xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 23ec5782c3cc0d77b5e44285e5124cd4a3ffeeef)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 namespace {
98 
99 enum {
100   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
101 };
102 
103 } // end anonymous namespace
104 
105 static Error error(const Twine &Message) {
106   return make_error<StringError>(
107       Message, make_error_code(BitcodeError::CorruptedBitcode));
108 }
109 
110 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
111   if (!Stream.canSkipToPos(4))
112     return createStringError(std::errc::illegal_byte_sequence,
113                              "file too small to contain bitcode header");
114   for (unsigned C : {'B', 'C'})
115     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
116       if (Res.get() != C)
117         return createStringError(std::errc::illegal_byte_sequence,
118                                  "file doesn't start with bitcode header");
119     } else
120       return Res.takeError();
121   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
122     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
123       if (Res.get() != C)
124         return createStringError(std::errc::illegal_byte_sequence,
125                                  "file doesn't start with bitcode header");
126     } else
127       return Res.takeError();
128   return Error::success();
129 }
130 
131 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
132   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
133   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
134 
135   if (Buffer.getBufferSize() & 3)
136     return error("Invalid bitcode signature");
137 
138   // If we have a wrapper header, parse it and ignore the non-bc file contents.
139   // The magic number is 0x0B17C0DE stored in little endian.
140   if (isBitcodeWrapper(BufPtr, BufEnd))
141     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
142       return error("Invalid bitcode wrapper header");
143 
144   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
145   if (Error Err = hasInvalidBitcodeHeader(Stream))
146     return std::move(Err);
147 
148   return std::move(Stream);
149 }
150 
151 /// Convert a string from a record into an std::string, return true on failure.
152 template <typename StrTy>
153 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
154                             StrTy &Result) {
155   if (Idx > Record.size())
156     return true;
157 
158   Result.append(Record.begin() + Idx, Record.end());
159   return false;
160 }
161 
162 // Strip all the TBAA attachment for the module.
163 static void stripTBAA(Module *M) {
164   for (auto &F : *M) {
165     if (F.isMaterializable())
166       continue;
167     for (auto &I : instructions(F))
168       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
169   }
170 }
171 
172 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
173 /// "epoch" encoded in the bitcode, and return the producer name if any.
174 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
175   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
176     return std::move(Err);
177 
178   // Read all the records.
179   SmallVector<uint64_t, 64> Record;
180 
181   std::string ProducerIdentification;
182 
183   while (true) {
184     BitstreamEntry Entry;
185     if (Error E = Stream.advance().moveInto(Entry))
186       return std::move(E);
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Error E = Stream.advance().moveInto(Entry))
231       return std::move(E);
232 
233     switch (Entry.Kind) {
234     case BitstreamEntry::EndBlock:
235     case BitstreamEntry::Error:
236       return error("Malformed block");
237 
238     case BitstreamEntry::SubBlock:
239       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
240         return readIdentificationBlock(Stream);
241 
242       // Ignore other sub-blocks.
243       if (Error Err = Stream.SkipBlock())
244         return std::move(Err);
245       continue;
246     case BitstreamEntry::Record:
247       if (Error E = Stream.skipRecord(Entry.ID).takeError())
248         return std::move(E);
249       continue;
250     }
251   }
252 }
253 
254 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
255   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
256     return std::move(Err);
257 
258   SmallVector<uint64_t, 64> Record;
259   // Read all the records for this module.
260 
261   while (true) {
262     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
263     if (!MaybeEntry)
264       return MaybeEntry.takeError();
265     BitstreamEntry Entry = MaybeEntry.get();
266 
267     switch (Entry.Kind) {
268     case BitstreamEntry::SubBlock: // Handled for us already.
269     case BitstreamEntry::Error:
270       return error("Malformed block");
271     case BitstreamEntry::EndBlock:
272       return false;
273     case BitstreamEntry::Record:
274       // The interesting case.
275       break;
276     }
277 
278     // Read a record.
279     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
280     if (!MaybeRecord)
281       return MaybeRecord.takeError();
282     switch (MaybeRecord.get()) {
283     default:
284       break; // Default behavior, ignore unknown content.
285     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
286       std::string S;
287       if (convertToString(Record, 0, S))
288         return error("Invalid section name record");
289       // Check for the i386 and other (x86_64, ARM) conventions
290       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
291           S.find("__OBJC,__category") != std::string::npos)
292         return true;
293       break;
294     }
295     }
296     Record.clear();
297   }
298   llvm_unreachable("Exit infinite loop");
299 }
300 
301 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
302   // We expect a number of well-defined blocks, though we don't necessarily
303   // need to understand them all.
304   while (true) {
305     BitstreamEntry Entry;
306     if (Error E = Stream.advance().moveInto(Entry))
307       return std::move(E);
308 
309     switch (Entry.Kind) {
310     case BitstreamEntry::Error:
311       return error("Malformed block");
312     case BitstreamEntry::EndBlock:
313       return false;
314 
315     case BitstreamEntry::SubBlock:
316       if (Entry.ID == bitc::MODULE_BLOCK_ID)
317         return hasObjCCategoryInModule(Stream);
318 
319       // Ignore other sub-blocks.
320       if (Error Err = Stream.SkipBlock())
321         return std::move(Err);
322       continue;
323 
324     case BitstreamEntry::Record:
325       if (Error E = Stream.skipRecord(Entry.ID).takeError())
326         return std::move(E);
327       continue;
328     }
329   }
330 }
331 
332 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
333   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
334     return std::move(Err);
335 
336   SmallVector<uint64_t, 64> Record;
337 
338   std::string Triple;
339 
340   // Read all the records for this module.
341   while (true) {
342     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
343     if (!MaybeEntry)
344       return MaybeEntry.takeError();
345     BitstreamEntry Entry = MaybeEntry.get();
346 
347     switch (Entry.Kind) {
348     case BitstreamEntry::SubBlock: // Handled for us already.
349     case BitstreamEntry::Error:
350       return error("Malformed block");
351     case BitstreamEntry::EndBlock:
352       return Triple;
353     case BitstreamEntry::Record:
354       // The interesting case.
355       break;
356     }
357 
358     // Read a record.
359     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
360     if (!MaybeRecord)
361       return MaybeRecord.takeError();
362     switch (MaybeRecord.get()) {
363     default: break;  // Default behavior, ignore unknown content.
364     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
365       std::string S;
366       if (convertToString(Record, 0, S))
367         return error("Invalid triple record");
368       Triple = S;
369       break;
370     }
371     }
372     Record.clear();
373   }
374   llvm_unreachable("Exit infinite loop");
375 }
376 
377 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
378   // We expect a number of well-defined blocks, though we don't necessarily
379   // need to understand them all.
380   while (true) {
381     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
382     if (!MaybeEntry)
383       return MaybeEntry.takeError();
384     BitstreamEntry Entry = MaybeEntry.get();
385 
386     switch (Entry.Kind) {
387     case BitstreamEntry::Error:
388       return error("Malformed block");
389     case BitstreamEntry::EndBlock:
390       return "";
391 
392     case BitstreamEntry::SubBlock:
393       if (Entry.ID == bitc::MODULE_BLOCK_ID)
394         return readModuleTriple(Stream);
395 
396       // Ignore other sub-blocks.
397       if (Error Err = Stream.SkipBlock())
398         return std::move(Err);
399       continue;
400 
401     case BitstreamEntry::Record:
402       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
403         continue;
404       else
405         return Skipped.takeError();
406     }
407   }
408 }
409 
410 namespace {
411 
412 class BitcodeReaderBase {
413 protected:
414   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
415       : Stream(std::move(Stream)), Strtab(Strtab) {
416     this->Stream.setBlockInfo(&BlockInfo);
417   }
418 
419   BitstreamBlockInfo BlockInfo;
420   BitstreamCursor Stream;
421   StringRef Strtab;
422 
423   /// In version 2 of the bitcode we store names of global values and comdats in
424   /// a string table rather than in the VST.
425   bool UseStrtab = false;
426 
427   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
428 
429   /// If this module uses a string table, pop the reference to the string table
430   /// and return the referenced string and the rest of the record. Otherwise
431   /// just return the record itself.
432   std::pair<StringRef, ArrayRef<uint64_t>>
433   readNameFromStrtab(ArrayRef<uint64_t> Record);
434 
435   Error readBlockInfo();
436 
437   // Contains an arbitrary and optional string identifying the bitcode producer
438   std::string ProducerIdentification;
439 
440   Error error(const Twine &Message);
441 };
442 
443 } // end anonymous namespace
444 
445 Error BitcodeReaderBase::error(const Twine &Message) {
446   std::string FullMsg = Message.str();
447   if (!ProducerIdentification.empty())
448     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
449                LLVM_VERSION_STRING "')";
450   return ::error(FullMsg);
451 }
452 
453 Expected<unsigned>
454 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
455   if (Record.empty())
456     return error("Invalid version record");
457   unsigned ModuleVersion = Record[0];
458   if (ModuleVersion > 2)
459     return error("Invalid value");
460   UseStrtab = ModuleVersion >= 2;
461   return ModuleVersion;
462 }
463 
464 std::pair<StringRef, ArrayRef<uint64_t>>
465 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
466   if (!UseStrtab)
467     return {"", Record};
468   // Invalid reference. Let the caller complain about the record being empty.
469   if (Record[0] + Record[1] > Strtab.size())
470     return {"", {}};
471   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
472 }
473 
474 namespace {
475 
476 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
477   LLVMContext &Context;
478   Module *TheModule = nullptr;
479   // Next offset to start scanning for lazy parsing of function bodies.
480   uint64_t NextUnreadBit = 0;
481   // Last function offset found in the VST.
482   uint64_t LastFunctionBlockBit = 0;
483   bool SeenValueSymbolTable = false;
484   uint64_t VSTOffset = 0;
485 
486   std::vector<std::string> SectionTable;
487   std::vector<std::string> GCTable;
488 
489   std::vector<Type *> TypeList;
490   /// Track type IDs of contained types. Order is the same as the contained
491   /// types of a Type*. This is used during upgrades of typed pointer IR in
492   /// opaque pointer mode.
493   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
494   /// In some cases, we need to create a type ID for a type that was not
495   /// explicitly encoded in the bitcode, or we don't know about at the current
496   /// point. For example, a global may explicitly encode the value type ID, but
497   /// not have a type ID for the pointer to value type, for which we create a
498   /// virtual type ID instead. This map stores the new type ID that was created
499   /// for the given pair of Type and contained type ID.
500   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
501   DenseMap<Function *, unsigned> FunctionTypeIDs;
502   BitcodeReaderValueList ValueList;
503   Optional<MetadataLoader> MDLoader;
504   std::vector<Comdat *> ComdatList;
505   DenseSet<GlobalObject *> ImplicitComdatObjects;
506   SmallVector<Instruction *, 64> InstructionList;
507 
508   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
509   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
510 
511   struct FunctionOperandInfo {
512     Function *F;
513     unsigned PersonalityFn;
514     unsigned Prefix;
515     unsigned Prologue;
516   };
517   std::vector<FunctionOperandInfo> FunctionOperands;
518 
519   /// The set of attributes by index.  Index zero in the file is for null, and
520   /// is thus not represented here.  As such all indices are off by one.
521   std::vector<AttributeList> MAttributes;
522 
523   /// The set of attribute groups.
524   std::map<unsigned, AttributeList> MAttributeGroups;
525 
526   /// While parsing a function body, this is a list of the basic blocks for the
527   /// function.
528   std::vector<BasicBlock*> FunctionBBs;
529 
530   // When reading the module header, this list is populated with functions that
531   // have bodies later in the file.
532   std::vector<Function*> FunctionsWithBodies;
533 
534   // When intrinsic functions are encountered which require upgrading they are
535   // stored here with their replacement function.
536   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
537   UpdatedIntrinsicMap UpgradedIntrinsics;
538   // Intrinsics which were remangled because of types rename
539   UpdatedIntrinsicMap RemangledIntrinsics;
540 
541   // Several operations happen after the module header has been read, but
542   // before function bodies are processed. This keeps track of whether
543   // we've done this yet.
544   bool SeenFirstFunctionBody = false;
545 
546   /// When function bodies are initially scanned, this map contains info about
547   /// where to find deferred function body in the stream.
548   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
549 
550   /// When Metadata block is initially scanned when parsing the module, we may
551   /// choose to defer parsing of the metadata. This vector contains info about
552   /// which Metadata blocks are deferred.
553   std::vector<uint64_t> DeferredMetadataInfo;
554 
555   /// These are basic blocks forward-referenced by block addresses.  They are
556   /// inserted lazily into functions when they're loaded.  The basic block ID is
557   /// its index into the vector.
558   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
559   std::deque<Function *> BasicBlockFwdRefQueue;
560 
561   /// These are Functions that contain BlockAddresses which refer a different
562   /// Function. When parsing the different Function, queue Functions that refer
563   /// to the different Function. Those Functions must be materialized in order
564   /// to resolve their BlockAddress constants before the different Function
565   /// gets moved into another Module.
566   std::vector<Function *> BackwardRefFunctions;
567 
568   /// Indicates that we are using a new encoding for instruction operands where
569   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
570   /// instruction number, for a more compact encoding.  Some instruction
571   /// operands are not relative to the instruction ID: basic block numbers, and
572   /// types. Once the old style function blocks have been phased out, we would
573   /// not need this flag.
574   bool UseRelativeIDs = false;
575 
576   /// True if all functions will be materialized, negating the need to process
577   /// (e.g.) blockaddress forward references.
578   bool WillMaterializeAllForwardRefs = false;
579 
580   bool StripDebugInfo = false;
581   TBAAVerifier TBAAVerifyHelper;
582 
583   std::vector<std::string> BundleTags;
584   SmallVector<SyncScope::ID, 8> SSIDs;
585 
586 public:
587   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
588                 StringRef ProducerIdentification, LLVMContext &Context);
589 
590   Error materializeForwardReferencedFunctions();
591 
592   Error materialize(GlobalValue *GV) override;
593   Error materializeModule() override;
594   std::vector<StructType *> getIdentifiedStructTypes() const override;
595 
596   /// Main interface to parsing a bitcode buffer.
597   /// \returns true if an error occurred.
598   Error parseBitcodeInto(
599       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
600       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
601 
602   static uint64_t decodeSignRotatedValue(uint64_t V);
603 
604   /// Materialize any deferred Metadata block.
605   Error materializeMetadata() override;
606 
607   void setStripDebugInfo() override;
608 
609 private:
610   std::vector<StructType *> IdentifiedStructTypes;
611   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
612   StructType *createIdentifiedStructType(LLVMContext &Context);
613 
614   static constexpr unsigned InvalidTypeID = ~0u;
615 
616   Type *getTypeByID(unsigned ID);
617   Type *getPtrElementTypeByID(unsigned ID);
618   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
619   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
620 
621   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) {
622     if (Ty && Ty->isMetadataTy())
623       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
624     return ValueList.getValueFwdRef(ID, Ty, TyID);
625   }
626 
627   Metadata *getFnMetadataByID(unsigned ID) {
628     return MDLoader->getMetadataFwdRefOrLoad(ID);
629   }
630 
631   BasicBlock *getBasicBlock(unsigned ID) const {
632     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
633     return FunctionBBs[ID];
634   }
635 
636   AttributeList getAttributes(unsigned i) const {
637     if (i-1 < MAttributes.size())
638       return MAttributes[i-1];
639     return AttributeList();
640   }
641 
642   /// Read a value/type pair out of the specified record from slot 'Slot'.
643   /// Increment Slot past the number of slots used in the record. Return true on
644   /// failure.
645   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
646                         unsigned InstNum, Value *&ResVal, unsigned &TypeID) {
647     if (Slot == Record.size()) return true;
648     unsigned ValNo = (unsigned)Record[Slot++];
649     // Adjust the ValNo, if it was encoded relative to the InstNum.
650     if (UseRelativeIDs)
651       ValNo = InstNum - ValNo;
652     if (ValNo < InstNum) {
653       // If this is not a forward reference, just return the value we already
654       // have.
655       TypeID = ValueList.getTypeID(ValNo);
656       ResVal = getFnValueByID(ValNo, nullptr, TypeID);
657       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
658              "Incorrect type ID stored for value");
659       return ResVal == nullptr;
660     }
661     if (Slot == Record.size())
662       return true;
663 
664     TypeID = (unsigned)Record[Slot++];
665     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID);
666     return ResVal == nullptr;
667   }
668 
669   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
670   /// past the number of slots used by the value in the record. Return true if
671   /// there is an error.
672   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
673                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) {
674     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal))
675       return true;
676     // All values currently take a single record slot.
677     ++Slot;
678     return false;
679   }
680 
681   /// Like popValue, but does not increment the Slot number.
682   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
683                 unsigned InstNum, Type *Ty, unsigned TyID,  Value *&ResVal) {
684     ResVal = getValue(Record, Slot, InstNum, Ty, TyID);
685     return ResVal == nullptr;
686   }
687 
688   /// Version of getValue that returns ResVal directly, or 0 if there is an
689   /// error.
690   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
691                   unsigned InstNum, Type *Ty, unsigned TyID) {
692     if (Slot == Record.size()) return nullptr;
693     unsigned ValNo = (unsigned)Record[Slot];
694     // Adjust the ValNo, if it was encoded relative to the InstNum.
695     if (UseRelativeIDs)
696       ValNo = InstNum - ValNo;
697     return getFnValueByID(ValNo, Ty, TyID);
698   }
699 
700   /// Like getValue, but decodes signed VBRs.
701   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
702                         unsigned InstNum, Type *Ty, unsigned TyID) {
703     if (Slot == Record.size()) return nullptr;
704     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
705     // Adjust the ValNo, if it was encoded relative to the InstNum.
706     if (UseRelativeIDs)
707       ValNo = InstNum - ValNo;
708     return getFnValueByID(ValNo, Ty, TyID);
709   }
710 
711   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
712   /// corresponding argument's pointee type. Also upgrades intrinsics that now
713   /// require an elementtype attribute.
714   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
715 
716   /// Converts alignment exponent (i.e. power of two (or zero)) to the
717   /// corresponding alignment to use. If alignment is too large, returns
718   /// a corresponding error code.
719   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
720   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
721   Error parseModule(
722       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
723       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
724 
725   Error parseComdatRecord(ArrayRef<uint64_t> Record);
726   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
727   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
728   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
729                                         ArrayRef<uint64_t> Record);
730 
731   Error parseAttributeBlock();
732   Error parseAttributeGroupBlock();
733   Error parseTypeTable();
734   Error parseTypeTableBody();
735   Error parseOperandBundleTags();
736   Error parseSyncScopeNames();
737 
738   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
739                                 unsigned NameIndex, Triple &TT);
740   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
741                                ArrayRef<uint64_t> Record);
742   Error parseValueSymbolTable(uint64_t Offset = 0);
743   Error parseGlobalValueSymbolTable();
744   Error parseConstants();
745   Error rememberAndSkipFunctionBodies();
746   Error rememberAndSkipFunctionBody();
747   /// Save the positions of the Metadata blocks and skip parsing the blocks.
748   Error rememberAndSkipMetadata();
749   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
750   Error parseFunctionBody(Function *F);
751   Error globalCleanup();
752   Error resolveGlobalAndIndirectSymbolInits();
753   Error parseUseLists();
754   Error findFunctionInStream(
755       Function *F,
756       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
757 
758   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
759 };
760 
761 /// Class to manage reading and parsing function summary index bitcode
762 /// files/sections.
763 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
764   /// The module index built during parsing.
765   ModuleSummaryIndex &TheIndex;
766 
767   /// Indicates whether we have encountered a global value summary section
768   /// yet during parsing.
769   bool SeenGlobalValSummary = false;
770 
771   /// Indicates whether we have already parsed the VST, used for error checking.
772   bool SeenValueSymbolTable = false;
773 
774   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
775   /// Used to enable on-demand parsing of the VST.
776   uint64_t VSTOffset = 0;
777 
778   // Map to save ValueId to ValueInfo association that was recorded in the
779   // ValueSymbolTable. It is used after the VST is parsed to convert
780   // call graph edges read from the function summary from referencing
781   // callees by their ValueId to using the ValueInfo instead, which is how
782   // they are recorded in the summary index being built.
783   // We save a GUID which refers to the same global as the ValueInfo, but
784   // ignoring the linkage, i.e. for values other than local linkage they are
785   // identical.
786   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
787       ValueIdToValueInfoMap;
788 
789   /// Map populated during module path string table parsing, from the
790   /// module ID to a string reference owned by the index's module
791   /// path string table, used to correlate with combined index
792   /// summary records.
793   DenseMap<uint64_t, StringRef> ModuleIdMap;
794 
795   /// Original source file name recorded in a bitcode record.
796   std::string SourceFileName;
797 
798   /// The string identifier given to this module by the client, normally the
799   /// path to the bitcode file.
800   StringRef ModulePath;
801 
802   /// For per-module summary indexes, the unique numerical identifier given to
803   /// this module by the client.
804   unsigned ModuleId;
805 
806 public:
807   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
808                                   ModuleSummaryIndex &TheIndex,
809                                   StringRef ModulePath, unsigned ModuleId);
810 
811   Error parseModule();
812 
813 private:
814   void setValueGUID(uint64_t ValueID, StringRef ValueName,
815                     GlobalValue::LinkageTypes Linkage,
816                     StringRef SourceFileName);
817   Error parseValueSymbolTable(
818       uint64_t Offset,
819       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
820   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
821   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
822                                                     bool IsOldProfileFormat,
823                                                     bool HasProfile,
824                                                     bool HasRelBF);
825   Error parseEntireSummary(unsigned ID);
826   Error parseModuleStringTable();
827   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
828   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
829                                        TypeIdCompatibleVtableInfo &TypeId);
830   std::vector<FunctionSummary::ParamAccess>
831   parseParamAccesses(ArrayRef<uint64_t> Record);
832 
833   std::pair<ValueInfo, GlobalValue::GUID>
834   getValueInfoFromValueId(unsigned ValueId);
835 
836   void addThisModule();
837   ModuleSummaryIndex::ModuleInfo *getThisModule();
838 };
839 
840 } // end anonymous namespace
841 
842 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
843                                                     Error Err) {
844   if (Err) {
845     std::error_code EC;
846     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
847       EC = EIB.convertToErrorCode();
848       Ctx.emitError(EIB.message());
849     });
850     return EC;
851   }
852   return std::error_code();
853 }
854 
855 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
856                              StringRef ProducerIdentification,
857                              LLVMContext &Context)
858     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
859       ValueList(Context, this->Stream.SizeInBytes()) {
860   this->ProducerIdentification = std::string(ProducerIdentification);
861 }
862 
863 Error BitcodeReader::materializeForwardReferencedFunctions() {
864   if (WillMaterializeAllForwardRefs)
865     return Error::success();
866 
867   // Prevent recursion.
868   WillMaterializeAllForwardRefs = true;
869 
870   while (!BasicBlockFwdRefQueue.empty()) {
871     Function *F = BasicBlockFwdRefQueue.front();
872     BasicBlockFwdRefQueue.pop_front();
873     assert(F && "Expected valid function");
874     if (!BasicBlockFwdRefs.count(F))
875       // Already materialized.
876       continue;
877 
878     // Check for a function that isn't materializable to prevent an infinite
879     // loop.  When parsing a blockaddress stored in a global variable, there
880     // isn't a trivial way to check if a function will have a body without a
881     // linear search through FunctionsWithBodies, so just check it here.
882     if (!F->isMaterializable())
883       return error("Never resolved function from blockaddress");
884 
885     // Try to materialize F.
886     if (Error Err = materialize(F))
887       return Err;
888   }
889   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
890 
891   for (Function *F : BackwardRefFunctions)
892     if (Error Err = materialize(F))
893       return Err;
894   BackwardRefFunctions.clear();
895 
896   // Reset state.
897   WillMaterializeAllForwardRefs = false;
898   return Error::success();
899 }
900 
901 //===----------------------------------------------------------------------===//
902 //  Helper functions to implement forward reference resolution, etc.
903 //===----------------------------------------------------------------------===//
904 
905 static bool hasImplicitComdat(size_t Val) {
906   switch (Val) {
907   default:
908     return false;
909   case 1:  // Old WeakAnyLinkage
910   case 4:  // Old LinkOnceAnyLinkage
911   case 10: // Old WeakODRLinkage
912   case 11: // Old LinkOnceODRLinkage
913     return true;
914   }
915 }
916 
917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
918   switch (Val) {
919   default: // Map unknown/new linkages to external
920   case 0:
921     return GlobalValue::ExternalLinkage;
922   case 2:
923     return GlobalValue::AppendingLinkage;
924   case 3:
925     return GlobalValue::InternalLinkage;
926   case 5:
927     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
928   case 6:
929     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
930   case 7:
931     return GlobalValue::ExternalWeakLinkage;
932   case 8:
933     return GlobalValue::CommonLinkage;
934   case 9:
935     return GlobalValue::PrivateLinkage;
936   case 12:
937     return GlobalValue::AvailableExternallyLinkage;
938   case 13:
939     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
940   case 14:
941     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
942   case 15:
943     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
944   case 1: // Old value with implicit comdat.
945   case 16:
946     return GlobalValue::WeakAnyLinkage;
947   case 10: // Old value with implicit comdat.
948   case 17:
949     return GlobalValue::WeakODRLinkage;
950   case 4: // Old value with implicit comdat.
951   case 18:
952     return GlobalValue::LinkOnceAnyLinkage;
953   case 11: // Old value with implicit comdat.
954   case 19:
955     return GlobalValue::LinkOnceODRLinkage;
956   }
957 }
958 
959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
960   FunctionSummary::FFlags Flags;
961   Flags.ReadNone = RawFlags & 0x1;
962   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
963   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
964   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
965   Flags.NoInline = (RawFlags >> 4) & 0x1;
966   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
967   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
968   Flags.MayThrow = (RawFlags >> 7) & 0x1;
969   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
970   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
971   return Flags;
972 }
973 
974 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
975 //
976 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
977 // visibility: [8, 10).
978 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
979                                                             uint64_t Version) {
980   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
981   // like getDecodedLinkage() above. Any future change to the linkage enum and
982   // to getDecodedLinkage() will need to be taken into account here as above.
983   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
984   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
985   RawFlags = RawFlags >> 4;
986   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
987   // The Live flag wasn't introduced until version 3. For dead stripping
988   // to work correctly on earlier versions, we must conservatively treat all
989   // values as live.
990   bool Live = (RawFlags & 0x2) || Version < 3;
991   bool Local = (RawFlags & 0x4);
992   bool AutoHide = (RawFlags & 0x8);
993 
994   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
995                                      Live, Local, AutoHide);
996 }
997 
998 // Decode the flags for GlobalVariable in the summary
999 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1000   return GlobalVarSummary::GVarFlags(
1001       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1002       (RawFlags & 0x4) ? true : false,
1003       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1004 }
1005 
1006 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1007   switch (Val) {
1008   default: // Map unknown visibilities to default.
1009   case 0: return GlobalValue::DefaultVisibility;
1010   case 1: return GlobalValue::HiddenVisibility;
1011   case 2: return GlobalValue::ProtectedVisibility;
1012   }
1013 }
1014 
1015 static GlobalValue::DLLStorageClassTypes
1016 getDecodedDLLStorageClass(unsigned Val) {
1017   switch (Val) {
1018   default: // Map unknown values to default.
1019   case 0: return GlobalValue::DefaultStorageClass;
1020   case 1: return GlobalValue::DLLImportStorageClass;
1021   case 2: return GlobalValue::DLLExportStorageClass;
1022   }
1023 }
1024 
1025 static bool getDecodedDSOLocal(unsigned Val) {
1026   switch(Val) {
1027   default: // Map unknown values to preemptable.
1028   case 0:  return false;
1029   case 1:  return true;
1030   }
1031 }
1032 
1033 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1034   switch (Val) {
1035     case 0: return GlobalVariable::NotThreadLocal;
1036     default: // Map unknown non-zero value to general dynamic.
1037     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1038     case 2: return GlobalVariable::LocalDynamicTLSModel;
1039     case 3: return GlobalVariable::InitialExecTLSModel;
1040     case 4: return GlobalVariable::LocalExecTLSModel;
1041   }
1042 }
1043 
1044 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1045   switch (Val) {
1046     default: // Map unknown to UnnamedAddr::None.
1047     case 0: return GlobalVariable::UnnamedAddr::None;
1048     case 1: return GlobalVariable::UnnamedAddr::Global;
1049     case 2: return GlobalVariable::UnnamedAddr::Local;
1050   }
1051 }
1052 
1053 static int getDecodedCastOpcode(unsigned Val) {
1054   switch (Val) {
1055   default: return -1;
1056   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1057   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1058   case bitc::CAST_SEXT    : return Instruction::SExt;
1059   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1060   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1061   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1062   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1063   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1064   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1065   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1066   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1067   case bitc::CAST_BITCAST : return Instruction::BitCast;
1068   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1069   }
1070 }
1071 
1072 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1073   bool IsFP = Ty->isFPOrFPVectorTy();
1074   // UnOps are only valid for int/fp or vector of int/fp types
1075   if (!IsFP && !Ty->isIntOrIntVectorTy())
1076     return -1;
1077 
1078   switch (Val) {
1079   default:
1080     return -1;
1081   case bitc::UNOP_FNEG:
1082     return IsFP ? Instruction::FNeg : -1;
1083   }
1084 }
1085 
1086 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1087   bool IsFP = Ty->isFPOrFPVectorTy();
1088   // BinOps are only valid for int/fp or vector of int/fp types
1089   if (!IsFP && !Ty->isIntOrIntVectorTy())
1090     return -1;
1091 
1092   switch (Val) {
1093   default:
1094     return -1;
1095   case bitc::BINOP_ADD:
1096     return IsFP ? Instruction::FAdd : Instruction::Add;
1097   case bitc::BINOP_SUB:
1098     return IsFP ? Instruction::FSub : Instruction::Sub;
1099   case bitc::BINOP_MUL:
1100     return IsFP ? Instruction::FMul : Instruction::Mul;
1101   case bitc::BINOP_UDIV:
1102     return IsFP ? -1 : Instruction::UDiv;
1103   case bitc::BINOP_SDIV:
1104     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1105   case bitc::BINOP_UREM:
1106     return IsFP ? -1 : Instruction::URem;
1107   case bitc::BINOP_SREM:
1108     return IsFP ? Instruction::FRem : Instruction::SRem;
1109   case bitc::BINOP_SHL:
1110     return IsFP ? -1 : Instruction::Shl;
1111   case bitc::BINOP_LSHR:
1112     return IsFP ? -1 : Instruction::LShr;
1113   case bitc::BINOP_ASHR:
1114     return IsFP ? -1 : Instruction::AShr;
1115   case bitc::BINOP_AND:
1116     return IsFP ? -1 : Instruction::And;
1117   case bitc::BINOP_OR:
1118     return IsFP ? -1 : Instruction::Or;
1119   case bitc::BINOP_XOR:
1120     return IsFP ? -1 : Instruction::Xor;
1121   }
1122 }
1123 
1124 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1125   switch (Val) {
1126   default: return AtomicRMWInst::BAD_BINOP;
1127   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1128   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1129   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1130   case bitc::RMW_AND: return AtomicRMWInst::And;
1131   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1132   case bitc::RMW_OR: return AtomicRMWInst::Or;
1133   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1134   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1135   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1136   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1137   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1138   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1139   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1140   }
1141 }
1142 
1143 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1144   switch (Val) {
1145   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1146   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1147   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1148   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1149   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1150   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1151   default: // Map unknown orderings to sequentially-consistent.
