1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 Error readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type *> TypeList; 487 /// Track type IDs of contained types. Order is the same as the contained 488 /// types of a Type*. This is used during upgrades of typed pointer IR in 489 /// opaque pointer mode. 490 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 491 DenseMap<Function *, unsigned> FunctionTypeIDs; 492 BitcodeReaderValueList ValueList; 493 Optional<MetadataLoader> MDLoader; 494 std::vector<Comdat *> ComdatList; 495 DenseSet<GlobalObject *> ImplicitComdatObjects; 496 SmallVector<Instruction *, 64> InstructionList; 497 498 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 499 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 500 501 struct FunctionOperandInfo { 502 Function *F; 503 unsigned PersonalityFn; 504 unsigned Prefix; 505 unsigned Prologue; 506 }; 507 std::vector<FunctionOperandInfo> FunctionOperands; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto( 582 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 583 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 584 585 static uint64_t decodeSignRotatedValue(uint64_t V); 586 587 /// Materialize any deferred Metadata block. 588 Error materializeMetadata() override; 589 590 void setStripDebugInfo() override; 591 592 private: 593 std::vector<StructType *> IdentifiedStructTypes; 594 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 595 StructType *createIdentifiedStructType(LLVMContext &Context); 596 597 static constexpr unsigned InvalidTypeID = ~0u; 598 /// Placeholder for value type IDs we don't yet determine. 599 static constexpr unsigned TODOTypeID = InvalidTypeID - 1; 600 601 Type *getTypeByID(unsigned ID); 602 Type *getPtrElementTypeByID(unsigned ID); 603 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 604 605 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) { 606 if (Ty && Ty->isMetadataTy()) 607 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 608 return ValueList.getValueFwdRef(ID, Ty, TyID); 609 } 610 611 Metadata *getFnMetadataByID(unsigned ID) { 612 return MDLoader->getMetadataFwdRefOrLoad(ID); 613 } 614 615 BasicBlock *getBasicBlock(unsigned ID) const { 616 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 617 return FunctionBBs[ID]; 618 } 619 620 AttributeList getAttributes(unsigned i) const { 621 if (i-1 < MAttributes.size()) 622 return MAttributes[i-1]; 623 return AttributeList(); 624 } 625 626 /// Read a value/type pair out of the specified record from slot 'Slot'. 627 /// Increment Slot past the number of slots used in the record. Return true on 628 /// failure. 629 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 630 unsigned InstNum, Value *&ResVal, unsigned &TypeID) { 631 if (Slot == Record.size()) return true; 632 unsigned ValNo = (unsigned)Record[Slot++]; 633 // Adjust the ValNo, if it was encoded relative to the InstNum. 634 if (UseRelativeIDs) 635 ValNo = InstNum - ValNo; 636 if (ValNo < InstNum) { 637 // If this is not a forward reference, just return the value we already 638 // have. 639 TypeID = ValueList.getTypeID(ValNo); 640 ResVal = getFnValueByID(ValNo, nullptr, TypeID); 641 return ResVal == nullptr; 642 } 643 if (Slot == Record.size()) 644 return true; 645 646 TypeID = (unsigned)Record[Slot++]; 647 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID); 648 return ResVal == nullptr; 649 } 650 651 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 652 /// past the number of slots used by the value in the record. Return true if 653 /// there is an error. 654 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 655 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 656 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal)) 657 return true; 658 // All values currently take a single record slot. 659 ++Slot; 660 return false; 661 } 662 663 /// Like popValue, but does not increment the Slot number. 664 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 666 ResVal = getValue(Record, Slot, InstNum, Ty, TyID); 667 return ResVal == nullptr; 668 } 669 670 /// Version of getValue that returns ResVal directly, or 0 if there is an 671 /// error. 672 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty, unsigned TyID) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)Record[Slot]; 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty, TyID); 680 } 681 682 /// Like getValue, but decodes signed VBRs. 683 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 684 unsigned InstNum, Type *Ty, unsigned TyID) { 685 if (Slot == Record.size()) return nullptr; 686 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 687 // Adjust the ValNo, if it was encoded relative to the InstNum. 688 if (UseRelativeIDs) 689 ValNo = InstNum - ValNo; 690 return getFnValueByID(ValNo, Ty, TyID); 691 } 692 693 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 694 /// corresponding argument's pointee type. Also upgrades intrinsics that now 695 /// require an elementtype attribute. 696 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 697 698 /// Converts alignment exponent (i.e. power of two (or zero)) to the 699 /// corresponding alignment to use. If alignment is too large, returns 700 /// a corresponding error code. 701 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 702 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 703 Error parseModule( 704 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 705 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 706 707 Error parseComdatRecord(ArrayRef<uint64_t> Record); 708 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 709 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 710 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 711 ArrayRef<uint64_t> Record); 712 713 Error parseAttributeBlock(); 714 Error parseAttributeGroupBlock(); 715 Error parseTypeTable(); 716 Error parseTypeTableBody(); 717 Error parseOperandBundleTags(); 718 Error parseSyncScopeNames(); 719 720 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 721 unsigned NameIndex, Triple &TT); 722 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 723 ArrayRef<uint64_t> Record); 724 Error parseValueSymbolTable(uint64_t Offset = 0); 725 Error parseGlobalValueSymbolTable(); 726 Error parseConstants(); 727 Error rememberAndSkipFunctionBodies(); 728 Error rememberAndSkipFunctionBody(); 729 /// Save the positions of the Metadata blocks and skip parsing the blocks. 730 Error rememberAndSkipMetadata(); 731 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 732 Error parseFunctionBody(Function *F); 733 Error globalCleanup(); 734 Error resolveGlobalAndIndirectSymbolInits(); 735 Error parseUseLists(); 736 Error findFunctionInStream( 737 Function *F, 738 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 739 740 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 741 }; 742 743 /// Class to manage reading and parsing function summary index bitcode 744 /// files/sections. 745 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 746 /// The module index built during parsing. 747 ModuleSummaryIndex &TheIndex; 748 749 /// Indicates whether we have encountered a global value summary section 750 /// yet during parsing. 751 bool SeenGlobalValSummary = false; 752 753 /// Indicates whether we have already parsed the VST, used for error checking. 754 bool SeenValueSymbolTable = false; 755 756 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 757 /// Used to enable on-demand parsing of the VST. 758 uint64_t VSTOffset = 0; 759 760 // Map to save ValueId to ValueInfo association that was recorded in the 761 // ValueSymbolTable. It is used after the VST is parsed to convert 762 // call graph edges read from the function summary from referencing 763 // callees by their ValueId to using the ValueInfo instead, which is how 764 // they are recorded in the summary index being built. 765 // We save a GUID which refers to the same global as the ValueInfo, but 766 // ignoring the linkage, i.e. for values other than local linkage they are 767 // identical. 768 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 769 ValueIdToValueInfoMap; 770 771 /// Map populated during module path string table parsing, from the 772 /// module ID to a string reference owned by the index's module 773 /// path string table, used to correlate with combined index 774 /// summary records. 775 DenseMap<uint64_t, StringRef> ModuleIdMap; 776 777 /// Original source file name recorded in a bitcode record. 778 std::string SourceFileName; 779 780 /// The string identifier given to this module by the client, normally the 781 /// path to the bitcode file. 782 StringRef ModulePath; 783 784 /// For per-module summary indexes, the unique numerical identifier given to 785 /// this module by the client. 786 unsigned ModuleId; 787 788 public: 789 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 790 ModuleSummaryIndex &TheIndex, 791 StringRef ModulePath, unsigned ModuleId); 792 793 Error parseModule(); 794 795 private: 796 void setValueGUID(uint64_t ValueID, StringRef ValueName, 797 GlobalValue::LinkageTypes Linkage, 798 StringRef SourceFileName); 799 Error parseValueSymbolTable( 800 uint64_t Offset, 801 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 802 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 803 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 804 bool IsOldProfileFormat, 805 bool HasProfile, 806 bool HasRelBF); 807 Error parseEntireSummary(unsigned ID); 808 Error parseModuleStringTable(); 809 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 810 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 811 TypeIdCompatibleVtableInfo &TypeId); 812 std::vector<FunctionSummary::ParamAccess> 813 parseParamAccesses(ArrayRef<uint64_t> Record); 814 815 std::pair<ValueInfo, GlobalValue::GUID> 816 getValueInfoFromValueId(unsigned ValueId); 817 818 void addThisModule(); 819 ModuleSummaryIndex::ModuleInfo *getThisModule(); 820 }; 821 822 } // end anonymous namespace 823 824 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 825 Error Err) { 826 if (Err) { 827 std::error_code EC; 828 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 829 EC = EIB.convertToErrorCode(); 830 Ctx.emitError(EIB.message()); 831 }); 832 return EC; 833 } 834 return std::error_code(); 835 } 836 837 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 838 StringRef ProducerIdentification, 839 LLVMContext &Context) 840 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 841 ValueList(Context, this->Stream.SizeInBytes()) { 842 this->ProducerIdentification = std::string(ProducerIdentification); 843 } 844 845 Error BitcodeReader::materializeForwardReferencedFunctions() { 846 if (WillMaterializeAllForwardRefs) 847 return Error::success(); 848 849 // Prevent recursion. 850 WillMaterializeAllForwardRefs = true; 851 852 while (!BasicBlockFwdRefQueue.empty()) { 853 Function *F = BasicBlockFwdRefQueue.front(); 854 BasicBlockFwdRefQueue.pop_front(); 855 assert(F && "Expected valid function"); 856 if (!BasicBlockFwdRefs.count(F)) 857 // Already materialized. 858 continue; 859 860 // Check for a function that isn't materializable to prevent an infinite 861 // loop. When parsing a blockaddress stored in a global variable, there 862 // isn't a trivial way to check if a function will have a body without a 863 // linear search through FunctionsWithBodies, so just check it here. 864 if (!F->isMaterializable()) 865 return error("Never resolved function from blockaddress"); 866 867 // Try to materialize F. 868 if (Error Err = materialize(F)) 869 return Err; 870 } 871 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 872 873 // Reset state. 874 WillMaterializeAllForwardRefs = false; 875 return Error::success(); 876 } 877 878 //===----------------------------------------------------------------------===// 879 // Helper functions to implement forward reference resolution, etc. 880 //===----------------------------------------------------------------------===// 881 882 static bool hasImplicitComdat(size_t Val) { 883 switch (Val) { 884 default: 885 return false; 886 case 1: // Old WeakAnyLinkage 887 case 4: // Old LinkOnceAnyLinkage 888 case 10: // Old WeakODRLinkage 889 case 11: // Old LinkOnceODRLinkage 890 return true; 891 } 892 } 893 894 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 895 switch (Val) { 896 default: // Map unknown/new linkages to external 897 case 0: 898 return GlobalValue::ExternalLinkage; 899 case 2: 900 return GlobalValue::AppendingLinkage; 901 case 3: 902 return GlobalValue::InternalLinkage; 903 case 5: 904 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 905 case 6: 906 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 907 case 7: 908 return GlobalValue::ExternalWeakLinkage; 909 case 8: 910 return GlobalValue::CommonLinkage; 911 case 9: 912 return GlobalValue::PrivateLinkage; 913 case 12: 914 return GlobalValue::AvailableExternallyLinkage; 915 case 13: 916 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 917 case 14: 918 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 919 case 15: 920 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 921 case 1: // Old value with implicit comdat. 922 case 16: 923 return GlobalValue::WeakAnyLinkage; 924 case 10: // Old value with implicit comdat. 925 case 17: 926 return GlobalValue::WeakODRLinkage; 927 case 4: // Old value with implicit comdat. 928 case 18: 929 return GlobalValue::LinkOnceAnyLinkage; 930 case 11: // Old value with implicit comdat. 931 case 19: 932 return GlobalValue::LinkOnceODRLinkage; 933 } 934 } 935 936 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 937 FunctionSummary::FFlags Flags; 938 Flags.ReadNone = RawFlags & 0x1; 939 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 940 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 941 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 942 Flags.NoInline = (RawFlags >> 4) & 0x1; 943 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 944 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 945 Flags.MayThrow = (RawFlags >> 7) & 0x1; 946 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 947 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 948 return Flags; 949 } 950 951 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 952 // 953 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 954 // visibility: [8, 10). 955 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 956 uint64_t Version) { 957 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 958 // like getDecodedLinkage() above. Any future change to the linkage enum and 959 // to getDecodedLinkage() will need to be taken into account here as above. 960 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 961 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 962 RawFlags = RawFlags >> 4; 963 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 964 // The Live flag wasn't introduced until version 3. For dead stripping 965 // to work correctly on earlier versions, we must conservatively treat all 966 // values as live. 967 bool Live = (RawFlags & 0x2) || Version < 3; 968 bool Local = (RawFlags & 0x4); 969 bool AutoHide = (RawFlags & 0x8); 970 971 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 972 Live, Local, AutoHide); 973 } 974 975 // Decode the flags for GlobalVariable in the summary 976 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 977 return GlobalVarSummary::GVarFlags( 978 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 979 (RawFlags & 0x4) ? true : false, 980 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 981 } 982 983 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 984 switch (Val) { 985 default: // Map unknown visibilities to default. 986 case 0: return GlobalValue::DefaultVisibility; 987 case 1: return GlobalValue::HiddenVisibility; 988 case 2: return GlobalValue::ProtectedVisibility; 989 } 990 } 991 992 static GlobalValue::DLLStorageClassTypes 993 getDecodedDLLStorageClass(unsigned Val) { 994 switch (Val) { 995 default: // Map unknown values to default. 996 case 0: return GlobalValue::DefaultStorageClass; 997 case 1: return GlobalValue::DLLImportStorageClass; 998 case 2: return GlobalValue::DLLExportStorageClass; 999 } 1000 } 1001 1002 static bool getDecodedDSOLocal(unsigned Val) { 1003 switch(Val) { 1004 default: // Map unknown values to preemptable. 1005 case 0: return false; 1006 case 1: return true; 1007 } 1008 } 1009 1010 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1011 switch (Val) { 1012 case 0: return GlobalVariable::NotThreadLocal; 1013 default: // Map unknown non-zero value to general dynamic. 1014 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1015 case 2: return GlobalVariable::LocalDynamicTLSModel; 1016 case 3: return GlobalVariable::InitialExecTLSModel; 1017 case 4: return GlobalVariable::LocalExecTLSModel; 1018 } 1019 } 1020 1021 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1022 switch (Val) { 1023 default: // Map unknown to UnnamedAddr::None. 1024 case 0: return GlobalVariable::UnnamedAddr::None; 1025 case 1: return GlobalVariable::UnnamedAddr::Global; 1026 case 2: return GlobalVariable::UnnamedAddr::Local; 1027 } 1028 } 1029 1030 static int getDecodedCastOpcode(unsigned Val) { 1031 switch (Val) { 1032 default: return -1; 1033 case bitc::CAST_TRUNC : return Instruction::Trunc; 1034 case bitc::CAST_ZEXT : return Instruction::ZExt; 1035 case bitc::CAST_SEXT : return Instruction::SExt; 1036 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1037 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1038 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1039 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1040 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1041 case bitc::CAST_FPEXT : return Instruction::FPExt; 1042 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1043 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1044 case bitc::CAST_BITCAST : return Instruction::BitCast; 1045 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1046 } 1047 } 1048 1049 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1050 bool IsFP = Ty->isFPOrFPVectorTy(); 1051 // UnOps are only valid for int/fp or vector of int/fp types 1052 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1053 return -1; 1054 1055 switch (Val) { 1056 default: 1057 return -1; 1058 case bitc::UNOP_FNEG: 1059 return IsFP ? Instruction::FNeg : -1; 1060 } 1061 } 1062 1063 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1064 bool IsFP = Ty->isFPOrFPVectorTy(); 1065 // BinOps are only valid for int/fp or vector of int/fp types 1066 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1067 return -1; 1068 1069 switch (Val) { 1070 default: 1071 return -1; 1072 case bitc::BINOP_ADD: 1073 return IsFP ? Instruction::FAdd : Instruction::Add; 1074 case bitc::BINOP_SUB: 1075 return IsFP ? Instruction::FSub : Instruction::Sub; 1076 case bitc::BINOP_MUL: 1077 return IsFP ? Instruction::FMul : Instruction::Mul; 1078 case bitc::BINOP_UDIV: 1079 return IsFP ? -1 : Instruction::UDiv; 1080 case bitc::BINOP_SDIV: 1081 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1082 case bitc::BINOP_UREM: 1083 return IsFP ? -1 : Instruction::URem; 1084 case bitc::BINOP_SREM: 1085 return IsFP ? Instruction::FRem : Instruction::SRem; 1086 case bitc::BINOP_SHL: 1087 return IsFP ? -1 : Instruction::Shl; 1088 case bitc::BINOP_LSHR: 1089 return IsFP ? -1 : Instruction::LShr; 1090 case bitc::BINOP_ASHR: 1091 return IsFP ? -1 : Instruction::AShr; 1092 case bitc::BINOP_AND: 1093 return IsFP ? -1 : Instruction::And; 1094 case bitc::BINOP_OR: 1095 return IsFP ? -1 : Instruction::Or; 1096 case bitc::BINOP_XOR: 1097 return IsFP ? -1 : Instruction::Xor; 1098 } 1099 } 1100 1101 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1102 switch (Val) { 1103 default: return AtomicRMWInst::BAD_BINOP; 1104 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1105 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1106 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1107 case bitc::RMW_AND: return AtomicRMWInst::And; 1108 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1109 case bitc::RMW_OR: return AtomicRMWInst::Or; 1110 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1111 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1112 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1113 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1114 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1115 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1116 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1117 } 1118 } 1119 1120 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1121 switch (Val) { 1122 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1123 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1124 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1125 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1126 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1127 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1128 default: // Map unknown orderings to sequentially-consistent. 