1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = std::string(ProducerIdentification); 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags( 989 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 990 (RawFlags & 0x4) ? true : false, 991 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 992 } 993 994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 995 switch (Val) { 996 default: // Map unknown visibilities to default. 997 case 0: return GlobalValue::DefaultVisibility; 998 case 1: return GlobalValue::HiddenVisibility; 999 case 2: return GlobalValue::ProtectedVisibility; 1000 } 1001 } 1002 1003 static GlobalValue::DLLStorageClassTypes 1004 getDecodedDLLStorageClass(unsigned Val) { 1005 switch (Val) { 1006 default: // Map unknown values to default. 1007 case 0: return GlobalValue::DefaultStorageClass; 1008 case 1: return GlobalValue::DLLImportStorageClass; 1009 case 2: return GlobalValue::DLLExportStorageClass; 1010 } 1011 } 1012 1013 static bool getDecodedDSOLocal(unsigned Val) { 1014 switch(Val) { 1015 default: // Map unknown values to preemptable. 1016 case 0: return false; 1017 case 1: return true; 1018 } 1019 } 1020 1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1022 switch (Val) { 1023 case 0: return GlobalVariable::NotThreadLocal; 1024 default: // Map unknown non-zero value to general dynamic. 1025 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1026 case 2: return GlobalVariable::LocalDynamicTLSModel; 1027 case 3: return GlobalVariable::InitialExecTLSModel; 1028 case 4: return GlobalVariable::LocalExecTLSModel; 1029 } 1030 } 1031 1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown to UnnamedAddr::None. 1035 case 0: return GlobalVariable::UnnamedAddr::None; 1036 case 1: return GlobalVariable::UnnamedAddr::Global; 1037 case 2: return GlobalVariable::UnnamedAddr::Local; 1038 } 1039 } 1040 1041 static int getDecodedCastOpcode(unsigned Val) { 1042 switch (Val) { 1043 default: return -1; 1044 case bitc::CAST_TRUNC : return Instruction::Trunc; 1045 case bitc::CAST_ZEXT : return Instruction::ZExt; 1046 case bitc::CAST_SEXT : return Instruction::SExt; 1047 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1048 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1049 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1050 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1051 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1052 case bitc::CAST_FPEXT : return Instruction::FPExt; 1053 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1054 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1055 case bitc::CAST_BITCAST : return Instruction::BitCast; 1056 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1057 } 1058 } 1059 1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1061 bool IsFP = Ty->isFPOrFPVectorTy(); 1062 // UnOps are only valid for int/fp or vector of int/fp types 1063 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1064 return -1; 1065 1066 switch (Val) { 1067 default: 1068 return -1; 1069 case bitc::UNOP_FNEG: 1070 return IsFP ? Instruction::FNeg : -1; 1071 } 1072 } 1073 1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1075 bool IsFP = Ty->isFPOrFPVectorTy(); 1076 // BinOps are only valid for int/fp or vector of int/fp types 1077 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1078 return -1; 1079 1080 switch (Val) { 1081 default: 1082 return -1; 1083 case bitc::BINOP_ADD: 1084 return IsFP ? Instruction::FAdd : Instruction::Add; 1085 case bitc::BINOP_SUB: 1086 return IsFP ? Instruction::FSub : Instruction::Sub; 1087 case bitc::BINOP_MUL: 1088 return IsFP ? Instruction::FMul : Instruction::Mul; 1089 case bitc::BINOP_UDIV: 1090 return IsFP ? -1 : Instruction::UDiv; 1091 case bitc::BINOP_SDIV: 1092 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1093 case bitc::BINOP_UREM: 1094 return IsFP ? -1 : Instruction::URem; 1095 case bitc::BINOP_SREM: 1096 return IsFP ? Instruction::FRem : Instruction::SRem; 1097 case bitc::BINOP_SHL: 1098 return IsFP ? -1 : Instruction::Shl; 1099 case bitc::BINOP_LSHR: 1100 return IsFP ? -1 : Instruction::LShr; 1101 case bitc::BINOP_ASHR: 1102 return IsFP ? -1 : Instruction::AShr; 1103 case bitc::BINOP_AND: 1104 return IsFP ? -1 : Instruction::And; 1105 case bitc::BINOP_OR: 1106 return IsFP ? -1 : Instruction::Or; 1107 case bitc::BINOP_XOR: 1108 return IsFP ? -1 : Instruction::Xor; 1109 } 1110 } 1111 1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1113 switch (Val) { 1114 default: return AtomicRMWInst::BAD_BINOP; 1115 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1116 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1117 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1118 case bitc::RMW_AND: return AtomicRMWInst::And; 1119 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1120 case bitc::RMW_OR: return AtomicRMWInst::Or; 1121 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1122 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1123 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1124 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1125 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1126 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1127 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1128 } 1129 } 1130 1131 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1132 switch (Val) { 1133 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1134 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1135 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1136 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1137 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1138 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1139 default: // Map unknown orderings to sequentially-consistent. 1140 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1141 } 1142 } 1143 1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1145 switch (Val) { 1146 default: // Map unknown selection kinds to any. 1147 case bitc::COMDAT_SELECTION_KIND_ANY: 1148 return Comdat::Any; 1149 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1150 return Comdat::ExactMatch; 1151 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1152 return Comdat::Largest; 1153 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1154 return Comdat::NoDuplicates; 1155 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1156 return Comdat::SameSize; 1157 } 1158 } 1159 1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1161 FastMathFlags FMF; 1162 if (0 != (Val & bitc::UnsafeAlgebra)) 1163 FMF.setFast(); 1164 if (0 != (Val & bitc::AllowReassoc)) 1165 FMF.setAllowReassoc(); 1166 if (0 != (Val & bitc::NoNaNs)) 1167 FMF.setNoNaNs(); 1168 if (0 != (Val & bitc::NoInfs)) 1169 FMF.setNoInfs(); 1170 if (0 != (Val & bitc::NoSignedZeros)) 1171 FMF.setNoSignedZeros(); 1172 if (0 != (Val & bitc::AllowReciprocal)) 1173 FMF.setAllowReciprocal(); 1174 if (0 != (Val & bitc::AllowContract)) 1175 FMF.setAllowContract(true); 1176 if (0 != (Val & bitc::ApproxFunc)) 1177 FMF.setApproxFunc(); 1178 return FMF; 1179 } 1180 1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1182 switch (Val) { 1183 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1184 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1185 } 1186 } 1187 1188 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1189 // The type table size is always specified correctly. 1190 if (ID >= TypeList.size()) 1191 return nullptr; 1192 1193 if (Type *Ty = TypeList[ID]) 1194 return Ty; 1195 1196 // If we have a forward reference, the only possible case is when it is to a 1197 // named struct. Just create a placeholder for now. 1198 return TypeList[ID] = createIdentifiedStructType(Context); 1199 } 1200 1201 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1202 StringRef Name) { 1203 auto *Ret = StructType::create(Context, Name); 1204 IdentifiedStructTypes.push_back(Ret); 1205 return Ret; 1206 } 1207 1208 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1209 auto *Ret = StructType::create(Context); 1210 IdentifiedStructTypes.push_back(Ret); 1211 return Ret; 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // Functions for parsing blocks from the bitcode file 1216 //===----------------------------------------------------------------------===// 1217 1218 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1219 switch (Val) { 1220 case Attribute::EndAttrKinds: 1221 case Attribute::EmptyKey: 1222 case Attribute::TombstoneKey: 1223 llvm_unreachable("Synthetic enumerators which should never get here"); 1224 1225 case Attribute::None: return 0; 1226 case Attribute::ZExt: return 1 << 0; 1227 case Attribute::SExt: return 1 << 1; 1228 case Attribute::NoReturn: return 1 << 2; 1229 case Attribute::InReg: return 1 << 3; 1230 case Attribute::StructRet: return 1 << 4; 1231 case Attribute::NoUnwind: return 1 << 5; 1232 case Attribute::NoAlias: return 1 << 6; 1233 case Attribute::ByVal: return 1 << 7; 1234 case Attribute::Nest: return 1 << 8; 1235 case Attribute::ReadNone: return 1 << 9; 1236 case Attribute::ReadOnly: return 1 << 10; 1237 case Attribute::NoInline: return 1 << 11; 1238 case Attribute::AlwaysInline: return 1 << 12; 1239 case Attribute::OptimizeForSize: return 1 << 13; 1240 case Attribute::StackProtect: return 1 << 14; 1241 case Attribute::StackProtectReq: return 1 << 15; 1242 case Attribute::Alignment: return 31 << 16; 1243 case Attribute::NoCapture: return 1 << 21; 1244 case Attribute::NoRedZone: return 1 << 22; 1245 case Attribute::NoImplicitFloat: return 1 << 23; 1246 case Attribute::Naked: return 1 << 24; 1247 case Attribute::InlineHint: return 1 << 25; 1248 case Attribute::StackAlignment: return 7 << 26; 1249 case Attribute::ReturnsTwice: return 1 << 29; 1250 case Attribute::UWTable: return 1 << 30; 1251 case Attribute::NonLazyBind: return 1U << 31; 1252 case Attribute::SanitizeAddress: return 1ULL << 32; 1253 case Attribute::MinSize: return 1ULL << 33; 1254 case Attribute::NoDuplicate: return 1ULL << 34; 1255 case Attribute::StackProtectStrong: return 1ULL << 35; 1256 case Attribute::SanitizeThread: return 1ULL << 36; 1257 case Attribute::SanitizeMemory: return 1ULL << 37; 1258 case Attribute::NoBuiltin: return 1ULL << 38; 1259 case Attribute::Returned: return 1ULL << 39; 1260 case Attribute::Cold: return 1ULL << 40; 1261 case Attribute::Builtin: return 1ULL << 41; 1262 case Attribute::OptimizeNone: return 1ULL << 42; 1263 case Attribute::InAlloca: return 1ULL << 43; 1264 case Attribute::NonNull: return 1ULL << 44; 1265 case Attribute::JumpTable: return 1ULL << 45; 1266 case Attribute::Convergent: return 1ULL << 46; 1267 case Attribute::SafeStack: return 1ULL << 47; 1268 case Attribute::NoRecurse: return 1ULL << 48; 1269 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1270 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1271 case Attribute::SwiftSelf: return 1ULL << 51; 1272 case Attribute::SwiftError: return 1ULL << 52; 1273 case Attribute::WriteOnly: return 1ULL << 53; 1274 case Attribute::Speculatable: return 1ULL << 54; 1275 case Attribute::StrictFP: return 1ULL << 55; 1276 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1277 case Attribute::NoCfCheck: return 1ULL << 57; 1278 case Attribute::OptForFuzzing: return 1ULL << 58; 1279 case Attribute::ShadowCallStack: return 1ULL << 59; 1280 case Attribute::SpeculativeLoadHardening: 1281 return 1ULL << 60; 1282 case Attribute::ImmArg: 1283 return 1ULL << 61; 1284 case Attribute::WillReturn: 1285 return 1ULL << 62; 1286 case Attribute::NoFree: 1287 return 1ULL << 63; 1288 case Attribute::NoSync: 1289 llvm_unreachable("nosync attribute not supported in raw format"); 1290 break; 1291 case Attribute::Dereferenceable: 1292 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1293 break; 1294 case Attribute::DereferenceableOrNull: 1295 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1296 "format"); 1297 break; 1298 case Attribute::ArgMemOnly: 1299 llvm_unreachable("argmemonly attribute not supported in raw format"); 1300 break; 1301 case Attribute::AllocSize: 1302 llvm_unreachable("allocsize not supported in raw format"); 1303 break; 1304 case Attribute::SanitizeMemTag: 1305 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1306 break; 1307 } 1308 llvm_unreachable("Unsupported attribute type"); 1309 } 1310 1311 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1312 if (!Val) return; 1313 1314 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1315 I = Attribute::AttrKind(I + 1)) { 1316 if (I == Attribute::SanitizeMemTag || 1317 I == Attribute::Dereferenceable || 1318 I == Attribute::DereferenceableOrNull || 1319 I == Attribute::ArgMemOnly || 1320 I == Attribute::AllocSize || 1321 I == Attribute::NoSync) 1322 continue; 1323 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1324 if (I == Attribute::Alignment) 1325 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1326 else if (I == Attribute::StackAlignment) 1327 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1328 else 1329 B.addAttribute(I); 1330 } 1331 } 1332 } 1333 1334 /// This fills an AttrBuilder object with the LLVM attributes that have 1335 /// been decoded from the given integer. This function must stay in sync with 1336 /// 'encodeLLVMAttributesForBitcode'. 1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1338 uint64_t EncodedAttrs) { 1339 // FIXME: Remove in 4.0. 1340 1341 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1342 // the bits above 31 down by 11 bits. 1343 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1344 assert((!Alignment || isPowerOf2_32(Alignment)) && 1345 "Alignment must be a power of two."); 1346 1347 if (Alignment) 1348 B.addAlignmentAttr(Alignment); 1349 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1350 (EncodedAttrs & 0xffff)); 1351 } 1352 1353 Error BitcodeReader::parseAttributeBlock() { 1354 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1355 return Err; 1356 1357 if (!MAttributes.empty()) 1358 return error("Invalid multiple blocks"); 1359 1360 SmallVector<uint64_t, 64> Record; 1361 1362 SmallVector<AttributeList, 8> Attrs; 1363 1364 // Read all the records. 1365 while (true) { 1366 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1367 if (!MaybeEntry) 1368 return MaybeEntry.takeError(); 1369 BitstreamEntry Entry = MaybeEntry.get(); 1370 1371 switch (Entry.Kind) { 1372 case BitstreamEntry::SubBlock: // Handled for us already. 1373 case BitstreamEntry::Error: 1374 return error("Malformed block"); 1375 case BitstreamEntry::EndBlock: 1376 return Error::success(); 1377 case BitstreamEntry::Record: 1378 // The interesting case. 1379 break; 1380 } 1381 1382 // Read a record. 1383 Record.clear(); 1384 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1385 if (!MaybeRecord) 1386 return MaybeRecord.takeError(); 1387 switch (MaybeRecord.get()) { 1388 default: // Default behavior: ignore. 1389 break; 1390 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1391 // FIXME: Remove in 4.0. 1392 if (Record.size() & 1) 1393 return error("Invalid record"); 1394 1395 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1396 AttrBuilder B; 1397 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1398 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1399 } 1400 1401 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1402 Attrs.clear(); 1403 break; 1404 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1405 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1406 Attrs.push_back(MAttributeGroups[Record[i]]); 1407 1408 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1409 Attrs.clear(); 1410 break; 1411 } 1412 } 1413 } 1414 1415 // Returns Attribute::None on unrecognized codes. 1416 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1417 switch (Code) { 1418 default: 1419 return Attribute::None; 1420 case bitc::ATTR_KIND_ALIGNMENT: 1421 return Attribute::Alignment; 1422 case bitc::ATTR_KIND_ALWAYS_INLINE: 1423 return Attribute::AlwaysInline; 1424 case bitc::ATTR_KIND_ARGMEMONLY: 1425 return Attribute::ArgMemOnly; 1426 case bitc::ATTR_KIND_BUILTIN: 1427 return Attribute::Builtin; 1428 case bitc::ATTR_KIND_BY_VAL: 1429 return Attribute::ByVal; 1430 case bitc::ATTR_KIND_IN_ALLOCA: 1431 return Attribute::InAlloca; 1432 case bitc::ATTR_KIND_COLD: 1433 return Attribute::Cold; 1434 case bitc::ATTR_KIND_CONVERGENT: 1435 return Attribute::Convergent; 1436 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1437 return Attribute::InaccessibleMemOnly; 1438 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1439 return Attribute::InaccessibleMemOrArgMemOnly; 1440 case bitc::ATTR_KIND_INLINE_HINT: 1441 return Attribute::InlineHint; 1442 case bitc::ATTR_KIND_IN_REG: 1443 return Attribute::InReg; 1444 case bitc::ATTR_KIND_JUMP_TABLE: 1445 return Attribute::JumpTable; 1446 case bitc::ATTR_KIND_MIN_SIZE: 1447 return Attribute::MinSize; 1448 case bitc::ATTR_KIND_NAKED: 1449 return Attribute::Naked; 1450 case bitc::ATTR_KIND_NEST: 1451 return Attribute::Nest; 1452 case bitc::ATTR_KIND_NO_ALIAS: 1453 return Attribute::NoAlias; 1454 case bitc::ATTR_KIND_NO_BUILTIN: 1455 return Attribute::NoBuiltin; 1456 case bitc::ATTR_KIND_NO_CAPTURE: 1457 return Attribute::NoCapture; 1458 case bitc::ATTR_KIND_NO_DUPLICATE: 1459 return Attribute::NoDuplicate; 1460 case bitc::ATTR_KIND_NOFREE: 1461 return Attribute::NoFree; 1462 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1463 return Attribute::NoImplicitFloat; 1464 case bitc::ATTR_KIND_NO_INLINE: 1465 return Attribute::NoInline; 1466 case bitc::ATTR_KIND_NO_RECURSE: 1467 return Attribute::NoRecurse; 1468 case bitc::ATTR_KIND_NON_LAZY_BIND: 1469 return Attribute::NonLazyBind; 1470 case bitc::ATTR_KIND_NON_NULL: 1471 return Attribute::NonNull; 1472 case bitc::ATTR_KIND_DEREFERENCEABLE: 1473 return Attribute::Dereferenceable; 1474 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1475 return Attribute::DereferenceableOrNull; 1476 case bitc::ATTR_KIND_ALLOC_SIZE: 1477 return Attribute::AllocSize; 1478 case bitc::ATTR_KIND_NO_RED_ZONE: 1479 return Attribute::NoRedZone; 1480 case bitc::ATTR_KIND_NO_RETURN: 1481 return Attribute::NoReturn; 1482 case bitc::ATTR_KIND_NOSYNC: 1483 return Attribute::NoSync; 1484 case bitc::ATTR_KIND_NOCF_CHECK: 1485 return Attribute::NoCfCheck; 1486 case bitc::ATTR_KIND_NO_UNWIND: 1487 return Attribute::NoUnwind; 1488 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1489 return Attribute::OptForFuzzing; 1490 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1491 return Attribute::OptimizeForSize; 1492 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1493 return Attribute::OptimizeNone; 1494 case bitc::ATTR_KIND_READ_NONE: 1495 return Attribute::ReadNone; 1496 case bitc::ATTR_KIND_READ_ONLY: 1497 return Attribute::ReadOnly; 1498 case bitc::ATTR_KIND_RETURNED: 1499 return Attribute::Returned; 1500 case bitc::ATTR_KIND_RETURNS_TWICE: 1501 return Attribute::ReturnsTwice; 1502 case bitc::ATTR_KIND_S_EXT: 1503 return Attribute::SExt; 1504 case bitc::ATTR_KIND_SPECULATABLE: 1505 return Attribute::Speculatable; 1506 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1507 return Attribute::StackAlignment; 1508 case bitc::ATTR_KIND_STACK_PROTECT: 1509 return Attribute::StackProtect; 1510 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1511 return Attribute::StackProtectReq; 1512 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1513 return Attribute::StackProtectStrong; 1514 case bitc::ATTR_KIND_SAFESTACK: 1515 return Attribute::SafeStack; 1516 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1517 return Attribute::ShadowCallStack; 1518 case bitc::ATTR_KIND_STRICT_FP: 1519 return Attribute::StrictFP; 1520 case bitc::ATTR_KIND_STRUCT_RET: 1521 return Attribute::StructRet; 1522 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1523 return Attribute::SanitizeAddress; 1524 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1525 return Attribute::SanitizeHWAddress; 1526 case bitc::ATTR_KIND_SANITIZE_THREAD: 1527 return Attribute::SanitizeThread; 1528 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1529 return Attribute::SanitizeMemory; 1530 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1531 return Attribute::SpeculativeLoadHardening; 1532 case bitc::ATTR_KIND_SWIFT_ERROR: 1533 return Attribute::SwiftError; 1534 case bitc::ATTR_KIND_SWIFT_SELF: 1535 return Attribute::SwiftSelf; 1536 case bitc::ATTR_KIND_UW_TABLE: 1537 return Attribute::UWTable; 1538 case bitc::ATTR_KIND_WILLRETURN: 1539 return Attribute::WillReturn; 1540 case bitc::ATTR_KIND_WRITEONLY: 1541 return Attribute::WriteOnly; 1542 case bitc::ATTR_KIND_Z_EXT: 1543 return Attribute::ZExt; 1544 case bitc::ATTR_KIND_IMMARG: 1545 return Attribute::ImmArg; 1546 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1547 return Attribute::SanitizeMemTag; 1548 } 1549 } 1550 1551 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1552 MaybeAlign &Alignment) { 1553 // Note: Alignment in bitcode files is incremented by 1, so that zero 1554 // can be used for default alignment. 1555 if (Exponent > Value::MaxAlignmentExponent + 1) 1556 return error("Invalid alignment value"); 1557 Alignment = decodeMaybeAlign(Exponent); 1558 return Error::success(); 1559 } 1560 1561 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1562 *Kind = getAttrFromCode(Code); 1563 if (*Kind == Attribute::None) 1564 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1565 return Error::success(); 1566 } 1567 1568 Error BitcodeReader::parseAttributeGroupBlock() { 1569 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1570 return Err; 1571 1572 if (!MAttributeGroups.empty()) 1573 return error("Invalid multiple blocks"); 1574 1575 SmallVector<uint64_t, 64> Record; 1576 1577 // Read all the records. 1578 while (true) { 1579 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1580 if (!MaybeEntry) 1581 return MaybeEntry.takeError(); 1582 BitstreamEntry Entry = MaybeEntry.get(); 1583 1584 switch (Entry.Kind) { 1585 case BitstreamEntry::SubBlock: // Handled for us already. 1586 case BitstreamEntry::Error: 1587 return error("Malformed block"); 1588 case BitstreamEntry::EndBlock: 1589 return Error::success(); 1590 case BitstreamEntry::Record: 1591 // The interesting case. 1592 break; 1593 } 1594 1595 // Read a record. 1596 Record.clear(); 1597 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1598 if (!MaybeRecord) 1599 return MaybeRecord.takeError(); 1600 switch (MaybeRecord.get()) { 1601 default: // Default behavior: ignore. 1602 break; 1603 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1604 if (Record.size() < 3) 1605 return error("Invalid record"); 1606 1607 uint64_t GrpID = Record[0]; 1608 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1609 1610 AttrBuilder B; 1611 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1612 if (Record[i] == 0) { // Enum attribute 1613 Attribute::AttrKind Kind; 1614 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1615 return Err; 1616 1617 // Upgrade old-style byval attribute to one with a type, even if it's 1618 // nullptr. We will have to insert the real type when we associate 1619 // this AttributeList with a function. 1620 if (Kind == Attribute::ByVal) 1621 B.addByValAttr(nullptr); 1622 1623 B.addAttribute(Kind); 1624 } else if (Record[i] == 1) { // Integer attribute 1625 Attribute::AttrKind Kind; 1626 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1627 return Err; 1628 if (Kind == Attribute::Alignment) 1629 B.addAlignmentAttr(Record[++i]); 1630 else if (Kind == Attribute::StackAlignment) 1631 B.addStackAlignmentAttr(Record[++i]); 1632 else if (Kind == Attribute::Dereferenceable) 1633 B.addDereferenceableAttr(Record[++i]); 1634 else if (Kind == Attribute::DereferenceableOrNull) 1635 B.addDereferenceableOrNullAttr(Record[++i]); 1636 else if (Kind == Attribute::AllocSize) 1637 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1638 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1639 bool HasValue = (Record[i++] == 4); 1640 SmallString<64> KindStr; 1641 SmallString<64> ValStr; 1642 1643 while (Record[i] != 0 && i != e) 1644 KindStr += Record[i++]; 1645 assert(Record[i] == 0 && "Kind string not null terminated"); 1646 1647 if (HasValue) { 1648 // Has a value associated with it. 1649 ++i; // Skip the '0' that terminates the "kind" string. 1650 while (Record[i] != 0 && i != e) 1651 ValStr += Record[i++]; 1652 assert(Record[i] == 0 && "Value string not null terminated"); 1653 } 1654 1655 B.addAttribute(KindStr.str(), ValStr.str()); 1656 } else { 1657 assert((Record[i] == 5 || Record[i] == 6) && 1658 "Invalid attribute group entry"); 1659 bool HasType = Record[i] == 6; 1660 Attribute::AttrKind Kind; 1661 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1662 return Err; 1663 if (Kind == Attribute::ByVal) 1664 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } 1666 } 1667 1668 UpgradeFramePointerAttributes(B); 1669 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 Error BitcodeReader::parseTypeTable() { 1677 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1678 return Err; 1679 1680 return parseTypeTableBody(); 1681 } 1682 1683 Error BitcodeReader::parseTypeTableBody() { 1684 if (!TypeList.