 return Error("Invalid value"); 2619 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2620 if (Record.size() < 1 || Record[0] == 0) 2621 return Error("Invalid record"); 2622 // Create all the basic blocks for the function. 2623 FunctionBBs.resize(Record[0]); 2624 2625 // See if anything took the address of blocks in this function. 2626 auto BBFRI = BasicBlockFwdRefs.find(F); 2627 if (BBFRI == BasicBlockFwdRefs.end()) { 2628 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2629 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2630 } else { 2631 auto &BBRefs = BBFRI->second; 2632 // Check for invalid basic block references. 2633 if (BBRefs.size() > FunctionBBs.size()) 2634 return Error("Invalid ID"); 2635 assert(!BBRefs.empty() && "Unexpected empty array"); 2636 assert(!BBRefs.front() && "Invalid reference to entry block"); 2637 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2638 ++I) 2639 if (I < RE && BBRefs[I]) { 2640 BBRefs[I]->insertInto(F); 2641 FunctionBBs[I] = BBRefs[I]; 2642 } else { 2643 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2644 } 2645 2646 // Erase from the table. 2647 BasicBlockFwdRefs.erase(BBFRI); 2648 } 2649 2650 CurBB = FunctionBBs[0]; 2651 continue; 2652 } 2653 2654 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2655 // This record indicates that the last instruction is at the same 2656 // location as the previous instruction with a location. 2657 I = getLastInstruction(); 2658 2659 if (!I) 2660 return Error("Invalid record"); 2661 I->setDebugLoc(LastLoc); 2662 I = nullptr; 2663 continue; 2664 2665 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2666 I = getLastInstruction(); 2667 if (!I || Record.size() < 4) 2668 return Error("Invalid record"); 2669 2670 unsigned Line = Record[0], Col = Record[1]; 2671 unsigned ScopeID = Record[2], IAID = Record[3]; 2672 2673 MDNode *Scope = nullptr, *IA = nullptr; 2674 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2675 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2676 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2677 I->setDebugLoc(LastLoc); 2678 I = nullptr; 2679 continue; 2680 } 2681 2682 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2683 unsigned OpNum = 0; 2684 Value *LHS, *RHS; 2685 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2686 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2687 OpNum+1 > Record.size()) 2688 return Error("Invalid record"); 2689 2690 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2691 if (Opc == -1) 2692 return Error("Invalid record"); 2693 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2694 InstructionList.push_back(I); 2695 if (OpNum < Record.size()) { 2696 if (Opc == Instruction::Add || 2697 Opc == Instruction::Sub || 2698 Opc == Instruction::Mul || 2699 Opc == Instruction::Shl) { 2700 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2701 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2702 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2703 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2704 } else if (Opc == Instruction::SDiv || 2705 Opc == Instruction::UDiv || 2706 Opc == Instruction::LShr || 2707 Opc == Instruction::AShr) { 2708 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2709 cast<BinaryOperator>(I)->setIsExact(true); 2710 } else if (isa<FPMathOperator>(I)) { 2711 FastMathFlags FMF; 2712 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2713 FMF.setUnsafeAlgebra(); 2714 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2715 FMF.setNoNaNs(); 2716 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2717 FMF.setNoInfs(); 2718 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2719 FMF.setNoSignedZeros(); 2720 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2721 FMF.setAllowReciprocal(); 2722 if (FMF.any()) 2723 I->setFastMathFlags(FMF); 2724 } 2725 2726 } 2727 break; 2728 } 2729 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2730 unsigned OpNum = 0; 2731 Value *Op; 2732 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2733 OpNum+2 != Record.size()) 2734 return Error("Invalid record"); 2735 2736 Type *ResTy = getTypeByID(Record[OpNum]); 2737 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2738 if (Opc == -1 || !ResTy) 2739 return Error("Invalid record"); 2740 Instruction *Temp = nullptr; 2741 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2742 if (Temp) { 2743 InstructionList.push_back(Temp); 2744 CurBB->getInstList().push_back(Temp); 2745 } 2746 } else { 2747 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2748 } 2749 InstructionList.push_back(I); 2750 break; 2751 } 2752 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2753 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2754 unsigned OpNum = 0; 2755 Value *BasePtr; 2756 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2757 return Error("Invalid record"); 2758 2759 SmallVector<Value*, 16> GEPIdx; 2760 while (OpNum != Record.size()) { 2761 Value *Op; 2762 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2763 return Error("Invalid record"); 2764 GEPIdx.push_back(Op); 