1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/MDNode.h" 21 #include "llvm/Module.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 delete Buffer; 32 Buffer = 0; 33 std::vector<PATypeHolder>().swap(TypeList); 34 ValueList.clear(); 35 36 std::vector<AttrListPtr>().swap(MAttributes); 37 std::vector<BasicBlock*>().swap(FunctionBBs); 38 std::vector<Function*>().swap(FunctionsWithBodies); 39 DeferredFunctionInfo.clear(); 40 } 41 42 //===----------------------------------------------------------------------===// 43 // Helper functions to implement forward reference resolution, etc. 44 //===----------------------------------------------------------------------===// 45 46 /// ConvertToString - Convert a string from a record into an std::string, return 47 /// true on failure. 48 template<typename StrTy> 49 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 50 StrTy &Result) { 51 if (Idx > Record.size()) 52 return true; 53 54 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 55 Result += (char)Record[i]; 56 return false; 57 } 58 59 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 60 switch (Val) { 61 default: // Map unknown/new linkages to external 62 case 0: return GlobalValue::ExternalLinkage; 63 case 1: return GlobalValue::WeakAnyLinkage; 64 case 2: return GlobalValue::AppendingLinkage; 65 case 3: return GlobalValue::InternalLinkage; 66 case 4: return GlobalValue::LinkOnceAnyLinkage; 67 case 5: return GlobalValue::DLLImportLinkage; 68 case 6: return GlobalValue::DLLExportLinkage; 69 case 7: return GlobalValue::ExternalWeakLinkage; 70 case 8: return GlobalValue::CommonLinkage; 71 case 9: return GlobalValue::PrivateLinkage; 72 case 10: return GlobalValue::WeakODRLinkage; 73 case 11: return GlobalValue::LinkOnceODRLinkage; 74 case 12: return GlobalValue::AvailableExternallyLinkage; 75 } 76 } 77 78 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 79 switch (Val) { 80 default: // Map unknown visibilities to default. 81 case 0: return GlobalValue::DefaultVisibility; 82 case 1: return GlobalValue::HiddenVisibility; 83 case 2: return GlobalValue::ProtectedVisibility; 84 } 85 } 86 87 static int GetDecodedCastOpcode(unsigned Val) { 88 switch (Val) { 89 default: return -1; 90 case bitc::CAST_TRUNC : return Instruction::Trunc; 91 case bitc::CAST_ZEXT : return Instruction::ZExt; 92 case bitc::CAST_SEXT : return Instruction::SExt; 93 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 94 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 95 case bitc::CAST_UITOFP : return Instruction::UIToFP; 96 case bitc::CAST_SITOFP : return Instruction::SIToFP; 97 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 98 case bitc::CAST_FPEXT : return Instruction::FPExt; 99 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 100 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 101 case bitc::CAST_BITCAST : return Instruction::BitCast; 102 } 103 } 104 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 105 switch (Val) { 106 default: return -1; 107 case bitc::BINOP_ADD: 108 return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add; 109 case bitc::BINOP_SUB: 110 return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub; 111 case bitc::BINOP_MUL: 112 return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul; 113 case bitc::BINOP_UDIV: return Instruction::UDiv; 114 case bitc::BINOP_SDIV: 115 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 116 case bitc::BINOP_UREM: return Instruction::URem; 117 case bitc::BINOP_SREM: 118 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 119 case bitc::BINOP_SHL: return Instruction::Shl; 120 case bitc::BINOP_LSHR: return Instruction::LShr; 121 case bitc::BINOP_ASHR: return Instruction::AShr; 122 case bitc::BINOP_AND: return Instruction::And; 123 case bitc::BINOP_OR: return Instruction::Or; 124 case bitc::BINOP_XOR: return Instruction::Xor; 125 } 126 } 127 128 namespace llvm { 129 namespace { 130 /// @brief A class for maintaining the slot number definition 131 /// as a placeholder for the actual definition for forward constants defs. 132 class ConstantPlaceHolder : public ConstantExpr { 133 ConstantPlaceHolder(); // DO NOT IMPLEMENT 134 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 135 public: 136 // allocate space for exactly one operand 137 void *operator new(size_t s) { 138 return User::operator new(s, 1); 139 } 140 explicit ConstantPlaceHolder(const Type *Ty) 141 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 142 Op<0>() = UndefValue::get(Type::Int32Ty); 143 } 144 145 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 146 static inline bool classof(const ConstantPlaceHolder *) { return true; } 147 static bool classof(const Value *V) { 148 return isa<ConstantExpr>(V) && 149 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 150 } 151 152 153 /// Provide fast operand accessors 154 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 155 }; 156 } 157 158 // FIXME: can we inherit this from ConstantExpr? 159 template <> 160 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 161 }; 162 } 163 164 165 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 166 if (Idx == size()) { 167 push_back(V); 168 return; 169 } 170 171 if (Idx >= size()) 172 resize(Idx+1); 173 174 WeakVH &OldV = ValuePtrs[Idx]; 175 if (OldV == 0) { 176 OldV = V; 177 return; 178 } 179 180 // Handle constants and non-constants (e.g. instrs) differently for 181 // efficiency. 182 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 183 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 184 OldV = V; 185 } else { 186 // If there was a forward reference to this value, replace it. 187 Value *PrevVal = OldV; 188 OldV->replaceAllUsesWith(V); 189 delete PrevVal; 190 } 191 } 192 193 194 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 195 const Type *Ty) { 196 if (Idx >= size()) 197 resize(Idx + 1); 198 199 if (Value *V = ValuePtrs[Idx]) { 200 assert(Ty == V->getType() && "Type mismatch in constant table!"); 201 return cast<Constant>(V); 202 } 203 204 // Create and return a placeholder, which will later be RAUW'd. 205 Constant *C = new ConstantPlaceHolder(Ty); 206 ValuePtrs[Idx] = C; 207 return C; 208 } 209 210 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 211 if (Idx >= size()) 212 resize(Idx + 1); 213 214 if (Value *V = ValuePtrs[Idx]) { 215 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 216 return V; 217 } 218 219 // No type specified, must be invalid reference. 220 if (Ty == 0) return 0; 221 222 // Create and return a placeholder, which will later be RAUW'd. 223 Value *V = new Argument(Ty); 224 ValuePtrs[Idx] = V; 225 return V; 226 } 227 228 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 229 /// resolves any forward references. The idea behind this is that we sometimes 230 /// get constants (such as large arrays) which reference *many* forward ref 231 /// constants. Replacing each of these causes a lot of thrashing when 232 /// building/reuniquing the constant. Instead of doing this, we look at all the 233 /// uses and rewrite all the place holders at once for any constant that uses 234 /// a placeholder. 235 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 236 // Sort the values by-pointer so that they are efficient to look up with a 237 // binary search. 238 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 239 240 SmallVector<Constant*, 64> NewOps; 241 242 while (!ResolveConstants.empty()) { 243 Value *RealVal = operator[](ResolveConstants.back().second); 244 Constant *Placeholder = ResolveConstants.back().first; 245 ResolveConstants.pop_back(); 246 247 // Loop over all users of the placeholder, updating them to reference the 248 // new value. If they reference more than one placeholder, update them all 249 // at once. 250 while (!Placeholder->use_empty()) { 251 Value::use_iterator UI = Placeholder->use_begin(); 252 253 // If the using object isn't uniqued, just update the operands. This 254 // handles instructions and initializers for global variables. 255 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 256 UI.getUse().set(RealVal); 257 continue; 258 } 259 260 // Otherwise, we have a constant that uses the placeholder. Replace that 261 // constant with a new constant that has *all* placeholder uses updated. 262 Constant *UserC = cast<Constant>(*UI); 263 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 264 I != E; ++I) { 265 Value *NewOp; 266 if (!isa<ConstantPlaceHolder>(*I)) { 267 // Not a placeholder reference. 268 NewOp = *I; 269 } else if (*I == Placeholder) { 270 // Common case is that it just references this one placeholder. 271 NewOp = RealVal; 272 } else { 273 // Otherwise, look up the placeholder in ResolveConstants. 274 ResolveConstantsTy::iterator It = 275 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 276 std::pair<Constant*, unsigned>(cast<Constant>(*I), 277 0)); 278 assert(It != ResolveConstants.end() && It->first == *I); 279 NewOp = operator[](It->second); 280 } 281 282 NewOps.push_back(cast<Constant>(NewOp)); 283 } 284 285 // Make the new constant. 