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 unsigned NumRecords = 0; 1689 1690 SmallString<64> TypeName; 1691 1692 // Read all the records for this type table. 1693 while (true) { 1694 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1695 if (!MaybeEntry) 1696 return MaybeEntry.takeError(); 1697 BitstreamEntry Entry = MaybeEntry.get(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 if (NumRecords != TypeList.size()) 1705 return error("Malformed block"); 1706 return Error::success(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Read a record. 1713 Record.clear(); 1714 Type *ResultTy = nullptr; 1715 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1716 if (!MaybeRecord) 1717 return MaybeRecord.takeError(); 1718 switch (MaybeRecord.get()) { 1719 default: 1720 return error("Invalid value"); 1721 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1722 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1723 // type list. This allows us to reserve space. 1724 if (Record.size() < 1) 1725 return error("Invalid record"); 1726 TypeList.resize(Record[0]); 1727 continue; 1728 case bitc::TYPE_CODE_VOID: // VOID 1729 ResultTy = Type::getVoidTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_HALF: // HALF 1732 ResultTy = Type::getHalfTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_FLOAT: // FLOAT 1735 ResultTy = Type::getFloatTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1738 ResultTy = Type::getDoubleTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1741 ResultTy = Type::getX86_FP80Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_FP128: // FP128 1744 ResultTy = Type::getFP128Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1747 ResultTy = Type::getPPC_FP128Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_LABEL: // LABEL 1750 ResultTy = Type::getLabelTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_METADATA: // METADATA 1753 ResultTy = Type::getMetadataTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1756 ResultTy = Type::getX86_MMXTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_TOKEN: // TOKEN 1759 ResultTy = Type::getTokenTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1762 if (Record.size() < 1) 1763 return error("Invalid record"); 1764 1765 uint64_t NumBits = Record[0]; 1766 if (NumBits < IntegerType::MIN_INT_BITS || 1767 NumBits > IntegerType::MAX_INT_BITS) 1768 return error("Bitwidth for integer type out of range"); 1769 ResultTy = IntegerType::get(Context, NumBits); 1770 break; 1771 } 1772 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1773 // [pointee type, address space] 1774 if (Record.size() < 1) 1775 return error("Invalid record"); 1776 unsigned AddressSpace = 0; 1777 if (Record.size() == 2) 1778 AddressSpace = Record[1]; 1779 ResultTy = getTypeByID(Record[0]); 1780 if (!ResultTy || 1781 !PointerType::isValidElementType(ResultTy)) 1782 return error("Invalid type"); 1783 ResultTy = PointerType::get(ResultTy, AddressSpace); 1784 break; 1785 } 1786 case bitc::TYPE_CODE_FUNCTION_OLD: { 1787 // FIXME: attrid is dead, remove it in LLVM 4.0 1788 // FUNCTION: [vararg, attrid, retty, paramty x N] 1789 if (Record.size() < 3) 1790 return error("Invalid record"); 1791 SmallVector<Type*, 8> ArgTys; 1792 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1793 if (Type *T = getTypeByID(Record[i])) 1794 ArgTys.push_back(T); 1795 else 1796 break; 1797 } 1798 1799 ResultTy = getTypeByID(Record[2]); 1800 if (!ResultTy || ArgTys.size() < Record.size()-3) 1801 return error("Invalid type"); 1802 1803 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1804 break; 1805 } 1806 case bitc::TYPE_CODE_FUNCTION: { 1807 // FUNCTION: [vararg, retty, paramty x N] 1808 if (Record.size() < 2) 1809 return error("Invalid record"); 1810 SmallVector<Type*, 8> ArgTys; 1811 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1812 if (Type *T = getTypeByID(Record[i])) { 1813 if (!FunctionType::isValidArgumentType(T)) 1814 return error("Invalid function argument type"); 1815 ArgTys.push_back(T); 1816 } 1817 else 1818 break; 1819 } 1820 1821 ResultTy = getTypeByID(Record[1]); 1822 if (!ResultTy || ArgTys.size() < Record.size()-2) 1823 return error("Invalid type"); 1824 1825 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1826 break; 1827 } 1828 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1829 if (Record.size() < 1) 1830 return error("Invalid record"); 1831 SmallVector<Type*, 8> EltTys; 1832 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1833 if (Type *T = getTypeByID(Record[i])) 1834 EltTys.push_back(T); 1835 else 1836 break; 1837 } 1838 if (EltTys.size() != Record.size()-1) 1839 return error("Invalid type"); 1840 ResultTy = StructType::get(Context, EltTys, Record[0]); 1841 break; 1842 } 1843 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1844 if (convertToString(Record, 0, TypeName)) 1845 return error("Invalid record"); 1846 continue; 1847 1848 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1849 if (Record.size() < 1) 1850 return error("Invalid record"); 1851 1852 if (NumRecords >= TypeList.size()) 1853 return error("Invalid TYPE table"); 1854 1855 // Check to see if this was forward referenced, if so fill in the temp. 1856 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1857 if (Res) { 1858 Res->setName(TypeName); 1859 TypeList[NumRecords] = nullptr; 1860 } else // Otherwise, create a new struct. 1861 Res = createIdentifiedStructType(Context, TypeName); 1862 TypeName.clear(); 1863 1864 SmallVector<Type*, 8> EltTys; 1865 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1866 if (Type *T = getTypeByID(Record[i])) 1867 EltTys.push_back(T); 1868 else 1869 break; 1870 } 1871 if (EltTys.size() != Record.size()-1) 1872 return error("Invalid record"); 1873 Res->setBody(EltTys, Record[0]); 1874 ResultTy = Res; 1875 break; 1876 } 1877 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1878 if (Record.size() != 1) 1879 return error("Invalid record"); 1880 1881 if (NumRecords >= TypeList.size()) 1882 return error("Invalid TYPE table"); 1883 1884 // Check to see if this was forward referenced, if so fill in the temp. 1885 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1886 if (Res) { 1887 Res->setName(TypeName); 1888 TypeList[NumRecords] = nullptr; 1889 } else // Otherwise, create a new struct with no body. 1890 Res = createIdentifiedStructType(Context, TypeName); 1891 TypeName.clear(); 1892 ResultTy = Res; 1893 break; 1894 } 1895 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1896 if (Record.size() < 2) 1897 return error("Invalid record"); 1898 ResultTy = getTypeByID(Record[1]); 1899 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1900 return error("Invalid type"); 1901 ResultTy = ArrayType::get(ResultTy, Record[0]); 1902 break; 1903 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1904 // [numelts, eltty, scalable] 1905 if (Record.size() < 2) 1906 return error("Invalid record"); 1907 if (Record[0] == 0) 1908 return error("Invalid vector length"); 1909 ResultTy = getTypeByID(Record[1]); 1910 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1911 return error("Invalid type"); 1912 bool Scalable = Record.size() > 2 ? Record[2] : false; 1913 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1914 break; 1915 } 1916 1917 if (NumRecords >= TypeList.size()) 1918 return error("Invalid TYPE table"); 1919 if (TypeList[NumRecords]) 1920 return error( 1921 "Invalid TYPE table: Only named structs can be forward referenced"); 1922 assert(ResultTy && "Didn't read a type?"); 1923 TypeList[NumRecords++] = ResultTy; 1924 } 1925 } 1926 1927 Error BitcodeReader::parseOperandBundleTags() { 1928 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1929 return Err; 1930 1931 if (!BundleTags.empty()) 1932 return error("Invalid multiple blocks"); 1933 1934 SmallVector<uint64_t, 64> Record; 1935 1936 while (true) { 1937 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1938 if (!MaybeEntry) 1939 return MaybeEntry.takeError(); 1940 BitstreamEntry Entry = MaybeEntry.get(); 1941 1942 switch (Entry.Kind) { 1943 case BitstreamEntry::SubBlock: // Handled for us already. 1944 case BitstreamEntry::Error: 1945 return error("Malformed block"); 1946 case BitstreamEntry::EndBlock: 1947 return Error::success(); 1948 case BitstreamEntry::Record: 1949 // The interesting case. 1950 break; 1951 } 1952 1953 // Tags are implicitly mapped to integers by their order. 1954 1955 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1956 if (!MaybeRecord) 1957 return MaybeRecord.takeError(); 1958 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1959 return error("Invalid record"); 1960 1961 // OPERAND_BUNDLE_TAG: [strchr x N] 1962 BundleTags.emplace_back(); 1963 if (convertToString(Record, 0, BundleTags.back())) 1964 return error("Invalid record"); 1965 Record.clear(); 1966 } 1967 } 1968 1969 Error BitcodeReader::parseSyncScopeNames() { 1970 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1971 return Err; 1972 1973 if (!SSIDs.empty()) 1974 return error("Invalid multiple synchronization scope names blocks"); 1975 1976 SmallVector<uint64_t, 64> Record; 1977 while (true) { 1978 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1979 if (!MaybeEntry) 1980 return MaybeEntry.takeError(); 1981 BitstreamEntry Entry = MaybeEntry.get(); 1982 1983 switch (Entry.Kind) { 1984 case BitstreamEntry::SubBlock: // Handled for us already. 1985 case BitstreamEntry::Error: 1986 return error("Malformed block"); 1987 case BitstreamEntry::EndBlock: 1988 if (SSIDs.empty()) 1989 return error("Invalid empty synchronization scope names block"); 1990 return Error::success(); 1991 case BitstreamEntry::Record: 1992 // The interesting case. 1993 break; 1994 } 1995 1996 // Synchronization scope names are implicitly mapped to synchronization 1997 // scope IDs by their order. 1998 1999 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2000 if (!MaybeRecord) 2001 return MaybeRecord.takeError(); 2002 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2003 return error("Invalid record"); 2004 2005 SmallString<16> SSN; 2006 if (convertToString(Record, 0, SSN)) 2007 return error("Invalid record"); 2008 2009 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2010 Record.clear(); 2011 } 2012 } 2013 2014 /// Associate a value with its name from the given index in the provided record. 2015 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2016 unsigned NameIndex, Triple &TT) { 2017 SmallString<128> ValueName; 2018 if (convertToString(Record, NameIndex, ValueName)) 2019 return error("Invalid record"); 2020 unsigned ValueID = Record[0]; 2021 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2022 return error("Invalid record"); 2023 Value *V = ValueList[ValueID]; 2024 2025 StringRef NameStr(ValueName.data(), ValueName.size()); 2026 if (NameStr.find_first_of(0) != StringRef::npos) 2027 return error("Invalid value name"); 2028 V->setName(NameStr); 2029 auto *GO = dyn_cast<GlobalObject>(V); 2030 if (GO) { 2031 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2032 if (TT.supportsCOMDAT()) 2033 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2034 else 2035 GO->setComdat(nullptr); 2036 } 2037 } 2038 return V; 2039 } 2040 2041 /// Helper to note and return the current location, and jump to the given 2042 /// offset. 2043 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2044 BitstreamCursor &Stream) { 2045 // Save the current parsing location so we can jump back at the end 2046 // of the VST read. 2047 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2048 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2049 return std::move(JumpFailed); 2050 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2051 if (!MaybeEntry) 2052 return MaybeEntry.takeError(); 2053 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2054 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2055 return CurrentBit; 2056 } 2057 2058 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2059 Function *F, 2060 ArrayRef<uint64_t> Record) { 2061 // Note that we subtract 1 here because the offset is relative to one word 2062 // before the start of the identification or module block, which was 2063 // historically always the start of the regular bitcode header. 2064 uint64_t FuncWordOffset = Record[1] - 1; 2065 uint64_t FuncBitOffset = FuncWordOffset * 32; 2066 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2067 // Set the LastFunctionBlockBit to point to the last function block. 2068 // Later when parsing is resumed after function materialization, 2069 // we can simply skip that last function block. 2070 if (FuncBitOffset > LastFunctionBlockBit) 2071 LastFunctionBlockBit = FuncBitOffset; 2072 } 2073 2074 /// Read a new-style GlobalValue symbol table. 2075 Error BitcodeReader::parseGlobalValueSymbolTable() { 2076 unsigned FuncBitcodeOffsetDelta = 2077 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2078 2079 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2080 return Err; 2081 2082 SmallVector<uint64_t, 64> Record; 2083 while (true) { 2084 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2085 if (!MaybeEntry) 2086 return MaybeEntry.takeError(); 2087 BitstreamEntry Entry = MaybeEntry.get(); 2088 2089 switch (Entry.Kind) { 2090 case BitstreamEntry::SubBlock: 2091 case BitstreamEntry::Error: 2092 return error("Malformed block"); 2093 case BitstreamEntry::EndBlock: 2094 return Error::success(); 2095 case BitstreamEntry::Record: 2096 break; 2097 } 2098 2099 Record.clear(); 2100 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2101 if (!MaybeRecord) 2102 return MaybeRecord.takeError(); 2103 switch (MaybeRecord.get()) { 2104 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2105 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2106 cast<Function>(ValueList[Record[0]]), Record); 2107 break; 2108 } 2109 } 2110 } 2111 2112 /// Parse the value symbol table at either the current parsing location or 2113 /// at the given bit offset if provided. 2114 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2115 uint64_t CurrentBit; 2116 // Pass in the Offset to distinguish between calling for the module-level 2117 // VST (where we want to jump to the VST offset) and the function-level 2118 // VST (where we don't). 2119 if (Offset > 0) { 2120 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2121 if (!MaybeCurrentBit) 2122 return MaybeCurrentBit.takeError(); 2123 CurrentBit = MaybeCurrentBit.get(); 2124 // If this module uses a string table, read this as a module-level VST. 2125 if (UseStrtab) { 2126 if (Error Err = parseGlobalValueSymbolTable()) 2127 return Err; 2128 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2129 return JumpFailed; 2130 return Error::success(); 2131 } 2132 // Otherwise, the VST will be in a similar format to a function-level VST, 2133 // and will contain symbol names. 2134 } 2135 2136 // Compute the delta between the bitcode indices in the VST (the word offset 2137 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2138 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2139 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2140 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2141 // just before entering the VST subblock because: 1) the EnterSubBlock 2142 // changes the AbbrevID width; 2) the VST block is nested within the same 2143 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2144 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2145 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2146 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2147 unsigned FuncBitcodeOffsetDelta = 2148 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2149 2150 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2151 return Err; 2152 2153 SmallVector<uint64_t, 64> Record; 2154 2155 Triple TT(TheModule->getTargetTriple()); 2156 2157 // Read all the records for this value table. 2158 SmallString<128> ValueName; 2159 2160 while (true) { 2161 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2162 if (!MaybeEntry) 2163 return MaybeEntry.takeError(); 2164 BitstreamEntry Entry = MaybeEntry.get(); 2165 2166 switch (Entry.Kind) { 2167 case BitstreamEntry::SubBlock: // Handled for us already. 2168 case BitstreamEntry::Error: 2169 return error("Malformed block"); 2170 case BitstreamEntry::EndBlock: 2171 if (Offset > 0) 2172 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2173 return JumpFailed; 2174 return Error::success(); 2175 case BitstreamEntry::Record: 2176 // The interesting case. 2177 break; 2178 } 2179 2180 // Read a record. 2181 Record.clear(); 2182 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2183 if (!MaybeRecord) 2184 return MaybeRecord.takeError(); 2185 switch (MaybeRecord.get()) { 2186 default: // Default behavior: unknown type. 2187 break; 2188 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2189 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2190 if (Error Err = ValOrErr.takeError()) 2191 return Err; 2192 ValOrErr.get(); 2193 break; 2194 } 2195 case bitc::VST_CODE_FNENTRY: { 2196 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2197 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2198 if (Error Err = ValOrErr.takeError()) 2199 return Err; 2200 Value *V = ValOrErr.get(); 2201 2202 // Ignore function offsets emitted for aliases of functions in older 2203 // versions of LLVM. 2204 if (auto *F = dyn_cast<Function>(V)) 2205 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2206 break; 2207 } 2208 case bitc::VST_CODE_BBENTRY: { 2209 if (convertToString(Record, 1, ValueName)) 2210 return error("Invalid record"); 2211 BasicBlock *BB = getBasicBlock(Record[0]); 2212 if (!BB) 2213 return error("Invalid record"); 2214 2215 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2216 ValueName.clear(); 2217 break; 2218 } 2219 } 2220 } 2221 } 2222 2223 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2224 /// encoding. 2225 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2226 if ((V & 1) == 0) 2227 return V >> 1; 2228 if (V != 1) 2229 return -(V >> 1); 2230 // There is no such thing as -0 with integers. "-0" really means MININT. 2231 return 1ULL << 63; 2232 } 2233 2234 /// Resolve all of the initializers for global values and aliases that we can. 2235 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2236 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2237 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2238 IndirectSymbolInitWorklist; 2239 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2240 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2242 2243 GlobalInitWorklist.swap(GlobalInits); 2244 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2245 FunctionPrefixWorklist.swap(FunctionPrefixes); 2246 FunctionPrologueWorklist.swap(FunctionPrologues); 2247 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2248 2249 while (!GlobalInitWorklist.empty()) { 2250 unsigned ValID = GlobalInitWorklist.back().second; 2251 if (ValID >= ValueList.size()) { 2252 // Not ready to resolve this yet, it requires something later in the file. 2253 GlobalInits.push_back(GlobalInitWorklist.back()); 2254 } else { 2255 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2256 GlobalInitWorklist.back().first->setInitializer(C); 2257 else 2258 return error("Expected a constant"); 2259 } 2260 GlobalInitWorklist.pop_back(); 2261 } 2262 2263 while (!IndirectSymbolInitWorklist.empty()) { 2264 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2265 if (ValID >= ValueList.size()) { 2266 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2267 } else { 2268 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2269 if (!C) 2270 return error("Expected a constant"); 2271 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2272 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2273 return error("Alias and aliasee types don't match"); 2274 GIS->setIndirectSymbol(C); 2275 } 2276 IndirectSymbolInitWorklist.pop_back(); 2277 } 2278 2279 while (!FunctionPrefixWorklist.empty()) { 2280 unsigned ValID = FunctionPrefixWorklist.back().second; 2281 if (ValID >= ValueList.size()) { 2282 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2283 } else { 2284 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2285 FunctionPrefixWorklist.back().first->setPrefixData(C); 2286 else 2287 return error("Expected a constant"); 2288 } 2289 FunctionPrefixWorklist.pop_back(); 2290 } 2291 2292 while (!FunctionPrologueWorklist.empty()) { 2293 unsigned ValID = FunctionPrologueWorklist.back().second; 2294 if (ValID >= ValueList.size()) { 2295 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2296 } else { 2297 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2298 FunctionPrologueWorklist.back().first->setPrologueData(C); 2299 else 2300 return error("Expected a constant"); 2301 } 2302 FunctionPrologueWorklist.pop_back(); 2303 } 2304 2305 while (!FunctionPersonalityFnWorklist.empty()) { 2306 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2307 if (ValID >= ValueList.size()) { 2308 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2309 } else { 2310 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2311 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2312 else 2313 return error("Expected a constant"); 2314 } 2315 FunctionPersonalityFnWorklist.pop_back(); 2316 } 2317 2318 return Error::success(); 2319 } 2320 2321 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2322 SmallVector<uint64_t, 8> Words(Vals.size()); 2323 transform(Vals, Words.begin(), 2324 BitcodeReader::decodeSignRotatedValue); 2325 2326 return APInt(TypeBits, Words); 2327 } 2328 2329 Error BitcodeReader::parseConstants() { 2330 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2331 return Err; 2332 2333 SmallVector<uint64_t, 64> Record; 2334 2335 // Read all the records for this value table. 2336 Type *CurTy = Type::getInt32Ty(Context); 2337 Type *CurFullTy = Type::getInt32Ty(Context); 2338 unsigned NextCstNo = ValueList.size(); 2339 2340 struct DelayedShufTy { 2341 VectorType *OpTy; 2342 VectorType *RTy; 2343 Type *CurFullTy; 2344 uint64_t Op0Idx; 2345 uint64_t Op1Idx; 2346 uint64_t Op2Idx; 2347 }; 2348 std::vector<DelayedShufTy> DelayedShuffles; 2349 while (true) { 2350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2351 if (!MaybeEntry) 2352 return MaybeEntry.takeError(); 2353 BitstreamEntry Entry = MaybeEntry.get(); 2354 2355 switch (Entry.Kind) { 2356 case BitstreamEntry::SubBlock: // Handled for us already. 2357 case BitstreamEntry::Error: 2358 return error("Malformed block"); 2359 case BitstreamEntry::EndBlock: 2360 if (NextCstNo != ValueList.size()) 2361 return error("Invalid constant reference"); 2362 2363 // Once all the constants have been read, go through and resolve forward 2364 // references. 2365 // 2366 // We have to treat shuffles specially because they don't have three 2367 // operands anymore. We need to convert the shuffle mask into an array, 2368 // and we can't convert a forward reference. 2369 for (auto &DelayedShuffle : DelayedShuffles) { 2370 VectorType *OpTy = DelayedShuffle.OpTy; 2371 VectorType *RTy = DelayedShuffle.RTy; 2372 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2373 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2374 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2375 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2376 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2377 Type *ShufTy = 2378 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2379 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2380 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2381 return error("Invalid shufflevector operands"); 2382 SmallVector<int, 16> Mask; 2383 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2384 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2385 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2386 ++NextCstNo; 2387 } 2388 ValueList.resolveConstantForwardRefs(); 2389 return Error::success(); 2390 case BitstreamEntry::Record: 2391 // The interesting case. 2392 break; 2393 } 2394 2395 // Read a record. 2396 Record.clear(); 2397 Type *VoidType = Type::getVoidTy(Context); 2398 Value *V = nullptr; 2399 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2400 if (!MaybeBitCode) 2401 return MaybeBitCode.takeError(); 2402 switch (unsigned BitCode = MaybeBitCode.get()) { 2403 default: // Default behavior: unknown constant 2404 case bitc::CST_CODE_UNDEF: // UNDEF 2405 V = UndefValue::get(CurTy); 2406 break; 2407 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2408 if (Record.empty()) 2409 return error("Invalid record"); 2410 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2411 return error("Invalid record"); 2412 if (TypeList[Record[0]] == VoidType) 2413 return error("Invalid constant type"); 2414 CurFullTy = TypeList[Record[0]]; 2415 CurTy = flattenPointerTypes(CurFullTy); 2416 continue; // Skip the ValueList manipulation. 