1129 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1130 } 1131 } 1132 1133 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown selection kinds to any. 1136 case bitc::COMDAT_SELECTION_KIND_ANY: 1137 return Comdat::Any; 1138 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1139 return Comdat::ExactMatch; 1140 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1141 return Comdat::Largest; 1142 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1143 return Comdat::NoDeduplicate; 1144 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1145 return Comdat::SameSize; 1146 } 1147 } 1148 1149 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1150 FastMathFlags FMF; 1151 if (0 != (Val & bitc::UnsafeAlgebra)) 1152 FMF.setFast(); 1153 if (0 != (Val & bitc::AllowReassoc)) 1154 FMF.setAllowReassoc(); 1155 if (0 != (Val & bitc::NoNaNs)) 1156 FMF.setNoNaNs(); 1157 if (0 != (Val & bitc::NoInfs)) 1158 FMF.setNoInfs(); 1159 if (0 != (Val & bitc::NoSignedZeros)) 1160 FMF.setNoSignedZeros(); 1161 if (0 != (Val & bitc::AllowReciprocal)) 1162 FMF.setAllowReciprocal(); 1163 if (0 != (Val & bitc::AllowContract)) 1164 FMF.setAllowContract(true); 1165 if (0 != (Val & bitc::ApproxFunc)) 1166 FMF.setApproxFunc(); 1167 return FMF; 1168 } 1169 1170 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1171 switch (Val) { 1172 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1173 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1174 } 1175 } 1176 1177 Type *BitcodeReader::getTypeByID(unsigned ID) { 1178 // The type table size is always specified correctly. 1179 if (ID >= TypeList.size()) 1180 return nullptr; 1181 1182 if (Type *Ty = TypeList[ID]) 1183 return Ty; 1184 1185 // If we have a forward reference, the only possible case is when it is to a 1186 // named struct. Just create a placeholder for now. 1187 return TypeList[ID] = createIdentifiedStructType(Context); 1188 } 1189 1190 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1191 if (ID == TODOTypeID) 1192 return TODOTypeID; 1193 1194 auto It = ContainedTypeIDs.find(ID); 1195 if (It == ContainedTypeIDs.end()) 1196 return InvalidTypeID; 1197 1198 if (Idx >= It->second.size()) 1199 return InvalidTypeID; 1200 1201 return It->second[Idx]; 1202 } 1203 1204 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1205 if (ID >= TypeList.size()) 1206 return nullptr; 1207 1208 Type *Ty = TypeList[ID]; 1209 if (!Ty->isPointerTy()) 1210 return nullptr; 1211 1212 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1213 if (!ElemTy) 1214 return nullptr; 1215 1216 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1217 "Incorrect element type"); 1218 return ElemTy; 1219 } 1220 1221 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1222 StringRef Name) { 1223 auto *Ret = StructType::create(Context, Name); 1224 IdentifiedStructTypes.push_back(Ret); 1225 return Ret; 1226 } 1227 1228 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1229 auto *Ret = StructType::create(Context); 1230 IdentifiedStructTypes.push_back(Ret); 1231 return Ret; 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // Functions for parsing blocks from the bitcode file 1236 //===----------------------------------------------------------------------===// 1237 1238 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1239 switch (Val) { 1240 case Attribute::EndAttrKinds: 1241 case Attribute::EmptyKey: 1242 case Attribute::TombstoneKey: 1243 llvm_unreachable("Synthetic enumerators which should never get here"); 1244 1245 case Attribute::None: return 0; 1246 case Attribute::ZExt: return 1 << 0; 1247 case Attribute::SExt: return 1 << 1; 1248 case Attribute::NoReturn: return 1 << 2; 1249 case Attribute::InReg: return 1 << 3; 1250 case Attribute::StructRet: return 1 << 4; 1251 case Attribute::NoUnwind: return 1 << 5; 1252 case Attribute::NoAlias: return 1 << 6; 1253 case Attribute::ByVal: return 1 << 7; 1254 case Attribute::Nest: return 1 << 8; 1255 case Attribute::ReadNone: return 1 << 9; 1256 case Attribute::ReadOnly: return 1 << 10; 1257 case Attribute::NoInline: return 1 << 11; 1258 case Attribute::AlwaysInline: return 1 << 12; 1259 case Attribute::OptimizeForSize: return 1 << 13; 1260 case Attribute::StackProtect: return 1 << 14; 1261 case Attribute::StackProtectReq: return 1 << 15; 1262 case Attribute::Alignment: return 31 << 16; 1263 case Attribute::NoCapture: return 1 << 21; 1264 case Attribute::NoRedZone: return 1 << 22; 1265 case Attribute::NoImplicitFloat: return 1 << 23; 1266 case Attribute::Naked: return 1 << 24; 1267 case Attribute::InlineHint: return 1 << 25; 1268 case Attribute::StackAlignment: return 7 << 26; 1269 case Attribute::ReturnsTwice: return 1 << 29; 1270 case Attribute::UWTable: return 1 << 30; 1271 case Attribute::NonLazyBind: return 1U << 31; 1272 case Attribute::SanitizeAddress: return 1ULL << 32; 1273 case Attribute::MinSize: return 1ULL << 33; 1274 case Attribute::NoDuplicate: return 1ULL << 34; 1275 case Attribute::StackProtectStrong: return 1ULL << 35; 1276 case Attribute::SanitizeThread: return 1ULL << 36; 1277 case Attribute::SanitizeMemory: return 1ULL << 37; 1278 case Attribute::NoBuiltin: return 1ULL << 38; 1279 case Attribute::Returned: return 1ULL << 39; 1280 case Attribute::Cold: return 1ULL << 40; 1281 case Attribute::Builtin: return 1ULL << 41; 1282 case Attribute::OptimizeNone: return 1ULL << 42; 1283 case Attribute::InAlloca: return 1ULL << 43; 1284 case Attribute::NonNull: return 1ULL << 44; 1285 case Attribute::JumpTable: return 1ULL << 45; 1286 case Attribute::Convergent: return 1ULL << 46; 1287 case Attribute::SafeStack: return 1ULL << 47; 1288 case Attribute::NoRecurse: return 1ULL << 48; 1289 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1290 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1291 case Attribute::SwiftSelf: return 1ULL << 51; 1292 case Attribute::SwiftError: return 1ULL << 52; 1293 case Attribute::WriteOnly: return 1ULL << 53; 1294 case Attribute::Speculatable: return 1ULL << 54; 1295 case Attribute::StrictFP: return 1ULL << 55; 1296 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1297 case Attribute::NoCfCheck: return 1ULL << 57; 1298 case Attribute::OptForFuzzing: return 1ULL << 58; 1299 case Attribute::ShadowCallStack: return 1ULL << 59; 1300 case Attribute::SpeculativeLoadHardening: 1301 return 1ULL << 60; 1302 case Attribute::ImmArg: 1303 return 1ULL << 61; 1304 case Attribute::WillReturn: 1305 return 1ULL << 62; 1306 case Attribute::NoFree: 1307 return 1ULL << 63; 1308 default: 1309 // Other attributes are not supported in the raw format, 1310 // as we ran out of space. 1311 return 0; 1312 } 1313 llvm_unreachable("Unsupported attribute type"); 1314 } 1315 1316 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1317 if (!Val) return; 1318 1319 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1320 I = Attribute::AttrKind(I + 1)) { 1321 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1322 if (I == Attribute::Alignment) 1323 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1324 else if (I == Attribute::StackAlignment) 1325 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1326 else if (Attribute::isTypeAttrKind(I)) 1327 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1328 else 1329 B.addAttribute(I); 1330 } 1331 } 1332 } 1333 1334 /// This fills an AttrBuilder object with the LLVM attributes that have 1335 /// been decoded from the given integer. This function must stay in sync with 1336 /// 'encodeLLVMAttributesForBitcode'. 1337 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1338 uint64_t EncodedAttrs) { 1339 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1340 // the bits above 31 down by 11 bits. 1341 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1342 assert((!Alignment || isPowerOf2_32(Alignment)) && 1343 "Alignment must be a power of two."); 1344 1345 if (Alignment) 1346 B.addAlignmentAttr(Alignment); 1347 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1348 (EncodedAttrs & 0xffff)); 1349 } 1350 1351 Error BitcodeReader::parseAttributeBlock() { 1352 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1353 return Err; 1354 1355 if (!MAttributes.empty()) 1356 return error("Invalid multiple blocks"); 1357 1358 SmallVector<uint64_t, 64> Record; 1359 1360 SmallVector<AttributeList, 8> Attrs; 1361 1362 // Read all the records. 1363 while (true) { 1364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1365 if (!MaybeEntry) 1366 return MaybeEntry.takeError(); 1367 BitstreamEntry Entry = MaybeEntry.get(); 1368 1369 switch (Entry.Kind) { 1370 case BitstreamEntry::SubBlock: // Handled for us already. 1371 case BitstreamEntry::Error: 1372 return error("Malformed block"); 1373 case BitstreamEntry::EndBlock: 1374 return Error::success(); 1375 case BitstreamEntry::Record: 1376 // The interesting case. 1377 break; 1378 } 1379 1380 // Read a record. 1381 Record.clear(); 1382 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1383 if (!MaybeRecord) 1384 return MaybeRecord.takeError(); 1385 switch (MaybeRecord.get()) { 1386 default: // Default behavior: ignore. 1387 break; 1388 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1389 // Deprecated, but still needed to read old bitcode files. 1390 if (Record.size() & 1) 1391 return error("Invalid record"); 1392 1393 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1394 AttrBuilder B(Context); 1395 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1396 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1397 } 1398 1399 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1400 Attrs.clear(); 1401 break; 1402 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1403 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1404 Attrs.push_back(MAttributeGroups[Record[i]]); 1405 1406 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1407 Attrs.clear(); 1408 break; 1409 } 1410 } 1411 } 1412 1413 // Returns Attribute::None on unrecognized codes. 1414 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1415 switch (Code) { 1416 default: 1417 return Attribute::None; 1418 case bitc::ATTR_KIND_ALIGNMENT: 1419 return Attribute::Alignment; 1420 case bitc::ATTR_KIND_ALWAYS_INLINE: 1421 return Attribute::AlwaysInline; 1422 case bitc::ATTR_KIND_ARGMEMONLY: 1423 return Attribute::ArgMemOnly; 1424 case bitc::ATTR_KIND_BUILTIN: 1425 return Attribute::Builtin; 1426 case bitc::ATTR_KIND_BY_VAL: 1427 return Attribute::ByVal; 1428 case bitc::ATTR_KIND_IN_ALLOCA: 1429 return Attribute::InAlloca; 1430 case bitc::ATTR_KIND_COLD: 1431 return Attribute::Cold; 1432 case bitc::ATTR_KIND_CONVERGENT: 1433 return Attribute::Convergent; 1434 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1435 return Attribute::DisableSanitizerInstrumentation; 1436 case bitc::ATTR_KIND_ELEMENTTYPE: 1437 return Attribute::ElementType; 1438 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1439 return Attribute::InaccessibleMemOnly; 1440 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1441 return Attribute::InaccessibleMemOrArgMemOnly; 1442 case bitc::ATTR_KIND_INLINE_HINT: 1443 return Attribute::InlineHint; 1444 case bitc::ATTR_KIND_IN_REG: 1445 return Attribute::InReg; 1446 case bitc::ATTR_KIND_JUMP_TABLE: 1447 return Attribute::JumpTable; 1448 case bitc::ATTR_KIND_MIN_SIZE: 1449 return Attribute::MinSize; 1450 case bitc::ATTR_KIND_NAKED: 1451 return Attribute::Naked; 1452 case bitc::ATTR_KIND_NEST: 1453 return Attribute::Nest; 1454 case bitc::ATTR_KIND_NO_ALIAS: 1455 return Attribute::NoAlias; 1456 case bitc::ATTR_KIND_NO_BUILTIN: 1457 return Attribute::NoBuiltin; 1458 case bitc::ATTR_KIND_NO_CALLBACK: 1459 return Attribute::NoCallback; 1460 case bitc::ATTR_KIND_NO_CAPTURE: 1461 return Attribute::NoCapture; 1462 case bitc::ATTR_KIND_NO_DUPLICATE: 1463 return Attribute::NoDuplicate; 1464 case bitc::ATTR_KIND_NOFREE: 1465 return Attribute::NoFree; 1466 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1467 return Attribute::NoImplicitFloat; 1468 case bitc::ATTR_KIND_NO_INLINE: 1469 return Attribute::NoInline; 1470 case bitc::ATTR_KIND_NO_RECURSE: 1471 return Attribute::NoRecurse; 1472 case bitc::ATTR_KIND_NO_MERGE: 1473 return Attribute::NoMerge; 1474 case bitc::ATTR_KIND_NON_LAZY_BIND: 1475 return Attribute::NonLazyBind; 1476 case bitc::ATTR_KIND_NON_NULL: 1477 return Attribute::NonNull; 1478 case bitc::ATTR_KIND_DEREFERENCEABLE: 1479 return Attribute::Dereferenceable; 1480 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1481 return Attribute::DereferenceableOrNull; 1482 case bitc::ATTR_KIND_ALLOC_SIZE: 1483 return Attribute::AllocSize; 1484 case bitc::ATTR_KIND_NO_RED_ZONE: 1485 return Attribute::NoRedZone; 1486 case bitc::ATTR_KIND_NO_RETURN: 1487 return Attribute::NoReturn; 1488 case bitc::ATTR_KIND_NOSYNC: 1489 return Attribute::NoSync; 1490 case bitc::ATTR_KIND_NOCF_CHECK: 1491 return Attribute::NoCfCheck; 1492 case bitc::ATTR_KIND_NO_PROFILE: 1493 return Attribute::NoProfile; 1494 case bitc::ATTR_KIND_NO_UNWIND: 1495 return Attribute::NoUnwind; 1496 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1497 return Attribute::NoSanitizeBounds; 1498 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1499 return Attribute::NoSanitizeCoverage; 1500 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1501 return Attribute::NullPointerIsValid; 1502 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1503 return Attribute::OptForFuzzing; 1504 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1505 return Attribute::OptimizeForSize; 1506 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1507 return Attribute::OptimizeNone; 1508 case bitc::ATTR_KIND_READ_NONE: 1509 return Attribute::ReadNone; 1510 case bitc::ATTR_KIND_READ_ONLY: 1511 return Attribute::ReadOnly; 1512 case bitc::ATTR_KIND_RETURNED: 1513 return Attribute::Returned; 1514 case bitc::ATTR_KIND_RETURNS_TWICE: 1515 return Attribute::ReturnsTwice; 1516 case bitc::ATTR_KIND_S_EXT: 1517 return Attribute::SExt; 1518 case bitc::ATTR_KIND_SPECULATABLE: 1519 return Attribute::Speculatable; 1520 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1521 return Attribute::StackAlignment; 1522 case bitc::ATTR_KIND_STACK_PROTECT: 1523 return Attribute::StackProtect; 1524 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1525 return Attribute::StackProtectReq; 1526 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1527 return Attribute::StackProtectStrong; 1528 case bitc::ATTR_KIND_SAFESTACK: 1529 return Attribute::SafeStack; 1530 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1531 return Attribute::ShadowCallStack; 1532 case bitc::ATTR_KIND_STRICT_FP: 1533 return Attribute::StrictFP; 1534 case bitc::ATTR_KIND_STRUCT_RET: 1535 return Attribute::StructRet; 1536 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1537 return Attribute::SanitizeAddress; 1538 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1539 return Attribute::SanitizeHWAddress; 1540 case bitc::ATTR_KIND_SANITIZE_THREAD: 1541 return Attribute::SanitizeThread; 1542 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1543 return Attribute::SanitizeMemory; 1544 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1545 return Attribute::SpeculativeLoadHardening; 1546 case bitc::ATTR_KIND_SWIFT_ERROR: 1547 return Attribute::SwiftError; 1548 case bitc::ATTR_KIND_SWIFT_SELF: 1549 return Attribute::SwiftSelf; 1550 case bitc::ATTR_KIND_SWIFT_ASYNC: 1551 return Attribute::SwiftAsync; 1552 case bitc::ATTR_KIND_UW_TABLE: 1553 return Attribute::UWTable; 1554 case bitc::ATTR_KIND_VSCALE_RANGE: 1555 return Attribute::VScaleRange; 1556 case bitc::ATTR_KIND_WILLRETURN: 1557 return Attribute::WillReturn; 1558 case bitc::ATTR_KIND_WRITEONLY: 1559 return Attribute::WriteOnly; 1560 case bitc::ATTR_KIND_Z_EXT: 1561 return Attribute::ZExt; 1562 case bitc::ATTR_KIND_IMMARG: 1563 return Attribute::ImmArg; 1564 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1565 return Attribute::SanitizeMemTag; 1566 case bitc::ATTR_KIND_PREALLOCATED: 1567 return Attribute::Preallocated; 1568 case bitc::ATTR_KIND_NOUNDEF: 1569 return Attribute::NoUndef; 1570 case bitc::ATTR_KIND_BYREF: 1571 return Attribute::ByRef; 1572 case bitc::ATTR_KIND_MUSTPROGRESS: 1573 return Attribute::MustProgress; 1574 case bitc::ATTR_KIND_HOT: 1575 return Attribute::Hot; 1576 } 1577 } 1578 1579 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1580 MaybeAlign &Alignment) { 1581 // Note: Alignment in bitcode files is incremented by 1, so that zero 1582 // can be used for default alignment. 1583 if (Exponent > Value::MaxAlignmentExponent + 1) 1584 return error("Invalid alignment value"); 1585 Alignment = decodeMaybeAlign(Exponent); 1586 return Error::success(); 1587 } 1588 1589 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1590 *Kind = getAttrFromCode(Code); 1591 if (*Kind == Attribute::None) 1592 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1593 return Error::success(); 1594 } 1595 1596 Error BitcodeReader::parseAttributeGroupBlock() { 1597 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1598 return Err; 1599 1600 if (!MAttributeGroups.empty()) 1601 return error("Invalid multiple blocks"); 1602 1603 SmallVector<uint64_t, 64> Record; 1604 1605 // Read all the records. 1606 while (true) { 1607 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1608 if (!MaybeEntry) 1609 return MaybeEntry.takeError(); 1610 BitstreamEntry Entry = MaybeEntry.get(); 1611 1612 switch (Entry.Kind) { 1613 case BitstreamEntry::SubBlock: // Handled for us already. 1614 case BitstreamEntry::Error: 1615 return error("Malformed block"); 1616 case BitstreamEntry::EndBlock: 1617 return Error::success(); 1618 case BitstreamEntry::Record: 1619 // The interesting case. 1620 break; 1621 } 1622 1623 // Read a record. 1624 Record.clear(); 1625 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1626 if (!MaybeRecord) 1627 return MaybeRecord.takeError(); 1628 switch (MaybeRecord.get()) { 1629 default: // Default behavior: ignore. 1630 break; 1631 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1632 if (Record.size() < 3) 1633 return error("Invalid record"); 1634 1635 uint64_t GrpID = Record[0]; 1636 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1637 1638 AttrBuilder B(Context); 1639 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1640 if (Record[i] == 0) { // Enum attribute 1641 Attribute::AttrKind Kind; 1642 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1643 return Err; 1644 1645 // Upgrade old-style byval attribute to one with a type, even if it's 1646 // nullptr. We will have to insert the real type when we associate 1647 // this AttributeList with a function. 