2765 } 2766 2767 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2768 InstructionList.push_back(I); 2769 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2770 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2771 break; 2772 } 2773 2774 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2775 // EXTRACTVAL: [opty, opval, n x indices] 2776 unsigned OpNum = 0; 2777 Value *Agg; 2778 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2779 return Error("Invalid record"); 2780 2781 SmallVector<unsigned, 4> EXTRACTVALIdx; 2782 for (unsigned RecSize = Record.size(); 2783 OpNum != RecSize; ++OpNum) { 2784 uint64_t Index = Record[OpNum]; 2785 if ((unsigned)Index != Index) 2786 return Error("Invalid value"); 2787 EXTRACTVALIdx.push_back((unsigned)Index); 2788 } 2789 2790 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2791 InstructionList.push_back(I); 2792 break; 2793 } 2794 2795 case bitc::FUNC_CODE_INST_INSERTVAL: { 2796 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2797 unsigned OpNum = 0; 2798 Value *Agg; 2799 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2800 return Error("Invalid record"); 2801 Value *Val; 2802 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2803 return Error("Invalid record"); 2804 2805 SmallVector<unsigned, 4> INSERTVALIdx; 2806 for (unsigned RecSize = Record.size(); 2807 OpNum != RecSize; ++OpNum) { 2808 uint64_t Index = Record[OpNum]; 2809 if ((unsigned)Index != Index) 2810 return Error("Invalid value"); 2811 INSERTVALIdx.push_back((unsigned)Index); 2812 } 2813 2814 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2815 InstructionList.push_back(I); 2816 break; 2817 } 2818 2819 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2820 // obsolete form of select 2821 // handles select i1 ... in old bitcode 2822 unsigned OpNum = 0; 2823 Value *TrueVal, *FalseVal, *Cond; 2824 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2825 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2826 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2827 return Error("Invalid record"); 2828 2829 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2830 InstructionList.push_back(I); 2831 break; 2832 } 2833 2834 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2835 // new form of select 2836 // handles select i1 or select [N x i1] 2837 unsigned OpNum = 0; 2838 Value *TrueVal, *FalseVal, *Cond; 2839 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2840 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2841 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2842 return Error("Invalid record"); 2843 2844 // select condition can be either i1 or [N x i1] 2845 if (VectorType* vector_type = 2846 dyn_cast<VectorType>(Cond->getType())) { 2847 // expect <n x i1> 2848 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2849 return Error("Invalid type for value"); 2850 } else { 2851 // expect i1 2852 if (Cond->getType() != Type::getInt1Ty(Context)) 2853 return Error("Invalid type for value"); 2854 } 2855 2856 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2857 InstructionList.push_back(I); 2858 break; 2859 } 2860 2861 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2862 unsigned OpNum = 0; 2863 Value *Vec, *Idx; 2864 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2865 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2866 return Error("Invalid record"); 2867 I = ExtractElementInst::Create(Vec, Idx); 2868 InstructionList.push_back(I); 2869 break; 2870 } 2871 2872 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2873 unsigned OpNum = 0; 2874 Value *Vec, *Elt, *Idx; 2875 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2876 popValue(Record, OpNum, NextValueNo, 2877 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2878 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2879 return Error("Invalid record"); 2880 I = InsertElementInst::Create(Vec, Elt, Idx); 2881 InstructionList.push_back(I); 2882 break; 2883 } 2884 2885 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2886 unsigned OpNum = 0; 2887 Value *Vec1, *Vec2, *Mask; 2888 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2889 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2890 return Error("Invalid record"); 2891 2892 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2893 return Error("Invalid record"); 2894 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2895 InstructionList.push_back(I); 2896 break; 2897 } 2898 2899 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2900 // Old form of ICmp/FCmp returning bool 2901 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2902 // both legal on vectors but had different behaviour. 