286 Constant *NewC; 287 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 288 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 289 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 290 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 291 UserCS->getType()->isPacked()); 292 } else if (isa<ConstantVector>(UserC)) { 293 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 294 } else { 295 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 296 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 297 NewOps.size()); 298 } 299 300 UserC->replaceAllUsesWith(NewC); 301 UserC->destroyConstant(); 302 NewOps.clear(); 303 } 304 305 // Update all ValueHandles, they should be the only users at this point. 306 Placeholder->replaceAllUsesWith(RealVal); 307 delete Placeholder; 308 } 309 } 310 311 312 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 313 // If the TypeID is in range, return it. 314 if (ID < TypeList.size()) 315 return TypeList[ID].get(); 316 if (!isTypeTable) return 0; 317 318 // The type table allows forward references. Push as many Opaque types as 319 // needed to get up to ID. 320 while (TypeList.size() <= ID) 321 TypeList.push_back(OpaqueType::get()); 322 return TypeList.back().get(); 323 } 324 325 //===----------------------------------------------------------------------===// 326 // Functions for parsing blocks from the bitcode file 327 //===----------------------------------------------------------------------===// 328 329 bool BitcodeReader::ParseAttributeBlock() { 330 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 331 return Error("Malformed block record"); 332 333 if (!MAttributes.empty()) 334 return Error("Multiple PARAMATTR blocks found!"); 335 336 SmallVector<uint64_t, 64> Record; 337 338 SmallVector<AttributeWithIndex, 8> Attrs; 339 340 // Read all the records. 341 while (1) { 342 unsigned Code = Stream.ReadCode(); 343 if (Code == bitc::END_BLOCK) { 344 if (Stream.ReadBlockEnd()) 345 return Error("Error at end of PARAMATTR block"); 346 return false; 347 } 348 349 if (Code == bitc::ENTER_SUBBLOCK) { 350 // No known subblocks, always skip them. 351 Stream.ReadSubBlockID(); 352 if (Stream.SkipBlock()) 353 return Error("Malformed block record"); 354 continue; 355 } 356 357 if (Code == bitc::DEFINE_ABBREV) { 358 Stream.ReadAbbrevRecord(); 359 continue; 360 } 361 362 // Read a record. 363 Record.clear(); 364 switch (Stream.ReadRecord(Code, Record)) { 365 default: // Default behavior: ignore. 366 break; 367 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 368 if (Record.size() & 1) 369 return Error("Invalid ENTRY record"); 370 371 // FIXME : Remove this autoupgrade code in LLVM 3.0. 372 // If Function attributes are using index 0 then transfer them 373 // to index ~0. Index 0 is used for return value attributes but used to be 374 // used for function attributes. 375 Attributes RetAttribute = Attribute::None; 376 Attributes FnAttribute = Attribute::None; 377 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 378 // FIXME: remove in LLVM 3.0 379 // The alignment is stored as a 16-bit raw value from bits 31--16. 380 // We shift the bits above 31 down by 11 bits. 381 382 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 383 if (Alignment && !isPowerOf2_32(Alignment)) 384 return Error("Alignment is not a power of two."); 385 386 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 387 if (Alignment) 388 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 389 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 390 Record[i+1] = ReconstitutedAttr; 391 392 if (Record[i] == 0) 393 RetAttribute = Record[i+1]; 394 else if (Record[i] == ~0U) 395 FnAttribute = Record[i+1]; 396 } 397 398 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 399 Attribute::ReadOnly|Attribute::ReadNone); 400 401 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 402 (RetAttribute & OldRetAttrs) != 0) { 403 if (FnAttribute == Attribute::None) { // add a slot so they get added. 404 Record.push_back(~0U); 405 Record.push_back(0); 406 } 407 408 FnAttribute |= RetAttribute & OldRetAttrs; 409 RetAttribute &= ~OldRetAttrs; 410 } 411 412 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 413 if (Record[i] == 0) { 414 if (RetAttribute != Attribute::None) 415 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 416 } else if (Record[i] == ~0U) { 417 if (FnAttribute != Attribute::None) 418 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 419 } else if (Record[i+1] != Attribute::None) 420 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 421 } 422 423 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 424 Attrs.clear(); 425 break; 426 } 427 } 428 } 429 } 430 431 432 bool BitcodeReader::ParseTypeTable() { 433 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 434 return Error("Malformed block record"); 435 436 if (!TypeList.empty()) 437 return Error("Multiple TYPE_BLOCKs found!"); 438 439 SmallVector<uint64_t, 64> Record; 440 unsigned NumRecords = 0; 441 442 // Read all the records for this type table. 443 while (1) { 444 unsigned Code = Stream.ReadCode(); 445 if (Code == bitc::END_BLOCK) { 446 if (NumRecords != TypeList.size()) 447 return Error("Invalid type forward reference in TYPE_BLOCK"); 448 if (Stream.ReadBlockEnd()) 449 return Error("Error at end of type table block"); 450 return false; 451 } 452 453 if (Code == bitc::ENTER_SUBBLOCK) { 454 // No known subblocks, always skip them. 455 Stream.ReadSubBlockID(); 456 if (Stream.SkipBlock()) 457 return Error("Malformed block record"); 458 continue; 459 } 460 461 if (Code == bitc::DEFINE_ABBREV) { 462 Stream.ReadAbbrevRecord(); 463 continue; 464 } 465 466 // Read a record. 467 Record.clear(); 468 const Type *ResultTy = 0; 469 switch (Stream.ReadRecord(Code, Record)) { 470 default: // Default behavior: unknown type. 471 ResultTy = 0; 472 break; 473 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 474 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 475 // type list. This allows us to reserve space. 476 if (Record.size() < 1) 477 return Error("Invalid TYPE_CODE_NUMENTRY record"); 478 TypeList.reserve(Record[0]); 479 continue; 480 case bitc::TYPE_CODE_VOID: // VOID 481 ResultTy = Type::VoidTy; 482 break; 483 case bitc::TYPE_CODE_FLOAT: // FLOAT 484 ResultTy = Type::FloatTy; 485 break; 486 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 487 ResultTy = Type::DoubleTy; 488 break; 489 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 490 ResultTy = Type::X86_FP80Ty; 491 break; 492 case bitc::TYPE_CODE_FP128: // FP128 493 ResultTy = Type::FP128Ty; 494 break; 495 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 496 ResultTy = Type::PPC_FP128Ty; 497 break; 498 case bitc::TYPE_CODE_LABEL: // LABEL 499 ResultTy = Type::LabelTy; 500 break; 501 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 502 ResultTy = 0; 503 break; 504 case bitc::TYPE_CODE_METADATA: // METADATA 505 ResultTy = Type::MetadataTy; 506 break; 507 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 508 if (Record.size() < 1) 509 return Error("Invalid Integer type record"); 510 511 ResultTy = IntegerType::get(Record[0]); 512 break; 513 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 514 // [pointee type, address space] 515 if (Record.size() < 1) 516 return Error("Invalid POINTER type record"); 517 unsigned AddressSpace = 0; 518 if (Record.size() == 2) 519 AddressSpace = Record[1]; 520 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 521 break; 522 } 523 case bitc::TYPE_CODE_FUNCTION: { 524 // FIXME: attrid is dead, remove it in LLVM 3.0 525 // FUNCTION: [vararg, attrid, retty, paramty x N] 526 if (Record.size() < 3) 527 return Error("Invalid FUNCTION type record"); 528 std::vector<const Type*> ArgTys; 529 for (unsigned i = 3, e = Record.size(); i != e; ++i) 530 ArgTys.push_back(getTypeByID(Record[i], true)); 531 532 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 533 Record[0]); 534 break; 535 } 536 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 537 if (Record.size() < 1) 538 return Error("Invalid STRUCT type record"); 539 std::vector<const Type*> EltTys; 540 for (unsigned i = 1, e = Record.size(); i != e; ++i) 541 EltTys.push_back(getTypeByID(Record[i], true)); 542 ResultTy = StructType::get(EltTys, Record[0]); 543 break; 544 } 545 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 546 if (Record.size() < 2) 547 return Error("Invalid ARRAY type record"); 548 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 549 break; 550 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 551 if (Record.size() < 2) 552 return Error("Invalid VECTOR type record"); 553 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 554 break; 555 } 556 557 if (NumRecords == TypeList.size()) { 558 // If this is a new type slot, just append it. 559 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 560 ++NumRecords; 561 } else if (ResultTy == 0) { 562 // Otherwise, this was forward referenced, so an opaque type was created, 563 // but the result type is actually just an opaque. Leave the one we 564 // created previously. 