xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 21521891a2e3492f22455af6c1c1a903a723115c)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 #include <utility>
41 
42 using namespace llvm;
43 
44 static cl::opt<bool> PrintSummaryGUIDs(
45     "print-summary-global-ids", cl::init(false), cl::Hidden,
46     cl::desc(
47         "Print the global id for each value when reading the module summary"));
48 
49 namespace {
50 enum {
51   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
52 };
53 
54 class BitcodeReaderValueList {
55   std::vector<WeakVH> ValuePtrs;
56 
57   /// As we resolve forward-referenced constants, we add information about them
58   /// to this vector.  This allows us to resolve them in bulk instead of
59   /// resolving each reference at a time.  See the code in
60   /// ResolveConstantForwardRefs for more information about this.
61   ///
62   /// The key of this vector is the placeholder constant, the value is the slot
63   /// number that holds the resolved value.
64   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
65   ResolveConstantsTy ResolveConstants;
66   LLVMContext &Context;
67 public:
68   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
69   ~BitcodeReaderValueList() {
70     assert(ResolveConstants.empty() && "Constants not resolved?");
71   }
72 
73   // vector compatibility methods
74   unsigned size() const { return ValuePtrs.size(); }
75   void resize(unsigned N) { ValuePtrs.resize(N); }
76   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
77 
78   void clear() {
79     assert(ResolveConstants.empty() && "Constants not resolved?");
80     ValuePtrs.clear();
81   }
82 
83   Value *operator[](unsigned i) const {
84     assert(i < ValuePtrs.size());
85     return ValuePtrs[i];
86   }
87 
88   Value *back() const { return ValuePtrs.back(); }
89   void pop_back() { ValuePtrs.pop_back(); }
90   bool empty() const { return ValuePtrs.empty(); }
91   void shrinkTo(unsigned N) {
92     assert(N <= size() && "Invalid shrinkTo request!");
93     ValuePtrs.resize(N);
94   }
95 
96   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
97   Value *getValueFwdRef(unsigned Idx, Type *Ty);
98 
99   void assignValue(Value *V, unsigned Idx);
100 
101   /// Once all constants are read, this method bulk resolves any forward
102   /// references.
103   void resolveConstantForwardRefs();
104 };
105 
106 class BitcodeReaderMetadataList {
107   unsigned NumFwdRefs;
108   bool AnyFwdRefs;
109   unsigned MinFwdRef;
110   unsigned MaxFwdRef;
111 
112   /// Array of metadata references.
113   ///
114   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
115   /// move) on resize, and TrackingMDRef is very expensive to copy.
116   SmallVector<TrackingMDRef, 1> MetadataPtrs;
117 
118   /// Structures for resolving old type refs.
119   struct {
120     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
121     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
122     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
123     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
124   } OldTypeRefs;
125 
126   LLVMContext &Context;
127 public:
128   BitcodeReaderMetadataList(LLVMContext &C)
129       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
130 
131   // vector compatibility methods
132   unsigned size() const { return MetadataPtrs.size(); }
133   void resize(unsigned N) { MetadataPtrs.resize(N); }
134   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
135   void clear() { MetadataPtrs.clear(); }
136   Metadata *back() const { return MetadataPtrs.back(); }
137   void pop_back() { MetadataPtrs.pop_back(); }
138   bool empty() const { return MetadataPtrs.empty(); }
139 
140   Metadata *operator[](unsigned i) const {
141     assert(i < MetadataPtrs.size());
142     return MetadataPtrs[i];
143   }
144 
145   Metadata *lookup(unsigned I) const {
146     if (I < MetadataPtrs.size())
147       return MetadataPtrs[I];
148     return nullptr;
149   }
150 
151   void shrinkTo(unsigned N) {
152     assert(N <= size() && "Invalid shrinkTo request!");
153     assert(!AnyFwdRefs && "Unexpected forward refs");
154     MetadataPtrs.resize(N);
155   }
156 
157   /// Return the given metadata, creating a replaceable forward reference if
158   /// necessary.
159   Metadata *getMetadataFwdRef(unsigned Idx);
160 
161   /// Return the the given metadata only if it is fully resolved.
162   ///
163   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
164   /// would give \c false.
165   Metadata *getMetadataIfResolved(unsigned Idx);
166 
167   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
168   void assignValue(Metadata *MD, unsigned Idx);
169   void tryToResolveCycles();
170   bool hasFwdRefs() const { return AnyFwdRefs; }
171 
172   /// Upgrade a type that had an MDString reference.
173   void addTypeRef(MDString &UUID, DICompositeType &CT);
174 
175   /// Upgrade a type that had an MDString reference.
176   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
177 
178   /// Upgrade a type ref array that may have MDString references.
179   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
180 
181 private:
182   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
183 };
184 
185 class BitcodeReader : public GVMaterializer {
186   LLVMContext &Context;
187   Module *TheModule = nullptr;
188   std::unique_ptr<MemoryBuffer> Buffer;
189   std::unique_ptr<BitstreamReader> StreamFile;
190   BitstreamCursor Stream;
191   // Next offset to start scanning for lazy parsing of function bodies.
192   uint64_t NextUnreadBit = 0;
193   // Last function offset found in the VST.
194   uint64_t LastFunctionBlockBit = 0;
195   bool SeenValueSymbolTable = false;
196   uint64_t VSTOffset = 0;
197   // Contains an arbitrary and optional string identifying the bitcode producer
198   std::string ProducerIdentification;
199 
200   std::vector<Type*> TypeList;
201   BitcodeReaderValueList ValueList;
202   BitcodeReaderMetadataList MetadataList;
203   std::vector<Comdat *> ComdatList;
204   SmallVector<Instruction *, 64> InstructionList;
205 
206   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
207   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
208   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
209   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
210   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
211 
212   SmallVector<Instruction*, 64> InstsWithTBAATag;
213 
214   bool HasSeenOldLoopTags = false;
215 
216   /// The set of attributes by index.  Index zero in the file is for null, and
217   /// is thus not represented here.  As such all indices are off by one.
218   std::vector<AttributeSet> MAttributes;
219 
220   /// The set of attribute groups.
221   std::map<unsigned, AttributeSet> MAttributeGroups;
222 
223   /// While parsing a function body, this is a list of the basic blocks for the
224   /// function.
225   std::vector<BasicBlock*> FunctionBBs;
226 
227   // When reading the module header, this list is populated with functions that
228   // have bodies later in the file.
229   std::vector<Function*> FunctionsWithBodies;
230 
231   // When intrinsic functions are encountered which require upgrading they are
232   // stored here with their replacement function.
233   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
234   UpgradedIntrinsicMap UpgradedIntrinsics;
235 
236   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
237   DenseMap<unsigned, unsigned> MDKindMap;
238 
239   // Several operations happen after the module header has been read, but
240   // before function bodies are processed. This keeps track of whether
241   // we've done this yet.
242   bool SeenFirstFunctionBody = false;
243 
244   /// When function bodies are initially scanned, this map contains info about
245   /// where to find deferred function body in the stream.
246   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
247 
248   /// When Metadata block is initially scanned when parsing the module, we may
249   /// choose to defer parsing of the metadata. This vector contains info about
250   /// which Metadata blocks are deferred.
251   std::vector<uint64_t> DeferredMetadataInfo;
252 
253   /// These are basic blocks forward-referenced by block addresses.  They are
254   /// inserted lazily into functions when they're loaded.  The basic block ID is
255   /// its index into the vector.
256   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
257   std::deque<Function *> BasicBlockFwdRefQueue;
258 
259   /// Indicates that we are using a new encoding for instruction operands where
260   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
261   /// instruction number, for a more compact encoding.  Some instruction
262   /// operands are not relative to the instruction ID: basic block numbers, and
263   /// types. Once the old style function blocks have been phased out, we would
264   /// not need this flag.
265   bool UseRelativeIDs = false;
266 
267   /// True if all functions will be materialized, negating the need to process
268   /// (e.g.) blockaddress forward references.
269   bool WillMaterializeAllForwardRefs = false;
270 
271   /// True if any Metadata block has been materialized.
272   bool IsMetadataMaterialized = false;
273 
274   bool StripDebugInfo = false;
275 
276   /// Functions that need to be matched with subprograms when upgrading old
277   /// metadata.
278   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
279 
280   std::vector<std::string> BundleTags;
281 
282 public:
283   std::error_code error(BitcodeError E, const Twine &Message);
284   std::error_code error(BitcodeError E);
285   std::error_code error(const Twine &Message);
286 
287   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
288   BitcodeReader(LLVMContext &Context);
289   ~BitcodeReader() override { freeState(); }
290 
291   std::error_code materializeForwardReferencedFunctions();
292 
293   void freeState();
294 
295   void releaseBuffer();
296 
297   std::error_code materialize(GlobalValue *GV) override;
298   std::error_code materializeModule() override;
299   std::vector<StructType *> getIdentifiedStructTypes() const override;
300 
301   /// \brief Main interface to parsing a bitcode buffer.
302   /// \returns true if an error occurred.
303   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
304                                    Module *M,
305                                    bool ShouldLazyLoadMetadata = false);
306 
307   /// \brief Cheap mechanism to just extract module triple
308   /// \returns true if an error occurred.
309   ErrorOr<std::string> parseTriple();
310 
311   /// Cheap mechanism to just extract the identification block out of bitcode.
312   ErrorOr<std::string> parseIdentificationBlock();
313 
314   static uint64_t decodeSignRotatedValue(uint64_t V);
315 
316   /// Materialize any deferred Metadata block.
317   std::error_code materializeMetadata() override;
318 
319   void setStripDebugInfo() override;
320 
321 private:
322   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
323   // ProducerIdentification data member, and do some basic enforcement on the
324   // "epoch" encoded in the bitcode.
325   std::error_code parseBitcodeVersion();
326 
327   std::vector<StructType *> IdentifiedStructTypes;
328   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
329   StructType *createIdentifiedStructType(LLVMContext &Context);
330 
331   Type *getTypeByID(unsigned ID);
332   Value *getFnValueByID(unsigned ID, Type *Ty) {
333     if (Ty && Ty->isMetadataTy())
334       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
335     return ValueList.getValueFwdRef(ID, Ty);
336   }
337   Metadata *getFnMetadataByID(unsigned ID) {
338     return MetadataList.getMetadataFwdRef(ID);
339   }
340   BasicBlock *getBasicBlock(unsigned ID) const {
341     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
342     return FunctionBBs[ID];
343   }
344   AttributeSet getAttributes(unsigned i) const {
345     if (i-1 < MAttributes.size())
346       return MAttributes[i-1];
347     return AttributeSet();
348   }
349 
350   /// Read a value/type pair out of the specified record from slot 'Slot'.
351   /// Increment Slot past the number of slots used in the record. Return true on
352   /// failure.
353   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
354                         unsigned InstNum, Value *&ResVal) {
355     if (Slot == Record.size()) return true;
356     unsigned ValNo = (unsigned)Record[Slot++];
357     // Adjust the ValNo, if it was encoded relative to the InstNum.
358     if (UseRelativeIDs)
359       ValNo = InstNum - ValNo;
360     if (ValNo < InstNum) {
361       // If this is not a forward reference, just return the value we already
362       // have.
363       ResVal = getFnValueByID(ValNo, nullptr);
364       return ResVal == nullptr;
365     }
366     if (Slot == Record.size())
367       return true;
368 
369     unsigned TypeNo = (unsigned)Record[Slot++];
370     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
371     return ResVal == nullptr;
372   }
373 
374   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
375   /// past the number of slots used by the value in the record. Return true if
376   /// there is an error.
377   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
378                 unsigned InstNum, Type *Ty, Value *&ResVal) {
379     if (getValue(Record, Slot, InstNum, Ty, ResVal))
380       return true;
381     // All values currently take a single record slot.
382     ++Slot;
383     return false;
384   }
385 
386   /// Like popValue, but does not increment the Slot number.
387   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
388                 unsigned InstNum, Type *Ty, Value *&ResVal) {
389     ResVal = getValue(Record, Slot, InstNum, Ty);
390     return ResVal == nullptr;
391   }
392 
393   /// Version of getValue that returns ResVal directly, or 0 if there is an
394   /// error.
395   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
396                   unsigned InstNum, Type *Ty) {
397     if (Slot == Record.size()) return nullptr;
398     unsigned ValNo = (unsigned)Record[Slot];
399     // Adjust the ValNo, if it was encoded relative to the InstNum.
400     if (UseRelativeIDs)
401       ValNo = InstNum - ValNo;
402     return getFnValueByID(ValNo, Ty);
403   }
404 
405   /// Like getValue, but decodes signed VBRs.
406   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
407                         unsigned InstNum, Type *Ty) {
408     if (Slot == Record.size()) return nullptr;
409     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
410     // Adjust the ValNo, if it was encoded relative to the InstNum.
411     if (UseRelativeIDs)
412       ValNo = InstNum - ValNo;
413     return getFnValueByID(ValNo, Ty);
414   }
415 
416   /// Converts alignment exponent (i.e. power of two (or zero)) to the
417   /// corresponding alignment to use. If alignment is too large, returns
418   /// a corresponding error code.
419   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
420   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
421   std::error_code parseModule(uint64_t ResumeBit,
422                               bool ShouldLazyLoadMetadata = false);
423   std::error_code parseAttributeBlock();
424   std::error_code parseAttributeGroupBlock();
425   std::error_code parseTypeTable();
426   std::error_code parseTypeTableBody();
427   std::error_code parseOperandBundleTags();
428 
429   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
430                                unsigned NameIndex, Triple &TT);
431   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
432   std::error_code parseConstants();
433   std::error_code rememberAndSkipFunctionBodies();
434   std::error_code rememberAndSkipFunctionBody();
435   /// Save the positions of the Metadata blocks and skip parsing the blocks.
436   std::error_code rememberAndSkipMetadata();
437   std::error_code parseFunctionBody(Function *F);
438   std::error_code globalCleanup();
439   std::error_code resolveGlobalAndIndirectSymbolInits();
440   std::error_code parseMetadata(bool ModuleLevel = false);
441   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
442                                        StringRef Blob,
443                                        unsigned &NextMetadataNo);
444   std::error_code parseMetadataKinds();
445   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
446   std::error_code
447   parseGlobalObjectAttachment(GlobalObject &GO,
448                               ArrayRef<uint64_t> Record);
449   std::error_code parseMetadataAttachment(Function &F);
450   ErrorOr<std::string> parseModuleTriple();
451   std::error_code parseUseLists();
452   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
453   std::error_code initStreamFromBuffer();
454   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
455   std::error_code findFunctionInStream(
456       Function *F,
457       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
458 };
459 
460 /// Class to manage reading and parsing function summary index bitcode
461 /// files/sections.
462 class ModuleSummaryIndexBitcodeReader {
463   DiagnosticHandlerFunction DiagnosticHandler;
464 
465   /// Eventually points to the module index built during parsing.
466   ModuleSummaryIndex *TheIndex = nullptr;
467 
468   std::unique_ptr<MemoryBuffer> Buffer;
469   std::unique_ptr<BitstreamReader> StreamFile;
470   BitstreamCursor Stream;
471 
472   /// Used to indicate whether caller only wants to check for the presence
473   /// of the global value summary bitcode section. All blocks are skipped,
474   /// but the SeenGlobalValSummary boolean is set.
475   bool CheckGlobalValSummaryPresenceOnly = false;
476 
477   /// Indicates whether we have encountered a global value summary section
478   /// yet during parsing, used when checking if file contains global value
479   /// summary section.
480   bool SeenGlobalValSummary = false;
481 
482   /// Indicates whether we have already parsed the VST, used for error checking.
483   bool SeenValueSymbolTable = false;
484 
485   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
486   /// Used to enable on-demand parsing of the VST.
487   uint64_t VSTOffset = 0;
488 
489   // Map to save ValueId to GUID association that was recorded in the
490   // ValueSymbolTable. It is used after the VST is parsed to convert
491   // call graph edges read from the function summary from referencing
492   // callees by their ValueId to using the GUID instead, which is how
493   // they are recorded in the summary index being built.
494   // We save a second GUID which is the same as the first one, but ignoring the
495   // linkage, i.e. for value other than local linkage they are identical.
496   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
497       ValueIdToCallGraphGUIDMap;
498 
499   /// Map populated during module path string table parsing, from the
500   /// module ID to a string reference owned by the index's module
501   /// path string table, used to correlate with combined index
502   /// summary records.
503   DenseMap<uint64_t, StringRef> ModuleIdMap;
504 
505   /// Original source file name recorded in a bitcode record.
506   std::string SourceFileName;
507 
508 public:
509   std::error_code error(BitcodeError E, const Twine &Message);
510   std::error_code error(BitcodeError E);
511   std::error_code error(const Twine &Message);
512 
513   ModuleSummaryIndexBitcodeReader(
514       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
515       bool CheckGlobalValSummaryPresenceOnly = false);
516   ModuleSummaryIndexBitcodeReader(
517       DiagnosticHandlerFunction DiagnosticHandler,
518       bool CheckGlobalValSummaryPresenceOnly = false);
519   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
520 
521   void freeState();
522 
523   void releaseBuffer();
524 
525   /// Check if the parser has encountered a summary section.
526   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
527 
528   /// \brief Main interface to parsing a bitcode buffer.
529   /// \returns true if an error occurred.
530   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
531                                         ModuleSummaryIndex *I);
532 
533 private:
534   std::error_code parseModule();
535   std::error_code parseValueSymbolTable(
536       uint64_t Offset,
537       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
538   std::error_code parseEntireSummary();
539   std::error_code parseModuleStringTable();
540   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
541   std::error_code initStreamFromBuffer();
542   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
543   std::pair<GlobalValue::GUID, GlobalValue::GUID>
544   getGUIDFromValueId(unsigned ValueId);
545 };
546 } // end anonymous namespace
547 
548 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
549                                              DiagnosticSeverity Severity,
550                                              const Twine &Msg)
551     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
552 
553 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
554 
555 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
556                              std::error_code EC, const Twine &Message) {
557   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
558   DiagnosticHandler(DI);
559   return EC;
560 }
561 
562 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
563                              std::error_code EC) {
564   return error(DiagnosticHandler, EC, EC.message());
565 }
566 
567 static std::error_code error(LLVMContext &Context, std::error_code EC,
568                              const Twine &Message) {
569   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
570                Message);
571 }
572 
573 static std::error_code error(LLVMContext &Context, std::error_code EC) {
574   return error(Context, EC, EC.message());
575 }
576 
577 static std::error_code error(LLVMContext &Context, const Twine &Message) {
578   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
579                Message);
580 }
581 
582 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
583   if (!ProducerIdentification.empty()) {
584     return ::error(Context, make_error_code(E),
585                    Message + " (Producer: '" + ProducerIdentification +
586                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
587   }
588   return ::error(Context, make_error_code(E), Message);
589 }
590 
591 std::error_code BitcodeReader::error(const Twine &Message) {
592   if (!ProducerIdentification.empty()) {
593     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
594                    Message + " (Producer: '" + ProducerIdentification +
595                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
596   }
597   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
598                  Message);
599 }
600 
601 std::error_code BitcodeReader::error(BitcodeError E) {
602   return ::error(Context, make_error_code(E));
603 }
604 
605 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
606     : Context(Context), Buffer(Buffer), ValueList(Context),
607       MetadataList(Context) {}
608 
609 BitcodeReader::BitcodeReader(LLVMContext &Context)
610     : Context(Context), Buffer(nullptr), ValueList(Context),
611       MetadataList(Context) {}
612 
613 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
614   if (WillMaterializeAllForwardRefs)
615     return std::error_code();
616 
617   // Prevent recursion.
618   WillMaterializeAllForwardRefs = true;
619 
620   while (!BasicBlockFwdRefQueue.empty()) {
621     Function *F = BasicBlockFwdRefQueue.front();
622     BasicBlockFwdRefQueue.pop_front();
623     assert(F && "Expected valid function");
624     if (!BasicBlockFwdRefs.count(F))
625       // Already materialized.
626       continue;
627 
628     // Check for a function that isn't materializable to prevent an infinite
629     // loop.  When parsing a blockaddress stored in a global variable, there
630     // isn't a trivial way to check if a function will have a body without a
631     // linear search through FunctionsWithBodies, so just check it here.
632     if (!F->isMaterializable())
633       return error("Never resolved function from blockaddress");
634 
635     // Try to materialize F.
636     if (std::error_code EC = materialize(F))
637       return EC;
638   }
639   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
640 
641   // Reset state.
642   WillMaterializeAllForwardRefs = false;
643   return std::error_code();
644 }
645 
646 void BitcodeReader::freeState() {
647   Buffer = nullptr;
648   std::vector<Type*>().swap(TypeList);
649   ValueList.clear();
650   MetadataList.clear();
651   std::vector<Comdat *>().swap(ComdatList);
652 
653   std::vector<AttributeSet>().swap(MAttributes);
654   std::vector<BasicBlock*>().swap(FunctionBBs);
655   std::vector<Function*>().swap(FunctionsWithBodies);
656   DeferredFunctionInfo.clear();
657   DeferredMetadataInfo.clear();
658   MDKindMap.clear();
659 
660   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
661   BasicBlockFwdRefQueue.clear();
662 }
663 
664 //===----------------------------------------------------------------------===//
665 //  Helper functions to implement forward reference resolution, etc.
666 //===----------------------------------------------------------------------===//
667 
668 /// Convert a string from a record into an std::string, return true on failure.
669 template <typename StrTy>
670 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
671                             StrTy &Result) {
672   if (Idx > Record.size())
673     return true;
674 
675   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
676     Result += (char)Record[i];
677   return false;
678 }
679 
680 static bool hasImplicitComdat(size_t Val) {
681   switch (Val) {
682   default:
683     return false;
684   case 1:  // Old WeakAnyLinkage
685   case 4:  // Old LinkOnceAnyLinkage
686   case 10: // Old WeakODRLinkage
687   case 11: // Old LinkOnceODRLinkage
688     return true;
689   }
690 }
691 
692 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
693   switch (Val) {
694   default: // Map unknown/new linkages to external
695   case 0:
696     return GlobalValue::ExternalLinkage;
697   case 2:
698     return GlobalValue::AppendingLinkage;
699   case 3:
700     return GlobalValue::InternalLinkage;
701   case 5:
702     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
703   case 6:
704     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
705   case 7:
706     return GlobalValue::ExternalWeakLinkage;
707   case 8:
708     return GlobalValue::CommonLinkage;
709   case 9:
710     return GlobalValue::PrivateLinkage;
711   case 12:
712     return GlobalValue::AvailableExternallyLinkage;
713   case 13:
714     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
715   case 14:
716     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
717   case 15:
718     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
719   case 1: // Old value with implicit comdat.
720   case 16:
721     return GlobalValue::WeakAnyLinkage;
722   case 10: // Old value with implicit comdat.
723   case 17:
724     return GlobalValue::WeakODRLinkage;
725   case 4: // Old value with implicit comdat.
726   case 18:
727     return GlobalValue::LinkOnceAnyLinkage;
728   case 11: // Old value with implicit comdat.
729   case 19:
730     return GlobalValue::LinkOnceODRLinkage;
731   }
732 }
733 
734 // Decode the flags for GlobalValue in the summary
735 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
736                                                             uint64_t Version) {
737   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
738   // like getDecodedLinkage() above. Any future change to the linkage enum and
739   // to getDecodedLinkage() will need to be taken into account here as above.
740   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
741   RawFlags = RawFlags >> 4;
742   auto HasSection = RawFlags & 0x1; // bool
743   return GlobalValueSummary::GVFlags(Linkage, HasSection);
744 }
745 
746 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
747   switch (Val) {
748   default: // Map unknown visibilities to default.
749   case 0: return GlobalValue::DefaultVisibility;
750   case 1: return GlobalValue::HiddenVisibility;
751   case 2: return GlobalValue::ProtectedVisibility;
752   }
753 }
754 
755 static GlobalValue::DLLStorageClassTypes
756 getDecodedDLLStorageClass(unsigned Val) {
757   switch (Val) {
758   default: // Map unknown values to default.
759   case 0: return GlobalValue::DefaultStorageClass;
760   case 1: return GlobalValue::DLLImportStorageClass;
761   case 2: return GlobalValue::DLLExportStorageClass;
762   }
763 }
764 
765 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
766   switch (Val) {
767     case 0: return GlobalVariable::NotThreadLocal;
768     default: // Map unknown non-zero value to general dynamic.
769     case 1: return GlobalVariable::GeneralDynamicTLSModel;
770     case 2: return GlobalVariable::LocalDynamicTLSModel;
771     case 3: return GlobalVariable::InitialExecTLSModel;
772     case 4: return GlobalVariable::LocalExecTLSModel;
773   }
774 }
775 
776 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
777   switch (Val) {
778     default: // Map unknown to UnnamedAddr::None.
779     case 0: return GlobalVariable::UnnamedAddr::None;
780     case 1: return GlobalVariable::UnnamedAddr::Global;
781     case 2: return GlobalVariable::UnnamedAddr::Local;
782   }
783 }
784 
785 static int getDecodedCastOpcode(unsigned Val) {
786   switch (Val) {
787   default: return -1;
788   case bitc::CAST_TRUNC   : return Instruction::Trunc;
789   case bitc::CAST_ZEXT    : return Instruction::ZExt;
790   case bitc::CAST_SEXT    : return Instruction::SExt;
791   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
792   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
793   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
794   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
795   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
796   case bitc::CAST_FPEXT   : return Instruction::FPExt;
797   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
798   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
799   case bitc::CAST_BITCAST : return Instruction::BitCast;
800   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
801   }
802 }
803 
804 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
805   bool IsFP = Ty->isFPOrFPVectorTy();
806   // BinOps are only valid for int/fp or vector of int/fp types
807   if (!IsFP && !Ty->isIntOrIntVectorTy())
808     return -1;
809 
810   switch (Val) {
811   default:
812     return -1;
813   case bitc::BINOP_ADD:
814     return IsFP ? Instruction::FAdd : Instruction::Add;
815   case bitc::BINOP_SUB:
816     return IsFP ? Instruction::FSub : Instruction::Sub;
817   case bitc::BINOP_MUL:
818     return IsFP ? Instruction::FMul : Instruction::Mul;
819   case bitc::BINOP_UDIV:
820     return IsFP ? -1 : Instruction::UDiv;
821   case bitc::BINOP_SDIV:
822     return IsFP ? Instruction::FDiv : Instruction::SDiv;
823   case bitc::BINOP_UREM:
824     return IsFP ? -1 : Instruction::URem;
825   case bitc::BINOP_SREM:
826     return IsFP ? Instruction::FRem : Instruction::SRem;
827   case bitc::BINOP_SHL:
828     return IsFP ? -1 : Instruction::Shl;
829   case bitc::BINOP_LSHR:
830     return IsFP ? -1 : Instruction::LShr;
831   case bitc::BINOP_ASHR:
832     return IsFP ? -1 : Instruction::AShr;
833   case bitc::BINOP_AND:
834     return IsFP ? -1 : Instruction::And;
835   case bitc::BINOP_OR:
836     return IsFP ? -1 : Instruction::Or;
837   case bitc::BINOP_XOR:
838     return IsFP ? -1 : Instruction::Xor;
839   }
840 }
841 
842 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
843   switch (Val) {
844   default: return AtomicRMWInst::BAD_BINOP;
845   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
846   case bitc::RMW_ADD: return AtomicRMWInst::Add;
847   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
848   case bitc::RMW_AND: return AtomicRMWInst::And;
849   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
850   case bitc::RMW_OR: return AtomicRMWInst::Or;
851   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
852   case bitc::RMW_MAX: return AtomicRMWInst::Max;
853   case bitc::RMW_MIN: return AtomicRMWInst::Min;
854   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
855   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
856   }
857 }
858 
859 static AtomicOrdering getDecodedOrdering(unsigned Val) {
860   switch (Val) {
861   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
862   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
863   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
864   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
865   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
866   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
867   default: // Map unknown orderings to sequentially-consistent.