2417 case bitc::CST_CODE_NULL: // NULL 2418 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2419 return error("Invalid type for a constant null value"); 2420 V = Constant::getNullValue(CurTy); 2421 break; 2422 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2423 if (!CurTy->isIntegerTy() || Record.empty()) 2424 return error("Invalid record"); 2425 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2426 break; 2427 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2428 if (!CurTy->isIntegerTy() || Record.empty()) 2429 return error("Invalid record"); 2430 2431 APInt VInt = 2432 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2433 V = ConstantInt::get(Context, VInt); 2434 2435 break; 2436 } 2437 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2438 if (Record.empty()) 2439 return error("Invalid record"); 2440 if (CurTy->isHalfTy()) 2441 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2442 APInt(16, (uint16_t)Record[0]))); 2443 else if (CurTy->isFloatTy()) 2444 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2445 APInt(32, (uint32_t)Record[0]))); 2446 else if (CurTy->isDoubleTy()) 2447 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2448 APInt(64, Record[0]))); 2449 else if (CurTy->isX86_FP80Ty()) { 2450 // Bits are not stored the same way as a normal i80 APInt, compensate. 2451 uint64_t Rearrange[2]; 2452 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2453 Rearrange[1] = Record[0] >> 48; 2454 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2455 APInt(80, Rearrange))); 2456 } else if (CurTy->isFP128Ty()) 2457 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2458 APInt(128, Record))); 2459 else if (CurTy->isPPC_FP128Ty()) 2460 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2461 APInt(128, Record))); 2462 else 2463 V = UndefValue::get(CurTy); 2464 break; 2465 } 2466 2467 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2468 if (Record.empty()) 2469 return error("Invalid record"); 2470 2471 unsigned Size = Record.size(); 2472 SmallVector<Constant*, 16> Elts; 2473 2474 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2475 for (unsigned i = 0; i != Size; ++i) 2476 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2477 STy->getElementType(i))); 2478 V = ConstantStruct::get(STy, Elts); 2479 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2480 Type *EltTy = ATy->getElementType(); 2481 for (unsigned i = 0; i != Size; ++i) 2482 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2483 V = ConstantArray::get(ATy, Elts); 2484 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2485 Type *EltTy = VTy->getElementType(); 2486 for (unsigned i = 0; i != Size; ++i) 2487 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2488 V = ConstantVector::get(Elts); 2489 } else { 2490 V = UndefValue::get(CurTy); 2491 } 2492 break; 2493 } 2494 case bitc::CST_CODE_STRING: // STRING: [values] 2495 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2496 if (Record.empty()) 2497 return error("Invalid record"); 2498 2499 SmallString<16> Elts(Record.begin(), Record.end()); 2500 V = ConstantDataArray::getString(Context, Elts, 2501 BitCode == bitc::CST_CODE_CSTRING); 2502 break; 2503 } 2504 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2505 if (Record.empty()) 2506 return error("Invalid record"); 2507 2508 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2509 if (EltTy->isIntegerTy(8)) { 2510 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2511 if (isa<VectorType>(CurTy)) 2512 V = ConstantDataVector::get(Context, Elts); 2513 else 2514 V = ConstantDataArray::get(Context, Elts); 2515 } else if (EltTy->isIntegerTy(16)) { 2516 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2517 if (isa<VectorType>(CurTy)) 2518 V = ConstantDataVector::get(Context, Elts); 2519 else 2520 V = ConstantDataArray::get(Context, Elts); 2521 } else if (EltTy->isIntegerTy(32)) { 2522 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2523 if (isa<VectorType>(CurTy)) 2524 V = ConstantDataVector::get(Context, Elts); 2525 else 2526 V = ConstantDataArray::get(Context, Elts); 2527 } else if (EltTy->isIntegerTy(64)) { 2528 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2529 if (isa<VectorType>(CurTy)) 2530 V = ConstantDataVector::get(Context, Elts); 2531 else 2532 V = ConstantDataArray::get(Context, Elts); 2533 } else if (EltTy->isHalfTy()) { 2534 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2535 if (isa<VectorType>(CurTy)) 2536 V = ConstantDataVector::getFP(Context, Elts); 2537 else 2538 V = ConstantDataArray::getFP(Context, Elts); 2539 } else if (EltTy->isFloatTy()) { 2540 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2541 if (isa<VectorType>(CurTy)) 2542 V = ConstantDataVector::getFP(Context, Elts); 2543 else 2544 V = ConstantDataArray::getFP(Context, Elts); 2545 } else if (EltTy->isDoubleTy()) { 2546 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2547 if (isa<VectorType>(CurTy)) 2548 V = ConstantDataVector::getFP(Context, Elts); 2549 else 2550 V = ConstantDataArray::getFP(Context, Elts); 2551 } else { 2552 return error("Invalid type for value"); 2553 } 2554 break; 2555 } 2556 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2557 if (Record.size() < 2) 2558 return error("Invalid record"); 2559 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2560 if (Opc < 0) { 2561 V = UndefValue::get(CurTy); // Unknown unop. 2562 } else { 2563 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2564 unsigned Flags = 0; 2565 V = ConstantExpr::get(Opc, LHS, Flags); 2566 } 2567 break; 2568 } 2569 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2570 if (Record.size() < 3) 2571 return error("Invalid record"); 2572 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2573 if (Opc < 0) { 2574 V = UndefValue::get(CurTy); // Unknown binop. 2575 } else { 2576 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2577 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2578 unsigned Flags = 0; 2579 if (Record.size() >= 4) { 2580 if (Opc == Instruction::Add || 2581 Opc == Instruction::Sub || 2582 Opc == Instruction::Mul || 2583 Opc == Instruction::Shl) { 2584 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2585 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2586 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2587 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2588 } else if (Opc == Instruction::SDiv || 2589 Opc == Instruction::UDiv || 2590 Opc == Instruction::LShr || 2591 Opc == Instruction::AShr) { 2592 if (Record[3] & (1 << bitc::PEO_EXACT)) 2593 Flags |= SDivOperator::IsExact; 2594 } 2595 } 2596 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2597 } 2598 break; 2599 } 2600 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2601 if (Record.size() < 3) 2602 return error("Invalid record"); 2603 int Opc = getDecodedCastOpcode(Record[0]); 2604 if (Opc < 0) { 2605 V = UndefValue::get(CurTy); // Unknown cast. 2606 } else { 2607 Type *OpTy = getTypeByID(Record[1]); 2608 if (!OpTy) 2609 return error("Invalid record"); 2610 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2611 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2612 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2613 } 2614 break; 2615 } 2616 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2617 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2618 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2619 // operands] 2620 unsigned OpNum = 0; 2621 Type *PointeeType = nullptr; 2622 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2623 Record.size() % 2) 2624 PointeeType = getTypeByID(Record[OpNum++]); 2625 2626 bool InBounds = false; 2627 Optional<unsigned> InRangeIndex; 2628 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2629 uint64_t Op = Record[OpNum++]; 2630 InBounds = Op & 1; 2631 InRangeIndex = Op >> 1; 2632 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2633 InBounds = true; 2634 2635 SmallVector<Constant*, 16> Elts; 2636 Type *Elt0FullTy = nullptr; 2637 while (OpNum != Record.size()) { 2638 if (!Elt0FullTy) 2639 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2640 Type *ElTy = getTypeByID(Record[OpNum++]); 2641 if (!ElTy) 2642 return error("Invalid record"); 2643 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2644 } 2645 2646 if (Elts.size() < 1) 2647 return error("Invalid gep with no operands"); 2648 2649 Type *ImplicitPointeeType = 2650 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2651 if (!PointeeType) 2652 PointeeType = ImplicitPointeeType; 2653 else if (PointeeType != ImplicitPointeeType) 2654 return error("Explicit gep operator type does not match pointee type " 2655 "of pointer operand"); 2656 2657 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2658 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2659 InBounds, InRangeIndex); 2660 break; 2661 } 2662 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2663 if (Record.size() < 3) 2664 return error("Invalid record"); 2665 2666 Type *SelectorTy = Type::getInt1Ty(Context); 2667 2668 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2669 // Get the type from the ValueList before getting a forward ref. 2670 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2671 if (Value *V = ValueList[Record[0]]) 2672 if (SelectorTy != V->getType()) 2673 SelectorTy = VectorType::get(SelectorTy, 2674 VTy->getElementCount()); 2675 2676 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2677 SelectorTy), 2678 ValueList.getConstantFwdRef(Record[1],CurTy), 2679 ValueList.getConstantFwdRef(Record[2],CurTy)); 2680 break; 2681 } 2682 case bitc::CST_CODE_CE_EXTRACTELT 2683 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2684 if (Record.size() < 3) 2685 return error("Invalid record"); 2686 VectorType *OpTy = 2687 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2688 if (!OpTy) 2689 return error("Invalid record"); 2690 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2691 Constant *Op1 = nullptr; 2692 if (Record.size() == 4) { 2693 Type *IdxTy = getTypeByID(Record[2]); 2694 if (!IdxTy) 2695 return error("Invalid record"); 2696 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2697 } else // TODO: Remove with llvm 4.0 2698 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2699 if (!Op1) 2700 return error("Invalid record"); 2701 V = ConstantExpr::getExtractElement(Op0, Op1); 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_INSERTELT 2705 : { // CE_INSERTELT: [opval, opval, opty, opval] 2706 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2707 if (Record.size() < 3 || !OpTy) 2708 return error("Invalid record"); 2709 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2710 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2711 OpTy->getElementType()); 2712 Constant *Op2 = nullptr; 2713 if (Record.size() == 4) { 2714 Type *IdxTy = getTypeByID(Record[2]); 2715 if (!IdxTy) 2716 return error("Invalid record"); 2717 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2718 } else // TODO: Remove with llvm 4.0 2719 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2720 if (!Op2) 2721 return error("Invalid record"); 2722 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2723 break; 2724 } 2725 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2726 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2727 if (Record.size() < 3 || !OpTy) 2728 return error("Invalid record"); 2729 DelayedShuffles.push_back( 2730 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2731 continue; 2732 } 2733 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2734 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2735 VectorType *OpTy = 2736 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2737 if (Record.size() < 4 || !RTy || !OpTy) 2738 return error("Invalid record"); 2739 DelayedShuffles.push_back( 2740 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2741 continue; 2742 } 2743 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2744 if (Record.size() < 4) 2745 return error("Invalid record"); 2746 Type *OpTy = getTypeByID(Record[0]); 2747 if (!OpTy) 2748 return error("Invalid record"); 2749 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2750 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2751 2752 if (OpTy->isFPOrFPVectorTy()) 2753 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2754 else 2755 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2756 break; 2757 } 2758 // This maintains backward compatibility, pre-asm dialect keywords. 2759 // FIXME: Remove with the 4.0 release. 2760 case bitc::CST_CODE_INLINEASM_OLD: { 2761 if (Record.size() < 2) 2762 return error("Invalid record"); 2763 std::string AsmStr, ConstrStr; 2764 bool HasSideEffects = Record[0] & 1; 2765 bool IsAlignStack = Record[0] >> 1; 2766 unsigned AsmStrSize = Record[1]; 2767 if (2+AsmStrSize >= Record.size()) 2768 return error("Invalid record"); 2769 unsigned ConstStrSize = Record[2+AsmStrSize]; 2770 if (3+AsmStrSize+ConstStrSize > Record.size()) 2771 return error("Invalid record"); 2772 2773 for (unsigned i = 0; i != AsmStrSize; ++i) 2774 AsmStr += (char)Record[2+i]; 2775 for (unsigned i = 0; i != ConstStrSize; ++i) 2776 ConstrStr += (char)Record[3+AsmStrSize+i]; 2777 UpgradeInlineAsmString(&AsmStr); 2778 V = InlineAsm::get( 2779 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2780 ConstrStr, HasSideEffects, IsAlignStack); 2781 break; 2782 } 2783 // This version adds support for the asm dialect keywords (e.g., 2784 // inteldialect). 2785 case bitc::CST_CODE_INLINEASM: { 2786 if (Record.size() < 2) 2787 return error("Invalid record"); 2788 std::string AsmStr, ConstrStr; 2789 bool HasSideEffects = Record[0] & 1; 2790 bool IsAlignStack = (Record[0] >> 1) & 1; 2791 unsigned AsmDialect = Record[0] >> 2; 2792 unsigned AsmStrSize = Record[1]; 2793 if (2+AsmStrSize >= Record.size()) 2794 return error("Invalid record"); 2795 unsigned ConstStrSize = Record[2+AsmStrSize]; 2796 if (3+AsmStrSize+ConstStrSize > Record.size()) 2797 return error("Invalid record"); 2798 2799 for (unsigned i = 0; i != AsmStrSize; ++i) 2800 AsmStr += (char)Record[2+i]; 2801 for (unsigned i = 0; i != ConstStrSize; ++i) 2802 ConstrStr += (char)Record[3+AsmStrSize+i]; 2803 UpgradeInlineAsmString(&AsmStr); 2804 V = InlineAsm::get( 2805 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2806 ConstrStr, HasSideEffects, IsAlignStack, 2807 InlineAsm::AsmDialect(AsmDialect)); 2808 break; 2809 } 2810 case bitc::CST_CODE_BLOCKADDRESS:{ 2811 if (Record.size() < 3) 2812 return error("Invalid record"); 2813 Type *FnTy = getTypeByID(Record[0]); 2814 if (!FnTy) 2815 return error("Invalid record"); 2816 Function *Fn = 2817 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2818 if (!Fn) 2819 return error("Invalid record"); 2820 2821 // If the function is already parsed we can insert the block address right 2822 // away. 2823 BasicBlock *BB; 2824 unsigned BBID = Record[2]; 2825 if (!BBID) 2826 // Invalid reference to entry block. 2827 return error("Invalid ID"); 2828 if (!Fn->empty()) { 2829 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2830 for (size_t I = 0, E = BBID; I != E; ++I) { 2831 if (BBI == BBE) 2832 return error("Invalid ID"); 2833 ++BBI; 2834 } 2835 BB = &*BBI; 2836 } else { 2837 // Otherwise insert a placeholder and remember it so it can be inserted 2838 // when the function is parsed. 2839 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2840 if (FwdBBs.empty()) 2841 BasicBlockFwdRefQueue.push_back(Fn); 2842 if (FwdBBs.size() < BBID + 1) 2843 FwdBBs.resize(BBID + 1); 2844 if (!FwdBBs[BBID]) 2845 FwdBBs[BBID] = BasicBlock::Create(Context); 2846 BB = FwdBBs[BBID]; 2847 } 2848 V = BlockAddress::get(Fn, BB); 2849 break; 2850 } 2851 } 2852 2853 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2854 "Incorrect fully structured type provided for Constant"); 2855 ValueList.assignValue(V, NextCstNo, CurFullTy); 2856 ++NextCstNo; 2857 } 2858 } 2859 2860 Error BitcodeReader::parseUseLists() { 2861 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2862 return Err; 2863 2864 // Read all the records. 2865 SmallVector<uint64_t, 64> Record; 2866 2867 while (true) { 2868 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2869 if (!MaybeEntry) 2870 return MaybeEntry.takeError(); 2871 BitstreamEntry Entry = MaybeEntry.get(); 2872 2873 switch (Entry.Kind) { 2874 case BitstreamEntry::SubBlock: // Handled for us already. 2875 case BitstreamEntry::Error: 2876 return error("Malformed block"); 2877 case BitstreamEntry::EndBlock: 2878 return Error::success(); 2879 case BitstreamEntry::Record: 2880 // The interesting case. 2881 break; 2882 } 2883 2884 // Read a use list record. 2885 Record.clear(); 2886 bool IsBB = false; 2887 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2888 if (!MaybeRecord) 2889 return MaybeRecord.takeError(); 2890 switch (MaybeRecord.get()) { 2891 default: // Default behavior: unknown type. 2892 break; 2893 case bitc::USELIST_CODE_BB: 2894 IsBB = true; 2895 LLVM_FALLTHROUGH; 2896 case bitc::USELIST_CODE_DEFAULT: { 2897 unsigned RecordLength = Record.size(); 2898 if (RecordLength < 3) 2899 // Records should have at least an ID and two indexes. 2900 return error("Invalid record"); 2901 unsigned ID = Record.back(); 2902 Record.pop_back(); 2903 2904 Value *V; 2905 if (IsBB) { 2906 assert(ID < FunctionBBs.size() && "Basic block not found"); 2907 V = FunctionBBs[ID]; 2908 } else 2909 V = ValueList[ID]; 2910 unsigned NumUses = 0; 2911 SmallDenseMap<const Use *, unsigned, 16> Order; 2912 for (const Use &U : V->materialized_uses()) { 2913 if (++NumUses > Record.size()) 2914 break; 2915 Order[&U] = Record[NumUses - 1]; 2916 } 2917 if (Order.size() != Record.size() || NumUses > Record.size()) 2918 // Mismatches can happen if the functions are being materialized lazily 2919 // (out-of-order), or a value has been upgraded. 2920 break; 2921 2922 V->sortUseList([&](const Use &L, const Use &R) { 2923 return Order.lookup(&L) < Order.lookup(&R); 2924 }); 2925 break; 2926 } 2927 } 2928 } 2929 } 2930 2931 /// When we see the block for metadata, remember where it is and then skip it. 2932 /// This lets us lazily deserialize the metadata. 2933 Error BitcodeReader::rememberAndSkipMetadata() { 2934 // Save the current stream state. 2935 uint64_t CurBit = Stream.GetCurrentBitNo(); 2936 DeferredMetadataInfo.push_back(CurBit); 2937 2938 // Skip over the block for now. 2939 if (Error Err = Stream.SkipBlock()) 2940 return Err; 2941 return Error::success(); 2942 } 2943 2944 Error BitcodeReader::materializeMetadata() { 2945 for (uint64_t BitPos : DeferredMetadataInfo) { 2946 // Move the bit stream to the saved position. 2947 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2948 return JumpFailed; 2949 if (Error Err = MDLoader->parseModuleMetadata()) 2950 return Err; 2951 } 2952 2953 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2954 // metadata. 2955 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2956 NamedMDNode *LinkerOpts = 2957 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2958 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2959 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2960 } 2961 2962 DeferredMetadataInfo.clear(); 2963 return Error::success(); 2964 } 2965 2966 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2967 2968 /// When we see the block for a function body, remember where it is and then 2969 /// skip it. This lets us lazily deserialize the functions. 2970 Error BitcodeReader::rememberAndSkipFunctionBody() { 2971 // Get the function we are talking about. 2972 if (FunctionsWithBodies.empty()) 2973 return error("Insufficient function protos"); 2974 2975 Function *Fn = FunctionsWithBodies.back(); 2976 FunctionsWithBodies.pop_back(); 2977 2978 // Save the current stream state. 2979 uint64_t CurBit = Stream.GetCurrentBitNo(); 2980 assert( 2981 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2982 "Mismatch between VST and scanned function offsets"); 2983 DeferredFunctionInfo[Fn] = CurBit; 2984 2985 // Skip over the function block for now. 2986 if (Error Err = Stream.SkipBlock()) 2987 return Err; 2988 return Error::success(); 2989 } 2990 2991 Error BitcodeReader::globalCleanup() { 2992 // Patch the initializers for globals and aliases up. 2993 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2994 return Err; 2995 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2996 return error("Malformed global initializer set"); 2997 2998 // Look for intrinsic functions which need to be upgraded at some point 2999 for (Function &F : *TheModule) { 3000 MDLoader->upgradeDebugIntrinsics(F); 3001 Function *NewFn; 3002 if (UpgradeIntrinsicFunction(&F, NewFn)) 3003 UpgradedIntrinsics[&F] = NewFn; 3004 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3005 // Some types could be renamed during loading if several modules are 3006 // loaded in the same LLVMContext (LTO scenario). In this case we should 3007 // remangle intrinsics names as well. 3008 RemangledIntrinsics[&F] = Remangled.getValue(); 3009 } 3010 3011 // Look for global variables which need to be renamed. 3012 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3013 for (GlobalVariable &GV : TheModule->globals()) 3014 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3015 UpgradedVariables.emplace_back(&GV, Upgraded); 3016 for (auto &Pair : UpgradedVariables) { 3017 Pair.first->eraseFromParent(); 3018 TheModule->getGlobalList().push_back(Pair.second); 3019 } 3020 3021 // Force deallocation of memory for these vectors to favor the client that 3022 // want lazy deserialization. 3023 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3024 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3025 IndirectSymbolInits); 3026 return Error::success(); 3027 } 3028 3029 /// Support for lazy parsing of function bodies. This is required if we 3030 /// either have an old bitcode file without a VST forward declaration record, 3031 /// or if we have an anonymous function being materialized, since anonymous 3032 /// functions do not have a name and are therefore not in the VST. 3033 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3034 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3035 return JumpFailed; 3036 3037 if (Stream.AtEndOfStream()) 3038 return error("Could not find function in stream"); 3039 3040 if (!SeenFirstFunctionBody) 3041 return error("Trying to materialize functions before seeing function blocks"); 3042 3043 // An old bitcode file with the symbol table at the end would have 3044 // finished the parse greedily. 3045 assert(SeenValueSymbolTable); 3046 3047 SmallVector<uint64_t, 64> Record; 3048 3049 while (true) { 3050 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3051 if (!MaybeEntry) 3052 return MaybeEntry.takeError(); 3053 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3054 3055 switch (Entry.Kind) { 3056 default: 3057 return error("Expect SubBlock"); 3058 case BitstreamEntry::SubBlock: 3059 switch (Entry.ID) { 3060 default: 3061 return error("Expect function block"); 3062 case bitc::FUNCTION_BLOCK_ID: 3063 if (Error Err = rememberAndSkipFunctionBody()) 3064 return Err; 3065 NextUnreadBit = Stream.GetCurrentBitNo(); 3066 return Error::success(); 3067 } 3068 } 3069 } 3070 } 3071 3072 bool BitcodeReaderBase::readBlockInfo() { 3073 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3074 Stream.ReadBlockInfoBlock(); 3075 if (!MaybeNewBlockInfo) 3076 return true; // FIXME Handle the error. 3077 Optional<BitstreamBlockInfo> NewBlockInfo = 3078 std::move(MaybeNewBlockInfo.get()); 3079 if (!NewBlockInfo) 3080 return true; 3081 BlockInfo = std::move(*NewBlockInfo); 3082 return false; 3083 } 3084 3085 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3086 // v1: [selection_kind, name] 3087 // v2: [strtab_offset, strtab_size, selection_kind] 3088 StringRef Name; 3089 std::tie(Name, Record) = readNameFromStrtab(Record); 3090 3091 if (Record.empty()) 3092 return error("Invalid record"); 3093 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3094 std::string OldFormatName; 3095 if (!UseStrtab) { 3096 if (Record.size() < 2) 3097 return error("Invalid record"); 3098 unsigned ComdatNameSize = Record[1]; 3099 OldFormatName.reserve(ComdatNameSize); 3100 for (unsigned i = 0; i != ComdatNameSize; ++i) 3101 OldFormatName += (char)Record[2 + i]; 3102 Name = OldFormatName; 3103 } 3104 Comdat *C = TheModule->getOrInsertComdat(Name); 3105 C->setSelectionKind(SK); 3106 ComdatList.push_back(C); 3107 return Error::success(); 3108 } 3109 3110 static void inferDSOLocal(GlobalValue *GV) { 3111 // infer dso_local from linkage and visibility if it is not encoded. 3112 if (GV->hasLocalLinkage() || 3113 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3114 GV->setDSOLocal(true); 3115 } 3116 3117 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3118 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3119 // visibility, threadlocal, unnamed_addr, externally_initialized, 3120 // dllstorageclass, comdat, attributes, preemption specifier, 3121 // partition strtab offset, partition strtab size] (name in VST) 3122 // v2: [strtab_offset, strtab_size, v1] 3123 StringRef Name; 3124 std::tie(Name, Record) = readNameFromStrtab(Record); 3125 3126 if (Record.size() < 6) 3127 return error("Invalid record"); 3128 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3129 Type *Ty = flattenPointerTypes(FullTy); 3130 if (!Ty) 3131 return error("Invalid record"); 3132 bool isConstant = Record[1] & 1; 3133 bool explicitType = Record[1] & 2; 3134 unsigned AddressSpace; 3135 if (explicitType) { 3136 AddressSpace = Record[1] >> 2; 3137 } else { 3138 if (!Ty->isPointerTy()) 3139 return error("Invalid type for value"); 3140 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3141 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3142 } 3143 3144 uint64_t RawLinkage = Record[3]; 3145 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3146 MaybeAlign Alignment; 3147 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3148 return Err; 3149 std::string Section; 3150 if (Record[5]) { 3151 if (Record[5] - 1 >= SectionTable.size()) 3152 return error("Invalid ID"); 3153 Section = SectionTable[Record[5] - 1]; 3154 } 3155 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3156 // Local linkage must have default visibility. 