1648 if (Kind == Attribute::ByVal) 1649 B.addByValAttr(nullptr); 1650 else if (Kind == Attribute::StructRet) 1651 B.addStructRetAttr(nullptr); 1652 else if (Kind == Attribute::InAlloca) 1653 B.addInAllocaAttr(nullptr); 1654 else if (Kind == Attribute::UWTable) 1655 B.addUWTableAttr(UWTableKind::Default); 1656 else if (Attribute::isEnumAttrKind(Kind)) 1657 B.addAttribute(Kind); 1658 else 1659 return error("Not an enum attribute"); 1660 } else if (Record[i] == 1) { // Integer attribute 1661 Attribute::AttrKind Kind; 1662 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1663 return Err; 1664 if (!Attribute::isIntAttrKind(Kind)) 1665 return error("Not an int attribute"); 1666 if (Kind == Attribute::Alignment) 1667 B.addAlignmentAttr(Record[++i]); 1668 else if (Kind == Attribute::StackAlignment) 1669 B.addStackAlignmentAttr(Record[++i]); 1670 else if (Kind == Attribute::Dereferenceable) 1671 B.addDereferenceableAttr(Record[++i]); 1672 else if (Kind == Attribute::DereferenceableOrNull) 1673 B.addDereferenceableOrNullAttr(Record[++i]); 1674 else if (Kind == Attribute::AllocSize) 1675 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1676 else if (Kind == Attribute::VScaleRange) 1677 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1678 else if (Kind == Attribute::UWTable) 1679 B.addUWTableAttr(UWTableKind(Record[++i])); 1680 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1681 bool HasValue = (Record[i++] == 4); 1682 SmallString<64> KindStr; 1683 SmallString<64> ValStr; 1684 1685 while (Record[i] != 0 && i != e) 1686 KindStr += Record[i++]; 1687 assert(Record[i] == 0 && "Kind string not null terminated"); 1688 1689 if (HasValue) { 1690 // Has a value associated with it. 1691 ++i; // Skip the '0' that terminates the "kind" string. 1692 while (Record[i] != 0 && i != e) 1693 ValStr += Record[i++]; 1694 assert(Record[i] == 0 && "Value string not null terminated"); 1695 } 1696 1697 B.addAttribute(KindStr.str(), ValStr.str()); 1698 } else if (Record[i] == 5 || Record[i] == 6) { 1699 bool HasType = Record[i] == 6; 1700 Attribute::AttrKind Kind; 1701 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1702 return Err; 1703 if (!Attribute::isTypeAttrKind(Kind)) 1704 return error("Not a type attribute"); 1705 1706 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1707 } else { 1708 return error("Invalid attribute group entry"); 1709 } 1710 } 1711 1712 UpgradeAttributes(B); 1713 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1714 break; 1715 } 1716 } 1717 } 1718 } 1719 1720 Error BitcodeReader::parseTypeTable() { 1721 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1722 return Err; 1723 1724 return parseTypeTableBody(); 1725 } 1726 1727 Error BitcodeReader::parseTypeTableBody() { 1728 if (!TypeList.empty()) 1729 return error("Invalid multiple blocks"); 1730 1731 SmallVector<uint64_t, 64> Record; 1732 unsigned NumRecords = 0; 1733 1734 SmallString<64> TypeName; 1735 1736 // Read all the records for this type table. 1737 while (true) { 1738 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1739 if (!MaybeEntry) 1740 return MaybeEntry.takeError(); 1741 BitstreamEntry Entry = MaybeEntry.get(); 1742 1743 switch (Entry.Kind) { 1744 case BitstreamEntry::SubBlock: // Handled for us already. 1745 case BitstreamEntry::Error: 1746 return error("Malformed block"); 1747 case BitstreamEntry::EndBlock: 1748 if (NumRecords != TypeList.size()) 1749 return error("Malformed block"); 1750 return Error::success(); 1751 case BitstreamEntry::Record: 1752 // The interesting case. 1753 break; 1754 } 1755 1756 // Read a record. 1757 Record.clear(); 1758 Type *ResultTy = nullptr; 1759 SmallVector<unsigned> ContainedIDs; 1760 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1761 if (!MaybeRecord) 1762 return MaybeRecord.takeError(); 1763 switch (MaybeRecord.get()) { 1764 default: 1765 return error("Invalid value"); 1766 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1767 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1768 // type list. This allows us to reserve space. 1769 if (Record.empty()) 1770 return error("Invalid record"); 1771 TypeList.resize(Record[0]); 1772 continue; 1773 case bitc::TYPE_CODE_VOID: // VOID 1774 ResultTy = Type::getVoidTy(Context); 1775 break; 1776 case bitc::TYPE_CODE_HALF: // HALF 1777 ResultTy = Type::getHalfTy(Context); 1778 break; 1779 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1780 ResultTy = Type::getBFloatTy(Context); 1781 break; 1782 case bitc::TYPE_CODE_FLOAT: // FLOAT 1783 ResultTy = Type::getFloatTy(Context); 1784 break; 1785 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1786 ResultTy = Type::getDoubleTy(Context); 1787 break; 1788 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1789 ResultTy = Type::getX86_FP80Ty(Context); 1790 break; 1791 case bitc::TYPE_CODE_FP128: // FP128 1792 ResultTy = Type::getFP128Ty(Context); 1793 break; 1794 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1795 ResultTy = Type::getPPC_FP128Ty(Context); 1796 break; 1797 case bitc::TYPE_CODE_LABEL: // LABEL 1798 ResultTy = Type::getLabelTy(Context); 1799 break; 1800 case bitc::TYPE_CODE_METADATA: // METADATA 1801 ResultTy = Type::getMetadataTy(Context); 1802 break; 1803 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1804 ResultTy = Type::getX86_MMXTy(Context); 1805 break; 1806 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1807 ResultTy = Type::getX86_AMXTy(Context); 1808 break; 1809 case bitc::TYPE_CODE_TOKEN: // TOKEN 1810 ResultTy = Type::getTokenTy(Context); 1811 break; 1812 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1813 if (Record.empty()) 1814 return error("Invalid record"); 1815 1816 uint64_t NumBits = Record[0]; 1817 if (NumBits < IntegerType::MIN_INT_BITS || 1818 NumBits > IntegerType::MAX_INT_BITS) 1819 return error("Bitwidth for integer type out of range"); 1820 ResultTy = IntegerType::get(Context, NumBits); 1821 break; 1822 } 1823 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1824 // [pointee type, address space] 1825 if (Record.empty()) 1826 return error("Invalid record"); 1827 unsigned AddressSpace = 0; 1828 if (Record.size() == 2) 1829 AddressSpace = Record[1]; 1830 ResultTy = getTypeByID(Record[0]); 1831 if (!ResultTy || 1832 !PointerType::isValidElementType(ResultTy)) 1833 return error("Invalid type"); 1834 ContainedIDs.push_back(Record[0]); 1835 ResultTy = PointerType::get(ResultTy, AddressSpace); 1836 break; 1837 } 1838 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1839 if (Record.size() != 1) 1840 return error("Invalid record"); 1841 if (Context.supportsTypedPointers()) 1842 return error( 1843 "Opaque pointers are only supported in -opaque-pointers mode"); 1844 unsigned AddressSpace = Record[0]; 1845 ResultTy = PointerType::get(Context, AddressSpace); 1846 break; 1847 } 1848 case bitc::TYPE_CODE_FUNCTION_OLD: { 1849 // Deprecated, but still needed to read old bitcode files. 1850 // FUNCTION: [vararg, attrid, retty, paramty x N] 1851 if (Record.size() < 3) 1852 return error("Invalid record"); 1853 SmallVector<Type*, 8> ArgTys; 1854 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1855 if (Type *T = getTypeByID(Record[i])) 1856 ArgTys.push_back(T); 1857 else 1858 break; 1859 } 1860 1861 ResultTy = getTypeByID(Record[2]); 1862 if (!ResultTy || ArgTys.size() < Record.size()-3) 1863 return error("Invalid type"); 1864 1865 ContainedIDs.append(Record.begin() + 2, Record.end()); 1866 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1867 break; 1868 } 1869 case bitc::TYPE_CODE_FUNCTION: { 1870 // FUNCTION: [vararg, retty, paramty x N] 1871 if (Record.size() < 2) 1872 return error("Invalid record"); 1873 SmallVector<Type*, 8> ArgTys; 1874 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1875 if (Type *T = getTypeByID(Record[i])) { 1876 if (!FunctionType::isValidArgumentType(T)) 1877 return error("Invalid function argument type"); 1878 ArgTys.push_back(T); 1879 } 1880 else 1881 break; 1882 } 1883 1884 ResultTy = getTypeByID(Record[1]); 1885 if (!ResultTy || ArgTys.size() < Record.size()-2) 1886 return error("Invalid type"); 1887 1888 ContainedIDs.append(Record.begin() + 1, Record.end()); 1889 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1890 break; 1891 } 1892 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1893 if (Record.empty()) 1894 return error("Invalid record"); 1895 SmallVector<Type*, 8> EltTys; 1896 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1897 if (Type *T = getTypeByID(Record[i])) 1898 EltTys.push_back(T); 1899 else 1900 break; 1901 } 1902 if (EltTys.size() != Record.size()-1) 1903 return error("Invalid type"); 1904 ContainedIDs.append(Record.begin() + 1, Record.end()); 1905 ResultTy = StructType::get(Context, EltTys, Record[0]); 1906 break; 1907 } 1908 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1909 if (convertToString(Record, 0, TypeName)) 1910 return error("Invalid record"); 1911 continue; 1912 1913 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1914 if (Record.empty()) 1915 return error("Invalid record"); 1916 1917 if (NumRecords >= TypeList.size()) 1918 return error("Invalid TYPE table"); 1919 1920 // Check to see if this was forward referenced, if so fill in the temp. 1921 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1922 if (Res) { 1923 Res->setName(TypeName); 1924 TypeList[NumRecords] = nullptr; 1925 } else // Otherwise, create a new struct. 1926 Res = createIdentifiedStructType(Context, TypeName); 1927 TypeName.clear(); 1928 1929 SmallVector<Type*, 8> EltTys; 1930 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1931 if (Type *T = getTypeByID(Record[i])) 1932 EltTys.push_back(T); 1933 else 1934 break; 1935 } 1936 if (EltTys.size() != Record.size()-1) 1937 return error("Invalid record"); 1938 Res->setBody(EltTys, Record[0]); 1939 ContainedIDs.append(Record.begin() + 1, Record.end()); 1940 ResultTy = Res; 1941 break; 1942 } 1943 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1944 if (Record.size() != 1) 1945 return error("Invalid record"); 1946 1947 if (NumRecords >= TypeList.size()) 1948 return error("Invalid TYPE table"); 1949 1950 // Check to see if this was forward referenced, if so fill in the temp. 1951 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1952 if (Res) { 1953 Res->setName(TypeName); 1954 TypeList[NumRecords] = nullptr; 1955 } else // Otherwise, create a new struct with no body. 1956 Res = createIdentifiedStructType(Context, TypeName); 1957 TypeName.clear(); 1958 ResultTy = Res; 1959 break; 1960 } 1961 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1962 if (Record.size() < 2) 1963 return error("Invalid record"); 1964 ResultTy = getTypeByID(Record[1]); 1965 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1966 return error("Invalid type"); 1967 ContainedIDs.push_back(Record[1]); 1968 ResultTy = ArrayType::get(ResultTy, Record[0]); 1969 break; 1970 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1971 // [numelts, eltty, scalable] 1972 if (Record.size() < 2) 1973 return error("Invalid record"); 1974 if (Record[0] == 0) 1975 return error("Invalid vector length"); 1976 ResultTy = getTypeByID(Record[1]); 1977 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1978 return error("Invalid type"); 1979 bool Scalable = Record.size() > 2 ? Record[2] : false; 1980 ContainedIDs.push_back(Record[1]); 1981 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1982 break; 1983 } 1984 1985 if (NumRecords >= TypeList.size()) 1986 return error("Invalid TYPE table"); 1987 if (TypeList[NumRecords]) 1988 return error( 1989 "Invalid TYPE table: Only named structs can be forward referenced"); 1990 assert(ResultTy && "Didn't read a type?"); 1991 TypeList[NumRecords] = ResultTy; 1992 if (!ContainedIDs.empty()) 1993 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 1994 ++NumRecords; 1995 } 1996 } 1997 1998 Error BitcodeReader::parseOperandBundleTags() { 1999 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2000 return Err; 2001 2002 if (!BundleTags.empty()) 2003 return error("Invalid multiple blocks"); 2004 2005 SmallVector<uint64_t, 64> Record; 2006 2007 while (true) { 2008 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2009 if (!MaybeEntry) 2010 return MaybeEntry.takeError(); 2011 BitstreamEntry Entry = MaybeEntry.get(); 2012 2013 switch (Entry.Kind) { 2014 case BitstreamEntry::SubBlock: // Handled for us already. 2015 case BitstreamEntry::Error: 2016 return error("Malformed block"); 2017 case BitstreamEntry::EndBlock: 2018 return Error::success(); 2019 case BitstreamEntry::Record: 2020 // The interesting case. 2021 break; 2022 } 2023 2024 // Tags are implicitly mapped to integers by their order. 2025 2026 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2027 if (!MaybeRecord) 2028 return MaybeRecord.takeError(); 2029 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2030 return error("Invalid record"); 2031 2032 // OPERAND_BUNDLE_TAG: [strchr x N] 2033 BundleTags.emplace_back(); 2034 if (convertToString(Record, 0, BundleTags.back())) 2035 return error("Invalid record"); 2036 Record.clear(); 2037 } 2038 } 2039 2040 Error BitcodeReader::parseSyncScopeNames() { 2041 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2042 return Err; 2043 2044 if (!SSIDs.empty()) 2045 return error("Invalid multiple synchronization scope names blocks"); 2046 2047 SmallVector<uint64_t, 64> Record; 2048 while (true) { 2049 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2050 if (!MaybeEntry) 2051 return MaybeEntry.takeError(); 2052 BitstreamEntry Entry = MaybeEntry.get(); 2053 2054 switch (Entry.Kind) { 2055 case BitstreamEntry::SubBlock: // Handled for us already. 2056 case BitstreamEntry::Error: 2057 return error("Malformed block"); 2058 case BitstreamEntry::EndBlock: 2059 if (SSIDs.empty()) 2060 return error("Invalid empty synchronization scope names block"); 2061 return Error::success(); 2062 case BitstreamEntry::Record: 2063 // The interesting case. 2064 break; 2065 } 2066 2067 // Synchronization scope names are implicitly mapped to synchronization 2068 // scope IDs by their order. 2069 2070 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2071 if (!MaybeRecord) 2072 return MaybeRecord.takeError(); 2073 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2074 return error("Invalid record"); 2075 2076 SmallString<16> SSN; 2077 if (convertToString(Record, 0, SSN)) 2078 return error("Invalid record"); 2079 2080 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2081 Record.clear(); 2082 } 2083 } 2084 2085 /// Associate a value with its name from the given index in the provided record. 2086 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2087 unsigned NameIndex, Triple &TT) { 2088 SmallString<128> ValueName; 2089 if (convertToString(Record, NameIndex, ValueName)) 2090 return error("Invalid record"); 2091 unsigned ValueID = Record[0]; 2092 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2093 return error("Invalid record"); 2094 Value *V = ValueList[ValueID]; 2095 2096 StringRef NameStr(ValueName.data(), ValueName.size()); 2097 if (NameStr.find_first_of(0) != StringRef::npos) 2098 return error("Invalid value name"); 2099 V->setName(NameStr); 2100 auto *GO = dyn_cast<GlobalObject>(V); 2101 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2102 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2103 return V; 2104 } 2105 2106 /// Helper to note and return the current location, and jump to the given 2107 /// offset. 2108 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2109 BitstreamCursor &Stream) { 2110 // Save the current parsing location so we can jump back at the end 2111 // of the VST read. 2112 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2113 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2114 return std::move(JumpFailed); 2115 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2116 if (!MaybeEntry) 2117 return MaybeEntry.takeError(); 2118 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2119 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2120 return error("Expected value symbol table subblock"); 2121 return CurrentBit; 2122 } 2123 2124 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2125 Function *F, 2126 ArrayRef<uint64_t> Record) { 2127 // Note that we subtract 1 here because the offset is relative to one word 2128 // before the start of the identification or module block, which was 2129 // historically always the start of the regular bitcode header. 2130 uint64_t FuncWordOffset = Record[1] - 1; 2131 uint64_t FuncBitOffset = FuncWordOffset * 32; 2132 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2133 // Set the LastFunctionBlockBit to point to the last function block. 2134 // Later when parsing is resumed after function materialization, 2135 // we can simply skip that last function block. 2136 if (FuncBitOffset > LastFunctionBlockBit) 2137 LastFunctionBlockBit = FuncBitOffset; 2138 } 2139 2140 /// Read a new-style GlobalValue symbol table. 2141 Error BitcodeReader::parseGlobalValueSymbolTable() { 2142 unsigned FuncBitcodeOffsetDelta = 2143 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2144 2145 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2146 return Err; 2147 2148 SmallVector<uint64_t, 64> Record; 2149 while (true) { 2150 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2151 if (!MaybeEntry) 2152 return MaybeEntry.takeError(); 2153 BitstreamEntry Entry = MaybeEntry.get(); 2154 2155 switch (Entry.Kind) { 2156 case BitstreamEntry::SubBlock: 2157 case BitstreamEntry::Error: 2158 return error("Malformed block"); 2159 case BitstreamEntry::EndBlock: 2160 return Error::success(); 2161 case BitstreamEntry::Record: 2162 break; 2163 } 2164 2165 Record.clear(); 2166 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2167 if (!MaybeRecord) 2168 return MaybeRecord.takeError(); 2169 switch (MaybeRecord.get()) { 2170 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2171 unsigned ValueID = Record[0]; 2172 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2173 return error("Invalid value reference in symbol table"); 2174 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2175 cast<Function>(ValueList[ValueID]), Record); 2176 break; 2177 } 2178 } 2179 } 2180 } 2181 2182 /// Parse the value symbol table at either the current parsing location or 2183 /// at the given bit offset if provided. 2184 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2185 uint64_t CurrentBit; 2186 // Pass in the Offset to distinguish between calling for the module-level 2187 // VST (where we want to jump to the VST offset) and the function-level 2188 // VST (where we don't). 2189 if (Offset > 0) { 2190 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2191 if (!MaybeCurrentBit) 2192 return MaybeCurrentBit.takeError(); 2193 CurrentBit = MaybeCurrentBit.get(); 2194 // If this module uses a string table, read this as a module-level VST. 2195 if (UseStrtab) { 2196 if (Error Err = parseGlobalValueSymbolTable()) 2197 return Err; 2198 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2199 return JumpFailed; 2200 return Error::success(); 2201 } 2202 // Otherwise, the VST will be in a similar format to a function-level VST, 2203 // and will contain symbol names. 2204 } 2205 2206 // Compute the delta between the bitcode indices in the VST (the word offset 2207 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2208 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2209 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2210 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2211 // just before entering the VST subblock because: 1) the EnterSubBlock 2212 // changes the AbbrevID width; 2) the VST block is nested within the same 2213 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2214 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2215 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2216 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2217 unsigned FuncBitcodeOffsetDelta = 2218 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2219 2220 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2221 return Err; 2222 2223 SmallVector<uint64_t, 64> Record; 2224 2225 Triple TT(TheModule->getTargetTriple()); 2226 2227 // Read all the records for this value table. 2228 SmallString<128> ValueName; 2229 2230 while (true) { 2231 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2232 if (!MaybeEntry) 2233 return MaybeEntry.takeError(); 2234 BitstreamEntry Entry = MaybeEntry.get(); 2235 2236 switch (Entry.Kind) { 2237 case BitstreamEntry::SubBlock: // Handled for us already. 2238 case BitstreamEntry::Error: 2239 return error("Malformed block"); 2240 case BitstreamEntry::EndBlock: 2241 if (Offset > 0) 2242 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2243 return JumpFailed; 2244 return Error::success(); 2245 case BitstreamEntry::Record: 2246 // The interesting case. 2247 break; 2248 } 2249 2250 // Read a record. 