868   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
869   }
870 }
871 
872 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
873   switch (Val) {
874   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
875   default: // Map unknown scopes to cross-thread.
876   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
877   }
878 }
879 
880 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
881   switch (Val) {
882   default: // Map unknown selection kinds to any.
883   case bitc::COMDAT_SELECTION_KIND_ANY:
884     return Comdat::Any;
885   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
886     return Comdat::ExactMatch;
887   case bitc::COMDAT_SELECTION_KIND_LARGEST:
888     return Comdat::Largest;
889   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
890     return Comdat::NoDuplicates;
891   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
892     return Comdat::SameSize;
893   }
894 }
895 
896 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
897   FastMathFlags FMF;
898   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
899     FMF.setUnsafeAlgebra();
900   if (0 != (Val & FastMathFlags::NoNaNs))
901     FMF.setNoNaNs();
902   if (0 != (Val & FastMathFlags::NoInfs))
903     FMF.setNoInfs();
904   if (0 != (Val & FastMathFlags::NoSignedZeros))
905     FMF.setNoSignedZeros();
906   if (0 != (Val & FastMathFlags::AllowReciprocal))
907     FMF.setAllowReciprocal();
908   return FMF;
909 }
910 
911 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
912   switch (Val) {
913   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
914   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
915   }
916 }
917 
918 namespace llvm {
919 namespace {
920 /// \brief A class for maintaining the slot number definition
921 /// as a placeholder for the actual definition for forward constants defs.
922 class ConstantPlaceHolder : public ConstantExpr {
923   void operator=(const ConstantPlaceHolder &) = delete;
924 
925 public:
926   // allocate space for exactly one operand
927   void *operator new(size_t s) { return User::operator new(s, 1); }
928   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
929       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
930     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
931   }
932 
933   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
934   static bool classof(const Value *V) {
935     return isa<ConstantExpr>(V) &&
936            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
937   }
938 
939   /// Provide fast operand accessors
940   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
941 };
942 } // end anonymous namespace
943 
944 // FIXME: can we inherit this from ConstantExpr?
945 template <>
946 struct OperandTraits<ConstantPlaceHolder> :
947   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
948 };
949 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
950 } // end namespace llvm
951 
952 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
953   if (Idx == size()) {
954     push_back(V);
955     return;
956   }
957 
958   if (Idx >= size())
959     resize(Idx+1);
960 
961   WeakVH &OldV = ValuePtrs[Idx];
962   if (!OldV) {
963     OldV = V;
964     return;
965   }
966 
967   // Handle constants and non-constants (e.g. instrs) differently for
968   // efficiency.
969   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
970     ResolveConstants.push_back(std::make_pair(PHC, Idx));
971     OldV = V;
972   } else {
973     // If there was a forward reference to this value, replace it.
974     Value *PrevVal = OldV;
975     OldV->replaceAllUsesWith(V);
976     delete PrevVal;
977   }
978 }
979 
980 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
981                                                     Type *Ty) {
982   if (Idx >= size())
983     resize(Idx + 1);
984 
985   if (Value *V = ValuePtrs[Idx]) {
986     if (Ty != V->getType())
987       report_fatal_error("Type mismatch in constant table!");
988     return cast<Constant>(V);
989   }
990 
991   // Create and return a placeholder, which will later be RAUW'd.
992   Constant *C = new ConstantPlaceHolder(Ty, Context);
993   ValuePtrs[Idx] = C;
994   return C;
995 }
996 
997 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
998   // Bail out for a clearly invalid value. This would make us call resize(0)
999   if (Idx == UINT_MAX)
1000     return nullptr;
1001 
1002   if (Idx >= size())
1003     resize(Idx + 1);
1004 
1005   if (Value *V = ValuePtrs[Idx]) {
1006     // If the types don't match, it's invalid.
1007     if (Ty && Ty != V->getType())
1008       return nullptr;
1009     return V;
1010   }
1011 
1012   // No type specified, must be invalid reference.
1013   if (!Ty) return nullptr;
1014 
1015   // Create and return a placeholder, which will later be RAUW'd.
1016   Value *V = new Argument(Ty);
1017   ValuePtrs[Idx] = V;
1018   return V;
1019 }
1020 
1021 /// Once all constants are read, this method bulk resolves any forward
1022 /// references.  The idea behind this is that we sometimes get constants (such
1023 /// as large arrays) which reference *many* forward ref constants.  Replacing
1024 /// each of these causes a lot of thrashing when building/reuniquing the
1025 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1026 /// the place holders at once for any constant that uses a placeholder.
1027 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1028   // Sort the values by-pointer so that they are efficient to look up with a
1029   // binary search.
1030   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1031 
1032   SmallVector<Constant*, 64> NewOps;
1033 
1034   while (!ResolveConstants.empty()) {
1035     Value *RealVal = operator[](ResolveConstants.back().second);
1036     Constant *Placeholder = ResolveConstants.back().first;
1037     ResolveConstants.pop_back();
1038 
1039     // Loop over all users of the placeholder, updating them to reference the
1040     // new value.  If they reference more than one placeholder, update them all
1041     // at once.
1042     while (!Placeholder->use_empty()) {
1043       auto UI = Placeholder->user_begin();
1044       User *U = *UI;
1045 
1046       // If the using object isn't uniqued, just update the operands.  This
1047       // handles instructions and initializers for global variables.
1048       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1049         UI.getUse().set(RealVal);
1050         continue;
1051       }
1052 
1053       // Otherwise, we have a constant that uses the placeholder.  Replace that
1054       // constant with a new constant that has *all* placeholder uses updated.
1055       Constant *UserC = cast<Constant>(U);
1056       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1057            I != E; ++I) {
1058         Value *NewOp;
1059         if (!isa<ConstantPlaceHolder>(*I)) {
1060           // Not a placeholder reference.
1061           NewOp = *I;
1062         } else if (*I == Placeholder) {
1063           // Common case is that it just references this one placeholder.
1064           NewOp = RealVal;
1065         } else {
1066           // Otherwise, look up the placeholder in ResolveConstants.
1067           ResolveConstantsTy::iterator It =
1068             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1069                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1070                                                             0));
1071           assert(It != ResolveConstants.end() && It->first == *I);
1072           NewOp = operator[](It->second);
1073         }
1074 
1075         NewOps.push_back(cast<Constant>(NewOp));
1076       }
1077 
1078       // Make the new constant.
1079       Constant *NewC;
1080       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1081         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1082       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1083         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1084       } else if (isa<ConstantVector>(UserC)) {
1085         NewC = ConstantVector::get(NewOps);
1086       } else {
1087         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1088         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1089       }
1090 
1091       UserC->replaceAllUsesWith(NewC);
1092       UserC->destroyConstant();
1093       NewOps.clear();
1094     }
1095 
1096     // Update all ValueHandles, they should be the only users at this point.
1097     Placeholder->replaceAllUsesWith(RealVal);
1098     delete Placeholder;
1099   }
1100 }
1101 
1102 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1103   if (Idx == size()) {
1104     push_back(MD);
1105     return;
1106   }
1107 
1108   if (Idx >= size())
1109     resize(Idx+1);
1110 
1111   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1112   if (!OldMD) {
1113     OldMD.reset(MD);
1114     return;
1115   }
1116 
1117   // If there was a forward reference to this value, replace it.
1118   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1119   PrevMD->replaceAllUsesWith(MD);
1120   --NumFwdRefs;
1121 }
1122 
1123 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1124   if (Idx >= size())
1125     resize(Idx + 1);
1126 
1127   if (Metadata *MD = MetadataPtrs[Idx])
1128     return MD;
1129 
1130   // Track forward refs to be resolved later.
1131   if (AnyFwdRefs) {
1132     MinFwdRef = std::min(MinFwdRef, Idx);
1133     MaxFwdRef = std::max(MaxFwdRef, Idx);
1134   } else {
1135     AnyFwdRefs = true;
1136     MinFwdRef = MaxFwdRef = Idx;
1137   }
1138   ++NumFwdRefs;
1139 
1140   // Create and return a placeholder, which will later be RAUW'd.
1141   Metadata *MD = MDNode::getTemporary(Context, None).release();
1142   MetadataPtrs[Idx].reset(MD);
1143   return MD;
1144 }
1145 
1146 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1147   Metadata *MD = lookup(Idx);
1148   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1149     if (!N->isResolved())
1150       return nullptr;
1151   return MD;
1152 }
1153 
1154 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1155   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1156 }
1157 
1158 void BitcodeReaderMetadataList::tryToResolveCycles() {
1159   if (NumFwdRefs)
1160     // Still forward references... can't resolve cycles.
1161     return;
1162 
1163   bool DidReplaceTypeRefs = false;
1164 
1165   // Give up on finding a full definition for any forward decls that remain.
1166   for (const auto &Ref : OldTypeRefs.FwdDecls)
1167     OldTypeRefs.Final.insert(Ref);
1168   OldTypeRefs.FwdDecls.clear();
1169 
1170   // Upgrade from old type ref arrays.  In strange cases, this could add to
1171   // OldTypeRefs.Unknown.
1172   for (const auto &Array : OldTypeRefs.Arrays) {
1173     DidReplaceTypeRefs = true;
1174     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1175   }
1176   OldTypeRefs.Arrays.clear();
1177 
1178   // Replace old string-based type refs with the resolved node, if possible.
1179   // If we haven't seen the node, leave it to the verifier to complain about
1180   // the invalid string reference.
1181   for (const auto &Ref : OldTypeRefs.Unknown) {
1182     DidReplaceTypeRefs = true;
1183     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1184       Ref.second->replaceAllUsesWith(CT);
1185     else
1186       Ref.second->replaceAllUsesWith(Ref.first);
1187   }
1188   OldTypeRefs.Unknown.clear();
1189 
1190   // Make sure all the upgraded types are resolved.
1191   if (DidReplaceTypeRefs) {
1192     AnyFwdRefs = true;
1193     MinFwdRef = 0;
1194     MaxFwdRef = MetadataPtrs.size() - 1;
1195   }
1196 
1197   if (!AnyFwdRefs)
1198     // Nothing to do.
1199     return;
1200 
1201   // Resolve any cycles.
1202   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1203     auto &MD = MetadataPtrs[I];
1204     auto *N = dyn_cast_or_null<MDNode>(MD);
1205     if (!N)
1206       continue;
1207 
1208     assert(!N->isTemporary() && "Unexpected forward reference");
1209     N->resolveCycles();
1210   }
1211 
1212   // Make sure we return early again until there's another forward ref.
1213   AnyFwdRefs = false;
1214 }
1215 
1216 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1217                                            DICompositeType &CT) {
1218   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1219   if (CT.isForwardDecl())
1220     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1221   else
1222     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1223 }
1224 
1225 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1226   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1227   if (LLVM_LIKELY(!UUID))
1228     return MaybeUUID;
1229 
1230   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1231     return CT;
1232 
1233   auto &Ref = OldTypeRefs.Unknown[UUID];
1234   if (!Ref)
1235     Ref = MDNode::getTemporary(Context, None);
1236   return Ref.get();
1237 }
1238 
1239 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1240   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1241   if (!Tuple || Tuple->isDistinct())
1242     return MaybeTuple;
1243 
1244   // Look through the array immediately if possible.
1245   if (!Tuple->isTemporary())
1246     return resolveTypeRefArray(Tuple);
1247 
1248   // Create and return a placeholder to use for now.  Eventually
1249   // resolveTypeRefArrays() will be resolve this forward reference.
1250   OldTypeRefs.Arrays.emplace_back(
1251       std::piecewise_construct, std::forward_as_tuple(Tuple),
1252       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1253   return OldTypeRefs.Arrays.back().second.get();
1254 }
1255 
1256 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1257   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1258   if (!Tuple || Tuple->isDistinct())
1259     return MaybeTuple;
1260 
1261   // Look through the DITypeRefArray, upgrading each DITypeRef.
1262   SmallVector<Metadata *, 32> Ops;
1263   Ops.reserve(Tuple->getNumOperands());
1264   for (Metadata *MD : Tuple->operands())
1265     Ops.push_back(upgradeTypeRef(MD));
1266 
1267   return MDTuple::get(Context, Ops);
1268 }
1269 
1270 Type *BitcodeReader::getTypeByID(unsigned ID) {
1271   // The type table size is always specified correctly.
1272   if (ID >= TypeList.size())
1273     return nullptr;
1274 
1275   if (Type *Ty = TypeList[ID])
1276     return Ty;
1277 
1278   // If we have a forward reference, the only possible case is when it is to a
1279   // named struct.  Just create a placeholder for now.
1280   return TypeList[ID] = createIdentifiedStructType(Context);
1281 }
1282 
1283 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1284                                                       StringRef Name) {
1285   auto *Ret = StructType::create(Context, Name);
1286   IdentifiedStructTypes.push_back(Ret);
1287   return Ret;
1288 }
1289 
1290 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1291   auto *Ret = StructType::create(Context);
1292   IdentifiedStructTypes.push_back(Ret);
1293   return Ret;
1294 }
1295 
1296 //===----------------------------------------------------------------------===//
1297 //  Functions for parsing blocks from the bitcode file
1298 //===----------------------------------------------------------------------===//
1299 
1300 
1301 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1302 /// been decoded from the given integer. This function must stay in sync with
1303 /// 'encodeLLVMAttributesForBitcode'.
1304 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1305                                            uint64_t EncodedAttrs) {
1306   // FIXME: Remove in 4.0.
1307 
1308   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1309   // the bits above 31 down by 11 bits.
1310   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1311   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1312          "Alignment must be a power of two.");
1313 
1314   if (Alignment)
1315     B.addAlignmentAttr(Alignment);
1316   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1317                 (EncodedAttrs & 0xffff));
1318 }
1319 
1320 std::error_code BitcodeReader::parseAttributeBlock() {
1321   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1322     return error("Invalid record");
1323 
1324   if (!MAttributes.empty())
1325     return error("Invalid multiple blocks");
1326 
1327   SmallVector<uint64_t, 64> Record;
1328 
1329   SmallVector<AttributeSet, 8> Attrs;
1330 
1331   // Read all the records.
1332   while (1) {
1333     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1334 
1335     switch (Entry.Kind) {
1336     case BitstreamEntry::SubBlock: // Handled for us already.
1337     case BitstreamEntry::Error:
1338       return error("Malformed block");
1339     case BitstreamEntry::EndBlock:
1340       return std::error_code();
1341     case BitstreamEntry::Record:
1342       // The interesting case.
1343       break;
1344     }
1345 
1346     // Read a record.
1347     Record.clear();
1348     switch (Stream.readRecord(Entry.ID, Record)) {
1349     default:  // Default behavior: ignore.
1350       break;
1351     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1352       // FIXME: Remove in 4.0.
1353       if (Record.size() & 1)
1354         return error("Invalid record");
1355 
1356       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1357         AttrBuilder B;
1358         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1359         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1360       }
1361 
1362       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1363       Attrs.clear();
1364       break;
1365     }
1366     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1367       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1368         Attrs.push_back(MAttributeGroups[Record[i]]);
1369 
1370       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1371       Attrs.clear();
1372       break;
1373     }
1374     }
1375   }
1376 }
1377 
1378 // Returns Attribute::None on unrecognized codes.
1379 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1380   switch (Code) {
1381   default:
1382     return Attribute::None;
1383   case bitc::ATTR_KIND_ALIGNMENT:
1384     return Attribute::Alignment;
1385   case bitc::ATTR_KIND_ALWAYS_INLINE:
1386     return Attribute::AlwaysInline;
1387   case bitc::ATTR_KIND_ARGMEMONLY:
1388     return Attribute::ArgMemOnly;
1389   case bitc::ATTR_KIND_BUILTIN:
1390     return Attribute::Builtin;
1391   case bitc::ATTR_KIND_BY_VAL:
1392     return Attribute::ByVal;
1393   case bitc::ATTR_KIND_IN_ALLOCA:
1394     return Attribute::InAlloca;
1395   case bitc::ATTR_KIND_COLD:
1396     return Attribute::Cold;
1397   case bitc::ATTR_KIND_CONVERGENT:
1398     return Attribute::Convergent;
1399   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1400     return Attribute::InaccessibleMemOnly;
1401   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1402     return Attribute::InaccessibleMemOrArgMemOnly;
1403   case bitc::ATTR_KIND_INLINE_HINT:
1404     return Attribute::InlineHint;
1405   case bitc::ATTR_KIND_IN_REG:
1406     return Attribute::InReg;
1407   case bitc::ATTR_KIND_JUMP_TABLE:
1408     return Attribute::JumpTable;
1409   case bitc::ATTR_KIND_MIN_SIZE:
1410     return Attribute::MinSize;
1411   case bitc::ATTR_KIND_NAKED:
1412     return Attribute::Naked;
1413   case bitc::ATTR_KIND_NEST:
1414     return Attribute::Nest;
1415   case bitc::ATTR_KIND_NO_ALIAS:
1416     return Attribute::NoAlias;
1417   case bitc::ATTR_KIND_NO_BUILTIN:
1418     return Attribute::NoBuiltin;
1419   case bitc::ATTR_KIND_NO_CAPTURE:
1420     return Attribute::NoCapture;
1421   case bitc::ATTR_KIND_NO_DUPLICATE:
1422     return Attribute::NoDuplicate;
1423   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1424     return Attribute::NoImplicitFloat;
1425   case bitc::ATTR_KIND_NO_INLINE:
1426     return Attribute::NoInline;
1427   case bitc::ATTR_KIND_NO_RECURSE:
1428     return Attribute::NoRecurse;
1429   case bitc::ATTR_KIND_NON_LAZY_BIND:
1430     return Attribute::NonLazyBind;
1431   case bitc::ATTR_KIND_NON_NULL:
1432     return Attribute::NonNull;
1433   case bitc::ATTR_KIND_DEREFERENCEABLE:
1434     return Attribute::Dereferenceable;
1435   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1436     return Attribute::DereferenceableOrNull;
1437   case bitc::ATTR_KIND_ALLOC_SIZE:
1438     return Attribute::AllocSize;
1439   case bitc::ATTR_KIND_NO_RED_ZONE:
1440     return Attribute::NoRedZone;
1441   case bitc::ATTR_KIND_NO_RETURN:
1442     return Attribute::NoReturn;
1443   case bitc::ATTR_KIND_NO_UNWIND:
1444     return Attribute::NoUnwind;
1445   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1446     return Attribute::OptimizeForSize;
1447   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1448     return Attribute::OptimizeNone;
1449   case bitc::ATTR_KIND_READ_NONE:
1450     return Attribute::ReadNone;
1451   case bitc::ATTR_KIND_READ_ONLY:
1452     return Attribute::ReadOnly;
1453   case bitc::ATTR_KIND_RETURNED:
1454     return Attribute::Returned;
1455   case bitc::ATTR_KIND_RETURNS_TWICE:
1456     return Attribute::ReturnsTwice;
1457   case bitc::ATTR_KIND_S_EXT:
1458     return Attribute::SExt;
1459   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1460     return Attribute::StackAlignment;
1461   case bitc::ATTR_KIND_STACK_PROTECT:
1462     return Attribute::StackProtect;
1463   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1464     return Attribute::StackProtectReq;
1465   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1466     return Attribute::StackProtectStrong;
1467   case bitc::ATTR_KIND_SAFESTACK:
1468     return Attribute::SafeStack;
1469   case bitc::ATTR_KIND_STRUCT_RET:
1470     return Attribute::StructRet;
1471   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1472     return Attribute::SanitizeAddress;
1473   case bitc::ATTR_KIND_SANITIZE_THREAD:
1474     return Attribute::SanitizeThread;
1475   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1476     return Attribute::SanitizeMemory;
1477   case bitc::ATTR_KIND_SWIFT_ERROR:
1478     return Attribute::SwiftError;
1479   case bitc::ATTR_KIND_SWIFT_SELF:
1480     return Attribute::SwiftSelf;
1481   case bitc::ATTR_KIND_UW_TABLE:
1482     return Attribute::UWTable;
1483   case bitc::ATTR_KIND_Z_EXT:
1484     return Attribute::ZExt;
1485   }
1486 }
1487 
1488 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1489                                                    unsigned &Alignment) {
1490   // Note: Alignment in bitcode files is incremented by 1, so that zero
1491   // can be used for default alignment.
1492   if (Exponent > Value::MaxAlignmentExponent + 1)
1493     return error("Invalid alignment value");
1494   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1495   return std::error_code();
1496 }
1497 
1498 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1499                                              Attribute::AttrKind *Kind) {
1500   *Kind = getAttrFromCode(Code);
1501   if (*Kind == Attribute::None)
1502     return error(BitcodeError::CorruptedBitcode,
1503                  "Unknown attribute kind (" + Twine(Code) + ")");
1504   return std::error_code();
1505 }
1506 
1507 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1508   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1509     return error("Invalid record");
1510 
1511   if (!MAttributeGroups.empty())
1512     return error("Invalid multiple blocks");
1513 
1514   SmallVector<uint64_t, 64> Record;
1515 
1516   // Read all the records.
1517   while (1) {
1518     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1519 
1520     switch (Entry.Kind) {
1521     case BitstreamEntry::SubBlock: // Handled for us already.
1522     case BitstreamEntry::Error:
1523       return error("Malformed block");
1524     case BitstreamEntry::EndBlock:
1525       return std::error_code();
1526     case BitstreamEntry::Record:
1527       // The interesting case.
1528       break;
1529     }
1530 
1531     // Read a record.
1532     Record.clear();
1533     switch (Stream.readRecord(Entry.ID, Record)) {
1534     default:  // Default behavior: ignore.
1535       break;
1536     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1537       if (Record.size() < 3)
1538         return error("Invalid record");
1539 
1540       uint64_t GrpID = Record[0];
1541       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1542 
1543       AttrBuilder B;
1544       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1545         if (Record[i] == 0) {        // Enum attribute
1546           Attribute::AttrKind Kind;
1547           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1548             return EC;
1549 
1550           B.addAttribute(Kind);
1551         } else if (Record[i] == 1) { // Integer attribute
1552           Attribute::AttrKind Kind;
1553           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1554             return EC;
1555           if (Kind == Attribute::Alignment)
1556             B.addAlignmentAttr(Record[++i]);
1557           else if (Kind == Attribute::StackAlignment)
1558             B.addStackAlignmentAttr(Record[++i]);
1559           else if (Kind == Attribute::Dereferenceable)
1560             B.addDereferenceableAttr(Record[++i]);
1561           else if (Kind == Attribute::DereferenceableOrNull)
1562             B.addDereferenceableOrNullAttr(Record[++i]);
1563           else if (Kind == Attribute::AllocSize)
1564             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1565         } else {                     // String attribute
1566           assert((Record[i] == 3 || Record[i] == 4) &&
1567                  "Invalid attribute group entry");
1568           bool HasValue = (Record[i++] == 4);
1569           SmallString<64> KindStr;
1570           SmallString<64> ValStr;
1571 
1572           while (Record[i] != 0 && i != e)
1573             KindStr += Record[i++];
1574           assert(Record[i] == 0 && "Kind string not null terminated");
1575 
1576           if (HasValue) {
1577             // Has a value associated with it.
1578             ++i; // Skip the '0' that terminates the "kind" string.
1579             while (Record[i] != 0 && i != e)
1580               ValStr += Record[i++];
1581             assert(Record[i] == 0 && "Value string not null terminated");
1582           }
1583 
1584           B.addAttribute(KindStr.str(), ValStr.str());
1585         }
1586       }
1587 
1588       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1589       break;
1590     }
1591     }
1592   }
1593 }
1594 
1595 std::error_code BitcodeReader::parseTypeTable() {
1596   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1597     return error("Invalid record");
1598 
1599   return parseTypeTableBody();
1600 }
1601 
1602 std::error_code BitcodeReader::parseTypeTableBody() {
1603   if (!TypeList.empty())
1604     return error("Invalid multiple blocks");
1605 
1606   SmallVector<uint64_t, 64> Record;
1607   unsigned NumRecords = 0;
1608 
1609   SmallString<64> TypeName;
1610 
1611   // Read all the records for this type table.
1612   while (1) {
1613     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1614 
1615     switch (Entry.Kind) {
1616     case BitstreamEntry::SubBlock: // Handled for us already.
1617     case BitstreamEntry::Error:
1618       return error("Malformed block");
1619     case BitstreamEntry::EndBlock:
1620       if (NumRecords != TypeList.size())
1621         return error("Malformed block");
1622       return std::error_code();
1623     case BitstreamEntry::Record:
1624       // The interesting case.
1625       break;
1626     }
1627 
1628     // Read a record.
1629     Record.clear();
1630     Type *ResultTy = nullptr;
1631     switch (Stream.readRecord(Entry.ID, Record)) {
1632     default:
1633       return error("Invalid value");
1634     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1635       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1636       // type list.  This allows us to reserve space.