2903 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2904 // FCmp/ICmp returning bool or vector of bool 2905 2906 unsigned OpNum = 0; 2907 Value *LHS, *RHS; 2908 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2909 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2910 OpNum+1 != Record.size()) 2911 return Error("Invalid record"); 2912 2913 if (LHS->getType()->isFPOrFPVectorTy()) 2914 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2915 else 2916 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2917 InstructionList.push_back(I); 2918 break; 2919 } 2920 2921 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2922 { 2923 unsigned Size = Record.size(); 2924 if (Size == 0) { 2925 I = ReturnInst::Create(Context); 2926 InstructionList.push_back(I); 2927 break; 2928 } 2929 2930 unsigned OpNum = 0; 2931 Value *Op = nullptr; 2932 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2933 return Error("Invalid record"); 2934 if (OpNum != Record.size()) 2935 return Error("Invalid record"); 2936 2937 I = ReturnInst::Create(Context, Op); 2938 InstructionList.push_back(I); 2939 break; 2940 } 2941 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2942 if (Record.size() != 1 && Record.size() != 3) 2943 return Error("Invalid record"); 2944 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2945 if (!TrueDest) 2946 return Error("Invalid record"); 2947 2948 if (Record.size() == 1) { 2949 I = BranchInst::Create(TrueDest); 2950 InstructionList.push_back(I); 2951 } 2952 else { 2953 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2954 Value *Cond = getValue(Record, 2, NextValueNo, 2955 Type::getInt1Ty(Context)); 2956 if (!FalseDest || !Cond) 2957 return Error("Invalid record"); 2958 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2959 InstructionList.push_back(I); 2960 } 2961 break; 2962 } 2963 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2964 // Check magic 2965 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2966 // "New" SwitchInst format with case ranges. The changes to write this 2967 // format were reverted but we still recognize bitcode that uses it. 2968 // Hopefully someday we will have support for case ranges and can use 2969 // this format again. 2970 2971 Type *OpTy = getTypeByID(Record[1]); 2972 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2973 2974 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2975 BasicBlock *Default = getBasicBlock(Record[3]); 2976 if (!OpTy || !Cond || !Default) 2977 return Error("Invalid record"); 2978 2979 unsigned NumCases = Record[4]; 2980 2981 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2982 InstructionList.push_back(SI); 2983 2984 unsigned CurIdx = 5; 2985 for (unsigned i = 0; i != NumCases; ++i) { 2986 SmallVector<ConstantInt*, 1> CaseVals; 2987 unsigned NumItems = Record[CurIdx++]; 2988 for (unsigned ci = 0; ci != NumItems; ++ci) { 2989 bool isSingleNumber = Record[CurIdx++]; 2990 2991 APInt Low; 2992 unsigned ActiveWords = 1; 2993 if (ValueBitWidth > 64) 2994 ActiveWords = Record[CurIdx++]; 2995 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2996 ValueBitWidth); 2997 CurIdx += ActiveWords; 2998 2999 if (!isSingleNumber) { 3000 ActiveWords = 1; 3001 if (ValueBitWidth > 64) 3002 ActiveWords = Record[CurIdx++]; 3003 APInt High = 3004 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3005 ValueBitWidth); 3006 CurIdx += ActiveWords; 3007 3008 // FIXME: It is not clear whether values in the range should be 3009 // compared as signed or unsigned values. The partially 3010 // implemented changes that used this format in the past used 3011 // unsigned comparisons. 3012 for ( ; Low.ule(High); ++Low) 3013 CaseVals.push_back(ConstantInt::get(Context, Low)); 3014 } else 3015 CaseVals.push_back(ConstantInt::get(Context, Low)); 3016 } 3017 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3018 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3019 cve = CaseVals.end(); cvi != cve; ++cvi) 3020 SI->addCase(*cvi, DestBB); 3021 } 3022 I = SI; 3023 break; 3024 } 3025 3026 // Old SwitchInst format without case ranges. 3027 3028 if (Record.size() < 3 || (Record.size() & 1) == 0) 3029 return Error("Invalid record"); 3030 Type *OpTy = getTypeByID(Record[0]); 3031 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3032 BasicBlock *Default = getBasicBlock(Record[2]); 3033 if (!OpTy || !Cond || !Default) 3034 return Error("Invalid record"); 3035 unsigned NumCases = (Record.size()-3)/2; 3036 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3037 InstructionList.push_back(SI); 3038 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3039 ConstantInt *CaseVal = 3040 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3041 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3042 if (!CaseVal || !DestBB) { 3043 delete SI; 3044 return Error("Invalid record"); 3045 } 3046 SI->addCase(CaseVal, DestBB); 3047 } 3048 I = SI; 3049 break; 3050 } 3051 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3052 if (Record.size() < 2) 3053 return Error("Invalid record"); 3054 Type *OpTy = getTypeByID(Record[0]); 3055 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3056 if (!OpTy || !Address) 3057 return Error("Invalid record"); 3058 unsigned NumDests = Record.size()-2; 3059 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3060 InstructionList.push_back(IBI); 3061 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3062 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3063 