3157 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3158 // FIXME: Change to an error if non-default in 4.0. 3159 Visibility = getDecodedVisibility(Record[6]); 3160 3161 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3162 if (Record.size() > 7) 3163 TLM = getDecodedThreadLocalMode(Record[7]); 3164 3165 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3166 if (Record.size() > 8) 3167 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3168 3169 bool ExternallyInitialized = false; 3170 if (Record.size() > 9) 3171 ExternallyInitialized = Record[9]; 3172 3173 GlobalVariable *NewGV = 3174 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3175 nullptr, TLM, AddressSpace, ExternallyInitialized); 3176 NewGV->setAlignment(Alignment); 3177 if (!Section.empty()) 3178 NewGV->setSection(Section); 3179 NewGV->setVisibility(Visibility); 3180 NewGV->setUnnamedAddr(UnnamedAddr); 3181 3182 if (Record.size() > 10) 3183 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3184 else 3185 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3186 3187 FullTy = PointerType::get(FullTy, AddressSpace); 3188 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3189 "Incorrect fully specified type for GlobalVariable"); 3190 ValueList.push_back(NewGV, FullTy); 3191 3192 // Remember which value to use for the global initializer. 3193 if (unsigned InitID = Record[2]) 3194 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3195 3196 if (Record.size() > 11) { 3197 if (unsigned ComdatID = Record[11]) { 3198 if (ComdatID > ComdatList.size()) 3199 return error("Invalid global variable comdat ID"); 3200 NewGV->setComdat(ComdatList[ComdatID - 1]); 3201 } 3202 } else if (hasImplicitComdat(RawLinkage)) { 3203 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3204 } 3205 3206 if (Record.size() > 12) { 3207 auto AS = getAttributes(Record[12]).getFnAttributes(); 3208 NewGV->setAttributes(AS); 3209 } 3210 3211 if (Record.size() > 13) { 3212 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3213 } 3214 inferDSOLocal(NewGV); 3215 3216 // Check whether we have enough values to read a partition name. 3217 if (Record.size() > 15) 3218 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3219 3220 return Error::success(); 3221 } 3222 3223 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3224 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3225 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3226 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3227 // v2: [strtab_offset, strtab_size, v1] 3228 StringRef Name; 3229 std::tie(Name, Record) = readNameFromStrtab(Record); 3230 3231 if (Record.size() < 8) 3232 return error("Invalid record"); 3233 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3234 Type *FTy = flattenPointerTypes(FullFTy); 3235 if (!FTy) 3236 return error("Invalid record"); 3237 if (isa<PointerType>(FTy)) 3238 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3239 3240 if (!isa<FunctionType>(FTy)) 3241 return error("Invalid type for value"); 3242 auto CC = static_cast<CallingConv::ID>(Record[1]); 3243 if (CC & ~CallingConv::MaxID) 3244 return error("Invalid calling convention ID"); 3245 3246 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3247 if (Record.size() > 16) 3248 AddrSpace = Record[16]; 3249 3250 Function *Func = 3251 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3252 AddrSpace, Name, TheModule); 3253 3254 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3255 "Incorrect fully specified type provided for function"); 3256 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3257 3258 Func->setCallingConv(CC); 3259 bool isProto = Record[2]; 3260 uint64_t RawLinkage = Record[3]; 3261 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3262 Func->setAttributes(getAttributes(Record[4])); 3263 3264 // Upgrade any old-style byval without a type by propagating the argument's 3265 // pointee type. There should be no opaque pointers where the byval type is 3266 // implicit. 3267 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3268 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3269 continue; 3270 3271 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3272 Func->removeParamAttr(i, Attribute::ByVal); 3273 Func->addParamAttr(i, Attribute::getWithByValType( 3274 Context, getPointerElementFlatType(PTy))); 3275 } 3276 3277 MaybeAlign Alignment; 3278 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3279 return Err; 3280 Func->setAlignment(Alignment); 3281 if (Record[6]) { 3282 if (Record[6] - 1 >= SectionTable.size()) 3283 return error("Invalid ID"); 3284 Func->setSection(SectionTable[Record[6] - 1]); 3285 } 3286 // Local linkage must have default visibility. 3287 if (!Func->hasLocalLinkage()) 3288 // FIXME: Change to an error if non-default in 4.0. 3289 Func->setVisibility(getDecodedVisibility(Record[7])); 3290 if (Record.size() > 8 && Record[8]) { 3291 if (Record[8] - 1 >= GCTable.size()) 3292 return error("Invalid ID"); 3293 Func->setGC(GCTable[Record[8] - 1]); 3294 } 3295 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3296 if (Record.size() > 9) 3297 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3298 Func->setUnnamedAddr(UnnamedAddr); 3299 if (Record.size() > 10 && Record[10] != 0) 3300 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3301 3302 if (Record.size() > 11) 3303 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3304 else 3305 upgradeDLLImportExportLinkage(Func, RawLinkage); 3306 3307 if (Record.size() > 12) { 3308 if (unsigned ComdatID = Record[12]) { 3309 if (ComdatID > ComdatList.size()) 3310 return error("Invalid function comdat ID"); 3311 Func->setComdat(ComdatList[ComdatID - 1]); 3312 } 3313 } else if (hasImplicitComdat(RawLinkage)) { 3314 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3315 } 3316 3317 if (Record.size() > 13 && Record[13] != 0) 3318 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3319 3320 if (Record.size() > 14 && Record[14] != 0) 3321 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3322 3323 if (Record.size() > 15) { 3324 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3325 } 3326 inferDSOLocal(Func); 3327 3328 // Record[16] is the address space number. 3329 3330 // Check whether we have enough values to read a partition name. 3331 if (Record.size() > 18) 3332 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3333 3334 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3335 assert(Func->getType() == flattenPointerTypes(FullTy) && 3336 "Incorrect fully specified type provided for Function"); 3337 ValueList.push_back(Func, FullTy); 3338 3339 // If this is a function with a body, remember the prototype we are 3340 // creating now, so that we can match up the body with them later. 3341 if (!isProto) { 3342 Func->setIsMaterializable(true); 3343 FunctionsWithBodies.push_back(Func); 3344 DeferredFunctionInfo[Func] = 0; 3345 } 3346 return Error::success(); 3347 } 3348 3349 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3350 unsigned BitCode, ArrayRef<uint64_t> Record) { 3351 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3352 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3353 // dllstorageclass, threadlocal, unnamed_addr, 3354 // preemption specifier] (name in VST) 3355 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3356 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3357 // preemption specifier] (name in VST) 3358 // v2: [strtab_offset, strtab_size, v1] 3359 StringRef Name; 3360 std::tie(Name, Record) = readNameFromStrtab(Record); 3361 3362 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3363 if (Record.size() < (3 + (unsigned)NewRecord)) 3364 return error("Invalid record"); 3365 unsigned OpNum = 0; 3366 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3367 Type *Ty = flattenPointerTypes(FullTy); 3368 if (!Ty) 3369 return error("Invalid record"); 3370 3371 unsigned AddrSpace; 3372 if (!NewRecord) { 3373 auto *PTy = dyn_cast<PointerType>(Ty); 3374 if (!PTy) 3375 return error("Invalid type for value"); 3376 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3377 AddrSpace = PTy->getAddressSpace(); 3378 } else { 3379 AddrSpace = Record[OpNum++]; 3380 } 3381 3382 auto Val = Record[OpNum++]; 3383 auto Linkage = Record[OpNum++]; 3384 GlobalIndirectSymbol *NewGA; 3385 if (BitCode == bitc::MODULE_CODE_ALIAS || 3386 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3387 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3388 TheModule); 3389 else 3390 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3391 nullptr, TheModule); 3392 3393 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3394 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3395 // Old bitcode files didn't have visibility field. 3396 // Local linkage must have default visibility. 3397 if (OpNum != Record.size()) { 3398 auto VisInd = OpNum++; 3399 if (!NewGA->hasLocalLinkage()) 3400 // FIXME: Change to an error if non-default in 4.0. 3401 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3402 } 3403 if (BitCode == bitc::MODULE_CODE_ALIAS || 3404 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3405 if (OpNum != Record.size()) 3406 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3407 else 3408 upgradeDLLImportExportLinkage(NewGA, Linkage); 3409 if (OpNum != Record.size()) 3410 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3411 if (OpNum != Record.size()) 3412 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3413 } 3414 if (OpNum != Record.size()) 3415 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3416 inferDSOLocal(NewGA); 3417 3418 // Check whether we have enough values to read a partition name. 3419 if (OpNum + 1 < Record.size()) { 3420 NewGA->setPartition( 3421 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3422 OpNum += 2; 3423 } 3424 3425 FullTy = PointerType::get(FullTy, AddrSpace); 3426 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3427 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3428 ValueList.push_back(NewGA, FullTy); 3429 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3430 return Error::success(); 3431 } 3432 3433 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3434 bool ShouldLazyLoadMetadata) { 3435 if (ResumeBit) { 3436 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3437 return JumpFailed; 3438 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3439 return Err; 3440 3441 SmallVector<uint64_t, 64> Record; 3442 3443 // Read all the records for this module. 3444 while (true) { 3445 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3446 if (!MaybeEntry) 3447 return MaybeEntry.takeError(); 3448 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3449 3450 switch (Entry.Kind) { 3451 case BitstreamEntry::Error: 3452 return error("Malformed block"); 3453 case BitstreamEntry::EndBlock: 3454 return globalCleanup(); 3455 3456 case BitstreamEntry::SubBlock: 3457 switch (Entry.ID) { 3458 default: // Skip unknown content. 3459 if (Error Err = Stream.SkipBlock()) 3460 return Err; 3461 break; 3462 case bitc::BLOCKINFO_BLOCK_ID: 3463 if (readBlockInfo()) 3464 return error("Malformed block"); 3465 break; 3466 case bitc::PARAMATTR_BLOCK_ID: 3467 if (Error Err = parseAttributeBlock()) 3468 return Err; 3469 break; 3470 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3471 if (Error Err = parseAttributeGroupBlock()) 3472 return Err; 3473 break; 3474 case bitc::TYPE_BLOCK_ID_NEW: 3475 if (Error Err = parseTypeTable()) 3476 return Err; 3477 break; 3478 case bitc::VALUE_SYMTAB_BLOCK_ID: 3479 if (!SeenValueSymbolTable) { 3480 // Either this is an old form VST without function index and an 3481 // associated VST forward declaration record (which would have caused 3482 // the VST to be jumped to and parsed before it was encountered 3483 // normally in the stream), or there were no function blocks to 3484 // trigger an earlier parsing of the VST. 3485 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3486 if (Error Err = parseValueSymbolTable()) 3487 return Err; 3488 SeenValueSymbolTable = true; 3489 } else { 3490 // We must have had a VST forward declaration record, which caused 3491 // the parser to jump to and parse the VST earlier. 3492 assert(VSTOffset > 0); 3493 if (Error Err = Stream.SkipBlock()) 3494 return Err; 3495 } 3496 break; 3497 case bitc::CONSTANTS_BLOCK_ID: 3498 if (Error Err = parseConstants()) 3499 return Err; 3500 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3501 return Err; 3502 break; 3503 case bitc::METADATA_BLOCK_ID: 3504 if (ShouldLazyLoadMetadata) { 3505 if (Error Err = rememberAndSkipMetadata()) 3506 return Err; 3507 break; 3508 } 3509 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3510 if (Error Err = MDLoader->parseModuleMetadata()) 3511 return Err; 3512 break; 3513 case bitc::METADATA_KIND_BLOCK_ID: 3514 if (Error Err = MDLoader->parseMetadataKinds()) 3515 return Err; 3516 break; 3517 case bitc::FUNCTION_BLOCK_ID: 3518 // If this is the first function body we've seen, reverse the 3519 // FunctionsWithBodies list. 3520 if (!SeenFirstFunctionBody) { 3521 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3522 if (Error Err = globalCleanup()) 3523 return Err; 3524 SeenFirstFunctionBody = true; 3525 } 3526 3527 if (VSTOffset > 0) { 3528 // If we have a VST forward declaration record, make sure we 3529 // parse the VST now if we haven't already. It is needed to 3530 // set up the DeferredFunctionInfo vector for lazy reading. 3531 if (!SeenValueSymbolTable) { 3532 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3533 return Err; 3534 SeenValueSymbolTable = true; 3535 // Fall through so that we record the NextUnreadBit below. 3536 // This is necessary in case we have an anonymous function that 3537 // is later materialized. Since it will not have a VST entry we 3538 // need to fall back to the lazy parse to find its offset. 3539 } else { 3540 // If we have a VST forward declaration record, but have already 3541 // parsed the VST (just above, when the first function body was 3542 // encountered here), then we are resuming the parse after 3543 // materializing functions. The ResumeBit points to the 3544 // start of the last function block recorded in the 3545 // DeferredFunctionInfo map. Skip it. 3546 if (Error Err = Stream.SkipBlock()) 3547 return Err; 3548 continue; 3549 } 3550 } 3551 3552 // Support older bitcode files that did not have the function 3553 // index in the VST, nor a VST forward declaration record, as 3554 // well as anonymous functions that do not have VST entries. 3555 // Build the DeferredFunctionInfo vector on the fly. 3556 if (Error Err = rememberAndSkipFunctionBody()) 3557 return Err; 3558 3559 // Suspend parsing when we reach the function bodies. Subsequent 3560 // materialization calls will resume it when necessary. If the bitcode 3561 // file is old, the symbol table will be at the end instead and will not 3562 // have been seen yet. In this case, just finish the parse now. 3563 if (SeenValueSymbolTable) { 3564 NextUnreadBit = Stream.GetCurrentBitNo(); 3565 // After the VST has been parsed, we need to make sure intrinsic name 3566 // are auto-upgraded. 3567 return globalCleanup(); 3568 } 3569 break; 3570 case bitc::USELIST_BLOCK_ID: 3571 if (Error Err = parseUseLists()) 3572 return Err; 3573 break; 3574 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3575 if (Error Err = parseOperandBundleTags()) 3576 return Err; 3577 break; 3578 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3579 if (Error Err = parseSyncScopeNames()) 3580 return Err; 3581 break; 3582 } 3583 continue; 3584 3585 case BitstreamEntry::Record: 3586 // The interesting case. 3587 break; 3588 } 3589 3590 // Read a record. 3591 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3592 if (!MaybeBitCode) 3593 return MaybeBitCode.takeError(); 3594 switch (unsigned BitCode = MaybeBitCode.get()) { 3595 default: break; // Default behavior, ignore unknown content. 3596 case bitc::MODULE_CODE_VERSION: { 3597 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3598 if (!VersionOrErr) 3599 return VersionOrErr.takeError(); 3600 UseRelativeIDs = *VersionOrErr >= 1; 3601 break; 3602 } 3603 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3604 std::string S; 3605 if (convertToString(Record, 0, S)) 3606 return error("Invalid record"); 3607 TheModule->setTargetTriple(S); 3608 break; 3609 } 3610 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3611 std::string S; 3612 if (convertToString(Record, 0, S)) 3613 return error("Invalid record"); 3614 TheModule->setDataLayout(S); 3615 break; 3616 } 3617 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3618 std::string S; 3619 if (convertToString(Record, 0, S)) 3620 return error("Invalid record"); 3621 TheModule->setModuleInlineAsm(S); 3622 break; 3623 } 3624 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3625 // FIXME: Remove in 4.0. 3626 std::string S; 3627 if (convertToString(Record, 0, S)) 3628 return error("Invalid record"); 3629 // Ignore value. 3630 break; 3631 } 3632 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3633 std::string S; 3634 if (convertToString(Record, 0, S)) 3635 return error("Invalid record"); 3636 SectionTable.push_back(S); 3637 break; 3638 } 3639 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3640 std::string S; 3641 if (convertToString(Record, 0, S)) 3642 return error("Invalid record"); 3643 GCTable.push_back(S); 3644 break; 3645 } 3646 case bitc::MODULE_CODE_COMDAT: 3647 if (Error Err = parseComdatRecord(Record)) 3648 return Err; 3649 break; 3650 case bitc::MODULE_CODE_GLOBALVAR: 3651 if (Error Err = parseGlobalVarRecord(Record)) 3652 return Err; 3653 break; 3654 case bitc::MODULE_CODE_FUNCTION: 3655 if (Error Err = parseFunctionRecord(Record)) 3656 return Err; 3657 break; 3658 case bitc::MODULE_CODE_IFUNC: 3659 case bitc::MODULE_CODE_ALIAS: 3660 case bitc::MODULE_CODE_ALIAS_OLD: 3661 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3662 return Err; 3663 break; 3664 /// MODULE_CODE_VSTOFFSET: [offset] 3665 case bitc::MODULE_CODE_VSTOFFSET: 3666 if (Record.size() < 1) 3667 return error("Invalid record"); 3668 // Note that we subtract 1 here because the offset is relative to one word 3669 // before the start of the identification or module block, which was 3670 // historically always the start of the regular bitcode header. 3671 VSTOffset = Record[0] - 1; 3672 break; 3673 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3674 case bitc::MODULE_CODE_SOURCE_FILENAME: 3675 SmallString<128> ValueName; 3676 if (convertToString(Record, 0, ValueName)) 3677 return error("Invalid record"); 3678 TheModule->setSourceFileName(ValueName); 3679 break; 3680 } 3681 Record.clear(); 3682 3683 // Upgrade data layout string. 3684 std::string DL = llvm::UpgradeDataLayoutString( 3685 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3686 TheModule->setDataLayout(DL); 3687 } 3688 } 3689 3690 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3691 bool IsImporting) { 3692 TheModule = M; 3693 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3694 [&](unsigned ID) { return getTypeByID(ID); }); 3695 return parseModule(0, ShouldLazyLoadMetadata); 3696 } 3697 3698 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3699 if (!isa<PointerType>(PtrType)) 3700 return error("Load/Store operand is not a pointer type"); 3701 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3702 3703 if (ValType && ValType != ElemType) 3704 return error("Explicit load/store type does not match pointee " 3705 "type of pointer operand"); 3706 if (!PointerType::isLoadableOrStorableType(ElemType)) 3707 return error("Cannot load/store from pointer"); 3708 return Error::success(); 3709 } 3710 3711 void BitcodeReader::propagateByValTypes(CallBase *CB, 3712 ArrayRef<Type *> ArgsFullTys) { 3713 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3714 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3715 continue; 3716 3717 CB->removeParamAttr(i, Attribute::ByVal); 3718 CB->addParamAttr( 3719 i, Attribute::getWithByValType( 3720 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3721 } 3722 } 3723 3724 /// Lazily parse the specified function body block. 3725 Error BitcodeReader::parseFunctionBody(Function *F) { 3726 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3727 return Err; 3728 3729 // Unexpected unresolved metadata when parsing function. 3730 if (MDLoader->hasFwdRefs()) 3731 return error("Invalid function metadata: incoming forward references"); 3732 3733 InstructionList.clear(); 3734 unsigned ModuleValueListSize = ValueList.size(); 3735 unsigned ModuleMDLoaderSize = MDLoader->size(); 3736 3737 // Add all the function arguments to the value table. 3738 unsigned ArgNo = 0; 3739 FunctionType *FullFTy = FunctionTypes[F]; 3740 for (Argument &I : F->args()) { 3741 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3742 "Incorrect fully specified type for Function Argument"); 3743 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3744 } 3745 unsigned NextValueNo = ValueList.size(); 3746 BasicBlock *CurBB = nullptr; 3747 unsigned CurBBNo = 0; 3748 3749 DebugLoc LastLoc; 3750 auto getLastInstruction = [&]() -> Instruction * { 3751 if (CurBB && !CurBB->empty()) 3752 return &CurBB->back(); 3753 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3754 !FunctionBBs[CurBBNo - 1]->empty()) 3755 return &FunctionBBs[CurBBNo - 1]->back(); 3756 return nullptr; 3757 }; 3758 3759 std::vector<OperandBundleDef> OperandBundles; 3760 3761 // Read all the records. 3762 SmallVector<uint64_t, 64> Record; 3763 3764 while (true) { 3765 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3766 if (!MaybeEntry) 3767 return MaybeEntry.takeError(); 3768 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3769 3770 switch (Entry.Kind) { 3771 case BitstreamEntry::Error: 3772 return error("Malformed block"); 3773 case BitstreamEntry::EndBlock: 3774 goto OutOfRecordLoop; 3775 3776 case BitstreamEntry::SubBlock: 3777 switch (Entry.ID) { 3778 default: // Skip unknown content. 3779 if (Error Err = Stream.SkipBlock()) 3780 return Err; 3781 break; 3782 case bitc::CONSTANTS_BLOCK_ID: 3783 if (Error Err = parseConstants()) 3784 return Err; 3785 NextValueNo = ValueList.size(); 3786 break; 3787 case bitc::VALUE_SYMTAB_BLOCK_ID: 3788 if (Error Err = parseValueSymbolTable()) 3789 return Err; 3790 break; 3791 case bitc::METADATA_ATTACHMENT_ID: 3792 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3793 return Err; 3794 break; 3795 case bitc::METADATA_BLOCK_ID: 3796 assert(DeferredMetadataInfo.empty() && 3797 "Must read all module-level metadata before function-level"); 3798 if (Error Err = MDLoader->parseFunctionMetadata()) 3799 return Err; 3800 break; 3801 case bitc::USELIST_BLOCK_ID: 3802 if (Error Err = parseUseLists()) 3803 return Err; 3804 break; 3805 } 3806 continue; 3807 3808 case BitstreamEntry::Record: 3809 // The interesting case. 3810 break; 3811 } 3812 3813 // Read a record. 3814 Record.clear(); 3815 Instruction *I = nullptr; 3816 Type *FullTy = nullptr; 3817 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3818 if (!MaybeBitCode) 3819 return MaybeBitCode.takeError(); 3820 switch (unsigned BitCode = MaybeBitCode.get()) { 3821 default: // Default behavior: reject 3822 return error("Invalid value"); 3823 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3824 if (Record.size() < 1 || Record[0] == 0) 3825 return error("Invalid record"); 3826 // Create all the basic blocks for the function. 3827 FunctionBBs.resize(Record[0]); 3828 3829 // See if anything took the address of blocks in this function. 3830 auto BBFRI = BasicBlockFwdRefs.find(F); 3831 if (BBFRI == BasicBlockFwdRefs.end()) { 3832 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3833 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3834 } else { 3835 auto &BBRefs = BBFRI->second; 3836 // Check for invalid basic block references. 3837 if (BBRefs.size() > FunctionBBs.size()) 3838 return error("Invalid ID"); 3839 assert(!BBRefs.empty() && "Unexpected empty array"); 3840 assert(!BBRefs.front() && "Invalid reference to entry block"); 3841 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3842 ++I) 3843 if (I < RE && BBRefs[I]) { 3844 BBRefs[I]->insertInto(F); 3845 FunctionBBs[I] = BBRefs[I]; 3846 } else { 3847 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3848 } 3849 3850 // Erase from the table. 3851 BasicBlockFwdRefs.erase(BBFRI); 3852 } 3853 3854 CurBB = FunctionBBs[0]; 3855 continue; 3856 } 3857 3858 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3859 // This record indicates that the last instruction is at the same 3860 // location as the previous instruction with a location. 