xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 250620f76e070cbbd4e8511f751f577b6e1633ac)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/ManagedStatic.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <set>
83 #include <string>
84 #include <system_error>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 static cl::opt<bool> PrintSummaryGUIDs(
92     "print-summary-global-ids", cl::init(false), cl::Hidden,
93     cl::desc(
94         "Print the global id for each value when reading the module summary"));
95 
96 namespace {
97 
98 enum {
99   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
100 };
101 
102 } // end anonymous namespace
103 
104 static Error error(const Twine &Message) {
105   return make_error<StringError>(
106       Message, make_error_code(BitcodeError::CorruptedBitcode));
107 }
108 
109 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
110   if (!Stream.canSkipToPos(4))
111     return createStringError(std::errc::illegal_byte_sequence,
112                              "file too small to contain bitcode header");
113   for (unsigned C : {'B', 'C'})
114     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
115       if (Res.get() != C)
116         return createStringError(std::errc::illegal_byte_sequence,
117                                  "file doesn't start with bitcode header");
118     } else
119       return Res.takeError();
120   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   return Error::success();
128 }
129 
130 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
131   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
132   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
133 
134   if (Buffer.getBufferSize() & 3)
135     return error("Invalid bitcode signature");
136 
137   // If we have a wrapper header, parse it and ignore the non-bc file contents.
138   // The magic number is 0x0B17C0DE stored in little endian.
139   if (isBitcodeWrapper(BufPtr, BufEnd))
140     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
141       return error("Invalid bitcode wrapper header");
142 
143   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
144   if (Error Err = hasInvalidBitcodeHeader(Stream))
145     return std::move(Err);
146 
147   return std::move(Stream);
148 }
149 
150 /// Convert a string from a record into an std::string, return true on failure.
151 template <typename StrTy>
152 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
153                             StrTy &Result) {
154   if (Idx > Record.size())
155     return true;
156 
157   Result.append(Record.begin() + Idx, Record.end());
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Error E = Stream.advance().moveInto(Entry))
185       return std::move(E);
186 
187     switch (Entry.Kind) {
188     default:
189     case BitstreamEntry::Error:
190       return error("Malformed block");
191     case BitstreamEntry::EndBlock:
192       return ProducerIdentification;
193     case BitstreamEntry::Record:
194       // The interesting case.
195       break;
196     }
197 
198     // Read a record.
199     Record.clear();
200     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
201     if (!MaybeBitCode)
202       return MaybeBitCode.takeError();
203     switch (MaybeBitCode.get()) {
204     default: // Default behavior: reject
205       return error("Invalid value");
206     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
207       convertToString(Record, 0, ProducerIdentification);
208       break;
209     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
210       unsigned epoch = (unsigned)Record[0];
211       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
212         return error(
213           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
214           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
215       }
216     }
217     }
218   }
219 }
220 
221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
222   // We expect a number of well-defined blocks, though we don't necessarily
223   // need to understand them all.
224   while (true) {
225     if (Stream.AtEndOfStream())
226       return "";
227 
228     BitstreamEntry Entry;
229     if (Error E = Stream.advance().moveInto(Entry))
230       return std::move(E);
231 
232     switch (Entry.Kind) {
233     case BitstreamEntry::EndBlock:
234     case BitstreamEntry::Error:
235       return error("Malformed block");
236 
237     case BitstreamEntry::SubBlock:
238       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
239         return readIdentificationBlock(Stream);
240 
241       // Ignore other sub-blocks.
242       if (Error Err = Stream.SkipBlock())
243         return std::move(Err);
244       continue;
245     case BitstreamEntry::Record:
246       if (Error E = Stream.skipRecord(Entry.ID).takeError())
247         return std::move(E);
248       continue;
249     }
250   }
251 }
252 
253 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
254   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
255     return std::move(Err);
256 
257   SmallVector<uint64_t, 64> Record;
258   // Read all the records for this module.
259 
260   while (true) {
261     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
262     if (!MaybeEntry)
263       return MaybeEntry.takeError();
264     BitstreamEntry Entry = MaybeEntry.get();
265 
266     switch (Entry.Kind) {
267     case BitstreamEntry::SubBlock: // Handled for us already.
268     case BitstreamEntry::Error:
269       return error("Malformed block");
270     case BitstreamEntry::EndBlock:
271       return false;
272     case BitstreamEntry::Record:
273       // The interesting case.
274       break;
275     }
276 
277     // Read a record.
278     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
279     if (!MaybeRecord)
280       return MaybeRecord.takeError();
281     switch (MaybeRecord.get()) {
282     default:
283       break; // Default behavior, ignore unknown content.
284     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
285       std::string S;
286       if (convertToString(Record, 0, S))
287         return error("Invalid section name record");
288       // Check for the i386 and other (x86_64, ARM) conventions
289       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
290           S.find("__OBJC,__category") != std::string::npos)
291         return true;
292       break;
293     }
294     }
295     Record.clear();
296   }
297   llvm_unreachable("Exit infinite loop");
298 }
299 
300 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
301   // We expect a number of well-defined blocks, though we don't necessarily
302   // need to understand them all.
303   while (true) {
304     BitstreamEntry Entry;
305     if (Error E = Stream.advance().moveInto(Entry))
306       return std::move(E);
307 
308     switch (Entry.Kind) {
309     case BitstreamEntry::Error:
310       return error("Malformed block");
311     case BitstreamEntry::EndBlock:
312       return false;
313 
314     case BitstreamEntry::SubBlock:
315       if (Entry.ID == bitc::MODULE_BLOCK_ID)
316         return hasObjCCategoryInModule(Stream);
317 
318       // Ignore other sub-blocks.
319       if (Error Err = Stream.SkipBlock())
320         return std::move(Err);
321       continue;
322 
323     case BitstreamEntry::Record:
324       if (Error E = Stream.skipRecord(Entry.ID).takeError())
325         return std::move(E);
326       continue;
327     }
328   }
329 }
330 
331 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
332   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
333     return std::move(Err);
334 
335   SmallVector<uint64_t, 64> Record;
336 
337   std::string Triple;
338 
339   // Read all the records for this module.
340   while (true) {
341     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
342     if (!MaybeEntry)
343       return MaybeEntry.takeError();
344     BitstreamEntry Entry = MaybeEntry.get();
345 
346     switch (Entry.Kind) {
347     case BitstreamEntry::SubBlock: // Handled for us already.
348     case BitstreamEntry::Error:
349       return error("Malformed block");
350     case BitstreamEntry::EndBlock:
351       return Triple;
352     case BitstreamEntry::Record:
353       // The interesting case.
354       break;
355     }
356 
357     // Read a record.
358     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
359     if (!MaybeRecord)
360       return MaybeRecord.takeError();
361     switch (MaybeRecord.get()) {
362     default: break;  // Default behavior, ignore unknown content.
363     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
364       std::string S;
365       if (convertToString(Record, 0, S))
366         return error("Invalid triple record");
367       Triple = S;
368       break;
369     }
370     }
371     Record.clear();
372   }
373   llvm_unreachable("Exit infinite loop");
374 }
375 
376 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
377   // We expect a number of well-defined blocks, though we don't necessarily
378   // need to understand them all.
379   while (true) {
380     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
381     if (!MaybeEntry)
382       return MaybeEntry.takeError();
383     BitstreamEntry Entry = MaybeEntry.get();
384 
385     switch (Entry.Kind) {
386     case BitstreamEntry::Error:
387       return error("Malformed block");
388     case BitstreamEntry::EndBlock:
389       return "";
390 
391     case BitstreamEntry::SubBlock:
392       if (Entry.ID == bitc::MODULE_BLOCK_ID)
393         return readModuleTriple(Stream);
394 
395       // Ignore other sub-blocks.
396       if (Error Err = Stream.SkipBlock())
397         return std::move(Err);
398       continue;
399 
400     case BitstreamEntry::Record:
401       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
402         continue;
403       else
404         return Skipped.takeError();
405     }
406   }
407 }
408 
409 namespace {
410 
411 class BitcodeReaderBase {
412 protected:
413   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
414       : Stream(std::move(Stream)), Strtab(Strtab) {
415     this->Stream.setBlockInfo(&BlockInfo);
416   }
417 
418   BitstreamBlockInfo BlockInfo;
419   BitstreamCursor Stream;
420   StringRef Strtab;
421 
422   /// In version 2 of the bitcode we store names of global values and comdats in
423   /// a string table rather than in the VST.
424   bool UseStrtab = false;
425 
426   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
427 
428   /// If this module uses a string table, pop the reference to the string table
429   /// and return the referenced string and the rest of the record. Otherwise
430   /// just return the record itself.
431   std::pair<StringRef, ArrayRef<uint64_t>>
432   readNameFromStrtab(ArrayRef<uint64_t> Record);
433 
434   Error readBlockInfo();
435 
436   // Contains an arbitrary and optional string identifying the bitcode producer
437   std::string ProducerIdentification;
438 
439   Error error(const Twine &Message);
440 };
441 
442 } // end anonymous namespace
443 
444 Error BitcodeReaderBase::error(const Twine &Message) {
445   std::string FullMsg = Message.str();
446   if (!ProducerIdentification.empty())
447     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
448                LLVM_VERSION_STRING "')";
449   return ::error(FullMsg);
450 }
451 
452 Expected<unsigned>
453 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
454   if (Record.empty())
455     return error("Invalid version record");
456   unsigned ModuleVersion = Record[0];
457   if (ModuleVersion > 2)
458     return error("Invalid value");
459   UseStrtab = ModuleVersion >= 2;
460   return ModuleVersion;
461 }
462 
463 std::pair<StringRef, ArrayRef<uint64_t>>
464 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
465   if (!UseStrtab)
466     return {"", Record};
467   // Invalid reference. Let the caller complain about the record being empty.
468   if (Record[0] + Record[1] > Strtab.size())
469     return {"", {}};
470   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
471 }
472 
473 namespace {
474 
475 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
476   LLVMContext &Context;
477   Module *TheModule = nullptr;
478   // Next offset to start scanning for lazy parsing of function bodies.
479   uint64_t NextUnreadBit = 0;
480   // Last function offset found in the VST.
481   uint64_t LastFunctionBlockBit = 0;
482   bool SeenValueSymbolTable = false;
483   uint64_t VSTOffset = 0;
484 
485   std::vector<std::string> SectionTable;
486   std::vector<std::string> GCTable;
487 
488   std::vector<Type *> TypeList;
489   /// Track type IDs of contained types. Order is the same as the contained
490   /// types of a Type*. This is used during upgrades of typed pointer IR in
491   /// opaque pointer mode.
492   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
493   /// In some cases, we need to create a type ID for a type that was not
494   /// explicitly encoded in the bitcode, or we don't know about at the current
495   /// point. For example, a global may explicitly encode the value type ID, but
496   /// not have a type ID for the pointer to value type, for which we create a
497   /// virtual type ID instead. This map stores the new type ID that was created
498   /// for the given pair of Type and contained type ID.
499   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
500   DenseMap<Function *, unsigned> FunctionTypeIDs;
501   BitcodeReaderValueList ValueList;
502   Optional<MetadataLoader> MDLoader;
503   std::vector<Comdat *> ComdatList;
504   DenseSet<GlobalObject *> ImplicitComdatObjects;
505   SmallVector<Instruction *, 64> InstructionList;
506 
507   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
508   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
509 
510   struct FunctionOperandInfo {
511     Function *F;
512     unsigned PersonalityFn;
513     unsigned Prefix;
514     unsigned Prologue;
515   };
516   std::vector<FunctionOperandInfo> FunctionOperands;
517 
518   /// The set of attributes by index.  Index zero in the file is for null, and
519   /// is thus not represented here.  As such all indices are off by one.
520   std::vector<AttributeList> MAttributes;
521 
522   /// The set of attribute groups.
523   std::map<unsigned, AttributeList> MAttributeGroups;
524 
525   /// While parsing a function body, this is a list of the basic blocks for the
526   /// function.
527   std::vector<BasicBlock*> FunctionBBs;
528 
529   // When reading the module header, this list is populated with functions that
530   // have bodies later in the file.
531   std::vector<Function*> FunctionsWithBodies;
532 
533   // When intrinsic functions are encountered which require upgrading they are
534   // stored here with their replacement function.
535   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
536   UpdatedIntrinsicMap UpgradedIntrinsics;
537   // Intrinsics which were remangled because of types rename
538   UpdatedIntrinsicMap RemangledIntrinsics;
539 
540   // Several operations happen after the module header has been read, but
541   // before function bodies are processed. This keeps track of whether
542   // we've done this yet.
543   bool SeenFirstFunctionBody = false;
544 
545   /// When function bodies are initially scanned, this map contains info about
546   /// where to find deferred function body in the stream.
547   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
548 
549   /// When Metadata block is initially scanned when parsing the module, we may
550   /// choose to defer parsing of the metadata. This vector contains info about
551   /// which Metadata blocks are deferred.
552   std::vector<uint64_t> DeferredMetadataInfo;
553 
554   /// These are basic blocks forward-referenced by block addresses.  They are
555   /// inserted lazily into functions when they're loaded.  The basic block ID is
556   /// its index into the vector.
557   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
558   std::deque<Function *> BasicBlockFwdRefQueue;
559 
560   /// Indicates that we are using a new encoding for instruction operands where
561   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
562   /// instruction number, for a more compact encoding.  Some instruction
563   /// operands are not relative to the instruction ID: basic block numbers, and
564   /// types. Once the old style function blocks have been phased out, we would
565   /// not need this flag.
566   bool UseRelativeIDs = false;
567 
568   /// True if all functions will be materialized, negating the need to process
569   /// (e.g.) blockaddress forward references.
570   bool WillMaterializeAllForwardRefs = false;
571 
572   bool StripDebugInfo = false;
573   TBAAVerifier TBAAVerifyHelper;
574 
575   std::vector<std::string> BundleTags;
576   SmallVector<SyncScope::ID, 8> SSIDs;
577 
578 public:
579   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
580                 StringRef ProducerIdentification, LLVMContext &Context);
581 
582   Error materializeForwardReferencedFunctions();
583 
584   Error materialize(GlobalValue *GV) override;
585   Error materializeModule() override;
586   std::vector<StructType *> getIdentifiedStructTypes() const override;
587 
588   /// Main interface to parsing a bitcode buffer.
589   /// \returns true if an error occurred.
590   Error parseBitcodeInto(
591       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
592       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
593 
594   static uint64_t decodeSignRotatedValue(uint64_t V);
595 
596   /// Materialize any deferred Metadata block.
597   Error materializeMetadata() override;
598 
599   void setStripDebugInfo() override;
600 
601 private:
602   std::vector<StructType *> IdentifiedStructTypes;
603   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
604   StructType *createIdentifiedStructType(LLVMContext &Context);
605 
606   static constexpr unsigned InvalidTypeID = ~0u;
607 
608   Type *getTypeByID(unsigned ID);
609   Type *getPtrElementTypeByID(unsigned ID);
610   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
611   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
612 
613   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) {
614     if (Ty && Ty->isMetadataTy())
615       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
616     return ValueList.getValueFwdRef(ID, Ty, TyID);
617   }
618 
619   Metadata *getFnMetadataByID(unsigned ID) {
620     return MDLoader->getMetadataFwdRefOrLoad(ID);
621   }
622 
623   BasicBlock *getBasicBlock(unsigned ID) const {
624     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
625     return FunctionBBs[ID];
626   }
627 
628   AttributeList getAttributes(unsigned i) const {
629     if (i-1 < MAttributes.size())
630       return MAttributes[i-1];
631     return AttributeList();
632   }
633 
634   /// Read a value/type pair out of the specified record from slot 'Slot'.
635   /// Increment Slot past the number of slots used in the record. Return true on
636   /// failure.
637   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
638                         unsigned InstNum, Value *&ResVal, unsigned &TypeID) {
639     if (Slot == Record.size()) return true;
640     unsigned ValNo = (unsigned)Record[Slot++];
641     // Adjust the ValNo, if it was encoded relative to the InstNum.
642     if (UseRelativeIDs)
643       ValNo = InstNum - ValNo;
644     if (ValNo < InstNum) {
645       // If this is not a forward reference, just return the value we already
646       // have.
647       TypeID = ValueList.getTypeID(ValNo);
648       ResVal = getFnValueByID(ValNo, nullptr, TypeID);
649       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
650              "Incorrect type ID stored for value");
651       return ResVal == nullptr;
652     }
653     if (Slot == Record.size())
654       return true;
655 
656     TypeID = (unsigned)Record[Slot++];
657     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID);
658     return ResVal == nullptr;
659   }
660 
661   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
662   /// past the number of slots used by the value in the record. Return true if
663   /// there is an error.
664   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
665                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) {
666     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal))
667       return true;
668     // All values currently take a single record slot.
669     ++Slot;
670     return false;
671   }
672 
673   /// Like popValue, but does not increment the Slot number.
674   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
675                 unsigned InstNum, Type *Ty, unsigned TyID,  Value *&ResVal) {
676     ResVal = getValue(Record, Slot, InstNum, Ty, TyID);
677     return ResVal == nullptr;
678   }
679 
680   /// Version of getValue that returns ResVal directly, or 0 if there is an
681   /// error.
682   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
683                   unsigned InstNum, Type *Ty, unsigned TyID) {
684     if (Slot == Record.size()) return nullptr;
685     unsigned ValNo = (unsigned)Record[Slot];
686     // Adjust the ValNo, if it was encoded relative to the InstNum.
687     if (UseRelativeIDs)
688       ValNo = InstNum - ValNo;
689     return getFnValueByID(ValNo, Ty, TyID);
690   }
691 
692   /// Like getValue, but decodes signed VBRs.
693   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
694                         unsigned InstNum, Type *Ty, unsigned TyID) {
695     if (Slot == Record.size()) return nullptr;
696     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
697     // Adjust the ValNo, if it was encoded relative to the InstNum.
698     if (UseRelativeIDs)
699       ValNo = InstNum - ValNo;
700     return getFnValueByID(ValNo, Ty, TyID);
701   }
702 
703   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
704   /// corresponding argument's pointee type. Also upgrades intrinsics that now
705   /// require an elementtype attribute.
706   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
707 
708   /// Converts alignment exponent (i.e. power of two (or zero)) to the
709   /// corresponding alignment to use. If alignment is too large, returns
710   /// a corresponding error code.
711   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
712   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
713   Error parseModule(
714       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
715       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
716 
717   Error parseComdatRecord(ArrayRef<uint64_t> Record);
718   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
719   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
720   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
721                                         ArrayRef<uint64_t> Record);
722 
723   Error parseAttributeBlock();
724   Error parseAttributeGroupBlock();
725   Error parseTypeTable();
726   Error parseTypeTableBody();
727   Error parseOperandBundleTags();
728   Error parseSyncScopeNames();
729 
730   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
731                                 unsigned NameIndex, Triple &TT);
732   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
733                                ArrayRef<uint64_t> Record);
734   Error parseValueSymbolTable(uint64_t Offset = 0);
735   Error parseGlobalValueSymbolTable();
736   Error parseConstants();
737   Error rememberAndSkipFunctionBodies();
738   Error rememberAndSkipFunctionBody();
739   /// Save the positions of the Metadata blocks and skip parsing the blocks.
740   Error rememberAndSkipMetadata();
741   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
742   Error parseFunctionBody(Function *F);
743   Error globalCleanup();
744   Error resolveGlobalAndIndirectSymbolInits();
745   Error parseUseLists();
746   Error findFunctionInStream(
747       Function *F,
748       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
749 
750   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
751 };
752 
753 /// Class to manage reading and parsing function summary index bitcode
754 /// files/sections.
755 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
756   /// The module index built during parsing.
757   ModuleSummaryIndex &TheIndex;
758 
759   /// Indicates whether we have encountered a global value summary section
760   /// yet during parsing.
761   bool SeenGlobalValSummary = false;
762 
763   /// Indicates whether we have already parsed the VST, used for error checking.
764   bool SeenValueSymbolTable = false;
765 
766   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
767   /// Used to enable on-demand parsing of the VST.
768   uint64_t VSTOffset = 0;
769 
770   // Map to save ValueId to ValueInfo association that was recorded in the
771   // ValueSymbolTable. It is used after the VST is parsed to convert
772   // call graph edges read from the function summary from referencing
773   // callees by their ValueId to using the ValueInfo instead, which is how
774   // they are recorded in the summary index being built.
775   // We save a GUID which refers to the same global as the ValueInfo, but
776   // ignoring the linkage, i.e. for values other than local linkage they are
777   // identical.
778   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
779       ValueIdToValueInfoMap;
780 
781   /// Map populated during module path string table parsing, from the
782   /// module ID to a string reference owned by the index's module
783   /// path string table, used to correlate with combined index
784   /// summary records.
785   DenseMap<uint64_t, StringRef> ModuleIdMap;
786 
787   /// Original source file name recorded in a bitcode record.
788   std::string SourceFileName;
789 
790   /// The string identifier given to this module by the client, normally the
791   /// path to the bitcode file.
792   StringRef ModulePath;
793 
794   /// For per-module summary indexes, the unique numerical identifier given to
795   /// this module by the client.
796   unsigned ModuleId;
797 
798 public:
799   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
800                                   ModuleSummaryIndex &TheIndex,
801                                   StringRef ModulePath, unsigned ModuleId);
802 
803   Error parseModule();
804 
805 private:
806   void setValueGUID(uint64_t ValueID, StringRef ValueName,
807                     GlobalValue::LinkageTypes Linkage,
808                     StringRef SourceFileName);
809   Error parseValueSymbolTable(
810       uint64_t Offset,
811       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
812   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
813   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
814                                                     bool IsOldProfileFormat,
815                                                     bool HasProfile,
816                                                     bool HasRelBF);
817   Error parseEntireSummary(unsigned ID);
818   Error parseModuleStringTable();
819   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
820   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
821                                        TypeIdCompatibleVtableInfo &TypeId);
822   std::vector<FunctionSummary::ParamAccess>
823   parseParamAccesses(ArrayRef<uint64_t> Record);
824 
825   std::pair<ValueInfo, GlobalValue::GUID>
826   getValueInfoFromValueId(unsigned ValueId);
827 
828   void addThisModule();
829   ModuleSummaryIndex::ModuleInfo *getThisModule();
830 };
831 
832 } // end anonymous namespace
833 
834 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
835                                                     Error Err) {
836   if (Err) {
837     std::error_code EC;
838     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
839       EC = EIB.convertToErrorCode();
840       Ctx.emitError(EIB.message());
841     });
842     return EC;
843   }
844   return std::error_code();
845 }
846 
847 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
848                              StringRef ProducerIdentification,
849                              LLVMContext &Context)
850     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
851       ValueList(Context, this->Stream.SizeInBytes()) {
852   this->ProducerIdentification = std::string(ProducerIdentification);
853 }
854 
855 Error BitcodeReader::materializeForwardReferencedFunctions() {
856   if (WillMaterializeAllForwardRefs)
857     return Error::success();
858 
859   // Prevent recursion.
860   WillMaterializeAllForwardRefs = true;
861 
862   while (!BasicBlockFwdRefQueue.empty()) {
863     Function *F = BasicBlockFwdRefQueue.front();
864     BasicBlockFwdRefQueue.pop_front();
865     assert(F && "Expected valid function");
866     if (!BasicBlockFwdRefs.count(F))
867       // Already materialized.
868       continue;
869 
870     // Check for a function that isn't materializable to prevent an infinite
871     // loop.  When parsing a blockaddress stored in a global variable, there
872     // isn't a trivial way to check if a function will have a body without a
873     // linear search through FunctionsWithBodies, so just check it here.
874     if (!F->isMaterializable())
875       return error("Never resolved function from blockaddress");
876 
877     // Try to materialize F.
878     if (Error Err = materialize(F))
879       return Err;
880   }
881   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
882 
883   // Reset state.
884   WillMaterializeAllForwardRefs = false;
885   return Error::success();
886 }
887 
888 //===----------------------------------------------------------------------===//
889 //  Helper functions to implement forward reference resolution, etc.
890 //===----------------------------------------------------------------------===//
891 
892 static bool hasImplicitComdat(size_t Val) {
893   switch (Val) {
894   default:
895     return false;
896   case 1:  // Old WeakAnyLinkage
897   case 4:  // Old LinkOnceAnyLinkage
898   case 10: // Old WeakODRLinkage
899   case 11: // Old LinkOnceODRLinkage
900     return true;
901   }
902 }
903 
904 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
905   switch (Val) {
906   default: // Map unknown/new linkages to external
907   case 0:
908     return GlobalValue::ExternalLinkage;
909   case 2:
910     return GlobalValue::AppendingLinkage;
911   case 3:
912     return GlobalValue::InternalLinkage;
913   case 5:
914     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
915   case 6:
916     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
917   case 7:
918     return GlobalValue::ExternalWeakLinkage;
919   case 8:
920     return GlobalValue::CommonLinkage;
921   case 9:
922     return GlobalValue::PrivateLinkage;
923   case 12:
924     return GlobalValue::AvailableExternallyLinkage;
925   case 13:
926     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
927   case 14:
928     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
929   case 15:
930     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
931   case 1: // Old value with implicit comdat.
932   case 16:
933     return GlobalValue::WeakAnyLinkage;
934   case 10: // Old value with implicit comdat.
935   case 17:
936     return GlobalValue::WeakODRLinkage;
937   case 4: // Old value with implicit comdat.
938   case 18:
939     return GlobalValue::LinkOnceAnyLinkage;
940   case 11: // Old value with implicit comdat.
941   case 19:
942     return GlobalValue::LinkOnceODRLinkage;
943   }
944 }
945 
946 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
947   FunctionSummary::FFlags Flags;
948   Flags.ReadNone = RawFlags & 0x1;
949   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
950   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
951   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
952   Flags.NoInline = (RawFlags >> 4) & 0x1;
953   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
954   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
955   Flags.MayThrow = (RawFlags >> 7) & 0x1;
956   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
957   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
958   return Flags;
959 }
960 
961 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
962 //
963 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
964 // visibility: [8, 10).
965 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
966                                                             uint64_t Version) {
967   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
968   // like getDecodedLinkage() above. Any future change to the linkage enum and
969   // to getDecodedLinkage() will need to be taken into account here as above.
970   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
971   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
972   RawFlags = RawFlags >> 4;
973   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
974   // The Live flag wasn't introduced until version 3. For dead stripping
975   // to work correctly on earlier versions, we must conservatively treat all
976   // values as live.
977   bool Live = (RawFlags & 0x2) || Version < 3;
978   bool Local = (RawFlags & 0x4);
979   bool AutoHide = (RawFlags & 0x8);
980 
981   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
982                                      Live, Local, AutoHide);
983 }
984 
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags(
988       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
989       (RawFlags & 0x4) ? true : false,
990       (GlobalObject::VCallVisibility)(RawFlags >> 3));
991 }
992 
993 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
994   switch (Val) {
995   default: // Map unknown visibilities to default.
996   case 0: return GlobalValue::DefaultVisibility;
997   case 1: return GlobalValue::HiddenVisibility;
998   case 2: return GlobalValue::ProtectedVisibility;
999   }
1000 }
1001 
1002 static GlobalValue::DLLStorageClassTypes
1003 getDecodedDLLStorageClass(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown values to default.
1006   case 0: return GlobalValue::DefaultStorageClass;
1007   case 1: return GlobalValue::DLLImportStorageClass;
1008   case 2: return GlobalValue::DLLExportStorageClass;
1009   }
1010 }
1011 
1012 static bool getDecodedDSOLocal(unsigned Val) {
1013   switch(Val) {
1014   default: // Map unknown values to preemptable.
1015   case 0:  return false;
1016   case 1:  return true;
1017   }
1018 }
1019 
1020 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1021   switch (Val) {
1022     case 0: return GlobalVariable::NotThreadLocal;
1023     default: // Map unknown non-zero value to general dynamic.
1024     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1025     case 2: return GlobalVariable::LocalDynamicTLSModel;
1026     case 3: return GlobalVariable::InitialExecTLSModel;
1027     case 4: return GlobalVariable::LocalExecTLSModel;
1028   }
1029 }
1030 
1031 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1032   switch (Val) {
1033     default: // Map unknown to UnnamedAddr::None.
1034     case 0: return GlobalVariable::UnnamedAddr::None;
1035     case 1: return GlobalVariable::UnnamedAddr::Global;
1036     case 2: return GlobalVariable::UnnamedAddr::Local;
1037   }
1038 }
1039 
1040 static int getDecodedCastOpcode(unsigned Val) {
1041   switch (Val) {
1042   default: return -1;
1043   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1044   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1045   case bitc::CAST_SEXT    : return Instruction::SExt;
1046   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1047   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1048   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1049   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1050   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1051   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1052   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1053   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1054   case bitc::CAST_BITCAST : return Instruction::BitCast;
1055   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1056   }
1057 }
1058 
1059 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1060   bool IsFP = Ty->isFPOrFPVectorTy();
1061   // UnOps are only valid for int/fp or vector of int/fp types
1062   if (!IsFP && !Ty->isIntOrIntVectorTy())
1063     return -1;
1064 
1065   switch (Val) {
1066   default:
1067     return -1;
1068   case bitc::UNOP_FNEG:
1069     return IsFP ? Instruction::FNeg : -1;
1070   }
1071 }
1072 
1073 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1074   bool IsFP = Ty->isFPOrFPVectorTy();
1075   // BinOps are only valid for int/fp or vector of int/fp types
1076   if (!IsFP && !Ty->isIntOrIntVectorTy())
1077     return -1;
1078 
1079   switch (Val) {
1080   default:
1081     return -1;
1082   case bitc::BINOP_ADD:
1083     return IsFP ? Instruction::FAdd : Instruction::Add;
1084   case bitc::BINOP_SUB:
1085     return IsFP ? Instruction::FSub : Instruction::Sub;
1086   case bitc::BINOP_MUL:
1087     return IsFP ? Instruction::FMul : Instruction::Mul;
1088   case bitc::BINOP_UDIV:
1089     return IsFP ? -1 : Instruction::UDiv;
1090   case bitc::BINOP_SDIV:
1091     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1092   case bitc::BINOP_UREM:
1093     return IsFP ? -1 : Instruction::URem;
1094   case bitc::BINOP_SREM:
1095     return IsFP ? Instruction::FRem : Instruction::SRem;
1096   case bitc::BINOP_SHL:
1097     return IsFP ? -1 : Instruction::Shl;
1098   case bitc::BINOP_LSHR:
1099     return IsFP ? -1 : Instruction::LShr;
1100   case bitc::BINOP_ASHR:
1101     return IsFP ? -1 : Instruction::AShr;
1102   case bitc::BINOP_AND:
1103     return IsFP ? -1 : Instruction::And;
1104   case bitc::BINOP_OR:
1105     return IsFP ? -1 : Instruction::Or;
1106   case bitc::BINOP_XOR:
1107     return IsFP ? -1 : Instruction::Xor;
1108   }
1109 }
1110 
1111 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1112   switch (Val) {
1113   default: return AtomicRMWInst::BAD_BINOP;
1114   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1115   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1116   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1117   case bitc::RMW_AND: return AtomicRMWInst::And;
1118   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1119   case bitc::RMW_OR: return AtomicRMWInst::Or;
1120   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1121   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1122   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1123   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1124   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1125   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1126   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1127   }
1128 }
1129 
1130 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1131   switch (Val) {
1132   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1133   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1134   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1135   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1136   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1137   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1138   default: // Map unknown orderings to sequentially-consistent.
