xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 1e0213a75827425e19ca8f3dfe9604f23fbe3609)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //  Helper functions to implement forward reference resolution, etc.
46 //===----------------------------------------------------------------------===//
47 
48 /// ConvertToString - Convert a string from a record into an std::string, return
49 /// true on failure.
50 template<typename StrTy>
51 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                             StrTy &Result) {
53   if (Idx > Record.size())
54     return true;
55 
56   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57     Result += (char)Record[i];
58   return false;
59 }
60 
61 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62   switch (Val) {
63   default: // Map unknown/new linkages to external
64   case 0:  return GlobalValue::ExternalLinkage;
65   case 1:  return GlobalValue::WeakAnyLinkage;
66   case 2:  return GlobalValue::AppendingLinkage;
67   case 3:  return GlobalValue::InternalLinkage;
68   case 4:  return GlobalValue::LinkOnceAnyLinkage;
69   case 5:  return GlobalValue::DLLImportLinkage;
70   case 6:  return GlobalValue::DLLExportLinkage;
71   case 7:  return GlobalValue::ExternalWeakLinkage;
72   case 8:  return GlobalValue::CommonLinkage;
73   case 9:  return GlobalValue::PrivateLinkage;
74   case 10: return GlobalValue::WeakODRLinkage;
75   case 11: return GlobalValue::LinkOnceODRLinkage;
76   case 12: return GlobalValue::AvailableExternallyLinkage;
77   case 13: return GlobalValue::LinkerPrivateLinkage;
78   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
79   }
80 }
81 
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83   switch (Val) {
84   default: // Map unknown visibilities to default.
85   case 0: return GlobalValue::DefaultVisibility;
86   case 1: return GlobalValue::HiddenVisibility;
87   case 2: return GlobalValue::ProtectedVisibility;
88   }
89 }
90 
91 static int GetDecodedCastOpcode(unsigned Val) {
92   switch (Val) {
93   default: return -1;
94   case bitc::CAST_TRUNC   : return Instruction::Trunc;
95   case bitc::CAST_ZEXT    : return Instruction::ZExt;
96   case bitc::CAST_SEXT    : return Instruction::SExt;
97   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102   case bitc::CAST_FPEXT   : return Instruction::FPExt;
103   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105   case bitc::CAST_BITCAST : return Instruction::BitCast;
106   }
107 }
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109   switch (Val) {
110   default: return -1;
111   case bitc::BINOP_ADD:
112     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
113   case bitc::BINOP_SUB:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
115   case bitc::BINOP_MUL:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
117   case bitc::BINOP_UDIV: return Instruction::UDiv;
118   case bitc::BINOP_SDIV:
119     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
120   case bitc::BINOP_UREM: return Instruction::URem;
121   case bitc::BINOP_SREM:
122     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
123   case bitc::BINOP_SHL:  return Instruction::Shl;
124   case bitc::BINOP_LSHR: return Instruction::LShr;
125   case bitc::BINOP_ASHR: return Instruction::AShr;
126   case bitc::BINOP_AND:  return Instruction::And;
127   case bitc::BINOP_OR:   return Instruction::Or;
128   case bitc::BINOP_XOR:  return Instruction::Xor;
129   }
130 }
131 
132 namespace llvm {
133 namespace {
134   /// @brief A class for maintaining the slot number definition
135   /// as a placeholder for the actual definition for forward constants defs.
136   class ConstantPlaceHolder : public ConstantExpr {
137     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139   public:
140     // allocate space for exactly one operand
141     void *operator new(size_t s) {
142       return User::operator new(s, 1);
143     }
144     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147     }
148 
149     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150     static inline bool classof(const ConstantPlaceHolder *) { return true; }
151     static bool classof(const Value *V) {
152       return isa<ConstantExpr>(V) &&
153              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154     }
155 
156 
157     /// Provide fast operand accessors
158     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159   };
160 }
161 
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165 };
166 }
167 
168 
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170   if (Idx == size()) {
171     push_back(V);
172     return;
173   }
174 
175   if (Idx >= size())
176     resize(Idx+1);
177 
178   WeakVH &OldV = ValuePtrs[Idx];
179   if (OldV == 0) {
180     OldV = V;
181     return;
182   }
183 
184   // Handle constants and non-constants (e.g. instrs) differently for
185   // efficiency.
186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
188     OldV = V;
189   } else {
190     // If there was a forward reference to this value, replace it.
191     Value *PrevVal = OldV;
192     OldV->replaceAllUsesWith(V);
193     delete PrevVal;
194   }
195 }
196 
197 
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                     const Type *Ty) {
200   if (Idx >= size())
201     resize(Idx + 1);
202 
203   if (Value *V = ValuePtrs[Idx]) {
204     assert(Ty == V->getType() && "Type mismatch in constant table!");
205     return cast<Constant>(V);
206   }
207 
208   // Create and return a placeholder, which will later be RAUW'd.
209   Constant *C = new ConstantPlaceHolder(Ty, Context);
210   ValuePtrs[Idx] = C;
211   return C;
212 }
213 
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215   if (Idx >= size())
216     resize(Idx + 1);
217 
218   if (Value *V = ValuePtrs[Idx]) {
219     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220     return V;
221   }
222 
223   // No type specified, must be invalid reference.
224   if (Ty == 0) return 0;
225 
226   // Create and return a placeholder, which will later be RAUW'd.
227   Value *V = new Argument(Ty);
228   ValuePtrs[Idx] = V;
229   return V;
230 }
231 
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references.  The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants.  Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant.  Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240   // Sort the values by-pointer so that they are efficient to look up with a
241   // binary search.
242   std::sort(ResolveConstants.begin(), ResolveConstants.end());
243 
244   SmallVector<Constant*, 64> NewOps;
245 
246   while (!ResolveConstants.empty()) {
247     Value *RealVal = operator[](ResolveConstants.back().second);
248     Constant *Placeholder = ResolveConstants.back().first;
249     ResolveConstants.pop_back();
250 
251     // Loop over all users of the placeholder, updating them to reference the
252     // new value.  If they reference more than one placeholder, update them all
253     // at once.
254     while (!Placeholder->use_empty()) {
255       Value::use_iterator UI = Placeholder->use_begin();
256       User *U = *UI;
257 
258       // If the using object isn't uniqued, just update the operands.  This
259       // handles instructions and initializers for global variables.
260       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
261         UI.getUse().set(RealVal);
262         continue;
263       }
264 
265       // Otherwise, we have a constant that uses the placeholder.  Replace that
266       // constant with a new constant that has *all* placeholder uses updated.
267       Constant *UserC = cast<Constant>(U);
268       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
269            I != E; ++I) {
270         Value *NewOp;
271         if (!isa<ConstantPlaceHolder>(*I)) {
272           // Not a placeholder reference.
273           NewOp = *I;
274         } else if (*I == Placeholder) {
275           // Common case is that it just references this one placeholder.
276           NewOp = RealVal;
277         } else {
278           // Otherwise, look up the placeholder in ResolveConstants.
279           ResolveConstantsTy::iterator It =
280             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
281                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
282                                                             0));
283           assert(It != ResolveConstants.end() && It->first == *I);
284           NewOp = operator[](It->second);
285         }
286 
287         NewOps.push_back(cast<Constant>(NewOp));
288       }
289 
290       // Make the new constant.
291       Constant *NewC;
292       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
293         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
294                                         NewOps.size());
295       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
296         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
297                                          UserCS->getType()->isPacked());
298       } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
299         NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                           NewOps.size());
306       }
307 
308       UserC->replaceAllUsesWith(NewC);
309       UserC->destroyConstant();
310       NewOps.clear();
311     }
312 
313     // Update all ValueHandles, they should be the only users at this point.
314     Placeholder->replaceAllUsesWith(RealVal);
315     delete Placeholder;
316   }
317 }
318 
319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320   if (Idx == size()) {
321     push_back(V);
322     return;
323   }
324 
325   if (Idx >= size())
326     resize(Idx+1);
327 
328   WeakVH &OldV = MDValuePtrs[Idx];
329   if (OldV == 0) {
330     OldV = V;
331     return;
332   }
333 
334   // If there was a forward reference to this value, replace it.
335   Value *PrevVal = OldV;
336   OldV->replaceAllUsesWith(V);
337   delete PrevVal;
338   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339   // value for Idx.
340   MDValuePtrs[Idx] = V;
341 }
342 
343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344   if (Idx >= size())
345     resize(Idx + 1);
346 
347   if (Value *V = MDValuePtrs[Idx]) {
348     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349     return V;
350   }
351 
352   // Create and return a placeholder, which will later be RAUW'd.
353   Value *V = new Argument(Type::getMetadataTy(Context));
354   MDValuePtrs[Idx] = V;
355   return V;
356 }
357 
358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359   // If the TypeID is in range, return it.
360   if (ID < TypeList.size())
361     return TypeList[ID].get();
362   if (!isTypeTable) return 0;
363 
364   // The type table allows forward references.  Push as many Opaque types as
365   // needed to get up to ID.
366   while (TypeList.size() <= ID)
367     TypeList.push_back(OpaqueType::get(Context));
368   return TypeList.back().get();
369 }
370 
371 //===----------------------------------------------------------------------===//
372 //  Functions for parsing blocks from the bitcode file
373 //===----------------------------------------------------------------------===//
374 
375 bool BitcodeReader::ParseAttributeBlock() {
376   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377     return Error("Malformed block record");
378 
379   if (!MAttributes.empty())
380     return Error("Multiple PARAMATTR blocks found!");
381 
382   SmallVector<uint64_t, 64> Record;
383 
384   SmallVector<AttributeWithIndex, 8> Attrs;
385 
386   // Read all the records.