IBI->addDestination(DestBB); 3064 } else { 3065 delete IBI; 3066 return Error("Invalid record"); 3067 } 3068 } 3069 I = IBI; 3070 break; 3071 } 3072 3073 case bitc::FUNC_CODE_INST_INVOKE: { 3074 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3075 if (Record.size() < 4) 3076 return Error("Invalid record"); 3077 AttributeSet PAL = getAttributes(Record[0]); 3078 unsigned CCInfo = Record[1]; 3079 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3080 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3081 3082 unsigned OpNum = 4; 3083 Value *Callee; 3084 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3085 return Error("Invalid record"); 3086 3087 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3088 FunctionType *FTy = !CalleeTy ? nullptr : 3089 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3090 3091 // Check that the right number of fixed parameters are here. 3092 if (!FTy || !NormalBB || !UnwindBB || 3093 Record.size() < OpNum+FTy->getNumParams()) 3094 return Error("Invalid record"); 3095 3096 SmallVector<Value*, 16> Ops; 3097 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3098 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3099 FTy->getParamType(i))); 3100 if (!Ops.back()) 3101 return Error("Invalid record"); 3102 } 3103 3104 if (!FTy->isVarArg()) { 3105 if (Record.size() != OpNum) 3106 return Error("Invalid record"); 3107 } else { 3108 // Read type/value pairs for varargs params. 3109 while (OpNum != Record.size()) { 3110 Value *Op; 3111 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3112 return Error("Invalid record"); 3113 Ops.push_back(Op); 3114 } 3115 } 3116 3117 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3118 InstructionList.push_back(I); 3119 cast<InvokeInst>(I)->setCallingConv( 3120 static_cast<CallingConv::ID>(CCInfo)); 3121 cast<InvokeInst>(I)->setAttributes(PAL); 3122 break; 3123 } 3124 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3125 unsigned Idx = 0; 3126 Value *Val = nullptr; 3127 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3128 return Error("Invalid record"); 3129 I = ResumeInst::Create(Val); 3130 InstructionList.push_back(I); 3131 break; 3132 } 3133 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3134 I = new UnreachableInst(Context); 3135 InstructionList.push_back(I); 3136 break; 3137 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3138 if (Record.size() < 1 || ((Record.size()-1)&1)) 3139 return Error("Invalid record"); 3140 Type *Ty = getTypeByID(Record[0]); 3141 if (!Ty) 3142 return Error("Invalid record"); 3143 3144 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3145 InstructionList.push_back(PN); 3146 3147 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3148 Value *V; 3149 // With the new function encoding, it is possible that operands have 3150 // negative IDs (for forward references). Use a signed VBR 3151 // representation to keep the encoding small. 3152 if (UseRelativeIDs) 3153 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3154 else 3155 V = getValue(Record, 1+i, NextValueNo, Ty); 3156 BasicBlock *BB = getBasicBlock(Record[2+i]); 3157 if (!V || !BB) 3158 return Error("Invalid record"); 3159 PN->addIncoming(V, BB); 3160 } 3161 I = PN; 3162 break; 3163 } 3164 3165 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3166 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3167 unsigned Idx = 0; 3168 if (Record.size() < 4) 3169 return Error("Invalid record"); 3170 Type *Ty = getTypeByID(Record[Idx++]); 3171 if (!Ty) 3172 return Error("Invalid record"); 3173 Value *PersFn = nullptr; 3174 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3175 return Error("Invalid record"); 3176 3177 bool IsCleanup = !!Record[Idx++]; 3178 unsigned NumClauses = Record[Idx++]; 3179 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3180 LP->setCleanup(IsCleanup); 3181 for (unsigned J = 0; J != NumClauses; ++J) { 3182 LandingPadInst::ClauseType CT = 3183 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3184 Value *Val; 3185 3186 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3187 delete LP; 3188 return Error("Invalid record"); 3189 } 3190 3191 assert((CT != LandingPadInst::Catch || 3192 !isa<ArrayType>(Val->getType())) && 3193 "Catch clause has a invalid type!"); 3194 assert((CT != LandingPadInst::Filter || 3195 isa<ArrayType>(Val->getType())) && 3196 "Filter clause has invalid type!"); 3197 LP->addClause(cast<Constant>(Val)); 3198 } 3199 3200 I = LP; 3201 InstructionList.push_back(I); 3202 break; 3203 } 3204 3205 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3206 if (Record.size() != 4) 3207 return Error("Invalid record"); 3208 PointerType *Ty = 3209 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3210 Type *OpTy = getTypeByID(Record[1]); 3211 Value *Size = getFnValueByID(Record[2], OpTy); 3212 unsigned AlignRecord = Record[3]; 3213 bool InAlloca = AlignRecord & (1 << 5); 3214 unsigned Align = AlignRecord & ((1 << 5) - 1); 3215 if (!Ty || !Size) 3216 return Error("Invalid record"); 3217 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3218 