565 ++NumRecords; 566 } else { 567 // Otherwise, this was forward referenced, so an opaque type was created. 568 // Resolve the opaque type to the real type now. 569 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 570 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 571 572 // Don't directly push the new type on the Tab. Instead we want to replace 573 // the opaque type we previously inserted with the new concrete value. The 574 // refinement from the abstract (opaque) type to the new type causes all 575 // uses of the abstract type to use the concrete type (NewTy). This will 576 // also cause the opaque type to be deleted. 577 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 578 579 // This should have replaced the old opaque type with the new type in the 580 // value table... or with a preexisting type that was already in the 581 // system. Let's just make sure it did. 582 assert(TypeList[NumRecords-1].get() != OldTy && 583 "refineAbstractType didn't work!"); 584 } 585 } 586 } 587 588 589 bool BitcodeReader::ParseTypeSymbolTable() { 590 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 591 return Error("Malformed block record"); 592 593 SmallVector<uint64_t, 64> Record; 594 595 // Read all the records for this type table. 596 std::string TypeName; 597 while (1) { 598 unsigned Code = Stream.ReadCode(); 599 if (Code == bitc::END_BLOCK) { 600 if (Stream.ReadBlockEnd()) 601 return Error("Error at end of type symbol table block"); 602 return false; 603 } 604 605 if (Code == bitc::ENTER_SUBBLOCK) { 606 // No known subblocks, always skip them. 607 Stream.ReadSubBlockID(); 608 if (Stream.SkipBlock()) 609 return Error("Malformed block record"); 610 continue; 611 } 612 613 if (Code == bitc::DEFINE_ABBREV) { 614 Stream.ReadAbbrevRecord(); 615 continue; 616 } 617 618 // Read a record. 619 Record.clear(); 620 switch (Stream.ReadRecord(Code, Record)) { 621 default: // Default behavior: unknown type. 622 break; 623 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 624 if (ConvertToString(Record, 1, TypeName)) 625 return Error("Invalid TST_ENTRY record"); 626 unsigned TypeID = Record[0]; 627 if (TypeID >= TypeList.size()) 628 return Error("Invalid Type ID in TST_ENTRY record"); 629 630 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 631 TypeName.clear(); 632 break; 633 } 634 } 635 } 636 637 bool BitcodeReader::ParseValueSymbolTable() { 638 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 639 return Error("Malformed block record"); 640 641 SmallVector<uint64_t, 64> Record; 642 643 // Read all the records for this value table. 644 SmallString<128> ValueName; 645 while (1) { 646 unsigned Code = Stream.ReadCode(); 647 if (Code == bitc::END_BLOCK) { 648 if (Stream.ReadBlockEnd()) 649 return Error("Error at end of value symbol table block"); 650 return false; 651 } 652 if (Code == bitc::ENTER_SUBBLOCK) { 653 // No known subblocks, always skip them. 654 Stream.ReadSubBlockID(); 655 if (Stream.SkipBlock()) 656 return Error("Malformed block record"); 657 continue; 658 } 659 660 if (Code == bitc::DEFINE_ABBREV) { 661 Stream.ReadAbbrevRecord(); 662 continue; 663 } 664 665 // Read a record. 666 Record.clear(); 667 switch (Stream.ReadRecord(Code, Record)) { 668 default: // Default behavior: unknown type. 669 break; 670 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 671 if (ConvertToString(Record, 1, ValueName)) 672 return Error("Invalid VST_ENTRY record"); 673 unsigned ValueID = Record[0]; 674 if (ValueID >= ValueList.size()) 675 return Error("Invalid Value ID in VST_ENTRY record"); 676 Value *V = ValueList[ValueID]; 677 678 V->setName(&ValueName[0], ValueName.size()); 679 ValueName.clear(); 680 break; 681 } 682 case bitc::VST_CODE_BBENTRY: { 683 if (ConvertToString(Record, 1, ValueName)) 684 return Error("Invalid VST_BBENTRY record"); 685 BasicBlock *BB = getBasicBlock(Record[0]); 686 if (BB == 0) 687 return Error("Invalid BB ID in VST_BBENTRY record"); 688 689 BB->setName(&ValueName[0], ValueName.size()); 690 ValueName.clear(); 691 break; 692 } 693 } 694 } 695 } 696 697 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 698 /// the LSB for dense VBR encoding. 699 static uint64_t DecodeSignRotatedValue(uint64_t V) { 700 if ((V & 1) == 0) 701 return V >> 1; 702 if (V != 1) 703 return -(V >> 1); 704 // There is no such thing as -0 with integers. "-0" really means MININT. 705 return 1ULL << 63; 706 } 707 708 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 709 /// values and aliases that we can. 710 bool BitcodeReader::ResolveGlobalAndAliasInits() { 711 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 712 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 713 714 GlobalInitWorklist.swap(GlobalInits); 715 AliasInitWorklist.swap(AliasInits); 716 717 while (!GlobalInitWorklist.empty()) { 718 unsigned ValID = GlobalInitWorklist.back().second; 719 if (ValID >= ValueList.size()) { 720 // Not ready to resolve this yet, it requires something later in the file. 721 GlobalInits.push_back(GlobalInitWorklist.back()); 722 } else { 723 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 724 GlobalInitWorklist.back().first->setInitializer(C); 725 else 726 return Error("Global variable initializer is not a constant!"); 727 } 728 GlobalInitWorklist.pop_back(); 729 } 730 731 while (!AliasInitWorklist.empty()) { 732 unsigned ValID = AliasInitWorklist.back().second; 733 if (ValID >= ValueList.size()) { 734 AliasInits.push_back(AliasInitWorklist.back()); 735 } else { 736 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 737 AliasInitWorklist.back().first->setAliasee(C); 738 else 739 return Error("Alias initializer is not a constant!"); 740 } 741 AliasInitWorklist.pop_back(); 742 } 743 return false; 744 } 745 746 747 bool BitcodeReader::ParseConstants() { 748 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 749 return Error("Malformed block record"); 750 751 SmallVector<uint64_t, 64> Record; 752 753 // Read all the records for this value table. 754 const Type *CurTy = Type::Int32Ty; 755 unsigned NextCstNo = ValueList.size(); 756 while (1) { 757 unsigned Code = Stream.ReadCode(); 758 if (Code == bitc::END_BLOCK) 759 break; 760 761 if (Code == bitc::ENTER_SUBBLOCK) { 762 // No known subblocks, always skip them. 763 Stream.ReadSubBlockID(); 764 if (Stream.SkipBlock()) 765 return Error("Malformed block record"); 766 continue; 767 } 768 769 if (Code == bitc::DEFINE_ABBREV) { 770 Stream.ReadAbbrevRecord(); 771 continue; 772 } 773 774 // Read a record. 775 Record.clear(); 776 Value *V = 0; 777 switch (Stream.ReadRecord(Code, Record)) { 778 default: // Default behavior: unknown constant 779 case bitc::CST_CODE_UNDEF: // UNDEF 780 V = UndefValue::get(CurTy); 781 break; 782 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 783 if (Record.empty()) 784 return Error("Malformed CST_SETTYPE record"); 785 if (Record[0] >= TypeList.size()) 786 return Error("Invalid Type ID in CST_SETTYPE record"); 787 CurTy = TypeList[Record[0]]; 788 continue; // Skip the ValueList manipulation. 789 case bitc::CST_CODE_NULL: // NULL 790 V = Constant::getNullValue(CurTy); 791 break; 792 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 793 if (!isa<IntegerType>(CurTy) || Record.empty()) 794 return Error("Invalid CST_INTEGER record"); 795 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 796 break; 797 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 798 if (!isa<IntegerType>(CurTy) || Record.empty()) 799 return Error("Invalid WIDE_INTEGER record"); 800 801 unsigned NumWords = Record.size(); 802 SmallVector<uint64_t, 8> Words; 803 Words.resize(NumWords); 804 for (unsigned i = 0; i != NumWords; ++i) 805 Words[i] = DecodeSignRotatedValue(Record[i]); 806 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 807 NumWords, &Words[0])); 808 break; 809 } 810 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 811 if (Record.empty()) 812 return Error("Invalid FLOAT record"); 813 if (CurTy == Type::FloatTy) 814 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 815 else if (CurTy == Type::DoubleTy) 816 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 817 else if (CurTy == Type::X86_FP80Ty) { 818 // Bits are not stored the same way as a normal i80 APInt, compensate. 