1152   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1153   }
1154 }
1155 
1156 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1157   switch (Val) {
1158   default: // Map unknown selection kinds to any.
1159   case bitc::COMDAT_SELECTION_KIND_ANY:
1160     return Comdat::Any;
1161   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1162     return Comdat::ExactMatch;
1163   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1164     return Comdat::Largest;
1165   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1166     return Comdat::NoDeduplicate;
1167   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1168     return Comdat::SameSize;
1169   }
1170 }
1171 
1172 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1173   FastMathFlags FMF;
1174   if (0 != (Val & bitc::UnsafeAlgebra))
1175     FMF.setFast();
1176   if (0 != (Val & bitc::AllowReassoc))
1177     FMF.setAllowReassoc();
1178   if (0 != (Val & bitc::NoNaNs))
1179     FMF.setNoNaNs();
1180   if (0 != (Val & bitc::NoInfs))
1181     FMF.setNoInfs();
1182   if (0 != (Val & bitc::NoSignedZeros))
1183     FMF.setNoSignedZeros();
1184   if (0 != (Val & bitc::AllowReciprocal))
1185     FMF.setAllowReciprocal();
1186   if (0 != (Val & bitc::AllowContract))
1187     FMF.setAllowContract(true);
1188   if (0 != (Val & bitc::ApproxFunc))
1189     FMF.setApproxFunc();
1190   return FMF;
1191 }
1192 
1193 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1194   switch (Val) {
1195   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1196   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1197   }
1198 }
1199 
1200 Type *BitcodeReader::getTypeByID(unsigned ID) {
1201   // The type table size is always specified correctly.
1202   if (ID >= TypeList.size())
1203     return nullptr;
1204 
1205   if (Type *Ty = TypeList[ID])
1206     return Ty;
1207 
1208   // If we have a forward reference, the only possible case is when it is to a
1209   // named struct.  Just create a placeholder for now.
1210   return TypeList[ID] = createIdentifiedStructType(Context);
1211 }
1212 
1213 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1214   auto It = ContainedTypeIDs.find(ID);
1215   if (It == ContainedTypeIDs.end())
1216     return InvalidTypeID;
1217 
1218   if (Idx >= It->second.size())
1219     return InvalidTypeID;
1220 
1221   return It->second[Idx];
1222 }
1223 
1224 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1225   if (ID >= TypeList.size())
1226     return nullptr;
1227 
1228   Type *Ty = TypeList[ID];
1229   if (!Ty->isPointerTy())
1230     return nullptr;
1231 
1232   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1233   if (!ElemTy)
1234     return nullptr;
1235 
1236   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1237          "Incorrect element type");
1238   return ElemTy;
1239 }
1240 
1241 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1242                                          ArrayRef<unsigned> ChildTypeIDs) {
1243   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1244   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1245   auto It = VirtualTypeIDs.find(CacheKey);
1246   if (It != VirtualTypeIDs.end()) {
1247     // The cmpxchg return value is the only place we need more than one
1248     // contained type ID, however the second one will always be the same (i1),
1249     // so we don't need to include it in the cache key. This asserts that the
1250     // contained types are indeed as expected and there are no collisions.
1251     assert((ChildTypeIDs.empty() ||
1252             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1253            "Incorrect cached contained type IDs");
1254     return It->second;
1255   }
1256 
1257 #ifndef NDEBUG
1258   if (!Ty->isOpaquePointerTy()) {
1259     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1260            "Wrong number of contained types");
1261     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1262       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1263              "Incorrect contained type ID");
1264     }
1265   }
1266 #endif
1267 
1268   unsigned TypeID = TypeList.size();
1269   TypeList.push_back(Ty);
1270   if (!ChildTypeIDs.empty())
1271     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1272   VirtualTypeIDs.insert({CacheKey, TypeID});
1273   return TypeID;
1274 }
1275 
1276 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1277                                                       StringRef Name) {
1278   auto *Ret = StructType::create(Context, Name);
1279   IdentifiedStructTypes.push_back(Ret);
1280   return Ret;
1281 }
1282 
1283 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1284   auto *Ret = StructType::create(Context);
1285   IdentifiedStructTypes.push_back(Ret);
1286   return Ret;
1287 }
1288 
1289 //===----------------------------------------------------------------------===//
1290 //  Functions for parsing blocks from the bitcode file
1291 //===----------------------------------------------------------------------===//
1292 
1293 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1294   switch (Val) {
1295   case Attribute::EndAttrKinds:
1296   case Attribute::EmptyKey:
1297   case Attribute::TombstoneKey:
1298     llvm_unreachable("Synthetic enumerators which should never get here");
1299 
1300   case Attribute::None:            return 0;
1301   case Attribute::ZExt:            return 1 << 0;
1302   case Attribute::SExt:            return 1 << 1;
1303   case Attribute::NoReturn:        return 1 << 2;
1304   case Attribute::InReg:           return 1 << 3;
1305   case Attribute::StructRet:       return 1 << 4;
1306   case Attribute::NoUnwind:        return 1 << 5;
1307   case Attribute::NoAlias:         return 1 << 6;
1308   case Attribute::ByVal:           return 1 << 7;
1309   case Attribute::Nest:            return 1 << 8;
1310   case Attribute::ReadNone:        return 1 << 9;
1311   case Attribute::ReadOnly:        return 1 << 10;
1312   case Attribute::NoInline:        return 1 << 11;
1313   case Attribute::AlwaysInline:    return 1 << 12;
1314   case Attribute::OptimizeForSize: return 1 << 13;
1315   case Attribute::StackProtect:    return 1 << 14;
1316   case Attribute::StackProtectReq: return 1 << 15;
1317   case Attribute::Alignment:       return 31 << 16;
1318   case Attribute::NoCapture:       return 1 << 21;
1319   case Attribute::NoRedZone:       return 1 << 22;
1320   case Attribute::NoImplicitFloat: return 1 << 23;
1321   case Attribute::Naked:           return 1 << 24;
1322   case Attribute::InlineHint:      return 1 << 25;
1323   case Attribute::StackAlignment:  return 7 << 26;
1324   case Attribute::ReturnsTwice:    return 1 << 29;
1325   case Attribute::UWTable:         return 1 << 30;
1326   case Attribute::NonLazyBind:     return 1U << 31;
1327   case Attribute::SanitizeAddress: return 1ULL << 32;
1328   case Attribute::MinSize:         return 1ULL << 33;
1329   case Attribute::NoDuplicate:     return 1ULL << 34;
1330   case Attribute::StackProtectStrong: return 1ULL << 35;
1331   case Attribute::SanitizeThread:  return 1ULL << 36;
1332   case Attribute::SanitizeMemory:  return 1ULL << 37;
1333   case Attribute::NoBuiltin:       return 1ULL << 38;
1334   case Attribute::Returned:        return 1ULL << 39;
1335   case Attribute::Cold:            return 1ULL << 40;
1336   case Attribute::Builtin:         return 1ULL << 41;
1337   case Attribute::OptimizeNone:    return 1ULL << 42;
1338   case Attribute::InAlloca:        return 1ULL << 43;
1339   case Attribute::NonNull:         return 1ULL << 44;
1340   case Attribute::JumpTable:       return 1ULL << 45;
1341   case Attribute::Convergent:      return 1ULL << 46;
1342   case Attribute::SafeStack:       return 1ULL << 47;
1343   case Attribute::NoRecurse:       return 1ULL << 48;
1344   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1345   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1346   case Attribute::SwiftSelf:       return 1ULL << 51;
1347   case Attribute::SwiftError:      return 1ULL << 52;
1348   case Attribute::WriteOnly:       return 1ULL << 53;
1349   case Attribute::Speculatable:    return 1ULL << 54;
1350   case Attribute::StrictFP:        return 1ULL << 55;
1351   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1352   case Attribute::NoCfCheck:       return 1ULL << 57;
1353   case Attribute::OptForFuzzing:   return 1ULL << 58;
1354   case Attribute::ShadowCallStack: return 1ULL << 59;
1355   case Attribute::SpeculativeLoadHardening:
1356     return 1ULL << 60;
1357   case Attribute::ImmArg:
1358     return 1ULL << 61;
1359   case Attribute::WillReturn:
1360     return 1ULL << 62;
1361   case Attribute::NoFree:
1362     return 1ULL << 63;
1363   default:
1364     // Other attributes are not supported in the raw format,
1365     // as we ran out of space.
1366     return 0;
1367   }
1368   llvm_unreachable("Unsupported attribute type");
1369 }
1370 
1371 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1372   if (!Val) return;
1373 
1374   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1375        I = Attribute::AttrKind(I + 1)) {
1376     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1377       if (I == Attribute::Alignment)
1378         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1379       else if (I == Attribute::StackAlignment)
1380         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1381       else if (Attribute::isTypeAttrKind(I))
1382         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1383       else
1384         B.addAttribute(I);
1385     }
1386   }
1387 }
1388 
1389 /// This fills an AttrBuilder object with the LLVM attributes that have
1390 /// been decoded from the given integer. This function must stay in sync with
1391 /// 'encodeLLVMAttributesForBitcode'.
1392 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1393                                            uint64_t EncodedAttrs) {
1394   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1395   // the bits above 31 down by 11 bits.
1396   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1397   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1398          "Alignment must be a power of two.");
1399 
1400   if (Alignment)
1401     B.addAlignmentAttr(Alignment);
1402   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1403                           (EncodedAttrs & 0xffff));
1404 }
1405 
1406 Error BitcodeReader::parseAttributeBlock() {
1407   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1408     return Err;
1409 
1410   if (!MAttributes.empty())
1411     return error("Invalid multiple blocks");
1412 
1413   SmallVector<uint64_t, 64> Record;
1414 
1415   SmallVector<AttributeList, 8> Attrs;
1416 
1417   // Read all the records.
1418   while (true) {
1419     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1420     if (!MaybeEntry)
1421       return MaybeEntry.takeError();
1422     BitstreamEntry Entry = MaybeEntry.get();
1423 
1424     switch (Entry.Kind) {
1425     case BitstreamEntry::SubBlock: // Handled for us already.
1426     case BitstreamEntry::Error:
1427       return error("Malformed block");
1428     case BitstreamEntry::EndBlock:
1429       return Error::success();
1430     case BitstreamEntry::Record:
1431       // The interesting case.
1432       break;
1433     }
1434 
1435     // Read a record.
1436     Record.clear();
1437     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1438     if (!MaybeRecord)
1439       return MaybeRecord.takeError();
1440     switch (MaybeRecord.get()) {
1441     default:  // Default behavior: ignore.
1442       break;
1443     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1444       // Deprecated, but still needed to read old bitcode files.
1445       if (Record.size() & 1)
1446         return error("Invalid parameter attribute record");
1447 
1448       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1449         AttrBuilder B(Context);
1450         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1451         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1452       }
1453 
1454       MAttributes.push_back(AttributeList::get(Context, Attrs));
1455       Attrs.clear();
1456       break;
1457     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1458       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1459         Attrs.push_back(MAttributeGroups[Record[i]]);
1460 
1461       MAttributes.push_back(AttributeList::get(Context, Attrs));
1462       Attrs.clear();
1463       break;
1464     }
1465   }
1466 }
1467 
1468 // Returns Attribute::None on unrecognized codes.
1469 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1470   switch (Code) {
1471   default:
1472     return Attribute::None;
1473   case bitc::ATTR_KIND_ALIGNMENT:
1474     return Attribute::Alignment;
1475   case bitc::ATTR_KIND_ALWAYS_INLINE:
1476     return Attribute::AlwaysInline;
1477   case bitc::ATTR_KIND_ARGMEMONLY:
1478     return Attribute::ArgMemOnly;
1479   case bitc::ATTR_KIND_BUILTIN:
1480     return Attribute::Builtin;
1481   case bitc::ATTR_KIND_BY_VAL:
1482     return Attribute::ByVal;
1483   case bitc::ATTR_KIND_IN_ALLOCA:
1484     return Attribute::InAlloca;
1485   case bitc::ATTR_KIND_COLD:
1486     return Attribute::Cold;
1487   case bitc::ATTR_KIND_CONVERGENT:
1488     return Attribute::Convergent;
1489   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1490     return Attribute::DisableSanitizerInstrumentation;
1491   case bitc::ATTR_KIND_ELEMENTTYPE:
1492     return Attribute::ElementType;
1493   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1494     return Attribute::InaccessibleMemOnly;
1495   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1496     return Attribute::InaccessibleMemOrArgMemOnly;
1497   case bitc::ATTR_KIND_INLINE_HINT:
1498     return Attribute::InlineHint;
1499   case bitc::ATTR_KIND_IN_REG:
1500     return Attribute::InReg;
1501   case bitc::ATTR_KIND_JUMP_TABLE:
1502     return Attribute::JumpTable;
1503   case bitc::ATTR_KIND_MIN_SIZE:
1504     return Attribute::MinSize;
1505   case bitc::ATTR_KIND_NAKED:
1506     return Attribute::Naked;
1507   case bitc::ATTR_KIND_NEST:
1508     return Attribute::Nest;
1509   case bitc::ATTR_KIND_NO_ALIAS:
1510     return Attribute::NoAlias;
1511   case bitc::ATTR_KIND_NO_BUILTIN:
1512     return Attribute::NoBuiltin;
1513   case bitc::ATTR_KIND_NO_CALLBACK:
1514     return Attribute::NoCallback;
1515   case bitc::ATTR_KIND_NO_CAPTURE:
1516     return Attribute::NoCapture;
1517   case bitc::ATTR_KIND_NO_DUPLICATE:
1518     return Attribute::NoDuplicate;
1519   case bitc::ATTR_KIND_NOFREE:
1520     return Attribute::NoFree;
1521   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1522     return Attribute::NoImplicitFloat;
1523   case bitc::ATTR_KIND_NO_INLINE:
1524     return Attribute::NoInline;
1525   case bitc::ATTR_KIND_NO_RECURSE:
1526     return Attribute::NoRecurse;
1527   case bitc::ATTR_KIND_NO_MERGE:
1528     return Attribute::NoMerge;
1529   case bitc::ATTR_KIND_NON_LAZY_BIND:
1530     return Attribute::NonLazyBind;
1531   case bitc::ATTR_KIND_NON_NULL:
1532     return Attribute::NonNull;
1533   case bitc::ATTR_KIND_DEREFERENCEABLE:
1534     return Attribute::Dereferenceable;
1535   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1536     return Attribute::DereferenceableOrNull;
1537   case bitc::ATTR_KIND_ALLOC_ALIGN:
1538     return Attribute::AllocAlign;
1539   case bitc::ATTR_KIND_ALLOC_SIZE:
1540     return Attribute::AllocSize;
1541   case bitc::ATTR_KIND_NO_RED_ZONE:
1542     return Attribute::NoRedZone;
1543   case bitc::ATTR_KIND_NO_RETURN:
1544     return Attribute::NoReturn;
1545   case bitc::ATTR_KIND_NOSYNC:
1546     return Attribute::NoSync;
1547   case bitc::ATTR_KIND_NOCF_CHECK:
1548     return Attribute::NoCfCheck;
1549   case bitc::ATTR_KIND_NO_PROFILE:
1550     return Attribute::NoProfile;
1551   case bitc::ATTR_KIND_NO_UNWIND:
1552     return Attribute::NoUnwind;
1553   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1554     return Attribute::NoSanitizeBounds;
1555   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1556     return Attribute::NoSanitizeCoverage;
1557   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1558     return Attribute::NullPointerIsValid;
1559   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1560     return Attribute::OptForFuzzing;
1561   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1562     return Attribute::OptimizeForSize;
1563   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1564     return Attribute::OptimizeNone;
1565   case bitc::ATTR_KIND_READ_NONE:
1566     return Attribute::ReadNone;
1567   case bitc::ATTR_KIND_READ_ONLY:
1568     return Attribute::ReadOnly;
1569   case bitc::ATTR_KIND_RETURNED:
1570     return Attribute::Returned;
1571   case bitc::ATTR_KIND_RETURNS_TWICE:
1572     return Attribute::ReturnsTwice;
1573   case bitc::ATTR_KIND_S_EXT:
1574     return Attribute::SExt;
1575   case bitc::ATTR_KIND_SPECULATABLE:
1576     return Attribute::Speculatable;
1577   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1578     return Attribute::StackAlignment;
1579   case bitc::ATTR_KIND_STACK_PROTECT:
1580     return Attribute::StackProtect;
1581   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1582     return Attribute::StackProtectReq;
1583   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1584     return Attribute::StackProtectStrong;
1585   case bitc::ATTR_KIND_SAFESTACK:
1586     return Attribute::SafeStack;
1587   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1588     return Attribute::ShadowCallStack;
1589   case bitc::ATTR_KIND_STRICT_FP:
1590     return Attribute::StrictFP;
1591   case bitc::ATTR_KIND_STRUCT_RET:
1592     return Attribute::StructRet;
1593   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1594     return Attribute::SanitizeAddress;
1595   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1596     return Attribute::SanitizeHWAddress;
1597   case bitc::ATTR_KIND_SANITIZE_THREAD:
1598     return Attribute::SanitizeThread;
1599   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1600     return Attribute::SanitizeMemory;
1601   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1602     return Attribute::SpeculativeLoadHardening;
1603   case bitc::ATTR_KIND_SWIFT_ERROR:
1604     return Attribute::SwiftError;
1605   case bitc::ATTR_KIND_SWIFT_SELF:
1606     return Attribute::SwiftSelf;
1607   case bitc::ATTR_KIND_SWIFT_ASYNC:
1608     return Attribute::SwiftAsync;
1609   case bitc::ATTR_KIND_UW_TABLE:
1610     return Attribute::UWTable;
1611   case bitc::ATTR_KIND_VSCALE_RANGE:
1612     return Attribute::VScaleRange;
1613   case bitc::ATTR_KIND_WILLRETURN:
1614     return Attribute::WillReturn;
1615   case bitc::ATTR_KIND_WRITEONLY:
1616     return Attribute::WriteOnly;
1617   case bitc::ATTR_KIND_Z_EXT:
1618     return Attribute::ZExt;
1619   case bitc::ATTR_KIND_IMMARG:
1620     return Attribute::ImmArg;
1621   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1622     return Attribute::SanitizeMemTag;
1623   case bitc::ATTR_KIND_PREALLOCATED:
1624     return Attribute::Preallocated;
1625   case bitc::ATTR_KIND_NOUNDEF:
1626     return Attribute::NoUndef;
1627   case bitc::ATTR_KIND_BYREF:
1628     return Attribute::ByRef;
1629   case bitc::ATTR_KIND_MUSTPROGRESS:
1630     return Attribute::MustProgress;
1631   case bitc::ATTR_KIND_HOT:
1632     return Attribute::Hot;
1633   }
1634 }
1635 
1636 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1637                                          MaybeAlign &Alignment) {
1638   // Note: Alignment in bitcode files is incremented by 1, so that zero
1639   // can be used for default alignment.
1640   if (Exponent > Value::MaxAlignmentExponent + 1)
1641     return error("Invalid alignment value");
1642   Alignment = decodeMaybeAlign(Exponent);
1643   return Error::success();
1644 }
1645 
1646 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1647   *Kind = getAttrFromCode(Code);
1648   if (*Kind == Attribute::None)
1649     return error("Unknown attribute kind (" + Twine(Code) + ")");
1650   return Error::success();
1651 }
1652 
1653 Error BitcodeReader::parseAttributeGroupBlock() {
1654   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1655     return Err;
1656 
1657   if (!MAttributeGroups.empty())
1658     return error("Invalid multiple blocks");
1659 
1660   SmallVector<uint64_t, 64> Record;
1661 
1662   // Read all the records.
1663   while (true) {
1664     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1665     if (!MaybeEntry)
1666       return MaybeEntry.takeError();
1667     BitstreamEntry Entry = MaybeEntry.get();
1668 
1669     switch (Entry.Kind) {
1670     case BitstreamEntry::SubBlock: // Handled for us already.
1671     case BitstreamEntry::Error:
1672       return error("Malformed block");
1673     case BitstreamEntry::EndBlock:
1674       return Error::success();
1675     case BitstreamEntry::Record:
1676       // The interesting case.
1677       break;
1678     }
1679 
1680     // Read a record.
1681     Record.clear();
1682     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1683     if (!MaybeRecord)
1684       return MaybeRecord.takeError();
1685     switch (MaybeRecord.get()) {
1686     default:  // Default behavior: ignore.
1687       break;
1688     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1689       if (Record.size() < 3)
1690         return error("Invalid grp record");
1691 
1692       uint64_t GrpID = Record[0];
1693       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1694 
1695       AttrBuilder B(Context);
1696       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1697         if (Record[i] == 0) {        // Enum attribute
1698           Attribute::AttrKind Kind;
1699           if (Error Err = parseAttrKind(Record[++i], &Kind))
1700             return Err;
1701 
1702           // Upgrade old-style byval attribute to one with a type, even if it's
1703           // nullptr. We will have to insert the real type when we associate
1704           // this AttributeList with a function.
1705           if (Kind == Attribute::ByVal)
1706             B.addByValAttr(nullptr);
1707           else if (Kind == Attribute::StructRet)
1708             B.addStructRetAttr(nullptr);
1709           else if (Kind == Attribute::InAlloca)
1710             B.addInAllocaAttr(nullptr);
1711           else if (Kind == Attribute::UWTable)
1712             B.addUWTableAttr(UWTableKind::Default);
1713           else if (Attribute::isEnumAttrKind(Kind))
1714             B.addAttribute(Kind);
1715           else
1716             return error("Not an enum attribute");
1717         } else if (Record[i] == 1) { // Integer attribute
1718           Attribute::AttrKind Kind;
1719           if (Error Err = parseAttrKind(Record[++i], &Kind))
1720             return Err;
1721           if (!Attribute::isIntAttrKind(Kind))
1722             return error("Not an int attribute");
1723           if (Kind == Attribute::Alignment)
1724             B.addAlignmentAttr(Record[++i]);
1725           else if (Kind == Attribute::StackAlignment)
1726             B.addStackAlignmentAttr(Record[++i]);
1727           else if (Kind == Attribute::Dereferenceable)
1728             B.addDereferenceableAttr(Record[++i]);
1729           else if (Kind == Attribute::DereferenceableOrNull)
1730             B.addDereferenceableOrNullAttr(Record[++i]);
1731           else if (Kind == Attribute::AllocSize)
1732             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1733           else if (Kind == Attribute::VScaleRange)
1734             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1735           else if (Kind == Attribute::UWTable)
1736             B.addUWTableAttr(UWTableKind(Record[++i]));
1737         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1738           bool HasValue = (Record[i++] == 4);
1739           SmallString<64> KindStr;
1740           SmallString<64> ValStr;
1741 
1742           while (Record[i] != 0 && i != e)
1743             KindStr += Record[i++];
1744           assert(Record[i] == 0 && "Kind string not null terminated");
1745 
1746           if (HasValue) {
1747             // Has a value associated with it.
1748             ++i; // Skip the '0' that terminates the "kind" string.
1749             while (Record[i] != 0 && i != e)
1750               ValStr += Record[i++];
1751             assert(Record[i] == 0 && "Value string not null terminated");
1752           }
1753 
1754           B.addAttribute(KindStr.str(), ValStr.str());
1755         } else if (Record[i] == 5 || Record[i] == 6) {
1756           bool HasType = Record[i] == 6;
1757           Attribute::AttrKind Kind;
1758           if (Error Err = parseAttrKind(Record[++i], &Kind))
1759             return Err;
1760           if (!Attribute::isTypeAttrKind(Kind))
1761             return error("Not a type attribute");
1762 
1763           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1764         } else {
1765           return error("Invalid attribute group entry");
1766         }
1767       }
1768 
1769       UpgradeAttributes(B);
1770       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1771       break;
1772     }
1773     }
1774   }
1775 }
1776 
1777 Error BitcodeReader::parseTypeTable() {
1778   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1779     return Err;
1780 
1781   return parseTypeTableBody();
1782 }
1783 
1784 Error BitcodeReader::parseTypeTableBody() {
1785   if (!TypeList.empty())
1786     return error("Invalid multiple blocks");
1787 
1788   SmallVector<uint64_t, 64> Record;
1789   unsigned NumRecords = 0;
1790 
1791   SmallString<64> TypeName;
1792 
1793   // Read all the records for this type table.
1794   while (true) {
1795     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1796     if (!MaybeEntry)
1797       return MaybeEntry.takeError();
1798     BitstreamEntry Entry = MaybeEntry.get();
1799 
1800     switch (Entry.Kind) {
1801     case BitstreamEntry::SubBlock: // Handled for us already.
1802     case BitstreamEntry::Error:
1803       return error("Malformed block");
1804     case BitstreamEntry::EndBlock:
1805       if (NumRecords != TypeList.size())
1806         return error("Malformed block");
1807       return Error::success();
1808     case BitstreamEntry::Record:
1809       // The interesting case.
1810       break;
1811     }
1812 
1813     // Read a record.
1814     Record.clear();
1815     Type *ResultTy = nullptr;
1816     SmallVector<unsigned> ContainedIDs;
1817     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1818     if (!MaybeRecord)
1819       return MaybeRecord.takeError();
1820     switch (MaybeRecord.get()) {
1821     default:
1822       return error("Invalid value");
1823     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1824       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1825       // type list.  This allows us to reserve space.
1826       if (Record.empty())
1827         return error("Invalid numentry record");
1828       TypeList.resize(Record[0]);
1829       continue;
1830     case bitc::TYPE_CODE_VOID:      // VOID
1831       ResultTy = Type::getVoidTy(Context);
1832       break;
1833     case bitc::TYPE_CODE_HALF:     // HALF
1834       ResultTy = Type::getHalfTy(Context);
1835       break;
1836     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1837       ResultTy = Type::getBFloatTy(Context);
1838       break;
1839     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1840       ResultTy = Type::getFloatTy(Context);
1841       break;
1842     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1843       ResultTy = Type::getDoubleTy(Context);
1844       break;
1845     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1846       ResultTy = Type::getX86_FP80Ty(Context);
1847       break;
1848     case bitc::TYPE_CODE_FP128:     // FP128
1849       ResultTy = Type::getFP128Ty(Context);
1850       break;
1851     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1852       ResultTy = Type::getPPC_FP128Ty(Context);
1853       break;
1854     case bitc::TYPE_CODE_LABEL:     // LABEL
1855       ResultTy = Type::getLabelTy(Context);
1856       break;
1857     case bitc::TYPE_CODE_METADATA:  // METADATA
1858       ResultTy = Type::getMetadataTy(Context);
1859       break;
1860     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1861       ResultTy = Type::getX86_MMXTy(Context);
1862       break;
1863     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1864       ResultTy = Type::getX86_AMXTy(Context);
1865       break;
1866     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1867       ResultTy = Type::getTokenTy(Context);
1868       break;
1869     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1870       if (Record.empty())
1871         return error("Invalid integer record");
1872 
1873       uint64_t NumBits = Record[0];
1874       if (NumBits < IntegerType::MIN_INT_BITS ||
1875           NumBits > IntegerType::MAX_INT_BITS)
1876         return error("Bitwidth for integer type out of range");
1877       ResultTy = IntegerType::get(Context, NumBits);
1878       break;
1879     }
1880     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1881                                     //          [pointee type, address space]
1882       if (Record.empty())
1883         return error("Invalid pointer record");
1884       unsigned AddressSpace = 0;
1885       if (Record.size() == 2)
1886         AddressSpace = Record[1];
1887       ResultTy = getTypeByID(Record[0]);
1888       if (!ResultTy ||
1889           !PointerType::isValidElementType(ResultTy))
1890         return error("Invalid type");
1891       ContainedIDs.push_back(Record[0]);
1892       ResultTy = PointerType::get(ResultTy, AddressSpace);
1893       break;
1894     }
1895     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1896       if (Record.size() != 1)
1897         return error("Invalid opaque pointer record");
1898       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) {
1899         Context.setOpaquePointers(true);
1900       } else if (Context.supportsTypedPointers())
1901         return error(
1902             "Opaque pointers are only supported in -opaque-pointers mode");
1903       unsigned AddressSpace = Record[0];
1904       ResultTy = PointerType::get(Context, AddressSpace);
1905       break;
1906     }
1907     case bitc::TYPE_CODE_FUNCTION_OLD: {
1908       // Deprecated, but still needed to read old bitcode files.
