1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 if (BufferOwned) 43 delete Buffer; 44 Buffer = nullptr; 45 std::vector<Type*>().swap(TypeList); 46 ValueList.clear(); 47 MDValueList.clear(); 48 49 std::vector<AttributeSet>().swap(MAttributes); 50 std::vector<BasicBlock*>().swap(FunctionBBs); 51 std::vector<Function*>().swap(FunctionsWithBodies); 52 DeferredFunctionInfo.clear(); 53 MDKindMap.clear(); 54 55 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Helper functions to implement forward reference resolution, etc. 60 //===----------------------------------------------------------------------===// 61 62 /// ConvertToString - Convert a string from a record into an std::string, return 63 /// true on failure. 64 template<typename StrTy> 65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 66 StrTy &Result) { 67 if (Idx > Record.size()) 68 return true; 69 70 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 71 Result += (char)Record[i]; 72 return false; 73 } 74 75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 76 switch (Val) { 77 default: // Map unknown/new linkages to external 78 case 0: return GlobalValue::ExternalLinkage; 79 case 1: return GlobalValue::WeakAnyLinkage; 80 case 2: return GlobalValue::AppendingLinkage; 81 case 3: return GlobalValue::InternalLinkage; 82 case 4: return GlobalValue::LinkOnceAnyLinkage; 83 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 84 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 85 case 7: return GlobalValue::ExternalWeakLinkage; 86 case 8: return GlobalValue::CommonLinkage; 87 case 9: return GlobalValue::PrivateLinkage; 88 case 10: return GlobalValue::WeakODRLinkage; 89 case 11: return GlobalValue::LinkOnceODRLinkage; 90 case 12: return GlobalValue::AvailableExternallyLinkage; 91 case 13: 92 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 93 case 14: 94 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 95 } 96 } 97 98 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 99 switch (Val) { 100 default: // Map unknown visibilities to default. 101 case 0: return GlobalValue::DefaultVisibility; 102 case 1: return GlobalValue::HiddenVisibility; 103 case 2: return GlobalValue::ProtectedVisibility; 104 } 105 } 106 107 static GlobalValue::DLLStorageClassTypes 108 GetDecodedDLLStorageClass(unsigned Val) { 109 switch (Val) { 110 default: // Map unknown values to default. 111 case 0: return GlobalValue::DefaultStorageClass; 112 case 1: return GlobalValue::DLLImportStorageClass; 113 case 2: return GlobalValue::DLLExportStorageClass; 114 } 115 } 116 117 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 118 switch (Val) { 119 case 0: return GlobalVariable::NotThreadLocal; 120 default: // Map unknown non-zero value to general dynamic. 121 case 1: return GlobalVariable::GeneralDynamicTLSModel; 122 case 2: return GlobalVariable::LocalDynamicTLSModel; 123 case 3: return GlobalVariable::InitialExecTLSModel; 124 case 4: return GlobalVariable::LocalExecTLSModel; 125 } 126 } 127 128 static int GetDecodedCastOpcode(unsigned Val) { 129 switch (Val) { 130 default: return -1; 131 case bitc::CAST_TRUNC : return Instruction::Trunc; 132 case bitc::CAST_ZEXT : return Instruction::ZExt; 133 case bitc::CAST_SEXT : return Instruction::SExt; 134 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 135 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 136 case bitc::CAST_UITOFP : return Instruction::UIToFP; 137 case bitc::CAST_SITOFP : return Instruction::SIToFP; 138 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 139 case bitc::CAST_FPEXT : return Instruction::FPExt; 140 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 141 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 142 case bitc::CAST_BITCAST : return Instruction::BitCast; 143 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 144 } 145 } 146 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 147 switch (Val) { 148 default: return -1; 149 case bitc::BINOP_ADD: 150 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 151 case bitc::BINOP_SUB: 152 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 153 case bitc::BINOP_MUL: 154 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 155 case bitc::BINOP_UDIV: return Instruction::UDiv; 156 case bitc::BINOP_SDIV: 157 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 158 case bitc::BINOP_UREM: return Instruction::URem; 159 case bitc::BINOP_SREM: 160 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 161 case bitc::BINOP_SHL: return Instruction::Shl; 162 case bitc::BINOP_LSHR: return Instruction::LShr; 163 case bitc::BINOP_ASHR: return Instruction::AShr; 164 case bitc::BINOP_AND: return Instruction::And; 165 case bitc::BINOP_OR: return Instruction::Or; 166 case bitc::BINOP_XOR: return Instruction::Xor; 167 } 168 } 169 170 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 171 switch (Val) { 172 default: return AtomicRMWInst::BAD_BINOP; 173 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 174 case bitc::RMW_ADD: return AtomicRMWInst::Add; 175 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 176 case bitc::RMW_AND: return AtomicRMWInst::And; 177 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 178 case bitc::RMW_OR: return AtomicRMWInst::Or; 179 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 180 case bitc::RMW_MAX: return AtomicRMWInst::Max; 181 case bitc::RMW_MIN: return AtomicRMWInst::Min; 182 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 183 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 184 } 185 } 186 187 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 188 switch (Val) { 189 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 190 case bitc::ORDERING_UNORDERED: return Unordered; 191 case bitc::ORDERING_MONOTONIC: return Monotonic; 192 case bitc::ORDERING_ACQUIRE: return Acquire; 193 case bitc::ORDERING_RELEASE: return Release; 194 case bitc::ORDERING_ACQREL: return AcquireRelease; 195 default: // Map unknown orderings to sequentially-consistent. 196 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 197 } 198 } 199 200 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 201 switch (Val) { 202 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 203 default: // Map unknown scopes to cross-thread. 204 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 205 } 206 } 207 208 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 209 switch (Val) { 210 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 211 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 212 } 213 } 214 215 namespace llvm { 216 namespace { 217 /// @brief A class for maintaining the slot number definition 218 /// as a placeholder for the actual definition for forward constants defs. 219 class ConstantPlaceHolder : public ConstantExpr { 220 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 221 public: 222 // allocate space for exactly one operand 223 void *operator new(size_t s) { 224 return User::operator new(s, 1); 225 } 226 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 227 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 228 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 229 } 230 231 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 232 static bool classof(const Value *V) { 233 return isa<ConstantExpr>(V) && 234 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 235 } 236 237 238 /// Provide fast operand accessors 239 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 240 }; 241 } 242 243 // FIXME: can we inherit this from ConstantExpr? 244 template <> 245 struct OperandTraits<ConstantPlaceHolder> : 246 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 247 }; 248 } 249 250 251 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 252 if (Idx == size()) { 253 push_back(V); 254 return; 255 } 256 257 if (Idx >= size()) 258 resize(Idx+1); 259 260 WeakVH &OldV = ValuePtrs[Idx]; 261 if (!OldV) { 262 OldV = V; 263 return; 264 } 265 266 // Handle constants and non-constants (e.g. instrs) differently for 267 // efficiency. 268 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 269 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 270 OldV = V; 271 } else { 272 // If there was a forward reference to this value, replace it. 273 Value *PrevVal = OldV; 274 OldV->replaceAllUsesWith(V); 275 delete PrevVal; 276 } 277 } 278 279 280 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 281 Type *Ty) { 282 if (Idx >= size()) 283 resize(Idx + 1); 284 285 if (Value *V = ValuePtrs[Idx]) { 286 assert(Ty == V->getType() && "Type mismatch in constant table!"); 287 return cast<Constant>(V); 288 } 289 290 // Create and return a placeholder, which will later be RAUW'd. 291 Constant *C = new ConstantPlaceHolder(Ty, Context); 292 ValuePtrs[Idx] = C; 293 return C; 294 } 295 296 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 297 if (Idx >= size()) 298 resize(Idx + 1); 299 300 if (Value *V = ValuePtrs[Idx]) { 301 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 302 return V; 303 } 304 305 // No type specified, must be invalid reference. 306 if (!Ty) return nullptr; 307 308 // Create and return a placeholder, which will later be RAUW'd. 309 Value *V = new Argument(Ty); 310 ValuePtrs[Idx] = V; 311 return V; 312 } 313 314 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 315 /// resolves any forward references. The idea behind this is that we sometimes 316 /// get constants (such as large arrays) which reference *many* forward ref 317 /// constants. Replacing each of these causes a lot of thrashing when 318 /// building/reuniquing the constant. Instead of doing this, we look at all the 319 /// uses and rewrite all the place holders at once for any constant that uses 320 /// a placeholder. 321 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 322 // Sort the values by-pointer so that they are efficient to look up with a 323 // binary search. 324 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 325 326 SmallVector<Constant*, 64> NewOps; 327 328 while (!ResolveConstants.empty()) { 329 Value *RealVal = operator[](ResolveConstants.back().second); 330 Constant *Placeholder = ResolveConstants.back().first; 331 ResolveConstants.pop_back(); 332 333 // Loop over all users of the placeholder, updating them to reference the 334 // new value. If they reference more than one placeholder, update them all 335 // at once. 336 while (!Placeholder->use_empty()) { 337 auto UI = Placeholder->user_begin(); 338 User *U = *UI; 339 340 // If the using object isn't uniqued, just update the operands. This 341 // handles instructions and initializers for global variables. 342 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 343 UI.getUse().set(RealVal); 344 continue; 345 } 346 347 // Otherwise, we have a constant that uses the placeholder. Replace that 348 // constant with a new constant that has *all* placeholder uses updated. 349 Constant *UserC = cast<Constant>(U); 350 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 351 I != E; ++I) { 352 Value *NewOp; 353 if (!isa<ConstantPlaceHolder>(*I)) { 354 // Not a placeholder reference. 355 NewOp = *I; 356 } else if (*I == Placeholder) { 357 // Common case is that it just references this one placeholder. 358 NewOp = RealVal; 359 } else { 360 // Otherwise, look up the placeholder in ResolveConstants. 361 ResolveConstantsTy::iterator It = 362 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 363 std::pair<Constant*, unsigned>(cast<Constant>(*I), 364 0)); 365 assert(It != ResolveConstants.end() && It->first == *I); 366 NewOp = operator[](It->second); 367 } 368 369 NewOps.push_back(cast<Constant>(NewOp)); 370 } 371 372 // Make the new constant. 373 Constant *NewC; 374 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 375 NewC = ConstantArray::get(UserCA->getType(), NewOps); 376 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 377 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 378 } else if (isa<ConstantVector>(UserC)) { 379 NewC = ConstantVector::get(NewOps); 380 } else { 381 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 382 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 383 } 384 385 UserC->replaceAllUsesWith(NewC); 386 UserC->destroyConstant(); 387 NewOps.clear(); 388 } 389 390 // Update all ValueHandles, they should be the only users at this point. 391 Placeholder->replaceAllUsesWith(RealVal); 392 delete Placeholder; 393 } 394 } 395 396 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 397 if (Idx == size()) { 398 push_back(V); 399 return; 400 } 401 402 if (Idx >= size()) 403 resize(Idx+1); 404 405 WeakVH &OldV = MDValuePtrs[Idx]; 406 if (!OldV) { 407 OldV = V; 408 return; 409 } 410 411 // If there was a forward reference to this value, replace it. 412 MDNode *PrevVal = cast<MDNode>(OldV); 413 OldV->replaceAllUsesWith(V); 414 MDNode::deleteTemporary(PrevVal); 415 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 416 // value for Idx. 417 MDValuePtrs[Idx] = V; 418 } 419 420 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 421 if (Idx >= size()) 422 resize(Idx + 1); 423 424 if (Value *V = MDValuePtrs[Idx]) { 425 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 426 return V; 427 } 428 429 // Create and return a placeholder, which will later be RAUW'd. 430 Value *V = MDNode::getTemporary(Context, None); 431 MDValuePtrs[Idx] = V; 432 return V; 433 } 434 435 Type *BitcodeReader::getTypeByID(unsigned ID) { 436 // The type table size is always specified correctly. 437 if (ID >= TypeList.size()) 438 return nullptr; 439 440 if (Type *Ty = TypeList[ID]) 441 return Ty; 442 443 // If we have a forward reference, the only possible case is when it is to a 444 // named struct. Just create a placeholder for now. 445 return TypeList[ID] = StructType::create(Context); 446 } 447 448 449 //===----------------------------------------------------------------------===// 450 // Functions for parsing blocks from the bitcode file 451 //===----------------------------------------------------------------------===// 452 453 454 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 455 /// been decoded from the given integer. This function must stay in sync with 456 /// 'encodeLLVMAttributesForBitcode'. 