819 uint64_t Rearrange[2]; 820 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 821 Rearrange[1] = Record[0] >> 48; 822 V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange))); 823 } else if (CurTy == Type::FP128Ty) 824 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 825 else if (CurTy == Type::PPC_FP128Ty) 826 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 827 else 828 V = UndefValue::get(CurTy); 829 break; 830 } 831 832 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 833 if (Record.empty()) 834 return Error("Invalid CST_AGGREGATE record"); 835 836 unsigned Size = Record.size(); 837 std::vector<Constant*> Elts; 838 839 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 840 for (unsigned i = 0; i != Size; ++i) 841 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 842 STy->getElementType(i))); 843 V = ConstantStruct::get(STy, Elts); 844 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 845 const Type *EltTy = ATy->getElementType(); 846 for (unsigned i = 0; i != Size; ++i) 847 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 848 V = ConstantArray::get(ATy, Elts); 849 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 850 const Type *EltTy = VTy->getElementType(); 851 for (unsigned i = 0; i != Size; ++i) 852 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 853 V = ConstantVector::get(Elts); 854 } else { 855 V = UndefValue::get(CurTy); 856 } 857 break; 858 } 859 case bitc::CST_CODE_STRING: { // STRING: [values] 860 if (Record.empty()) 861 return Error("Invalid CST_AGGREGATE record"); 862 863 const ArrayType *ATy = cast<ArrayType>(CurTy); 864 const Type *EltTy = ATy->getElementType(); 865 866 unsigned Size = Record.size(); 867 std::vector<Constant*> Elts; 868 for (unsigned i = 0; i != Size; ++i) 869 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 870 V = ConstantArray::get(ATy, Elts); 871 break; 872 } 873 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 874 if (Record.empty()) 875 return Error("Invalid CST_AGGREGATE record"); 876 877 const ArrayType *ATy = cast<ArrayType>(CurTy); 878 const Type *EltTy = ATy->getElementType(); 879 880 unsigned Size = Record.size(); 881 std::vector<Constant*> Elts; 882 for (unsigned i = 0; i != Size; ++i) 883 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 884 Elts.push_back(Constant::getNullValue(EltTy)); 885 V = ConstantArray::get(ATy, Elts); 886 break; 887 } 888 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 889 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 890 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 891 if (Opc < 0) { 892 V = UndefValue::get(CurTy); // Unknown binop. 893 } else { 894 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 895 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 896 V = ConstantExpr::get(Opc, LHS, RHS); 897 } 898 break; 899 } 900 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 901 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 902 int Opc = GetDecodedCastOpcode(Record[0]); 903 if (Opc < 0) { 904 V = UndefValue::get(CurTy); // Unknown cast. 905 } else { 906 const Type *OpTy = getTypeByID(Record[1]); 907 if (!OpTy) return Error("Invalid CE_CAST record"); 908 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 909 V = ConstantExpr::getCast(Opc, Op, CurTy); 910 } 911 break; 912 } 913 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 914 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 915 SmallVector<Constant*, 16> Elts; 916 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 917 const Type *ElTy = getTypeByID(Record[i]); 918 if (!ElTy) return Error("Invalid CE_GEP record"); 919 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 920 } 921 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 922 break; 923 } 924 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 925 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 926 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 927 Type::Int1Ty), 928 ValueList.getConstantFwdRef(Record[1],CurTy), 929 ValueList.getConstantFwdRef(Record[2],CurTy)); 930 break; 931 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 932 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 933 const VectorType *OpTy = 934 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 935 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 936 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 937 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 938 V = ConstantExpr::getExtractElement(Op0, Op1); 939 break; 940 } 941 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 942 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 943 if (Record.size() < 3 || OpTy == 0) 944 return Error("Invalid CE_INSERTELT record"); 945 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 946 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 947 OpTy->getElementType()); 948 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 949 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 950 break; 951 } 952 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 953 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 954 if (Record.size() < 3 || OpTy == 0) 955 return Error("Invalid CE_SHUFFLEVEC record"); 956 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 957 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 958 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 959 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 960 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 961 break; 962 } 963 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 964 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 965 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 966 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 967 return Error("Invalid CE_SHUFVEC_EX record"); 968 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 969 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 970 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements()); 971 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 972 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 973 break; 974 } 975 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 976 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 977 const Type *OpTy = getTypeByID(Record[0]); 978 if (OpTy == 0) return Error("Invalid CE_CMP record"); 979 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 980 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 981 982 if (OpTy->isFloatingPoint()) 983 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 984 else if (!isa<VectorType>(OpTy)) 985 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 986 else if (OpTy->isFPOrFPVector()) 987 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 988 else 989 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 990 break; 991 } 992 case bitc::CST_CODE_INLINEASM: { 993 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 994 std::string AsmStr, ConstrStr; 995 bool HasSideEffects = Record[0]; 996 unsigned AsmStrSize = Record[1]; 997 if (2+AsmStrSize >= Record.size()) 998 return Error("Invalid INLINEASM record"); 999 unsigned ConstStrSize = Record[2+AsmStrSize]; 1000 if (3+AsmStrSize+ConstStrSize > Record.size()) 1001 return Error("Invalid INLINEASM record"); 1002 1003 for (unsigned i = 0; i != AsmStrSize; ++i) 1004 AsmStr += (char)Record[2+i]; 1005 for (unsigned i = 0; i != ConstStrSize; ++i) 1006 ConstrStr += (char)Record[3+AsmStrSize+i]; 1007 const PointerType *PTy = cast<PointerType>(CurTy); 1008 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1009 AsmStr, ConstrStr, HasSideEffects); 1010 break; 1011 } 1012 case bitc::CST_CODE_MDSTRING: { 1013 if (Record.size() < 2) return Error("Invalid MDSTRING record"); 1014 unsigned MDStringLength = Record.size(); 1015 SmallString<8> String; 1016 String.resize(MDStringLength); 1017 for (unsigned i = 0; i != MDStringLength; ++i) 1018 String[i] = Record[i]; 1019 V = MDString::get(String.c_str(), String.c_str() + MDStringLength); 1020 break; 1021 } 1022 case bitc::CST_CODE_MDNODE: { 1023 if (Record.empty() || Record.size() % 2 == 1) 1024 return Error("Invalid CST_MDNODE record"); 1025 1026 unsigned Size = Record.size(); 1027 SmallVector<Value*, 8> Elts; 1028 for (unsigned i = 0; i != Size; i += 2) { 1029 const Type *Ty = getTypeByID(Record[i], false); 1030 if (Ty != Type::VoidTy) 1031 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1032 else 1033 Elts.push_back(NULL); 1034 } 1035 V = MDNode::get(&Elts[0], Elts.size()); 1036 break; 1037 } 1038 } 1039 1040 ValueList.AssignValue(V, NextCstNo); 1041 ++NextCstNo; 1042 } 1043 1044 if (NextCstNo != ValueList.size()) 1045 return Error("Invalid constant reference!"); 1046 1047 if (Stream.ReadBlockEnd()) 1048 return Error("Error at end of constants block"); 1049 1050 // Once all the constants have been read, go through and resolve forward 1051 // references. 1052 ValueList.ResolveConstantForwardRefs(); 1053 return false; 1054 } 1055 1056 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1057 /// remember where it is and then skip it. This lets us lazily deserialize the 1058 /// functions. 1059 bool BitcodeReader::RememberAndSkipFunctionBody() { 1060 // Get the function we are talking about. 1061 if (FunctionsWithBodies.empty()) 1062 return Error("Insufficient function protos"); 1063 1064 Function *Fn = FunctionsWithBodies.back(); 1065 FunctionsWithBodies.pop_back(); 1066 1067 // Save the current stream state. 1068 uint64_t CurBit = Stream.GetCurrentBitNo(); 1069 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1070 1071 // Set the functions linkage to GhostLinkage so we know it is lazily 1072 // deserialized. 