1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// As we resolve forward-referenced constants, we add information about them 48 /// to this vector. This allows us to resolve them in bulk instead of 49 /// resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void assignValue(Value *V, unsigned Idx); 90 91 /// Once all constants are read, this method bulk resolves any forward 92 /// references. 93 void resolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void assignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 uint64_t NextUnreadBit = 0; 140 bool SeenValueSymbolTable = false; 141 142 std::vector<Type*> TypeList; 143 BitcodeReaderValueList ValueList; 144 BitcodeReaderMDValueList MDValueList; 145 std::vector<Comdat *> ComdatList; 146 SmallVector<Instruction *, 64> InstructionList; 147 148 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 149 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 150 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 152 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// The set of attributes by index. Index zero in the file is for null, and 157 /// is thus not represented here. As such all indices are off by one. 158 std::vector<AttributeSet> MAttributes; 159 160 /// \brief The set of attribute groups. 161 std::map<unsigned, AttributeSet> MAttributeGroups; 162 163 /// While parsing a function body, this is a list of the basic blocks for the 164 /// function. 165 std::vector<BasicBlock*> FunctionBBs; 166 167 // When reading the module header, this list is populated with functions that 168 // have bodies later in the file. 169 std::vector<Function*> FunctionsWithBodies; 170 171 // When intrinsic functions are encountered which require upgrading they are 172 // stored here with their replacement function. 173 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 174 UpgradedIntrinsicMap UpgradedIntrinsics; 175 176 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 177 DenseMap<unsigned, unsigned> MDKindMap; 178 179 // Several operations happen after the module header has been read, but 180 // before function bodies are processed. This keeps track of whether 181 // we've done this yet. 182 bool SeenFirstFunctionBody = false; 183 184 /// When function bodies are initially scanned, this map contains info about 185 /// where to find deferred function body in the stream. 186 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 187 188 /// When Metadata block is initially scanned when parsing the module, we may 189 /// choose to defer parsing of the metadata. This vector contains info about 190 /// which Metadata blocks are deferred. 191 std::vector<uint64_t> DeferredMetadataInfo; 192 193 /// These are basic blocks forward-referenced by block addresses. They are 194 /// inserted lazily into functions when they're loaded. The basic block ID is 195 /// its index into the vector. 196 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 197 std::deque<Function *> BasicBlockFwdRefQueue; 198 199 /// Indicates that we are using a new encoding for instruction operands where 200 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 201 /// instruction number, for a more compact encoding. Some instruction 202 /// operands are not relative to the instruction ID: basic block numbers, and 203 /// types. Once the old style function blocks have been phased out, we would 204 /// not need this flag. 205 bool UseRelativeIDs = false; 206 207 /// True if all functions will be materialized, negating the need to process 208 /// (e.g.) blockaddress forward references. 209 bool WillMaterializeAllForwardRefs = false; 210 211 /// Functions that have block addresses taken. This is usually empty. 212 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 213 214 /// True if any Metadata block has been materialized. 215 bool IsMetadataMaterialized = false; 216 217 bool StripDebugInfo = false; 218 219 public: 220 std::error_code error(BitcodeError E, const Twine &Message); 221 std::error_code error(BitcodeError E); 222 std::error_code error(const Twine &Message); 223 224 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 225 DiagnosticHandlerFunction DiagnosticHandler); 226 BitcodeReader(LLVMContext &Context, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 ~BitcodeReader() override { freeState(); } 229 230 std::error_code materializeForwardReferencedFunctions(); 231 232 void freeState(); 233 234 void releaseBuffer(); 235 236 bool isDematerializable(const GlobalValue *GV) const override; 237 std::error_code materialize(GlobalValue *GV) override; 238 std::error_code materializeModule(Module *M) override; 239 std::vector<StructType *> getIdentifiedStructTypes() const override; 240 void dematerialize(GlobalValue *GV) override; 241 242 /// \brief Main interface to parsing a bitcode buffer. 243 /// \returns true if an error occurred. 244 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 245 Module *M, 246 bool ShouldLazyLoadMetadata = false); 247 248 /// \brief Cheap mechanism to just extract module triple 249 /// \returns true if an error occurred. 250 ErrorOr<std::string> parseTriple(); 251 252 static uint64_t decodeSignRotatedValue(uint64_t V); 253 254 /// Materialize any deferred Metadata block. 255 std::error_code materializeMetadata() override; 256 257 void setStripDebugInfo() override; 258 259 private: 260 std::vector<StructType *> IdentifiedStructTypes; 261 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 262 StructType *createIdentifiedStructType(LLVMContext &Context); 263 264 Type *getTypeByID(unsigned ID); 265 Value *getFnValueByID(unsigned ID, Type *Ty) { 266 if (Ty && Ty->isMetadataTy()) 267 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 268 return ValueList.getValueFwdRef(ID, Ty); 269 } 270 Metadata *getFnMetadataByID(unsigned ID) { 271 return MDValueList.getValueFwdRef(ID); 272 } 273 BasicBlock *getBasicBlock(unsigned ID) const { 274 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 275 return FunctionBBs[ID]; 276 } 277 AttributeSet getAttributes(unsigned i) const { 278 if (i-1 < MAttributes.size()) 279 return MAttributes[i-1]; 280 return AttributeSet(); 281 } 282 283 /// Read a value/type pair out of the specified record from slot 'Slot'. 284 /// Increment Slot past the number of slots used in the record. Return true on 285 /// failure. 286 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 287 unsigned InstNum, Value *&ResVal) { 288 if (Slot == Record.size()) return true; 289 unsigned ValNo = (unsigned)Record[Slot++]; 290 // Adjust the ValNo, if it was encoded relative to the InstNum. 291 if (UseRelativeIDs) 292 ValNo = InstNum - ValNo; 293 if (ValNo < InstNum) { 294 // If this is not a forward reference, just return the value we already 295 // have. 296 ResVal = getFnValueByID(ValNo, nullptr); 297 return ResVal == nullptr; 298 } 299 if (Slot == Record.size()) 300 return true; 301 302 unsigned TypeNo = (unsigned)Record[Slot++]; 303 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 304 return ResVal == nullptr; 305 } 306 307 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 308 /// past the number of slots used by the value in the record. Return true if 309 /// there is an error. 310 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Type *Ty, Value *&ResVal) { 312 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 313 return true; 314 // All values currently take a single record slot. 315 ++Slot; 316 return false; 317 } 318 319 /// Like popValue, but does not increment the Slot number. 320 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 321 unsigned InstNum, Type *Ty, Value *&ResVal) { 322 ResVal = getValue(Record, Slot, InstNum, Ty); 323 return ResVal == nullptr; 324 } 325 326 /// Version of getValue that returns ResVal directly, or 0 if there is an 327 /// error. 328 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 329 unsigned InstNum, Type *Ty) { 330 if (Slot == Record.size()) return nullptr; 331 unsigned ValNo = (unsigned)Record[Slot]; 332 // Adjust the ValNo, if it was encoded relative to the InstNum. 333 if (UseRelativeIDs) 334 ValNo = InstNum - ValNo; 335 return getFnValueByID(ValNo, Ty); 336 } 337 338 /// Like getValue, but decodes signed VBRs. 339 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 340 unsigned InstNum, Type *Ty) { 341 if (Slot == Record.size()) return nullptr; 342 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 343 // Adjust the ValNo, if it was encoded relative to the InstNum. 344 if (UseRelativeIDs) 345 ValNo = InstNum - ValNo; 346 return getFnValueByID(ValNo, Ty); 347 } 348 349 /// Converts alignment exponent (i.e. power of two (or zero)) to the 350 /// corresponding alignment to use. If alignment is too large, returns 351 /// a corresponding error code. 352 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 353 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 354 std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 355 std::error_code parseAttributeBlock(); 356 std::error_code parseAttributeGroupBlock(); 357 std::error_code parseTypeTable(); 358 std::error_code parseTypeTableBody(); 359 360 std::error_code parseValueSymbolTable(); 361 std::error_code parseConstants(); 362 std::error_code rememberAndSkipFunctionBody(); 363 /// Save the positions of the Metadata blocks and skip parsing the blocks. 364 std::error_code rememberAndSkipMetadata(); 365 std::error_code parseFunctionBody(Function *F); 366 std::error_code globalCleanup(); 367 std::error_code resolveGlobalAndAliasInits(); 368 std::error_code parseMetadata(); 369 std::error_code parseMetadataAttachment(Function &F); 370 ErrorOr<std::string> parseModuleTriple(); 371 std::error_code parseUseLists(); 372 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 373 std::error_code initStreamFromBuffer(); 374 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 375 std::error_code findFunctionInStream( 376 Function *F, 377 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 378 }; 379 } // namespace 380 381 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 382 DiagnosticSeverity Severity, 383 const Twine &Msg) 384 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 385 386 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 387 388 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 389 std::error_code EC, const Twine &Message) { 390 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 391 DiagnosticHandler(DI); 392 return EC; 393 } 394 395 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 396 std::error_code EC) { 397 return error(DiagnosticHandler, EC, EC.message()); 398 } 399 400 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 401 const Twine &Message) { 402 return error(DiagnosticHandler, 403 make_error_code(BitcodeError::CorruptedBitcode), Message); 404 } 405 406 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 407 return ::error(DiagnosticHandler, make_error_code(E), Message); 408 } 409 410 std::error_code BitcodeReader::error(const Twine &Message) { 411 return ::error(DiagnosticHandler, 412 make_error_code(BitcodeError::CorruptedBitcode), Message); 413 } 414 415 std::error_code BitcodeReader::error(BitcodeError E) { 416 return ::error(DiagnosticHandler, make_error_code(E)); 417 } 418 419 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 420 LLVMContext &C) { 421 if (F) 422 return F; 423 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 424 } 425 426 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 427 DiagnosticHandlerFunction DiagnosticHandler) 428 : Context(Context), 429 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 430 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 431 432 BitcodeReader::BitcodeReader(LLVMContext &Context, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(Context), 435 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 436 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 437 438 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 439 if (WillMaterializeAllForwardRefs) 440 return std::error_code(); 441 442 // Prevent recursion. 443 WillMaterializeAllForwardRefs = true; 444 445 while (!BasicBlockFwdRefQueue.empty()) { 446 Function *F = BasicBlockFwdRefQueue.front(); 447 BasicBlockFwdRefQueue.pop_front(); 448 assert(F && "Expected valid function"); 449 if (!BasicBlockFwdRefs.count(F)) 450 // Already materialized. 451 continue; 452 453 // Check for a function that isn't materializable to prevent an infinite 454 // loop. When parsing a blockaddress stored in a global variable, there 455 // isn't a trivial way to check if a function will have a body without a 456 // linear search through FunctionsWithBodies, so just check it here. 457 if (!F->isMaterializable()) 458 return error("Never resolved function from blockaddress"); 459 460 // Try to materialize F. 461 if (std::error_code EC = materialize(F)) 462 return EC; 463 } 464 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 465 466 // Reset state. 467 WillMaterializeAllForwardRefs = false; 468 return std::error_code(); 469 } 470 471 void BitcodeReader::freeState() { 472 Buffer = nullptr; 473 std::vector<Type*>().swap(TypeList); 474 ValueList.clear(); 475 MDValueList.clear(); 476 std::vector<Comdat *>().swap(ComdatList); 477 478 std::vector<AttributeSet>().swap(MAttributes); 479 std::vector<BasicBlock*>().swap(FunctionBBs); 480 std::vector<Function*>().swap(FunctionsWithBodies); 481 DeferredFunctionInfo.clear(); 482 DeferredMetadataInfo.clear(); 483 MDKindMap.clear(); 484 485 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 486 BasicBlockFwdRefQueue.clear(); 487 } 488 489 //===----------------------------------------------------------------------===// 490 // Helper functions to implement forward reference resolution, etc. 491 //===----------------------------------------------------------------------===// 492 493 /// Convert a string from a record into an std::string, return true on failure. 494 template <typename StrTy> 495 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 496 StrTy &Result) { 497 if (Idx > Record.size()) 498 return true; 499 500 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 501 Result += (char)Record[i]; 502 return false; 503 } 504 505 static bool hasImplicitComdat(size_t Val) { 506 switch (Val) { 507 default: 508 return false; 509 case 1: // Old WeakAnyLinkage 510 case 4: // Old LinkOnceAnyLinkage 511 case 10: // Old WeakODRLinkage 512 case 11: // Old LinkOnceODRLinkage 513 return true; 514 } 515 } 516 517 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 518 switch (Val) { 519 default: // Map unknown/new linkages to external 520 case 0: 521 return GlobalValue::ExternalLinkage; 522 case 2: 523 return GlobalValue::AppendingLinkage; 524 case 3: 525 return GlobalValue::InternalLinkage; 526 case 5: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 528 case 6: 529 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 530 case 7: 531 return GlobalValue::ExternalWeakLinkage; 532 case 8: 533 return GlobalValue::CommonLinkage; 534 case 9: 535 return GlobalValue::PrivateLinkage; 536 case 12: 537 return GlobalValue::AvailableExternallyLinkage; 538 case 13: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 540 case 14: 541 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 542 case 15: 543 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 544 case 1: // Old value with implicit comdat. 545 case 16: 546 return GlobalValue::WeakAnyLinkage; 547 case 10: // Old value with implicit comdat. 548 case 17: 549 return GlobalValue::WeakODRLinkage; 550 case 4: // Old value with implicit comdat. 551 case 18: 552 return GlobalValue::LinkOnceAnyLinkage; 553 case 11: // Old value with implicit comdat. 554 case 19: 555 return GlobalValue::LinkOnceODRLinkage; 556 } 557 } 558 559 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 560 switch (Val) { 561 default: // Map unknown visibilities to default. 562 case 0: return GlobalValue::DefaultVisibility; 563 case 1: return GlobalValue::HiddenVisibility; 564 case 2: return GlobalValue::ProtectedVisibility; 565 } 566 } 567 568 static GlobalValue::DLLStorageClassTypes 569 getDecodedDLLStorageClass(unsigned Val) { 570 switch (Val) { 571 default: // Map unknown values to default. 572 case 0: return GlobalValue::DefaultStorageClass; 573 case 1: return GlobalValue::DLLImportStorageClass; 574 case 2: return GlobalValue::DLLExportStorageClass; 575 } 576 } 577 578 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 579 switch (Val) { 580 case 0: return GlobalVariable::NotThreadLocal; 581 default: // Map unknown non-zero value to general dynamic. 582 case 1: return GlobalVariable::GeneralDynamicTLSModel; 583 case 2: return GlobalVariable::LocalDynamicTLSModel; 584 case 3: return GlobalVariable::InitialExecTLSModel; 585 case 4: return GlobalVariable::LocalExecTLSModel; 586 } 587 } 588 589 static int getDecodedCastOpcode(unsigned Val) { 590 switch (Val) { 591 default: return -1; 592 case bitc::CAST_TRUNC : return Instruction::Trunc; 593 case bitc::CAST_ZEXT : return Instruction::ZExt; 594 case bitc::CAST_SEXT : return Instruction::SExt; 595 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 596 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 597 case bitc::CAST_UITOFP : return Instruction::UIToFP; 598 case bitc::CAST_SITOFP : return Instruction::SIToFP; 599 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 600 case bitc::CAST_FPEXT : return Instruction::FPExt; 601 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 602 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 603 case bitc::CAST_BITCAST : return Instruction::BitCast; 604 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 605 } 606 } 607 608 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 609 bool IsFP = Ty->isFPOrFPVectorTy(); 610 // BinOps are only valid for int/fp or vector of int/fp types 611 if (!IsFP && !Ty->isIntOrIntVectorTy()) 612 return -1; 613 614 switch (Val) { 615 default: 616 return -1; 617 case bitc::BINOP_ADD: 618 return IsFP ? Instruction::FAdd : Instruction::Add; 619 case bitc::BINOP_SUB: 620 return IsFP ? Instruction::FSub : Instruction::Sub; 621 case bitc::BINOP_MUL: 622 return IsFP ? Instruction::FMul : Instruction::Mul; 623 case bitc::BINOP_UDIV: 624 return IsFP ? -1 : Instruction::UDiv; 625 case bitc::BINOP_SDIV: 626 return IsFP ? Instruction::FDiv : Instruction::SDiv; 627 case bitc::BINOP_UREM: 628 return IsFP ? -1 : Instruction::URem; 629 case bitc::BINOP_SREM: 630 return IsFP ? Instruction::FRem : Instruction::SRem; 631 case bitc::BINOP_SHL: 632 return IsFP ? -1 : Instruction::Shl; 633 case bitc::BINOP_LSHR: 634 return IsFP ? -1 : Instruction::LShr; 635 case bitc::BINOP_ASHR: 636 return IsFP ? -1 : Instruction::AShr; 637 case bitc::BINOP_AND: 638 return IsFP ? -1 : Instruction::And; 639 case bitc::BINOP_OR: 640 return IsFP ? -1 : Instruction::Or; 641 case bitc::BINOP_XOR: 642 return IsFP ? -1 : Instruction::Xor; 643 } 644 } 645 646 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 647 switch (Val) { 648 default: return AtomicRMWInst::BAD_BINOP; 649 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 650 case bitc::RMW_ADD: return AtomicRMWInst::Add; 651 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 652 case bitc::RMW_AND: return AtomicRMWInst::And; 653 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 654 case bitc::RMW_OR: return AtomicRMWInst::Or; 655 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 656 case bitc::RMW_MAX: return AtomicRMWInst::Max; 657 case bitc::RMW_MIN: return AtomicRMWInst::Min; 658 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 659 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 660 } 661 } 662 663 static AtomicOrdering getDecodedOrdering(unsigned Val) { 664 switch (Val) { 665 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 666 case bitc::ORDERING_UNORDERED: return Unordered; 667 case bitc::ORDERING_MONOTONIC: return Monotonic; 668 case bitc::ORDERING_ACQUIRE: return Acquire; 669 case bitc::ORDERING_RELEASE: return Release; 670 case bitc::ORDERING_ACQREL: return AcquireRelease; 671 default: // Map unknown orderings to sequentially-consistent. 