457 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 458 uint64_t EncodedAttrs) { 459 // FIXME: Remove in 4.0. 460 461 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 462 // the bits above 31 down by 11 bits. 463 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 464 assert((!Alignment || isPowerOf2_32(Alignment)) && 465 "Alignment must be a power of two."); 466 467 if (Alignment) 468 B.addAlignmentAttr(Alignment); 469 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 470 (EncodedAttrs & 0xffff)); 471 } 472 473 error_code BitcodeReader::ParseAttributeBlock() { 474 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 475 return Error(InvalidRecord); 476 477 if (!MAttributes.empty()) 478 return Error(InvalidMultipleBlocks); 479 480 SmallVector<uint64_t, 64> Record; 481 482 SmallVector<AttributeSet, 8> Attrs; 483 484 // Read all the records. 485 while (1) { 486 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 487 488 switch (Entry.Kind) { 489 case BitstreamEntry::SubBlock: // Handled for us already. 490 case BitstreamEntry::Error: 491 return Error(MalformedBlock); 492 case BitstreamEntry::EndBlock: 493 return error_code::success(); 494 case BitstreamEntry::Record: 495 // The interesting case. 496 break; 497 } 498 499 // Read a record. 500 Record.clear(); 501 switch (Stream.readRecord(Entry.ID, Record)) { 502 default: // Default behavior: ignore. 503 break; 504 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 505 // FIXME: Remove in 4.0. 506 if (Record.size() & 1) 507 return Error(InvalidRecord); 508 509 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 510 AttrBuilder B; 511 decodeLLVMAttributesForBitcode(B, Record[i+1]); 512 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 513 } 514 515 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 516 Attrs.clear(); 517 break; 518 } 519 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 520 for (unsigned i = 0, e = Record.size(); i != e; ++i) 521 Attrs.push_back(MAttributeGroups[Record[i]]); 522 523 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 524 Attrs.clear(); 525 break; 526 } 527 } 528 } 529 } 530 531 // Returns Attribute::None on unrecognized codes. 532 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 533 switch (Code) { 534 default: 535 return Attribute::None; 536 case bitc::ATTR_KIND_ALIGNMENT: 537 return Attribute::Alignment; 538 case bitc::ATTR_KIND_ALWAYS_INLINE: 539 return Attribute::AlwaysInline; 540 case bitc::ATTR_KIND_BUILTIN: 541 return Attribute::Builtin; 542 case bitc::ATTR_KIND_BY_VAL: 543 return Attribute::ByVal; 544 case bitc::ATTR_KIND_IN_ALLOCA: 545 return Attribute::InAlloca; 546 case bitc::ATTR_KIND_COLD: 547 return Attribute::Cold; 548 case bitc::ATTR_KIND_INLINE_HINT: 549 return Attribute::InlineHint; 550 case bitc::ATTR_KIND_IN_REG: 551 return Attribute::InReg; 552 case bitc::ATTR_KIND_MIN_SIZE: 553 return Attribute::MinSize; 554 case bitc::ATTR_KIND_NAKED: 555 return Attribute::Naked; 556 case bitc::ATTR_KIND_NEST: 557 return Attribute::Nest; 558 case bitc::ATTR_KIND_NO_ALIAS: 559 return Attribute::NoAlias; 560 case bitc::ATTR_KIND_NO_BUILTIN: 561 return Attribute::NoBuiltin; 562 case bitc::ATTR_KIND_NO_CAPTURE: 563 return Attribute::NoCapture; 564 case bitc::ATTR_KIND_NO_DUPLICATE: 565 return Attribute::NoDuplicate; 566 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 567 return Attribute::NoImplicitFloat; 568 case bitc::ATTR_KIND_NO_INLINE: 569 return Attribute::NoInline; 570 case bitc::ATTR_KIND_NON_LAZY_BIND: 571 return Attribute::NonLazyBind; 572 case bitc::ATTR_KIND_NO_RED_ZONE: 573 return Attribute::NoRedZone; 574 case bitc::ATTR_KIND_NO_RETURN: 575 return Attribute::NoReturn; 576 case bitc::ATTR_KIND_NO_UNWIND: 577 return Attribute::NoUnwind; 578 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 579 return Attribute::OptimizeForSize; 580 case bitc::ATTR_KIND_OPTIMIZE_NONE: 581 return Attribute::OptimizeNone; 582 case bitc::ATTR_KIND_READ_NONE: 583 return Attribute::ReadNone; 584 case bitc::ATTR_KIND_READ_ONLY: 585 return Attribute::ReadOnly; 586 case bitc::ATTR_KIND_RETURNED: 587 return Attribute::Returned; 588 case bitc::ATTR_KIND_RETURNS_TWICE: 589 return Attribute::ReturnsTwice; 590 case bitc::ATTR_KIND_S_EXT: 591 return Attribute::SExt; 592 case bitc::ATTR_KIND_STACK_ALIGNMENT: 593 return Attribute::StackAlignment; 594 case bitc::ATTR_KIND_STACK_PROTECT: 595 return Attribute::StackProtect; 596 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 597 return Attribute::StackProtectReq; 598 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 599 return Attribute::StackProtectStrong; 600 case bitc::ATTR_KIND_STRUCT_RET: 601 return Attribute::StructRet; 602 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 603 return Attribute::SanitizeAddress; 604 case bitc::ATTR_KIND_SANITIZE_THREAD: 605 return Attribute::SanitizeThread; 606 case bitc::ATTR_KIND_SANITIZE_MEMORY: 607 return Attribute::SanitizeMemory; 608 case bitc::ATTR_KIND_UW_TABLE: 609 return Attribute::UWTable; 610 case bitc::ATTR_KIND_Z_EXT: 611 return Attribute::ZExt; 612 } 613 } 614 615 error_code BitcodeReader::ParseAttrKind(uint64_t Code, 616 Attribute::AttrKind *Kind) { 617 *Kind = GetAttrFromCode(Code); 618 if (*Kind == Attribute::None) 619 return Error(InvalidValue); 620 return error_code::success(); 621 } 622 623 error_code BitcodeReader::ParseAttributeGroupBlock() { 624 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 625 return Error(InvalidRecord); 626 627 if (!MAttributeGroups.empty()) 628 return Error(InvalidMultipleBlocks); 629 630 SmallVector<uint64_t, 64> Record; 631 632 // Read all the records. 633 while (1) { 634 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 635 636 switch (Entry.Kind) { 637 case BitstreamEntry::SubBlock: // Handled for us already. 638 case BitstreamEntry::Error: 639 return Error(MalformedBlock); 640 case BitstreamEntry::EndBlock: 641 return error_code::success(); 642 case BitstreamEntry::Record: 643 // The interesting case. 644 break; 645 } 646 647 // Read a record. 648 Record.clear(); 649 switch (Stream.readRecord(Entry.ID, Record)) { 650 default: // Default behavior: ignore. 651 break; 652 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 653 if (Record.size() < 3) 654 return Error(InvalidRecord); 655 656 uint64_t GrpID = Record[0]; 657 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 658 659 AttrBuilder B; 660 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 661 if (Record[i] == 0) { // Enum attribute 662 Attribute::AttrKind Kind; 663 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 664 return EC; 665 666 B.addAttribute(Kind); 667 } else if (Record[i] == 1) { // Align attribute 668 Attribute::AttrKind Kind; 669 if (error_code EC = ParseAttrKind(Record[++i], &Kind)) 670 return EC; 671 if (Kind == Attribute::Alignment) 672 B.addAlignmentAttr(Record[++i]); 673 else 674 B.addStackAlignmentAttr(Record[++i]); 675 } else { // String attribute 676 assert((Record[i] == 3 || Record[i] == 4) && 677 "Invalid attribute group entry"); 678 bool HasValue = (Record[i++] == 4); 679 SmallString<64> KindStr; 680 SmallString<64> ValStr; 681 682 while (Record[i] != 0 && i != e) 683 KindStr += Record[i++]; 684 assert(Record[i] == 0 && "Kind string not null terminated"); 685 686 if (HasValue) { 687 // Has a value associated with it. 688 ++i; // Skip the '0' that terminates the "kind" string. 689 while (Record[i] != 0 && i != e) 690 ValStr += Record[i++]; 691 assert(Record[i] == 0 && "Value string not null terminated"); 692 } 693 694 B.addAttribute(KindStr.str(), ValStr.str()); 695 } 696 } 697 698 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 699 break; 700 } 701 } 702 } 703 } 704 705 error_code BitcodeReader::ParseTypeTable() { 706 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 707 return Error(InvalidRecord); 708 709 return ParseTypeTableBody(); 710 } 711 712 error_code BitcodeReader::ParseTypeTableBody() { 713 if (!TypeList.empty()) 714 return Error(InvalidMultipleBlocks); 715 716 SmallVector<uint64_t, 64> Record; 717 unsigned NumRecords = 0; 718 719 SmallString<64> TypeName; 720 721 // Read all the records for this type table. 722 while (1) { 723 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 724 725 switch (Entry.Kind) { 726 case BitstreamEntry::SubBlock: // Handled for us already. 727 case BitstreamEntry::Error: 728 return Error(MalformedBlock); 729 case BitstreamEntry::EndBlock: 730 if (NumRecords != TypeList.size()) 731 return Error(MalformedBlock); 732 return error_code::success(); 733 case BitstreamEntry::Record: 734 // The interesting case. 735 break; 736 } 737 738 // Read a record. 739 Record.clear(); 740 Type *ResultTy = nullptr; 741 switch (Stream.readRecord(Entry.ID, Record)) { 742 default: 743 return Error(InvalidValue); 744 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 745 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 746 // type list. This allows us to reserve space. 747 if (Record.size() < 1) 748 return Error(InvalidRecord); 749 TypeList.resize(Record[0]); 750 continue; 751 case bitc::TYPE_CODE_VOID: // VOID 752 ResultTy = Type::getVoidTy(Context); 753 break; 754 case bitc::TYPE_CODE_HALF: // HALF 755 ResultTy = Type::getHalfTy(Context); 756 break; 757 case bitc::TYPE_CODE_FLOAT: // FLOAT 758 ResultTy = Type::getFloatTy(Context); 759 break; 760 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 761 ResultTy = Type::getDoubleTy(Context); 762 break; 763 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 764 ResultTy = Type::getX86_FP80Ty(Context); 765 break; 766 case bitc::TYPE_CODE_FP128: // FP128 767 ResultTy = Type::getFP128Ty(Context); 768 break; 769 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 770 ResultTy = Type::getPPC_FP128Ty(Context); 771 break; 772 case bitc::TYPE_CODE_LABEL: // LABEL 773 ResultTy = Type::getLabelTy(Context); 774 break; 775 case bitc::TYPE_CODE_METADATA: // METADATA 776 ResultTy = Type::getMetadataTy(Context); 777 break; 778 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 779 ResultTy = Type::getX86_MMXTy(Context); 780 break; 781 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 782 if (Record.size() < 1) 783 return Error(InvalidRecord); 784 785 ResultTy = IntegerType::get(Context, Record[0]); 786 break; 787 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 788 // [pointee type, address space] 789 if (Record.size() < 1) 790 return Error(InvalidRecord); 791 unsigned AddressSpace = 0; 792 if (Record.size() == 2) 793 AddressSpace = Record[1]; 794 ResultTy = getTypeByID(Record[0]); 795 if (!ResultTy) 796 return Error(InvalidType); 797 ResultTy = PointerType::get(ResultTy, AddressSpace); 798 break; 799 } 800 case bitc::TYPE_CODE_FUNCTION_OLD: { 801 // FIXME: attrid is dead, remove it in LLVM 4.0 802 // FUNCTION: [vararg, attrid, retty, paramty x N] 803 if (Record.size() < 3) 804 return Error(InvalidRecord); 805 SmallVector<Type*, 8> ArgTys; 806 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 807 if (Type *T = getTypeByID(Record[i])) 808 ArgTys.push_back(T); 809 else 810 break; 811 } 812 813 ResultTy = getTypeByID(Record[2]); 814 if (!ResultTy || ArgTys.size() < Record.size()-3) 815 return Error(InvalidType); 816 817 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 818 break; 819 } 820 case bitc::TYPE_CODE_FUNCTION: { 821 // FUNCTION: [vararg, retty, paramty x N] 822 if (Record.size() < 2) 823 return Error(InvalidRecord); 824 SmallVector<Type*, 8> ArgTys; 825 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 826 if (Type *T = getTypeByID(Record[i])) 827 ArgTys.push_back(T); 828 else 829 break; 830 } 831 832 ResultTy = getTypeByID(Record[1]); 833 if (!ResultTy || ArgTys.size() < Record.size()-2) 834 return Error(InvalidType); 835 836 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 837 break; 838 } 839 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 840 if (Record.size() < 1) 841 return Error(InvalidRecord); 842 SmallVector<Type*, 8> EltTys; 843 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 844 if (Type *T = getTypeByID(Record[i])) 845 EltTys.push_back(T); 846 else 847 break; 848 } 849 if (EltTys.size() != Record.size()-1) 850 return Error(InvalidType); 851 ResultTy = StructType::get(Context, EltTys, Record[0]); 852 break; 853 } 854 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 855 if (ConvertToString(Record, 0, TypeName)) 856 return Error(InvalidRecord); 857 continue; 858 859 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 860 if (Record.size() < 1) 861 return Error(InvalidRecord); 862 863 if (NumRecords >= TypeList.size()) 864 return Error(InvalidTYPETable); 865 866 // Check to see if this was forward referenced, if so fill in the temp. 867 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 868 if (Res) { 869 Res->setName(TypeName); 870 TypeList[NumRecords] = nullptr; 871 } else // Otherwise, create a new struct. 