2251 Record.clear(); 2252 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2253 if (!MaybeRecord) 2254 return MaybeRecord.takeError(); 2255 switch (MaybeRecord.get()) { 2256 default: // Default behavior: unknown type. 2257 break; 2258 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2259 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2260 if (Error Err = ValOrErr.takeError()) 2261 return Err; 2262 ValOrErr.get(); 2263 break; 2264 } 2265 case bitc::VST_CODE_FNENTRY: { 2266 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2267 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2268 if (Error Err = ValOrErr.takeError()) 2269 return Err; 2270 Value *V = ValOrErr.get(); 2271 2272 // Ignore function offsets emitted for aliases of functions in older 2273 // versions of LLVM. 2274 if (auto *F = dyn_cast<Function>(V)) 2275 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2276 break; 2277 } 2278 case bitc::VST_CODE_BBENTRY: { 2279 if (convertToString(Record, 1, ValueName)) 2280 return error("Invalid record"); 2281 BasicBlock *BB = getBasicBlock(Record[0]); 2282 if (!BB) 2283 return error("Invalid record"); 2284 2285 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2286 ValueName.clear(); 2287 break; 2288 } 2289 } 2290 } 2291 } 2292 2293 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2294 /// encoding. 2295 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2296 if ((V & 1) == 0) 2297 return V >> 1; 2298 if (V != 1) 2299 return -(V >> 1); 2300 // There is no such thing as -0 with integers. "-0" really means MININT. 2301 return 1ULL << 63; 2302 } 2303 2304 /// Resolve all of the initializers for global values and aliases that we can. 2305 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2306 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2307 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2308 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2309 2310 GlobalInitWorklist.swap(GlobalInits); 2311 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2312 FunctionOperandWorklist.swap(FunctionOperands); 2313 2314 while (!GlobalInitWorklist.empty()) { 2315 unsigned ValID = GlobalInitWorklist.back().second; 2316 if (ValID >= ValueList.size()) { 2317 // Not ready to resolve this yet, it requires something later in the file. 2318 GlobalInits.push_back(GlobalInitWorklist.back()); 2319 } else { 2320 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2321 GlobalInitWorklist.back().first->setInitializer(C); 2322 else 2323 return error("Expected a constant"); 2324 } 2325 GlobalInitWorklist.pop_back(); 2326 } 2327 2328 while (!IndirectSymbolInitWorklist.empty()) { 2329 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2330 if (ValID >= ValueList.size()) { 2331 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2332 } else { 2333 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2334 if (!C) 2335 return error("Expected a constant"); 2336 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2337 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2338 if (C->getType() != GV->getType()) 2339 return error("Alias and aliasee types don't match"); 2340 GA->setAliasee(C); 2341 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2342 Type *ResolverFTy = 2343 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2344 // Transparently fix up the type for compatiblity with older bitcode 2345 GI->setResolver( 2346 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2347 } else { 2348 return error("Expected an alias or an ifunc"); 2349 } 2350 } 2351 IndirectSymbolInitWorklist.pop_back(); 2352 } 2353 2354 while (!FunctionOperandWorklist.empty()) { 2355 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2356 if (Info.PersonalityFn) { 2357 unsigned ValID = Info.PersonalityFn - 1; 2358 if (ValID < ValueList.size()) { 2359 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2360 Info.F->setPersonalityFn(C); 2361 else 2362 return error("Expected a constant"); 2363 Info.PersonalityFn = 0; 2364 } 2365 } 2366 if (Info.Prefix) { 2367 unsigned ValID = Info.Prefix - 1; 2368 if (ValID < ValueList.size()) { 2369 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2370 Info.F->setPrefixData(C); 2371 else 2372 return error("Expected a constant"); 2373 Info.Prefix = 0; 2374 } 2375 } 2376 if (Info.Prologue) { 2377 unsigned ValID = Info.Prologue - 1; 2378 if (ValID < ValueList.size()) { 2379 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2380 Info.F->setPrologueData(C); 2381 else 2382 return error("Expected a constant"); 2383 Info.Prologue = 0; 2384 } 2385 } 2386 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2387 FunctionOperands.push_back(Info); 2388 FunctionOperandWorklist.pop_back(); 2389 } 2390 2391 return Error::success(); 2392 } 2393 2394 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2395 SmallVector<uint64_t, 8> Words(Vals.size()); 2396 transform(Vals, Words.begin(), 2397 BitcodeReader::decodeSignRotatedValue); 2398 2399 return APInt(TypeBits, Words); 2400 } 2401 2402 Error BitcodeReader::parseConstants() { 2403 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2404 return Err; 2405 2406 SmallVector<uint64_t, 64> Record; 2407 2408 // Read all the records for this value table. 2409 unsigned CurTyID = TODOTypeID; 2410 Type *CurTy = Type::getInt32Ty(Context); 2411 Type *CurElemTy = nullptr; 2412 unsigned NextCstNo = ValueList.size(); 2413 2414 struct DelayedShufTy { 2415 VectorType *OpTy; 2416 unsigned OpTyID; 2417 VectorType *RTy; 2418 uint64_t Op0Idx; 2419 uint64_t Op1Idx; 2420 uint64_t Op2Idx; 2421 unsigned CstNo; 2422 }; 2423 std::vector<DelayedShufTy> DelayedShuffles; 2424 struct DelayedSelTy { 2425 Type *OpTy; 2426 unsigned OpTyID; 2427 uint64_t Op0Idx; 2428 uint64_t Op1Idx; 2429 uint64_t Op2Idx; 2430 unsigned CstNo; 2431 }; 2432 std::vector<DelayedSelTy> DelayedSelectors; 2433 2434 while (true) { 2435 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2436 if (!MaybeEntry) 2437 return MaybeEntry.takeError(); 2438 BitstreamEntry Entry = MaybeEntry.get(); 2439 2440 switch (Entry.Kind) { 2441 case BitstreamEntry::SubBlock: // Handled for us already. 2442 case BitstreamEntry::Error: 2443 return error("Malformed block"); 2444 case BitstreamEntry::EndBlock: 2445 // Once all the constants have been read, go through and resolve forward 2446 // references. 2447 // 2448 // We have to treat shuffles specially because they don't have three 2449 // operands anymore. We need to convert the shuffle mask into an array, 2450 // and we can't convert a forward reference. 2451 for (auto &DelayedShuffle : DelayedShuffles) { 2452 VectorType *OpTy = DelayedShuffle.OpTy; 2453 unsigned OpTyID = DelayedShuffle.OpTyID; 2454 VectorType *RTy = DelayedShuffle.RTy; 2455 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2456 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2457 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2458 uint64_t CstNo = DelayedShuffle.CstNo; 2459 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID); 2460 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2461 Type *ShufTy = 2462 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2463 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy, TODOTypeID); 2464 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2465 return error("Invalid shufflevector operands"); 2466 SmallVector<int, 16> Mask; 2467 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2468 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2469 ValueList.assignValue(CstNo, V, TODOTypeID); 2470 } 2471 for (auto &DelayedSelector : DelayedSelectors) { 2472 Type *OpTy = DelayedSelector.OpTy; 2473 unsigned OpTyID = DelayedSelector.OpTyID; 2474 Type *SelectorTy = Type::getInt1Ty(Context); 2475 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2476 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2477 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2478 uint64_t CstNo = DelayedSelector.CstNo; 2479 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2480 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID); 2481 // The selector might be an i1 or an <n x i1> 2482 // Get the type from the ValueList before getting a forward ref. 2483 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2484 Value *V = ValueList[Op0Idx]; 2485 assert(V); 2486 if (SelectorTy != V->getType()) 2487 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2488 } 2489 Constant *Op0 = 2490 ValueList.getConstantFwdRef(Op0Idx, SelectorTy, TODOTypeID); 2491 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2492 ValueList.assignValue(CstNo, V, TODOTypeID); 2493 } 2494 2495 if (NextCstNo != ValueList.size()) 2496 return error("Invalid constant reference"); 2497 2498 ValueList.resolveConstantForwardRefs(); 2499 return Error::success(); 2500 case BitstreamEntry::Record: 2501 // The interesting case. 2502 break; 2503 } 2504 2505 // Read a record. 2506 Record.clear(); 2507 Type *VoidType = Type::getVoidTy(Context); 2508 Value *V = nullptr; 2509 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2510 if (!MaybeBitCode) 2511 return MaybeBitCode.takeError(); 2512 switch (unsigned BitCode = MaybeBitCode.get()) { 2513 default: // Default behavior: unknown constant 2514 case bitc::CST_CODE_UNDEF: // UNDEF 2515 V = UndefValue::get(CurTy); 2516 break; 2517 case bitc::CST_CODE_POISON: // POISON 2518 V = PoisonValue::get(CurTy); 2519 break; 2520 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2521 if (Record.empty()) 2522 return error("Invalid record"); 2523 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2524 return error("Invalid record"); 2525 if (TypeList[Record[0]] == VoidType) 2526 return error("Invalid constant type"); 2527 CurTyID = Record[0]; 2528 CurTy = TypeList[CurTyID]; 2529 CurElemTy = getPtrElementTypeByID(CurTyID); 2530 continue; // Skip the ValueList manipulation. 2531 case bitc::CST_CODE_NULL: // NULL 2532 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2533 return error("Invalid type for a constant null value"); 2534 V = Constant::getNullValue(CurTy); 2535 break; 2536 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2537 if (!CurTy->isIntegerTy() || Record.empty()) 2538 return error("Invalid record"); 2539 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2540 break; 2541 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2542 if (!CurTy->isIntegerTy() || Record.empty()) 2543 return error("Invalid record"); 2544 2545 APInt VInt = 2546 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2547 V = ConstantInt::get(Context, VInt); 2548 2549 break; 2550 } 2551 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2552 if (Record.empty()) 2553 return error("Invalid record"); 2554 if (CurTy->isHalfTy()) 2555 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2556 APInt(16, (uint16_t)Record[0]))); 2557 else if (CurTy->isBFloatTy()) 2558 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2559 APInt(16, (uint32_t)Record[0]))); 2560 else if (CurTy->isFloatTy()) 2561 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2562 APInt(32, (uint32_t)Record[0]))); 2563 else if (CurTy->isDoubleTy()) 2564 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2565 APInt(64, Record[0]))); 2566 else if (CurTy->isX86_FP80Ty()) { 2567 // Bits are not stored the same way as a normal i80 APInt, compensate. 2568 uint64_t Rearrange[2]; 2569 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2570 Rearrange[1] = Record[0] >> 48; 2571 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2572 APInt(80, Rearrange))); 2573 } else if (CurTy->isFP128Ty()) 2574 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2575 APInt(128, Record))); 2576 else if (CurTy->isPPC_FP128Ty()) 2577 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2578 APInt(128, Record))); 2579 else 2580 V = UndefValue::get(CurTy); 2581 break; 2582 } 2583 2584 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2585 if (Record.empty()) 2586 return error("Invalid record"); 2587 2588 unsigned Size = Record.size(); 2589 SmallVector<Constant*, 16> Elts; 2590 2591 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2592 for (unsigned i = 0; i != Size; ++i) 2593 Elts.push_back(ValueList.getConstantFwdRef( 2594 Record[i], STy->getElementType(i), 2595 getContainedTypeID(CurTyID, i))); 2596 V = ConstantStruct::get(STy, Elts); 2597 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2598 Type *EltTy = ATy->getElementType(); 2599 unsigned EltTyID = getContainedTypeID(CurTyID); 2600 for (unsigned i = 0; i != Size; ++i) 2601 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2602 EltTyID)); 2603 V = ConstantArray::get(ATy, Elts); 2604 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2605 Type *EltTy = VTy->getElementType(); 2606 unsigned EltTyID = getContainedTypeID(CurTyID); 2607 for (unsigned i = 0; i != Size; ++i) 2608 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2609 EltTyID)); 2610 V = ConstantVector::get(Elts); 2611 } else { 2612 V = UndefValue::get(CurTy); 2613 } 2614 break; 2615 } 2616 case bitc::CST_CODE_STRING: // STRING: [values] 2617 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2618 if (Record.empty()) 2619 return error("Invalid record"); 2620 2621 SmallString<16> Elts(Record.begin(), Record.end()); 2622 V = ConstantDataArray::getString(Context, Elts, 2623 BitCode == bitc::CST_CODE_CSTRING); 2624 break; 2625 } 2626 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2627 if (Record.empty()) 2628 return error("Invalid record"); 2629 2630 Type *EltTy; 2631 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2632 EltTy = Array->getElementType(); 2633 else 2634 EltTy = cast<VectorType>(CurTy)->getElementType(); 2635 if (EltTy->isIntegerTy(8)) { 2636 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2637 if (isa<VectorType>(CurTy)) 2638 V = ConstantDataVector::get(Context, Elts); 2639 else 2640 V = ConstantDataArray::get(Context, Elts); 2641 } else if (EltTy->isIntegerTy(16)) { 2642 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2643 if (isa<VectorType>(CurTy)) 2644 V = ConstantDataVector::get(Context, Elts); 2645 else 2646 V = ConstantDataArray::get(Context, Elts); 2647 } else if (EltTy->isIntegerTy(32)) { 2648 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2649 if (isa<VectorType>(CurTy)) 2650 V = ConstantDataVector::get(Context, Elts); 2651 else 2652 V = ConstantDataArray::get(Context, Elts); 2653 } else if (EltTy->isIntegerTy(64)) { 2654 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2655 if (isa<VectorType>(CurTy)) 2656 V = ConstantDataVector::get(Context, Elts); 2657 else 2658 V = ConstantDataArray::get(Context, Elts); 2659 } else if (EltTy->isHalfTy()) { 2660 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2661 if (isa<VectorType>(CurTy)) 2662 V = ConstantDataVector::getFP(EltTy, Elts); 2663 else 2664 V = ConstantDataArray::getFP(EltTy, Elts); 2665 } else if (EltTy->isBFloatTy()) { 2666 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2667 if (isa<VectorType>(CurTy)) 2668 V = ConstantDataVector::getFP(EltTy, Elts); 2669 else 2670 V = ConstantDataArray::getFP(EltTy, Elts); 2671 } else if (EltTy->isFloatTy()) { 2672 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2673 if (isa<VectorType>(CurTy)) 2674 V = ConstantDataVector::getFP(EltTy, Elts); 2675 else 2676 V = ConstantDataArray::getFP(EltTy, Elts); 2677 } else if (EltTy->isDoubleTy()) { 2678 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2679 if (isa<VectorType>(CurTy)) 2680 V = ConstantDataVector::getFP(EltTy, Elts); 2681 else 2682 V = ConstantDataArray::getFP(EltTy, Elts); 2683 } else { 2684 return error("Invalid type for value"); 2685 } 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2689 if (Record.size() < 2) 2690 return error("Invalid record"); 2691 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2692 if (Opc < 0) { 2693 V = UndefValue::get(CurTy); // Unknown unop. 2694 } else { 2695 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2696 unsigned Flags = 0; 2697 V = ConstantExpr::get(Opc, LHS, Flags); 2698 } 2699 break; 2700 } 2701 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2702 if (Record.size() < 3) 2703 return error("Invalid record"); 2704 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2705 if (Opc < 0) { 2706 V = UndefValue::get(CurTy); // Unknown binop. 2707 } else { 2708 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2709 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID); 2710 unsigned Flags = 0; 2711 if (Record.size() >= 4) { 2712 if (Opc == Instruction::Add || 2713 Opc == Instruction::Sub || 2714 Opc == Instruction::Mul || 2715 Opc == Instruction::Shl) { 2716 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2717 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2718 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2719 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2720 } else if (Opc == Instruction::SDiv || 2721 Opc == Instruction::UDiv || 2722 Opc == Instruction::LShr || 2723 Opc == Instruction::AShr) { 2724 if (Record[3] & (1 << bitc::PEO_EXACT)) 2725 Flags |= SDivOperator::IsExact; 2726 } 2727 } 2728 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2729 } 2730 break; 2731 } 2732 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2733 if (Record.size() < 3) 2734 return error("Invalid record"); 2735 int Opc = getDecodedCastOpcode(Record[0]); 2736 if (Opc < 0) { 2737 V = UndefValue::get(CurTy); // Unknown cast. 2738 } else { 2739 unsigned OpTyID = Record[1]; 2740 Type *OpTy = getTypeByID(OpTyID); 2741 if (!OpTy) 2742 return error("Invalid record"); 2743 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2744 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2745 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2746 } 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2750 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2751 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2752 // operands] 2753 if (Record.size() < 2) 2754 return error("Constant GEP record must have at least two elements"); 2755 unsigned OpNum = 0; 2756 Type *PointeeType = nullptr; 2757 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2758 Record.size() % 2) 2759 PointeeType = getTypeByID(Record[OpNum++]); 2760 2761 bool InBounds = false; 2762 Optional<unsigned> InRangeIndex; 2763 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2764 uint64_t Op = Record[OpNum++]; 2765 InBounds = Op & 1; 2766 InRangeIndex = Op >> 1; 2767 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2768 InBounds = true; 2769 2770 SmallVector<Constant*, 16> Elts; 2771 unsigned BaseTypeID = Record[OpNum]; 2772 while (OpNum != Record.size()) { 2773 unsigned ElTyID = Record[OpNum++]; 2774 Type *ElTy = getTypeByID(ElTyID); 2775 if (!ElTy) 2776 return error("Invalid record"); 2777 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy, 2778 ElTyID)); 2779 } 2780 2781 if (Elts.size() < 1) 2782 return error("Invalid gep with no operands"); 2783 2784 Type *BaseType = getTypeByID(BaseTypeID); 2785 if (isa<VectorType>(BaseType)) { 2786 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 2787 BaseType = getTypeByID(BaseTypeID); 2788 } 2789 2790 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 2791 if (!OrigPtrTy) 2792 return error("GEP base operand must be pointer or vector of pointer"); 2793 2794 if (!PointeeType) { 2795 PointeeType = getPtrElementTypeByID(BaseTypeID); 2796 if (!PointeeType) 2797 return error("Missing element type for old-style constant GEP"); 2798 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2799 return error("Explicit gep operator type does not match pointee type " 2800 "of pointer operand"); 2801 2802 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2803 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2804 InBounds, InRangeIndex); 2805 break; 2806 } 2807 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2808 if (Record.size() < 3) 2809 return error("Invalid record"); 2810 2811 DelayedSelectors.push_back( 2812 {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo}); 2813 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID); 2814 ++NextCstNo; 2815 continue; 2816 } 2817 case bitc::CST_CODE_CE_EXTRACTELT 2818 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2819 if (Record.size() < 3) 2820 return error("Invalid record"); 2821 unsigned OpTyID = Record[0]; 2822 VectorType *OpTy = 2823 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 2824 if (!OpTy) 2825 return error("Invalid record"); 2826 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2827 Constant *Op1 = nullptr; 2828 if (Record.size() == 4) { 2829 unsigned IdxTyID = Record[2]; 2830 Type *IdxTy = getTypeByID(IdxTyID); 2831 if (!IdxTy) 2832 return error("Invalid record"); 2833 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2834 } else { 2835 // Deprecated, but still needed to read old bitcode files. 