672 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 673 } 674 } 675 676 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 677 switch (Val) { 678 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 679 default: // Map unknown scopes to cross-thread. 680 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 681 } 682 } 683 684 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 685 switch (Val) { 686 default: // Map unknown selection kinds to any. 687 case bitc::COMDAT_SELECTION_KIND_ANY: 688 return Comdat::Any; 689 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 690 return Comdat::ExactMatch; 691 case bitc::COMDAT_SELECTION_KIND_LARGEST: 692 return Comdat::Largest; 693 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 694 return Comdat::NoDuplicates; 695 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 696 return Comdat::SameSize; 697 } 698 } 699 700 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 701 switch (Val) { 702 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 703 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 704 } 705 } 706 707 namespace llvm { 708 namespace { 709 /// \brief A class for maintaining the slot number definition 710 /// as a placeholder for the actual definition for forward constants defs. 711 class ConstantPlaceHolder : public ConstantExpr { 712 void operator=(const ConstantPlaceHolder &) = delete; 713 714 public: 715 // allocate space for exactly one operand 716 void *operator new(size_t s) { return User::operator new(s, 1); } 717 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 718 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 719 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 720 } 721 722 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 723 static bool classof(const Value *V) { 724 return isa<ConstantExpr>(V) && 725 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 726 } 727 728 /// Provide fast operand accessors 729 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 730 }; 731 } // namespace 732 733 // FIXME: can we inherit this from ConstantExpr? 734 template <> 735 struct OperandTraits<ConstantPlaceHolder> : 736 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 737 }; 738 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 739 } // namespace llvm 740 741 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 742 if (Idx == size()) { 743 push_back(V); 744 return; 745 } 746 747 if (Idx >= size()) 748 resize(Idx+1); 749 750 WeakVH &OldV = ValuePtrs[Idx]; 751 if (!OldV) { 752 OldV = V; 753 return; 754 } 755 756 // Handle constants and non-constants (e.g. instrs) differently for 757 // efficiency. 758 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 759 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 760 OldV = V; 761 } else { 762 // If there was a forward reference to this value, replace it. 763 Value *PrevVal = OldV; 764 OldV->replaceAllUsesWith(V); 765 delete PrevVal; 766 } 767 } 768 769 770 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 771 Type *Ty) { 772 if (Idx >= size()) 773 resize(Idx + 1); 774 775 if (Value *V = ValuePtrs[Idx]) { 776 if (Ty != V->getType()) 777 report_fatal_error("Type mismatch in constant table!"); 778 return cast<Constant>(V); 779 } 780 781 // Create and return a placeholder, which will later be RAUW'd. 782 Constant *C = new ConstantPlaceHolder(Ty, Context); 783 ValuePtrs[Idx] = C; 784 return C; 785 } 786 787 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 788 // Bail out for a clearly invalid value. This would make us call resize(0) 789 if (Idx == UINT_MAX) 790 return nullptr; 791 792 if (Idx >= size()) 793 resize(Idx + 1); 794 795 if (Value *V = ValuePtrs[Idx]) { 796 // If the types don't match, it's invalid. 797 if (Ty && Ty != V->getType()) 798 return nullptr; 799 return V; 800 } 801 802 // No type specified, must be invalid reference. 803 if (!Ty) return nullptr; 804 805 // Create and return a placeholder, which will later be RAUW'd. 806 Value *V = new Argument(Ty); 807 ValuePtrs[Idx] = V; 808 return V; 809 } 810 811 /// Once all constants are read, this method bulk resolves any forward 812 /// references. The idea behind this is that we sometimes get constants (such 813 /// as large arrays) which reference *many* forward ref constants. Replacing 814 /// each of these causes a lot of thrashing when building/reuniquing the 815 /// constant. Instead of doing this, we look at all the uses and rewrite all 816 /// the place holders at once for any constant that uses a placeholder. 817 void BitcodeReaderValueList::resolveConstantForwardRefs() { 818 // Sort the values by-pointer so that they are efficient to look up with a 819 // binary search. 820 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 821 822 SmallVector<Constant*, 64> NewOps; 823 824 while (!ResolveConstants.empty()) { 825 Value *RealVal = operator[](ResolveConstants.back().second); 826 Constant *Placeholder = ResolveConstants.back().first; 827 ResolveConstants.pop_back(); 828 829 // Loop over all users of the placeholder, updating them to reference the 830 // new value. If they reference more than one placeholder, update them all 831 // at once. 832 while (!Placeholder->use_empty()) { 833 auto UI = Placeholder->user_begin(); 834 User *U = *UI; 835 836 // If the using object isn't uniqued, just update the operands. This 837 // handles instructions and initializers for global variables. 838 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 839 UI.getUse().set(RealVal); 840 continue; 841 } 842 843 // Otherwise, we have a constant that uses the placeholder. Replace that 844 // constant with a new constant that has *all* placeholder uses updated. 845 Constant *UserC = cast<Constant>(U); 846 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 847 I != E; ++I) { 848 Value *NewOp; 849 if (!isa<ConstantPlaceHolder>(*I)) { 850 // Not a placeholder reference. 851 NewOp = *I; 852 } else if (*I == Placeholder) { 853 // Common case is that it just references this one placeholder. 854 NewOp = RealVal; 855 } else { 856 // Otherwise, look up the placeholder in ResolveConstants. 857 ResolveConstantsTy::iterator It = 858 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 859 std::pair<Constant*, unsigned>(cast<Constant>(*I), 860 0)); 861 assert(It != ResolveConstants.end() && It->first == *I); 862 NewOp = operator[](It->second); 863 } 864 865 NewOps.push_back(cast<Constant>(NewOp)); 866 } 867 868 // Make the new constant. 869 Constant *NewC; 870 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 871 NewC = ConstantArray::get(UserCA->getType(), NewOps); 872 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 873 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 874 } else if (isa<ConstantVector>(UserC)) { 875 NewC = ConstantVector::get(NewOps); 876 } else { 877 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 878 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 879 } 880 881 UserC->replaceAllUsesWith(NewC); 882 UserC->destroyConstant(); 883 NewOps.clear(); 884 } 885 886 // Update all ValueHandles, they should be the only users at this point. 887 Placeholder->replaceAllUsesWith(RealVal); 888 delete Placeholder; 889 } 890 } 891 892 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 893 if (Idx == size()) { 894 push_back(MD); 895 return; 896 } 897 898 if (Idx >= size()) 899 resize(Idx+1); 900 901 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 902 if (!OldMD) { 903 OldMD.reset(MD); 904 return; 905 } 906 907 // If there was a forward reference to this value, replace it. 908 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 909 PrevMD->replaceAllUsesWith(MD); 910 --NumFwdRefs; 911 } 912 913 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 914 if (Idx >= size()) 915 resize(Idx + 1); 916 917 if (Metadata *MD = MDValuePtrs[Idx]) 918 return MD; 919 920 // Track forward refs to be resolved later. 921 if (AnyFwdRefs) { 922 MinFwdRef = std::min(MinFwdRef, Idx); 923 MaxFwdRef = std::max(MaxFwdRef, Idx); 924 } else { 925 AnyFwdRefs = true; 926 MinFwdRef = MaxFwdRef = Idx; 927 } 928 ++NumFwdRefs; 929 930 // Create and return a placeholder, which will later be RAUW'd. 931 Metadata *MD = MDNode::getTemporary(Context, None).release(); 932 MDValuePtrs[Idx].reset(MD); 933 return MD; 934 } 935 936 void BitcodeReaderMDValueList::tryToResolveCycles() { 937 if (!AnyFwdRefs) 938 // Nothing to do. 939 return; 940 941 if (NumFwdRefs) 942 // Still forward references... can't resolve cycles. 943 return; 944 945 // Resolve any cycles. 946 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 947 auto &MD = MDValuePtrs[I]; 948 auto *N = dyn_cast_or_null<MDNode>(MD); 949 if (!N) 950 continue; 951 952 assert(!N->isTemporary() && "Unexpected forward reference"); 953 N->resolveCycles(); 954 } 955 956 // Make sure we return early again until there's another forward ref. 957 AnyFwdRefs = false; 958 } 959 960 Type *BitcodeReader::getTypeByID(unsigned ID) { 961 // The type table size is always specified correctly. 962 if (ID >= TypeList.size()) 963 return nullptr; 964 965 if (Type *Ty = TypeList[ID]) 966 return Ty; 967 968 // If we have a forward reference, the only possible case is when it is to a 969 // named struct. Just create a placeholder for now. 970 return TypeList[ID] = createIdentifiedStructType(Context); 971 } 972 973 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 974 StringRef Name) { 975 auto *Ret = StructType::create(Context, Name); 976 IdentifiedStructTypes.push_back(Ret); 977 return Ret; 978 } 979 980 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 981 auto *Ret = StructType::create(Context); 982 IdentifiedStructTypes.push_back(Ret); 983 return Ret; 984 } 985 986 987 //===----------------------------------------------------------------------===// 988 // Functions for parsing blocks from the bitcode file 989 //===----------------------------------------------------------------------===// 990 991 992 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 993 /// been decoded from the given integer. This function must stay in sync with 994 /// 'encodeLLVMAttributesForBitcode'. 995 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 996 uint64_t EncodedAttrs) { 997 // FIXME: Remove in 4.0. 998 999 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1000 // the bits above 31 down by 11 bits. 1001 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1002 assert((!Alignment || isPowerOf2_32(Alignment)) && 1003 "Alignment must be a power of two."); 1004 1005 if (Alignment) 1006 B.addAlignmentAttr(Alignment); 1007 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1008 (EncodedAttrs & 0xffff)); 1009 } 1010 1011 std::error_code BitcodeReader::parseAttributeBlock() { 1012 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1013 return error("Invalid record"); 1014 1015 if (!MAttributes.empty()) 1016 return error("Invalid multiple blocks"); 1017 1018 SmallVector<uint64_t, 64> Record; 1019 1020 SmallVector<AttributeSet, 8> Attrs; 1021 1022 // Read all the records. 1023 while (1) { 1024 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1025 1026 switch (Entry.Kind) { 1027 case BitstreamEntry::SubBlock: // Handled for us already. 1028 case BitstreamEntry::Error: 1029 return error("Malformed block"); 1030 case BitstreamEntry::EndBlock: 1031 return std::error_code(); 1032 case BitstreamEntry::Record: 1033 // The interesting case. 1034 break; 1035 } 1036 1037 // Read a record. 1038 Record.clear(); 1039 switch (Stream.readRecord(Entry.ID, Record)) { 1040 default: // Default behavior: ignore. 1041 break; 1042 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1043 // FIXME: Remove in 4.0. 1044 if (Record.size() & 1) 1045 return error("Invalid record"); 1046 1047 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1048 AttrBuilder B; 1049 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1050 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1051 } 1052 1053 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1054 Attrs.clear(); 1055 break; 1056 } 1057 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1058 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1059 Attrs.push_back(MAttributeGroups[Record[i]]); 1060 1061 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1062 Attrs.clear(); 1063 break; 1064 } 1065 } 1066 } 1067 } 1068 1069 // Returns Attribute::None on unrecognized codes. 1070 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1071 switch (Code) { 1072 default: 1073 return Attribute::None; 1074 case bitc::ATTR_KIND_ALIGNMENT: 1075 return Attribute::Alignment; 1076 case bitc::ATTR_KIND_ALWAYS_INLINE: 1077 return Attribute::AlwaysInline; 1078 case bitc::ATTR_KIND_BUILTIN: 1079 return Attribute::Builtin; 1080 case bitc::ATTR_KIND_BY_VAL: 1081 return Attribute::ByVal; 1082 case bitc::ATTR_KIND_IN_ALLOCA: 1083 return Attribute::InAlloca; 1084 case bitc::ATTR_KIND_COLD: 1085 return Attribute::Cold; 1086 case bitc::ATTR_KIND_CONVERGENT: 1087 return Attribute::Convergent; 1088 case bitc::ATTR_KIND_INLINE_HINT: 1089 return Attribute::InlineHint; 1090 case bitc::ATTR_KIND_IN_REG: 1091 return Attribute::InReg; 1092 case bitc::ATTR_KIND_JUMP_TABLE: 1093 return Attribute::JumpTable; 1094 case bitc::ATTR_KIND_MIN_SIZE: 1095 return Attribute::MinSize; 1096 case bitc::ATTR_KIND_NAKED: 1097 return Attribute::Naked; 1098 case bitc::ATTR_KIND_NEST: 1099 return Attribute::Nest; 1100 case bitc::ATTR_KIND_NO_ALIAS: 1101 return Attribute::NoAlias; 1102 case bitc::ATTR_KIND_NO_BUILTIN: 1103 return Attribute::NoBuiltin; 1104 case bitc::ATTR_KIND_NO_CAPTURE: 1105 return Attribute::NoCapture; 1106 case bitc::ATTR_KIND_NO_DUPLICATE: 1107 return Attribute::NoDuplicate; 1108 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1109 return Attribute::NoImplicitFloat; 1110 case bitc::ATTR_KIND_NO_INLINE: 1111 return Attribute::NoInline; 1112 case bitc::ATTR_KIND_NON_LAZY_BIND: 1113 return Attribute::NonLazyBind; 1114 case bitc::ATTR_KIND_NON_NULL: 1115 return Attribute::NonNull; 1116 case bitc::ATTR_KIND_DEREFERENCEABLE: 1117 return Attribute::Dereferenceable; 1118 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1119 return Attribute::DereferenceableOrNull; 1120 case bitc::ATTR_KIND_NO_RED_ZONE: 1121 return Attribute::NoRedZone; 1122 case bitc::ATTR_KIND_NO_RETURN: 1123 return Attribute::NoReturn; 1124 case bitc::ATTR_KIND_NO_UNWIND: 1125 return Attribute::NoUnwind; 1126 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1127 return Attribute::OptimizeForSize; 1128 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1129 return Attribute::OptimizeNone; 1130 case bitc::ATTR_KIND_READ_NONE: 1131 return Attribute::ReadNone; 1132 case bitc::ATTR_KIND_READ_ONLY: 1133 return Attribute::ReadOnly; 1134 case bitc::ATTR_KIND_RETURNED: 1135 return Attribute::Returned; 1136 case bitc::ATTR_KIND_RETURNS_TWICE: 1137 return Attribute::ReturnsTwice; 1138 case bitc::ATTR_KIND_S_EXT: 1139 return Attribute::SExt; 1140 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1141 return Attribute::StackAlignment; 1142 case bitc::ATTR_KIND_STACK_PROTECT: 1143 return Attribute::StackProtect; 1144 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1145 return Attribute::StackProtectReq; 1146 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1147 return Attribute::StackProtectStrong; 1148 case bitc::ATTR_KIND_SAFESTACK: 1149 return Attribute::SafeStack; 1150 case bitc::ATTR_KIND_STRUCT_RET: 1151 return Attribute::StructRet; 1152 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1153 return Attribute::SanitizeAddress; 1154 case bitc::ATTR_KIND_SANITIZE_THREAD: 1155 return Attribute::SanitizeThread; 1156 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1157 return Attribute::SanitizeMemory; 1158 case bitc::ATTR_KIND_UW_TABLE: 1159 return Attribute::UWTable; 1160 case bitc::ATTR_KIND_Z_EXT: 1161 return Attribute::ZExt; 1162 } 1163 } 1164 1165 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1166 unsigned &Alignment) { 1167 // Note: Alignment in bitcode files is incremented by 1, so that zero 1168 // can be used for default alignment. 1169 if (Exponent > Value::MaxAlignmentExponent + 1) 1170 return error("Invalid alignment value"); 1171 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1172 return std::error_code(); 1173 } 1174 1175 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1176 Attribute::AttrKind *Kind) { 1177 *Kind = getAttrFromCode(Code); 1178 if (*Kind == Attribute::None) 1179 return error(BitcodeError::CorruptedBitcode, 1180 "Unknown attribute kind (" + Twine(Code) + ")"); 1181 return std::error_code(); 1182 } 1183 1184 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1185 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1186 return error("Invalid record"); 1187 1188 if (!MAttributeGroups.empty()) 1189 return error("Invalid multiple blocks"); 1190 1191 SmallVector<uint64_t, 64> Record; 1192 1193 // Read all the records. 1194 while (1) { 1195 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1196 1197 switch (Entry.Kind) { 1198 case BitstreamEntry::SubBlock: // Handled for us already. 1199 case BitstreamEntry::Error: 1200 return error("Malformed block"); 1201 case BitstreamEntry::EndBlock: 1202 return std::error_code(); 1203 case BitstreamEntry::Record: 1204 // The interesting case. 1205 break; 1206 } 1207 1208 // Read a record. 1209 Record.clear(); 1210 switch (Stream.readRecord(Entry.ID, Record)) { 1211 default: // Default behavior: ignore. 1212 break; 1213 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1214 if (Record.size() < 3) 1215 return error("Invalid record"); 1216 1217 uint64_t GrpID = Record[0]; 1218 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1219 1220 AttrBuilder B; 1221 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1222 if (Record[i] == 0) { // Enum attribute 1223 Attribute::AttrKind Kind; 1224 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1225 return EC; 1226 1227 B.addAttribute(Kind); 1228 } else if (Record[i] == 1) { // Integer attribute 1229 Attribute::AttrKind Kind; 1230 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1231 return EC; 1232 if (Kind == Attribute::Alignment) 1233 B.addAlignmentAttr(Record[++i]); 1234 else if (Kind == Attribute::StackAlignment) 1235 B.addStackAlignmentAttr(Record[++i]); 1236 else if (Kind == Attribute::Dereferenceable) 1237 B.addDereferenceableAttr(Record[++i]); 1238 else if (Kind == Attribute::DereferenceableOrNull) 1239 B.addDereferenceableOrNullAttr(Record[++i]); 1240 } else { // String attribute 1241 assert((Record[i] == 3 || Record[i] == 4) && 1242 "Invalid attribute group entry"); 1243 bool HasValue = (Record[i++] == 4); 1244 SmallString<64> KindStr; 1245 SmallString<64> ValStr; 1246 1247 while (Record[i] != 0 && i != e) 1248 KindStr += Record[i++]; 1249 assert(Record[i] == 0 && "Kind string not null terminated"); 1250 1251 if (HasValue) { 1252 // Has a value associated with it. 1253 ++i; // Skip the '0' that terminates the "kind" string. 