872 Res = StructType::create(Context, TypeName); 873 TypeName.clear(); 874 875 SmallVector<Type*, 8> EltTys; 876 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 877 if (Type *T = getTypeByID(Record[i])) 878 EltTys.push_back(T); 879 else 880 break; 881 } 882 if (EltTys.size() != Record.size()-1) 883 return Error(InvalidRecord); 884 Res->setBody(EltTys, Record[0]); 885 ResultTy = Res; 886 break; 887 } 888 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 889 if (Record.size() != 1) 890 return Error(InvalidRecord); 891 892 if (NumRecords >= TypeList.size()) 893 return Error(InvalidTYPETable); 894 895 // Check to see if this was forward referenced, if so fill in the temp. 896 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 897 if (Res) { 898 Res->setName(TypeName); 899 TypeList[NumRecords] = nullptr; 900 } else // Otherwise, create a new struct with no body. 901 Res = StructType::create(Context, TypeName); 902 TypeName.clear(); 903 ResultTy = Res; 904 break; 905 } 906 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 907 if (Record.size() < 2) 908 return Error(InvalidRecord); 909 if ((ResultTy = getTypeByID(Record[1]))) 910 ResultTy = ArrayType::get(ResultTy, Record[0]); 911 else 912 return Error(InvalidType); 913 break; 914 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 915 if (Record.size() < 2) 916 return Error(InvalidRecord); 917 if ((ResultTy = getTypeByID(Record[1]))) 918 ResultTy = VectorType::get(ResultTy, Record[0]); 919 else 920 return Error(InvalidType); 921 break; 922 } 923 924 if (NumRecords >= TypeList.size()) 925 return Error(InvalidTYPETable); 926 assert(ResultTy && "Didn't read a type?"); 927 assert(!TypeList[NumRecords] && "Already read type?"); 928 TypeList[NumRecords++] = ResultTy; 929 } 930 } 931 932 error_code BitcodeReader::ParseValueSymbolTable() { 933 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 934 return Error(InvalidRecord); 935 936 SmallVector<uint64_t, 64> Record; 937 938 // Read all the records for this value table. 939 SmallString<128> ValueName; 940 while (1) { 941 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 942 943 switch (Entry.Kind) { 944 case BitstreamEntry::SubBlock: // Handled for us already. 945 case BitstreamEntry::Error: 946 return Error(MalformedBlock); 947 case BitstreamEntry::EndBlock: 948 return error_code::success(); 949 case BitstreamEntry::Record: 950 // The interesting case. 951 break; 952 } 953 954 // Read a record. 955 Record.clear(); 956 switch (Stream.readRecord(Entry.ID, Record)) { 957 default: // Default behavior: unknown type. 958 break; 959 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 960 if (ConvertToString(Record, 1, ValueName)) 961 return Error(InvalidRecord); 962 unsigned ValueID = Record[0]; 963 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 964 return Error(InvalidRecord); 965 Value *V = ValueList[ValueID]; 966 967 V->setName(StringRef(ValueName.data(), ValueName.size())); 968 ValueName.clear(); 969 break; 970 } 971 case bitc::VST_CODE_BBENTRY: { 972 if (ConvertToString(Record, 1, ValueName)) 973 return Error(InvalidRecord); 974 BasicBlock *BB = getBasicBlock(Record[0]); 975 if (!BB) 976 return Error(InvalidRecord); 977 978 BB->setName(StringRef(ValueName.data(), ValueName.size())); 979 ValueName.clear(); 980 break; 981 } 982 } 983 } 984 } 985 986 error_code BitcodeReader::ParseMetadata() { 987 unsigned NextMDValueNo = MDValueList.size(); 988 989 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 990 return Error(InvalidRecord); 991 992 SmallVector<uint64_t, 64> Record; 993 994 // Read all the records. 995 while (1) { 996 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 997 998 switch (Entry.Kind) { 999 case BitstreamEntry::SubBlock: // Handled for us already. 1000 case BitstreamEntry::Error: 1001 return Error(MalformedBlock); 1002 case BitstreamEntry::EndBlock: 1003 return error_code::success(); 1004 case BitstreamEntry::Record: 1005 // The interesting case. 1006 break; 1007 } 1008 1009 bool IsFunctionLocal = false; 1010 // Read a record. 1011 Record.clear(); 1012 unsigned Code = Stream.readRecord(Entry.ID, Record); 1013 switch (Code) { 1014 default: // Default behavior: ignore. 1015 break; 1016 case bitc::METADATA_NAME: { 1017 // Read name of the named metadata. 1018 SmallString<8> Name(Record.begin(), Record.end()); 1019 Record.clear(); 1020 Code = Stream.ReadCode(); 1021 1022 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1023 unsigned NextBitCode = Stream.readRecord(Code, Record); 1024 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1025 1026 // Read named metadata elements. 1027 unsigned Size = Record.size(); 1028 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1029 for (unsigned i = 0; i != Size; ++i) { 1030 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1031 if (!MD) 1032 return Error(InvalidRecord); 1033 NMD->addOperand(MD); 1034 } 1035 break; 1036 } 1037 case bitc::METADATA_FN_NODE: 1038 IsFunctionLocal = true; 1039 // fall-through 1040 case bitc::METADATA_NODE: { 1041 if (Record.size() % 2 == 1) 1042 return Error(InvalidRecord); 1043 1044 unsigned Size = Record.size(); 1045 SmallVector<Value*, 8> Elts; 1046 for (unsigned i = 0; i != Size; i += 2) { 1047 Type *Ty = getTypeByID(Record[i]); 1048 if (!Ty) 1049 return Error(InvalidRecord); 1050 if (Ty->isMetadataTy()) 1051 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1052 else if (!Ty->isVoidTy()) 1053 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1054 else 1055 Elts.push_back(nullptr); 1056 } 1057 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1058 IsFunctionLocal = false; 1059 MDValueList.AssignValue(V, NextMDValueNo++); 1060 break; 1061 } 1062 case bitc::METADATA_STRING: { 1063 SmallString<8> String(Record.begin(), Record.end()); 1064 Value *V = MDString::get(Context, String); 1065 MDValueList.AssignValue(V, NextMDValueNo++); 1066 break; 1067 } 1068 case bitc::METADATA_KIND: { 1069 if (Record.size() < 2) 1070 return Error(InvalidRecord); 1071 1072 unsigned Kind = Record[0]; 1073 SmallString<8> Name(Record.begin()+1, Record.end()); 1074 1075 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1076 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1077 return Error(ConflictingMETADATA_KINDRecords); 1078 break; 1079 } 1080 } 1081 } 1082 } 1083 1084 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1085 /// the LSB for dense VBR encoding. 1086 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1087 if ((V & 1) == 0) 1088 return V >> 1; 1089 if (V != 1) 1090 return -(V >> 1); 1091 // There is no such thing as -0 with integers. "-0" really means MININT. 1092 return 1ULL << 63; 1093 } 1094 1095 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1096 /// values and aliases that we can. 1097 error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1098 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1099 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1100 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1101 1102 GlobalInitWorklist.swap(GlobalInits); 1103 AliasInitWorklist.swap(AliasInits); 1104 FunctionPrefixWorklist.swap(FunctionPrefixes); 1105 1106 while (!GlobalInitWorklist.empty()) { 1107 unsigned ValID = GlobalInitWorklist.back().second; 1108 if (ValID >= ValueList.size()) { 1109 // Not ready to resolve this yet, it requires something later in the file. 1110 GlobalInits.push_back(GlobalInitWorklist.back()); 1111 } else { 1112 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1113 GlobalInitWorklist.back().first->setInitializer(C); 1114 else 1115 return Error(ExpectedConstant); 1116 } 1117 GlobalInitWorklist.pop_back(); 1118 } 1119 1120 while (!AliasInitWorklist.empty()) { 1121 unsigned ValID = AliasInitWorklist.back().second; 1122 if (ValID >= ValueList.size()) { 1123 AliasInits.push_back(AliasInitWorklist.back()); 1124 } else { 1125 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1126 AliasInitWorklist.back().first->setAliasee(C); 1127 else 1128 return Error(ExpectedConstant); 1129 } 1130 AliasInitWorklist.pop_back(); 1131 } 1132 1133 while (!FunctionPrefixWorklist.empty()) { 1134 unsigned ValID = FunctionPrefixWorklist.back().second; 1135 if (ValID >= ValueList.size()) { 1136 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1137 } else { 1138 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1139 FunctionPrefixWorklist.back().first->setPrefixData(C); 1140 else 1141 return Error(ExpectedConstant); 1142 } 1143 FunctionPrefixWorklist.pop_back(); 1144 } 1145 1146 return error_code::success(); 1147 } 1148 1149 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1150 SmallVector<uint64_t, 8> Words(Vals.size()); 1151 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1152 BitcodeReader::decodeSignRotatedValue); 1153 1154 return APInt(TypeBits, Words); 1155 } 1156 1157 error_code BitcodeReader::ParseConstants() { 1158 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1159 return Error(InvalidRecord); 1160 1161 SmallVector<uint64_t, 64> Record; 1162 1163 // Read all the records for this value table. 1164 Type *CurTy = Type::getInt32Ty(Context); 1165 unsigned NextCstNo = ValueList.size(); 1166 while (1) { 1167 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1168 1169 switch (Entry.Kind) { 1170 case BitstreamEntry::SubBlock: // Handled for us already. 1171 case BitstreamEntry::Error: 1172 return Error(MalformedBlock); 1173 case BitstreamEntry::EndBlock: 1174 if (NextCstNo != ValueList.size()) 1175 return Error(InvalidConstantReference); 1176 1177 // Once all the constants have been read, go through and resolve forward 1178 // references. 1179 ValueList.ResolveConstantForwardRefs(); 1180 return error_code::success(); 1181 case BitstreamEntry::Record: 1182 // The interesting case. 1183 break; 1184 } 1185 1186 // Read a record. 1187 Record.clear(); 1188 Value *V = nullptr; 1189 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1190 switch (BitCode) { 1191 default: // Default behavior: unknown constant 1192 case bitc::CST_CODE_UNDEF: // UNDEF 1193 V = UndefValue::get(CurTy); 1194 break; 1195 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1196 if (Record.empty()) 1197 return Error(InvalidRecord); 1198 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1199 return Error(InvalidRecord); 1200 CurTy = TypeList[Record[0]]; 1201 continue; // Skip the ValueList manipulation. 1202 case bitc::CST_CODE_NULL: // NULL 1203 V = Constant::getNullValue(CurTy); 1204 break; 1205 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1206 if (!CurTy->isIntegerTy() || Record.empty()) 1207 return Error(InvalidRecord); 1208 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1209 break; 1210 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1211 if (!CurTy->isIntegerTy() || Record.empty()) 1212 return Error(InvalidRecord); 1213 1214 APInt VInt = ReadWideAPInt(Record, 1215 cast<IntegerType>(CurTy)->getBitWidth()); 1216 V = ConstantInt::get(Context, VInt); 1217 1218 break; 1219 } 1220 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1221 if (Record.empty()) 1222 return Error(InvalidRecord); 1223 if (CurTy->isHalfTy()) 1224 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1225 APInt(16, (uint16_t)Record[0]))); 1226 else if (CurTy->isFloatTy()) 1227 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1228 APInt(32, (uint32_t)Record[0]))); 1229 else if (CurTy->isDoubleTy()) 1230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1231 APInt(64, Record[0]))); 1232 else if (CurTy->isX86_FP80Ty()) { 1233 // Bits are not stored the same way as a normal i80 APInt, compensate. 1234 uint64_t Rearrange[2]; 1235 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1236 Rearrange[1] = Record[0] >> 48; 1237 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1238 APInt(80, Rearrange))); 1239 } else if (CurTy->isFP128Ty()) 1240 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1241 APInt(128, Record))); 1242 else if (CurTy->isPPC_FP128Ty()) 1243 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1244 APInt(128, Record))); 1245 else 1246 V = UndefValue::get(CurTy); 1247 break; 1248 } 1249 1250 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1251 if (Record.empty()) 1252 return Error(InvalidRecord); 1253 1254 unsigned Size = Record.size(); 1255 SmallVector<Constant*, 16> Elts; 1256 1257 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1258 for (unsigned i = 0; i != Size; ++i) 1259 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1260 STy->getElementType(i))); 1261 V = ConstantStruct::get(STy, Elts); 1262 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1263 Type *EltTy = ATy->getElementType(); 1264 for (unsigned i = 0; i != Size; ++i) 1265 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1266 V = ConstantArray::get(ATy, Elts); 1267 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1268 Type *EltTy = VTy->getElementType(); 1269 for (unsigned i = 0; i != Size; ++i) 1270 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1271 V = ConstantVector::get(Elts); 1272 } else { 1273 V = UndefValue::get(CurTy); 1274 } 1275 break; 1276 } 1277 case bitc::CST_CODE_STRING: // STRING: [values] 1278 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1279 if (Record.empty()) 1280 return Error(InvalidRecord); 1281 1282 SmallString<16> Elts(Record.begin(), Record.end()); 1283 V = ConstantDataArray::getString(Context, Elts, 1284 BitCode == bitc::CST_CODE_CSTRING); 1285 break; 1286 } 1287 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1288 if (Record.empty()) 1289 return Error(InvalidRecord); 1290 1291 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1292 unsigned Size = Record.size(); 1293 1294 if (EltTy->isIntegerTy(8)) { 1295 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1296 if (isa<VectorType>(CurTy)) 1297 V = ConstantDataVector::get(Context, Elts); 1298 else 1299 V = ConstantDataArray::get(Context, Elts); 1300 } else if (EltTy->isIntegerTy(16)) { 1301 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1302 if (isa<VectorType>(CurTy)) 1303 V = ConstantDataVector::get(Context, Elts); 1304 else 1305 V = ConstantDataArray::get(Context, Elts); 1306 } else if (EltTy->isIntegerTy(32)) { 1307 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1308 if (isa<VectorType>(CurTy)) 1309 V = ConstantDataVector::get(Context, Elts); 1310 else 1311 V = ConstantDataArray::get(Context, Elts); 1312 } else if (EltTy->isIntegerTy(64)) { 1313 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1314 if (isa<VectorType>(CurTy)) 1315 V = ConstantDataVector::get(Context, Elts); 1316 else 1317 V = ConstantDataArray::get(Context, Elts); 1318 } else if (EltTy->isFloatTy()) { 1319 SmallVector<float, 16> Elts(Size); 1320 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1321 if (isa<VectorType>(CurTy)) 1322 V = ConstantDataVector::get(Context, Elts); 1323 else 1324 V = ConstantDataArray::get(Context, Elts); 1325 } else if (EltTy->isDoubleTy()) { 1326 SmallVector<double, 16> Elts(Size); 1327 std::transform(Record.begin(), Record.end(), Elts.begin(), 1328 BitsToDouble); 1329 if (isa<VectorType>(CurTy)) 1330 V = ConstantDataVector::get(Context, Elts); 1331 else 1332 V = ConstantDataArray::get(Context, Elts); 1333 } else { 1334 return Error(InvalidTypeForValue); 1335 } 1336 break; 1337 } 1338 1339 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1340 if (Record.size() < 3) 1341 return Error(InvalidRecord); 1342 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1343 if (Opc < 0) { 1344 V = UndefValue::get(CurTy); // Unknown binop. 