3861 I = getLastInstruction(); 3862 3863 if (!I) 3864 return error("Invalid record"); 3865 I->setDebugLoc(LastLoc); 3866 I = nullptr; 3867 continue; 3868 3869 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3870 I = getLastInstruction(); 3871 if (!I || Record.size() < 4) 3872 return error("Invalid record"); 3873 3874 unsigned Line = Record[0], Col = Record[1]; 3875 unsigned ScopeID = Record[2], IAID = Record[3]; 3876 bool isImplicitCode = Record.size() == 5 && Record[4]; 3877 3878 MDNode *Scope = nullptr, *IA = nullptr; 3879 if (ScopeID) { 3880 Scope = dyn_cast_or_null<MDNode>( 3881 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3882 if (!Scope) 3883 return error("Invalid record"); 3884 } 3885 if (IAID) { 3886 IA = dyn_cast_or_null<MDNode>( 3887 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3888 if (!IA) 3889 return error("Invalid record"); 3890 } 3891 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3892 I->setDebugLoc(LastLoc); 3893 I = nullptr; 3894 continue; 3895 } 3896 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3897 unsigned OpNum = 0; 3898 Value *LHS; 3899 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3900 OpNum+1 > Record.size()) 3901 return error("Invalid record"); 3902 3903 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3904 if (Opc == -1) 3905 return error("Invalid record"); 3906 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3907 InstructionList.push_back(I); 3908 if (OpNum < Record.size()) { 3909 if (isa<FPMathOperator>(I)) { 3910 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3911 if (FMF.any()) 3912 I->setFastMathFlags(FMF); 3913 } 3914 } 3915 break; 3916 } 3917 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3918 unsigned OpNum = 0; 3919 Value *LHS, *RHS; 3920 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3921 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3922 OpNum+1 > Record.size()) 3923 return error("Invalid record"); 3924 3925 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3926 if (Opc == -1) 3927 return error("Invalid record"); 3928 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3929 InstructionList.push_back(I); 3930 if (OpNum < Record.size()) { 3931 if (Opc == Instruction::Add || 3932 Opc == Instruction::Sub || 3933 Opc == Instruction::Mul || 3934 Opc == Instruction::Shl) { 3935 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3936 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3937 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3938 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3939 } else if (Opc == Instruction::SDiv || 3940 Opc == Instruction::UDiv || 3941 Opc == Instruction::LShr || 3942 Opc == Instruction::AShr) { 3943 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3944 cast<BinaryOperator>(I)->setIsExact(true); 3945 } else if (isa<FPMathOperator>(I)) { 3946 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3947 if (FMF.any()) 3948 I->setFastMathFlags(FMF); 3949 } 3950 3951 } 3952 break; 3953 } 3954 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3955 unsigned OpNum = 0; 3956 Value *Op; 3957 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3958 OpNum+2 != Record.size()) 3959 return error("Invalid record"); 3960 3961 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3962 Type *ResTy = flattenPointerTypes(FullTy); 3963 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3964 if (Opc == -1 || !ResTy) 3965 return error("Invalid record"); 3966 Instruction *Temp = nullptr; 3967 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3968 if (Temp) { 3969 InstructionList.push_back(Temp); 3970 assert(CurBB && "No current BB?"); 3971 CurBB->getInstList().push_back(Temp); 3972 } 3973 } else { 3974 auto CastOp = (Instruction::CastOps)Opc; 3975 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3976 return error("Invalid cast"); 3977 I = CastInst::Create(CastOp, Op, ResTy); 3978 } 3979 InstructionList.push_back(I); 3980 break; 3981 } 3982 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3983 case bitc::FUNC_CODE_INST_GEP_OLD: 3984 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3985 unsigned OpNum = 0; 3986 3987 Type *Ty; 3988 bool InBounds; 3989 3990 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3991 InBounds = Record[OpNum++]; 3992 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3993 Ty = flattenPointerTypes(FullTy); 3994 } else { 3995 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3996 Ty = nullptr; 3997 } 3998 3999 Value *BasePtr; 4000 Type *FullBaseTy = nullptr; 4001 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4002 return error("Invalid record"); 4003 4004 if (!Ty) { 4005 std::tie(FullTy, Ty) = 4006 getPointerElementTypes(FullBaseTy->getScalarType()); 4007 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4008 return error( 4009 "Explicit gep type does not match pointee type of pointer operand"); 4010 4011 SmallVector<Value*, 16> GEPIdx; 4012 while (OpNum != Record.size()) { 4013 Value *Op; 4014 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4015 return error("Invalid record"); 4016 GEPIdx.push_back(Op); 4017 } 4018 4019 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4020 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4021 4022 InstructionList.push_back(I); 4023 if (InBounds) 4024 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4025 break; 4026 } 4027 4028 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4029 // EXTRACTVAL: [opty, opval, n x indices] 4030 unsigned OpNum = 0; 4031 Value *Agg; 4032 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4033 return error("Invalid record"); 4034 4035 unsigned RecSize = Record.size(); 4036 if (OpNum == RecSize) 4037 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4038 4039 SmallVector<unsigned, 4> EXTRACTVALIdx; 4040 for (; OpNum != RecSize; ++OpNum) { 4041 bool IsArray = FullTy->isArrayTy(); 4042 bool IsStruct = FullTy->isStructTy(); 4043 uint64_t Index = Record[OpNum]; 4044 4045 if (!IsStruct && !IsArray) 4046 return error("EXTRACTVAL: Invalid type"); 4047 if ((unsigned)Index != Index) 4048 return error("Invalid value"); 4049 if (IsStruct && Index >= FullTy->getStructNumElements()) 4050 return error("EXTRACTVAL: Invalid struct index"); 4051 if (IsArray && Index >= FullTy->getArrayNumElements()) 4052 return error("EXTRACTVAL: Invalid array index"); 4053 EXTRACTVALIdx.push_back((unsigned)Index); 4054 4055 if (IsStruct) 4056 FullTy = FullTy->getStructElementType(Index); 4057 else 4058 FullTy = FullTy->getArrayElementType(); 4059 } 4060 4061 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4062 InstructionList.push_back(I); 4063 break; 4064 } 4065 4066 case bitc::FUNC_CODE_INST_INSERTVAL: { 4067 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4068 unsigned OpNum = 0; 4069 Value *Agg; 4070 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4071 return error("Invalid record"); 4072 Value *Val; 4073 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4074 return error("Invalid record"); 4075 4076 unsigned RecSize = Record.size(); 4077 if (OpNum == RecSize) 4078 return error("INSERTVAL: Invalid instruction with 0 indices"); 4079 4080 SmallVector<unsigned, 4> INSERTVALIdx; 4081 Type *CurTy = Agg->getType(); 4082 for (; OpNum != RecSize; ++OpNum) { 4083 bool IsArray = CurTy->isArrayTy(); 4084 bool IsStruct = CurTy->isStructTy(); 4085 uint64_t Index = Record[OpNum]; 4086 4087 if (!IsStruct && !IsArray) 4088 return error("INSERTVAL: Invalid type"); 4089 if ((unsigned)Index != Index) 4090 return error("Invalid value"); 4091 if (IsStruct && Index >= CurTy->getStructNumElements()) 4092 return error("INSERTVAL: Invalid struct index"); 4093 if (IsArray && Index >= CurTy->getArrayNumElements()) 4094 return error("INSERTVAL: Invalid array index"); 4095 4096 INSERTVALIdx.push_back((unsigned)Index); 4097 if (IsStruct) 4098 CurTy = CurTy->getStructElementType(Index); 4099 else 4100 CurTy = CurTy->getArrayElementType(); 4101 } 4102 4103 if (CurTy != Val->getType()) 4104 return error("Inserted value type doesn't match aggregate type"); 4105 4106 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4107 InstructionList.push_back(I); 4108 break; 4109 } 4110 4111 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4112 // obsolete form of select 4113 // handles select i1 ... in old bitcode 4114 unsigned OpNum = 0; 4115 Value *TrueVal, *FalseVal, *Cond; 4116 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4117 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4118 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4119 return error("Invalid record"); 4120 4121 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4122 InstructionList.push_back(I); 4123 break; 4124 } 4125 4126 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4127 // new form of select 4128 // handles select i1 or select [N x i1] 4129 unsigned OpNum = 0; 4130 Value *TrueVal, *FalseVal, *Cond; 4131 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4132 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4133 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4134 return error("Invalid record"); 4135 4136 // select condition can be either i1 or [N x i1] 4137 if (VectorType* vector_type = 4138 dyn_cast<VectorType>(Cond->getType())) { 4139 // expect <n x i1> 4140 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4141 return error("Invalid type for value"); 4142 } else { 4143 // expect i1 4144 if (Cond->getType() != Type::getInt1Ty(Context)) 4145 return error("Invalid type for value"); 4146 } 4147 4148 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4149 InstructionList.push_back(I); 4150 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4151 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4152 if (FMF.any()) 4153 I->setFastMathFlags(FMF); 4154 } 4155 break; 4156 } 4157 4158 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4159 unsigned OpNum = 0; 4160 Value *Vec, *Idx; 4161 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4162 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4163 return error("Invalid record"); 4164 if (!Vec->getType()->isVectorTy()) 4165 return error("Invalid type for value"); 4166 I = ExtractElementInst::Create(Vec, Idx); 4167 FullTy = FullTy->getVectorElementType(); 4168 InstructionList.push_back(I); 4169 break; 4170 } 4171 4172 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4173 unsigned OpNum = 0; 4174 Value *Vec, *Elt, *Idx; 4175 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4176 return error("Invalid record"); 4177 if (!Vec->getType()->isVectorTy()) 4178 return error("Invalid type for value"); 4179 if (popValue(Record, OpNum, NextValueNo, 4180 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4181 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4182 return error("Invalid record"); 4183 I = InsertElementInst::Create(Vec, Elt, Idx); 4184 InstructionList.push_back(I); 4185 break; 4186 } 4187 4188 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4189 unsigned OpNum = 0; 4190 Value *Vec1, *Vec2, *Mask; 4191 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4192 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4193 return error("Invalid record"); 4194 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4196 return error("Invalid record"); 4197 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4198 return error("Invalid type for value"); 4199 4200 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4201 FullTy = VectorType::get(FullTy->getVectorElementType(), 4202 Mask->getType()->getVectorElementCount()); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 4207 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4208 // Old form of ICmp/FCmp returning bool 4209 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4210 // both legal on vectors but had different behaviour. 4211 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4212 // FCmp/ICmp returning bool or vector of bool 4213 4214 unsigned OpNum = 0; 4215 Value *LHS, *RHS; 4216 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4217 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4218 return error("Invalid record"); 4219 4220 if (OpNum >= Record.size()) 4221 return error( 4222 "Invalid record: operand number exceeded available operands"); 4223 4224 unsigned PredVal = Record[OpNum]; 4225 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4226 FastMathFlags FMF; 4227 if (IsFP && Record.size() > OpNum+1) 4228 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4229 4230 if (OpNum+1 != Record.size()) 4231 return error("Invalid record"); 4232 4233 if (LHS->getType()->isFPOrFPVectorTy()) 4234 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4235 else 4236 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4237 4238 if (FMF.any()) 4239 I->setFastMathFlags(FMF); 4240 InstructionList.push_back(I); 4241 break; 4242 } 4243 4244 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4245 { 4246 unsigned Size = Record.size(); 4247 if (Size == 0) { 4248 I = ReturnInst::Create(Context); 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 4253 unsigned OpNum = 0; 4254 Value *Op = nullptr; 4255 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4256 return error("Invalid record"); 4257 if (OpNum != Record.size()) 4258 return error("Invalid record"); 4259 4260 I = ReturnInst::Create(Context, Op); 4261 InstructionList.push_back(I); 4262 break; 4263 } 4264 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4265 if (Record.size() != 1 && Record.size() != 3) 4266 return error("Invalid record"); 4267 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4268 if (!TrueDest) 4269 return error("Invalid record"); 4270 4271 if (Record.size() == 1) { 4272 I = BranchInst::Create(TrueDest); 4273 InstructionList.push_back(I); 4274 } 4275 else { 4276 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4277 Value *Cond = getValue(Record, 2, NextValueNo, 4278 Type::getInt1Ty(Context)); 4279 if (!FalseDest || !Cond) 4280 return error("Invalid record"); 4281 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4282 InstructionList.push_back(I); 4283 } 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4287 if (Record.size() != 1 && Record.size() != 2) 4288 return error("Invalid record"); 4289 unsigned Idx = 0; 4290 Value *CleanupPad = 4291 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4292 if (!CleanupPad) 4293 return error("Invalid record"); 4294 BasicBlock *UnwindDest = nullptr; 4295 if (Record.size() == 2) { 4296 UnwindDest = getBasicBlock(Record[Idx++]); 4297 if (!UnwindDest) 4298 return error("Invalid record"); 4299 } 4300 4301 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4302 InstructionList.push_back(I); 4303 break; 4304 } 4305 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4306 if (Record.size() != 2) 4307 return error("Invalid record"); 4308 unsigned Idx = 0; 4309 Value *CatchPad = 4310 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4311 if (!CatchPad) 4312 return error("Invalid record"); 4313 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4314 if (!BB) 4315 return error("Invalid record"); 4316 4317 I = CatchReturnInst::Create(CatchPad, BB); 4318 InstructionList.push_back(I); 4319 break; 4320 } 4321 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4322 // We must have, at minimum, the outer scope and the number of arguments. 4323 if (Record.size() < 2) 4324 return error("Invalid record"); 4325 4326 unsigned Idx = 0; 4327 4328 Value *ParentPad = 4329 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4330 4331 unsigned NumHandlers = Record[Idx++]; 4332 4333 SmallVector<BasicBlock *, 2> Handlers; 4334 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4335 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4336 if (!BB) 4337 return error("Invalid record"); 4338 Handlers.push_back(BB); 4339 } 4340 4341 BasicBlock *UnwindDest = nullptr; 4342 if (Idx + 1 == Record.size()) { 4343 UnwindDest = getBasicBlock(Record[Idx++]); 4344 if (!UnwindDest) 4345 return error("Invalid record"); 4346 } 4347 4348 if (Record.size() != Idx) 4349 return error("Invalid record"); 4350 4351 auto *CatchSwitch = 4352 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4353 for (BasicBlock *Handler : Handlers) 4354 CatchSwitch->addHandler(Handler); 4355 I = CatchSwitch; 4356 InstructionList.push_back(I); 4357 break; 4358 } 4359 case bitc::FUNC_CODE_INST_CATCHPAD: 4360 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4361 // We must have, at minimum, the outer scope and the number of arguments. 4362 if (Record.size() < 2) 4363 return error("Invalid record"); 4364 4365 unsigned Idx = 0; 4366 4367 Value *ParentPad = 4368 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4369 4370 unsigned NumArgOperands = Record[Idx++]; 4371 4372 SmallVector<Value *, 2> Args; 4373 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4374 Value *Val; 4375 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4376 return error("Invalid record"); 4377 Args.push_back(Val); 4378 } 4379 4380 if (Record.size() != Idx) 4381 return error("Invalid record"); 4382 4383 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4384 I = CleanupPadInst::Create(ParentPad, Args); 4385 else 4386 I = CatchPadInst::Create(ParentPad, Args); 4387 InstructionList.push_back(I); 4388 break; 4389 } 4390 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4391 // Check magic 4392 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4393 // "New" SwitchInst format with case ranges. The changes to write this 4394 // format were reverted but we still recognize bitcode that uses it. 4395 // Hopefully someday we will have support for case ranges and can use 4396 // this format again. 4397 4398 Type *OpTy = getTypeByID(Record[1]); 4399 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4400 4401 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4402 BasicBlock *Default = getBasicBlock(Record[3]); 4403 if (!OpTy || !Cond || !Default) 4404 return error("Invalid record"); 4405 4406 unsigned NumCases = Record[4]; 4407 4408 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4409 InstructionList.push_back(SI); 4410 4411 unsigned CurIdx = 5; 4412 for (unsigned i = 0; i != NumCases; ++i) { 4413 SmallVector<ConstantInt*, 1> CaseVals; 4414 unsigned NumItems = Record[CurIdx++]; 4415 for (unsigned ci = 0; ci != NumItems; ++ci) { 4416 bool isSingleNumber = Record[CurIdx++]; 4417 4418 APInt Low; 4419 unsigned ActiveWords = 1; 4420 if (ValueBitWidth > 64) 4421 ActiveWords = Record[CurIdx++]; 4422 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4423 ValueBitWidth); 4424 CurIdx += ActiveWords; 4425 4426 if (!isSingleNumber) { 4427 ActiveWords = 1; 4428 if (ValueBitWidth > 64) 4429 ActiveWords = Record[CurIdx++]; 4430 APInt High = readWideAPInt( 4431 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4432 CurIdx += ActiveWords; 4433 4434 // FIXME: It is not clear whether values in the range should be 4435 // compared as signed or unsigned values. The partially 4436 // implemented changes that used this format in the past used 4437 // unsigned comparisons. 4438 for ( ; Low.ule(High); ++Low) 4439 CaseVals.push_back(ConstantInt::get(Context, Low)); 4440 } else 4441 CaseVals.push_back(ConstantInt::get(Context, Low)); 4442 } 4443 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4444 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4445 cve = CaseVals.end(); cvi != cve; ++cvi) 4446 SI->addCase(*cvi, DestBB); 4447 } 4448 I = SI; 4449 break; 4450 } 4451 4452 // Old SwitchInst format without case ranges. 4453 4454 if (Record.size() < 3 || (Record.size() & 1) == 0) 4455 return error("Invalid record"); 4456 Type *OpTy = getTypeByID(Record[0]); 4457 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4458 BasicBlock *Default = getBasicBlock(Record[2]); 4459 if (!OpTy || !Cond || !Default) 4460 return error("Invalid record"); 4461 unsigned NumCases = (Record.size()-3)/2; 4462 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4463 InstructionList.push_back(SI); 4464 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4465 ConstantInt *CaseVal = 4466 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4467 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4468 if (!CaseVal || !DestBB) { 4469 delete SI; 4470 return error("Invalid record"); 4471 } 4472 SI->addCase(CaseVal, DestBB); 4473 } 4474 I = SI; 4475 break; 4476 } 4477 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4478 if (Record.size() < 2) 4479 return error("Invalid record"); 4480 Type *OpTy = getTypeByID(Record[0]); 4481 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4482 if (!OpTy || !Address) 4483 return error("Invalid record"); 4484 unsigned NumDests = Record.size()-2; 4485 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4486 InstructionList.push_back(IBI); 4487 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4488 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4489 IBI->addDestination(DestBB); 4490 } else { 4491 delete IBI; 4492 return error("Invalid record"); 4493 } 4494 } 4495 I = IBI; 4496 break; 4497 } 4498 4499 case bitc::FUNC_CODE_INST_INVOKE: { 4500 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4501 if (Record.size() < 4) 4502 return error("Invalid record"); 4503 unsigned OpNum = 0; 4504 AttributeList PAL = getAttributes(Record[OpNum++]); 4505 unsigned CCInfo = Record[OpNum++]; 4506 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4507 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4508 4509 FunctionType *FTy = nullptr; 4510 FunctionType *FullFTy = nullptr; 4511 if ((CCInfo >> 13) & 1) { 4512 FullFTy = 4513 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4514 if (!FullFTy) 4515 return error("Explicit invoke type is not a function type"); 4516 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4517 } 4518 4519 Value *Callee; 4520 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4521 return error("Invalid record"); 4522 4523 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4524 if (!CalleeTy) 4525 return error("Callee is not a pointer"); 4526 if (!FTy) { 4527 FullFTy = 4528 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4529 if (!FullFTy) 4530 return error("Callee is not of pointer to function type"); 4531 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4532 } else if (getPointerElementFlatType(FullTy) != FTy) 4533 return error("Explicit invoke type does not match pointee type of " 4534 "callee operand"); 4535 if (Record.size() < FTy->getNumParams() + OpNum) 4536 return error("Insufficient operands to call"); 4537 4538 SmallVector<Value*, 16> Ops; 4539 SmallVector<Type *, 16> ArgsFullTys; 4540 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4541 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4542 FTy->getParamType(i))); 4543 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4544 if (!Ops.back()) 4545 return error("Invalid record"); 4546 } 4547 4548 if (!FTy->isVarArg()) { 4549 if (Record.size() != OpNum) 4550 return error("Invalid record"); 4551 } else { 4552 // Read type/value pairs for varargs params. 4553 while (OpNum != Record.size()) { 4554 Value *Op; 4555 Type *FullTy; 4556 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4557 return error("Invalid record"); 4558 Ops.push_back(Op); 4559 ArgsFullTys.push_back(FullTy); 4560 } 4561 } 4562 4563 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4564 OperandBundles); 4565 FullTy = FullFTy->getReturnType(); 4566 OperandBundles.clear(); 4567 InstructionList.push_back(I); 4568 cast<InvokeInst>(I)->setCallingConv( 4569 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4570 cast<InvokeInst>(I)->setAttributes(PAL); 4571 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4572 4573 break; 4574 } 4575 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4576 unsigned Idx = 0; 4577 Value *Val = nullptr; 4578 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4579 return error("Invalid record"); 4580 I = ResumeInst::Create(Val); 4581 InstructionList.push_back(I); 4582 break; 4583 } 4584 case bitc::FUNC_CODE_INST_CALLBR: { 4585 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4586 unsigned OpNum = 0; 4587 AttributeList PAL = getAttributes(Record[OpNum++]); 4588 unsigned CCInfo = Record[OpNum++]; 4589 4590 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4591 unsigned NumIndirectDests = Record[OpNum++]; 4592 SmallVector<BasicBlock *, 16> IndirectDests; 4593 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4594 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4595 4596 FunctionType *FTy = nullptr; 4597 FunctionType *FullFTy = nullptr; 4598 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4599 FullFTy = 4600 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4601 if (!FullFTy) 4602 return error("Explicit call type is not a function type"); 4603 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4604 } 4605 4606 Value *Callee; 4607 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4608 return error("Invalid record"); 4609 4610 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4611 if (!OpTy) 4612 return error("Callee is not a pointer type"); 4613 if (!FTy) { 4614 FullFTy = 4615 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4616 if (!FullFTy) 4617 return error("Callee is not of pointer to function type"); 4618 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4619 } else if (getPointerElementFlatType(FullTy) != FTy) 4620 return error("Explicit call type does not match pointee type of " 4621 "callee operand"); 4622 if (Record.size() < FTy->getNumParams() + OpNum) 4623 return error("Insufficient operands to call"); 4624 4625 SmallVector<Value*, 16> Args; 4626 // Read the fixed params. 