1254 while (Record[i] != 0 && i != e) 1255 ValStr += Record[i++]; 1256 assert(Record[i] == 0 && "Value string not null terminated"); 1257 } 1258 1259 B.addAttribute(KindStr.str(), ValStr.str()); 1260 } 1261 } 1262 1263 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1264 break; 1265 } 1266 } 1267 } 1268 } 1269 1270 std::error_code BitcodeReader::parseTypeTable() { 1271 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1272 return error("Invalid record"); 1273 1274 return parseTypeTableBody(); 1275 } 1276 1277 std::error_code BitcodeReader::parseTypeTableBody() { 1278 if (!TypeList.empty()) 1279 return error("Invalid multiple blocks"); 1280 1281 SmallVector<uint64_t, 64> Record; 1282 unsigned NumRecords = 0; 1283 1284 SmallString<64> TypeName; 1285 1286 // Read all the records for this type table. 1287 while (1) { 1288 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1289 1290 switch (Entry.Kind) { 1291 case BitstreamEntry::SubBlock: // Handled for us already. 1292 case BitstreamEntry::Error: 1293 return error("Malformed block"); 1294 case BitstreamEntry::EndBlock: 1295 if (NumRecords != TypeList.size()) 1296 return error("Malformed block"); 1297 return std::error_code(); 1298 case BitstreamEntry::Record: 1299 // The interesting case. 1300 break; 1301 } 1302 1303 // Read a record. 1304 Record.clear(); 1305 Type *ResultTy = nullptr; 1306 switch (Stream.readRecord(Entry.ID, Record)) { 1307 default: 1308 return error("Invalid value"); 1309 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1310 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1311 // type list. This allows us to reserve space. 1312 if (Record.size() < 1) 1313 return error("Invalid record"); 1314 TypeList.resize(Record[0]); 1315 continue; 1316 case bitc::TYPE_CODE_VOID: // VOID 1317 ResultTy = Type::getVoidTy(Context); 1318 break; 1319 case bitc::TYPE_CODE_HALF: // HALF 1320 ResultTy = Type::getHalfTy(Context); 1321 break; 1322 case bitc::TYPE_CODE_FLOAT: // FLOAT 1323 ResultTy = Type::getFloatTy(Context); 1324 break; 1325 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1326 ResultTy = Type::getDoubleTy(Context); 1327 break; 1328 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1329 ResultTy = Type::getX86_FP80Ty(Context); 1330 break; 1331 case bitc::TYPE_CODE_FP128: // FP128 1332 ResultTy = Type::getFP128Ty(Context); 1333 break; 1334 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1335 ResultTy = Type::getPPC_FP128Ty(Context); 1336 break; 1337 case bitc::TYPE_CODE_LABEL: // LABEL 1338 ResultTy = Type::getLabelTy(Context); 1339 break; 1340 case bitc::TYPE_CODE_METADATA: // METADATA 1341 ResultTy = Type::getMetadataTy(Context); 1342 break; 1343 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1344 ResultTy = Type::getX86_MMXTy(Context); 1345 break; 1346 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1347 if (Record.size() < 1) 1348 return error("Invalid record"); 1349 1350 uint64_t NumBits = Record[0]; 1351 if (NumBits < IntegerType::MIN_INT_BITS || 1352 NumBits > IntegerType::MAX_INT_BITS) 1353 return error("Bitwidth for integer type out of range"); 1354 ResultTy = IntegerType::get(Context, NumBits); 1355 break; 1356 } 1357 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1358 // [pointee type, address space] 1359 if (Record.size() < 1) 1360 return error("Invalid record"); 1361 unsigned AddressSpace = 0; 1362 if (Record.size() == 2) 1363 AddressSpace = Record[1]; 1364 ResultTy = getTypeByID(Record[0]); 1365 if (!ResultTy || 1366 !PointerType::isValidElementType(ResultTy)) 1367 return error("Invalid type"); 1368 ResultTy = PointerType::get(ResultTy, AddressSpace); 1369 break; 1370 } 1371 case bitc::TYPE_CODE_FUNCTION_OLD: { 1372 // FIXME: attrid is dead, remove it in LLVM 4.0 1373 // FUNCTION: [vararg, attrid, retty, paramty x N] 1374 if (Record.size() < 3) 1375 return error("Invalid record"); 1376 SmallVector<Type*, 8> ArgTys; 1377 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1378 if (Type *T = getTypeByID(Record[i])) 1379 ArgTys.push_back(T); 1380 else 1381 break; 1382 } 1383 1384 ResultTy = getTypeByID(Record[2]); 1385 if (!ResultTy || ArgTys.size() < Record.size()-3) 1386 return error("Invalid type"); 1387 1388 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1389 break; 1390 } 1391 case bitc::TYPE_CODE_FUNCTION: { 1392 // FUNCTION: [vararg, retty, paramty x N] 1393 if (Record.size() < 2) 1394 return error("Invalid record"); 1395 SmallVector<Type*, 8> ArgTys; 1396 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1397 if (Type *T = getTypeByID(Record[i])) { 1398 if (!FunctionType::isValidArgumentType(T)) 1399 return error("Invalid function argument type"); 1400 ArgTys.push_back(T); 1401 } 1402 else 1403 break; 1404 } 1405 1406 ResultTy = getTypeByID(Record[1]); 1407 if (!ResultTy || ArgTys.size() < Record.size()-2) 1408 return error("Invalid type"); 1409 1410 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1411 break; 1412 } 1413 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1414 if (Record.size() < 1) 1415 return error("Invalid record"); 1416 SmallVector<Type*, 8> EltTys; 1417 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1418 if (Type *T = getTypeByID(Record[i])) 1419 EltTys.push_back(T); 1420 else 1421 break; 1422 } 1423 if (EltTys.size() != Record.size()-1) 1424 return error("Invalid type"); 1425 ResultTy = StructType::get(Context, EltTys, Record[0]); 1426 break; 1427 } 1428 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1429 if (convertToString(Record, 0, TypeName)) 1430 return error("Invalid record"); 1431 continue; 1432 1433 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1434 if (Record.size() < 1) 1435 return error("Invalid record"); 1436 1437 if (NumRecords >= TypeList.size()) 1438 return error("Invalid TYPE table"); 1439 1440 // Check to see if this was forward referenced, if so fill in the temp. 1441 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1442 if (Res) { 1443 Res->setName(TypeName); 1444 TypeList[NumRecords] = nullptr; 1445 } else // Otherwise, create a new struct. 1446 Res = createIdentifiedStructType(Context, TypeName); 1447 TypeName.clear(); 1448 1449 SmallVector<Type*, 8> EltTys; 1450 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1451 if (Type *T = getTypeByID(Record[i])) 1452 EltTys.push_back(T); 1453 else 1454 break; 1455 } 1456 if (EltTys.size() != Record.size()-1) 1457 return error("Invalid record"); 1458 Res->setBody(EltTys, Record[0]); 1459 ResultTy = Res; 1460 break; 1461 } 1462 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1463 if (Record.size() != 1) 1464 return error("Invalid record"); 1465 1466 if (NumRecords >= TypeList.size()) 1467 return error("Invalid TYPE table"); 1468 1469 // Check to see if this was forward referenced, if so fill in the temp. 1470 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1471 if (Res) { 1472 Res->setName(TypeName); 1473 TypeList[NumRecords] = nullptr; 1474 } else // Otherwise, create a new struct with no body. 1475 Res = createIdentifiedStructType(Context, TypeName); 1476 TypeName.clear(); 1477 ResultTy = Res; 1478 break; 1479 } 1480 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1481 if (Record.size() < 2) 1482 return error("Invalid record"); 1483 ResultTy = getTypeByID(Record[1]); 1484 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1485 return error("Invalid type"); 1486 ResultTy = ArrayType::get(ResultTy, Record[0]); 1487 break; 1488 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1489 if (Record.size() < 2) 1490 return error("Invalid record"); 1491 if (Record[0] == 0) 1492 return error("Invalid vector length"); 1493 ResultTy = getTypeByID(Record[1]); 1494 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1495 return error("Invalid type"); 1496 ResultTy = VectorType::get(ResultTy, Record[0]); 1497 break; 1498 } 1499 1500 if (NumRecords >= TypeList.size()) 1501 return error("Invalid TYPE table"); 1502 if (TypeList[NumRecords]) 1503 return error( 1504 "Invalid TYPE table: Only named structs can be forward referenced"); 1505 assert(ResultTy && "Didn't read a type?"); 1506 TypeList[NumRecords++] = ResultTy; 1507 } 1508 } 1509 1510 std::error_code BitcodeReader::parseValueSymbolTable() { 1511 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1512 return error("Invalid record"); 1513 1514 SmallVector<uint64_t, 64> Record; 1515 1516 Triple TT(TheModule->getTargetTriple()); 1517 1518 // Read all the records for this value table. 1519 SmallString<128> ValueName; 1520 while (1) { 1521 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1522 1523 switch (Entry.Kind) { 1524 case BitstreamEntry::SubBlock: // Handled for us already. 1525 case BitstreamEntry::Error: 1526 return error("Malformed block"); 1527 case BitstreamEntry::EndBlock: 1528 return std::error_code(); 1529 case BitstreamEntry::Record: 1530 // The interesting case. 1531 break; 1532 } 1533 1534 // Read a record. 1535 Record.clear(); 1536 switch (Stream.readRecord(Entry.ID, Record)) { 1537 default: // Default behavior: unknown type. 1538 break; 1539 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1540 if (convertToString(Record, 1, ValueName)) 1541 return error("Invalid record"); 1542 unsigned ValueID = Record[0]; 1543 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1544 return error("Invalid record"); 1545 Value *V = ValueList[ValueID]; 1546 1547 V->setName(StringRef(ValueName.data(), ValueName.size())); 1548 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1549 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1550 if (TT.isOSBinFormatMachO()) 1551 GO->setComdat(nullptr); 1552 else 1553 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1554 } 1555 } 1556 ValueName.clear(); 1557 break; 1558 } 1559 case bitc::VST_CODE_BBENTRY: { 1560 if (convertToString(Record, 1, ValueName)) 1561 return error("Invalid record"); 1562 BasicBlock *BB = getBasicBlock(Record[0]); 1563 if (!BB) 1564 return error("Invalid record"); 1565 1566 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1567 ValueName.clear(); 1568 break; 1569 } 1570 } 1571 } 1572 } 1573 1574 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1575 1576 std::error_code BitcodeReader::parseMetadata() { 1577 IsMetadataMaterialized = true; 1578 unsigned NextMDValueNo = MDValueList.size(); 1579 1580 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1581 return error("Invalid record"); 1582 1583 SmallVector<uint64_t, 64> Record; 1584 1585 auto getMD = 1586 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1587 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1588 if (ID) 1589 return getMD(ID - 1); 1590 return nullptr; 1591 }; 1592 auto getMDString = [&](unsigned ID) -> MDString *{ 1593 // This requires that the ID is not really a forward reference. In 1594 // particular, the MDString must already have been resolved. 1595 return cast_or_null<MDString>(getMDOrNull(ID)); 1596 }; 1597 1598 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1599 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1600 1601 // Read all the records. 1602 while (1) { 1603 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1604 1605 switch (Entry.Kind) { 1606 case BitstreamEntry::SubBlock: // Handled for us already. 1607 case BitstreamEntry::Error: 1608 return error("Malformed block"); 1609 case BitstreamEntry::EndBlock: 1610 MDValueList.tryToResolveCycles(); 1611 return std::error_code(); 1612 case BitstreamEntry::Record: 1613 // The interesting case. 1614 break; 1615 } 1616 1617 // Read a record. 1618 Record.clear(); 1619 unsigned Code = Stream.readRecord(Entry.ID, Record); 1620 bool IsDistinct = false; 1621 switch (Code) { 1622 default: // Default behavior: ignore. 1623 break; 1624 case bitc::METADATA_NAME: { 1625 // Read name of the named metadata. 1626 SmallString<8> Name(Record.begin(), Record.end()); 1627 Record.clear(); 1628 Code = Stream.ReadCode(); 1629 1630 unsigned NextBitCode = Stream.readRecord(Code, Record); 1631 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1632 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1633 1634 // Read named metadata elements. 1635 unsigned Size = Record.size(); 1636 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1637 for (unsigned i = 0; i != Size; ++i) { 1638 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1639 if (!MD) 1640 return error("Invalid record"); 1641 NMD->addOperand(MD); 1642 } 1643 break; 1644 } 1645 case bitc::METADATA_OLD_FN_NODE: { 1646 // FIXME: Remove in 4.0. 1647 // This is a LocalAsMetadata record, the only type of function-local 1648 // metadata. 1649 if (Record.size() % 2 == 1) 1650 return error("Invalid record"); 1651 1652 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1653 // to be legal, but there's no upgrade path. 1654 auto dropRecord = [&] { 1655 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1656 }; 1657 if (Record.size() != 2) { 1658 dropRecord(); 1659 break; 1660 } 1661 1662 Type *Ty = getTypeByID(Record[0]); 1663 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1664 dropRecord(); 1665 break; 1666 } 1667 1668 MDValueList.assignValue( 1669 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1670 NextMDValueNo++); 1671 break; 1672 } 1673 case bitc::METADATA_OLD_NODE: { 1674 // FIXME: Remove in 4.0. 1675 if (Record.size() % 2 == 1) 1676 return error("Invalid record"); 1677 1678 unsigned Size = Record.size(); 1679 SmallVector<Metadata *, 8> Elts; 1680 for (unsigned i = 0; i != Size; i += 2) { 1681 Type *Ty = getTypeByID(Record[i]); 1682 if (!Ty) 1683 return error("Invalid record"); 1684 if (Ty->isMetadataTy()) 1685 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1686 else if (!Ty->isVoidTy()) { 1687 auto *MD = 1688 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1689 assert(isa<ConstantAsMetadata>(MD) && 1690 "Expected non-function-local metadata"); 1691 Elts.push_back(MD); 1692 } else 1693 Elts.push_back(nullptr); 1694 } 1695 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1696 break; 1697 } 1698 case bitc::METADATA_VALUE: { 1699 if (Record.size() != 2) 1700 return error("Invalid record"); 1701 1702 Type *Ty = getTypeByID(Record[0]); 1703 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1704 return error("Invalid record"); 1705 1706 MDValueList.assignValue( 1707 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1708 NextMDValueNo++); 1709 break; 1710 } 1711 case bitc::METADATA_DISTINCT_NODE: 1712 IsDistinct = true; 1713 // fallthrough... 1714 case bitc::METADATA_NODE: { 1715 SmallVector<Metadata *, 8> Elts; 1716 Elts.reserve(Record.size()); 1717 for (unsigned ID : Record) 1718 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1719 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1720 : MDNode::get(Context, Elts), 1721 NextMDValueNo++); 1722 break; 1723 } 1724 case bitc::METADATA_LOCATION: { 1725 if (Record.size() != 5) 1726 return error("Invalid record"); 1727 1728 unsigned Line = Record[1]; 1729 unsigned Column = Record[2]; 1730 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1731 Metadata *InlinedAt = 1732 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1733 MDValueList.assignValue( 1734 GET_OR_DISTINCT(DILocation, Record[0], 1735 (Context, Line, Column, Scope, InlinedAt)), 1736 NextMDValueNo++); 1737 break; 1738 } 1739 case bitc::METADATA_GENERIC_DEBUG: { 1740 if (Record.size() < 4) 1741 return error("Invalid record"); 1742 1743 unsigned Tag = Record[1]; 1744 unsigned Version = Record[2]; 1745 1746 if (Tag >= 1u << 16 || Version != 0) 1747 return error("Invalid record"); 1748 1749 auto *Header = getMDString(Record[3]); 1750 SmallVector<Metadata *, 8> DwarfOps; 1751 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1752 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1753 : nullptr); 1754 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1755 (Context, Tag, Header, DwarfOps)), 1756 NextMDValueNo++); 1757 break; 1758 } 1759 case bitc::METADATA_SUBRANGE: { 1760 if (Record.size() != 3) 1761 return error("Invalid record"); 1762 1763 MDValueList.assignValue( 1764 GET_OR_DISTINCT(DISubrange, Record[0], 1765 (Context, Record[1], unrotateSign(Record[2]))), 1766 NextMDValueNo++); 1767 break; 1768 } 1769 case bitc::METADATA_ENUMERATOR: { 1770 if (Record.size() != 3) 1771 return error("Invalid record"); 1772 1773 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1774 (Context, unrotateSign(Record[1]), 1775 getMDString(Record[2]))), 1776 NextMDValueNo++); 1777 break; 1778 } 1779 case bitc::METADATA_BASIC_TYPE: { 1780 if (Record.size() != 6) 1781 return error("Invalid record"); 1782 1783 MDValueList.assignValue( 1784 GET_OR_DISTINCT(DIBasicType, Record[0], 1785 (Context, Record[1], getMDString(Record[2]), 1786 Record[3], Record[4], Record[5])), 1787 NextMDValueNo++); 1788 break; 1789 } 1790 case bitc::METADATA_DERIVED_TYPE: { 1791 if (Record.size() != 12) 1792 return error("Invalid record"); 1793 1794 MDValueList.assignValue( 1795 GET_OR_DISTINCT(DIDerivedType, Record[0], 1796 (Context, Record[1], getMDString(Record[2]), 1797 getMDOrNull(Record[3]), Record[4], 1798 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1799 Record[7], Record[8], Record[9], Record[10], 1800 getMDOrNull(Record[11]))), 1801 NextMDValueNo++); 1802 break; 1803 } 1804 case bitc::METADATA_COMPOSITE_TYPE: { 1805 if (Record.size() != 16) 1806 return error("Invalid record"); 1807 1808 MDValueList.assignValue( 1809 GET_OR_DISTINCT(DICompositeType, Record[0], 1810 (Context, Record[1], getMDString(Record[2]), 1811 getMDOrNull(Record[3]), Record[4], 1812 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1813 Record[7], Record[8], Record[9], Record[10], 1814 getMDOrNull(Record[11]), Record[12], 1815 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1816 getMDString(Record[15]))), 1817 NextMDValueNo++); 1818 break; 1819 } 1820 case bitc::METADATA_SUBROUTINE_TYPE: { 1821 if (Record.size() != 3) 1822 return error("Invalid record"); 1823 1824 MDValueList.assignValue( 1825 GET_OR_DISTINCT(DISubroutineType, Record[0], 1826 (Context, Record[1], getMDOrNull(Record[2]))), 1827 NextMDValueNo++); 1828 break; 1829 } 1830 case bitc::METADATA_FILE: { 1831 if (Record.size() != 3) 1832 return error("Invalid record"); 1833 1834 MDValueList.assignValue( 1835 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1836 getMDString(Record[2]))), 1837 NextMDValueNo++); 1838 break; 1839 } 1840 case bitc::METADATA_COMPILE_UNIT: { 1841 if (Record.size() < 14 || Record.size() > 15) 1842 return error("Invalid record"); 1843 1844 MDValueList.assignValue( 1845 GET_OR_DISTINCT( 1846 DICompileUnit, Record[0], 1847 (Context, Record[1], getMDOrNull(Record[2]), 1848 getMDString(Record[3]), Record[4], getMDString(Record[5]), 1849 Record[6], getMDString(Record[7]), Record[8], 1850 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1851 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1852 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14])), 1853 NextMDValueNo++); 1854 break; 1855 } 1856 case bitc::METADATA_SUBPROGRAM: { 1857 if (Record.size() != 19) 1858 return error("Invalid record"); 1859 1860 MDValueList.assignValue( 1861 GET_OR_DISTINCT( 1862 DISubprogram, Record[0], 1863 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1864 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1865 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1866 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1867 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1868 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1869 NextMDValueNo++); 1870 break; 1871 } 1872 case bitc::METADATA_LEXICAL_BLOCK: { 1873 if (Record.size() != 5) 1874 return error("Invalid record"); 1875 1876 MDValueList.assignValue( 1877 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1878 (Context, getMDOrNull(Record[1]), 1879 getMDOrNull(Record[2]), Record[3], Record[4])), 1880 NextMDValueNo++); 1881 break; 1882 } 1883 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1884 if (Record.size() != 4) 1885 return error("Invalid record"); 1886 1887 MDValueList.assignValue( 1888 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1889 (Context, getMDOrNull(Record[1]), 1890 getMDOrNull(Record[2]), Record[3])), 1891 NextMDValueNo++); 1892 break; 1893 } 1894 case bitc::METADATA_NAMESPACE: { 1895 if (Record.size() != 5) 1896 return error("Invalid record"); 1897 1898 MDValueList.assignValue( 1899 GET_OR_DISTINCT(DINamespace, Record[0], 1900 (Context, getMDOrNull(Record[1]), 1901 getMDOrNull(Record[2]), getMDString(Record[3]), 1902 Record[4])), 1903 NextMDValueNo++); 1904 break; 1905 } 1906 case bitc::METADATA_TEMPLATE_TYPE: { 1907 if (Record.size() != 3) 1908 return error("Invalid record"); 1909 1910 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1911 Record[0], 1912 (Context, getMDString(Record[1]), 1913 getMDOrNull(Record[2]))), 1914 NextMDValueNo++); 1915 break; 1916 } 1917 case bitc::METADATA_TEMPLATE_VALUE: { 1918 if (Record.size() != 5) 1919 return error("Invalid record"); 1920 1921 MDValueList.assignValue( 1922 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1923 (Context, Record[1], getMDString(Record[2]), 1924 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1925 NextMDValueNo++); 1926 break; 1927 } 1928 case bitc::METADATA_GLOBAL_VAR: { 1929 if (Record.size() != 11) 1930 return error("Invalid record"); 1931 1932 MDValueList.assignValue( 1933 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1934 (Context, getMDOrNull(Record[1]), 1935 getMDString(Record[2]), getMDString(Record[3]), 1936 getMDOrNull(Record[4]), Record[5], 1937 getMDOrNull(Record[6]), Record[7], Record[8], 1938 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1939 NextMDValueNo++); 1940 break; 1941 } 1942 case bitc::METADATA_LOCAL_VAR: { 1943 // 10th field is for the obseleted 'inlinedAt:' field. 