2836 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2837 TODOTypeID); 2838 } 2839 if (!Op1) 2840 return error("Invalid record"); 2841 V = ConstantExpr::getExtractElement(Op0, Op1); 2842 break; 2843 } 2844 case bitc::CST_CODE_CE_INSERTELT 2845 : { // CE_INSERTELT: [opval, opval, opty, opval] 2846 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2847 if (Record.size() < 3 || !OpTy) 2848 return error("Invalid record"); 2849 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID); 2850 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2851 OpTy->getElementType(), 2852 getContainedTypeID(CurTyID)); 2853 Constant *Op2 = nullptr; 2854 if (Record.size() == 4) { 2855 unsigned IdxTyID = Record[2]; 2856 Type *IdxTy = getTypeByID(IdxTyID); 2857 if (!IdxTy) 2858 return error("Invalid record"); 2859 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2860 } else { 2861 // Deprecated, but still needed to read old bitcode files. 2862 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2863 TODOTypeID); 2864 } 2865 if (!Op2) 2866 return error("Invalid record"); 2867 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2868 break; 2869 } 2870 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2871 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2872 if (Record.size() < 3 || !OpTy) 2873 return error("Invalid record"); 2874 DelayedShuffles.push_back( 2875 {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2876 ++NextCstNo; 2877 continue; 2878 } 2879 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2880 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2881 VectorType *OpTy = 2882 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2883 if (Record.size() < 4 || !RTy || !OpTy) 2884 return error("Invalid record"); 2885 DelayedShuffles.push_back( 2886 {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2887 ++NextCstNo; 2888 continue; 2889 } 2890 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2891 if (Record.size() < 4) 2892 return error("Invalid record"); 2893 unsigned OpTyID = Record[0]; 2894 Type *OpTy = getTypeByID(OpTyID); 2895 if (!OpTy) 2896 return error("Invalid record"); 2897 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2898 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2899 2900 if (OpTy->isFPOrFPVectorTy()) 2901 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2902 else 2903 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2904 break; 2905 } 2906 // This maintains backward compatibility, pre-asm dialect keywords. 2907 // Deprecated, but still needed to read old bitcode files. 2908 case bitc::CST_CODE_INLINEASM_OLD: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 std::string AsmStr, ConstrStr; 2912 bool HasSideEffects = Record[0] & 1; 2913 bool IsAlignStack = Record[0] >> 1; 2914 unsigned AsmStrSize = Record[1]; 2915 if (2+AsmStrSize >= Record.size()) 2916 return error("Invalid record"); 2917 unsigned ConstStrSize = Record[2+AsmStrSize]; 2918 if (3+AsmStrSize+ConstStrSize > Record.size()) 2919 return error("Invalid record"); 2920 2921 for (unsigned i = 0; i != AsmStrSize; ++i) 2922 AsmStr += (char)Record[2+i]; 2923 for (unsigned i = 0; i != ConstStrSize; ++i) 2924 ConstrStr += (char)Record[3+AsmStrSize+i]; 2925 UpgradeInlineAsmString(&AsmStr); 2926 if (!CurElemTy) 2927 return error("Missing element type for old-style inlineasm"); 2928 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2929 HasSideEffects, IsAlignStack); 2930 break; 2931 } 2932 // This version adds support for the asm dialect keywords (e.g., 2933 // inteldialect). 2934 case bitc::CST_CODE_INLINEASM_OLD2: { 2935 if (Record.size() < 2) 2936 return error("Invalid record"); 2937 std::string AsmStr, ConstrStr; 2938 bool HasSideEffects = Record[0] & 1; 2939 bool IsAlignStack = (Record[0] >> 1) & 1; 2940 unsigned AsmDialect = Record[0] >> 2; 2941 unsigned AsmStrSize = Record[1]; 2942 if (2+AsmStrSize >= Record.size()) 2943 return error("Invalid record"); 2944 unsigned ConstStrSize = Record[2+AsmStrSize]; 2945 if (3+AsmStrSize+ConstStrSize > Record.size()) 2946 return error("Invalid record"); 2947 2948 for (unsigned i = 0; i != AsmStrSize; ++i) 2949 AsmStr += (char)Record[2+i]; 2950 for (unsigned i = 0; i != ConstStrSize; ++i) 2951 ConstrStr += (char)Record[3+AsmStrSize+i]; 2952 UpgradeInlineAsmString(&AsmStr); 2953 if (!CurElemTy) 2954 return error("Missing element type for old-style inlineasm"); 2955 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2956 HasSideEffects, IsAlignStack, 2957 InlineAsm::AsmDialect(AsmDialect)); 2958 break; 2959 } 2960 // This version adds support for the unwind keyword. 2961 case bitc::CST_CODE_INLINEASM_OLD3: { 2962 if (Record.size() < 2) 2963 return error("Invalid record"); 2964 unsigned OpNum = 0; 2965 std::string AsmStr, ConstrStr; 2966 bool HasSideEffects = Record[OpNum] & 1; 2967 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2968 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2969 bool CanThrow = (Record[OpNum] >> 3) & 1; 2970 ++OpNum; 2971 unsigned AsmStrSize = Record[OpNum]; 2972 ++OpNum; 2973 if (OpNum + AsmStrSize >= Record.size()) 2974 return error("Invalid record"); 2975 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2976 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2977 return error("Invalid record"); 2978 2979 for (unsigned i = 0; i != AsmStrSize; ++i) 2980 AsmStr += (char)Record[OpNum + i]; 2981 ++OpNum; 2982 for (unsigned i = 0; i != ConstStrSize; ++i) 2983 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2984 UpgradeInlineAsmString(&AsmStr); 2985 if (!CurElemTy) 2986 return error("Missing element type for old-style inlineasm"); 2987 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2988 HasSideEffects, IsAlignStack, 2989 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2990 break; 2991 } 2992 // This version adds explicit function type. 2993 case bitc::CST_CODE_INLINEASM: { 2994 if (Record.size() < 3) 2995 return error("Invalid record"); 2996 unsigned OpNum = 0; 2997 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2998 ++OpNum; 2999 if (!FnTy) 3000 return error("Invalid record"); 3001 std::string AsmStr, ConstrStr; 3002 bool HasSideEffects = Record[OpNum] & 1; 3003 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3004 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3005 bool CanThrow = (Record[OpNum] >> 3) & 1; 3006 ++OpNum; 3007 unsigned AsmStrSize = Record[OpNum]; 3008 ++OpNum; 3009 if (OpNum + AsmStrSize >= Record.size()) 3010 return error("Invalid record"); 3011 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3012 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3013 return error("Invalid record"); 3014 3015 for (unsigned i = 0; i != AsmStrSize; ++i) 3016 AsmStr += (char)Record[OpNum + i]; 3017 ++OpNum; 3018 for (unsigned i = 0; i != ConstStrSize; ++i) 3019 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3020 UpgradeInlineAsmString(&AsmStr); 3021 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3022 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3023 break; 3024 } 3025 case bitc::CST_CODE_BLOCKADDRESS:{ 3026 if (Record.size() < 3) 3027 return error("Invalid record"); 3028 unsigned FnTyID = Record[0]; 3029 Type *FnTy = getTypeByID(FnTyID); 3030 if (!FnTy) 3031 return error("Invalid record"); 3032 Function *Fn = dyn_cast_or_null<Function>( 3033 ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID)); 3034 if (!Fn) 3035 return error("Invalid record"); 3036 3037 // If the function is already parsed we can insert the block address right 3038 // away. 3039 BasicBlock *BB; 3040 unsigned BBID = Record[2]; 3041 if (!BBID) 3042 // Invalid reference to entry block. 3043 return error("Invalid ID"); 3044 if (!Fn->empty()) { 3045 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3046 for (size_t I = 0, E = BBID; I != E; ++I) { 3047 if (BBI == BBE) 3048 return error("Invalid ID"); 3049 ++BBI; 3050 } 3051 BB = &*BBI; 3052 } else { 3053 // Otherwise insert a placeholder and remember it so it can be inserted 3054 // when the function is parsed. 3055 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3056 if (FwdBBs.empty()) 3057 BasicBlockFwdRefQueue.push_back(Fn); 3058 if (FwdBBs.size() < BBID + 1) 3059 FwdBBs.resize(BBID + 1); 3060 if (!FwdBBs[BBID]) 3061 FwdBBs[BBID] = BasicBlock::Create(Context); 3062 BB = FwdBBs[BBID]; 3063 } 3064 V = BlockAddress::get(Fn, BB); 3065 break; 3066 } 3067 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3068 if (Record.size() < 2) 3069 return error("Invalid record"); 3070 unsigned GVTyID = Record[0]; 3071 Type *GVTy = getTypeByID(GVTyID); 3072 if (!GVTy) 3073 return error("Invalid record"); 3074 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3075 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3076 if (!GV) 3077 return error("Invalid record"); 3078 3079 V = DSOLocalEquivalent::get(GV); 3080 break; 3081 } 3082 case bitc::CST_CODE_NO_CFI_VALUE: { 3083 if (Record.size() < 2) 3084 return error("Invalid record"); 3085 unsigned GVTyID = Record[0]; 3086 Type *GVTy = getTypeByID(GVTyID); 3087 if (!GVTy) 3088 return error("Invalid record"); 3089 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3090 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3091 if (!GV) 3092 return error("Invalid record"); 3093 V = NoCFIValue::get(GV); 3094 break; 3095 } 3096 } 3097 3098 ValueList.assignValue(NextCstNo, V, CurTyID); 3099 ++NextCstNo; 3100 } 3101 } 3102 3103 Error BitcodeReader::parseUseLists() { 3104 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3105 return Err; 3106 3107 // Read all the records. 3108 SmallVector<uint64_t, 64> Record; 3109 3110 while (true) { 3111 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3112 if (!MaybeEntry) 3113 return MaybeEntry.takeError(); 3114 BitstreamEntry Entry = MaybeEntry.get(); 3115 3116 switch (Entry.Kind) { 3117 case BitstreamEntry::SubBlock: // Handled for us already. 3118 case BitstreamEntry::Error: 3119 return error("Malformed block"); 3120 case BitstreamEntry::EndBlock: 3121 return Error::success(); 3122 case BitstreamEntry::Record: 3123 // The interesting case. 3124 break; 3125 } 3126 3127 // Read a use list record. 3128 Record.clear(); 3129 bool IsBB = false; 3130 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3131 if (!MaybeRecord) 3132 return MaybeRecord.takeError(); 3133 switch (MaybeRecord.get()) { 3134 default: // Default behavior: unknown type. 3135 break; 3136 case bitc::USELIST_CODE_BB: 3137 IsBB = true; 3138 LLVM_FALLTHROUGH; 3139 case bitc::USELIST_CODE_DEFAULT: { 3140 unsigned RecordLength = Record.size(); 3141 if (RecordLength < 3) 3142 // Records should have at least an ID and two indexes. 3143 return error("Invalid record"); 3144 unsigned ID = Record.pop_back_val(); 3145 3146 Value *V; 3147 if (IsBB) { 3148 assert(ID < FunctionBBs.size() && "Basic block not found"); 3149 V = FunctionBBs[ID]; 3150 } else 3151 V = ValueList[ID]; 3152 unsigned NumUses = 0; 3153 SmallDenseMap<const Use *, unsigned, 16> Order; 3154 for (const Use &U : V->materialized_uses()) { 3155 if (++NumUses > Record.size()) 3156 break; 3157 Order[&U] = Record[NumUses - 1]; 3158 } 3159 if (Order.size() != Record.size() || NumUses > Record.size()) 3160 // Mismatches can happen if the functions are being materialized lazily 3161 // (out-of-order), or a value has been upgraded. 3162 break; 3163 3164 V->sortUseList([&](const Use &L, const Use &R) { 3165 return Order.lookup(&L) < Order.lookup(&R); 3166 }); 3167 break; 3168 } 3169 } 3170 } 3171 } 3172 3173 /// When we see the block for metadata, remember where it is and then skip it. 3174 /// This lets us lazily deserialize the metadata. 3175 Error BitcodeReader::rememberAndSkipMetadata() { 3176 // Save the current stream state. 3177 uint64_t CurBit = Stream.GetCurrentBitNo(); 3178 DeferredMetadataInfo.push_back(CurBit); 3179 3180 // Skip over the block for now. 3181 if (Error Err = Stream.SkipBlock()) 3182 return Err; 3183 return Error::success(); 3184 } 3185 3186 Error BitcodeReader::materializeMetadata() { 3187 for (uint64_t BitPos : DeferredMetadataInfo) { 3188 // Move the bit stream to the saved position. 3189 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3190 return JumpFailed; 3191 if (Error Err = MDLoader->parseModuleMetadata()) 3192 return Err; 3193 } 3194 3195 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3196 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3197 // multiple times. 3198 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3199 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3200 NamedMDNode *LinkerOpts = 3201 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3202 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3203 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3204 } 3205 } 3206 3207 DeferredMetadataInfo.clear(); 3208 return Error::success(); 3209 } 3210 3211 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3212 3213 /// When we see the block for a function body, remember where it is and then 3214 /// skip it. This lets us lazily deserialize the functions. 3215 Error BitcodeReader::rememberAndSkipFunctionBody() { 3216 // Get the function we are talking about. 3217 if (FunctionsWithBodies.empty()) 3218 return error("Insufficient function protos"); 3219 3220 Function *Fn = FunctionsWithBodies.back(); 3221 FunctionsWithBodies.pop_back(); 3222 3223 // Save the current stream state. 3224 uint64_t CurBit = Stream.GetCurrentBitNo(); 3225 assert( 3226 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3227 "Mismatch between VST and scanned function offsets"); 3228 DeferredFunctionInfo[Fn] = CurBit; 3229 3230 // Skip over the function block for now. 3231 if (Error Err = Stream.SkipBlock()) 3232 return Err; 3233 return Error::success(); 3234 } 3235 3236 Error BitcodeReader::globalCleanup() { 3237 // Patch the initializers for globals and aliases up. 3238 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3239 return Err; 3240 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3241 return error("Malformed global initializer set"); 3242 3243 // Look for intrinsic functions which need to be upgraded at some point 3244 // and functions that need to have their function attributes upgraded. 3245 for (Function &F : *TheModule) { 3246 MDLoader->upgradeDebugIntrinsics(F); 3247 Function *NewFn; 3248 if (UpgradeIntrinsicFunction(&F, NewFn)) 3249 UpgradedIntrinsics[&F] = NewFn; 3250 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3251 // Some types could be renamed during loading if several modules are 3252 // loaded in the same LLVMContext (LTO scenario). In this case we should 3253 // remangle intrinsics names as well. 3254 RemangledIntrinsics[&F] = Remangled.getValue(); 3255 // Look for functions that rely on old function attribute behavior. 3256 UpgradeFunctionAttributes(F); 3257 } 3258 3259 // Look for global variables which need to be renamed. 3260 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3261 for (GlobalVariable &GV : TheModule->globals()) 3262 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3263 UpgradedVariables.emplace_back(&GV, Upgraded); 3264 for (auto &Pair : UpgradedVariables) { 3265 Pair.first->eraseFromParent(); 3266 TheModule->getGlobalList().push_back(Pair.second); 3267 } 3268 3269 // Force deallocation of memory for these vectors to favor the client that 3270 // want lazy deserialization. 3271 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3272 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3273 return Error::success(); 3274 } 3275 3276 /// Support for lazy parsing of function bodies. This is required if we 3277 /// either have an old bitcode file without a VST forward declaration record, 3278 /// or if we have an anonymous function being materialized, since anonymous 3279 /// functions do not have a name and are therefore not in the VST. 3280 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3281 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3282 return JumpFailed; 3283 3284 if (Stream.AtEndOfStream()) 3285 return error("Could not find function in stream"); 3286 3287 if (!SeenFirstFunctionBody) 3288 return error("Trying to materialize functions before seeing function blocks"); 3289 3290 // An old bitcode file with the symbol table at the end would have 3291 // finished the parse greedily. 3292 assert(SeenValueSymbolTable); 3293 3294 SmallVector<uint64_t, 64> Record; 3295 3296 while (true) { 3297 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3298 if (!MaybeEntry) 3299 return MaybeEntry.takeError(); 3300 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3301 3302 switch (Entry.Kind) { 3303 default: 3304 return error("Expect SubBlock"); 3305 case BitstreamEntry::SubBlock: 3306 switch (Entry.ID) { 3307 default: 3308 return error("Expect function block"); 3309 case bitc::FUNCTION_BLOCK_ID: 3310 if (Error Err = rememberAndSkipFunctionBody()) 3311 return Err; 3312 NextUnreadBit = Stream.GetCurrentBitNo(); 3313 return Error::success(); 3314 } 3315 } 3316 } 3317 } 3318 3319 Error BitcodeReaderBase::readBlockInfo() { 3320 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3321 Stream.ReadBlockInfoBlock(); 3322 if (!MaybeNewBlockInfo) 3323 return MaybeNewBlockInfo.takeError(); 3324 Optional<BitstreamBlockInfo> NewBlockInfo = 3325 std::move(MaybeNewBlockInfo.get()); 3326 if (!NewBlockInfo) 3327 return error("Malformed block"); 3328 BlockInfo = std::move(*NewBlockInfo); 3329 return Error::success(); 3330 } 3331 3332 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3333 // v1: [selection_kind, name] 3334 // v2: [strtab_offset, strtab_size, selection_kind] 3335 StringRef Name; 3336 std::tie(Name, Record) = readNameFromStrtab(Record); 3337 3338 if (Record.empty()) 3339 return error("Invalid record"); 3340 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3341 std::string OldFormatName; 3342 if (!UseStrtab) { 3343 if (Record.size() < 2) 3344 return error("Invalid record"); 3345 unsigned ComdatNameSize = Record[1]; 3346 if (ComdatNameSize > Record.size() - 2) 3347 return error("Comdat name size too large"); 3348 OldFormatName.reserve(ComdatNameSize); 3349 for (unsigned i = 0; i != ComdatNameSize; ++i) 3350 OldFormatName += (char)Record[2 + i]; 3351 Name = OldFormatName; 3352 } 3353 Comdat *C = TheModule->getOrInsertComdat(Name); 3354 C->setSelectionKind(SK); 3355 ComdatList.push_back(C); 3356 return Error::success(); 3357 } 3358 3359 static void inferDSOLocal(GlobalValue *GV) { 3360 // infer dso_local from linkage and visibility if it is not encoded. 3361 if (GV->hasLocalLinkage() || 3362 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3363 GV->setDSOLocal(true); 3364 } 3365 3366 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3367 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3368 // visibility, threadlocal, unnamed_addr, externally_initialized, 3369 // dllstorageclass, comdat, attributes, preemption specifier, 3370 // partition strtab offset, partition strtab size] (name in VST) 3371 // v2: [strtab_offset, strtab_size, v1] 3372 StringRef Name; 3373 std::tie(Name, Record) = readNameFromStrtab(Record); 3374 3375 if (Record.size() < 6) 3376 return error("Invalid record"); 3377 unsigned TyID = Record[0]; 3378 Type *Ty = getTypeByID(TyID); 3379 if (!Ty) 3380 return error("Invalid record"); 3381 bool isConstant = Record[1] & 1; 3382 bool explicitType = Record[1] & 2; 3383 unsigned AddressSpace; 3384 if (explicitType) { 3385 AddressSpace = Record[1] >> 2; 3386 } else { 3387 if (!Ty->isPointerTy()) 3388 return error("Invalid type for value"); 3389 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3390 Ty = getPtrElementTypeByID(Record[0]); 3391 if (!Ty) 3392 return error("Missing element type for old-style global"); 3393 } 3394 3395 uint64_t RawLinkage = Record[3]; 3396 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3397 MaybeAlign Alignment; 3398 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3399 return Err; 3400 std::string Section; 3401 if (Record[5]) { 3402 if (Record[5] - 1 >= SectionTable.size()) 3403 return error("Invalid ID"); 3404 Section = SectionTable[Record[5] - 1]; 3405 } 3406 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3407 // Local linkage must have default visibility. 