1637       if (Record.size() < 1)
1638         return error("Invalid record");
1639       TypeList.resize(Record[0]);
1640       continue;
1641     case bitc::TYPE_CODE_VOID:      // VOID
1642       ResultTy = Type::getVoidTy(Context);
1643       break;
1644     case bitc::TYPE_CODE_HALF:     // HALF
1645       ResultTy = Type::getHalfTy(Context);
1646       break;
1647     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1648       ResultTy = Type::getFloatTy(Context);
1649       break;
1650     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1651       ResultTy = Type::getDoubleTy(Context);
1652       break;
1653     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1654       ResultTy = Type::getX86_FP80Ty(Context);
1655       break;
1656     case bitc::TYPE_CODE_FP128:     // FP128
1657       ResultTy = Type::getFP128Ty(Context);
1658       break;
1659     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1660       ResultTy = Type::getPPC_FP128Ty(Context);
1661       break;
1662     case bitc::TYPE_CODE_LABEL:     // LABEL
1663       ResultTy = Type::getLabelTy(Context);
1664       break;
1665     case bitc::TYPE_CODE_METADATA:  // METADATA
1666       ResultTy = Type::getMetadataTy(Context);
1667       break;
1668     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1669       ResultTy = Type::getX86_MMXTy(Context);
1670       break;
1671     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1672       ResultTy = Type::getTokenTy(Context);
1673       break;
1674     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1675       if (Record.size() < 1)
1676         return error("Invalid record");
1677 
1678       uint64_t NumBits = Record[0];
1679       if (NumBits < IntegerType::MIN_INT_BITS ||
1680           NumBits > IntegerType::MAX_INT_BITS)
1681         return error("Bitwidth for integer type out of range");
1682       ResultTy = IntegerType::get(Context, NumBits);
1683       break;
1684     }
1685     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1686                                     //          [pointee type, address space]
1687       if (Record.size() < 1)
1688         return error("Invalid record");
1689       unsigned AddressSpace = 0;
1690       if (Record.size() == 2)
1691         AddressSpace = Record[1];
1692       ResultTy = getTypeByID(Record[0]);
1693       if (!ResultTy ||
1694           !PointerType::isValidElementType(ResultTy))
1695         return error("Invalid type");
1696       ResultTy = PointerType::get(ResultTy, AddressSpace);
1697       break;
1698     }
1699     case bitc::TYPE_CODE_FUNCTION_OLD: {
1700       // FIXME: attrid is dead, remove it in LLVM 4.0
1701       // FUNCTION: [vararg, attrid, retty, paramty x N]
1702       if (Record.size() < 3)
1703         return error("Invalid record");
1704       SmallVector<Type*, 8> ArgTys;
1705       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1706         if (Type *T = getTypeByID(Record[i]))
1707           ArgTys.push_back(T);
1708         else
1709           break;
1710       }
1711 
1712       ResultTy = getTypeByID(Record[2]);
1713       if (!ResultTy || ArgTys.size() < Record.size()-3)
1714         return error("Invalid type");
1715 
1716       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1717       break;
1718     }
1719     case bitc::TYPE_CODE_FUNCTION: {
1720       // FUNCTION: [vararg, retty, paramty x N]
1721       if (Record.size() < 2)
1722         return error("Invalid record");
1723       SmallVector<Type*, 8> ArgTys;
1724       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1725         if (Type *T = getTypeByID(Record[i])) {
1726           if (!FunctionType::isValidArgumentType(T))
1727             return error("Invalid function argument type");
1728           ArgTys.push_back(T);
1729         }
1730         else
1731           break;
1732       }
1733 
1734       ResultTy = getTypeByID(Record[1]);
1735       if (!ResultTy || ArgTys.size() < Record.size()-2)
1736         return error("Invalid type");
1737 
1738       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1739       break;
1740     }
1741     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1742       if (Record.size() < 1)
1743         return error("Invalid record");
1744       SmallVector<Type*, 8> EltTys;
1745       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1746         if (Type *T = getTypeByID(Record[i]))
1747           EltTys.push_back(T);
1748         else
1749           break;
1750       }
1751       if (EltTys.size() != Record.size()-1)
1752         return error("Invalid type");
1753       ResultTy = StructType::get(Context, EltTys, Record[0]);
1754       break;
1755     }
1756     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1757       if (convertToString(Record, 0, TypeName))
1758         return error("Invalid record");
1759       continue;
1760 
1761     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1762       if (Record.size() < 1)
1763         return error("Invalid record");
1764 
1765       if (NumRecords >= TypeList.size())
1766         return error("Invalid TYPE table");
1767 
1768       // Check to see if this was forward referenced, if so fill in the temp.
1769       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1770       if (Res) {
1771         Res->setName(TypeName);
1772         TypeList[NumRecords] = nullptr;
1773       } else  // Otherwise, create a new struct.
1774         Res = createIdentifiedStructType(Context, TypeName);
1775       TypeName.clear();
1776 
1777       SmallVector<Type*, 8> EltTys;
1778       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1779         if (Type *T = getTypeByID(Record[i]))
1780           EltTys.push_back(T);
1781         else
1782           break;
1783       }
1784       if (EltTys.size() != Record.size()-1)
1785         return error("Invalid record");
1786       Res->setBody(EltTys, Record[0]);
1787       ResultTy = Res;
1788       break;
1789     }
1790     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1791       if (Record.size() != 1)
1792         return error("Invalid record");
1793 
1794       if (NumRecords >= TypeList.size())
1795         return error("Invalid TYPE table");
1796 
1797       // Check to see if this was forward referenced, if so fill in the temp.
1798       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1799       if (Res) {
1800         Res->setName(TypeName);
1801         TypeList[NumRecords] = nullptr;
1802       } else  // Otherwise, create a new struct with no body.
1803         Res = createIdentifiedStructType(Context, TypeName);
1804       TypeName.clear();
1805       ResultTy = Res;
1806       break;
1807     }
1808     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1809       if (Record.size() < 2)
1810         return error("Invalid record");
1811       ResultTy = getTypeByID(Record[1]);
1812       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1813         return error("Invalid type");
1814       ResultTy = ArrayType::get(ResultTy, Record[0]);
1815       break;
1816     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1817       if (Record.size() < 2)
1818         return error("Invalid record");
1819       if (Record[0] == 0)
1820         return error("Invalid vector length");
1821       ResultTy = getTypeByID(Record[1]);
1822       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1823         return error("Invalid type");
1824       ResultTy = VectorType::get(ResultTy, Record[0]);
1825       break;
1826     }
1827 
1828     if (NumRecords >= TypeList.size())
1829       return error("Invalid TYPE table");
1830     if (TypeList[NumRecords])
1831       return error(
1832           "Invalid TYPE table: Only named structs can be forward referenced");
1833     assert(ResultTy && "Didn't read a type?");
1834     TypeList[NumRecords++] = ResultTy;
1835   }
1836 }
1837 
1838 std::error_code BitcodeReader::parseOperandBundleTags() {
1839   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1840     return error("Invalid record");
1841 
1842   if (!BundleTags.empty())
1843     return error("Invalid multiple blocks");
1844 
1845   SmallVector<uint64_t, 64> Record;
1846 
1847   while (1) {
1848     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1849 
1850     switch (Entry.Kind) {
1851     case BitstreamEntry::SubBlock: // Handled for us already.
1852     case BitstreamEntry::Error:
1853       return error("Malformed block");
1854     case BitstreamEntry::EndBlock:
1855       return std::error_code();
1856     case BitstreamEntry::Record:
1857       // The interesting case.
1858       break;
1859     }
1860 
1861     // Tags are implicitly mapped to integers by their order.
1862 
1863     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1864       return error("Invalid record");
1865 
1866     // OPERAND_BUNDLE_TAG: [strchr x N]
1867     BundleTags.emplace_back();
1868     if (convertToString(Record, 0, BundleTags.back()))
1869       return error("Invalid record");
1870     Record.clear();
1871   }
1872 }
1873 
1874 /// Associate a value with its name from the given index in the provided record.
1875 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1876                                             unsigned NameIndex, Triple &TT) {
1877   SmallString<128> ValueName;
1878   if (convertToString(Record, NameIndex, ValueName))
1879     return error("Invalid record");
1880   unsigned ValueID = Record[0];
1881   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1882     return error("Invalid record");
1883   Value *V = ValueList[ValueID];
1884 
1885   StringRef NameStr(ValueName.data(), ValueName.size());
1886   if (NameStr.find_first_of(0) != StringRef::npos)
1887     return error("Invalid value name");
1888   V->setName(NameStr);
1889   auto *GO = dyn_cast<GlobalObject>(V);
1890   if (GO) {
1891     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1892       if (TT.isOSBinFormatMachO())
1893         GO->setComdat(nullptr);
1894       else
1895         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1896     }
1897   }
1898   return V;
1899 }
1900 
1901 /// Helper to note and return the current location, and jump to the given
1902 /// offset.
1903 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1904                                        BitstreamCursor &Stream) {
1905   // Save the current parsing location so we can jump back at the end
1906   // of the VST read.
1907   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1908   Stream.JumpToBit(Offset * 32);
1909 #ifndef NDEBUG
1910   // Do some checking if we are in debug mode.
1911   BitstreamEntry Entry = Stream.advance();
1912   assert(Entry.Kind == BitstreamEntry::SubBlock);
1913   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1914 #else
1915   // In NDEBUG mode ignore the output so we don't get an unused variable
1916   // warning.
1917   Stream.advance();
1918 #endif
1919   return CurrentBit;
1920 }
1921 
1922 /// Parse the value symbol table at either the current parsing location or
1923 /// at the given bit offset if provided.
1924 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1925   uint64_t CurrentBit;
1926   // Pass in the Offset to distinguish between calling for the module-level
1927   // VST (where we want to jump to the VST offset) and the function-level
1928   // VST (where we don't).
1929   if (Offset > 0)
1930     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1931 
1932   // Compute the delta between the bitcode indices in the VST (the word offset
1933   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1934   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1935   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1936   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1937   // just before entering the VST subblock because: 1) the EnterSubBlock
1938   // changes the AbbrevID width; 2) the VST block is nested within the same
1939   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1940   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1941   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1942   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1943   unsigned FuncBitcodeOffsetDelta =
1944       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1945 
1946   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1947     return error("Invalid record");
1948 
1949   SmallVector<uint64_t, 64> Record;
1950 
1951   Triple TT(TheModule->getTargetTriple());
1952 
1953   // Read all the records for this value table.
1954   SmallString<128> ValueName;
1955   while (1) {
1956     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1957 
1958     switch (Entry.Kind) {
1959     case BitstreamEntry::SubBlock: // Handled for us already.
1960     case BitstreamEntry::Error:
1961       return error("Malformed block");
1962     case BitstreamEntry::EndBlock:
1963       if (Offset > 0)
1964         Stream.JumpToBit(CurrentBit);
1965       return std::error_code();
1966     case BitstreamEntry::Record:
1967       // The interesting case.
1968       break;
1969     }
1970 
1971     // Read a record.
1972     Record.clear();
1973     switch (Stream.readRecord(Entry.ID, Record)) {
1974     default:  // Default behavior: unknown type.
1975       break;
1976     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1977       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1978       if (std::error_code EC = ValOrErr.getError())
1979         return EC;
1980       ValOrErr.get();
1981       break;
1982     }
1983     case bitc::VST_CODE_FNENTRY: {
1984       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1985       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1986       if (std::error_code EC = ValOrErr.getError())
1987         return EC;
1988       Value *V = ValOrErr.get();
1989 
1990       auto *GO = dyn_cast<GlobalObject>(V);
1991       if (!GO) {
1992         // If this is an alias, need to get the actual Function object
1993         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1994         auto *GA = dyn_cast<GlobalAlias>(V);
1995         if (GA)
1996           GO = GA->getBaseObject();
1997         assert(GO);
1998       }
1999 
2000       uint64_t FuncWordOffset = Record[1];
2001       Function *F = dyn_cast<Function>(GO);
2002       assert(F);
2003       uint64_t FuncBitOffset = FuncWordOffset * 32;
2004       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2005       // Set the LastFunctionBlockBit to point to the last function block.
2006       // Later when parsing is resumed after function materialization,
2007       // we can simply skip that last function block.
2008       if (FuncBitOffset > LastFunctionBlockBit)
2009         LastFunctionBlockBit = FuncBitOffset;
2010       break;
2011     }
2012     case bitc::VST_CODE_BBENTRY: {
2013       if (convertToString(Record, 1, ValueName))
2014         return error("Invalid record");
2015       BasicBlock *BB = getBasicBlock(Record[0]);
2016       if (!BB)
2017         return error("Invalid record");
2018 
2019       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2020       ValueName.clear();
2021       break;
2022     }
2023     }
2024   }
2025 }
2026 
2027 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2028 std::error_code
2029 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2030   if (Record.size() < 2)
2031     return error("Invalid record");
2032 
2033   unsigned Kind = Record[0];
2034   SmallString<8> Name(Record.begin() + 1, Record.end());
2035 
2036   unsigned NewKind = TheModule->getMDKindID(Name.str());
2037   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2038     return error("Conflicting METADATA_KIND records");
2039   return std::error_code();
2040 }
2041 
2042 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2043 
2044 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2045                                                     StringRef Blob,
2046                                                     unsigned &NextMetadataNo) {
2047   // All the MDStrings in the block are emitted together in a single
2048   // record.  The strings are concatenated and stored in a blob along with
2049   // their sizes.
2050   if (Record.size() != 2)
2051     return error("Invalid record: metadata strings layout");
2052 
2053   unsigned NumStrings = Record[0];
2054   unsigned StringsOffset = Record[1];
2055   if (!NumStrings)
2056     return error("Invalid record: metadata strings with no strings");
2057   if (StringsOffset > Blob.size())
2058     return error("Invalid record: metadata strings corrupt offset");
2059 
2060   StringRef Lengths = Blob.slice(0, StringsOffset);
2061   SimpleBitstreamCursor R(*StreamFile);
2062   R.jumpToPointer(Lengths.begin());
2063 
2064   // Ensure that Blob doesn't get invalidated, even if this is reading from
2065   // a StreamingMemoryObject with corrupt data.
2066   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2067 
2068   StringRef Strings = Blob.drop_front(StringsOffset);
2069   do {
2070     if (R.AtEndOfStream())
2071       return error("Invalid record: metadata strings bad length");
2072 
2073     unsigned Size = R.ReadVBR(6);
2074     if (Strings.size() < Size)
2075       return error("Invalid record: metadata strings truncated chars");
2076 
2077     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2078                              NextMetadataNo++);
2079     Strings = Strings.drop_front(Size);
2080   } while (--NumStrings);
2081 
2082   return std::error_code();
2083 }
2084 
2085 namespace {
2086 class PlaceholderQueue {
2087   // Placeholders would thrash around when moved, so store in a std::deque
2088   // instead of some sort of vector.
2089   std::deque<DistinctMDOperandPlaceholder> PHs;
2090 
2091 public:
2092   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2093   void flush(BitcodeReaderMetadataList &MetadataList);
2094 };
2095 } // end namespace
2096 
2097 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2098   PHs.emplace_back(ID);
2099   return PHs.back();
2100 }
2101 
2102 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2103   while (!PHs.empty()) {
2104     PHs.front().replaceUseWith(
2105         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2106     PHs.pop_front();
2107   }
2108 }
2109 
2110 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2111 /// module level metadata.
2112 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2113   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2114          "Must read all module-level metadata before function-level");
2115 
2116   IsMetadataMaterialized = true;
2117   unsigned NextMetadataNo = MetadataList.size();
2118 
2119   if (!ModuleLevel && MetadataList.hasFwdRefs())
2120     return error("Invalid metadata: fwd refs into function blocks");
2121 
2122   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2123     return error("Invalid record");
2124 
2125   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2126   SmallVector<uint64_t, 64> Record;
2127 
2128   PlaceholderQueue Placeholders;
2129   bool IsDistinct;
2130   auto getMD = [&](unsigned ID) -> Metadata * {
2131     if (!IsDistinct)
2132       return MetadataList.getMetadataFwdRef(ID);
2133     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2134       return MD;
2135     return &Placeholders.getPlaceholderOp(ID);
2136   };
2137   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2138     if (ID)
2139       return getMD(ID - 1);
2140     return nullptr;
2141   };
2142   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2143     if (ID)
2144       return MetadataList.getMetadataFwdRef(ID - 1);
2145     return nullptr;
2146   };
2147   auto getMDString = [&](unsigned ID) -> MDString *{
2148     // This requires that the ID is not really a forward reference.  In
2149     // particular, the MDString must already have been resolved.
2150     return cast_or_null<MDString>(getMDOrNull(ID));
2151   };
2152 
2153   // Support for old type refs.
2154   auto getDITypeRefOrNull = [&](unsigned ID) {
2155     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2156   };
2157 
2158 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2159   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2160 
2161   // Read all the records.
2162   while (1) {
2163     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2164 
2165     switch (Entry.Kind) {
2166     case BitstreamEntry::SubBlock: // Handled for us already.
2167     case BitstreamEntry::Error:
2168       return error("Malformed block");
2169     case BitstreamEntry::EndBlock:
2170       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2171       for (auto CU_SP : CUSubprograms)
2172         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2173           for (auto &Op : SPs->operands())
2174             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2175               SP->replaceOperandWith(7, CU_SP.first);
2176 
2177       MetadataList.tryToResolveCycles();
2178       Placeholders.flush(MetadataList);
2179       return std::error_code();
2180     case BitstreamEntry::Record:
2181       // The interesting case.
2182       break;
2183     }
2184 
2185     // Read a record.
2186     Record.clear();
2187     StringRef Blob;
2188     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2189     IsDistinct = false;
2190     switch (Code) {
2191     default:  // Default behavior: ignore.
2192       break;
2193     case bitc::METADATA_NAME: {
2194       // Read name of the named metadata.
2195       SmallString<8> Name(Record.begin(), Record.end());
2196       Record.clear();
2197       Code = Stream.ReadCode();
2198 
2199       unsigned NextBitCode = Stream.readRecord(Code, Record);
2200       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2201         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2202 
2203       // Read named metadata elements.
2204       unsigned Size = Record.size();
2205       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2206       for (unsigned i = 0; i != Size; ++i) {
2207         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2208         if (!MD)
2209           return error("Invalid record");
2210         NMD->addOperand(MD);
2211       }
2212       break;
2213     }
2214     case bitc::METADATA_OLD_FN_NODE: {
2215       // FIXME: Remove in 4.0.
2216       // This is a LocalAsMetadata record, the only type of function-local
2217       // metadata.
2218       if (Record.size() % 2 == 1)
2219         return error("Invalid record");
2220 
2221       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2222       // to be legal, but there's no upgrade path.
2223       auto dropRecord = [&] {
2224         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2225       };
2226       if (Record.size() != 2) {
2227         dropRecord();
2228         break;
2229       }
2230 
2231       Type *Ty = getTypeByID(Record[0]);
2232       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2233         dropRecord();
2234         break;
2235       }
2236 
2237       MetadataList.assignValue(
2238           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2239           NextMetadataNo++);
2240       break;
2241     }
2242     case bitc::METADATA_OLD_NODE: {
2243       // FIXME: Remove in 4.0.
2244       if (Record.size() % 2 == 1)
2245         return error("Invalid record");
2246 
2247       unsigned Size = Record.size();
2248       SmallVector<Metadata *, 8> Elts;
2249       for (unsigned i = 0; i != Size; i += 2) {
2250         Type *Ty = getTypeByID(Record[i]);
2251         if (!Ty)
2252           return error("Invalid record");
2253         if (Ty->isMetadataTy())
2254           Elts.push_back(getMD(Record[i + 1]));
2255         else if (!Ty->isVoidTy()) {
2256           auto *MD =
2257               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2258           assert(isa<ConstantAsMetadata>(MD) &&
2259                  "Expected non-function-local metadata");
2260           Elts.push_back(MD);
2261         } else
2262           Elts.push_back(nullptr);
2263       }
2264       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2265       break;
2266     }
2267     case bitc::METADATA_VALUE: {
2268       if (Record.size() != 2)
2269         return error("Invalid record");
2270 
2271       Type *Ty = getTypeByID(Record[0]);
2272       if (Ty->isMetadataTy() || Ty->isVoidTy())
2273         return error("Invalid record");
2274 
2275       MetadataList.assignValue(
2276           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2277           NextMetadataNo++);
2278       break;
2279     }
2280     case bitc::METADATA_DISTINCT_NODE:
2281       IsDistinct = true;
2282       // fallthrough...
2283     case bitc::METADATA_NODE: {
2284       SmallVector<Metadata *, 8> Elts;
2285       Elts.reserve(Record.size());
2286       for (unsigned ID : Record)
2287         Elts.push_back(getMDOrNull(ID));
2288       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2289                                           : MDNode::get(Context, Elts),
2290                                NextMetadataNo++);
2291       break;
2292     }
2293     case bitc::METADATA_LOCATION: {
2294       if (Record.size() != 5)
2295         return error("Invalid record");
2296 
2297       IsDistinct = Record[0];
2298       unsigned Line = Record[1];
2299       unsigned Column = Record[2];
2300       Metadata *Scope = getMD(Record[3]);
2301       Metadata *InlinedAt = getMDOrNull(Record[4]);
2302       MetadataList.assignValue(
2303           GET_OR_DISTINCT(DILocation,
2304                           (Context, Line, Column, Scope, InlinedAt)),
2305           NextMetadataNo++);
2306       break;
2307     }
2308     case bitc::METADATA_GENERIC_DEBUG: {
2309       if (Record.size() < 4)
2310         return error("Invalid record");
2311 
2312       IsDistinct = Record[0];
2313       unsigned Tag = Record[1];
2314       unsigned Version = Record[2];
2315 
2316       if (Tag >= 1u << 16 || Version != 0)
2317         return error("Invalid record");
2318 
2319       auto *Header = getMDString(Record[3]);
2320       SmallVector<Metadata *, 8> DwarfOps;
2321       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2322         DwarfOps.push_back(getMDOrNull(Record[I]));
2323       MetadataList.assignValue(
2324           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2325           NextMetadataNo++);
2326       break;
2327     }
2328     case bitc::METADATA_SUBRANGE: {
2329       if (Record.size() != 3)
2330         return error("Invalid record");
2331 
2332       IsDistinct = Record[0];
2333       MetadataList.assignValue(
2334           GET_OR_DISTINCT(DISubrange,
2335                           (Context, Record[1], unrotateSign(Record[2]))),
2336           NextMetadataNo++);
2337       break;
2338     }
2339     case bitc::METADATA_ENUMERATOR: {
2340       if (Record.size() != 3)
2341         return error("Invalid record");
2342 
2343       IsDistinct = Record[0];
2344       MetadataList.assignValue(
2345           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2346                                          getMDString(Record[2]))),
2347           NextMetadataNo++);
2348       break;
2349     }
2350     case bitc::METADATA_BASIC_TYPE: {
2351       if (Record.size() != 6)
2352         return error("Invalid record");
2353 
2354       IsDistinct = Record[0];
2355       MetadataList.assignValue(
2356           GET_OR_DISTINCT(DIBasicType,
2357                           (Context, Record[1], getMDString(Record[2]),
2358                            Record[3], Record[4], Record[5])),
2359           NextMetadataNo++);
2360       break;
2361     }
2362     case bitc::METADATA_DERIVED_TYPE: {
2363       if (Record.size() != 12)
2364         return error("Invalid record");
2365 
2366       IsDistinct = Record[0];
2367       MetadataList.assignValue(
2368           GET_OR_DISTINCT(
2369               DIDerivedType,
2370               (Context, Record[1], getMDString(Record[2]),
2371                getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]),
2372                getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9],
2373                Record[10], getDITypeRefOrNull(Record[11]))),
2374           NextMetadataNo++);
2375       break;
2376     }
2377     case bitc::METADATA_COMPOSITE_TYPE: {
2378       if (Record.size() != 16)
2379         return error("Invalid record");
2380 
2381       // If we have a UUID and this is not a forward declaration, lookup the
2382       // mapping.
2383       IsDistinct = Record[0] & 0x1;
2384       bool IsNotUsedInTypeRef = Record[0] >= 2;
2385       unsigned Tag = Record[1];
2386       MDString *Name = getMDString(Record[2]);
2387       Metadata *File = getMDOrNull(Record[3]);
2388       unsigned Line = Record[4];
2389       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2390       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2391       uint64_t SizeInBits = Record[7];
2392       uint64_t AlignInBits = Record[8];
2393       uint64_t OffsetInBits = Record[9];
2394       unsigned Flags = Record[10];
2395       Metadata *Elements = getMDOrNull(Record[11]);
2396       unsigned RuntimeLang = Record[12];
2397       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2398       Metadata *TemplateParams = getMDOrNull(Record[14]);
2399       auto *Identifier = getMDString(Record[15]);
2400       DICompositeType *CT = nullptr;
2401       if (Identifier)
2402         CT = DICompositeType::buildODRType(
2403             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2404             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2405             VTableHolder, TemplateParams);
2406 
2407       // Create a node if we didn't get a lazy ODR type.
2408       if (!CT)
2409         CT = GET_OR_DISTINCT(DICompositeType,
2410                              (Context, Tag, Name, File, Line, Scope, BaseType,
2411                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2412                               Elements, RuntimeLang, VTableHolder,
2413                               TemplateParams, Identifier));
2414       if (!IsNotUsedInTypeRef && Identifier)
2415         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2416 
2417       MetadataList.assignValue(CT, NextMetadataNo++);
2418       break;
2419     }
2420     case bitc::METADATA_SUBROUTINE_TYPE: {
2421       if (Record.size() < 3 || Record.size() > 4)
2422         return error("Invalid record");
2423       bool IsOldTypeRefArray = Record[0] < 2;
2424       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2425 
2426       IsDistinct = Record[0] & 0x1;
2427       Metadata *Types = getMDOrNull(Record[2]);
2428       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2429         Types = MetadataList.upgradeTypeRefArray(Types);
2430 
2431       MetadataList.assignValue(
2432           GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], CC, Types)),
2433           NextMetadataNo++);
2434       break;
2435     }
2436 
2437     case bitc::METADATA_MODULE: {
2438       if (Record.size() != 6)
2439         return error("Invalid record");
2440 
2441       IsDistinct = Record[0];
2442       MetadataList.assignValue(
2443           GET_OR_DISTINCT(DIModule,
2444                           (Context, getMDOrNull(Record[1]),
2445                            getMDString(Record[2]), getMDString(Record[3]),
2446                            getMDString(Record[4]), getMDString(Record[5]))),
2447           NextMetadataNo++);
2448       break;
2449     }
2450 
2451     case bitc::METADATA_FILE: {
2452       if (Record.size() != 3)
2453         return error("Invalid record");
2454 
2455       IsDistinct = Record[0];
2456       MetadataList.assignValue(
2457           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2458                                    getMDString(Record[2]))),
2459           NextMetadataNo++);
2460       break;
2461     }
2462     case bitc::METADATA_COMPILE_UNIT: {
2463       if (Record.size() < 14 || Record.size() > 16)
2464         return error("Invalid record");
2465 
2466       // Ignore Record[0], which indicates whether this compile unit is
2467       // distinct.  It's always distinct.