1944 if (Record.size() != 9 && Record.size() != 10) 1945 return error("Invalid record"); 1946 1947 MDValueList.assignValue( 1948 GET_OR_DISTINCT(DILocalVariable, Record[0], 1949 (Context, Record[1], getMDOrNull(Record[2]), 1950 getMDString(Record[3]), getMDOrNull(Record[4]), 1951 Record[5], getMDOrNull(Record[6]), Record[7], 1952 Record[8])), 1953 NextMDValueNo++); 1954 break; 1955 } 1956 case bitc::METADATA_EXPRESSION: { 1957 if (Record.size() < 1) 1958 return error("Invalid record"); 1959 1960 MDValueList.assignValue( 1961 GET_OR_DISTINCT(DIExpression, Record[0], 1962 (Context, makeArrayRef(Record).slice(1))), 1963 NextMDValueNo++); 1964 break; 1965 } 1966 case bitc::METADATA_OBJC_PROPERTY: { 1967 if (Record.size() != 8) 1968 return error("Invalid record"); 1969 1970 MDValueList.assignValue( 1971 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1972 (Context, getMDString(Record[1]), 1973 getMDOrNull(Record[2]), Record[3], 1974 getMDString(Record[4]), getMDString(Record[5]), 1975 Record[6], getMDOrNull(Record[7]))), 1976 NextMDValueNo++); 1977 break; 1978 } 1979 case bitc::METADATA_IMPORTED_ENTITY: { 1980 if (Record.size() != 6) 1981 return error("Invalid record"); 1982 1983 MDValueList.assignValue( 1984 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1985 (Context, Record[1], getMDOrNull(Record[2]), 1986 getMDOrNull(Record[3]), Record[4], 1987 getMDString(Record[5]))), 1988 NextMDValueNo++); 1989 break; 1990 } 1991 case bitc::METADATA_STRING: { 1992 std::string String(Record.begin(), Record.end()); 1993 llvm::UpgradeMDStringConstant(String); 1994 Metadata *MD = MDString::get(Context, String); 1995 MDValueList.assignValue(MD, NextMDValueNo++); 1996 break; 1997 } 1998 case bitc::METADATA_KIND: { 1999 if (Record.size() < 2) 2000 return error("Invalid record"); 2001 2002 unsigned Kind = Record[0]; 2003 SmallString<8> Name(Record.begin()+1, Record.end()); 2004 2005 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2006 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2007 return error("Conflicting METADATA_KIND records"); 2008 break; 2009 } 2010 } 2011 } 2012 #undef GET_OR_DISTINCT 2013 } 2014 2015 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2016 /// encoding. 2017 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2018 if ((V & 1) == 0) 2019 return V >> 1; 2020 if (V != 1) 2021 return -(V >> 1); 2022 // There is no such thing as -0 with integers. "-0" really means MININT. 2023 return 1ULL << 63; 2024 } 2025 2026 /// Resolve all of the initializers for global values and aliases that we can. 2027 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2028 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2029 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2030 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2031 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2032 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2033 2034 GlobalInitWorklist.swap(GlobalInits); 2035 AliasInitWorklist.swap(AliasInits); 2036 FunctionPrefixWorklist.swap(FunctionPrefixes); 2037 FunctionPrologueWorklist.swap(FunctionPrologues); 2038 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2039 2040 while (!GlobalInitWorklist.empty()) { 2041 unsigned ValID = GlobalInitWorklist.back().second; 2042 if (ValID >= ValueList.size()) { 2043 // Not ready to resolve this yet, it requires something later in the file. 2044 GlobalInits.push_back(GlobalInitWorklist.back()); 2045 } else { 2046 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2047 GlobalInitWorklist.back().first->setInitializer(C); 2048 else 2049 return error("Expected a constant"); 2050 } 2051 GlobalInitWorklist.pop_back(); 2052 } 2053 2054 while (!AliasInitWorklist.empty()) { 2055 unsigned ValID = AliasInitWorklist.back().second; 2056 if (ValID >= ValueList.size()) { 2057 AliasInits.push_back(AliasInitWorklist.back()); 2058 } else { 2059 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2060 if (!C) 2061 return error("Expected a constant"); 2062 GlobalAlias *Alias = AliasInitWorklist.back().first; 2063 if (C->getType() != Alias->getType()) 2064 return error("Alias and aliasee types don't match"); 2065 Alias->setAliasee(C); 2066 } 2067 AliasInitWorklist.pop_back(); 2068 } 2069 2070 while (!FunctionPrefixWorklist.empty()) { 2071 unsigned ValID = FunctionPrefixWorklist.back().second; 2072 if (ValID >= ValueList.size()) { 2073 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2074 } else { 2075 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2076 FunctionPrefixWorklist.back().first->setPrefixData(C); 2077 else 2078 return error("Expected a constant"); 2079 } 2080 FunctionPrefixWorklist.pop_back(); 2081 } 2082 2083 while (!FunctionPrologueWorklist.empty()) { 2084 unsigned ValID = FunctionPrologueWorklist.back().second; 2085 if (ValID >= ValueList.size()) { 2086 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2087 } else { 2088 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2089 FunctionPrologueWorklist.back().first->setPrologueData(C); 2090 else 2091 return error("Expected a constant"); 2092 } 2093 FunctionPrologueWorklist.pop_back(); 2094 } 2095 2096 while (!FunctionPersonalityFnWorklist.empty()) { 2097 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2098 if (ValID >= ValueList.size()) { 2099 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2100 } else { 2101 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2102 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2103 else 2104 return error("Expected a constant"); 2105 } 2106 FunctionPersonalityFnWorklist.pop_back(); 2107 } 2108 2109 return std::error_code(); 2110 } 2111 2112 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2113 SmallVector<uint64_t, 8> Words(Vals.size()); 2114 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2115 BitcodeReader::decodeSignRotatedValue); 2116 2117 return APInt(TypeBits, Words); 2118 } 2119 2120 std::error_code BitcodeReader::parseConstants() { 2121 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2122 return error("Invalid record"); 2123 2124 SmallVector<uint64_t, 64> Record; 2125 2126 // Read all the records for this value table. 2127 Type *CurTy = Type::getInt32Ty(Context); 2128 unsigned NextCstNo = ValueList.size(); 2129 while (1) { 2130 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2131 2132 switch (Entry.Kind) { 2133 case BitstreamEntry::SubBlock: // Handled for us already. 2134 case BitstreamEntry::Error: 2135 return error("Malformed block"); 2136 case BitstreamEntry::EndBlock: 2137 if (NextCstNo != ValueList.size()) 2138 return error("Invalid ronstant reference"); 2139 2140 // Once all the constants have been read, go through and resolve forward 2141 // references. 2142 ValueList.resolveConstantForwardRefs(); 2143 return std::error_code(); 2144 case BitstreamEntry::Record: 2145 // The interesting case. 2146 break; 2147 } 2148 2149 // Read a record. 2150 Record.clear(); 2151 Value *V = nullptr; 2152 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2153 switch (BitCode) { 2154 default: // Default behavior: unknown constant 2155 case bitc::CST_CODE_UNDEF: // UNDEF 2156 V = UndefValue::get(CurTy); 2157 break; 2158 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2159 if (Record.empty()) 2160 return error("Invalid record"); 2161 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2162 return error("Invalid record"); 2163 CurTy = TypeList[Record[0]]; 2164 continue; // Skip the ValueList manipulation. 2165 case bitc::CST_CODE_NULL: // NULL 2166 V = Constant::getNullValue(CurTy); 2167 break; 2168 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2169 if (!CurTy->isIntegerTy() || Record.empty()) 2170 return error("Invalid record"); 2171 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2172 break; 2173 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2174 if (!CurTy->isIntegerTy() || Record.empty()) 2175 return error("Invalid record"); 2176 2177 APInt VInt = 2178 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2179 V = ConstantInt::get(Context, VInt); 2180 2181 break; 2182 } 2183 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2184 if (Record.empty()) 2185 return error("Invalid record"); 2186 if (CurTy->isHalfTy()) 2187 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2188 APInt(16, (uint16_t)Record[0]))); 2189 else if (CurTy->isFloatTy()) 2190 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2191 APInt(32, (uint32_t)Record[0]))); 2192 else if (CurTy->isDoubleTy()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2194 APInt(64, Record[0]))); 2195 else if (CurTy->isX86_FP80Ty()) { 2196 // Bits are not stored the same way as a normal i80 APInt, compensate. 2197 uint64_t Rearrange[2]; 2198 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2199 Rearrange[1] = Record[0] >> 48; 2200 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2201 APInt(80, Rearrange))); 2202 } else if (CurTy->isFP128Ty()) 2203 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2204 APInt(128, Record))); 2205 else if (CurTy->isPPC_FP128Ty()) 2206 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2207 APInt(128, Record))); 2208 else 2209 V = UndefValue::get(CurTy); 2210 break; 2211 } 2212 2213 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2214 if (Record.empty()) 2215 return error("Invalid record"); 2216 2217 unsigned Size = Record.size(); 2218 SmallVector<Constant*, 16> Elts; 2219 2220 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2221 for (unsigned i = 0; i != Size; ++i) 2222 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2223 STy->getElementType(i))); 2224 V = ConstantStruct::get(STy, Elts); 2225 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2226 Type *EltTy = ATy->getElementType(); 2227 for (unsigned i = 0; i != Size; ++i) 2228 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2229 V = ConstantArray::get(ATy, Elts); 2230 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2231 Type *EltTy = VTy->getElementType(); 2232 for (unsigned i = 0; i != Size; ++i) 2233 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2234 V = ConstantVector::get(Elts); 2235 } else { 2236 V = UndefValue::get(CurTy); 2237 } 2238 break; 2239 } 2240 case bitc::CST_CODE_STRING: // STRING: [values] 2241 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2242 if (Record.empty()) 2243 return error("Invalid record"); 2244 2245 SmallString<16> Elts(Record.begin(), Record.end()); 2246 V = ConstantDataArray::getString(Context, Elts, 2247 BitCode == bitc::CST_CODE_CSTRING); 2248 break; 2249 } 2250 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2251 if (Record.empty()) 2252 return error("Invalid record"); 2253 2254 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2255 unsigned Size = Record.size(); 2256 2257 if (EltTy->isIntegerTy(8)) { 2258 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2259 if (isa<VectorType>(CurTy)) 2260 V = ConstantDataVector::get(Context, Elts); 2261 else 2262 V = ConstantDataArray::get(Context, Elts); 2263 } else if (EltTy->isIntegerTy(16)) { 2264 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else if (EltTy->isIntegerTy(32)) { 2270 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isIntegerTy(64)) { 2276 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2277 if (isa<VectorType>(CurTy)) 2278 V = ConstantDataVector::get(Context, Elts); 2279 else 2280 V = ConstantDataArray::get(Context, Elts); 2281 } else if (EltTy->isFloatTy()) { 2282 SmallVector<float, 16> Elts(Size); 2283 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2284 if (isa<VectorType>(CurTy)) 2285 V = ConstantDataVector::get(Context, Elts); 2286 else 2287 V = ConstantDataArray::get(Context, Elts); 2288 } else if (EltTy->isDoubleTy()) { 2289 SmallVector<double, 16> Elts(Size); 2290 std::transform(Record.begin(), Record.end(), Elts.begin(), 2291 BitsToDouble); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::get(Context, Elts); 2294 else 2295 V = ConstantDataArray::get(Context, Elts); 2296 } else { 2297 return error("Invalid type for value"); 2298 } 2299 break; 2300 } 2301 2302 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2303 if (Record.size() < 3) 2304 return error("Invalid record"); 2305 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2306 if (Opc < 0) { 2307 V = UndefValue::get(CurTy); // Unknown binop. 2308 } else { 2309 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2310 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2311 unsigned Flags = 0; 2312 if (Record.size() >= 4) { 2313 if (Opc == Instruction::Add || 2314 Opc == Instruction::Sub || 2315 Opc == Instruction::Mul || 2316 Opc == Instruction::Shl) { 2317 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2318 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2319 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2320 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2321 } else if (Opc == Instruction::SDiv || 2322 Opc == Instruction::UDiv || 2323 Opc == Instruction::LShr || 2324 Opc == Instruction::AShr) { 2325 if (Record[3] & (1 << bitc::PEO_EXACT)) 2326 Flags |= SDivOperator::IsExact; 2327 } 2328 } 2329 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2330 } 2331 break; 2332 } 2333 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2334 if (Record.size() < 3) 2335 return error("Invalid record"); 2336 int Opc = getDecodedCastOpcode(Record[0]); 2337 if (Opc < 0) { 2338 V = UndefValue::get(CurTy); // Unknown cast. 2339 } else { 2340 Type *OpTy = getTypeByID(Record[1]); 2341 if (!OpTy) 2342 return error("Invalid record"); 2343 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2344 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2345 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2346 } 2347 break; 2348 } 2349 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2350 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2351 unsigned OpNum = 0; 2352 Type *PointeeType = nullptr; 2353 if (Record.size() % 2) 2354 PointeeType = getTypeByID(Record[OpNum++]); 2355 SmallVector<Constant*, 16> Elts; 2356 while (OpNum != Record.size()) { 2357 Type *ElTy = getTypeByID(Record[OpNum++]); 2358 if (!ElTy) 2359 return error("Invalid record"); 2360 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2361 } 2362 2363 if (PointeeType && 2364 PointeeType != 2365 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2366 ->getElementType()) 2367 return error("Explicit gep operator type does not match pointee type " 2368 "of pointer operand"); 2369 2370 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2371 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2372 BitCode == 2373 bitc::CST_CODE_CE_INBOUNDS_GEP); 2374 break; 2375 } 2376 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2377 if (Record.size() < 3) 2378 return error("Invalid record"); 2379 2380 Type *SelectorTy = Type::getInt1Ty(Context); 2381 2382 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2383 // vector. Otherwise, it must be a single bit. 2384 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2385 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2386 VTy->getNumElements()); 2387 2388 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2389 SelectorTy), 2390 ValueList.getConstantFwdRef(Record[1],CurTy), 2391 ValueList.getConstantFwdRef(Record[2],CurTy)); 2392 break; 2393 } 2394 case bitc::CST_CODE_CE_EXTRACTELT 2395 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2396 if (Record.size() < 3) 2397 return error("Invalid record"); 2398 VectorType *OpTy = 2399 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2400 if (!OpTy) 2401 return error("Invalid record"); 2402 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2403 Constant *Op1 = nullptr; 2404 if (Record.size() == 4) { 2405 Type *IdxTy = getTypeByID(Record[2]); 2406 if (!IdxTy) 2407 return error("Invalid record"); 2408 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2409 } else // TODO: Remove with llvm 4.0 2410 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2411 if (!Op1) 2412 return error("Invalid record"); 2413 V = ConstantExpr::getExtractElement(Op0, Op1); 2414 break; 2415 } 2416 case bitc::CST_CODE_CE_INSERTELT 2417 : { // CE_INSERTELT: [opval, opval, opty, opval] 2418 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2419 if (Record.size() < 3 || !OpTy) 2420 return error("Invalid record"); 2421 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2422 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2423 OpTy->getElementType()); 2424 Constant *Op2 = nullptr; 2425 if (Record.size() == 4) { 2426 Type *IdxTy = getTypeByID(Record[2]); 2427 if (!IdxTy) 2428 return error("Invalid record"); 2429 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2430 } else // TODO: Remove with llvm 4.0 2431 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2432 if (!Op2) 2433 return error("Invalid record"); 2434 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2435 break; 2436 } 2437 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2438 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2439 if (Record.size() < 3 || !OpTy) 2440 return error("Invalid record"); 2441 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2442 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2443 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2444 OpTy->getNumElements()); 2445 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2446 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2447 break; 2448 } 2449 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2450 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2451 VectorType *OpTy = 2452 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2453 if (Record.size() < 4 || !RTy || !OpTy) 2454 return error("Invalid record"); 2455 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2456 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2457 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2458 RTy->getNumElements()); 2459 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2460 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2461 break; 2462 } 2463 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2464 if (Record.size() < 4) 2465 return error("Invalid record"); 2466 Type *OpTy = getTypeByID(Record[0]); 2467 if (!OpTy) 2468 return error("Invalid record"); 2469 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2470 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2471 2472 if (OpTy->isFPOrFPVectorTy()) 2473 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2474 else 2475 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2476 break; 2477 } 2478 // This maintains backward compatibility, pre-asm dialect keywords. 