387   while (1) {
388     unsigned Code = Stream.ReadCode();
389     if (Code == bitc::END_BLOCK) {
390       if (Stream.ReadBlockEnd())
391         return Error("Error at end of PARAMATTR block");
392       return false;
393     }
394 
395     if (Code == bitc::ENTER_SUBBLOCK) {
396       // No known subblocks, always skip them.
397       Stream.ReadSubBlockID();
398       if (Stream.SkipBlock())
399         return Error("Malformed block record");
400       continue;
401     }
402 
403     if (Code == bitc::DEFINE_ABBREV) {
404       Stream.ReadAbbrevRecord();
405       continue;
406     }
407 
408     // Read a record.
409     Record.clear();
410     switch (Stream.ReadRecord(Code, Record)) {
411     default:  // Default behavior: ignore.
412       break;
413     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414       if (Record.size() & 1)
415         return Error("Invalid ENTRY record");
416 
417       // FIXME : Remove this autoupgrade code in LLVM 3.0.
418       // If Function attributes are using index 0 then transfer them
419       // to index ~0. Index 0 is used for return value attributes but used to be
420       // used for function attributes.
421       Attributes RetAttribute = Attribute::None;
422       Attributes FnAttribute = Attribute::None;
423       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424         // FIXME: remove in LLVM 3.0
425         // The alignment is stored as a 16-bit raw value from bits 31--16.
426         // We shift the bits above 31 down by 11 bits.
427 
428         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429         if (Alignment && !isPowerOf2_32(Alignment))
430           return Error("Alignment is not a power of two.");
431 
432         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433         if (Alignment)
434           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436         Record[i+1] = ReconstitutedAttr;
437 
438         if (Record[i] == 0)
439           RetAttribute = Record[i+1];
440         else if (Record[i] == ~0U)
441           FnAttribute = Record[i+1];
442       }
443 
444       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                               Attribute::ReadOnly|Attribute::ReadNone);
446 
447       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448           (RetAttribute & OldRetAttrs) != 0) {
449         if (FnAttribute == Attribute::None) { // add a slot so they get added.
450           Record.push_back(~0U);
451           Record.push_back(0);
452         }
453 
454         FnAttribute  |= RetAttribute & OldRetAttrs;
455         RetAttribute &= ~OldRetAttrs;
456       }
457 
458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459         if (Record[i] == 0) {
460           if (RetAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462         } else if (Record[i] == ~0U) {
463           if (FnAttribute != Attribute::None)
464             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465         } else if (Record[i+1] != Attribute::None)
466           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467       }
468 
469       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470       Attrs.clear();
471       break;
472     }
473     }
474   }
475 }
476 
477 
478 bool BitcodeReader::ParseTypeTable() {
479   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480     return Error("Malformed block record");
481 
482   if (!TypeList.empty())
483     return Error("Multiple TYPE_BLOCKs found!");
484 
485   SmallVector<uint64_t, 64> Record;
486   unsigned NumRecords = 0;
487 
488   // Read all the records for this type table.
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NumRecords != TypeList.size())
493         return Error("Invalid type forward reference in TYPE_BLOCK");
494       if (Stream.ReadBlockEnd())
495         return Error("Error at end of type table block");
496       return false;
497     }
498 
499     if (Code == bitc::ENTER_SUBBLOCK) {
500       // No known subblocks, always skip them.
501       Stream.ReadSubBlockID();
502       if (Stream.SkipBlock())
503         return Error("Malformed block record");
504       continue;
505     }
506 
507     if (Code == bitc::DEFINE_ABBREV) {
508       Stream.ReadAbbrevRecord();
509       continue;
510     }
511 
512     // Read a record.
513     Record.clear();
514     const Type *ResultTy = 0;
515     switch (Stream.ReadRecord(Code, Record)) {
516     default:  // Default behavior: unknown type.
517       ResultTy = 0;
518       break;
519     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521       // type list.  This allows us to reserve space.
522       if (Record.size() < 1)
523         return Error("Invalid TYPE_CODE_NUMENTRY record");
524       TypeList.reserve(Record[0]);
525       continue;
526     case bitc::TYPE_CODE_VOID:      // VOID
527       ResultTy = Type::getVoidTy(Context);
528       break;
529     case bitc::TYPE_CODE_FLOAT:     // FLOAT
530       ResultTy = Type::getFloatTy(Context);
531       break;
532     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533       ResultTy = Type::getDoubleTy(Context);
534       break;
535     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536       ResultTy = Type::getX86_FP80Ty(Context);
537       break;
538     case bitc::TYPE_CODE_FP128:     // FP128
539       ResultTy = Type::getFP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542       ResultTy = Type::getPPC_FP128Ty(Context);
543       break;
544     case bitc::TYPE_CODE_LABEL:     // LABEL
545       ResultTy = Type::getLabelTy(Context);
546       break;
547     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548       ResultTy = 0;
549       break;
550     case bitc::TYPE_CODE_METADATA:  // METADATA
551       ResultTy = Type::getMetadataTy(Context);
552       break;
553     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
554       if (Record.size() < 1)
555         return Error("Invalid Integer type record");
556 
557       ResultTy = IntegerType::get(Context, Record[0]);
558       break;
559     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
560                                     //          [pointee type, address space]
561       if (Record.size() < 1)
562         return Error("Invalid POINTER type record");
563       unsigned AddressSpace = 0;
564       if (Record.size() == 2)
565         AddressSpace = Record[1];
566       ResultTy = PointerType::get(getTypeByID(Record[0], true),
567                                         AddressSpace);
568       break;
569     }
570     case bitc::TYPE_CODE_FUNCTION: {
571       // FIXME: attrid is dead, remove it in LLVM 3.0
572       // FUNCTION: [vararg, attrid, retty, paramty x N]
573       if (Record.size() < 3)
574         return Error("Invalid FUNCTION type record");
575       std::vector<const Type*> ArgTys;
576       for (unsigned i = 3, e = Record.size(); i != e; ++i)
577         ArgTys.push_back(getTypeByID(Record[i], true));
578 
579       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
580                                    Record[0]);
581       break;
582     }
583     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
584       if (Record.size() < 1)
585         return Error("Invalid STRUCT type record");
586       std::vector<const Type*> EltTys;
587       for (unsigned i = 1, e = Record.size(); i != e; ++i)
588         EltTys.push_back(getTypeByID(Record[i], true));
589       ResultTy = StructType::get(Context, EltTys, Record[0]);
590       break;
591     }
592     case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
593       SmallVector<const Type*, 8> EltTys;
594       for (unsigned i = 0, e = Record.size(); i != e; ++i)
595         EltTys.push_back(getTypeByID(Record[i], true));
596       ResultTy = UnionType::get(&EltTys[0], EltTys.size());
597       break;
598     }
599     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
600       if (Record.size() < 2)
601         return Error("Invalid ARRAY type record");
602       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
603       break;
604     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
605       if (Record.size() < 2)
606         return Error("Invalid VECTOR type record");
607       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
608       break;
609     }
610 
611     if (NumRecords == TypeList.size()) {
612       // If this is a new type slot, just append it.
613       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
614       ++NumRecords;
615     } else if (ResultTy == 0) {
616       // Otherwise, this was forward referenced, so an opaque type was created,
617       // but the result type is actually just an opaque.  Leave the one we
618       // created previously.
619       ++NumRecords;
620     } else {
621       // Otherwise, this was forward referenced, so an opaque type was created.
622       // Resolve the opaque type to the real type now.
623       assert(NumRecords < TypeList.size() && "Typelist imbalance");
624       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
625 
626       // Don't directly push the new type on the Tab. Instead we want to replace
627       // the opaque type we previously inserted with the new concrete value. The
628       // refinement from the abstract (opaque) type to the new type causes all
629       // uses of the abstract type to use the concrete type (NewTy). This will
630       // also cause the opaque type to be deleted.
631       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
632 
633       // This should have replaced the old opaque type with the new type in the
634       // value table... or with a preexisting type that was already in the
635       // system.  Let's just make sure it did.
636       assert(TypeList[NumRecords-1].get() != OldTy &&
637              "refineAbstractType didn't work!");
638     }
639   }
640 }
641 
642 
643 bool BitcodeReader::ParseTypeSymbolTable() {
644   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
645     return Error("Malformed block record");
646 
647   SmallVector<uint64_t, 64> Record;
648 
649   // Read all the records for this type table.
650   std::string TypeName;
651   while (1) {
652     unsigned Code = Stream.ReadCode();
653     if (Code == bitc::END_BLOCK) {
654       if (Stream.ReadBlockEnd())
655         return Error("Error at end of type symbol table block");
656       return false;
657     }
658 
659     if (Code == bitc::ENTER_SUBBLOCK) {
660       // No known subblocks, always skip them.
661       Stream.ReadSubBlockID();
662       if (Stream.SkipBlock())
663         return Error("Malformed block record");
664       continue;
665     }
666 
667     if (Code == bitc::DEFINE_ABBREV) {
668       Stream.ReadAbbrevRecord();
669       continue;
670     }
671 
672     // Read a record.
673     Record.clear();
674     switch (Stream.ReadRecord(Code, Record)) {
675     default:  // Default behavior: unknown type.
676       break;
677     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
678       if (ConvertToString(Record, 1, TypeName))
679         return Error("Invalid TST_ENTRY record");
680       unsigned TypeID = Record[0];
681       if (TypeID >= TypeList.size())
682         return Error("Invalid Type ID in TST_ENTRY record");
683 
684       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
685       TypeName.clear();
686       break;
687     }
688   }
689 }
690 
691 bool BitcodeReader::ParseValueSymbolTable() {
692   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
693     return Error("Malformed block record");
694 
695   SmallVector<uint64_t, 64> Record;
696 
697   // Read all the records for this value table.