2468       IsDistinct = true;
2469       auto *CU = DICompileUnit::getDistinct(
2470           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2471           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2472           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2473           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2474           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2475           Record.size() <= 14 ? 0 : Record[14]);
2476 
2477       MetadataList.assignValue(CU, NextMetadataNo++);
2478 
2479       // Move the Upgrade the list of subprograms.
2480       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2481         CUSubprograms.push_back({CU, SPs});
2482       break;
2483     }
2484     case bitc::METADATA_SUBPROGRAM: {
2485       if (Record.size() != 18 && Record.size() != 19)
2486         return error("Invalid record");
2487 
2488       IsDistinct =
2489           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2490       // Version 1 has a Function as Record[15].
2491       // Version 2 has removed Record[15].
2492       // Version 3 has the Unit as Record[15].
2493       bool HasUnit = Record[0] >= 2;
2494       if (HasUnit && Record.size() != 19)
2495         return error("Invalid record");
2496       Metadata *CUorFn = getMDOrNull(Record[15]);
2497       unsigned Offset = Record.size() == 19 ? 1 : 0;
2498       bool HasFn = Offset && !HasUnit;
2499       DISubprogram *SP = GET_OR_DISTINCT(
2500           DISubprogram,
2501           (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]),
2502            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2503            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2504            getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13],
2505            Record[14], HasUnit ? CUorFn : nullptr,
2506            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2507            getMDOrNull(Record[17 + Offset])));
2508       MetadataList.assignValue(SP, NextMetadataNo++);
2509 
2510       // Upgrade sp->function mapping to function->sp mapping.
2511       if (HasFn) {
2512         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2513           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2514             if (F->isMaterializable())
2515               // Defer until materialized; unmaterialized functions may not have
2516               // metadata.
2517               FunctionsWithSPs[F] = SP;
2518             else if (!F->empty())
2519               F->setSubprogram(SP);
2520           }
2521       }
2522       break;
2523     }
2524     case bitc::METADATA_LEXICAL_BLOCK: {
2525       if (Record.size() != 5)
2526         return error("Invalid record");
2527 
2528       IsDistinct = Record[0];
2529       MetadataList.assignValue(
2530           GET_OR_DISTINCT(DILexicalBlock,
2531                           (Context, getMDOrNull(Record[1]),
2532                            getMDOrNull(Record[2]), Record[3], Record[4])),
2533           NextMetadataNo++);
2534       break;
2535     }
2536     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2537       if (Record.size() != 4)
2538         return error("Invalid record");
2539 
2540       IsDistinct = Record[0];
2541       MetadataList.assignValue(
2542           GET_OR_DISTINCT(DILexicalBlockFile,
2543                           (Context, getMDOrNull(Record[1]),
2544                            getMDOrNull(Record[2]), Record[3])),
2545           NextMetadataNo++);
2546       break;
2547     }
2548     case bitc::METADATA_NAMESPACE: {
2549       if (Record.size() != 5)
2550         return error("Invalid record");
2551 
2552       IsDistinct = Record[0];
2553       MetadataList.assignValue(
2554           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2555                                         getMDOrNull(Record[2]),
2556                                         getMDString(Record[3]), Record[4])),
2557           NextMetadataNo++);
2558       break;
2559     }
2560     case bitc::METADATA_MACRO: {
2561       if (Record.size() != 5)
2562         return error("Invalid record");
2563 
2564       IsDistinct = Record[0];
2565       MetadataList.assignValue(
2566           GET_OR_DISTINCT(DIMacro,
2567                           (Context, Record[1], Record[2],
2568                            getMDString(Record[3]), getMDString(Record[4]))),
2569           NextMetadataNo++);
2570       break;
2571     }
2572     case bitc::METADATA_MACRO_FILE: {
2573       if (Record.size() != 5)
2574         return error("Invalid record");
2575 
2576       IsDistinct = Record[0];
2577       MetadataList.assignValue(
2578           GET_OR_DISTINCT(DIMacroFile,
2579                           (Context, Record[1], Record[2],
2580                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2581           NextMetadataNo++);
2582       break;
2583     }
2584     case bitc::METADATA_TEMPLATE_TYPE: {
2585       if (Record.size() != 3)
2586         return error("Invalid record");
2587 
2588       IsDistinct = Record[0];
2589       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2590                                                (Context, getMDString(Record[1]),
2591                                                 getDITypeRefOrNull(Record[2]))),
2592                                NextMetadataNo++);
2593       break;
2594     }
2595     case bitc::METADATA_TEMPLATE_VALUE: {
2596       if (Record.size() != 5)
2597         return error("Invalid record");
2598 
2599       IsDistinct = Record[0];
2600       MetadataList.assignValue(
2601           GET_OR_DISTINCT(DITemplateValueParameter,
2602                           (Context, Record[1], getMDString(Record[2]),
2603                            getDITypeRefOrNull(Record[3]),
2604                            getMDOrNull(Record[4]))),
2605           NextMetadataNo++);
2606       break;
2607     }
2608     case bitc::METADATA_GLOBAL_VAR: {
2609       if (Record.size() != 11)
2610         return error("Invalid record");
2611 
2612       IsDistinct = Record[0];
2613       MetadataList.assignValue(
2614           GET_OR_DISTINCT(DIGlobalVariable,
2615                           (Context, getMDOrNull(Record[1]),
2616                            getMDString(Record[2]), getMDString(Record[3]),
2617                            getMDOrNull(Record[4]), Record[5],
2618                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2619                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2620           NextMetadataNo++);
2621       break;
2622     }
2623     case bitc::METADATA_LOCAL_VAR: {
2624       // 10th field is for the obseleted 'inlinedAt:' field.
2625       if (Record.size() < 8 || Record.size() > 10)
2626         return error("Invalid record");
2627 
2628       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2629       // DW_TAG_arg_variable.
2630       IsDistinct = Record[0];
2631       bool HasTag = Record.size() > 8;
2632       MetadataList.assignValue(
2633           GET_OR_DISTINCT(DILocalVariable,
2634                           (Context, getMDOrNull(Record[1 + HasTag]),
2635                            getMDString(Record[2 + HasTag]),
2636                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2637                            getDITypeRefOrNull(Record[5 + HasTag]),
2638                            Record[6 + HasTag], Record[7 + HasTag])),
2639           NextMetadataNo++);
2640       break;
2641     }
2642     case bitc::METADATA_EXPRESSION: {
2643       if (Record.size() < 1)
2644         return error("Invalid record");
2645 
2646       IsDistinct = Record[0];
2647       MetadataList.assignValue(
2648           GET_OR_DISTINCT(DIExpression,
2649                           (Context, makeArrayRef(Record).slice(1))),
2650           NextMetadataNo++);
2651       break;
2652     }
2653     case bitc::METADATA_OBJC_PROPERTY: {
2654       if (Record.size() != 8)
2655         return error("Invalid record");
2656 
2657       IsDistinct = Record[0];
2658       MetadataList.assignValue(
2659           GET_OR_DISTINCT(DIObjCProperty,
2660                           (Context, getMDString(Record[1]),
2661                            getMDOrNull(Record[2]), Record[3],
2662                            getMDString(Record[4]), getMDString(Record[5]),
2663                            Record[6], getDITypeRefOrNull(Record[7]))),
2664           NextMetadataNo++);
2665       break;
2666     }
2667     case bitc::METADATA_IMPORTED_ENTITY: {
2668       if (Record.size() != 6)
2669         return error("Invalid record");
2670 
2671       IsDistinct = Record[0];
2672       MetadataList.assignValue(
2673           GET_OR_DISTINCT(DIImportedEntity,
2674                           (Context, Record[1], getMDOrNull(Record[2]),
2675                            getDITypeRefOrNull(Record[3]), Record[4],
2676                            getMDString(Record[5]))),
2677           NextMetadataNo++);
2678       break;
2679     }
2680     case bitc::METADATA_STRING_OLD: {
2681       std::string String(Record.begin(), Record.end());
2682 
2683       // Test for upgrading !llvm.loop.
2684       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2685 
2686       Metadata *MD = MDString::get(Context, String);
2687       MetadataList.assignValue(MD, NextMetadataNo++);
2688       break;
2689     }
2690     case bitc::METADATA_STRINGS:
2691       if (std::error_code EC =
2692               parseMetadataStrings(Record, Blob, NextMetadataNo))
2693         return EC;
2694       break;
2695     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2696       if (Record.size() % 2 == 0)
2697         return error("Invalid record");
2698       unsigned ValueID = Record[0];
2699       if (ValueID >= ValueList.size())
2700         return error("Invalid record");
2701       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2702         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2703       break;
2704     }
2705     case bitc::METADATA_KIND: {
2706       // Support older bitcode files that had METADATA_KIND records in a
2707       // block with METADATA_BLOCK_ID.
2708       if (std::error_code EC = parseMetadataKindRecord(Record))
2709         return EC;
2710       break;
2711     }
2712     }
2713   }
2714 #undef GET_OR_DISTINCT
2715 }
2716 
2717 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2718 std::error_code BitcodeReader::parseMetadataKinds() {
2719   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2720     return error("Invalid record");
2721 
2722   SmallVector<uint64_t, 64> Record;
2723 
2724   // Read all the records.
2725   while (1) {
2726     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2727 
2728     switch (Entry.Kind) {
2729     case BitstreamEntry::SubBlock: // Handled for us already.
2730     case BitstreamEntry::Error:
2731       return error("Malformed block");
2732     case BitstreamEntry::EndBlock:
2733       return std::error_code();
2734     case BitstreamEntry::Record:
2735       // The interesting case.
2736       break;
2737     }
2738 
2739     // Read a record.
2740     Record.clear();
2741     unsigned Code = Stream.readRecord(Entry.ID, Record);
2742     switch (Code) {
2743     default: // Default behavior: ignore.
2744       break;
2745     case bitc::METADATA_KIND: {
2746       if (std::error_code EC = parseMetadataKindRecord(Record))
2747         return EC;
2748       break;
2749     }
2750     }
2751   }
2752 }
2753 
2754 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2755 /// encoding.
2756 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2757   if ((V & 1) == 0)
2758     return V >> 1;
2759   if (V != 1)
2760     return -(V >> 1);
2761   // There is no such thing as -0 with integers.  "-0" really means MININT.
2762   return 1ULL << 63;
2763 }
2764 
2765 /// Resolve all of the initializers for global values and aliases that we can.
2766 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2767   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2768   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2769       IndirectSymbolInitWorklist;
2770   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2771   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2772   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2773 
2774   GlobalInitWorklist.swap(GlobalInits);
2775   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2776   FunctionPrefixWorklist.swap(FunctionPrefixes);
2777   FunctionPrologueWorklist.swap(FunctionPrologues);
2778   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2779 
2780   while (!GlobalInitWorklist.empty()) {
2781     unsigned ValID = GlobalInitWorklist.back().second;
2782     if (ValID >= ValueList.size()) {
2783       // Not ready to resolve this yet, it requires something later in the file.
2784       GlobalInits.push_back(GlobalInitWorklist.back());
2785     } else {
2786       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2787         GlobalInitWorklist.back().first->setInitializer(C);
2788       else
2789         return error("Expected a constant");
2790     }
2791     GlobalInitWorklist.pop_back();
2792   }
2793 
2794   while (!IndirectSymbolInitWorklist.empty()) {
2795     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2796     if (ValID >= ValueList.size()) {
2797       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2798     } else {
2799       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2800       if (!C)
2801         return error("Expected a constant");
2802       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2803       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2804         return error("Alias and aliasee types don't match");
2805       GIS->setIndirectSymbol(C);
2806     }
2807     IndirectSymbolInitWorklist.pop_back();
2808   }
2809 
2810   while (!FunctionPrefixWorklist.empty()) {
2811     unsigned ValID = FunctionPrefixWorklist.back().second;
2812     if (ValID >= ValueList.size()) {
2813       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2814     } else {
2815       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2816         FunctionPrefixWorklist.back().first->setPrefixData(C);
2817       else
2818         return error("Expected a constant");
2819     }
2820     FunctionPrefixWorklist.pop_back();
2821   }
2822 
2823   while (!FunctionPrologueWorklist.empty()) {
2824     unsigned ValID = FunctionPrologueWorklist.back().second;
2825     if (ValID >= ValueList.size()) {
2826       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2827     } else {
2828       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2829         FunctionPrologueWorklist.back().first->setPrologueData(C);
2830       else
2831         return error("Expected a constant");
2832     }
2833     FunctionPrologueWorklist.pop_back();
2834   }
2835 
2836   while (!FunctionPersonalityFnWorklist.empty()) {
2837     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2838     if (ValID >= ValueList.size()) {
2839       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2840     } else {
2841       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2842         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2843       else
2844         return error("Expected a constant");
2845     }
2846     FunctionPersonalityFnWorklist.pop_back();
2847   }
2848 
2849   return std::error_code();
2850 }
2851 
2852 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2853   SmallVector<uint64_t, 8> Words(Vals.size());
2854   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2855                  BitcodeReader::decodeSignRotatedValue);
2856 
2857   return APInt(TypeBits, Words);
2858 }
2859 
2860 std::error_code BitcodeReader::parseConstants() {
2861   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2862     return error("Invalid record");
2863 
2864   SmallVector<uint64_t, 64> Record;
2865 
2866   // Read all the records for this value table.
2867   Type *CurTy = Type::getInt32Ty(Context);
2868   unsigned NextCstNo = ValueList.size();
2869   while (1) {
2870     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2871 
2872     switch (Entry.Kind) {
2873     case BitstreamEntry::SubBlock: // Handled for us already.
2874     case BitstreamEntry::Error:
2875       return error("Malformed block");
2876     case BitstreamEntry::EndBlock:
2877       if (NextCstNo != ValueList.size())
2878         return error("Invalid constant reference");
2879 
2880       // Once all the constants have been read, go through and resolve forward
2881       // references.
2882       ValueList.resolveConstantForwardRefs();
2883       return std::error_code();
2884     case BitstreamEntry::Record:
2885       // The interesting case.
2886       break;
2887     }
2888 
2889     // Read a record.
2890     Record.clear();
2891     Type *VoidType = Type::getVoidTy(Context);
2892     Value *V = nullptr;
2893     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2894     switch (BitCode) {
2895     default:  // Default behavior: unknown constant
2896     case bitc::CST_CODE_UNDEF:     // UNDEF
2897       V = UndefValue::get(CurTy);
2898       break;
2899     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2900       if (Record.empty())
2901         return error("Invalid record");
2902       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2903         return error("Invalid record");
2904       if (TypeList[Record[0]] == VoidType)
2905         return error("Invalid constant type");
2906       CurTy = TypeList[Record[0]];
2907       continue;  // Skip the ValueList manipulation.
2908     case bitc::CST_CODE_NULL:      // NULL
2909       V = Constant::getNullValue(CurTy);
2910       break;
2911     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2912       if (!CurTy->isIntegerTy() || Record.empty())
2913         return error("Invalid record");
2914       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2915       break;
2916     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2917       if (!CurTy->isIntegerTy() || Record.empty())
2918         return error("Invalid record");
2919 
2920       APInt VInt =
2921           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2922       V = ConstantInt::get(Context, VInt);
2923 
2924       break;
2925     }
2926     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2927       if (Record.empty())
2928         return error("Invalid record");
2929       if (CurTy->isHalfTy())
2930         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2931                                              APInt(16, (uint16_t)Record[0])));
2932       else if (CurTy->isFloatTy())
2933         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2934                                              APInt(32, (uint32_t)Record[0])));
2935       else if (CurTy->isDoubleTy())
2936         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2937                                              APInt(64, Record[0])));
2938       else if (CurTy->isX86_FP80Ty()) {
2939         // Bits are not stored the same way as a normal i80 APInt, compensate.
2940         uint64_t Rearrange[2];
2941         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2942         Rearrange[1] = Record[0] >> 48;
2943         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2944                                              APInt(80, Rearrange)));
2945       } else if (CurTy->isFP128Ty())
2946         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2947                                              APInt(128, Record)));
2948       else if (CurTy->isPPC_FP128Ty())
2949         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2950                                              APInt(128, Record)));
2951       else
2952         V = UndefValue::get(CurTy);
2953       break;
2954     }
2955 
2956     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2957       if (Record.empty())
2958         return error("Invalid record");
2959 
2960       unsigned Size = Record.size();
2961       SmallVector<Constant*, 16> Elts;
2962 
2963       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2964         for (unsigned i = 0; i != Size; ++i)
2965           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2966                                                      STy->getElementType(i)));
2967         V = ConstantStruct::get(STy, Elts);
2968       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2969         Type *EltTy = ATy->getElementType();
2970         for (unsigned i = 0; i != Size; ++i)
2971           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2972         V = ConstantArray::get(ATy, Elts);
2973       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2974         Type *EltTy = VTy->getElementType();
2975         for (unsigned i = 0; i != Size; ++i)
2976           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2977         V = ConstantVector::get(Elts);
2978       } else {
2979         V = UndefValue::get(CurTy);
2980       }
2981       break;
2982     }
2983     case bitc::CST_CODE_STRING:    // STRING: [values]
2984     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2985       if (Record.empty())
2986         return error("Invalid record");
2987 
2988       SmallString<16> Elts(Record.begin(), Record.end());
2989       V = ConstantDataArray::getString(Context, Elts,
2990                                        BitCode == bitc::CST_CODE_CSTRING);
2991       break;
2992     }
2993     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2994       if (Record.empty())
2995         return error("Invalid record");
2996 
2997       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2998       if (EltTy->isIntegerTy(8)) {
2999         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3000         if (isa<VectorType>(CurTy))
3001           V = ConstantDataVector::get(Context, Elts);
3002         else
3003           V = ConstantDataArray::get(Context, Elts);
3004       } else if (EltTy->isIntegerTy(16)) {
3005         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3006         if (isa<VectorType>(CurTy))
3007           V = ConstantDataVector::get(Context, Elts);
3008         else
3009           V = ConstantDataArray::get(Context, Elts);
3010       } else if (EltTy->isIntegerTy(32)) {
3011         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3012         if (isa<VectorType>(CurTy))
3013           V = ConstantDataVector::get(Context, Elts);
3014         else
3015           V = ConstantDataArray::get(Context, Elts);
3016       } else if (EltTy->isIntegerTy(64)) {
3017         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3018         if (isa<VectorType>(CurTy))
3019           V = ConstantDataVector::get(Context, Elts);
3020         else
3021           V = ConstantDataArray::get(Context, Elts);
3022       } else if (EltTy->isHalfTy()) {
3023         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3024         if (isa<VectorType>(CurTy))
3025           V = ConstantDataVector::getFP(Context, Elts);
3026         else
3027           V = ConstantDataArray::getFP(Context, Elts);
3028       } else if (EltTy->isFloatTy()) {
3029         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3030         if (isa<VectorType>(CurTy))
3031           V = ConstantDataVector::getFP(Context, Elts);
3032         else
3033           V = ConstantDataArray::getFP(Context, Elts);
3034       } else if (EltTy->isDoubleTy()) {
3035         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3036         if (isa<VectorType>(CurTy))
3037           V = ConstantDataVector::getFP(Context, Elts);
3038         else
3039           V = ConstantDataArray::getFP(Context, Elts);
3040       } else {
3041         return error("Invalid type for value");
3042       }
3043       break;
3044     }
3045     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3046       if (Record.size() < 3)
3047         return error("Invalid record");
3048       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3049       if (Opc < 0) {
3050         V = UndefValue::get(CurTy);  // Unknown binop.
3051       } else {
3052         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3053         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3054         unsigned Flags = 0;
3055         if (Record.size() >= 4) {
3056           if (Opc == Instruction::Add ||
3057               Opc == Instruction::Sub ||
3058               Opc == Instruction::Mul ||
3059               Opc == Instruction::Shl) {
3060             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3061               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3062             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3063               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3064           } else if (Opc == Instruction::SDiv ||
3065                      Opc == Instruction::UDiv ||
3066                      Opc == Instruction::LShr ||
3067                      Opc == Instruction::AShr) {
3068             if (Record[3] & (1 << bitc::PEO_EXACT))
3069               Flags |= SDivOperator::IsExact;
3070           }
3071         }
3072         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3073       }
3074       break;
3075     }
3076     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3077       if (Record.size() < 3)
3078         return error("Invalid record");
3079       int Opc = getDecodedCastOpcode(Record[0]);
3080       if (Opc < 0) {
3081         V = UndefValue::get(CurTy);  // Unknown cast.
3082       } else {
3083         Type *OpTy = getTypeByID(Record[1]);
3084         if (!OpTy)
3085           return error("Invalid record");
3086         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3087         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3088         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3089       }
3090       break;
3091     }
3092     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3093     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3094       unsigned OpNum = 0;
3095       Type *PointeeType = nullptr;
3096       if (Record.size() % 2)
3097         PointeeType = getTypeByID(Record[OpNum++]);
3098       SmallVector<Constant*, 16> Elts;
3099       while (OpNum != Record.size()) {
3100         Type *ElTy = getTypeByID(Record[OpNum++]);
3101         if (!ElTy)
3102           return error("Invalid record");
3103         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3104       }
3105 
3106       if (PointeeType &&
3107           PointeeType !=
3108               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3109                   ->getElementType())
3110         return error("Explicit gep operator type does not match pointee type "
3111                      "of pointer operand");
3112 
3113       if (Elts.size() < 1)
3114         return error("Invalid gep with no operands");
3115 
3116       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3117       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3118                                          BitCode ==
3119                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3120       break;
3121     }
3122     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3123       if (Record.size() < 3)
3124         return error("Invalid record");
3125 
3126       Type *SelectorTy = Type::getInt1Ty(Context);
3127 
3128       // The selector might be an i1 or an <n x i1>
3129       // Get the type from the ValueList before getting a forward ref.
3130       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3131         if (Value *V = ValueList[Record[0]])
3132           if (SelectorTy != V->getType())
3133             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3134 
3135       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3136                                                               SelectorTy),
3137                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3138                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3139       break;
3140     }
3141     case bitc::CST_CODE_CE_EXTRACTELT
3142         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3143       if (Record.size() < 3)
3144         return error("Invalid record");
3145       VectorType *OpTy =
3146         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3147       if (!OpTy)
3148         return error("Invalid record");
3149       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3150       Constant *Op1 = nullptr;
3151       if (Record.size() == 4) {
3152         Type *IdxTy = getTypeByID(Record[2]);
3153         if (!IdxTy)
3154           return error("Invalid record");
3155         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3156       } else // TODO: Remove with llvm 4.0
3157         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3158       if (!Op1)
3159         return error("Invalid record");
3160       V = ConstantExpr::getExtractElement(Op0, Op1);
3161       break;
3162     }
3163     case bitc::CST_CODE_CE_INSERTELT
3164         : { // CE_INSERTELT: [opval, opval, opty, opval]
3165       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3166       if (Record.size() < 3 || !OpTy)
3167         return error("Invalid record");
3168       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3169       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3170                                                   OpTy->getElementType());
3171       Constant *Op2 = nullptr;
3172       if (Record.size() == 4) {
3173         Type *IdxTy = getTypeByID(Record[2]);
3174         if (!IdxTy)
3175           return error("Invalid record");
3176         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3177       } else // TODO: Remove with llvm 4.0
3178         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3179       if (!Op2)
3180         return error("Invalid record");
3181       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3182       break;
3183     }
3184     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3185       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3186       if (Record.size() < 3 || !OpTy)
3187         return error("Invalid record");
3188       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3189       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3190       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3191                                                  OpTy->getNumElements());
3192       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3193       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3194       break;
3195     }
3196     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3197       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3198       VectorType *OpTy =
3199         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3200       if (Record.size() < 4 || !RTy || !OpTy)
3201         return error("Invalid record");
3202       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3203       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3204       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3205                                                  RTy->getNumElements());
3206       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3207       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3208       break;
3209     }
3210     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3211       if (Record.size() < 4)
3212         return error("Invalid record");
3213       Type *OpTy = getTypeByID(Record[0]);
3214       if (!OpTy)
3215         return error("Invalid record");
3216       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3217       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3218 
3219       if (OpTy->isFPOrFPVectorTy())
3220         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3221       else
3222         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3223       break;
3224     }
3225     // This maintains backward compatibility, pre-asm dialect keywords.
3226     // FIXME: Remove with the 4.0 release.
3227     case bitc::CST_CODE_INLINEASM_OLD: {
3228       if (Record.size() < 2)
3229         return error("Invalid record");
3230       std::string AsmStr, ConstrStr;
3231       bool HasSideEffects = Record[0] & 1;
3232       bool IsAlignStack = Record[0] >> 1;
3233       unsigned AsmStrSize = Record[1];
3234       if (2+AsmStrSize >= Record.size())
3235         return error("Invalid record");
3236       unsigned ConstStrSize = Record[2+AsmStrSize];
3237       if (3+AsmStrSize+ConstStrSize > Record.size())
3238         return error("Invalid record");
3239 
3240       for (unsigned i = 0; i != AsmStrSize; ++i)
3241         AsmStr += (char)Record[2+i];
3242       for (unsigned i = 0; i != ConstStrSize; ++i)
3243         ConstrStr += (char)Record[3+AsmStrSize+i];
3244       PointerType *PTy = cast<PointerType>(CurTy);
3245       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3246                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3247       break;
3248     }
3249     // This version adds support for the asm dialect keywords (e.g.,
3250     // inteldialect).