3408 // auto-upgrade `hidden` and `protected` for old bitcode. 3409 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3410 Visibility = getDecodedVisibility(Record[6]); 3411 3412 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3413 if (Record.size() > 7) 3414 TLM = getDecodedThreadLocalMode(Record[7]); 3415 3416 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3417 if (Record.size() > 8) 3418 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3419 3420 bool ExternallyInitialized = false; 3421 if (Record.size() > 9) 3422 ExternallyInitialized = Record[9]; 3423 3424 GlobalVariable *NewGV = 3425 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3426 nullptr, TLM, AddressSpace, ExternallyInitialized); 3427 NewGV->setAlignment(Alignment); 3428 if (!Section.empty()) 3429 NewGV->setSection(Section); 3430 NewGV->setVisibility(Visibility); 3431 NewGV->setUnnamedAddr(UnnamedAddr); 3432 3433 if (Record.size() > 10) 3434 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3435 else 3436 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3437 3438 ValueList.push_back(NewGV, TyID); 3439 3440 // Remember which value to use for the global initializer. 3441 if (unsigned InitID = Record[2]) 3442 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3443 3444 if (Record.size() > 11) { 3445 if (unsigned ComdatID = Record[11]) { 3446 if (ComdatID > ComdatList.size()) 3447 return error("Invalid global variable comdat ID"); 3448 NewGV->setComdat(ComdatList[ComdatID - 1]); 3449 } 3450 } else if (hasImplicitComdat(RawLinkage)) { 3451 ImplicitComdatObjects.insert(NewGV); 3452 } 3453 3454 if (Record.size() > 12) { 3455 auto AS = getAttributes(Record[12]).getFnAttrs(); 3456 NewGV->setAttributes(AS); 3457 } 3458 3459 if (Record.size() > 13) { 3460 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3461 } 3462 inferDSOLocal(NewGV); 3463 3464 // Check whether we have enough values to read a partition name. 3465 if (Record.size() > 15) 3466 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3467 3468 return Error::success(); 3469 } 3470 3471 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3472 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3473 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3474 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3475 // v2: [strtab_offset, strtab_size, v1] 3476 StringRef Name; 3477 std::tie(Name, Record) = readNameFromStrtab(Record); 3478 3479 if (Record.size() < 8) 3480 return error("Invalid record"); 3481 unsigned FTyID = Record[0]; 3482 Type *FTy = getTypeByID(FTyID); 3483 if (!FTy) 3484 return error("Invalid record"); 3485 if (isa<PointerType>(FTy)) { 3486 FTyID = getContainedTypeID(FTyID, 0); 3487 FTy = getTypeByID(FTyID); 3488 if (!FTy) 3489 return error("Missing element type for old-style function"); 3490 } 3491 3492 if (!isa<FunctionType>(FTy)) 3493 return error("Invalid type for value"); 3494 auto CC = static_cast<CallingConv::ID>(Record[1]); 3495 if (CC & ~CallingConv::MaxID) 3496 return error("Invalid calling convention ID"); 3497 3498 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3499 if (Record.size() > 16) 3500 AddrSpace = Record[16]; 3501 3502 Function *Func = 3503 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3504 AddrSpace, Name, TheModule); 3505 3506 assert(Func->getFunctionType() == FTy && 3507 "Incorrect fully specified type provided for function"); 3508 FunctionTypeIDs[Func] = FTyID; 3509 3510 Func->setCallingConv(CC); 3511 bool isProto = Record[2]; 3512 uint64_t RawLinkage = Record[3]; 3513 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3514 Func->setAttributes(getAttributes(Record[4])); 3515 3516 // Upgrade any old-style byval or sret without a type by propagating the 3517 // argument's pointee type. There should be no opaque pointers where the byval 3518 // type is implicit. 3519 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3520 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3521 Attribute::InAlloca}) { 3522 if (!Func->hasParamAttribute(i, Kind)) 3523 continue; 3524 3525 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3526 continue; 3527 3528 Func->removeParamAttr(i, Kind); 3529 3530 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3531 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3532 if (!PtrEltTy) 3533 return error("Missing param element type for attribute upgrade"); 3534 3535 Attribute NewAttr; 3536 switch (Kind) { 3537 case Attribute::ByVal: 3538 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3539 break; 3540 case Attribute::StructRet: 3541 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3542 break; 3543 case Attribute::InAlloca: 3544 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3545 break; 3546 default: 3547 llvm_unreachable("not an upgraded type attribute"); 3548 } 3549 3550 Func->addParamAttr(i, NewAttr); 3551 } 3552 } 3553 3554 MaybeAlign Alignment; 3555 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3556 return Err; 3557 Func->setAlignment(Alignment); 3558 if (Record[6]) { 3559 if (Record[6] - 1 >= SectionTable.size()) 3560 return error("Invalid ID"); 3561 Func->setSection(SectionTable[Record[6] - 1]); 3562 } 3563 // Local linkage must have default visibility. 3564 // auto-upgrade `hidden` and `protected` for old bitcode. 3565 if (!Func->hasLocalLinkage()) 3566 Func->setVisibility(getDecodedVisibility(Record[7])); 3567 if (Record.size() > 8 && Record[8]) { 3568 if (Record[8] - 1 >= GCTable.size()) 3569 return error("Invalid ID"); 3570 Func->setGC(GCTable[Record[8] - 1]); 3571 } 3572 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3573 if (Record.size() > 9) 3574 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3575 Func->setUnnamedAddr(UnnamedAddr); 3576 3577 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3578 if (Record.size() > 10) 3579 OperandInfo.Prologue = Record[10]; 3580 3581 if (Record.size() > 11) 3582 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3583 else 3584 upgradeDLLImportExportLinkage(Func, RawLinkage); 3585 3586 if (Record.size() > 12) { 3587 if (unsigned ComdatID = Record[12]) { 3588 if (ComdatID > ComdatList.size()) 3589 return error("Invalid function comdat ID"); 3590 Func->setComdat(ComdatList[ComdatID - 1]); 3591 } 3592 } else if (hasImplicitComdat(RawLinkage)) { 3593 ImplicitComdatObjects.insert(Func); 3594 } 3595 3596 if (Record.size() > 13) 3597 OperandInfo.Prefix = Record[13]; 3598 3599 if (Record.size() > 14) 3600 OperandInfo.PersonalityFn = Record[14]; 3601 3602 if (Record.size() > 15) { 3603 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3604 } 3605 inferDSOLocal(Func); 3606 3607 // Record[16] is the address space number. 3608 3609 // Check whether we have enough values to read a partition name. Also make 3610 // sure Strtab has enough values. 3611 if (Record.size() > 18 && Strtab.data() && 3612 Record[17] + Record[18] <= Strtab.size()) { 3613 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3614 } 3615 3616 ValueList.push_back(Func, TODOTypeID); 3617 3618 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3619 FunctionOperands.push_back(OperandInfo); 3620 3621 // If this is a function with a body, remember the prototype we are 3622 // creating now, so that we can match up the body with them later. 3623 if (!isProto) { 3624 Func->setIsMaterializable(true); 3625 FunctionsWithBodies.push_back(Func); 3626 DeferredFunctionInfo[Func] = 0; 3627 } 3628 return Error::success(); 3629 } 3630 3631 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3632 unsigned BitCode, ArrayRef<uint64_t> Record) { 3633 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3634 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3635 // dllstorageclass, threadlocal, unnamed_addr, 3636 // preemption specifier] (name in VST) 3637 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3638 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3639 // preemption specifier] (name in VST) 3640 // v2: [strtab_offset, strtab_size, v1] 3641 StringRef Name; 3642 std::tie(Name, Record) = readNameFromStrtab(Record); 3643 3644 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3645 if (Record.size() < (3 + (unsigned)NewRecord)) 3646 return error("Invalid record"); 3647 unsigned OpNum = 0; 3648 unsigned TypeID = Record[OpNum++]; 3649 Type *Ty = getTypeByID(TypeID); 3650 if (!Ty) 3651 return error("Invalid record"); 3652 3653 unsigned AddrSpace; 3654 if (!NewRecord) { 3655 auto *PTy = dyn_cast<PointerType>(Ty); 3656 if (!PTy) 3657 return error("Invalid type for value"); 3658 AddrSpace = PTy->getAddressSpace(); 3659 Ty = getPtrElementTypeByID(TypeID); 3660 if (!Ty) 3661 return error("Missing element type for old-style indirect symbol"); 3662 } else { 3663 AddrSpace = Record[OpNum++]; 3664 } 3665 3666 auto Val = Record[OpNum++]; 3667 auto Linkage = Record[OpNum++]; 3668 GlobalValue *NewGA; 3669 if (BitCode == bitc::MODULE_CODE_ALIAS || 3670 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3671 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3672 TheModule); 3673 else 3674 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3675 nullptr, TheModule); 3676 3677 // Local linkage must have default visibility. 3678 // auto-upgrade `hidden` and `protected` for old bitcode. 3679 if (OpNum != Record.size()) { 3680 auto VisInd = OpNum++; 3681 if (!NewGA->hasLocalLinkage()) 3682 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3683 } 3684 if (BitCode == bitc::MODULE_CODE_ALIAS || 3685 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3686 if (OpNum != Record.size()) 3687 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3688 else 3689 upgradeDLLImportExportLinkage(NewGA, Linkage); 3690 if (OpNum != Record.size()) 3691 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3692 if (OpNum != Record.size()) 3693 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3694 } 3695 if (OpNum != Record.size()) 3696 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3697 inferDSOLocal(NewGA); 3698 3699 // Check whether we have enough values to read a partition name. 3700 if (OpNum + 1 < Record.size()) { 3701 NewGA->setPartition( 3702 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3703 OpNum += 2; 3704 } 3705 3706 ValueList.push_back(NewGA, TypeID); 3707 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3708 return Error::success(); 3709 } 3710 3711 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3712 bool ShouldLazyLoadMetadata, 3713 DataLayoutCallbackTy DataLayoutCallback) { 3714 if (ResumeBit) { 3715 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3716 return JumpFailed; 3717 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3718 return Err; 3719 3720 SmallVector<uint64_t, 64> Record; 3721 3722 // Parts of bitcode parsing depend on the datalayout. Make sure we 3723 // finalize the datalayout before we run any of that code. 3724 bool ResolvedDataLayout = false; 3725 auto ResolveDataLayout = [&] { 3726 if (ResolvedDataLayout) 3727 return; 3728 3729 // datalayout and triple can't be parsed after this point. 3730 ResolvedDataLayout = true; 3731 3732 // Upgrade data layout string. 3733 std::string DL = llvm::UpgradeDataLayoutString( 3734 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3735 TheModule->setDataLayout(DL); 3736 3737 if (auto LayoutOverride = 3738 DataLayoutCallback(TheModule->getTargetTriple())) 3739 TheModule->setDataLayout(*LayoutOverride); 3740 }; 3741 3742 // Read all the records for this module. 3743 while (true) { 3744 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3745 if (!MaybeEntry) 3746 return MaybeEntry.takeError(); 3747 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3748 3749 switch (Entry.Kind) { 3750 case BitstreamEntry::Error: 3751 return error("Malformed block"); 3752 case BitstreamEntry::EndBlock: 3753 ResolveDataLayout(); 3754 return globalCleanup(); 3755 3756 case BitstreamEntry::SubBlock: 3757 switch (Entry.ID) { 3758 default: // Skip unknown content. 3759 if (Error Err = Stream.SkipBlock()) 3760 return Err; 3761 break; 3762 case bitc::BLOCKINFO_BLOCK_ID: 3763 if (Error Err = readBlockInfo()) 3764 return Err; 3765 break; 3766 case bitc::PARAMATTR_BLOCK_ID: 3767 if (Error Err = parseAttributeBlock()) 3768 return Err; 3769 break; 3770 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3771 if (Error Err = parseAttributeGroupBlock()) 3772 return Err; 3773 break; 3774 case bitc::TYPE_BLOCK_ID_NEW: 3775 if (Error Err = parseTypeTable()) 3776 return Err; 3777 break; 3778 case bitc::VALUE_SYMTAB_BLOCK_ID: 3779 if (!SeenValueSymbolTable) { 3780 // Either this is an old form VST without function index and an 3781 // associated VST forward declaration record (which would have caused 3782 // the VST to be jumped to and parsed before it was encountered 3783 // normally in the stream), or there were no function blocks to 3784 // trigger an earlier parsing of the VST. 3785 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3786 if (Error Err = parseValueSymbolTable()) 3787 return Err; 3788 SeenValueSymbolTable = true; 3789 } else { 3790 // We must have had a VST forward declaration record, which caused 3791 // the parser to jump to and parse the VST earlier. 3792 assert(VSTOffset > 0); 3793 if (Error Err = Stream.SkipBlock()) 3794 return Err; 3795 } 3796 break; 3797 case bitc::CONSTANTS_BLOCK_ID: 3798 if (Error Err = parseConstants()) 3799 return Err; 3800 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3801 return Err; 3802 break; 3803 case bitc::METADATA_BLOCK_ID: 3804 if (ShouldLazyLoadMetadata) { 3805 if (Error Err = rememberAndSkipMetadata()) 3806 return Err; 3807 break; 3808 } 3809 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3810 if (Error Err = MDLoader->parseModuleMetadata()) 3811 return Err; 3812 break; 3813 case bitc::METADATA_KIND_BLOCK_ID: 3814 if (Error Err = MDLoader->parseMetadataKinds()) 3815 return Err; 3816 break; 3817 case bitc::FUNCTION_BLOCK_ID: 3818 ResolveDataLayout(); 3819 3820 // If this is the first function body we've seen, reverse the 3821 // FunctionsWithBodies list. 3822 if (!SeenFirstFunctionBody) { 3823 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3824 if (Error Err = globalCleanup()) 3825 return Err; 3826 SeenFirstFunctionBody = true; 3827 } 3828 3829 if (VSTOffset > 0) { 3830 // If we have a VST forward declaration record, make sure we 3831 // parse the VST now if we haven't already. It is needed to 3832 // set up the DeferredFunctionInfo vector for lazy reading. 3833 if (!SeenValueSymbolTable) { 3834 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3835 return Err; 3836 SeenValueSymbolTable = true; 3837 // Fall through so that we record the NextUnreadBit below. 3838 // This is necessary in case we have an anonymous function that 3839 // is later materialized. Since it will not have a VST entry we 3840 // need to fall back to the lazy parse to find its offset. 3841 } else { 3842 // If we have a VST forward declaration record, but have already 3843 // parsed the VST (just above, when the first function body was 3844 // encountered here), then we are resuming the parse after 3845 // materializing functions. The ResumeBit points to the 3846 // start of the last function block recorded in the 3847 // DeferredFunctionInfo map. Skip it. 3848 if (Error Err = Stream.SkipBlock()) 3849 return Err; 3850 continue; 3851 } 3852 } 3853 3854 // Support older bitcode files that did not have the function 3855 // index in the VST, nor a VST forward declaration record, as 3856 // well as anonymous functions that do not have VST entries. 3857 // Build the DeferredFunctionInfo vector on the fly. 3858 if (Error Err = rememberAndSkipFunctionBody()) 3859 return Err; 3860 3861 // Suspend parsing when we reach the function bodies. Subsequent 3862 // materialization calls will resume it when necessary. If the bitcode 3863 // file is old, the symbol table will be at the end instead and will not 3864 // have been seen yet. In this case, just finish the parse now. 3865 if (SeenValueSymbolTable) { 3866 NextUnreadBit = Stream.GetCurrentBitNo(); 3867 // After the VST has been parsed, we need to make sure intrinsic name 3868 // are auto-upgraded. 3869 return globalCleanup(); 3870 } 3871 break; 3872 case bitc::USELIST_BLOCK_ID: 3873 if (Error Err = parseUseLists()) 3874 return Err; 3875 break; 3876 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3877 if (Error Err = parseOperandBundleTags()) 3878 return Err; 3879 break; 3880 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3881 if (Error Err = parseSyncScopeNames()) 3882 return Err; 3883 break; 3884 } 3885 continue; 3886 3887 case BitstreamEntry::Record: 3888 // The interesting case. 3889 break; 3890 } 3891 3892 // Read a record. 3893 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3894 if (!MaybeBitCode) 3895 return MaybeBitCode.takeError(); 3896 switch (unsigned BitCode = MaybeBitCode.get()) { 3897 default: break; // Default behavior, ignore unknown content. 3898 case bitc::MODULE_CODE_VERSION: { 3899 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3900 if (!VersionOrErr) 3901 return VersionOrErr.takeError(); 3902 UseRelativeIDs = *VersionOrErr >= 1; 3903 break; 3904 } 3905 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3906 if (ResolvedDataLayout) 3907 return error("target triple too late in module"); 3908 std::string S; 3909 if (convertToString(Record, 0, S)) 3910 return error("Invalid record"); 3911 TheModule->setTargetTriple(S); 3912 break; 3913 } 3914 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3915 if (ResolvedDataLayout) 3916 return error("datalayout too late in module"); 3917 std::string S; 3918 if (convertToString(Record, 0, S)) 3919 return error("Invalid record"); 3920 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3921 if (!MaybeDL) 3922 return MaybeDL.takeError(); 3923 TheModule->setDataLayout(MaybeDL.get()); 3924 break; 3925 } 3926 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3927 std::string S; 3928 if (convertToString(Record, 0, S)) 3929 return error("Invalid record"); 3930 TheModule->setModuleInlineAsm(S); 3931 break; 3932 } 3933 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3934 // Deprecated, but still needed to read old bitcode files. 3935 std::string S; 3936 if (convertToString(Record, 0, S)) 3937 return error("Invalid record"); 3938 // Ignore value. 3939 break; 3940 } 3941 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3942 std::string S; 3943 if (convertToString(Record, 0, S)) 3944 return error("Invalid record"); 3945 SectionTable.push_back(S); 3946 break; 3947 } 3948 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3949 std::string S; 3950 if (convertToString(Record, 0, S)) 3951 return error("Invalid record"); 3952 GCTable.push_back(S); 3953 break; 3954 } 3955 case bitc::MODULE_CODE_COMDAT: 3956 if (Error Err = parseComdatRecord(Record)) 3957 return Err; 3958 break; 3959 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3960 // written by ThinLinkBitcodeWriter. See 3961 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3962 // record 3963 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3964 case bitc::MODULE_CODE_GLOBALVAR: 3965 if (Error Err = parseGlobalVarRecord(Record)) 3966 return Err; 3967 break; 3968 case bitc::MODULE_CODE_FUNCTION: 3969 ResolveDataLayout(); 3970 if (Error Err = parseFunctionRecord(Record)) 3971 return Err; 3972 break; 3973 case bitc::MODULE_CODE_IFUNC: 3974 case bitc::MODULE_CODE_ALIAS: 3975 case bitc::MODULE_CODE_ALIAS_OLD: 3976 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3977 return Err; 3978 break; 3979 /// MODULE_CODE_VSTOFFSET: [offset] 3980 case bitc::MODULE_CODE_VSTOFFSET: 3981 if (Record.empty()) 3982 return error("Invalid record"); 3983 // Note that we subtract 1 here because the offset is relative to one word 3984 // before the start of the identification or module block, which was 3985 // historically always the start of the regular bitcode header. 