1139   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1140   }
1141 }
1142 
1143 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1144   switch (Val) {
1145   default: // Map unknown selection kinds to any.
1146   case bitc::COMDAT_SELECTION_KIND_ANY:
1147     return Comdat::Any;
1148   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1149     return Comdat::ExactMatch;
1150   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1151     return Comdat::Largest;
1152   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1153     return Comdat::NoDeduplicate;
1154   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1155     return Comdat::SameSize;
1156   }
1157 }
1158 
1159 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1160   FastMathFlags FMF;
1161   if (0 != (Val & bitc::UnsafeAlgebra))
1162     FMF.setFast();
1163   if (0 != (Val & bitc::AllowReassoc))
1164     FMF.setAllowReassoc();
1165   if (0 != (Val & bitc::NoNaNs))
1166     FMF.setNoNaNs();
1167   if (0 != (Val & bitc::NoInfs))
1168     FMF.setNoInfs();
1169   if (0 != (Val & bitc::NoSignedZeros))
1170     FMF.setNoSignedZeros();
1171   if (0 != (Val & bitc::AllowReciprocal))
1172     FMF.setAllowReciprocal();
1173   if (0 != (Val & bitc::AllowContract))
1174     FMF.setAllowContract(true);
1175   if (0 != (Val & bitc::ApproxFunc))
1176     FMF.setApproxFunc();
1177   return FMF;
1178 }
1179 
1180 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1181   switch (Val) {
1182   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1183   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1184   }
1185 }
1186 
1187 Type *BitcodeReader::getTypeByID(unsigned ID) {
1188   // The type table size is always specified correctly.
1189   if (ID >= TypeList.size())
1190     return nullptr;
1191 
1192   if (Type *Ty = TypeList[ID])
1193     return Ty;
1194 
1195   // If we have a forward reference, the only possible case is when it is to a
1196   // named struct.  Just create a placeholder for now.
1197   return TypeList[ID] = createIdentifiedStructType(Context);
1198 }
1199 
1200 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1201   auto It = ContainedTypeIDs.find(ID);
1202   if (It == ContainedTypeIDs.end())
1203     return InvalidTypeID;
1204 
1205   if (Idx >= It->second.size())
1206     return InvalidTypeID;
1207 
1208   return It->second[Idx];
1209 }
1210 
1211 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1212   if (ID >= TypeList.size())
1213     return nullptr;
1214 
1215   Type *Ty = TypeList[ID];
1216   if (!Ty->isPointerTy())
1217     return nullptr;
1218 
1219   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1220   if (!ElemTy)
1221     return nullptr;
1222 
1223   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1224          "Incorrect element type");
1225   return ElemTy;
1226 }
1227 
1228 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1229                                          ArrayRef<unsigned> ChildTypeIDs) {
1230   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1231   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1232   auto It = VirtualTypeIDs.find(CacheKey);
1233   if (It != VirtualTypeIDs.end()) {
1234     // The cmpxchg return value is the only place we need more than one
1235     // contained type ID, however the second one will always be the same (i1),
1236     // so we don't need to include it in the cache key. This asserts that the
1237     // contained types are indeed as expected and there are no collisions.
1238     assert((ChildTypeIDs.empty() ||
1239             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1240            "Incorrect cached contained type IDs");
1241     return It->second;
1242   }
1243 
1244 #ifndef NDEBUG
1245   if (!Ty->isOpaquePointerTy()) {
1246     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1247            "Wrong number of contained types");
1248     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1249       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1250              "Incorrect contained type ID");
1251     }
1252   }
1253 #endif
1254 
1255   unsigned TypeID = TypeList.size();
1256   TypeList.push_back(Ty);
1257   if (!ChildTypeIDs.empty())
1258     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1259   VirtualTypeIDs.insert({CacheKey, TypeID});
1260   return TypeID;
1261 }
1262 
1263 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1264                                                       StringRef Name) {
1265   auto *Ret = StructType::create(Context, Name);
1266   IdentifiedStructTypes.push_back(Ret);
1267   return Ret;
1268 }
1269 
1270 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1271   auto *Ret = StructType::create(Context);
1272   IdentifiedStructTypes.push_back(Ret);
1273   return Ret;
1274 }
1275 
1276 //===----------------------------------------------------------------------===//
1277 //  Functions for parsing blocks from the bitcode file
1278 //===----------------------------------------------------------------------===//
1279 
1280 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1281   switch (Val) {
1282   case Attribute::EndAttrKinds:
1283   case Attribute::EmptyKey:
1284   case Attribute::TombstoneKey:
1285     llvm_unreachable("Synthetic enumerators which should never get here");
1286 
1287   case Attribute::None:            return 0;
1288   case Attribute::ZExt:            return 1 << 0;
1289   case Attribute::SExt:            return 1 << 1;
1290   case Attribute::NoReturn:        return 1 << 2;
1291   case Attribute::InReg:           return 1 << 3;
1292   case Attribute::StructRet:       return 1 << 4;
1293   case Attribute::NoUnwind:        return 1 << 5;
1294   case Attribute::NoAlias:         return 1 << 6;
1295   case Attribute::ByVal:           return 1 << 7;
1296   case Attribute::Nest:            return 1 << 8;
1297   case Attribute::ReadNone:        return 1 << 9;
1298   case Attribute::ReadOnly:        return 1 << 10;
1299   case Attribute::NoInline:        return 1 << 11;
1300   case Attribute::AlwaysInline:    return 1 << 12;
1301   case Attribute::OptimizeForSize: return 1 << 13;
1302   case Attribute::StackProtect:    return 1 << 14;
1303   case Attribute::StackProtectReq: return 1 << 15;
1304   case Attribute::Alignment:       return 31 << 16;
1305   case Attribute::NoCapture:       return 1 << 21;
1306   case Attribute::NoRedZone:       return 1 << 22;
1307   case Attribute::NoImplicitFloat: return 1 << 23;
1308   case Attribute::Naked:           return 1 << 24;
1309   case Attribute::InlineHint:      return 1 << 25;
1310   case Attribute::StackAlignment:  return 7 << 26;
1311   case Attribute::ReturnsTwice:    return 1 << 29;
1312   case Attribute::UWTable:         return 1 << 30;
1313   case Attribute::NonLazyBind:     return 1U << 31;
1314   case Attribute::SanitizeAddress: return 1ULL << 32;
1315   case Attribute::MinSize:         return 1ULL << 33;
1316   case Attribute::NoDuplicate:     return 1ULL << 34;
1317   case Attribute::StackProtectStrong: return 1ULL << 35;
1318   case Attribute::SanitizeThread:  return 1ULL << 36;
1319   case Attribute::SanitizeMemory:  return 1ULL << 37;
1320   case Attribute::NoBuiltin:       return 1ULL << 38;
1321   case Attribute::Returned:        return 1ULL << 39;
1322   case Attribute::Cold:            return 1ULL << 40;
1323   case Attribute::Builtin:         return 1ULL << 41;
1324   case Attribute::OptimizeNone:    return 1ULL << 42;
1325   case Attribute::InAlloca:        return 1ULL << 43;
1326   case Attribute::NonNull:         return 1ULL << 44;
1327   case Attribute::JumpTable:       return 1ULL << 45;
1328   case Attribute::Convergent:      return 1ULL << 46;
1329   case Attribute::SafeStack:       return 1ULL << 47;
1330   case Attribute::NoRecurse:       return 1ULL << 48;
1331   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1332   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1333   case Attribute::SwiftSelf:       return 1ULL << 51;
1334   case Attribute::SwiftError:      return 1ULL << 52;
1335   case Attribute::WriteOnly:       return 1ULL << 53;
1336   case Attribute::Speculatable:    return 1ULL << 54;
1337   case Attribute::StrictFP:        return 1ULL << 55;
1338   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1339   case Attribute::NoCfCheck:       return 1ULL << 57;
1340   case Attribute::OptForFuzzing:   return 1ULL << 58;
1341   case Attribute::ShadowCallStack: return 1ULL << 59;
1342   case Attribute::SpeculativeLoadHardening:
1343     return 1ULL << 60;
1344   case Attribute::ImmArg:
1345     return 1ULL << 61;
1346   case Attribute::WillReturn:
1347     return 1ULL << 62;
1348   case Attribute::NoFree:
1349     return 1ULL << 63;
1350   default:
1351     // Other attributes are not supported in the raw format,
1352     // as we ran out of space.
1353     return 0;
1354   }
1355   llvm_unreachable("Unsupported attribute type");
1356 }
1357 
1358 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1359   if (!Val) return;
1360 
1361   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1362        I = Attribute::AttrKind(I + 1)) {
1363     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1364       if (I == Attribute::Alignment)
1365         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1366       else if (I == Attribute::StackAlignment)
1367         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1368       else if (Attribute::isTypeAttrKind(I))
1369         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1370       else
1371         B.addAttribute(I);
1372     }
1373   }
1374 }
1375 
1376 /// This fills an AttrBuilder object with the LLVM attributes that have
1377 /// been decoded from the given integer. This function must stay in sync with
1378 /// 'encodeLLVMAttributesForBitcode'.
1379 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1380                                            uint64_t EncodedAttrs) {
1381   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1382   // the bits above 31 down by 11 bits.
1383   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1384   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1385          "Alignment must be a power of two.");
1386 
1387   if (Alignment)
1388     B.addAlignmentAttr(Alignment);
1389   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1390                           (EncodedAttrs & 0xffff));
1391 }
1392 
1393 Error BitcodeReader::parseAttributeBlock() {
1394   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1395     return Err;
1396 
1397   if (!MAttributes.empty())
1398     return error("Invalid multiple blocks");
1399 
1400   SmallVector<uint64_t, 64> Record;
1401 
1402   SmallVector<AttributeList, 8> Attrs;
1403 
1404   // Read all the records.
1405   while (true) {
1406     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1407     if (!MaybeEntry)
1408       return MaybeEntry.takeError();
1409     BitstreamEntry Entry = MaybeEntry.get();
1410 
1411     switch (Entry.Kind) {
1412     case BitstreamEntry::SubBlock: // Handled for us already.
1413     case BitstreamEntry::Error:
1414       return error("Malformed block");
1415     case BitstreamEntry::EndBlock:
1416       return Error::success();
1417     case BitstreamEntry::Record:
1418       // The interesting case.
1419       break;
1420     }
1421 
1422     // Read a record.
1423     Record.clear();
1424     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1425     if (!MaybeRecord)
1426       return MaybeRecord.takeError();
1427     switch (MaybeRecord.get()) {
1428     default:  // Default behavior: ignore.
1429       break;
1430     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1431       // Deprecated, but still needed to read old bitcode files.
1432       if (Record.size() & 1)
1433         return error("Invalid parameter attribute record");
1434 
1435       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1436         AttrBuilder B(Context);
1437         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1438         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1439       }
1440 
1441       MAttributes.push_back(AttributeList::get(Context, Attrs));
1442       Attrs.clear();
1443       break;
1444     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1445       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1446         Attrs.push_back(MAttributeGroups[Record[i]]);
1447 
1448       MAttributes.push_back(AttributeList::get(Context, Attrs));
1449       Attrs.clear();
1450       break;
1451     }
1452   }
1453 }
1454 
1455 // Returns Attribute::None on unrecognized codes.
1456 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1457   switch (Code) {
1458   default:
1459     return Attribute::None;
1460   case bitc::ATTR_KIND_ALIGNMENT:
1461     return Attribute::Alignment;
1462   case bitc::ATTR_KIND_ALWAYS_INLINE:
1463     return Attribute::AlwaysInline;
1464   case bitc::ATTR_KIND_ARGMEMONLY:
1465     return Attribute::ArgMemOnly;
1466   case bitc::ATTR_KIND_BUILTIN:
1467     return Attribute::Builtin;
1468   case bitc::ATTR_KIND_BY_VAL:
1469     return Attribute::ByVal;
1470   case bitc::ATTR_KIND_IN_ALLOCA:
1471     return Attribute::InAlloca;
1472   case bitc::ATTR_KIND_COLD:
1473     return Attribute::Cold;
1474   case bitc::ATTR_KIND_CONVERGENT:
1475     return Attribute::Convergent;
1476   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1477     return Attribute::DisableSanitizerInstrumentation;
1478   case bitc::ATTR_KIND_ELEMENTTYPE:
1479     return Attribute::ElementType;
1480   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1481     return Attribute::InaccessibleMemOnly;
1482   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1483     return Attribute::InaccessibleMemOrArgMemOnly;
1484   case bitc::ATTR_KIND_INLINE_HINT:
1485     return Attribute::InlineHint;
1486   case bitc::ATTR_KIND_IN_REG:
1487     return Attribute::InReg;
1488   case bitc::ATTR_KIND_JUMP_TABLE:
1489     return Attribute::JumpTable;
1490   case bitc::ATTR_KIND_MIN_SIZE:
1491     return Attribute::MinSize;
1492   case bitc::ATTR_KIND_NAKED:
1493     return Attribute::Naked;
1494   case bitc::ATTR_KIND_NEST:
1495     return Attribute::Nest;
1496   case bitc::ATTR_KIND_NO_ALIAS:
1497     return Attribute::NoAlias;
1498   case bitc::ATTR_KIND_NO_BUILTIN:
1499     return Attribute::NoBuiltin;
1500   case bitc::ATTR_KIND_NO_CALLBACK:
1501     return Attribute::NoCallback;
1502   case bitc::ATTR_KIND_NO_CAPTURE:
1503     return Attribute::NoCapture;
1504   case bitc::ATTR_KIND_NO_DUPLICATE:
1505     return Attribute::NoDuplicate;
1506   case bitc::ATTR_KIND_NOFREE:
1507     return Attribute::NoFree;
1508   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1509     return Attribute::NoImplicitFloat;
1510   case bitc::ATTR_KIND_NO_INLINE:
1511     return Attribute::NoInline;
1512   case bitc::ATTR_KIND_NO_RECURSE:
1513     return Attribute::NoRecurse;
1514   case bitc::ATTR_KIND_NO_MERGE:
1515     return Attribute::NoMerge;
1516   case bitc::ATTR_KIND_NON_LAZY_BIND:
1517     return Attribute::NonLazyBind;
1518   case bitc::ATTR_KIND_NON_NULL:
1519     return Attribute::NonNull;
1520   case bitc::ATTR_KIND_DEREFERENCEABLE:
1521     return Attribute::Dereferenceable;
1522   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1523     return Attribute::DereferenceableOrNull;
1524   case bitc::ATTR_KIND_ALLOC_ALIGN:
1525     return Attribute::AllocAlign;
1526   case bitc::ATTR_KIND_ALLOC_SIZE:
1527     return Attribute::AllocSize;
1528   case bitc::ATTR_KIND_NO_RED_ZONE:
1529     return Attribute::NoRedZone;
1530   case bitc::ATTR_KIND_NO_RETURN:
1531     return Attribute::NoReturn;
1532   case bitc::ATTR_KIND_NOSYNC:
1533     return Attribute::NoSync;
1534   case bitc::ATTR_KIND_NOCF_CHECK:
1535     return Attribute::NoCfCheck;
1536   case bitc::ATTR_KIND_NO_PROFILE:
1537     return Attribute::NoProfile;
1538   case bitc::ATTR_KIND_NO_UNWIND:
1539     return Attribute::NoUnwind;
1540   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1541     return Attribute::NoSanitizeBounds;
1542   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1543     return Attribute::NoSanitizeCoverage;
1544   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1545     return Attribute::NullPointerIsValid;
1546   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1547     return Attribute::OptForFuzzing;
1548   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1549     return Attribute::OptimizeForSize;
1550   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1551     return Attribute::OptimizeNone;
1552   case bitc::ATTR_KIND_READ_NONE:
1553     return Attribute::ReadNone;
1554   case bitc::ATTR_KIND_READ_ONLY:
1555     return Attribute::ReadOnly;
1556   case bitc::ATTR_KIND_RETURNED:
1557     return Attribute::Returned;
1558   case bitc::ATTR_KIND_RETURNS_TWICE:
1559     return Attribute::ReturnsTwice;
1560   case bitc::ATTR_KIND_S_EXT:
1561     return Attribute::SExt;
1562   case bitc::ATTR_KIND_SPECULATABLE:
1563     return Attribute::Speculatable;
1564   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1565     return Attribute::StackAlignment;
1566   case bitc::ATTR_KIND_STACK_PROTECT:
1567     return Attribute::StackProtect;
1568   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1569     return Attribute::StackProtectReq;
1570   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1571     return Attribute::StackProtectStrong;
1572   case bitc::ATTR_KIND_SAFESTACK:
1573     return Attribute::SafeStack;
1574   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1575     return Attribute::ShadowCallStack;
1576   case bitc::ATTR_KIND_STRICT_FP:
1577     return Attribute::StrictFP;
1578   case bitc::ATTR_KIND_STRUCT_RET:
1579     return Attribute::StructRet;
1580   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1581     return Attribute::SanitizeAddress;
1582   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1583     return Attribute::SanitizeHWAddress;
1584   case bitc::ATTR_KIND_SANITIZE_THREAD:
1585     return Attribute::SanitizeThread;
1586   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1587     return Attribute::SanitizeMemory;
1588   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1589     return Attribute::SpeculativeLoadHardening;
1590   case bitc::ATTR_KIND_SWIFT_ERROR:
1591     return Attribute::SwiftError;
1592   case bitc::ATTR_KIND_SWIFT_SELF:
1593     return Attribute::SwiftSelf;
1594   case bitc::ATTR_KIND_SWIFT_ASYNC:
1595     return Attribute::SwiftAsync;
1596   case bitc::ATTR_KIND_UW_TABLE:
1597     return Attribute::UWTable;
1598   case bitc::ATTR_KIND_VSCALE_RANGE:
1599     return Attribute::VScaleRange;
1600   case bitc::ATTR_KIND_WILLRETURN:
1601     return Attribute::WillReturn;
1602   case bitc::ATTR_KIND_WRITEONLY:
1603     return Attribute::WriteOnly;
1604   case bitc::ATTR_KIND_Z_EXT:
1605     return Attribute::ZExt;
1606   case bitc::ATTR_KIND_IMMARG:
1607     return Attribute::ImmArg;
1608   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1609     return Attribute::SanitizeMemTag;
1610   case bitc::ATTR_KIND_PREALLOCATED:
1611     return Attribute::Preallocated;
1612   case bitc::ATTR_KIND_NOUNDEF:
1613     return Attribute::NoUndef;
1614   case bitc::ATTR_KIND_BYREF:
1615     return Attribute::ByRef;
1616   case bitc::ATTR_KIND_MUSTPROGRESS:
1617     return Attribute::MustProgress;
1618   case bitc::ATTR_KIND_HOT:
1619     return Attribute::Hot;
1620   }
1621 }
1622 
1623 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1624                                          MaybeAlign &Alignment) {
1625   // Note: Alignment in bitcode files is incremented by 1, so that zero
1626   // can be used for default alignment.
1627   if (Exponent > Value::MaxAlignmentExponent + 1)
1628     return error("Invalid alignment value");
1629   Alignment = decodeMaybeAlign(Exponent);
1630   return Error::success();
1631 }
1632 
1633 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1634   *Kind = getAttrFromCode(Code);
1635   if (*Kind == Attribute::None)
1636     return error("Unknown attribute kind (" + Twine(Code) + ")");
1637   return Error::success();
1638 }
1639 
1640 Error BitcodeReader::parseAttributeGroupBlock() {
1641   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1642     return Err;
1643 
1644   if (!MAttributeGroups.empty())
1645     return error("Invalid multiple blocks");
1646 
1647   SmallVector<uint64_t, 64> Record;
1648 
1649   // Read all the records.
1650   while (true) {
1651     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1652     if (!MaybeEntry)
1653       return MaybeEntry.takeError();
1654     BitstreamEntry Entry = MaybeEntry.get();
1655 
1656     switch (Entry.Kind) {
1657     case BitstreamEntry::SubBlock: // Handled for us already.
1658     case BitstreamEntry::Error:
1659       return error("Malformed block");
1660     case BitstreamEntry::EndBlock:
1661       return Error::success();
1662     case BitstreamEntry::Record:
1663       // The interesting case.
1664       break;
1665     }
1666 
1667     // Read a record.
1668     Record.clear();
1669     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1670     if (!MaybeRecord)
1671       return MaybeRecord.takeError();
1672     switch (MaybeRecord.get()) {
1673     default:  // Default behavior: ignore.
1674       break;
1675     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1676       if (Record.size() < 3)
1677         return error("Invalid grp record");
1678 
1679       uint64_t GrpID = Record[0];
1680       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1681 
1682       AttrBuilder B(Context);
1683       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1684         if (Record[i] == 0) {        // Enum attribute
1685           Attribute::AttrKind Kind;
1686           if (Error Err = parseAttrKind(Record[++i], &Kind))
1687             return Err;
1688 
1689           // Upgrade old-style byval attribute to one with a type, even if it's
1690           // nullptr. We will have to insert the real type when we associate
1691           // this AttributeList with a function.
1692           if (Kind == Attribute::ByVal)
1693             B.addByValAttr(nullptr);
1694           else if (Kind == Attribute::StructRet)
1695             B.addStructRetAttr(nullptr);
1696           else if (Kind == Attribute::InAlloca)
1697             B.addInAllocaAttr(nullptr);
1698           else if (Kind == Attribute::UWTable)
1699             B.addUWTableAttr(UWTableKind::Default);
1700           else if (Attribute::isEnumAttrKind(Kind))
1701             B.addAttribute(Kind);
1702           else
1703             return error("Not an enum attribute");
1704         } else if (Record[i] == 1) { // Integer attribute
1705           Attribute::AttrKind Kind;
1706           if (Error Err = parseAttrKind(Record[++i], &Kind))
1707             return Err;
1708           if (!Attribute::isIntAttrKind(Kind))
1709             return error("Not an int attribute");
1710           if (Kind == Attribute::Alignment)
1711             B.addAlignmentAttr(Record[++i]);
1712           else if (Kind == Attribute::StackAlignment)
1713             B.addStackAlignmentAttr(Record[++i]);
1714           else if (Kind == Attribute::Dereferenceable)
1715             B.addDereferenceableAttr(Record[++i]);
1716           else if (Kind == Attribute::DereferenceableOrNull)
1717             B.addDereferenceableOrNullAttr(Record[++i]);
1718           else if (Kind == Attribute::AllocSize)
1719             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1720           else if (Kind == Attribute::VScaleRange)
1721             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1722           else if (Kind == Attribute::UWTable)
1723             B.addUWTableAttr(UWTableKind(Record[++i]));
1724         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1725           bool HasValue = (Record[i++] == 4);
1726           SmallString<64> KindStr;
1727           SmallString<64> ValStr;
1728 
1729           while (Record[i] != 0 && i != e)
1730             KindStr += Record[i++];
1731           assert(Record[i] == 0 && "Kind string not null terminated");
1732 
1733           if (HasValue) {
1734             // Has a value associated with it.
1735             ++i; // Skip the '0' that terminates the "kind" string.
1736             while (Record[i] != 0 && i != e)
1737               ValStr += Record[i++];
1738             assert(Record[i] == 0 && "Value string not null terminated");
1739           }
1740 
1741           B.addAttribute(KindStr.str(), ValStr.str());
1742         } else if (Record[i] == 5 || Record[i] == 6) {
1743           bool HasType = Record[i] == 6;
1744           Attribute::AttrKind Kind;
1745           if (Error Err = parseAttrKind(Record[++i], &Kind))
1746             return Err;
1747           if (!Attribute::isTypeAttrKind(Kind))
1748             return error("Not a type attribute");
1749 
1750           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1751         } else {
1752           return error("Invalid attribute group entry");
1753         }
1754       }
1755 
1756       UpgradeAttributes(B);
1757       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1758       break;
1759     }
1760     }
1761   }
1762 }
1763 
1764 Error BitcodeReader::parseTypeTable() {
1765   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1766     return Err;
1767 
1768   return parseTypeTableBody();
1769 }
1770 
1771 Error BitcodeReader::parseTypeTableBody() {
1772   if (!TypeList.empty())
1773     return error("Invalid multiple blocks");
1774 
1775   SmallVector<uint64_t, 64> Record;
1776   unsigned NumRecords = 0;
1777 
1778   SmallString<64> TypeName;
1779 
1780   // Read all the records for this type table.
1781   while (true) {
1782     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1783     if (!MaybeEntry)
1784       return MaybeEntry.takeError();
1785     BitstreamEntry Entry = MaybeEntry.get();
1786 
1787     switch (Entry.Kind) {
1788     case BitstreamEntry::SubBlock: // Handled for us already.
1789     case BitstreamEntry::Error:
1790       return error("Malformed block");
1791     case BitstreamEntry::EndBlock:
1792       if (NumRecords != TypeList.size())
1793         return error("Malformed block");
1794       return Error::success();
1795     case BitstreamEntry::Record:
1796       // The interesting case.
1797       break;
1798     }
1799 
1800     // Read a record.
1801     Record.clear();
1802     Type *ResultTy = nullptr;
1803     SmallVector<unsigned> ContainedIDs;
1804     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1805     if (!MaybeRecord)
1806       return MaybeRecord.takeError();
1807     switch (MaybeRecord.get()) {
1808     default:
1809       return error("Invalid value");
1810     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1811       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1812       // type list.  This allows us to reserve space.
1813       if (Record.empty())
1814         return error("Invalid numentry record");
1815       TypeList.resize(Record[0]);
1816       continue;
1817     case bitc::TYPE_CODE_VOID:      // VOID
1818       ResultTy = Type::getVoidTy(Context);
1819       break;
1820     case bitc::TYPE_CODE_HALF:     // HALF
1821       ResultTy = Type::getHalfTy(Context);
1822       break;
1823     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1824       ResultTy = Type::getBFloatTy(Context);
1825       break;
1826     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1827       ResultTy = Type::getFloatTy(Context);
1828       break;
1829     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1830       ResultTy = Type::getDoubleTy(Context);
1831       break;
1832     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1833       ResultTy = Type::getX86_FP80Ty(Context);
1834       break;
1835     case bitc::TYPE_CODE_FP128:     // FP128
1836       ResultTy = Type::getFP128Ty(Context);
1837       break;
1838     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1839       ResultTy = Type::getPPC_FP128Ty(Context);
1840       break;
1841     case bitc::TYPE_CODE_LABEL:     // LABEL
1842       ResultTy = Type::getLabelTy(Context);
1843       break;
1844     case bitc::TYPE_CODE_METADATA:  // METADATA
1845       ResultTy = Type::getMetadataTy(Context);
1846       break;
1847     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1848       ResultTy = Type::getX86_MMXTy(Context);
1849       break;
1850     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1851       ResultTy = Type::getX86_AMXTy(Context);
1852       break;
1853     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1854       ResultTy = Type::getTokenTy(Context);
1855       break;
1856     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1857       if (Record.empty())
1858         return error("Invalid integer record");
1859 
1860       uint64_t NumBits = Record[0];
1861       if (NumBits < IntegerType::MIN_INT_BITS ||
1862           NumBits > IntegerType::MAX_INT_BITS)
1863         return error("Bitwidth for integer type out of range");
1864       ResultTy = IntegerType::get(Context, NumBits);
1865       break;
1866     }
1867     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1868                                     //          [pointee type, address space]
1869       if (Record.empty())
1870         return error("Invalid pointer record");
1871       unsigned AddressSpace = 0;
1872       if (Record.size() == 2)
1873         AddressSpace = Record[1];
1874       ResultTy = getTypeByID(Record[0]);
1875       if (!ResultTy ||
1876           !PointerType::isValidElementType(ResultTy))
1877         return error("Invalid type");
1878       ContainedIDs.push_back(Record[0]);
1879       ResultTy = PointerType::get(ResultTy, AddressSpace);
1880       break;
1881     }
1882     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1883       if (Record.size() != 1)
1884         return error("Invalid opaque pointer record");
1885       if (Context.supportsTypedPointers())
1886         return error(
1887             "Opaque pointers are only supported in -opaque-pointers mode");
1888       unsigned AddressSpace = Record[0];
1889       ResultTy = PointerType::get(Context, AddressSpace);
1890       break;
1891     }
1892     case bitc::TYPE_CODE_FUNCTION_OLD: {
1893       // Deprecated, but still needed to read old bitcode files.