4627 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4628 if (FTy->getParamType(i)->isLabelTy()) 4629 Args.push_back(getBasicBlock(Record[OpNum])); 4630 else 4631 Args.push_back(getValue(Record, OpNum, NextValueNo, 4632 FTy->getParamType(i))); 4633 if (!Args.back()) 4634 return error("Invalid record"); 4635 } 4636 4637 // Read type/value pairs for varargs params. 4638 if (!FTy->isVarArg()) { 4639 if (OpNum != Record.size()) 4640 return error("Invalid record"); 4641 } else { 4642 while (OpNum != Record.size()) { 4643 Value *Op; 4644 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4645 return error("Invalid record"); 4646 Args.push_back(Op); 4647 } 4648 } 4649 4650 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4651 OperandBundles); 4652 FullTy = FullFTy->getReturnType(); 4653 OperandBundles.clear(); 4654 InstructionList.push_back(I); 4655 cast<CallBrInst>(I)->setCallingConv( 4656 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4657 cast<CallBrInst>(I)->setAttributes(PAL); 4658 break; 4659 } 4660 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4661 I = new UnreachableInst(Context); 4662 InstructionList.push_back(I); 4663 break; 4664 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4665 if (Record.size() < 1) 4666 return error("Invalid record"); 4667 // The first record specifies the type. 4668 FullTy = getFullyStructuredTypeByID(Record[0]); 4669 Type *Ty = flattenPointerTypes(FullTy); 4670 if (!Ty) 4671 return error("Invalid record"); 4672 4673 // Phi arguments are pairs of records of [value, basic block]. 4674 // There is an optional final record for fast-math-flags if this phi has a 4675 // floating-point type. 4676 size_t NumArgs = (Record.size() - 1) / 2; 4677 PHINode *PN = PHINode::Create(Ty, NumArgs); 4678 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4679 return error("Invalid record"); 4680 InstructionList.push_back(PN); 4681 4682 for (unsigned i = 0; i != NumArgs; i++) { 4683 Value *V; 4684 // With the new function encoding, it is possible that operands have 4685 // negative IDs (for forward references). Use a signed VBR 4686 // representation to keep the encoding small. 4687 if (UseRelativeIDs) 4688 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4689 else 4690 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4691 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4692 if (!V || !BB) 4693 return error("Invalid record"); 4694 PN->addIncoming(V, BB); 4695 } 4696 I = PN; 4697 4698 // If there are an even number of records, the final record must be FMF. 4699 if (Record.size() % 2 == 0) { 4700 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4701 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4702 if (FMF.any()) 4703 I->setFastMathFlags(FMF); 4704 } 4705 4706 break; 4707 } 4708 4709 case bitc::FUNC_CODE_INST_LANDINGPAD: 4710 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4711 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4712 unsigned Idx = 0; 4713 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4714 if (Record.size() < 3) 4715 return error("Invalid record"); 4716 } else { 4717 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4718 if (Record.size() < 4) 4719 return error("Invalid record"); 4720 } 4721 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4722 Type *Ty = flattenPointerTypes(FullTy); 4723 if (!Ty) 4724 return error("Invalid record"); 4725 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4726 Value *PersFn = nullptr; 4727 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4728 return error("Invalid record"); 4729 4730 if (!F->hasPersonalityFn()) 4731 F->setPersonalityFn(cast<Constant>(PersFn)); 4732 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4733 return error("Personality function mismatch"); 4734 } 4735 4736 bool IsCleanup = !!Record[Idx++]; 4737 unsigned NumClauses = Record[Idx++]; 4738 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4739 LP->setCleanup(IsCleanup); 4740 for (unsigned J = 0; J != NumClauses; ++J) { 4741 LandingPadInst::ClauseType CT = 4742 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4743 Value *Val; 4744 4745 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4746 delete LP; 4747 return error("Invalid record"); 4748 } 4749 4750 assert((CT != LandingPadInst::Catch || 4751 !isa<ArrayType>(Val->getType())) && 4752 "Catch clause has a invalid type!"); 4753 assert((CT != LandingPadInst::Filter || 4754 isa<ArrayType>(Val->getType())) && 4755 "Filter clause has invalid type!"); 4756 LP->addClause(cast<Constant>(Val)); 4757 } 4758 4759 I = LP; 4760 InstructionList.push_back(I); 4761 break; 4762 } 4763 4764 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4765 if (Record.size() != 4) 4766 return error("Invalid record"); 4767 uint64_t AlignRecord = Record[3]; 4768 const uint64_t InAllocaMask = uint64_t(1) << 5; 4769 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4770 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4771 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4772 SwiftErrorMask; 4773 bool InAlloca = AlignRecord & InAllocaMask; 4774 bool SwiftError = AlignRecord & SwiftErrorMask; 4775 FullTy = getFullyStructuredTypeByID(Record[0]); 4776 Type *Ty = flattenPointerTypes(FullTy); 4777 if ((AlignRecord & ExplicitTypeMask) == 0) { 4778 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4779 if (!PTy) 4780 return error("Old-style alloca with a non-pointer type"); 4781 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4782 } 4783 Type *OpTy = getTypeByID(Record[1]); 4784 Value *Size = getFnValueByID(Record[2], OpTy); 4785 MaybeAlign Align; 4786 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4787 return Err; 4788 } 4789 if (!Ty || !Size) 4790 return error("Invalid record"); 4791 4792 // FIXME: Make this an optional field. 4793 const DataLayout &DL = TheModule->getDataLayout(); 4794 unsigned AS = DL.getAllocaAddrSpace(); 4795 4796 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4797 AI->setUsedWithInAlloca(InAlloca); 4798 AI->setSwiftError(SwiftError); 4799 I = AI; 4800 FullTy = PointerType::get(FullTy, AS); 4801 InstructionList.push_back(I); 4802 break; 4803 } 4804 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4805 unsigned OpNum = 0; 4806 Value *Op; 4807 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4808 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4809 return error("Invalid record"); 4810 4811 if (!isa<PointerType>(Op->getType())) 4812 return error("Load operand is not a pointer type"); 4813 4814 Type *Ty = nullptr; 4815 if (OpNum + 3 == Record.size()) { 4816 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4817 Ty = flattenPointerTypes(FullTy); 4818 } else 4819 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4820 4821 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4822 return Err; 4823 4824 MaybeAlign Align; 4825 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4826 return Err; 4827 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4828 InstructionList.push_back(I); 4829 break; 4830 } 4831 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4832 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4833 unsigned OpNum = 0; 4834 Value *Op; 4835 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4836 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4837 return error("Invalid record"); 4838 4839 if (!isa<PointerType>(Op->getType())) 4840 return error("Load operand is not a pointer type"); 4841 4842 Type *Ty = nullptr; 4843 if (OpNum + 5 == Record.size()) { 4844 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4845 Ty = flattenPointerTypes(FullTy); 4846 } else 4847 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4848 4849 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4850 return Err; 4851 4852 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4853 if (Ordering == AtomicOrdering::NotAtomic || 4854 Ordering == AtomicOrdering::Release || 4855 Ordering == AtomicOrdering::AcquireRelease) 4856 return error("Invalid record"); 4857 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4858 return error("Invalid record"); 4859 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4860 4861 MaybeAlign Align; 4862 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4863 return Err; 4864 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4865 InstructionList.push_back(I); 4866 break; 4867 } 4868 case bitc::FUNC_CODE_INST_STORE: 4869 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4870 unsigned OpNum = 0; 4871 Value *Val, *Ptr; 4872 Type *FullTy; 4873 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4874 (BitCode == bitc::FUNC_CODE_INST_STORE 4875 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4876 : popValue(Record, OpNum, NextValueNo, 4877 getPointerElementFlatType(FullTy), Val)) || 4878 OpNum + 2 != Record.size()) 4879 return error("Invalid record"); 4880 4881 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4882 return Err; 4883 MaybeAlign Align; 4884 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4885 return Err; 4886 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4887 InstructionList.push_back(I); 4888 break; 4889 } 4890 case bitc::FUNC_CODE_INST_STOREATOMIC: 4891 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4892 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4893 unsigned OpNum = 0; 4894 Value *Val, *Ptr; 4895 Type *FullTy; 4896 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4897 !isa<PointerType>(Ptr->getType()) || 4898 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4899 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4900 : popValue(Record, OpNum, NextValueNo, 4901 getPointerElementFlatType(FullTy), Val)) || 4902 OpNum + 4 != Record.size()) 4903 return error("Invalid record"); 4904 4905 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4906 return Err; 4907 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4908 if (Ordering == AtomicOrdering::NotAtomic || 4909 Ordering == AtomicOrdering::Acquire || 4910 Ordering == AtomicOrdering::AcquireRelease) 4911 return error("Invalid record"); 4912 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4913 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4914 return error("Invalid record"); 4915 4916 MaybeAlign Align; 4917 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4918 return Err; 4919 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4924 case bitc::FUNC_CODE_INST_CMPXCHG: { 4925 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4926 // failureordering?, isweak?] 4927 unsigned OpNum = 0; 4928 Value *Ptr, *Cmp, *New; 4929 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4930 return error("Invalid record"); 4931 4932 if (!isa<PointerType>(Ptr->getType())) 4933 return error("Cmpxchg operand is not a pointer type"); 4934 4935 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4936 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4937 return error("Invalid record"); 4938 } else if (popValue(Record, OpNum, NextValueNo, 4939 getPointerElementFlatType(FullTy), Cmp)) 4940 return error("Invalid record"); 4941 else 4942 FullTy = cast<PointerType>(FullTy)->getElementType(); 4943 4944 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4945 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4946 return error("Invalid record"); 4947 4948 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4949 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4950 SuccessOrdering == AtomicOrdering::Unordered) 4951 return error("Invalid record"); 4952 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4953 4954 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4955 return Err; 4956 AtomicOrdering FailureOrdering; 4957 if (Record.size() < 7) 4958 FailureOrdering = 4959 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4960 else 4961 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4962 4963 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4964 SSID); 4965 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4966 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4967 4968 if (Record.size() < 8) { 4969 // Before weak cmpxchgs existed, the instruction simply returned the 4970 // value loaded from memory, so bitcode files from that era will be 4971 // expecting the first component of a modern cmpxchg. 4972 CurBB->getInstList().push_back(I); 4973 I = ExtractValueInst::Create(I, 0); 4974 FullTy = cast<StructType>(FullTy)->getElementType(0); 4975 } else { 4976 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4977 } 4978 4979 InstructionList.push_back(I); 4980 break; 4981 } 4982 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4983 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4984 unsigned OpNum = 0; 4985 Value *Ptr, *Val; 4986 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4987 !isa<PointerType>(Ptr->getType()) || 4988 popValue(Record, OpNum, NextValueNo, 4989 getPointerElementFlatType(FullTy), Val) || 4990 OpNum + 4 != Record.size()) 4991 return error("Invalid record"); 4992 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4993 if (Operation < AtomicRMWInst::FIRST_BINOP || 4994 Operation > AtomicRMWInst::LAST_BINOP) 4995 return error("Invalid record"); 4996 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4997 if (Ordering == AtomicOrdering::NotAtomic || 4998 Ordering == AtomicOrdering::Unordered) 4999 return error("Invalid record"); 5000 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5001 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5002 FullTy = getPointerElementFlatType(FullTy); 5003 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5008 if (2 != Record.size()) 5009 return error("Invalid record"); 5010 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5011 if (Ordering == AtomicOrdering::NotAtomic || 5012 Ordering == AtomicOrdering::Unordered || 5013 Ordering == AtomicOrdering::Monotonic) 5014 return error("Invalid record"); 5015 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5016 I = new FenceInst(Context, Ordering, SSID); 5017 InstructionList.push_back(I); 5018 break; 5019 } 5020 case bitc::FUNC_CODE_INST_CALL: { 5021 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5022 if (Record.size() < 3) 5023 return error("Invalid record"); 5024 5025 unsigned OpNum = 0; 5026 AttributeList PAL = getAttributes(Record[OpNum++]); 5027 unsigned CCInfo = Record[OpNum++]; 5028 5029 FastMathFlags FMF; 5030 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5031 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5032 if (!FMF.any()) 5033 return error("Fast math flags indicator set for call with no FMF"); 5034 } 5035 5036 FunctionType *FTy = nullptr; 5037 FunctionType *FullFTy = nullptr; 5038 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5039 FullFTy = 5040 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5041 if (!FullFTy) 5042 return error("Explicit call type is not a function type"); 5043 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5044 } 5045 5046 Value *Callee; 5047 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5048 return error("Invalid record"); 5049 5050 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5051 if (!OpTy) 5052 return error("Callee is not a pointer type"); 5053 if (!FTy) { 5054 FullFTy = 5055 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5056 if (!FullFTy) 5057 return error("Callee is not of pointer to function type"); 5058 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5059 } else if (getPointerElementFlatType(FullTy) != FTy) 5060 return error("Explicit call type does not match pointee type of " 5061 "callee operand"); 5062 if (Record.size() < FTy->getNumParams() + OpNum) 5063 return error("Insufficient operands to call"); 5064 5065 SmallVector<Value*, 16> Args; 5066 SmallVector<Type*, 16> ArgsFullTys; 5067 // Read the fixed params. 5068 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5069 if (FTy->getParamType(i)->isLabelTy()) 5070 Args.push_back(getBasicBlock(Record[OpNum])); 5071 else 5072 Args.push_back(getValue(Record, OpNum, NextValueNo, 5073 FTy->getParamType(i))); 5074 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5075 if (!Args.back()) 5076 return error("Invalid record"); 5077 } 5078 5079 // Read type/value pairs for varargs params. 5080 if (!FTy->isVarArg()) { 5081 if (OpNum != Record.size()) 5082 return error("Invalid record"); 5083 } else { 5084 while (OpNum != Record.size()) { 5085 Value *Op; 5086 Type *FullTy; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5088 return error("Invalid record"); 5089 Args.push_back(Op); 5090 ArgsFullTys.push_back(FullTy); 5091 } 5092 } 5093 5094 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5095 FullTy = FullFTy->getReturnType(); 5096 OperandBundles.clear(); 5097 InstructionList.push_back(I); 5098 cast<CallInst>(I)->setCallingConv( 5099 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5100 CallInst::TailCallKind TCK = CallInst::TCK_None; 5101 if (CCInfo & 1 << bitc::CALL_TAIL) 5102 TCK = CallInst::TCK_Tail; 5103 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5104 TCK = CallInst::TCK_MustTail; 5105 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5106 TCK = CallInst::TCK_NoTail; 5107 cast<CallInst>(I)->setTailCallKind(TCK); 5108 cast<CallInst>(I)->setAttributes(PAL); 5109 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5110 if (FMF.any()) { 5111 if (!isa<FPMathOperator>(I)) 5112 return error("Fast-math-flags specified for call without " 5113 "floating-point scalar or vector return type"); 5114 I->setFastMathFlags(FMF); 5115 } 5116 break; 5117 } 5118 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5119 if (Record.size() < 3) 5120 return error("Invalid record"); 5121 Type *OpTy = getTypeByID(Record[0]); 5122 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5123 FullTy = getFullyStructuredTypeByID(Record[2]); 5124 Type *ResTy = flattenPointerTypes(FullTy); 5125 if (!OpTy || !Op || !ResTy) 5126 return error("Invalid record"); 5127 I = new VAArgInst(Op, ResTy); 5128 InstructionList.push_back(I); 5129 break; 5130 } 5131 5132 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5133 // A call or an invoke can be optionally prefixed with some variable 5134 // number of operand bundle blocks. These blocks are read into 5135 // OperandBundles and consumed at the next call or invoke instruction. 5136 5137 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5138 return error("Invalid record"); 5139 5140 std::vector<Value *> Inputs; 5141 5142 unsigned OpNum = 1; 5143 while (OpNum != Record.size()) { 5144 Value *Op; 5145 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5146 return error("Invalid record"); 5147 Inputs.push_back(Op); 5148 } 5149 5150 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5151 continue; 5152 } 5153 5154 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5155 unsigned OpNum = 0; 5156 Value *Op = nullptr; 5157 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5158 return error("Invalid record"); 5159 if (OpNum != Record.size()) 5160 return error("Invalid record"); 5161 5162 I = new FreezeInst(Op); 5163 InstructionList.push_back(I); 5164 break; 5165 } 5166 } 5167 5168 // Add instruction to end of current BB. If there is no current BB, reject 5169 // this file. 5170 if (!CurBB) { 5171 I->deleteValue(); 5172 return error("Invalid instruction with no BB"); 5173 } 5174 if (!OperandBundles.empty()) { 5175 I->deleteValue(); 5176 return error("Operand bundles found with no consumer"); 5177 } 5178 CurBB->getInstList().push_back(I); 5179 5180 // If this was a terminator instruction, move to the next block. 5181 if (I->isTerminator()) { 5182 ++CurBBNo; 5183 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5184 } 5185 5186 // Non-void values get registered in the value table for future use. 5187 if (!I->getType()->isVoidTy()) { 5188 if (!FullTy) { 5189 FullTy = I->getType(); 5190 assert( 5191 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5192 !isa<ArrayType>(FullTy) && 5193 (!isa<VectorType>(FullTy) || 5194 FullTy->getVectorElementType()->isFloatingPointTy() || 5195 FullTy->getVectorElementType()->isIntegerTy()) && 5196 "Structured types must be assigned with corresponding non-opaque " 5197 "pointer type"); 5198 } 5199 5200 assert(I->getType() == flattenPointerTypes(FullTy) && 5201 "Incorrect fully structured type provided for Instruction"); 5202 ValueList.assignValue(I, NextValueNo++, FullTy); 5203 } 5204 } 5205 5206 OutOfRecordLoop: 5207 5208 if (!OperandBundles.empty()) 5209 return error("Operand bundles found with no consumer"); 5210 5211 // Check the function list for unresolved values. 5212 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5213 if (!A->getParent()) { 5214 // We found at least one unresolved value. Nuke them all to avoid leaks. 5215 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5216 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5217 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5218 delete A; 5219 } 5220 } 5221 return error("Never resolved value found in function"); 5222 } 5223 } 5224 5225 // Unexpected unresolved metadata about to be dropped. 5226 if (MDLoader->hasFwdRefs()) 5227 return error("Invalid function metadata: outgoing forward refs"); 5228 5229 // Trim the value list down to the size it was before we parsed this function. 5230 ValueList.shrinkTo(ModuleValueListSize); 5231 MDLoader->shrinkTo(ModuleMDLoaderSize); 5232 std::vector<BasicBlock*>().swap(FunctionBBs); 5233 return Error::success(); 5234 } 5235 5236 /// Find the function body in the bitcode stream 5237 Error BitcodeReader::findFunctionInStream( 5238 Function *F, 5239 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5240 while (DeferredFunctionInfoIterator->second == 0) { 5241 // This is the fallback handling for the old format bitcode that 5242 // didn't contain the function index in the VST, or when we have 5243 // an anonymous function which would not have a VST entry. 5244 // Assert that we have one of those two cases. 5245 assert(VSTOffset == 0 || !F->hasName()); 5246 // Parse the next body in the stream and set its position in the 5247 // DeferredFunctionInfo map. 5248 if (Error Err = rememberAndSkipFunctionBodies()) 5249 return Err; 5250 } 5251 return Error::success(); 5252 } 5253 5254 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5255 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5256 return SyncScope::ID(Val); 5257 if (Val >= SSIDs.size()) 5258 return SyncScope::System; // Map unknown synchronization scopes to system. 5259 return SSIDs[Val]; 5260 } 5261 5262 //===----------------------------------------------------------------------===// 5263 // GVMaterializer implementation 5264 //===----------------------------------------------------------------------===// 5265 5266 Error BitcodeReader::materialize(GlobalValue *GV) { 5267 Function *F = dyn_cast<Function>(GV); 5268 // If it's not a function or is already material, ignore the request. 5269 if (!F || !F->isMaterializable()) 5270 return Error::success(); 5271 5272 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5273 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5274 // If its position is recorded as 0, its body is somewhere in the stream 5275 // but we haven't seen it yet. 5276 if (DFII->second == 0) 5277 if (Error Err = findFunctionInStream(F, DFII)) 5278 return Err; 5279 5280 // Materialize metadata before parsing any function bodies. 5281 if (Error Err = materializeMetadata()) 5282 return Err; 5283 5284 // Move the bit stream to the saved position of the deferred function body. 5285 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5286 return JumpFailed; 5287 if (Error Err = parseFunctionBody(F)) 5288 return Err; 5289 F->setIsMaterializable(false); 5290 5291 if (StripDebugInfo) 5292 stripDebugInfo(*F); 5293 5294 // Upgrade any old intrinsic calls in the function. 5295 for (auto &I : UpgradedIntrinsics) { 5296 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5297 UI != UE;) { 5298 User *U = *UI; 5299 ++UI; 5300 if (CallInst *CI = dyn_cast<CallInst>(U)) 5301 UpgradeIntrinsicCall(CI, I.second); 5302 } 5303 } 5304 5305 // Update calls to the remangled intrinsics 5306 for (auto &I : RemangledIntrinsics) 5307 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5308 UI != UE;) 5309 // Don't expect any other users than call sites 5310 CallSite(*UI++).setCalledFunction(I.second); 5311 5312 // Finish fn->subprogram upgrade for materialized functions. 