3986 VSTOffset = Record[0] - 1; 3987 break; 3988 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3989 case bitc::MODULE_CODE_SOURCE_FILENAME: 3990 SmallString<128> ValueName; 3991 if (convertToString(Record, 0, ValueName)) 3992 return error("Invalid record"); 3993 TheModule->setSourceFileName(ValueName); 3994 break; 3995 } 3996 Record.clear(); 3997 } 3998 } 3999 4000 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4001 bool IsImporting, 4002 DataLayoutCallbackTy DataLayoutCallback) { 4003 TheModule = M; 4004 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4005 [&](unsigned ID) { return getTypeByID(ID); }); 4006 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4007 } 4008 4009 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4010 if (!isa<PointerType>(PtrType)) 4011 return error("Load/Store operand is not a pointer type"); 4012 4013 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4014 return error("Explicit load/store type does not match pointee " 4015 "type of pointer operand"); 4016 if (!PointerType::isLoadableOrStorableType(ValType)) 4017 return error("Cannot load/store from pointer"); 4018 return Error::success(); 4019 } 4020 4021 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 4022 ArrayRef<Type *> ArgsTys) { 4023 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4024 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4025 Attribute::InAlloca}) { 4026 if (!CB->paramHasAttr(i, Kind) || 4027 CB->getParamAttr(i, Kind).getValueAsType()) 4028 continue; 4029 4030 CB->removeParamAttr(i, Kind); 4031 4032 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 4033 Attribute NewAttr; 4034 switch (Kind) { 4035 case Attribute::ByVal: 4036 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4037 break; 4038 case Attribute::StructRet: 4039 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4040 break; 4041 case Attribute::InAlloca: 4042 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4043 break; 4044 default: 4045 llvm_unreachable("not an upgraded type attribute"); 4046 } 4047 4048 CB->addParamAttr(i, NewAttr); 4049 } 4050 } 4051 4052 if (CB->isInlineAsm()) { 4053 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4054 unsigned ArgNo = 0; 4055 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4056 if (!CI.hasArg()) 4057 continue; 4058 4059 if (CI.isIndirect && !CB->getParamElementType(ArgNo)) { 4060 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 4061 CB->addParamAttr( 4062 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 4063 } 4064 4065 ArgNo++; 4066 } 4067 } 4068 4069 switch (CB->getIntrinsicID()) { 4070 case Intrinsic::preserve_array_access_index: 4071 case Intrinsic::preserve_struct_access_index: 4072 if (!CB->getParamElementType(0)) { 4073 Type *ElTy = ArgsTys[0]->getPointerElementType(); 4074 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4075 CB->addParamAttr(0, NewAttr); 4076 } 4077 break; 4078 default: 4079 break; 4080 } 4081 } 4082 4083 /// Lazily parse the specified function body block. 4084 Error BitcodeReader::parseFunctionBody(Function *F) { 4085 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4086 return Err; 4087 4088 // Unexpected unresolved metadata when parsing function. 4089 if (MDLoader->hasFwdRefs()) 4090 return error("Invalid function metadata: incoming forward references"); 4091 4092 InstructionList.clear(); 4093 unsigned ModuleValueListSize = ValueList.size(); 4094 unsigned ModuleMDLoaderSize = MDLoader->size(); 4095 4096 // Add all the function arguments to the value table. 4097 unsigned ArgNo = 0; 4098 unsigned FTyID = FunctionTypeIDs[F]; 4099 for (Argument &I : F->args()) { 4100 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4101 assert(I.getType() == getTypeByID(ArgTyID) && 4102 "Incorrect fully specified type for Function Argument"); 4103 ValueList.push_back(&I, ArgTyID); 4104 ++ArgNo; 4105 } 4106 unsigned NextValueNo = ValueList.size(); 4107 BasicBlock *CurBB = nullptr; 4108 unsigned CurBBNo = 0; 4109 4110 DebugLoc LastLoc; 4111 auto getLastInstruction = [&]() -> Instruction * { 4112 if (CurBB && !CurBB->empty()) 4113 return &CurBB->back(); 4114 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4115 !FunctionBBs[CurBBNo - 1]->empty()) 4116 return &FunctionBBs[CurBBNo - 1]->back(); 4117 return nullptr; 4118 }; 4119 4120 std::vector<OperandBundleDef> OperandBundles; 4121 4122 // Read all the records. 4123 SmallVector<uint64_t, 64> Record; 4124 4125 while (true) { 4126 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4127 if (!MaybeEntry) 4128 return MaybeEntry.takeError(); 4129 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4130 4131 switch (Entry.Kind) { 4132 case BitstreamEntry::Error: 4133 return error("Malformed block"); 4134 case BitstreamEntry::EndBlock: 4135 goto OutOfRecordLoop; 4136 4137 case BitstreamEntry::SubBlock: 4138 switch (Entry.ID) { 4139 default: // Skip unknown content. 4140 if (Error Err = Stream.SkipBlock()) 4141 return Err; 4142 break; 4143 case bitc::CONSTANTS_BLOCK_ID: 4144 if (Error Err = parseConstants()) 4145 return Err; 4146 NextValueNo = ValueList.size(); 4147 break; 4148 case bitc::VALUE_SYMTAB_BLOCK_ID: 4149 if (Error Err = parseValueSymbolTable()) 4150 return Err; 4151 break; 4152 case bitc::METADATA_ATTACHMENT_ID: 4153 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4154 return Err; 4155 break; 4156 case bitc::METADATA_BLOCK_ID: 4157 assert(DeferredMetadataInfo.empty() && 4158 "Must read all module-level metadata before function-level"); 4159 if (Error Err = MDLoader->parseFunctionMetadata()) 4160 return Err; 4161 break; 4162 case bitc::USELIST_BLOCK_ID: 4163 if (Error Err = parseUseLists()) 4164 return Err; 4165 break; 4166 } 4167 continue; 4168 4169 case BitstreamEntry::Record: 4170 // The interesting case. 4171 break; 4172 } 4173 4174 // Read a record. 4175 Record.clear(); 4176 Instruction *I = nullptr; 4177 unsigned ResTypeID = InvalidTypeID; 4178 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4179 if (!MaybeBitCode) 4180 return MaybeBitCode.takeError(); 4181 switch (unsigned BitCode = MaybeBitCode.get()) { 4182 default: // Default behavior: reject 4183 return error("Invalid value"); 4184 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4185 if (Record.empty() || Record[0] == 0) 4186 return error("Invalid record"); 4187 // Create all the basic blocks for the function. 4188 FunctionBBs.resize(Record[0]); 4189 4190 // See if anything took the address of blocks in this function. 4191 auto BBFRI = BasicBlockFwdRefs.find(F); 4192 if (BBFRI == BasicBlockFwdRefs.end()) { 4193 for (BasicBlock *&BB : FunctionBBs) 4194 BB = BasicBlock::Create(Context, "", F); 4195 } else { 4196 auto &BBRefs = BBFRI->second; 4197 // Check for invalid basic block references. 4198 if (BBRefs.size() > FunctionBBs.size()) 4199 return error("Invalid ID"); 4200 assert(!BBRefs.empty() && "Unexpected empty array"); 4201 assert(!BBRefs.front() && "Invalid reference to entry block"); 4202 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4203 ++I) 4204 if (I < RE && BBRefs[I]) { 4205 BBRefs[I]->insertInto(F); 4206 FunctionBBs[I] = BBRefs[I]; 4207 } else { 4208 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4209 } 4210 4211 // Erase from the table. 4212 BasicBlockFwdRefs.erase(BBFRI); 4213 } 4214 4215 CurBB = FunctionBBs[0]; 4216 continue; 4217 } 4218 4219 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4220 // This record indicates that the last instruction is at the same 4221 // location as the previous instruction with a location. 4222 I = getLastInstruction(); 4223 4224 if (!I) 4225 return error("Invalid record"); 4226 I->setDebugLoc(LastLoc); 4227 I = nullptr; 4228 continue; 4229 4230 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4231 I = getLastInstruction(); 4232 if (!I || Record.size() < 4) 4233 return error("Invalid record"); 4234 4235 unsigned Line = Record[0], Col = Record[1]; 4236 unsigned ScopeID = Record[2], IAID = Record[3]; 4237 bool isImplicitCode = Record.size() == 5 && Record[4]; 4238 4239 MDNode *Scope = nullptr, *IA = nullptr; 4240 if (ScopeID) { 4241 Scope = dyn_cast_or_null<MDNode>( 4242 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4243 if (!Scope) 4244 return error("Invalid record"); 4245 } 4246 if (IAID) { 4247 IA = dyn_cast_or_null<MDNode>( 4248 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4249 if (!IA) 4250 return error("Invalid record"); 4251 } 4252 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4253 isImplicitCode); 4254 I->setDebugLoc(LastLoc); 4255 I = nullptr; 4256 continue; 4257 } 4258 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4259 unsigned OpNum = 0; 4260 Value *LHS; 4261 unsigned TypeID; 4262 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4263 OpNum+1 > Record.size()) 4264 return error("Invalid record"); 4265 4266 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4267 if (Opc == -1) 4268 return error("Invalid record"); 4269 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4270 ResTypeID = TypeID; 4271 InstructionList.push_back(I); 4272 if (OpNum < Record.size()) { 4273 if (isa<FPMathOperator>(I)) { 4274 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4275 if (FMF.any()) 4276 I->setFastMathFlags(FMF); 4277 } 4278 } 4279 break; 4280 } 4281 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4282 unsigned OpNum = 0; 4283 Value *LHS, *RHS; 4284 unsigned TypeID; 4285 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4286 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) || 4287 OpNum+1 > Record.size()) 4288 return error("Invalid record"); 4289 4290 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4291 if (Opc == -1) 4292 return error("Invalid record"); 4293 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4294 ResTypeID = TypeID; 4295 InstructionList.push_back(I); 4296 if (OpNum < Record.size()) { 4297 if (Opc == Instruction::Add || 4298 Opc == Instruction::Sub || 4299 Opc == Instruction::Mul || 4300 Opc == Instruction::Shl) { 4301 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4302 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4303 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4304 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4305 } else if (Opc == Instruction::SDiv || 4306 Opc == Instruction::UDiv || 4307 Opc == Instruction::LShr || 4308 Opc == Instruction::AShr) { 4309 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4310 cast<BinaryOperator>(I)->setIsExact(true); 4311 } else if (isa<FPMathOperator>(I)) { 4312 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4313 if (FMF.any()) 4314 I->setFastMathFlags(FMF); 4315 } 4316 4317 } 4318 break; 4319 } 4320 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4321 unsigned OpNum = 0; 4322 Value *Op; 4323 unsigned OpTypeID; 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 4325 OpNum+2 != Record.size()) 4326 return error("Invalid record"); 4327 4328 ResTypeID = Record[OpNum]; 4329 Type *ResTy = getTypeByID(ResTypeID); 4330 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4331 if (Opc == -1 || !ResTy) 4332 return error("Invalid record"); 4333 Instruction *Temp = nullptr; 4334 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4335 if (Temp) { 4336 InstructionList.push_back(Temp); 4337 assert(CurBB && "No current BB?"); 4338 CurBB->getInstList().push_back(Temp); 4339 } 4340 } else { 4341 auto CastOp = (Instruction::CastOps)Opc; 4342 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4343 return error("Invalid cast"); 4344 I = CastInst::Create(CastOp, Op, ResTy); 4345 } 4346 InstructionList.push_back(I); 4347 break; 4348 } 4349 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4350 case bitc::FUNC_CODE_INST_GEP_OLD: 4351 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4352 unsigned OpNum = 0; 4353 4354 Type *Ty; 4355 bool InBounds; 4356 4357 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4358 InBounds = Record[OpNum++]; 4359 Ty = getTypeByID(Record[OpNum++]); 4360 } else { 4361 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4362 Ty = nullptr; 4363 } 4364 4365 Value *BasePtr; 4366 unsigned BasePtrTypeID; 4367 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID)) 4368 return error("Invalid record"); 4369 4370 if (!Ty) { 4371 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4372 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4373 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4374 return error( 4375 "Explicit gep type does not match pointee type of pointer operand"); 4376 } 4377 4378 SmallVector<Value*, 16> GEPIdx; 4379 while (OpNum != Record.size()) { 4380 Value *Op; 4381 unsigned OpTypeID; 4382 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4383 return error("Invalid record"); 4384 GEPIdx.push_back(Op); 4385 } 4386 4387 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4388 ResTypeID = TODOTypeID; 4389 4390 InstructionList.push_back(I); 4391 if (InBounds) 4392 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4393 break; 4394 } 4395 4396 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4397 // EXTRACTVAL: [opty, opval, n x indices] 4398 unsigned OpNum = 0; 4399 Value *Agg; 4400 unsigned AggTypeID; 4401 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4402 return error("Invalid record"); 4403 Type *Ty = Agg->getType(); 4404 4405 unsigned RecSize = Record.size(); 4406 if (OpNum == RecSize) 4407 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4408 4409 SmallVector<unsigned, 4> EXTRACTVALIdx; 4410 ResTypeID = AggTypeID; 4411 for (; OpNum != RecSize; ++OpNum) { 4412 bool IsArray = Ty->isArrayTy(); 4413 bool IsStruct = Ty->isStructTy(); 4414 uint64_t Index = Record[OpNum]; 4415 4416 if (!IsStruct && !IsArray) 4417 return error("EXTRACTVAL: Invalid type"); 4418 if ((unsigned)Index != Index) 4419 return error("Invalid value"); 4420 if (IsStruct && Index >= Ty->getStructNumElements()) 4421 return error("EXTRACTVAL: Invalid struct index"); 4422 if (IsArray && Index >= Ty->getArrayNumElements()) 4423 return error("EXTRACTVAL: Invalid array index"); 4424 EXTRACTVALIdx.push_back((unsigned)Index); 4425 4426 if (IsStruct) { 4427 Ty = Ty->getStructElementType(Index); 4428 ResTypeID = getContainedTypeID(ResTypeID, Index); 4429 } else { 4430 Ty = Ty->getArrayElementType(); 4431 ResTypeID = getContainedTypeID(ResTypeID); 4432 } 4433 } 4434 4435 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4436 InstructionList.push_back(I); 4437 break; 4438 } 4439 4440 case bitc::FUNC_CODE_INST_INSERTVAL: { 4441 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4442 unsigned OpNum = 0; 4443 Value *Agg; 4444 unsigned AggTypeID; 4445 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4446 return error("Invalid record"); 4447 Value *Val; 4448 unsigned ValTypeID; 4449 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 4450 return error("Invalid record"); 4451 4452 unsigned RecSize = Record.size(); 4453 if (OpNum == RecSize) 4454 return error("INSERTVAL: Invalid instruction with 0 indices"); 4455 4456 SmallVector<unsigned, 4> INSERTVALIdx; 4457 Type *CurTy = Agg->getType(); 4458 for (; OpNum != RecSize; ++OpNum) { 4459 bool IsArray = CurTy->isArrayTy(); 4460 bool IsStruct = CurTy->isStructTy(); 4461 uint64_t Index = Record[OpNum]; 4462 4463 if (!IsStruct && !IsArray) 4464 return error("INSERTVAL: Invalid type"); 4465 if ((unsigned)Index != Index) 4466 return error("Invalid value"); 4467 if (IsStruct && Index >= CurTy->getStructNumElements()) 4468 return error("INSERTVAL: Invalid struct index"); 4469 if (IsArray && Index >= CurTy->getArrayNumElements()) 4470 return error("INSERTVAL: Invalid array index"); 4471 4472 INSERTVALIdx.push_back((unsigned)Index); 4473 if (IsStruct) 4474 CurTy = CurTy->getStructElementType(Index); 4475 else 4476 CurTy = CurTy->getArrayElementType(); 4477 } 4478 4479 if (CurTy != Val->getType()) 4480 return error("Inserted value type doesn't match aggregate type"); 4481 4482 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4483 ResTypeID = AggTypeID; 4484 InstructionList.push_back(I); 4485 break; 4486 } 4487 4488 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4489 // obsolete form of select 4490 // handles select i1 ... in old bitcode 4491 unsigned OpNum = 0; 4492 Value *TrueVal, *FalseVal, *Cond; 4493 unsigned TypeID; 4494 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) || 4495 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4496 FalseVal) || 4497 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), 4498 TODOTypeID, Cond)) 4499 return error("Invalid record"); 4500 4501 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4502 ResTypeID = TypeID; 4503 InstructionList.push_back(I); 4504 break; 4505 } 4506 4507 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4508 // new form of select 4509 // handles select i1 or select [N x i1] 4510 unsigned OpNum = 0; 4511 Value *TrueVal, *FalseVal, *Cond; 4512 unsigned ValTypeID, CondTypeID; 4513 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) || 4514 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4515 FalseVal) || 4516 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID)) 4517 return error("Invalid record"); 4518 4519 // select condition can be either i1 or [N x i1] 4520 if (VectorType* vector_type = 4521 dyn_cast<VectorType>(Cond->getType())) { 4522 // expect <n x i1> 4523 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4524 return error("Invalid type for value"); 4525 } else { 4526 // expect i1 4527 if (Cond->getType() != Type::getInt1Ty(Context)) 4528 return error("Invalid type for value"); 4529 } 4530 4531 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4532 ResTypeID = ValTypeID; 4533 InstructionList.push_back(I); 4534 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4535 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4536 if (FMF.any()) 4537 I->setFastMathFlags(FMF); 4538 } 4539 break; 4540 } 4541 4542 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4543 unsigned OpNum = 0; 4544 Value *Vec, *Idx; 4545 unsigned VecTypeID, IdxTypeID; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) || 4547 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4548 return error("Invalid record"); 4549 if (!Vec->getType()->isVectorTy()) 4550 return error("Invalid type for value"); 4551 I = ExtractElementInst::Create(Vec, Idx); 4552 ResTypeID = getContainedTypeID(VecTypeID); 4553 InstructionList.push_back(I); 4554 break; 4555 } 4556 4557 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4558 unsigned OpNum = 0; 4559 Value *Vec, *Elt, *Idx; 4560 unsigned VecTypeID, IdxTypeID; 4561 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID)) 4562 return error("Invalid record"); 4563 if (!Vec->getType()->isVectorTy()) 4564 return error("Invalid type for value"); 4565 if (popValue(Record, OpNum, NextValueNo, 4566 cast<VectorType>(Vec->getType())->getElementType(), 4567 getContainedTypeID(VecTypeID), Elt) || 4568 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4569 return error("Invalid record"); 4570 I = InsertElementInst::Create(Vec, Elt, Idx); 4571 ResTypeID = VecTypeID; 4572 InstructionList.push_back(I); 4573 break; 4574 } 4575 4576 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4577 unsigned OpNum = 0; 4578 Value *Vec1, *Vec2, *Mask; 4579 unsigned Vec1TypeID; 4580 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) || 4581 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 4582 Vec2)) 4583 return error("Invalid record"); 4584 4585 unsigned MaskTypeID; 4586 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID)) 4587 return error("Invalid record"); 4588 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4589 return error("Invalid type for value"); 4590 4591 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4592 ResTypeID = TODOTypeID; 4593 InstructionList.push_back(I); 4594 break; 4595 } 4596 4597 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4598 // Old form of ICmp/FCmp returning bool 4599 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4600 // both legal on vectors but had different behaviour. 