1909       // FUNCTION: [vararg, attrid, retty, paramty x N]
1910       if (Record.size() < 3)
1911         return error("Invalid function record");
1912       SmallVector<Type*, 8> ArgTys;
1913       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1914         if (Type *T = getTypeByID(Record[i]))
1915           ArgTys.push_back(T);
1916         else
1917           break;
1918       }
1919 
1920       ResultTy = getTypeByID(Record[2]);
1921       if (!ResultTy || ArgTys.size() < Record.size()-3)
1922         return error("Invalid type");
1923 
1924       ContainedIDs.append(Record.begin() + 2, Record.end());
1925       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1926       break;
1927     }
1928     case bitc::TYPE_CODE_FUNCTION: {
1929       // FUNCTION: [vararg, retty, paramty x N]
1930       if (Record.size() < 2)
1931         return error("Invalid function record");
1932       SmallVector<Type*, 8> ArgTys;
1933       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1934         if (Type *T = getTypeByID(Record[i])) {
1935           if (!FunctionType::isValidArgumentType(T))
1936             return error("Invalid function argument type");
1937           ArgTys.push_back(T);
1938         }
1939         else
1940           break;
1941       }
1942 
1943       ResultTy = getTypeByID(Record[1]);
1944       if (!ResultTy || ArgTys.size() < Record.size()-2)
1945         return error("Invalid type");
1946 
1947       ContainedIDs.append(Record.begin() + 1, Record.end());
1948       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1949       break;
1950     }
1951     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1952       if (Record.empty())
1953         return error("Invalid anon struct record");
1954       SmallVector<Type*, 8> EltTys;
1955       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1956         if (Type *T = getTypeByID(Record[i]))
1957           EltTys.push_back(T);
1958         else
1959           break;
1960       }
1961       if (EltTys.size() != Record.size()-1)
1962         return error("Invalid type");
1963       ContainedIDs.append(Record.begin() + 1, Record.end());
1964       ResultTy = StructType::get(Context, EltTys, Record[0]);
1965       break;
1966     }
1967     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1968       if (convertToString(Record, 0, TypeName))
1969         return error("Invalid struct name record");
1970       continue;
1971 
1972     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1973       if (Record.empty())
1974         return error("Invalid named struct record");
1975 
1976       if (NumRecords >= TypeList.size())
1977         return error("Invalid TYPE table");
1978 
1979       // Check to see if this was forward referenced, if so fill in the temp.
1980       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1981       if (Res) {
1982         Res->setName(TypeName);
1983         TypeList[NumRecords] = nullptr;
1984       } else  // Otherwise, create a new struct.
1985         Res = createIdentifiedStructType(Context, TypeName);
1986       TypeName.clear();
1987 
1988       SmallVector<Type*, 8> EltTys;
1989       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1990         if (Type *T = getTypeByID(Record[i]))
1991           EltTys.push_back(T);
1992         else
1993           break;
1994       }
1995       if (EltTys.size() != Record.size()-1)
1996         return error("Invalid named struct record");
1997       Res->setBody(EltTys, Record[0]);
1998       ContainedIDs.append(Record.begin() + 1, Record.end());
1999       ResultTy = Res;
2000       break;
2001     }
2002     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2003       if (Record.size() != 1)
2004         return error("Invalid opaque type record");
2005 
2006       if (NumRecords >= TypeList.size())
2007         return error("Invalid TYPE table");
2008 
2009       // Check to see if this was forward referenced, if so fill in the temp.
2010       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2011       if (Res) {
2012         Res->setName(TypeName);
2013         TypeList[NumRecords] = nullptr;
2014       } else  // Otherwise, create a new struct with no body.
2015         Res = createIdentifiedStructType(Context, TypeName);
2016       TypeName.clear();
2017       ResultTy = Res;
2018       break;
2019     }
2020     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2021       if (Record.size() < 2)
2022         return error("Invalid array type record");
2023       ResultTy = getTypeByID(Record[1]);
2024       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2025         return error("Invalid type");
2026       ContainedIDs.push_back(Record[1]);
2027       ResultTy = ArrayType::get(ResultTy, Record[0]);
2028       break;
2029     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2030                                     //         [numelts, eltty, scalable]
2031       if (Record.size() < 2)
2032         return error("Invalid vector type record");
2033       if (Record[0] == 0)
2034         return error("Invalid vector length");
2035       ResultTy = getTypeByID(Record[1]);
2036       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2037         return error("Invalid type");
2038       bool Scalable = Record.size() > 2 ? Record[2] : false;
2039       ContainedIDs.push_back(Record[1]);
2040       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2041       break;
2042     }
2043 
2044     if (NumRecords >= TypeList.size())
2045       return error("Invalid TYPE table");
2046     if (TypeList[NumRecords])
2047       return error(
2048           "Invalid TYPE table: Only named structs can be forward referenced");
2049     assert(ResultTy && "Didn't read a type?");
2050     TypeList[NumRecords] = ResultTy;
2051     if (!ContainedIDs.empty())
2052       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2053     ++NumRecords;
2054   }
2055 }
2056 
2057 Error BitcodeReader::parseOperandBundleTags() {
2058   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2059     return Err;
2060 
2061   if (!BundleTags.empty())
2062     return error("Invalid multiple blocks");
2063 
2064   SmallVector<uint64_t, 64> Record;
2065 
2066   while (true) {
2067     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2068     if (!MaybeEntry)
2069       return MaybeEntry.takeError();
2070     BitstreamEntry Entry = MaybeEntry.get();
2071 
2072     switch (Entry.Kind) {
2073     case BitstreamEntry::SubBlock: // Handled for us already.
2074     case BitstreamEntry::Error:
2075       return error("Malformed block");
2076     case BitstreamEntry::EndBlock:
2077       return Error::success();
2078     case BitstreamEntry::Record:
2079       // The interesting case.
2080       break;
2081     }
2082 
2083     // Tags are implicitly mapped to integers by their order.
2084 
2085     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2086     if (!MaybeRecord)
2087       return MaybeRecord.takeError();
2088     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2089       return error("Invalid operand bundle record");
2090 
2091     // OPERAND_BUNDLE_TAG: [strchr x N]
2092     BundleTags.emplace_back();
2093     if (convertToString(Record, 0, BundleTags.back()))
2094       return error("Invalid operand bundle record");
2095     Record.clear();
2096   }
2097 }
2098 
2099 Error BitcodeReader::parseSyncScopeNames() {
2100   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2101     return Err;
2102 
2103   if (!SSIDs.empty())
2104     return error("Invalid multiple synchronization scope names blocks");
2105 
2106   SmallVector<uint64_t, 64> Record;
2107   while (true) {
2108     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2109     if (!MaybeEntry)
2110       return MaybeEntry.takeError();
2111     BitstreamEntry Entry = MaybeEntry.get();
2112 
2113     switch (Entry.Kind) {
2114     case BitstreamEntry::SubBlock: // Handled for us already.
2115     case BitstreamEntry::Error:
2116       return error("Malformed block");
2117     case BitstreamEntry::EndBlock:
2118       if (SSIDs.empty())
2119         return error("Invalid empty synchronization scope names block");
2120       return Error::success();
2121     case BitstreamEntry::Record:
2122       // The interesting case.
2123       break;
2124     }
2125 
2126     // Synchronization scope names are implicitly mapped to synchronization
2127     // scope IDs by their order.
2128 
2129     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2130     if (!MaybeRecord)
2131       return MaybeRecord.takeError();
2132     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2133       return error("Invalid sync scope record");
2134 
2135     SmallString<16> SSN;
2136     if (convertToString(Record, 0, SSN))
2137       return error("Invalid sync scope record");
2138 
2139     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2140     Record.clear();
2141   }
2142 }
2143 
2144 /// Associate a value with its name from the given index in the provided record.
2145 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2146                                              unsigned NameIndex, Triple &TT) {
2147   SmallString<128> ValueName;
2148   if (convertToString(Record, NameIndex, ValueName))
2149     return error("Invalid record");
2150   unsigned ValueID = Record[0];
2151   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2152     return error("Invalid record");
2153   Value *V = ValueList[ValueID];
2154 
2155   StringRef NameStr(ValueName.data(), ValueName.size());
2156   if (NameStr.find_first_of(0) != StringRef::npos)
2157     return error("Invalid value name");
2158   V->setName(NameStr);
2159   auto *GO = dyn_cast<GlobalObject>(V);
2160   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2161     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2162   return V;
2163 }
2164 
2165 /// Helper to note and return the current location, and jump to the given
2166 /// offset.
2167 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2168                                                  BitstreamCursor &Stream) {
2169   // Save the current parsing location so we can jump back at the end
2170   // of the VST read.
2171   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2172   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2173     return std::move(JumpFailed);
2174   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2175   if (!MaybeEntry)
2176     return MaybeEntry.takeError();
2177   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2178       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2179     return error("Expected value symbol table subblock");
2180   return CurrentBit;
2181 }
2182 
2183 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2184                                             Function *F,
2185                                             ArrayRef<uint64_t> Record) {
2186   // Note that we subtract 1 here because the offset is relative to one word
2187   // before the start of the identification or module block, which was
2188   // historically always the start of the regular bitcode header.
2189   uint64_t FuncWordOffset = Record[1] - 1;
2190   uint64_t FuncBitOffset = FuncWordOffset * 32;
2191   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2192   // Set the LastFunctionBlockBit to point to the last function block.
2193   // Later when parsing is resumed after function materialization,
2194   // we can simply skip that last function block.
2195   if (FuncBitOffset > LastFunctionBlockBit)
2196     LastFunctionBlockBit = FuncBitOffset;
2197 }
2198 
2199 /// Read a new-style GlobalValue symbol table.
2200 Error BitcodeReader::parseGlobalValueSymbolTable() {
2201   unsigned FuncBitcodeOffsetDelta =
2202       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2203 
2204   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2205     return Err;
2206 
2207   SmallVector<uint64_t, 64> Record;
2208   while (true) {
2209     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2210     if (!MaybeEntry)
2211       return MaybeEntry.takeError();
2212     BitstreamEntry Entry = MaybeEntry.get();
2213 
2214     switch (Entry.Kind) {
2215     case BitstreamEntry::SubBlock:
2216     case BitstreamEntry::Error:
2217       return error("Malformed block");
2218     case BitstreamEntry::EndBlock:
2219       return Error::success();
2220     case BitstreamEntry::Record:
2221       break;
2222     }
2223 
2224     Record.clear();
2225     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2226     if (!MaybeRecord)
2227       return MaybeRecord.takeError();
2228     switch (MaybeRecord.get()) {
2229     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2230       unsigned ValueID = Record[0];
2231       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2232         return error("Invalid value reference in symbol table");
2233       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2234                               cast<Function>(ValueList[ValueID]), Record);
2235       break;
2236     }
2237     }
2238   }
2239 }
2240 
2241 /// Parse the value symbol table at either the current parsing location or
2242 /// at the given bit offset if provided.
2243 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2244   uint64_t CurrentBit;
2245   // Pass in the Offset to distinguish between calling for the module-level
2246   // VST (where we want to jump to the VST offset) and the function-level
2247   // VST (where we don't).
2248   if (Offset > 0) {
2249     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2250     if (!MaybeCurrentBit)
2251       return MaybeCurrentBit.takeError();
2252     CurrentBit = MaybeCurrentBit.get();
2253     // If this module uses a string table, read this as a module-level VST.
2254     if (UseStrtab) {
2255       if (Error Err = parseGlobalValueSymbolTable())
2256         return Err;
2257       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2258         return JumpFailed;
2259       return Error::success();
2260     }
2261     // Otherwise, the VST will be in a similar format to a function-level VST,
2262     // and will contain symbol names.
2263   }
2264 
2265   // Compute the delta between the bitcode indices in the VST (the word offset
2266   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2267   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2268   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2269   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2270   // just before entering the VST subblock because: 1) the EnterSubBlock
2271   // changes the AbbrevID width; 2) the VST block is nested within the same
2272   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2273   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2274   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2275   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2276   unsigned FuncBitcodeOffsetDelta =
2277       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2278 
2279   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2280     return Err;
2281 
2282   SmallVector<uint64_t, 64> Record;
2283 
2284   Triple TT(TheModule->getTargetTriple());
2285 
2286   // Read all the records for this value table.
2287   SmallString<128> ValueName;
2288 
2289   while (true) {
2290     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2291     if (!MaybeEntry)
2292       return MaybeEntry.takeError();
2293     BitstreamEntry Entry = MaybeEntry.get();
2294 
2295     switch (Entry.Kind) {
2296     case BitstreamEntry::SubBlock: // Handled for us already.
2297     case BitstreamEntry::Error:
2298       return error("Malformed block");
2299     case BitstreamEntry::EndBlock:
2300       if (Offset > 0)
2301         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2302           return JumpFailed;
2303       return Error::success();
2304     case BitstreamEntry::Record:
2305       // The interesting case.
2306       break;
2307     }
2308 
2309     // Read a record.
2310     Record.clear();
2311     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2312     if (!MaybeRecord)
2313       return MaybeRecord.takeError();
2314     switch (MaybeRecord.get()) {
2315     default:  // Default behavior: unknown type.
2316       break;
2317     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2318       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2319       if (Error Err = ValOrErr.takeError())
2320         return Err;
2321       ValOrErr.get();
2322       break;
2323     }
2324     case bitc::VST_CODE_FNENTRY: {
2325       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2326       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2327       if (Error Err = ValOrErr.takeError())
2328         return Err;
2329       Value *V = ValOrErr.get();
2330 
2331       // Ignore function offsets emitted for aliases of functions in older
2332       // versions of LLVM.
2333       if (auto *F = dyn_cast<Function>(V))
2334         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2335       break;
2336     }
2337     case bitc::VST_CODE_BBENTRY: {
2338       if (convertToString(Record, 1, ValueName))
2339         return error("Invalid bbentry record");
2340       BasicBlock *BB = getBasicBlock(Record[0]);
2341       if (!BB)
2342         return error("Invalid bbentry record");
2343 
2344       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2345       ValueName.clear();
2346       break;
2347     }
2348     }
2349   }
2350 }
2351 
2352 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2353 /// encoding.
2354 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2355   if ((V & 1) == 0)
2356     return V >> 1;
2357   if (V != 1)
2358     return -(V >> 1);
2359   // There is no such thing as -0 with integers.  "-0" really means MININT.
2360   return 1ULL << 63;
2361 }
2362 
2363 /// Resolve all of the initializers for global values and aliases that we can.
2364 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2365   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2366   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2367   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2368 
2369   GlobalInitWorklist.swap(GlobalInits);
2370   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2371   FunctionOperandWorklist.swap(FunctionOperands);
2372 
2373   while (!GlobalInitWorklist.empty()) {
2374     unsigned ValID = GlobalInitWorklist.back().second;
2375     if (ValID >= ValueList.size()) {
2376       // Not ready to resolve this yet, it requires something later in the file.
2377       GlobalInits.push_back(GlobalInitWorklist.back());
2378     } else {
2379       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2380         GlobalInitWorklist.back().first->setInitializer(C);
2381       else
2382         return error("Expected a constant");
2383     }
2384     GlobalInitWorklist.pop_back();
2385   }
2386 
2387   while (!IndirectSymbolInitWorklist.empty()) {
2388     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2389     if (ValID >= ValueList.size()) {
2390       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2391     } else {
2392       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2393       if (!C)
2394         return error("Expected a constant");
2395       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2396       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2397         if (C->getType() != GV->getType())
2398           return error("Alias and aliasee types don't match");
2399         GA->setAliasee(C);
2400       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2401         Type *ResolverFTy =
2402             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2403         // Transparently fix up the type for compatiblity with older bitcode
2404         GI->setResolver(
2405             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2406       } else {
2407         return error("Expected an alias or an ifunc");
2408       }
2409     }
2410     IndirectSymbolInitWorklist.pop_back();
2411   }
2412 
2413   while (!FunctionOperandWorklist.empty()) {
2414     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2415     if (Info.PersonalityFn) {
2416       unsigned ValID = Info.PersonalityFn - 1;
2417       if (ValID < ValueList.size()) {
2418         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2419           Info.F->setPersonalityFn(C);
2420         else
2421           return error("Expected a constant");
2422         Info.PersonalityFn = 0;
2423       }
2424     }
2425     if (Info.Prefix) {
2426       unsigned ValID = Info.Prefix - 1;
2427       if (ValID < ValueList.size()) {
2428         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2429           Info.F->setPrefixData(C);
2430         else
2431           return error("Expected a constant");
2432         Info.Prefix = 0;
2433       }
2434     }
2435     if (Info.Prologue) {
2436       unsigned ValID = Info.Prologue - 1;
2437       if (ValID < ValueList.size()) {
2438         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2439           Info.F->setPrologueData(C);
2440         else
2441           return error("Expected a constant");
2442         Info.Prologue = 0;
2443       }
2444     }
2445     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2446       FunctionOperands.push_back(Info);
2447     FunctionOperandWorklist.pop_back();
2448   }
2449 
2450   return Error::success();
2451 }
2452 
2453 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2454   SmallVector<uint64_t, 8> Words(Vals.size());
2455   transform(Vals, Words.begin(),
2456                  BitcodeReader::decodeSignRotatedValue);
2457 
2458   return APInt(TypeBits, Words);
2459 }
2460 
2461 Error BitcodeReader::parseConstants() {
2462   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2463     return Err;
2464 
2465   SmallVector<uint64_t, 64> Record;
2466 
2467   // Read all the records for this value table.
2468   Type *CurTy = Type::getInt32Ty(Context);
2469   unsigned Int32TyID = getVirtualTypeID(CurTy);
2470   unsigned CurTyID = Int32TyID;
2471   Type *CurElemTy = nullptr;
2472   unsigned NextCstNo = ValueList.size();
2473 
2474   struct DelayedShufTy {
2475     VectorType *OpTy;
2476     unsigned OpTyID;
2477     VectorType *RTy;
2478     uint64_t Op0Idx;
2479     uint64_t Op1Idx;
2480     uint64_t Op2Idx;
2481     unsigned CstNo;
2482   };
2483   std::vector<DelayedShufTy> DelayedShuffles;
2484   struct DelayedSelTy {
2485     Type *OpTy;
2486     unsigned OpTyID;
2487     uint64_t Op0Idx;
2488     uint64_t Op1Idx;
2489     uint64_t Op2Idx;
2490     unsigned CstNo;
2491   };
2492   std::vector<DelayedSelTy> DelayedSelectors;
2493 
2494   while (true) {
2495     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2496     if (!MaybeEntry)
2497       return MaybeEntry.takeError();
2498     BitstreamEntry Entry = MaybeEntry.get();
2499 
2500     switch (Entry.Kind) {
2501     case BitstreamEntry::SubBlock: // Handled for us already.
2502     case BitstreamEntry::Error:
2503       return error("Malformed block");
2504     case BitstreamEntry::EndBlock:
2505       // Once all the constants have been read, go through and resolve forward
2506       // references.
2507       //
2508       // We have to treat shuffles specially because they don't have three
2509       // operands anymore.  We need to convert the shuffle mask into an array,
2510       // and we can't convert a forward reference.
2511       for (auto &DelayedShuffle : DelayedShuffles) {
2512         VectorType *OpTy = DelayedShuffle.OpTy;
2513         unsigned OpTyID = DelayedShuffle.OpTyID;
2514         VectorType *RTy = DelayedShuffle.RTy;
2515         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2516         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2517         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2518         uint64_t CstNo = DelayedShuffle.CstNo;
2519         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID);
2520         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2521         Type *ShufTy =
2522             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2523         Constant *Op2 = ValueList.getConstantFwdRef(
2524             Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID));
2525         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2526           return error("Invalid shufflevector operands");
2527         SmallVector<int, 16> Mask;
2528         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2529         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2530         if (Error Err = ValueList.assignValue(
2531                 CstNo, V,
2532                 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID))))
2533           return Err;
2534       }
2535       for (auto &DelayedSelector : DelayedSelectors) {
2536         Type *OpTy = DelayedSelector.OpTy;
2537         unsigned OpTyID = DelayedSelector.OpTyID;
2538         Type *SelectorTy = Type::getInt1Ty(Context);
2539         unsigned SelectorTyID = getVirtualTypeID(SelectorTy);
2540         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2541         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2542         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2543         uint64_t CstNo = DelayedSelector.CstNo;
2544         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID);
2545         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID);
2546         // The selector might be an i1 or an <n x i1>
2547         // Get the type from the ValueList before getting a forward ref.
2548         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2549           Value *V = ValueList[Op0Idx];
2550           assert(V);
2551           if (SelectorTy != V->getType()) {
2552             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2553             SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID);
2554           }
2555         }
2556         Constant *Op0 =
2557             ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID);
2558         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2559         if (Error Err = ValueList.assignValue(CstNo, V, OpTyID))
2560           return Err;
2561       }
2562 
2563       if (NextCstNo != ValueList.size())
2564         return error("Invalid constant reference");
2565 
2566       ValueList.resolveConstantForwardRefs();
2567       return Error::success();
2568     case BitstreamEntry::Record:
2569       // The interesting case.
2570       break;
2571     }
2572 
2573     // Read a record.
2574     Record.clear();
2575     Type *VoidType = Type::getVoidTy(Context);
2576     Value *V = nullptr;
2577     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2578     if (!MaybeBitCode)
2579       return MaybeBitCode.takeError();
2580     switch (unsigned BitCode = MaybeBitCode.get()) {
2581     default:  // Default behavior: unknown constant
2582     case bitc::CST_CODE_UNDEF:     // UNDEF
2583       V = UndefValue::get(CurTy);
2584       break;
2585     case bitc::CST_CODE_POISON:    // POISON
2586       V = PoisonValue::get(CurTy);
2587       break;
2588     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2589       if (Record.empty())
2590         return error("Invalid settype record");
2591       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2592         return error("Invalid settype record");
2593       if (TypeList[Record[0]] == VoidType)
2594         return error("Invalid constant type");
2595       CurTyID = Record[0];
2596       CurTy = TypeList[CurTyID];
2597       CurElemTy = getPtrElementTypeByID(CurTyID);
2598       continue;  // Skip the ValueList manipulation.
2599     case bitc::CST_CODE_NULL:      // NULL
2600       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2601         return error("Invalid type for a constant null value");
2602       V = Constant::getNullValue(CurTy);
2603       break;
2604     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2605       if (!CurTy->isIntegerTy() || Record.empty())
2606         return error("Invalid integer const record");
2607       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2608       break;
2609     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2610       if (!CurTy->isIntegerTy() || Record.empty())
2611         return error("Invalid wide integer const record");
2612 
2613       APInt VInt =
2614           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2615       V = ConstantInt::get(Context, VInt);
2616 
2617       break;
2618     }
2619     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2620       if (Record.empty())
2621         return error("Invalid float const record");
2622       if (CurTy->isHalfTy())
2623         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2624                                              APInt(16, (uint16_t)Record[0])));
2625       else if (CurTy->isBFloatTy())
2626         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2627                                              APInt(16, (uint32_t)Record[0])));
2628       else if (CurTy->isFloatTy())
2629         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2630                                              APInt(32, (uint32_t)Record[0])));
2631       else if (CurTy->isDoubleTy())
2632         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2633                                              APInt(64, Record[0])));
2634       else if (CurTy->isX86_FP80Ty()) {
2635         // Bits are not stored the same way as a normal i80 APInt, compensate.
2636         uint64_t Rearrange[2];
2637         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2638         Rearrange[1] = Record[0] >> 48;
2639         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2640                                              APInt(80, Rearrange)));
2641       } else if (CurTy->isFP128Ty())
2642         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2643                                              APInt(128, Record)));
2644       else if (CurTy->isPPC_FP128Ty())
2645         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2646                                              APInt(128, Record)));
2647       else
2648         V = UndefValue::get(CurTy);
2649       break;
2650     }
2651 
2652     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2653       if (Record.empty())
2654         return error("Invalid aggregate record");
2655 
2656       unsigned Size = Record.size();
2657       SmallVector<Constant*, 16> Elts;
2658 
2659       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2660         for (unsigned i = 0; i != Size; ++i)
2661           Elts.push_back(ValueList.getConstantFwdRef(
2662               Record[i], STy->getElementType(i),
2663               getContainedTypeID(CurTyID, i)));
2664         V = ConstantStruct::get(STy, Elts);
2665       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2666         Type *EltTy = ATy->getElementType();
2667         unsigned EltTyID = getContainedTypeID(CurTyID);
2668         for (unsigned i = 0; i != Size; ++i)
2669           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2670                                                      EltTyID));
2671         V = ConstantArray::get(ATy, Elts);
2672       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2673         Type *EltTy = VTy->getElementType();
2674         unsigned EltTyID = getContainedTypeID(CurTyID);
2675         for (unsigned i = 0; i != Size; ++i)
2676           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy,
2677                                                      EltTyID));
2678         V = ConstantVector::get(Elts);
2679       } else {
2680         V = UndefValue::get(CurTy);
2681       }
2682       break;
2683     }
2684     case bitc::CST_CODE_STRING:    // STRING: [values]
2685     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2686       if (Record.empty())
2687         return error("Invalid string record");
2688 
2689       SmallString<16> Elts(Record.begin(), Record.end());
2690       V = ConstantDataArray::getString(Context, Elts,
2691                                        BitCode == bitc::CST_CODE_CSTRING);
2692       break;
2693     }
2694     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2695       if (Record.empty())
2696         return error("Invalid data record");
2697 
2698       Type *EltTy;
2699       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2700         EltTy = Array->getElementType();
2701       else
2702         EltTy = cast<VectorType>(CurTy)->getElementType();
2703       if (EltTy->isIntegerTy(8)) {
2704         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2705         if (isa<VectorType>(CurTy))
2706           V = ConstantDataVector::get(Context, Elts);
2707         else
2708           V = ConstantDataArray::get(Context, Elts);
2709       } else if (EltTy->isIntegerTy(16)) {
2710         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2711         if (isa<VectorType>(CurTy))
2712           V = ConstantDataVector::get(Context, Elts);
2713         else
2714           V = ConstantDataArray::get(Context, Elts);
2715       } else if (EltTy->isIntegerTy(32)) {
2716         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2717         if (isa<VectorType>(CurTy))
2718           V = ConstantDataVector::get(Context, Elts);
2719         else
2720           V = ConstantDataArray::get(Context, Elts);
2721       } else if (EltTy->isIntegerTy(64)) {
2722         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2723         if (isa<VectorType>(CurTy))
2724           V = ConstantDataVector::get(Context, Elts);
2725         else
2726           V = ConstantDataArray::get(Context, Elts);
2727       } else if (EltTy->isHalfTy()) {
2728         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2729         if (isa<VectorType>(CurTy))
2730           V = ConstantDataVector::getFP(EltTy, Elts);
2731         else
2732           V = ConstantDataArray::getFP(EltTy, Elts);
2733       } else if (EltTy->isBFloatTy()) {
2734         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2735         if (isa<VectorType>(CurTy))
2736           V = ConstantDataVector::getFP(EltTy, Elts);
2737         else
2738           V = ConstantDataArray::getFP(EltTy, Elts);
2739       } else if (EltTy->isFloatTy()) {
2740         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2741         if (isa<VectorType>(CurTy))
2742           V = ConstantDataVector::getFP(EltTy, Elts);
2743         else
2744           V = ConstantDataArray::getFP(EltTy, Elts);
2745       } else if (EltTy->isDoubleTy()) {
2746         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2747         if (isa<VectorType>(CurTy))
2748           V = ConstantDataVector::getFP(EltTy, Elts);
2749         else
2750           V = ConstantDataArray::getFP(EltTy, Elts);
2751       } else {
2752         return error("Invalid type for value");
2753       }
2754       break;
2755     }
2756     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2757       if (Record.size() < 2)
2758         return error("Invalid unary op constexpr record");
2759       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2760       if (Opc < 0) {
2761         V = UndefValue::get(CurTy);  // Unknown unop.
2762       } else {
2763         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2764         unsigned Flags = 0;
2765         V = ConstantExpr::get(Opc, LHS, Flags);
2766       }
2767       break;
2768     }
2769     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2770       if (Record.size() < 3)
2771         return error("Invalid binary op constexpr record");
2772       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2773       if (Opc < 0) {
2774         V = UndefValue::get(CurTy);  // Unknown binop.
2775       } else {
2776         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID);
2777         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID);
2778         unsigned Flags = 0;
2779         if (Record.size() >= 4) {
2780           if (Opc == Instruction::Add ||
2781               Opc == Instruction::Sub ||
2782               Opc == Instruction::Mul ||
2783               Opc == Instruction::Shl) {
2784             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2785               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2786             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2787               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2788           } else if (Opc == Instruction::SDiv ||
2789                      Opc == Instruction::UDiv ||
2790                      Opc == Instruction::LShr ||
2791                      Opc == Instruction::AShr) {
2792             if (Record[3] & (1 << bitc::PEO_EXACT))
2793               Flags |= SDivOperator::IsExact;
2794           }
2795         }
2796         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2797       }
2798       break;
2799     }
2800     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2801       if (Record.size() < 3)
2802         return error("Invalid cast constexpr record");
2803       int Opc = getDecodedCastOpcode(Record[0]);
2804       if (Opc < 0) {
2805         V = UndefValue::get(CurTy);  // Unknown cast.
2806       } else {
2807         unsigned OpTyID = Record[1];
2808         Type *OpTy = getTypeByID(OpTyID);
2809         if (!OpTy)
2810           return error("Invalid cast constexpr record");
2811         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2812         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2813         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2814       }
2815       break;
2816     }
2817     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2818     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2819     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2820                                                      // operands]
2821       if (Record.size() < 2)
2822         return error("Constant GEP record must have at least two elements");
2823       unsigned OpNum = 0;
2824       Type *PointeeType = nullptr;
2825       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2826           Record.size() % 2)
2827         PointeeType = getTypeByID(Record[OpNum++]);
2828 
2829       bool InBounds = false;
2830       Optional<unsigned> InRangeIndex;
2831       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2832         uint64_t Op = Record[OpNum++];
2833         InBounds = Op & 1;
2834         InRangeIndex = Op >> 1;
2835       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2836         InBounds = true;
2837 
2838       SmallVector<Constant*, 16> Elts;
2839       unsigned BaseTypeID = Record[OpNum];
2840       while (OpNum != Record.size()) {
2841         unsigned ElTyID = Record[OpNum++];
2842         Type *ElTy = getTypeByID(ElTyID);
2843         if (!ElTy)
2844           return error("Invalid getelementptr constexpr record");
2845         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy,
2846                                                    ElTyID));
2847       }
2848 
2849       if (Elts.size() < 1)
2850         return error("Invalid gep with no operands");
2851 
2852       Type *BaseType = getTypeByID(BaseTypeID);
2853       if (isa<VectorType>(BaseType)) {
2854         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
2855         BaseType = getTypeByID(BaseTypeID);
2856       }
2857 
2858       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
2859       if (!OrigPtrTy)
2860         return error("GEP base operand must be pointer or vector of pointer");
2861 
2862       if (!PointeeType) {
2863         PointeeType = getPtrElementTypeByID(BaseTypeID);
2864         if (!PointeeType)
2865           return error("Missing element type for old-style constant GEP");
2866       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2867         return error("Explicit gep operator type does not match pointee type "
2868                      "of pointer operand");
2869 
2870       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2871       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2872                                          InBounds, InRangeIndex);
2873       break;
2874     }
2875     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2876       if (Record.size() < 3)
2877         return error("Invalid select constexpr record");
2878 
2879       DelayedSelectors.push_back(
2880           {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo});
2881       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID);
2882       ++NextCstNo;
2883       continue;
2884     }
2885     case bitc::CST_CODE_CE_EXTRACTELT
2886         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2887       if (Record.size() < 3)
2888         return error("Invalid extractelement constexpr record");
2889       unsigned OpTyID = Record[0];
2890       VectorType *OpTy =
2891         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
2892       if (!OpTy)
2893         return error("Invalid extractelement constexpr record");
2894       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2895       Constant *Op1 = nullptr;
2896       if (Record.size() == 4) {
2897         unsigned IdxTyID = Record[2];
2898         Type *IdxTy = getTypeByID(IdxTyID);
2899         if (!IdxTy)
2900           return error("Invalid extractelement constexpr record");
2901         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2902       } else {
2903         // Deprecated, but still needed to read old bitcode files.