5313 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5314 F->setSubprogram(SP); 5315 5316 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5317 if (!MDLoader->isStrippingTBAA()) { 5318 for (auto &I : instructions(F)) { 5319 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5320 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5321 continue; 5322 MDLoader->setStripTBAA(true); 5323 stripTBAA(F->getParent()); 5324 } 5325 } 5326 5327 // Bring in any functions that this function forward-referenced via 5328 // blockaddresses. 5329 return materializeForwardReferencedFunctions(); 5330 } 5331 5332 Error BitcodeReader::materializeModule() { 5333 if (Error Err = materializeMetadata()) 5334 return Err; 5335 5336 // Promise to materialize all forward references. 5337 WillMaterializeAllForwardRefs = true; 5338 5339 // Iterate over the module, deserializing any functions that are still on 5340 // disk. 5341 for (Function &F : *TheModule) { 5342 if (Error Err = materialize(&F)) 5343 return Err; 5344 } 5345 // At this point, if there are any function bodies, parse the rest of 5346 // the bits in the module past the last function block we have recorded 5347 // through either lazy scanning or the VST. 5348 if (LastFunctionBlockBit || NextUnreadBit) 5349 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5350 ? LastFunctionBlockBit 5351 : NextUnreadBit)) 5352 return Err; 5353 5354 // Check that all block address forward references got resolved (as we 5355 // promised above). 5356 if (!BasicBlockFwdRefs.empty()) 5357 return error("Never resolved function from blockaddress"); 5358 5359 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5360 // delete the old functions to clean up. We can't do this unless the entire 5361 // module is materialized because there could always be another function body 5362 // with calls to the old function. 5363 for (auto &I : UpgradedIntrinsics) { 5364 for (auto *U : I.first->users()) { 5365 if (CallInst *CI = dyn_cast<CallInst>(U)) 5366 UpgradeIntrinsicCall(CI, I.second); 5367 } 5368 if (!I.first->use_empty()) 5369 I.first->replaceAllUsesWith(I.second); 5370 I.first->eraseFromParent(); 5371 } 5372 UpgradedIntrinsics.clear(); 5373 // Do the same for remangled intrinsics 5374 for (auto &I : RemangledIntrinsics) { 5375 I.first->replaceAllUsesWith(I.second); 5376 I.first->eraseFromParent(); 5377 } 5378 RemangledIntrinsics.clear(); 5379 5380 UpgradeDebugInfo(*TheModule); 5381 5382 UpgradeModuleFlags(*TheModule); 5383 5384 UpgradeARCRuntime(*TheModule); 5385 5386 return Error::success(); 5387 } 5388 5389 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5390 return IdentifiedStructTypes; 5391 } 5392 5393 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5394 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5395 StringRef ModulePath, unsigned ModuleId) 5396 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5397 ModulePath(ModulePath), ModuleId(ModuleId) {} 5398 5399 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5400 TheIndex.addModule(ModulePath, ModuleId); 5401 } 5402 5403 ModuleSummaryIndex::ModuleInfo * 5404 ModuleSummaryIndexBitcodeReader::getThisModule() { 5405 return TheIndex.getModule(ModulePath); 5406 } 5407 5408 std::pair<ValueInfo, GlobalValue::GUID> 5409 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5410 auto VGI = ValueIdToValueInfoMap[ValueId]; 5411 assert(VGI.first); 5412 return VGI; 5413 } 5414 5415 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5416 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5417 StringRef SourceFileName) { 5418 std::string GlobalId = 5419 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5420 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5421 auto OriginalNameID = ValueGUID; 5422 if (GlobalValue::isLocalLinkage(Linkage)) 5423 OriginalNameID = GlobalValue::getGUID(ValueName); 5424 if (PrintSummaryGUIDs) 5425 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5426 << ValueName << "\n"; 5427 5428 // UseStrtab is false for legacy summary formats and value names are 5429 // created on stack. In that case we save the name in a string saver in 5430 // the index so that the value name can be recorded. 5431 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5432 TheIndex.getOrInsertValueInfo( 5433 ValueGUID, 5434 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5435 OriginalNameID); 5436 } 5437 5438 // Specialized value symbol table parser used when reading module index 5439 // blocks where we don't actually create global values. The parsed information 5440 // is saved in the bitcode reader for use when later parsing summaries. 5441 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5442 uint64_t Offset, 5443 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5444 // With a strtab the VST is not required to parse the summary. 5445 if (UseStrtab) 5446 return Error::success(); 5447 5448 assert(Offset > 0 && "Expected non-zero VST offset"); 5449 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5450 if (!MaybeCurrentBit) 5451 return MaybeCurrentBit.takeError(); 5452 uint64_t CurrentBit = MaybeCurrentBit.get(); 5453 5454 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5455 return Err; 5456 5457 SmallVector<uint64_t, 64> Record; 5458 5459 // Read all the records for this value table. 5460 SmallString<128> ValueName; 5461 5462 while (true) { 5463 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5464 if (!MaybeEntry) 5465 return MaybeEntry.takeError(); 5466 BitstreamEntry Entry = MaybeEntry.get(); 5467 5468 switch (Entry.Kind) { 5469 case BitstreamEntry::SubBlock: // Handled for us already. 5470 case BitstreamEntry::Error: 5471 return error("Malformed block"); 5472 case BitstreamEntry::EndBlock: 5473 // Done parsing VST, jump back to wherever we came from. 5474 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5475 return JumpFailed; 5476 return Error::success(); 5477 case BitstreamEntry::Record: 5478 // The interesting case. 5479 break; 5480 } 5481 5482 // Read a record. 5483 Record.clear(); 5484 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5485 if (!MaybeRecord) 5486 return MaybeRecord.takeError(); 5487 switch (MaybeRecord.get()) { 5488 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5489 break; 5490 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5491 if (convertToString(Record, 1, ValueName)) 5492 return error("Invalid record"); 5493 unsigned ValueID = Record[0]; 5494 assert(!SourceFileName.empty()); 5495 auto VLI = ValueIdToLinkageMap.find(ValueID); 5496 assert(VLI != ValueIdToLinkageMap.end() && 5497 "No linkage found for VST entry?"); 5498 auto Linkage = VLI->second; 5499 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5500 ValueName.clear(); 5501 break; 5502 } 5503 case bitc::VST_CODE_FNENTRY: { 5504 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5505 if (convertToString(Record, 2, ValueName)) 5506 return error("Invalid record"); 5507 unsigned ValueID = Record[0]; 5508 assert(!SourceFileName.empty()); 5509 auto VLI = ValueIdToLinkageMap.find(ValueID); 5510 assert(VLI != ValueIdToLinkageMap.end() && 5511 "No linkage found for VST entry?"); 5512 auto Linkage = VLI->second; 5513 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5514 ValueName.clear(); 5515 break; 5516 } 5517 case bitc::VST_CODE_COMBINED_ENTRY: { 5518 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5519 unsigned ValueID = Record[0]; 5520 GlobalValue::GUID RefGUID = Record[1]; 5521 // The "original name", which is the second value of the pair will be 5522 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5523 ValueIdToValueInfoMap[ValueID] = 5524 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5525 break; 5526 } 5527 } 5528 } 5529 } 5530 5531 // Parse just the blocks needed for building the index out of the module. 5532 // At the end of this routine the module Index is populated with a map 5533 // from global value id to GlobalValueSummary objects. 5534 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5535 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5536 return Err; 5537 5538 SmallVector<uint64_t, 64> Record; 5539 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5540 unsigned ValueId = 0; 5541 5542 // Read the index for this module. 5543 while (true) { 5544 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5545 if (!MaybeEntry) 5546 return MaybeEntry.takeError(); 5547 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5548 5549 switch (Entry.Kind) { 5550 case BitstreamEntry::Error: 5551 return error("Malformed block"); 5552 case BitstreamEntry::EndBlock: 5553 return Error::success(); 5554 5555 case BitstreamEntry::SubBlock: 5556 switch (Entry.ID) { 5557 default: // Skip unknown content. 5558 if (Error Err = Stream.SkipBlock()) 5559 return Err; 5560 break; 5561 case bitc::BLOCKINFO_BLOCK_ID: 5562 // Need to parse these to get abbrev ids (e.g. for VST) 5563 if (readBlockInfo()) 5564 return error("Malformed block"); 5565 break; 5566 case bitc::VALUE_SYMTAB_BLOCK_ID: 5567 // Should have been parsed earlier via VSTOffset, unless there 5568 // is no summary section. 5569 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5570 !SeenGlobalValSummary) && 5571 "Expected early VST parse via VSTOffset record"); 5572 if (Error Err = Stream.SkipBlock()) 5573 return Err; 5574 break; 5575 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5576 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5577 // Add the module if it is a per-module index (has a source file name). 5578 if (!SourceFileName.empty()) 5579 addThisModule(); 5580 assert(!SeenValueSymbolTable && 5581 "Already read VST when parsing summary block?"); 5582 // We might not have a VST if there were no values in the 5583 // summary. An empty summary block generated when we are 5584 // performing ThinLTO compiles so we don't later invoke 5585 // the regular LTO process on them. 5586 if (VSTOffset > 0) { 5587 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5588 return Err; 5589 SeenValueSymbolTable = true; 5590 } 5591 SeenGlobalValSummary = true; 5592 if (Error Err = parseEntireSummary(Entry.ID)) 5593 return Err; 5594 break; 5595 case bitc::MODULE_STRTAB_BLOCK_ID: 5596 if (Error Err = parseModuleStringTable()) 5597 return Err; 5598 break; 5599 } 5600 continue; 5601 5602 case BitstreamEntry::Record: { 5603 Record.clear(); 5604 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5605 if (!MaybeBitCode) 5606 return MaybeBitCode.takeError(); 5607 switch (MaybeBitCode.get()) { 5608 default: 5609 break; // Default behavior, ignore unknown content. 5610 case bitc::MODULE_CODE_VERSION: { 5611 if (Error Err = parseVersionRecord(Record).takeError()) 5612 return Err; 5613 break; 5614 } 5615 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5616 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5617 SmallString<128> ValueName; 5618 if (convertToString(Record, 0, ValueName)) 5619 return error("Invalid record"); 5620 SourceFileName = ValueName.c_str(); 5621 break; 5622 } 5623 /// MODULE_CODE_HASH: [5*i32] 5624 case bitc::MODULE_CODE_HASH: { 5625 if (Record.size() != 5) 5626 return error("Invalid hash length " + Twine(Record.size()).str()); 5627 auto &Hash = getThisModule()->second.second; 5628 int Pos = 0; 5629 for (auto &Val : Record) { 5630 assert(!(Val >> 32) && "Unexpected high bits set"); 5631 Hash[Pos++] = Val; 5632 } 5633 break; 5634 } 5635 /// MODULE_CODE_VSTOFFSET: [offset] 5636 case bitc::MODULE_CODE_VSTOFFSET: 5637 if (Record.size() < 1) 5638 return error("Invalid record"); 5639 // Note that we subtract 1 here because the offset is relative to one 5640 // word before the start of the identification or module block, which 5641 // was historically always the start of the regular bitcode header. 5642 VSTOffset = Record[0] - 1; 5643 break; 5644 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5645 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5646 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5647 // v2: [strtab offset, strtab size, v1] 5648 case bitc::MODULE_CODE_GLOBALVAR: 5649 case bitc::MODULE_CODE_FUNCTION: 5650 case bitc::MODULE_CODE_ALIAS: { 5651 StringRef Name; 5652 ArrayRef<uint64_t> GVRecord; 5653 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5654 if (GVRecord.size() <= 3) 5655 return error("Invalid record"); 5656 uint64_t RawLinkage = GVRecord[3]; 5657 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5658 if (!UseStrtab) { 5659 ValueIdToLinkageMap[ValueId++] = Linkage; 5660 break; 5661 } 5662 5663 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5664 break; 5665 } 5666 } 5667 } 5668 continue; 5669 } 5670 } 5671 } 5672 5673 std::vector<ValueInfo> 5674 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5675 std::vector<ValueInfo> Ret; 5676 Ret.reserve(Record.size()); 5677 for (uint64_t RefValueId : Record) 5678 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5679 return Ret; 5680 } 5681 5682 std::vector<FunctionSummary::EdgeTy> 5683 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5684 bool IsOldProfileFormat, 5685 bool HasProfile, bool HasRelBF) { 5686 std::vector<FunctionSummary::EdgeTy> Ret; 5687 Ret.reserve(Record.size()); 5688 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5689 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5690 uint64_t RelBF = 0; 5691 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5692 if (IsOldProfileFormat) { 5693 I += 1; // Skip old callsitecount field 5694 if (HasProfile) 5695 I += 1; // Skip old profilecount field 5696 } else if (HasProfile) 5697 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5698 else if (HasRelBF) 5699 RelBF = Record[++I]; 5700 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5701 } 5702 return Ret; 5703 } 5704 5705 static void 5706 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5707 WholeProgramDevirtResolution &Wpd) { 5708 uint64_t ArgNum = Record[Slot++]; 5709 WholeProgramDevirtResolution::ByArg &B = 5710 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5711 Slot += ArgNum; 5712 5713 B.TheKind = 5714 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5715 B.Info = Record[Slot++]; 5716 B.Byte = Record[Slot++]; 5717 B.Bit = Record[Slot++]; 5718 } 5719 5720 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5721 StringRef Strtab, size_t &Slot, 5722 TypeIdSummary &TypeId) { 5723 uint64_t Id = Record[Slot++]; 5724 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5725 5726 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5727 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5728 static_cast<size_t>(Record[Slot + 1])}; 5729 Slot += 2; 5730 5731 uint64_t ResByArgNum = Record[Slot++]; 5732 for (uint64_t I = 0; I != ResByArgNum; ++I) 5733 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5734 } 5735 5736 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5737 StringRef Strtab, 5738 ModuleSummaryIndex &TheIndex) { 5739 size_t Slot = 0; 5740 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5741 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5742 Slot += 2; 5743 5744 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5745 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5746 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5747 TypeId.TTRes.SizeM1 = Record[Slot++]; 5748 TypeId.TTRes.BitMask = Record[Slot++]; 5749 TypeId.TTRes.InlineBits = Record[Slot++]; 5750 5751 while (Slot < Record.size()) 5752 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5753 } 5754 5755 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5756 ArrayRef<uint64_t> Record, size_t &Slot, 5757 TypeIdCompatibleVtableInfo &TypeId) { 5758 uint64_t Offset = Record[Slot++]; 5759 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5760 TypeId.push_back({Offset, Callee}); 5761 } 5762 5763 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5764 ArrayRef<uint64_t> Record) { 5765 size_t Slot = 0; 5766 TypeIdCompatibleVtableInfo &TypeId = 5767 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5768 {Strtab.data() + Record[Slot], 5769 static_cast<size_t>(Record[Slot + 1])}); 5770 Slot += 2; 5771 5772 while (Slot < Record.size()) 5773 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5774 } 5775 5776 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5777 unsigned WOCnt) { 5778 // Readonly and writeonly refs are in the end of the refs list. 5779 assert(ROCnt + WOCnt <= Refs.size()); 5780 unsigned FirstWORef = Refs.size() - WOCnt; 5781 unsigned RefNo = FirstWORef - ROCnt; 5782 for (; RefNo < FirstWORef; ++RefNo) 5783 Refs[RefNo].setReadOnly(); 5784 for (; RefNo < Refs.size(); ++RefNo) 5785 Refs[RefNo].setWriteOnly(); 5786 } 5787 5788 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5789 // objects in the index. 5790 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5791 if (Error Err = Stream.EnterSubBlock(ID)) 5792 return Err; 5793 SmallVector<uint64_t, 64> Record; 5794 5795 // Parse version 5796 { 5797 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5798 if (!MaybeEntry) 5799 return MaybeEntry.takeError(); 5800 BitstreamEntry Entry = MaybeEntry.get(); 5801 5802 if (Entry.Kind != BitstreamEntry::Record) 5803 return error("Invalid Summary Block: record for version expected"); 5804 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5805 if (!MaybeRecord) 5806 return MaybeRecord.takeError(); 5807 if (MaybeRecord.get() != bitc::FS_VERSION) 5808 return error("Invalid Summary Block: version expected"); 5809 } 5810 const uint64_t Version = Record[0]; 5811 const bool IsOldProfileFormat = Version == 1; 5812 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5813 return error("Invalid summary version " + Twine(Version) + 5814 ". Version should be in the range [1-" + 5815 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5816 "]."); 5817 Record.clear(); 5818 5819 // Keep around the last seen summary to be used when we see an optional 5820 // "OriginalName" attachement. 5821 GlobalValueSummary *LastSeenSummary = nullptr; 5822 GlobalValue::GUID LastSeenGUID = 0; 5823 5824 // We can expect to see any number of type ID information records before 5825 // each function summary records; these variables store the information 5826 // collected so far so that it can be used to create the summary object. 5827 std::vector<GlobalValue::GUID> PendingTypeTests; 5828 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5829 PendingTypeCheckedLoadVCalls; 5830 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5831 PendingTypeCheckedLoadConstVCalls; 5832 5833 while (true) { 5834 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5835 if (!MaybeEntry) 5836 return MaybeEntry.takeError(); 5837 BitstreamEntry Entry = MaybeEntry.get(); 5838 5839 switch (Entry.Kind) { 5840 case BitstreamEntry::SubBlock: // Handled for us already. 5841 case BitstreamEntry::Error: 5842 return error("Malformed block"); 5843 case BitstreamEntry::EndBlock: 5844 return Error::success(); 5845 case BitstreamEntry::Record: 5846 // The interesting case. 5847 break; 5848 } 5849 5850 // Read a record. The record format depends on whether this 5851 // is a per-module index or a combined index file. In the per-module 5852 // case the records contain the associated value's ID for correlation 5853 // with VST entries. In the combined index the correlation is done 5854 // via the bitcode offset of the summary records (which were saved 5855 // in the combined index VST entries). The records also contain 5856 // information used for ThinLTO renaming and importing. 5857 Record.clear(); 5858 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5859 if (!MaybeBitCode) 5860 return MaybeBitCode.takeError(); 5861 switch (unsigned BitCode = MaybeBitCode.get()) { 5862 default: // Default behavior: ignore. 5863 break; 5864 case bitc::FS_FLAGS: { // [flags] 5865 TheIndex.setFlags(Record[0]); 5866 break; 5867 } 5868 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5869 uint64_t ValueID = Record[0]; 5870 GlobalValue::GUID RefGUID = Record[1]; 5871 ValueIdToValueInfoMap[ValueID] = 5872 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5873 break; 5874 } 5875 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5876 // numrefs x valueid, n x (valueid)] 5877 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5878 // numrefs x valueid, 5879 // n x (valueid, hotness)] 5880 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5881 // numrefs x valueid, 5882 // n x (valueid, relblockfreq)] 5883 case bitc::FS_PERMODULE: 5884 case bitc::FS_PERMODULE_RELBF: 5885 case bitc::FS_PERMODULE_PROFILE: { 5886 unsigned ValueID = Record[0]; 5887 uint64_t RawFlags = Record[1]; 5888 unsigned InstCount = Record[2]; 5889 uint64_t RawFunFlags = 0; 5890 unsigned NumRefs = Record[3]; 5891 unsigned NumRORefs = 0, NumWORefs = 0; 5892 int RefListStartIndex = 4; 5893 if (Version >= 4) { 5894 RawFunFlags = Record[3]; 5895 NumRefs = Record[4]; 5896 RefListStartIndex = 5; 5897 if (Version >= 5) { 5898 NumRORefs = Record[5]; 5899 RefListStartIndex = 6; 5900 if (Version >= 7) { 5901 NumWORefs = Record[6]; 5902 RefListStartIndex = 7; 5903 } 5904 } 5905 } 5906 5907 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5908 // The module path string ref set in the summary must be owned by the 5909 // index's module string table. Since we don't have a module path 5910 // string table section in the per-module index, we create a single 5911 // module path string table entry with an empty (0) ID to take 5912 // ownership. 5913 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5914 assert(Record.size() >= RefListStartIndex + NumRefs && 5915 "Record size inconsistent with number of references"); 5916 std::vector<ValueInfo> Refs = makeRefList( 5917 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5918 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5919 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5920 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5921 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5922 IsOldProfileFormat, HasProfile, HasRelBF); 5923 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5924 auto FS = std::make_unique<FunctionSummary>( 5925 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5926 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5927 std::move(PendingTypeTestAssumeVCalls), 5928 std::move(PendingTypeCheckedLoadVCalls), 5929 std::move(PendingTypeTestAssumeConstVCalls), 5930 std::move(PendingTypeCheckedLoadConstVCalls)); 5931 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5932 FS->setModulePath(getThisModule()->first()); 5933 FS->setOriginalName(VIAndOriginalGUID.second); 5934 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5935 break; 5936 } 5937 // FS_ALIAS: [valueid, flags, valueid] 5938 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5939 // they expect all aliasee summaries to be available. 5940 case bitc::FS_ALIAS: { 5941 unsigned ValueID = Record[0]; 5942 uint64_t RawFlags = Record[1]; 5943 unsigned AliaseeID = Record[2]; 5944 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5945 auto AS = std::make_unique<AliasSummary>(Flags); 5946 // The module path string ref set in the summary must be owned by the 5947 // index's module string table. Since we don't have a module path 5948 // string table section in the per-module index, we create a single 5949 // module path string table entry with an empty (0) ID to take 5950 // ownership. 