AI->setUsedWithInAlloca(InAlloca); 3219 I = AI; 3220 InstructionList.push_back(I); 3221 break; 3222 } 3223 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3224 unsigned OpNum = 0; 3225 Value *Op; 3226 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3227 OpNum+2 != Record.size()) 3228 return Error("Invalid record"); 3229 3230 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3231 InstructionList.push_back(I); 3232 break; 3233 } 3234 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3235 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3236 unsigned OpNum = 0; 3237 Value *Op; 3238 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3239 OpNum+4 != Record.size()) 3240 return Error("Invalid record"); 3241 3242 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3243 if (Ordering == NotAtomic || Ordering == Release || 3244 Ordering == AcquireRelease) 3245 return Error("Invalid record"); 3246 if (Ordering != NotAtomic && Record[OpNum] == 0) 3247 return Error("Invalid record"); 3248 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3249 3250 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3251 Ordering, SynchScope); 3252 InstructionList.push_back(I); 3253 break; 3254 } 3255 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3256 unsigned OpNum = 0; 3257 Value *Val, *Ptr; 3258 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3259 popValue(Record, OpNum, NextValueNo, 3260 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3261 OpNum+2 != Record.size()) 3262 return Error("Invalid record"); 3263 3264 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3265 InstructionList.push_back(I); 3266 break; 3267 } 3268 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3269 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3270 unsigned OpNum = 0; 3271 Value *Val, *Ptr; 3272 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3273 popValue(Record, OpNum, NextValueNo, 3274 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3275 OpNum+4 != Record.size()) 3276 return Error("Invalid record"); 3277 3278 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3279 if (Ordering == NotAtomic || Ordering == Acquire || 3280 Ordering == AcquireRelease) 3281 return Error("Invalid record"); 3282 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3283 if (Ordering != NotAtomic && Record[OpNum] == 0) 3284 return Error("Invalid record"); 3285 3286 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3287 Ordering, SynchScope); 3288 InstructionList.push_back(I); 3289 break; 3290 } 3291 case bitc::FUNC_CODE_INST_CMPXCHG: { 3292 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3293 // failureordering?, isweak?] 3294 unsigned OpNum = 0; 3295 Value *Ptr, *Cmp, *New; 3296 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3297 popValue(Record, OpNum, NextValueNo, 3298 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3299 popValue(Record, OpNum, NextValueNo, 3300 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3301 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3302 return Error("Invalid record"); 3303 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3304 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3305 return Error("Invalid record"); 3306 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3307 3308 AtomicOrdering FailureOrdering; 3309 if (Record.size() < 7) 3310 FailureOrdering = 3311 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3312 else 3313 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3314 3315 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3316 SynchScope); 3317 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3318 3319 if (Record.size() < 8) { 3320 // Before weak cmpxchgs existed, the instruction simply returned the 3321 // value loaded from memory, so bitcode files from that era will be 3322 // expecting the first component of a modern cmpxchg. 3323 CurBB->getInstList().push_back(I); 3324 I = ExtractValueInst::Create(I, 0); 3325 } else { 3326 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3327 } 3328 3329 InstructionList.push_back(I); 3330 break; 3331 } 3332 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3333 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3334 unsigned OpNum = 0; 3335 Value *Ptr, *Val; 3336 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3337 popValue(Record, OpNum, NextValueNo, 3338 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3339 OpNum+4 != Record.size()) 3340 return Error("Invalid record"); 3341 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3342 if (Operation < AtomicRMWInst::FIRST_BINOP || 3343 Operation > AtomicRMWInst::LAST_BINOP) 3344 return Error("Invalid record"); 3345 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3346 if (Ordering == NotAtomic || Ordering == Unordered) 3347 return Error("Invalid record"); 3348 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3349 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3350 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3351 InstructionList.push_back(I); 3352 break; 3353 } 3354 