698   SmallString<128> ValueName;
699   while (1) {
700     unsigned Code = Stream.ReadCode();
701     if (Code == bitc::END_BLOCK) {
702       if (Stream.ReadBlockEnd())
703         return Error("Error at end of value symbol table block");
704       return false;
705     }
706     if (Code == bitc::ENTER_SUBBLOCK) {
707       // No known subblocks, always skip them.
708       Stream.ReadSubBlockID();
709       if (Stream.SkipBlock())
710         return Error("Malformed block record");
711       continue;
712     }
713 
714     if (Code == bitc::DEFINE_ABBREV) {
715       Stream.ReadAbbrevRecord();
716       continue;
717     }
718 
719     // Read a record.
720     Record.clear();
721     switch (Stream.ReadRecord(Code, Record)) {
722     default:  // Default behavior: unknown type.
723       break;
724     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
725       if (ConvertToString(Record, 1, ValueName))
726         return Error("Invalid VST_ENTRY record");
727       unsigned ValueID = Record[0];
728       if (ValueID >= ValueList.size())
729         return Error("Invalid Value ID in VST_ENTRY record");
730       Value *V = ValueList[ValueID];
731 
732       V->setName(StringRef(ValueName.data(), ValueName.size()));
733       ValueName.clear();
734       break;
735     }
736     case bitc::VST_CODE_BBENTRY: {
737       if (ConvertToString(Record, 1, ValueName))
738         return Error("Invalid VST_BBENTRY record");
739       BasicBlock *BB = getBasicBlock(Record[0]);
740       if (BB == 0)
741         return Error("Invalid BB ID in VST_BBENTRY record");
742 
743       BB->setName(StringRef(ValueName.data(), ValueName.size()));
744       ValueName.clear();
745       break;
746     }
747     }
748   }
749 }
750 
751 bool BitcodeReader::ParseMetadata() {
752   unsigned NextMDValueNo = MDValueList.size();
753 
754   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
755     return Error("Malformed block record");
756 
757   SmallVector<uint64_t, 64> Record;
758 
759   // Read all the records.
760   while (1) {
761     unsigned Code = Stream.ReadCode();
762     if (Code == bitc::END_BLOCK) {
763       if (Stream.ReadBlockEnd())
764         return Error("Error at end of PARAMATTR block");
765       return false;
766     }
767 
768     if (Code == bitc::ENTER_SUBBLOCK) {
769       // No known subblocks, always skip them.
770       Stream.ReadSubBlockID();
771       if (Stream.SkipBlock())
772         return Error("Malformed block record");
773       continue;
774     }
775 
776     if (Code == bitc::DEFINE_ABBREV) {
777       Stream.ReadAbbrevRecord();
778       continue;
779     }
780 
781     bool IsFunctionLocal = false;
782     // Read a record.
783     Record.clear();
784     switch (Stream.ReadRecord(Code, Record)) {
785     default:  // Default behavior: ignore.
786       break;
787     case bitc::METADATA_NAME: {
788       // Read named of the named metadata.
789       unsigned NameLength = Record.size();
790       SmallString<8> Name;
791       Name.resize(NameLength);
792       for (unsigned i = 0; i != NameLength; ++i)
793         Name[i] = Record[i];
794       Record.clear();
795       Code = Stream.ReadCode();
796 
797       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
798       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
799         assert ( 0 && "Inavlid Named Metadata record");
800 
801       // Read named metadata elements.
802       unsigned Size = Record.size();
803       SmallVector<MDNode *, 8> Elts;
804       for (unsigned i = 0; i != Size; ++i) {
805         if (Record[i] == ~0U) {
806           Elts.push_back(NULL);
807           continue;
808         }
809         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
810         if (MD == 0)
811           return Error("Malformed metadata record");
812         Elts.push_back(MD);
813       }
814       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
815                                      Elts.size(), TheModule);
816       MDValueList.AssignValue(V, NextMDValueNo++);
817       break;
818     }
819     case bitc::METADATA_FN_NODE:
820       IsFunctionLocal = true;
821       // fall-through
822     case bitc::METADATA_NODE: {
823       if (Record.size() % 2 == 1)
824         return Error("Invalid METADATA_NODE record");
825 
826       unsigned Size = Record.size();
827       SmallVector<Value*, 8> Elts;
828       for (unsigned i = 0; i != Size; i += 2) {
829         const Type *Ty = getTypeByID(Record[i], false);
830         if (Ty->isMetadataTy())
831           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
832         else if (!Ty->isVoidTy())
833           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
834         else
835           Elts.push_back(NULL);
836       }
837       Value *V = MDNode::getWhenValsUnresolved(Context,
838                                                Elts.data(), Elts.size(),
839                                                IsFunctionLocal);
840       IsFunctionLocal = false;
841       MDValueList.AssignValue(V, NextMDValueNo++);
842       break;
843     }
844     case bitc::METADATA_STRING: {
845       unsigned MDStringLength = Record.size();
846       SmallString<8> String;
847       String.resize(MDStringLength);
848       for (unsigned i = 0; i != MDStringLength; ++i)
849         String[i] = Record[i];
850       Value *V = MDString::get(Context,
851                                StringRef(String.data(), String.size()));
852       MDValueList.AssignValue(V, NextMDValueNo++);
853       break;
854     }
855     case bitc::METADATA_KIND: {
856       unsigned RecordLength = Record.size();
857       if (Record.empty() || RecordLength < 2)
858         return Error("Invalid METADATA_KIND record");
859       SmallString<8> Name;
860       Name.resize(RecordLength-1);
861       unsigned Kind = Record[0];
862       (void) Kind;
863       for (unsigned i = 1; i != RecordLength; ++i)
864         Name[i-1] = Record[i];
865 
866       unsigned NewKind = TheModule->getMDKindID(Name.str());
867       assert(Kind == NewKind &&
868              "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
869       break;
870     }
871     }
872   }
873 }
874 
875 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
876 /// the LSB for dense VBR encoding.
877 static uint64_t DecodeSignRotatedValue(uint64_t V) {
878   if ((V & 1) == 0)
879     return V >> 1;
880   if (V != 1)
881     return -(V >> 1);
882   // There is no such thing as -0 with integers.  "-0" really means MININT.
883   return 1ULL << 63;
884 }
885 
886 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
887 /// values and aliases that we can.
888 bool BitcodeReader::ResolveGlobalAndAliasInits() {
889   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
890   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
891 
892   GlobalInitWorklist.swap(GlobalInits);
893   AliasInitWorklist.swap(AliasInits);
894 
895   while (!GlobalInitWorklist.empty()) {
896     unsigned ValID = GlobalInitWorklist.back().second;
897     if (ValID >= ValueList.size()) {
898       // Not ready to resolve this yet, it requires something later in the file.
899       GlobalInits.push_back(GlobalInitWorklist.back());
900     } else {
901       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
902         GlobalInitWorklist.back().first->setInitializer(C);
903       else
904         return Error("Global variable initializer is not a constant!");
905     }
906     GlobalInitWorklist.pop_back();
907   }
908 
909   while (!AliasInitWorklist.empty()) {
910     unsigned ValID = AliasInitWorklist.back().second;
911     if (ValID >= ValueList.size()) {
912       AliasInits.push_back(AliasInitWorklist.back());
913     } else {
914       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
915         AliasInitWorklist.back().first->setAliasee(C);
916       else
917         return Error("Alias initializer is not a constant!");
918     }
919     AliasInitWorklist.pop_back();
920   }
921   return false;
922 }
923 
924 bool BitcodeReader::ParseConstants() {
925   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
926     return Error("Malformed block record");
927 
928   SmallVector<uint64_t, 64> Record;
929 
930   // Read all the records for this value table.
931   const Type *CurTy = Type::getInt32Ty(Context);
932   unsigned NextCstNo = ValueList.size();
933   while (1) {
934     unsigned Code = Stream.ReadCode();
935     if (Code == bitc::END_BLOCK)
936       break;
937 
938     if (Code == bitc::ENTER_SUBBLOCK) {
939       // No known subblocks, always skip them.
940       Stream.ReadSubBlockID();
941       if (Stream.SkipBlock())
942         return Error("Malformed block record");
943       continue;
944     }
945 
946     if (Code == bitc::DEFINE_ABBREV) {
947       Stream.ReadAbbrevRecord();
948       continue;
949     }
950 
951     // Read a record.
952     Record.clear();
953     Value *V = 0;
954     unsigned BitCode = Stream.ReadRecord(Code, Record);
955     switch (BitCode) {
956     default:  // Default behavior: unknown constant
957     case bitc::CST_CODE_UNDEF:     // UNDEF
958       V = UndefValue::get(CurTy);
959       break;
960     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
961       if (Record.empty())
962         return Error("Malformed CST_SETTYPE record");
963       if (Record[0] >= TypeList.size())
964         return Error("Invalid Type ID in CST_SETTYPE record");
965       CurTy = TypeList[Record[0]];
966       continue;  // Skip the ValueList manipulation.