5951 AS->setModulePath(getThisModule()->first()); 5952 5953 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5954 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5955 if (!AliaseeInModule) 5956 return error("Alias expects aliasee summary to be parsed"); 5957 AS->setAliasee(AliaseeVI, AliaseeInModule); 5958 5959 auto GUID = getValueInfoFromValueId(ValueID); 5960 AS->setOriginalName(GUID.second); 5961 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5962 break; 5963 } 5964 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5965 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5966 unsigned ValueID = Record[0]; 5967 uint64_t RawFlags = Record[1]; 5968 unsigned RefArrayStart = 2; 5969 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5970 /* WriteOnly */ false, 5971 /* Constant */ false, 5972 GlobalObject::VCallVisibilityPublic); 5973 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5974 if (Version >= 5) { 5975 GVF = getDecodedGVarFlags(Record[2]); 5976 RefArrayStart = 3; 5977 } 5978 std::vector<ValueInfo> Refs = 5979 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5980 auto FS = 5981 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5982 FS->setModulePath(getThisModule()->first()); 5983 auto GUID = getValueInfoFromValueId(ValueID); 5984 FS->setOriginalName(GUID.second); 5985 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5986 break; 5987 } 5988 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5989 // numrefs, numrefs x valueid, 5990 // n x (valueid, offset)] 5991 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5992 unsigned ValueID = Record[0]; 5993 uint64_t RawFlags = Record[1]; 5994 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5995 unsigned NumRefs = Record[3]; 5996 unsigned RefListStartIndex = 4; 5997 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5998 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5999 std::vector<ValueInfo> Refs = makeRefList( 6000 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6001 VTableFuncList VTableFuncs; 6002 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6003 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6004 uint64_t Offset = Record[++I]; 6005 VTableFuncs.push_back({Callee, Offset}); 6006 } 6007 auto VS = 6008 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6009 VS->setModulePath(getThisModule()->first()); 6010 VS->setVTableFuncs(VTableFuncs); 6011 auto GUID = getValueInfoFromValueId(ValueID); 6012 VS->setOriginalName(GUID.second); 6013 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6014 break; 6015 } 6016 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6017 // numrefs x valueid, n x (valueid)] 6018 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6019 // numrefs x valueid, n x (valueid, hotness)] 6020 case bitc::FS_COMBINED: 6021 case bitc::FS_COMBINED_PROFILE: { 6022 unsigned ValueID = Record[0]; 6023 uint64_t ModuleId = Record[1]; 6024 uint64_t RawFlags = Record[2]; 6025 unsigned InstCount = Record[3]; 6026 uint64_t RawFunFlags = 0; 6027 uint64_t EntryCount = 0; 6028 unsigned NumRefs = Record[4]; 6029 unsigned NumRORefs = 0, NumWORefs = 0; 6030 int RefListStartIndex = 5; 6031 6032 if (Version >= 4) { 6033 RawFunFlags = Record[4]; 6034 RefListStartIndex = 6; 6035 size_t NumRefsIndex = 5; 6036 if (Version >= 5) { 6037 unsigned NumRORefsOffset = 1; 6038 RefListStartIndex = 7; 6039 if (Version >= 6) { 6040 NumRefsIndex = 6; 6041 EntryCount = Record[5]; 6042 RefListStartIndex = 8; 6043 if (Version >= 7) { 6044 RefListStartIndex = 9; 6045 NumWORefs = Record[8]; 6046 NumRORefsOffset = 2; 6047 } 6048 } 6049 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6050 } 6051 NumRefs = Record[NumRefsIndex]; 6052 } 6053 6054 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6055 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6056 assert(Record.size() >= RefListStartIndex + NumRefs && 6057 "Record size inconsistent with number of references"); 6058 std::vector<ValueInfo> Refs = makeRefList( 6059 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6060 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6061 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6062 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6063 IsOldProfileFormat, HasProfile, false); 6064 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6065 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6066 auto FS = std::make_unique<FunctionSummary>( 6067 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6068 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6069 std::move(PendingTypeTestAssumeVCalls), 6070 std::move(PendingTypeCheckedLoadVCalls), 6071 std::move(PendingTypeTestAssumeConstVCalls), 6072 std::move(PendingTypeCheckedLoadConstVCalls)); 6073 LastSeenSummary = FS.get(); 6074 LastSeenGUID = VI.getGUID(); 6075 FS->setModulePath(ModuleIdMap[ModuleId]); 6076 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6077 break; 6078 } 6079 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6080 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6081 // they expect all aliasee summaries to be available. 6082 case bitc::FS_COMBINED_ALIAS: { 6083 unsigned ValueID = Record[0]; 6084 uint64_t ModuleId = Record[1]; 6085 uint64_t RawFlags = Record[2]; 6086 unsigned AliaseeValueId = Record[3]; 6087 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6088 auto AS = std::make_unique<AliasSummary>(Flags); 6089 LastSeenSummary = AS.get(); 6090 AS->setModulePath(ModuleIdMap[ModuleId]); 6091 6092 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6093 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6094 AS->setAliasee(AliaseeVI, AliaseeInModule); 6095 6096 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6097 LastSeenGUID = VI.getGUID(); 6098 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6099 break; 6100 } 6101 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6102 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6103 unsigned ValueID = Record[0]; 6104 uint64_t ModuleId = Record[1]; 6105 uint64_t RawFlags = Record[2]; 6106 unsigned RefArrayStart = 3; 6107 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6108 /* WriteOnly */ false, 6109 /* Constant */ false, 6110 GlobalObject::VCallVisibilityPublic); 6111 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6112 if (Version >= 5) { 6113 GVF = getDecodedGVarFlags(Record[3]); 6114 RefArrayStart = 4; 6115 } 6116 std::vector<ValueInfo> Refs = 6117 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6118 auto FS = 6119 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6120 LastSeenSummary = FS.get(); 6121 FS->setModulePath(ModuleIdMap[ModuleId]); 6122 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6123 LastSeenGUID = VI.getGUID(); 6124 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6125 break; 6126 } 6127 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6128 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6129 uint64_t OriginalName = Record[0]; 6130 if (!LastSeenSummary) 6131 return error("Name attachment that does not follow a combined record"); 6132 LastSeenSummary->setOriginalName(OriginalName); 6133 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6134 // Reset the LastSeenSummary 6135 LastSeenSummary = nullptr; 6136 LastSeenGUID = 0; 6137 break; 6138 } 6139 case bitc::FS_TYPE_TESTS: 6140 assert(PendingTypeTests.empty()); 6141 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6142 Record.end()); 6143 break; 6144 6145 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6146 assert(PendingTypeTestAssumeVCalls.empty()); 6147 for (unsigned I = 0; I != Record.size(); I += 2) 6148 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6149 break; 6150 6151 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6152 assert(PendingTypeCheckedLoadVCalls.empty()); 6153 for (unsigned I = 0; I != Record.size(); I += 2) 6154 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6155 break; 6156 6157 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6158 PendingTypeTestAssumeConstVCalls.push_back( 6159 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6160 break; 6161 6162 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6163 PendingTypeCheckedLoadConstVCalls.push_back( 6164 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6165 break; 6166 6167 case bitc::FS_CFI_FUNCTION_DEFS: { 6168 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6169 for (unsigned I = 0; I != Record.size(); I += 2) 6170 CfiFunctionDefs.insert( 6171 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6172 break; 6173 } 6174 6175 case bitc::FS_CFI_FUNCTION_DECLS: { 6176 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6177 for (unsigned I = 0; I != Record.size(); I += 2) 6178 CfiFunctionDecls.insert( 6179 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6180 break; 6181 } 6182 6183 case bitc::FS_TYPE_ID: 6184 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6185 break; 6186 6187 case bitc::FS_TYPE_ID_METADATA: 6188 parseTypeIdCompatibleVtableSummaryRecord(Record); 6189 break; 6190 } 6191 } 6192 llvm_unreachable("Exit infinite loop"); 6193 } 6194 6195 // Parse the module string table block into the Index. 6196 // This populates the ModulePathStringTable map in the index. 6197 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6198 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6199 return Err; 6200 6201 SmallVector<uint64_t, 64> Record; 6202 6203 SmallString<128> ModulePath; 6204 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6205 6206 while (true) { 6207 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6208 if (!MaybeEntry) 6209 return MaybeEntry.takeError(); 6210 BitstreamEntry Entry = MaybeEntry.get(); 6211 6212 switch (Entry.Kind) { 6213 case BitstreamEntry::SubBlock: // Handled for us already. 6214 case BitstreamEntry::Error: 6215 return error("Malformed block"); 6216 case BitstreamEntry::EndBlock: 6217 return Error::success(); 6218 case BitstreamEntry::Record: 6219 // The interesting case. 6220 break; 6221 } 6222 6223 Record.clear(); 6224 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6225 if (!MaybeRecord) 6226 return MaybeRecord.takeError(); 6227 switch (MaybeRecord.get()) { 6228 default: // Default behavior: ignore. 6229 break; 6230 case bitc::MST_CODE_ENTRY: { 6231 // MST_ENTRY: [modid, namechar x N] 6232 uint64_t ModuleId = Record[0]; 6233 6234 if (convertToString(Record, 1, ModulePath)) 6235 return error("Invalid record"); 6236 6237 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6238 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6239 6240 ModulePath.clear(); 6241 break; 6242 } 6243 /// MST_CODE_HASH: [5*i32] 6244 case bitc::MST_CODE_HASH: { 6245 if (Record.size() != 5) 6246 return error("Invalid hash length " + Twine(Record.size()).str()); 6247 if (!LastSeenModule) 6248 return error("Invalid hash that does not follow a module path"); 6249 int Pos = 0; 6250 for (auto &Val : Record) { 6251 assert(!(Val >> 32) && "Unexpected high bits set"); 6252 LastSeenModule->second.second[Pos++] = Val; 6253 } 6254 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6255 LastSeenModule = nullptr; 6256 break; 6257 } 6258 } 6259 } 6260 llvm_unreachable("Exit infinite loop"); 6261 } 6262 6263 namespace { 6264 6265 // FIXME: This class is only here to support the transition to llvm::Error. It 6266 // will be removed once this transition is complete. Clients should prefer to 6267 // deal with the Error value directly, rather than converting to error_code. 6268 class BitcodeErrorCategoryType : public std::error_category { 6269 const char *name() const noexcept override { 6270 return "llvm.bitcode"; 6271 } 6272 6273 std::string message(int IE) const override { 6274 BitcodeError E = static_cast<BitcodeError>(IE); 6275 switch (E) { 6276 case BitcodeError::CorruptedBitcode: 6277 return "Corrupted bitcode"; 6278 } 6279 llvm_unreachable("Unknown error type!"); 6280 } 6281 }; 6282 6283 } // end anonymous namespace 6284 6285 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6286 6287 const std::error_category &llvm::BitcodeErrorCategory() { 6288 return *ErrorCategory; 6289 } 6290 6291 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6292 unsigned Block, unsigned RecordID) { 6293 if (Error Err = Stream.EnterSubBlock(Block)) 6294 return std::move(Err); 6295 6296 StringRef Strtab; 6297 while (true) { 6298 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6299 if (!MaybeEntry) 6300 return MaybeEntry.takeError(); 6301 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6302 6303 switch (Entry.Kind) { 6304 case BitstreamEntry::EndBlock: 6305 return Strtab; 6306 6307 case BitstreamEntry::Error: 6308 return error("Malformed block"); 6309 6310 case BitstreamEntry::SubBlock: 6311 if (Error Err = Stream.SkipBlock()) 6312 return std::move(Err); 6313 break; 6314 6315 case BitstreamEntry::Record: 6316 StringRef Blob; 6317 SmallVector<uint64_t, 1> Record; 6318 Expected<unsigned> MaybeRecord = 6319 Stream.readRecord(Entry.ID, Record, &Blob); 6320 if (!MaybeRecord) 6321 return MaybeRecord.takeError(); 6322 if (MaybeRecord.get() == RecordID) 6323 Strtab = Blob; 6324 break; 6325 } 6326 } 6327 } 6328 6329 //===----------------------------------------------------------------------===// 6330 // External interface 6331 //===----------------------------------------------------------------------===// 6332 6333 Expected<std::vector<BitcodeModule>> 6334 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6335 auto FOrErr = getBitcodeFileContents(Buffer); 6336 if (!FOrErr) 6337 return FOrErr.takeError(); 6338 return std::move(FOrErr->Mods); 6339 } 6340 6341 Expected<BitcodeFileContents> 6342 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6343 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6344 if (!StreamOrErr) 6345 return StreamOrErr.takeError(); 6346 BitstreamCursor &Stream = *StreamOrErr; 6347 6348 BitcodeFileContents F; 6349 while (true) { 6350 uint64_t BCBegin = Stream.getCurrentByteNo(); 6351 6352 // We may be consuming bitcode from a client that leaves garbage at the end 6353 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6354 // the end that there cannot possibly be another module, stop looking. 6355 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6356 return F; 6357 6358 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6359 if (!MaybeEntry) 6360 return MaybeEntry.takeError(); 6361 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6362 6363 switch (Entry.Kind) { 6364 case BitstreamEntry::EndBlock: 6365 case BitstreamEntry::Error: 6366 return error("Malformed block"); 6367 6368 case BitstreamEntry::SubBlock: { 6369 uint64_t IdentificationBit = -1ull; 6370 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6371 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6372 if (Error Err = Stream.SkipBlock()) 6373 return std::move(Err); 6374 6375 { 6376 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6377 if (!MaybeEntry) 6378 return MaybeEntry.takeError(); 6379 Entry = MaybeEntry.get(); 6380 } 6381 6382 if (Entry.Kind != BitstreamEntry::SubBlock || 6383 Entry.ID != bitc::MODULE_BLOCK_ID) 6384 return error("Malformed block"); 6385 } 6386 6387 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6388 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6389 if (Error Err = Stream.SkipBlock()) 6390 return std::move(Err); 6391 6392 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6393 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6394 Buffer.getBufferIdentifier(), IdentificationBit, 6395 ModuleBit}); 6396 continue; 6397 } 6398 6399 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6400 Expected<StringRef> Strtab = 6401 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6402 if (!Strtab) 6403 return Strtab.takeError(); 6404 // This string table is used by every preceding bitcode module that does 6405 // not have its own string table. A bitcode file may have multiple 6406 // string tables if it was created by binary concatenation, for example 6407 // with "llvm-cat -b". 6408 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6409 if (!I->Strtab.empty()) 6410 break; 6411 I->Strtab = *Strtab; 6412 } 6413 // Similarly, the string table is used by every preceding symbol table; 6414 // normally there will be just one unless the bitcode file was created 6415 // by binary concatenation. 6416 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6417 F.StrtabForSymtab = *Strtab; 6418 continue; 6419 } 6420 6421 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6422 Expected<StringRef> SymtabOrErr = 6423 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6424 if (!SymtabOrErr) 6425 return SymtabOrErr.takeError(); 6426 6427 // We can expect the bitcode file to have multiple symbol tables if it 6428 // was created by binary concatenation. In that case we silently 6429 // ignore any subsequent symbol tables, which is fine because this is a 6430 // low level function. The client is expected to notice that the number 6431 // of modules in the symbol table does not match the number of modules 6432 // in the input file and regenerate the symbol table. 6433 if (F.Symtab.empty()) 6434 F.Symtab = *SymtabOrErr; 6435 continue; 6436 } 6437 6438 if (Error Err = Stream.SkipBlock()) 6439 return std::move(Err); 6440 continue; 6441 } 6442 case BitstreamEntry::Record: 6443 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6444 continue; 6445 else 6446 return StreamFailed.takeError(); 6447 } 6448 } 6449 } 6450 6451 /// Get a lazy one-at-time loading module from bitcode. 6452 /// 6453 /// This isn't always used in a lazy context. In particular, it's also used by 6454 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6455 /// in forward-referenced functions from block address references. 6456 /// 6457 /// \param[in] MaterializeAll Set to \c true if we should materialize 6458 /// everything. 6459 Expected<std::unique_ptr<Module>> 6460 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6461 bool ShouldLazyLoadMetadata, bool IsImporting) { 6462 BitstreamCursor Stream(Buffer); 6463 6464 std::string ProducerIdentification; 6465 if (IdentificationBit != -1ull) { 6466 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6467 return std::move(JumpFailed); 6468 Expected<std::string> ProducerIdentificationOrErr = 6469 readIdentificationBlock(Stream); 6470 if (!ProducerIdentificationOrErr) 6471 return ProducerIdentificationOrErr.takeError(); 6472 6473 ProducerIdentification = *ProducerIdentificationOrErr; 6474 } 6475 6476 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6477 return std::move(JumpFailed); 6478 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6479 Context); 6480 6481 std::unique_ptr<Module> M = 6482 std::make_unique<Module>(ModuleIdentifier, Context); 6483 M->setMaterializer(R); 6484 6485 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6486 if (Error Err = 6487 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6488 return std::move(Err); 6489 6490 if (MaterializeAll) { 6491 // Read in the entire module, and destroy the BitcodeReader. 6492 if (Error Err = M->materializeAll()) 6493 return std::move(Err); 6494 } else { 6495 // Resolve forward references from blockaddresses. 6496 if (Error Err = R->materializeForwardReferencedFunctions()) 6497 return std::move(Err); 6498 } 6499 return std::move(M); 6500 } 6501 6502 Expected<std::unique_ptr<Module>> 6503 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6504 bool IsImporting) { 6505 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6506 } 6507 6508 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6509 // We don't use ModuleIdentifier here because the client may need to control the 6510 // module path used in the combined summary (e.g. when reading summaries for 6511 // regular LTO modules). 6512 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6513 StringRef ModulePath, uint64_t ModuleId) { 6514 BitstreamCursor Stream(Buffer); 6515 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6516 return JumpFailed; 6517 6518 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6519 ModulePath, ModuleId); 6520 return R.parseModule(); 6521 } 6522 6523 // Parse the specified bitcode buffer, returning the function info index. 6524 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6525 BitstreamCursor Stream(Buffer); 6526 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6527 return std::move(JumpFailed); 6528 6529 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6530 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6531 ModuleIdentifier, 0); 6532 6533 if (Error Err = R.parseModule()) 6534 return std::move(Err); 6535 6536 return std::move(Index); 6537 } 6538 6539 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6540 unsigned ID) { 6541 if (Error Err = Stream.EnterSubBlock(ID)) 6542 return std::move(Err); 6543 SmallVector<uint64_t, 64> Record; 6544 6545 while (true) { 6546 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6547 if (!MaybeEntry) 6548 return MaybeEntry.takeError(); 6549 BitstreamEntry Entry = MaybeEntry.get(); 6550 6551 switch (Entry.Kind) { 6552 case BitstreamEntry::SubBlock: // Handled for us already. 6553 case BitstreamEntry::Error: 6554 return error("Malformed block"); 6555 case BitstreamEntry::EndBlock: 6556 // If no flags record found, conservatively return true to mimic 6557 // behavior before this flag was added. 6558 return true; 6559 case BitstreamEntry::Record: 6560 // The interesting case. 6561 break; 6562 } 6563 6564 // Look for the FS_FLAGS record. 6565 Record.clear(); 6566 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6567 if (!MaybeBitCode) 6568 return MaybeBitCode.takeError(); 6569 switch (MaybeBitCode.get()) { 6570 default: // Default behavior: ignore. 6571 break; 6572 case bitc::FS_FLAGS: { // [flags] 6573 uint64_t Flags = Record[0]; 6574 // Scan flags. 6575 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6576 6577 return Flags & 0x8; 6578 } 6579 } 6580 } 6581 llvm_unreachable("Exit infinite loop"); 6582 } 6583 6584 // Check if the given bitcode buffer contains a global value summary block. 6585 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6586 BitstreamCursor Stream(Buffer); 6587 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6588 return std::move(JumpFailed); 6589 6590 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6591 return std::move(Err); 6592 6593 while (true) { 6594 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6595 if (!MaybeEntry) 6596 return MaybeEntry.takeError(); 6597 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6598 6599 switch (Entry.Kind) { 6600 case BitstreamEntry::Error: 6601 return error("Malformed block"); 6602 case BitstreamEntry::EndBlock: 6603 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6604 /*EnableSplitLTOUnit=*/false}; 6605 6606 case BitstreamEntry::SubBlock: 6607 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6608 Expected<bool> EnableSplitLTOUnit = 6609 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6610 if (!EnableSplitLTOUnit) 6611 return EnableSplitLTOUnit.takeError(); 6612 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6613 *EnableSplitLTOUnit}; 6614 } 6615 6616 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6617 Expected<bool> EnableSplitLTOUnit = 6618 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6619 if (!EnableSplitLTOUnit) 6620 return EnableSplitLTOUnit.takeError(); 6621 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6622 *EnableSplitLTOUnit}; 6623 } 6624 6625 // Ignore other sub-blocks. 6626 if (Error Err = Stream.SkipBlock()) 6627 return std::move(Err); 6628 continue; 6629 6630 case BitstreamEntry::Record: 6631 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6632 continue; 6633 else 6634 return StreamFailed.takeError(); 6635 } 6636 } 6637 } 6638 6639 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6640 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6641 if (!MsOrErr) 6642 return MsOrErr.takeError(); 6643 6644 if (MsOrErr->size() != 1) 6645 return error("Expected a single module"); 6646 6647 return (*MsOrErr)[0]; 6648 } 6649 6650 Expected<std::unique_ptr<Module>> 6651 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6652 bool ShouldLazyLoadMetadata, bool IsImporting) { 6653 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6654 if (!BM) 6655 return BM.takeError(); 6656 6657 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6658 } 6659 6660 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6661 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6662 bool ShouldLazyLoadMetadata, bool IsImporting) { 6663 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6664 IsImporting); 6665 if (MOrErr) 6666 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6667 return MOrErr; 6668 } 6669 6670 Expected<std::unique_ptr<Module>> 6671 BitcodeModule::parseModule(LLVMContext &Context) { 6672 return getModuleImpl(Context, true, false, false); 6673 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6674 // written. We must defer until the Module has been fully materialized. 6675 } 6676 6677 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6678 LLVMContext &Context) { 6679 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6680 if (!BM) 6681 return BM.takeError(); 6682 6683 return BM->parseModule(Context); 6684 } 6685 6686 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6687 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6688 if (!StreamOrErr) 6689 return StreamOrErr.takeError(); 6690 6691 return readTriple(*StreamOrErr); 6692 } 6693 6694 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6695 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6696 if (!StreamOrErr) 6697 return StreamOrErr.takeError(); 6698 6699 return hasObjCCategory(*StreamOrErr); 6700 } 6701 6702 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6703 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6704 if (!StreamOrErr) 6705 return StreamOrErr.takeError(); 6706 6707 return readIdentificationCode(*StreamOrErr); 6708 } 6709 6710 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6711 ModuleSummaryIndex &CombinedIndex, 6712 uint64_t ModuleId) { 6713 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6714 if (!BM) 6715 return BM.takeError(); 6716 6717 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6718 } 6719 6720 Expected<std::unique_ptr<ModuleSummaryIndex>> 6721 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6722 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6723 if (!BM) 6724 return BM.takeError(); 6725 6726 return BM->getSummary(); 6727 } 6728 6729 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6730 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6731 if (!BM) 6732 return BM.takeError(); 6733 6734 return BM->getLTOInfo(); 6735 } 6736 6737 Expected<std::unique_ptr<ModuleSummaryIndex>> 6738 llvm::getModuleSummaryIndexForFile(StringRef Path, 6739 bool IgnoreEmptyThinLTOIndexFile) { 6740 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6741 MemoryBuffer::getFileOrSTDIN(Path); 6742 if (!FileOrErr) 6743 return errorCodeToError(FileOrErr.getError()); 6744 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6745 return nullptr; 6746 return getModuleSummaryIndex(**FileOrErr); 6747 } 6748