1345 } else { 1346 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1347 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1348 unsigned Flags = 0; 1349 if (Record.size() >= 4) { 1350 if (Opc == Instruction::Add || 1351 Opc == Instruction::Sub || 1352 Opc == Instruction::Mul || 1353 Opc == Instruction::Shl) { 1354 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1355 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1356 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1357 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1358 } else if (Opc == Instruction::SDiv || 1359 Opc == Instruction::UDiv || 1360 Opc == Instruction::LShr || 1361 Opc == Instruction::AShr) { 1362 if (Record[3] & (1 << bitc::PEO_EXACT)) 1363 Flags |= SDivOperator::IsExact; 1364 } 1365 } 1366 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1367 } 1368 break; 1369 } 1370 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1371 if (Record.size() < 3) 1372 return Error(InvalidRecord); 1373 int Opc = GetDecodedCastOpcode(Record[0]); 1374 if (Opc < 0) { 1375 V = UndefValue::get(CurTy); // Unknown cast. 1376 } else { 1377 Type *OpTy = getTypeByID(Record[1]); 1378 if (!OpTy) 1379 return Error(InvalidRecord); 1380 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1381 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1382 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1383 } 1384 break; 1385 } 1386 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1387 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1388 if (Record.size() & 1) 1389 return Error(InvalidRecord); 1390 SmallVector<Constant*, 16> Elts; 1391 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1392 Type *ElTy = getTypeByID(Record[i]); 1393 if (!ElTy) 1394 return Error(InvalidRecord); 1395 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1396 } 1397 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1398 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1399 BitCode == 1400 bitc::CST_CODE_CE_INBOUNDS_GEP); 1401 break; 1402 } 1403 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1404 if (Record.size() < 3) 1405 return Error(InvalidRecord); 1406 1407 Type *SelectorTy = Type::getInt1Ty(Context); 1408 1409 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1410 // vector. Otherwise, it must be a single bit. 1411 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1412 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1413 VTy->getNumElements()); 1414 1415 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1416 SelectorTy), 1417 ValueList.getConstantFwdRef(Record[1],CurTy), 1418 ValueList.getConstantFwdRef(Record[2],CurTy)); 1419 break; 1420 } 1421 case bitc::CST_CODE_CE_EXTRACTELT 1422 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1423 if (Record.size() < 3) 1424 return Error(InvalidRecord); 1425 VectorType *OpTy = 1426 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1427 if (!OpTy) 1428 return Error(InvalidRecord); 1429 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1430 Constant *Op1 = nullptr; 1431 if (Record.size() == 4) { 1432 Type *IdxTy = getTypeByID(Record[2]); 1433 if (!IdxTy) 1434 return Error(InvalidRecord); 1435 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1436 } else // TODO: Remove with llvm 4.0 1437 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1438 if (!Op1) 1439 return Error(InvalidRecord); 1440 V = ConstantExpr::getExtractElement(Op0, Op1); 1441 break; 1442 } 1443 case bitc::CST_CODE_CE_INSERTELT 1444 : { // CE_INSERTELT: [opval, opval, opty, opval] 1445 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1446 if (Record.size() < 3 || !OpTy) 1447 return Error(InvalidRecord); 1448 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1449 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1450 OpTy->getElementType()); 1451 Constant *Op2 = nullptr; 1452 if (Record.size() == 4) { 1453 Type *IdxTy = getTypeByID(Record[2]); 1454 if (!IdxTy) 1455 return Error(InvalidRecord); 1456 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1457 } else // TODO: Remove with llvm 4.0 1458 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1459 if (!Op2) 1460 return Error(InvalidRecord); 1461 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1462 break; 1463 } 1464 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1465 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1466 if (Record.size() < 3 || !OpTy) 1467 return Error(InvalidRecord); 1468 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1469 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1470 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1471 OpTy->getNumElements()); 1472 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1473 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1474 break; 1475 } 1476 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1477 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1478 VectorType *OpTy = 1479 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1480 if (Record.size() < 4 || !RTy || !OpTy) 1481 return Error(InvalidRecord); 1482 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1483 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1484 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1485 RTy->getNumElements()); 1486 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1487 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1488 break; 1489 } 1490 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1491 if (Record.size() < 4) 1492 return Error(InvalidRecord); 1493 Type *OpTy = getTypeByID(Record[0]); 1494 if (!OpTy) 1495 return Error(InvalidRecord); 1496 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1497 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1498 1499 if (OpTy->isFPOrFPVectorTy()) 1500 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1501 else 1502 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1503 break; 1504 } 1505 // This maintains backward compatibility, pre-asm dialect keywords. 1506 // FIXME: Remove with the 4.0 release. 1507 case bitc::CST_CODE_INLINEASM_OLD: { 1508 if (Record.size() < 2) 1509 return Error(InvalidRecord); 1510 std::string AsmStr, ConstrStr; 1511 bool HasSideEffects = Record[0] & 1; 1512 bool IsAlignStack = Record[0] >> 1; 1513 unsigned AsmStrSize = Record[1]; 1514 if (2+AsmStrSize >= Record.size()) 1515 return Error(InvalidRecord); 1516 unsigned ConstStrSize = Record[2+AsmStrSize]; 1517 if (3+AsmStrSize+ConstStrSize > Record.size()) 1518 return Error(InvalidRecord); 1519 1520 for (unsigned i = 0; i != AsmStrSize; ++i) 1521 AsmStr += (char)Record[2+i]; 1522 for (unsigned i = 0; i != ConstStrSize; ++i) 1523 ConstrStr += (char)Record[3+AsmStrSize+i]; 1524 PointerType *PTy = cast<PointerType>(CurTy); 1525 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1526 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1527 break; 1528 } 1529 // This version adds support for the asm dialect keywords (e.g., 1530 // inteldialect). 1531 case bitc::CST_CODE_INLINEASM: { 1532 if (Record.size() < 2) 1533 return Error(InvalidRecord); 1534 std::string AsmStr, ConstrStr; 1535 bool HasSideEffects = Record[0] & 1; 1536 bool IsAlignStack = (Record[0] >> 1) & 1; 1537 unsigned AsmDialect = Record[0] >> 2; 1538 unsigned AsmStrSize = Record[1]; 1539 if (2+AsmStrSize >= Record.size()) 1540 return Error(InvalidRecord); 1541 unsigned ConstStrSize = Record[2+AsmStrSize]; 1542 if (3+AsmStrSize+ConstStrSize > Record.size()) 1543 return Error(InvalidRecord); 1544 1545 for (unsigned i = 0; i != AsmStrSize; ++i) 1546 AsmStr += (char)Record[2+i]; 1547 for (unsigned i = 0; i != ConstStrSize; ++i) 1548 ConstrStr += (char)Record[3+AsmStrSize+i]; 1549 PointerType *PTy = cast<PointerType>(CurTy); 1550 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1551 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1552 InlineAsm::AsmDialect(AsmDialect)); 1553 break; 1554 } 1555 case bitc::CST_CODE_BLOCKADDRESS:{ 1556 if (Record.size() < 3) 1557 return Error(InvalidRecord); 1558 Type *FnTy = getTypeByID(Record[0]); 1559 if (!FnTy) 1560 return Error(InvalidRecord); 1561 Function *Fn = 1562 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1563 if (!Fn) 1564 return Error(InvalidRecord); 1565 1566 // If the function is already parsed we can insert the block address right 1567 // away. 1568 if (!Fn->empty()) { 1569 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1570 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1571 if (BBI == BBE) 1572 return Error(InvalidID); 1573 ++BBI; 1574 } 1575 V = BlockAddress::get(Fn, BBI); 1576 } else { 1577 // Otherwise insert a placeholder and remember it so it can be inserted 1578 // when the function is parsed. 1579 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1580 Type::getInt8Ty(Context), 1581 false, GlobalValue::InternalLinkage, 1582 nullptr, ""); 1583 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1584 V = FwdRef; 1585 } 1586 break; 1587 } 1588 } 1589 1590 ValueList.AssignValue(V, NextCstNo); 1591 ++NextCstNo; 1592 } 1593 } 1594 1595 error_code BitcodeReader::ParseUseLists() { 1596 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1597 return Error(InvalidRecord); 1598 1599 SmallVector<uint64_t, 64> Record; 1600 1601 // Read all the records. 1602 while (1) { 1603 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1604 1605 switch (Entry.Kind) { 1606 case BitstreamEntry::SubBlock: // Handled for us already. 1607 case BitstreamEntry::Error: 1608 return Error(MalformedBlock); 1609 case BitstreamEntry::EndBlock: 1610 return error_code::success(); 1611 case BitstreamEntry::Record: 1612 // The interesting case. 1613 break; 1614 } 1615 1616 // Read a use list record. 1617 Record.clear(); 1618 switch (Stream.readRecord(Entry.ID, Record)) { 1619 default: // Default behavior: unknown type. 1620 break; 1621 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1622 unsigned RecordLength = Record.size(); 1623 if (RecordLength < 1) 1624 return Error(InvalidRecord); 1625 UseListRecords.push_back(Record); 1626 break; 1627 } 1628 } 1629 } 1630 } 1631 1632 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1633 /// remember where it is and then skip it. This lets us lazily deserialize the 1634 /// functions. 1635 error_code BitcodeReader::RememberAndSkipFunctionBody() { 1636 // Get the function we are talking about. 1637 if (FunctionsWithBodies.empty()) 1638 return Error(InsufficientFunctionProtos); 1639 1640 Function *Fn = FunctionsWithBodies.back(); 1641 FunctionsWithBodies.pop_back(); 1642 1643 // Save the current stream state. 1644 uint64_t CurBit = Stream.GetCurrentBitNo(); 1645 DeferredFunctionInfo[Fn] = CurBit; 1646 1647 // Skip over the function block for now. 1648 if (Stream.SkipBlock()) 1649 return Error(InvalidRecord); 1650 return error_code::success(); 1651 } 1652 1653 error_code BitcodeReader::GlobalCleanup() { 1654 // Patch the initializers for globals and aliases up. 1655 ResolveGlobalAndAliasInits(); 1656 if (!GlobalInits.empty() || !AliasInits.empty()) 1657 return Error(MalformedGlobalInitializerSet); 1658 1659 // Look for intrinsic functions which need to be upgraded at some point 1660 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1661 FI != FE; ++FI) { 1662 Function *NewFn; 1663 if (UpgradeIntrinsicFunction(FI, NewFn)) 1664 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1665 } 1666 1667 // Look for global variables which need to be renamed. 1668 for (Module::global_iterator 1669 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1670 GI != GE; ++GI) 1671 UpgradeGlobalVariable(GI); 1672 // Force deallocation of memory for these vectors to favor the client that 1673 // want lazy deserialization. 1674 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1675 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1676 return error_code::success(); 1677 } 1678 1679 error_code BitcodeReader::ParseModule(bool Resume) { 1680 if (Resume) 1681 Stream.JumpToBit(NextUnreadBit); 1682 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1683 return Error(InvalidRecord); 1684 1685 SmallVector<uint64_t, 64> Record; 1686 std::vector<std::string> SectionTable; 1687 std::vector<std::string> GCTable; 1688 1689 // Read all the records for this module. 1690 while (1) { 1691 BitstreamEntry Entry = Stream.advance(); 1692 1693 switch (Entry.Kind) { 1694 case BitstreamEntry::Error: 1695 return Error(MalformedBlock); 1696 case BitstreamEntry::EndBlock: 1697 return GlobalCleanup(); 1698 1699 case BitstreamEntry::SubBlock: 1700 switch (Entry.ID) { 1701 default: // Skip unknown content. 