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3355 if (2 != Record.size()) 3356 return Error("Invalid record"); 3357 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3358 if (Ordering == NotAtomic || Ordering == Unordered || 3359 Ordering == Monotonic) 3360 return Error("Invalid record"); 3361 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3362 I = new FenceInst(Context, Ordering, SynchScope); 3363 InstructionList.push_back(I); 3364 break; 3365 } 3366 case bitc::FUNC_CODE_INST_CALL: { 3367 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3368 if (Record.size() < 3) 3369 return Error("Invalid record"); 3370 3371 AttributeSet PAL = getAttributes(Record[0]); 3372 unsigned CCInfo = Record[1]; 3373 3374 unsigned OpNum = 2; 3375 Value *Callee; 3376 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3377 return Error("Invalid record"); 3378 3379 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3380 FunctionType *FTy = nullptr; 3381 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3382 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3383 return Error("Invalid record"); 3384 3385 SmallVector<Value*, 16> Args; 3386 // Read the fixed params. 3387 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3388 if (FTy->getParamType(i)->isLabelTy()) 3389 Args.push_back(getBasicBlock(Record[OpNum])); 3390 else 3391 Args.push_back(getValue(Record, OpNum, NextValueNo, 3392 FTy->getParamType(i))); 3393 if (!Args.back()) 3394 return Error("Invalid record"); 3395 } 3396 3397 // Read type/value pairs for varargs params. 3398 if (!FTy->isVarArg()) { 3399 if (OpNum != Record.size()) 3400 return Error("Invalid record"); 3401 } else { 3402 while (OpNum != Record.size()) { 3403 Value *Op; 3404 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3405 return Error("Invalid record"); 3406 Args.push_back(Op); 3407 } 3408 } 3409 3410 I = CallInst::Create(Callee, Args); 3411 InstructionList.push_back(I); 3412 cast<CallInst>(I)->setCallingConv( 3413 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3414 CallInst::TailCallKind TCK = CallInst::TCK_None; 3415 if (CCInfo & 1) 3416 TCK = CallInst::TCK_Tail; 3417 if (CCInfo & (1 << 14)) 3418 TCK = CallInst::TCK_MustTail; 3419 cast<CallInst>(I)->setTailCallKind(TCK); 3420 cast<CallInst>(I)->setAttributes(PAL); 3421 break; 3422 } 3423 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3424 if (Record.size() < 3) 3425 return Error("Invalid record"); 3426 Type *OpTy = getTypeByID(Record[0]); 3427 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3428 Type *ResTy = getTypeByID(Record[2]); 3429 if (!OpTy || !Op || !ResTy) 3430 return Error("Invalid record"); 3431 I = new VAArgInst(Op, ResTy); 3432 InstructionList.push_back(I); 3433 break; 3434 } 3435 } 3436 3437 // Add instruction to end of current BB. If there is no current BB, reject 3438 // this file. 3439 if (!CurBB) { 3440 delete I; 3441 return Error("Invalid instruction with no BB"); 3442 } 3443 CurBB->getInstList().push_back(I); 3444 3445 // If this was a terminator instruction, move to the next block. 3446 if (isa<TerminatorInst>(I)) { 3447 ++CurBBNo; 3448 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3449 } 3450 3451 // Non-void values get registered in the value table for future use. 3452 if (I && !I->getType()->isVoidTy()) 3453 ValueList.AssignValue(I, NextValueNo++); 3454 } 3455 3456 OutOfRecordLoop: 3457 3458 // Check the function list for unresolved values. 3459 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3460 if (!A->getParent()) { 3461 // We found at least one unresolved value. Nuke them all to avoid leaks. 3462 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3463 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3464 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3465 delete A; 3466 } 3467 } 3468 return Error("Never resolved value found in function"); 3469 } 3470 } 3471 3472 // FIXME: Check for unresolved forward-declared metadata references 3473 // and clean up leaks. 3474 3475 // Trim the value list down to the size it was before we parsed this function. 3476 ValueList.shrinkTo(ModuleValueListSize); 3477 MDValueList.shrinkTo(ModuleMDValueListSize); 3478 std::vector<BasicBlock*>().swap(FunctionBBs); 3479 return std::error_code(); 3480 } 3481 3482 /// Find the function body in the bitcode stream 3483 std::error_code BitcodeReader::FindFunctionInStream( 3484 Function *F, 3485 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3486 while (DeferredFunctionInfoIterator->second == 0) { 3487 if (Stream.AtEndOfStream()) 3488 return Error("Could not find function in stream"); 3489 // ParseModule will parse the next body in the stream and set its 3490 // position in the DeferredFunctionInfo map. 3491 if (std::error_code EC = ParseModule(true)) 3492 return EC; 3493 } 3494 return std::error_code(); 3495 } 3496 3497 //===----------------------------------------------------------------------===// 3498 // GVMaterializer implementation 3499 //===----------------------------------------------------------------------===// 3500 3501 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3502 3503 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3504 Function *F = dyn_cast<Function>(GV); 3505 // If it's not a function or is already material, ignore the request. 