1894       // FUNCTION: [vararg, attrid, retty, paramty x N]
1895       if (Record.size() < 3)
1896         return error("Invalid function record");
1897       SmallVector<Type*, 8> ArgTys;
1898       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1899         if (Type *T = getTypeByID(Record[i]))
1900           ArgTys.push_back(T);
1901         else
1902           break;
1903       }
1904 
1905       ResultTy = getTypeByID(Record[2]);
1906       if (!ResultTy || ArgTys.size() < Record.size()-3)
1907         return error("Invalid type");
1908 
1909       ContainedIDs.append(Record.begin() + 2, Record.end());
1910       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1911       break;
1912     }
1913     case bitc::TYPE_CODE_FUNCTION: {
1914       // FUNCTION: [vararg, retty, paramty x N]
1915       if (Record.size() < 2)
1916         return error("Invalid function record");
1917       SmallVector<Type*, 8> ArgTys;
1918       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1919         if (Type *T = getTypeByID(Record[i])) {
1920           if (!FunctionType::isValidArgumentType(T))
1921             return error("Invalid function argument type");
1922           ArgTys.push_back(T);
1923         }
1924         else
1925           break;
1926       }
1927 
1928       ResultTy = getTypeByID(Record[1]);
1929       if (!ResultTy || ArgTys.size() < Record.size()-2)
1930         return error("Invalid type");
1931 
1932       ContainedIDs.append(Record.begin() + 1, Record.end());
1933       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1934       break;
1935     }
1936     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1937       if (Record.empty())
1938         return error("Invalid anon struct record");
1939       SmallVector<Type*, 8> EltTys;
1940       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1941         if (Type *T = getTypeByID(Record[i]))
1942           EltTys.push_back(T);
1943         else
1944           break;
1945       }
1946       if (EltTys.size() != Record.size()-1)
1947         return error("Invalid type");
1948       ContainedIDs.append(Record.begin() + 1, Record.end());
1949       ResultTy = StructType::get(Context, EltTys, Record[0]);
1950       break;
1951     }
1952     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1953       if (convertToString(Record, 0, TypeName))
1954         return error("Invalid struct name record");
1955       continue;
1956 
1957     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1958       if (Record.empty())
1959         return error("Invalid named struct record");
1960 
1961       if (NumRecords >= TypeList.size())
1962         return error("Invalid TYPE table");
1963 
1964       // Check to see if this was forward referenced, if so fill in the temp.
1965       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1966       if (Res) {
1967         Res->setName(TypeName);
1968         TypeList[NumRecords] = nullptr;
1969       } else  // Otherwise, create a new struct.
1970         Res = createIdentifiedStructType(Context, TypeName);
1971       TypeName.clear();
1972 
1973       SmallVector<Type*, 8> EltTys;
1974       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1975         if (Type *T = getTypeByID(Record[i]))
1976           EltTys.push_back(T);
1977         else
1978           break;
1979       }
1980       if (EltTys.size() != Record.size()-1)
1981         return error("Invalid named struct record");
1982       Res->setBody(EltTys, Record[0]);
1983       ContainedIDs.append(Record.begin() + 1, Record.end());
1984       ResultTy = Res;
1985       break;
1986     }
1987     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1988       if (Record.size() != 1)
1989         return error("Invalid opaque type record");
1990 
1991       if (NumRecords >= TypeList.size())
1992         return error("Invalid TYPE table");
1993 
1994       // Check to see if this was forward referenced, if so fill in the temp.
1995       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1996       if (Res) {
1997         Res->setName(TypeName);
1998         TypeList[NumRecords] = nullptr;
1999       } else  // Otherwise, create a new struct with no body.
2000         Res = createIdentifiedStructType(Context, TypeName);
2001       TypeName.clear();
2002       ResultTy = Res;
2003       break;
2004     }
2005     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2006       if (Record.size() < 2)
2007         return error("Invalid array type record");
2008       ResultTy = getTypeByID(Record[1]);
2009       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2010         return error("Invalid type");
2011       ContainedIDs.push_back(Record[1]);
2012       ResultTy = ArrayType::get(ResultTy, Record[0]);
2013       break;
2014     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2015                                     //         [numelts, eltty, scalable]
2016       if (Record.size() < 2)
2017         return error("Invalid vector type record");
2018       if (Record[0] == 0)
2019         return error("Invalid vector length");
2020       ResultTy = getTypeByID(Record[1]);
2021       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2022         return error("Invalid type");
2023       bool Scalable = Record.size() > 2 ? Record[2] : false;
2024       ContainedIDs.push_back(Record[1]);
2025       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2026       break;
2027     }
2028 
2029     if (NumRecords >= TypeList.size())
2030       return error("Invalid TYPE table");
2031     if (TypeList[NumRecords])
2032       return error(
2033           "Invalid TYPE table: Only named structs can be forward referenced");
2034     assert(ResultTy && "Didn't read a type?");
2035     TypeList[NumRecords] = ResultTy;
2036     if (!ContainedIDs.empty())
2037       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2038     ++NumRecords;
2039   }
2040 }
2041 
2042 Error BitcodeReader::parseOperandBundleTags() {
2043   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2044     return Err;
2045 
2046   if (!BundleTags.empty())
2047     return error("Invalid multiple blocks");
2048 
2049   SmallVector<uint64_t, 64> Record;
2050 
2051   while (true) {
2052     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2053     if (!MaybeEntry)
2054       return MaybeEntry.takeError();
2055     BitstreamEntry Entry = MaybeEntry.get();
2056 
2057     switch (Entry.Kind) {
2058     case BitstreamEntry::SubBlock: // Handled for us already.
2059     case BitstreamEntry::Error:
2060       return error("Malformed block");
2061     case BitstreamEntry::EndBlock:
2062       return Error::success();
2063     case BitstreamEntry::Record:
2064       // The interesting case.
2065       break;
2066     }
2067 
2068     // Tags are implicitly mapped to integers by their order.
2069 
2070     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2071     if (!MaybeRecord)
2072       return MaybeRecord.takeError();
2073     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2074       return error("Invalid operand bundle record");
2075 
2076     // OPERAND_BUNDLE_TAG: [strchr x N]
2077     BundleTags.emplace_back();
2078     if (convertToString(Record, 0, BundleTags.back()))
2079       return error("Invalid operand bundle record");
2080     Record.clear();
2081   }
2082 }
2083 
2084 Error BitcodeReader::parseSyncScopeNames() {
2085   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2086     return Err;
2087 
2088   if (!SSIDs.empty())
2089     return error("Invalid multiple synchronization scope names blocks");
2090 
2091   SmallVector<uint64_t, 64> Record;
2092   while (true) {
2093     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2094     if (!MaybeEntry)
2095       return MaybeEntry.takeError();
2096     BitstreamEntry Entry = MaybeEntry.get();
2097 
2098     switch (Entry.Kind) {
2099     case BitstreamEntry::SubBlock: // Handled for us already.
2100     case BitstreamEntry::Error:
2101       return error("Malformed block");
2102     case BitstreamEntry::EndBlock:
2103       if (SSIDs.empty())
2104         return error("Invalid empty synchronization scope names block");
2105       return Error::success();
2106     case BitstreamEntry::Record:
2107       // The interesting case.
2108       break;
2109     }
2110 
2111     // Synchronization scope names are implicitly mapped to synchronization
2112     // scope IDs by their order.
2113 
2114     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2115     if (!MaybeRecord)
2116       return MaybeRecord.takeError();
2117     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2118       return error("Invalid sync scope record");
2119 
2120     SmallString<16> SSN;
2121     if (convertToString(Record, 0, SSN))
2122       return error("Invalid sync scope record");
2123 
2124     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2125     Record.clear();
2126   }
2127 }
2128 
2129 /// Associate a value with its name from the given index in the provided record.
2130 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2131                                              unsigned NameIndex, Triple &TT) {
2132   SmallString<128> ValueName;
2133   if (convertToString(Record, NameIndex, ValueName))
2134     return error("Invalid record");
2135   unsigned ValueID = Record[0];
2136   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2137     return error("Invalid record");
2138   Value *V = ValueList[ValueID];
2139 
2140   StringRef NameStr(ValueName.data(), ValueName.size());
2141   if (NameStr.find_first_of(0) != StringRef::npos)
2142     return error("Invalid value name");
2143   V->setName(NameStr);
2144   auto *GO = dyn_cast<GlobalObject>(V);
2145   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2146     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2147   return V;
2148 }
2149 
2150 /// Helper to note and return the current location, and jump to the given
2151 /// offset.
2152 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2153                                                  BitstreamCursor &Stream) {
2154   // Save the current parsing location so we can jump back at the end
2155   // of the VST read.
2156   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2157   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2158     return std::move(JumpFailed);
2159   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2160   if (!MaybeEntry)
2161     return MaybeEntry.takeError();
2162   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2163       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2164     return error("Expected value symbol table subblock");
2165   return CurrentBit;
2166 }
2167 
2168 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2169                                             Function *F,
2170                                             ArrayRef<uint64_t> Record) {
2171   // Note that we subtract 1 here because the offset is relative to one word
2172   // before the start of the identification or module block, which was
2173   // historically always the start of the regular bitcode header.
2174   uint64_t FuncWordOffset = Record[1] - 1;
2175   uint64_t FuncBitOffset = FuncWordOffset * 32;
2176   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2177   // Set the LastFunctionBlockBit to point to the last function block.
2178   // Later when parsing is resumed after function materialization,
2179   // we can simply skip that last function block.
2180   if (FuncBitOffset > LastFunctionBlockBit)
2181     LastFunctionBlockBit = FuncBitOffset;
2182 }
2183 
2184 /// Read a new-style GlobalValue symbol table.
2185 Error BitcodeReader::parseGlobalValueSymbolTable() {
2186   unsigned FuncBitcodeOffsetDelta =
2187       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2188 
2189   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2190     return Err;
2191 
2192   SmallVector<uint64_t, 64> Record;
2193   while (true) {
2194     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2195     if (!MaybeEntry)
2196       return MaybeEntry.takeError();
2197     BitstreamEntry Entry = MaybeEntry.get();
2198 
2199     switch (Entry.Kind) {
2200     case BitstreamEntry::SubBlock:
2201     case BitstreamEntry::Error:
2202       return error("Malformed block");
2203     case BitstreamEntry::EndBlock:
2204       return Error::success();
2205     case BitstreamEntry::Record:
2206       break;
2207     }
2208 
2209     Record.clear();
2210     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2211     if (!MaybeRecord)
2212       return MaybeRecord.takeError();
2213     switch (MaybeRecord.get()) {
2214     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2215       unsigned ValueID = Record[0];
2216       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2217         return error("Invalid value reference in symbol table");
2218       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2219                               cast<Function>(ValueList[ValueID]), Record);
2220       break;
2221     }
2222     }
2223   }
2224 }
2225 
2226 /// Parse the value symbol table at either the current parsing location or
2227 /// at the given bit offset if provided.
2228 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2229   uint64_t CurrentBit;
2230   // Pass in the Offset to distinguish between calling for the module-level
2231   // VST (where we want to jump to the VST offset) and the function-level
2232   // VST (where we don't).
2233   if (Offset > 0) {
2234     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2235     if (!MaybeCurrentBit)
2236       return MaybeCurrentBit.takeError();
2237     CurrentBit = MaybeCurrentBit.get();
2238     // If this module uses a string table, read this as a module-level VST.
2239     if (UseStrtab) {
2240       if (Error Err = parseGlobalValueSymbolTable())
2241         return Err;
2242       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2243         return JumpFailed;
2244       return Error::success();
2245     }
2246     // Otherwise, the VST will be in a similar format to a function-level VST,
2247     // and will contain symbol names.
2248   }
2249 
2250   // Compute the delta between the bitcode indices in the VST (the word offset
2251   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2252   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2253   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2254   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2255   // just before entering the VST subblock because: 1) the EnterSubBlock
2256   // changes the AbbrevID width; 2) the VST block is nested within the same
2257   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2258   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2259   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2260   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2261   unsigned FuncBitcodeOffsetDelta =
2262       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2263 
2264   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2265     return Err;
2266 
2267   SmallVector<uint64_t, 64> Record;
2268 
2269   Triple TT(TheModule->getTargetTriple());
2270 
2271   // Read all the records for this value table.
2272   SmallString<128> ValueName;
2273 
2274   while (true) {
2275     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2276     if (!MaybeEntry)
2277       return MaybeEntry.takeError();
2278     BitstreamEntry Entry = MaybeEntry.get();
2279 
2280     switch (Entry.Kind) {
2281     case BitstreamEntry::SubBlock: // Handled for us already.
2282     case BitstreamEntry::Error:
2283       return error("Malformed block");
2284     case BitstreamEntry::EndBlock:
2285       if (Offset > 0)
2286         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2287           return JumpFailed;
2288       return Error::success();
2289     case BitstreamEntry::Record:
2290       // The interesting case.
2291       break;
2292     }
2293 
2294     // Read a record.
2295     Record.clear();
2296     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2297     if (!MaybeRecord)
2298       return MaybeRecord.takeError();
2299     switch (MaybeRecord.get()) {
2300     default:  // Default behavior: unknown type.
2301       break;
2302     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2303       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2304       if (Error Err = ValOrErr.takeError())
2305         return Err;
2306       ValOrErr.get();
2307       break;
2308     }
2309     case bitc::VST_CODE_FNENTRY: {
2310       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2311       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2312       if (Error Err = ValOrErr.takeError())
2313         return Err;
2314       Value *V = ValOrErr.get();
2315 
2316       // Ignore function offsets emitted for aliases of functions in older
2317       // versions of LLVM.
2318       if (auto *F = dyn_cast<Function>(V))
2319         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2320       break;
2321     }
2322     case bitc::VST_CODE_BBENTRY: {
2323       if (convertToString(Record, 1, ValueName))
2324         return error("Invalid bbentry record");
2325       BasicBlock *BB = getBasicBlock(Record[0]);
2326       if (!BB)
2327         return error("Invalid bbentry record");
2328 
2329       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2330       ValueName.clear();
2331       break;
2332     }
2333     }
2334   }
2335 }
2336 
2337 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2338 /// encoding.
2339 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2340   if ((V & 1) == 0)
2341     return V >> 1;
2342   if (V != 1)
2343     return -(V >> 1);
2344   // There is no such thing as -0 with integers.  "-0" really means MININT.
2345   return 1ULL << 63;
2346 }
2347 
2348 /// Resolve all of the initializers for global values and aliases that we can.
2349 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2350   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2351   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2352   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2353 
2354   GlobalInitWorklist.swap(GlobalInits);
2355   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2356   FunctionOperandWorklist.swap(FunctionOperands);
2357 
2358   while (!GlobalInitWorklist.empty()) {
2359     unsigned ValID = GlobalInitWorklist.back().second;
2360     if (ValID >= ValueList.size()) {
2361       // Not ready to resolve this yet, it requires something later in the file.
2362       GlobalInits.push_back(GlobalInitWorklist.back());
2363     } else {
2364       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2365         GlobalInitWorklist.back().first->setInitializer(C);
2366       else
2367         return error("Expected a constant");
2368     }
2369     GlobalInitWorklist.pop_back();
2370   }
2371 
2372   while (!IndirectSymbolInitWorklist.empty()) {
2373     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2374     if (ValID >= ValueList.size()) {
2375       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2376     } else {
2377       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2378       if (!C)
2379         return error("Expected a constant");
2380       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2381       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2382         if (C->getType() != GV->getType())
2383           return error("Alias and aliasee types don't match");
2384         GA->setAliasee(C);
2385       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2386         Type *ResolverFTy =
2387             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2388         // Transparently fix up the type for compatiblity with older bitcode
2389         GI->setResolver(
2390             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2391       } else {
2392         return error("Expected an alias or an ifunc");
2393       }
2394     }
2395     IndirectSymbolInitWorklist.pop_back();
2396   }
2397 
2398   while (!FunctionOperandWorklist.empty()) {
2399     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2400     if (Info.PersonalityFn) {
2401       unsigned ValID = Info.PersonalityFn - 1;
2402       if (ValID < ValueList.size()) {
2403         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2404           Info.F->setPersonalityFn(C);
2405         else
2406           return error("Expected a constant");
2407         Info.PersonalityFn = 0;
2408       }
2409     }
2410     if (Info.Prefix) {
2411       unsigned ValID = Info.Prefix - 1;
2412       if (ValID < ValueList.size()) {
2413         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2414           Info.F->setPrefixData(C);
2415         else
2416           return error("Expected a constant");
2417         Info.Prefix = 0;
2418       }
2419     }
2420     if (Info.Prologue) {
2421       unsigned ValID = Info.Prologue - 1;
2422       if (ValID < ValueList.size()) {
2423         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2424           Info.F->setPrologueData(C);
2425         else
2426           return error("Expected a constant");
2427         Info.Prologue = 0;
2428       }
2429     }
2430     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2431       FunctionOperands.push_back(Info);
2432     FunctionOperandWorklist.pop_back();
2433   }
2434 
2435   return Error::success();
2436 }
2437 
2438 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2439   SmallVector<uint64_t, 8> Words(Vals.size());
2440   transform(Vals, Words.begin(),
2441                  BitcodeReader::decodeSignRotatedValue);
2442 
2443   return APInt(TypeBits, Words);
2444 }
2445 
2446 Error BitcodeReader::parseConstants() {
2447   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2448     return Err;
2449 
2450   SmallVector<uint64_t, 64> Record;
2451 
2452   // Read all the records for this value table.
2453   Type *CurTy = Type::getInt32Ty(Context);
2454   unsigned Int32TyID = getVirtualTypeID(CurTy);
2455   unsigned CurTyID = Int32TyID;
2456   Type *CurElemTy = nullptr;
2457   unsigned NextCstNo = ValueList.size();
2458 
2459   struct DelayedShufTy {
2460     VectorType *OpTy;
2461     unsigned OpTyID;
2462     VectorType *RTy;
2463     uint64_t Op0Idx;
2464     uint64_t Op1Idx;
2465     uint64_t Op2Idx;
2466     unsigned CstNo;
2467   };
2468   std::vector<DelayedShufTy> DelayedShuffles;
2469   struct DelayedSelTy {
2470     Type *OpTy;
2471     unsigned OpTyID;
2472     uint64_t Op0Idx;
2473     uint64_t Op1Idx;
2474     uint64_t Op2Idx;
2475     unsigned CstNo;
2476   };
2477   std::vector<DelayedSelTy> DelayedSelectors;
2478 
2479   while (true) {
2480     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2481     if (!MaybeEntry)
2482       return MaybeEntry.takeError();
2483     BitstreamEntry Entry = MaybeEntry.get();
2484 
2485     switch (Entry.Kind) {
2486     case BitstreamEntry::SubBlock: // Handled for us already.
2487     case BitstreamEntry::Error:
2488       return error("Malformed block");
2489     case BitstreamEntry::EndBlock:
2490       // Once all the constants have been read, go through and resolve forward
2491       // references.
2492       //
2493       // We have to treat shuffles specially because they don't have three
2494       // operands anymore.  We need to convert the shuffle mask into an array,
2495       // and we can't convert a forward reference.
2496       for (auto &DelayedShuffle : DelayedShuffles) {
2497         VectorType *OpTy = DelayedShuffle.OpTy;
2498         unsigned OpTyID = DelayedShuffle.OpTyID;
2499         VectorType *RTy = DelayedShuffle.RTy;
2500         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2501         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2502         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2503         uint64_t CstNo = DelayedShuffle.CstNo;
2504         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID);
2505         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2506         Type *ShufTy =
2507             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2508         Constant *Op2 = ValueList.getConstantFwdRef(
2509             Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID));
2510         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2511           return error("Invalid shufflevector operands");
2512         SmallVector<int, 16> Mask;
2513         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2514         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2515         if (Error Err = ValueList.assignValue(
2516                 CstNo, V,
2517                 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID))))
2518           return Err;
2519       }
2520       for (auto &DelayedSelector : DelayedSelectors) {
2521         Type *OpTy = DelayedSelector.OpTy;
2522         unsigned OpTyID = DelayedSelector.OpTyID;
2523         Type *SelectorTy = Type::getInt1Ty(Context);
2524         unsigned SelectorTyID = getVirtualTypeID(SelectorTy);
2525         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2526         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2527         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2528         uint64_t CstNo = DelayedSelector.CstNo;
2529         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2530         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID);
2531         // The selector might be an i1 or an <n x i1>
2532         // Get the type from the ValueList before getting a forward ref.
2533         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2534           Value *V = ValueList[Op0Idx];
2535           assert(V);
2536           if (SelectorTy != V->getType()) {
2537             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2538             SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID);
2539           }
2540         }
2541         Constant *Op0 =
2542             ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID);
2543         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2544         if (Error Err = ValueList.assignValue(CstNo, V, OpTyID))
2545           return Err;
2546       }
2547 
2548       if (NextCstNo != ValueList.size())
2549         return error("Invalid constant reference");
2550 
2551       ValueList.resolveConstantForwardRefs();
2552       return Error::success();
2553     case BitstreamEntry::Record:
2554       // The interesting case.
2555       break;
2556     }
2557 
2558     // Read a record.
2559     Record.clear();
2560     Type *VoidType = Type::getVoidTy(Context);
2561     Value *V = nullptr;
2562     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2563     if (!MaybeBitCode)
2564       return MaybeBitCode.takeError();
2565     switch (unsigned BitCode = MaybeBitCode.get()) {
2566     default:  // Default behavior: unknown constant
2567     case bitc::CST_CODE_UNDEF:     // UNDEF
2568       V = UndefValue::get(CurTy);
2569       break;
2570     case bitc::CST_CODE_POISON:    // POISON
2571       V = PoisonValue::get(CurTy);
2572       break;
2573     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2574       if (Record.empty())
2575         return error("Invalid settype record");
2576       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2577         return error("Invalid settype record");
2578       if (TypeList[Record[0]] == VoidType)
2579         return error("Invalid constant type");
2580       CurTyID = Record[0];
2581       CurTy = TypeList[CurTyID];
2582       CurElemTy = getPtrElementTypeByID(CurTyID);
2583       continue;  // Skip the ValueList manipulation.
2584     case bitc::CST_CODE_NULL:      // NULL
2585       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2586         return error("Invalid type for a constant null value");
2587       V = Constant::getNullValue(CurTy);
2588       break;
2589     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2590       if (!CurTy->isIntegerTy() || Record.empty())
2591         return error("Invalid integer const record");
2592       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2593       break;
2594     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2595       if (!CurTy->isIntegerTy() || Record.empty())
2596         return error("Invalid wide integer const record");
2597 
2598       APInt VInt =
2599           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2600       V = ConstantInt::get(Context, VInt);
2601 
2602       break;
2603     }
2604     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2605       if (Record.empty())
2606         return error("Invalid float const record");
2607       if (CurTy->isHalfTy())
2608         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2609                                              APInt(16, (uint16_t)Record[0])));
2610       else if (CurTy->isBFloatTy())
2611         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2612                                              APInt(16, (uint32_t)Record[0])));
2613       else if (CurTy->isFloatTy())
2614         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2615                                              APInt(32, (uint32_t)Record[0])));
2616       else if (CurTy->isDoubleTy())
2617         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2618                                              APInt(64, Record[0])));
2619       else if (CurTy->isX86_FP80Ty()) {
2620         // Bits are not stored the same way as a normal i80 APInt, compensate.
2621         uint64_t Rearrange[2];
2622         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2623         Rearrange[1] = Record[0] >> 48;
2624         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2625                                              APInt(80, Rearrange)));
2626       } else if (CurTy->isFP128Ty())
2627         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2628                                              APInt(128, Record)));
2629       else if (CurTy->isPPC_FP128Ty())
2630         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2631                                              APInt(128, Record)));
2632       else
2633         V = UndefValue::get(CurTy);
2634       break;
2635     }
2636 
2637     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2638       if (Record.empty())
2639         return error("Invalid aggregate record");
2640 
2641       unsigned Size = Record.size();
2642       SmallVector<Constant*, 16> Elts;
2643 
2644       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2645         for (unsigned i = 0; i != Size; ++i)
2646           Elts.push_back(ValueList.getConstantFwdRef(
2647               Record[i], STy->getElementType(i),
2648               getContainedTypeID(CurTyID, i)));
2649         V = ConstantStruct::get(STy, Elts);
2650       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2651         Type *EltTy = ATy->getElementType();
2652         unsigned EltTyID = getContainedTypeID(CurTyID);
2653         for (unsigned i = 0; i != Size; ++i)
2654           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2655                                                      EltTyID));
2656         V = ConstantArray::get(ATy, Elts);
2657       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2658         Type *EltTy = VTy->getElementType();
2659         unsigned EltTyID = getContainedTypeID(CurTyID);
2660         for (unsigned i = 0; i != Size; ++i)
2661           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2662                                                      EltTyID));
2663         V = ConstantVector::get(Elts);
2664       } else {
2665         V = UndefValue::get(CurTy);
2666       }
2667       break;
2668     }
2669     case bitc::CST_CODE_STRING:    // STRING: [values]
2670     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2671       if (Record.empty())
2672         return error("Invalid string record");
2673 
2674       SmallString<16> Elts(Record.begin(), Record.end());
2675       V = ConstantDataArray::getString(Context, Elts,
2676                                        BitCode == bitc::CST_CODE_CSTRING);
2677       break;
2678     }
2679     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2680       if (Record.empty())
2681         return error("Invalid data record");
2682 
2683       Type *EltTy;
2684       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2685         EltTy = Array->getElementType();
2686       else
2687         EltTy = cast<VectorType>(CurTy)->getElementType();
2688       if (EltTy->isIntegerTy(8)) {
2689         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2690         if (isa<VectorType>(CurTy))
2691           V = ConstantDataVector::get(Context, Elts);
2692         else
2693           V = ConstantDataArray::get(Context, Elts);
2694       } else if (EltTy->isIntegerTy(16)) {
2695         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2696         if (isa<VectorType>(CurTy))
2697           V = ConstantDataVector::get(Context, Elts);
2698         else
2699           V = ConstantDataArray::get(Context, Elts);
2700       } else if (EltTy->isIntegerTy(32)) {
2701         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2702         if (isa<VectorType>(CurTy))
2703           V = ConstantDataVector::get(Context, Elts);
2704         else
2705           V = ConstantDataArray::get(Context, Elts);
2706       } else if (EltTy->isIntegerTy(64)) {
2707         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2708         if (isa<VectorType>(CurTy))
2709           V = ConstantDataVector::get(Context, Elts);
2710         else
2711           V = ConstantDataArray::get(Context, Elts);
2712       } else if (EltTy->isHalfTy()) {
2713         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2714         if (isa<VectorType>(CurTy))
2715           V = ConstantDataVector::getFP(EltTy, Elts);
2716         else
2717           V = ConstantDataArray::getFP(EltTy, Elts);
2718       } else if (EltTy->isBFloatTy()) {
2719         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2720         if (isa<VectorType>(CurTy))
2721           V = ConstantDataVector::getFP(EltTy, Elts);
2722         else
2723           V = ConstantDataArray::getFP(EltTy, Elts);
2724       } else if (EltTy->isFloatTy()) {
2725         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2726         if (isa<VectorType>(CurTy))
2727           V = ConstantDataVector::getFP(EltTy, Elts);
2728         else
2729           V = ConstantDataArray::getFP(EltTy, Elts);
2730       } else if (EltTy->isDoubleTy()) {
2731         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2732         if (isa<VectorType>(CurTy))
2733           V = ConstantDataVector::getFP(EltTy, Elts);
2734         else
2735           V = ConstantDataArray::getFP(EltTy, Elts);
2736       } else {
2737         return error("Invalid type for value");
2738       }
2739       break;
2740     }
2741     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2742       if (Record.size() < 2)
2743         return error("Invalid unary op constexpr record");
2744       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2745       if (Opc < 0) {
2746         V = UndefValue::get(CurTy);  // Unknown unop.
2747       } else {
2748         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2749         unsigned Flags = 0;
2750         V = ConstantExpr::get(Opc, LHS, Flags);
2751       }
2752       break;
2753     }
2754     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2755       if (Record.size() < 3)
2756         return error("Invalid binary op constexpr record");
2757       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2758       if (Opc < 0) {
2759         V = UndefValue::get(CurTy);  // Unknown binop.
2760       } else {
2761         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2762         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID);
2763         unsigned Flags = 0;
2764         if (Record.size() >= 4) {
2765           if (Opc == Instruction::Add ||
2766               Opc == Instruction::Sub ||
2767               Opc == Instruction::Mul ||
2768               Opc == Instruction::Shl) {
2769             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2770               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2771             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2772               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2773           } else if (Opc == Instruction::SDiv ||
2774                      Opc == Instruction::UDiv ||
2775                      Opc == Instruction::LShr ||
2776                      Opc == Instruction::AShr) {
2777             if (Record[3] & (1 << bitc::PEO_EXACT))
2778               Flags |= SDivOperator::IsExact;
2779           }
2780         }
2781         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2782       }
2783       break;
2784     }
2785     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2786       if (Record.size() < 3)
2787         return error("Invalid cast constexpr record");
2788       int Opc = getDecodedCastOpcode(Record[0]);
2789       if (Opc < 0) {
2790         V = UndefValue::get(CurTy);  // Unknown cast.
2791       } else {
2792         unsigned OpTyID = Record[1];
2793         Type *OpTy = getTypeByID(OpTyID);
2794         if (!OpTy)
2795           return error("Invalid cast constexpr record");
2796         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2797         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2798         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2799       }
2800       break;
2801     }
2802     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2803     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2804     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2805                                                      // operands]
2806       if (Record.size() < 2)
2807         return error("Constant GEP record must have at least two elements");
2808       unsigned OpNum = 0;
2809       Type *PointeeType = nullptr;
2810       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2811           Record.size() % 2)
2812         PointeeType = getTypeByID(Record[OpNum++]);
2813 
2814       bool InBounds = false;
2815       Optional<unsigned> InRangeIndex;
2816       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2817         uint64_t Op = Record[OpNum++];
2818         InBounds = Op & 1;
2819         InRangeIndex = Op >> 1;
2820       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2821         InBounds = true;
2822 
2823       SmallVector<Constant*, 16> Elts;
2824       unsigned BaseTypeID = Record[OpNum];
2825       while (OpNum != Record.size()) {
2826         unsigned ElTyID = Record[OpNum++];
2827         Type *ElTy = getTypeByID(ElTyID);
2828         if (!ElTy)
2829           return error("Invalid getelementptr constexpr record");
2830         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy,
2831                                                    ElTyID));
2832       }
2833 
2834       if (Elts.size() < 1)
2835         return error("Invalid gep with no operands");
2836 
2837       Type *BaseType = getTypeByID(BaseTypeID);
2838       if (isa<VectorType>(BaseType)) {
2839         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
2840         BaseType = getTypeByID(BaseTypeID);
2841       }
2842 
2843       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
2844       if (!OrigPtrTy)
2845         return error("GEP base operand must be pointer or vector of pointer");
2846 
2847       if (!PointeeType) {
2848         PointeeType = getPtrElementTypeByID(BaseTypeID);
2849         if (!PointeeType)
2850           return error("Missing element type for old-style constant GEP");
2851       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2852         return error("Explicit gep operator type does not match pointee type "
2853                      "of pointer operand");
2854 
2855       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2856       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2857                                          InBounds, InRangeIndex);
2858       break;
2859     }
2860     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2861       if (Record.size() < 3)
2862         return error("Invalid select constexpr record");
2863 
2864       DelayedSelectors.push_back(
2865           {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo});
2866       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID);
2867       ++NextCstNo;
2868       continue;
2869     }
2870     case bitc::CST_CODE_CE_EXTRACTELT
2871         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2872       if (Record.size() < 3)
2873         return error("Invalid extractelement constexpr record");
2874       unsigned OpTyID = Record[0];
2875       VectorType *OpTy =
2876         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
2877       if (!OpTy)
2878         return error("Invalid extractelement constexpr record");
2879       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2880       Constant *Op1 = nullptr;
2881       if (Record.size() == 4) {
2882         unsigned IdxTyID = Record[2];
2883         Type *IdxTy = getTypeByID(IdxTyID);
2884         if (!IdxTy)
2885           return error("Invalid extractelement constexpr record");
2886         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2887       } else {
2888         // Deprecated, but still needed to read old bitcode files.