1702 if (Stream.SkipBlock()) 1703 return Error(InvalidRecord); 1704 break; 1705 case bitc::BLOCKINFO_BLOCK_ID: 1706 if (Stream.ReadBlockInfoBlock()) 1707 return Error(MalformedBlock); 1708 break; 1709 case bitc::PARAMATTR_BLOCK_ID: 1710 if (error_code EC = ParseAttributeBlock()) 1711 return EC; 1712 break; 1713 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1714 if (error_code EC = ParseAttributeGroupBlock()) 1715 return EC; 1716 break; 1717 case bitc::TYPE_BLOCK_ID_NEW: 1718 if (error_code EC = ParseTypeTable()) 1719 return EC; 1720 break; 1721 case bitc::VALUE_SYMTAB_BLOCK_ID: 1722 if (error_code EC = ParseValueSymbolTable()) 1723 return EC; 1724 SeenValueSymbolTable = true; 1725 break; 1726 case bitc::CONSTANTS_BLOCK_ID: 1727 if (error_code EC = ParseConstants()) 1728 return EC; 1729 if (error_code EC = ResolveGlobalAndAliasInits()) 1730 return EC; 1731 break; 1732 case bitc::METADATA_BLOCK_ID: 1733 if (error_code EC = ParseMetadata()) 1734 return EC; 1735 break; 1736 case bitc::FUNCTION_BLOCK_ID: 1737 // If this is the first function body we've seen, reverse the 1738 // FunctionsWithBodies list. 1739 if (!SeenFirstFunctionBody) { 1740 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1741 if (error_code EC = GlobalCleanup()) 1742 return EC; 1743 SeenFirstFunctionBody = true; 1744 } 1745 1746 if (error_code EC = RememberAndSkipFunctionBody()) 1747 return EC; 1748 // For streaming bitcode, suspend parsing when we reach the function 1749 // bodies. Subsequent materialization calls will resume it when 1750 // necessary. For streaming, the function bodies must be at the end of 1751 // the bitcode. If the bitcode file is old, the symbol table will be 1752 // at the end instead and will not have been seen yet. In this case, 1753 // just finish the parse now. 1754 if (LazyStreamer && SeenValueSymbolTable) { 1755 NextUnreadBit = Stream.GetCurrentBitNo(); 1756 return error_code::success(); 1757 } 1758 break; 1759 case bitc::USELIST_BLOCK_ID: 1760 if (error_code EC = ParseUseLists()) 1761 return EC; 1762 break; 1763 } 1764 continue; 1765 1766 case BitstreamEntry::Record: 1767 // The interesting case. 1768 break; 1769 } 1770 1771 1772 // Read a record. 1773 switch (Stream.readRecord(Entry.ID, Record)) { 1774 default: break; // Default behavior, ignore unknown content. 1775 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1776 if (Record.size() < 1) 1777 return Error(InvalidRecord); 1778 // Only version #0 and #1 are supported so far. 1779 unsigned module_version = Record[0]; 1780 switch (module_version) { 1781 default: 1782 return Error(InvalidValue); 1783 case 0: 1784 UseRelativeIDs = false; 1785 break; 1786 case 1: 1787 UseRelativeIDs = true; 1788 break; 1789 } 1790 break; 1791 } 1792 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1793 std::string S; 1794 if (ConvertToString(Record, 0, S)) 1795 return Error(InvalidRecord); 1796 TheModule->setTargetTriple(S); 1797 break; 1798 } 1799 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1800 std::string S; 1801 if (ConvertToString(Record, 0, S)) 1802 return Error(InvalidRecord); 1803 TheModule->setDataLayout(S); 1804 break; 1805 } 1806 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1807 std::string S; 1808 if (ConvertToString(Record, 0, S)) 1809 return Error(InvalidRecord); 1810 TheModule->setModuleInlineAsm(S); 1811 break; 1812 } 1813 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1814 // FIXME: Remove in 4.0. 1815 std::string S; 1816 if (ConvertToString(Record, 0, S)) 1817 return Error(InvalidRecord); 1818 // Ignore value. 1819 break; 1820 } 1821 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1822 std::string S; 1823 if (ConvertToString(Record, 0, S)) 1824 return Error(InvalidRecord); 1825 SectionTable.push_back(S); 1826 break; 1827 } 1828 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1829 std::string S; 1830 if (ConvertToString(Record, 0, S)) 1831 return Error(InvalidRecord); 1832 GCTable.push_back(S); 1833 break; 1834 } 1835 // GLOBALVAR: [pointer type, isconst, initid, 1836 // linkage, alignment, section, visibility, threadlocal, 1837 // unnamed_addr, dllstorageclass] 1838 case bitc::MODULE_CODE_GLOBALVAR: { 1839 if (Record.size() < 6) 1840 return Error(InvalidRecord); 1841 Type *Ty = getTypeByID(Record[0]); 1842 if (!Ty) 1843 return Error(InvalidRecord); 1844 if (!Ty->isPointerTy()) 1845 return Error(InvalidTypeForValue); 1846 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1847 Ty = cast<PointerType>(Ty)->getElementType(); 1848 1849 bool isConstant = Record[1]; 1850 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1851 unsigned Alignment = (1 << Record[4]) >> 1; 1852 std::string Section; 1853 if (Record[5]) { 1854 if (Record[5]-1 >= SectionTable.size()) 1855 return Error(InvalidID); 1856 Section = SectionTable[Record[5]-1]; 1857 } 1858 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1859 if (Record.size() > 6) 1860 Visibility = GetDecodedVisibility(Record[6]); 1861 1862 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1863 if (Record.size() > 7) 1864 TLM = GetDecodedThreadLocalMode(Record[7]); 1865 1866 bool UnnamedAddr = false; 1867 if (Record.size() > 8) 1868 UnnamedAddr = Record[8]; 1869 1870 bool ExternallyInitialized = false; 1871 if (Record.size() > 9) 1872 ExternallyInitialized = Record[9]; 1873 1874 GlobalVariable *NewGV = 1875 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1876 TLM, AddressSpace, ExternallyInitialized); 1877 NewGV->setAlignment(Alignment); 1878 if (!Section.empty()) 1879 NewGV->setSection(Section); 1880 NewGV->setVisibility(Visibility); 1881 NewGV->setUnnamedAddr(UnnamedAddr); 1882 1883 if (Record.size() > 10) 1884 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1885 else 1886 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1887 1888 ValueList.push_back(NewGV); 1889 1890 // Remember which value to use for the global initializer. 1891 if (unsigned InitID = Record[2]) 1892 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1893 break; 1894 } 1895 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1896 // alignment, section, visibility, gc, unnamed_addr, 1897 // dllstorageclass] 1898 case bitc::MODULE_CODE_FUNCTION: { 1899 if (Record.size() < 8) 1900 return Error(InvalidRecord); 1901 Type *Ty = getTypeByID(Record[0]); 1902 if (!Ty) 1903 return Error(InvalidRecord); 1904 if (!Ty->isPointerTy()) 1905 return Error(InvalidTypeForValue); 1906 FunctionType *FTy = 1907 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1908 if (!FTy) 1909 return Error(InvalidTypeForValue); 1910 1911 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1912 "", TheModule); 1913 1914 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1915 bool isProto = Record[2]; 1916 Func->setLinkage(GetDecodedLinkage(Record[3])); 1917 Func->setAttributes(getAttributes(Record[4])); 1918 1919 Func->setAlignment((1 << Record[5]) >> 1); 1920 if (Record[6]) { 1921 if (Record[6]-1 >= SectionTable.size()) 1922 return Error(InvalidID); 1923 Func->setSection(SectionTable[Record[6]-1]); 1924 } 1925 Func->setVisibility(GetDecodedVisibility(Record[7])); 1926 if (Record.size() > 8 && Record[8]) { 1927 if (Record[8]-1 > GCTable.size()) 1928 return Error(InvalidID); 1929 Func->setGC(GCTable[Record[8]-1].c_str()); 1930 } 1931 bool UnnamedAddr = false; 1932 if (Record.size() > 9) 1933 UnnamedAddr = Record[9]; 1934 Func->setUnnamedAddr(UnnamedAddr); 1935 if (Record.size() > 10 && Record[10] != 0) 1936 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1937 1938 if (Record.size() > 11) 1939 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 1940 else 1941 UpgradeDLLImportExportLinkage(Func, Record[3]); 1942 1943 ValueList.push_back(Func); 1944 1945 // If this is a function with a body, remember the prototype we are 1946 // creating now, so that we can match up the body with them later. 1947 if (!isProto) { 1948 FunctionsWithBodies.push_back(Func); 1949 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1950 } 1951 break; 1952 } 1953 // ALIAS: [alias type, aliasee val#, linkage] 1954 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 1955 case bitc::MODULE_CODE_ALIAS: { 1956 if (Record.size() < 3) 1957 return Error(InvalidRecord); 1958 Type *Ty = getTypeByID(Record[0]); 1959 if (!Ty) 1960 return Error(InvalidRecord); 1961 if (!Ty->isPointerTy()) 1962 return Error(InvalidTypeForValue); 1963 1964 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1965 "", nullptr, TheModule); 1966 // Old bitcode files didn't have visibility field. 1967 if (Record.size() > 3) 1968 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1969 if (Record.size() > 4) 1970 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 1971 else 1972 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 1973 ValueList.push_back(NewGA); 1974 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1975 break; 1976 } 1977 /// MODULE_CODE_PURGEVALS: [numvals] 1978 case bitc::MODULE_CODE_PURGEVALS: 1979 // Trim down the value list to the specified size. 1980 if (Record.size() < 1 || Record[0] > ValueList.size()) 1981 return Error(InvalidRecord); 1982 ValueList.shrinkTo(Record[0]); 1983 break; 1984 } 1985 Record.clear(); 1986 } 1987 } 1988 1989 error_code BitcodeReader::ParseBitcodeInto(Module *M) { 1990 TheModule = nullptr; 1991 1992 if (error_code EC = InitStream()) 1993 return EC; 1994 1995 // Sniff for the signature. 1996 if (Stream.Read(8) != 'B' || 1997 Stream.Read(8) != 'C' || 1998 Stream.Read(4) != 0x0 || 1999 Stream.Read(4) != 0xC || 2000 Stream.Read(4) != 0xE || 2001 Stream.Read(4) != 0xD) 2002 return Error(InvalidBitcodeSignature); 2003 2004 // We expect a number of well-defined blocks, though we don't necessarily 2005 // need to understand them all. 2006 while (1) { 2007 if (Stream.AtEndOfStream()) 2008 return error_code::success(); 2009 2010 BitstreamEntry Entry = 2011 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2012 2013 switch (Entry.Kind) { 2014 case BitstreamEntry::Error: 2015 return Error(MalformedBlock); 2016 case BitstreamEntry::EndBlock: 2017 return error_code::success(); 2018 2019 case BitstreamEntry::SubBlock: 2020 switch (Entry.ID) { 2021 case bitc::BLOCKINFO_BLOCK_ID: 2022 if (Stream.ReadBlockInfoBlock()) 2023 return Error(MalformedBlock); 2024 break; 2025 case bitc::MODULE_BLOCK_ID: 2026 // Reject multiple MODULE_BLOCK's in a single bitstream. 2027 if (TheModule) 2028 return Error(InvalidMultipleBlocks); 2029 TheModule = M; 2030 if (error_code EC = ParseModule(false)) 2031 return EC; 2032 if (LazyStreamer) 2033 return error_code::success(); 2034 break; 2035 default: 2036 if (Stream.SkipBlock()) 2037 return Error(InvalidRecord); 2038 break; 2039 } 2040 continue; 2041 case BitstreamEntry::Record: 2042 // There should be no records in the top-level of blocks. 2043 2044 // The ranlib in Xcode 4 will align archive members by appending newlines 2045 // to the end of them. If this file size is a multiple of 4 but not 8, we 2046 // have to read and ignore these final 4 bytes :-( 2047 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2048 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2049 Stream.AtEndOfStream()) 2050 return error_code::success(); 2051 2052 return Error(InvalidRecord); 2053 } 2054 } 2055 } 2056 2057 error_code BitcodeReader::ParseModuleTriple(std::string &Triple) { 2058 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2059 return Error(InvalidRecord); 2060 2061 SmallVector<uint64_t, 64> Record; 2062 2063 // Read all the records for this module. 2064 while (1) { 2065 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2066 2067 switch (Entry.Kind) { 2068 case BitstreamEntry::SubBlock: // Handled for us already. 2069 case BitstreamEntry::Error: 2070 return Error(MalformedBlock); 2071 case BitstreamEntry::EndBlock: 2072 return error_code::success(); 2073 case BitstreamEntry::Record: 2074 // The interesting case. 2075 break; 2076 } 2077 2078 // Read a record. 2079 switch (Stream.readRecord(Entry.ID, Record)) { 2080 default: break; // Default behavior, ignore unknown content. 2081 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2082 std::string S; 2083 if (ConvertToString(Record, 0, S)) 2084 return Error(InvalidRecord); 2085 Triple = S; 2086 break; 2087 } 2088 } 2089 Record.clear(); 2090 } 2091 } 2092 2093 error_code BitcodeReader::ParseTriple(std::string &Triple) { 2094 if (error_code EC = InitStream()) 2095 return EC; 2096 2097 // Sniff for the signature. 2098 if (Stream.Read(8) != 'B' || 2099 Stream.Read(8) != 'C' || 2100 Stream.Read(4) != 0x0 || 2101 Stream.Read(4) != 0xC || 2102 Stream.Read(4) != 0xE || 2103 Stream.Read(4) != 0xD) 2104 return Error(InvalidBitcodeSignature); 2105 2106 // We expect a number of well-defined blocks, though we don't necessarily 2107 // need to understand them all. 2108 while (1) { 2109 BitstreamEntry Entry = Stream.advance(); 2110 2111 switch (Entry.Kind) { 2112 case BitstreamEntry::Error: 2113 return Error(MalformedBlock); 2114 case BitstreamEntry::EndBlock: 2115 return error_code::success(); 2116 2117 case BitstreamEntry::SubBlock: 2118 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2119 return ParseModuleTriple(Triple); 2120 2121 // Ignore other sub-blocks. 2122 if (Stream.SkipBlock()) 2123 return Error(MalformedBlock); 2124 continue; 2125 2126 case BitstreamEntry::Record: 2127 Stream.skipRecord(Entry.ID); 2128 continue; 2129 } 2130 } 2131 } 2132 2133 /// ParseMetadataAttachment - Parse metadata attachments. 2134 error_code BitcodeReader::ParseMetadataAttachment() { 2135 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2136 return Error(InvalidRecord); 2137 2138 SmallVector<uint64_t, 64> Record; 2139 while (1) { 2140 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2141 2142 switch (Entry.Kind) { 2143 case BitstreamEntry::SubBlock: // Handled for us already. 2144 case BitstreamEntry::Error: 2145 return Error(MalformedBlock); 2146 case BitstreamEntry::EndBlock: 2147 return error_code::success(); 2148 case BitstreamEntry::Record: 2149 // The interesting case. 2150 break; 2151 } 2152 2153 // Read a metadata attachment record. 2154 Record.clear(); 2155 switch (Stream.readRecord(Entry.ID, Record)) { 2156 default: // Default behavior: ignore. 2157 break; 2158 case bitc::METADATA_ATTACHMENT: { 2159 unsigned RecordLength = Record.size(); 2160 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2161 return Error(InvalidRecord); 2162 Instruction *Inst = InstructionList[Record[0]]; 2163 for (unsigned i = 1; i != RecordLength; i = i+2) { 2164 unsigned Kind = Record[i]; 2165 DenseMap<unsigned, unsigned>::iterator I = 2166 MDKindMap.find(Kind); 2167 if (I == MDKindMap.end()) 2168 return Error(InvalidID); 2169 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2170 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2171 if (I->second == LLVMContext::MD_tbaa) 2172 InstsWithTBAATag.push_back(Inst); 2173 } 2174 break; 2175 } 2176 } 2177 } 2178 } 2179 2180 /// ParseFunctionBody - Lazily parse the specified function body block. 