2904         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2905                                           Int32TyID);
2906       }
2907       if (!Op1)
2908         return error("Invalid extractelement constexpr record");
2909       V = ConstantExpr::getExtractElement(Op0, Op1);
2910       break;
2911     }
2912     case bitc::CST_CODE_CE_INSERTELT
2913         : { // CE_INSERTELT: [opval, opval, opty, opval]
2914       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2915       if (Record.size() < 3 || !OpTy)
2916         return error("Invalid insertelement constexpr record");
2917       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID);
2918       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2919                                                   OpTy->getElementType(),
2920                                                   getContainedTypeID(CurTyID));
2921       Constant *Op2 = nullptr;
2922       if (Record.size() == 4) {
2923         unsigned IdxTyID = Record[2];
2924         Type *IdxTy = getTypeByID(IdxTyID);
2925         if (!IdxTy)
2926           return error("Invalid insertelement constexpr record");
2927         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID);
2928       } else {
2929         // Deprecated, but still needed to read old bitcode files.
2930         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context),
2931                                           Int32TyID);
2932       }
2933       if (!Op2)
2934         return error("Invalid insertelement constexpr record");
2935       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2936       break;
2937     }
2938     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2939       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2940       if (Record.size() < 3 || !OpTy)
2941         return error("Invalid shufflevector constexpr record");
2942       DelayedShuffles.push_back(
2943           {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2944       ++NextCstNo;
2945       continue;
2946     }
2947     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2948       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2949       VectorType *OpTy =
2950         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2951       if (Record.size() < 4 || !RTy || !OpTy)
2952         return error("Invalid shufflevector constexpr record");
2953       DelayedShuffles.push_back(
2954           {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo});
2955       ++NextCstNo;
2956       continue;
2957     }
2958     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2959       if (Record.size() < 4)
2960         return error("Invalid cmp constexpt record");
2961       unsigned OpTyID = Record[0];
2962       Type *OpTy = getTypeByID(OpTyID);
2963       if (!OpTy)
2964         return error("Invalid cmp constexpr record");
2965       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID);
2966       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID);
2967 
2968       if (OpTy->isFPOrFPVectorTy())
2969         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2970       else
2971         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2972       break;
2973     }
2974     // This maintains backward compatibility, pre-asm dialect keywords.
2975     // Deprecated, but still needed to read old bitcode files.
2976     case bitc::CST_CODE_INLINEASM_OLD: {
2977       if (Record.size() < 2)
2978         return error("Invalid inlineasm record");
2979       std::string AsmStr, ConstrStr;
2980       bool HasSideEffects = Record[0] & 1;
2981       bool IsAlignStack = Record[0] >> 1;
2982       unsigned AsmStrSize = Record[1];
2983       if (2+AsmStrSize >= Record.size())
2984         return error("Invalid inlineasm record");
2985       unsigned ConstStrSize = Record[2+AsmStrSize];
2986       if (3+AsmStrSize+ConstStrSize > Record.size())
2987         return error("Invalid inlineasm record");
2988 
2989       for (unsigned i = 0; i != AsmStrSize; ++i)
2990         AsmStr += (char)Record[2+i];
2991       for (unsigned i = 0; i != ConstStrSize; ++i)
2992         ConstrStr += (char)Record[3+AsmStrSize+i];
2993       UpgradeInlineAsmString(&AsmStr);
2994       if (!CurElemTy)
2995         return error("Missing element type for old-style inlineasm");
2996       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
2997                          HasSideEffects, IsAlignStack);
2998       break;
2999     }
3000     // This version adds support for the asm dialect keywords (e.g.,
3001     // inteldialect).
3002     case bitc::CST_CODE_INLINEASM_OLD2: {
3003       if (Record.size() < 2)
3004         return error("Invalid inlineasm record");
3005       std::string AsmStr, ConstrStr;
3006       bool HasSideEffects = Record[0] & 1;
3007       bool IsAlignStack = (Record[0] >> 1) & 1;
3008       unsigned AsmDialect = Record[0] >> 2;
3009       unsigned AsmStrSize = Record[1];
3010       if (2+AsmStrSize >= Record.size())
3011         return error("Invalid inlineasm record");
3012       unsigned ConstStrSize = Record[2+AsmStrSize];
3013       if (3+AsmStrSize+ConstStrSize > Record.size())
3014         return error("Invalid inlineasm record");
3015 
3016       for (unsigned i = 0; i != AsmStrSize; ++i)
3017         AsmStr += (char)Record[2+i];
3018       for (unsigned i = 0; i != ConstStrSize; ++i)
3019         ConstrStr += (char)Record[3+AsmStrSize+i];
3020       UpgradeInlineAsmString(&AsmStr);
3021       if (!CurElemTy)
3022         return error("Missing element type for old-style inlineasm");
3023       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3024                          HasSideEffects, IsAlignStack,
3025                          InlineAsm::AsmDialect(AsmDialect));
3026       break;
3027     }
3028     // This version adds support for the unwind keyword.
3029     case bitc::CST_CODE_INLINEASM_OLD3: {
3030       if (Record.size() < 2)
3031         return error("Invalid inlineasm record");
3032       unsigned OpNum = 0;
3033       std::string AsmStr, ConstrStr;
3034       bool HasSideEffects = Record[OpNum] & 1;
3035       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3036       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3037       bool CanThrow = (Record[OpNum] >> 3) & 1;
3038       ++OpNum;
3039       unsigned AsmStrSize = Record[OpNum];
3040       ++OpNum;
3041       if (OpNum + AsmStrSize >= Record.size())
3042         return error("Invalid inlineasm record");
3043       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3044       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3045         return error("Invalid inlineasm record");
3046 
3047       for (unsigned i = 0; i != AsmStrSize; ++i)
3048         AsmStr += (char)Record[OpNum + i];
3049       ++OpNum;
3050       for (unsigned i = 0; i != ConstStrSize; ++i)
3051         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3052       UpgradeInlineAsmString(&AsmStr);
3053       if (!CurElemTy)
3054         return error("Missing element type for old-style inlineasm");
3055       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3056                          HasSideEffects, IsAlignStack,
3057                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3058       break;
3059     }
3060     // This version adds explicit function type.
3061     case bitc::CST_CODE_INLINEASM: {
3062       if (Record.size() < 3)
3063         return error("Invalid inlineasm record");
3064       unsigned OpNum = 0;
3065       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3066       ++OpNum;
3067       if (!FnTy)
3068         return error("Invalid inlineasm record");
3069       std::string AsmStr, ConstrStr;
3070       bool HasSideEffects = Record[OpNum] & 1;
3071       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3072       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3073       bool CanThrow = (Record[OpNum] >> 3) & 1;
3074       ++OpNum;
3075       unsigned AsmStrSize = Record[OpNum];
3076       ++OpNum;
3077       if (OpNum + AsmStrSize >= Record.size())
3078         return error("Invalid inlineasm record");
3079       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3080       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3081         return error("Invalid inlineasm record");
3082 
3083       for (unsigned i = 0; i != AsmStrSize; ++i)
3084         AsmStr += (char)Record[OpNum + i];
3085       ++OpNum;
3086       for (unsigned i = 0; i != ConstStrSize; ++i)
3087         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3088       UpgradeInlineAsmString(&AsmStr);
3089       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3090                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3091       break;
3092     }
3093     case bitc::CST_CODE_BLOCKADDRESS:{
3094       if (Record.size() < 3)
3095         return error("Invalid blockaddress record");
3096       unsigned FnTyID = Record[0];
3097       Type *FnTy = getTypeByID(FnTyID);
3098       if (!FnTy)
3099         return error("Invalid blockaddress record");
3100       Function *Fn = dyn_cast_or_null<Function>(
3101           ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID));
3102       if (!Fn)
3103         return error("Invalid blockaddress record");
3104 
3105       // If the function is already parsed we can insert the block address right
3106       // away.
3107       BasicBlock *BB;
3108       unsigned BBID = Record[2];
3109       if (!BBID)
3110         // Invalid reference to entry block.
3111         return error("Invalid ID");
3112       if (!Fn->empty()) {
3113         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3114         for (size_t I = 0, E = BBID; I != E; ++I) {
3115           if (BBI == BBE)
3116             return error("Invalid ID");
3117           ++BBI;
3118         }
3119         BB = &*BBI;
3120       } else {
3121         // Otherwise insert a placeholder and remember it so it can be inserted
3122         // when the function is parsed.
3123         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3124         if (FwdBBs.empty())
3125           BasicBlockFwdRefQueue.push_back(Fn);
3126         if (FwdBBs.size() < BBID + 1)
3127           FwdBBs.resize(BBID + 1);
3128         if (!FwdBBs[BBID])
3129           FwdBBs[BBID] = BasicBlock::Create(Context);
3130         BB = FwdBBs[BBID];
3131       }
3132       V = BlockAddress::get(Fn, BB);
3133       break;
3134     }
3135     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3136       if (Record.size() < 2)
3137         return error("Invalid dso_local record");
3138       unsigned GVTyID = Record[0];
3139       Type *GVTy = getTypeByID(GVTyID);
3140       if (!GVTy)
3141         return error("Invalid dso_local record");
3142       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3143           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3144       if (!GV)
3145         return error("Invalid dso_local record");
3146 
3147       V = DSOLocalEquivalent::get(GV);
3148       break;
3149     }
3150     case bitc::CST_CODE_NO_CFI_VALUE: {
3151       if (Record.size() < 2)
3152         return error("Invalid no_cfi record");
3153       unsigned GVTyID = Record[0];
3154       Type *GVTy = getTypeByID(GVTyID);
3155       if (!GVTy)
3156         return error("Invalid no_cfi record");
3157       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
3158           ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID));
3159       if (!GV)
3160         return error("Invalid no_cfi record");
3161       V = NoCFIValue::get(GV);
3162       break;
3163     }
3164     }
3165 
3166     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3167     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3168       return Err;
3169     ++NextCstNo;
3170   }
3171 }
3172 
3173 Error BitcodeReader::parseUseLists() {
3174   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3175     return Err;
3176 
3177   // Read all the records.
3178   SmallVector<uint64_t, 64> Record;
3179 
3180   while (true) {
3181     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3182     if (!MaybeEntry)
3183       return MaybeEntry.takeError();
3184     BitstreamEntry Entry = MaybeEntry.get();
3185 
3186     switch (Entry.Kind) {
3187     case BitstreamEntry::SubBlock: // Handled for us already.
3188     case BitstreamEntry::Error:
3189       return error("Malformed block");
3190     case BitstreamEntry::EndBlock:
3191       return Error::success();
3192     case BitstreamEntry::Record:
3193       // The interesting case.
3194       break;
3195     }
3196 
3197     // Read a use list record.
3198     Record.clear();
3199     bool IsBB = false;
3200     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3201     if (!MaybeRecord)
3202       return MaybeRecord.takeError();
3203     switch (MaybeRecord.get()) {
3204     default:  // Default behavior: unknown type.
3205       break;
3206     case bitc::USELIST_CODE_BB:
3207       IsBB = true;
3208       LLVM_FALLTHROUGH;
3209     case bitc::USELIST_CODE_DEFAULT: {
3210       unsigned RecordLength = Record.size();
3211       if (RecordLength < 3)
3212         // Records should have at least an ID and two indexes.
3213         return error("Invalid record");
3214       unsigned ID = Record.pop_back_val();
3215 
3216       Value *V;
3217       if (IsBB) {
3218         assert(ID < FunctionBBs.size() && "Basic block not found");
3219         V = FunctionBBs[ID];
3220       } else
3221         V = ValueList[ID];
3222       unsigned NumUses = 0;
3223       SmallDenseMap<const Use *, unsigned, 16> Order;
3224       for (const Use &U : V->materialized_uses()) {
3225         if (++NumUses > Record.size())
3226           break;
3227         Order[&U] = Record[NumUses - 1];
3228       }
3229       if (Order.size() != Record.size() || NumUses > Record.size())
3230         // Mismatches can happen if the functions are being materialized lazily
3231         // (out-of-order), or a value has been upgraded.
3232         break;
3233 
3234       V->sortUseList([&](const Use &L, const Use &R) {
3235         return Order.lookup(&L) < Order.lookup(&R);
3236       });
3237       break;
3238     }
3239     }
3240   }
3241 }
3242 
3243 /// When we see the block for metadata, remember where it is and then skip it.
3244 /// This lets us lazily deserialize the metadata.
3245 Error BitcodeReader::rememberAndSkipMetadata() {
3246   // Save the current stream state.
3247   uint64_t CurBit = Stream.GetCurrentBitNo();
3248   DeferredMetadataInfo.push_back(CurBit);
3249 
3250   // Skip over the block for now.
3251   if (Error Err = Stream.SkipBlock())
3252     return Err;
3253   return Error::success();
3254 }
3255 
3256 Error BitcodeReader::materializeMetadata() {
3257   for (uint64_t BitPos : DeferredMetadataInfo) {
3258     // Move the bit stream to the saved position.
3259     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3260       return JumpFailed;
3261     if (Error Err = MDLoader->parseModuleMetadata())
3262       return Err;
3263   }
3264 
3265   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3266   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3267   // multiple times.
3268   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3269     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3270       NamedMDNode *LinkerOpts =
3271           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3272       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3273         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3274     }
3275   }
3276 
3277   DeferredMetadataInfo.clear();
3278   return Error::success();
3279 }
3280 
3281 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3282 
3283 /// When we see the block for a function body, remember where it is and then
3284 /// skip it.  This lets us lazily deserialize the functions.
3285 Error BitcodeReader::rememberAndSkipFunctionBody() {
3286   // Get the function we are talking about.
3287   if (FunctionsWithBodies.empty())
3288     return error("Insufficient function protos");
3289 
3290   Function *Fn = FunctionsWithBodies.back();
3291   FunctionsWithBodies.pop_back();
3292 
3293   // Save the current stream state.
3294   uint64_t CurBit = Stream.GetCurrentBitNo();
3295   assert(
3296       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3297       "Mismatch between VST and scanned function offsets");
3298   DeferredFunctionInfo[Fn] = CurBit;
3299 
3300   // Skip over the function block for now.
3301   if (Error Err = Stream.SkipBlock())
3302     return Err;
3303   return Error::success();
3304 }
3305 
3306 Error BitcodeReader::globalCleanup() {
3307   // Patch the initializers for globals and aliases up.
3308   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3309     return Err;
3310   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3311     return error("Malformed global initializer set");
3312 
3313   // Look for intrinsic functions which need to be upgraded at some point
3314   // and functions that need to have their function attributes upgraded.
3315   for (Function &F : *TheModule) {
3316     MDLoader->upgradeDebugIntrinsics(F);
3317     Function *NewFn;
3318     if (UpgradeIntrinsicFunction(&F, NewFn))
3319       UpgradedIntrinsics[&F] = NewFn;
3320     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3321       // Some types could be renamed during loading if several modules are
3322       // loaded in the same LLVMContext (LTO scenario). In this case we should
3323       // remangle intrinsics names as well.
3324       RemangledIntrinsics[&F] = Remangled.getValue();
3325     // Look for functions that rely on old function attribute behavior.
3326     UpgradeFunctionAttributes(F);
3327   }
3328 
3329   // Look for global variables which need to be renamed.
3330   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3331   for (GlobalVariable &GV : TheModule->globals())
3332     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3333       UpgradedVariables.emplace_back(&GV, Upgraded);
3334   for (auto &Pair : UpgradedVariables) {
3335     Pair.first->eraseFromParent();
3336     TheModule->getGlobalList().push_back(Pair.second);
3337   }
3338 
3339   // Force deallocation of memory for these vectors to favor the client that
3340   // want lazy deserialization.
3341   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3342   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3343   return Error::success();
3344 }
3345 
3346 /// Support for lazy parsing of function bodies. This is required if we
3347 /// either have an old bitcode file without a VST forward declaration record,
3348 /// or if we have an anonymous function being materialized, since anonymous
3349 /// functions do not have a name and are therefore not in the VST.
3350 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3351   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3352     return JumpFailed;
3353 
3354   if (Stream.AtEndOfStream())
3355     return error("Could not find function in stream");
3356 
3357   if (!SeenFirstFunctionBody)
3358     return error("Trying to materialize functions before seeing function blocks");
3359 
3360   // An old bitcode file with the symbol table at the end would have
3361   // finished the parse greedily.
3362   assert(SeenValueSymbolTable);
3363 
3364   SmallVector<uint64_t, 64> Record;
3365 
3366   while (true) {
3367     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3368     if (!MaybeEntry)
3369       return MaybeEntry.takeError();
3370     llvm::BitstreamEntry Entry = MaybeEntry.get();
3371 
3372     switch (Entry.Kind) {
3373     default:
3374       return error("Expect SubBlock");
3375     case BitstreamEntry::SubBlock:
3376       switch (Entry.ID) {
3377       default:
3378         return error("Expect function block");
3379       case bitc::FUNCTION_BLOCK_ID:
3380         if (Error Err = rememberAndSkipFunctionBody())
3381           return Err;
3382         NextUnreadBit = Stream.GetCurrentBitNo();
3383         return Error::success();
3384       }
3385     }
3386   }
3387 }
3388 
3389 Error BitcodeReaderBase::readBlockInfo() {
3390   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3391       Stream.ReadBlockInfoBlock();
3392   if (!MaybeNewBlockInfo)
3393     return MaybeNewBlockInfo.takeError();
3394   Optional<BitstreamBlockInfo> NewBlockInfo =
3395       std::move(MaybeNewBlockInfo.get());
3396   if (!NewBlockInfo)
3397     return error("Malformed block");
3398   BlockInfo = std::move(*NewBlockInfo);
3399   return Error::success();
3400 }
3401 
3402 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3403   // v1: [selection_kind, name]
3404   // v2: [strtab_offset, strtab_size, selection_kind]
3405   StringRef Name;
3406   std::tie(Name, Record) = readNameFromStrtab(Record);
3407 
3408   if (Record.empty())
3409     return error("Invalid record");
3410   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3411   std::string OldFormatName;
3412   if (!UseStrtab) {
3413     if (Record.size() < 2)
3414       return error("Invalid record");
3415     unsigned ComdatNameSize = Record[1];
3416     if (ComdatNameSize > Record.size() - 2)
3417       return error("Comdat name size too large");
3418     OldFormatName.reserve(ComdatNameSize);
3419     for (unsigned i = 0; i != ComdatNameSize; ++i)
3420       OldFormatName += (char)Record[2 + i];
3421     Name = OldFormatName;
3422   }
3423   Comdat *C = TheModule->getOrInsertComdat(Name);
3424   C->setSelectionKind(SK);
3425   ComdatList.push_back(C);
3426   return Error::success();
3427 }
3428 
3429 static void inferDSOLocal(GlobalValue *GV) {
3430   // infer dso_local from linkage and visibility if it is not encoded.
3431   if (GV->hasLocalLinkage() ||
3432       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3433     GV->setDSOLocal(true);
3434 }
3435 
3436 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3437   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3438   // visibility, threadlocal, unnamed_addr, externally_initialized,
3439   // dllstorageclass, comdat, attributes, preemption specifier,
3440   // partition strtab offset, partition strtab size] (name in VST)
3441   // v2: [strtab_offset, strtab_size, v1]
3442   StringRef Name;
3443   std::tie(Name, Record) = readNameFromStrtab(Record);
3444 
3445   if (Record.size() < 6)
3446     return error("Invalid record");
3447   unsigned TyID = Record[0];
3448   Type *Ty = getTypeByID(TyID);
3449   if (!Ty)
3450     return error("Invalid record");
3451   bool isConstant = Record[1] & 1;
3452   bool explicitType = Record[1] & 2;
3453   unsigned AddressSpace;
3454   if (explicitType) {
3455     AddressSpace = Record[1] >> 2;
3456   } else {
3457     if (!Ty->isPointerTy())
3458       return error("Invalid type for value");
3459     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3460     TyID = getContainedTypeID(TyID);
3461     Ty = getTypeByID(TyID);
3462     if (!Ty)
3463       return error("Missing element type for old-style global");
3464   }
3465 
3466   uint64_t RawLinkage = Record[3];
3467   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3468   MaybeAlign Alignment;
3469   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3470     return Err;
3471   std::string Section;
3472   if (Record[5]) {
3473     if (Record[5] - 1 >= SectionTable.size())
3474       return error("Invalid ID");
3475     Section = SectionTable[Record[5] - 1];
3476   }
3477   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3478   // Local linkage must have default visibility.
3479   // auto-upgrade `hidden` and `protected` for old bitcode.
3480   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3481     Visibility = getDecodedVisibility(Record[6]);
3482 
3483   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3484   if (Record.size() > 7)
3485     TLM = getDecodedThreadLocalMode(Record[7]);
3486 
3487   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3488   if (Record.size() > 8)
3489     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3490 
3491   bool ExternallyInitialized = false;
3492   if (Record.size() > 9)
3493     ExternallyInitialized = Record[9];
3494 
3495   GlobalVariable *NewGV =
3496       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3497                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3498   NewGV->setAlignment(Alignment);
3499   if (!Section.empty())
3500     NewGV->setSection(Section);
3501   NewGV->setVisibility(Visibility);
3502   NewGV->setUnnamedAddr(UnnamedAddr);
3503 
3504   if (Record.size() > 10)
3505     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3506   else
3507     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3508 
3509   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3510 
3511   // Remember which value to use for the global initializer.
3512   if (unsigned InitID = Record[2])
3513     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3514 
3515   if (Record.size() > 11) {
3516     if (unsigned ComdatID = Record[11]) {
3517       if (ComdatID > ComdatList.size())
3518         return error("Invalid global variable comdat ID");
3519       NewGV->setComdat(ComdatList[ComdatID - 1]);
3520     }
3521   } else if (hasImplicitComdat(RawLinkage)) {
3522     ImplicitComdatObjects.insert(NewGV);
3523   }
3524 
3525   if (Record.size() > 12) {
3526     auto AS = getAttributes(Record[12]).getFnAttrs();
3527     NewGV->setAttributes(AS);
3528   }
3529 
3530   if (Record.size() > 13) {
3531     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3532   }
3533   inferDSOLocal(NewGV);
3534 
3535   // Check whether we have enough values to read a partition name.
3536   if (Record.size() > 15)
3537     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3538 
3539   return Error::success();
3540 }
3541 
3542 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3543   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3544   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3545   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3546   // v2: [strtab_offset, strtab_size, v1]
3547   StringRef Name;
3548   std::tie(Name, Record) = readNameFromStrtab(Record);
3549 
3550   if (Record.size() < 8)
3551     return error("Invalid record");
3552   unsigned FTyID = Record[0];
3553   Type *FTy = getTypeByID(FTyID);
3554   if (!FTy)
3555     return error("Invalid record");
3556   if (isa<PointerType>(FTy)) {
3557     FTyID = getContainedTypeID(FTyID, 0);
3558     FTy = getTypeByID(FTyID);
3559     if (!FTy)
3560       return error("Missing element type for old-style function");
3561   }
3562 
3563   if (!isa<FunctionType>(FTy))
3564     return error("Invalid type for value");
3565   auto CC = static_cast<CallingConv::ID>(Record[1]);
3566   if (CC & ~CallingConv::MaxID)
3567     return error("Invalid calling convention ID");
3568 
3569   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3570   if (Record.size() > 16)
3571     AddrSpace = Record[16];
3572 
3573   Function *Func =
3574       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3575                        AddrSpace, Name, TheModule);
3576 
3577   assert(Func->getFunctionType() == FTy &&
3578          "Incorrect fully specified type provided for function");
3579   FunctionTypeIDs[Func] = FTyID;
3580 
3581   Func->setCallingConv(CC);
3582   bool isProto = Record[2];
3583   uint64_t RawLinkage = Record[3];
3584   Func->setLinkage(getDecodedLinkage(RawLinkage));
3585   Func->setAttributes(getAttributes(Record[4]));
3586 
3587   // Upgrade any old-style byval or sret without a type by propagating the
3588   // argument's pointee type. There should be no opaque pointers where the byval
3589   // type is implicit.
3590   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3591     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3592                                      Attribute::InAlloca}) {
3593       if (!Func->hasParamAttribute(i, Kind))
3594         continue;
3595 
3596       if (Func->getParamAttribute(i, Kind).getValueAsType())
3597         continue;
3598 
3599       Func->removeParamAttr(i, Kind);
3600 
3601       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3602       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3603       if (!PtrEltTy)
3604         return error("Missing param element type for attribute upgrade");
3605 
3606       Attribute NewAttr;
3607       switch (Kind) {
3608       case Attribute::ByVal:
3609         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3610         break;
3611       case Attribute::StructRet:
3612         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3613         break;
3614       case Attribute::InAlloca:
3615         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3616         break;
3617       default:
3618         llvm_unreachable("not an upgraded type attribute");
3619       }
3620 
3621       Func->addParamAttr(i, NewAttr);
3622     }
3623   }
3624 
3625   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3626       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3627     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3628     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3629     if (!ByValTy)
3630       return error("Missing param element type for x86_intrcc upgrade");
3631     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3632     Func->addParamAttr(0, NewAttr);
3633   }
3634 
3635   MaybeAlign Alignment;
3636   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3637     return Err;
3638   Func->setAlignment(Alignment);
3639   if (Record[6]) {
3640     if (Record[6] - 1 >= SectionTable.size())
3641       return error("Invalid ID");
3642     Func->setSection(SectionTable[Record[6] - 1]);
3643   }
3644   // Local linkage must have default visibility.
3645   // auto-upgrade `hidden` and `protected` for old bitcode.
3646   if (!Func->hasLocalLinkage())
3647     Func->setVisibility(getDecodedVisibility(Record[7]));
3648   if (Record.size() > 8 && Record[8]) {
3649     if (Record[8] - 1 >= GCTable.size())
3650       return error("Invalid ID");
3651     Func->setGC(GCTable[Record[8] - 1]);
3652   }
3653   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3654   if (Record.size() > 9)
3655     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3656   Func->setUnnamedAddr(UnnamedAddr);
3657 
3658   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3659   if (Record.size() > 10)
3660     OperandInfo.Prologue = Record[10];
3661 
3662   if (Record.size() > 11)
3663     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3664   else
3665     upgradeDLLImportExportLinkage(Func, RawLinkage);
3666 
3667   if (Record.size() > 12) {
3668     if (unsigned ComdatID = Record[12]) {
3669       if (ComdatID > ComdatList.size())
3670         return error("Invalid function comdat ID");
3671       Func->setComdat(ComdatList[ComdatID - 1]);
3672     }
3673   } else if (hasImplicitComdat(RawLinkage)) {
3674     ImplicitComdatObjects.insert(Func);
3675   }
3676 
3677   if (Record.size() > 13)
3678     OperandInfo.Prefix = Record[13];
3679 
3680   if (Record.size() > 14)
3681     OperandInfo.PersonalityFn = Record[14];
3682 
3683   if (Record.size() > 15) {
3684     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3685   }
3686   inferDSOLocal(Func);
3687 
3688   // Record[16] is the address space number.
3689 
3690   // Check whether we have enough values to read a partition name. Also make
3691   // sure Strtab has enough values.
3692   if (Record.size() > 18 && Strtab.data() &&
3693       Record[17] + Record[18] <= Strtab.size()) {
3694     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3695   }
3696 
3697   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3698 
3699   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3700     FunctionOperands.push_back(OperandInfo);
3701 
3702   // If this is a function with a body, remember the prototype we are
3703   // creating now, so that we can match up the body with them later.
3704   if (!isProto) {
3705     Func->setIsMaterializable(true);
3706     FunctionsWithBodies.push_back(Func);
3707     DeferredFunctionInfo[Func] = 0;
3708   }
3709   return Error::success();
3710 }
3711 
3712 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3713     unsigned BitCode, ArrayRef<uint64_t> Record) {
3714   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3715   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3716   // dllstorageclass, threadlocal, unnamed_addr,
3717   // preemption specifier] (name in VST)
3718   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3719   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3720   // preemption specifier] (name in VST)
3721   // v2: [strtab_offset, strtab_size, v1]
3722   StringRef Name;
3723   std::tie(Name, Record) = readNameFromStrtab(Record);
3724 
3725   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3726   if (Record.size() < (3 + (unsigned)NewRecord))
3727     return error("Invalid record");
3728   unsigned OpNum = 0;
3729   unsigned TypeID = Record[OpNum++];
3730   Type *Ty = getTypeByID(TypeID);
3731   if (!Ty)
3732     return error("Invalid record");
3733 
3734   unsigned AddrSpace;
3735   if (!NewRecord) {
3736     auto *PTy = dyn_cast<PointerType>(Ty);
3737     if (!PTy)
3738       return error("Invalid type for value");
3739     AddrSpace = PTy->getAddressSpace();
3740     TypeID = getContainedTypeID(TypeID);
3741     Ty = getTypeByID(TypeID);
3742     if (!Ty)
3743       return error("Missing element type for old-style indirect symbol");
3744   } else {
3745     AddrSpace = Record[OpNum++];
3746   }
3747 
3748   auto Val = Record[OpNum++];
3749   auto Linkage = Record[OpNum++];
3750   GlobalValue *NewGA;
3751   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3752       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3753     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3754                                 TheModule);
3755   else
3756     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3757                                 nullptr, TheModule);
3758 
3759   // Local linkage must have default visibility.