3251     case bitc::CST_CODE_INLINEASM: {
3252       if (Record.size() < 2)
3253         return error("Invalid record");
3254       std::string AsmStr, ConstrStr;
3255       bool HasSideEffects = Record[0] & 1;
3256       bool IsAlignStack = (Record[0] >> 1) & 1;
3257       unsigned AsmDialect = Record[0] >> 2;
3258       unsigned AsmStrSize = Record[1];
3259       if (2+AsmStrSize >= Record.size())
3260         return error("Invalid record");
3261       unsigned ConstStrSize = Record[2+AsmStrSize];
3262       if (3+AsmStrSize+ConstStrSize > Record.size())
3263         return error("Invalid record");
3264 
3265       for (unsigned i = 0; i != AsmStrSize; ++i)
3266         AsmStr += (char)Record[2+i];
3267       for (unsigned i = 0; i != ConstStrSize; ++i)
3268         ConstrStr += (char)Record[3+AsmStrSize+i];
3269       PointerType *PTy = cast<PointerType>(CurTy);
3270       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3271                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3272                          InlineAsm::AsmDialect(AsmDialect));
3273       break;
3274     }
3275     case bitc::CST_CODE_BLOCKADDRESS:{
3276       if (Record.size() < 3)
3277         return error("Invalid record");
3278       Type *FnTy = getTypeByID(Record[0]);
3279       if (!FnTy)
3280         return error("Invalid record");
3281       Function *Fn =
3282         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3283       if (!Fn)
3284         return error("Invalid record");
3285 
3286       // If the function is already parsed we can insert the block address right
3287       // away.
3288       BasicBlock *BB;
3289       unsigned BBID = Record[2];
3290       if (!BBID)
3291         // Invalid reference to entry block.
3292         return error("Invalid ID");
3293       if (!Fn->empty()) {
3294         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3295         for (size_t I = 0, E = BBID; I != E; ++I) {
3296           if (BBI == BBE)
3297             return error("Invalid ID");
3298           ++BBI;
3299         }
3300         BB = &*BBI;
3301       } else {
3302         // Otherwise insert a placeholder and remember it so it can be inserted
3303         // when the function is parsed.
3304         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3305         if (FwdBBs.empty())
3306           BasicBlockFwdRefQueue.push_back(Fn);
3307         if (FwdBBs.size() < BBID + 1)
3308           FwdBBs.resize(BBID + 1);
3309         if (!FwdBBs[BBID])
3310           FwdBBs[BBID] = BasicBlock::Create(Context);
3311         BB = FwdBBs[BBID];
3312       }
3313       V = BlockAddress::get(Fn, BB);
3314       break;
3315     }
3316     }
3317 
3318     ValueList.assignValue(V, NextCstNo);
3319     ++NextCstNo;
3320   }
3321 }
3322 
3323 std::error_code BitcodeReader::parseUseLists() {
3324   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3325     return error("Invalid record");
3326 
3327   // Read all the records.
3328   SmallVector<uint64_t, 64> Record;
3329   while (1) {
3330     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3331 
3332     switch (Entry.Kind) {
3333     case BitstreamEntry::SubBlock: // Handled for us already.
3334     case BitstreamEntry::Error:
3335       return error("Malformed block");
3336     case BitstreamEntry::EndBlock:
3337       return std::error_code();
3338     case BitstreamEntry::Record:
3339       // The interesting case.
3340       break;
3341     }
3342 
3343     // Read a use list record.
3344     Record.clear();
3345     bool IsBB = false;
3346     switch (Stream.readRecord(Entry.ID, Record)) {
3347     default:  // Default behavior: unknown type.
3348       break;
3349     case bitc::USELIST_CODE_BB:
3350       IsBB = true;
3351       // fallthrough
3352     case bitc::USELIST_CODE_DEFAULT: {
3353       unsigned RecordLength = Record.size();
3354       if (RecordLength < 3)
3355         // Records should have at least an ID and two indexes.
3356         return error("Invalid record");
3357       unsigned ID = Record.back();
3358       Record.pop_back();
3359 
3360       Value *V;
3361       if (IsBB) {
3362         assert(ID < FunctionBBs.size() && "Basic block not found");
3363         V = FunctionBBs[ID];
3364       } else
3365         V = ValueList[ID];
3366       unsigned NumUses = 0;
3367       SmallDenseMap<const Use *, unsigned, 16> Order;
3368       for (const Use &U : V->materialized_uses()) {
3369         if (++NumUses > Record.size())
3370           break;
3371         Order[&U] = Record[NumUses - 1];
3372       }
3373       if (Order.size() != Record.size() || NumUses > Record.size())
3374         // Mismatches can happen if the functions are being materialized lazily
3375         // (out-of-order), or a value has been upgraded.
3376         break;
3377 
3378       V->sortUseList([&](const Use &L, const Use &R) {
3379         return Order.lookup(&L) < Order.lookup(&R);
3380       });
3381       break;
3382     }
3383     }
3384   }
3385 }
3386 
3387 /// When we see the block for metadata, remember where it is and then skip it.
3388 /// This lets us lazily deserialize the metadata.
3389 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3390   // Save the current stream state.
3391   uint64_t CurBit = Stream.GetCurrentBitNo();
3392   DeferredMetadataInfo.push_back(CurBit);
3393 
3394   // Skip over the block for now.
3395   if (Stream.SkipBlock())
3396     return error("Invalid record");
3397   return std::error_code();
3398 }
3399 
3400 std::error_code BitcodeReader::materializeMetadata() {
3401   for (uint64_t BitPos : DeferredMetadataInfo) {
3402     // Move the bit stream to the saved position.
3403     Stream.JumpToBit(BitPos);
3404     if (std::error_code EC = parseMetadata(true))
3405       return EC;
3406   }
3407   DeferredMetadataInfo.clear();
3408   return std::error_code();
3409 }
3410 
3411 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3412 
3413 /// When we see the block for a function body, remember where it is and then
3414 /// skip it.  This lets us lazily deserialize the functions.
3415 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3416   // Get the function we are talking about.
3417   if (FunctionsWithBodies.empty())
3418     return error("Insufficient function protos");
3419 
3420   Function *Fn = FunctionsWithBodies.back();
3421   FunctionsWithBodies.pop_back();
3422 
3423   // Save the current stream state.
3424   uint64_t CurBit = Stream.GetCurrentBitNo();
3425   assert(
3426       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3427       "Mismatch between VST and scanned function offsets");
3428   DeferredFunctionInfo[Fn] = CurBit;
3429 
3430   // Skip over the function block for now.
3431   if (Stream.SkipBlock())
3432     return error("Invalid record");
3433   return std::error_code();
3434 }
3435 
3436 std::error_code BitcodeReader::globalCleanup() {
3437   // Patch the initializers for globals and aliases up.
3438   resolveGlobalAndIndirectSymbolInits();
3439   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3440     return error("Malformed global initializer set");
3441 
3442   // Look for intrinsic functions which need to be upgraded at some point
3443   for (Function &F : *TheModule) {
3444     Function *NewFn;
3445     if (UpgradeIntrinsicFunction(&F, NewFn))
3446       UpgradedIntrinsics[&F] = NewFn;
3447   }
3448 
3449   // Look for global variables which need to be renamed.
3450   for (GlobalVariable &GV : TheModule->globals())
3451     UpgradeGlobalVariable(&GV);
3452 
3453   // Force deallocation of memory for these vectors to favor the client that
3454   // want lazy deserialization.
3455   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3456   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3457       IndirectSymbolInits);
3458   return std::error_code();
3459 }
3460 
3461 /// Support for lazy parsing of function bodies. This is required if we
3462 /// either have an old bitcode file without a VST forward declaration record,
3463 /// or if we have an anonymous function being materialized, since anonymous
3464 /// functions do not have a name and are therefore not in the VST.
3465 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3466   Stream.JumpToBit(NextUnreadBit);
3467 
3468   if (Stream.AtEndOfStream())
3469     return error("Could not find function in stream");
3470 
3471   if (!SeenFirstFunctionBody)
3472     return error("Trying to materialize functions before seeing function blocks");
3473 
3474   // An old bitcode file with the symbol table at the end would have
3475   // finished the parse greedily.
3476   assert(SeenValueSymbolTable);
3477 
3478   SmallVector<uint64_t, 64> Record;
3479 
3480   while (1) {
3481     BitstreamEntry Entry = Stream.advance();
3482     switch (Entry.Kind) {
3483     default:
3484       return error("Expect SubBlock");
3485     case BitstreamEntry::SubBlock:
3486       switch (Entry.ID) {
3487       default:
3488         return error("Expect function block");
3489       case bitc::FUNCTION_BLOCK_ID:
3490         if (std::error_code EC = rememberAndSkipFunctionBody())
3491           return EC;
3492         NextUnreadBit = Stream.GetCurrentBitNo();
3493         return std::error_code();
3494       }
3495     }
3496   }
3497 }
3498 
3499 std::error_code BitcodeReader::parseBitcodeVersion() {
3500   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3501     return error("Invalid record");
3502 
3503   // Read all the records.
3504   SmallVector<uint64_t, 64> Record;
3505   while (1) {
3506     BitstreamEntry Entry = Stream.advance();
3507 
3508     switch (Entry.Kind) {
3509     default:
3510     case BitstreamEntry::Error:
3511       return error("Malformed block");
3512     case BitstreamEntry::EndBlock:
3513       return std::error_code();
3514     case BitstreamEntry::Record:
3515       // The interesting case.
3516       break;
3517     }
3518 
3519     // Read a record.
3520     Record.clear();
3521     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3522     switch (BitCode) {
3523     default: // Default behavior: reject
3524       return error("Invalid value");
3525     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3526                                              // N]
3527       convertToString(Record, 0, ProducerIdentification);
3528       break;
3529     }
3530     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3531       unsigned epoch = (unsigned)Record[0];
3532       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3533         return error(
3534           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3535           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3536       }
3537     }
3538     }
3539   }
3540 }
3541 
3542 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3543                                            bool ShouldLazyLoadMetadata) {
3544   if (ResumeBit)
3545     Stream.JumpToBit(ResumeBit);
3546   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3547     return error("Invalid record");
3548 
3549   SmallVector<uint64_t, 64> Record;
3550   std::vector<std::string> SectionTable;
3551   std::vector<std::string> GCTable;
3552 
3553   // Read all the records for this module.
3554   while (1) {
3555     BitstreamEntry Entry = Stream.advance();
3556 
3557     switch (Entry.Kind) {
3558     case BitstreamEntry::Error:
3559       return error("Malformed block");
3560     case BitstreamEntry::EndBlock:
3561       return globalCleanup();
3562 
3563     case BitstreamEntry::SubBlock:
3564       switch (Entry.ID) {
3565       default:  // Skip unknown content.
3566         if (Stream.SkipBlock())
3567           return error("Invalid record");
3568         break;
3569       case bitc::BLOCKINFO_BLOCK_ID:
3570         if (Stream.ReadBlockInfoBlock())
3571           return error("Malformed block");
3572         break;
3573       case bitc::PARAMATTR_BLOCK_ID:
3574         if (std::error_code EC = parseAttributeBlock())
3575           return EC;
3576         break;
3577       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3578         if (std::error_code EC = parseAttributeGroupBlock())
3579           return EC;
3580         break;
3581       case bitc::TYPE_BLOCK_ID_NEW:
3582         if (std::error_code EC = parseTypeTable())
3583           return EC;
3584         break;
3585       case bitc::VALUE_SYMTAB_BLOCK_ID:
3586         if (!SeenValueSymbolTable) {
3587           // Either this is an old form VST without function index and an
3588           // associated VST forward declaration record (which would have caused
3589           // the VST to be jumped to and parsed before it was encountered
3590           // normally in the stream), or there were no function blocks to
3591           // trigger an earlier parsing of the VST.
3592           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3593           if (std::error_code EC = parseValueSymbolTable())
3594             return EC;
3595           SeenValueSymbolTable = true;
3596         } else {
3597           // We must have had a VST forward declaration record, which caused
3598           // the parser to jump to and parse the VST earlier.
3599           assert(VSTOffset > 0);
3600           if (Stream.SkipBlock())
3601             return error("Invalid record");
3602         }
3603         break;
3604       case bitc::CONSTANTS_BLOCK_ID:
3605         if (std::error_code EC = parseConstants())
3606           return EC;
3607         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3608           return EC;
3609         break;
3610       case bitc::METADATA_BLOCK_ID:
3611         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3612           if (std::error_code EC = rememberAndSkipMetadata())
3613             return EC;
3614           break;
3615         }
3616         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3617         if (std::error_code EC = parseMetadata(true))
3618           return EC;
3619         break;
3620       case bitc::METADATA_KIND_BLOCK_ID:
3621         if (std::error_code EC = parseMetadataKinds())
3622           return EC;
3623         break;
3624       case bitc::FUNCTION_BLOCK_ID:
3625         // If this is the first function body we've seen, reverse the
3626         // FunctionsWithBodies list.
3627         if (!SeenFirstFunctionBody) {
3628           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3629           if (std::error_code EC = globalCleanup())
3630             return EC;
3631           SeenFirstFunctionBody = true;
3632         }
3633 
3634         if (VSTOffset > 0) {
3635           // If we have a VST forward declaration record, make sure we
3636           // parse the VST now if we haven't already. It is needed to
3637           // set up the DeferredFunctionInfo vector for lazy reading.
3638           if (!SeenValueSymbolTable) {
3639             if (std::error_code EC =
3640                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3641               return EC;
3642             SeenValueSymbolTable = true;
3643             // Fall through so that we record the NextUnreadBit below.
3644             // This is necessary in case we have an anonymous function that
3645             // is later materialized. Since it will not have a VST entry we
3646             // need to fall back to the lazy parse to find its offset.
3647           } else {
3648             // If we have a VST forward declaration record, but have already
3649             // parsed the VST (just above, when the first function body was
3650             // encountered here), then we are resuming the parse after
3651             // materializing functions. The ResumeBit points to the
3652             // start of the last function block recorded in the
3653             // DeferredFunctionInfo map. Skip it.
3654             if (Stream.SkipBlock())
3655               return error("Invalid record");
3656             continue;
3657           }
3658         }
3659 
3660         // Support older bitcode files that did not have the function
3661         // index in the VST, nor a VST forward declaration record, as
3662         // well as anonymous functions that do not have VST entries.
3663         // Build the DeferredFunctionInfo vector on the fly.
3664         if (std::error_code EC = rememberAndSkipFunctionBody())
3665           return EC;
3666 
3667         // Suspend parsing when we reach the function bodies. Subsequent
3668         // materialization calls will resume it when necessary. If the bitcode
3669         // file is old, the symbol table will be at the end instead and will not
3670         // have been seen yet. In this case, just finish the parse now.
3671         if (SeenValueSymbolTable) {
3672           NextUnreadBit = Stream.GetCurrentBitNo();
3673           return std::error_code();
3674         }
3675         break;
3676       case bitc::USELIST_BLOCK_ID:
3677         if (std::error_code EC = parseUseLists())
3678           return EC;
3679         break;
3680       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3681         if (std::error_code EC = parseOperandBundleTags())
3682           return EC;
3683         break;
3684       }
3685       continue;
3686 
3687     case BitstreamEntry::Record:
3688       // The interesting case.
3689       break;
3690     }
3691 
3692     // Read a record.
3693     auto BitCode = Stream.readRecord(Entry.ID, Record);
3694     switch (BitCode) {
3695     default: break;  // Default behavior, ignore unknown content.
3696     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3697       if (Record.size() < 1)
3698         return error("Invalid record");
3699       // Only version #0 and #1 are supported so far.
3700       unsigned module_version = Record[0];
3701       switch (module_version) {
3702         default:
3703           return error("Invalid value");
3704         case 0:
3705           UseRelativeIDs = false;
3706           break;
3707         case 1:
3708           UseRelativeIDs = true;
3709           break;
3710       }
3711       break;
3712     }
3713     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3714       std::string S;
3715       if (convertToString(Record, 0, S))
3716         return error("Invalid record");
3717       TheModule->setTargetTriple(S);
3718       break;
3719     }
3720     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3721       std::string S;
3722       if (convertToString(Record, 0, S))
3723         return error("Invalid record");
3724       TheModule->setDataLayout(S);
3725       break;
3726     }
3727     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3728       std::string S;
3729       if (convertToString(Record, 0, S))
3730         return error("Invalid record");
3731       TheModule->setModuleInlineAsm(S);
3732       break;
3733     }
3734     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3735       // FIXME: Remove in 4.0.
3736       std::string S;
3737       if (convertToString(Record, 0, S))
3738         return error("Invalid record");
3739       // Ignore value.
3740       break;
3741     }
3742     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3743       std::string S;
3744       if (convertToString(Record, 0, S))
3745         return error("Invalid record");
3746       SectionTable.push_back(S);
3747       break;
3748     }
3749     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3750       std::string S;
3751       if (convertToString(Record, 0, S))
3752         return error("Invalid record");
3753       GCTable.push_back(S);
3754       break;
3755     }
3756     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3757       if (Record.size() < 2)
3758         return error("Invalid record");
3759       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3760       unsigned ComdatNameSize = Record[1];
3761       std::string ComdatName;
3762       ComdatName.reserve(ComdatNameSize);
3763       for (unsigned i = 0; i != ComdatNameSize; ++i)
3764         ComdatName += (char)Record[2 + i];
3765       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3766       C->setSelectionKind(SK);
3767       ComdatList.push_back(C);
3768       break;
3769     }
3770     // GLOBALVAR: [pointer type, isconst, initid,
3771     //             linkage, alignment, section, visibility, threadlocal,
3772     //             unnamed_addr, externally_initialized, dllstorageclass,
3773     //             comdat]
3774     case bitc::MODULE_CODE_GLOBALVAR: {
3775       if (Record.size() < 6)
3776         return error("Invalid record");
3777       Type *Ty = getTypeByID(Record[0]);
3778       if (!Ty)
3779         return error("Invalid record");
3780       bool isConstant = Record[1] & 1;
3781       bool explicitType = Record[1] & 2;
3782       unsigned AddressSpace;
3783       if (explicitType) {
3784         AddressSpace = Record[1] >> 2;
3785       } else {
3786         if (!Ty->isPointerTy())
3787           return error("Invalid type for value");
3788         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3789         Ty = cast<PointerType>(Ty)->getElementType();
3790       }
3791 
3792       uint64_t RawLinkage = Record[3];
3793       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3794       unsigned Alignment;
3795       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3796         return EC;
3797       std::string Section;
3798       if (Record[5]) {
3799         if (Record[5]-1 >= SectionTable.size())
3800           return error("Invalid ID");
3801         Section = SectionTable[Record[5]-1];
3802       }
3803       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3804       // Local linkage must have default visibility.
3805       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3806         // FIXME: Change to an error if non-default in 4.0.
3807         Visibility = getDecodedVisibility(Record[6]);
3808 
3809       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3810       if (Record.size() > 7)
3811         TLM = getDecodedThreadLocalMode(Record[7]);
3812 
3813       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3814       if (Record.size() > 8)
3815         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3816 
3817       bool ExternallyInitialized = false;
3818       if (Record.size() > 9)
3819         ExternallyInitialized = Record[9];
3820 
3821       GlobalVariable *NewGV =
3822         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3823                            TLM, AddressSpace, ExternallyInitialized);
3824       NewGV->setAlignment(Alignment);
3825       if (!Section.empty())
3826         NewGV->setSection(Section);
3827       NewGV->setVisibility(Visibility);
3828       NewGV->setUnnamedAddr(UnnamedAddr);
3829 
3830       if (Record.size() > 10)
3831         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3832       else
3833         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3834 
3835       ValueList.push_back(NewGV);
3836 
3837       // Remember which value to use for the global initializer.
3838       if (unsigned InitID = Record[2])
3839         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3840 
3841       if (Record.size() > 11) {
3842         if (unsigned ComdatID = Record[11]) {
3843           if (ComdatID > ComdatList.size())
3844             return error("Invalid global variable comdat ID");
3845           NewGV->setComdat(ComdatList[ComdatID - 1]);
3846         }
3847       } else if (hasImplicitComdat(RawLinkage)) {
3848         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3849       }
3850 
3851       break;
3852     }
3853     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3854     //             alignment, section, visibility, gc, unnamed_addr,
3855     //             prologuedata, dllstorageclass, comdat, prefixdata]
3856     case bitc::MODULE_CODE_FUNCTION: {
3857       if (Record.size() < 8)
3858         return error("Invalid record");
3859       Type *Ty = getTypeByID(Record[0]);
3860       if (!Ty)
3861         return error("Invalid record");
3862       if (auto *PTy = dyn_cast<PointerType>(Ty))
3863         Ty = PTy->getElementType();
3864       auto *FTy = dyn_cast<FunctionType>(Ty);
3865       if (!FTy)
3866         return error("Invalid type for value");
3867       auto CC = static_cast<CallingConv::ID>(Record[1]);
3868       if (CC & ~CallingConv::MaxID)
3869         return error("Invalid calling convention ID");
3870 
3871       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3872                                         "", TheModule);
3873 
3874       Func->setCallingConv(CC);
3875       bool isProto = Record[2];
3876       uint64_t RawLinkage = Record[3];
3877       Func->setLinkage(getDecodedLinkage(RawLinkage));
3878       Func->setAttributes(getAttributes(Record[4]));
3879 
3880       unsigned Alignment;
3881       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3882         return EC;
3883       Func->setAlignment(Alignment);
3884       if (Record[6]) {
3885         if (Record[6]-1 >= SectionTable.size())
3886           return error("Invalid ID");
3887         Func->setSection(SectionTable[Record[6]-1]);
3888       }
3889       // Local linkage must have default visibility.
3890       if (!Func->hasLocalLinkage())
3891         // FIXME: Change to an error if non-default in 4.0.
3892         Func->setVisibility(getDecodedVisibility(Record[7]));
3893       if (Record.size() > 8 && Record[8]) {
3894         if (Record[8]-1 >= GCTable.size())
3895           return error("Invalid ID");
3896         Func->setGC(GCTable[Record[8] - 1]);
3897       }
3898       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3899       if (Record.size() > 9)
3900         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3901       Func->setUnnamedAddr(UnnamedAddr);
3902       if (Record.size() > 10 && Record[10] != 0)
3903         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3904 
3905       if (Record.size() > 11)
3906         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3907       else
3908         upgradeDLLImportExportLinkage(Func, RawLinkage);
3909 
3910       if (Record.size() > 12) {
3911         if (unsigned ComdatID = Record[12]) {
3912           if (ComdatID > ComdatList.size())
3913             return error("Invalid function comdat ID");
3914           Func->setComdat(ComdatList[ComdatID - 1]);
3915         }
3916       } else if (hasImplicitComdat(RawLinkage)) {
3917         Func->setComdat(reinterpret_cast<Comdat *>(1));
3918       }
3919 
3920       if (Record.size() > 13 && Record[13] != 0)
3921         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3922 
3923       if (Record.size() > 14 && Record[14] != 0)
3924         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3925 
3926       ValueList.push_back(Func);
3927 
3928       // If this is a function with a body, remember the prototype we are
3929       // creating now, so that we can match up the body with them later.
3930       if (!isProto) {
3931         Func->setIsMaterializable(true);
3932         FunctionsWithBodies.push_back(Func);
3933         DeferredFunctionInfo[Func] = 0;
3934       }
3935       break;
3936     }
3937     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3938     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3939     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3940     case bitc::MODULE_CODE_IFUNC:
3941     case bitc::MODULE_CODE_ALIAS:
3942     case bitc::MODULE_CODE_ALIAS_OLD: {
3943       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3944       if (Record.size() < (3 + (unsigned)NewRecord))
3945         return error("Invalid record");
3946       unsigned OpNum = 0;
3947       Type *Ty = getTypeByID(Record[OpNum++]);
3948       if (!Ty)
3949         return error("Invalid record");
3950 
3951       unsigned AddrSpace;
3952       if (!NewRecord) {
3953         auto *PTy = dyn_cast<PointerType>(Ty);
3954         if (!PTy)
3955           return error("Invalid type for value");
3956         Ty = PTy->getElementType();
3957         AddrSpace = PTy->getAddressSpace();
3958       } else {
3959         AddrSpace = Record[OpNum++];
3960       }
3961 
3962       auto Val = Record[OpNum++];
3963       auto Linkage = Record[OpNum++];
3964       GlobalIndirectSymbol *NewGA;
3965       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3966           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3967         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3968                                     "", TheModule);
3969       else
3970         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3971                                     "", nullptr, TheModule);
3972       // Old bitcode files didn't have visibility field.
3973       // Local linkage must have default visibility.
3974       if (OpNum != Record.size()) {
3975         auto VisInd = OpNum++;
3976         if (!NewGA->hasLocalLinkage())
3977           // FIXME: Change to an error if non-default in 4.0.
3978           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3979       }
3980       if (OpNum != Record.size())
3981         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3982       else
3983         upgradeDLLImportExportLinkage(NewGA, Linkage);
3984       if (OpNum != Record.size())
3985         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3986       if (OpNum != Record.size())
3987         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3988       ValueList.push_back(NewGA);
3989       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3990       break;
3991     }
3992     /// MODULE_CODE_PURGEVALS: [numvals]
3993     case bitc::MODULE_CODE_PURGEVALS:
3994       // Trim down the value list to the specified size.
3995       if (Record.size() < 1 || Record[0] > ValueList.size())
3996         return error("Invalid record");
3997       ValueList.shrinkTo(Record[0]);
3998       break;
3999     /// MODULE_CODE_VSTOFFSET: [offset]
4000     case bitc::MODULE_CODE_VSTOFFSET:
4001       if (Record.size() < 1)
4002         return error("Invalid record");
4003       VSTOffset = Record[0];
4004       break;
4005     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4006     case bitc::MODULE_CODE_SOURCE_FILENAME:
4007       SmallString<128> ValueName;
4008       if (convertToString(Record, 0, ValueName))
4009         return error("Invalid record");
4010       TheModule->setSourceFileName(ValueName);
4011       break;
4012     }
4013     Record.clear();
4014   }
4015 }
4016 
4017 /// Helper to read the header common to all bitcode files.
4018 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4019   // Sniff for the signature.
4020   if (Stream.Read(8) != 'B' ||
4021       Stream.Read(8) != 'C' ||
4022       Stream.Read(4) != 0x0 ||
4023       Stream.Read(4) != 0xC ||
4024       Stream.Read(4) != 0xE ||
4025       Stream.Read(4) != 0xD)
4026     return false;
4027   return true;
4028 }
4029 
4030 std::error_code
4031 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4032                                 Module *M, bool ShouldLazyLoadMetadata) {
4033   TheModule = M;
4034 
4035   if (std::error_code EC = initStream(std::move(Streamer)))
4036     return EC;
4037 
4038   // Sniff for the signature.