2181 error_code BitcodeReader::ParseFunctionBody(Function *F) { 2182 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2183 return Error(InvalidRecord); 2184 2185 InstructionList.clear(); 2186 unsigned ModuleValueListSize = ValueList.size(); 2187 unsigned ModuleMDValueListSize = MDValueList.size(); 2188 2189 // Add all the function arguments to the value table. 2190 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2191 ValueList.push_back(I); 2192 2193 unsigned NextValueNo = ValueList.size(); 2194 BasicBlock *CurBB = nullptr; 2195 unsigned CurBBNo = 0; 2196 2197 DebugLoc LastLoc; 2198 2199 // Read all the records. 2200 SmallVector<uint64_t, 64> Record; 2201 while (1) { 2202 BitstreamEntry Entry = Stream.advance(); 2203 2204 switch (Entry.Kind) { 2205 case BitstreamEntry::Error: 2206 return Error(MalformedBlock); 2207 case BitstreamEntry::EndBlock: 2208 goto OutOfRecordLoop; 2209 2210 case BitstreamEntry::SubBlock: 2211 switch (Entry.ID) { 2212 default: // Skip unknown content. 2213 if (Stream.SkipBlock()) 2214 return Error(InvalidRecord); 2215 break; 2216 case bitc::CONSTANTS_BLOCK_ID: 2217 if (error_code EC = ParseConstants()) 2218 return EC; 2219 NextValueNo = ValueList.size(); 2220 break; 2221 case bitc::VALUE_SYMTAB_BLOCK_ID: 2222 if (error_code EC = ParseValueSymbolTable()) 2223 return EC; 2224 break; 2225 case bitc::METADATA_ATTACHMENT_ID: 2226 if (error_code EC = ParseMetadataAttachment()) 2227 return EC; 2228 break; 2229 case bitc::METADATA_BLOCK_ID: 2230 if (error_code EC = ParseMetadata()) 2231 return EC; 2232 break; 2233 } 2234 continue; 2235 2236 case BitstreamEntry::Record: 2237 // The interesting case. 2238 break; 2239 } 2240 2241 // Read a record. 2242 Record.clear(); 2243 Instruction *I = nullptr; 2244 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2245 switch (BitCode) { 2246 default: // Default behavior: reject 2247 return Error(InvalidValue); 2248 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2249 if (Record.size() < 1 || Record[0] == 0) 2250 return Error(InvalidRecord); 2251 // Create all the basic blocks for the function. 2252 FunctionBBs.resize(Record[0]); 2253 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2254 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2255 CurBB = FunctionBBs[0]; 2256 continue; 2257 2258 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2259 // This record indicates that the last instruction is at the same 2260 // location as the previous instruction with a location. 2261 I = nullptr; 2262 2263 // Get the last instruction emitted. 2264 if (CurBB && !CurBB->empty()) 2265 I = &CurBB->back(); 2266 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2267 !FunctionBBs[CurBBNo-1]->empty()) 2268 I = &FunctionBBs[CurBBNo-1]->back(); 2269 2270 if (!I) 2271 return Error(InvalidRecord); 2272 I->setDebugLoc(LastLoc); 2273 I = nullptr; 2274 continue; 2275 2276 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2277 I = nullptr; // Get the last instruction emitted. 2278 if (CurBB && !CurBB->empty()) 2279 I = &CurBB->back(); 2280 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2281 !FunctionBBs[CurBBNo-1]->empty()) 2282 I = &FunctionBBs[CurBBNo-1]->back(); 2283 if (!I || Record.size() < 4) 2284 return Error(InvalidRecord); 2285 2286 unsigned Line = Record[0], Col = Record[1]; 2287 unsigned ScopeID = Record[2], IAID = Record[3]; 2288 2289 MDNode *Scope = nullptr, *IA = nullptr; 2290 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2291 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2292 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2293 I->setDebugLoc(LastLoc); 2294 I = nullptr; 2295 continue; 2296 } 2297 2298 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2299 unsigned OpNum = 0; 2300 Value *LHS, *RHS; 2301 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2302 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2303 OpNum+1 > Record.size()) 2304 return Error(InvalidRecord); 2305 2306 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2307 if (Opc == -1) 2308 return Error(InvalidRecord); 2309 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2310 InstructionList.push_back(I); 2311 if (OpNum < Record.size()) { 2312 if (Opc == Instruction::Add || 2313 Opc == Instruction::Sub || 2314 Opc == Instruction::Mul || 2315 Opc == Instruction::Shl) { 2316 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2317 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2318 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2319 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2320 } else if (Opc == Instruction::SDiv || 2321 Opc == Instruction::UDiv || 2322 Opc == Instruction::LShr || 2323 Opc == Instruction::AShr) { 2324 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2325 cast<BinaryOperator>(I)->setIsExact(true); 2326 } else if (isa<FPMathOperator>(I)) { 2327 FastMathFlags FMF; 2328 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2329 FMF.setUnsafeAlgebra(); 2330 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2331 FMF.setNoNaNs(); 2332 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2333 FMF.setNoInfs(); 2334 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2335 FMF.setNoSignedZeros(); 2336 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2337 FMF.setAllowReciprocal(); 2338 if (FMF.any()) 2339 I->setFastMathFlags(FMF); 2340 } 2341 2342 } 2343 break; 2344 } 2345 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2346 unsigned OpNum = 0; 2347 Value *Op; 2348 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2349 OpNum+2 != Record.size()) 2350 return Error(InvalidRecord); 2351 2352 Type *ResTy = getTypeByID(Record[OpNum]); 2353 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2354 if (Opc == -1 || !ResTy) 2355 return Error(InvalidRecord); 2356 Instruction *Temp = nullptr; 2357 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2358 if (Temp) { 2359 InstructionList.push_back(Temp); 2360 CurBB->getInstList().push_back(Temp); 2361 } 2362 } else { 2363 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2364 } 2365 InstructionList.push_back(I); 2366 break; 2367 } 2368 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2369 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2370 unsigned OpNum = 0; 2371 Value *BasePtr; 2372 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2373 return Error(InvalidRecord); 2374 2375 SmallVector<Value*, 16> GEPIdx; 2376 while (OpNum != Record.size()) { 2377 Value *Op; 2378 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2379 return Error(InvalidRecord); 2380 GEPIdx.push_back(Op); 2381 } 2382 2383 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2384 InstructionList.push_back(I); 2385 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2386 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2387 break; 2388 } 2389 2390 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2391 // EXTRACTVAL: [opty, opval, n x indices] 2392 unsigned OpNum = 0; 2393 Value *Agg; 2394 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2395 return Error(InvalidRecord); 2396 2397 SmallVector<unsigned, 4> EXTRACTVALIdx; 2398 for (unsigned RecSize = Record.size(); 2399 OpNum != RecSize; ++OpNum) { 2400 uint64_t Index = Record[OpNum]; 2401 if ((unsigned)Index != Index) 2402 return Error(InvalidValue); 2403 EXTRACTVALIdx.push_back((unsigned)Index); 2404 } 2405 2406 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2407 InstructionList.push_back(I); 2408 break; 2409 } 2410 2411 case bitc::FUNC_CODE_INST_INSERTVAL: { 2412 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2413 unsigned OpNum = 0; 2414 Value *Agg; 2415 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2416 return Error(InvalidRecord); 2417 Value *Val; 2418 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2419 return Error(InvalidRecord); 2420 2421 SmallVector<unsigned, 4> INSERTVALIdx; 2422 for (unsigned RecSize = Record.size(); 2423 OpNum != RecSize; ++OpNum) { 2424 uint64_t Index = Record[OpNum]; 2425 if ((unsigned)Index != Index) 2426 return Error(InvalidValue); 2427 INSERTVALIdx.push_back((unsigned)Index); 2428 } 2429 2430 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2431 InstructionList.push_back(I); 2432 break; 2433 } 2434 2435 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2436 // obsolete form of select 2437 // handles select i1 ... in old bitcode 2438 unsigned OpNum = 0; 2439 Value *TrueVal, *FalseVal, *Cond; 2440 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2441 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2442 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2443 return Error(InvalidRecord); 2444 2445 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2446 InstructionList.push_back(I); 2447 break; 2448 } 2449 2450 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2451 // new form of select 2452 // handles select i1 or select [N x i1] 2453 unsigned OpNum = 0; 2454 Value *TrueVal, *FalseVal, *Cond; 2455 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2456 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2457 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2458 return Error(InvalidRecord); 2459 2460 // select condition can be either i1 or [N x i1] 2461 if (VectorType* vector_type = 2462 dyn_cast<VectorType>(Cond->getType())) { 2463 // expect <n x i1> 2464 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2465 return Error(InvalidTypeForValue); 2466 } else { 2467 // expect i1 2468 if (Cond->getType() != Type::getInt1Ty(Context)) 2469 return Error(InvalidTypeForValue); 2470 } 2471 2472 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2473 InstructionList.push_back(I); 2474 break; 2475 } 2476 2477 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2478 unsigned OpNum = 0; 2479 Value *Vec, *Idx; 2480 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2481 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2482 return Error(InvalidRecord); 2483 I = ExtractElementInst::Create(Vec, Idx); 2484 InstructionList.push_back(I); 2485 break; 2486 } 2487 2488 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2489 unsigned OpNum = 0; 2490 Value *Vec, *Elt, *Idx; 2491 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2492 popValue(Record, OpNum, NextValueNo, 2493 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2494 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2495 return Error(InvalidRecord); 2496 I = InsertElementInst::Create(Vec, Elt, Idx); 2497 InstructionList.push_back(I); 2498 break; 2499 } 2500 2501 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2502 unsigned OpNum = 0; 2503 Value *Vec1, *Vec2, *Mask; 2504 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2505 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2506 return Error(InvalidRecord); 2507 2508 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2509 return Error(InvalidRecord); 2510 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2511 InstructionList.push_back(I); 2512 break; 2513 } 2514 2515 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2516 // Old form of ICmp/FCmp returning bool 2517 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2518 // both legal on vectors but had different behaviour. 2519 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2520 // FCmp/ICmp returning bool or vector of bool 2521 2522 unsigned OpNum = 0; 2523 Value *LHS, *RHS; 2524 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2525 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2526 OpNum+1 != Record.size()) 2527 return Error(InvalidRecord); 2528 2529 if (LHS->getType()->isFPOrFPVectorTy()) 2530 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2531 else 2532 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2533 InstructionList.push_back(I); 2534 break; 2535 } 2536 2537 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2538 { 2539 unsigned Size = Record.size(); 2540 if (Size == 0) { 2541 I = ReturnInst::Create(Context); 2542 InstructionList.push_back(I); 2543 break; 2544 } 2545 2546 unsigned OpNum = 0; 2547 Value *Op = nullptr; 2548 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2549 return Error(InvalidRecord); 2550 if (OpNum != Record.size()) 2551 return Error(InvalidRecord); 2552 2553 I = ReturnInst::Create(Context, Op); 2554 InstructionList.push_back(I); 2555 break; 2556 } 2557 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2558 if (Record.size() != 1 && Record.size() != 3) 2559 return Error(InvalidRecord); 2560 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2561 if (!TrueDest) 2562 return Error(InvalidRecord); 2563 2564 if (Record.size() == 1) { 2565 I = BranchInst::Create(TrueDest); 2566 InstructionList.push_back(I); 2567 } 2568 else { 2569 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2570 Value *Cond = getValue(Record, 2, NextValueNo, 2571 Type::getInt1Ty(Context)); 2572 if (!FalseDest || !Cond) 2573 return Error(InvalidRecord); 2574 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2575 InstructionList.push_back(I); 2576 } 2577 break; 2578 } 2579 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2580 // Check magic 2581 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2582 // "New" SwitchInst format with case ranges. The changes to write this 2583 // format were reverted but we still recognize bitcode that uses it. 2584 // Hopefully someday we will have support for case ranges and can use 2585 // this format again. 