3760   // auto-upgrade `hidden` and `protected` for old bitcode.
3761   if (OpNum != Record.size()) {
3762     auto VisInd = OpNum++;
3763     if (!NewGA->hasLocalLinkage())
3764       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3765   }
3766   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3767       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3768     if (OpNum != Record.size())
3769       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3770     else
3771       upgradeDLLImportExportLinkage(NewGA, Linkage);
3772     if (OpNum != Record.size())
3773       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3774     if (OpNum != Record.size())
3775       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3776   }
3777   if (OpNum != Record.size())
3778     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3779   inferDSOLocal(NewGA);
3780 
3781   // Check whether we have enough values to read a partition name.
3782   if (OpNum + 1 < Record.size()) {
3783     NewGA->setPartition(
3784         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3785     OpNum += 2;
3786   }
3787 
3788   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
3789   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3790   return Error::success();
3791 }
3792 
3793 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3794                                  bool ShouldLazyLoadMetadata,
3795                                  DataLayoutCallbackTy DataLayoutCallback) {
3796   if (ResumeBit) {
3797     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3798       return JumpFailed;
3799   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3800     return Err;
3801 
3802   SmallVector<uint64_t, 64> Record;
3803 
3804   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3805   // finalize the datalayout before we run any of that code.
3806   bool ResolvedDataLayout = false;
3807   auto ResolveDataLayout = [&] {
3808     if (ResolvedDataLayout)
3809       return;
3810 
3811     // datalayout and triple can't be parsed after this point.
3812     ResolvedDataLayout = true;
3813 
3814     // Upgrade data layout string.
3815     std::string DL = llvm::UpgradeDataLayoutString(
3816         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3817     TheModule->setDataLayout(DL);
3818 
3819     if (auto LayoutOverride =
3820             DataLayoutCallback(TheModule->getTargetTriple()))
3821       TheModule->setDataLayout(*LayoutOverride);
3822   };
3823 
3824   // Read all the records for this module.
3825   while (true) {
3826     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3827     if (!MaybeEntry)
3828       return MaybeEntry.takeError();
3829     llvm::BitstreamEntry Entry = MaybeEntry.get();
3830 
3831     switch (Entry.Kind) {
3832     case BitstreamEntry::Error:
3833       return error("Malformed block");
3834     case BitstreamEntry::EndBlock:
3835       ResolveDataLayout();
3836       return globalCleanup();
3837 
3838     case BitstreamEntry::SubBlock:
3839       switch (Entry.ID) {
3840       default:  // Skip unknown content.
3841         if (Error Err = Stream.SkipBlock())
3842           return Err;
3843         break;
3844       case bitc::BLOCKINFO_BLOCK_ID:
3845         if (Error Err = readBlockInfo())
3846           return Err;
3847         break;
3848       case bitc::PARAMATTR_BLOCK_ID:
3849         if (Error Err = parseAttributeBlock())
3850           return Err;
3851         break;
3852       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3853         if (Error Err = parseAttributeGroupBlock())
3854           return Err;
3855         break;
3856       case bitc::TYPE_BLOCK_ID_NEW:
3857         if (Error Err = parseTypeTable())
3858           return Err;
3859         break;
3860       case bitc::VALUE_SYMTAB_BLOCK_ID:
3861         if (!SeenValueSymbolTable) {
3862           // Either this is an old form VST without function index and an
3863           // associated VST forward declaration record (which would have caused
3864           // the VST to be jumped to and parsed before it was encountered
3865           // normally in the stream), or there were no function blocks to
3866           // trigger an earlier parsing of the VST.
3867           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3868           if (Error Err = parseValueSymbolTable())
3869             return Err;
3870           SeenValueSymbolTable = true;
3871         } else {
3872           // We must have had a VST forward declaration record, which caused
3873           // the parser to jump to and parse the VST earlier.
3874           assert(VSTOffset > 0);
3875           if (Error Err = Stream.SkipBlock())
3876             return Err;
3877         }
3878         break;
3879       case bitc::CONSTANTS_BLOCK_ID:
3880         if (Error Err = parseConstants())
3881           return Err;
3882         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3883           return Err;
3884         break;
3885       case bitc::METADATA_BLOCK_ID:
3886         if (ShouldLazyLoadMetadata) {
3887           if (Error Err = rememberAndSkipMetadata())
3888             return Err;
3889           break;
3890         }
3891         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3892         if (Error Err = MDLoader->parseModuleMetadata())
3893           return Err;
3894         break;
3895       case bitc::METADATA_KIND_BLOCK_ID:
3896         if (Error Err = MDLoader->parseMetadataKinds())
3897           return Err;
3898         break;
3899       case bitc::FUNCTION_BLOCK_ID:
3900         ResolveDataLayout();
3901 
3902         // If this is the first function body we've seen, reverse the
3903         // FunctionsWithBodies list.
3904         if (!SeenFirstFunctionBody) {
3905           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3906           if (Error Err = globalCleanup())
3907             return Err;
3908           SeenFirstFunctionBody = true;
3909         }
3910 
3911         if (VSTOffset > 0) {
3912           // If we have a VST forward declaration record, make sure we
3913           // parse the VST now if we haven't already. It is needed to
3914           // set up the DeferredFunctionInfo vector for lazy reading.
3915           if (!SeenValueSymbolTable) {
3916             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3917               return Err;
3918             SeenValueSymbolTable = true;
3919             // Fall through so that we record the NextUnreadBit below.
3920             // This is necessary in case we have an anonymous function that
3921             // is later materialized. Since it will not have a VST entry we
3922             // need to fall back to the lazy parse to find its offset.
3923           } else {
3924             // If we have a VST forward declaration record, but have already
3925             // parsed the VST (just above, when the first function body was
3926             // encountered here), then we are resuming the parse after
3927             // materializing functions. The ResumeBit points to the
3928             // start of the last function block recorded in the
3929             // DeferredFunctionInfo map. Skip it.
3930             if (Error Err = Stream.SkipBlock())
3931               return Err;
3932             continue;
3933           }
3934         }
3935 
3936         // Support older bitcode files that did not have the function
3937         // index in the VST, nor a VST forward declaration record, as
3938         // well as anonymous functions that do not have VST entries.
3939         // Build the DeferredFunctionInfo vector on the fly.
3940         if (Error Err = rememberAndSkipFunctionBody())
3941           return Err;
3942 
3943         // Suspend parsing when we reach the function bodies. Subsequent
3944         // materialization calls will resume it when necessary. If the bitcode
3945         // file is old, the symbol table will be at the end instead and will not
3946         // have been seen yet. In this case, just finish the parse now.
3947         if (SeenValueSymbolTable) {
3948           NextUnreadBit = Stream.GetCurrentBitNo();
3949           // After the VST has been parsed, we need to make sure intrinsic name
3950           // are auto-upgraded.
3951           return globalCleanup();
3952         }
3953         break;
3954       case bitc::USELIST_BLOCK_ID:
3955         if (Error Err = parseUseLists())
3956           return Err;
3957         break;
3958       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3959         if (Error Err = parseOperandBundleTags())
3960           return Err;
3961         break;
3962       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3963         if (Error Err = parseSyncScopeNames())
3964           return Err;
3965         break;
3966       }
3967       continue;
3968 
3969     case BitstreamEntry::Record:
3970       // The interesting case.
3971       break;
3972     }
3973 
3974     // Read a record.
3975     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3976     if (!MaybeBitCode)
3977       return MaybeBitCode.takeError();
3978     switch (unsigned BitCode = MaybeBitCode.get()) {
3979     default: break;  // Default behavior, ignore unknown content.
3980     case bitc::MODULE_CODE_VERSION: {
3981       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3982       if (!VersionOrErr)
3983         return VersionOrErr.takeError();
3984       UseRelativeIDs = *VersionOrErr >= 1;
3985       break;
3986     }
3987     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3988       if (ResolvedDataLayout)
3989         return error("target triple too late in module");
3990       std::string S;
3991       if (convertToString(Record, 0, S))
3992         return error("Invalid record");
3993       TheModule->setTargetTriple(S);
3994       break;
3995     }
3996     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3997       if (ResolvedDataLayout)
3998         return error("datalayout too late in module");
3999       std::string S;
4000       if (convertToString(Record, 0, S))
4001         return error("Invalid record");
4002       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4003       if (!MaybeDL)
4004         return MaybeDL.takeError();
4005       TheModule->setDataLayout(MaybeDL.get());
4006       break;
4007     }
4008     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4009       std::string S;
4010       if (convertToString(Record, 0, S))
4011         return error("Invalid record");
4012       TheModule->setModuleInlineAsm(S);
4013       break;
4014     }
4015     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4016       // Deprecated, but still needed to read old bitcode files.
4017       std::string S;
4018       if (convertToString(Record, 0, S))
4019         return error("Invalid record");
4020       // Ignore value.
4021       break;
4022     }
4023     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4024       std::string S;
4025       if (convertToString(Record, 0, S))
4026         return error("Invalid record");
4027       SectionTable.push_back(S);
4028       break;
4029     }
4030     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4031       std::string S;
4032       if (convertToString(Record, 0, S))
4033         return error("Invalid record");
4034       GCTable.push_back(S);
4035       break;
4036     }
4037     case bitc::MODULE_CODE_COMDAT:
4038       if (Error Err = parseComdatRecord(Record))
4039         return Err;
4040       break;
4041     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4042     // written by ThinLinkBitcodeWriter. See
4043     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4044     // record
4045     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4046     case bitc::MODULE_CODE_GLOBALVAR:
4047       if (Error Err = parseGlobalVarRecord(Record))
4048         return Err;
4049       break;
4050     case bitc::MODULE_CODE_FUNCTION:
4051       ResolveDataLayout();
4052       if (Error Err = parseFunctionRecord(Record))
4053         return Err;
4054       break;
4055     case bitc::MODULE_CODE_IFUNC:
4056     case bitc::MODULE_CODE_ALIAS:
4057     case bitc::MODULE_CODE_ALIAS_OLD:
4058       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4059         return Err;
4060       break;
4061     /// MODULE_CODE_VSTOFFSET: [offset]
4062     case bitc::MODULE_CODE_VSTOFFSET:
4063       if (Record.empty())
4064         return error("Invalid record");
4065       // Note that we subtract 1 here because the offset is relative to one word
4066       // before the start of the identification or module block, which was
4067       // historically always the start of the regular bitcode header.
4068       VSTOffset = Record[0] - 1;
4069       break;
4070     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4071     case bitc::MODULE_CODE_SOURCE_FILENAME:
4072       SmallString<128> ValueName;
4073       if (convertToString(Record, 0, ValueName))
4074         return error("Invalid record");
4075       TheModule->setSourceFileName(ValueName);
4076       break;
4077     }
4078     Record.clear();
4079   }
4080 }
4081 
4082 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4083                                       bool IsImporting,
4084                                       DataLayoutCallbackTy DataLayoutCallback) {
4085   TheModule = M;
4086   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4087                             [&](unsigned ID) { return getTypeByID(ID); });
4088   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4089 }
4090 
4091 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4092   if (!isa<PointerType>(PtrType))
4093     return error("Load/Store operand is not a pointer type");
4094 
4095   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4096     return error("Explicit load/store type does not match pointee "
4097                  "type of pointer operand");
4098   if (!PointerType::isLoadableOrStorableType(ValType))
4099     return error("Cannot load/store from pointer");
4100   return Error::success();
4101 }
4102 
4103 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4104                                              ArrayRef<unsigned> ArgTyIDs) {
4105   AttributeList Attrs = CB->getAttributes();
4106   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4107     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4108                                      Attribute::InAlloca}) {
4109       if (!Attrs.hasParamAttr(i, Kind) ||
4110           Attrs.getParamAttr(i, Kind).getValueAsType())
4111         continue;
4112 
4113       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4114       if (!PtrEltTy)
4115         return error("Missing element type for typed attribute upgrade");
4116 
4117       Attribute NewAttr;
4118       switch (Kind) {
4119       case Attribute::ByVal:
4120         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4121         break;
4122       case Attribute::StructRet:
4123         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4124         break;
4125       case Attribute::InAlloca:
4126         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4127         break;
4128       default:
4129         llvm_unreachable("not an upgraded type attribute");
4130       }
4131 
4132       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4133     }
4134   }
4135 
4136   if (CB->isInlineAsm()) {
4137     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4138     unsigned ArgNo = 0;
4139     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4140       if (!CI.hasArg())
4141         continue;
4142 
4143       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4144         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4145         if (!ElemTy)
4146           return error("Missing element type for inline asm upgrade");
4147         Attrs = Attrs.addParamAttribute(
4148             Context, ArgNo,
4149             Attribute::get(Context, Attribute::ElementType, ElemTy));
4150       }
4151 
4152       ArgNo++;
4153     }
4154   }
4155 
4156   switch (CB->getIntrinsicID()) {
4157   case Intrinsic::preserve_array_access_index:
4158   case Intrinsic::preserve_struct_access_index:
4159   case Intrinsic::aarch64_ldaxr:
4160   case Intrinsic::aarch64_ldxr:
4161   case Intrinsic::aarch64_stlxr:
4162   case Intrinsic::aarch64_stxr:
4163   case Intrinsic::arm_ldaex:
4164   case Intrinsic::arm_ldrex:
4165   case Intrinsic::arm_stlex:
4166   case Intrinsic::arm_strex: {
4167     unsigned ArgNo;
4168     switch (CB->getIntrinsicID()) {
4169     case Intrinsic::aarch64_stlxr:
4170     case Intrinsic::aarch64_stxr:
4171     case Intrinsic::arm_stlex:
4172     case Intrinsic::arm_strex:
4173       ArgNo = 1;
4174       break;
4175     default:
4176       ArgNo = 0;
4177       break;
4178     }
4179     if (!Attrs.getParamElementType(ArgNo)) {
4180       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4181       if (!ElTy)
4182         return error("Missing element type for elementtype upgrade");
4183       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4184       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4185     }
4186     break;
4187   }
4188   default:
4189     break;
4190   }
4191 
4192   CB->setAttributes(Attrs);
4193   return Error::success();
4194 }
4195 
4196 /// Lazily parse the specified function body block.
4197 Error BitcodeReader::parseFunctionBody(Function *F) {
4198   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4199     return Err;
4200 
4201   // Unexpected unresolved metadata when parsing function.
4202   if (MDLoader->hasFwdRefs())
4203     return error("Invalid function metadata: incoming forward references");
4204 
4205   InstructionList.clear();
4206   unsigned ModuleValueListSize = ValueList.size();
4207   unsigned ModuleMDLoaderSize = MDLoader->size();
4208 
4209   // Add all the function arguments to the value table.
4210   unsigned ArgNo = 0;
4211   unsigned FTyID = FunctionTypeIDs[F];
4212   for (Argument &I : F->args()) {
4213     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4214     assert(I.getType() == getTypeByID(ArgTyID) &&
4215            "Incorrect fully specified type for Function Argument");
4216     ValueList.push_back(&I, ArgTyID);
4217     ++ArgNo;
4218   }
4219   unsigned NextValueNo = ValueList.size();
4220   BasicBlock *CurBB = nullptr;
4221   unsigned CurBBNo = 0;
4222 
4223   DebugLoc LastLoc;
4224   auto getLastInstruction = [&]() -> Instruction * {
4225     if (CurBB && !CurBB->empty())
4226       return &CurBB->back();
4227     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4228              !FunctionBBs[CurBBNo - 1]->empty())
4229       return &FunctionBBs[CurBBNo - 1]->back();
4230     return nullptr;
4231   };
4232 
4233   std::vector<OperandBundleDef> OperandBundles;
4234 
4235   // Read all the records.
4236   SmallVector<uint64_t, 64> Record;
4237 
4238   while (true) {
4239     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4240     if (!MaybeEntry)
4241       return MaybeEntry.takeError();
4242     llvm::BitstreamEntry Entry = MaybeEntry.get();
4243 
4244     switch (Entry.Kind) {
4245     case BitstreamEntry::Error:
4246       return error("Malformed block");
4247     case BitstreamEntry::EndBlock:
4248       goto OutOfRecordLoop;
4249 
4250     case BitstreamEntry::SubBlock:
4251       switch (Entry.ID) {
4252       default:  // Skip unknown content.
4253         if (Error Err = Stream.SkipBlock())
4254           return Err;
4255         break;
4256       case bitc::CONSTANTS_BLOCK_ID:
4257         if (Error Err = parseConstants())
4258           return Err;
4259         NextValueNo = ValueList.size();
4260         break;
4261       case bitc::VALUE_SYMTAB_BLOCK_ID:
4262         if (Error Err = parseValueSymbolTable())
4263           return Err;
4264         break;
4265       case bitc::METADATA_ATTACHMENT_ID:
4266         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4267           return Err;
4268         break;
4269       case bitc::METADATA_BLOCK_ID:
4270         assert(DeferredMetadataInfo.empty() &&
4271                "Must read all module-level metadata before function-level");
4272         if (Error Err = MDLoader->parseFunctionMetadata())
4273           return Err;
4274         break;
4275       case bitc::USELIST_BLOCK_ID:
4276         if (Error Err = parseUseLists())
4277           return Err;
4278         break;
4279       }
4280       continue;
4281 
4282     case BitstreamEntry::Record:
4283       // The interesting case.
4284       break;
4285     }
4286 
4287     // Read a record.
4288     Record.clear();
4289     Instruction *I = nullptr;
4290     unsigned ResTypeID = InvalidTypeID;
4291     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4292     if (!MaybeBitCode)
4293       return MaybeBitCode.takeError();
4294     switch (unsigned BitCode = MaybeBitCode.get()) {
4295     default: // Default behavior: reject
4296       return error("Invalid value");
4297     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4298       if (Record.empty() || Record[0] == 0)
4299         return error("Invalid record");
4300       // Create all the basic blocks for the function.
4301       FunctionBBs.resize(Record[0]);
4302 
4303       // See if anything took the address of blocks in this function.
4304       auto BBFRI = BasicBlockFwdRefs.find(F);
4305       if (BBFRI == BasicBlockFwdRefs.end()) {
4306         for (BasicBlock *&BB : FunctionBBs)
4307           BB = BasicBlock::Create(Context, "", F);
4308       } else {
4309         auto &BBRefs = BBFRI->second;
4310         // Check for invalid basic block references.
4311         if (BBRefs.size() > FunctionBBs.size())
4312           return error("Invalid ID");
4313         assert(!BBRefs.empty() && "Unexpected empty array");
4314         assert(!BBRefs.front() && "Invalid reference to entry block");
4315         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4316              ++I)
4317           if (I < RE && BBRefs[I]) {
4318             BBRefs[I]->insertInto(F);
4319             FunctionBBs[I] = BBRefs[I];
4320           } else {
4321             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4322           }
4323 
4324         // Erase from the table.
4325         BasicBlockFwdRefs.erase(BBFRI);
4326       }
4327 
4328       CurBB = FunctionBBs[0];
4329       continue;
4330     }
4331 
4332     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4333       // The record should not be emitted if it's an empty list.
4334       if (Record.empty())
4335         return error("Invalid record");
4336       // When we have the RARE case of a BlockAddress Constant that is not
4337       // scoped to the Function it refers to, we need to conservatively
4338       // materialize the referred to Function, regardless of whether or not
4339       // that Function will ultimately be linked, otherwise users of
4340       // BitcodeReader might start splicing out Function bodies such that we
4341       // might no longer be able to materialize the BlockAddress since the
4342       // BasicBlock (and entire body of the Function) the BlockAddress refers
4343       // to may have been moved. In the case that the user of BitcodeReader
4344       // decides ultimately not to link the Function body, materializing here
4345       // could be considered wasteful, but it's better than a deserialization
4346       // failure as described. This keeps BitcodeReader unaware of complex
4347       // linkage policy decisions such as those use by LTO, leaving those
4348       // decisions "one layer up."
4349       for (uint64_t ValID : Record)
4350         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4351           BackwardRefFunctions.push_back(F);
4352         else
4353           return error("Invalid record");
4354 
4355       continue;
4356 
4357     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4358       // This record indicates that the last instruction is at the same
4359       // location as the previous instruction with a location.
4360       I = getLastInstruction();
4361 
4362       if (!I)
4363         return error("Invalid record");
4364       I->setDebugLoc(LastLoc);
4365       I = nullptr;
4366       continue;
4367 
4368     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4369       I = getLastInstruction();
4370       if (!I || Record.size() < 4)
4371         return error("Invalid record");
4372 
4373       unsigned Line = Record[0], Col = Record[1];
4374       unsigned ScopeID = Record[2], IAID = Record[3];
4375       bool isImplicitCode = Record.size() == 5 && Record[4];
4376 
4377       MDNode *Scope = nullptr, *IA = nullptr;
4378       if (ScopeID) {
4379         Scope = dyn_cast_or_null<MDNode>(
4380             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4381         if (!Scope)
4382           return error("Invalid record");
4383       }
4384       if (IAID) {
4385         IA = dyn_cast_or_null<MDNode>(
4386             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4387         if (!IA)
4388           return error("Invalid record");
4389       }
4390       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4391                                 isImplicitCode);
4392       I->setDebugLoc(LastLoc);
4393       I = nullptr;
4394       continue;
4395     }
4396     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4397       unsigned OpNum = 0;
4398       Value *LHS;
4399       unsigned TypeID;
4400       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4401           OpNum+1 > Record.size())
4402         return error("Invalid record");
4403 
4404       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4405       if (Opc == -1)
4406         return error("Invalid record");
4407       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4408       ResTypeID = TypeID;
4409       InstructionList.push_back(I);
4410       if (OpNum < Record.size()) {
4411         if (isa<FPMathOperator>(I)) {
4412           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4413           if (FMF.any())
4414             I->setFastMathFlags(FMF);
4415         }
4416       }
4417       break;
4418     }
4419     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4420       unsigned OpNum = 0;
4421       Value *LHS, *RHS;
4422       unsigned TypeID;
4423       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) ||
4424           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) ||
4425           OpNum+1 > Record.size())
4426         return error("Invalid record");
4427 
4428       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4429       if (Opc == -1)
4430         return error("Invalid record");
4431       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4432       ResTypeID = TypeID;
4433       InstructionList.push_back(I);
4434       if (OpNum < Record.size()) {
4435         if (Opc == Instruction::Add ||
4436             Opc == Instruction::Sub ||
4437             Opc == Instruction::Mul ||
4438             Opc == Instruction::Shl) {
4439           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4440             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4441           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4442             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4443         } else if (Opc == Instruction::SDiv ||
4444                    Opc == Instruction::UDiv ||
4445                    Opc == Instruction::LShr ||
4446                    Opc == Instruction::AShr) {
4447           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4448             cast<BinaryOperator>(I)->setIsExact(true);
4449         } else if (isa<FPMathOperator>(I)) {
4450           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4451           if (FMF.any())
4452             I->setFastMathFlags(FMF);
4453         }
4454 
4455       }
4456       break;
4457     }
4458     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4459       unsigned OpNum = 0;
4460       Value *Op;
4461       unsigned OpTypeID;
4462       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
4463           OpNum+2 != Record.size())
4464         return error("Invalid record");
4465 
4466       ResTypeID = Record[OpNum];
4467       Type *ResTy = getTypeByID(ResTypeID);
4468       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4469       if (Opc == -1 || !ResTy)
4470         return error("Invalid record");
4471       Instruction *Temp = nullptr;
4472       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4473         if (Temp) {
4474           InstructionList.push_back(Temp);
4475           assert(CurBB && "No current BB?");
4476           CurBB->getInstList().push_back(Temp);
4477         }
4478       } else {
4479         auto CastOp = (Instruction::CastOps)Opc;
4480         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4481           return error("Invalid cast");
4482         I = CastInst::Create(CastOp, Op, ResTy);
4483       }
4484       InstructionList.push_back(I);
4485       break;
4486     }
4487     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4488     case bitc::FUNC_CODE_INST_GEP_OLD:
4489     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4490       unsigned OpNum = 0;
4491 
4492       unsigned TyID;
4493       Type *Ty;
4494       bool InBounds;
4495 
4496       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4497         InBounds = Record[OpNum++];
4498         TyID = Record[OpNum++];
4499         Ty = getTypeByID(TyID);
4500       } else {
4501         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4502         TyID = InvalidTypeID;
4503         Ty = nullptr;
4504       }
4505 
4506       Value *BasePtr;
4507       unsigned BasePtrTypeID;
4508       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID))
4509         return error("Invalid record");
4510 
4511       if (!Ty) {
4512         TyID = getContainedTypeID(BasePtrTypeID);
4513         if (BasePtr->getType()->isVectorTy())
4514           TyID = getContainedTypeID(TyID);
4515         Ty = getTypeByID(TyID);
4516       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4517                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4518         return error(
4519             "Explicit gep type does not match pointee type of pointer operand");
4520       }
4521 
4522       SmallVector<Value*, 16> GEPIdx;
4523       while (OpNum != Record.size()) {
4524         Value *Op;
4525         unsigned OpTypeID;
4526         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4527           return error("Invalid record");
4528         GEPIdx.push_back(Op);
4529       }
4530 
4531       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4532 
4533       ResTypeID = TyID;
4534       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4535         auto GTI = std::next(gep_type_begin(I));
4536         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4537           unsigned SubType = 0;
4538           if (GTI.isStruct()) {
4539             ConstantInt *IdxC =
4540                 Idx->getType()->isVectorTy()
4541                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4542                     : cast<ConstantInt>(Idx);
4543             SubType = IdxC->getZExtValue();
4544           }
4545           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4546           ++GTI;
4547         }
4548       }
4549 
4550       // At this point ResTypeID is the result element type. We need a pointer
4551       // or vector of pointer to it.
4552       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4553       if (I->getType()->isVectorTy())
4554         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4555 
4556       InstructionList.push_back(I);
4557       if (InBounds)
4558         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4559       break;
4560     }
4561 
4562     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4563                                        // EXTRACTVAL: [opty, opval, n x indices]
4564       unsigned OpNum = 0;
4565       Value *Agg;
4566       unsigned AggTypeID;
4567       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4568         return error("Invalid record");
4569       Type *Ty = Agg->getType();
4570 
4571       unsigned RecSize = Record.size();
4572       if (OpNum == RecSize)
4573         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4574 
4575       SmallVector<unsigned, 4> EXTRACTVALIdx;
4576       ResTypeID = AggTypeID;
4577       for (; OpNum != RecSize; ++OpNum) {
4578         bool IsArray = Ty->isArrayTy();
4579         bool IsStruct = Ty->isStructTy();
4580         uint64_t Index = Record[OpNum];
4581 
4582         if (!IsStruct && !IsArray)
4583           return error("EXTRACTVAL: Invalid type");
4584         if ((unsigned)Index != Index)
4585           return error("Invalid value");
4586         if (IsStruct && Index >= Ty->getStructNumElements())
4587           return error("EXTRACTVAL: Invalid struct index");
4588         if (IsArray && Index >= Ty->getArrayNumElements())
4589           return error("EXTRACTVAL: Invalid array index");
4590         EXTRACTVALIdx.push_back((unsigned)Index);
4591 
4592         if (IsStruct) {
4593           Ty = Ty->getStructElementType(Index);
4594           ResTypeID = getContainedTypeID(ResTypeID, Index);
4595         } else {
4596           Ty = Ty->getArrayElementType();
4597           ResTypeID = getContainedTypeID(ResTypeID);
4598         }
4599       }
4600 
4601       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4602       InstructionList.push_back(I);
4603       break;
4604     }
4605 
4606     case bitc::FUNC_CODE_INST_INSERTVAL: {
4607                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4608       unsigned OpNum = 0;
4609       Value *Agg;
4610       unsigned AggTypeID;
4611       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID))
4612         return error("Invalid record");
4613       Value *Val;
4614       unsigned ValTypeID;
4615       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
4616         return error("Invalid record");
4617 
4618       unsigned RecSize = Record.size();
4619       if (OpNum == RecSize)
4620         return error("INSERTVAL: Invalid instruction with 0 indices");
4621 
4622       SmallVector<unsigned, 4> INSERTVALIdx;
4623       Type *CurTy = Agg->getType();
4624       for (; OpNum != RecSize; ++OpNum) {
4625         bool IsArray = CurTy->isArrayTy();
4626         bool IsStruct = CurTy->isStructTy();
4627         uint64_t Index = Record[OpNum];
4628 
4629         if (!IsStruct && !IsArray)
4630           return error("INSERTVAL: Invalid type");
4631         if ((unsigned)Index != Index)
4632           return error("Invalid value");
4633         if (IsStruct && Index >= CurTy->getStructNumElements())
4634           return error("INSERTVAL: Invalid struct index");
4635         if (IsArray && Index >= CurTy->getArrayNumElements())
4636           return error("INSERTVAL: Invalid array index");
4637 
4638         INSERTVALIdx.push_back((unsigned)Index);
4639         if (IsStruct)
4640           CurTy = CurTy->getStructElementType(Index);
4641         else
4642           CurTy = CurTy->getArrayElementType();
4643       }
4644 
4645       if (CurTy != Val->getType())
4646         return error("Inserted value type doesn't match aggregate type");
4647 
4648       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4649       ResTypeID = AggTypeID;
4650       InstructionList.push_back(I);
4651       break;
4652     }
4653 
4654     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4655       // obsolete form of select
4656       // handles select i1 ... in old bitcode
4657       unsigned OpNum = 0;
4658       Value *TrueVal, *FalseVal, *Cond;
4659       unsigned TypeID;
4660       Type *CondType = Type::getInt1Ty(Context);
4661       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) ||
4662           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4663                    FalseVal) ||
4664           popValue(Record, OpNum, NextValueNo, CondType,
4665                    getVirtualTypeID(CondType), Cond))
4666         return error("Invalid record");
4667 
4668       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4669       ResTypeID = TypeID;
4670       InstructionList.push_back(I);
4671       break;
4672     }
4673 
4674     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4675       // new form of select
4676       // handles select i1 or select [N x i1]
4677       unsigned OpNum = 0;
4678       Value *TrueVal, *FalseVal, *Cond;
4679       unsigned ValTypeID, CondTypeID;
4680       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) ||
4681           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4682                    FalseVal) ||
4683           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID))
4684         return error("Invalid record");
4685 
4686       // select condition can be either i1 or [N x i1]
4687       if (VectorType* vector_type =
4688           dyn_cast<VectorType>(Cond->getType())) {
4689         // expect <n x i1>
4690         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4691           return error("Invalid type for value");
4692       } else {
4693         // expect i1
4694         if (Cond->getType() != Type::getInt1Ty(Context))
4695           return error("Invalid type for value");
4696       }
4697 
4698       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4699       ResTypeID = ValTypeID;
4700       InstructionList.push_back(I);
4701       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4702         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4703         if (FMF.any())
4704           I->setFastMathFlags(FMF);
4705       }
4706       break;
4707     }
4708 
4709     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4710       unsigned OpNum = 0;
4711       Value *Vec, *Idx;
4712       unsigned VecTypeID, IdxTypeID;
4713       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) ||
4714           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4715         return error("Invalid record");
4716       if (!Vec->getType()->isVectorTy())
4717         return error("Invalid type for value");
4718       I = ExtractElementInst::Create(Vec, Idx);
4719       ResTypeID = getContainedTypeID(VecTypeID);
4720       InstructionList.push_back(I);
4721       break;
4722     }
4723 
4724     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4725       unsigned OpNum = 0;
4726       Value *Vec, *Elt, *Idx;
4727       unsigned VecTypeID, IdxTypeID;
4728       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID))
4729         return error("Invalid record");
4730       if (!Vec->getType()->isVectorTy())
4731         return error("Invalid type for value");
4732       if (popValue(Record, OpNum, NextValueNo,
4733                    cast<VectorType>(Vec->getType())->getElementType(),
4734                    getContainedTypeID(VecTypeID), Elt) ||
4735           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID))
4736         return error("Invalid record");
4737       I = InsertElementInst::Create(Vec, Elt, Idx);
4738       ResTypeID = VecTypeID;
4739       InstructionList.push_back(I);
4740       break;
4741     }
4742 
4743     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4744       unsigned OpNum = 0;
4745       Value *Vec1, *Vec2, *Mask;
4746       unsigned Vec1TypeID;
4747       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) ||
4748           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
4749                    Vec2))
4750         return error("Invalid record");
4751 
4752       unsigned MaskTypeID;
4753       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID))
4754         return error("Invalid record");
4755       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4756         return error("Invalid type for value");
4757 
4758       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4759       ResTypeID =
4760           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
4761       InstructionList.push_back(I);
4762       break;
4763     }
4764 
4765     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4766       // Old form of ICmp/FCmp returning bool
4767       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4768       // both legal on vectors but had different behaviour.