2479 // FIXME: Remove with the 4.0 release. 2480 case bitc::CST_CODE_INLINEASM_OLD: { 2481 if (Record.size() < 2) 2482 return error("Invalid record"); 2483 std::string AsmStr, ConstrStr; 2484 bool HasSideEffects = Record[0] & 1; 2485 bool IsAlignStack = Record[0] >> 1; 2486 unsigned AsmStrSize = Record[1]; 2487 if (2+AsmStrSize >= Record.size()) 2488 return error("Invalid record"); 2489 unsigned ConstStrSize = Record[2+AsmStrSize]; 2490 if (3+AsmStrSize+ConstStrSize > Record.size()) 2491 return error("Invalid record"); 2492 2493 for (unsigned i = 0; i != AsmStrSize; ++i) 2494 AsmStr += (char)Record[2+i]; 2495 for (unsigned i = 0; i != ConstStrSize; ++i) 2496 ConstrStr += (char)Record[3+AsmStrSize+i]; 2497 PointerType *PTy = cast<PointerType>(CurTy); 2498 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2499 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2500 break; 2501 } 2502 // This version adds support for the asm dialect keywords (e.g., 2503 // inteldialect). 2504 case bitc::CST_CODE_INLINEASM: { 2505 if (Record.size() < 2) 2506 return error("Invalid record"); 2507 std::string AsmStr, ConstrStr; 2508 bool HasSideEffects = Record[0] & 1; 2509 bool IsAlignStack = (Record[0] >> 1) & 1; 2510 unsigned AsmDialect = Record[0] >> 2; 2511 unsigned AsmStrSize = Record[1]; 2512 if (2+AsmStrSize >= Record.size()) 2513 return error("Invalid record"); 2514 unsigned ConstStrSize = Record[2+AsmStrSize]; 2515 if (3+AsmStrSize+ConstStrSize > Record.size()) 2516 return error("Invalid record"); 2517 2518 for (unsigned i = 0; i != AsmStrSize; ++i) 2519 AsmStr += (char)Record[2+i]; 2520 for (unsigned i = 0; i != ConstStrSize; ++i) 2521 ConstrStr += (char)Record[3+AsmStrSize+i]; 2522 PointerType *PTy = cast<PointerType>(CurTy); 2523 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2524 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2525 InlineAsm::AsmDialect(AsmDialect)); 2526 break; 2527 } 2528 case bitc::CST_CODE_BLOCKADDRESS:{ 2529 if (Record.size() < 3) 2530 return error("Invalid record"); 2531 Type *FnTy = getTypeByID(Record[0]); 2532 if (!FnTy) 2533 return error("Invalid record"); 2534 Function *Fn = 2535 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2536 if (!Fn) 2537 return error("Invalid record"); 2538 2539 // Don't let Fn get dematerialized. 2540 BlockAddressesTaken.insert(Fn); 2541 2542 // If the function is already parsed we can insert the block address right 2543 // away. 2544 BasicBlock *BB; 2545 unsigned BBID = Record[2]; 2546 if (!BBID) 2547 // Invalid reference to entry block. 2548 return error("Invalid ID"); 2549 if (!Fn->empty()) { 2550 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2551 for (size_t I = 0, E = BBID; I != E; ++I) { 2552 if (BBI == BBE) 2553 return error("Invalid ID"); 2554 ++BBI; 2555 } 2556 BB = BBI; 2557 } else { 2558 // Otherwise insert a placeholder and remember it so it can be inserted 2559 // when the function is parsed. 2560 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2561 if (FwdBBs.empty()) 2562 BasicBlockFwdRefQueue.push_back(Fn); 2563 if (FwdBBs.size() < BBID + 1) 2564 FwdBBs.resize(BBID + 1); 2565 if (!FwdBBs[BBID]) 2566 FwdBBs[BBID] = BasicBlock::Create(Context); 2567 BB = FwdBBs[BBID]; 2568 } 2569 V = BlockAddress::get(Fn, BB); 2570 break; 2571 } 2572 } 2573 2574 ValueList.assignValue(V, NextCstNo); 2575 ++NextCstNo; 2576 } 2577 } 2578 2579 std::error_code BitcodeReader::parseUseLists() { 2580 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2581 return error("Invalid record"); 2582 2583 // Read all the records. 2584 SmallVector<uint64_t, 64> Record; 2585 while (1) { 2586 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2587 2588 switch (Entry.Kind) { 2589 case BitstreamEntry::SubBlock: // Handled for us already. 2590 case BitstreamEntry::Error: 2591 return error("Malformed block"); 2592 case BitstreamEntry::EndBlock: 2593 return std::error_code(); 2594 case BitstreamEntry::Record: 2595 // The interesting case. 2596 break; 2597 } 2598 2599 // Read a use list record. 2600 Record.clear(); 2601 bool IsBB = false; 2602 switch (Stream.readRecord(Entry.ID, Record)) { 2603 default: // Default behavior: unknown type. 2604 break; 2605 case bitc::USELIST_CODE_BB: 2606 IsBB = true; 2607 // fallthrough 2608 case bitc::USELIST_CODE_DEFAULT: { 2609 unsigned RecordLength = Record.size(); 2610 if (RecordLength < 3) 2611 // Records should have at least an ID and two indexes. 2612 return error("Invalid record"); 2613 unsigned ID = Record.back(); 2614 Record.pop_back(); 2615 2616 Value *V; 2617 if (IsBB) { 2618 assert(ID < FunctionBBs.size() && "Basic block not found"); 2619 V = FunctionBBs[ID]; 2620 } else 2621 V = ValueList[ID]; 2622 unsigned NumUses = 0; 2623 SmallDenseMap<const Use *, unsigned, 16> Order; 2624 for (const Use &U : V->uses()) { 2625 if (++NumUses > Record.size()) 2626 break; 2627 Order[&U] = Record[NumUses - 1]; 2628 } 2629 if (Order.size() != Record.size() || NumUses > Record.size()) 2630 // Mismatches can happen if the functions are being materialized lazily 2631 // (out-of-order), or a value has been upgraded. 2632 break; 2633 2634 V->sortUseList([&](const Use &L, const Use &R) { 2635 return Order.lookup(&L) < Order.lookup(&R); 2636 }); 2637 break; 2638 } 2639 } 2640 } 2641 } 2642 2643 /// When we see the block for metadata, remember where it is and then skip it. 2644 /// This lets us lazily deserialize the metadata. 2645 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2646 // Save the current stream state. 2647 uint64_t CurBit = Stream.GetCurrentBitNo(); 2648 DeferredMetadataInfo.push_back(CurBit); 2649 2650 // Skip over the block for now. 2651 if (Stream.SkipBlock()) 2652 return error("Invalid record"); 2653 return std::error_code(); 2654 } 2655 2656 std::error_code BitcodeReader::materializeMetadata() { 2657 for (uint64_t BitPos : DeferredMetadataInfo) { 2658 // Move the bit stream to the saved position. 2659 Stream.JumpToBit(BitPos); 2660 if (std::error_code EC = parseMetadata()) 2661 return EC; 2662 } 2663 DeferredMetadataInfo.clear(); 2664 return std::error_code(); 2665 } 2666 2667 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2668 2669 /// When we see the block for a function body, remember where it is and then 2670 /// skip it. This lets us lazily deserialize the functions. 2671 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2672 // Get the function we are talking about. 2673 if (FunctionsWithBodies.empty()) 2674 return error("Insufficient function protos"); 2675 2676 Function *Fn = FunctionsWithBodies.back(); 2677 FunctionsWithBodies.pop_back(); 2678 2679 // Save the current stream state. 2680 uint64_t CurBit = Stream.GetCurrentBitNo(); 2681 DeferredFunctionInfo[Fn] = CurBit; 2682 2683 // Skip over the function block for now. 2684 if (Stream.SkipBlock()) 2685 return error("Invalid record"); 2686 return std::error_code(); 2687 } 2688 2689 std::error_code BitcodeReader::globalCleanup() { 2690 // Patch the initializers for globals and aliases up. 2691 resolveGlobalAndAliasInits(); 2692 if (!GlobalInits.empty() || !AliasInits.empty()) 2693 return error("Malformed global initializer set"); 2694 2695 // Look for intrinsic functions which need to be upgraded at some point 2696 for (Function &F : *TheModule) { 2697 Function *NewFn; 2698 if (UpgradeIntrinsicFunction(&F, NewFn)) 2699 UpgradedIntrinsics.push_back(std::make_pair(&F, NewFn)); 2700 } 2701 2702 // Look for global variables which need to be renamed. 2703 for (GlobalVariable &GV : TheModule->globals()) 2704 UpgradeGlobalVariable(&GV); 2705 2706 // Force deallocation of memory for these vectors to favor the client that 2707 // want lazy deserialization. 2708 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2709 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2710 return std::error_code(); 2711 } 2712 2713 std::error_code BitcodeReader::parseModule(bool Resume, 2714 bool ShouldLazyLoadMetadata) { 2715 if (Resume) 2716 Stream.JumpToBit(NextUnreadBit); 2717 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2718 return error("Invalid record"); 2719 2720 SmallVector<uint64_t, 64> Record; 2721 std::vector<std::string> SectionTable; 2722 std::vector<std::string> GCTable; 2723 2724 // Read all the records for this module. 2725 while (1) { 2726 BitstreamEntry Entry = Stream.advance(); 2727 2728 switch (Entry.Kind) { 2729 case BitstreamEntry::Error: 2730 return error("Malformed block"); 2731 case BitstreamEntry::EndBlock: 2732 return globalCleanup(); 2733 2734 case BitstreamEntry::SubBlock: 2735 switch (Entry.ID) { 2736 default: // Skip unknown content. 2737 if (Stream.SkipBlock()) 2738 return error("Invalid record"); 2739 break; 2740 case bitc::BLOCKINFO_BLOCK_ID: 2741 if (Stream.ReadBlockInfoBlock()) 2742 return error("Malformed block"); 2743 break; 2744 case bitc::PARAMATTR_BLOCK_ID: 2745 if (std::error_code EC = parseAttributeBlock()) 2746 return EC; 2747 break; 2748 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2749 if (std::error_code EC = parseAttributeGroupBlock()) 2750 return EC; 2751 break; 2752 case bitc::TYPE_BLOCK_ID_NEW: 2753 if (std::error_code EC = parseTypeTable()) 2754 return EC; 2755 break; 2756 case bitc::VALUE_SYMTAB_BLOCK_ID: 2757 if (std::error_code EC = parseValueSymbolTable()) 2758 return EC; 2759 SeenValueSymbolTable = true; 2760 break; 2761 case bitc::CONSTANTS_BLOCK_ID: 2762 if (std::error_code EC = parseConstants()) 2763 return EC; 2764 if (std::error_code EC = resolveGlobalAndAliasInits()) 2765 return EC; 2766 break; 2767 case bitc::METADATA_BLOCK_ID: 2768 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2769 if (std::error_code EC = rememberAndSkipMetadata()) 2770 return EC; 2771 break; 2772 } 2773 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2774 if (std::error_code EC = parseMetadata()) 2775 return EC; 2776 break; 2777 case bitc::FUNCTION_BLOCK_ID: 2778 // If this is the first function body we've seen, reverse the 2779 // FunctionsWithBodies list. 2780 if (!SeenFirstFunctionBody) { 2781 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2782 if (std::error_code EC = globalCleanup()) 2783 return EC; 2784 SeenFirstFunctionBody = true; 2785 } 2786 2787 if (std::error_code EC = rememberAndSkipFunctionBody()) 2788 return EC; 2789 // Suspend parsing when we reach the function bodies. Subsequent 2790 // materialization calls will resume it when necessary. If the bitcode 2791 // file is old, the symbol table will be at the end instead and will not 2792 // have been seen yet. In this case, just finish the parse now. 2793 if (SeenValueSymbolTable) { 2794 NextUnreadBit = Stream.GetCurrentBitNo(); 2795 return std::error_code(); 2796 } 2797 break; 2798 case bitc::USELIST_BLOCK_ID: 2799 if (std::error_code EC = parseUseLists()) 2800 return EC; 2801 break; 2802 } 2803 continue; 2804 2805 case BitstreamEntry::Record: 2806 // The interesting case. 2807 break; 2808 } 2809 2810 2811 // Read a record. 2812 switch (Stream.readRecord(Entry.ID, Record)) { 2813 default: break; // Default behavior, ignore unknown content. 2814 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2815 if (Record.size() < 1) 2816 return error("Invalid record"); 2817 // Only version #0 and #1 are supported so far. 2818 unsigned module_version = Record[0]; 2819 switch (module_version) { 2820 default: 2821 return error("Invalid value"); 2822 case 0: 2823 UseRelativeIDs = false; 2824 break; 2825 case 1: 2826 UseRelativeIDs = true; 2827 break; 2828 } 2829 break; 2830 } 2831 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2832 std::string S; 2833 if (convertToString(Record, 0, S)) 2834 return error("Invalid record"); 2835 TheModule->setTargetTriple(S); 2836 break; 2837 } 2838 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2839 std::string S; 2840 if (convertToString(Record, 0, S)) 2841 return error("Invalid record"); 2842 TheModule->setDataLayout(S); 2843 break; 2844 } 2845 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2846 std::string S; 2847 if (convertToString(Record, 0, S)) 2848 return error("Invalid record"); 2849 TheModule->setModuleInlineAsm(S); 2850 break; 2851 } 2852 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2853 // FIXME: Remove in 4.0. 2854 std::string S; 2855 if (convertToString(Record, 0, S)) 2856 return error("Invalid record"); 2857 // Ignore value. 2858 break; 2859 } 2860 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2861 std::string S; 2862 if (convertToString(Record, 0, S)) 2863 return error("Invalid record"); 2864 SectionTable.push_back(S); 2865 break; 2866 } 2867 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2868 std::string S; 2869 if (convertToString(Record, 0, S)) 2870 return error("Invalid record"); 2871 GCTable.push_back(S); 2872 break; 2873 } 2874 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2875 if (Record.size() < 2) 2876 return error("Invalid record"); 2877 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2878 unsigned ComdatNameSize = Record[1]; 2879 std::string ComdatName; 2880 ComdatName.reserve(ComdatNameSize); 2881 for (unsigned i = 0; i != ComdatNameSize; ++i) 2882 ComdatName += (char)Record[2 + i]; 2883 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2884 C->setSelectionKind(SK); 2885 ComdatList.push_back(C); 2886 break; 2887 } 2888 // GLOBALVAR: [pointer type, isconst, initid, 2889 // linkage, alignment, section, visibility, threadlocal, 2890 // unnamed_addr, externally_initialized, dllstorageclass, 2891 // comdat] 2892 case bitc::MODULE_CODE_GLOBALVAR: { 2893 if (Record.size() < 6) 2894 return error("Invalid record"); 2895 Type *Ty = getTypeByID(Record[0]); 2896 if (!Ty) 2897 return error("Invalid record"); 2898 bool isConstant = Record[1] & 1; 2899 bool explicitType = Record[1] & 2; 2900 unsigned AddressSpace; 2901 if (explicitType) { 2902 AddressSpace = Record[1] >> 2; 2903 } else { 2904 if (!Ty->isPointerTy()) 2905 return error("Invalid type for value"); 2906 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2907 Ty = cast<PointerType>(Ty)->getElementType(); 2908 } 2909 2910 uint64_t RawLinkage = Record[3]; 2911 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2912 unsigned Alignment; 2913 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2914 return EC; 2915 std::string Section; 2916 if (Record[5]) { 2917 if (Record[5]-1 >= SectionTable.size()) 2918 return error("Invalid ID"); 2919 Section = SectionTable[Record[5]-1]; 2920 } 2921 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2922 // Local linkage must have default visibility. 2923 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2924 // FIXME: Change to an error if non-default in 4.0. 2925 Visibility = getDecodedVisibility(Record[6]); 2926 2927 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2928 if (Record.size() > 7) 2929 TLM = getDecodedThreadLocalMode(Record[7]); 2930 2931 bool UnnamedAddr = false; 2932 if (Record.size() > 8) 2933 UnnamedAddr = Record[8]; 2934 2935 bool ExternallyInitialized = false; 2936 if (Record.size() > 9) 2937 ExternallyInitialized = Record[9]; 2938 2939 GlobalVariable *NewGV = 2940 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2941 TLM, AddressSpace, ExternallyInitialized); 2942 NewGV->setAlignment(Alignment); 2943 if (!Section.empty()) 2944 NewGV->setSection(Section); 2945 NewGV->setVisibility(Visibility); 2946 NewGV->setUnnamedAddr(UnnamedAddr); 2947 2948 if (Record.size() > 10) 2949 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2950 else 2951 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2952 2953 ValueList.push_back(NewGV); 2954 2955 // Remember which value to use for the global initializer. 2956 if (unsigned InitID = Record[2]) 2957 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2958 2959 if (Record.size() > 11) { 2960 if (unsigned ComdatID = Record[11]) { 2961 if (ComdatID > ComdatList.size()) 2962 return error("Invalid global variable comdat ID"); 2963 NewGV->setComdat(ComdatList[ComdatID - 1]); 2964 } 2965 } else if (hasImplicitComdat(RawLinkage)) { 2966 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2967 } 2968 break; 2969 } 2970 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2971 // alignment, section, visibility, gc, unnamed_addr, 2972 // prologuedata, dllstorageclass, comdat, prefixdata] 2973 case bitc::MODULE_CODE_FUNCTION: { 2974 if (Record.size() < 8) 2975 return error("Invalid record"); 2976 Type *Ty = getTypeByID(Record[0]); 2977 if (!Ty) 2978 return error("Invalid record"); 2979 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2980 Ty = PTy->getElementType(); 2981 auto *FTy = dyn_cast<FunctionType>(Ty); 2982 if (!FTy) 2983 return error("Invalid type for value"); 2984 2985 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2986 "", TheModule); 2987 2988 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2989 bool isProto = Record[2]; 2990 uint64_t RawLinkage = Record[3]; 2991 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2992 Func->setAttributes(getAttributes(Record[4])); 2993 2994 unsigned Alignment; 2995 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2996 return EC; 2997 Func->setAlignment(Alignment); 2998 if (Record[6]) { 2999 if (Record[6]-1 >= SectionTable.size()) 3000 return error("Invalid ID"); 3001 Func->setSection(SectionTable[Record[6]-1]); 3002 } 3003 // Local linkage must have default visibility. 3004 if (!Func->hasLocalLinkage()) 3005 // FIXME: Change to an error if non-default in 4.0. 