2889         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2890                                           Int32TyID);
2891       }
2892       if (!Op1)
2893         return error("Invalid extractelement constexpr record");
2894       V = ConstantExpr::getExtractElement(Op0, Op1);
2895       break;
2896     }
2897     case bitc::CST_CODE_CE_INSERTELT
2898         : { // CE_INSERTELT: [opval, opval, opty, opval]
2899       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2900       if (Record.size() < 3 || !OpTy)
2901         return error("Invalid insertelement constexpr record");
2902       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID);
2903       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2904                                                   OpTy->getElementType(),
2905                                                   getContainedTypeID(CurTyID));
2906       Constant *Op2 = nullptr;
2907       if (Record.size() == 4) {
2908         unsigned IdxTyID = Record[2];
2909         Type *IdxTy = getTypeByID(IdxTyID);
2910         if (!IdxTy)
2911           return error("Invalid insertelement constexpr record");
2912         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2913       } else {
2914         // Deprecated, but still needed to read old bitcode files.
2915         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2916                                           Int32TyID);
2917       }
2918       if (!Op2)
2919         return error("Invalid insertelement constexpr record");
2920       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2921       break;
2922     }
2923     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2924       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2925       if (Record.size() < 3 || !OpTy)
2926         return error("Invalid shufflevector constexpr record");
2927       DelayedShuffles.push_back(
2928           {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2929       ++NextCstNo;
2930       continue;
2931     }
2932     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2933       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2934       VectorType *OpTy =
2935         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2936       if (Record.size() < 4 || !RTy || !OpTy)
2937         return error("Invalid shufflevector constexpr record");
2938       DelayedShuffles.push_back(
2939           {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo});
2940       ++NextCstNo;
2941       continue;
2942     }
2943     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2944       if (Record.size() < 4)
2945         return error("Invalid cmp constexpt record");
2946       unsigned OpTyID = Record[0];
2947       Type *OpTy = getTypeByID(OpTyID);
2948       if (!OpTy)
2949         return error("Invalid cmp constexpr record");
2950       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2951       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2952 
2953       if (OpTy->isFPOrFPVectorTy())
2954         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2955       else
2956         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2957       break;
2958     }
2959     // This maintains backward compatibility, pre-asm dialect keywords.
2960     // Deprecated, but still needed to read old bitcode files.
2961     case bitc::CST_CODE_INLINEASM_OLD: {
2962       if (Record.size() < 2)
2963         return error("Invalid inlineasm record");
2964       std::string AsmStr, ConstrStr;
2965       bool HasSideEffects = Record[0] & 1;
2966       bool IsAlignStack = Record[0] >> 1;
2967       unsigned AsmStrSize = Record[1];
2968       if (2+AsmStrSize >= Record.size())
2969         return error("Invalid inlineasm record");
2970       unsigned ConstStrSize = Record[2+AsmStrSize];
2971       if (3+AsmStrSize+ConstStrSize > Record.size())
2972         return error("Invalid inlineasm record");
2973 
2974       for (unsigned i = 0; i != AsmStrSize; ++i)
2975         AsmStr += (char)Record[2+i];
2976       for (unsigned i = 0; i != ConstStrSize; ++i)
2977         ConstrStr += (char)Record[3+AsmStrSize+i];
2978       UpgradeInlineAsmString(&AsmStr);
2979       if (!CurElemTy)
2980         return error("Missing element type for old-style inlineasm");
2981       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
2982                          HasSideEffects, IsAlignStack);
2983       break;
2984     }
2985     // This version adds support for the asm dialect keywords (e.g.,
2986     // inteldialect).
2987     case bitc::CST_CODE_INLINEASM_OLD2: {
2988       if (Record.size() < 2)
2989         return error("Invalid inlineasm record");
2990       std::string AsmStr, ConstrStr;
2991       bool HasSideEffects = Record[0] & 1;
2992       bool IsAlignStack = (Record[0] >> 1) & 1;
2993       unsigned AsmDialect = Record[0] >> 2;
2994       unsigned AsmStrSize = Record[1];
2995       if (2+AsmStrSize >= Record.size())
2996         return error("Invalid inlineasm record");
2997       unsigned ConstStrSize = Record[2+AsmStrSize];
2998       if (3+AsmStrSize+ConstStrSize > Record.size())
2999         return error("Invalid inlineasm record");
3000 
3001       for (unsigned i = 0; i != AsmStrSize; ++i)
3002         AsmStr += (char)Record[2+i];
3003       for (unsigned i = 0; i != ConstStrSize; ++i)
3004         ConstrStr += (char)Record[3+AsmStrSize+i];
3005       UpgradeInlineAsmString(&AsmStr);
3006       if (!CurElemTy)
3007         return error("Missing element type for old-style inlineasm");
3008       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3009                          HasSideEffects, IsAlignStack,
3010                          InlineAsm::AsmDialect(AsmDialect));
3011       break;
3012     }
3013     // This version adds support for the unwind keyword.
3014     case bitc::CST_CODE_INLINEASM_OLD3: {
3015       if (Record.size() < 2)
3016         return error("Invalid inlineasm record");
3017       unsigned OpNum = 0;
3018       std::string AsmStr, ConstrStr;
3019       bool HasSideEffects = Record[OpNum] & 1;
3020       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3021       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3022       bool CanThrow = (Record[OpNum] >> 3) & 1;
3023       ++OpNum;
3024       unsigned AsmStrSize = Record[OpNum];
3025       ++OpNum;
3026       if (OpNum + AsmStrSize >= Record.size())
3027         return error("Invalid inlineasm record");
3028       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3029       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3030         return error("Invalid inlineasm record");
3031 
3032       for (unsigned i = 0; i != AsmStrSize; ++i)
3033         AsmStr += (char)Record[OpNum + i];
3034       ++OpNum;
3035       for (unsigned i = 0; i != ConstStrSize; ++i)
3036         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3037       UpgradeInlineAsmString(&AsmStr);
3038       if (!CurElemTy)
3039         return error("Missing element type for old-style inlineasm");
3040       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3041                          HasSideEffects, IsAlignStack,
3042                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3043       break;
3044     }
3045     // This version adds explicit function type.
3046     case bitc::CST_CODE_INLINEASM: {
3047       if (Record.size() < 3)
3048         return error("Invalid inlineasm record");
3049       unsigned OpNum = 0;
3050       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3051       ++OpNum;
3052       if (!FnTy)
3053         return error("Invalid inlineasm record");
3054       std::string AsmStr, ConstrStr;
3055       bool HasSideEffects = Record[OpNum] & 1;
3056       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3057       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3058       bool CanThrow = (Record[OpNum] >> 3) & 1;
3059       ++OpNum;
3060       unsigned AsmStrSize = Record[OpNum];
3061       ++OpNum;
3062       if (OpNum + AsmStrSize >= Record.size())
3063         return error("Invalid inlineasm record");
3064       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3065       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3066         return error("Invalid inlineasm record");
3067 
3068       for (unsigned i = 0; i != AsmStrSize; ++i)
3069         AsmStr += (char)Record[OpNum + i];
3070       ++OpNum;
3071       for (unsigned i = 0; i != ConstStrSize; ++i)
3072         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3073       UpgradeInlineAsmString(&AsmStr);
3074       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3075                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3076       break;
3077     }
3078     case bitc::CST_CODE_BLOCKADDRESS:{
3079       if (Record.size() < 3)
3080         return error("Invalid blockaddress record");
3081       unsigned FnTyID = Record[0];
3082       Type *FnTy = getTypeByID(FnTyID);
3083       if (!FnTy)
3084         return error("Invalid blockaddress record");
3085       Function *Fn = dyn_cast_or_null<Function>(
3086           ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID));
3087       if (!Fn)
3088         return error("Invalid blockaddress record");
3089 
3090       // If the function is already parsed we can insert the block address right
3091       // away.
3092       BasicBlock *BB;
3093       unsigned BBID = Record[2];
3094       if (!BBID)
3095         // Invalid reference to entry block.
3096         return error("Invalid ID");
3097       if (!Fn->empty()) {
3098         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3099         for (size_t I = 0, E = BBID; I != E; ++I) {
3100           if (BBI == BBE)
3101             return error("Invalid ID");
3102           ++BBI;
3103         }
3104         BB = &*BBI;
3105       } else {
3106         // Otherwise insert a placeholder and remember it so it can be inserted
3107         // when the function is parsed.
3108         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3109         if (FwdBBs.empty())
3110           BasicBlockFwdRefQueue.push_back(Fn);
3111         if (FwdBBs.size() < BBID + 1)
3112           FwdBBs.resize(BBID + 1);
3113         if (!FwdBBs[BBID])
3114           FwdBBs[BBID] = BasicBlock::Create(Context);
3115         BB = FwdBBs[BBID];
3116       }
3117       V = BlockAddress::get(Fn, BB);
3118       break;
3119     }
3120     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3121       if (Record.size() < 2)
3122         return error("Invalid dso_local record");
3123       unsigned GVTyID = Record[0];
3124       Type *GVTy = getTypeByID(GVTyID);
3125       if (!GVTy)
3126         return error("Invalid dso_local record");
3127       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3128           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3129       if (!GV)
3130         return error("Invalid dso_local record");
3131 
3132       V = DSOLocalEquivalent::get(GV);
3133       break;
3134     }
3135     case bitc::CST_CODE_NO_CFI_VALUE: {
3136       if (Record.size() < 2)
3137         return error("Invalid no_cfi record");
3138       unsigned GVTyID = Record[0];
3139       Type *GVTy = getTypeByID(GVTyID);
3140       if (!GVTy)
3141         return error("Invalid no_cfi record");
3142       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3143           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3144       if (!GV)
3145         return error("Invalid no_cfi record");
3146       V = NoCFIValue::get(GV);
3147       break;
3148     }
3149     }
3150 
3151     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3152     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3153       return Err;
3154     ++NextCstNo;
3155   }
3156 }
3157 
3158 Error BitcodeReader::parseUseLists() {
3159   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3160     return Err;
3161 
3162   // Read all the records.
3163   SmallVector<uint64_t, 64> Record;
3164 
3165   while (true) {
3166     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3167     if (!MaybeEntry)
3168       return MaybeEntry.takeError();
3169     BitstreamEntry Entry = MaybeEntry.get();
3170 
3171     switch (Entry.Kind) {
3172     case BitstreamEntry::SubBlock: // Handled for us already.
3173     case BitstreamEntry::Error:
3174       return error("Malformed block");
3175     case BitstreamEntry::EndBlock:
3176       return Error::success();
3177     case BitstreamEntry::Record:
3178       // The interesting case.
3179       break;
3180     }
3181 
3182     // Read a use list record.
3183     Record.clear();
3184     bool IsBB = false;
3185     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3186     if (!MaybeRecord)
3187       return MaybeRecord.takeError();
3188     switch (MaybeRecord.get()) {
3189     default:  // Default behavior: unknown type.
3190       break;
3191     case bitc::USELIST_CODE_BB:
3192       IsBB = true;
3193       LLVM_FALLTHROUGH;
3194     case bitc::USELIST_CODE_DEFAULT: {
3195       unsigned RecordLength = Record.size();
3196       if (RecordLength < 3)
3197         // Records should have at least an ID and two indexes.
3198         return error("Invalid record");
3199       unsigned ID = Record.pop_back_val();
3200 
3201       Value *V;
3202       if (IsBB) {
3203         assert(ID < FunctionBBs.size() && "Basic block not found");
3204         V = FunctionBBs[ID];
3205       } else
3206         V = ValueList[ID];
3207       unsigned NumUses = 0;
3208       SmallDenseMap<const Use *, unsigned, 16> Order;
3209       for (const Use &U : V->materialized_uses()) {
3210         if (++NumUses > Record.size())
3211           break;
3212         Order[&U] = Record[NumUses - 1];
3213       }
3214       if (Order.size() != Record.size() || NumUses > Record.size())
3215         // Mismatches can happen if the functions are being materialized lazily
3216         // (out-of-order), or a value has been upgraded.
3217         break;
3218 
3219       V->sortUseList([&](const Use &L, const Use &R) {
3220         return Order.lookup(&L) < Order.lookup(&R);
3221       });
3222       break;
3223     }
3224     }
3225   }
3226 }
3227 
3228 /// When we see the block for metadata, remember where it is and then skip it.
3229 /// This lets us lazily deserialize the metadata.
3230 Error BitcodeReader::rememberAndSkipMetadata() {
3231   // Save the current stream state.
3232   uint64_t CurBit = Stream.GetCurrentBitNo();
3233   DeferredMetadataInfo.push_back(CurBit);
3234 
3235   // Skip over the block for now.
3236   if (Error Err = Stream.SkipBlock())
3237     return Err;
3238   return Error::success();
3239 }
3240 
3241 Error BitcodeReader::materializeMetadata() {
3242   for (uint64_t BitPos : DeferredMetadataInfo) {
3243     // Move the bit stream to the saved position.
3244     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3245       return JumpFailed;
3246     if (Error Err = MDLoader->parseModuleMetadata())
3247       return Err;
3248   }
3249 
3250   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3251   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3252   // multiple times.
3253   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3254     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3255       NamedMDNode *LinkerOpts =
3256           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3257       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3258         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3259     }
3260   }
3261 
3262   DeferredMetadataInfo.clear();
3263   return Error::success();
3264 }
3265 
3266 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3267 
3268 /// When we see the block for a function body, remember where it is and then
3269 /// skip it.  This lets us lazily deserialize the functions.
3270 Error BitcodeReader::rememberAndSkipFunctionBody() {
3271   // Get the function we are talking about.
3272   if (FunctionsWithBodies.empty())
3273     return error("Insufficient function protos");
3274 
3275   Function *Fn = FunctionsWithBodies.back();
3276   FunctionsWithBodies.pop_back();
3277 
3278   // Save the current stream state.
3279   uint64_t CurBit = Stream.GetCurrentBitNo();
3280   assert(
3281       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3282       "Mismatch between VST and scanned function offsets");
3283   DeferredFunctionInfo[Fn] = CurBit;
3284 
3285   // Skip over the function block for now.
3286   if (Error Err = Stream.SkipBlock())
3287     return Err;
3288   return Error::success();
3289 }
3290 
3291 Error BitcodeReader::globalCleanup() {
3292   // Patch the initializers for globals and aliases up.
3293   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3294     return Err;
3295   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3296     return error("Malformed global initializer set");
3297 
3298   // Look for intrinsic functions which need to be upgraded at some point
3299   // and functions that need to have their function attributes upgraded.
3300   for (Function &F : *TheModule) {
3301     MDLoader->upgradeDebugIntrinsics(F);
3302     Function *NewFn;
3303     if (UpgradeIntrinsicFunction(&F, NewFn))
3304       UpgradedIntrinsics[&F] = NewFn;
3305     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3306       // Some types could be renamed during loading if several modules are
3307       // loaded in the same LLVMContext (LTO scenario). In this case we should
3308       // remangle intrinsics names as well.
3309       RemangledIntrinsics[&F] = Remangled.getValue();
3310     // Look for functions that rely on old function attribute behavior.
3311     UpgradeFunctionAttributes(F);
3312   }
3313 
3314   // Look for global variables which need to be renamed.
3315   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3316   for (GlobalVariable &GV : TheModule->globals())
3317     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3318       UpgradedVariables.emplace_back(&GV, Upgraded);
3319   for (auto &Pair : UpgradedVariables) {
3320     Pair.first->eraseFromParent();
3321     TheModule->getGlobalList().push_back(Pair.second);
3322   }
3323 
3324   // Force deallocation of memory for these vectors to favor the client that
3325   // want lazy deserialization.
3326   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3327   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3328   return Error::success();
3329 }
3330 
3331 /// Support for lazy parsing of function bodies. This is required if we
3332 /// either have an old bitcode file without a VST forward declaration record,
3333 /// or if we have an anonymous function being materialized, since anonymous
3334 /// functions do not have a name and are therefore not in the VST.
3335 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3336   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3337     return JumpFailed;
3338 
3339   if (Stream.AtEndOfStream())
3340     return error("Could not find function in stream");
3341 
3342   if (!SeenFirstFunctionBody)
3343     return error("Trying to materialize functions before seeing function blocks");
3344 
3345   // An old bitcode file with the symbol table at the end would have
3346   // finished the parse greedily.
3347   assert(SeenValueSymbolTable);
3348 
3349   SmallVector<uint64_t, 64> Record;
3350 
3351   while (true) {
3352     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3353     if (!MaybeEntry)
3354       return MaybeEntry.takeError();
3355     llvm::BitstreamEntry Entry = MaybeEntry.get();
3356 
3357     switch (Entry.Kind) {
3358     default:
3359       return error("Expect SubBlock");
3360     case BitstreamEntry::SubBlock:
3361       switch (Entry.ID) {
3362       default:
3363         return error("Expect function block");
3364       case bitc::FUNCTION_BLOCK_ID:
3365         if (Error Err = rememberAndSkipFunctionBody())
3366           return Err;
3367         NextUnreadBit = Stream.GetCurrentBitNo();
3368         return Error::success();
3369       }
3370     }
3371   }
3372 }
3373 
3374 Error BitcodeReaderBase::readBlockInfo() {
3375   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3376       Stream.ReadBlockInfoBlock();
3377   if (!MaybeNewBlockInfo)
3378     return MaybeNewBlockInfo.takeError();
3379   Optional<BitstreamBlockInfo> NewBlockInfo =
3380       std::move(MaybeNewBlockInfo.get());
3381   if (!NewBlockInfo)
3382     return error("Malformed block");
3383   BlockInfo = std::move(*NewBlockInfo);
3384   return Error::success();
3385 }
3386 
3387 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3388   // v1: [selection_kind, name]
3389   // v2: [strtab_offset, strtab_size, selection_kind]
3390   StringRef Name;
3391   std::tie(Name, Record) = readNameFromStrtab(Record);
3392 
3393   if (Record.empty())
3394     return error("Invalid record");
3395   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3396   std::string OldFormatName;
3397   if (!UseStrtab) {
3398     if (Record.size() < 2)
3399       return error("Invalid record");
3400     unsigned ComdatNameSize = Record[1];
3401     if (ComdatNameSize > Record.size() - 2)
3402       return error("Comdat name size too large");
3403     OldFormatName.reserve(ComdatNameSize);
3404     for (unsigned i = 0; i != ComdatNameSize; ++i)
3405       OldFormatName += (char)Record[2 + i];
3406     Name = OldFormatName;
3407   }
3408   Comdat *C = TheModule->getOrInsertComdat(Name);
3409   C->setSelectionKind(SK);
3410   ComdatList.push_back(C);
3411   return Error::success();
3412 }
3413 
3414 static void inferDSOLocal(GlobalValue *GV) {
3415   // infer dso_local from linkage and visibility if it is not encoded.
3416   if (GV->hasLocalLinkage() ||
3417       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3418     GV->setDSOLocal(true);
3419 }
3420 
3421 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3422   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3423   // visibility, threadlocal, unnamed_addr, externally_initialized,
3424   // dllstorageclass, comdat, attributes, preemption specifier,
3425   // partition strtab offset, partition strtab size] (name in VST)
3426   // v2: [strtab_offset, strtab_size, v1]
3427   StringRef Name;
3428   std::tie(Name, Record) = readNameFromStrtab(Record);
3429 
3430   if (Record.size() < 6)
3431     return error("Invalid record");
3432   unsigned TyID = Record[0];
3433   Type *Ty = getTypeByID(TyID);
3434   if (!Ty)
3435     return error("Invalid record");
3436   bool isConstant = Record[1] & 1;
3437   bool explicitType = Record[1] & 2;
3438   unsigned AddressSpace;
3439   if (explicitType) {
3440     AddressSpace = Record[1] >> 2;
3441   } else {
3442     if (!Ty->isPointerTy())
3443       return error("Invalid type for value");
3444     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3445     TyID = getContainedTypeID(TyID);
3446     Ty = getTypeByID(TyID);
3447     if (!Ty)
3448       return error("Missing element type for old-style global");
3449   }
3450 
3451   uint64_t RawLinkage = Record[3];
3452   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3453   MaybeAlign Alignment;
3454   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3455     return Err;
3456   std::string Section;
3457   if (Record[5]) {
3458     if (Record[5] - 1 >= SectionTable.size())
3459       return error("Invalid ID");
3460     Section = SectionTable[Record[5] - 1];
3461   }
3462   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3463   // Local linkage must have default visibility.
3464   // auto-upgrade `hidden` and `protected` for old bitcode.
3465   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3466     Visibility = getDecodedVisibility(Record[6]);
3467 
3468   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3469   if (Record.size() > 7)
3470     TLM = getDecodedThreadLocalMode(Record[7]);
3471 
3472   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3473   if (Record.size() > 8)
3474     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3475 
3476   bool ExternallyInitialized = false;
3477   if (Record.size() > 9)
3478     ExternallyInitialized = Record[9];
3479 
3480   GlobalVariable *NewGV =
3481       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3482                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3483   NewGV->setAlignment(Alignment);
3484   if (!Section.empty())
3485     NewGV->setSection(Section);
3486   NewGV->setVisibility(Visibility);
3487   NewGV->setUnnamedAddr(UnnamedAddr);
3488 
3489   if (Record.size() > 10)
3490     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3491   else
3492     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3493 
3494   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3495 
3496   // Remember which value to use for the global initializer.
3497   if (unsigned InitID = Record[2])
3498     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3499 
3500   if (Record.size() > 11) {
3501     if (unsigned ComdatID = Record[11]) {
3502       if (ComdatID > ComdatList.size())
3503         return error("Invalid global variable comdat ID");
3504       NewGV->setComdat(ComdatList[ComdatID - 1]);
3505     }
3506   } else if (hasImplicitComdat(RawLinkage)) {
3507     ImplicitComdatObjects.insert(NewGV);
3508   }
3509 
3510   if (Record.size() > 12) {
3511     auto AS = getAttributes(Record[12]).getFnAttrs();
3512     NewGV->setAttributes(AS);
3513   }
3514 
3515   if (Record.size() > 13) {
3516     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3517   }
3518   inferDSOLocal(NewGV);
3519 
3520   // Check whether we have enough values to read a partition name.
3521   if (Record.size() > 15)
3522     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3523 
3524   return Error::success();
3525 }
3526 
3527 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3528   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3529   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3530   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3531   // v2: [strtab_offset, strtab_size, v1]
3532   StringRef Name;
3533   std::tie(Name, Record) = readNameFromStrtab(Record);
3534 
3535   if (Record.size() < 8)
3536     return error("Invalid record");
3537   unsigned FTyID = Record[0];
3538   Type *FTy = getTypeByID(FTyID);
3539   if (!FTy)
3540     return error("Invalid record");
3541   if (isa<PointerType>(FTy)) {
3542     FTyID = getContainedTypeID(FTyID, 0);
3543     FTy = getTypeByID(FTyID);
3544     if (!FTy)
3545       return error("Missing element type for old-style function");
3546   }
3547 
3548   if (!isa<FunctionType>(FTy))
3549     return error("Invalid type for value");
3550   auto CC = static_cast<CallingConv::ID>(Record[1]);
3551   if (CC & ~CallingConv::MaxID)
3552     return error("Invalid calling convention ID");
3553 
3554   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3555   if (Record.size() > 16)
3556     AddrSpace = Record[16];
3557 
3558   Function *Func =
3559       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3560                        AddrSpace, Name, TheModule);
3561 
3562   assert(Func->getFunctionType() == FTy &&
3563          "Incorrect fully specified type provided for function");
3564   FunctionTypeIDs[Func] = FTyID;
3565 
3566   Func->setCallingConv(CC);
3567   bool isProto = Record[2];
3568   uint64_t RawLinkage = Record[3];
3569   Func->setLinkage(getDecodedLinkage(RawLinkage));
3570   Func->setAttributes(getAttributes(Record[4]));
3571 
3572   // Upgrade any old-style byval or sret without a type by propagating the
3573   // argument's pointee type. There should be no opaque pointers where the byval
3574   // type is implicit.
3575   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3576     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3577                                      Attribute::InAlloca}) {
3578       if (!Func->hasParamAttribute(i, Kind))
3579         continue;
3580 
3581       if (Func->getParamAttribute(i, Kind).getValueAsType())
3582         continue;
3583 
3584       Func->removeParamAttr(i, Kind);
3585 
3586       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3587       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3588       if (!PtrEltTy)
3589         return error("Missing param element type for attribute upgrade");
3590 
3591       Attribute NewAttr;
3592       switch (Kind) {
3593       case Attribute::ByVal:
3594         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3595         break;
3596       case Attribute::StructRet:
3597         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3598         break;
3599       case Attribute::InAlloca:
3600         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3601         break;
3602       default:
3603         llvm_unreachable("not an upgraded type attribute");
3604       }
3605 
3606       Func->addParamAttr(i, NewAttr);
3607     }
3608   }
3609 
3610   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3611       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3612     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3613     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3614     if (!ByValTy)
3615       return error("Missing param element type for x86_intrcc upgrade");
3616     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3617     Func->addParamAttr(0, NewAttr);
3618   }
3619 
3620   MaybeAlign Alignment;
3621   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3622     return Err;
3623   Func->setAlignment(Alignment);
3624   if (Record[6]) {
3625     if (Record[6] - 1 >= SectionTable.size())
3626       return error("Invalid ID");
3627     Func->setSection(SectionTable[Record[6] - 1]);
3628   }
3629   // Local linkage must have default visibility.
3630   // auto-upgrade `hidden` and `protected` for old bitcode.
3631   if (!Func->hasLocalLinkage())
3632     Func->setVisibility(getDecodedVisibility(Record[7]));
3633   if (Record.size() > 8 && Record[8]) {
3634     if (Record[8] - 1 >= GCTable.size())
3635       return error("Invalid ID");
3636     Func->setGC(GCTable[Record[8] - 1]);
3637   }
3638   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3639   if (Record.size() > 9)
3640     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3641   Func->setUnnamedAddr(UnnamedAddr);
3642 
3643   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3644   if (Record.size() > 10)
3645     OperandInfo.Prologue = Record[10];
3646 
3647   if (Record.size() > 11)
3648     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3649   else
3650     upgradeDLLImportExportLinkage(Func, RawLinkage);
3651 
3652   if (Record.size() > 12) {
3653     if (unsigned ComdatID = Record[12]) {
3654       if (ComdatID > ComdatList.size())
3655         return error("Invalid function comdat ID");
3656       Func->setComdat(ComdatList[ComdatID - 1]);
3657     }
3658   } else if (hasImplicitComdat(RawLinkage)) {
3659     ImplicitComdatObjects.insert(Func);
3660   }
3661 
3662   if (Record.size() > 13)
3663     OperandInfo.Prefix = Record[13];
3664 
3665   if (Record.size() > 14)
3666     OperandInfo.PersonalityFn = Record[14];
3667 
3668   if (Record.size() > 15) {
3669     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3670   }
3671   inferDSOLocal(Func);
3672 
3673   // Record[16] is the address space number.
3674 
3675   // Check whether we have enough values to read a partition name. Also make
3676   // sure Strtab has enough values.
3677   if (Record.size() > 18 && Strtab.data() &&
3678       Record[17] + Record[18] <= Strtab.size()) {
3679     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3680   }
3681 
3682   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3683 
3684   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3685     FunctionOperands.push_back(OperandInfo);
3686 
3687   // If this is a function with a body, remember the prototype we are
3688   // creating now, so that we can match up the body with them later.