4769     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4770       // FCmp/ICmp returning bool or vector of bool
4771 
4772       unsigned OpNum = 0;
4773       Value *LHS, *RHS;
4774       unsigned LHSTypeID;
4775       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) ||
4776           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS))
4777         return error("Invalid record");
4778 
4779       if (OpNum >= Record.size())
4780         return error(
4781             "Invalid record: operand number exceeded available operands");
4782 
4783       unsigned PredVal = Record[OpNum];
4784       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4785       FastMathFlags FMF;
4786       if (IsFP && Record.size() > OpNum+1)
4787         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4788 
4789       if (OpNum+1 != Record.size())
4790         return error("Invalid record");
4791 
4792       if (LHS->getType()->isFPOrFPVectorTy())
4793         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4794       else
4795         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4796 
4797       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
4798       if (LHS->getType()->isVectorTy())
4799         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4800 
4801       if (FMF.any())
4802         I->setFastMathFlags(FMF);
4803       InstructionList.push_back(I);
4804       break;
4805     }
4806 
4807     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4808       {
4809         unsigned Size = Record.size();
4810         if (Size == 0) {
4811           I = ReturnInst::Create(Context);
4812           InstructionList.push_back(I);
4813           break;
4814         }
4815 
4816         unsigned OpNum = 0;
4817         Value *Op = nullptr;
4818         unsigned OpTypeID;
4819         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
4820           return error("Invalid record");
4821         if (OpNum != Record.size())
4822           return error("Invalid record");
4823 
4824         I = ReturnInst::Create(Context, Op);
4825         InstructionList.push_back(I);
4826         break;
4827       }
4828     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4829       if (Record.size() != 1 && Record.size() != 3)
4830         return error("Invalid record");
4831       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4832       if (!TrueDest)
4833         return error("Invalid record");
4834 
4835       if (Record.size() == 1) {
4836         I = BranchInst::Create(TrueDest);
4837         InstructionList.push_back(I);
4838       }
4839       else {
4840         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4841         Type *CondType = Type::getInt1Ty(Context);
4842         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
4843                                getVirtualTypeID(CondType));
4844         if (!FalseDest || !Cond)
4845           return error("Invalid record");
4846         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4847         InstructionList.push_back(I);
4848       }
4849       break;
4850     }
4851     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4852       if (Record.size() != 1 && Record.size() != 2)
4853         return error("Invalid record");
4854       unsigned Idx = 0;
4855       Type *TokenTy = Type::getTokenTy(Context);
4856       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4857                                    getVirtualTypeID(TokenTy));
4858       if (!CleanupPad)
4859         return error("Invalid record");
4860       BasicBlock *UnwindDest = nullptr;
4861       if (Record.size() == 2) {
4862         UnwindDest = getBasicBlock(Record[Idx++]);
4863         if (!UnwindDest)
4864           return error("Invalid record");
4865       }
4866 
4867       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4868       InstructionList.push_back(I);
4869       break;
4870     }
4871     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4872       if (Record.size() != 2)
4873         return error("Invalid record");
4874       unsigned Idx = 0;
4875       Type *TokenTy = Type::getTokenTy(Context);
4876       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4877                                  getVirtualTypeID(TokenTy));
4878       if (!CatchPad)
4879         return error("Invalid record");
4880       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4881       if (!BB)
4882         return error("Invalid record");
4883 
4884       I = CatchReturnInst::Create(CatchPad, BB);
4885       InstructionList.push_back(I);
4886       break;
4887     }
4888     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4889       // We must have, at minimum, the outer scope and the number of arguments.
4890       if (Record.size() < 2)
4891         return error("Invalid record");
4892 
4893       unsigned Idx = 0;
4894 
4895       Type *TokenTy = Type::getTokenTy(Context);
4896       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4897                                   getVirtualTypeID(TokenTy));
4898 
4899       unsigned NumHandlers = Record[Idx++];
4900 
4901       SmallVector<BasicBlock *, 2> Handlers;
4902       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4903         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4904         if (!BB)
4905           return error("Invalid record");
4906         Handlers.push_back(BB);
4907       }
4908 
4909       BasicBlock *UnwindDest = nullptr;
4910       if (Idx + 1 == Record.size()) {
4911         UnwindDest = getBasicBlock(Record[Idx++]);
4912         if (!UnwindDest)
4913           return error("Invalid record");
4914       }
4915 
4916       if (Record.size() != Idx)
4917         return error("Invalid record");
4918 
4919       auto *CatchSwitch =
4920           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4921       for (BasicBlock *Handler : Handlers)
4922         CatchSwitch->addHandler(Handler);
4923       I = CatchSwitch;
4924       ResTypeID = getVirtualTypeID(I->getType());
4925       InstructionList.push_back(I);
4926       break;
4927     }
4928     case bitc::FUNC_CODE_INST_CATCHPAD:
4929     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4930       // We must have, at minimum, the outer scope and the number of arguments.
4931       if (Record.size() < 2)
4932         return error("Invalid record");
4933 
4934       unsigned Idx = 0;
4935 
4936       Type *TokenTy = Type::getTokenTy(Context);
4937       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
4938                                   getVirtualTypeID(TokenTy));
4939 
4940       unsigned NumArgOperands = Record[Idx++];
4941 
4942       SmallVector<Value *, 2> Args;
4943       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4944         Value *Val;
4945         unsigned ValTypeID;
4946         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
4947           return error("Invalid record");
4948         Args.push_back(Val);
4949       }
4950 
4951       if (Record.size() != Idx)
4952         return error("Invalid record");
4953 
4954       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4955         I = CleanupPadInst::Create(ParentPad, Args);
4956       else
4957         I = CatchPadInst::Create(ParentPad, Args);
4958       ResTypeID = getVirtualTypeID(I->getType());
4959       InstructionList.push_back(I);
4960       break;
4961     }
4962     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4963       // Check magic
4964       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4965         // "New" SwitchInst format with case ranges. The changes to write this
4966         // format were reverted but we still recognize bitcode that uses it.
4967         // Hopefully someday we will have support for case ranges and can use
4968         // this format again.
4969 
4970         unsigned OpTyID = Record[1];
4971         Type *OpTy = getTypeByID(OpTyID);
4972         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4973 
4974         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID);
4975         BasicBlock *Default = getBasicBlock(Record[3]);
4976         if (!OpTy || !Cond || !Default)
4977           return error("Invalid record");
4978 
4979         unsigned NumCases = Record[4];
4980 
4981         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4982         InstructionList.push_back(SI);
4983 
4984         unsigned CurIdx = 5;
4985         for (unsigned i = 0; i != NumCases; ++i) {
4986           SmallVector<ConstantInt*, 1> CaseVals;
4987           unsigned NumItems = Record[CurIdx++];
4988           for (unsigned ci = 0; ci != NumItems; ++ci) {
4989             bool isSingleNumber = Record[CurIdx++];
4990 
4991             APInt Low;
4992             unsigned ActiveWords = 1;
4993             if (ValueBitWidth > 64)
4994               ActiveWords = Record[CurIdx++];
4995             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4996                                 ValueBitWidth);
4997             CurIdx += ActiveWords;
4998 
4999             if (!isSingleNumber) {
5000               ActiveWords = 1;
5001               if (ValueBitWidth > 64)
5002                 ActiveWords = Record[CurIdx++];
5003               APInt High = readWideAPInt(
5004                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5005               CurIdx += ActiveWords;
5006 
5007               // FIXME: It is not clear whether values in the range should be
5008               // compared as signed or unsigned values. The partially
5009               // implemented changes that used this format in the past used
5010               // unsigned comparisons.
5011               for ( ; Low.ule(High); ++Low)
5012                 CaseVals.push_back(ConstantInt::get(Context, Low));
5013             } else
5014               CaseVals.push_back(ConstantInt::get(Context, Low));
5015           }
5016           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5017           for (ConstantInt *Cst : CaseVals)
5018             SI->addCase(Cst, DestBB);
5019         }
5020         I = SI;
5021         break;
5022       }
5023 
5024       // Old SwitchInst format without case ranges.
5025 
5026       if (Record.size() < 3 || (Record.size() & 1) == 0)
5027         return error("Invalid record");
5028       unsigned OpTyID = Record[0];
5029       Type *OpTy = getTypeByID(OpTyID);
5030       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5031       BasicBlock *Default = getBasicBlock(Record[2]);
5032       if (!OpTy || !Cond || !Default)
5033         return error("Invalid record");
5034       unsigned NumCases = (Record.size()-3)/2;
5035       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5036       InstructionList.push_back(SI);
5037       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5038         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5039             getFnValueByID(Record[3+i*2], OpTy, OpTyID));
5040         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5041         if (!CaseVal || !DestBB) {
5042           delete SI;
5043           return error("Invalid record");
5044         }
5045         SI->addCase(CaseVal, DestBB);
5046       }
5047       I = SI;
5048       break;
5049     }
5050     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5051       if (Record.size() < 2)
5052         return error("Invalid record");
5053       unsigned OpTyID = Record[0];
5054       Type *OpTy = getTypeByID(OpTyID);
5055       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5056       if (!OpTy || !Address)
5057         return error("Invalid record");
5058       unsigned NumDests = Record.size()-2;
5059       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5060       InstructionList.push_back(IBI);
5061       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5062         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5063           IBI->addDestination(DestBB);
5064         } else {
5065           delete IBI;
5066           return error("Invalid record");
5067         }
5068       }
5069       I = IBI;
5070       break;
5071     }
5072 
5073     case bitc::FUNC_CODE_INST_INVOKE: {
5074       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5075       if (Record.size() < 4)
5076         return error("Invalid record");
5077       unsigned OpNum = 0;
5078       AttributeList PAL = getAttributes(Record[OpNum++]);
5079       unsigned CCInfo = Record[OpNum++];
5080       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5081       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5082 
5083       unsigned FTyID = InvalidTypeID;
5084       FunctionType *FTy = nullptr;
5085       if ((CCInfo >> 13) & 1) {
5086         FTyID = Record[OpNum++];
5087         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5088         if (!FTy)
5089           return error("Explicit invoke type is not a function type");
5090       }
5091 
5092       Value *Callee;
5093       unsigned CalleeTypeID;
5094       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5095         return error("Invalid record");
5096 
5097       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5098       if (!CalleeTy)
5099         return error("Callee is not a pointer");
5100       if (!FTy) {
5101         FTyID = getContainedTypeID(CalleeTypeID);
5102         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5103         if (!FTy)
5104           return error("Callee is not of pointer to function type");
5105       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5106         return error("Explicit invoke type does not match pointee type of "
5107                      "callee operand");
5108       if (Record.size() < FTy->getNumParams() + OpNum)
5109         return error("Insufficient operands to call");
5110 
5111       SmallVector<Value*, 16> Ops;
5112       SmallVector<unsigned, 16> ArgTyIDs;
5113       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5114         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5115         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5116                                ArgTyID));
5117         ArgTyIDs.push_back(ArgTyID);
5118         if (!Ops.back())
5119           return error("Invalid record");
5120       }
5121 
5122       if (!FTy->isVarArg()) {
5123         if (Record.size() != OpNum)
5124           return error("Invalid record");
5125       } else {
5126         // Read type/value pairs for varargs params.
5127         while (OpNum != Record.size()) {
5128           Value *Op;
5129           unsigned OpTypeID;
5130           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5131             return error("Invalid record");
5132           Ops.push_back(Op);
5133           ArgTyIDs.push_back(OpTypeID);
5134         }
5135       }
5136 
5137       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5138                              OperandBundles);
5139       ResTypeID = getContainedTypeID(FTyID);
5140       OperandBundles.clear();
5141       InstructionList.push_back(I);
5142       cast<InvokeInst>(I)->setCallingConv(
5143           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5144       cast<InvokeInst>(I)->setAttributes(PAL);
5145       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5146         I->deleteValue();
5147         return Err;
5148       }
5149 
5150       break;
5151     }
5152     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5153       unsigned Idx = 0;
5154       Value *Val = nullptr;
5155       unsigned ValTypeID;
5156       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID))
5157         return error("Invalid record");
5158       I = ResumeInst::Create(Val);
5159       InstructionList.push_back(I);
5160       break;
5161     }
5162     case bitc::FUNC_CODE_INST_CALLBR: {
5163       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5164       unsigned OpNum = 0;
5165       AttributeList PAL = getAttributes(Record[OpNum++]);
5166       unsigned CCInfo = Record[OpNum++];
5167 
5168       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5169       unsigned NumIndirectDests = Record[OpNum++];
5170       SmallVector<BasicBlock *, 16> IndirectDests;
5171       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5172         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5173 
5174       unsigned FTyID = InvalidTypeID;
5175       FunctionType *FTy = nullptr;
5176       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5177         FTyID = Record[OpNum++];
5178         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5179         if (!FTy)
5180           return error("Explicit call type is not a function type");
5181       }
5182 
5183       Value *Callee;
5184       unsigned CalleeTypeID;
5185       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5186         return error("Invalid record");
5187 
5188       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5189       if (!OpTy)
5190         return error("Callee is not a pointer type");
5191       if (!FTy) {
5192         FTyID = getContainedTypeID(CalleeTypeID);
5193         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5194         if (!FTy)
5195           return error("Callee is not of pointer to function type");
5196       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5197         return error("Explicit call type does not match pointee type of "
5198                      "callee operand");
5199       if (Record.size() < FTy->getNumParams() + OpNum)
5200         return error("Insufficient operands to call");
5201 
5202       SmallVector<Value*, 16> Args;
5203       SmallVector<unsigned, 16> ArgTyIDs;
5204       // Read the fixed params.
5205       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5206         Value *Arg;
5207         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5208         if (FTy->getParamType(i)->isLabelTy())
5209           Arg = getBasicBlock(Record[OpNum]);
5210         else
5211           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5212                          ArgTyID);
5213         if (!Arg)
5214           return error("Invalid record");
5215         Args.push_back(Arg);
5216         ArgTyIDs.push_back(ArgTyID);
5217       }
5218 
5219       // Read type/value pairs for varargs params.
5220       if (!FTy->isVarArg()) {
5221         if (OpNum != Record.size())
5222           return error("Invalid record");
5223       } else {
5224         while (OpNum != Record.size()) {
5225           Value *Op;
5226           unsigned OpTypeID;
5227           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5228             return error("Invalid record");
5229           Args.push_back(Op);
5230           ArgTyIDs.push_back(OpTypeID);
5231         }
5232       }
5233 
5234       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5235                              OperandBundles);
5236       ResTypeID = getContainedTypeID(FTyID);
5237       OperandBundles.clear();
5238       InstructionList.push_back(I);
5239       cast<CallBrInst>(I)->setCallingConv(
5240           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5241       cast<CallBrInst>(I)->setAttributes(PAL);
5242       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5243         I->deleteValue();
5244         return Err;
5245       }
5246       break;
5247     }
5248     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5249       I = new UnreachableInst(Context);
5250       InstructionList.push_back(I);
5251       break;
5252     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5253       if (Record.empty())
5254         return error("Invalid phi record");
5255       // The first record specifies the type.
5256       unsigned TyID = Record[0];
5257       Type *Ty = getTypeByID(TyID);
5258       if (!Ty)
5259         return error("Invalid phi record");
5260 
5261       // Phi arguments are pairs of records of [value, basic block].
5262       // There is an optional final record for fast-math-flags if this phi has a
5263       // floating-point type.
5264       size_t NumArgs = (Record.size() - 1) / 2;
5265       PHINode *PN = PHINode::Create(Ty, NumArgs);
5266       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5267         PN->deleteValue();
5268         return error("Invalid phi record");
5269       }
5270       InstructionList.push_back(PN);
5271 
5272       for (unsigned i = 0; i != NumArgs; i++) {
5273         Value *V;
5274         // With the new function encoding, it is possible that operands have
5275         // negative IDs (for forward references).  Use a signed VBR
5276         // representation to keep the encoding small.
5277         if (UseRelativeIDs)
5278           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5279         else
5280           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID);
5281         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5282         if (!V || !BB) {
5283           PN->deleteValue();
5284           return error("Invalid phi record");
5285         }
5286         PN->addIncoming(V, BB);
5287       }
5288       I = PN;
5289       ResTypeID = TyID;
5290 
5291       // If there are an even number of records, the final record must be FMF.
5292       if (Record.size() % 2 == 0) {
5293         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5294         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5295         if (FMF.any())
5296           I->setFastMathFlags(FMF);
5297       }
5298 
5299       break;
5300     }
5301 
5302     case bitc::FUNC_CODE_INST_LANDINGPAD:
5303     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5304       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5305       unsigned Idx = 0;
5306       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5307         if (Record.size() < 3)
5308           return error("Invalid record");
5309       } else {
5310         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5311         if (Record.size() < 4)
5312           return error("Invalid record");
5313       }
5314       ResTypeID = Record[Idx++];
5315       Type *Ty = getTypeByID(ResTypeID);
5316       if (!Ty)
5317         return error("Invalid record");
5318       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5319         Value *PersFn = nullptr;
5320         unsigned PersFnTypeID;
5321         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID))
5322           return error("Invalid record");
5323 
5324         if (!F->hasPersonalityFn())
5325           F->setPersonalityFn(cast<Constant>(PersFn));
5326         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5327           return error("Personality function mismatch");
5328       }
5329 
5330       bool IsCleanup = !!Record[Idx++];
5331       unsigned NumClauses = Record[Idx++];
5332       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5333       LP->setCleanup(IsCleanup);
5334       for (unsigned J = 0; J != NumClauses; ++J) {
5335         LandingPadInst::ClauseType CT =
5336           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5337         Value *Val;
5338         unsigned ValTypeID;
5339 
5340         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) {
5341           delete LP;
5342           return error("Invalid record");
5343         }
5344 
5345         assert((CT != LandingPadInst::Catch ||
5346                 !isa<ArrayType>(Val->getType())) &&
5347                "Catch clause has a invalid type!");
5348         assert((CT != LandingPadInst::Filter ||
5349                 isa<ArrayType>(Val->getType())) &&
5350                "Filter clause has invalid type!");
5351         LP->addClause(cast<Constant>(Val));
5352       }
5353 
5354       I = LP;
5355       InstructionList.push_back(I);
5356       break;
5357     }
5358 
5359     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5360       if (Record.size() != 4 && Record.size() != 5)
5361         return error("Invalid record");
5362       using APV = AllocaPackedValues;
5363       const uint64_t Rec = Record[3];
5364       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5365       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5366       unsigned TyID = Record[0];
5367       Type *Ty = getTypeByID(TyID);
5368       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5369         TyID = getContainedTypeID(TyID);
5370         Ty = getTypeByID(TyID);
5371         if (!Ty)
5372           return error("Missing element type for old-style alloca");
5373       }
5374       unsigned OpTyID = Record[1];
5375       Type *OpTy = getTypeByID(OpTyID);
5376       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID);
5377       MaybeAlign Align;
5378       uint64_t AlignExp =
5379           Bitfield::get<APV::AlignLower>(Rec) |
5380           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5381       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5382         return Err;
5383       }
5384       if (!Ty || !Size)
5385         return error("Invalid record");
5386 
5387       const DataLayout &DL = TheModule->getDataLayout();
5388       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5389 
5390       SmallPtrSet<Type *, 4> Visited;
5391       if (!Align && !Ty->isSized(&Visited))
5392         return error("alloca of unsized type");
5393       if (!Align)
5394         Align = DL.getPrefTypeAlign(Ty);
5395 
5396       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5397       AI->setUsedWithInAlloca(InAlloca);
5398       AI->setSwiftError(SwiftError);
5399       I = AI;
5400       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5401       InstructionList.push_back(I);
5402       break;
5403     }
5404     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5405       unsigned OpNum = 0;
5406       Value *Op;
5407       unsigned OpTypeID;
5408       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5409           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5410         return error("Invalid record");
5411 
5412       if (!isa<PointerType>(Op->getType()))
5413         return error("Load operand is not a pointer type");
5414 
5415       Type *Ty = nullptr;
5416       if (OpNum + 3 == Record.size()) {
5417         ResTypeID = Record[OpNum++];
5418         Ty = getTypeByID(ResTypeID);
5419       } else {
5420         ResTypeID = getContainedTypeID(OpTypeID);
5421         Ty = getTypeByID(ResTypeID);
5422         if (!Ty)
5423           return error("Missing element type for old-style load");
5424       }
5425 
5426       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5427         return Err;
5428 
5429       MaybeAlign Align;
5430       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5431         return Err;
5432       SmallPtrSet<Type *, 4> Visited;
5433       if (!Align && !Ty->isSized(&Visited))
5434         return error("load of unsized type");
5435       if (!Align)
5436         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5437       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5438       InstructionList.push_back(I);
5439       break;
5440     }
5441     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5442        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5443       unsigned OpNum = 0;
5444       Value *Op;
5445       unsigned OpTypeID;
5446       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) ||
5447           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5448         return error("Invalid record");
5449 
5450       if (!isa<PointerType>(Op->getType()))
5451         return error("Load operand is not a pointer type");
5452 
5453       Type *Ty = nullptr;
5454       if (OpNum + 5 == Record.size()) {
5455         ResTypeID = Record[OpNum++];
5456         Ty = getTypeByID(ResTypeID);
5457       } else {
5458         ResTypeID = getContainedTypeID(OpTypeID);
5459         Ty = getTypeByID(ResTypeID);
5460         if (!Ty)
5461           return error("Missing element type for old style atomic load");
5462       }
5463 
5464       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5465         return Err;
5466 
5467       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5468       if (Ordering == AtomicOrdering::NotAtomic ||
5469           Ordering == AtomicOrdering::Release ||
5470           Ordering == AtomicOrdering::AcquireRelease)
5471         return error("Invalid record");
5472       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5473         return error("Invalid record");
5474       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5475 
5476       MaybeAlign Align;
5477       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5478         return Err;
5479       if (!Align)
5480         return error("Alignment missing from atomic load");
5481       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5482       InstructionList.push_back(I);
5483       break;
5484     }
5485     case bitc::FUNC_CODE_INST_STORE:
5486     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5487       unsigned OpNum = 0;
5488       Value *Val, *Ptr;
5489       unsigned PtrTypeID, ValTypeID;
5490       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5491         return error("Invalid record");
5492 
5493       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5494         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5495           return error("Invalid record");
5496       } else {
5497         ValTypeID = getContainedTypeID(PtrTypeID);
5498         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5499                      ValTypeID, Val))
5500           return error("Invalid record");
5501       }
5502 
5503       if (OpNum + 2 != Record.size())
5504         return error("Invalid record");
5505 
5506       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5507         return Err;
5508       MaybeAlign Align;
5509       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5510         return Err;
5511       SmallPtrSet<Type *, 4> Visited;
5512       if (!Align && !Val->getType()->isSized(&Visited))
5513         return error("store of unsized type");
5514       if (!Align)
5515         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5516       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5517       InstructionList.push_back(I);
5518       break;
5519     }
5520     case bitc::FUNC_CODE_INST_STOREATOMIC:
5521     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5522       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5523       unsigned OpNum = 0;
5524       Value *Val, *Ptr;
5525       unsigned PtrTypeID, ValTypeID;
5526       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) ||
5527           !isa<PointerType>(Ptr->getType()))
5528         return error("Invalid record");
5529       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5530         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5531           return error("Invalid record");
5532       } else {
5533         ValTypeID = getContainedTypeID(PtrTypeID);
5534         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5535                      ValTypeID, Val))
5536           return error("Invalid record");
5537       }
5538 
5539       if (OpNum + 4 != Record.size())
5540         return error("Invalid record");
5541 
5542       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5543         return Err;
5544       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5545       if (Ordering == AtomicOrdering::NotAtomic ||
5546           Ordering == AtomicOrdering::Acquire ||
5547           Ordering == AtomicOrdering::AcquireRelease)
5548         return error("Invalid record");
5549       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5550       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5551         return error("Invalid record");
5552 
5553       MaybeAlign Align;
5554       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5555         return Err;
5556       if (!Align)
5557         return error("Alignment missing from atomic store");
5558       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5559       InstructionList.push_back(I);
5560       break;
5561     }
5562     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5563       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5564       // failure_ordering?, weak?]
5565       const size_t NumRecords = Record.size();
5566       unsigned OpNum = 0;
5567       Value *Ptr = nullptr;
5568       unsigned PtrTypeID;
5569       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5570         return error("Invalid record");
5571 
5572       if (!isa<PointerType>(Ptr->getType()))
5573         return error("Cmpxchg operand is not a pointer type");
5574 
5575       Value *Cmp = nullptr;
5576       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5577       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5578                    CmpTypeID, Cmp))
5579         return error("Invalid record");
5580 
5581       Value *New = nullptr;
5582       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5583                    New) ||
5584           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5585         return error("Invalid record");
5586 
5587       const AtomicOrdering SuccessOrdering =
5588           getDecodedOrdering(Record[OpNum + 1]);
5589       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5590           SuccessOrdering == AtomicOrdering::Unordered)
5591         return error("Invalid record");
5592 
5593       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5594 
5595       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5596         return Err;
5597 
5598       const AtomicOrdering FailureOrdering =
5599           NumRecords < 7
5600               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5601               : getDecodedOrdering(Record[OpNum + 3]);
5602 
5603       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5604           FailureOrdering == AtomicOrdering::Unordered)
5605         return error("Invalid record");
5606 
5607       const Align Alignment(
5608           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5609 
5610       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5611                                 FailureOrdering, SSID);
5612       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5613 
5614       if (NumRecords < 8) {
5615         // Before weak cmpxchgs existed, the instruction simply returned the
5616         // value loaded from memory, so bitcode files from that era will be
5617         // expecting the first component of a modern cmpxchg.
5618         CurBB->getInstList().push_back(I);
5619         I = ExtractValueInst::Create(I, 0);
5620         ResTypeID = CmpTypeID;
5621       } else {
5622         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5623         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5624         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5625       }
5626 
5627       InstructionList.push_back(I);
5628       break;
5629     }
5630     case bitc::FUNC_CODE_INST_CMPXCHG: {
5631       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5632       // failure_ordering, weak, align?]