4039   if (!hasValidBitcodeHeader(Stream))
4040     return error("Invalid bitcode signature");
4041 
4042   // We expect a number of well-defined blocks, though we don't necessarily
4043   // need to understand them all.
4044   while (1) {
4045     if (Stream.AtEndOfStream()) {
4046       // We didn't really read a proper Module.
4047       return error("Malformed IR file");
4048     }
4049 
4050     BitstreamEntry Entry =
4051       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4052 
4053     if (Entry.Kind != BitstreamEntry::SubBlock)
4054       return error("Malformed block");
4055 
4056     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4057       parseBitcodeVersion();
4058       continue;
4059     }
4060 
4061     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4062       return parseModule(0, ShouldLazyLoadMetadata);
4063 
4064     if (Stream.SkipBlock())
4065       return error("Invalid record");
4066   }
4067 }
4068 
4069 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4070   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4071     return error("Invalid record");
4072 
4073   SmallVector<uint64_t, 64> Record;
4074 
4075   std::string Triple;
4076   // Read all the records for this module.
4077   while (1) {
4078     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4079 
4080     switch (Entry.Kind) {
4081     case BitstreamEntry::SubBlock: // Handled for us already.
4082     case BitstreamEntry::Error:
4083       return error("Malformed block");
4084     case BitstreamEntry::EndBlock:
4085       return Triple;
4086     case BitstreamEntry::Record:
4087       // The interesting case.
4088       break;
4089     }
4090 
4091     // Read a record.
4092     switch (Stream.readRecord(Entry.ID, Record)) {
4093     default: break;  // Default behavior, ignore unknown content.
4094     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4095       std::string S;
4096       if (convertToString(Record, 0, S))
4097         return error("Invalid record");
4098       Triple = S;
4099       break;
4100     }
4101     }
4102     Record.clear();
4103   }
4104   llvm_unreachable("Exit infinite loop");
4105 }
4106 
4107 ErrorOr<std::string> BitcodeReader::parseTriple() {
4108   if (std::error_code EC = initStream(nullptr))
4109     return EC;
4110 
4111   // Sniff for the signature.
4112   if (!hasValidBitcodeHeader(Stream))
4113     return error("Invalid bitcode signature");
4114 
4115   // We expect a number of well-defined blocks, though we don't necessarily
4116   // need to understand them all.
4117   while (1) {
4118     BitstreamEntry Entry = Stream.advance();
4119 
4120     switch (Entry.Kind) {
4121     case BitstreamEntry::Error:
4122       return error("Malformed block");
4123     case BitstreamEntry::EndBlock:
4124       return std::error_code();
4125 
4126     case BitstreamEntry::SubBlock:
4127       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4128         return parseModuleTriple();
4129 
4130       // Ignore other sub-blocks.
4131       if (Stream.SkipBlock())
4132         return error("Malformed block");
4133       continue;
4134 
4135     case BitstreamEntry::Record:
4136       Stream.skipRecord(Entry.ID);
4137       continue;
4138     }
4139   }
4140 }
4141 
4142 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4143   if (std::error_code EC = initStream(nullptr))
4144     return EC;
4145 
4146   // Sniff for the signature.
4147   if (!hasValidBitcodeHeader(Stream))
4148     return error("Invalid bitcode signature");
4149 
4150   // We expect a number of well-defined blocks, though we don't necessarily
4151   // need to understand them all.
4152   while (1) {
4153     BitstreamEntry Entry = Stream.advance();
4154     switch (Entry.Kind) {
4155     case BitstreamEntry::Error:
4156       return error("Malformed block");
4157     case BitstreamEntry::EndBlock:
4158       return std::error_code();
4159 
4160     case BitstreamEntry::SubBlock:
4161       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4162         if (std::error_code EC = parseBitcodeVersion())
4163           return EC;
4164         return ProducerIdentification;
4165       }
4166       // Ignore other sub-blocks.
4167       if (Stream.SkipBlock())
4168         return error("Malformed block");
4169       continue;
4170     case BitstreamEntry::Record:
4171       Stream.skipRecord(Entry.ID);
4172       continue;
4173     }
4174   }
4175 }
4176 
4177 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4178     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4179   assert(Record.size() % 2 == 0);
4180   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4181     auto K = MDKindMap.find(Record[I]);
4182     if (K == MDKindMap.end())
4183       return error("Invalid ID");
4184     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4185     if (!MD)
4186       return error("Invalid metadata attachment");
4187     GO.addMetadata(K->second, *MD);
4188   }
4189   return std::error_code();
4190 }
4191 
4192 /// Parse metadata attachments.
4193 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4194   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4195     return error("Invalid record");
4196 
4197   SmallVector<uint64_t, 64> Record;
4198   while (1) {
4199     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4200 
4201     switch (Entry.Kind) {
4202     case BitstreamEntry::SubBlock: // Handled for us already.
4203     case BitstreamEntry::Error:
4204       return error("Malformed block");
4205     case BitstreamEntry::EndBlock:
4206       return std::error_code();
4207     case BitstreamEntry::Record:
4208       // The interesting case.
4209       break;
4210     }
4211 
4212     // Read a metadata attachment record.
4213     Record.clear();
4214     switch (Stream.readRecord(Entry.ID, Record)) {
4215     default:  // Default behavior: ignore.
4216       break;
4217     case bitc::METADATA_ATTACHMENT: {
4218       unsigned RecordLength = Record.size();
4219       if (Record.empty())
4220         return error("Invalid record");
4221       if (RecordLength % 2 == 0) {
4222         // A function attachment.
4223         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4224           return EC;
4225         continue;
4226       }
4227 
4228       // An instruction attachment.
4229       Instruction *Inst = InstructionList[Record[0]];
4230       for (unsigned i = 1; i != RecordLength; i = i+2) {
4231         unsigned Kind = Record[i];
4232         DenseMap<unsigned, unsigned>::iterator I =
4233           MDKindMap.find(Kind);
4234         if (I == MDKindMap.end())
4235           return error("Invalid ID");
4236         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4237         if (isa<LocalAsMetadata>(Node))
4238           // Drop the attachment.  This used to be legal, but there's no
4239           // upgrade path.
4240           break;
4241         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4242         if (!MD)
4243           return error("Invalid metadata attachment");
4244 
4245         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4246           MD = upgradeInstructionLoopAttachment(*MD);
4247 
4248         Inst->setMetadata(I->second, MD);
4249         if (I->second == LLVMContext::MD_tbaa) {
4250           InstsWithTBAATag.push_back(Inst);
4251           continue;
4252         }
4253       }
4254       break;
4255     }
4256     }
4257   }
4258 }
4259 
4260 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4261   LLVMContext &Context = PtrType->getContext();
4262   if (!isa<PointerType>(PtrType))
4263     return error(Context, "Load/Store operand is not a pointer type");
4264   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4265 
4266   if (ValType && ValType != ElemType)
4267     return error(Context, "Explicit load/store type does not match pointee "
4268                           "type of pointer operand");
4269   if (!PointerType::isLoadableOrStorableType(ElemType))
4270     return error(Context, "Cannot load/store from pointer");
4271   return std::error_code();
4272 }
4273 
4274 /// Lazily parse the specified function body block.
4275 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4276   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4277     return error("Invalid record");
4278 
4279   // Unexpected unresolved metadata when parsing function.
4280   if (MetadataList.hasFwdRefs())
4281     return error("Invalid function metadata: incoming forward references");
4282 
4283   InstructionList.clear();
4284   unsigned ModuleValueListSize = ValueList.size();
4285   unsigned ModuleMetadataListSize = MetadataList.size();
4286 
4287   // Add all the function arguments to the value table.
4288   for (Argument &I : F->args())
4289     ValueList.push_back(&I);
4290 
4291   unsigned NextValueNo = ValueList.size();
4292   BasicBlock *CurBB = nullptr;
4293   unsigned CurBBNo = 0;
4294 
4295   DebugLoc LastLoc;
4296   auto getLastInstruction = [&]() -> Instruction * {
4297     if (CurBB && !CurBB->empty())
4298       return &CurBB->back();
4299     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4300              !FunctionBBs[CurBBNo - 1]->empty())
4301       return &FunctionBBs[CurBBNo - 1]->back();
4302     return nullptr;
4303   };
4304 
4305   std::vector<OperandBundleDef> OperandBundles;
4306 
4307   // Read all the records.
4308   SmallVector<uint64_t, 64> Record;
4309   while (1) {
4310     BitstreamEntry Entry = Stream.advance();
4311 
4312     switch (Entry.Kind) {
4313     case BitstreamEntry::Error:
4314       return error("Malformed block");
4315     case BitstreamEntry::EndBlock:
4316       goto OutOfRecordLoop;
4317 
4318     case BitstreamEntry::SubBlock:
4319       switch (Entry.ID) {
4320       default:  // Skip unknown content.
4321         if (Stream.SkipBlock())
4322           return error("Invalid record");
4323         break;
4324       case bitc::CONSTANTS_BLOCK_ID:
4325         if (std::error_code EC = parseConstants())
4326           return EC;
4327         NextValueNo = ValueList.size();
4328         break;
4329       case bitc::VALUE_SYMTAB_BLOCK_ID:
4330         if (std::error_code EC = parseValueSymbolTable())
4331           return EC;
4332         break;
4333       case bitc::METADATA_ATTACHMENT_ID:
4334         if (std::error_code EC = parseMetadataAttachment(*F))
4335           return EC;
4336         break;
4337       case bitc::METADATA_BLOCK_ID:
4338         if (std::error_code EC = parseMetadata())
4339           return EC;
4340         break;
4341       case bitc::USELIST_BLOCK_ID:
4342         if (std::error_code EC = parseUseLists())
4343           return EC;
4344         break;
4345       }
4346       continue;
4347 
4348     case BitstreamEntry::Record:
4349       // The interesting case.
4350       break;
4351     }
4352 
4353     // Read a record.
4354     Record.clear();
4355     Instruction *I = nullptr;
4356     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4357     switch (BitCode) {
4358     default: // Default behavior: reject
4359       return error("Invalid value");
4360     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4361       if (Record.size() < 1 || Record[0] == 0)
4362         return error("Invalid record");
4363       // Create all the basic blocks for the function.
4364       FunctionBBs.resize(Record[0]);
4365 
4366       // See if anything took the address of blocks in this function.
4367       auto BBFRI = BasicBlockFwdRefs.find(F);
4368       if (BBFRI == BasicBlockFwdRefs.end()) {
4369         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4370           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4371       } else {
4372         auto &BBRefs = BBFRI->second;
4373         // Check for invalid basic block references.
4374         if (BBRefs.size() > FunctionBBs.size())
4375           return error("Invalid ID");
4376         assert(!BBRefs.empty() && "Unexpected empty array");
4377         assert(!BBRefs.front() && "Invalid reference to entry block");
4378         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4379              ++I)
4380           if (I < RE && BBRefs[I]) {
4381             BBRefs[I]->insertInto(F);
4382             FunctionBBs[I] = BBRefs[I];
4383           } else {
4384             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4385           }
4386 
4387         // Erase from the table.
4388         BasicBlockFwdRefs.erase(BBFRI);
4389       }
4390 
4391       CurBB = FunctionBBs[0];
4392       continue;
4393     }
4394 
4395     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4396       // This record indicates that the last instruction is at the same
4397       // location as the previous instruction with a location.
4398       I = getLastInstruction();
4399 
4400       if (!I)
4401         return error("Invalid record");
4402       I->setDebugLoc(LastLoc);
4403       I = nullptr;
4404       continue;
4405 
4406     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4407       I = getLastInstruction();
4408       if (!I || Record.size() < 4)
4409         return error("Invalid record");
4410 
4411       unsigned Line = Record[0], Col = Record[1];
4412       unsigned ScopeID = Record[2], IAID = Record[3];
4413 
4414       MDNode *Scope = nullptr, *IA = nullptr;
4415       if (ScopeID) {
4416         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4417         if (!Scope)
4418           return error("Invalid record");
4419       }
4420       if (IAID) {
4421         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4422         if (!IA)
4423           return error("Invalid record");
4424       }
4425       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4426       I->setDebugLoc(LastLoc);
4427       I = nullptr;
4428       continue;
4429     }
4430 
4431     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4432       unsigned OpNum = 0;
4433       Value *LHS, *RHS;
4434       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4435           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4436           OpNum+1 > Record.size())
4437         return error("Invalid record");
4438 
4439       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4440       if (Opc == -1)
4441         return error("Invalid record");
4442       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4443       InstructionList.push_back(I);
4444       if (OpNum < Record.size()) {
4445         if (Opc == Instruction::Add ||
4446             Opc == Instruction::Sub ||
4447             Opc == Instruction::Mul ||
4448             Opc == Instruction::Shl) {
4449           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4450             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4451           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4452             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4453         } else if (Opc == Instruction::SDiv ||
4454                    Opc == Instruction::UDiv ||
4455                    Opc == Instruction::LShr ||
4456                    Opc == Instruction::AShr) {
4457           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4458             cast<BinaryOperator>(I)->setIsExact(true);
4459         } else if (isa<FPMathOperator>(I)) {
4460           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4461           if (FMF.any())
4462             I->setFastMathFlags(FMF);
4463         }
4464 
4465       }
4466       break;
4467     }
4468     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4469       unsigned OpNum = 0;
4470       Value *Op;
4471       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4472           OpNum+2 != Record.size())
4473         return error("Invalid record");
4474 
4475       Type *ResTy = getTypeByID(Record[OpNum]);
4476       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4477       if (Opc == -1 || !ResTy)
4478         return error("Invalid record");
4479       Instruction *Temp = nullptr;
4480       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4481         if (Temp) {
4482           InstructionList.push_back(Temp);
4483           CurBB->getInstList().push_back(Temp);
4484         }
4485       } else {
4486         auto CastOp = (Instruction::CastOps)Opc;
4487         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4488           return error("Invalid cast");
4489         I = CastInst::Create(CastOp, Op, ResTy);
4490       }
4491       InstructionList.push_back(I);
4492       break;
4493     }
4494     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4495     case bitc::FUNC_CODE_INST_GEP_OLD:
4496     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4497       unsigned OpNum = 0;
4498 
4499       Type *Ty;
4500       bool InBounds;
4501 
4502       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4503         InBounds = Record[OpNum++];
4504         Ty = getTypeByID(Record[OpNum++]);
4505       } else {
4506         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4507         Ty = nullptr;
4508       }
4509 
4510       Value *BasePtr;
4511       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4512         return error("Invalid record");
4513 
4514       if (!Ty)
4515         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4516                  ->getElementType();
4517       else if (Ty !=
4518                cast<SequentialType>(BasePtr->getType()->getScalarType())
4519                    ->getElementType())
4520         return error(
4521             "Explicit gep type does not match pointee type of pointer operand");
4522 
4523       SmallVector<Value*, 16> GEPIdx;
4524       while (OpNum != Record.size()) {
4525         Value *Op;
4526         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4527           return error("Invalid record");
4528         GEPIdx.push_back(Op);
4529       }
4530 
4531       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4532 
4533       InstructionList.push_back(I);
4534       if (InBounds)
4535         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4536       break;
4537     }
4538 
4539     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4540                                        // EXTRACTVAL: [opty, opval, n x indices]
4541       unsigned OpNum = 0;
4542       Value *Agg;
4543       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4544         return error("Invalid record");
4545 
4546       unsigned RecSize = Record.size();
4547       if (OpNum == RecSize)
4548         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4549 
4550       SmallVector<unsigned, 4> EXTRACTVALIdx;
4551       Type *CurTy = Agg->getType();
4552       for (; OpNum != RecSize; ++OpNum) {
4553         bool IsArray = CurTy->isArrayTy();
4554         bool IsStruct = CurTy->isStructTy();
4555         uint64_t Index = Record[OpNum];
4556 
4557         if (!IsStruct && !IsArray)
4558           return error("EXTRACTVAL: Invalid type");
4559         if ((unsigned)Index != Index)
4560           return error("Invalid value");
4561         if (IsStruct && Index >= CurTy->subtypes().size())
4562           return error("EXTRACTVAL: Invalid struct index");
4563         if (IsArray && Index >= CurTy->getArrayNumElements())
4564           return error("EXTRACTVAL: Invalid array index");
4565         EXTRACTVALIdx.push_back((unsigned)Index);
4566 
4567         if (IsStruct)
4568           CurTy = CurTy->subtypes()[Index];
4569         else
4570           CurTy = CurTy->subtypes()[0];
4571       }
4572 
4573       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4574       InstructionList.push_back(I);
4575       break;
4576     }
4577 
4578     case bitc::FUNC_CODE_INST_INSERTVAL: {
4579                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4580       unsigned OpNum = 0;
4581       Value *Agg;
4582       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4583         return error("Invalid record");
4584       Value *Val;
4585       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4586         return error("Invalid record");
4587 
4588       unsigned RecSize = Record.size();
4589       if (OpNum == RecSize)
4590         return error("INSERTVAL: Invalid instruction with 0 indices");
4591 
4592       SmallVector<unsigned, 4> INSERTVALIdx;
4593       Type *CurTy = Agg->getType();
4594       for (; OpNum != RecSize; ++OpNum) {
4595         bool IsArray = CurTy->isArrayTy();
4596         bool IsStruct = CurTy->isStructTy();
4597         uint64_t Index = Record[OpNum];
4598 
4599         if (!IsStruct && !IsArray)
4600           return error("INSERTVAL: Invalid type");
4601         if ((unsigned)Index != Index)
4602           return error("Invalid value");
4603         if (IsStruct && Index >= CurTy->subtypes().size())
4604           return error("INSERTVAL: Invalid struct index");
4605         if (IsArray && Index >= CurTy->getArrayNumElements())
4606           return error("INSERTVAL: Invalid array index");
4607 
4608         INSERTVALIdx.push_back((unsigned)Index);
4609         if (IsStruct)
4610           CurTy = CurTy->subtypes()[Index];
4611         else
4612           CurTy = CurTy->subtypes()[0];
4613       }
4614 
4615       if (CurTy != Val->getType())
4616         return error("Inserted value type doesn't match aggregate type");
4617 
4618       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4619       InstructionList.push_back(I);
4620       break;
4621     }
4622 
4623     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4624       // obsolete form of select
4625       // handles select i1 ... in old bitcode
4626       unsigned OpNum = 0;
4627       Value *TrueVal, *FalseVal, *Cond;
4628       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4629           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4630           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4631         return error("Invalid record");
4632 
4633       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4634       InstructionList.push_back(I);
4635       break;
4636     }
4637 
4638     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4639       // new form of select
4640       // handles select i1 or select [N x i1]
4641       unsigned OpNum = 0;
4642       Value *TrueVal, *FalseVal, *Cond;
4643       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4644           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4645           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4646         return error("Invalid record");
4647 
4648       // select condition can be either i1 or [N x i1]
4649       if (VectorType* vector_type =
4650           dyn_cast<VectorType>(Cond->getType())) {
4651         // expect <n x i1>
4652         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4653           return error("Invalid type for value");
4654       } else {
4655         // expect i1
4656         if (Cond->getType() != Type::getInt1Ty(Context))
4657           return error("Invalid type for value");
4658       }
4659 
4660       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4661       InstructionList.push_back(I);
4662       break;
4663     }
4664 
4665     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4666       unsigned OpNum = 0;
4667       Value *Vec, *Idx;
4668       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4669           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4670         return error("Invalid record");
4671       if (!Vec->getType()->isVectorTy())
4672         return error("Invalid type for value");
4673       I = ExtractElementInst::Create(Vec, Idx);
4674       InstructionList.push_back(I);
4675       break;
4676     }
4677 
4678     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4679       unsigned OpNum = 0;
4680       Value *Vec, *Elt, *Idx;
4681       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4682         return error("Invalid record");
4683       if (!Vec->getType()->isVectorTy())
4684         return error("Invalid type for value");
4685       if (popValue(Record, OpNum, NextValueNo,
4686                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4687           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4688         return error("Invalid record");
4689       I = InsertElementInst::Create(Vec, Elt, Idx);
4690       InstructionList.push_back(I);
4691       break;
4692     }
4693 
4694     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4695       unsigned OpNum = 0;
4696       Value *Vec1, *Vec2, *Mask;
4697       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4698           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4699         return error("Invalid record");
4700 
4701       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4702         return error("Invalid record");
4703       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4704         return error("Invalid type for value");
4705       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4706       InstructionList.push_back(I);
4707       break;
4708     }
4709 
4710     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4711       // Old form of ICmp/FCmp returning bool
4712       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4713       // both legal on vectors but had different behaviour.
4714     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4715       // FCmp/ICmp returning bool or vector of bool
4716 
4717       unsigned OpNum = 0;
4718       Value *LHS, *RHS;
4719       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4720           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4721         return error("Invalid record");
4722 
4723       unsigned PredVal = Record[OpNum];
4724       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4725       FastMathFlags FMF;
4726       if (IsFP && Record.size() > OpNum+1)
4727         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4728 
4729       if (OpNum+1 != Record.size())
4730         return error("Invalid record");
4731 
4732       if (LHS->getType()->isFPOrFPVectorTy())
4733         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4734       else
4735         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4736 
4737       if (FMF.any())
4738         I->setFastMathFlags(FMF);
4739       InstructionList.push_back(I);
4740       break;
4741     }
4742 
4743     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4744       {
4745         unsigned Size = Record.size();
4746         if (Size == 0) {
4747           I = ReturnInst::Create(Context);
4748           InstructionList.push_back(I);
4749           break;
4750         }
4751 
4752         unsigned OpNum = 0;
4753         Value *Op = nullptr;
4754         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4755           return error("Invalid record");
4756         if (OpNum != Record.size())
4757           return error("Invalid record");
4758 
4759         I = ReturnInst::Create(Context, Op);
4760         InstructionList.push_back(I);
4761         break;
4762       }
4763     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4764       if (Record.size() != 1 && Record.size() != 3)
4765         return error("Invalid record");
4766       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4767       if (!TrueDest)
4768         return error("Invalid record");
4769 
4770       if (Record.size() == 1) {
4771         I = BranchInst::Create(TrueDest);
4772         InstructionList.push_back(I);
4773       }
4774       else {
4775         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4776         Value *Cond = getValue(Record, 2, NextValueNo,
4777                                Type::getInt1Ty(Context));
4778         if (!FalseDest || !Cond)
4779           return error("Invalid record");
4780         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4781         InstructionList.push_back(I);
4782       }
4783       break;
4784     }
4785     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4786       if (Record.size() != 1 && Record.size() != 2)
4787         return error("Invalid record");
4788       unsigned Idx = 0;
4789       Value *CleanupPad =
4790           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4791       if (!CleanupPad)
4792         return error("Invalid record");
4793       BasicBlock *UnwindDest = nullptr;
4794       if (Record.size() == 2) {
4795         UnwindDest = getBasicBlock(Record[Idx++]);
4796         if (!UnwindDest)
4797           return error("Invalid record");
4798       }
4799 
4800       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4801       InstructionList.push_back(I);
4802       break;
4803     }
4804     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4805       if (Record.size() != 2)
4806         return error("Invalid record");
4807       unsigned Idx = 0;
4808       Value *CatchPad =
4809           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4810       if (!CatchPad)
4811         return error("Invalid record");
4812       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4813       if (!BB)
4814         return error("Invalid record");
4815 
4816       I = CatchReturnInst::Create(CatchPad, BB);
4817       InstructionList.push_back(I);
4818       break;
4819     }
4820     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4821       // We must have, at minimum, the outer scope and the number of arguments.
4822       if (Record.size() < 2)
4823         return error("Invalid record");
4824 
4825       unsigned Idx = 0;
4826 
4827       Value *ParentPad =
4828           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4829 
4830       unsigned NumHandlers = Record[Idx++];
4831 
4832       SmallVector<BasicBlock *, 2> Handlers;
4833       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4834         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4835         if (!BB)
4836           return error("Invalid record");
4837         Handlers.push_back(BB);
4838       }
4839 
4840       BasicBlock *UnwindDest = nullptr;
4841       if (Idx + 1 == Record.size()) {
4842         UnwindDest = getBasicBlock(Record[Idx++]);
4843         if (!UnwindDest)
4844           return error("Invalid record");
4845       }
4846 
4847       if (Record.size() != Idx)
4848         return error("Invalid record");
4849 
4850       auto *CatchSwitch =
4851           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4852       for (BasicBlock *Handler : Handlers)
4853         CatchSwitch->addHandler(Handler);
4854       I = CatchSwitch;
4855       InstructionList.push_back(I);
4856       break;
4857     }
4858     case bitc::FUNC_CODE_INST_CATCHPAD:
4859     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4860       // We must have, at minimum, the outer scope and the number of arguments.
4861       if (Record.size() < 2)
4862         return error("Invalid record");
4863 
4864       unsigned Idx = 0;
4865 
4866       Value *ParentPad =
4867           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4868 
4869       unsigned NumArgOperands = Record[Idx++];
4870 
4871       SmallVector<Value *, 2> Args;
4872       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4873         Value *Val;
4874         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4875           return error("Invalid record");
4876         Args.push_back(Val);
4877       }
4878 
4879       if (Record.size() != Idx)
4880         return error("Invalid record");
4881 
4882       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4883         I = CleanupPadInst::Create(ParentPad, Args);
4884       else
4885         I = CatchPadInst::Create(ParentPad, Args);
4886       InstructionList.push_back(I);
4887       break;
4888     }
4889     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4890       // Check magic
4891       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4892         // "New" SwitchInst format with case ranges. The changes to write this
4893         // format were reverted but we still recognize bitcode that uses it.
4894         // Hopefully someday we will have support for case ranges and can use
4895         // this format again.