3689   if (!isProto) {
3690     Func->setIsMaterializable(true);
3691     FunctionsWithBodies.push_back(Func);
3692     DeferredFunctionInfo[Func] = 0;
3693   }
3694   return Error::success();
3695 }
3696 
3697 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3698     unsigned BitCode, ArrayRef<uint64_t> Record) {
3699   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3700   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3701   // dllstorageclass, threadlocal, unnamed_addr,
3702   // preemption specifier] (name in VST)
3703   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3704   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3705   // preemption specifier] (name in VST)
3706   // v2: [strtab_offset, strtab_size, v1]
3707   StringRef Name;
3708   std::tie(Name, Record) = readNameFromStrtab(Record);
3709 
3710   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3711   if (Record.size() < (3 + (unsigned)NewRecord))
3712     return error("Invalid record");
3713   unsigned OpNum = 0;
3714   unsigned TypeID = Record[OpNum++];
3715   Type *Ty = getTypeByID(TypeID);
3716   if (!Ty)
3717     return error("Invalid record");
3718 
3719   unsigned AddrSpace;
3720   if (!NewRecord) {
3721     auto *PTy = dyn_cast<PointerType>(Ty);
3722     if (!PTy)
3723       return error("Invalid type for value");
3724     AddrSpace = PTy->getAddressSpace();
3725     TypeID = getContainedTypeID(TypeID);
3726     Ty = getTypeByID(TypeID);
3727     if (!Ty)
3728       return error("Missing element type for old-style indirect symbol");
3729   } else {
3730     AddrSpace = Record[OpNum++];
3731   }
3732 
3733   auto Val = Record[OpNum++];
3734   auto Linkage = Record[OpNum++];
3735   GlobalValue *NewGA;
3736   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3737       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3738     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3739                                 TheModule);
3740   else
3741     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3742                                 nullptr, TheModule);
3743 
3744   // Local linkage must have default visibility.
3745   // auto-upgrade `hidden` and `protected` for old bitcode.
3746   if (OpNum != Record.size()) {
3747     auto VisInd = OpNum++;
3748     if (!NewGA->hasLocalLinkage())
3749       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3750   }
3751   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3752       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3753     if (OpNum != Record.size())
3754       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3755     else
3756       upgradeDLLImportExportLinkage(NewGA, Linkage);
3757     if (OpNum != Record.size())
3758       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3759     if (OpNum != Record.size())
3760       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3761   }
3762   if (OpNum != Record.size())
3763     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3764   inferDSOLocal(NewGA);
3765 
3766   // Check whether we have enough values to read a partition name.
3767   if (OpNum + 1 < Record.size()) {
3768     NewGA->setPartition(
3769         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3770     OpNum += 2;
3771   }
3772 
3773   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
3774   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3775   return Error::success();
3776 }
3777 
3778 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3779                                  bool ShouldLazyLoadMetadata,
3780                                  DataLayoutCallbackTy DataLayoutCallback) {
3781   if (ResumeBit) {
3782     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3783       return JumpFailed;
3784   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3785     return Err;
3786 
3787   SmallVector<uint64_t, 64> Record;
3788 
3789   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3790   // finalize the datalayout before we run any of that code.
3791   bool ResolvedDataLayout = false;
3792   auto ResolveDataLayout = [&] {
3793     if (ResolvedDataLayout)
3794       return;
3795 
3796     // datalayout and triple can't be parsed after this point.
3797     ResolvedDataLayout = true;
3798 
3799     // Upgrade data layout string.
3800     std::string DL = llvm::UpgradeDataLayoutString(
3801         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3802     TheModule->setDataLayout(DL);
3803 
3804     if (auto LayoutOverride =
3805             DataLayoutCallback(TheModule->getTargetTriple()))
3806       TheModule->setDataLayout(*LayoutOverride);
3807   };
3808 
3809   // Read all the records for this module.
3810   while (true) {
3811     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3812     if (!MaybeEntry)
3813       return MaybeEntry.takeError();
3814     llvm::BitstreamEntry Entry = MaybeEntry.get();
3815 
3816     switch (Entry.Kind) {
3817     case BitstreamEntry::Error:
3818       return error("Malformed block");
3819     case BitstreamEntry::EndBlock:
3820       ResolveDataLayout();
3821       return globalCleanup();
3822 
3823     case BitstreamEntry::SubBlock:
3824       switch (Entry.ID) {
3825       default:  // Skip unknown content.
3826         if (Error Err = Stream.SkipBlock())
3827           return Err;
3828         break;
3829       case bitc::BLOCKINFO_BLOCK_ID:
3830         if (Error Err = readBlockInfo())
3831           return Err;
3832         break;
3833       case bitc::PARAMATTR_BLOCK_ID:
3834         if (Error Err = parseAttributeBlock())
3835           return Err;
3836         break;
3837       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3838         if (Error Err = parseAttributeGroupBlock())
3839           return Err;
3840         break;
3841       case bitc::TYPE_BLOCK_ID_NEW:
3842         if (Error Err = parseTypeTable())
3843           return Err;
3844         break;
3845       case bitc::VALUE_SYMTAB_BLOCK_ID:
3846         if (!SeenValueSymbolTable) {
3847           // Either this is an old form VST without function index and an
3848           // associated VST forward declaration record (which would have caused
3849           // the VST to be jumped to and parsed before it was encountered
3850           // normally in the stream), or there were no function blocks to
3851           // trigger an earlier parsing of the VST.
3852           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3853           if (Error Err = parseValueSymbolTable())
3854             return Err;
3855           SeenValueSymbolTable = true;
3856         } else {
3857           // We must have had a VST forward declaration record, which caused
3858           // the parser to jump to and parse the VST earlier.
3859           assert(VSTOffset > 0);
3860           if (Error Err = Stream.SkipBlock())
3861             return Err;
3862         }
3863         break;
3864       case bitc::CONSTANTS_BLOCK_ID:
3865         if (Error Err = parseConstants())
3866           return Err;
3867         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3868           return Err;
3869         break;
3870       case bitc::METADATA_BLOCK_ID:
3871         if (ShouldLazyLoadMetadata) {
3872           if (Error Err = rememberAndSkipMetadata())
3873             return Err;
3874           break;
3875         }
3876         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3877         if (Error Err = MDLoader->parseModuleMetadata())
3878           return Err;
3879         break;
3880       case bitc::METADATA_KIND_BLOCK_ID:
3881         if (Error Err = MDLoader->parseMetadataKinds())
3882           return Err;
3883         break;
3884       case bitc::FUNCTION_BLOCK_ID:
3885         ResolveDataLayout();
3886 
3887         // If this is the first function body we've seen, reverse the
3888         // FunctionsWithBodies list.
3889         if (!SeenFirstFunctionBody) {
3890           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3891           if (Error Err = globalCleanup())
3892             return Err;
3893           SeenFirstFunctionBody = true;
3894         }
3895 
3896         if (VSTOffset > 0) {
3897           // If we have a VST forward declaration record, make sure we
3898           // parse the VST now if we haven't already. It is needed to
3899           // set up the DeferredFunctionInfo vector for lazy reading.
3900           if (!SeenValueSymbolTable) {
3901             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3902               return Err;
3903             SeenValueSymbolTable = true;
3904             // Fall through so that we record the NextUnreadBit below.
3905             // This is necessary in case we have an anonymous function that
3906             // is later materialized. Since it will not have a VST entry we
3907             // need to fall back to the lazy parse to find its offset.
3908           } else {
3909             // If we have a VST forward declaration record, but have already
3910             // parsed the VST (just above, when the first function body was
3911             // encountered here), then we are resuming the parse after
3912             // materializing functions. The ResumeBit points to the
3913             // start of the last function block recorded in the
3914             // DeferredFunctionInfo map. Skip it.
3915             if (Error Err = Stream.SkipBlock())
3916               return Err;
3917             continue;
3918           }
3919         }
3920 
3921         // Support older bitcode files that did not have the function
3922         // index in the VST, nor a VST forward declaration record, as
3923         // well as anonymous functions that do not have VST entries.
3924         // Build the DeferredFunctionInfo vector on the fly.
3925         if (Error Err = rememberAndSkipFunctionBody())
3926           return Err;
3927 
3928         // Suspend parsing when we reach the function bodies. Subsequent
3929         // materialization calls will resume it when necessary. If the bitcode
3930         // file is old, the symbol table will be at the end instead and will not
3931         // have been seen yet. In this case, just finish the parse now.
3932         if (SeenValueSymbolTable) {
3933           NextUnreadBit = Stream.GetCurrentBitNo();
3934           // After the VST has been parsed, we need to make sure intrinsic name
3935           // are auto-upgraded.
3936           return globalCleanup();
3937         }
3938         break;
3939       case bitc::USELIST_BLOCK_ID:
3940         if (Error Err = parseUseLists())
3941           return Err;
3942         break;
3943       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3944         if (Error Err = parseOperandBundleTags())
3945           return Err;
3946         break;
3947       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3948         if (Error Err = parseSyncScopeNames())
3949           return Err;
3950         break;
3951       }
3952       continue;
3953 
3954     case BitstreamEntry::Record:
3955       // The interesting case.
3956       break;
3957     }
3958 
3959     // Read a record.
3960     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3961     if (!MaybeBitCode)
3962       return MaybeBitCode.takeError();
3963     switch (unsigned BitCode = MaybeBitCode.get()) {
3964     default: break;  // Default behavior, ignore unknown content.
3965     case bitc::MODULE_CODE_VERSION: {
3966       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3967       if (!VersionOrErr)
3968         return VersionOrErr.takeError();
3969       UseRelativeIDs = *VersionOrErr >= 1;
3970       break;
3971     }
3972     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3973       if (ResolvedDataLayout)
3974         return error("target triple too late in module");
3975       std::string S;
3976       if (convertToString(Record, 0, S))
3977         return error("Invalid record");
3978       TheModule->setTargetTriple(S);
3979       break;
3980     }
3981     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3982       if (ResolvedDataLayout)
3983         return error("datalayout too late in module");
3984       std::string S;
3985       if (convertToString(Record, 0, S))
3986         return error("Invalid record");
3987       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3988       if (!MaybeDL)
3989         return MaybeDL.takeError();
3990       TheModule->setDataLayout(MaybeDL.get());
3991       break;
3992     }
3993     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3994       std::string S;
3995       if (convertToString(Record, 0, S))
3996         return error("Invalid record");
3997       TheModule->setModuleInlineAsm(S);
3998       break;
3999     }
4000     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4001       // Deprecated, but still needed to read old bitcode files.
4002       std::string S;
4003       if (convertToString(Record, 0, S))
4004         return error("Invalid record");
4005       // Ignore value.
4006       break;
4007     }
4008     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4009       std::string S;
4010       if (convertToString(Record, 0, S))
4011         return error("Invalid record");
4012       SectionTable.push_back(S);
4013       break;
4014     }
4015     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4016       std::string S;
4017       if (convertToString(Record, 0, S))
4018         return error("Invalid record");
4019       GCTable.push_back(S);
4020       break;
4021     }
4022     case bitc::MODULE_CODE_COMDAT:
4023       if (Error Err = parseComdatRecord(Record))
4024         return Err;
4025       break;
4026     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4027     // written by ThinLinkBitcodeWriter. See
4028     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4029     // record
4030     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4031     case bitc::MODULE_CODE_GLOBALVAR:
4032       if (Error Err = parseGlobalVarRecord(Record))
4033         return Err;
4034       break;
4035     case bitc::MODULE_CODE_FUNCTION:
4036       ResolveDataLayout();
4037       if (Error Err = parseFunctionRecord(Record))
4038         return Err;
4039       break;
4040     case bitc::MODULE_CODE_IFUNC:
4041     case bitc::MODULE_CODE_ALIAS:
4042     case bitc::MODULE_CODE_ALIAS_OLD:
4043       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4044         return Err;
4045       break;
4046     /// MODULE_CODE_VSTOFFSET: [offset]
4047     case bitc::MODULE_CODE_VSTOFFSET:
4048       if (Record.empty())
4049         return error("Invalid record");
4050       // Note that we subtract 1 here because the offset is relative to one word
4051       // before the start of the identification or module block, which was
4052       // historically always the start of the regular bitcode header.
4053       VSTOffset = Record[0] - 1;
4054       break;
4055     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4056     case bitc::MODULE_CODE_SOURCE_FILENAME:
4057       SmallString<128> ValueName;
4058       if (convertToString(Record, 0, ValueName))
4059         return error("Invalid record");
4060       TheModule->setSourceFileName(ValueName);
4061       break;
4062     }
4063     Record.clear();
4064   }
4065 }
4066 
4067 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4068                                       bool IsImporting,
4069                                       DataLayoutCallbackTy DataLayoutCallback) {
4070   TheModule = M;
4071   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4072                             [&](unsigned ID) { return getTypeByID(ID); });
4073   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4074 }
4075 
4076 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4077   if (!isa<PointerType>(PtrType))
4078     return error("Load/Store operand is not a pointer type");
4079 
4080   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4081     return error("Explicit load/store type does not match pointee "
4082                  "type of pointer operand");
4083   if (!PointerType::isLoadableOrStorableType(ValType))
4084     return error("Cannot load/store from pointer");
4085   return Error::success();
4086 }
4087 
4088 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4089                                              ArrayRef<unsigned> ArgTyIDs) {
4090   AttributeList Attrs = CB->getAttributes();
4091   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4092     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4093                                      Attribute::InAlloca}) {
4094       if (!Attrs.hasParamAttr(i, Kind) ||
4095           Attrs.getParamAttr(i, Kind).getValueAsType())
4096         continue;
4097 
4098       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4099       if (!PtrEltTy)
4100         return error("Missing element type for typed attribute upgrade");
4101 
4102       Attribute NewAttr;
4103       switch (Kind) {
4104       case Attribute::ByVal:
4105         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4106         break;
4107       case Attribute::StructRet:
4108         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4109         break;
4110       case Attribute::InAlloca:
4111         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4112         break;
4113       default:
4114         llvm_unreachable("not an upgraded type attribute");
4115       }
4116 
4117       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4118     }
4119   }
4120 
4121   if (CB->isInlineAsm()) {
4122     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4123     unsigned ArgNo = 0;
4124     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4125       if (!CI.hasArg())
4126         continue;
4127 
4128       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4129         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4130         if (!ElemTy)
4131           return error("Missing element type for inline asm upgrade");
4132         Attrs = Attrs.addParamAttribute(
4133             Context, ArgNo,
4134             Attribute::get(Context, Attribute::ElementType, ElemTy));
4135       }
4136 
4137       ArgNo++;
4138     }
4139   }
4140 
4141   switch (CB->getIntrinsicID()) {
4142   case Intrinsic::preserve_array_access_index:
4143   case Intrinsic::preserve_struct_access_index:
4144   case Intrinsic::aarch64_ldaxr:
4145   case Intrinsic::aarch64_ldxr:
4146   case Intrinsic::aarch64_stlxr:
4147   case Intrinsic::aarch64_stxr: {
4148     unsigned ArgNo = CB->getIntrinsicID() == Intrinsic::aarch64_stlxr ||
4149                              CB->getIntrinsicID() == Intrinsic::aarch64_stxr
4150                          ? 1
4151                          : 0;
4152     if (!Attrs.getParamElementType(ArgNo)) {
4153       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4154       if (!ElTy)
4155         return error("Missing element type for elementtype upgrade");
4156       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4157       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4158     }
4159     break;
4160   }
4161   default:
4162     break;
4163   }
4164 
4165   CB->setAttributes(Attrs);
4166   return Error::success();
4167 }
4168 
4169 /// Lazily parse the specified function body block.
4170 Error BitcodeReader::parseFunctionBody(Function *F) {
4171   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4172     return Err;
4173 
4174   // Unexpected unresolved metadata when parsing function.
4175   if (MDLoader->hasFwdRefs())
4176     return error("Invalid function metadata: incoming forward references");
4177 
4178   InstructionList.clear();
4179   unsigned ModuleValueListSize = ValueList.size();
4180   unsigned ModuleMDLoaderSize = MDLoader->size();
4181 
4182   // Add all the function arguments to the value table.
4183   unsigned ArgNo = 0;
4184   unsigned FTyID = FunctionTypeIDs[F];
4185   for (Argument &I : F->args()) {
4186     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4187     assert(I.getType() == getTypeByID(ArgTyID) &&
4188            "Incorrect fully specified type for Function Argument");
4189     ValueList.push_back(&I, ArgTyID);
4190     ++ArgNo;
4191   }
4192   unsigned NextValueNo = ValueList.size();
4193   BasicBlock *CurBB = nullptr;
4194   unsigned CurBBNo = 0;
4195 
4196   DebugLoc LastLoc;
4197   auto getLastInstruction = [&]() -> Instruction * {
4198     if (CurBB && !CurBB->empty())
4199       return &CurBB->back();
4200     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4201              !FunctionBBs[CurBBNo - 1]->empty())
4202       return &FunctionBBs[CurBBNo - 1]->back();
4203     return nullptr;
4204   };
4205 
4206   std::vector<OperandBundleDef> OperandBundles;
4207 
4208   // Read all the records.
4209   SmallVector<uint64_t, 64> Record;
4210 
4211   while (true) {
4212     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4213     if (!MaybeEntry)
4214       return MaybeEntry.takeError();
4215     llvm::BitstreamEntry Entry = MaybeEntry.get();
4216 
4217     switch (Entry.Kind) {
4218     case BitstreamEntry::Error:
4219       return error("Malformed block");
4220     case BitstreamEntry::EndBlock:
4221       goto OutOfRecordLoop;
4222 
4223     case BitstreamEntry::SubBlock:
4224       switch (Entry.ID) {
4225       default:  // Skip unknown content.
4226         if (Error Err = Stream.SkipBlock())
4227           return Err;
4228         break;
4229       case bitc::CONSTANTS_BLOCK_ID:
4230         if (Error Err = parseConstants())
4231           return Err;
4232         NextValueNo = ValueList.size();
4233         break;
4234       case bitc::VALUE_SYMTAB_BLOCK_ID:
4235         if (Error Err = parseValueSymbolTable())
4236           return Err;
4237         break;
4238       case bitc::METADATA_ATTACHMENT_ID:
4239         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4240           return Err;
4241         break;
4242       case bitc::METADATA_BLOCK_ID:
4243         assert(DeferredMetadataInfo.empty() &&
4244                "Must read all module-level metadata before function-level");
4245         if (Error Err = MDLoader->parseFunctionMetadata())
4246           return Err;
4247         break;
4248       case bitc::USELIST_BLOCK_ID:
4249         if (Error Err = parseUseLists())
4250           return Err;
4251         break;
4252       }
4253       continue;
4254 
4255     case BitstreamEntry::Record:
4256       // The interesting case.
4257       break;
4258     }
4259 
4260     // Read a record.
4261     Record.clear();
4262     Instruction *I = nullptr;
4263     unsigned ResTypeID = InvalidTypeID;
4264     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4265     if (!MaybeBitCode)
4266       return MaybeBitCode.takeError();
4267     switch (unsigned BitCode = MaybeBitCode.get()) {
4268     default: // Default behavior: reject
4269       return error("Invalid value");
4270     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4271       if (Record.empty() || Record[0] == 0)
4272         return error("Invalid record");
4273       // Create all the basic blocks for the function.
4274       FunctionBBs.resize(Record[0]);
4275 
4276       // See if anything took the address of blocks in this function.
4277       auto BBFRI = BasicBlockFwdRefs.find(F);
4278       if (BBFRI == BasicBlockFwdRefs.end()) {
4279         for (BasicBlock *&BB : FunctionBBs)
4280           BB = BasicBlock::Create(Context, "", F);
4281       } else {
4282         auto &BBRefs = BBFRI->second;
4283         // Check for invalid basic block references.
4284         if (BBRefs.size() > FunctionBBs.size())
4285           return error("Invalid ID");
4286         assert(!BBRefs.empty() && "Unexpected empty array");
4287         assert(!BBRefs.front() && "Invalid reference to entry block");
4288         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4289              ++I)
4290           if (I < RE && BBRefs[I]) {
4291             BBRefs[I]->insertInto(F);
4292             FunctionBBs[I] = BBRefs[I];
4293           } else {
4294             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4295           }
4296 
4297         // Erase from the table.
4298         BasicBlockFwdRefs.erase(BBFRI);
4299       }
4300 
4301       CurBB = FunctionBBs[0];
4302       continue;
4303     }
4304 
4305     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4306       // This record indicates that the last instruction is at the same
4307       // location as the previous instruction with a location.
4308       I = getLastInstruction();
4309 
4310       if (!I)
4311         return error("Invalid record");
4312       I->setDebugLoc(LastLoc);
4313       I = nullptr;
4314       continue;
4315 
4316     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4317       I = getLastInstruction();
4318       if (!I || Record.size() < 4)
4319         return error("Invalid record");
4320 
4321       unsigned Line = Record[0], Col = Record[1];
4322       unsigned ScopeID = Record[2], IAID = Record[3];
4323       bool isImplicitCode = Record.size() == 5 && Record[4];
4324 
4325       MDNode *Scope = nullptr, *IA = nullptr;
4326       if (ScopeID) {
4327         Scope = dyn_cast_or_null<MDNode>(
4328             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4329         if (!Scope)
4330           return error("Invalid record");
4331       }
4332       if (IAID) {
4333         IA = dyn_cast_or_null<MDNode>(
4334             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4335         if (!IA)
4336           return error("Invalid record");
4337       }
4338       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4339                                 isImplicitCode);
4340       I->setDebugLoc(LastLoc);
4341       I = nullptr;
4342       continue;
4343     }
4344     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4345       unsigned OpNum = 0;
4346       Value *LHS;
4347       unsigned TypeID;
4348       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4349           OpNum+1 > Record.size())
4350         return error("Invalid record");
4351 
4352       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4353       if (Opc == -1)
4354         return error("Invalid record");
4355       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4356       ResTypeID = TypeID;
4357       InstructionList.push_back(I);
4358       if (OpNum < Record.size()) {
4359         if (isa<FPMathOperator>(I)) {
4360           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4361           if (FMF.any())
4362             I->setFastMathFlags(FMF);
4363         }
4364       }
4365       break;
4366     }
4367     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4368       unsigned OpNum = 0;
4369       Value *LHS, *RHS;
4370       unsigned TypeID;
4371       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4372           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) ||
4373           OpNum+1 > Record.size())
4374         return error("Invalid record");
4375 
4376       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4377       if (Opc == -1)
4378         return error("Invalid record");
4379       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4380       ResTypeID = TypeID;
4381       InstructionList.push_back(I);
4382       if (OpNum < Record.size()) {
4383         if (Opc == Instruction::Add ||
4384             Opc == Instruction::Sub ||
4385             Opc == Instruction::Mul ||
4386             Opc == Instruction::Shl) {
4387           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4388             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4389           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4390             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4391         } else if (Opc == Instruction::SDiv ||
4392                    Opc == Instruction::UDiv ||
4393                    Opc == Instruction::LShr ||
4394                    Opc == Instruction::AShr) {
4395           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4396             cast<BinaryOperator>(I)->setIsExact(true);
4397         } else if (isa<FPMathOperator>(I)) {
4398           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4399           if (FMF.any())
4400             I->setFastMathFlags(FMF);
4401         }
4402 
4403       }
4404       break;
4405     }
4406     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4407       unsigned OpNum = 0;
4408       Value *Op;
4409       unsigned OpTypeID;
4410       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
4411           OpNum+2 != Record.size())
4412         return error("Invalid record");
4413 
4414       ResTypeID = Record[OpNum];
4415       Type *ResTy = getTypeByID(ResTypeID);
4416       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4417       if (Opc == -1 || !ResTy)
4418         return error("Invalid record");
4419       Instruction *Temp = nullptr;
4420       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4421         if (Temp) {
4422           InstructionList.push_back(Temp);
4423           assert(CurBB && "No current BB?");
4424           CurBB->getInstList().push_back(Temp);
4425         }
4426       } else {
4427         auto CastOp = (Instruction::CastOps)Opc;
4428         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4429           return error("Invalid cast");
4430         I = CastInst::Create(CastOp, Op, ResTy);
4431       }
4432       InstructionList.push_back(I);
4433       break;
4434     }
4435     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4436     case bitc::FUNC_CODE_INST_GEP_OLD:
4437     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4438       unsigned OpNum = 0;
4439 
4440       unsigned TyID;
4441       Type *Ty;
4442       bool InBounds;
4443 
4444       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4445         InBounds = Record[OpNum++];
4446         TyID = Record[OpNum++];
4447         Ty = getTypeByID(TyID);
4448       } else {
4449         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4450         TyID = InvalidTypeID;
4451         Ty = nullptr;
4452       }
4453 
4454       Value *BasePtr;
4455       unsigned BasePtrTypeID;
4456       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID))
4457         return error("Invalid record");
4458 
4459       if (!Ty) {
4460         TyID = getContainedTypeID(BasePtrTypeID);
4461         if (BasePtr->getType()->isVectorTy())
4462           TyID = getContainedTypeID(TyID);
4463         Ty = getTypeByID(TyID);
4464       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4465                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4466         return error(
4467             "Explicit gep type does not match pointee type of pointer operand");
4468       }
4469 
4470       SmallVector<Value*, 16> GEPIdx;
4471       while (OpNum != Record.size()) {
4472         Value *Op;
4473         unsigned OpTypeID;
4474         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4475           return error("Invalid record");
4476         GEPIdx.push_back(Op);
4477       }
4478 
4479       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4480 
4481       ResTypeID = TyID;
4482       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4483         auto GTI = std::next(gep_type_begin(I));
4484         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4485           unsigned SubType = 0;
4486           if (GTI.isStruct()) {
4487             ConstantInt *IdxC =
4488                 Idx->getType()->isVectorTy()
4489                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4490                     : cast<ConstantInt>(Idx);
4491             SubType = IdxC->getZExtValue();
4492           }
4493           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4494           ++GTI;
4495         }
4496       }
4497 
4498       // At this point ResTypeID is the result element type. We need a pointer
4499       // or vector of pointer to it.
4500       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4501       if (I->getType()->isVectorTy())
4502         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4503 
4504       InstructionList.push_back(I);
4505       if (InBounds)
4506         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4507       break;
4508     }
4509 
4510     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4511                                        // EXTRACTVAL: [opty, opval, n x indices]
4512       unsigned OpNum = 0;
4513       Value *Agg;
4514       unsigned AggTypeID;
4515       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4516         return error("Invalid record");
4517       Type *Ty = Agg->getType();
4518 
4519       unsigned RecSize = Record.size();
4520       if (OpNum == RecSize)
4521         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4522 
4523       SmallVector<unsigned, 4> EXTRACTVALIdx;
4524       ResTypeID = AggTypeID;
4525       for (; OpNum != RecSize; ++OpNum) {
4526         bool IsArray = Ty->isArrayTy();
4527         bool IsStruct = Ty->isStructTy();
4528         uint64_t Index = Record[OpNum];
4529 
4530         if (!IsStruct && !IsArray)
4531           return error("EXTRACTVAL: Invalid type");
4532         if ((unsigned)Index != Index)
4533           return error("Invalid value");
4534         if (IsStruct && Index >= Ty->getStructNumElements())
4535           return error("EXTRACTVAL: Invalid struct index");
4536         if (IsArray && Index >= Ty->getArrayNumElements())
4537           return error("EXTRACTVAL: Invalid array index");
4538         EXTRACTVALIdx.push_back((unsigned)Index);
4539 
4540         if (IsStruct) {
4541           Ty = Ty->getStructElementType(Index);
4542           ResTypeID = getContainedTypeID(ResTypeID, Index);
4543         } else {
4544           Ty = Ty->getArrayElementType();
4545           ResTypeID = getContainedTypeID(ResTypeID);
4546         }
4547       }
4548 
4549       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4550       InstructionList.push_back(I);
4551       break;
4552     }
4553 
4554     case bitc::FUNC_CODE_INST_INSERTVAL: {
4555                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4556       unsigned OpNum = 0;
4557       Value *Agg;
4558       unsigned AggTypeID;
4559       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4560         return error("Invalid record");
4561       Value *Val;
4562       unsigned ValTypeID;
4563       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
4564         return error("Invalid record");
4565 
4566       unsigned RecSize = Record.size();
4567       if (OpNum == RecSize)
4568         return error("INSERTVAL: Invalid instruction with 0 indices");
4569 
4570       SmallVector<unsigned, 4> INSERTVALIdx;
4571       Type *CurTy = Agg->getType();
4572       for (; OpNum != RecSize; ++OpNum) {
4573         bool IsArray = CurTy->isArrayTy();
4574         bool IsStruct = CurTy->isStructTy();
4575         uint64_t Index = Record[OpNum];
4576 
4577         if (!IsStruct && !IsArray)
4578           return error("INSERTVAL: Invalid type");
4579         if ((unsigned)Index != Index)
4580           return error("Invalid value");
4581         if (IsStruct && Index >= CurTy->getStructNumElements())
4582           return error("INSERTVAL: Invalid struct index");
4583         if (IsArray && Index >= CurTy->getArrayNumElements())
4584           return error("INSERTVAL: Invalid array index");
4585 
4586         INSERTVALIdx.push_back((unsigned)Index);
4587         if (IsStruct)
4588           CurTy = CurTy->getStructElementType(Index);
4589         else
4590           CurTy = CurTy->getArrayElementType();
4591       }
4592 
4593       if (CurTy != Val->getType())
4594         return error("Inserted value type doesn't match aggregate type");
4595 
4596       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4597       ResTypeID = AggTypeID;
4598       InstructionList.push_back(I);
4599       break;
4600     }
4601 
4602     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4603       // obsolete form of select
4604       // handles select i1 ... in old bitcode
4605       unsigned OpNum = 0;
4606       Value *TrueVal, *FalseVal, *Cond;
4607       unsigned TypeID;
4608       Type *CondType = Type::getInt1Ty(Context);
4609       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) ||
4610           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4611                    FalseVal) ||
4612           popValue(Record, OpNum, NextValueNo, CondType,
4613                    getVirtualTypeID(CondType), Cond))
4614         return error("Invalid record");
4615 
4616       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4617       ResTypeID = TypeID;
4618       InstructionList.push_back(I);
4619       break;
4620     }
4621 
4622     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4623       // new form of select
4624       // handles select i1 or select [N x i1]
4625       unsigned OpNum = 0;
4626       Value *TrueVal, *FalseVal, *Cond;
4627       unsigned ValTypeID, CondTypeID;
4628       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) ||
4629           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4630                    FalseVal) ||
4631           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID))
4632         return error("Invalid record");
4633 
4634       // select condition can be either i1 or [N x i1]
4635       if (VectorType* vector_type =
4636           dyn_cast<VectorType>(Cond->getType())) {
4637         // expect <n x i1>
4638         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4639           return error("Invalid type for value");
4640       } else {
4641         // expect i1
4642         if (Cond->getType() != Type::getInt1Ty(Context))
4643           return error("Invalid type for value");
4644       }
4645 
4646       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4647       ResTypeID = ValTypeID;
4648       InstructionList.push_back(I);
4649       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4650         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4651         if (FMF.any())
4652           I->setFastMathFlags(FMF);
4653       }
4654       break;
4655     }
4656 
4657     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4658       unsigned OpNum = 0;
4659       Value *Vec, *Idx;
4660       unsigned VecTypeID, IdxTypeID;
4661       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) ||
4662           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4663         return error("Invalid record");
4664       if (!Vec->getType()->isVectorTy())
4665         return error("Invalid type for value");
4666       I = ExtractElementInst::Create(Vec, Idx);
4667       ResTypeID = getContainedTypeID(VecTypeID);
4668       InstructionList.push_back(I);
4669       break;
4670     }
4671 
4672     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4673       unsigned OpNum = 0;
4674       Value *Vec, *Elt, *Idx;
4675       unsigned VecTypeID, IdxTypeID;
4676       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID))
4677         return error("Invalid record");
4678       if (!Vec->getType()->isVectorTy())
4679         return error("Invalid type for value");
4680       if (popValue(Record, OpNum, NextValueNo,
4681                    cast<VectorType>(Vec->getType())->getElementType(),
4682                    getContainedTypeID(VecTypeID), Elt) ||
4683           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4684         return error("Invalid record");
4685       I = InsertElementInst::Create(Vec, Elt, Idx);
4686       ResTypeID = VecTypeID;
4687       InstructionList.push_back(I);
4688       break;
4689     }
4690 
4691     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4692       unsigned OpNum = 0;
4693       Value *Vec1, *Vec2, *Mask;
4694       unsigned Vec1TypeID;
4695       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) ||
4696           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
4697                    Vec2))
4698         return error("Invalid record");
4699 
4700       unsigned MaskTypeID;
4701       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID))
4702         return error("Invalid record");
4703       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4704         return error("Invalid type for value");
4705 
4706       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4707       ResTypeID =
4708           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
4709       InstructionList.push_back(I);
4710       break;
4711     }
4712 
4713     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4714       // Old form of ICmp/FCmp returning bool
4715       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4716       // both legal on vectors but had different behaviour.