5633       const size_t NumRecords = Record.size();
5634       unsigned OpNum = 0;
5635       Value *Ptr = nullptr;
5636       unsigned PtrTypeID;
5637       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5638         return error("Invalid record");
5639 
5640       if (!isa<PointerType>(Ptr->getType()))
5641         return error("Cmpxchg operand is not a pointer type");
5642 
5643       Value *Cmp = nullptr;
5644       unsigned CmpTypeID;
5645       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID))
5646         return error("Invalid record");
5647 
5648       Value *Val = nullptr;
5649       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val))
5650         return error("Invalid record");
5651 
5652       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5653         return error("Invalid record");
5654 
5655       const bool IsVol = Record[OpNum];
5656 
5657       const AtomicOrdering SuccessOrdering =
5658           getDecodedOrdering(Record[OpNum + 1]);
5659       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5660         return error("Invalid cmpxchg success ordering");
5661 
5662       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5663 
5664       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5665         return Err;
5666 
5667       const AtomicOrdering FailureOrdering =
5668           getDecodedOrdering(Record[OpNum + 3]);
5669       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5670         return error("Invalid cmpxchg failure ordering");
5671 
5672       const bool IsWeak = Record[OpNum + 4];
5673 
5674       MaybeAlign Alignment;
5675 
5676       if (NumRecords == (OpNum + 6)) {
5677         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5678           return Err;
5679       }
5680       if (!Alignment)
5681         Alignment =
5682             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5683 
5684       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5685                                 FailureOrdering, SSID);
5686       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5687       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5688 
5689       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5690       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5691 
5692       InstructionList.push_back(I);
5693       break;
5694     }
5695     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5696     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5697       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5698       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5699       const size_t NumRecords = Record.size();
5700       unsigned OpNum = 0;
5701 
5702       Value *Ptr = nullptr;
5703       unsigned PtrTypeID;
5704       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID))
5705         return error("Invalid record");
5706 
5707       if (!isa<PointerType>(Ptr->getType()))
5708         return error("Invalid record");
5709 
5710       Value *Val = nullptr;
5711       unsigned ValTypeID = InvalidTypeID;
5712       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5713         ValTypeID = getContainedTypeID(PtrTypeID);
5714         if (popValue(Record, OpNum, NextValueNo,
5715                      getTypeByID(ValTypeID), ValTypeID, Val))
5716           return error("Invalid record");
5717       } else {
5718         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID))
5719           return error("Invalid record");
5720       }
5721 
5722       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5723         return error("Invalid record");
5724 
5725       const AtomicRMWInst::BinOp Operation =
5726           getDecodedRMWOperation(Record[OpNum]);
5727       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5728           Operation > AtomicRMWInst::LAST_BINOP)
5729         return error("Invalid record");
5730 
5731       const bool IsVol = Record[OpNum + 1];
5732 
5733       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5734       if (Ordering == AtomicOrdering::NotAtomic ||
5735           Ordering == AtomicOrdering::Unordered)
5736         return error("Invalid record");
5737 
5738       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5739 
5740       MaybeAlign Alignment;
5741 
5742       if (NumRecords == (OpNum + 5)) {
5743         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5744           return Err;
5745       }
5746 
5747       if (!Alignment)
5748         Alignment =
5749             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5750 
5751       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5752       ResTypeID = ValTypeID;
5753       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5754 
5755       InstructionList.push_back(I);
5756       break;
5757     }
5758     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5759       if (2 != Record.size())
5760         return error("Invalid record");
5761       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5762       if (Ordering == AtomicOrdering::NotAtomic ||
5763           Ordering == AtomicOrdering::Unordered ||
5764           Ordering == AtomicOrdering::Monotonic)
5765         return error("Invalid record");
5766       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5767       I = new FenceInst(Context, Ordering, SSID);
5768       InstructionList.push_back(I);
5769       break;
5770     }
5771     case bitc::FUNC_CODE_INST_CALL: {
5772       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5773       if (Record.size() < 3)
5774         return error("Invalid record");
5775 
5776       unsigned OpNum = 0;
5777       AttributeList PAL = getAttributes(Record[OpNum++]);
5778       unsigned CCInfo = Record[OpNum++];
5779 
5780       FastMathFlags FMF;
5781       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5782         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5783         if (!FMF.any())
5784           return error("Fast math flags indicator set for call with no FMF");
5785       }
5786 
5787       unsigned FTyID = InvalidTypeID;
5788       FunctionType *FTy = nullptr;
5789       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5790         FTyID = Record[OpNum++];
5791         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5792         if (!FTy)
5793           return error("Explicit call type is not a function type");
5794       }
5795 
5796       Value *Callee;
5797       unsigned CalleeTypeID;
5798       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID))
5799         return error("Invalid record");
5800 
5801       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5802       if (!OpTy)
5803         return error("Callee is not a pointer type");
5804       if (!FTy) {
5805         FTyID = getContainedTypeID(CalleeTypeID);
5806         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5807         if (!FTy)
5808           return error("Callee is not of pointer to function type");
5809       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5810         return error("Explicit call type does not match pointee type of "
5811                      "callee operand");
5812       if (Record.size() < FTy->getNumParams() + OpNum)
5813         return error("Insufficient operands to call");
5814 
5815       SmallVector<Value*, 16> Args;
5816       SmallVector<unsigned, 16> ArgTyIDs;
5817       // Read the fixed params.
5818       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5819         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5820         if (FTy->getParamType(i)->isLabelTy())
5821           Args.push_back(getBasicBlock(Record[OpNum]));
5822         else
5823           Args.push_back(getValue(Record, OpNum, NextValueNo,
5824                                   FTy->getParamType(i), ArgTyID));
5825         ArgTyIDs.push_back(ArgTyID);
5826         if (!Args.back())
5827           return error("Invalid record");
5828       }
5829 
5830       // Read type/value pairs for varargs params.
5831       if (!FTy->isVarArg()) {
5832         if (OpNum != Record.size())
5833           return error("Invalid record");
5834       } else {
5835         while (OpNum != Record.size()) {
5836           Value *Op;
5837           unsigned OpTypeID;
5838           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5839             return error("Invalid record");
5840           Args.push_back(Op);
5841           ArgTyIDs.push_back(OpTypeID);
5842         }
5843       }
5844 
5845       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5846       ResTypeID = getContainedTypeID(FTyID);
5847       OperandBundles.clear();
5848       InstructionList.push_back(I);
5849       cast<CallInst>(I)->setCallingConv(
5850           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5851       CallInst::TailCallKind TCK = CallInst::TCK_None;
5852       if (CCInfo & 1 << bitc::CALL_TAIL)
5853         TCK = CallInst::TCK_Tail;
5854       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5855         TCK = CallInst::TCK_MustTail;
5856       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5857         TCK = CallInst::TCK_NoTail;
5858       cast<CallInst>(I)->setTailCallKind(TCK);
5859       cast<CallInst>(I)->setAttributes(PAL);
5860       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5861         I->deleteValue();
5862         return Err;
5863       }
5864       if (FMF.any()) {
5865         if (!isa<FPMathOperator>(I))
5866           return error("Fast-math-flags specified for call without "
5867                        "floating-point scalar or vector return type");
5868         I->setFastMathFlags(FMF);
5869       }
5870       break;
5871     }
5872     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5873       if (Record.size() < 3)
5874         return error("Invalid record");
5875       unsigned OpTyID = Record[0];
5876       Type *OpTy = getTypeByID(OpTyID);
5877       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID);
5878       ResTypeID = Record[2];
5879       Type *ResTy = getTypeByID(ResTypeID);
5880       if (!OpTy || !Op || !ResTy)
5881         return error("Invalid record");
5882       I = new VAArgInst(Op, ResTy);
5883       InstructionList.push_back(I);
5884       break;
5885     }
5886 
5887     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5888       // A call or an invoke can be optionally prefixed with some variable
5889       // number of operand bundle blocks.  These blocks are read into
5890       // OperandBundles and consumed at the next call or invoke instruction.
5891 
5892       if (Record.empty() || Record[0] >= BundleTags.size())
5893         return error("Invalid record");
5894 
5895       std::vector<Value *> Inputs;
5896 
5897       unsigned OpNum = 1;
5898       while (OpNum != Record.size()) {
5899         Value *Op;
5900         unsigned OpTypeID;
5901         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5902           return error("Invalid record");
5903         Inputs.push_back(Op);
5904       }
5905 
5906       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5907       continue;
5908     }
5909 
5910     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5911       unsigned OpNum = 0;
5912       Value *Op = nullptr;
5913       unsigned OpTypeID;
5914       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID))
5915         return error("Invalid record");
5916       if (OpNum != Record.size())
5917         return error("Invalid record");
5918 
5919       I = new FreezeInst(Op);
5920       ResTypeID = OpTypeID;
5921       InstructionList.push_back(I);
5922       break;
5923     }
5924     }
5925 
5926     // Add instruction to end of current BB.  If there is no current BB, reject
5927     // this file.
5928     if (!CurBB) {
5929       I->deleteValue();
5930       return error("Invalid instruction with no BB");
5931     }
5932     if (!OperandBundles.empty()) {
5933       I->deleteValue();
5934       return error("Operand bundles found with no consumer");
5935     }
5936     CurBB->getInstList().push_back(I);
5937 
5938     // If this was a terminator instruction, move to the next block.
5939     if (I->isTerminator()) {
5940       ++CurBBNo;
5941       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5942     }
5943 
5944     // Non-void values get registered in the value table for future use.
5945     if (!I->getType()->isVoidTy()) {
5946       assert(I->getType() == getTypeByID(ResTypeID) &&
5947              "Incorrect result type ID");
5948       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
5949         return Err;
5950     }
5951   }
5952 
5953 OutOfRecordLoop:
5954 
5955   if (!OperandBundles.empty())
5956     return error("Operand bundles found with no consumer");
5957 
5958   // Check the function list for unresolved values.
5959   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5960     if (!A->getParent()) {
5961       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5962       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5963         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5964           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5965           delete A;
5966         }
5967       }
5968       return error("Never resolved value found in function");
5969     }
5970   }
5971 
5972   // Unexpected unresolved metadata about to be dropped.
5973   if (MDLoader->hasFwdRefs())
5974     return error("Invalid function metadata: outgoing forward refs");
5975 
5976   // Trim the value list down to the size it was before we parsed this function.
5977   ValueList.shrinkTo(ModuleValueListSize);
5978   MDLoader->shrinkTo(ModuleMDLoaderSize);
5979   std::vector<BasicBlock*>().swap(FunctionBBs);
5980   return Error::success();
5981 }
5982 
5983 /// Find the function body in the bitcode stream
5984 Error BitcodeReader::findFunctionInStream(
5985     Function *F,
5986     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5987   while (DeferredFunctionInfoIterator->second == 0) {
5988     // This is the fallback handling for the old format bitcode that
5989     // didn't contain the function index in the VST, or when we have
5990     // an anonymous function which would not have a VST entry.
5991     // Assert that we have one of those two cases.
5992     assert(VSTOffset == 0 || !F->hasName());
5993     // Parse the next body in the stream and set its position in the
5994     // DeferredFunctionInfo map.
5995     if (Error Err = rememberAndSkipFunctionBodies())
5996       return Err;
5997   }
5998   return Error::success();
5999 }
6000 
6001 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6002   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6003     return SyncScope::ID(Val);
6004   if (Val >= SSIDs.size())
6005     return SyncScope::System; // Map unknown synchronization scopes to system.
6006   return SSIDs[Val];
6007 }
6008 
6009 //===----------------------------------------------------------------------===//
6010 // GVMaterializer implementation
6011 //===----------------------------------------------------------------------===//
6012 
6013 Error BitcodeReader::materialize(GlobalValue *GV) {
6014   Function *F = dyn_cast<Function>(GV);
6015   // If it's not a function or is already material, ignore the request.
6016   if (!F || !F->isMaterializable())
6017     return Error::success();
6018 
6019   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6020   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6021   // If its position is recorded as 0, its body is somewhere in the stream
6022   // but we haven't seen it yet.
6023   if (DFII->second == 0)
6024     if (Error Err = findFunctionInStream(F, DFII))
6025       return Err;
6026 
6027   // Materialize metadata before parsing any function bodies.
6028   if (Error Err = materializeMetadata())
6029     return Err;
6030 
6031   // Move the bit stream to the saved position of the deferred function body.
6032   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6033     return JumpFailed;
6034   if (Error Err = parseFunctionBody(F))
6035     return Err;
6036   F->setIsMaterializable(false);
6037 
6038   if (StripDebugInfo)
6039     stripDebugInfo(*F);
6040 
6041   // Upgrade any old intrinsic calls in the function.
6042   for (auto &I : UpgradedIntrinsics) {
6043     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6044       if (CallInst *CI = dyn_cast<CallInst>(U))
6045         UpgradeIntrinsicCall(CI, I.second);
6046   }
6047 
6048   // Update calls to the remangled intrinsics
6049   for (auto &I : RemangledIntrinsics)
6050     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6051       // Don't expect any other users than call sites
6052       cast<CallBase>(U)->setCalledFunction(I.second);
6053 
6054   // Finish fn->subprogram upgrade for materialized functions.
6055   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6056     F->setSubprogram(SP);
6057 
6058   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6059   if (!MDLoader->isStrippingTBAA()) {
6060     for (auto &I : instructions(F)) {
6061       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6062       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6063         continue;
6064       MDLoader->setStripTBAA(true);
6065       stripTBAA(F->getParent());
6066     }
6067   }
6068 
6069   for (auto &I : instructions(F)) {
6070     // "Upgrade" older incorrect branch weights by dropping them.
6071     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6072       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6073         MDString *MDS = cast<MDString>(MD->getOperand(0));
6074         StringRef ProfName = MDS->getString();
6075         // Check consistency of !prof branch_weights metadata.
6076         if (!ProfName.equals("branch_weights"))
6077           continue;
6078         unsigned ExpectedNumOperands = 0;
6079         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6080           ExpectedNumOperands = BI->getNumSuccessors();
6081         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6082           ExpectedNumOperands = SI->getNumSuccessors();
6083         else if (isa<CallInst>(&I))
6084           ExpectedNumOperands = 1;
6085         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6086           ExpectedNumOperands = IBI->getNumDestinations();
6087         else if (isa<SelectInst>(&I))
6088           ExpectedNumOperands = 2;
6089         else
6090           continue; // ignore and continue.
6091 
6092         // If branch weight doesn't match, just strip branch weight.
6093         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6094           I.setMetadata(LLVMContext::MD_prof, nullptr);
6095       }
6096     }
6097 
6098     // Remove incompatible attributes on function calls.
6099     if (auto *CI = dyn_cast<CallBase>(&I)) {
6100       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6101           CI->getFunctionType()->getReturnType()));
6102 
6103       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6104         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6105                                         CI->getArgOperand(ArgNo)->getType()));
6106     }
6107   }
6108 
6109   // Look for functions that rely on old function attribute behavior.
6110   UpgradeFunctionAttributes(*F);
6111 
6112   // Bring in any functions that this function forward-referenced via
6113   // blockaddresses.
6114   return materializeForwardReferencedFunctions();
6115 }
6116 
6117 Error BitcodeReader::materializeModule() {
6118   if (Error Err = materializeMetadata())
6119     return Err;
6120 
6121   // Promise to materialize all forward references.
6122   WillMaterializeAllForwardRefs = true;
6123 
6124   // Iterate over the module, deserializing any functions that are still on
6125   // disk.
6126   for (Function &F : *TheModule) {
6127     if (Error Err = materialize(&F))
6128       return Err;
6129   }
6130   // At this point, if there are any function bodies, parse the rest of
6131   // the bits in the module past the last function block we have recorded
6132   // through either lazy scanning or the VST.
6133   if (LastFunctionBlockBit || NextUnreadBit)
6134     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6135                                     ? LastFunctionBlockBit
6136                                     : NextUnreadBit))
6137       return Err;
6138 
6139   // Check that all block address forward references got resolved (as we
6140   // promised above).
6141   if (!BasicBlockFwdRefs.empty())
6142     return error("Never resolved function from blockaddress");
6143 
6144   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6145   // delete the old functions to clean up. We can't do this unless the entire
6146   // module is materialized because there could always be another function body
6147   // with calls to the old function.
6148   for (auto &I : UpgradedIntrinsics) {
6149     for (auto *U : I.first->users()) {
6150       if (CallInst *CI = dyn_cast<CallInst>(U))
6151         UpgradeIntrinsicCall(CI, I.second);
6152     }
6153     if (!I.first->use_empty())
6154       I.first->replaceAllUsesWith(I.second);
6155     I.first->eraseFromParent();
6156   }
6157   UpgradedIntrinsics.clear();
6158   // Do the same for remangled intrinsics
6159   for (auto &I : RemangledIntrinsics) {
6160     I.first->replaceAllUsesWith(I.second);
6161     I.first->eraseFromParent();
6162   }
6163   RemangledIntrinsics.clear();
6164 
6165   UpgradeDebugInfo(*TheModule);
6166 
6167   UpgradeModuleFlags(*TheModule);
6168 
6169   UpgradeARCRuntime(*TheModule);
6170 
6171   return Error::success();
6172 }
6173 
6174 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6175   return IdentifiedStructTypes;
6176 }
6177 
6178 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6179     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6180     StringRef ModulePath, unsigned ModuleId)
6181     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6182       ModulePath(ModulePath), ModuleId(ModuleId) {}
6183 
6184 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6185   TheIndex.addModule(ModulePath, ModuleId);
6186 }
6187 
6188 ModuleSummaryIndex::ModuleInfo *
6189 ModuleSummaryIndexBitcodeReader::getThisModule() {
6190   return TheIndex.getModule(ModulePath);
6191 }
6192 
6193 std::pair<ValueInfo, GlobalValue::GUID>
6194 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6195   auto VGI = ValueIdToValueInfoMap[ValueId];
6196   assert(VGI.first);
6197   return VGI;
6198 }
6199 
6200 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6201     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6202     StringRef SourceFileName) {
6203   std::string GlobalId =
6204       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6205   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6206   auto OriginalNameID = ValueGUID;
6207   if (GlobalValue::isLocalLinkage(Linkage))
6208     OriginalNameID = GlobalValue::getGUID(ValueName);
6209   if (PrintSummaryGUIDs)
6210     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6211            << ValueName << "\n";
6212 
6213   // UseStrtab is false for legacy summary formats and value names are
6214   // created on stack. In that case we save the name in a string saver in
6215   // the index so that the value name can be recorded.
6216   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6217       TheIndex.getOrInsertValueInfo(
6218           ValueGUID,
6219           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6220       OriginalNameID);
6221 }
6222 
6223 // Specialized value symbol table parser used when reading module index
6224 // blocks where we don't actually create global values. The parsed information
6225 // is saved in the bitcode reader for use when later parsing summaries.
6226 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6227     uint64_t Offset,
6228     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6229   // With a strtab the VST is not required to parse the summary.
6230   if (UseStrtab)
6231     return Error::success();
6232 
6233   assert(Offset > 0 && "Expected non-zero VST offset");
6234   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6235   if (!MaybeCurrentBit)
6236     return MaybeCurrentBit.takeError();
6237   uint64_t CurrentBit = MaybeCurrentBit.get();
6238 
6239   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6240     return Err;
6241 
6242   SmallVector<uint64_t, 64> Record;
6243 
6244   // Read all the records for this value table.
6245   SmallString<128> ValueName;
6246 
6247   while (true) {
6248     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6249     if (!MaybeEntry)
6250       return MaybeEntry.takeError();
6251     BitstreamEntry Entry = MaybeEntry.get();
6252 
6253     switch (Entry.Kind) {
6254     case BitstreamEntry::SubBlock: // Handled for us already.
6255     case BitstreamEntry::Error:
6256       return error("Malformed block");
6257     case BitstreamEntry::EndBlock:
6258       // Done parsing VST, jump back to wherever we came from.
6259       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6260         return JumpFailed;
6261       return Error::success();
6262     case BitstreamEntry::Record:
6263       // The interesting case.
6264       break;
6265     }
6266 
6267     // Read a record.
6268     Record.clear();
6269     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6270     if (!MaybeRecord)
6271       return MaybeRecord.takeError();
6272     switch (MaybeRecord.get()) {
6273     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6274       break;
6275     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6276       if (convertToString(Record, 1, ValueName))
6277         return error("Invalid record");
6278       unsigned ValueID = Record[0];
6279       assert(!SourceFileName.empty());
6280       auto VLI = ValueIdToLinkageMap.find(ValueID);
6281       assert(VLI != ValueIdToLinkageMap.end() &&
6282              "No linkage found for VST entry?");
6283       auto Linkage = VLI->second;
6284       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6285       ValueName.clear();
6286       break;
6287     }
6288     case bitc::VST_CODE_FNENTRY: {
6289       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6290       if (convertToString(Record, 2, ValueName))
6291         return error("Invalid record");
6292       unsigned ValueID = Record[0];
6293       assert(!SourceFileName.empty());
6294       auto VLI = ValueIdToLinkageMap.find(ValueID);
6295       assert(VLI != ValueIdToLinkageMap.end() &&
6296              "No linkage found for VST entry?");
6297       auto Linkage = VLI->second;
6298       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6299       ValueName.clear();
6300       break;
6301     }
6302     case bitc::VST_CODE_COMBINED_ENTRY: {
6303       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6304       unsigned ValueID = Record[0];
6305       GlobalValue::GUID RefGUID = Record[1];
6306       // The "original name", which is the second value of the pair will be
6307       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6308       ValueIdToValueInfoMap[ValueID] =
6309           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6310       break;
6311     }
6312     }
6313   }
6314 }
6315 
6316 // Parse just the blocks needed for building the index out of the module.
6317 // At the end of this routine the module Index is populated with a map
6318 // from global value id to GlobalValueSummary objects.
6319 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6320   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6321     return Err;
6322 
6323   SmallVector<uint64_t, 64> Record;
6324   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6325   unsigned ValueId = 0;
6326 
6327   // Read the index for this module.
6328   while (true) {
6329     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6330     if (!MaybeEntry)
6331       return MaybeEntry.takeError();
6332     llvm::BitstreamEntry Entry = MaybeEntry.get();
6333 
6334     switch (Entry.Kind) {
6335     case BitstreamEntry::Error:
6336       return error("Malformed block");
6337     case BitstreamEntry::EndBlock:
6338       return Error::success();
6339 
6340     case BitstreamEntry::SubBlock:
6341       switch (Entry.ID) {
6342       default: // Skip unknown content.
6343         if (Error Err = Stream.SkipBlock())
6344           return Err;
6345         break;
6346       case bitc::BLOCKINFO_BLOCK_ID:
6347         // Need to parse these to get abbrev ids (e.g. for VST)
6348         if (Error Err = readBlockInfo())
6349           return Err;
6350         break;
6351       case bitc::VALUE_SYMTAB_BLOCK_ID:
6352         // Should have been parsed earlier via VSTOffset, unless there
6353         // is no summary section.
6354         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6355                 !SeenGlobalValSummary) &&
6356                "Expected early VST parse via VSTOffset record");
6357         if (Error Err = Stream.SkipBlock())
6358           return Err;
6359         break;
6360       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6361       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6362         // Add the module if it is a per-module index (has a source file name).
6363         if (!SourceFileName.empty())
6364           addThisModule();
6365         assert(!SeenValueSymbolTable &&
6366                "Already read VST when parsing summary block?");
6367         // We might not have a VST if there were no values in the
6368         // summary. An empty summary block generated when we are
6369         // performing ThinLTO compiles so we don't later invoke
6370         // the regular LTO process on them.
6371         if (VSTOffset > 0) {
6372           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6373             return Err;
6374           SeenValueSymbolTable = true;
6375         }
6376         SeenGlobalValSummary = true;
6377         if (Error Err = parseEntireSummary(Entry.ID))
6378           return Err;
6379         break;
6380       case bitc::MODULE_STRTAB_BLOCK_ID:
6381         if (Error Err = parseModuleStringTable())
6382           return Err;
6383         break;
6384       }
6385       continue;
6386 
6387     case BitstreamEntry::Record: {
6388         Record.clear();
6389         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6390         if (!MaybeBitCode)
6391           return MaybeBitCode.takeError();
6392         switch (MaybeBitCode.get()) {
6393         default:
6394           break; // Default behavior, ignore unknown content.
6395         case bitc::MODULE_CODE_VERSION: {
6396           if (Error Err = parseVersionRecord(Record).takeError())
6397             return Err;
6398           break;
6399         }
6400         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6401         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6402           SmallString<128> ValueName;
6403           if (convertToString(Record, 0, ValueName))
6404             return error("Invalid record");
6405           SourceFileName = ValueName.c_str();
6406           break;
6407         }
6408         /// MODULE_CODE_HASH: [5*i32]
6409         case bitc::MODULE_CODE_HASH: {
6410           if (Record.size() != 5)
6411             return error("Invalid hash length " + Twine(Record.size()).str());
6412           auto &Hash = getThisModule()->second.second;
6413           int Pos = 0;
6414           for (auto &Val : Record) {
6415             assert(!(Val >> 32) && "Unexpected high bits set");
6416             Hash[Pos++] = Val;
6417           }
6418           break;
6419         }
6420         /// MODULE_CODE_VSTOFFSET: [offset]
6421         case bitc::MODULE_CODE_VSTOFFSET:
6422           if (Record.empty())
6423             return error("Invalid record");
6424           // Note that we subtract 1 here because the offset is relative to one
6425           // word before the start of the identification or module block, which
6426           // was historically always the start of the regular bitcode header.
6427           VSTOffset = Record[0] - 1;
6428           break;
6429         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6430         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6431         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6432         // v2: [strtab offset, strtab size, v1]
6433         case bitc::MODULE_CODE_GLOBALVAR:
6434         case bitc::MODULE_CODE_FUNCTION:
6435         case bitc::MODULE_CODE_ALIAS: {
6436           StringRef Name;
6437           ArrayRef<uint64_t> GVRecord;
6438           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6439           if (GVRecord.size() <= 3)
6440             return error("Invalid record");
6441           uint64_t RawLinkage = GVRecord[3];
6442           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6443           if (!UseStrtab) {
6444             ValueIdToLinkageMap[ValueId++] = Linkage;
6445             break;
6446           }
6447 
6448           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6449           break;
6450         }
6451         }
6452       }
6453       continue;
6454     }
6455   }
6456 }
6457 
6458 std::vector<ValueInfo>
6459 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6460   std::vector<ValueInfo> Ret;
6461   Ret.reserve(Record.size());
6462   for (uint64_t RefValueId : Record)
6463     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6464   return Ret;
6465 }
6466 
6467 std::vector<FunctionSummary::EdgeTy>
6468 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6469                                               bool IsOldProfileFormat,
6470                                               bool HasProfile, bool HasRelBF) {
6471   std::vector<FunctionSummary::EdgeTy> Ret;
6472   Ret.reserve(Record.size());
6473   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6474     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6475     uint64_t RelBF = 0;
6476     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6477     if (IsOldProfileFormat) {
6478       I += 1; // Skip old callsitecount field
6479       if (HasProfile)
6480         I += 1; // Skip old profilecount field
6481     } else if (HasProfile)
6482       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6483     else if (HasRelBF)
6484       RelBF = Record[++I];
6485     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6486   }
6487   return Ret;
6488 }
6489 
6490 static void
6491 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6492                                        WholeProgramDevirtResolution &Wpd) {
6493   uint64_t ArgNum = Record[Slot++];
6494   WholeProgramDevirtResolution::ByArg &B =
6495       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6496   Slot += ArgNum;
6497 
6498   B.TheKind =
6499       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6500   B.Info = Record[Slot++];
6501   B.Byte = Record[Slot++];
6502   B.Bit = Record[Slot++];
6503 }
6504 
6505 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6506                                               StringRef Strtab, size_t &Slot,
6507                                               TypeIdSummary &TypeId) {
6508   uint64_t Id = Record[Slot++];
6509   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6510 
6511   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6512   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6513                         static_cast<size_t>(Record[Slot + 1])};
6514   Slot += 2;
6515 
6516   uint64_t ResByArgNum = Record[Slot++];
6517   for (uint64_t I = 0; I != ResByArgNum; ++I)
6518     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6519 }
6520 
6521 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6522                                      StringRef Strtab,
6523                                      ModuleSummaryIndex &TheIndex) {
6524   size_t Slot = 0;
6525   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6526       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6527   Slot += 2;
6528 
6529   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6530   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6531   TypeId.TTRes.AlignLog2 = Record[Slot++];
6532   TypeId.TTRes.SizeM1 = Record[Slot++];
6533   TypeId.TTRes.BitMask = Record[Slot++];
6534   TypeId.TTRes.InlineBits = Record[Slot++];
6535 
6536   while (Slot < Record.size())
6537     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6538 }
6539 
6540 std::vector<FunctionSummary::ParamAccess>
6541 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6542   auto ReadRange = [&]() {
6543     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6544                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6545     Record = Record.drop_front();
6546     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6547                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6548     Record = Record.drop_front();
6549     ConstantRange Range{Lower, Upper};
6550     assert(!Range.isFullSet());
6551     assert(!Range.isUpperSignWrapped());
6552     return Range;
6553   };
6554 
6555   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6556   while (!Record.empty()) {
6557     PendingParamAccesses.emplace_back();
6558     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6559     ParamAccess.ParamNo = Record.front();
6560     Record = Record.drop_front();
6561     ParamAccess.Use = ReadRange();
6562     ParamAccess.Calls.resize(Record.front());
6563     Record = Record.drop_front();
6564     for (auto &Call : ParamAccess.Calls) {
6565       Call.ParamNo = Record.front();
6566       Record = Record.drop_front();
6567       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6568       Record = Record.drop_front();
6569       Call.Offsets = ReadRange();
6570     }
6571   }
6572   return PendingParamAccesses;
6573 }
6574 
6575 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6576     ArrayRef<uint64_t> Record, size_t &Slot,
6577     TypeIdCompatibleVtableInfo &TypeId) {
6578   uint64_t Offset = Record[Slot++];
6579   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6580   TypeId.push_back({Offset, Callee});
6581 }
6582 
6583 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6584     ArrayRef<uint64_t> Record) {
6585   size_t Slot = 0;
6586   TypeIdCompatibleVtableInfo &TypeId =
6587       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6588           {Strtab.data() + Record[Slot],
6589            static_cast<size_t>(Record[Slot + 1])});
6590   Slot += 2;
6591 
6592   while (Slot < Record.size())
6593     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6594 }
6595 
6596 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6597                            unsigned WOCnt) {
6598   // Readonly and writeonly refs are in the end of the refs list.
6599   assert(ROCnt + WOCnt <= Refs.size());
6600   unsigned FirstWORef = Refs.size() - WOCnt;
6601   unsigned RefNo = FirstWORef - ROCnt;
6602   for (; RefNo < FirstWORef; ++RefNo)
6603     Refs[RefNo].setReadOnly();
6604   for (; RefNo < Refs.size(); ++RefNo)
6605     Refs[RefNo].setWriteOnly();
6606 }
6607 
6608 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6609 // objects in the index.