967     case bitc::CST_CODE_NULL:      // NULL
968       V = Constant::getNullValue(CurTy);
969       break;
970     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
971       if (!CurTy->isIntegerTy() || Record.empty())
972         return Error("Invalid CST_INTEGER record");
973       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
974       break;
975     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
976       if (!CurTy->isIntegerTy() || Record.empty())
977         return Error("Invalid WIDE_INTEGER record");
978 
979       unsigned NumWords = Record.size();
980       SmallVector<uint64_t, 8> Words;
981       Words.resize(NumWords);
982       for (unsigned i = 0; i != NumWords; ++i)
983         Words[i] = DecodeSignRotatedValue(Record[i]);
984       V = ConstantInt::get(Context,
985                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
986                            NumWords, &Words[0]));
987       break;
988     }
989     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
990       if (Record.empty())
991         return Error("Invalid FLOAT record");
992       if (CurTy->isFloatTy())
993         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
994       else if (CurTy->isDoubleTy())
995         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
996       else if (CurTy->isX86_FP80Ty()) {
997         // Bits are not stored the same way as a normal i80 APInt, compensate.
998         uint64_t Rearrange[2];
999         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1000         Rearrange[1] = Record[0] >> 48;
1001         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1002       } else if (CurTy->isFP128Ty())
1003         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1004       else if (CurTy->isPPC_FP128Ty())
1005         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1006       else
1007         V = UndefValue::get(CurTy);
1008       break;
1009     }
1010 
1011     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1012       if (Record.empty())
1013         return Error("Invalid CST_AGGREGATE record");
1014 
1015       unsigned Size = Record.size();
1016       std::vector<Constant*> Elts;
1017 
1018       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1019         for (unsigned i = 0; i != Size; ++i)
1020           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1021                                                      STy->getElementType(i)));
1022         V = ConstantStruct::get(STy, Elts);
1023       } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1024         uint64_t Index = Record[0];
1025         Constant *Val = ValueList.getConstantFwdRef(Record[1],
1026                                         UnTy->getElementType(Index));
1027         V = ConstantUnion::get(UnTy, Val);
1028       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1029         const Type *EltTy = ATy->getElementType();
1030         for (unsigned i = 0; i != Size; ++i)
1031           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1032         V = ConstantArray::get(ATy, Elts);
1033       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1034         const Type *EltTy = VTy->getElementType();
1035         for (unsigned i = 0; i != Size; ++i)
1036           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1037         V = ConstantVector::get(Elts);
1038       } else {
1039         V = UndefValue::get(CurTy);
1040       }
1041       break;
1042     }
1043     case bitc::CST_CODE_STRING: { // STRING: [values]
1044       if (Record.empty())
1045         return Error("Invalid CST_AGGREGATE record");
1046 
1047       const ArrayType *ATy = cast<ArrayType>(CurTy);
1048       const Type *EltTy = ATy->getElementType();
1049 
1050       unsigned Size = Record.size();
1051       std::vector<Constant*> Elts;
1052       for (unsigned i = 0; i != Size; ++i)
1053         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1054       V = ConstantArray::get(ATy, Elts);
1055       break;
1056     }
1057     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1058       if (Record.empty())
1059         return Error("Invalid CST_AGGREGATE record");
1060 
1061       const ArrayType *ATy = cast<ArrayType>(CurTy);
1062       const Type *EltTy = ATy->getElementType();
1063 
1064       unsigned Size = Record.size();
1065       std::vector<Constant*> Elts;
1066       for (unsigned i = 0; i != Size; ++i)
1067         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1068       Elts.push_back(Constant::getNullValue(EltTy));
1069       V = ConstantArray::get(ATy, Elts);
1070       break;
1071     }
1072     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1073       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1074       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1075       if (Opc < 0) {
1076         V = UndefValue::get(CurTy);  // Unknown binop.
1077       } else {
1078         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1079         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1080         unsigned Flags = 0;
1081         if (Record.size() >= 4) {
1082           if (Opc == Instruction::Add ||
1083               Opc == Instruction::Sub ||
1084               Opc == Instruction::Mul) {
1085             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1086               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1087             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1088               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1089           } else if (Opc == Instruction::SDiv) {
1090             if (Record[3] & (1 << bitc::SDIV_EXACT))
1091               Flags |= SDivOperator::IsExact;
1092           }
1093         }
1094         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1095       }
1096       break;
1097     }
1098     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1099       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1100       int Opc = GetDecodedCastOpcode(Record[0]);
1101       if (Opc < 0) {
1102         V = UndefValue::get(CurTy);  // Unknown cast.
1103       } else {
1104         const Type *OpTy = getTypeByID(Record[1]);
1105         if (!OpTy) return Error("Invalid CE_CAST record");
1106         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1107         V = ConstantExpr::getCast(Opc, Op, CurTy);
1108       }
1109       break;
1110     }
1111     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1112     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1113       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1114       SmallVector<Constant*, 16> Elts;
1115       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1116         const Type *ElTy = getTypeByID(Record[i]);
1117         if (!ElTy) return Error("Invalid CE_GEP record");
1118         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1119       }
1120       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1121         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1122                                                    Elts.size()-1);
1123       else
1124         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1125                                            Elts.size()-1);
1126       break;
1127     }
1128     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1129       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1130       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1131                                                               Type::getInt1Ty(Context)),
1132                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1133                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1134       break;
1135     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1136       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1137       const VectorType *OpTy =
1138         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1139       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1140       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1141       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1142       V = ConstantExpr::getExtractElement(Op0, Op1);
1143       break;
1144     }
1145     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1146       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1147       if (Record.size() < 3 || OpTy == 0)
1148         return Error("Invalid CE_INSERTELT record");
1149       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1150       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1151                                                   OpTy->getElementType());
1152       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1153       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1154       break;
1155     }
1156     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1157       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1158       if (Record.size() < 3 || OpTy == 0)
1159         return Error("Invalid CE_SHUFFLEVEC record");
1160       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1161       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1162       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1163                                                  OpTy->getNumElements());
1164       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1165       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1166       break;
1167     }
1168     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1169       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1170       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1171       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1172         return Error("Invalid CE_SHUFVEC_EX record");
1173       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1174       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1175       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1176                                                  RTy->getNumElements());
1177       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1178       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1179       break;
1180     }
1181     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1182       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1183       const Type *OpTy = getTypeByID(Record[0]);
1184       if (OpTy == 0) return Error("Invalid CE_CMP record");
1185       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1186       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1187 
1188       if (OpTy->isFPOrFPVectorTy())
1189         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1190       else
1191         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1192       break;
1193     }
1194     case bitc::CST_CODE_INLINEASM: {
1195       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1196       std::string AsmStr, ConstrStr;
1197       bool HasSideEffects = Record[0] & 1;
1198       bool IsAlignStack = Record[0] >> 1;
1199       unsigned AsmStrSize = Record[1];
1200       if (2+AsmStrSize >= Record.size())
1201         return Error("Invalid INLINEASM record");
1202       unsigned ConstStrSize = Record[2+AsmStrSize];
1203       if (3+AsmStrSize+ConstStrSize > Record.size())
1204         return Error("Invalid INLINEASM record");
1205 
1206       for (unsigned i = 0; i != AsmStrSize; ++i)
1207         AsmStr += (char)Record[2+i];
1208       for (unsigned i = 0; i != ConstStrSize; ++i)
1209         ConstrStr += (char)Record[3+AsmStrSize+i];
1210       const PointerType *PTy = cast<PointerType>(CurTy);
1211       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1212                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1213       break;
1214     }
1215     case bitc::CST_CODE_BLOCKADDRESS:{
1216       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1217       const Type *FnTy = getTypeByID(Record[0]);
1218       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1219       Function *Fn =
1220         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1221       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1222 
1223       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1224                                                   Type::getInt8Ty(Context),
1225                                             false, GlobalValue::InternalLinkage,
1226                                                   0, "");
1227       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1228       V = FwdRef;
1229       break;
1230     }
1231     }
1232 
1233     ValueList.AssignValue(V, NextCstNo);
1234     ++NextCstNo;
1235   }
1236 
1237   if (NextCstNo != ValueList.size())
1238     return Error("Invalid constant reference!");
1239 
1240   if (Stream.ReadBlockEnd())
1241     return Error("Error at end of constants block");
1242 
1243   // Once all the constants have been read, go through and resolve forward
1244   // references.
1245   ValueList.ResolveConstantForwardRefs();
1246   return false;
1247 }
1248 
1249 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1250 /// remember where it is and then skip it.  This lets us lazily deserialize the
1251 /// functions.
1252 bool BitcodeReader::RememberAndSkipFunctionBody() {
1253   // Get the function we are talking about.
1254   if (FunctionsWithBodies.empty())
1255     return Error("Insufficient function protos");
1256 
1257   Function *Fn = FunctionsWithBodies.back();
1258   FunctionsWithBodies.pop_back();
1259 
1260   // Save the current stream state.
1261   uint64_t CurBit = Stream.GetCurrentBitNo();
1262   DeferredFunctionInfo[Fn] = CurBit;
1263 
1264   // Skip over the function block for now.
1265   if (Stream.SkipBlock())
1266     return Error("Malformed block record");
1267   return false;
1268 }
1269 
1270 bool BitcodeReader::ParseModule() {
1271   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1272     return Error("Malformed block record");
1273 
1274   SmallVector<uint64_t, 64> Record;
1275   std::vector<std::string> SectionTable;
1276   std::vector<std::string> GCTable;
1277 
1278   // Read all the records for this module.
1279   while (!Stream.AtEndOfStream()) {
1280     unsigned Code = Stream.ReadCode();
1281     if (Code == bitc::END_BLOCK) {
1282       if (Stream.ReadBlockEnd())
1283         return Error("Error at end of module block");
1284 
1285       // Patch the initializers for globals and aliases up.