1073 Fn->setLinkage(GlobalValue::GhostLinkage); 1074 1075 // Skip over the function block for now. 1076 if (Stream.SkipBlock()) 1077 return Error("Malformed block record"); 1078 return false; 1079 } 1080 1081 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1082 // Reject multiple MODULE_BLOCK's in a single bitstream. 1083 if (TheModule) 1084 return Error("Multiple MODULE_BLOCKs in same stream"); 1085 1086 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1087 return Error("Malformed block record"); 1088 1089 // Otherwise, create the module. 1090 TheModule = new Module(ModuleID, Context); 1091 1092 SmallVector<uint64_t, 64> Record; 1093 std::vector<std::string> SectionTable; 1094 std::vector<std::string> GCTable; 1095 1096 // Read all the records for this module. 1097 while (!Stream.AtEndOfStream()) { 1098 unsigned Code = Stream.ReadCode(); 1099 if (Code == bitc::END_BLOCK) { 1100 if (Stream.ReadBlockEnd()) 1101 return Error("Error at end of module block"); 1102 1103 // Patch the initializers for globals and aliases up. 1104 ResolveGlobalAndAliasInits(); 1105 if (!GlobalInits.empty() || !AliasInits.empty()) 1106 return Error("Malformed global initializer set"); 1107 if (!FunctionsWithBodies.empty()) 1108 return Error("Too few function bodies found"); 1109 1110 // Look for intrinsic functions which need to be upgraded at some point 1111 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1112 FI != FE; ++FI) { 1113 Function* NewFn; 1114 if (UpgradeIntrinsicFunction(FI, NewFn)) 1115 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1116 } 1117 1118 // Force deallocation of memory for these vectors to favor the client that 1119 // want lazy deserialization. 1120 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1121 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1122 std::vector<Function*>().swap(FunctionsWithBodies); 1123 return false; 1124 } 1125 1126 if (Code == bitc::ENTER_SUBBLOCK) { 1127 switch (Stream.ReadSubBlockID()) { 1128 default: // Skip unknown content. 1129 if (Stream.SkipBlock()) 1130 return Error("Malformed block record"); 1131 break; 1132 case bitc::BLOCKINFO_BLOCK_ID: 1133 if (Stream.ReadBlockInfoBlock()) 1134 return Error("Malformed BlockInfoBlock"); 1135 break; 1136 case bitc::PARAMATTR_BLOCK_ID: 1137 if (ParseAttributeBlock()) 1138 return true; 1139 break; 1140 case bitc::TYPE_BLOCK_ID: 1141 if (ParseTypeTable()) 1142 return true; 1143 break; 1144 case bitc::TYPE_SYMTAB_BLOCK_ID: 1145 if (ParseTypeSymbolTable()) 1146 return true; 1147 break; 1148 case bitc::VALUE_SYMTAB_BLOCK_ID: 1149 if (ParseValueSymbolTable()) 1150 return true; 1151 break; 1152 case bitc::CONSTANTS_BLOCK_ID: 1153 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1154 return true; 1155 break; 1156 case bitc::FUNCTION_BLOCK_ID: 1157 // If this is the first function body we've seen, reverse the 1158 // FunctionsWithBodies list. 1159 if (!HasReversedFunctionsWithBodies) { 1160 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1161 HasReversedFunctionsWithBodies = true; 1162 } 1163 1164 if (RememberAndSkipFunctionBody()) 1165 return true; 1166 break; 1167 } 1168 continue; 1169 } 1170 1171 if (Code == bitc::DEFINE_ABBREV) { 1172 Stream.ReadAbbrevRecord(); 1173 continue; 1174 } 1175 1176 // Read a record. 1177 switch (Stream.ReadRecord(Code, Record)) { 1178 default: break; // Default behavior, ignore unknown content. 1179 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1180 if (Record.size() < 1) 1181 return Error("Malformed MODULE_CODE_VERSION"); 1182 // Only version #0 is supported so far. 1183 if (Record[0] != 0) 1184 return Error("Unknown bitstream version!"); 1185 break; 1186 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1187 std::string S; 1188 if (ConvertToString(Record, 0, S)) 1189 return Error("Invalid MODULE_CODE_TRIPLE record"); 1190 TheModule->setTargetTriple(S); 1191 break; 1192 } 1193 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1194 std::string S; 1195 if (ConvertToString(Record, 0, S)) 1196 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1197 TheModule->setDataLayout(S); 1198 break; 1199 } 1200 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1201 std::string S; 1202 if (ConvertToString(Record, 0, S)) 1203 return Error("Invalid MODULE_CODE_ASM record"); 1204 TheModule->setModuleInlineAsm(S); 1205 break; 1206 } 1207 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1208 std::string S; 1209 if (ConvertToString(Record, 0, S)) 1210 return Error("Invalid MODULE_CODE_DEPLIB record"); 1211 TheModule->addLibrary(S); 1212 break; 1213 } 1214 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1215 std::string S; 1216 if (ConvertToString(Record, 0, S)) 1217 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1218 SectionTable.push_back(S); 1219 break; 1220 } 1221 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1222 std::string S; 1223 if (ConvertToString(Record, 0, S)) 1224 return Error("Invalid MODULE_CODE_GCNAME record"); 1225 GCTable.push_back(S); 1226 break; 1227 } 1228 // GLOBALVAR: [pointer type, isconst, initid, 1229 // linkage, alignment, section, visibility, threadlocal] 1230 case bitc::MODULE_CODE_GLOBALVAR: { 1231 if (Record.size() < 6) 1232 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1233 const Type *Ty = getTypeByID(Record[0]); 1234 if (!isa<PointerType>(Ty)) 1235 return Error("Global not a pointer type!"); 1236 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1237 Ty = cast<PointerType>(Ty)->getElementType(); 1238 1239 bool isConstant = Record[1]; 1240 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1241 unsigned Alignment = (1 << Record[4]) >> 1; 1242 std::string Section; 1243 if (Record[5]) { 1244 if (Record[5]-1 >= SectionTable.size()) 1245 return Error("Invalid section ID"); 1246 Section = SectionTable[Record[5]-1]; 1247 } 1248 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1249 if (Record.size() > 6) 1250 Visibility = GetDecodedVisibility(Record[6]); 1251 bool isThreadLocal = false; 1252 if (Record.size() > 7) 1253 isThreadLocal = Record[7]; 1254 1255 GlobalVariable *NewGV = 1256 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1257 isThreadLocal, AddressSpace); 1258 NewGV->setAlignment(Alignment); 1259 if (!Section.empty()) 1260 NewGV->setSection(Section); 1261 NewGV->setVisibility(Visibility); 1262 NewGV->setThreadLocal(isThreadLocal); 1263 1264 ValueList.push_back(NewGV); 1265 1266 // Remember which value to use for the global initializer. 1267 if (unsigned InitID = Record[2]) 1268 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1269 break; 1270 } 1271 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1272 // alignment, section, visibility, gc] 1273 case bitc::MODULE_CODE_FUNCTION: { 1274 if (Record.size() < 8) 1275 return Error("Invalid MODULE_CODE_FUNCTION record"); 1276 const Type *Ty = getTypeByID(Record[0]); 1277 if (!isa<PointerType>(Ty)) 1278 return Error("Function not a pointer type!"); 1279 const FunctionType *FTy = 1280 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1281 if (!FTy) 1282 return Error("Function not a pointer to function type!"); 1283 1284 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1285 "", TheModule); 1286 1287 Func->setCallingConv(Record[1]); 1288 bool isProto = Record[2]; 1289 Func->setLinkage(GetDecodedLinkage(Record[3])); 1290 Func->setAttributes(getAttributes(Record[4])); 1291 1292 Func->setAlignment((1 << Record[5]) >> 1); 1293 if (Record[6]) { 1294 if (Record[6]-1 >= SectionTable.size()) 1295 return Error("Invalid section ID"); 1296 Func->setSection(SectionTable[Record[6]-1]); 1297 } 1298 Func->setVisibility(GetDecodedVisibility(Record[7])); 1299 if (Record.size() > 8 && Record[8]) { 1300 if (Record[8]-1 > GCTable.size()) 1301 return Error("Invalid GC ID"); 1302 Func->setGC(GCTable[Record[8]-1].c_str()); 1303 } 1304 ValueList.push_back(Func); 1305 1306 // If this is a function with a body, remember the prototype we are 1307 // creating now, so that we can match up the body with them later. 1308 if (!isProto) 1309 FunctionsWithBodies.push_back(Func); 1310 break; 1311 } 1312 // ALIAS: [alias type, aliasee val#, linkage] 1313 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1314 case bitc::MODULE_CODE_ALIAS: { 1315 if (Record.size() < 3) 1316 return Error("Invalid MODULE_ALIAS record"); 1317 const Type *Ty = getTypeByID(Record[0]); 1318 if (!isa<PointerType>(Ty)) 1319 return Error("Function not a pointer type!"); 1320 1321 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1322 "", 0, TheModule); 1323 // Old bitcode files didn't have visibility field. 