3506 if (!F || !F->isMaterializable()) 3507 return std::error_code(); 3508 3509 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3510 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3511 // If its position is recorded as 0, its body is somewhere in the stream 3512 // but we haven't seen it yet. 3513 if (DFII->second == 0 && LazyStreamer) 3514 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3515 return EC; 3516 3517 // Move the bit stream to the saved position of the deferred function body. 3518 Stream.JumpToBit(DFII->second); 3519 3520 if (std::error_code EC = ParseFunctionBody(F)) 3521 return EC; 3522 F->setIsMaterializable(false); 3523 3524 // Upgrade any old intrinsic calls in the function. 3525 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3526 E = UpgradedIntrinsics.end(); I != E; ++I) { 3527 if (I->first != I->second) { 3528 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3529 UI != UE;) { 3530 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3531 UpgradeIntrinsicCall(CI, I->second); 3532 } 3533 } 3534 } 3535 3536 // Bring in any functions that this function forward-referenced via 3537 // blockaddresses. 3538 return materializeForwardReferencedFunctions(); 3539 } 3540 3541 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3542 const Function *F = dyn_cast<Function>(GV); 3543 if (!F || F->isDeclaration()) 3544 return false; 3545 3546 // Dematerializing F would leave dangling references that wouldn't be 3547 // reconnected on re-materialization. 3548 if (BlockAddressesTaken.count(F)) 3549 return false; 3550 3551 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3552 } 3553 3554 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3555 Function *F = dyn_cast<Function>(GV); 3556 // If this function isn't dematerializable, this is a noop. 3557 if (!F || !isDematerializable(F)) 3558 return; 3559 3560 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3561 3562 // Just forget the function body, we can remat it later. 3563 F->dropAllReferences(); 3564 F->setIsMaterializable(true); 3565 } 3566 3567 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3568 assert(M == TheModule && 3569 "Can only Materialize the Module this BitcodeReader is attached to."); 3570 3571 // Promise to materialize all forward references. 3572 WillMaterializeAllForwardRefs = true; 3573 3574 // Iterate over the module, deserializing any functions that are still on 3575 // disk. 3576 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3577 F != E; ++F) { 3578 if (std::error_code EC = materialize(F)) 3579 return EC; 3580 } 3581 // At this point, if there are any function bodies, the current bit is 3582 // pointing to the END_BLOCK record after them. Now make sure the rest 3583 // of the bits in the module have been read. 3584 if (NextUnreadBit) 3585 ParseModule(true); 3586 3587 // Check that all block address forward references got resolved (as we 3588 // promised above). 3589 if (!BasicBlockFwdRefs.empty()) 3590 return Error("Never resolved function from blockaddress"); 3591 3592 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3593 // delete the old functions to clean up. We can't do this unless the entire 3594 // module is materialized because there could always be another function body 3595 // with calls to the old function. 3596 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3597 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3598 if (I->first != I->second) { 3599 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3600 UI != UE;) { 3601 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3602 UpgradeIntrinsicCall(CI, I->second); 3603 } 3604 if (!I->first->use_empty()) 3605 I->first->replaceAllUsesWith(I->second); 3606 I->first->eraseFromParent(); 3607 } 3608 } 3609 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3610 3611 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3612 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3613 3614 UpgradeDebugInfo(*M); 3615 return std::error_code(); 3616 } 3617 3618 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3619 return IdentifiedStructTypes; 3620 } 3621 3622 std::error_code BitcodeReader::InitStream() { 3623 if (LazyStreamer) 3624 return InitLazyStream(); 3625 return InitStreamFromBuffer(); 3626 } 3627 3628 std::error_code BitcodeReader::InitStreamFromBuffer() { 3629 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3630 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3631 3632 if (Buffer->getBufferSize() & 3) 3633 return Error("Invalid bitcode signature"); 3634 3635 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3636 // The magic number is 0x0B17C0DE stored in little endian. 