2586 2587 Type *OpTy = getTypeByID(Record[1]); 2588 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2589 2590 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2591 BasicBlock *Default = getBasicBlock(Record[3]); 2592 if (!OpTy || !Cond || !Default) 2593 return Error(InvalidRecord); 2594 2595 unsigned NumCases = Record[4]; 2596 2597 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2598 InstructionList.push_back(SI); 2599 2600 unsigned CurIdx = 5; 2601 for (unsigned i = 0; i != NumCases; ++i) { 2602 SmallVector<ConstantInt*, 1> CaseVals; 2603 unsigned NumItems = Record[CurIdx++]; 2604 for (unsigned ci = 0; ci != NumItems; ++ci) { 2605 bool isSingleNumber = Record[CurIdx++]; 2606 2607 APInt Low; 2608 unsigned ActiveWords = 1; 2609 if (ValueBitWidth > 64) 2610 ActiveWords = Record[CurIdx++]; 2611 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2612 ValueBitWidth); 2613 CurIdx += ActiveWords; 2614 2615 if (!isSingleNumber) { 2616 ActiveWords = 1; 2617 if (ValueBitWidth > 64) 2618 ActiveWords = Record[CurIdx++]; 2619 APInt High = 2620 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2621 ValueBitWidth); 2622 CurIdx += ActiveWords; 2623 2624 // FIXME: It is not clear whether values in the range should be 2625 // compared as signed or unsigned values. The partially 2626 // implemented changes that used this format in the past used 2627 // unsigned comparisons. 2628 for ( ; Low.ule(High); ++Low) 2629 CaseVals.push_back(ConstantInt::get(Context, Low)); 2630 } else 2631 CaseVals.push_back(ConstantInt::get(Context, Low)); 2632 } 2633 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2634 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2635 cve = CaseVals.end(); cvi != cve; ++cvi) 2636 SI->addCase(*cvi, DestBB); 2637 } 2638 I = SI; 2639 break; 2640 } 2641 2642 // Old SwitchInst format without case ranges. 2643 2644 if (Record.size() < 3 || (Record.size() & 1) == 0) 2645 return Error(InvalidRecord); 2646 Type *OpTy = getTypeByID(Record[0]); 2647 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2648 BasicBlock *Default = getBasicBlock(Record[2]); 2649 if (!OpTy || !Cond || !Default) 2650 return Error(InvalidRecord); 2651 unsigned NumCases = (Record.size()-3)/2; 2652 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2653 InstructionList.push_back(SI); 2654 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2655 ConstantInt *CaseVal = 2656 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2657 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2658 if (!CaseVal || !DestBB) { 2659 delete SI; 2660 return Error(InvalidRecord); 2661 } 2662 SI->addCase(CaseVal, DestBB); 2663 } 2664 I = SI; 2665 break; 2666 } 2667 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2668 if (Record.size() < 2) 2669 return Error(InvalidRecord); 2670 Type *OpTy = getTypeByID(Record[0]); 2671 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2672 if (!OpTy || !Address) 2673 return Error(InvalidRecord); 2674 unsigned NumDests = Record.size()-2; 2675 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2676 InstructionList.push_back(IBI); 2677 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2678 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2679 IBI->addDestination(DestBB); 2680 } else { 2681 delete IBI; 2682 return Error(InvalidRecord); 2683 } 2684 } 2685 I = IBI; 2686 break; 2687 } 2688 2689 case bitc::FUNC_CODE_INST_INVOKE: { 2690 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2691 if (Record.size() < 4) 2692 return Error(InvalidRecord); 2693 AttributeSet PAL = getAttributes(Record[0]); 2694 unsigned CCInfo = Record[1]; 2695 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2696 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2697 2698 unsigned OpNum = 4; 2699 Value *Callee; 2700 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2701 return Error(InvalidRecord); 2702 2703 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2704 FunctionType *FTy = !CalleeTy ? nullptr : 2705 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2706 2707 // Check that the right number of fixed parameters are here. 2708 if (!FTy || !NormalBB || !UnwindBB || 2709 Record.size() < OpNum+FTy->getNumParams()) 2710 return Error(InvalidRecord); 2711 2712 SmallVector<Value*, 16> Ops; 2713 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2714 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2715 FTy->getParamType(i))); 2716 if (!Ops.back()) 2717 return Error(InvalidRecord); 2718 } 2719 2720 if (!FTy->isVarArg()) { 2721 if (Record.size() != OpNum) 2722 return Error(InvalidRecord); 2723 } else { 2724 // Read type/value pairs for varargs params. 2725 while (OpNum != Record.size()) { 2726 Value *Op; 2727 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2728 return Error(InvalidRecord); 2729 Ops.push_back(Op); 2730 } 2731 } 2732 2733 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2734 InstructionList.push_back(I); 2735 cast<InvokeInst>(I)->setCallingConv( 2736 static_cast<CallingConv::ID>(CCInfo)); 2737 cast<InvokeInst>(I)->setAttributes(PAL); 2738 break; 2739 } 2740 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2741 unsigned Idx = 0; 2742 Value *Val = nullptr; 2743 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2744 return Error(InvalidRecord); 2745 I = ResumeInst::Create(Val); 2746 InstructionList.push_back(I); 2747 break; 2748 } 2749 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2750 I = new UnreachableInst(Context); 2751 InstructionList.push_back(I); 2752 break; 2753 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2754 if (Record.size() < 1 || ((Record.size()-1)&1)) 2755 return Error(InvalidRecord); 2756 Type *Ty = getTypeByID(Record[0]); 2757 if (!Ty) 2758 return Error(InvalidRecord); 2759 2760 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2761 InstructionList.push_back(PN); 2762 2763 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2764 Value *V; 2765 // With the new function encoding, it is possible that operands have 2766 // negative IDs (for forward references). Use a signed VBR 2767 // representation to keep the encoding small. 2768 if (UseRelativeIDs) 2769 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2770 else 2771 V = getValue(Record, 1+i, NextValueNo, Ty); 2772 BasicBlock *BB = getBasicBlock(Record[2+i]); 2773 if (!V || !BB) 2774 return Error(InvalidRecord); 2775 PN->addIncoming(V, BB); 2776 } 2777 I = PN; 2778 break; 2779 } 2780 2781 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2782 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2783 unsigned Idx = 0; 2784 if (Record.size() < 4) 2785 return Error(InvalidRecord); 2786 Type *Ty = getTypeByID(Record[Idx++]); 2787 if (!Ty) 2788 return Error(InvalidRecord); 2789 Value *PersFn = nullptr; 2790 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2791 return Error(InvalidRecord); 2792 2793 bool IsCleanup = !!Record[Idx++]; 2794 unsigned NumClauses = Record[Idx++]; 2795 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2796 LP->setCleanup(IsCleanup); 2797 for (unsigned J = 0; J != NumClauses; ++J) { 2798 LandingPadInst::ClauseType CT = 2799 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2800 Value *Val; 2801 2802 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2803 delete LP; 2804 return Error(InvalidRecord); 2805 } 2806 2807 assert((CT != LandingPadInst::Catch || 2808 !isa<ArrayType>(Val->getType())) && 2809 "Catch clause has a invalid type!"); 2810 assert((CT != LandingPadInst::Filter || 2811 isa<ArrayType>(Val->getType())) && 2812 "Filter clause has invalid type!"); 2813 LP->addClause(Val); 2814 } 2815 2816 I = LP; 2817 InstructionList.push_back(I); 2818 break; 2819 } 2820 2821 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2822 if (Record.size() != 4) 2823 return Error(InvalidRecord); 2824 PointerType *Ty = 2825 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2826 Type *OpTy = getTypeByID(Record[1]); 2827 Value *Size = getFnValueByID(Record[2], OpTy); 2828 unsigned Align = Record[3]; 2829 if (!Ty || !Size) 2830 return Error(InvalidRecord); 2831 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2832 InstructionList.push_back(I); 2833 break; 2834 } 2835 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2836 unsigned OpNum = 0; 2837 Value *Op; 2838 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2839 OpNum+2 != Record.size()) 2840 return Error(InvalidRecord); 2841 2842 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2843 InstructionList.push_back(I); 2844 break; 2845 } 2846 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2847 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2848 unsigned OpNum = 0; 2849 Value *Op; 2850 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2851 OpNum+4 != Record.size()) 2852 return Error(InvalidRecord); 2853 2854 2855 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2856 if (Ordering == NotAtomic || Ordering == Release || 2857 Ordering == AcquireRelease) 2858 return Error(InvalidRecord); 2859 if (Ordering != NotAtomic && Record[OpNum] == 0) 2860 return Error(InvalidRecord); 2861 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2862 2863 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2864 Ordering, SynchScope); 2865 InstructionList.push_back(I); 2866 break; 2867 } 2868 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2869 unsigned OpNum = 0; 2870 Value *Val, *Ptr; 2871 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2872 popValue(Record, OpNum, NextValueNo, 2873 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2874 OpNum+2 != Record.size()) 2875 return Error(InvalidRecord); 2876 2877 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2878 InstructionList.push_back(I); 2879 break; 2880 } 2881 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2882 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2883 unsigned OpNum = 0; 2884 Value *Val, *Ptr; 2885 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2886 popValue(Record, OpNum, NextValueNo, 2887 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2888 OpNum+4 != Record.size()) 2889 return Error(InvalidRecord); 2890 2891 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2892 if (Ordering == NotAtomic || Ordering == Acquire || 2893 Ordering == AcquireRelease) 2894 return Error(InvalidRecord); 2895 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2896 if (Ordering != NotAtomic && Record[OpNum] == 0) 2897 return Error(InvalidRecord); 2898 2899 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2900 Ordering, SynchScope); 2901 InstructionList.push_back(I); 2902 break; 2903 } 2904 case bitc::FUNC_CODE_INST_CMPXCHG: { 2905 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 2906 // failureordering] 2907 unsigned OpNum = 0; 2908 Value *Ptr, *Cmp, *New; 2909 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2910 popValue(Record, OpNum, NextValueNo, 2911 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2912 popValue(Record, OpNum, NextValueNo, 2913 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2914 (OpNum + 3 != Record.size() && OpNum + 4 != Record.size())) 2915 return Error(InvalidRecord); 2916 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 2917 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 2918 return Error(InvalidRecord); 2919 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2920 2921 AtomicOrdering FailureOrdering; 2922 if (Record.size() < 7) 2923 FailureOrdering = 2924 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 2925 else 2926 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 2927 2928 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 2929 SynchScope); 2930 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2931 InstructionList.push_back(I); 2932 break; 2933 } 2934 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2935 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2936 unsigned OpNum = 0; 2937 Value *Ptr, *Val; 2938 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2939 popValue(Record, OpNum, NextValueNo, 2940 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2941 OpNum+4 != Record.size()) 2942 return Error(InvalidRecord); 2943 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2944 if (Operation < AtomicRMWInst::FIRST_BINOP || 2945 Operation > AtomicRMWInst::LAST_BINOP) 2946 return Error(InvalidRecord); 2947 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2948 if (Ordering == NotAtomic || Ordering == Unordered) 2949 return Error(InvalidRecord); 2950 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2951 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2952 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2953 InstructionList.push_back(I); 2954 break; 2955 } 2956 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2957 if (2 != Record.size()) 2958 return Error(InvalidRecord); 2959 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2960 if (Ordering == NotAtomic || Ordering == Unordered || 2961 Ordering == Monotonic) 2962 return Error(InvalidRecord); 2963 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2964 I = new FenceInst(Context, Ordering, SynchScope); 2965 InstructionList.push_back(I); 2966 break; 2967 } 2968 case bitc::FUNC_CODE_INST_CALL: { 2969 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2970 if (Record.size() < 3) 2971 return Error(InvalidRecord); 2972 2973 AttributeSet PAL = getAttributes(Record[0]); 2974 unsigned CCInfo = Record[1]; 2975 2976 unsigned OpNum = 2; 2977 Value *Callee; 2978 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2979 return Error(InvalidRecord); 2980 2981 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2982 FunctionType *FTy = nullptr; 2983 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2984 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2985 return Error(InvalidRecord); 2986 2987 SmallVector<Value*, 16> Args; 2988 // Read the fixed params. 2989 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2990 if (FTy->getParamType(i)->isLabelTy()) 2991 Args.push_back(getBasicBlock(Record[OpNum])); 2992 else 2993 Args.push_back(getValue(Record, OpNum, NextValueNo, 2994 FTy->getParamType(i))); 2995 if (!Args.back()) 2996 return Error(InvalidRecord); 2997 } 2998 2999 // Read type/value pairs for varargs params. 