6610 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6611   if (Error Err = Stream.EnterSubBlock(ID))
6612     return Err;
6613   SmallVector<uint64_t, 64> Record;
6614 
6615   // Parse version
6616   {
6617     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6618     if (!MaybeEntry)
6619       return MaybeEntry.takeError();
6620     BitstreamEntry Entry = MaybeEntry.get();
6621 
6622     if (Entry.Kind != BitstreamEntry::Record)
6623       return error("Invalid Summary Block: record for version expected");
6624     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6625     if (!MaybeRecord)
6626       return MaybeRecord.takeError();
6627     if (MaybeRecord.get() != bitc::FS_VERSION)
6628       return error("Invalid Summary Block: version expected");
6629   }
6630   const uint64_t Version = Record[0];
6631   const bool IsOldProfileFormat = Version == 1;
6632   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6633     return error("Invalid summary version " + Twine(Version) +
6634                  ". Version should be in the range [1-" +
6635                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6636                  "].");
6637   Record.clear();
6638 
6639   // Keep around the last seen summary to be used when we see an optional
6640   // "OriginalName" attachement.
6641   GlobalValueSummary *LastSeenSummary = nullptr;
6642   GlobalValue::GUID LastSeenGUID = 0;
6643 
6644   // We can expect to see any number of type ID information records before
6645   // each function summary records; these variables store the information
6646   // collected so far so that it can be used to create the summary object.
6647   std::vector<GlobalValue::GUID> PendingTypeTests;
6648   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6649       PendingTypeCheckedLoadVCalls;
6650   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6651       PendingTypeCheckedLoadConstVCalls;
6652   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6653 
6654   while (true) {
6655     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6656     if (!MaybeEntry)
6657       return MaybeEntry.takeError();
6658     BitstreamEntry Entry = MaybeEntry.get();
6659 
6660     switch (Entry.Kind) {
6661     case BitstreamEntry::SubBlock: // Handled for us already.
6662     case BitstreamEntry::Error:
6663       return error("Malformed block");
6664     case BitstreamEntry::EndBlock:
6665       return Error::success();
6666     case BitstreamEntry::Record:
6667       // The interesting case.
6668       break;
6669     }
6670 
6671     // Read a record. The record format depends on whether this
6672     // is a per-module index or a combined index file. In the per-module
6673     // case the records contain the associated value's ID for correlation
6674     // with VST entries. In the combined index the correlation is done
6675     // via the bitcode offset of the summary records (which were saved
6676     // in the combined index VST entries). The records also contain
6677     // information used for ThinLTO renaming and importing.
6678     Record.clear();
6679     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6680     if (!MaybeBitCode)
6681       return MaybeBitCode.takeError();
6682     switch (unsigned BitCode = MaybeBitCode.get()) {
6683     default: // Default behavior: ignore.
6684       break;
6685     case bitc::FS_FLAGS: {  // [flags]
6686       TheIndex.setFlags(Record[0]);
6687       break;
6688     }
6689     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6690       uint64_t ValueID = Record[0];
6691       GlobalValue::GUID RefGUID = Record[1];
6692       ValueIdToValueInfoMap[ValueID] =
6693           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6694       break;
6695     }
6696     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6697     //                numrefs x valueid, n x (valueid)]
6698     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6699     //                        numrefs x valueid,
6700     //                        n x (valueid, hotness)]
6701     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6702     //                      numrefs x valueid,
6703     //                      n x (valueid, relblockfreq)]
6704     case bitc::FS_PERMODULE:
6705     case bitc::FS_PERMODULE_RELBF:
6706     case bitc::FS_PERMODULE_PROFILE: {
6707       unsigned ValueID = Record[0];
6708       uint64_t RawFlags = Record[1];
6709       unsigned InstCount = Record[2];
6710       uint64_t RawFunFlags = 0;
6711       unsigned NumRefs = Record[3];
6712       unsigned NumRORefs = 0, NumWORefs = 0;
6713       int RefListStartIndex = 4;
6714       if (Version >= 4) {
6715         RawFunFlags = Record[3];
6716         NumRefs = Record[4];
6717         RefListStartIndex = 5;
6718         if (Version >= 5) {
6719           NumRORefs = Record[5];
6720           RefListStartIndex = 6;
6721           if (Version >= 7) {
6722             NumWORefs = Record[6];
6723             RefListStartIndex = 7;
6724           }
6725         }
6726       }
6727 
6728       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6729       // The module path string ref set in the summary must be owned by the
6730       // index's module string table. Since we don't have a module path
6731       // string table section in the per-module index, we create a single
6732       // module path string table entry with an empty (0) ID to take
6733       // ownership.
6734       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6735       assert(Record.size() >= RefListStartIndex + NumRefs &&
6736              "Record size inconsistent with number of references");
6737       std::vector<ValueInfo> Refs = makeRefList(
6738           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6739       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6740       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6741       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6742           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6743           IsOldProfileFormat, HasProfile, HasRelBF);
6744       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6745       auto FS = std::make_unique<FunctionSummary>(
6746           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6747           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6748           std::move(PendingTypeTestAssumeVCalls),
6749           std::move(PendingTypeCheckedLoadVCalls),
6750           std::move(PendingTypeTestAssumeConstVCalls),
6751           std::move(PendingTypeCheckedLoadConstVCalls),
6752           std::move(PendingParamAccesses));
6753       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6754       FS->setModulePath(getThisModule()->first());
6755       FS->setOriginalName(VIAndOriginalGUID.second);
6756       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6757       break;
6758     }
6759     // FS_ALIAS: [valueid, flags, valueid]
6760     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6761     // they expect all aliasee summaries to be available.
6762     case bitc::FS_ALIAS: {
6763       unsigned ValueID = Record[0];
6764       uint64_t RawFlags = Record[1];
6765       unsigned AliaseeID = Record[2];
6766       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6767       auto AS = std::make_unique<AliasSummary>(Flags);
6768       // The module path string ref set in the summary must be owned by the
6769       // index's module string table. Since we don't have a module path
6770       // string table section in the per-module index, we create a single
6771       // module path string table entry with an empty (0) ID to take
6772       // ownership.
6773       AS->setModulePath(getThisModule()->first());
6774 
6775       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6776       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6777       if (!AliaseeInModule)
6778         return error("Alias expects aliasee summary to be parsed");
6779       AS->setAliasee(AliaseeVI, AliaseeInModule);
6780 
6781       auto GUID = getValueInfoFromValueId(ValueID);
6782       AS->setOriginalName(GUID.second);
6783       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6784       break;
6785     }
6786     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6787     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6788       unsigned ValueID = Record[0];
6789       uint64_t RawFlags = Record[1];
6790       unsigned RefArrayStart = 2;
6791       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6792                                       /* WriteOnly */ false,
6793                                       /* Constant */ false,
6794                                       GlobalObject::VCallVisibilityPublic);
6795       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6796       if (Version >= 5) {
6797         GVF = getDecodedGVarFlags(Record[2]);
6798         RefArrayStart = 3;
6799       }
6800       std::vector<ValueInfo> Refs =
6801           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6802       auto FS =
6803           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6804       FS->setModulePath(getThisModule()->first());
6805       auto GUID = getValueInfoFromValueId(ValueID);
6806       FS->setOriginalName(GUID.second);
6807       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6808       break;
6809     }
6810     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6811     //                        numrefs, numrefs x valueid,
6812     //                        n x (valueid, offset)]
6813     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6814       unsigned ValueID = Record[0];
6815       uint64_t RawFlags = Record[1];
6816       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6817       unsigned NumRefs = Record[3];
6818       unsigned RefListStartIndex = 4;
6819       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6820       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6821       std::vector<ValueInfo> Refs = makeRefList(
6822           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6823       VTableFuncList VTableFuncs;
6824       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6825         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6826         uint64_t Offset = Record[++I];
6827         VTableFuncs.push_back({Callee, Offset});
6828       }
6829       auto VS =
6830           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6831       VS->setModulePath(getThisModule()->first());
6832       VS->setVTableFuncs(VTableFuncs);
6833       auto GUID = getValueInfoFromValueId(ValueID);
6834       VS->setOriginalName(GUID.second);
6835       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6836       break;
6837     }
6838     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6839     //               numrefs x valueid, n x (valueid)]
6840     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6841     //                       numrefs x valueid, n x (valueid, hotness)]
6842     case bitc::FS_COMBINED:
6843     case bitc::FS_COMBINED_PROFILE: {
6844       unsigned ValueID = Record[0];
6845       uint64_t ModuleId = Record[1];
6846       uint64_t RawFlags = Record[2];
6847       unsigned InstCount = Record[3];
6848       uint64_t RawFunFlags = 0;
6849       uint64_t EntryCount = 0;
6850       unsigned NumRefs = Record[4];
6851       unsigned NumRORefs = 0, NumWORefs = 0;
6852       int RefListStartIndex = 5;
6853 
6854       if (Version >= 4) {
6855         RawFunFlags = Record[4];
6856         RefListStartIndex = 6;
6857         size_t NumRefsIndex = 5;
6858         if (Version >= 5) {
6859           unsigned NumRORefsOffset = 1;
6860           RefListStartIndex = 7;
6861           if (Version >= 6) {
6862             NumRefsIndex = 6;
6863             EntryCount = Record[5];
6864             RefListStartIndex = 8;
6865             if (Version >= 7) {
6866               RefListStartIndex = 9;
6867               NumWORefs = Record[8];
6868               NumRORefsOffset = 2;
6869             }
6870           }
6871           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6872         }
6873         NumRefs = Record[NumRefsIndex];
6874       }
6875 
6876       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6877       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6878       assert(Record.size() >= RefListStartIndex + NumRefs &&
6879              "Record size inconsistent with number of references");
6880       std::vector<ValueInfo> Refs = makeRefList(
6881           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6882       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6883       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6884           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6885           IsOldProfileFormat, HasProfile, false);
6886       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6887       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6888       auto FS = std::make_unique<FunctionSummary>(
6889           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6890           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6891           std::move(PendingTypeTestAssumeVCalls),
6892           std::move(PendingTypeCheckedLoadVCalls),
6893           std::move(PendingTypeTestAssumeConstVCalls),
6894           std::move(PendingTypeCheckedLoadConstVCalls),
6895           std::move(PendingParamAccesses));
6896       LastSeenSummary = FS.get();
6897       LastSeenGUID = VI.getGUID();
6898       FS->setModulePath(ModuleIdMap[ModuleId]);
6899       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6900       break;
6901     }
6902     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6903     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6904     // they expect all aliasee summaries to be available.
6905     case bitc::FS_COMBINED_ALIAS: {
6906       unsigned ValueID = Record[0];
6907       uint64_t ModuleId = Record[1];
6908       uint64_t RawFlags = Record[2];
6909       unsigned AliaseeValueId = Record[3];
6910       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6911       auto AS = std::make_unique<AliasSummary>(Flags);
6912       LastSeenSummary = AS.get();
6913       AS->setModulePath(ModuleIdMap[ModuleId]);
6914 
6915       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6916       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6917       AS->setAliasee(AliaseeVI, AliaseeInModule);
6918 
6919       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6920       LastSeenGUID = VI.getGUID();
6921       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6922       break;
6923     }
6924     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6925     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6926       unsigned ValueID = Record[0];
6927       uint64_t ModuleId = Record[1];
6928       uint64_t RawFlags = Record[2];
6929       unsigned RefArrayStart = 3;
6930       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6931                                       /* WriteOnly */ false,
6932                                       /* Constant */ false,
6933                                       GlobalObject::VCallVisibilityPublic);
6934       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6935       if (Version >= 5) {
6936         GVF = getDecodedGVarFlags(Record[3]);
6937         RefArrayStart = 4;
6938       }
6939       std::vector<ValueInfo> Refs =
6940           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6941       auto FS =
6942           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6943       LastSeenSummary = FS.get();
6944       FS->setModulePath(ModuleIdMap[ModuleId]);
6945       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6946       LastSeenGUID = VI.getGUID();
6947       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6948       break;
6949     }
6950     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6951     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6952       uint64_t OriginalName = Record[0];
6953       if (!LastSeenSummary)
6954         return error("Name attachment that does not follow a combined record");
6955       LastSeenSummary->setOriginalName(OriginalName);
6956       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6957       // Reset the LastSeenSummary
6958       LastSeenSummary = nullptr;
6959       LastSeenGUID = 0;
6960       break;
6961     }
6962     case bitc::FS_TYPE_TESTS:
6963       assert(PendingTypeTests.empty());
6964       llvm::append_range(PendingTypeTests, Record);
6965       break;
6966 
6967     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6968       assert(PendingTypeTestAssumeVCalls.empty());
6969       for (unsigned I = 0; I != Record.size(); I += 2)
6970         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6971       break;
6972 
6973     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6974       assert(PendingTypeCheckedLoadVCalls.empty());
6975       for (unsigned I = 0; I != Record.size(); I += 2)
6976         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6977       break;
6978 
6979     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6980       PendingTypeTestAssumeConstVCalls.push_back(
6981           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6982       break;
6983 
6984     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6985       PendingTypeCheckedLoadConstVCalls.push_back(
6986           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6987       break;
6988 
6989     case bitc::FS_CFI_FUNCTION_DEFS: {
6990       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6991       for (unsigned I = 0; I != Record.size(); I += 2)
6992         CfiFunctionDefs.insert(
6993             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6994       break;
6995     }
6996 
6997     case bitc::FS_CFI_FUNCTION_DECLS: {
6998       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6999       for (unsigned I = 0; I != Record.size(); I += 2)
7000         CfiFunctionDecls.insert(
7001             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7002       break;
7003     }
7004 
7005     case bitc::FS_TYPE_ID:
7006       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7007       break;
7008 
7009     case bitc::FS_TYPE_ID_METADATA:
7010       parseTypeIdCompatibleVtableSummaryRecord(Record);
7011       break;
7012 
7013     case bitc::FS_BLOCK_COUNT:
7014       TheIndex.addBlockCount(Record[0]);
7015       break;
7016 
7017     case bitc::FS_PARAM_ACCESS: {
7018       PendingParamAccesses = parseParamAccesses(Record);
7019       break;
7020     }
7021     }
7022   }
7023   llvm_unreachable("Exit infinite loop");
7024 }
7025 
7026 // Parse the  module string table block into the Index.
7027 // This populates the ModulePathStringTable map in the index.
7028 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7029   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7030     return Err;
7031 
7032   SmallVector<uint64_t, 64> Record;
7033 
7034   SmallString<128> ModulePath;
7035   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7036 
7037   while (true) {
7038     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7039     if (!MaybeEntry)
7040       return MaybeEntry.takeError();
7041     BitstreamEntry Entry = MaybeEntry.get();
7042 
7043     switch (Entry.Kind) {
7044     case BitstreamEntry::SubBlock: // Handled for us already.
7045     case BitstreamEntry::Error:
7046       return error("Malformed block");
7047     case BitstreamEntry::EndBlock:
7048       return Error::success();
7049     case BitstreamEntry::Record:
7050       // The interesting case.
7051       break;
7052     }
7053 
7054     Record.clear();
7055     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7056     if (!MaybeRecord)
7057       return MaybeRecord.takeError();
7058     switch (MaybeRecord.get()) {
7059     default: // Default behavior: ignore.
7060       break;
7061     case bitc::MST_CODE_ENTRY: {
7062       // MST_ENTRY: [modid, namechar x N]
7063       uint64_t ModuleId = Record[0];
7064 
7065       if (convertToString(Record, 1, ModulePath))
7066         return error("Invalid record");
7067 
7068       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7069       ModuleIdMap[ModuleId] = LastSeenModule->first();
7070 
7071       ModulePath.clear();
7072       break;
7073     }
7074     /// MST_CODE_HASH: [5*i32]
7075     case bitc::MST_CODE_HASH: {
7076       if (Record.size() != 5)
7077         return error("Invalid hash length " + Twine(Record.size()).str());
7078       if (!LastSeenModule)
7079         return error("Invalid hash that does not follow a module path");
7080       int Pos = 0;
7081       for (auto &Val : Record) {
7082         assert(!(Val >> 32) && "Unexpected high bits set");
7083         LastSeenModule->second.second[Pos++] = Val;
7084       }
7085       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7086       LastSeenModule = nullptr;
7087       break;
7088     }
7089     }
7090   }
7091   llvm_unreachable("Exit infinite loop");
7092 }
7093 
7094 namespace {
7095 
7096 // FIXME: This class is only here to support the transition to llvm::Error. It
7097 // will be removed once this transition is complete. Clients should prefer to
7098 // deal with the Error value directly, rather than converting to error_code.
7099 class BitcodeErrorCategoryType : public std::error_category {
7100   const char *name() const noexcept override {
7101     return "llvm.bitcode";
7102   }
7103 
7104   std::string message(int IE) const override {
7105     BitcodeError E = static_cast<BitcodeError>(IE);
7106     switch (E) {
7107     case BitcodeError::CorruptedBitcode:
7108       return "Corrupted bitcode";
7109     }
7110     llvm_unreachable("Unknown error type!");
7111   }
7112 };
7113 
7114 } // end anonymous namespace
7115 
7116 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7117 
7118 const std::error_category &llvm::BitcodeErrorCategory() {
7119   return *ErrorCategory;
7120 }
7121 
7122 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7123                                             unsigned Block, unsigned RecordID) {
7124   if (Error Err = Stream.EnterSubBlock(Block))
7125     return std::move(Err);
7126 
7127   StringRef Strtab;
7128   while (true) {
7129     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7130     if (!MaybeEntry)
7131       return MaybeEntry.takeError();
7132     llvm::BitstreamEntry Entry = MaybeEntry.get();
7133 
7134     switch (Entry.Kind) {
7135     case BitstreamEntry::EndBlock:
7136       return Strtab;
7137 
7138     case BitstreamEntry::Error:
7139       return error("Malformed block");
7140 
7141     case BitstreamEntry::SubBlock:
7142       if (Error Err = Stream.SkipBlock())
7143         return std::move(Err);
7144       break;
7145 
7146     case BitstreamEntry::Record:
7147       StringRef Blob;
7148       SmallVector<uint64_t, 1> Record;
7149       Expected<unsigned> MaybeRecord =
7150           Stream.readRecord(Entry.ID, Record, &Blob);
7151       if (!MaybeRecord)
7152         return MaybeRecord.takeError();
7153       if (MaybeRecord.get() == RecordID)
7154         Strtab = Blob;
7155       break;
7156     }
7157   }
7158 }
7159 
7160 //===----------------------------------------------------------------------===//
7161 // External interface
7162 //===----------------------------------------------------------------------===//
7163 
7164 Expected<std::vector<BitcodeModule>>
7165 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7166   auto FOrErr = getBitcodeFileContents(Buffer);
7167   if (!FOrErr)
7168     return FOrErr.takeError();
7169   return std::move(FOrErr->Mods);
7170 }
7171 
7172 Expected<BitcodeFileContents>
7173 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7174   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7175   if (!StreamOrErr)
7176     return StreamOrErr.takeError();
7177   BitstreamCursor &Stream = *StreamOrErr;
7178 
7179   BitcodeFileContents F;
7180   while (true) {
7181     uint64_t BCBegin = Stream.getCurrentByteNo();
7182 
7183     // We may be consuming bitcode from a client that leaves garbage at the end
7184     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7185     // the end that there cannot possibly be another module, stop looking.
7186     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7187       return F;
7188 
7189     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7190     if (!MaybeEntry)
7191       return MaybeEntry.takeError();
7192     llvm::BitstreamEntry Entry = MaybeEntry.get();
7193 
7194     switch (Entry.Kind) {
7195     case BitstreamEntry::EndBlock:
7196     case BitstreamEntry::Error:
7197       return error("Malformed block");
7198 
7199     case BitstreamEntry::SubBlock: {
7200       uint64_t IdentificationBit = -1ull;
7201       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7202         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7203         if (Error Err = Stream.SkipBlock())
7204           return std::move(Err);
7205 
7206         {
7207           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7208           if (!MaybeEntry)
7209             return MaybeEntry.takeError();
7210           Entry = MaybeEntry.get();
7211         }
7212 
7213         if (Entry.Kind != BitstreamEntry::SubBlock ||
7214             Entry.ID != bitc::MODULE_BLOCK_ID)
7215           return error("Malformed block");
7216       }
7217 
7218       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7219         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7220         if (Error Err = Stream.SkipBlock())
7221           return std::move(Err);
7222 
7223         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7224                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7225                           Buffer.getBufferIdentifier(), IdentificationBit,
7226                           ModuleBit});
7227         continue;
7228       }
7229 
7230       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7231         Expected<StringRef> Strtab =
7232             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7233         if (!Strtab)
7234           return Strtab.takeError();
7235         // This string table is used by every preceding bitcode module that does
7236         // not have its own string table. A bitcode file may have multiple
7237         // string tables if it was created by binary concatenation, for example
7238         // with "llvm-cat -b".
7239         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7240           if (!I.Strtab.empty())
7241             break;
7242           I.Strtab = *Strtab;
7243         }
7244         // Similarly, the string table is used by every preceding symbol table;
7245         // normally there will be just one unless the bitcode file was created
7246         // by binary concatenation.
7247         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7248           F.StrtabForSymtab = *Strtab;
7249         continue;
7250       }
7251 
7252       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7253         Expected<StringRef> SymtabOrErr =
7254             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7255         if (!SymtabOrErr)
7256           return SymtabOrErr.takeError();
7257 
7258         // We can expect the bitcode file to have multiple symbol tables if it
7259         // was created by binary concatenation. In that case we silently
7260         // ignore any subsequent symbol tables, which is fine because this is a
7261         // low level function. The client is expected to notice that the number
7262         // of modules in the symbol table does not match the number of modules
7263         // in the input file and regenerate the symbol table.
7264         if (F.Symtab.empty())
7265           F.Symtab = *SymtabOrErr;
7266         continue;
7267       }
7268 
7269       if (Error Err = Stream.SkipBlock())
7270         return std::move(Err);
7271       continue;
7272     }
7273     case BitstreamEntry::Record:
7274       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7275         return std::move(E);
7276       continue;
7277     }
7278   }
7279 }
7280 
7281 /// Get a lazy one-at-time loading module from bitcode.
7282 ///
7283 /// This isn't always used in a lazy context.  In particular, it's also used by
7284 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7285 /// in forward-referenced functions from block address references.
7286 ///
7287 /// \param[in] MaterializeAll Set to \c true if we should materialize
7288 /// everything.
7289 Expected<std::unique_ptr<Module>>
7290 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7291                              bool ShouldLazyLoadMetadata, bool IsImporting,
7292                              DataLayoutCallbackTy DataLayoutCallback) {
7293   BitstreamCursor Stream(Buffer);
7294 
7295   std::string ProducerIdentification;
7296   if (IdentificationBit != -1ull) {
7297     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7298       return std::move(JumpFailed);
7299     if (Error E =
7300             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7301       return std::move(E);
7302   }
7303 
7304   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7305     return std::move(JumpFailed);
7306   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7307                               Context);
7308 
7309   std::unique_ptr<Module> M =
7310       std::make_unique<Module>(ModuleIdentifier, Context);
7311   M->setMaterializer(R);
7312 
7313   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7314   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7315                                       IsImporting, DataLayoutCallback))
7316     return std::move(Err);
7317 
7318   if (MaterializeAll) {
7319     // Read in the entire module, and destroy the BitcodeReader.
7320     if (Error Err = M->materializeAll())
7321       return std::move(Err);
7322   } else {
7323     // Resolve forward references from blockaddresses.
7324     if (Error Err = R->materializeForwardReferencedFunctions())
7325       return std::move(Err);
7326   }
7327   return std::move(M);
7328 }
7329 
7330 Expected<std::unique_ptr<Module>>
7331 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7332                              bool IsImporting) {
7333   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7334                        [](StringRef) { return None; });
7335 }
7336 
7337 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7338 // We don't use ModuleIdentifier here because the client may need to control the
7339 // module path used in the combined summary (e.g. when reading summaries for
7340 // regular LTO modules).
7341 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7342                                  StringRef ModulePath, uint64_t ModuleId) {
7343   BitstreamCursor Stream(Buffer);
7344   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7345     return JumpFailed;
7346 
7347   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7348                                     ModulePath, ModuleId);
7349   return R.parseModule();
7350 }
7351 
7352 // Parse the specified bitcode buffer, returning the function info index.
7353 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7354   BitstreamCursor Stream(Buffer);
7355   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7356     return std::move(JumpFailed);
7357 
7358   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7359   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7360                                     ModuleIdentifier, 0);
7361 
7362   if (Error Err = R.parseModule())
7363     return std::move(Err);
7364 
7365   return std::move(Index);
7366 }
7367 
7368 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7369                                                 unsigned ID) {
7370   if (Error Err = Stream.EnterSubBlock(ID))
7371     return std::move(Err);
7372   SmallVector<uint64_t, 64> Record;
7373 
7374   while (true) {
7375     BitstreamEntry Entry;
7376     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7377       return std::move(E);
7378 
7379     switch (Entry.Kind) {
7380     case BitstreamEntry::SubBlock: // Handled for us already.
7381     case BitstreamEntry::Error:
7382       return error("Malformed block");
7383     case BitstreamEntry::EndBlock:
7384       // If no flags record found, conservatively return true to mimic
7385       // behavior before this flag was added.
7386       return true;
7387     case BitstreamEntry::Record:
7388       // The interesting case.
7389       break;
7390     }
7391 
7392     // Look for the FS_FLAGS record.
7393     Record.clear();
7394     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7395     if (!MaybeBitCode)
7396       return MaybeBitCode.takeError();
7397     switch (MaybeBitCode.get()) {
7398     default: // Default behavior: ignore.
7399       break;
7400     case bitc::FS_FLAGS: { // [flags]
7401       uint64_t Flags = Record[0];
7402       // Scan flags.
7403       assert(Flags <= 0x7f && "Unexpected bits in flag");
7404 
7405       return Flags & 0x8;
7406     }
7407     }
7408   }
7409   llvm_unreachable("Exit infinite loop");
7410 }
7411 
7412 // Check if the given bitcode buffer contains a global value summary block.
7413 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7414   BitstreamCursor Stream(Buffer);
7415   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7416     return std::move(JumpFailed);
7417 
7418   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7419     return std::move(Err);
7420 
7421   while (true) {
7422     llvm::BitstreamEntry Entry;
7423     if (Error E = Stream.advance().moveInto(Entry))
7424       return std::move(E);
7425 
7426     switch (Entry.Kind) {
7427     case BitstreamEntry::Error:
7428       return error("Malformed block");
7429     case BitstreamEntry::EndBlock:
7430       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7431                             /*EnableSplitLTOUnit=*/false};
7432 
7433     case BitstreamEntry::SubBlock:
7434       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7435         Expected<bool> EnableSplitLTOUnit =
7436             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7437         if (!EnableSplitLTOUnit)
7438           return EnableSplitLTOUnit.takeError();
7439         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7440                               *EnableSplitLTOUnit};
7441       }
7442 
7443       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7444         Expected<bool> EnableSplitLTOUnit =
7445             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7446         if (!EnableSplitLTOUnit)
7447           return EnableSplitLTOUnit.takeError();
7448         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7449                               *EnableSplitLTOUnit};
7450       }
7451 
7452       // Ignore other sub-blocks.
7453       if (Error Err = Stream.SkipBlock())
7454         return std::move(Err);
7455       continue;
7456 
7457     case BitstreamEntry::Record:
7458       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7459         continue;
7460       else
7461         return StreamFailed.takeError();
7462     }
7463   }
7464 }
7465 
7466 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7467   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7468   if (!MsOrErr)
7469     return MsOrErr.takeError();
7470 
7471   if (MsOrErr->size() != 1)
7472     return error("Expected a single module");
7473 
7474   return (*MsOrErr)[0];
7475 }
7476 
7477 Expected<std::unique_ptr<Module>>
7478 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7479                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7480   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7481   if (!BM)
7482     return BM.takeError();
7483 
7484   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7485 }
7486 
7487 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7488     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7489     bool ShouldLazyLoadMetadata, bool IsImporting) {
7490   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7491                                      IsImporting);
7492   if (MOrErr)
7493     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7494   return MOrErr;
7495 }
7496 
7497 Expected<std::unique_ptr<Module>>
7498 BitcodeModule::parseModule(LLVMContext &Context,
7499                            DataLayoutCallbackTy DataLayoutCallback) {
7500   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7501   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7502   // written.  We must defer until the Module has been fully materialized.
7503 }
7504 
7505 Expected<std::unique_ptr<Module>>
7506 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7507                        DataLayoutCallbackTy DataLayoutCallback) {
7508   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7509   if (!BM)
7510     return BM.takeError();
7511 
7512   return BM->parseModule(Context, DataLayoutCallback);
7513 }
7514 
7515 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7516   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7517   if (!StreamOrErr)
7518     return StreamOrErr.takeError();
7519 
7520   return readTriple(*StreamOrErr);
7521 }
7522 
7523 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7524   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7525   if (!StreamOrErr)
7526     return StreamOrErr.takeError();
7527 
7528   return hasObjCCategory(*StreamOrErr);
7529 }
7530 
7531 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7532   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7533   if (!StreamOrErr)
7534     return StreamOrErr.takeError();
7535 
7536   return readIdentificationCode(*StreamOrErr);
7537 }
7538 
7539 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7540                                    ModuleSummaryIndex &CombinedIndex,
7541                                    uint64_t ModuleId) {
7542   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7543   if (!BM)
7544     return BM.takeError();
7545 
7546   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7547 }
7548 
7549 Expected<std::unique_ptr<ModuleSummaryIndex>>
7550 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7551   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7552   if (!BM)
7553     return BM.takeError();
7554 
7555   return BM->getSummary();
7556 }
7557 
7558 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7559   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7560   if (!BM)
7561     return BM.takeError();
7562 
7563   return BM->getLTOInfo();
7564 }
7565 
7566 Expected<std::unique_ptr<ModuleSummaryIndex>>
7567 llvm::getModuleSummaryIndexForFile(StringRef Path,
7568                                    bool IgnoreEmptyThinLTOIndexFile) {
7569   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7570       MemoryBuffer::getFileOrSTDIN(Path);
7571   if (!FileOrErr)
7572     return errorCodeToError(FileOrErr.getError());
7573   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7574     return nullptr;
7575   return getModuleSummaryIndex(**FileOrErr);
7576 }
7577