3006 Func->setVisibility(getDecodedVisibility(Record[7])); 3007 if (Record.size() > 8 && Record[8]) { 3008 if (Record[8]-1 >= GCTable.size()) 3009 return error("Invalid ID"); 3010 Func->setGC(GCTable[Record[8]-1].c_str()); 3011 } 3012 bool UnnamedAddr = false; 3013 if (Record.size() > 9) 3014 UnnamedAddr = Record[9]; 3015 Func->setUnnamedAddr(UnnamedAddr); 3016 if (Record.size() > 10 && Record[10] != 0) 3017 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3018 3019 if (Record.size() > 11) 3020 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3021 else 3022 upgradeDLLImportExportLinkage(Func, RawLinkage); 3023 3024 if (Record.size() > 12) { 3025 if (unsigned ComdatID = Record[12]) { 3026 if (ComdatID > ComdatList.size()) 3027 return error("Invalid function comdat ID"); 3028 Func->setComdat(ComdatList[ComdatID - 1]); 3029 } 3030 } else if (hasImplicitComdat(RawLinkage)) { 3031 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3032 } 3033 3034 if (Record.size() > 13 && Record[13] != 0) 3035 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3036 3037 if (Record.size() > 14 && Record[14] != 0) 3038 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3039 3040 ValueList.push_back(Func); 3041 3042 // If this is a function with a body, remember the prototype we are 3043 // creating now, so that we can match up the body with them later. 3044 if (!isProto) { 3045 Func->setIsMaterializable(true); 3046 FunctionsWithBodies.push_back(Func); 3047 DeferredFunctionInfo[Func] = 0; 3048 } 3049 break; 3050 } 3051 // ALIAS: [alias type, aliasee val#, linkage] 3052 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3053 case bitc::MODULE_CODE_ALIAS: { 3054 if (Record.size() < 3) 3055 return error("Invalid record"); 3056 Type *Ty = getTypeByID(Record[0]); 3057 if (!Ty) 3058 return error("Invalid record"); 3059 auto *PTy = dyn_cast<PointerType>(Ty); 3060 if (!PTy) 3061 return error("Invalid type for value"); 3062 3063 auto *NewGA = 3064 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3065 // Old bitcode files didn't have visibility field. 3066 // Local linkage must have default visibility. 3067 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3068 // FIXME: Change to an error if non-default in 4.0. 3069 NewGA->setVisibility(getDecodedVisibility(Record[3])); 3070 if (Record.size() > 4) 3071 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[4])); 3072 else 3073 upgradeDLLImportExportLinkage(NewGA, Record[2]); 3074 if (Record.size() > 5) 3075 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[5])); 3076 if (Record.size() > 6) 3077 NewGA->setUnnamedAddr(Record[6]); 3078 ValueList.push_back(NewGA); 3079 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3080 break; 3081 } 3082 /// MODULE_CODE_PURGEVALS: [numvals] 3083 case bitc::MODULE_CODE_PURGEVALS: 3084 // Trim down the value list to the specified size. 3085 if (Record.size() < 1 || Record[0] > ValueList.size()) 3086 return error("Invalid record"); 3087 ValueList.shrinkTo(Record[0]); 3088 break; 3089 } 3090 Record.clear(); 3091 } 3092 } 3093 3094 std::error_code 3095 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3096 Module *M, bool ShouldLazyLoadMetadata) { 3097 TheModule = M; 3098 3099 if (std::error_code EC = initStream(std::move(Streamer))) 3100 return EC; 3101 3102 // Sniff for the signature. 3103 if (Stream.Read(8) != 'B' || 3104 Stream.Read(8) != 'C' || 3105 Stream.Read(4) != 0x0 || 3106 Stream.Read(4) != 0xC || 3107 Stream.Read(4) != 0xE || 3108 Stream.Read(4) != 0xD) 3109 return error("Invalid bitcode signature"); 3110 3111 // We expect a number of well-defined blocks, though we don't necessarily 3112 // need to understand them all. 3113 while (1) { 3114 if (Stream.AtEndOfStream()) { 3115 // We didn't really read a proper Module. 3116 return error("Malformed IR file"); 3117 } 3118 3119 BitstreamEntry Entry = 3120 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3121 3122 if (Entry.Kind != BitstreamEntry::SubBlock) 3123 return error("Malformed block"); 3124 3125 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3126 return parseModule(false, ShouldLazyLoadMetadata); 3127 3128 if (Stream.SkipBlock()) 3129 return error("Invalid record"); 3130 } 3131 } 3132 3133 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3134 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3135 return error("Invalid record"); 3136 3137 SmallVector<uint64_t, 64> Record; 3138 3139 std::string Triple; 3140 // Read all the records for this module. 3141 while (1) { 3142 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3143 3144 switch (Entry.Kind) { 3145 case BitstreamEntry::SubBlock: // Handled for us already. 3146 case BitstreamEntry::Error: 3147 return error("Malformed block"); 3148 case BitstreamEntry::EndBlock: 3149 return Triple; 3150 case BitstreamEntry::Record: 3151 // The interesting case. 3152 break; 3153 } 3154 3155 // Read a record. 3156 switch (Stream.readRecord(Entry.ID, Record)) { 3157 default: break; // Default behavior, ignore unknown content. 3158 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3159 std::string S; 3160 if (convertToString(Record, 0, S)) 3161 return error("Invalid record"); 3162 Triple = S; 3163 break; 3164 } 3165 } 3166 Record.clear(); 3167 } 3168 llvm_unreachable("Exit infinite loop"); 3169 } 3170 3171 ErrorOr<std::string> BitcodeReader::parseTriple() { 3172 if (std::error_code EC = initStream(nullptr)) 3173 return EC; 3174 3175 // Sniff for the signature. 3176 if (Stream.Read(8) != 'B' || 3177 Stream.Read(8) != 'C' || 3178 Stream.Read(4) != 0x0 || 3179 Stream.Read(4) != 0xC || 3180 Stream.Read(4) != 0xE || 3181 Stream.Read(4) != 0xD) 3182 return error("Invalid bitcode signature"); 3183 3184 // We expect a number of well-defined blocks, though we don't necessarily 3185 // need to understand them all. 3186 while (1) { 3187 BitstreamEntry Entry = Stream.advance(); 3188 3189 switch (Entry.Kind) { 3190 case BitstreamEntry::Error: 3191 return error("Malformed block"); 3192 case BitstreamEntry::EndBlock: 3193 return std::error_code(); 3194 3195 case BitstreamEntry::SubBlock: 3196 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3197 return parseModuleTriple(); 3198 3199 // Ignore other sub-blocks. 3200 if (Stream.SkipBlock()) 3201 return error("Malformed block"); 3202 continue; 3203 3204 case BitstreamEntry::Record: 3205 Stream.skipRecord(Entry.ID); 3206 continue; 3207 } 3208 } 3209 } 3210 3211 /// Parse metadata attachments. 3212 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3213 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3214 return error("Invalid record"); 3215 3216 SmallVector<uint64_t, 64> Record; 3217 while (1) { 3218 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3219 3220 switch (Entry.Kind) { 3221 case BitstreamEntry::SubBlock: // Handled for us already. 3222 case BitstreamEntry::Error: 3223 return error("Malformed block"); 3224 case BitstreamEntry::EndBlock: 3225 return std::error_code(); 3226 case BitstreamEntry::Record: 3227 // The interesting case. 3228 break; 3229 } 3230 3231 // Read a metadata attachment record. 3232 Record.clear(); 3233 switch (Stream.readRecord(Entry.ID, Record)) { 3234 default: // Default behavior: ignore. 3235 break; 3236 case bitc::METADATA_ATTACHMENT: { 3237 unsigned RecordLength = Record.size(); 3238 if (Record.empty()) 3239 return error("Invalid record"); 3240 if (RecordLength % 2 == 0) { 3241 // A function attachment. 3242 for (unsigned I = 0; I != RecordLength; I += 2) { 3243 auto K = MDKindMap.find(Record[I]); 3244 if (K == MDKindMap.end()) 3245 return error("Invalid ID"); 3246 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3247 F.setMetadata(K->second, cast<MDNode>(MD)); 3248 } 3249 continue; 3250 } 3251 3252 // An instruction attachment. 3253 Instruction *Inst = InstructionList[Record[0]]; 3254 for (unsigned i = 1; i != RecordLength; i = i+2) { 3255 unsigned Kind = Record[i]; 3256 DenseMap<unsigned, unsigned>::iterator I = 3257 MDKindMap.find(Kind); 3258 if (I == MDKindMap.end()) 3259 return error("Invalid ID"); 3260 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3261 if (isa<LocalAsMetadata>(Node)) 3262 // Drop the attachment. This used to be legal, but there's no 3263 // upgrade path. 3264 break; 3265 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3266 if (I->second == LLVMContext::MD_tbaa) 3267 InstsWithTBAATag.push_back(Inst); 3268 } 3269 break; 3270 } 3271 } 3272 } 3273 } 3274 3275 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3276 Type *ValType, Type *PtrType) { 3277 if (!isa<PointerType>(PtrType)) 3278 return error(DH, "Load/Store operand is not a pointer type"); 3279 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3280 3281 if (ValType && ValType != ElemType) 3282 return error(DH, "Explicit load/store type does not match pointee type of " 3283 "pointer operand"); 3284 if (!PointerType::isLoadableOrStorableType(ElemType)) 3285 return error(DH, "Cannot load/store from pointer"); 3286 return std::error_code(); 3287 } 3288 3289 /// Lazily parse the specified function body block. 3290 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3291 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3292 return error("Invalid record"); 3293 3294 InstructionList.clear(); 3295 unsigned ModuleValueListSize = ValueList.size(); 3296 unsigned ModuleMDValueListSize = MDValueList.size(); 3297 3298 // Add all the function arguments to the value table. 3299 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3300 ValueList.push_back(I); 3301 3302 unsigned NextValueNo = ValueList.size(); 3303 BasicBlock *CurBB = nullptr; 3304 unsigned CurBBNo = 0; 3305 3306 DebugLoc LastLoc; 3307 auto getLastInstruction = [&]() -> Instruction * { 3308 if (CurBB && !CurBB->empty()) 3309 return &CurBB->back(); 3310 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3311 !FunctionBBs[CurBBNo - 1]->empty()) 3312 return &FunctionBBs[CurBBNo - 1]->back(); 3313 return nullptr; 3314 }; 3315 3316 // Read all the records. 3317 SmallVector<uint64_t, 64> Record; 3318 while (1) { 3319 BitstreamEntry Entry = Stream.advance(); 3320 3321 switch (Entry.Kind) { 3322 case BitstreamEntry::Error: 3323 return error("Malformed block"); 3324 case BitstreamEntry::EndBlock: 3325 goto OutOfRecordLoop; 3326 3327 case BitstreamEntry::SubBlock: 3328 switch (Entry.ID) { 3329 default: // Skip unknown content. 3330 if (Stream.SkipBlock()) 3331 return error("Invalid record"); 3332 break; 3333 case bitc::CONSTANTS_BLOCK_ID: 3334 if (std::error_code EC = parseConstants()) 3335 return EC; 3336 NextValueNo = ValueList.size(); 3337 break; 3338 case bitc::VALUE_SYMTAB_BLOCK_ID: 3339 if (std::error_code EC = parseValueSymbolTable()) 3340 return EC; 3341 break; 3342 case bitc::METADATA_ATTACHMENT_ID: 3343 if (std::error_code EC = parseMetadataAttachment(*F)) 3344 return EC; 3345 break; 3346 case bitc::METADATA_BLOCK_ID: 3347 if (std::error_code EC = parseMetadata()) 3348 return EC; 3349 break; 3350 case bitc::USELIST_BLOCK_ID: 3351 if (std::error_code EC = parseUseLists()) 3352 return EC; 3353 break; 3354 } 3355 continue; 3356 3357 case BitstreamEntry::Record: 3358 // The interesting case. 3359 break; 3360 } 3361 3362 // Read a record. 3363 Record.clear(); 3364 Instruction *I = nullptr; 3365 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3366 switch (BitCode) { 3367 default: // Default behavior: reject 3368 return error("Invalid value"); 3369 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3370 if (Record.size() < 1 || Record[0] == 0) 3371 return error("Invalid record"); 3372 // Create all the basic blocks for the function. 3373 FunctionBBs.resize(Record[0]); 3374 3375 // See if anything took the address of blocks in this function. 3376 auto BBFRI = BasicBlockFwdRefs.find(F); 3377 if (BBFRI == BasicBlockFwdRefs.end()) { 3378 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3379 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3380 } else { 3381 auto &BBRefs = BBFRI->second; 3382 // Check for invalid basic block references. 3383 if (BBRefs.size() > FunctionBBs.size()) 3384 return error("Invalid ID"); 3385 assert(!BBRefs.empty() && "Unexpected empty array"); 3386 assert(!BBRefs.front() && "Invalid reference to entry block"); 3387 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3388 ++I) 3389 if (I < RE && BBRefs[I]) { 3390 BBRefs[I]->insertInto(F); 3391 FunctionBBs[I] = BBRefs[I]; 3392 } else { 3393 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3394 } 3395 3396 // Erase from the table. 3397 BasicBlockFwdRefs.erase(BBFRI); 3398 } 3399 3400 CurBB = FunctionBBs[0]; 3401 continue; 3402 } 3403 3404 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3405 // This record indicates that the last instruction is at the same 3406 // location as the previous instruction with a location. 3407 I = getLastInstruction(); 3408 3409 if (!I) 3410 return error("Invalid record"); 3411 I->setDebugLoc(LastLoc); 3412 I = nullptr; 3413 continue; 3414 3415 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3416 I = getLastInstruction(); 3417 if (!I || Record.size() < 4) 3418 return error("Invalid record"); 3419 3420 unsigned Line = Record[0], Col = Record[1]; 3421 unsigned ScopeID = Record[2], IAID = Record[3]; 3422 3423 MDNode *Scope = nullptr, *IA = nullptr; 3424 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3425 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3426 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3427 I->setDebugLoc(LastLoc); 3428 I = nullptr; 3429 continue; 3430 } 3431 3432 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3433 unsigned OpNum = 0; 3434 Value *LHS, *RHS; 3435 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3436 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3437 OpNum+1 > Record.size()) 3438 return error("Invalid record"); 3439 3440 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3441 if (Opc == -1) 3442 return error("Invalid record"); 3443 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3444 InstructionList.push_back(I); 3445 if (OpNum < Record.size()) { 3446 if (Opc == Instruction::Add || 3447 Opc == Instruction::Sub || 3448 Opc == Instruction::Mul || 3449 Opc == Instruction::Shl) { 3450 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3451 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3452 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3453 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3454 } else if (Opc == Instruction::SDiv || 3455 Opc == Instruction::UDiv || 3456 Opc == Instruction::LShr || 3457 Opc == Instruction::AShr) { 3458 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3459 cast<BinaryOperator>(I)->setIsExact(true); 3460 } else if (isa<FPMathOperator>(I)) { 3461 FastMathFlags FMF; 3462 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3463 FMF.setUnsafeAlgebra(); 3464 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3465 FMF.setNoNaNs(); 3466 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3467 FMF.setNoInfs(); 3468 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3469 FMF.setNoSignedZeros(); 3470 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3471 FMF.setAllowReciprocal(); 3472 if (FMF.any()) 3473 I->setFastMathFlags(FMF); 3474 } 3475 3476 } 3477 break; 3478 } 3479 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3480 unsigned OpNum = 0; 3481 Value *Op; 3482 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3483 OpNum+2 != Record.size()) 3484 return error("Invalid record"); 3485 3486 Type *ResTy = getTypeByID(Record[OpNum]); 3487 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3488 if (Opc == -1 || !ResTy) 3489 return error("Invalid record"); 3490 Instruction *Temp = nullptr; 3491 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3492 if (Temp) { 3493 InstructionList.push_back(Temp); 3494 CurBB->getInstList().push_back(Temp); 3495 } 3496 } else { 3497 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3498 } 3499 InstructionList.push_back(I); 3500 break; 3501 } 3502 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3503 case bitc::FUNC_CODE_INST_GEP_OLD: 3504 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3505 unsigned OpNum = 0; 3506 3507 Type *Ty; 3508 bool InBounds; 3509 3510 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3511 InBounds = Record[OpNum++]; 3512 Ty = getTypeByID(Record[OpNum++]); 3513 } else { 3514 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3515 Ty = nullptr; 3516 } 3517 3518 Value *BasePtr; 3519 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3520 return error("Invalid record"); 3521 3522 if (!Ty) 3523 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3524 ->getElementType(); 3525 else if (Ty != 3526 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3527 ->getElementType()) 3528 return error( 3529 "Explicit gep type does not match pointee type of pointer operand"); 3530 3531 SmallVector<Value*, 16> GEPIdx; 3532 while (OpNum != Record.size()) { 3533 Value *Op; 3534 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3535 return error("Invalid record"); 3536 GEPIdx.push_back(Op); 3537 } 3538 3539 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3540 3541 InstructionList.push_back(I); 3542 if (InBounds) 3543 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3544 break; 3545 } 3546 3547 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3548 // EXTRACTVAL: [opty, opval, n x indices] 3549 unsigned OpNum = 0; 3550 Value *Agg; 3551 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3552 return error("Invalid record"); 3553 3554 unsigned RecSize = Record.size(); 3555 if (OpNum == RecSize) 3556 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3557 3558 SmallVector<unsigned, 4> EXTRACTVALIdx; 3559 Type *CurTy = Agg->getType(); 3560 for (; OpNum != RecSize; ++OpNum) { 3561 bool IsArray = CurTy->isArrayTy(); 3562 bool IsStruct = CurTy->isStructTy(); 3563 uint64_t Index = Record[OpNum]; 3564 3565 if (!IsStruct && !IsArray) 3566 return error("EXTRACTVAL: Invalid type"); 3567 if ((unsigned)Index != Index) 3568 return error("Invalid value"); 3569 if (IsStruct && Index >= CurTy->subtypes().size()) 3570 return error("EXTRACTVAL: Invalid struct index"); 3571 if (IsArray && Index >= CurTy->getArrayNumElements()) 3572 return error("EXTRACTVAL: Invalid array index"); 3573 EXTRACTVALIdx.push_back((unsigned)Index); 3574 3575 if (IsStruct) 3576 CurTy = CurTy->subtypes()[Index]; 3577 else 3578 CurTy = CurTy->subtypes()[0]; 3579 } 3580 3581 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3582 InstructionList.push_back(I); 3583 break; 3584 } 3585 3586 case bitc::FUNC_CODE_INST_INSERTVAL: { 3587 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3588 unsigned OpNum = 0; 3589 Value *Agg; 3590 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3591 return error("Invalid record"); 3592 Value *Val; 3593 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3594 return error("Invalid record"); 3595 3596 unsigned RecSize = Record.size(); 3597 if (OpNum == RecSize) 3598 return error("INSERTVAL: Invalid instruction with 0 indices"); 3599 3600 SmallVector<unsigned, 4> INSERTVALIdx; 3601 Type *CurTy = Agg->getType(); 3602 for (; OpNum != RecSize; ++OpNum) { 3603 bool IsArray = CurTy->isArrayTy(); 3604 bool IsStruct = CurTy->isStructTy(); 3605 uint64_t Index = Record[OpNum]; 3606 3607 if (!IsStruct && !IsArray) 3608 return error("INSERTVAL: Invalid type"); 3609 if ((unsigned)Index != Index) 3610 return error("Invalid value"); 3611 if (IsStruct && Index >= CurTy->subtypes().size()) 3612 return error("INSERTVAL: Invalid struct index"); 3613 if (IsArray && Index >= CurTy->getArrayNumElements()) 3614 return error("INSERTVAL: Invalid array index"); 3615 3616 