1324 if (Record.size() > 3) 1325 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1326 ValueList.push_back(NewGA); 1327 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1328 break; 1329 } 1330 /// MODULE_CODE_PURGEVALS: [numvals] 1331 case bitc::MODULE_CODE_PURGEVALS: 1332 // Trim down the value list to the specified size. 1333 if (Record.size() < 1 || Record[0] > ValueList.size()) 1334 return Error("Invalid MODULE_PURGEVALS record"); 1335 ValueList.shrinkTo(Record[0]); 1336 break; 1337 } 1338 Record.clear(); 1339 } 1340 1341 return Error("Premature end of bitstream"); 1342 } 1343 1344 bool BitcodeReader::ParseBitcode() { 1345 TheModule = 0; 1346 1347 if (Buffer->getBufferSize() & 3) 1348 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1349 1350 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1351 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1352 1353 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1354 // The magic number is 0x0B17C0DE stored in little endian. 1355 if (isBitcodeWrapper(BufPtr, BufEnd)) 1356 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1357 return Error("Invalid bitcode wrapper header"); 1358 1359 StreamFile.init(BufPtr, BufEnd); 1360 Stream.init(StreamFile); 1361 1362 // Sniff for the signature. 1363 if (Stream.Read(8) != 'B' || 1364 Stream.Read(8) != 'C' || 1365 Stream.Read(4) != 0x0 || 1366 Stream.Read(4) != 0xC || 1367 Stream.Read(4) != 0xE || 1368 Stream.Read(4) != 0xD) 1369 return Error("Invalid bitcode signature"); 1370 1371 // We expect a number of well-defined blocks, though we don't necessarily 1372 // need to understand them all. 1373 while (!Stream.AtEndOfStream()) { 1374 unsigned Code = Stream.ReadCode(); 1375 1376 if (Code != bitc::ENTER_SUBBLOCK) 1377 return Error("Invalid record at top-level"); 1378 1379 unsigned BlockID = Stream.ReadSubBlockID(); 1380 1381 // We only know the MODULE subblock ID. 1382 switch (BlockID) { 1383 case bitc::BLOCKINFO_BLOCK_ID: 1384 if (Stream.ReadBlockInfoBlock()) 1385 return Error("Malformed BlockInfoBlock"); 1386 break; 1387 case bitc::MODULE_BLOCK_ID: 1388 if (ParseModule(Buffer->getBufferIdentifier())) 1389 return true; 1390 break; 1391 default: 1392 if (Stream.SkipBlock()) 1393 return Error("Malformed block record"); 1394 break; 1395 } 1396 } 1397 1398 return false; 1399 } 1400 1401 1402 /// ParseFunctionBody - Lazily parse the specified function body block. 1403 bool BitcodeReader::ParseFunctionBody(Function *F) { 1404 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1405 return Error("Malformed block record"); 1406 1407 unsigned ModuleValueListSize = ValueList.size(); 1408 1409 // Add all the function arguments to the value table. 1410 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1411 ValueList.push_back(I); 1412 1413 unsigned NextValueNo = ValueList.size(); 1414 BasicBlock *CurBB = 0; 1415 unsigned CurBBNo = 0; 1416 1417 // Read all the records. 1418 SmallVector<uint64_t, 64> Record; 1419 while (1) { 1420 unsigned Code = Stream.ReadCode(); 1421 if (Code == bitc::END_BLOCK) { 1422 if (Stream.ReadBlockEnd()) 1423 return Error("Error at end of function block"); 1424 break; 1425 } 1426 1427 if (Code == bitc::ENTER_SUBBLOCK) { 1428 switch (Stream.ReadSubBlockID()) { 1429 default: // Skip unknown content. 1430 if (Stream.SkipBlock()) 1431 return Error("Malformed block record"); 1432 break; 1433 case bitc::CONSTANTS_BLOCK_ID: 1434 if (ParseConstants()) return true; 1435 NextValueNo = ValueList.size(); 1436 break; 1437 case bitc::VALUE_SYMTAB_BLOCK_ID: 1438 if (ParseValueSymbolTable()) return true; 1439 break; 1440 } 1441 continue; 1442 } 1443 1444 if (Code == bitc::DEFINE_ABBREV) { 1445 Stream.ReadAbbrevRecord(); 1446 continue; 1447 } 1448 1449 // Read a record. 1450 Record.clear(); 1451 Instruction *I = 0; 1452 switch (Stream.ReadRecord(Code, Record)) { 1453 default: // Default behavior: reject 1454 return Error("Unknown instruction"); 1455 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1456 if (Record.size() < 1 || Record[0] == 0) 1457 return Error("Invalid DECLAREBLOCKS record"); 1458 // Create all the basic blocks for the function. 1459 FunctionBBs.resize(Record[0]); 1460 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1461 FunctionBBs[i] = BasicBlock::Create("", F); 1462 CurBB = FunctionBBs[0]; 1463 continue; 1464 1465 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1466 unsigned OpNum = 0; 1467 Value *LHS, *RHS; 1468 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1469 getValue(Record, OpNum, LHS->getType(), RHS) || 1470 OpNum+1 != Record.size()) 1471 return Error("Invalid BINOP record"); 1472 1473 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1474 if (Opc == -1) return Error("Invalid BINOP record"); 1475 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1476 break; 1477 } 1478 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1479 unsigned OpNum = 0; 1480 Value *Op; 1481 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1482 OpNum+2 != Record.size()) 1483 return Error("Invalid CAST record"); 1484 1485 const Type *ResTy = getTypeByID(Record[OpNum]); 1486 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1487 if (Opc == -1 || ResTy == 0) 1488 return Error("Invalid CAST record"); 1489 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1490 break; 1491 } 1492 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1493 unsigned OpNum = 0; 1494 Value *BasePtr; 1495 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1496 return Error("Invalid GEP record"); 1497 1498 SmallVector<Value*, 16> GEPIdx; 1499 while (OpNum != Record.size()) { 1500 Value *Op; 1501 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1502 return Error("Invalid GEP record"); 1503 GEPIdx.push_back(Op); 1504 } 1505 1506 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1507 break; 1508 } 1509 1510 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1511 // EXTRACTVAL: [opty, opval, n x indices] 1512 unsigned OpNum = 0; 1513 Value *Agg; 1514 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1515 return Error("Invalid EXTRACTVAL record"); 1516 1517 SmallVector<unsigned, 4> EXTRACTVALIdx; 1518 for (unsigned RecSize = Record.size(); 1519 OpNum != RecSize; ++OpNum) { 1520 uint64_t Index = Record[OpNum]; 1521 if ((unsigned)Index != Index) 1522 return Error("Invalid EXTRACTVAL index"); 1523 EXTRACTVALIdx.push_back((unsigned)Index); 1524 } 1525 1526 I = ExtractValueInst::Create(Agg, 1527 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1528 break; 1529 } 1530 1531 case bitc::FUNC_CODE_INST_INSERTVAL: { 1532 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1533 unsigned OpNum = 0; 1534 Value *Agg; 1535 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1536 return Error("Invalid INSERTVAL record"); 1537 Value *Val; 1538 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1539 return Error("Invalid INSERTVAL record"); 1540 1541 SmallVector<unsigned, 4> INSERTVALIdx; 1542 for (unsigned RecSize = Record.size(); 1543 OpNum != RecSize; ++OpNum) { 1544 uint64_t Index = Record[OpNum]; 1545 if ((unsigned)Index != Index) 1546 return Error("Invalid INSERTVAL index"); 1547 INSERTVALIdx.push_back((unsigned)Index); 1548 } 1549 1550 I = InsertValueInst::Create(Agg, Val, 1551 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1552 break; 1553 } 1554 1555 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1556 // obsolete form of select 1557 // handles select i1 ... in old bitcode 1558 unsigned OpNum = 0; 1559 Value *TrueVal, *FalseVal, *Cond; 1560 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1561 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1562 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1563 return Error("Invalid SELECT record"); 1564 1565 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1566 break; 1567 } 1568 1569 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1570 // new form of select 1571 // handles select i1 or select [N x i1] 1572 unsigned OpNum = 0; 1573 Value *TrueVal, *FalseVal, *Cond; 1574 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1575 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1576 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1577 return Error("Invalid SELECT record"); 1578 1579 // select condition can be either i1 or [N x i1] 1580 if (const VectorType* vector_type = 1581 dyn_cast<const VectorType>(Cond->getType())) { 1582 // expect <n x i1> 1583 if (vector_type->getElementType() != Type::Int1Ty) 1584 return Error("Invalid SELECT condition type"); 1585 } else { 1586 // expect i1 1587 if (Cond->getType() != Type::Int1Ty) 1588 return Error("Invalid SELECT condition type"); 1589 } 1590 1591 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1592 break; 1593 } 1594 1595 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1596 unsigned OpNum = 0; 1597 Value *Vec, *Idx; 1598 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1599 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1600 return Error("Invalid EXTRACTELT record"); 1601 I = new ExtractElementInst(Vec, Idx); 1602 break; 1603 } 1604 1605 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1606 unsigned OpNum = 0; 1607 Value *Vec, *Elt, *Idx; 1608 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1609 getValue(Record, OpNum, 1610 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1611 