1286       ResolveGlobalAndAliasInits();
1287       if (!GlobalInits.empty() || !AliasInits.empty())
1288         return Error("Malformed global initializer set");
1289       if (!FunctionsWithBodies.empty())
1290         return Error("Too few function bodies found");
1291 
1292       // Look for intrinsic functions which need to be upgraded at some point
1293       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1294            FI != FE; ++FI) {
1295         Function* NewFn;
1296         if (UpgradeIntrinsicFunction(FI, NewFn))
1297           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1298       }
1299 
1300       // Force deallocation of memory for these vectors to favor the client that
1301       // want lazy deserialization.
1302       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1303       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1304       std::vector<Function*>().swap(FunctionsWithBodies);
1305       return false;
1306     }
1307 
1308     if (Code == bitc::ENTER_SUBBLOCK) {
1309       switch (Stream.ReadSubBlockID()) {
1310       default:  // Skip unknown content.
1311         if (Stream.SkipBlock())
1312           return Error("Malformed block record");
1313         break;
1314       case bitc::BLOCKINFO_BLOCK_ID:
1315         if (Stream.ReadBlockInfoBlock())
1316           return Error("Malformed BlockInfoBlock");
1317         break;
1318       case bitc::PARAMATTR_BLOCK_ID:
1319         if (ParseAttributeBlock())
1320           return true;
1321         break;
1322       case bitc::TYPE_BLOCK_ID:
1323         if (ParseTypeTable())
1324           return true;
1325         break;
1326       case bitc::TYPE_SYMTAB_BLOCK_ID:
1327         if (ParseTypeSymbolTable())
1328           return true;
1329         break;
1330       case bitc::VALUE_SYMTAB_BLOCK_ID:
1331         if (ParseValueSymbolTable())
1332           return true;
1333         break;
1334       case bitc::CONSTANTS_BLOCK_ID:
1335         if (ParseConstants() || ResolveGlobalAndAliasInits())
1336           return true;
1337         break;
1338       case bitc::METADATA_BLOCK_ID:
1339         if (ParseMetadata())
1340           return true;
1341         break;
1342       case bitc::FUNCTION_BLOCK_ID:
1343         // If this is the first function body we've seen, reverse the
1344         // FunctionsWithBodies list.
1345         if (!HasReversedFunctionsWithBodies) {
1346           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1347           HasReversedFunctionsWithBodies = true;
1348         }
1349 
1350         if (RememberAndSkipFunctionBody())
1351           return true;
1352         break;
1353       }
1354       continue;
1355     }
1356 
1357     if (Code == bitc::DEFINE_ABBREV) {
1358       Stream.ReadAbbrevRecord();
1359       continue;
1360     }
1361 
1362     // Read a record.
1363     switch (Stream.ReadRecord(Code, Record)) {
1364     default: break;  // Default behavior, ignore unknown content.
1365     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1366       if (Record.size() < 1)
1367         return Error("Malformed MODULE_CODE_VERSION");
1368       // Only version #0 is supported so far.
1369       if (Record[0] != 0)
1370         return Error("Unknown bitstream version!");
1371       break;
1372     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1373       std::string S;
1374       if (ConvertToString(Record, 0, S))
1375         return Error("Invalid MODULE_CODE_TRIPLE record");
1376       TheModule->setTargetTriple(S);
1377       break;
1378     }
1379     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1380       std::string S;
1381       if (ConvertToString(Record, 0, S))
1382         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1383       TheModule->setDataLayout(S);
1384       break;
1385     }
1386     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1387       std::string S;
1388       if (ConvertToString(Record, 0, S))
1389         return Error("Invalid MODULE_CODE_ASM record");
1390       TheModule->setModuleInlineAsm(S);
1391       break;
1392     }
1393     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1394       std::string S;
1395       if (ConvertToString(Record, 0, S))
1396         return Error("Invalid MODULE_CODE_DEPLIB record");
1397       TheModule->addLibrary(S);
1398       break;
1399     }
1400     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1401       std::string S;
1402       if (ConvertToString(Record, 0, S))
1403         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1404       SectionTable.push_back(S);
1405       break;
1406     }
1407     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1408       std::string S;
1409       if (ConvertToString(Record, 0, S))
1410         return Error("Invalid MODULE_CODE_GCNAME record");
1411       GCTable.push_back(S);
1412       break;
1413     }
1414     // GLOBALVAR: [pointer type, isconst, initid,
1415     //             linkage, alignment, section, visibility, threadlocal]
1416     case bitc::MODULE_CODE_GLOBALVAR: {
1417       if (Record.size() < 6)
1418         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1419       const Type *Ty = getTypeByID(Record[0]);
1420       if (!Ty->isPointerTy())
1421         return Error("Global not a pointer type!");
1422       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1423       Ty = cast<PointerType>(Ty)->getElementType();
1424 
1425       bool isConstant = Record[1];
1426       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1427       unsigned Alignment = (1 << Record[4]) >> 1;
1428       std::string Section;
1429       if (Record[5]) {
1430         if (Record[5]-1 >= SectionTable.size())
1431           return Error("Invalid section ID");
1432         Section = SectionTable[Record[5]-1];
1433       }
1434       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1435       if (Record.size() > 6)
1436         Visibility = GetDecodedVisibility(Record[6]);
1437       bool isThreadLocal = false;
1438       if (Record.size() > 7)
1439         isThreadLocal = Record[7];
1440 
1441       GlobalVariable *NewGV =
1442         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1443                            isThreadLocal, AddressSpace);
1444       NewGV->setAlignment(Alignment);
1445       if (!Section.empty())
1446         NewGV->setSection(Section);
1447       NewGV->setVisibility(Visibility);
1448       NewGV->setThreadLocal(isThreadLocal);
1449 
1450       ValueList.push_back(NewGV);
1451 
1452       // Remember which value to use for the global initializer.
1453       if (unsigned InitID = Record[2])
1454         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1455       break;
1456     }
1457     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1458     //             alignment, section, visibility, gc]
1459     case bitc::MODULE_CODE_FUNCTION: {
1460       if (Record.size() < 8)
1461         return Error("Invalid MODULE_CODE_FUNCTION record");
1462       const Type *Ty = getTypeByID(Record[0]);
1463       if (!Ty->isPointerTy())
1464         return Error("Function not a pointer type!");
1465       const FunctionType *FTy =
1466         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1467       if (!FTy)
1468         return Error("Function not a pointer to function type!");
1469 
1470       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1471                                         "", TheModule);
1472 
1473       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1474       bool isProto = Record[2];
1475       Func->setLinkage(GetDecodedLinkage(Record[3]));
1476       Func->setAttributes(getAttributes(Record[4]));
1477 
1478       Func->setAlignment((1 << Record[5]) >> 1);
1479       if (Record[6]) {
1480         if (Record[6]-1 >= SectionTable.size())
1481           return Error("Invalid section ID");
1482         Func->setSection(SectionTable[Record[6]-1]);
1483       }
1484       Func->setVisibility(GetDecodedVisibility(Record[7]));
1485       if (Record.size() > 8 && Record[8]) {
1486         if (Record[8]-1 > GCTable.size())
1487           return Error("Invalid GC ID");
1488         Func->setGC(GCTable[Record[8]-1].c_str());
1489       }
1490       ValueList.push_back(Func);
1491 
1492       // If this is a function with a body, remember the prototype we are
1493       // creating now, so that we can match up the body with them later.
1494       if (!isProto)
1495         FunctionsWithBodies.push_back(Func);
1496       break;
1497     }
1498     // ALIAS: [alias type, aliasee val#, linkage]
1499     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1500     case bitc::MODULE_CODE_ALIAS: {
1501       if (Record.size() < 3)
1502         return Error("Invalid MODULE_ALIAS record");
1503       const Type *Ty = getTypeByID(Record[0]);
1504       if (!Ty->isPointerTy())
1505         return Error("Function not a pointer type!");
1506 
1507       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1508                                            "", 0, TheModule);
1509       // Old bitcode files didn't have visibility field.
1510       if (Record.size() > 3)
1511         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1512       ValueList.push_back(NewGA);
1513       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1514       break;
1515     }
1516     /// MODULE_CODE_PURGEVALS: [numvals]
1517     case bitc::MODULE_CODE_PURGEVALS:
1518       // Trim down the value list to the specified size.
1519       if (Record.size() < 1 || Record[0] > ValueList.size())
1520         return Error("Invalid MODULE_PURGEVALS record");
1521       ValueList.shrinkTo(Record[0]);
1522       break;
1523     }
1524     Record.clear();
1525   }
1526 
1527   return Error("Premature end of bitstream");
1528 }
1529 
1530 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1531   TheModule = 0;
1532 
1533   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1534   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1535 
1536   if (Buffer->getBufferSize() & 3) {
1537     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1538       return Error("Invalid bitcode signature");
1539     else
1540       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1541   }
1542 
1543   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1544   // The magic number is 0x0B17C0DE stored in little endian.
1545   if (isBitcodeWrapper(BufPtr, BufEnd))
1546     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1547       return Error("Invalid bitcode wrapper header");
1548 
1549   StreamFile.init(BufPtr, BufEnd);
1550   Stream.init(StreamFile);
1551 
1552   // Sniff for the signature.
1553   if (Stream.Read(8) != 'B' ||
1554       Stream.Read(8) != 'C' ||
1555       Stream.Read(4) != 0x0 ||
1556       Stream.Read(4) != 0xC ||
1557       Stream.Read(4) != 0xE ||
1558       Stream.Read(4) != 0xD)
1559     return Error("Invalid bitcode signature");
1560 
1561   // We expect a number of well-defined blocks, though we don't necessarily
1562   // need to understand them all.
1563   while (!Stream.AtEndOfStream()) {
1564     unsigned Code = Stream.ReadCode();
1565 
1566     if (Code != bitc::ENTER_SUBBLOCK)
1567       return Error("Invalid record at top-level");
1568 
1569     unsigned BlockID = Stream.ReadSubBlockID();
1570 
1571     // We only know the MODULE subblock ID.