4717     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4718       // FCmp/ICmp returning bool or vector of bool
4719 
4720       unsigned OpNum = 0;
4721       Value *LHS, *RHS;
4722       unsigned LHSTypeID;
4723       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) ||
4724           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS))
4725         return error("Invalid record");
4726 
4727       if (OpNum >= Record.size())
4728         return error(
4729             "Invalid record: operand number exceeded available operands");
4730 
4731       unsigned PredVal = Record[OpNum];
4732       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4733       FastMathFlags FMF;
4734       if (IsFP && Record.size() > OpNum+1)
4735         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4736 
4737       if (OpNum+1 != Record.size())
4738         return error("Invalid record");
4739 
4740       if (LHS->getType()->isFPOrFPVectorTy())
4741         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4742       else
4743         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4744 
4745       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
4746       if (LHS->getType()->isVectorTy())
4747         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4748 
4749       if (FMF.any())
4750         I->setFastMathFlags(FMF);
4751       InstructionList.push_back(I);
4752       break;
4753     }
4754 
4755     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4756       {
4757         unsigned Size = Record.size();
4758         if (Size == 0) {
4759           I = ReturnInst::Create(Context);
4760           InstructionList.push_back(I);
4761           break;
4762         }
4763 
4764         unsigned OpNum = 0;
4765         Value *Op = nullptr;
4766         unsigned OpTypeID;
4767         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4768           return error("Invalid record");
4769         if (OpNum != Record.size())
4770           return error("Invalid record");
4771 
4772         I = ReturnInst::Create(Context, Op);
4773         InstructionList.push_back(I);
4774         break;
4775       }
4776     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4777       if (Record.size() != 1 && Record.size() != 3)
4778         return error("Invalid record");
4779       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4780       if (!TrueDest)
4781         return error("Invalid record");
4782 
4783       if (Record.size() == 1) {
4784         I = BranchInst::Create(TrueDest);
4785         InstructionList.push_back(I);
4786       }
4787       else {
4788         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4789         Type *CondType = Type::getInt1Ty(Context);
4790         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
4791                                getVirtualTypeID(CondType));
4792         if (!FalseDest || !Cond)
4793           return error("Invalid record");
4794         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4795         InstructionList.push_back(I);
4796       }
4797       break;
4798     }
4799     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4800       if (Record.size() != 1 && Record.size() != 2)
4801         return error("Invalid record");
4802       unsigned Idx = 0;
4803       Type *TokenTy = Type::getTokenTy(Context);
4804       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4805                                    getVirtualTypeID(TokenTy));
4806       if (!CleanupPad)
4807         return error("Invalid record");
4808       BasicBlock *UnwindDest = nullptr;
4809       if (Record.size() == 2) {
4810         UnwindDest = getBasicBlock(Record[Idx++]);
4811         if (!UnwindDest)
4812           return error("Invalid record");
4813       }
4814 
4815       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4816       InstructionList.push_back(I);
4817       break;
4818     }
4819     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4820       if (Record.size() != 2)
4821         return error("Invalid record");
4822       unsigned Idx = 0;
4823       Type *TokenTy = Type::getTokenTy(Context);
4824       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4825                                  getVirtualTypeID(TokenTy));
4826       if (!CatchPad)
4827         return error("Invalid record");
4828       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4829       if (!BB)
4830         return error("Invalid record");
4831 
4832       I = CatchReturnInst::Create(CatchPad, BB);
4833       InstructionList.push_back(I);
4834       break;
4835     }
4836     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4837       // We must have, at minimum, the outer scope and the number of arguments.
4838       if (Record.size() < 2)
4839         return error("Invalid record");
4840 
4841       unsigned Idx = 0;
4842 
4843       Type *TokenTy = Type::getTokenTy(Context);
4844       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4845                                   getVirtualTypeID(TokenTy));
4846 
4847       unsigned NumHandlers = Record[Idx++];
4848 
4849       SmallVector<BasicBlock *, 2> Handlers;
4850       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4851         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4852         if (!BB)
4853           return error("Invalid record");
4854         Handlers.push_back(BB);
4855       }
4856 
4857       BasicBlock *UnwindDest = nullptr;
4858       if (Idx + 1 == Record.size()) {
4859         UnwindDest = getBasicBlock(Record[Idx++]);
4860         if (!UnwindDest)
4861           return error("Invalid record");
4862       }
4863 
4864       if (Record.size() != Idx)
4865         return error("Invalid record");
4866 
4867       auto *CatchSwitch =
4868           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4869       for (BasicBlock *Handler : Handlers)
4870         CatchSwitch->addHandler(Handler);
4871       I = CatchSwitch;
4872       ResTypeID = getVirtualTypeID(I->getType());
4873       InstructionList.push_back(I);
4874       break;
4875     }
4876     case bitc::FUNC_CODE_INST_CATCHPAD:
4877     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4878       // We must have, at minimum, the outer scope and the number of arguments.
4879       if (Record.size() < 2)
4880         return error("Invalid record");
4881 
4882       unsigned Idx = 0;
4883 
4884       Type *TokenTy = Type::getTokenTy(Context);
4885       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4886                                   getVirtualTypeID(TokenTy));
4887 
4888       unsigned NumArgOperands = Record[Idx++];
4889 
4890       SmallVector<Value *, 2> Args;
4891       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4892         Value *Val;
4893         unsigned ValTypeID;
4894         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
4895           return error("Invalid record");
4896         Args.push_back(Val);
4897       }
4898 
4899       if (Record.size() != Idx)
4900         return error("Invalid record");
4901 
4902       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4903         I = CleanupPadInst::Create(ParentPad, Args);
4904       else
4905         I = CatchPadInst::Create(ParentPad, Args);
4906       ResTypeID = getVirtualTypeID(I->getType());
4907       InstructionList.push_back(I);
4908       break;
4909     }
4910     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4911       // Check magic
4912       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4913         // "New" SwitchInst format with case ranges. The changes to write this
4914         // format were reverted but we still recognize bitcode that uses it.
4915         // Hopefully someday we will have support for case ranges and can use
4916         // this format again.
4917 
4918         unsigned OpTyID = Record[1];
4919         Type *OpTy = getTypeByID(OpTyID);
4920         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4921 
4922         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID);
4923         BasicBlock *Default = getBasicBlock(Record[3]);
4924         if (!OpTy || !Cond || !Default)
4925           return error("Invalid record");
4926 
4927         unsigned NumCases = Record[4];
4928 
4929         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4930         InstructionList.push_back(SI);
4931 
4932         unsigned CurIdx = 5;
4933         for (unsigned i = 0; i != NumCases; ++i) {
4934           SmallVector<ConstantInt*, 1> CaseVals;
4935           unsigned NumItems = Record[CurIdx++];
4936           for (unsigned ci = 0; ci != NumItems; ++ci) {
4937             bool isSingleNumber = Record[CurIdx++];
4938 
4939             APInt Low;
4940             unsigned ActiveWords = 1;
4941             if (ValueBitWidth > 64)
4942               ActiveWords = Record[CurIdx++];
4943             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4944                                 ValueBitWidth);
4945             CurIdx += ActiveWords;
4946 
4947             if (!isSingleNumber) {
4948               ActiveWords = 1;
4949               if (ValueBitWidth > 64)
4950                 ActiveWords = Record[CurIdx++];
4951               APInt High = readWideAPInt(
4952                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4953               CurIdx += ActiveWords;
4954 
4955               // FIXME: It is not clear whether values in the range should be
4956               // compared as signed or unsigned values. The partially
4957               // implemented changes that used this format in the past used
4958               // unsigned comparisons.
4959               for ( ; Low.ule(High); ++Low)
4960                 CaseVals.push_back(ConstantInt::get(Context, Low));
4961             } else
4962               CaseVals.push_back(ConstantInt::get(Context, Low));
4963           }
4964           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4965           for (ConstantInt *Cst : CaseVals)
4966             SI->addCase(Cst, DestBB);
4967         }
4968         I = SI;
4969         break;
4970       }
4971 
4972       // Old SwitchInst format without case ranges.
4973 
4974       if (Record.size() < 3 || (Record.size() & 1) == 0)
4975         return error("Invalid record");
4976       unsigned OpTyID = Record[0];
4977       Type *OpTy = getTypeByID(OpTyID);
4978       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
4979       BasicBlock *Default = getBasicBlock(Record[2]);
4980       if (!OpTy || !Cond || !Default)
4981         return error("Invalid record");
4982       unsigned NumCases = (Record.size()-3)/2;
4983       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4984       InstructionList.push_back(SI);
4985       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4986         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
4987             getFnValueByID(Record[3+i*2], OpTy, OpTyID));
4988         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4989         if (!CaseVal || !DestBB) {
4990           delete SI;
4991           return error("Invalid record");
4992         }
4993         SI->addCase(CaseVal, DestBB);
4994       }
4995       I = SI;
4996       break;
4997     }
4998     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4999       if (Record.size() < 2)
5000         return error("Invalid record");
5001       unsigned OpTyID = Record[0];
5002       Type *OpTy = getTypeByID(OpTyID);
5003       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5004       if (!OpTy || !Address)
5005         return error("Invalid record");
5006       unsigned NumDests = Record.size()-2;
5007       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5008       InstructionList.push_back(IBI);
5009       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5010         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5011           IBI->addDestination(DestBB);
5012         } else {
5013           delete IBI;
5014           return error("Invalid record");
5015         }
5016       }
5017       I = IBI;
5018       break;
5019     }
5020 
5021     case bitc::FUNC_CODE_INST_INVOKE: {
5022       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5023       if (Record.size() < 4)
5024         return error("Invalid record");
5025       unsigned OpNum = 0;
5026       AttributeList PAL = getAttributes(Record[OpNum++]);
5027       unsigned CCInfo = Record[OpNum++];
5028       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5029       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5030 
5031       unsigned FTyID = InvalidTypeID;
5032       FunctionType *FTy = nullptr;
5033       if ((CCInfo >> 13) & 1) {
5034         FTyID = Record[OpNum++];
5035         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5036         if (!FTy)
5037           return error("Explicit invoke type is not a function type");
5038       }
5039 
5040       Value *Callee;
5041       unsigned CalleeTypeID;
5042       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5043         return error("Invalid record");
5044 
5045       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5046       if (!CalleeTy)
5047         return error("Callee is not a pointer");
5048       if (!FTy) {
5049         FTyID = getContainedTypeID(CalleeTypeID);
5050         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5051         if (!FTy)
5052           return error("Callee is not of pointer to function type");
5053       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5054         return error("Explicit invoke type does not match pointee type of "
5055                      "callee operand");
5056       if (Record.size() < FTy->getNumParams() + OpNum)
5057         return error("Insufficient operands to call");
5058 
5059       SmallVector<Value*, 16> Ops;
5060       SmallVector<unsigned, 16> ArgTyIDs;
5061       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5062         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5063         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5064                                ArgTyID));
5065         ArgTyIDs.push_back(ArgTyID);
5066         if (!Ops.back())
5067           return error("Invalid record");
5068       }
5069 
5070       if (!FTy->isVarArg()) {
5071         if (Record.size() != OpNum)
5072           return error("Invalid record");
5073       } else {
5074         // Read type/value pairs for varargs params.
5075         while (OpNum != Record.size()) {
5076           Value *Op;
5077           unsigned OpTypeID;
5078           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5079             return error("Invalid record");
5080           Ops.push_back(Op);
5081           ArgTyIDs.push_back(OpTypeID);
5082         }
5083       }
5084 
5085       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5086                              OperandBundles);
5087       ResTypeID = getContainedTypeID(FTyID);
5088       OperandBundles.clear();
5089       InstructionList.push_back(I);
5090       cast<InvokeInst>(I)->setCallingConv(
5091           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5092       cast<InvokeInst>(I)->setAttributes(PAL);
5093       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5094         I->deleteValue();
5095         return Err;
5096       }
5097 
5098       break;
5099     }
5100     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5101       unsigned Idx = 0;
5102       Value *Val = nullptr;
5103       unsigned ValTypeID;
5104       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
5105         return error("Invalid record");
5106       I = ResumeInst::Create(Val);
5107       InstructionList.push_back(I);
5108       break;
5109     }
5110     case bitc::FUNC_CODE_INST_CALLBR: {
5111       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5112       unsigned OpNum = 0;
5113       AttributeList PAL = getAttributes(Record[OpNum++]);
5114       unsigned CCInfo = Record[OpNum++];
5115 
5116       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5117       unsigned NumIndirectDests = Record[OpNum++];
5118       SmallVector<BasicBlock *, 16> IndirectDests;
5119       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5120         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5121 
5122       unsigned FTyID = InvalidTypeID;
5123       FunctionType *FTy = nullptr;
5124       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5125         FTyID = Record[OpNum++];
5126         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5127         if (!FTy)
5128           return error("Explicit call type is not a function type");
5129       }
5130 
5131       Value *Callee;
5132       unsigned CalleeTypeID;
5133       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5134         return error("Invalid record");
5135 
5136       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5137       if (!OpTy)
5138         return error("Callee is not a pointer type");
5139       if (!FTy) {
5140         FTyID = getContainedTypeID(CalleeTypeID);
5141         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5142         if (!FTy)
5143           return error("Callee is not of pointer to function type");
5144       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5145         return error("Explicit call type does not match pointee type of "
5146                      "callee operand");
5147       if (Record.size() < FTy->getNumParams() + OpNum)
5148         return error("Insufficient operands to call");
5149 
5150       SmallVector<Value*, 16> Args;
5151       SmallVector<unsigned, 16> ArgTyIDs;
5152       // Read the fixed params.
5153       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5154         Value *Arg;
5155         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5156         if (FTy->getParamType(i)->isLabelTy())
5157           Arg = getBasicBlock(Record[OpNum]);
5158         else
5159           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5160                          ArgTyID);
5161         if (!Arg)
5162           return error("Invalid record");
5163         Args.push_back(Arg);
5164         ArgTyIDs.push_back(ArgTyID);
5165       }
5166 
5167       // Read type/value pairs for varargs params.
5168       if (!FTy->isVarArg()) {
5169         if (OpNum != Record.size())
5170           return error("Invalid record");
5171       } else {
5172         while (OpNum != Record.size()) {
5173           Value *Op;
5174           unsigned OpTypeID;
5175           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5176             return error("Invalid record");
5177           Args.push_back(Op);
5178           ArgTyIDs.push_back(OpTypeID);
5179         }
5180       }
5181 
5182       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5183                              OperandBundles);
5184       ResTypeID = getContainedTypeID(FTyID);
5185       OperandBundles.clear();
5186       InstructionList.push_back(I);
5187       cast<CallBrInst>(I)->setCallingConv(
5188           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5189       cast<CallBrInst>(I)->setAttributes(PAL);
5190       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5191         I->deleteValue();
5192         return Err;
5193       }
5194       break;
5195     }
5196     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5197       I = new UnreachableInst(Context);
5198       InstructionList.push_back(I);
5199       break;
5200     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5201       if (Record.empty())
5202         return error("Invalid phi record");
5203       // The first record specifies the type.
5204       unsigned TyID = Record[0];
5205       Type *Ty = getTypeByID(TyID);
5206       if (!Ty)
5207         return error("Invalid phi record");
5208 
5209       // Phi arguments are pairs of records of [value, basic block].
5210       // There is an optional final record for fast-math-flags if this phi has a
5211       // floating-point type.
5212       size_t NumArgs = (Record.size() - 1) / 2;
5213       PHINode *PN = PHINode::Create(Ty, NumArgs);
5214       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5215         PN->deleteValue();
5216         return error("Invalid phi record");
5217       }
5218       InstructionList.push_back(PN);
5219 
5220       for (unsigned i = 0; i != NumArgs; i++) {
5221         Value *V;
5222         // With the new function encoding, it is possible that operands have
5223         // negative IDs (for forward references).  Use a signed VBR
5224         // representation to keep the encoding small.
5225         if (UseRelativeIDs)
5226           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5227         else
5228           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5229         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5230         if (!V || !BB) {
5231           PN->deleteValue();
5232           return error("Invalid phi record");
5233         }
5234         PN->addIncoming(V, BB);
5235       }
5236       I = PN;
5237       ResTypeID = TyID;
5238 
5239       // If there are an even number of records, the final record must be FMF.
5240       if (Record.size() % 2 == 0) {
5241         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5242         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5243         if (FMF.any())
5244           I->setFastMathFlags(FMF);
5245       }
5246 
5247       break;
5248     }
5249 
5250     case bitc::FUNC_CODE_INST_LANDINGPAD:
5251     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5252       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5253       unsigned Idx = 0;
5254       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5255         if (Record.size() < 3)
5256           return error("Invalid record");
5257       } else {
5258         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5259         if (Record.size() < 4)
5260           return error("Invalid record");
5261       }
5262       ResTypeID = Record[Idx++];
5263       Type *Ty = getTypeByID(ResTypeID);
5264       if (!Ty)
5265         return error("Invalid record");
5266       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5267         Value *PersFn = nullptr;
5268         unsigned PersFnTypeID;
5269         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID))
5270           return error("Invalid record");
5271 
5272         if (!F->hasPersonalityFn())
5273           F->setPersonalityFn(cast<Constant>(PersFn));
5274         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5275           return error("Personality function mismatch");
5276       }
5277 
5278       bool IsCleanup = !!Record[Idx++];
5279       unsigned NumClauses = Record[Idx++];
5280       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5281       LP->setCleanup(IsCleanup);
5282       for (unsigned J = 0; J != NumClauses; ++J) {
5283         LandingPadInst::ClauseType CT =
5284           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5285         Value *Val;
5286         unsigned ValTypeID;
5287 
5288         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) {
5289           delete LP;
5290           return error("Invalid record");
5291         }
5292 
5293         assert((CT != LandingPadInst::Catch ||
5294                 !isa<ArrayType>(Val->getType())) &&
5295                "Catch clause has a invalid type!");
5296         assert((CT != LandingPadInst::Filter ||
5297                 isa<ArrayType>(Val->getType())) &&
5298                "Filter clause has invalid type!");
5299         LP->addClause(cast<Constant>(Val));
5300       }
5301 
5302       I = LP;
5303       InstructionList.push_back(I);
5304       break;
5305     }
5306 
5307     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5308       if (Record.size() != 4 && Record.size() != 5)
5309         return error("Invalid record");
5310       using APV = AllocaPackedValues;
5311       const uint64_t Rec = Record[3];
5312       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5313       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5314       unsigned TyID = Record[0];
5315       Type *Ty = getTypeByID(TyID);
5316       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5317         TyID = getContainedTypeID(TyID);
5318         Ty = getTypeByID(TyID);
5319         if (!Ty)
5320           return error("Missing element type for old-style alloca");
5321       }
5322       unsigned OpTyID = Record[1];
5323       Type *OpTy = getTypeByID(OpTyID);
5324       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID);
5325       MaybeAlign Align;
5326       uint64_t AlignExp =
5327           Bitfield::get<APV::AlignLower>(Rec) |
5328           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5329       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5330         return Err;
5331       }
5332       if (!Ty || !Size)
5333         return error("Invalid record");
5334 
5335       const DataLayout &DL = TheModule->getDataLayout();
5336       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5337 
5338       SmallPtrSet<Type *, 4> Visited;
5339       if (!Align && !Ty->isSized(&Visited))
5340         return error("alloca of unsized type");
5341       if (!Align)
5342         Align = DL.getPrefTypeAlign(Ty);
5343 
5344       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5345       AI->setUsedWithInAlloca(InAlloca);
5346       AI->setSwiftError(SwiftError);
5347       I = AI;
5348       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5349       InstructionList.push_back(I);
5350       break;
5351     }
5352     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5353       unsigned OpNum = 0;
5354       Value *Op;
5355       unsigned OpTypeID;
5356       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5357           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5358         return error("Invalid record");
5359 
5360       if (!isa<PointerType>(Op->getType()))
5361         return error("Load operand is not a pointer type");
5362 
5363       Type *Ty = nullptr;
5364       if (OpNum + 3 == Record.size()) {
5365         ResTypeID = Record[OpNum++];
5366         Ty = getTypeByID(ResTypeID);
5367       } else {
5368         ResTypeID = getContainedTypeID(OpTypeID);
5369         Ty = getTypeByID(ResTypeID);
5370         if (!Ty)
5371           return error("Missing element type for old-style load");
5372       }
5373 
5374       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5375         return Err;
5376 
5377       MaybeAlign Align;
5378       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5379         return Err;
5380       SmallPtrSet<Type *, 4> Visited;
5381       if (!Align && !Ty->isSized(&Visited))
5382         return error("load of unsized type");
5383       if (!Align)
5384         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5385       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5386       InstructionList.push_back(I);
5387       break;
5388     }
5389     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5390        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5391       unsigned OpNum = 0;
5392       Value *Op;
5393       unsigned OpTypeID;
5394       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5395           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5396         return error("Invalid record");
5397 
5398       if (!isa<PointerType>(Op->getType()))
5399         return error("Load operand is not a pointer type");
5400 
5401       Type *Ty = nullptr;
5402       if (OpNum + 5 == Record.size()) {
5403         ResTypeID = Record[OpNum++];
5404         Ty = getTypeByID(ResTypeID);
5405       } else {
5406         ResTypeID = getContainedTypeID(OpTypeID);
5407         Ty = getTypeByID(ResTypeID);
5408         if (!Ty)
5409           return error("Missing element type for old style atomic load");
5410       }
5411 
5412       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5413         return Err;
5414 
5415       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5416       if (Ordering == AtomicOrdering::NotAtomic ||
5417           Ordering == AtomicOrdering::Release ||
5418           Ordering == AtomicOrdering::AcquireRelease)
5419         return error("Invalid record");
5420       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5421         return error("Invalid record");
5422       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5423 
5424       MaybeAlign Align;
5425       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5426         return Err;
5427       if (!Align)
5428         return error("Alignment missing from atomic load");
5429       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5430       InstructionList.push_back(I);
5431       break;
5432     }
5433     case bitc::FUNC_CODE_INST_STORE:
5434     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5435       unsigned OpNum = 0;
5436       Value *Val, *Ptr;
5437       unsigned PtrTypeID, ValTypeID;
5438       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5439         return error("Invalid record");
5440 
5441       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5442         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5443           return error("Invalid record");
5444       } else {
5445         ValTypeID = getContainedTypeID(PtrTypeID);
5446         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5447                      ValTypeID, Val))
5448           return error("Invalid record");
5449       }
5450 
5451       if (OpNum + 2 != Record.size())
5452         return error("Invalid record");
5453 
5454       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5455         return Err;
5456       MaybeAlign Align;
5457       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5458         return Err;
5459       SmallPtrSet<Type *, 4> Visited;
5460       if (!Align && !Val->getType()->isSized(&Visited))
5461         return error("store of unsized type");
5462       if (!Align)
5463         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5464       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5465       InstructionList.push_back(I);
5466       break;
5467     }
5468     case bitc::FUNC_CODE_INST_STOREATOMIC:
5469     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5470       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5471       unsigned OpNum = 0;
5472       Value *Val, *Ptr;
5473       unsigned PtrTypeID, ValTypeID;
5474       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) ||
5475           !isa<PointerType>(Ptr->getType()))
5476         return error("Invalid record");
5477       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5478         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5479           return error("Invalid record");
5480       } else {
5481         ValTypeID = getContainedTypeID(PtrTypeID);
5482         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5483                      ValTypeID, Val))
5484           return error("Invalid record");
5485       }
5486 
5487       if (OpNum + 4 != Record.size())
5488         return error("Invalid record");
5489 
5490       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5491         return Err;
5492       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5493       if (Ordering == AtomicOrdering::NotAtomic ||
5494           Ordering == AtomicOrdering::Acquire ||
5495           Ordering == AtomicOrdering::AcquireRelease)
5496         return error("Invalid record");
5497       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5498       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5499         return error("Invalid record");
5500 
5501       MaybeAlign Align;
5502       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5503         return Err;
5504       if (!Align)
5505         return error("Alignment missing from atomic store");
5506       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5507       InstructionList.push_back(I);
5508       break;
5509     }
5510     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5511       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5512       // failure_ordering?, weak?]
5513       const size_t NumRecords = Record.size();
5514       unsigned OpNum = 0;
5515       Value *Ptr = nullptr;
5516       unsigned PtrTypeID;
5517       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5518         return error("Invalid record");
5519 
5520       if (!isa<PointerType>(Ptr->getType()))
5521         return error("Cmpxchg operand is not a pointer type");
5522 
5523       Value *Cmp = nullptr;
5524       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5525       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5526                    CmpTypeID, Cmp))
5527         return error("Invalid record");
5528 
5529       Value *New = nullptr;
5530       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5531                    New) ||
5532           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5533         return error("Invalid record");
5534 
5535       const AtomicOrdering SuccessOrdering =
5536           getDecodedOrdering(Record[OpNum + 1]);
5537       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5538           SuccessOrdering == AtomicOrdering::Unordered)
5539         return error("Invalid record");
5540 
5541       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5542 
5543       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5544         return Err;
5545 
5546       const AtomicOrdering FailureOrdering =
5547           NumRecords < 7
5548               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5549               : getDecodedOrdering(Record[OpNum + 3]);
5550 
5551       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5552           FailureOrdering == AtomicOrdering::Unordered)
5553         return error("Invalid record");
5554 
5555       const Align Alignment(
5556           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5557 
5558       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5559                                 FailureOrdering, SSID);
5560       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5561 
5562       if (NumRecords < 8) {
5563         // Before weak cmpxchgs existed, the instruction simply returned the
5564         // value loaded from memory, so bitcode files from that era will be
5565         // expecting the first component of a modern cmpxchg.
5566         CurBB->getInstList().push_back(I);
5567         I = ExtractValueInst::Create(I, 0);
5568         ResTypeID = CmpTypeID;
5569       } else {
5570         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5571         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5572         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5573       }
5574 
5575       InstructionList.push_back(I);
5576       break;
5577     }
5578     case bitc::FUNC_CODE_INST_CMPXCHG: {
5579       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5580       // failure_ordering, weak, align?]