INSERTVALIdx.push_back((unsigned)Index); 3617 if (IsStruct) 3618 CurTy = CurTy->subtypes()[Index]; 3619 else 3620 CurTy = CurTy->subtypes()[0]; 3621 } 3622 3623 if (CurTy != Val->getType()) 3624 return error("Inserted value type doesn't match aggregate type"); 3625 3626 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3627 InstructionList.push_back(I); 3628 break; 3629 } 3630 3631 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3632 // obsolete form of select 3633 // handles select i1 ... in old bitcode 3634 unsigned OpNum = 0; 3635 Value *TrueVal, *FalseVal, *Cond; 3636 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3637 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3638 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3639 return error("Invalid record"); 3640 3641 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3642 InstructionList.push_back(I); 3643 break; 3644 } 3645 3646 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3647 // new form of select 3648 // handles select i1 or select [N x i1] 3649 unsigned OpNum = 0; 3650 Value *TrueVal, *FalseVal, *Cond; 3651 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3652 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3653 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3654 return error("Invalid record"); 3655 3656 // select condition can be either i1 or [N x i1] 3657 if (VectorType* vector_type = 3658 dyn_cast<VectorType>(Cond->getType())) { 3659 // expect <n x i1> 3660 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3661 return error("Invalid type for value"); 3662 } else { 3663 // expect i1 3664 if (Cond->getType() != Type::getInt1Ty(Context)) 3665 return error("Invalid type for value"); 3666 } 3667 3668 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3669 InstructionList.push_back(I); 3670 break; 3671 } 3672 3673 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3674 unsigned OpNum = 0; 3675 Value *Vec, *Idx; 3676 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3677 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3678 return error("Invalid record"); 3679 if (!Vec->getType()->isVectorTy()) 3680 return error("Invalid type for value"); 3681 I = ExtractElementInst::Create(Vec, Idx); 3682 InstructionList.push_back(I); 3683 break; 3684 } 3685 3686 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3687 unsigned OpNum = 0; 3688 Value *Vec, *Elt, *Idx; 3689 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3690 return error("Invalid record"); 3691 if (!Vec->getType()->isVectorTy()) 3692 return error("Invalid type for value"); 3693 if (popValue(Record, OpNum, NextValueNo, 3694 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3695 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3696 return error("Invalid record"); 3697 I = InsertElementInst::Create(Vec, Elt, Idx); 3698 InstructionList.push_back(I); 3699 break; 3700 } 3701 3702 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3703 unsigned OpNum = 0; 3704 Value *Vec1, *Vec2, *Mask; 3705 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3706 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3707 return error("Invalid record"); 3708 3709 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3710 return error("Invalid record"); 3711 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3712 return error("Invalid type for value"); 3713 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3714 InstructionList.push_back(I); 3715 break; 3716 } 3717 3718 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3719 // Old form of ICmp/FCmp returning bool 3720 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3721 // both legal on vectors but had different behaviour. 3722 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3723 // FCmp/ICmp returning bool or vector of bool 3724 3725 unsigned OpNum = 0; 3726 Value *LHS, *RHS; 3727 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3728 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3729 OpNum+1 != Record.size()) 3730 return error("Invalid record"); 3731 3732 if (LHS->getType()->isFPOrFPVectorTy()) 3733 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3734 else 3735 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3736 InstructionList.push_back(I); 3737 break; 3738 } 3739 3740 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3741 { 3742 unsigned Size = Record.size(); 3743 if (Size == 0) { 3744 I = ReturnInst::Create(Context); 3745 InstructionList.push_back(I); 3746 break; 3747 } 3748 3749 unsigned OpNum = 0; 3750 Value *Op = nullptr; 3751 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3752 return error("Invalid record"); 3753 if (OpNum != Record.size()) 3754 return error("Invalid record"); 3755 3756 I = ReturnInst::Create(Context, Op); 3757 InstructionList.push_back(I); 3758 break; 3759 } 3760 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3761 if (Record.size() != 1 && Record.size() != 3) 3762 return error("Invalid record"); 3763 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3764 if (!TrueDest) 3765 return error("Invalid record"); 3766 3767 if (Record.size() == 1) { 3768 I = BranchInst::Create(TrueDest); 3769 InstructionList.push_back(I); 3770 } 3771 else { 3772 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3773 Value *Cond = getValue(Record, 2, NextValueNo, 3774 Type::getInt1Ty(Context)); 3775 if (!FalseDest || !Cond) 3776 return error("Invalid record"); 3777 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3778 InstructionList.push_back(I); 3779 } 3780 break; 3781 } 3782 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3783 // Check magic 3784 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3785 // "New" SwitchInst format with case ranges. The changes to write this 3786 // format were reverted but we still recognize bitcode that uses it. 3787 // Hopefully someday we will have support for case ranges and can use 3788 // this format again. 3789 3790 Type *OpTy = getTypeByID(Record[1]); 3791 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3792 3793 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3794 BasicBlock *Default = getBasicBlock(Record[3]); 3795 if (!OpTy || !Cond || !Default) 3796 return error("Invalid record"); 3797 3798 unsigned NumCases = Record[4]; 3799 3800 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3801 InstructionList.push_back(SI); 3802 3803 unsigned CurIdx = 5; 3804 for (unsigned i = 0; i != NumCases; ++i) { 3805 SmallVector<ConstantInt*, 1> CaseVals; 3806 unsigned NumItems = Record[CurIdx++]; 3807 for (unsigned ci = 0; ci != NumItems; ++ci) { 3808 bool isSingleNumber = Record[CurIdx++]; 3809 3810 APInt Low; 3811 unsigned ActiveWords = 1; 3812 if (ValueBitWidth > 64) 3813 ActiveWords = Record[CurIdx++]; 3814 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3815 ValueBitWidth); 3816 CurIdx += ActiveWords; 3817 3818 if (!isSingleNumber) { 3819 ActiveWords = 1; 3820 if (ValueBitWidth > 64) 3821 ActiveWords = Record[CurIdx++]; 3822 APInt High = readWideAPInt( 3823 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3824 CurIdx += ActiveWords; 3825 3826 // FIXME: It is not clear whether values in the range should be 3827 // compared as signed or unsigned values. The partially 3828 // implemented changes that used this format in the past used 3829 // unsigned comparisons. 3830 for ( ; Low.ule(High); ++Low) 3831 CaseVals.push_back(ConstantInt::get(Context, Low)); 3832 } else 3833 CaseVals.push_back(ConstantInt::get(Context, Low)); 3834 } 3835 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3836 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3837 cve = CaseVals.end(); cvi != cve; ++cvi) 3838 SI->addCase(*cvi, DestBB); 3839 } 3840 I = SI; 3841 break; 3842 } 3843 3844 // Old SwitchInst format without case ranges. 3845 3846 if (Record.size() < 3 || (Record.size() & 1) == 0) 3847 return error("Invalid record"); 3848 Type *OpTy = getTypeByID(Record[0]); 3849 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3850 BasicBlock *Default = getBasicBlock(Record[2]); 3851 if (!OpTy || !Cond || !Default) 3852 return error("Invalid record"); 3853 unsigned NumCases = (Record.size()-3)/2; 3854 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3855 InstructionList.push_back(SI); 3856 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3857 ConstantInt *CaseVal = 3858 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3859 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3860 if (!CaseVal || !DestBB) { 3861 delete SI; 3862 return error("Invalid record"); 3863 } 3864 SI->addCase(CaseVal, DestBB); 3865 } 3866 I = SI; 3867 break; 3868 } 3869 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3870 if (Record.size() < 2) 3871 return error("Invalid record"); 3872 Type *OpTy = getTypeByID(Record[0]); 3873 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3874 if (!OpTy || !Address) 3875 return error("Invalid record"); 3876 unsigned NumDests = Record.size()-2; 3877 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3878 InstructionList.push_back(IBI); 3879 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3880 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3881 IBI->addDestination(DestBB); 3882 } else { 3883 delete IBI; 3884 return error("Invalid record"); 3885 } 3886 } 3887 I = IBI; 3888 break; 3889 } 3890 3891 case bitc::FUNC_CODE_INST_INVOKE: { 3892 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3893 if (Record.size() < 4) 3894 return error("Invalid record"); 3895 unsigned OpNum = 0; 3896 AttributeSet PAL = getAttributes(Record[OpNum++]); 3897 unsigned CCInfo = Record[OpNum++]; 3898 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3899 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3900 3901 FunctionType *FTy = nullptr; 3902 if (CCInfo >> 13 & 1 && 3903 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3904 return error("Explicit invoke type is not a function type"); 3905 3906 Value *Callee; 3907 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3908 return error("Invalid record"); 3909 3910 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3911 if (!CalleeTy) 3912 return error("Callee is not a pointer"); 3913 if (!FTy) { 3914 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3915 if (!FTy) 3916 return error("Callee is not of pointer to function type"); 3917 } else if (CalleeTy->getElementType() != FTy) 3918 return error("Explicit invoke type does not match pointee type of " 3919 "callee operand"); 3920 if (Record.size() < FTy->getNumParams() + OpNum) 3921 return error("Insufficient operands to call"); 3922 3923 SmallVector<Value*, 16> Ops; 3924 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3925 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3926 FTy->getParamType(i))); 3927 if (!Ops.back()) 3928 return error("Invalid record"); 3929 } 3930 3931 if (!FTy->isVarArg()) { 3932 if (Record.size() != OpNum) 3933 return error("Invalid record"); 3934 } else { 3935 // Read type/value pairs for varargs params. 3936 while (OpNum != Record.size()) { 3937 Value *Op; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3939 return error("Invalid record"); 3940 Ops.push_back(Op); 3941 } 3942 } 3943 3944 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3945 InstructionList.push_back(I); 3946 cast<InvokeInst>(I) 3947 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3948 cast<InvokeInst>(I)->setAttributes(PAL); 3949 break; 3950 } 3951 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3952 unsigned Idx = 0; 3953 Value *Val = nullptr; 3954 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3955 return error("Invalid record"); 3956 I = ResumeInst::Create(Val); 3957 InstructionList.push_back(I); 3958 break; 3959 } 3960 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3961 I = new UnreachableInst(Context); 3962 InstructionList.push_back(I); 3963 break; 3964 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3965 if (Record.size() < 1 || ((Record.size()-1)&1)) 3966 return error("Invalid record"); 3967 Type *Ty = getTypeByID(Record[0]); 3968 if (!Ty) 3969 return error("Invalid record"); 3970 3971 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3972 InstructionList.push_back(PN); 3973 3974 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3975 Value *V; 3976 // With the new function encoding, it is possible that operands have 3977 // negative IDs (for forward references). Use a signed VBR 3978 // representation to keep the encoding small. 3979 if (UseRelativeIDs) 3980 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3981 else 3982 V = getValue(Record, 1+i, NextValueNo, Ty); 3983 BasicBlock *BB = getBasicBlock(Record[2+i]); 3984 if (!V || !BB) 3985 return error("Invalid record"); 3986 PN->addIncoming(V, BB); 3987 } 3988 I = PN; 3989 break; 3990 } 3991 3992 case bitc::FUNC_CODE_INST_LANDINGPAD: 3993 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3994 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3995 unsigned Idx = 0; 3996 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3997 if (Record.size() < 3) 3998 return error("Invalid record"); 3999 } else { 4000 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4001 if (Record.size() < 4) 4002 return error("Invalid record"); 4003 } 4004 Type *Ty = getTypeByID(Record[Idx++]); 4005 if (!Ty) 4006 return error("Invalid record"); 4007 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4008 Value *PersFn = nullptr; 4009 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4010 return error("Invalid record"); 4011 4012 if (!F->hasPersonalityFn()) 4013 F->setPersonalityFn(cast<Constant>(PersFn)); 4014 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4015 return error("Personality function mismatch"); 4016 } 4017 4018 bool IsCleanup = !!Record[Idx++]; 4019 unsigned NumClauses = Record[Idx++]; 4020 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4021 LP->setCleanup(IsCleanup); 4022 for (unsigned J = 0; J != NumClauses; ++J) { 4023 LandingPadInst::ClauseType CT = 4024 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4025 Value *Val; 4026 4027 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4028 delete LP; 4029 return error("Invalid record"); 4030 } 4031 4032 assert((CT != LandingPadInst::Catch || 4033 !isa<ArrayType>(Val->getType())) && 4034 "Catch clause has a invalid type!"); 4035 assert((CT != LandingPadInst::Filter || 4036 isa<ArrayType>(Val->getType())) && 4037 "Filter clause has invalid type!"); 4038 LP->addClause(cast<Constant>(Val)); 4039 } 4040 4041 I = LP; 4042 InstructionList.push_back(I); 4043 break; 4044 } 4045 4046 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4047 if (Record.size() != 4) 4048 return error("Invalid record"); 4049 uint64_t AlignRecord = Record[3]; 4050 const uint64_t InAllocaMask = uint64_t(1) << 5; 4051 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4052 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4053 bool InAlloca = AlignRecord & InAllocaMask; 4054 Type *Ty = getTypeByID(Record[0]); 4055 if ((AlignRecord & ExplicitTypeMask) == 0) { 4056 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4057 if (!PTy) 4058 return error("Old-style alloca with a non-pointer type"); 4059 Ty = PTy->getElementType(); 4060 } 4061 Type *OpTy = getTypeByID(Record[1]); 4062 Value *Size = getFnValueByID(Record[2], OpTy); 4063 unsigned Align; 4064 if (std::error_code EC = 4065 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4066 return EC; 4067 } 4068 if (!Ty || !Size) 4069 return error("Invalid record"); 4070 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4071 AI->setUsedWithInAlloca(InAlloca); 4072 I = AI; 4073 InstructionList.push_back(I); 4074 break; 4075 } 4076 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4077 unsigned OpNum = 0; 4078 Value *Op; 4079 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4080 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4081 return error("Invalid record"); 4082 4083 Type *Ty = nullptr; 4084 if (OpNum + 3 == Record.size()) 4085 Ty = getTypeByID(Record[OpNum++]); 4086 if (std::error_code EC = 4087 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4088 return EC; 4089 if (!Ty) 4090 Ty = cast<PointerType>(Op->getType())->getElementType(); 4091 4092 unsigned Align; 4093 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4094 return EC; 4095 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4096 4097 InstructionList.push_back(I); 4098 break; 4099 } 4100 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4101 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4102 unsigned OpNum = 0; 4103 Value *Op; 4104 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4105 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4106 return error("Invalid record"); 4107 4108 Type *Ty = nullptr; 4109 if (OpNum + 5 == Record.size()) 4110 Ty = getTypeByID(Record[OpNum++]); 4111 if (std::error_code EC = 4112 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4113 return EC; 4114 if (!Ty) 4115 Ty = cast<PointerType>(Op->getType())->getElementType(); 4116 4117 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4118 if (Ordering == NotAtomic || Ordering == Release || 4119 Ordering == AcquireRelease) 4120 return error("Invalid record"); 4121 if (Ordering != NotAtomic && Record[OpNum] == 0) 4122 return error("Invalid record"); 4123 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4124 4125 unsigned Align; 4126 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4127 return EC; 4128 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4129 4130 InstructionList.push_back(I); 4131 break; 4132 } 4133 case bitc::FUNC_CODE_INST_STORE: 4134 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4135 unsigned OpNum = 0; 4136 Value *Val, *Ptr; 4137 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4138 (BitCode == bitc::FUNC_CODE_INST_STORE 4139 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4140 : popValue(Record, OpNum, NextValueNo, 4141 cast<PointerType>(Ptr->getType())->getElementType(), 4142 Val)) || 4143 OpNum + 2 != Record.size()) 4144 return error("Invalid record"); 4145 4146 if (std::error_code EC = typeCheckLoadStoreInst( 4147 DiagnosticHandler, Val->getType(), Ptr->getType())) 4148 return EC; 4149 unsigned Align; 4150 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4151 return EC; 4152 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4153 InstructionList.push_back(I); 4154 break; 4155 } 4156 case bitc::FUNC_CODE_INST_STOREATOMIC: 4157 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4158 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4159 unsigned OpNum = 0; 4160 Value *Val, *Ptr; 4161 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4162 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4163 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4164 : popValue(Record, OpNum, NextValueNo, 4165 cast<PointerType>(Ptr->getType())->getElementType(), 4166 Val)) || 4167 OpNum + 4 != Record.size()) 4168 return error("Invalid record"); 4169 4170 if (std::error_code EC = typeCheckLoadStoreInst( 4171 DiagnosticHandler, Val->getType(), Ptr->getType())) 4172 return EC; 4173 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4174 if (Ordering == NotAtomic || Ordering == Acquire || 4175 Ordering == AcquireRelease) 4176 return error("Invalid record"); 4177 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4178 if (Ordering != NotAtomic && Record[OpNum] == 0) 4179 return error("Invalid record"); 4180 4181 unsigned Align; 4182 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4183 return EC; 4184 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4185 InstructionList.push_back(I); 4186 break; 4187 } 4188 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4189 case bitc::FUNC_CODE_INST_CMPXCHG: { 4190 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4191 // failureordering?, isweak?] 