1572     switch (BlockID) {
1573     case bitc::BLOCKINFO_BLOCK_ID:
1574       if (Stream.ReadBlockInfoBlock())
1575         return Error("Malformed BlockInfoBlock");
1576       break;
1577     case bitc::MODULE_BLOCK_ID:
1578       // Reject multiple MODULE_BLOCK's in a single bitstream.
1579       if (TheModule)
1580         return Error("Multiple MODULE_BLOCKs in same stream");
1581       TheModule = M;
1582       if (ParseModule())
1583         return true;
1584       break;
1585     default:
1586       if (Stream.SkipBlock())
1587         return Error("Malformed block record");
1588       break;
1589     }
1590   }
1591 
1592   return false;
1593 }
1594 
1595 /// ParseMetadataAttachment - Parse metadata attachments.
1596 bool BitcodeReader::ParseMetadataAttachment() {
1597   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1598     return Error("Malformed block record");
1599 
1600   SmallVector<uint64_t, 64> Record;
1601   while(1) {
1602     unsigned Code = Stream.ReadCode();
1603     if (Code == bitc::END_BLOCK) {
1604       if (Stream.ReadBlockEnd())
1605         return Error("Error at end of PARAMATTR block");
1606       break;
1607     }
1608     if (Code == bitc::DEFINE_ABBREV) {
1609       Stream.ReadAbbrevRecord();
1610       continue;
1611     }
1612     // Read a metadata attachment record.
1613     Record.clear();
1614     switch (Stream.ReadRecord(Code, Record)) {
1615     default:  // Default behavior: ignore.
1616       break;
1617     case bitc::METADATA_ATTACHMENT: {
1618       unsigned RecordLength = Record.size();
1619       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1620         return Error ("Invalid METADATA_ATTACHMENT reader!");
1621       Instruction *Inst = InstructionList[Record[0]];
1622       for (unsigned i = 1; i != RecordLength; i = i+2) {
1623         unsigned Kind = Record[i];
1624         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1625         Inst->setMetadata(Kind, cast<MDNode>(Node));
1626       }
1627       break;
1628     }
1629     }
1630   }
1631   return false;
1632 }
1633 
1634 /// ParseFunctionBody - Lazily parse the specified function body block.
1635 bool BitcodeReader::ParseFunctionBody(Function *F) {
1636   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1637     return Error("Malformed block record");
1638 
1639   InstructionList.clear();
1640   unsigned ModuleValueListSize = ValueList.size();
1641 
1642   // Add all the function arguments to the value table.
1643   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1644     ValueList.push_back(I);
1645 
1646   unsigned NextValueNo = ValueList.size();
1647   BasicBlock *CurBB = 0;
1648   unsigned CurBBNo = 0;
1649 
1650   DebugLoc LastLoc;
1651 
1652   // Read all the records.
1653   SmallVector<uint64_t, 64> Record;
1654   while (1) {
1655     unsigned Code = Stream.ReadCode();
1656     if (Code == bitc::END_BLOCK) {
1657       if (Stream.ReadBlockEnd())
1658         return Error("Error at end of function block");
1659       break;
1660     }
1661 
1662     if (Code == bitc::ENTER_SUBBLOCK) {
1663       switch (Stream.ReadSubBlockID()) {
1664       default:  // Skip unknown content.
1665         if (Stream.SkipBlock())
1666           return Error("Malformed block record");
1667         break;
1668       case bitc::CONSTANTS_BLOCK_ID:
1669         if (ParseConstants()) return true;
1670         NextValueNo = ValueList.size();
1671         break;
1672       case bitc::VALUE_SYMTAB_BLOCK_ID:
1673         if (ParseValueSymbolTable()) return true;
1674         break;
1675       case bitc::METADATA_ATTACHMENT_ID:
1676         if (ParseMetadataAttachment()) return true;
1677         break;
1678       case bitc::METADATA_BLOCK_ID:
1679         if (ParseMetadata()) return true;
1680         break;
1681       }
1682       continue;
1683     }
1684 
1685     if (Code == bitc::DEFINE_ABBREV) {
1686       Stream.ReadAbbrevRecord();
1687       continue;
1688     }
1689 
1690     // Read a record.
1691     Record.clear();
1692     Instruction *I = 0;
1693     unsigned BitCode = Stream.ReadRecord(Code, Record);
1694     switch (BitCode) {
1695     default: // Default behavior: reject
1696       return Error("Unknown instruction");
1697     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1698       if (Record.size() < 1 || Record[0] == 0)
1699         return Error("Invalid DECLAREBLOCKS record");
1700       // Create all the basic blocks for the function.
1701       FunctionBBs.resize(Record[0]);
1702       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1703         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1704       CurBB = FunctionBBs[0];
1705       continue;
1706 
1707 
1708     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1709       // This record indicates that the last instruction is at the same
1710       // location as the previous instruction with a location.
1711       I = 0;
1712 
1713       // Get the last instruction emitted.
1714       if (CurBB && !CurBB->empty())
1715         I = &CurBB->back();
1716       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1717                !FunctionBBs[CurBBNo-1]->empty())
1718         I = &FunctionBBs[CurBBNo-1]->back();
1719 
1720       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1721       I->setDebugLoc(LastLoc);
1722       I = 0;
1723       continue;
1724 
1725     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1726       I = 0;     // Get the last instruction emitted.
1727       if (CurBB && !CurBB->empty())
1728         I = &CurBB->back();
1729       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1730                !FunctionBBs[CurBBNo-1]->empty())
1731         I = &FunctionBBs[CurBBNo-1]->back();
1732       if (I == 0 || Record.size() < 4)
1733         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1734 
1735       unsigned Line = Record[0], Col = Record[1];
1736       unsigned ScopeID = Record[2], IAID = Record[3];
1737 
1738       MDNode *Scope = 0, *IA = 0;
1739       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1740       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1741       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1742       I->setDebugLoc(LastLoc);
1743       I = 0;
1744       continue;
1745     }
1746 
1747     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1748       unsigned OpNum = 0;
1749       Value *LHS, *RHS;
1750       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1751           getValue(Record, OpNum, LHS->getType(), RHS) ||
1752           OpNum+1 > Record.size())
1753         return Error("Invalid BINOP record");
1754 
1755       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1756       if (Opc == -1) return Error("Invalid BINOP record");
1757       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1758       InstructionList.push_back(I);
1759       if (OpNum < Record.size()) {
1760         if (Opc == Instruction::Add ||
1761             Opc == Instruction::Sub ||
1762             Opc == Instruction::Mul) {
1763           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1764             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1765           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1766             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1767         } else if (Opc == Instruction::SDiv) {
1768           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1769             cast<BinaryOperator>(I)->setIsExact(true);
1770         }
1771       }
1772       break;
1773     }
1774     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1775       unsigned OpNum = 0;
1776       Value *Op;
1777       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1778           OpNum+2 != Record.size())
1779         return Error("Invalid CAST record");
1780 
1781       const Type *ResTy = getTypeByID(Record[OpNum]);
1782       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1783       if (Opc == -1 || ResTy == 0)
1784         return Error("Invalid CAST record");
1785       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1786       InstructionList.push_back(I);
1787       break;
1788     }
1789     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1790     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1791       unsigned OpNum = 0;
1792       Value *BasePtr;
1793       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1794         return Error("Invalid GEP record");
1795 
1796       SmallVector<Value*, 16> GEPIdx;
1797       while (OpNum != Record.size()) {
1798         Value *Op;
1799         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1800           return Error("Invalid GEP record");
1801         GEPIdx.push_back(Op);
1802       }
1803 
1804       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1805       InstructionList.push_back(I);
1806       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1807         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1808       break;
1809     }
1810 
1811     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1812                                        // EXTRACTVAL: [opty, opval, n x indices]
1813       unsigned OpNum = 0;
1814       Value *Agg;
1815       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1816         return Error("Invalid EXTRACTVAL record");
1817 
1818       SmallVector<unsigned, 4> EXTRACTVALIdx;
1819       for (unsigned RecSize = Record.size();
1820            OpNum != RecSize; ++OpNum) {
1821         uint64_t Index = Record[OpNum];
1822         if ((unsigned)Index != Index)
1823           return Error("Invalid EXTRACTVAL index");
1824         EXTRACTVALIdx.push_back((unsigned)Index);
1825       }
1826 
1827       I = ExtractValueInst::Create(Agg,
1828                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1829       InstructionList.push_back(I);
1830       break;
1831     }
1832 
1833     case bitc::FUNC_CODE_INST_INSERTVAL: {
1834                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1835       unsigned OpNum = 0;
1836       Value *Agg;
1837       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1838         return Error("Invalid INSERTVAL record");
1839       Value *Val;
1840       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1841         return Error("Invalid INSERTVAL record");
1842 
1843       SmallVector<unsigned, 4> INSERTVALIdx;
1844       for (unsigned RecSize = Record.size();
1845            OpNum != RecSize; ++OpNum) {
1846         uint64_t Index = Record[OpNum];
1847         if ((unsigned)Index != Index)
1848           return Error("Invalid INSERTVAL index");
1849         INSERTVALIdx.push_back((unsigned)Index);
1850       }
1851 
1852       I = InsertValueInst::Create(Agg, Val,
1853                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1854       InstructionList.push_back(I);
1855       break;
1856     }
1857 
1858     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1859       // obsolete form of select
1860       // handles select i1 ... in old bitcode
1861       unsigned OpNum = 0;
1862       Value *TrueVal, *FalseVal, *Cond;
1863       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1864           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1865           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1866         return Error("Invalid SELECT record");
1867 
1868       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1869       InstructionList.push_back(I);
1870       break;
1871     }
1872 
1873     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1874       // new form of select
1875       // handles select i1 or select [N x i1]
1876       unsigned OpNum = 0;
1877       Value *TrueVal, *FalseVal, *Cond;
1878       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1879           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1880           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1881         return Error("Invalid SELECT record");
1882 
1883       // select condition can be either i1 or [N x i1]
1884       if (const VectorType* vector_type =
1885           dyn_cast<const VectorType>(Cond->getType())) {
1886         // expect <n x i1>
1887         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1888           return Error("Invalid SELECT condition type");
1889       } else {
1890         // expect i1
1891         if (Cond->getType() != Type::getInt1Ty(Context))
1892           return Error("Invalid SELECT condition type");
1893       }
1894 
1895       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1896       InstructionList.push_back(I);
1897       break;
1898     }
1899 
1900     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1901       unsigned OpNum = 0;
1902       Value *Vec, *Idx;
1903       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1904           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1905         return Error("Invalid EXTRACTELT record");
1906       I = ExtractElementInst::Create(Vec, Idx);
1907       InstructionList.push_back(I);
1908       break;
1909     }
1910 
1911     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1912       unsigned OpNum = 0;
1913       Value *Vec, *Elt, *Idx;
1914       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1915           getValue(Record, OpNum,
1916                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1917           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1918         return Error("Invalid INSERTELT record");
1919       I = InsertElementInst::Create(Vec, Elt, Idx);
1920       InstructionList.push_back(I);
1921       break;
1922     }
1923 
1924     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1925       unsigned OpNum = 0;
1926       Value *Vec1, *Vec2, *Mask;
1927       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1928           getValue(Record, OpNum, Vec1->getType(), Vec2))
1929         return Error("Invalid SHUFFLEVEC record");
1930 
1931       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1932         return Error("Invalid SHUFFLEVEC record");
1933       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1934       InstructionList.push_back(I);
1935       break;
1936     }
1937 
1938     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1939       // Old form of ICmp/FCmp returning bool
1940       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1941       // both legal on vectors but had different behaviour.