5581       const size_t NumRecords = Record.size();
5582       unsigned OpNum = 0;
5583       Value *Ptr = nullptr;
5584       unsigned PtrTypeID;
5585       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5586         return error("Invalid record");
5587 
5588       if (!isa<PointerType>(Ptr->getType()))
5589         return error("Cmpxchg operand is not a pointer type");
5590 
5591       Value *Cmp = nullptr;
5592       unsigned CmpTypeID;
5593       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID))
5594         return error("Invalid record");
5595 
5596       Value *Val = nullptr;
5597       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val))
5598         return error("Invalid record");
5599 
5600       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5601         return error("Invalid record");
5602 
5603       const bool IsVol = Record[OpNum];
5604 
5605       const AtomicOrdering SuccessOrdering =
5606           getDecodedOrdering(Record[OpNum + 1]);
5607       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5608         return error("Invalid cmpxchg success ordering");
5609 
5610       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5611 
5612       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5613         return Err;
5614 
5615       const AtomicOrdering FailureOrdering =
5616           getDecodedOrdering(Record[OpNum + 3]);
5617       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5618         return error("Invalid cmpxchg failure ordering");
5619 
5620       const bool IsWeak = Record[OpNum + 4];
5621 
5622       MaybeAlign Alignment;
5623 
5624       if (NumRecords == (OpNum + 6)) {
5625         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5626           return Err;
5627       }
5628       if (!Alignment)
5629         Alignment =
5630             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5631 
5632       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5633                                 FailureOrdering, SSID);
5634       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5635       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5636 
5637       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5638       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5639 
5640       InstructionList.push_back(I);
5641       break;
5642     }
5643     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5644     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5645       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5646       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5647       const size_t NumRecords = Record.size();
5648       unsigned OpNum = 0;
5649 
5650       Value *Ptr = nullptr;
5651       unsigned PtrTypeID;
5652       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5653         return error("Invalid record");
5654 
5655       if (!isa<PointerType>(Ptr->getType()))
5656         return error("Invalid record");
5657 
5658       Value *Val = nullptr;
5659       unsigned ValTypeID = InvalidTypeID;
5660       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5661         ValTypeID = getContainedTypeID(PtrTypeID);
5662         if (popValue(Record, OpNum, NextValueNo,
5663                      getTypeByID(ValTypeID), ValTypeID, Val))
5664           return error("Invalid record");
5665       } else {
5666         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5667           return error("Invalid record");
5668       }
5669 
5670       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5671         return error("Invalid record");
5672 
5673       const AtomicRMWInst::BinOp Operation =
5674           getDecodedRMWOperation(Record[OpNum]);
5675       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5676           Operation > AtomicRMWInst::LAST_BINOP)
5677         return error("Invalid record");
5678 
5679       const bool IsVol = Record[OpNum + 1];
5680 
5681       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5682       if (Ordering == AtomicOrdering::NotAtomic ||
5683           Ordering == AtomicOrdering::Unordered)
5684         return error("Invalid record");
5685 
5686       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5687 
5688       MaybeAlign Alignment;
5689 
5690       if (NumRecords == (OpNum + 5)) {
5691         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5692           return Err;
5693       }
5694 
5695       if (!Alignment)
5696         Alignment =
5697             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5698 
5699       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5700       ResTypeID = ValTypeID;
5701       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5702 
5703       InstructionList.push_back(I);
5704       break;
5705     }
5706     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5707       if (2 != Record.size())
5708         return error("Invalid record");
5709       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5710       if (Ordering == AtomicOrdering::NotAtomic ||
5711           Ordering == AtomicOrdering::Unordered ||
5712           Ordering == AtomicOrdering::Monotonic)
5713         return error("Invalid record");
5714       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5715       I = new FenceInst(Context, Ordering, SSID);
5716       InstructionList.push_back(I);
5717       break;
5718     }
5719     case bitc::FUNC_CODE_INST_CALL: {
5720       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5721       if (Record.size() < 3)
5722         return error("Invalid record");
5723 
5724       unsigned OpNum = 0;
5725       AttributeList PAL = getAttributes(Record[OpNum++]);
5726       unsigned CCInfo = Record[OpNum++];
5727 
5728       FastMathFlags FMF;
5729       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5730         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5731         if (!FMF.any())
5732           return error("Fast math flags indicator set for call with no FMF");
5733       }
5734 
5735       unsigned FTyID = InvalidTypeID;
5736       FunctionType *FTy = nullptr;
5737       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5738         FTyID = Record[OpNum++];
5739         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5740         if (!FTy)
5741           return error("Explicit call type is not a function type");
5742       }
5743 
5744       Value *Callee;
5745       unsigned CalleeTypeID;
5746       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5747         return error("Invalid record");
5748 
5749       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5750       if (!OpTy)
5751         return error("Callee is not a pointer type");
5752       if (!FTy) {
5753         FTyID = getContainedTypeID(CalleeTypeID);
5754         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5755         if (!FTy)
5756           return error("Callee is not of pointer to function type");
5757       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5758         return error("Explicit call type does not match pointee type of "
5759                      "callee operand");
5760       if (Record.size() < FTy->getNumParams() + OpNum)
5761         return error("Insufficient operands to call");
5762 
5763       SmallVector<Value*, 16> Args;
5764       SmallVector<unsigned, 16> ArgTyIDs;
5765       // Read the fixed params.
5766       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5767         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5768         if (FTy->getParamType(i)->isLabelTy())
5769           Args.push_back(getBasicBlock(Record[OpNum]));
5770         else
5771           Args.push_back(getValue(Record, OpNum, NextValueNo,
5772                                   FTy->getParamType(i), ArgTyID));
5773         ArgTyIDs.push_back(ArgTyID);
5774         if (!Args.back())
5775           return error("Invalid record");
5776       }
5777 
5778       // Read type/value pairs for varargs params.
5779       if (!FTy->isVarArg()) {
5780         if (OpNum != Record.size())
5781           return error("Invalid record");
5782       } else {
5783         while (OpNum != Record.size()) {
5784           Value *Op;
5785           unsigned OpTypeID;
5786           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5787             return error("Invalid record");
5788           Args.push_back(Op);
5789           ArgTyIDs.push_back(OpTypeID);
5790         }
5791       }
5792 
5793       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5794       ResTypeID = getContainedTypeID(FTyID);
5795       OperandBundles.clear();
5796       InstructionList.push_back(I);
5797       cast<CallInst>(I)->setCallingConv(
5798           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5799       CallInst::TailCallKind TCK = CallInst::TCK_None;
5800       if (CCInfo & 1 << bitc::CALL_TAIL)
5801         TCK = CallInst::TCK_Tail;
5802       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5803         TCK = CallInst::TCK_MustTail;
5804       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5805         TCK = CallInst::TCK_NoTail;
5806       cast<CallInst>(I)->setTailCallKind(TCK);
5807       cast<CallInst>(I)->setAttributes(PAL);
5808       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5809         I->deleteValue();
5810         return Err;
5811       }
5812       if (FMF.any()) {
5813         if (!isa<FPMathOperator>(I))
5814           return error("Fast-math-flags specified for call without "
5815                        "floating-point scalar or vector return type");
5816         I->setFastMathFlags(FMF);
5817       }
5818       break;
5819     }
5820     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5821       if (Record.size() < 3)
5822         return error("Invalid record");
5823       unsigned OpTyID = Record[0];
5824       Type *OpTy = getTypeByID(OpTyID);
5825       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5826       ResTypeID = Record[2];
5827       Type *ResTy = getTypeByID(ResTypeID);
5828       if (!OpTy || !Op || !ResTy)
5829         return error("Invalid record");
5830       I = new VAArgInst(Op, ResTy);
5831       InstructionList.push_back(I);
5832       break;
5833     }
5834 
5835     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5836       // A call or an invoke can be optionally prefixed with some variable
5837       // number of operand bundle blocks.  These blocks are read into
5838       // OperandBundles and consumed at the next call or invoke instruction.
5839 
5840       if (Record.empty() || Record[0] >= BundleTags.size())
5841         return error("Invalid record");
5842 
5843       std::vector<Value *> Inputs;
5844 
5845       unsigned OpNum = 1;
5846       while (OpNum != Record.size()) {
5847         Value *Op;
5848         unsigned OpTypeID;
5849         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5850           return error("Invalid record");
5851         Inputs.push_back(Op);
5852       }
5853 
5854       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5855       continue;
5856     }
5857 
5858     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5859       unsigned OpNum = 0;
5860       Value *Op = nullptr;
5861       unsigned OpTypeID;
5862       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5863         return error("Invalid record");
5864       if (OpNum != Record.size())
5865         return error("Invalid record");
5866 
5867       I = new FreezeInst(Op);
5868       ResTypeID = OpTypeID;
5869       InstructionList.push_back(I);
5870       break;
5871     }
5872     }
5873 
5874     // Add instruction to end of current BB.  If there is no current BB, reject
5875     // this file.
5876     if (!CurBB) {
5877       I->deleteValue();
5878       return error("Invalid instruction with no BB");
5879     }
5880     if (!OperandBundles.empty()) {
5881       I->deleteValue();
5882       return error("Operand bundles found with no consumer");
5883     }
5884     CurBB->getInstList().push_back(I);
5885 
5886     // If this was a terminator instruction, move to the next block.
5887     if (I->isTerminator()) {
5888       ++CurBBNo;
5889       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5890     }
5891 
5892     // Non-void values get registered in the value table for future use.
5893     if (!I->getType()->isVoidTy()) {
5894       assert(I->getType() == getTypeByID(ResTypeID) &&
5895              "Incorrect result type ID");
5896       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
5897         return Err;
5898     }
5899   }
5900 
5901 OutOfRecordLoop:
5902 
5903   if (!OperandBundles.empty())
5904     return error("Operand bundles found with no consumer");
5905 
5906   // Check the function list for unresolved values.
5907   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5908     if (!A->getParent()) {
5909       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5910       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5911         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5912           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5913           delete A;
5914         }
5915       }
5916       return error("Never resolved value found in function");
5917     }
5918   }
5919 
5920   // Unexpected unresolved metadata about to be dropped.
5921   if (MDLoader->hasFwdRefs())
5922     return error("Invalid function metadata: outgoing forward refs");
5923 
5924   // Trim the value list down to the size it was before we parsed this function.
5925   ValueList.shrinkTo(ModuleValueListSize);
5926   MDLoader->shrinkTo(ModuleMDLoaderSize);
5927   std::vector<BasicBlock*>().swap(FunctionBBs);
5928   return Error::success();
5929 }
5930 
5931 /// Find the function body in the bitcode stream
5932 Error BitcodeReader::findFunctionInStream(
5933     Function *F,
5934     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5935   while (DeferredFunctionInfoIterator->second == 0) {
5936     // This is the fallback handling for the old format bitcode that
5937     // didn't contain the function index in the VST, or when we have
5938     // an anonymous function which would not have a VST entry.
5939     // Assert that we have one of those two cases.
5940     assert(VSTOffset == 0 || !F->hasName());
5941     // Parse the next body in the stream and set its position in the
5942     // DeferredFunctionInfo map.
5943     if (Error Err = rememberAndSkipFunctionBodies())
5944       return Err;
5945   }
5946   return Error::success();
5947 }
5948 
5949 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5950   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5951     return SyncScope::ID(Val);
5952   if (Val >= SSIDs.size())
5953     return SyncScope::System; // Map unknown synchronization scopes to system.
5954   return SSIDs[Val];
5955 }
5956 
5957 //===----------------------------------------------------------------------===//
5958 // GVMaterializer implementation
5959 //===----------------------------------------------------------------------===//
5960 
5961 Error BitcodeReader::materialize(GlobalValue *GV) {
5962   Function *F = dyn_cast<Function>(GV);
5963   // If it's not a function or is already material, ignore the request.
5964   if (!F || !F->isMaterializable())
5965     return Error::success();
5966 
5967   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5968   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5969   // If its position is recorded as 0, its body is somewhere in the stream
5970   // but we haven't seen it yet.
5971   if (DFII->second == 0)
5972     if (Error Err = findFunctionInStream(F, DFII))
5973       return Err;
5974 
5975   // Materialize metadata before parsing any function bodies.
5976   if (Error Err = materializeMetadata())
5977     return Err;
5978 
5979   // Move the bit stream to the saved position of the deferred function body.
5980   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5981     return JumpFailed;
5982   if (Error Err = parseFunctionBody(F))
5983     return Err;
5984   F->setIsMaterializable(false);
5985 
5986   if (StripDebugInfo)
5987     stripDebugInfo(*F);
5988 
5989   // Upgrade any old intrinsic calls in the function.
5990   for (auto &I : UpgradedIntrinsics) {
5991     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5992       if (CallInst *CI = dyn_cast<CallInst>(U))
5993         UpgradeIntrinsicCall(CI, I.second);
5994   }
5995 
5996   // Update calls to the remangled intrinsics
5997   for (auto &I : RemangledIntrinsics)
5998     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5999       // Don't expect any other users than call sites
6000       cast<CallBase>(U)->setCalledFunction(I.second);
6001 
6002   // Finish fn->subprogram upgrade for materialized functions.
6003   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6004     F->setSubprogram(SP);
6005 
6006   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6007   if (!MDLoader->isStrippingTBAA()) {
6008     for (auto &I : instructions(F)) {
6009       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6010       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6011         continue;
6012       MDLoader->setStripTBAA(true);
6013       stripTBAA(F->getParent());
6014     }
6015   }
6016 
6017   for (auto &I : instructions(F)) {
6018     // "Upgrade" older incorrect branch weights by dropping them.
6019     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6020       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6021         MDString *MDS = cast<MDString>(MD->getOperand(0));
6022         StringRef ProfName = MDS->getString();
6023         // Check consistency of !prof branch_weights metadata.
6024         if (!ProfName.equals("branch_weights"))
6025           continue;
6026         unsigned ExpectedNumOperands = 0;
6027         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6028           ExpectedNumOperands = BI->getNumSuccessors();
6029         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6030           ExpectedNumOperands = SI->getNumSuccessors();
6031         else if (isa<CallInst>(&I))
6032           ExpectedNumOperands = 1;
6033         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6034           ExpectedNumOperands = IBI->getNumDestinations();
6035         else if (isa<SelectInst>(&I))
6036           ExpectedNumOperands = 2;
6037         else
6038           continue; // ignore and continue.
6039 
6040         // If branch weight doesn't match, just strip branch weight.
6041         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6042           I.setMetadata(LLVMContext::MD_prof, nullptr);
6043       }
6044     }
6045 
6046     // Remove incompatible attributes on function calls.
6047     if (auto *CI = dyn_cast<CallBase>(&I)) {
6048       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6049           CI->getFunctionType()->getReturnType()));
6050 
6051       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6052         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6053                                         CI->getArgOperand(ArgNo)->getType()));
6054     }
6055   }
6056 
6057   // Look for functions that rely on old function attribute behavior.
6058   UpgradeFunctionAttributes(*F);
6059 
6060   // Bring in any functions that this function forward-referenced via
6061   // blockaddresses.
6062   return materializeForwardReferencedFunctions();
6063 }
6064 
6065 Error BitcodeReader::materializeModule() {
6066   if (Error Err = materializeMetadata())
6067     return Err;
6068 
6069   // Promise to materialize all forward references.
6070   WillMaterializeAllForwardRefs = true;
6071 
6072   // Iterate over the module, deserializing any functions that are still on
6073   // disk.
6074   for (Function &F : *TheModule) {
6075     if (Error Err = materialize(&F))
6076       return Err;
6077   }
6078   // At this point, if there are any function bodies, parse the rest of
6079   // the bits in the module past the last function block we have recorded
6080   // through either lazy scanning or the VST.
6081   if (LastFunctionBlockBit || NextUnreadBit)
6082     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6083                                     ? LastFunctionBlockBit
6084                                     : NextUnreadBit))
6085       return Err;
6086 
6087   // Check that all block address forward references got resolved (as we
6088   // promised above).
6089   if (!BasicBlockFwdRefs.empty())
6090     return error("Never resolved function from blockaddress");
6091 
6092   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6093   // delete the old functions to clean up. We can't do this unless the entire
6094   // module is materialized because there could always be another function body
6095   // with calls to the old function.
6096   for (auto &I : UpgradedIntrinsics) {
6097     for (auto *U : I.first->users()) {
6098       if (CallInst *CI = dyn_cast<CallInst>(U))
6099         UpgradeIntrinsicCall(CI, I.second);
6100     }
6101     if (!I.first->use_empty())
6102       I.first->replaceAllUsesWith(I.second);
6103     I.first->eraseFromParent();
6104   }
6105   UpgradedIntrinsics.clear();
6106   // Do the same for remangled intrinsics
6107   for (auto &I : RemangledIntrinsics) {
6108     I.first->replaceAllUsesWith(I.second);
6109     I.first->eraseFromParent();
6110   }
6111   RemangledIntrinsics.clear();
6112 
6113   UpgradeDebugInfo(*TheModule);
6114 
6115   UpgradeModuleFlags(*TheModule);
6116 
6117   UpgradeARCRuntime(*TheModule);
6118 
6119   return Error::success();
6120 }
6121 
6122 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6123   return IdentifiedStructTypes;
6124 }
6125 
6126 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6127     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6128     StringRef ModulePath, unsigned ModuleId)
6129     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6130       ModulePath(ModulePath), ModuleId(ModuleId) {}
6131 
6132 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6133   TheIndex.addModule(ModulePath, ModuleId);
6134 }
6135 
6136 ModuleSummaryIndex::ModuleInfo *
6137 ModuleSummaryIndexBitcodeReader::getThisModule() {
6138   return TheIndex.getModule(ModulePath);
6139 }
6140 
6141 std::pair<ValueInfo, GlobalValue::GUID>
6142 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6143   auto VGI = ValueIdToValueInfoMap[ValueId];
6144   assert(VGI.first);
6145   return VGI;
6146 }
6147 
6148 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6149     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6150     StringRef SourceFileName) {
6151   std::string GlobalId =
6152       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6153   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6154   auto OriginalNameID = ValueGUID;
6155   if (GlobalValue::isLocalLinkage(Linkage))
6156     OriginalNameID = GlobalValue::getGUID(ValueName);
6157   if (PrintSummaryGUIDs)
6158     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6159            << ValueName << "\n";
6160 
6161   // UseStrtab is false for legacy summary formats and value names are
6162   // created on stack. In that case we save the name in a string saver in
6163   // the index so that the value name can be recorded.
6164   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6165       TheIndex.getOrInsertValueInfo(
6166           ValueGUID,
6167           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6168       OriginalNameID);
6169 }
6170 
6171 // Specialized value symbol table parser used when reading module index
6172 // blocks where we don't actually create global values. The parsed information
6173 // is saved in the bitcode reader for use when later parsing summaries.
6174 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6175     uint64_t Offset,
6176     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6177   // With a strtab the VST is not required to parse the summary.
6178   if (UseStrtab)
6179     return Error::success();
6180 
6181   assert(Offset > 0 && "Expected non-zero VST offset");
6182   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6183   if (!MaybeCurrentBit)
6184     return MaybeCurrentBit.takeError();
6185   uint64_t CurrentBit = MaybeCurrentBit.get();
6186 
6187   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6188     return Err;
6189 
6190   SmallVector<uint64_t, 64> Record;
6191 
6192   // Read all the records for this value table.
6193   SmallString<128> ValueName;
6194 
6195   while (true) {
6196     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6197     if (!MaybeEntry)
6198       return MaybeEntry.takeError();
6199     BitstreamEntry Entry = MaybeEntry.get();
6200 
6201     switch (Entry.Kind) {
6202     case BitstreamEntry::SubBlock: // Handled for us already.
6203     case BitstreamEntry::Error:
6204       return error("Malformed block");
6205     case BitstreamEntry::EndBlock:
6206       // Done parsing VST, jump back to wherever we came from.
6207       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6208         return JumpFailed;
6209       return Error::success();
6210     case BitstreamEntry::Record:
6211       // The interesting case.
6212       break;
6213     }
6214 
6215     // Read a record.
6216     Record.clear();
6217     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6218     if (!MaybeRecord)
6219       return MaybeRecord.takeError();
6220     switch (MaybeRecord.get()) {
6221     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6222       break;
6223     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6224       if (convertToString(Record, 1, ValueName))
6225         return error("Invalid record");
6226       unsigned ValueID = Record[0];
6227       assert(!SourceFileName.empty());
6228       auto VLI = ValueIdToLinkageMap.find(ValueID);
6229       assert(VLI != ValueIdToLinkageMap.end() &&
6230              "No linkage found for VST entry?");
6231       auto Linkage = VLI->second;
6232       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6233       ValueName.clear();
6234       break;
6235     }
6236     case bitc::VST_CODE_FNENTRY: {
6237       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6238       if (convertToString(Record, 2, ValueName))
6239         return error("Invalid record");
6240       unsigned ValueID = Record[0];
6241       assert(!SourceFileName.empty());
6242       auto VLI = ValueIdToLinkageMap.find(ValueID);
6243       assert(VLI != ValueIdToLinkageMap.end() &&
6244              "No linkage found for VST entry?");
6245       auto Linkage = VLI->second;
6246       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6247       ValueName.clear();
6248       break;
6249     }
6250     case bitc::VST_CODE_COMBINED_ENTRY: {
6251       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6252       unsigned ValueID = Record[0];
6253       GlobalValue::GUID RefGUID = Record[1];
6254       // The "original name", which is the second value of the pair will be
6255       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6256       ValueIdToValueInfoMap[ValueID] =
6257           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6258       break;
6259     }
6260     }
6261   }
6262 }
6263 
6264 // Parse just the blocks needed for building the index out of the module.
6265 // At the end of this routine the module Index is populated with a map
6266 // from global value id to GlobalValueSummary objects.
6267 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6268   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6269     return Err;
6270 
6271   SmallVector<uint64_t, 64> Record;
6272   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6273   unsigned ValueId = 0;
6274 
6275   // Read the index for this module.
6276   while (true) {
6277     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6278     if (!MaybeEntry)
6279       return MaybeEntry.takeError();
6280     llvm::BitstreamEntry Entry = MaybeEntry.get();
6281 
6282     switch (Entry.Kind) {
6283     case BitstreamEntry::Error:
6284       return error("Malformed block");
6285     case BitstreamEntry::EndBlock:
6286       return Error::success();
6287 
6288     case BitstreamEntry::SubBlock:
6289       switch (Entry.ID) {
6290       default: // Skip unknown content.
6291         if (Error Err = Stream.SkipBlock())
6292           return Err;
6293         break;
6294       case bitc::BLOCKINFO_BLOCK_ID:
6295         // Need to parse these to get abbrev ids (e.g. for VST)
6296         if (Error Err = readBlockInfo())
6297           return Err;
6298         break;
6299       case bitc::VALUE_SYMTAB_BLOCK_ID:
6300         // Should have been parsed earlier via VSTOffset, unless there
6301         // is no summary section.
6302         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6303                 !SeenGlobalValSummary) &&
6304                "Expected early VST parse via VSTOffset record");
6305         if (Error Err = Stream.SkipBlock())
6306           return Err;
6307         break;
6308       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6309       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6310         // Add the module if it is a per-module index (has a source file name).
6311         if (!SourceFileName.empty())
6312           addThisModule();
6313         assert(!SeenValueSymbolTable &&
6314                "Already read VST when parsing summary block?");
6315         // We might not have a VST if there were no values in the
6316         // summary. An empty summary block generated when we are
6317         // performing ThinLTO compiles so we don't later invoke
6318         // the regular LTO process on them.
6319         if (VSTOffset > 0) {
6320           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6321             return Err;
6322           SeenValueSymbolTable = true;
6323         }
6324         SeenGlobalValSummary = true;
6325         if (Error Err = parseEntireSummary(Entry.ID))
6326           return Err;
6327         break;
6328       case bitc::MODULE_STRTAB_BLOCK_ID:
6329         if (Error Err = parseModuleStringTable())
6330           return Err;
6331         break;
6332       }
6333       continue;
6334 
6335     case BitstreamEntry::Record: {
6336         Record.clear();
6337         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6338         if (!MaybeBitCode)
6339           return MaybeBitCode.takeError();
6340         switch (MaybeBitCode.get()) {
6341         default:
6342           break; // Default behavior, ignore unknown content.
6343         case bitc::MODULE_CODE_VERSION: {
6344           if (Error Err = parseVersionRecord(Record).takeError())
6345             return Err;
6346           break;
6347         }
6348         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6349         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6350           SmallString<128> ValueName;
6351           if (convertToString(Record, 0, ValueName))
6352             return error("Invalid record");
6353           SourceFileName = ValueName.c_str();
6354           break;
6355         }
6356         /// MODULE_CODE_HASH: [5*i32]
6357         case bitc::MODULE_CODE_HASH: {
6358           if (Record.size() != 5)
6359             return error("Invalid hash length " + Twine(Record.size()).str());
6360           auto &Hash = getThisModule()->second.second;
6361           int Pos = 0;
6362           for (auto &Val : Record) {
6363             assert(!(Val >> 32) && "Unexpected high bits set");
6364             Hash[Pos++] = Val;
6365           }
6366           break;
6367         }
6368         /// MODULE_CODE_VSTOFFSET: [offset]
6369         case bitc::MODULE_CODE_VSTOFFSET:
6370           if (Record.empty())
6371             return error("Invalid record");
6372           // Note that we subtract 1 here because the offset is relative to one
6373           // word before the start of the identification or module block, which
6374           // was historically always the start of the regular bitcode header.
6375           VSTOffset = Record[0] - 1;
6376           break;
6377         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6378         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6379         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6380         // v2: [strtab offset, strtab size, v1]
6381         case bitc::MODULE_CODE_GLOBALVAR:
6382         case bitc::MODULE_CODE_FUNCTION:
6383         case bitc::MODULE_CODE_ALIAS: {
6384           StringRef Name;
6385           ArrayRef<uint64_t> GVRecord;
6386           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6387           if (GVRecord.size() <= 3)
6388             return error("Invalid record");
6389           uint64_t RawLinkage = GVRecord[3];
6390           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6391           if (!UseStrtab) {
6392             ValueIdToLinkageMap[ValueId++] = Linkage;
6393             break;
6394           }
6395 
6396           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6397           break;
6398         }
6399         }
6400       }
6401       continue;
6402     }
6403   }
6404 }
6405 
6406 std::vector<ValueInfo>
6407 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6408   std::vector<ValueInfo> Ret;
6409   Ret.reserve(Record.size());
6410   for (uint64_t RefValueId : Record)
6411     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6412   return Ret;
6413 }
6414 
6415 std::vector<FunctionSummary::EdgeTy>
6416 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6417                                               bool IsOldProfileFormat,
6418                                               bool HasProfile, bool HasRelBF) {
6419   std::vector<FunctionSummary::EdgeTy> Ret;
6420   Ret.reserve(Record.size());
6421   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6422     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6423     uint64_t RelBF = 0;
6424     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6425     if (IsOldProfileFormat) {
6426       I += 1; // Skip old callsitecount field
6427       if (HasProfile)
6428         I += 1; // Skip old profilecount field
6429     } else if (HasProfile)
6430       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6431     else if (HasRelBF)
6432       RelBF = Record[++I];
6433     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6434   }
6435   return Ret;
6436 }
6437 
6438 static void
6439 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6440                                        WholeProgramDevirtResolution &Wpd) {
6441   uint64_t ArgNum = Record[Slot++];
6442   WholeProgramDevirtResolution::ByArg &B =
6443       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6444   Slot += ArgNum;
6445 
6446   B.TheKind =
6447       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6448   B.Info = Record[Slot++];
6449   B.Byte = Record[Slot++];
6450   B.Bit = Record[Slot++];
6451 }
6452 
6453 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6454                                               StringRef Strtab, size_t &Slot,
6455                                               TypeIdSummary &TypeId) {
6456   uint64_t Id = Record[Slot++];
6457   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6458 
6459   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6460   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6461                         static_cast<size_t>(Record[Slot + 1])};
6462   Slot += 2;
6463 
6464   uint64_t ResByArgNum = Record[Slot++];
6465   for (uint64_t I = 0; I != ResByArgNum; ++I)
6466     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6467 }
6468 
6469 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6470                                      StringRef Strtab,
6471                                      ModuleSummaryIndex &TheIndex) {
6472   size_t Slot = 0;
6473   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6474       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6475   Slot += 2;
6476 
6477   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6478   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6479   TypeId.TTRes.AlignLog2 = Record[Slot++];
6480   TypeId.TTRes.SizeM1 = Record[Slot++];
6481   TypeId.TTRes.BitMask = Record[Slot++];
6482   TypeId.TTRes.InlineBits = Record[Slot++];
6483 
6484   while (Slot < Record.size())
6485     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6486 }
6487 
6488 std::vector<FunctionSummary::ParamAccess>
6489 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6490   auto ReadRange = [&]() {
6491     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6492                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6493     Record = Record.drop_front();
6494     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6495                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6496     Record = Record.drop_front();
6497     ConstantRange Range{Lower, Upper};
6498     assert(!Range.isFullSet());
6499     assert(!Range.isUpperSignWrapped());
6500     return Range;
6501   };
6502 
6503   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6504   while (!Record.empty()) {
6505     PendingParamAccesses.emplace_back();
6506     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6507     ParamAccess.ParamNo = Record.front();
6508     Record = Record.drop_front();
6509     ParamAccess.Use = ReadRange();
6510     ParamAccess.Calls.resize(Record.front());
6511     Record = Record.drop_front();
6512     for (auto &Call : ParamAccess.Calls) {
6513       Call.ParamNo = Record.front();
6514       Record = Record.drop_front();
6515       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6516       Record = Record.drop_front();
6517       Call.Offsets = ReadRange();
6518     }
6519   }
6520   return PendingParamAccesses;
6521 }
6522 
6523 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6524     ArrayRef<uint64_t> Record, size_t &Slot,
6525     TypeIdCompatibleVtableInfo &TypeId) {
6526   uint64_t Offset = Record[Slot++];
6527   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6528   TypeId.push_back({Offset, Callee});
6529 }
6530 
6531 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6532     ArrayRef<uint64_t> Record) {
6533   size_t Slot = 0;
6534   TypeIdCompatibleVtableInfo &TypeId =
6535       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6536           {Strtab.data() + Record[Slot],
6537            static_cast<size_t>(Record[Slot + 1])});
6538   Slot += 2;
6539 
6540   while (Slot < Record.size())
6541     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6542 }
6543 
6544 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6545                            unsigned WOCnt) {
6546   // Readonly and writeonly refs are in the end of the refs list.
6547   assert(ROCnt + WOCnt <= Refs.size());
6548   unsigned FirstWORef = Refs.size() - WOCnt;
6549   unsigned RefNo = FirstWORef - ROCnt;
6550   for (; RefNo < FirstWORef; ++RefNo)
6551     Refs[RefNo].setReadOnly();
6552   for (; RefNo < Refs.size(); ++RefNo)
6553     Refs[RefNo].setWriteOnly();
6554 }
6555 
6556 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6557 // objects in the index.