4192 unsigned OpNum = 0; 4193 Value *Ptr, *Cmp, *New; 4194 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4195 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4196 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4197 : popValue(Record, OpNum, NextValueNo, 4198 cast<PointerType>(Ptr->getType())->getElementType(), 4199 Cmp)) || 4200 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4201 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4202 return error("Invalid record"); 4203 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4204 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4205 return error("Invalid record"); 4206 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4207 4208 if (std::error_code EC = typeCheckLoadStoreInst( 4209 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4210 return EC; 4211 AtomicOrdering FailureOrdering; 4212 if (Record.size() < 7) 4213 FailureOrdering = 4214 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4215 else 4216 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4217 4218 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4219 SynchScope); 4220 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4221 4222 if (Record.size() < 8) { 4223 // Before weak cmpxchgs existed, the instruction simply returned the 4224 // value loaded from memory, so bitcode files from that era will be 4225 // expecting the first component of a modern cmpxchg. 4226 CurBB->getInstList().push_back(I); 4227 I = ExtractValueInst::Create(I, 0); 4228 } else { 4229 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4230 } 4231 4232 InstructionList.push_back(I); 4233 break; 4234 } 4235 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4236 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4237 unsigned OpNum = 0; 4238 Value *Ptr, *Val; 4239 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4240 popValue(Record, OpNum, NextValueNo, 4241 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4242 OpNum+4 != Record.size()) 4243 return error("Invalid record"); 4244 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4245 if (Operation < AtomicRMWInst::FIRST_BINOP || 4246 Operation > AtomicRMWInst::LAST_BINOP) 4247 return error("Invalid record"); 4248 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4249 if (Ordering == NotAtomic || Ordering == Unordered) 4250 return error("Invalid record"); 4251 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4252 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4253 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4254 InstructionList.push_back(I); 4255 break; 4256 } 4257 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4258 if (2 != Record.size()) 4259 return error("Invalid record"); 4260 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4261 if (Ordering == NotAtomic || Ordering == Unordered || 4262 Ordering == Monotonic) 4263 return error("Invalid record"); 4264 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4265 I = new FenceInst(Context, Ordering, SynchScope); 4266 InstructionList.push_back(I); 4267 break; 4268 } 4269 case bitc::FUNC_CODE_INST_CALL: { 4270 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4271 if (Record.size() < 3) 4272 return error("Invalid record"); 4273 4274 unsigned OpNum = 0; 4275 AttributeSet PAL = getAttributes(Record[OpNum++]); 4276 unsigned CCInfo = Record[OpNum++]; 4277 4278 FunctionType *FTy = nullptr; 4279 if (CCInfo >> 15 & 1 && 4280 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4281 return error("Explicit call type is not a function type"); 4282 4283 Value *Callee; 4284 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4285 return error("Invalid record"); 4286 4287 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4288 if (!OpTy) 4289 return error("Callee is not a pointer type"); 4290 if (!FTy) { 4291 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4292 if (!FTy) 4293 return error("Callee is not of pointer to function type"); 4294 } else if (OpTy->getElementType() != FTy) 4295 return error("Explicit call type does not match pointee type of " 4296 "callee operand"); 4297 if (Record.size() < FTy->getNumParams() + OpNum) 4298 return error("Insufficient operands to call"); 4299 4300 SmallVector<Value*, 16> Args; 4301 // Read the fixed params. 4302 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4303 if (FTy->getParamType(i)->isLabelTy()) 4304 Args.push_back(getBasicBlock(Record[OpNum])); 4305 else 4306 Args.push_back(getValue(Record, OpNum, NextValueNo, 4307 FTy->getParamType(i))); 4308 if (!Args.back()) 4309 return error("Invalid record"); 4310 } 4311 4312 // Read type/value pairs for varargs params. 4313 if (!FTy->isVarArg()) { 4314 if (OpNum != Record.size()) 4315 return error("Invalid record"); 4316 } else { 4317 while (OpNum != Record.size()) { 4318 Value *Op; 4319 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4320 return error("Invalid record"); 4321 Args.push_back(Op); 4322 } 4323 } 4324 4325 I = CallInst::Create(FTy, Callee, Args); 4326 InstructionList.push_back(I); 4327 cast<CallInst>(I)->setCallingConv( 4328 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4329 CallInst::TailCallKind TCK = CallInst::TCK_None; 4330 if (CCInfo & 1) 4331 TCK = CallInst::TCK_Tail; 4332 if (CCInfo & (1 << 14)) 4333 TCK = CallInst::TCK_MustTail; 4334 cast<CallInst>(I)->setTailCallKind(TCK); 4335 cast<CallInst>(I)->setAttributes(PAL); 4336 break; 4337 } 4338 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4339 if (Record.size() < 3) 4340 return error("Invalid record"); 4341 Type *OpTy = getTypeByID(Record[0]); 4342 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4343 Type *ResTy = getTypeByID(Record[2]); 4344 if (!OpTy || !Op || !ResTy) 4345 return error("Invalid record"); 4346 I = new VAArgInst(Op, ResTy); 4347 InstructionList.push_back(I); 4348 break; 4349 } 4350 } 4351 4352 // Add instruction to end of current BB. If there is no current BB, reject 4353 // this file. 4354 if (!CurBB) { 4355 delete I; 4356 return error("Invalid instruction with no BB"); 4357 } 4358 CurBB->getInstList().push_back(I); 4359 4360 // If this was a terminator instruction, move to the next block. 4361 if (isa<TerminatorInst>(I)) { 4362 ++CurBBNo; 4363 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4364 } 4365 4366 // Non-void values get registered in the value table for future use. 4367 if (I && !I->getType()->isVoidTy()) 4368 ValueList.assignValue(I, NextValueNo++); 4369 } 4370 4371 OutOfRecordLoop: 4372 4373 // Check the function list for unresolved values. 4374 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4375 if (!A->getParent()) { 4376 // We found at least one unresolved value. Nuke them all to avoid leaks. 4377 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4378 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4379 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4380 delete A; 4381 } 4382 } 4383 return error("Never resolved value found in function"); 4384 } 4385 } 4386 4387 // FIXME: Check for unresolved forward-declared metadata references 4388 // and clean up leaks. 4389 4390 // Trim the value list down to the size it was before we parsed this function. 4391 ValueList.shrinkTo(ModuleValueListSize); 4392 MDValueList.shrinkTo(ModuleMDValueListSize); 4393 std::vector<BasicBlock*>().swap(FunctionBBs); 4394 return std::error_code(); 4395 } 4396 4397 /// Find the function body in the bitcode stream 4398 std::error_code BitcodeReader::findFunctionInStream( 4399 Function *F, 4400 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4401 while (DeferredFunctionInfoIterator->second == 0) { 4402 if (Stream.AtEndOfStream()) 4403 return error("Could not find function in stream"); 4404 // ParseModule will parse the next body in the stream and set its 4405 // position in the DeferredFunctionInfo map. 4406 if (std::error_code EC = parseModule(true)) 4407 return EC; 4408 } 4409 return std::error_code(); 4410 } 4411 4412 //===----------------------------------------------------------------------===// 4413 // GVMaterializer implementation 4414 //===----------------------------------------------------------------------===// 4415 4416 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4417 4418 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4419 if (std::error_code EC = materializeMetadata()) 4420 return EC; 4421 4422 Function *F = dyn_cast<Function>(GV); 4423 // If it's not a function or is already material, ignore the request. 4424 if (!F || !F->isMaterializable()) 4425 return std::error_code(); 4426 4427 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4428 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4429 // If its position is recorded as 0, its body is somewhere in the stream 4430 // but we haven't seen it yet. 4431 if (DFII->second == 0) 4432 if (std::error_code EC = findFunctionInStream(F, DFII)) 4433 return EC; 4434 4435 // Move the bit stream to the saved position of the deferred function body. 4436 Stream.JumpToBit(DFII->second); 4437 4438 if (std::error_code EC = parseFunctionBody(F)) 4439 return EC; 4440 F->setIsMaterializable(false); 4441 4442 if (StripDebugInfo) 4443 stripDebugInfo(*F); 4444 4445 // Upgrade any old intrinsic calls in the function. 4446 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4447 E = UpgradedIntrinsics.end(); I != E; ++I) { 4448 if (I->first != I->second) { 4449 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4450 UI != UE;) { 4451 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4452 UpgradeIntrinsicCall(CI, I->second); 4453 } 4454 } 4455 } 4456 4457 // Bring in any functions that this function forward-referenced via 4458 // blockaddresses. 4459 return materializeForwardReferencedFunctions(); 4460 } 4461 4462 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4463 const Function *F = dyn_cast<Function>(GV); 4464 if (!F || F->isDeclaration()) 4465 return false; 4466 4467 // Dematerializing F would leave dangling references that wouldn't be 4468 // reconnected on re-materialization. 4469 if (BlockAddressesTaken.count(F)) 4470 return false; 4471 4472 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4473 } 4474 4475 void BitcodeReader::dematerialize(GlobalValue *GV) { 4476 Function *F = dyn_cast<Function>(GV); 4477 // If this function isn't dematerializable, this is a noop. 4478 if (!F || !isDematerializable(F)) 4479 return; 4480 4481 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4482 4483 // Just forget the function body, we can remat it later. 4484 F->dropAllReferences(); 4485 F->setIsMaterializable(true); 4486 } 4487 4488 std::error_code BitcodeReader::materializeModule(Module *M) { 4489 assert(M == TheModule && 4490 "Can only Materialize the Module this BitcodeReader is attached to."); 4491 4492 if (std::error_code EC = materializeMetadata()) 4493 return EC; 4494 4495 // Promise to materialize all forward references. 4496 WillMaterializeAllForwardRefs = true; 4497 4498 // Iterate over the module, deserializing any functions that are still on 4499 // disk. 4500 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4501 F != E; ++F) { 4502 if (std::error_code EC = materialize(F)) 4503 return EC; 4504 } 4505 // At this point, if there are any function bodies, the current bit is 4506 // pointing to the END_BLOCK record after them. Now make sure the rest 4507 // of the bits in the module have been read. 4508 if (NextUnreadBit) 4509 parseModule(true); 4510 4511 // Check that all block address forward references got resolved (as we 4512 // promised above). 4513 if (!BasicBlockFwdRefs.empty()) 4514 return error("Never resolved function from blockaddress"); 4515 4516 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4517 // delete the old functions to clean up. We can't do this unless the entire 4518 // module is materialized because there could always be another function body 4519 // with calls to the old function. 4520 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4521 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4522 if (I->first != I->second) { 4523 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4524 UI != UE;) { 4525 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4526 UpgradeIntrinsicCall(CI, I->second); 4527 } 4528 if (!I->first->use_empty()) 4529 I->first->replaceAllUsesWith(I->second); 4530 I->first->eraseFromParent(); 4531 } 4532 } 4533 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4534 4535 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4536 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4537 4538 UpgradeDebugInfo(*M); 4539 return std::error_code(); 4540 } 4541 4542 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4543 return IdentifiedStructTypes; 4544 } 4545 4546 std::error_code 4547 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 4548 if (Streamer) 4549 return initLazyStream(std::move(Streamer)); 4550 return initStreamFromBuffer(); 4551 } 4552 4553 std::error_code BitcodeReader::initStreamFromBuffer() { 4554 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4555 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4556 4557 if (Buffer->getBufferSize() & 3) 4558 return error("Invalid bitcode signature"); 4559 4560 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4561 // The magic number is 0x0B17C0DE stored in little endian. 4562 if (isBitcodeWrapper(BufPtr, BufEnd)) 4563 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4564 return error("Invalid bitcode wrapper header"); 4565 4566 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4567 Stream.init(&*StreamFile); 4568 4569 return std::error_code(); 4570 } 4571 4572 std::error_code 4573 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 4574 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4575 // see it. 4576 auto OwnedBytes = 4577 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 4578 StreamingMemoryObject &Bytes = *OwnedBytes; 4579 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4580 Stream.init(&*StreamFile); 4581 4582 unsigned char buf[16]; 4583 if (Bytes.readBytes(buf, 16, 0) != 16) 4584 return error("Invalid bitcode signature"); 4585 4586 if (!isBitcode(buf, buf + 16)) 4587 return error("Invalid bitcode signature"); 4588 4589 if (isBitcodeWrapper(buf, buf + 4)) { 4590 const unsigned char *bitcodeStart = buf; 4591 const unsigned char *bitcodeEnd = buf + 16; 4592 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4593 Bytes.dropLeadingBytes(bitcodeStart - buf); 4594 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4595 } 4596 return std::error_code(); 4597 } 4598 4599 namespace { 4600 class BitcodeErrorCategoryType : public std::error_category { 4601 const char *name() const LLVM_NOEXCEPT override { 4602 return "llvm.bitcode"; 4603 } 4604 std::string message(int IE) const override { 4605 BitcodeError E = static_cast<BitcodeError>(IE); 4606 switch (E) { 4607 case BitcodeError::InvalidBitcodeSignature: 4608 return "Invalid bitcode signature"; 4609 case BitcodeError::CorruptedBitcode: 4610 return "Corrupted bitcode"; 4611 } 4612 llvm_unreachable("Unknown error type!"); 4613 } 4614 }; 4615 } // namespace 4616 4617 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4618 4619 const std::error_category &llvm::BitcodeErrorCategory() { 4620 return *ErrorCategory; 4621 } 4622 4623 //===----------------------------------------------------------------------===// 4624 // External interface 4625 //===----------------------------------------------------------------------===// 4626 4627 static ErrorOr<std::unique_ptr<Module>> 4628 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 4629 BitcodeReader *R, LLVMContext &Context, 4630 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 4631 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4632 M->setMaterializer(R); 4633 4634 auto cleanupOnError = [&](std::error_code EC) { 4635 R->releaseBuffer(); // Never take ownership on error. 4636 return EC; 4637 }; 4638 4639 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4640 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 4641 ShouldLazyLoadMetadata)) 4642 return cleanupOnError(EC); 4643 4644 if (MaterializeAll) { 4645 // Read in the entire module, and destroy the BitcodeReader. 4646 if (std::error_code EC = M->materializeAllPermanently()) 4647 return cleanupOnError(EC); 4648 } else { 4649 // Resolve forward references from blockaddresses. 4650 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4651 return cleanupOnError(EC); 4652 } 4653 return std::move(M); 4654 } 4655 4656 /// \brief Get a lazy one-at-time loading module from bitcode. 4657 /// 4658 /// This isn't always used in a lazy context. In particular, it's also used by 4659 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4660 /// in forward-referenced functions from block address references. 4661 /// 4662 /// \param[in] MaterializeAll Set to \c true if we should materialize 4663 /// everything. 4664 static ErrorOr<std::unique_ptr<Module>> 4665 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4666 LLVMContext &Context, bool MaterializeAll, 4667 DiagnosticHandlerFunction DiagnosticHandler, 4668 bool ShouldLazyLoadMetadata = false) { 4669 BitcodeReader *R = 4670 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4671 4672 ErrorOr<std::unique_ptr<Module>> Ret = 4673 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 4674 MaterializeAll, ShouldLazyLoadMetadata); 4675 if (!Ret) 4676 return Ret; 4677 4678 Buffer.release(); // The BitcodeReader owns it now. 4679 return Ret; 4680 } 4681 4682 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 4683 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 4684 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 4685 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4686 DiagnosticHandler, ShouldLazyLoadMetadata); 4687 } 4688 4689 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 4690 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 4691 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 4692 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4693 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 4694 4695 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 4696 false); 4697 } 4698 4699 ErrorOr<std::unique_ptr<Module>> 4700 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4701 DiagnosticHandlerFunction DiagnosticHandler) { 4702 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4703 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 4704 DiagnosticHandler); 4705 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4706 // written. We must defer until the Module has been fully materialized. 4707 } 4708 4709 std::string 4710 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4711 DiagnosticHandlerFunction DiagnosticHandler) { 4712 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4713 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4714 DiagnosticHandler); 4715 ErrorOr<std::string> Triple = R->parseTriple(); 4716 if (Triple.getError()) 4717 return ""; 4718 return Triple.get(); 4719 } 4720