1942     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1943       // FCmp/ICmp returning bool or vector of bool
1944 
1945       unsigned OpNum = 0;
1946       Value *LHS, *RHS;
1947       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1948           getValue(Record, OpNum, LHS->getType(), RHS) ||
1949           OpNum+1 != Record.size())
1950         return Error("Invalid CMP record");
1951 
1952       if (LHS->getType()->isFPOrFPVectorTy())
1953         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1954       else
1955         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1956       InstructionList.push_back(I);
1957       break;
1958     }
1959 
1960     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1961       if (Record.size() != 2)
1962         return Error("Invalid GETRESULT record");
1963       unsigned OpNum = 0;
1964       Value *Op;
1965       getValueTypePair(Record, OpNum, NextValueNo, Op);
1966       unsigned Index = Record[1];
1967       I = ExtractValueInst::Create(Op, Index);
1968       InstructionList.push_back(I);
1969       break;
1970     }
1971 
1972     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1973       {
1974         unsigned Size = Record.size();
1975         if (Size == 0) {
1976           I = ReturnInst::Create(Context);
1977           InstructionList.push_back(I);
1978           break;
1979         }
1980 
1981         unsigned OpNum = 0;
1982         SmallVector<Value *,4> Vs;
1983         do {
1984           Value *Op = NULL;
1985           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1986             return Error("Invalid RET record");
1987           Vs.push_back(Op);
1988         } while(OpNum != Record.size());
1989 
1990         const Type *ReturnType = F->getReturnType();
1991         if (Vs.size() > 1 ||
1992             (ReturnType->isStructTy() &&
1993              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1994           Value *RV = UndefValue::get(ReturnType);
1995           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1996             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1997             InstructionList.push_back(I);
1998             CurBB->getInstList().push_back(I);
1999             ValueList.AssignValue(I, NextValueNo++);
2000             RV = I;
2001           }
2002           I = ReturnInst::Create(Context, RV);
2003           InstructionList.push_back(I);
2004           break;
2005         }
2006 
2007         I = ReturnInst::Create(Context, Vs[0]);
2008         InstructionList.push_back(I);
2009         break;
2010       }
2011     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2012       if (Record.size() != 1 && Record.size() != 3)
2013         return Error("Invalid BR record");
2014       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2015       if (TrueDest == 0)
2016         return Error("Invalid BR record");
2017 
2018       if (Record.size() == 1) {
2019         I = BranchInst::Create(TrueDest);
2020         InstructionList.push_back(I);
2021       }
2022       else {
2023         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2024         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2025         if (FalseDest == 0 || Cond == 0)
2026           return Error("Invalid BR record");
2027         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2028         InstructionList.push_back(I);
2029       }
2030       break;
2031     }
2032     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2033       if (Record.size() < 3 || (Record.size() & 1) == 0)
2034         return Error("Invalid SWITCH record");
2035       const Type *OpTy = getTypeByID(Record[0]);
2036       Value *Cond = getFnValueByID(Record[1], OpTy);
2037       BasicBlock *Default = getBasicBlock(Record[2]);
2038       if (OpTy == 0 || Cond == 0 || Default == 0)
2039         return Error("Invalid SWITCH record");
2040       unsigned NumCases = (Record.size()-3)/2;
2041       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2042       InstructionList.push_back(SI);
2043       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2044         ConstantInt *CaseVal =
2045           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2046         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2047         if (CaseVal == 0 || DestBB == 0) {
2048           delete SI;
2049           return Error("Invalid SWITCH record!");
2050         }
2051         SI->addCase(CaseVal, DestBB);
2052       }
2053       I = SI;
2054       break;
2055     }
2056     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2057       if (Record.size() < 2)
2058         return Error("Invalid INDIRECTBR record");
2059       const Type *OpTy = getTypeByID(Record[0]);
2060       Value *Address = getFnValueByID(Record[1], OpTy);
2061       if (OpTy == 0 || Address == 0)
2062         return Error("Invalid INDIRECTBR record");
2063       unsigned NumDests = Record.size()-2;
2064       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2065       InstructionList.push_back(IBI);
2066       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2067         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2068           IBI->addDestination(DestBB);
2069         } else {
2070           delete IBI;
2071           return Error("Invalid INDIRECTBR record!");
2072         }
2073       }
2074       I = IBI;
2075       break;
2076     }
2077 
2078     case bitc::FUNC_CODE_INST_INVOKE: {
2079       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2080       if (Record.size() < 4) return Error("Invalid INVOKE record");
2081       AttrListPtr PAL = getAttributes(Record[0]);
2082       unsigned CCInfo = Record[1];
2083       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2084       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2085 
2086       unsigned OpNum = 4;
2087       Value *Callee;
2088       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2089         return Error("Invalid INVOKE record");
2090 
2091       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2092       const FunctionType *FTy = !CalleeTy ? 0 :
2093         dyn_cast<FunctionType>(CalleeTy->getElementType());
2094 
2095       // Check that the right number of fixed parameters are here.
2096       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2097           Record.size() < OpNum+FTy->getNumParams())
2098         return Error("Invalid INVOKE record");
2099 
2100       SmallVector<Value*, 16> Ops;
2101       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2102         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2103         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2104       }
2105 
2106       if (!FTy->isVarArg()) {
2107         if (Record.size() != OpNum)
2108           return Error("Invalid INVOKE record");
2109       } else {
2110         // Read type/value pairs for varargs params.
2111         while (OpNum != Record.size()) {
2112           Value *Op;
2113           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2114             return Error("Invalid INVOKE record");
2115           Ops.push_back(Op);
2116         }
2117       }
2118 
2119       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2120                              Ops.begin(), Ops.end());
2121       InstructionList.push_back(I);
2122       cast<InvokeInst>(I)->setCallingConv(
2123         static_cast<CallingConv::ID>(CCInfo));
2124       cast<InvokeInst>(I)->setAttributes(PAL);
2125       break;
2126     }
2127     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2128       I = new UnwindInst(Context);
2129       InstructionList.push_back(I);
2130       break;
2131     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2132       I = new UnreachableInst(Context);
2133       InstructionList.push_back(I);
2134       break;
2135     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2136       if (Record.size() < 1 || ((Record.size()-1)&1))
2137         return Error("Invalid PHI record");
2138       const Type *Ty = getTypeByID(Record[0]);
2139       if (!Ty) return Error("Invalid PHI record");
2140 
2141       PHINode *PN = PHINode::Create(Ty);
2142       InstructionList.push_back(PN);
2143       PN->reserveOperandSpace((Record.size()-1)/2);
2144 
2145       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2146         Value *V = getFnValueByID(Record[1+i], Ty);
2147         BasicBlock *BB = getBasicBlock(Record[2+i]);
2148         if (!V || !BB) return Error("Invalid PHI record");
2149         PN->addIncoming(V, BB);
2150       }
2151       I = PN;
2152       break;
2153     }
2154 
2155     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2156       // Autoupgrade malloc instruction to malloc call.
2157       // FIXME: Remove in LLVM 3.0.
2158       if (Record.size() < 3)
2159         return Error("Invalid MALLOC record");
2160       const PointerType *Ty =
2161         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2162       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2163       if (!Ty || !Size) return Error("Invalid MALLOC record");
2164       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2165       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2166       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2167       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2168       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2169                                  AllocSize, Size, NULL);
2170       InstructionList.push_back(I);
2171       break;
2172     }
2173     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2174       unsigned OpNum = 0;
2175       Value *Op;
2176       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2177           OpNum != Record.size())
2178         return Error("Invalid FREE record");
2179       if (!CurBB) return Error("Invalid free instruction with no BB");
2180       I = CallInst::CreateFree(Op, CurBB);
2181       InstructionList.push_back(I);
2182       break;
2183     }
2184     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2185       // For backward compatibility, tolerate a lack of an opty, and use i32.