3637 if (isBitcodeWrapper(BufPtr, BufEnd)) 3638 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3639 return Error("Invalid bitcode wrapper header"); 3640 3641 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3642 Stream.init(&*StreamFile); 3643 3644 return std::error_code(); 3645 } 3646 3647 std::error_code BitcodeReader::InitLazyStream() { 3648 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3649 // see it. 3650 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3651 StreamingMemoryObject &Bytes = *OwnedBytes; 3652 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3653 Stream.init(&*StreamFile); 3654 3655 unsigned char buf[16]; 3656 if (Bytes.readBytes(buf, 16, 0) != 16) 3657 return Error("Invalid bitcode signature"); 3658 3659 if (!isBitcode(buf, buf + 16)) 3660 return Error("Invalid bitcode signature"); 3661 3662 if (isBitcodeWrapper(buf, buf + 4)) { 3663 const unsigned char *bitcodeStart = buf; 3664 const unsigned char *bitcodeEnd = buf + 16; 3665 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3666 Bytes.dropLeadingBytes(bitcodeStart - buf); 3667 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3668 } 3669 return std::error_code(); 3670 } 3671 3672 namespace { 3673 class BitcodeErrorCategoryType : public std::error_category { 3674 const char *name() const LLVM_NOEXCEPT override { 3675 return "llvm.bitcode"; 3676 } 3677 std::string message(int IE) const override { 3678 BitcodeError E = static_cast<BitcodeError>(IE); 3679 switch (E) { 3680 case BitcodeError::InvalidBitcodeSignature: 3681 return "Invalid bitcode signature"; 3682 case BitcodeError::CorruptedBitcode: 3683 return "Corrupted bitcode"; 3684 } 3685 llvm_unreachable("Unknown error type!"); 3686 } 3687 }; 3688 } 3689 3690 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3691 3692 const std::error_category &llvm::BitcodeErrorCategory() { 3693 return *ErrorCategory; 3694 } 3695 3696 //===----------------------------------------------------------------------===// 3697 // External interface 3698 //===----------------------------------------------------------------------===// 3699 3700 /// \brief Get a lazy one-at-time loading module from bitcode. 3701 /// 3702 /// This isn't always used in a lazy context. In particular, it's also used by 3703 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3704 /// in forward-referenced functions from block address references. 3705 /// 3706 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3707 /// materialize everything -- in particular, if this isn't truly lazy. 3708 static ErrorOr<Module *> 3709 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3710 LLVMContext &Context, bool WillMaterializeAll, 3711 DiagnosticHandlerFunction DiagnosticHandler) { 3712 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3713 BitcodeReader *R = 3714 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3715 M->setMaterializer(R); 3716 3717 auto cleanupOnError = [&](std::error_code EC) { 3718 R->releaseBuffer(); // Never take ownership on error. 3719 delete M; // Also deletes R. 3720 return EC; 3721 }; 3722 3723 if (std::error_code EC = R->ParseBitcodeInto(M)) 3724 return cleanupOnError(EC); 3725 3726 if (!WillMaterializeAll) 3727 // Resolve forward references from blockaddresses. 3728 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3729 return cleanupOnError(EC); 3730 3731 Buffer.release(); // The BitcodeReader owns it now. 3732 return M; 3733 } 3734 3735 ErrorOr<Module *> 3736 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3737 LLVMContext &Context, 3738 DiagnosticHandlerFunction DiagnosticHandler) { 3739 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3740 DiagnosticHandler); 3741 } 3742 3743 ErrorOr<std::unique_ptr<Module>> 3744 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3745 LLVMContext &Context, 3746 DiagnosticHandlerFunction DiagnosticHandler) { 3747 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3748 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3749 M->setMaterializer(R); 3750 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3751 return EC; 3752 return std::move(M); 3753 } 3754 3755 ErrorOr<Module *> 3756 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3757 DiagnosticHandlerFunction DiagnosticHandler) { 3758 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3759 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3760 std::move(Buf), Context, true, DiagnosticHandler); 3761 if (!ModuleOrErr) 3762 return ModuleOrErr; 3763 Module *M = ModuleOrErr.get(); 3764 // Read in the entire module, and destroy the BitcodeReader. 3765 if (std::error_code EC = M->materializeAllPermanently()) { 3766 delete M; 3767 return EC; 3768 } 3769 3770 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3771 // written. We must defer until the Module has been fully materialized. 3772 3773 return M; 3774 } 3775 3776 std::string 3777 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3778 DiagnosticHandlerFunction DiagnosticHandler) { 3779 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3780 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3781 DiagnosticHandler); 3782 ErrorOr<std::string> Triple = R->parseTriple(); 3783 if (Triple.getError()) 3784 return ""; 3785 return Triple.get(); 3786 } 3787