4896 
4897         Type *OpTy = getTypeByID(Record[1]);
4898         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4899 
4900         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4901         BasicBlock *Default = getBasicBlock(Record[3]);
4902         if (!OpTy || !Cond || !Default)
4903           return error("Invalid record");
4904 
4905         unsigned NumCases = Record[4];
4906 
4907         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4908         InstructionList.push_back(SI);
4909 
4910         unsigned CurIdx = 5;
4911         for (unsigned i = 0; i != NumCases; ++i) {
4912           SmallVector<ConstantInt*, 1> CaseVals;
4913           unsigned NumItems = Record[CurIdx++];
4914           for (unsigned ci = 0; ci != NumItems; ++ci) {
4915             bool isSingleNumber = Record[CurIdx++];
4916 
4917             APInt Low;
4918             unsigned ActiveWords = 1;
4919             if (ValueBitWidth > 64)
4920               ActiveWords = Record[CurIdx++];
4921             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4922                                 ValueBitWidth);
4923             CurIdx += ActiveWords;
4924 
4925             if (!isSingleNumber) {
4926               ActiveWords = 1;
4927               if (ValueBitWidth > 64)
4928                 ActiveWords = Record[CurIdx++];
4929               APInt High = readWideAPInt(
4930                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4931               CurIdx += ActiveWords;
4932 
4933               // FIXME: It is not clear whether values in the range should be
4934               // compared as signed or unsigned values. The partially
4935               // implemented changes that used this format in the past used
4936               // unsigned comparisons.
4937               for ( ; Low.ule(High); ++Low)
4938                 CaseVals.push_back(ConstantInt::get(Context, Low));
4939             } else
4940               CaseVals.push_back(ConstantInt::get(Context, Low));
4941           }
4942           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4943           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4944                  cve = CaseVals.end(); cvi != cve; ++cvi)
4945             SI->addCase(*cvi, DestBB);
4946         }
4947         I = SI;
4948         break;
4949       }
4950 
4951       // Old SwitchInst format without case ranges.
4952 
4953       if (Record.size() < 3 || (Record.size() & 1) == 0)
4954         return error("Invalid record");
4955       Type *OpTy = getTypeByID(Record[0]);
4956       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4957       BasicBlock *Default = getBasicBlock(Record[2]);
4958       if (!OpTy || !Cond || !Default)
4959         return error("Invalid record");
4960       unsigned NumCases = (Record.size()-3)/2;
4961       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4962       InstructionList.push_back(SI);
4963       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4964         ConstantInt *CaseVal =
4965           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4966         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4967         if (!CaseVal || !DestBB) {
4968           delete SI;
4969           return error("Invalid record");
4970         }
4971         SI->addCase(CaseVal, DestBB);
4972       }
4973       I = SI;
4974       break;
4975     }
4976     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4977       if (Record.size() < 2)
4978         return error("Invalid record");
4979       Type *OpTy = getTypeByID(Record[0]);
4980       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4981       if (!OpTy || !Address)
4982         return error("Invalid record");
4983       unsigned NumDests = Record.size()-2;
4984       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4985       InstructionList.push_back(IBI);
4986       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4987         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4988           IBI->addDestination(DestBB);
4989         } else {
4990           delete IBI;
4991           return error("Invalid record");
4992         }
4993       }
4994       I = IBI;
4995       break;
4996     }
4997 
4998     case bitc::FUNC_CODE_INST_INVOKE: {
4999       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5000       if (Record.size() < 4)
5001         return error("Invalid record");
5002       unsigned OpNum = 0;
5003       AttributeSet PAL = getAttributes(Record[OpNum++]);
5004       unsigned CCInfo = Record[OpNum++];
5005       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5006       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5007 
5008       FunctionType *FTy = nullptr;
5009       if (CCInfo >> 13 & 1 &&
5010           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5011         return error("Explicit invoke type is not a function type");
5012 
5013       Value *Callee;
5014       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5015         return error("Invalid record");
5016 
5017       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5018       if (!CalleeTy)
5019         return error("Callee is not a pointer");
5020       if (!FTy) {
5021         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5022         if (!FTy)
5023           return error("Callee is not of pointer to function type");
5024       } else if (CalleeTy->getElementType() != FTy)
5025         return error("Explicit invoke type does not match pointee type of "
5026                      "callee operand");
5027       if (Record.size() < FTy->getNumParams() + OpNum)
5028         return error("Insufficient operands to call");
5029 
5030       SmallVector<Value*, 16> Ops;
5031       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5032         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5033                                FTy->getParamType(i)));
5034         if (!Ops.back())
5035           return error("Invalid record");
5036       }
5037 
5038       if (!FTy->isVarArg()) {
5039         if (Record.size() != OpNum)
5040           return error("Invalid record");
5041       } else {
5042         // Read type/value pairs for varargs params.
5043         while (OpNum != Record.size()) {
5044           Value *Op;
5045           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5046             return error("Invalid record");
5047           Ops.push_back(Op);
5048         }
5049       }
5050 
5051       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5052       OperandBundles.clear();
5053       InstructionList.push_back(I);
5054       cast<InvokeInst>(I)->setCallingConv(
5055           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5056       cast<InvokeInst>(I)->setAttributes(PAL);
5057       break;
5058     }
5059     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5060       unsigned Idx = 0;
5061       Value *Val = nullptr;
5062       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5063         return error("Invalid record");
5064       I = ResumeInst::Create(Val);
5065       InstructionList.push_back(I);
5066       break;
5067     }
5068     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5069       I = new UnreachableInst(Context);
5070       InstructionList.push_back(I);
5071       break;
5072     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5073       if (Record.size() < 1 || ((Record.size()-1)&1))
5074         return error("Invalid record");
5075       Type *Ty = getTypeByID(Record[0]);
5076       if (!Ty)
5077         return error("Invalid record");
5078 
5079       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5080       InstructionList.push_back(PN);
5081 
5082       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5083         Value *V;
5084         // With the new function encoding, it is possible that operands have
5085         // negative IDs (for forward references).  Use a signed VBR
5086         // representation to keep the encoding small.
5087         if (UseRelativeIDs)
5088           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5089         else
5090           V = getValue(Record, 1+i, NextValueNo, Ty);
5091         BasicBlock *BB = getBasicBlock(Record[2+i]);
5092         if (!V || !BB)
5093           return error("Invalid record");
5094         PN->addIncoming(V, BB);
5095       }
5096       I = PN;
5097       break;
5098     }
5099 
5100     case bitc::FUNC_CODE_INST_LANDINGPAD:
5101     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5102       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5103       unsigned Idx = 0;
5104       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5105         if (Record.size() < 3)
5106           return error("Invalid record");
5107       } else {
5108         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5109         if (Record.size() < 4)
5110           return error("Invalid record");
5111       }
5112       Type *Ty = getTypeByID(Record[Idx++]);
5113       if (!Ty)
5114         return error("Invalid record");
5115       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5116         Value *PersFn = nullptr;
5117         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5118           return error("Invalid record");
5119 
5120         if (!F->hasPersonalityFn())
5121           F->setPersonalityFn(cast<Constant>(PersFn));
5122         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5123           return error("Personality function mismatch");
5124       }
5125 
5126       bool IsCleanup = !!Record[Idx++];
5127       unsigned NumClauses = Record[Idx++];
5128       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5129       LP->setCleanup(IsCleanup);
5130       for (unsigned J = 0; J != NumClauses; ++J) {
5131         LandingPadInst::ClauseType CT =
5132           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5133         Value *Val;
5134 
5135         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5136           delete LP;
5137           return error("Invalid record");
5138         }
5139 
5140         assert((CT != LandingPadInst::Catch ||
5141                 !isa<ArrayType>(Val->getType())) &&
5142                "Catch clause has a invalid type!");
5143         assert((CT != LandingPadInst::Filter ||
5144                 isa<ArrayType>(Val->getType())) &&
5145                "Filter clause has invalid type!");
5146         LP->addClause(cast<Constant>(Val));
5147       }
5148 
5149       I = LP;
5150       InstructionList.push_back(I);
5151       break;
5152     }
5153 
5154     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5155       if (Record.size() != 4)
5156         return error("Invalid record");
5157       uint64_t AlignRecord = Record[3];
5158       const uint64_t InAllocaMask = uint64_t(1) << 5;
5159       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5160       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5161       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5162                                 SwiftErrorMask;
5163       bool InAlloca = AlignRecord & InAllocaMask;
5164       bool SwiftError = AlignRecord & SwiftErrorMask;
5165       Type *Ty = getTypeByID(Record[0]);
5166       if ((AlignRecord & ExplicitTypeMask) == 0) {
5167         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5168         if (!PTy)
5169           return error("Old-style alloca with a non-pointer type");
5170         Ty = PTy->getElementType();
5171       }
5172       Type *OpTy = getTypeByID(Record[1]);
5173       Value *Size = getFnValueByID(Record[2], OpTy);
5174       unsigned Align;
5175       if (std::error_code EC =
5176               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5177         return EC;
5178       }
5179       if (!Ty || !Size)
5180         return error("Invalid record");
5181       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5182       AI->setUsedWithInAlloca(InAlloca);
5183       AI->setSwiftError(SwiftError);
5184       I = AI;
5185       InstructionList.push_back(I);
5186       break;
5187     }
5188     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5189       unsigned OpNum = 0;
5190       Value *Op;
5191       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5192           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5193         return error("Invalid record");
5194 
5195       Type *Ty = nullptr;
5196       if (OpNum + 3 == Record.size())
5197         Ty = getTypeByID(Record[OpNum++]);
5198       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5199         return EC;
5200       if (!Ty)
5201         Ty = cast<PointerType>(Op->getType())->getElementType();
5202 
5203       unsigned Align;
5204       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5205         return EC;
5206       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5207 
5208       InstructionList.push_back(I);
5209       break;
5210     }
5211     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5212        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5213       unsigned OpNum = 0;
5214       Value *Op;
5215       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5216           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5217         return error("Invalid record");
5218 
5219       Type *Ty = nullptr;
5220       if (OpNum + 5 == Record.size())
5221         Ty = getTypeByID(Record[OpNum++]);
5222       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5223         return EC;
5224       if (!Ty)
5225         Ty = cast<PointerType>(Op->getType())->getElementType();
5226 
5227       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5228       if (Ordering == AtomicOrdering::NotAtomic ||
5229           Ordering == AtomicOrdering::Release ||
5230           Ordering == AtomicOrdering::AcquireRelease)
5231         return error("Invalid record");
5232       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5233         return error("Invalid record");
5234       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5235 
5236       unsigned Align;
5237       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5238         return EC;
5239       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5240 
5241       InstructionList.push_back(I);
5242       break;
5243     }
5244     case bitc::FUNC_CODE_INST_STORE:
5245     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5246       unsigned OpNum = 0;
5247       Value *Val, *Ptr;
5248       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5249           (BitCode == bitc::FUNC_CODE_INST_STORE
5250                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5251                : popValue(Record, OpNum, NextValueNo,
5252                           cast<PointerType>(Ptr->getType())->getElementType(),
5253                           Val)) ||
5254           OpNum + 2 != Record.size())
5255         return error("Invalid record");
5256 
5257       if (std::error_code EC =
5258               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5259         return EC;
5260       unsigned Align;
5261       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5262         return EC;
5263       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5264       InstructionList.push_back(I);
5265       break;
5266     }
5267     case bitc::FUNC_CODE_INST_STOREATOMIC:
5268     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5269       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5270       unsigned OpNum = 0;
5271       Value *Val, *Ptr;
5272       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5273           !isa<PointerType>(Ptr->getType()) ||
5274           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5275                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5276                : popValue(Record, OpNum, NextValueNo,
5277                           cast<PointerType>(Ptr->getType())->getElementType(),
5278                           Val)) ||
5279           OpNum + 4 != Record.size())
5280         return error("Invalid record");
5281 
5282       if (std::error_code EC =
5283               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5284         return EC;
5285       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5286       if (Ordering == AtomicOrdering::NotAtomic ||
5287           Ordering == AtomicOrdering::Acquire ||
5288           Ordering == AtomicOrdering::AcquireRelease)
5289         return error("Invalid record");
5290       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5291       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5292         return error("Invalid record");
5293 
5294       unsigned Align;
5295       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5296         return EC;
5297       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5298       InstructionList.push_back(I);
5299       break;
5300     }
5301     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5302     case bitc::FUNC_CODE_INST_CMPXCHG: {
5303       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5304       //          failureordering?, isweak?]
5305       unsigned OpNum = 0;
5306       Value *Ptr, *Cmp, *New;
5307       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5308           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5309                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5310                : popValue(Record, OpNum, NextValueNo,
5311                           cast<PointerType>(Ptr->getType())->getElementType(),
5312                           Cmp)) ||
5313           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5314           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5315         return error("Invalid record");
5316       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5317       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5318           SuccessOrdering == AtomicOrdering::Unordered)
5319         return error("Invalid record");
5320       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5321 
5322       if (std::error_code EC =
5323               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5324         return EC;
5325       AtomicOrdering FailureOrdering;
5326       if (Record.size() < 7)
5327         FailureOrdering =
5328             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5329       else
5330         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5331 
5332       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5333                                 SynchScope);
5334       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5335 
5336       if (Record.size() < 8) {
5337         // Before weak cmpxchgs existed, the instruction simply returned the
5338         // value loaded from memory, so bitcode files from that era will be
5339         // expecting the first component of a modern cmpxchg.
5340         CurBB->getInstList().push_back(I);
5341         I = ExtractValueInst::Create(I, 0);
5342       } else {
5343         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5344       }
5345 
5346       InstructionList.push_back(I);
5347       break;
5348     }
5349     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5350       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5351       unsigned OpNum = 0;
5352       Value *Ptr, *Val;
5353       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5354           !isa<PointerType>(Ptr->getType()) ||
5355           popValue(Record, OpNum, NextValueNo,
5356                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5357           OpNum+4 != Record.size())
5358         return error("Invalid record");
5359       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5360       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5361           Operation > AtomicRMWInst::LAST_BINOP)
5362         return error("Invalid record");
5363       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5364       if (Ordering == AtomicOrdering::NotAtomic ||
5365           Ordering == AtomicOrdering::Unordered)
5366         return error("Invalid record");
5367       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5368       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5369       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5370       InstructionList.push_back(I);
5371       break;
5372     }
5373     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5374       if (2 != Record.size())
5375         return error("Invalid record");
5376       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5377       if (Ordering == AtomicOrdering::NotAtomic ||
5378           Ordering == AtomicOrdering::Unordered ||
5379           Ordering == AtomicOrdering::Monotonic)
5380         return error("Invalid record");
5381       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5382       I = new FenceInst(Context, Ordering, SynchScope);
5383       InstructionList.push_back(I);
5384       break;
5385     }
5386     case bitc::FUNC_CODE_INST_CALL: {
5387       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5388       if (Record.size() < 3)
5389         return error("Invalid record");
5390 
5391       unsigned OpNum = 0;
5392       AttributeSet PAL = getAttributes(Record[OpNum++]);
5393       unsigned CCInfo = Record[OpNum++];
5394 
5395       FastMathFlags FMF;
5396       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5397         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5398         if (!FMF.any())
5399           return error("Fast math flags indicator set for call with no FMF");
5400       }
5401 
5402       FunctionType *FTy = nullptr;
5403       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5404           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5405         return error("Explicit call type is not a function type");
5406 
5407       Value *Callee;
5408       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5409         return error("Invalid record");
5410 
5411       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5412       if (!OpTy)
5413         return error("Callee is not a pointer type");
5414       if (!FTy) {
5415         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5416         if (!FTy)
5417           return error("Callee is not of pointer to function type");
5418       } else if (OpTy->getElementType() != FTy)
5419         return error("Explicit call type does not match pointee type of "
5420                      "callee operand");
5421       if (Record.size() < FTy->getNumParams() + OpNum)
5422         return error("Insufficient operands to call");
5423 
5424       SmallVector<Value*, 16> Args;
5425       // Read the fixed params.
5426       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5427         if (FTy->getParamType(i)->isLabelTy())
5428           Args.push_back(getBasicBlock(Record[OpNum]));
5429         else
5430           Args.push_back(getValue(Record, OpNum, NextValueNo,
5431                                   FTy->getParamType(i)));
5432         if (!Args.back())
5433           return error("Invalid record");
5434       }
5435 
5436       // Read type/value pairs for varargs params.
5437       if (!FTy->isVarArg()) {
5438         if (OpNum != Record.size())
5439           return error("Invalid record");
5440       } else {
5441         while (OpNum != Record.size()) {
5442           Value *Op;
5443           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5444             return error("Invalid record");
5445           Args.push_back(Op);
5446         }
5447       }
5448 
5449       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5450       OperandBundles.clear();
5451       InstructionList.push_back(I);
5452       cast<CallInst>(I)->setCallingConv(
5453           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5454       CallInst::TailCallKind TCK = CallInst::TCK_None;
5455       if (CCInfo & 1 << bitc::CALL_TAIL)
5456         TCK = CallInst::TCK_Tail;
5457       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5458         TCK = CallInst::TCK_MustTail;
5459       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5460         TCK = CallInst::TCK_NoTail;
5461       cast<CallInst>(I)->setTailCallKind(TCK);
5462       cast<CallInst>(I)->setAttributes(PAL);
5463       if (FMF.any()) {
5464         if (!isa<FPMathOperator>(I))
5465           return error("Fast-math-flags specified for call without "
5466                        "floating-point scalar or vector return type");
5467         I->setFastMathFlags(FMF);
5468       }
5469       break;
5470     }
5471     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5472       if (Record.size() < 3)
5473         return error("Invalid record");
5474       Type *OpTy = getTypeByID(Record[0]);
5475       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5476       Type *ResTy = getTypeByID(Record[2]);
5477       if (!OpTy || !Op || !ResTy)
5478         return error("Invalid record");
5479       I = new VAArgInst(Op, ResTy);
5480       InstructionList.push_back(I);
5481       break;
5482     }
5483 
5484     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5485       // A call or an invoke can be optionally prefixed with some variable
5486       // number of operand bundle blocks.  These blocks are read into
5487       // OperandBundles and consumed at the next call or invoke instruction.
5488 
5489       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5490         return error("Invalid record");
5491 
5492       std::vector<Value *> Inputs;
5493 
5494       unsigned OpNum = 1;
5495       while (OpNum != Record.size()) {
5496         Value *Op;
5497         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5498           return error("Invalid record");
5499         Inputs.push_back(Op);
5500       }
5501 
5502       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5503       continue;
5504     }
5505     }
5506 
5507     // Add instruction to end of current BB.  If there is no current BB, reject
5508     // this file.
5509     if (!CurBB) {
5510       delete I;
5511       return error("Invalid instruction with no BB");
5512     }
5513     if (!OperandBundles.empty()) {
5514       delete I;
5515       return error("Operand bundles found with no consumer");
5516     }
5517     CurBB->getInstList().push_back(I);
5518 
5519     // If this was a terminator instruction, move to the next block.
5520     if (isa<TerminatorInst>(I)) {
5521       ++CurBBNo;
5522       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5523     }
5524 
5525     // Non-void values get registered in the value table for future use.
5526     if (I && !I->getType()->isVoidTy())
5527       ValueList.assignValue(I, NextValueNo++);
5528   }
5529 
5530 OutOfRecordLoop:
5531 
5532   if (!OperandBundles.empty())
5533     return error("Operand bundles found with no consumer");
5534 
5535   // Check the function list for unresolved values.
5536   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5537     if (!A->getParent()) {
5538       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5539       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5540         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5541           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5542           delete A;
5543         }
5544       }
5545       return error("Never resolved value found in function");
5546     }
5547   }
5548 
5549   // Unexpected unresolved metadata about to be dropped.
5550   if (MetadataList.hasFwdRefs())
5551     return error("Invalid function metadata: outgoing forward refs");
5552 
5553   // Trim the value list down to the size it was before we parsed this function.
5554   ValueList.shrinkTo(ModuleValueListSize);
5555   MetadataList.shrinkTo(ModuleMetadataListSize);
5556   std::vector<BasicBlock*>().swap(FunctionBBs);
5557   return std::error_code();
5558 }
5559 
5560 /// Find the function body in the bitcode stream
5561 std::error_code BitcodeReader::findFunctionInStream(
5562     Function *F,
5563     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5564   while (DeferredFunctionInfoIterator->second == 0) {
5565     // This is the fallback handling for the old format bitcode that
5566     // didn't contain the function index in the VST, or when we have
5567     // an anonymous function which would not have a VST entry.
5568     // Assert that we have one of those two cases.
5569     assert(VSTOffset == 0 || !F->hasName());
5570     // Parse the next body in the stream and set its position in the
5571     // DeferredFunctionInfo map.
5572     if (std::error_code EC = rememberAndSkipFunctionBodies())
5573       return EC;
5574   }
5575   return std::error_code();
5576 }
5577 
5578 //===----------------------------------------------------------------------===//
5579 // GVMaterializer implementation
5580 //===----------------------------------------------------------------------===//
5581 
5582 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5583 
5584 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5585   Function *F = dyn_cast<Function>(GV);
5586   // If it's not a function or is already material, ignore the request.
5587   if (!F || !F->isMaterializable())
5588     return std::error_code();
5589 
5590   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5591   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5592   // If its position is recorded as 0, its body is somewhere in the stream
5593   // but we haven't seen it yet.
5594   if (DFII->second == 0)
5595     if (std::error_code EC = findFunctionInStream(F, DFII))
5596       return EC;
5597 
5598   // Materialize metadata before parsing any function bodies.
5599   if (std::error_code EC = materializeMetadata())
5600     return EC;
5601 
5602   // Move the bit stream to the saved position of the deferred function body.
5603   Stream.JumpToBit(DFII->second);
5604 
5605   if (std::error_code EC = parseFunctionBody(F))
5606     return EC;
5607   F->setIsMaterializable(false);
5608 
5609   if (StripDebugInfo)
5610     stripDebugInfo(*F);
5611 
5612   // Upgrade any old intrinsic calls in the function.
5613   for (auto &I : UpgradedIntrinsics) {
5614     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5615          UI != UE;) {
5616       User *U = *UI;
5617       ++UI;
5618       if (CallInst *CI = dyn_cast<CallInst>(U))
5619         UpgradeIntrinsicCall(CI, I.second);
5620     }
5621   }
5622 
5623   // Finish fn->subprogram upgrade for materialized functions.
5624   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5625     F->setSubprogram(SP);
5626 
5627   // Bring in any functions that this function forward-referenced via
5628   // blockaddresses.
5629   return materializeForwardReferencedFunctions();
5630 }
5631 
5632 std::error_code BitcodeReader::materializeModule() {
5633   if (std::error_code EC = materializeMetadata())
5634     return EC;
5635 
5636   // Promise to materialize all forward references.
5637   WillMaterializeAllForwardRefs = true;
5638 
5639   // Iterate over the module, deserializing any functions that are still on
5640   // disk.
5641   for (Function &F : *TheModule) {
5642     if (std::error_code EC = materialize(&F))
5643       return EC;
5644   }
5645   // At this point, if there are any function bodies, parse the rest of
5646   // the bits in the module past the last function block we have recorded
5647   // through either lazy scanning or the VST.
5648   if (LastFunctionBlockBit || NextUnreadBit)
5649     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5650                                                      : NextUnreadBit);
5651 
5652   // Check that all block address forward references got resolved (as we
5653   // promised above).
5654   if (!BasicBlockFwdRefs.empty())
5655     return error("Never resolved function from blockaddress");
5656 
5657   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5658   // to prevent this instructions with TBAA tags should be upgraded first.
5659   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5660     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5661 
5662   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5663   // delete the old functions to clean up. We can't do this unless the entire
5664   // module is materialized because there could always be another function body
5665   // with calls to the old function.
5666   for (auto &I : UpgradedIntrinsics) {
5667     for (auto *U : I.first->users()) {
5668       if (CallInst *CI = dyn_cast<CallInst>(U))
5669         UpgradeIntrinsicCall(CI, I.second);
5670     }
5671     if (!I.first->use_empty())
5672       I.first->replaceAllUsesWith(I.second);
5673     I.first->eraseFromParent();
5674   }
5675   UpgradedIntrinsics.clear();
5676 
5677   UpgradeDebugInfo(*TheModule);
5678 
5679   UpgradeModuleFlags(*TheModule);
5680   return std::error_code();
5681 }
5682 
5683 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5684   return IdentifiedStructTypes;
5685 }
5686 
5687 std::error_code
5688 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5689   if (Streamer)
5690     return initLazyStream(std::move(Streamer));
5691   return initStreamFromBuffer();
5692 }
5693 
5694 std::error_code BitcodeReader::initStreamFromBuffer() {
5695   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5696   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5697 
5698   if (Buffer->getBufferSize() & 3)
5699     return error("Invalid bitcode signature");
5700 
5701   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5702   // The magic number is 0x0B17C0DE stored in little endian.
5703   if (isBitcodeWrapper(BufPtr, BufEnd))
5704     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5705       return error("Invalid bitcode wrapper header");
5706 
5707   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5708   Stream.init(&*StreamFile);
5709 
5710   return std::error_code();
5711 }
5712 
5713 std::error_code
5714 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5715   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5716   // see it.
5717   auto OwnedBytes =
5718       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5719   StreamingMemoryObject &Bytes = *OwnedBytes;
5720   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5721   Stream.init(&*StreamFile);
5722 
5723   unsigned char buf[16];
5724   if (Bytes.readBytes(buf, 16, 0) != 16)
5725     return error("Invalid bitcode signature");
5726 
5727   if (!isBitcode(buf, buf + 16))
5728     return error("Invalid bitcode signature");
5729 
5730   if (isBitcodeWrapper(buf, buf + 4)) {
5731     const unsigned char *bitcodeStart = buf;
5732     const unsigned char *bitcodeEnd = buf + 16;
5733     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5734     Bytes.dropLeadingBytes(bitcodeStart - buf);
5735     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5736   }
5737   return std::error_code();
5738 }
5739 
5740 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5741                                                        const Twine &Message) {
5742   return ::error(DiagnosticHandler, make_error_code(E), Message);
5743 }
5744 
5745 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5746   return ::error(DiagnosticHandler,
5747                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5748 }
5749 
5750 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5751   return ::error(DiagnosticHandler, make_error_code(E));
5752 }
5753 
5754 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5755     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5756     bool CheckGlobalValSummaryPresenceOnly)
5757     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer),
5758       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5759 
5760 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5761     DiagnosticHandlerFunction DiagnosticHandler,
5762     bool CheckGlobalValSummaryPresenceOnly)
5763     : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(nullptr),
5764       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5765 
5766 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5767 
5768 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5769 
5770 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5771 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5772   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5773   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5774   return VGI->second;
5775 }
5776 
5777 // Specialized value symbol table parser used when reading module index
5778 // blocks where we don't actually create global values. The parsed information
5779 // is saved in the bitcode reader for use when later parsing summaries.