6558 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6559   if (Error Err = Stream.EnterSubBlock(ID))
6560     return Err;
6561   SmallVector<uint64_t, 64> Record;
6562 
6563   // Parse version
6564   {
6565     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6566     if (!MaybeEntry)
6567       return MaybeEntry.takeError();
6568     BitstreamEntry Entry = MaybeEntry.get();
6569 
6570     if (Entry.Kind != BitstreamEntry::Record)
6571       return error("Invalid Summary Block: record for version expected");
6572     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6573     if (!MaybeRecord)
6574       return MaybeRecord.takeError();
6575     if (MaybeRecord.get() != bitc::FS_VERSION)
6576       return error("Invalid Summary Block: version expected");
6577   }
6578   const uint64_t Version = Record[0];
6579   const bool IsOldProfileFormat = Version == 1;
6580   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6581     return error("Invalid summary version " + Twine(Version) +
6582                  ". Version should be in the range [1-" +
6583                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6584                  "].");
6585   Record.clear();
6586 
6587   // Keep around the last seen summary to be used when we see an optional
6588   // "OriginalName" attachement.
6589   GlobalValueSummary *LastSeenSummary = nullptr;
6590   GlobalValue::GUID LastSeenGUID = 0;
6591 
6592   // We can expect to see any number of type ID information records before
6593   // each function summary records; these variables store the information
6594   // collected so far so that it can be used to create the summary object.
6595   std::vector<GlobalValue::GUID> PendingTypeTests;
6596   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6597       PendingTypeCheckedLoadVCalls;
6598   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6599       PendingTypeCheckedLoadConstVCalls;
6600   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6601 
6602   while (true) {
6603     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6604     if (!MaybeEntry)
6605       return MaybeEntry.takeError();
6606     BitstreamEntry Entry = MaybeEntry.get();
6607 
6608     switch (Entry.Kind) {
6609     case BitstreamEntry::SubBlock: // Handled for us already.
6610     case BitstreamEntry::Error:
6611       return error("Malformed block");
6612     case BitstreamEntry::EndBlock:
6613       return Error::success();
6614     case BitstreamEntry::Record:
6615       // The interesting case.
6616       break;
6617     }
6618 
6619     // Read a record. The record format depends on whether this
6620     // is a per-module index or a combined index file. In the per-module
6621     // case the records contain the associated value's ID for correlation
6622     // with VST entries. In the combined index the correlation is done
6623     // via the bitcode offset of the summary records (which were saved
6624     // in the combined index VST entries). The records also contain
6625     // information used for ThinLTO renaming and importing.
6626     Record.clear();
6627     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6628     if (!MaybeBitCode)
6629       return MaybeBitCode.takeError();
6630     switch (unsigned BitCode = MaybeBitCode.get()) {
6631     default: // Default behavior: ignore.
6632       break;
6633     case bitc::FS_FLAGS: {  // [flags]
6634       TheIndex.setFlags(Record[0]);
6635       break;
6636     }
6637     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6638       uint64_t ValueID = Record[0];
6639       GlobalValue::GUID RefGUID = Record[1];
6640       ValueIdToValueInfoMap[ValueID] =
6641           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6642       break;
6643     }
6644     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6645     //                numrefs x valueid, n x (valueid)]
6646     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6647     //                        numrefs x valueid,
6648     //                        n x (valueid, hotness)]
6649     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6650     //                      numrefs x valueid,
6651     //                      n x (valueid, relblockfreq)]
6652     case bitc::FS_PERMODULE:
6653     case bitc::FS_PERMODULE_RELBF:
6654     case bitc::FS_PERMODULE_PROFILE: {
6655       unsigned ValueID = Record[0];
6656       uint64_t RawFlags = Record[1];
6657       unsigned InstCount = Record[2];
6658       uint64_t RawFunFlags = 0;
6659       unsigned NumRefs = Record[3];
6660       unsigned NumRORefs = 0, NumWORefs = 0;
6661       int RefListStartIndex = 4;
6662       if (Version >= 4) {
6663         RawFunFlags = Record[3];
6664         NumRefs = Record[4];
6665         RefListStartIndex = 5;
6666         if (Version >= 5) {
6667           NumRORefs = Record[5];
6668           RefListStartIndex = 6;
6669           if (Version >= 7) {
6670             NumWORefs = Record[6];
6671             RefListStartIndex = 7;
6672           }
6673         }
6674       }
6675 
6676       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6677       // The module path string ref set in the summary must be owned by the
6678       // index's module string table. Since we don't have a module path
6679       // string table section in the per-module index, we create a single
6680       // module path string table entry with an empty (0) ID to take
6681       // ownership.
6682       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6683       assert(Record.size() >= RefListStartIndex + NumRefs &&
6684              "Record size inconsistent with number of references");
6685       std::vector<ValueInfo> Refs = makeRefList(
6686           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6687       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6688       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6689       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6690           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6691           IsOldProfileFormat, HasProfile, HasRelBF);
6692       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6693       auto FS = std::make_unique<FunctionSummary>(
6694           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6695           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6696           std::move(PendingTypeTestAssumeVCalls),
6697           std::move(PendingTypeCheckedLoadVCalls),
6698           std::move(PendingTypeTestAssumeConstVCalls),
6699           std::move(PendingTypeCheckedLoadConstVCalls),
6700           std::move(PendingParamAccesses));
6701       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6702       FS->setModulePath(getThisModule()->first());
6703       FS->setOriginalName(VIAndOriginalGUID.second);
6704       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6705       break;
6706     }
6707     // FS_ALIAS: [valueid, flags, valueid]
6708     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6709     // they expect all aliasee summaries to be available.
6710     case bitc::FS_ALIAS: {
6711       unsigned ValueID = Record[0];
6712       uint64_t RawFlags = Record[1];
6713       unsigned AliaseeID = Record[2];
6714       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6715       auto AS = std::make_unique<AliasSummary>(Flags);
6716       // The module path string ref set in the summary must be owned by the
6717       // index's module string table. Since we don't have a module path
6718       // string table section in the per-module index, we create a single
6719       // module path string table entry with an empty (0) ID to take
6720       // ownership.
6721       AS->setModulePath(getThisModule()->first());
6722 
6723       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6724       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6725       if (!AliaseeInModule)
6726         return error("Alias expects aliasee summary to be parsed");
6727       AS->setAliasee(AliaseeVI, AliaseeInModule);
6728 
6729       auto GUID = getValueInfoFromValueId(ValueID);
6730       AS->setOriginalName(GUID.second);
6731       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6732       break;
6733     }
6734     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6735     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6736       unsigned ValueID = Record[0];
6737       uint64_t RawFlags = Record[1];
6738       unsigned RefArrayStart = 2;
6739       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6740                                       /* WriteOnly */ false,
6741                                       /* Constant */ false,
6742                                       GlobalObject::VCallVisibilityPublic);
6743       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6744       if (Version >= 5) {
6745         GVF = getDecodedGVarFlags(Record[2]);
6746         RefArrayStart = 3;
6747       }
6748       std::vector<ValueInfo> Refs =
6749           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6750       auto FS =
6751           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6752       FS->setModulePath(getThisModule()->first());
6753       auto GUID = getValueInfoFromValueId(ValueID);
6754       FS->setOriginalName(GUID.second);
6755       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6756       break;
6757     }
6758     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6759     //                        numrefs, numrefs x valueid,
6760     //                        n x (valueid, offset)]
6761     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6762       unsigned ValueID = Record[0];
6763       uint64_t RawFlags = Record[1];
6764       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6765       unsigned NumRefs = Record[3];
6766       unsigned RefListStartIndex = 4;
6767       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6768       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6769       std::vector<ValueInfo> Refs = makeRefList(
6770           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6771       VTableFuncList VTableFuncs;
6772       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6773         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6774         uint64_t Offset = Record[++I];
6775         VTableFuncs.push_back({Callee, Offset});
6776       }
6777       auto VS =
6778           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6779       VS->setModulePath(getThisModule()->first());
6780       VS->setVTableFuncs(VTableFuncs);
6781       auto GUID = getValueInfoFromValueId(ValueID);
6782       VS->setOriginalName(GUID.second);
6783       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6784       break;
6785     }
6786     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6787     //               numrefs x valueid, n x (valueid)]
6788     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6789     //                       numrefs x valueid, n x (valueid, hotness)]
6790     case bitc::FS_COMBINED:
6791     case bitc::FS_COMBINED_PROFILE: {
6792       unsigned ValueID = Record[0];
6793       uint64_t ModuleId = Record[1];
6794       uint64_t RawFlags = Record[2];
6795       unsigned InstCount = Record[3];
6796       uint64_t RawFunFlags = 0;
6797       uint64_t EntryCount = 0;
6798       unsigned NumRefs = Record[4];
6799       unsigned NumRORefs = 0, NumWORefs = 0;
6800       int RefListStartIndex = 5;
6801 
6802       if (Version >= 4) {
6803         RawFunFlags = Record[4];
6804         RefListStartIndex = 6;
6805         size_t NumRefsIndex = 5;
6806         if (Version >= 5) {
6807           unsigned NumRORefsOffset = 1;
6808           RefListStartIndex = 7;
6809           if (Version >= 6) {
6810             NumRefsIndex = 6;
6811             EntryCount = Record[5];
6812             RefListStartIndex = 8;
6813             if (Version >= 7) {
6814               RefListStartIndex = 9;
6815               NumWORefs = Record[8];
6816               NumRORefsOffset = 2;
6817             }
6818           }
6819           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6820         }
6821         NumRefs = Record[NumRefsIndex];
6822       }
6823 
6824       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6825       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6826       assert(Record.size() >= RefListStartIndex + NumRefs &&
6827              "Record size inconsistent with number of references");
6828       std::vector<ValueInfo> Refs = makeRefList(
6829           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6830       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6831       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6832           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6833           IsOldProfileFormat, HasProfile, false);
6834       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6835       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6836       auto FS = std::make_unique<FunctionSummary>(
6837           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6838           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6839           std::move(PendingTypeTestAssumeVCalls),
6840           std::move(PendingTypeCheckedLoadVCalls),
6841           std::move(PendingTypeTestAssumeConstVCalls),
6842           std::move(PendingTypeCheckedLoadConstVCalls),
6843           std::move(PendingParamAccesses));
6844       LastSeenSummary = FS.get();
6845       LastSeenGUID = VI.getGUID();
6846       FS->setModulePath(ModuleIdMap[ModuleId]);
6847       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6848       break;
6849     }
6850     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6851     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6852     // they expect all aliasee summaries to be available.
6853     case bitc::FS_COMBINED_ALIAS: {
6854       unsigned ValueID = Record[0];
6855       uint64_t ModuleId = Record[1];
6856       uint64_t RawFlags = Record[2];
6857       unsigned AliaseeValueId = Record[3];
6858       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6859       auto AS = std::make_unique<AliasSummary>(Flags);
6860       LastSeenSummary = AS.get();
6861       AS->setModulePath(ModuleIdMap[ModuleId]);
6862 
6863       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6864       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6865       AS->setAliasee(AliaseeVI, AliaseeInModule);
6866 
6867       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6868       LastSeenGUID = VI.getGUID();
6869       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6870       break;
6871     }
6872     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6873     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6874       unsigned ValueID = Record[0];
6875       uint64_t ModuleId = Record[1];
6876       uint64_t RawFlags = Record[2];
6877       unsigned RefArrayStart = 3;
6878       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6879                                       /* WriteOnly */ false,
6880                                       /* Constant */ false,
6881                                       GlobalObject::VCallVisibilityPublic);
6882       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6883       if (Version >= 5) {
6884         GVF = getDecodedGVarFlags(Record[3]);
6885         RefArrayStart = 4;
6886       }
6887       std::vector<ValueInfo> Refs =
6888           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6889       auto FS =
6890           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6891       LastSeenSummary = FS.get();
6892       FS->setModulePath(ModuleIdMap[ModuleId]);
6893       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6894       LastSeenGUID = VI.getGUID();
6895       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6896       break;
6897     }
6898     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6899     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6900       uint64_t OriginalName = Record[0];
6901       if (!LastSeenSummary)
6902         return error("Name attachment that does not follow a combined record");
6903       LastSeenSummary->setOriginalName(OriginalName);
6904       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6905       // Reset the LastSeenSummary
6906       LastSeenSummary = nullptr;
6907       LastSeenGUID = 0;
6908       break;
6909     }
6910     case bitc::FS_TYPE_TESTS:
6911       assert(PendingTypeTests.empty());
6912       llvm::append_range(PendingTypeTests, Record);
6913       break;
6914 
6915     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6916       assert(PendingTypeTestAssumeVCalls.empty());
6917       for (unsigned I = 0; I != Record.size(); I += 2)
6918         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6919       break;
6920 
6921     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6922       assert(PendingTypeCheckedLoadVCalls.empty());
6923       for (unsigned I = 0; I != Record.size(); I += 2)
6924         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6925       break;
6926 
6927     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6928       PendingTypeTestAssumeConstVCalls.push_back(
6929           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6930       break;
6931 
6932     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6933       PendingTypeCheckedLoadConstVCalls.push_back(
6934           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6935       break;
6936 
6937     case bitc::FS_CFI_FUNCTION_DEFS: {
6938       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6939       for (unsigned I = 0; I != Record.size(); I += 2)
6940         CfiFunctionDefs.insert(
6941             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6942       break;
6943     }
6944 
6945     case bitc::FS_CFI_FUNCTION_DECLS: {
6946       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6947       for (unsigned I = 0; I != Record.size(); I += 2)
6948         CfiFunctionDecls.insert(
6949             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6950       break;
6951     }
6952 
6953     case bitc::FS_TYPE_ID:
6954       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6955       break;
6956 
6957     case bitc::FS_TYPE_ID_METADATA:
6958       parseTypeIdCompatibleVtableSummaryRecord(Record);
6959       break;
6960 
6961     case bitc::FS_BLOCK_COUNT:
6962       TheIndex.addBlockCount(Record[0]);
6963       break;
6964 
6965     case bitc::FS_PARAM_ACCESS: {
6966       PendingParamAccesses = parseParamAccesses(Record);
6967       break;
6968     }
6969     }
6970   }
6971   llvm_unreachable("Exit infinite loop");
6972 }
6973 
6974 // Parse the  module string table block into the Index.
6975 // This populates the ModulePathStringTable map in the index.
6976 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6977   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6978     return Err;
6979 
6980   SmallVector<uint64_t, 64> Record;
6981 
6982   SmallString<128> ModulePath;
6983   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6984 
6985   while (true) {
6986     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6987     if (!MaybeEntry)
6988       return MaybeEntry.takeError();
6989     BitstreamEntry Entry = MaybeEntry.get();
6990 
6991     switch (Entry.Kind) {
6992     case BitstreamEntry::SubBlock: // Handled for us already.
6993     case BitstreamEntry::Error:
6994       return error("Malformed block");
6995     case BitstreamEntry::EndBlock:
6996       return Error::success();
6997     case BitstreamEntry::Record:
6998       // The interesting case.
6999       break;
7000     }
7001 
7002     Record.clear();
7003     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7004     if (!MaybeRecord)
7005       return MaybeRecord.takeError();
7006     switch (MaybeRecord.get()) {
7007     default: // Default behavior: ignore.
7008       break;
7009     case bitc::MST_CODE_ENTRY: {
7010       // MST_ENTRY: [modid, namechar x N]
7011       uint64_t ModuleId = Record[0];
7012 
7013       if (convertToString(Record, 1, ModulePath))
7014         return error("Invalid record");
7015 
7016       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7017       ModuleIdMap[ModuleId] = LastSeenModule->first();
7018 
7019       ModulePath.clear();
7020       break;
7021     }
7022     /// MST_CODE_HASH: [5*i32]
7023     case bitc::MST_CODE_HASH: {
7024       if (Record.size() != 5)
7025         return error("Invalid hash length " + Twine(Record.size()).str());
7026       if (!LastSeenModule)
7027         return error("Invalid hash that does not follow a module path");
7028       int Pos = 0;
7029       for (auto &Val : Record) {
7030         assert(!(Val >> 32) && "Unexpected high bits set");
7031         LastSeenModule->second.second[Pos++] = Val;
7032       }
7033       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7034       LastSeenModule = nullptr;
7035       break;
7036     }
7037     }
7038   }
7039   llvm_unreachable("Exit infinite loop");
7040 }
7041 
7042 namespace {
7043 
7044 // FIXME: This class is only here to support the transition to llvm::Error. It
7045 // will be removed once this transition is complete. Clients should prefer to
7046 // deal with the Error value directly, rather than converting to error_code.
7047 class BitcodeErrorCategoryType : public std::error_category {
7048   const char *name() const noexcept override {
7049     return "llvm.bitcode";
7050   }
7051 
7052   std::string message(int IE) const override {
7053     BitcodeError E = static_cast<BitcodeError>(IE);
7054     switch (E) {
7055     case BitcodeError::CorruptedBitcode:
7056       return "Corrupted bitcode";
7057     }
7058     llvm_unreachable("Unknown error type!");
7059   }
7060 };
7061 
7062 } // end anonymous namespace
7063 
7064 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7065 
7066 const std::error_category &llvm::BitcodeErrorCategory() {
7067   return *ErrorCategory;
7068 }
7069 
7070 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7071                                             unsigned Block, unsigned RecordID) {
7072   if (Error Err = Stream.EnterSubBlock(Block))
7073     return std::move(Err);
7074 
7075   StringRef Strtab;
7076   while (true) {
7077     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7078     if (!MaybeEntry)
7079       return MaybeEntry.takeError();
7080     llvm::BitstreamEntry Entry = MaybeEntry.get();
7081 
7082     switch (Entry.Kind) {
7083     case BitstreamEntry::EndBlock:
7084       return Strtab;
7085 
7086     case BitstreamEntry::Error:
7087       return error("Malformed block");
7088 
7089     case BitstreamEntry::SubBlock:
7090       if (Error Err = Stream.SkipBlock())
7091         return std::move(Err);
7092       break;
7093 
7094     case BitstreamEntry::Record:
7095       StringRef Blob;
7096       SmallVector<uint64_t, 1> Record;
7097       Expected<unsigned> MaybeRecord =
7098           Stream.readRecord(Entry.ID, Record, &Blob);
7099       if (!MaybeRecord)
7100         return MaybeRecord.takeError();
7101       if (MaybeRecord.get() == RecordID)
7102         Strtab = Blob;
7103       break;
7104     }
7105   }
7106 }
7107 
7108 //===----------------------------------------------------------------------===//
7109 // External interface
7110 //===----------------------------------------------------------------------===//
7111 
7112 Expected<std::vector<BitcodeModule>>
7113 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7114   auto FOrErr = getBitcodeFileContents(Buffer);
7115   if (!FOrErr)
7116     return FOrErr.takeError();
7117   return std::move(FOrErr->Mods);
7118 }
7119 
7120 Expected<BitcodeFileContents>
7121 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7122   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7123   if (!StreamOrErr)
7124     return StreamOrErr.takeError();
7125   BitstreamCursor &Stream = *StreamOrErr;
7126 
7127   BitcodeFileContents F;
7128   while (true) {
7129     uint64_t BCBegin = Stream.getCurrentByteNo();
7130 
7131     // We may be consuming bitcode from a client that leaves garbage at the end
7132     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7133     // the end that there cannot possibly be another module, stop looking.
7134     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7135       return F;
7136 
7137     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7138     if (!MaybeEntry)
7139       return MaybeEntry.takeError();
7140     llvm::BitstreamEntry Entry = MaybeEntry.get();
7141 
7142     switch (Entry.Kind) {
7143     case BitstreamEntry::EndBlock:
7144     case BitstreamEntry::Error:
7145       return error("Malformed block");
7146 
7147     case BitstreamEntry::SubBlock: {
7148       uint64_t IdentificationBit = -1ull;
7149       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7150         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7151         if (Error Err = Stream.SkipBlock())
7152           return std::move(Err);
7153 
7154         {
7155           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7156           if (!MaybeEntry)
7157             return MaybeEntry.takeError();
7158           Entry = MaybeEntry.get();
7159         }
7160 
7161         if (Entry.Kind != BitstreamEntry::SubBlock ||
7162             Entry.ID != bitc::MODULE_BLOCK_ID)
7163           return error("Malformed block");
7164       }
7165 
7166       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7167         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7168         if (Error Err = Stream.SkipBlock())
7169           return std::move(Err);
7170 
7171         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7172                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7173                           Buffer.getBufferIdentifier(), IdentificationBit,
7174                           ModuleBit});
7175         continue;
7176       }
7177 
7178       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7179         Expected<StringRef> Strtab =
7180             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7181         if (!Strtab)
7182           return Strtab.takeError();
7183         // This string table is used by every preceding bitcode module that does
7184         // not have its own string table. A bitcode file may have multiple
7185         // string tables if it was created by binary concatenation, for example
7186         // with "llvm-cat -b".
7187         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7188           if (!I.Strtab.empty())
7189             break;
7190           I.Strtab = *Strtab;
7191         }
7192         // Similarly, the string table is used by every preceding symbol table;
7193         // normally there will be just one unless the bitcode file was created
7194         // by binary concatenation.
7195         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7196           F.StrtabForSymtab = *Strtab;
7197         continue;
7198       }
7199 
7200       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7201         Expected<StringRef> SymtabOrErr =
7202             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7203         if (!SymtabOrErr)
7204           return SymtabOrErr.takeError();
7205 
7206         // We can expect the bitcode file to have multiple symbol tables if it
7207         // was created by binary concatenation. In that case we silently
7208         // ignore any subsequent symbol tables, which is fine because this is a
7209         // low level function. The client is expected to notice that the number
7210         // of modules in the symbol table does not match the number of modules
7211         // in the input file and regenerate the symbol table.
7212         if (F.Symtab.empty())
7213           F.Symtab = *SymtabOrErr;
7214         continue;
7215       }
7216 
7217       if (Error Err = Stream.SkipBlock())
7218         return std::move(Err);
7219       continue;
7220     }
7221     case BitstreamEntry::Record:
7222       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7223         return std::move(E);
7224       continue;
7225     }
7226   }
7227 }
7228 
7229 /// Get a lazy one-at-time loading module from bitcode.
7230 ///
7231 /// This isn't always used in a lazy context.  In particular, it's also used by
7232 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7233 /// in forward-referenced functions from block address references.
7234 ///
7235 /// \param[in] MaterializeAll Set to \c true if we should materialize
7236 /// everything.
7237 Expected<std::unique_ptr<Module>>
7238 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7239                              bool ShouldLazyLoadMetadata, bool IsImporting,
7240                              DataLayoutCallbackTy DataLayoutCallback) {
7241   BitstreamCursor Stream(Buffer);
7242 
7243   std::string ProducerIdentification;
7244   if (IdentificationBit != -1ull) {
7245     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7246       return std::move(JumpFailed);
7247     if (Error E =
7248             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7249       return std::move(E);
7250   }
7251 
7252   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7253     return std::move(JumpFailed);
7254   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7255                               Context);
7256 
7257   std::unique_ptr<Module> M =
7258       std::make_unique<Module>(ModuleIdentifier, Context);
7259   M->setMaterializer(R);
7260 
7261   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7262   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7263                                       IsImporting, DataLayoutCallback))
7264     return std::move(Err);
7265 
7266   if (MaterializeAll) {
7267     // Read in the entire module, and destroy the BitcodeReader.
7268     if (Error Err = M->materializeAll())
7269       return std::move(Err);
7270   } else {
7271     // Resolve forward references from blockaddresses.
7272     if (Error Err = R->materializeForwardReferencedFunctions())
7273       return std::move(Err);
7274   }
7275   return std::move(M);
7276 }
7277 
7278 Expected<std::unique_ptr<Module>>
7279 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7280                              bool IsImporting) {
7281   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7282                        [](StringRef) { return None; });
7283 }
7284 
7285 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7286 // We don't use ModuleIdentifier here because the client may need to control the
7287 // module path used in the combined summary (e.g. when reading summaries for
7288 // regular LTO modules).
7289 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7290                                  StringRef ModulePath, uint64_t ModuleId) {
7291   BitstreamCursor Stream(Buffer);
7292   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7293     return JumpFailed;
7294 
7295   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7296                                     ModulePath, ModuleId);
7297   return R.parseModule();
7298 }
7299 
7300 // Parse the specified bitcode buffer, returning the function info index.
7301 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7302   BitstreamCursor Stream(Buffer);
7303   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7304     return std::move(JumpFailed);
7305 
7306   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7307   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7308                                     ModuleIdentifier, 0);
7309 
7310   if (Error Err = R.parseModule())
7311     return std::move(Err);
7312 
7313   return std::move(Index);
7314 }
7315 
7316 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7317                                                 unsigned ID) {
7318   if (Error Err = Stream.EnterSubBlock(ID))
7319     return std::move(Err);
7320   SmallVector<uint64_t, 64> Record;
7321 
7322   while (true) {
7323     BitstreamEntry Entry;
7324     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7325       return std::move(E);
7326 
7327     switch (Entry.Kind) {
7328     case BitstreamEntry::SubBlock: // Handled for us already.
7329     case BitstreamEntry::Error:
7330       return error("Malformed block");
7331     case BitstreamEntry::EndBlock:
7332       // If no flags record found, conservatively return true to mimic
7333       // behavior before this flag was added.
7334       return true;
7335     case BitstreamEntry::Record:
7336       // The interesting case.
7337       break;
7338     }
7339 
7340     // Look for the FS_FLAGS record.
7341     Record.clear();
7342     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7343     if (!MaybeBitCode)
7344       return MaybeBitCode.takeError();
7345     switch (MaybeBitCode.get()) {
7346     default: // Default behavior: ignore.
7347       break;
7348     case bitc::FS_FLAGS: { // [flags]
7349       uint64_t Flags = Record[0];
7350       // Scan flags.
7351       assert(Flags <= 0x7f && "Unexpected bits in flag");
7352 
7353       return Flags & 0x8;
7354     }
7355     }
7356   }
7357   llvm_unreachable("Exit infinite loop");
7358 }
7359 
7360 // Check if the given bitcode buffer contains a global value summary block.
7361 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7362   BitstreamCursor Stream(Buffer);
7363   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7364     return std::move(JumpFailed);
7365 
7366   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7367     return std::move(Err);
7368 
7369   while (true) {
7370     llvm::BitstreamEntry Entry;
7371     if (Error E = Stream.advance().moveInto(Entry))
7372       return std::move(E);
7373 
7374     switch (Entry.Kind) {
7375     case BitstreamEntry::Error:
7376       return error("Malformed block");
7377     case BitstreamEntry::EndBlock:
7378       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7379                             /*EnableSplitLTOUnit=*/false};
7380 
7381     case BitstreamEntry::SubBlock:
7382       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7383         Expected<bool> EnableSplitLTOUnit =
7384             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7385         if (!EnableSplitLTOUnit)
7386           return EnableSplitLTOUnit.takeError();
7387         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7388                               *EnableSplitLTOUnit};
7389       }
7390 
7391       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7392         Expected<bool> EnableSplitLTOUnit =
7393             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7394         if (!EnableSplitLTOUnit)
7395           return EnableSplitLTOUnit.takeError();
7396         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7397                               *EnableSplitLTOUnit};
7398       }
7399 
7400       // Ignore other sub-blocks.
7401       if (Error Err = Stream.SkipBlock())
7402         return std::move(Err);
7403       continue;
7404 
7405     case BitstreamEntry::Record:
7406       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7407         continue;
7408       else
7409         return StreamFailed.takeError();
7410     }
7411   }
7412 }
7413 
7414 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7415   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7416   if (!MsOrErr)
7417     return MsOrErr.takeError();
7418 
7419   if (MsOrErr->size() != 1)
7420     return error("Expected a single module");
7421 
7422   return (*MsOrErr)[0];
7423 }
7424 
7425 Expected<std::unique_ptr<Module>>
7426 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7427                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7428   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7429   if (!BM)
7430     return BM.takeError();
7431 
7432   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7433 }
7434 
7435 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7436     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7437     bool ShouldLazyLoadMetadata, bool IsImporting) {
7438   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7439                                      IsImporting);
7440   if (MOrErr)
7441     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7442   return MOrErr;
7443 }
7444 
7445 Expected<std::unique_ptr<Module>>
7446 BitcodeModule::parseModule(LLVMContext &Context,
7447                            DataLayoutCallbackTy DataLayoutCallback) {
7448   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7449   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7450   // written.  We must defer until the Module has been fully materialized.
7451 }
7452 
7453 Expected<std::unique_ptr<Module>>
7454 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7455                        DataLayoutCallbackTy DataLayoutCallback) {
7456   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7457   if (!BM)
7458     return BM.takeError();
7459 
7460   return BM->parseModule(Context, DataLayoutCallback);
7461 }
7462 
7463 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7464   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7465   if (!StreamOrErr)
7466     return StreamOrErr.takeError();
7467 
7468   return readTriple(*StreamOrErr);
7469 }
7470 
7471 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7472   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7473   if (!StreamOrErr)
7474     return StreamOrErr.takeError();
7475 
7476   return hasObjCCategory(*StreamOrErr);
7477 }
7478 
7479 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7480   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7481   if (!StreamOrErr)
7482     return StreamOrErr.takeError();
7483 
7484   return readIdentificationCode(*StreamOrErr);
7485 }
7486 
7487 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7488                                    ModuleSummaryIndex &CombinedIndex,
7489                                    uint64_t ModuleId) {
7490   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7491   if (!BM)
7492     return BM.takeError();
7493 
7494   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7495 }
7496 
7497 Expected<std::unique_ptr<ModuleSummaryIndex>>
7498 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7499   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7500   if (!BM)
7501     return BM.takeError();
7502 
7503   return BM->getSummary();
7504 }
7505 
7506 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7507   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7508   if (!BM)
7509     return BM.takeError();
7510 
7511   return BM->getLTOInfo();
7512 }
7513 
7514 Expected<std::unique_ptr<ModuleSummaryIndex>>
7515 llvm::getModuleSummaryIndexForFile(StringRef Path,
7516                                    bool IgnoreEmptyThinLTOIndexFile) {
7517   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7518       MemoryBuffer::getFileOrSTDIN(Path);
7519   if (!FileOrErr)
7520     return errorCodeToError(FileOrErr.getError());
7521   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7522     return nullptr;
7523   return getModuleSummaryIndex(**FileOrErr);
7524 }
7525