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1612 return Error("Invalid INSERTELT record"); 1613 I = InsertElementInst::Create(Vec, Elt, Idx); 1614 break; 1615 } 1616 1617 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1618 unsigned OpNum = 0; 1619 Value *Vec1, *Vec2, *Mask; 1620 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1621 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1622 return Error("Invalid SHUFFLEVEC record"); 1623 1624 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1625 return Error("Invalid SHUFFLEVEC record"); 1626 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1627 break; 1628 } 1629 1630 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1631 // VFCmp/VICmp 1632 // or old form of ICmp/FCmp returning bool 1633 unsigned OpNum = 0; 1634 Value *LHS, *RHS; 1635 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1636 getValue(Record, OpNum, LHS->getType(), RHS) || 1637 OpNum+1 != Record.size()) 1638 return Error("Invalid CMP record"); 1639 1640 if (LHS->getType()->isFloatingPoint()) 1641 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1642 else if (!isa<VectorType>(LHS->getType())) 1643 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1644 else if (LHS->getType()->isFPOrFPVector()) 1645 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1646 else 1647 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1648 break; 1649 } 1650 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1651 // Fcmp/ICmp returning bool or vector of bool 1652 unsigned OpNum = 0; 1653 Value *LHS, *RHS; 1654 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1655 getValue(Record, OpNum, LHS->getType(), RHS) || 1656 OpNum+1 != Record.size()) 1657 return Error("Invalid CMP2 record"); 1658 1659 if (LHS->getType()->isFPOrFPVector()) 1660 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1661 else 1662 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1663 break; 1664 } 1665 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1666 if (Record.size() != 2) 1667 return Error("Invalid GETRESULT record"); 1668 unsigned OpNum = 0; 1669 Value *Op; 1670 getValueTypePair(Record, OpNum, NextValueNo, Op); 1671 unsigned Index = Record[1]; 1672 I = ExtractValueInst::Create(Op, Index); 1673 break; 1674 } 1675 1676 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1677 { 1678 unsigned Size = Record.size(); 1679 if (Size == 0) { 1680 I = ReturnInst::Create(); 1681 break; 1682 } 1683 1684 unsigned OpNum = 0; 1685 SmallVector<Value *,4> Vs; 1686 do { 1687 Value *Op = NULL; 1688 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1689 return Error("Invalid RET record"); 1690 Vs.push_back(Op); 1691 } while(OpNum != Record.size()); 1692 1693 const Type *ReturnType = F->getReturnType(); 1694 if (Vs.size() > 1 || 1695 (isa<StructType>(ReturnType) && 1696 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1697 Value *RV = UndefValue::get(ReturnType); 1698 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1699 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1700 CurBB->getInstList().push_back(I); 1701 ValueList.AssignValue(I, NextValueNo++); 1702 RV = I; 1703 } 1704 I = ReturnInst::Create(RV); 1705 break; 1706 } 1707 1708 I = ReturnInst::Create(Vs[0]); 1709 break; 1710 } 1711 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1712 if (Record.size() != 1 && Record.size() != 3) 1713 return Error("Invalid BR record"); 1714 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1715 if (TrueDest == 0) 1716 return Error("Invalid BR record"); 1717 1718 if (Record.size() == 1) 1719 I = BranchInst::Create(TrueDest); 1720 else { 1721 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1722 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1723 if (FalseDest == 0 || Cond == 0) 1724 return Error("Invalid BR record"); 1725 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1726 } 1727 break; 1728 } 1729 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1730 if (Record.size() < 3 || (Record.size() & 1) == 0) 1731 return Error("Invalid SWITCH record"); 1732 const Type *OpTy = getTypeByID(Record[0]); 1733 Value *Cond = getFnValueByID(Record[1], OpTy); 1734 BasicBlock *Default = getBasicBlock(Record[2]); 1735 if (OpTy == 0 || Cond == 0 || Default == 0) 1736 return Error("Invalid SWITCH record"); 1737 unsigned NumCases = (Record.size()-3)/2; 1738 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1739 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1740 ConstantInt *CaseVal = 1741 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1742 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1743 if (CaseVal == 0 || DestBB == 0) { 1744 delete SI; 1745 return Error("Invalid SWITCH record!"); 1746 } 1747 SI->addCase(CaseVal, DestBB); 1748 } 1749 I = SI; 1750 break; 1751 } 1752 1753 case bitc::FUNC_CODE_INST_INVOKE: { 1754 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1755 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1756 AttrListPtr PAL = getAttributes(Record[0]); 1757 unsigned CCInfo = Record[1]; 1758 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1759 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1760 1761 unsigned OpNum = 4; 1762 Value *Callee; 1763 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1764 return Error("Invalid INVOKE record"); 1765 1766 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1767 const FunctionType *FTy = !CalleeTy ? 0 : 1768 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1769 1770 // Check that the right number of fixed parameters are here. 1771 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1772 Record.size() < OpNum+FTy->getNumParams()) 1773 return Error("Invalid INVOKE record"); 1774 1775 SmallVector<Value*, 16> Ops; 1776 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1777 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1778 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1779 } 1780 1781 if (!FTy->isVarArg()) { 1782 if (Record.size() != OpNum) 1783 return Error("Invalid INVOKE record"); 1784 } else { 1785 // Read type/value pairs for varargs params. 1786 while (OpNum != Record.size()) { 1787 Value *Op; 1788 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1789 return Error("Invalid INVOKE record"); 1790 Ops.push_back(Op); 1791 } 1792 } 1793 1794 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1795 Ops.begin(), Ops.end()); 1796 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1797 cast<InvokeInst>(I)->setAttributes(PAL); 1798 break; 1799 } 1800 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1801 I = new UnwindInst(); 1802 break; 1803 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1804 I = new UnreachableInst(); 1805 break; 1806 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1807 if (Record.size() < 1 || ((Record.size()-1)&1)) 1808 return Error("Invalid PHI record"); 1809 const Type *Ty = getTypeByID(Record[0]); 1810 if (!Ty) return Error("Invalid PHI record"); 1811 1812 PHINode *PN = PHINode::Create(Ty); 1813 PN->reserveOperandSpace((Record.size()-1)/2); 1814 1815 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1816 Value *V = getFnValueByID(Record[1+i], Ty); 1817 BasicBlock *BB = getBasicBlock(Record[2+i]); 1818 if (!V || !BB) return Error("Invalid PHI record"); 1819 PN->addIncoming(V, BB); 1820 } 1821 I = PN; 1822 break; 1823 } 1824 1825 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1826 if (Record.size() < 3) 1827 return Error("Invalid MALLOC record"); 1828 const PointerType *Ty = 1829 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1830 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1831 unsigned Align = Record[2]; 1832 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1833 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1834 break; 1835 } 1836 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1837 unsigned OpNum = 0; 1838 Value *Op; 1839 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1840 OpNum != Record.size()) 1841 return Error("Invalid FREE record"); 1842 I = new FreeInst(Op); 1843 break; 1844 } 1845 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1846 if (Record.size() < 3) 1847 return Error("Invalid ALLOCA record"); 1848 const PointerType *Ty = 1849 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1850 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1851 unsigned Align = Record[2]; 1852 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1853 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1854 break; 1855 } 1856 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1857 unsigned OpNum = 0; 1858 Value *Op; 1859 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1860 OpNum+2 != Record.size()) 1861 return Error("Invalid LOAD record"); 1862 1863 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1864 break; 1865 } 1866 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1867 unsigned OpNum = 0; 1868 Value *Val, *Ptr; 1869 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1870 