5780 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5781     uint64_t Offset,
5782     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5783   assert(Offset > 0 && "Expected non-zero VST offset");
5784   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5785 
5786   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5787     return error("Invalid record");
5788 
5789   SmallVector<uint64_t, 64> Record;
5790 
5791   // Read all the records for this value table.
5792   SmallString<128> ValueName;
5793   while (1) {
5794     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5795 
5796     switch (Entry.Kind) {
5797     case BitstreamEntry::SubBlock: // Handled for us already.
5798     case BitstreamEntry::Error:
5799       return error("Malformed block");
5800     case BitstreamEntry::EndBlock:
5801       // Done parsing VST, jump back to wherever we came from.
5802       Stream.JumpToBit(CurrentBit);
5803       return std::error_code();
5804     case BitstreamEntry::Record:
5805       // The interesting case.
5806       break;
5807     }
5808 
5809     // Read a record.
5810     Record.clear();
5811     switch (Stream.readRecord(Entry.ID, Record)) {
5812     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5813       break;
5814     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5815       if (convertToString(Record, 1, ValueName))
5816         return error("Invalid record");
5817       unsigned ValueID = Record[0];
5818       assert(!SourceFileName.empty());
5819       auto VLI = ValueIdToLinkageMap.find(ValueID);
5820       assert(VLI != ValueIdToLinkageMap.end() &&
5821              "No linkage found for VST entry?");
5822       auto Linkage = VLI->second;
5823       std::string GlobalId =
5824           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5825       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5826       auto OriginalNameID = ValueGUID;
5827       if (GlobalValue::isLocalLinkage(Linkage))
5828         OriginalNameID = GlobalValue::getGUID(ValueName);
5829       if (PrintSummaryGUIDs)
5830         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5831                << ValueName << "\n";
5832       ValueIdToCallGraphGUIDMap[ValueID] =
5833           std::make_pair(ValueGUID, OriginalNameID);
5834       ValueName.clear();
5835       break;
5836     }
5837     case bitc::VST_CODE_FNENTRY: {
5838       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5839       if (convertToString(Record, 2, ValueName))
5840         return error("Invalid record");
5841       unsigned ValueID = Record[0];
5842       assert(!SourceFileName.empty());
5843       auto VLI = ValueIdToLinkageMap.find(ValueID);
5844       assert(VLI != ValueIdToLinkageMap.end() &&
5845              "No linkage found for VST entry?");
5846       auto Linkage = VLI->second;
5847       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5848           ValueName, VLI->second, SourceFileName);
5849       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5850       auto OriginalNameID = FunctionGUID;
5851       if (GlobalValue::isLocalLinkage(Linkage))
5852         OriginalNameID = GlobalValue::getGUID(ValueName);
5853       if (PrintSummaryGUIDs)
5854         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5855                << ValueName << "\n";
5856       ValueIdToCallGraphGUIDMap[ValueID] =
5857           std::make_pair(FunctionGUID, OriginalNameID);
5858 
5859       ValueName.clear();
5860       break;
5861     }
5862     case bitc::VST_CODE_COMBINED_ENTRY: {
5863       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5864       unsigned ValueID = Record[0];
5865       GlobalValue::GUID RefGUID = Record[1];
5866       // The "original name", which is the second value of the pair will be
5867       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5868       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5869       break;
5870     }
5871     }
5872   }
5873 }
5874 
5875 // Parse just the blocks needed for building the index out of the module.
5876 // At the end of this routine the module Index is populated with a map
5877 // from global value id to GlobalValueSummary objects.
5878 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5879   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5880     return error("Invalid record");
5881 
5882   SmallVector<uint64_t, 64> Record;
5883   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5884   unsigned ValueId = 0;
5885 
5886   // Read the index for this module.
5887   while (1) {
5888     BitstreamEntry Entry = Stream.advance();
5889 
5890     switch (Entry.Kind) {
5891     case BitstreamEntry::Error:
5892       return error("Malformed block");
5893     case BitstreamEntry::EndBlock:
5894       return std::error_code();
5895 
5896     case BitstreamEntry::SubBlock:
5897       if (CheckGlobalValSummaryPresenceOnly) {
5898         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5899           SeenGlobalValSummary = true;
5900           // No need to parse the rest since we found the summary.
5901           return std::error_code();
5902         }
5903         if (Stream.SkipBlock())
5904           return error("Invalid record");
5905         continue;
5906       }
5907       switch (Entry.ID) {
5908       default: // Skip unknown content.
5909         if (Stream.SkipBlock())
5910           return error("Invalid record");
5911         break;
5912       case bitc::BLOCKINFO_BLOCK_ID:
5913         // Need to parse these to get abbrev ids (e.g. for VST)
5914         if (Stream.ReadBlockInfoBlock())
5915           return error("Malformed block");
5916         break;
5917       case bitc::VALUE_SYMTAB_BLOCK_ID:
5918         // Should have been parsed earlier via VSTOffset, unless there
5919         // is no summary section.
5920         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5921                 !SeenGlobalValSummary) &&
5922                "Expected early VST parse via VSTOffset record");
5923         if (Stream.SkipBlock())
5924           return error("Invalid record");
5925         break;
5926       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5927         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5928         assert(!SeenValueSymbolTable &&
5929                "Already read VST when parsing summary block?");
5930         if (std::error_code EC =
5931                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5932           return EC;
5933         SeenValueSymbolTable = true;
5934         SeenGlobalValSummary = true;
5935         if (std::error_code EC = parseEntireSummary())
5936           return EC;
5937         break;
5938       case bitc::MODULE_STRTAB_BLOCK_ID:
5939         if (std::error_code EC = parseModuleStringTable())
5940           return EC;
5941         break;
5942       }
5943       continue;
5944 
5945     case BitstreamEntry::Record: {
5946         Record.clear();
5947         auto BitCode = Stream.readRecord(Entry.ID, Record);
5948         switch (BitCode) {
5949         default:
5950           break; // Default behavior, ignore unknown content.
5951         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5952         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5953           SmallString<128> ValueName;
5954           if (convertToString(Record, 0, ValueName))
5955             return error("Invalid record");
5956           SourceFileName = ValueName.c_str();
5957           break;
5958         }
5959         /// MODULE_CODE_HASH: [5*i32]
5960         case bitc::MODULE_CODE_HASH: {
5961           if (Record.size() != 5)
5962             return error("Invalid hash length " + Twine(Record.size()).str());
5963           if (!TheIndex)
5964             break;
5965           if (TheIndex->modulePaths().empty())
5966             // Does not have any summary emitted.
5967             break;
5968           if (TheIndex->modulePaths().size() != 1)
5969             return error("Don't expect multiple modules defined?");
5970           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5971           int Pos = 0;
5972           for (auto &Val : Record) {
5973             assert(!(Val >> 32) && "Unexpected high bits set");
5974             Hash[Pos++] = Val;
5975           }
5976           break;
5977         }
5978         /// MODULE_CODE_VSTOFFSET: [offset]
5979         case bitc::MODULE_CODE_VSTOFFSET:
5980           if (Record.size() < 1)
5981             return error("Invalid record");
5982           VSTOffset = Record[0];
5983           break;
5984         // GLOBALVAR: [pointer type, isconst, initid,
5985         //             linkage, alignment, section, visibility, threadlocal,
5986         //             unnamed_addr, externally_initialized, dllstorageclass,
5987         //             comdat]
5988         case bitc::MODULE_CODE_GLOBALVAR: {
5989           if (Record.size() < 6)
5990             return error("Invalid record");
5991           uint64_t RawLinkage = Record[3];
5992           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5993           ValueIdToLinkageMap[ValueId++] = Linkage;
5994           break;
5995         }
5996         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5997         //             alignment, section, visibility, gc, unnamed_addr,
5998         //             prologuedata, dllstorageclass, comdat, prefixdata]
5999         case bitc::MODULE_CODE_FUNCTION: {
6000           if (Record.size() < 8)
6001             return error("Invalid record");
6002           uint64_t RawLinkage = Record[3];
6003           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6004           ValueIdToLinkageMap[ValueId++] = Linkage;
6005           break;
6006         }
6007         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6008         // dllstorageclass]
6009         case bitc::MODULE_CODE_ALIAS: {
6010           if (Record.size() < 6)
6011             return error("Invalid record");
6012           uint64_t RawLinkage = Record[3];
6013           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6014           ValueIdToLinkageMap[ValueId++] = Linkage;
6015           break;
6016         }
6017         }
6018       }
6019       continue;
6020     }
6021   }
6022 }
6023 
6024 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6025 // objects in the index.
6026 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6027   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6028     return error("Invalid record");
6029   SmallVector<uint64_t, 64> Record;
6030 
6031   // Parse version
6032   {
6033     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6034     if (Entry.Kind != BitstreamEntry::Record)
6035       return error("Invalid Summary Block: record for version expected");
6036     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6037       return error("Invalid Summary Block: version expected");
6038   }
6039   const uint64_t Version = Record[0];
6040   if (Version != 1)
6041     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6042   Record.clear();
6043 
6044   // Keep around the last seen summary to be used when we see an optional
6045   // "OriginalName" attachement.
6046   GlobalValueSummary *LastSeenSummary = nullptr;
6047   bool Combined = false;
6048   while (1) {
6049     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6050 
6051     switch (Entry.Kind) {
6052     case BitstreamEntry::SubBlock: // Handled for us already.
6053     case BitstreamEntry::Error:
6054       return error("Malformed block");
6055     case BitstreamEntry::EndBlock:
6056       // For a per-module index, remove any entries that still have empty
6057       // summaries. The VST parsing creates entries eagerly for all symbols,
6058       // but not all have associated summaries (e.g. it doesn't know how to
6059       // distinguish between VST_CODE_ENTRY for function declarations vs global
6060       // variables with initializers that end up with a summary). Remove those
6061       // entries now so that we don't need to rely on the combined index merger
6062       // to clean them up (especially since that may not run for the first
6063       // module's index if we merge into that).
6064       if (!Combined)
6065         TheIndex->removeEmptySummaryEntries();
6066       return std::error_code();
6067     case BitstreamEntry::Record:
6068       // The interesting case.
6069       break;
6070     }
6071 
6072     // Read a record. The record format depends on whether this
6073     // is a per-module index or a combined index file. In the per-module
6074     // case the records contain the associated value's ID for correlation
6075     // with VST entries. In the combined index the correlation is done
6076     // via the bitcode offset of the summary records (which were saved
6077     // in the combined index VST entries). The records also contain
6078     // information used for ThinLTO renaming and importing.
6079     Record.clear();
6080     auto BitCode = Stream.readRecord(Entry.ID, Record);
6081     switch (BitCode) {
6082     default: // Default behavior: ignore.
6083       break;
6084     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6085     //                n x (valueid, callsitecount)]
6086     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6087     //                        numrefs x valueid,
6088     //                        n x (valueid, callsitecount, profilecount)]
6089     case bitc::FS_PERMODULE:
6090     case bitc::FS_PERMODULE_PROFILE: {
6091       unsigned ValueID = Record[0];
6092       uint64_t RawFlags = Record[1];
6093       unsigned InstCount = Record[2];
6094       unsigned NumRefs = Record[3];
6095       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6096       std::unique_ptr<FunctionSummary> FS =
6097           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6098       // The module path string ref set in the summary must be owned by the
6099       // index's module string table. Since we don't have a module path
6100       // string table section in the per-module index, we create a single
6101       // module path string table entry with an empty (0) ID to take
6102       // ownership.
6103       FS->setModulePath(
6104           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6105       static int RefListStartIndex = 4;
6106       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6107       assert(Record.size() >= RefListStartIndex + NumRefs &&
6108              "Record size inconsistent with number of references");
6109       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6110         unsigned RefValueId = Record[I];
6111         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6112         FS->addRefEdge(RefGUID);
6113       }
6114       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6115       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6116            ++I) {
6117         unsigned CalleeValueId = Record[I];
6118         unsigned CallsiteCount = Record[++I];
6119         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6120         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6121         FS->addCallGraphEdge(CalleeGUID,
6122                              CalleeInfo(CallsiteCount, ProfileCount));
6123       }
6124       auto GUID = getGUIDFromValueId(ValueID);
6125       FS->setOriginalName(GUID.second);
6126       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6127       break;
6128     }
6129     // FS_ALIAS: [valueid, flags, valueid]
6130     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6131     // they expect all aliasee summaries to be available.
6132     case bitc::FS_ALIAS: {
6133       unsigned ValueID = Record[0];
6134       uint64_t RawFlags = Record[1];
6135       unsigned AliaseeID = Record[2];
6136       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6137       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6138       // The module path string ref set in the summary must be owned by the
6139       // index's module string table. Since we don't have a module path
6140       // string table section in the per-module index, we create a single
6141       // module path string table entry with an empty (0) ID to take
6142       // ownership.
6143       AS->setModulePath(
6144           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6145 
6146       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6147       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6148       if (!AliaseeSummary)
6149         return error("Alias expects aliasee summary to be parsed");
6150       AS->setAliasee(AliaseeSummary);
6151 
6152       auto GUID = getGUIDFromValueId(ValueID);
6153       AS->setOriginalName(GUID.second);
6154       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6155       break;
6156     }
6157     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6158     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6159       unsigned ValueID = Record[0];
6160       uint64_t RawFlags = Record[1];
6161       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6162       std::unique_ptr<GlobalVarSummary> FS =
6163           llvm::make_unique<GlobalVarSummary>(Flags);
6164       FS->setModulePath(
6165           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6166       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6167         unsigned RefValueId = Record[I];
6168         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6169         FS->addRefEdge(RefGUID);
6170       }
6171       auto GUID = getGUIDFromValueId(ValueID);
6172       FS->setOriginalName(GUID.second);
6173       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6174       break;
6175     }
6176     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6177     //               numrefs x valueid, n x (valueid, callsitecount)]
6178     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6179     //                       numrefs x valueid,
6180     //                       n x (valueid, callsitecount, profilecount)]
6181     case bitc::FS_COMBINED:
6182     case bitc::FS_COMBINED_PROFILE: {
6183       unsigned ValueID = Record[0];
6184       uint64_t ModuleId = Record[1];
6185       uint64_t RawFlags = Record[2];
6186       unsigned InstCount = Record[3];
6187       unsigned NumRefs = Record[4];
6188       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6189       std::unique_ptr<FunctionSummary> FS =
6190           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6191       LastSeenSummary = FS.get();
6192       FS->setModulePath(ModuleIdMap[ModuleId]);
6193       static int RefListStartIndex = 5;
6194       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6195       assert(Record.size() >= RefListStartIndex + NumRefs &&
6196              "Record size inconsistent with number of references");
6197       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6198            ++I) {
6199         unsigned RefValueId = Record[I];
6200         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6201         FS->addRefEdge(RefGUID);
6202       }
6203       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6204       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6205            ++I) {
6206         unsigned CalleeValueId = Record[I];
6207         unsigned CallsiteCount = Record[++I];
6208         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6209         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6210         FS->addCallGraphEdge(CalleeGUID,
6211                              CalleeInfo(CallsiteCount, ProfileCount));
6212       }
6213       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6214       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6215       Combined = true;
6216       break;
6217     }
6218     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6219     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6220     // they expect all aliasee summaries to be available.
6221     case bitc::FS_COMBINED_ALIAS: {
6222       unsigned ValueID = Record[0];
6223       uint64_t ModuleId = Record[1];
6224       uint64_t RawFlags = Record[2];
6225       unsigned AliaseeValueId = Record[3];
6226       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6227       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6228       LastSeenSummary = AS.get();
6229       AS->setModulePath(ModuleIdMap[ModuleId]);
6230 
6231       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6232       auto AliaseeInModule =
6233           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6234       if (!AliaseeInModule)
6235         return error("Alias expects aliasee summary to be parsed");
6236       AS->setAliasee(AliaseeInModule);
6237 
6238       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6239       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6240       Combined = true;
6241       break;
6242     }
6243     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6244     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6245       unsigned ValueID = Record[0];
6246       uint64_t ModuleId = Record[1];
6247       uint64_t RawFlags = Record[2];
6248       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6249       std::unique_ptr<GlobalVarSummary> FS =
6250           llvm::make_unique<GlobalVarSummary>(Flags);
6251       LastSeenSummary = FS.get();
6252       FS->setModulePath(ModuleIdMap[ModuleId]);
6253       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6254         unsigned RefValueId = Record[I];
6255         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6256         FS->addRefEdge(RefGUID);
6257       }
6258       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6259       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6260       Combined = true;
6261       break;
6262     }
6263     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6264     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6265       uint64_t OriginalName = Record[0];
6266       if (!LastSeenSummary)
6267         return error("Name attachment that does not follow a combined record");
6268       LastSeenSummary->setOriginalName(OriginalName);
6269       // Reset the LastSeenSummary
6270       LastSeenSummary = nullptr;
6271     }
6272     }
6273   }
6274   llvm_unreachable("Exit infinite loop");
6275 }
6276 
6277 // Parse the  module string table block into the Index.
6278 // This populates the ModulePathStringTable map in the index.
6279 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6280   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6281     return error("Invalid record");
6282 
6283   SmallVector<uint64_t, 64> Record;
6284 
6285   SmallString<128> ModulePath;
6286   ModulePathStringTableTy::iterator LastSeenModulePath;
6287   while (1) {
6288     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6289 
6290     switch (Entry.Kind) {
6291     case BitstreamEntry::SubBlock: // Handled for us already.
6292     case BitstreamEntry::Error:
6293       return error("Malformed block");
6294     case BitstreamEntry::EndBlock:
6295       return std::error_code();
6296     case BitstreamEntry::Record:
6297       // The interesting case.
6298       break;
6299     }
6300 
6301     Record.clear();
6302     switch (Stream.readRecord(Entry.ID, Record)) {
6303     default: // Default behavior: ignore.
6304       break;
6305     case bitc::MST_CODE_ENTRY: {
6306       // MST_ENTRY: [modid, namechar x N]
6307       uint64_t ModuleId = Record[0];
6308 
6309       if (convertToString(Record, 1, ModulePath))
6310         return error("Invalid record");
6311 
6312       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6313       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6314 
6315       ModulePath.clear();
6316       break;
6317     }
6318     /// MST_CODE_HASH: [5*i32]
6319     case bitc::MST_CODE_HASH: {
6320       if (Record.size() != 5)
6321         return error("Invalid hash length " + Twine(Record.size()).str());
6322       if (LastSeenModulePath == TheIndex->modulePaths().end())
6323         return error("Invalid hash that does not follow a module path");
6324       int Pos = 0;
6325       for (auto &Val : Record) {
6326         assert(!(Val >> 32) && "Unexpected high bits set");
6327         LastSeenModulePath->second.second[Pos++] = Val;
6328       }
6329       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6330       LastSeenModulePath = TheIndex->modulePaths().end();
6331       break;
6332     }
6333     }
6334   }
6335   llvm_unreachable("Exit infinite loop");
6336 }
6337 
6338 // Parse the function info index from the bitcode streamer into the given index.
6339 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6340     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6341   TheIndex = I;
6342 
6343   if (std::error_code EC = initStream(std::move(Streamer)))
6344     return EC;
6345 
6346   // Sniff for the signature.
6347   if (!hasValidBitcodeHeader(Stream))
6348     return error("Invalid bitcode signature");
6349 
6350   // We expect a number of well-defined blocks, though we don't necessarily
6351   // need to understand them all.
6352   while (1) {
6353     if (Stream.AtEndOfStream()) {
6354       // We didn't really read a proper Module block.
6355       return error("Malformed block");
6356     }
6357 
6358     BitstreamEntry Entry =
6359         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6360 
6361     if (Entry.Kind != BitstreamEntry::SubBlock)
6362       return error("Malformed block");
6363 
6364     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6365     // building the function summary index.
6366     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6367       return parseModule();
6368 
6369     if (Stream.SkipBlock())
6370       return error("Invalid record");
6371   }
6372 }
6373 
6374 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6375     std::unique_ptr<DataStreamer> Streamer) {
6376   if (Streamer)
6377     return initLazyStream(std::move(Streamer));
6378   return initStreamFromBuffer();
6379 }
6380 
6381 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6382   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6383   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6384 
6385   if (Buffer->getBufferSize() & 3)
6386     return error("Invalid bitcode signature");
6387 
6388   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6389   // The magic number is 0x0B17C0DE stored in little endian.
6390   if (isBitcodeWrapper(BufPtr, BufEnd))
6391     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6392       return error("Invalid bitcode wrapper header");
6393 
6394   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6395   Stream.init(&*StreamFile);
6396 
6397   return std::error_code();
6398 }
6399 
6400 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6401     std::unique_ptr<DataStreamer> Streamer) {
6402   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6403   // see it.
6404   auto OwnedBytes =
6405       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6406   StreamingMemoryObject &Bytes = *OwnedBytes;
6407   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6408   Stream.init(&*StreamFile);
6409 
6410   unsigned char buf[16];
6411   if (Bytes.readBytes(buf, 16, 0) != 16)
6412     return error("Invalid bitcode signature");
6413 
6414   if (!isBitcode(buf, buf + 16))
6415     return error("Invalid bitcode signature");
6416 
6417   if (isBitcodeWrapper(buf, buf + 4)) {
6418     const unsigned char *bitcodeStart = buf;
6419     const unsigned char *bitcodeEnd = buf + 16;
6420     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6421     Bytes.dropLeadingBytes(bitcodeStart - buf);
6422     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6423   }
6424   return std::error_code();
6425 }
6426 
6427 namespace {
6428 // FIXME: This class is only here to support the transition to llvm::Error. It
6429 // will be removed once this transition is complete. Clients should prefer to
6430 // deal with the Error value directly, rather than converting to error_code.
6431 class BitcodeErrorCategoryType : public std::error_category {
6432   const char *name() const LLVM_NOEXCEPT override {
6433     return "llvm.bitcode";
6434   }
6435   std::string message(int IE) const override {
6436     BitcodeError E = static_cast<BitcodeError>(IE);
6437     switch (E) {
6438     case BitcodeError::InvalidBitcodeSignature:
6439       return "Invalid bitcode signature";
6440     case BitcodeError::CorruptedBitcode:
6441       return "Corrupted bitcode";
6442     }
6443     llvm_unreachable("Unknown error type!");
6444   }
6445 };
6446 } // end anonymous namespace
6447 
6448 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6449 
6450 const std::error_category &llvm::BitcodeErrorCategory() {
6451   return *ErrorCategory;
6452 }
6453 
6454 //===----------------------------------------------------------------------===//
6455 // External interface
6456 //===----------------------------------------------------------------------===//
6457 
6458 static ErrorOr<std::unique_ptr<Module>>
6459 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6460                      BitcodeReader *R, LLVMContext &Context,
6461                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6462   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6463   M->setMaterializer(R);
6464 
6465   auto cleanupOnError = [&](std::error_code EC) {
6466     R->releaseBuffer(); // Never take ownership on error.
6467     return EC;
6468   };
6469 
6470   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6471   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6472                                                ShouldLazyLoadMetadata))
6473     return cleanupOnError(EC);
6474 
6475   if (MaterializeAll) {
6476     // Read in the entire module, and destroy the BitcodeReader.
6477     if (std::error_code EC = M->materializeAll())
6478       return cleanupOnError(EC);
6479   } else {
6480     // Resolve forward references from blockaddresses.
6481     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6482       return cleanupOnError(EC);
6483   }
6484   return std::move(M);
6485 }
6486 
6487 /// \brief Get a lazy one-at-time loading module from bitcode.
6488 ///
6489 /// This isn't always used in a lazy context.  In particular, it's also used by
6490 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6491 /// in forward-referenced functions from block address references.
6492 ///
6493 /// \param[in] MaterializeAll Set to \c true if we should materialize
6494 /// everything.
6495 static ErrorOr<std::unique_ptr<Module>>
6496 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6497                          LLVMContext &Context, bool MaterializeAll,
6498                          bool ShouldLazyLoadMetadata = false) {
6499   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6500 
6501   ErrorOr<std::unique_ptr<Module>> Ret =
6502       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6503                            MaterializeAll, ShouldLazyLoadMetadata);
6504   if (!Ret)
6505     return Ret;
6506 
6507   Buffer.release(); // The BitcodeReader owns it now.
6508   return Ret;
6509 }
6510 
6511 ErrorOr<std::unique_ptr<Module>>
6512 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6513                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6514   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6515                                   ShouldLazyLoadMetadata);
6516 }
6517 
6518 ErrorOr<std::unique_ptr<Module>>
6519 llvm::getStreamedBitcodeModule(StringRef Name,
6520                                std::unique_ptr<DataStreamer> Streamer,
6521                                LLVMContext &Context) {
6522   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6523   BitcodeReader *R = new BitcodeReader(Context);
6524 
6525   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6526                               false);
6527 }
6528 
6529 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6530                                                         LLVMContext &Context) {
6531   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6532   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6533   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6534   // written.  We must defer until the Module has been fully materialized.
6535 }
6536 
6537 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6538                                          LLVMContext &Context) {
6539   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6540   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6541   ErrorOr<std::string> Triple = R->parseTriple();
6542   if (Triple.getError())
6543     return "";
6544   return Triple.get();
6545 }
6546 
6547 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6548                                            LLVMContext &Context) {
6549   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6550   BitcodeReader R(Buf.release(), Context);
6551   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6552   if (ProducerString.getError())
6553     return "";
6554   return ProducerString.get();
6555 }
6556 
6557 // Parse the specified bitcode buffer, returning the function info index.
6558 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6559     MemoryBufferRef Buffer,
6560     const DiagnosticHandlerFunction &DiagnosticHandler) {
6561   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6562   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6563 
6564   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6565 
6566   auto cleanupOnError = [&](std::error_code EC) {
6567     R.releaseBuffer(); // Never take ownership on error.
6568     return EC;
6569   };
6570 
6571   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6572     return cleanupOnError(EC);
6573 
6574   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6575   return std::move(Index);
6576 }
6577 
6578 // Check if the given bitcode buffer contains a global value summary block.
6579 bool llvm::hasGlobalValueSummary(
6580     MemoryBufferRef Buffer,
6581     const DiagnosticHandlerFunction &DiagnosticHandler) {
6582   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6583   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6584 
6585   auto cleanupOnError = [&](std::error_code EC) {
6586     R.releaseBuffer(); // Never take ownership on error.
6587     return false;
6588   };
6589 
6590   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6591     return cleanupOnError(EC);
6592 
6593   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6594   return R.foundGlobalValSummary();
6595 }
6596