3000 if (!FTy->isVarArg()) { 3001 if (OpNum != Record.size()) 3002 return Error(InvalidRecord); 3003 } else { 3004 while (OpNum != Record.size()) { 3005 Value *Op; 3006 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3007 return Error(InvalidRecord); 3008 Args.push_back(Op); 3009 } 3010 } 3011 3012 I = CallInst::Create(Callee, Args); 3013 InstructionList.push_back(I); 3014 cast<CallInst>(I)->setCallingConv( 3015 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3016 CallInst::TailCallKind TCK = CallInst::TCK_None; 3017 if (CCInfo & 1) 3018 TCK = CallInst::TCK_Tail; 3019 if (CCInfo & (1 << 14)) 3020 TCK = CallInst::TCK_MustTail; 3021 cast<CallInst>(I)->setTailCallKind(TCK); 3022 cast<CallInst>(I)->setAttributes(PAL); 3023 break; 3024 } 3025 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3026 if (Record.size() < 3) 3027 return Error(InvalidRecord); 3028 Type *OpTy = getTypeByID(Record[0]); 3029 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3030 Type *ResTy = getTypeByID(Record[2]); 3031 if (!OpTy || !Op || !ResTy) 3032 return Error(InvalidRecord); 3033 I = new VAArgInst(Op, ResTy); 3034 InstructionList.push_back(I); 3035 break; 3036 } 3037 } 3038 3039 // Add instruction to end of current BB. If there is no current BB, reject 3040 // this file. 3041 if (!CurBB) { 3042 delete I; 3043 return Error(InvalidInstructionWithNoBB); 3044 } 3045 CurBB->getInstList().push_back(I); 3046 3047 // If this was a terminator instruction, move to the next block. 3048 if (isa<TerminatorInst>(I)) { 3049 ++CurBBNo; 3050 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3051 } 3052 3053 // Non-void values get registered in the value table for future use. 3054 if (I && !I->getType()->isVoidTy()) 3055 ValueList.AssignValue(I, NextValueNo++); 3056 } 3057 3058 OutOfRecordLoop: 3059 3060 // Check the function list for unresolved values. 3061 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3062 if (!A->getParent()) { 3063 // We found at least one unresolved value. Nuke them all to avoid leaks. 3064 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3065 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3066 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3067 delete A; 3068 } 3069 } 3070 return Error(NeverResolvedValueFoundInFunction); 3071 } 3072 } 3073 3074 // FIXME: Check for unresolved forward-declared metadata references 3075 // and clean up leaks. 3076 3077 // See if anything took the address of blocks in this function. If so, 3078 // resolve them now. 3079 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 3080 BlockAddrFwdRefs.find(F); 3081 if (BAFRI != BlockAddrFwdRefs.end()) { 3082 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 3083 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3084 unsigned BlockIdx = RefList[i].first; 3085 if (BlockIdx >= FunctionBBs.size()) 3086 return Error(InvalidID); 3087 3088 GlobalVariable *FwdRef = RefList[i].second; 3089 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3090 FwdRef->eraseFromParent(); 3091 } 3092 3093 BlockAddrFwdRefs.erase(BAFRI); 3094 } 3095 3096 // Trim the value list down to the size it was before we parsed this function. 3097 ValueList.shrinkTo(ModuleValueListSize); 3098 MDValueList.shrinkTo(ModuleMDValueListSize); 3099 std::vector<BasicBlock*>().swap(FunctionBBs); 3100 return error_code::success(); 3101 } 3102 3103 /// Find the function body in the bitcode stream 3104 error_code BitcodeReader::FindFunctionInStream(Function *F, 3105 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 3106 while (DeferredFunctionInfoIterator->second == 0) { 3107 if (Stream.AtEndOfStream()) 3108 return Error(CouldNotFindFunctionInStream); 3109 // ParseModule will parse the next body in the stream and set its 3110 // position in the DeferredFunctionInfo map. 3111 if (error_code EC = ParseModule(true)) 3112 return EC; 3113 } 3114 return error_code::success(); 3115 } 3116 3117 //===----------------------------------------------------------------------===// 3118 // GVMaterializer implementation 3119 //===----------------------------------------------------------------------===// 3120 3121 3122 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3123 if (const Function *F = dyn_cast<Function>(GV)) { 3124 return F->isDeclaration() && 3125 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3126 } 3127 return false; 3128 } 3129 3130 error_code BitcodeReader::Materialize(GlobalValue *GV) { 3131 Function *F = dyn_cast<Function>(GV); 3132 // If it's not a function or is already material, ignore the request. 3133 if (!F || !F->isMaterializable()) 3134 return error_code::success(); 3135 3136 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3137 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3138 // If its position is recorded as 0, its body is somewhere in the stream 3139 // but we haven't seen it yet. 3140 if (DFII->second == 0 && LazyStreamer) 3141 if (error_code EC = FindFunctionInStream(F, DFII)) 3142 return EC; 3143 3144 // Move the bit stream to the saved position of the deferred function body. 3145 Stream.JumpToBit(DFII->second); 3146 3147 if (error_code EC = ParseFunctionBody(F)) 3148 return EC; 3149 3150 // Upgrade any old intrinsic calls in the function. 3151 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3152 E = UpgradedIntrinsics.end(); I != E; ++I) { 3153 if (I->first != I->second) { 3154 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3155 UI != UE;) { 3156 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3157 UpgradeIntrinsicCall(CI, I->second); 3158 } 3159 } 3160 } 3161 3162 return error_code::success(); 3163 } 3164 3165 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3166 const Function *F = dyn_cast<Function>(GV); 3167 if (!F || F->isDeclaration()) 3168 return false; 3169 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3170 } 3171 3172 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3173 Function *F = dyn_cast<Function>(GV); 3174 // If this function isn't dematerializable, this is a noop. 3175 if (!F || !isDematerializable(F)) 3176 return; 3177 3178 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3179 3180 // Just forget the function body, we can remat it later. 3181 F->deleteBody(); 3182 } 3183 3184 3185 error_code BitcodeReader::MaterializeModule(Module *M) { 3186 assert(M == TheModule && 3187 "Can only Materialize the Module this BitcodeReader is attached to."); 3188 // Iterate over the module, deserializing any functions that are still on 3189 // disk. 3190 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3191 F != E; ++F) { 3192 if (F->isMaterializable()) { 3193 if (error_code EC = Materialize(F)) 3194 return EC; 3195 } 3196 } 3197 // At this point, if there are any function bodies, the current bit is 3198 // pointing to the END_BLOCK record after them. Now make sure the rest 3199 // of the bits in the module have been read. 3200 if (NextUnreadBit) 3201 ParseModule(true); 3202 3203 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3204 // delete the old functions to clean up. We can't do this unless the entire 3205 // module is materialized because there could always be another function body 3206 // with calls to the old function. 3207 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3208 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3209 if (I->first != I->second) { 3210 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3211 UI != UE;) { 3212 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3213 UpgradeIntrinsicCall(CI, I->second); 3214 } 3215 if (!I->first->use_empty()) 3216 I->first->replaceAllUsesWith(I->second); 3217 I->first->eraseFromParent(); 3218 } 3219 } 3220 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3221 3222 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3223 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3224 3225 UpgradeDebugInfo(*M); 3226 return error_code::success(); 3227 } 3228 3229 error_code BitcodeReader::InitStream() { 3230 if (LazyStreamer) 3231 return InitLazyStream(); 3232 return InitStreamFromBuffer(); 3233 } 3234 3235 error_code BitcodeReader::InitStreamFromBuffer() { 3236 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3237 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3238 3239 if (Buffer->getBufferSize() & 3) { 3240 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3241 return Error(InvalidBitcodeSignature); 3242 else 3243 return Error(BitcodeStreamInvalidSize); 3244 } 3245 3246 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3247 // The magic number is 0x0B17C0DE stored in little endian. 3248 if (isBitcodeWrapper(BufPtr, BufEnd)) 3249 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3250 return Error(InvalidBitcodeWrapperHeader); 3251 3252 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3253 Stream.init(*StreamFile); 3254 3255 return error_code::success(); 3256 } 3257 3258 error_code BitcodeReader::InitLazyStream() { 3259 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3260 // see it. 3261 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3262 StreamFile.reset(new BitstreamReader(Bytes)); 3263 Stream.init(*StreamFile); 3264 3265 unsigned char buf[16]; 3266 if (Bytes->readBytes(0, 16, buf) == -1) 3267 return Error(BitcodeStreamInvalidSize); 3268 3269 if (!isBitcode(buf, buf + 16)) 3270 return Error(InvalidBitcodeSignature); 3271 3272 if (isBitcodeWrapper(buf, buf + 4)) { 3273 const unsigned char *bitcodeStart = buf; 3274 const unsigned char *bitcodeEnd = buf + 16; 3275 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3276 Bytes->dropLeadingBytes(bitcodeStart - buf); 3277 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3278 } 3279 return error_code::success(); 3280 } 3281 3282 namespace { 3283 class BitcodeErrorCategoryType : public error_category { 3284 const char *name() const override { 3285 return "llvm.bitcode"; 3286 } 3287 std::string message(int IE) const override { 3288 BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE); 3289 switch (E) { 3290 case BitcodeReader::BitcodeStreamInvalidSize: 3291 return "Bitcode stream length should be >= 16 bytes and a multiple of 4"; 3292 case BitcodeReader::ConflictingMETADATA_KINDRecords: 3293 return "Conflicting METADATA_KIND records"; 3294 case BitcodeReader::CouldNotFindFunctionInStream: 3295 return "Could not find function in stream"; 3296 case BitcodeReader::ExpectedConstant: 3297 return "Expected a constant"; 3298 case BitcodeReader::InsufficientFunctionProtos: 3299 return "Insufficient function protos"; 3300 case BitcodeReader::InvalidBitcodeSignature: 3301 return "Invalid bitcode signature"; 3302 case BitcodeReader::InvalidBitcodeWrapperHeader: 3303 return "Invalid bitcode wrapper header"; 3304 case BitcodeReader::InvalidConstantReference: 3305 return "Invalid ronstant reference"; 3306 case BitcodeReader::InvalidID: 3307 return "Invalid ID"; 3308 case BitcodeReader::InvalidInstructionWithNoBB: 3309 return "Invalid instruction with no BB"; 3310 case BitcodeReader::InvalidRecord: 3311 return "Invalid record"; 3312 case BitcodeReader::InvalidTypeForValue: 3313 return "Invalid type for value"; 3314 case BitcodeReader::InvalidTYPETable: 3315 return "Invalid TYPE table"; 3316 case BitcodeReader::InvalidType: 3317 return "Invalid type"; 3318 case BitcodeReader::MalformedBlock: 3319 return "Malformed block"; 3320 case BitcodeReader::MalformedGlobalInitializerSet: 3321 return "Malformed global initializer set"; 3322 case BitcodeReader::InvalidMultipleBlocks: 3323 return "Invalid multiple blocks"; 3324 case BitcodeReader::NeverResolvedValueFoundInFunction: 3325 return "Never resolved value found in function"; 3326 case BitcodeReader::InvalidValue: 3327 return "Invalid value"; 3328 } 3329 llvm_unreachable("Unknown error type!"); 3330 } 3331 }; 3332 } 3333 3334 const error_category &BitcodeReader::BitcodeErrorCategory() { 3335 static BitcodeErrorCategoryType O; 3336 return O; 3337 } 3338 3339 //===----------------------------------------------------------------------===// 3340 // External interface 3341 //===----------------------------------------------------------------------===// 3342 3343 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3344 /// 3345 ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3346 LLVMContext &Context) { 3347 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3348 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3349 M->setMaterializer(R); 3350 if (error_code EC = R->ParseBitcodeInto(M)) { 3351 delete M; // Also deletes R. 3352 return EC; 3353 } 3354 // Have the BitcodeReader dtor delete 'Buffer'. 3355 R->setBufferOwned(true); 3356 3357 R->materializeForwardReferencedFunctions(); 3358 3359 return M; 3360 } 3361 3362 3363 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3364 DataStreamer *streamer, 3365 LLVMContext &Context, 3366 std::string *ErrMsg) { 3367 Module *M = new Module(name, Context); 3368 BitcodeReader *R = new BitcodeReader(streamer, Context); 3369 M->setMaterializer(R); 3370 if (error_code EC = R->ParseBitcodeInto(M)) { 3371 if (ErrMsg) 3372 *ErrMsg = EC.message(); 3373 delete M; // Also deletes R. 3374 return nullptr; 3375 } 3376 R->setBufferOwned(false); // no buffer to delete 3377 return M; 3378 } 3379 3380 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer, 3381 LLVMContext &Context) { 3382 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context); 3383 if (!ModuleOrErr) 3384 return ModuleOrErr; 3385 Module *M = ModuleOrErr.get(); 3386 3387 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3388 // there was an error. 3389 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3390 3391 // Read in the entire module, and destroy the BitcodeReader. 3392 if (error_code EC = M->materializeAllPermanently()) { 3393 delete M; 3394 return EC; 3395 } 3396 3397 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3398 // written. We must defer until the Module has been fully materialized. 3399 3400 return M; 3401 } 3402 3403 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3404 LLVMContext& Context, 3405 std::string *ErrMsg) { 3406 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3407 // Don't let the BitcodeReader dtor delete 'Buffer'. 3408 R->setBufferOwned(false); 3409 3410 std::string Triple(""); 3411 if (error_code EC = R->ParseTriple(Triple)) 3412 if (ErrMsg) 3413 *ErrMsg = EC.message(); 3414 3415 delete R; 3416 return Triple; 3417 } 3418