getValue(Record, OpNum, 1871 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1872 OpNum+2 != Record.size()) 1873 return Error("Invalid STORE record"); 1874 1875 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1876 break; 1877 } 1878 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1879 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1880 unsigned OpNum = 0; 1881 Value *Val, *Ptr; 1882 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1883 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1884 OpNum+2 != Record.size()) 1885 return Error("Invalid STORE record"); 1886 1887 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1888 break; 1889 } 1890 case bitc::FUNC_CODE_INST_CALL: { 1891 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1892 if (Record.size() < 3) 1893 return Error("Invalid CALL record"); 1894 1895 AttrListPtr PAL = getAttributes(Record[0]); 1896 unsigned CCInfo = Record[1]; 1897 1898 unsigned OpNum = 2; 1899 Value *Callee; 1900 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1901 return Error("Invalid CALL record"); 1902 1903 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1904 const FunctionType *FTy = 0; 1905 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1906 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1907 return Error("Invalid CALL record"); 1908 1909 SmallVector<Value*, 16> Args; 1910 // Read the fixed params. 1911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1912 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1913 Args.push_back(getBasicBlock(Record[OpNum])); 1914 else 1915 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1916 if (Args.back() == 0) return Error("Invalid CALL record"); 1917 } 1918 1919 // Read type/value pairs for varargs params. 1920 if (!FTy->isVarArg()) { 1921 if (OpNum != Record.size()) 1922 return Error("Invalid CALL record"); 1923 } else { 1924 while (OpNum != Record.size()) { 1925 Value *Op; 1926 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1927 return Error("Invalid CALL record"); 1928 Args.push_back(Op); 1929 } 1930 } 1931 1932 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1933 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1934 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1935 cast<CallInst>(I)->setAttributes(PAL); 1936 break; 1937 } 1938 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1939 if (Record.size() < 3) 1940 return Error("Invalid VAARG record"); 1941 const Type *OpTy = getTypeByID(Record[0]); 1942 Value *Op = getFnValueByID(Record[1], OpTy); 1943 const Type *ResTy = getTypeByID(Record[2]); 1944 if (!OpTy || !Op || !ResTy) 1945 return Error("Invalid VAARG record"); 1946 I = new VAArgInst(Op, ResTy); 1947 break; 1948 } 1949 } 1950 1951 // Add instruction to end of current BB. If there is no current BB, reject 1952 // this file. 1953 if (CurBB == 0) { 1954 delete I; 1955 return Error("Invalid instruction with no BB"); 1956 } 1957 CurBB->getInstList().push_back(I); 1958 1959 // If this was a terminator instruction, move to the next block. 1960 if (isa<TerminatorInst>(I)) { 1961 ++CurBBNo; 1962 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1963 } 1964 1965 // Non-void values get registered in the value table for future use. 1966 if (I && I->getType() != Type::VoidTy) 1967 ValueList.AssignValue(I, NextValueNo++); 1968 } 1969 1970 // Check the function list for unresolved values. 1971 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1972 if (A->getParent() == 0) { 1973 // We found at least one unresolved value. Nuke them all to avoid leaks. 1974 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1975 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1976 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1977 delete A; 1978 } 1979 } 1980 return Error("Never resolved value found in function!"); 1981 } 1982 } 1983 1984 // Trim the value list down to the size it was before we parsed this function. 1985 ValueList.shrinkTo(ModuleValueListSize); 1986 std::vector<BasicBlock*>().swap(FunctionBBs); 1987 1988 return false; 1989 } 1990 1991 //===----------------------------------------------------------------------===// 1992 // ModuleProvider implementation 1993 //===----------------------------------------------------------------------===// 1994 1995 1996 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1997 // If it already is material, ignore the request. 1998 if (!F->hasNotBeenReadFromBitcode()) return false; 1999 2000 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2001 DeferredFunctionInfo.find(F); 2002 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2003 2004 // Move the bit stream to the saved position of the deferred function body and 2005 // restore the real linkage type for the function. 2006 Stream.JumpToBit(DFII->second.first); 2007 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2008 2009 if (ParseFunctionBody(F)) { 2010 if (ErrInfo) *ErrInfo = ErrorString; 2011 return true; 2012 } 2013 2014 // Upgrade any old intrinsic calls in the function. 2015 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2016 E = UpgradedIntrinsics.end(); I != E; ++I) { 2017 if (I->first != I->second) { 2018 for (Value::use_iterator UI = I->first->use_begin(), 2019 UE = I->first->use_end(); UI != UE; ) { 2020 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2021 UpgradeIntrinsicCall(CI, I->second); 2022 } 2023 } 2024 } 2025 2026 return false; 2027 } 2028 2029 void BitcodeReader::dematerializeFunction(Function *F) { 2030 // If this function isn't materialized, or if it is a proto, this is a noop. 2031 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2032 return; 2033 2034 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2035 2036 // Just forget the function body, we can remat it later. 2037 F->deleteBody(); 2038 F->setLinkage(GlobalValue::GhostLinkage); 2039 } 2040 2041 2042 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2043 // Iterate over the module, deserializing any functions that are still on 2044 // disk. 2045 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2046 F != E; ++F) 2047 if (F->hasNotBeenReadFromBitcode() && 2048 materializeFunction(F, ErrInfo)) 2049 return 0; 2050 2051 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2052 // delete the old functions to clean up. We can't do this unless the entire 2053 // module is materialized because there could always be another function body 2054 // with calls to the old function. 2055 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2056 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2057 if (I->first != I->second) { 2058 for (Value::use_iterator UI = I->first->use_begin(), 2059 UE = I->first->use_end(); UI != UE; ) { 2060 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2061 UpgradeIntrinsicCall(CI, I->second); 2062 } 2063 if (!I->first->use_empty()) 2064 I->first->replaceAllUsesWith(I->second); 2065 I->first->eraseFromParent(); 2066 } 2067 } 2068 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2069 2070 return TheModule; 2071 } 2072 2073 2074 /// This method is provided by the parent ModuleProvde class and overriden 2075 /// here. It simply releases the module from its provided and frees up our 2076 /// state. 2077 /// @brief Release our hold on the generated module 2078 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2079 // Since we're losing control of this Module, we must hand it back complete 2080 Module *M = ModuleProvider::releaseModule(ErrInfo); 2081 FreeState(); 2082 return M; 2083 } 2084 2085 2086 //===----------------------------------------------------------------------===// 2087 // External interface 2088 //===----------------------------------------------------------------------===// 2089 2090 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2091 /// 2092 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2093 const LLVMContext& Context, 2094 std::string *ErrMsg) { 2095 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2096 if (R->ParseBitcode()) { 2097 if (ErrMsg) 2098 *ErrMsg = R->getErrorString(); 2099 2100 // Don't let the BitcodeReader dtor delete 'Buffer'. 2101 R->releaseMemoryBuffer(); 2102 delete R; 2103 return 0; 2104 } 2105 return R; 2106 } 2107 2108 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2109 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2110 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, const LLVMContext& Context, 2111 std::string *ErrMsg){ 2112 BitcodeReader *R; 2113 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context, 2114 ErrMsg)); 2115 if (!R) return 0; 2116 2117 // Read in the entire module. 2118 Module *M = R->materializeModule(ErrMsg); 2119 2120 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2121 // there was an error. 2122 R->releaseMemoryBuffer(); 2123 2124 // If there was no error, tell ModuleProvider not to delete it when its dtor 2125 // is run. 2126 if (M) 2127 M = R->releaseModule(ErrMsg); 2128 2129 delete R; 2130 return M; 2131 } 2132