2186       // LLVM 3.0: Remove this.
2187       if (Record.size() < 3 || Record.size() > 4)
2188         return Error("Invalid ALLOCA record");
2189       unsigned OpNum = 0;
2190       const PointerType *Ty =
2191         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2192       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2193                                               Type::getInt32Ty(Context);
2194       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2195       unsigned Align = Record[OpNum++];
2196       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2197       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2198       InstructionList.push_back(I);
2199       break;
2200     }
2201     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2202       unsigned OpNum = 0;
2203       Value *Op;
2204       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2205           OpNum+2 != Record.size())
2206         return Error("Invalid LOAD record");
2207 
2208       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2209       InstructionList.push_back(I);
2210       break;
2211     }
2212     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2213       unsigned OpNum = 0;
2214       Value *Val, *Ptr;
2215       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2216           getValue(Record, OpNum,
2217                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2218           OpNum+2 != Record.size())
2219         return Error("Invalid STORE record");
2220 
2221       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2222       InstructionList.push_back(I);
2223       break;
2224     }
2225     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2226       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2227       unsigned OpNum = 0;
2228       Value *Val, *Ptr;
2229       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2230           getValue(Record, OpNum,
2231                    PointerType::getUnqual(Val->getType()), Ptr)||
2232           OpNum+2 != Record.size())
2233         return Error("Invalid STORE record");
2234 
2235       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2236       InstructionList.push_back(I);
2237       break;
2238     }
2239     case bitc::FUNC_CODE_INST_CALL: {
2240       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2241       if (Record.size() < 3)
2242         return Error("Invalid CALL record");
2243 
2244       AttrListPtr PAL = getAttributes(Record[0]);
2245       unsigned CCInfo = Record[1];
2246 
2247       unsigned OpNum = 2;
2248       Value *Callee;
2249       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2250         return Error("Invalid CALL record");
2251 
2252       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2253       const FunctionType *FTy = 0;
2254       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2255       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2256         return Error("Invalid CALL record");
2257 
2258       SmallVector<Value*, 16> Args;
2259       // Read the fixed params.
2260       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2261         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2262           Args.push_back(getBasicBlock(Record[OpNum]));
2263         else
2264           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2265         if (Args.back() == 0) return Error("Invalid CALL record");
2266       }
2267 
2268       // Read type/value pairs for varargs params.
2269       if (!FTy->isVarArg()) {
2270         if (OpNum != Record.size())
2271           return Error("Invalid CALL record");
2272       } else {
2273         while (OpNum != Record.size()) {
2274           Value *Op;
2275           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2276             return Error("Invalid CALL record");
2277           Args.push_back(Op);
2278         }
2279       }
2280 
2281       I = CallInst::Create(Callee, Args.begin(), Args.end());
2282       InstructionList.push_back(I);
2283       cast<CallInst>(I)->setCallingConv(
2284         static_cast<CallingConv::ID>(CCInfo>>1));
2285       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2286       cast<CallInst>(I)->setAttributes(PAL);
2287       break;
2288     }
2289     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2290       if (Record.size() < 3)
2291         return Error("Invalid VAARG record");
2292       const Type *OpTy = getTypeByID(Record[0]);
2293       Value *Op = getFnValueByID(Record[1], OpTy);
2294       const Type *ResTy = getTypeByID(Record[2]);
2295       if (!OpTy || !Op || !ResTy)
2296         return Error("Invalid VAARG record");
2297       I = new VAArgInst(Op, ResTy);
2298       InstructionList.push_back(I);
2299       break;
2300     }
2301     }
2302 
2303     // Add instruction to end of current BB.  If there is no current BB, reject
2304     // this file.
2305     if (CurBB == 0) {
2306       delete I;
2307       return Error("Invalid instruction with no BB");
2308     }
2309     CurBB->getInstList().push_back(I);
2310 
2311     // If this was a terminator instruction, move to the next block.
2312     if (isa<TerminatorInst>(I)) {
2313       ++CurBBNo;
2314       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2315     }
2316 
2317     // Non-void values get registered in the value table for future use.
2318     if (I && !I->getType()->isVoidTy())
2319       ValueList.AssignValue(I, NextValueNo++);
2320   }
2321 
2322   // Check the function list for unresolved values.
2323   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2324     if (A->getParent() == 0) {
2325       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2326       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2327         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2328           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2329           delete A;
2330         }
2331       }
2332       return Error("Never resolved value found in function!");
2333     }
2334   }
2335 
2336   // See if anything took the address of blocks in this function.  If so,
2337   // resolve them now.
2338   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2339     BlockAddrFwdRefs.find(F);
2340   if (BAFRI != BlockAddrFwdRefs.end()) {
2341     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2342     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2343       unsigned BlockIdx = RefList[i].first;
2344       if (BlockIdx >= FunctionBBs.size())
2345         return Error("Invalid blockaddress block #");
2346 
2347       GlobalVariable *FwdRef = RefList[i].second;
2348       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2349       FwdRef->eraseFromParent();
2350     }
2351 
2352     BlockAddrFwdRefs.erase(BAFRI);
2353   }
2354 
2355   // Trim the value list down to the size it was before we parsed this function.
2356   ValueList.shrinkTo(ModuleValueListSize);
2357   std::vector<BasicBlock*>().swap(FunctionBBs);
2358 
2359   return false;
2360 }
2361 
2362 //===----------------------------------------------------------------------===//
2363 // GVMaterializer implementation
2364 //===----------------------------------------------------------------------===//
2365 
2366 
2367 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2368   if (const Function *F = dyn_cast<Function>(GV)) {
2369     return F->isDeclaration() &&
2370       DeferredFunctionInfo.count(const_cast<Function*>(F));
2371   }
2372   return false;
2373 }
2374 
2375 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2376   Function *F = dyn_cast<Function>(GV);
2377   // If it's not a function or is already material, ignore the request.
2378   if (!F || !F->isMaterializable()) return false;
2379 
2380   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2381   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2382 
2383   // Move the bit stream to the saved position of the deferred function body.
2384   Stream.JumpToBit(DFII->second);
2385 
2386   if (ParseFunctionBody(F)) {
2387     if (ErrInfo) *ErrInfo = ErrorString;
2388     return true;
2389   }
2390 
2391   // Upgrade any old intrinsic calls in the function.
2392   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2393        E = UpgradedIntrinsics.end(); I != E; ++I) {
2394     if (I->first != I->second) {
2395       for (Value::use_iterator UI = I->first->use_begin(),
2396            UE = I->first->use_end(); UI != UE; ) {
2397         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2398           UpgradeIntrinsicCall(CI, I->second);
2399       }
2400     }
2401   }
2402 
2403   return false;
2404 }
2405 
2406 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2407   const Function *F = dyn_cast<Function>(GV);
2408   if (!F || F->isDeclaration())
2409     return false;
2410   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2411 }
2412 
2413 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2414   Function *F = dyn_cast<Function>(GV);
2415   // If this function isn't dematerializable, this is a noop.
2416   if (!F || !isDematerializable(F))
2417     return;
2418 
2419   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2420 
2421   // Just forget the function body, we can remat it later.
2422   F->deleteBody();
2423 }
2424 
2425 
2426 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2427   assert(M == TheModule &&
2428          "Can only Materialize the Module this BitcodeReader is attached to.");
2429   // Iterate over the module, deserializing any functions that are still on
2430   // disk.
2431   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2432        F != E; ++F)
2433     if (F->isMaterializable() &&
2434         Materialize(F, ErrInfo))
2435       return true;
2436 
2437   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2438   // delete the old functions to clean up. We can't do this unless the entire
2439   // module is materialized because there could always be another function body
2440   // with calls to the old function.
2441   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2442        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2443     if (I->first != I->second) {
2444       for (Value::use_iterator UI = I->first->use_begin(),
2445            UE = I->first->use_end(); UI != UE; ) {
2446         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2447           UpgradeIntrinsicCall(CI, I->second);
2448       }
2449       if (!I->first->use_empty())
2450         I->first->replaceAllUsesWith(I->second);
2451       I->first->eraseFromParent();
2452     }
2453   }
2454   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2455 
2456   // Check debug info intrinsics.
2457   CheckDebugInfoIntrinsics(TheModule);
2458 
2459   return false;
2460 }
2461 
2462 
2463 //===----------------------------------------------------------------------===//
2464 // External interface
2465 //===----------------------------------------------------------------------===//
2466 
2467 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2468 ///
2469 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2470                                    LLVMContext& Context,
2471                                    std::string *ErrMsg) {
2472   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2473   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2474   M->setMaterializer(R);
2475   if (R->ParseBitcodeInto(M)) {
2476     if (ErrMsg)
2477       *ErrMsg = R->getErrorString();
2478 
2479     delete M;  // Also deletes R.
2480     return 0;
2481   }
2482   // Have the BitcodeReader dtor delete 'Buffer'.
2483   R->setBufferOwned(true);
2484   return M;
2485 }
2486 
2487 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2488 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2489 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2490                                std::string *ErrMsg){
2491   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2492   if (!M) return 0;
2493 
2494   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2495   // there was an error.
2496   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2497 
2498   // Read in the entire module, and destroy the BitcodeReader.
2499   if (M->MaterializeAllPermanently(ErrMsg)) {
2500     delete M;
2501     return NULL;
2502   }
2503   return M;
2504 }
2505