4601 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4602 // FCmp/ICmp returning bool or vector of bool 4603 4604 unsigned OpNum = 0; 4605 Value *LHS, *RHS; 4606 unsigned LHSTypeID; 4607 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) || 4608 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS)) 4609 return error("Invalid record"); 4610 4611 if (OpNum >= Record.size()) 4612 return error( 4613 "Invalid record: operand number exceeded available operands"); 4614 4615 unsigned PredVal = Record[OpNum]; 4616 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4617 FastMathFlags FMF; 4618 if (IsFP && Record.size() > OpNum+1) 4619 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4620 4621 if (OpNum+1 != Record.size()) 4622 return error("Invalid record"); 4623 4624 if (LHS->getType()->isFPOrFPVectorTy()) 4625 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4626 else 4627 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4628 ResTypeID = TODOTypeID; 4629 4630 if (FMF.any()) 4631 I->setFastMathFlags(FMF); 4632 InstructionList.push_back(I); 4633 break; 4634 } 4635 4636 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4637 { 4638 unsigned Size = Record.size(); 4639 if (Size == 0) { 4640 I = ReturnInst::Create(Context); 4641 InstructionList.push_back(I); 4642 break; 4643 } 4644 4645 unsigned OpNum = 0; 4646 Value *Op = nullptr; 4647 unsigned OpTypeID; 4648 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4649 return error("Invalid record"); 4650 if (OpNum != Record.size()) 4651 return error("Invalid record"); 4652 4653 I = ReturnInst::Create(Context, Op); 4654 InstructionList.push_back(I); 4655 break; 4656 } 4657 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4658 if (Record.size() != 1 && Record.size() != 3) 4659 return error("Invalid record"); 4660 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4661 if (!TrueDest) 4662 return error("Invalid record"); 4663 4664 if (Record.size() == 1) { 4665 I = BranchInst::Create(TrueDest); 4666 InstructionList.push_back(I); 4667 } 4668 else { 4669 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4670 Value *Cond = getValue(Record, 2, NextValueNo, 4671 Type::getInt1Ty(Context), TODOTypeID); 4672 if (!FalseDest || !Cond) 4673 return error("Invalid record"); 4674 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4675 InstructionList.push_back(I); 4676 } 4677 break; 4678 } 4679 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4680 if (Record.size() != 1 && Record.size() != 2) 4681 return error("Invalid record"); 4682 unsigned Idx = 0; 4683 Value *CleanupPad = getValue( 4684 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4685 if (!CleanupPad) 4686 return error("Invalid record"); 4687 BasicBlock *UnwindDest = nullptr; 4688 if (Record.size() == 2) { 4689 UnwindDest = getBasicBlock(Record[Idx++]); 4690 if (!UnwindDest) 4691 return error("Invalid record"); 4692 } 4693 4694 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4695 InstructionList.push_back(I); 4696 break; 4697 } 4698 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4699 if (Record.size() != 2) 4700 return error("Invalid record"); 4701 unsigned Idx = 0; 4702 Value *CatchPad = getValue( 4703 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4704 if (!CatchPad) 4705 return error("Invalid record"); 4706 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4707 if (!BB) 4708 return error("Invalid record"); 4709 4710 I = CatchReturnInst::Create(CatchPad, BB); 4711 InstructionList.push_back(I); 4712 break; 4713 } 4714 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4715 // We must have, at minimum, the outer scope and the number of arguments. 4716 if (Record.size() < 2) 4717 return error("Invalid record"); 4718 4719 unsigned Idx = 0; 4720 4721 Value *ParentPad = getValue( 4722 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4723 4724 unsigned NumHandlers = Record[Idx++]; 4725 4726 SmallVector<BasicBlock *, 2> Handlers; 4727 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4728 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4729 if (!BB) 4730 return error("Invalid record"); 4731 Handlers.push_back(BB); 4732 } 4733 4734 BasicBlock *UnwindDest = nullptr; 4735 if (Idx + 1 == Record.size()) { 4736 UnwindDest = getBasicBlock(Record[Idx++]); 4737 if (!UnwindDest) 4738 return error("Invalid record"); 4739 } 4740 4741 if (Record.size() != Idx) 4742 return error("Invalid record"); 4743 4744 auto *CatchSwitch = 4745 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4746 for (BasicBlock *Handler : Handlers) 4747 CatchSwitch->addHandler(Handler); 4748 I = CatchSwitch; 4749 ResTypeID = TODOTypeID; 4750 InstructionList.push_back(I); 4751 break; 4752 } 4753 case bitc::FUNC_CODE_INST_CATCHPAD: 4754 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4755 // We must have, at minimum, the outer scope and the number of arguments. 4756 if (Record.size() < 2) 4757 return error("Invalid record"); 4758 4759 unsigned Idx = 0; 4760 4761 Value *ParentPad = getValue( 4762 Record, Idx++, NextValueNo, Type::getTokenTy(Context), TODOTypeID); 4763 4764 unsigned NumArgOperands = Record[Idx++]; 4765 4766 SmallVector<Value *, 2> Args; 4767 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4768 Value *Val; 4769 unsigned ValTypeID; 4770 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4771 return error("Invalid record"); 4772 Args.push_back(Val); 4773 } 4774 4775 if (Record.size() != Idx) 4776 return error("Invalid record"); 4777 4778 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4779 I = CleanupPadInst::Create(ParentPad, Args); 4780 else 4781 I = CatchPadInst::Create(ParentPad, Args); 4782 ResTypeID = TODOTypeID; 4783 InstructionList.push_back(I); 4784 break; 4785 } 4786 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4787 // Check magic 4788 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4789 // "New" SwitchInst format with case ranges. The changes to write this 4790 // format were reverted but we still recognize bitcode that uses it. 4791 // Hopefully someday we will have support for case ranges and can use 4792 // this format again. 4793 4794 unsigned OpTyID = Record[1]; 4795 Type *OpTy = getTypeByID(OpTyID); 4796 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4797 4798 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID); 4799 BasicBlock *Default = getBasicBlock(Record[3]); 4800 if (!OpTy || !Cond || !Default) 4801 return error("Invalid record"); 4802 4803 unsigned NumCases = Record[4]; 4804 4805 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4806 InstructionList.push_back(SI); 4807 4808 unsigned CurIdx = 5; 4809 for (unsigned i = 0; i != NumCases; ++i) { 4810 SmallVector<ConstantInt*, 1> CaseVals; 4811 unsigned NumItems = Record[CurIdx++]; 4812 for (unsigned ci = 0; ci != NumItems; ++ci) { 4813 bool isSingleNumber = Record[CurIdx++]; 4814 4815 APInt Low; 4816 unsigned ActiveWords = 1; 4817 if (ValueBitWidth > 64) 4818 ActiveWords = Record[CurIdx++]; 4819 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4820 ValueBitWidth); 4821 CurIdx += ActiveWords; 4822 4823 if (!isSingleNumber) { 4824 ActiveWords = 1; 4825 if (ValueBitWidth > 64) 4826 ActiveWords = Record[CurIdx++]; 4827 APInt High = readWideAPInt( 4828 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4829 CurIdx += ActiveWords; 4830 4831 // FIXME: It is not clear whether values in the range should be 4832 // compared as signed or unsigned values. The partially 4833 // implemented changes that used this format in the past used 4834 // unsigned comparisons. 4835 for ( ; Low.ule(High); ++Low) 4836 CaseVals.push_back(ConstantInt::get(Context, Low)); 4837 } else 4838 CaseVals.push_back(ConstantInt::get(Context, Low)); 4839 } 4840 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4841 for (ConstantInt *Cst : CaseVals) 4842 SI->addCase(Cst, DestBB); 4843 } 4844 I = SI; 4845 break; 4846 } 4847 4848 // Old SwitchInst format without case ranges. 4849 4850 if (Record.size() < 3 || (Record.size() & 1) == 0) 4851 return error("Invalid record"); 4852 unsigned OpTyID = Record[0]; 4853 Type *OpTy = getTypeByID(OpTyID); 4854 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4855 BasicBlock *Default = getBasicBlock(Record[2]); 4856 if (!OpTy || !Cond || !Default) 4857 return error("Invalid record"); 4858 unsigned NumCases = (Record.size()-3)/2; 4859 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4860 InstructionList.push_back(SI); 4861 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4862 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 4863 getFnValueByID(Record[3+i*2], OpTy, OpTyID)); 4864 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4865 if (!CaseVal || !DestBB) { 4866 delete SI; 4867 return error("Invalid record"); 4868 } 4869 SI->addCase(CaseVal, DestBB); 4870 } 4871 I = SI; 4872 break; 4873 } 4874 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4875 if (Record.size() < 2) 4876 return error("Invalid record"); 4877 unsigned OpTyID = Record[0]; 4878 Type *OpTy = getTypeByID(OpTyID); 4879 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4880 if (!OpTy || !Address) 4881 return error("Invalid record"); 4882 unsigned NumDests = Record.size()-2; 4883 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4884 InstructionList.push_back(IBI); 4885 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4886 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4887 IBI->addDestination(DestBB); 4888 } else { 4889 delete IBI; 4890 return error("Invalid record"); 4891 } 4892 } 4893 I = IBI; 4894 break; 4895 } 4896 4897 case bitc::FUNC_CODE_INST_INVOKE: { 4898 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4899 if (Record.size() < 4) 4900 return error("Invalid record"); 4901 unsigned OpNum = 0; 4902 AttributeList PAL = getAttributes(Record[OpNum++]); 4903 unsigned CCInfo = Record[OpNum++]; 4904 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4905 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4906 4907 FunctionType *FTy = nullptr; 4908 if ((CCInfo >> 13) & 1) { 4909 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4910 if (!FTy) 4911 return error("Explicit invoke type is not a function type"); 4912 } 4913 4914 Value *Callee; 4915 unsigned CalleeTypeID; 4916 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 4917 return error("Invalid record"); 4918 4919 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4920 if (!CalleeTy) 4921 return error("Callee is not a pointer"); 4922 if (!FTy) { 4923 FTy = 4924 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4925 if (!FTy) 4926 return error("Callee is not of pointer to function type"); 4927 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4928 return error("Explicit invoke type does not match pointee type of " 4929 "callee operand"); 4930 if (Record.size() < FTy->getNumParams() + OpNum) 4931 return error("Insufficient operands to call"); 4932 4933 SmallVector<Value*, 16> Ops; 4934 SmallVector<Type *, 16> ArgsTys; 4935 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4936 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4937 FTy->getParamType(i), TODOTypeID)); 4938 ArgsTys.push_back(FTy->getParamType(i)); 4939 if (!Ops.back()) 4940 return error("Invalid record"); 4941 } 4942 4943 if (!FTy->isVarArg()) { 4944 if (Record.size() != OpNum) 4945 return error("Invalid record"); 4946 } else { 4947 // Read type/value pairs for varargs params. 4948 while (OpNum != Record.size()) { 4949 Value *Op; 4950 unsigned OpTypeID; 4951 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4952 return error("Invalid record"); 4953 Ops.push_back(Op); 4954 ArgsTys.push_back(Op->getType()); 4955 } 4956 } 4957 4958 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4959 OperandBundles); 4960 ResTypeID = TODOTypeID; 4961 OperandBundles.clear(); 4962 InstructionList.push_back(I); 4963 cast<InvokeInst>(I)->setCallingConv( 4964 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4965 cast<InvokeInst>(I)->setAttributes(PAL); 4966 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4967 4968 break; 4969 } 4970 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4971 unsigned Idx = 0; 4972 Value *Val = nullptr; 4973 unsigned ValTypeID; 4974 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4975 return error("Invalid record"); 4976 I = ResumeInst::Create(Val); 4977 InstructionList.push_back(I); 4978 break; 4979 } 4980 case bitc::FUNC_CODE_INST_CALLBR: { 4981 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4982 unsigned OpNum = 0; 4983 AttributeList PAL = getAttributes(Record[OpNum++]); 4984 unsigned CCInfo = Record[OpNum++]; 4985 4986 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4987 unsigned NumIndirectDests = Record[OpNum++]; 4988 SmallVector<BasicBlock *, 16> IndirectDests; 4989 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4990 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4991 4992 FunctionType *FTy = nullptr; 4993 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4994 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4995 if (!FTy) 4996 return error("Explicit call type is not a function type"); 4997 } 4998 4999 Value *Callee; 5000 unsigned CalleeTypeID; 5001 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5002 return error("Invalid record"); 5003 5004 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5005 if (!OpTy) 5006 return error("Callee is not a pointer type"); 5007 if (!FTy) { 5008 FTy = 5009 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5010 if (!FTy) 5011 return error("Callee is not of pointer to function type"); 5012 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5013 return error("Explicit call type does not match pointee type of " 5014 "callee operand"); 5015 if (Record.size() < FTy->getNumParams() + OpNum) 5016 return error("Insufficient operands to call"); 5017 5018 SmallVector<Value*, 16> Args; 5019 SmallVector<Type *, 16> ArgsTys; 5020 // Read the fixed params. 5021 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5022 Value *Arg; 5023 if (FTy->getParamType(i)->isLabelTy()) 5024 Arg = getBasicBlock(Record[OpNum]); 5025 else 5026 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5027 TODOTypeID); 5028 if (!Arg) 5029 return error("Invalid record"); 5030 Args.push_back(Arg); 5031 ArgsTys.push_back(Arg->getType()); 5032 } 5033 5034 // Read type/value pairs for varargs params. 5035 if (!FTy->isVarArg()) { 5036 if (OpNum != Record.size()) 5037 return error("Invalid record"); 5038 } else { 5039 while (OpNum != Record.size()) { 5040 Value *Op; 5041 unsigned OpTypeID; 5042 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5043 return error("Invalid record"); 5044 Args.push_back(Op); 5045 ArgsTys.push_back(Op->getType()); 5046 } 5047 } 5048 5049 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5050 OperandBundles); 5051 ResTypeID = TODOTypeID; 5052 OperandBundles.clear(); 5053 InstructionList.push_back(I); 5054 cast<CallBrInst>(I)->setCallingConv( 5055 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5056 cast<CallBrInst>(I)->setAttributes(PAL); 5057 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5058 break; 5059 } 5060 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5061 I = new UnreachableInst(Context); 5062 InstructionList.push_back(I); 5063 break; 5064 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5065 if (Record.empty()) 5066 return error("Invalid record"); 5067 // The first record specifies the type. 5068 unsigned TyID = Record[0]; 5069 Type *Ty = getTypeByID(TyID); 5070 if (!Ty) 5071 return error("Invalid record"); 5072 5073 // Phi arguments are pairs of records of [value, basic block]. 5074 // There is an optional final record for fast-math-flags if this phi has a 5075 // floating-point type. 5076 size_t NumArgs = (Record.size() - 1) / 2; 5077 PHINode *PN = PHINode::Create(Ty, NumArgs); 5078 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 5079 return error("Invalid record"); 5080 InstructionList.push_back(PN); 5081 5082 for (unsigned i = 0; i != NumArgs; i++) { 5083 Value *V; 5084 // With the new function encoding, it is possible that operands have 5085 // negative IDs (for forward references). Use a signed VBR 5086 // representation to keep the encoding small. 5087 if (UseRelativeIDs) 5088 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5089 else 5090 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5091 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5092 if (!V || !BB) 5093 return error("Invalid record"); 5094 PN->addIncoming(V, BB); 5095 } 5096 I = PN; 5097 ResTypeID = TyID; 5098 5099 // If there are an even number of records, the final record must be FMF. 5100 if (Record.size() % 2 == 0) { 5101 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5102 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5103 if (FMF.any()) 5104 I->setFastMathFlags(FMF); 5105 } 5106 5107 break; 5108 } 5109 5110 case bitc::FUNC_CODE_INST_LANDINGPAD: 5111 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5112 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5113 unsigned Idx = 0; 5114 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5115 if (Record.size() < 3) 5116 return error("Invalid record"); 5117 } else { 5118 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5119 if (Record.size() < 4) 5120 return error("Invalid record"); 5121 } 5122 ResTypeID = Record[Idx++]; 5123 Type *Ty = getTypeByID(ResTypeID); 5124 if (!Ty) 5125 return error("Invalid record"); 5126 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5127 Value *PersFn = nullptr; 5128 unsigned PersFnTypeID; 5129 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID)) 5130 return error("Invalid record"); 5131 5132 if (!F->hasPersonalityFn()) 5133 F->setPersonalityFn(cast<Constant>(PersFn)); 5134 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5135 return error("Personality function mismatch"); 5136 } 5137 5138 bool IsCleanup = !!Record[Idx++]; 5139 unsigned NumClauses = Record[Idx++]; 5140 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5141 LP->setCleanup(IsCleanup); 5142 for (unsigned J = 0; J != NumClauses; ++J) { 5143 LandingPadInst::ClauseType CT = 5144 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5145 Value *Val; 5146 unsigned ValTypeID; 5147 5148 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) { 5149 delete LP; 5150 return error("Invalid record"); 5151 } 5152 5153 assert((CT != LandingPadInst::Catch || 5154 !isa<ArrayType>(Val->getType())) && 5155 "Catch clause has a invalid type!"); 5156 assert((CT != LandingPadInst::Filter || 5157 isa<ArrayType>(Val->getType())) && 5158 "Filter clause has invalid type!"); 5159 LP->addClause(cast<Constant>(Val)); 5160 } 5161 5162 I = LP; 5163 InstructionList.push_back(I); 5164 break; 5165 } 5166 5167 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5168 if (Record.size() != 4) 5169 return error("Invalid record"); 5170 using APV = AllocaPackedValues; 5171 const uint64_t Rec = Record[3]; 5172 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5173 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5174 Type *Ty = getTypeByID(Record[0]); 5175 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5176 Ty = getPtrElementTypeByID(Record[0]); 5177 if (!Ty) 5178 return error("Missing element type for old-style alloca"); 5179 } 5180 unsigned OpTyID = Record[1]; 5181 Type *OpTy = getTypeByID(OpTyID); 5182 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID); 5183 MaybeAlign Align; 5184 uint64_t AlignExp = 5185 Bitfield::get<APV::AlignLower>(Rec) | 5186 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5187 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5188 return Err; 5189 } 5190 if (!Ty || !Size) 5191 return error("Invalid record"); 5192 5193 // FIXME: Make this an optional field. 5194 const DataLayout &DL = TheModule->getDataLayout(); 5195 unsigned AS = DL.getAllocaAddrSpace(); 5196 5197 SmallPtrSet<Type *, 4> Visited; 5198 if (!Align && !Ty->isSized(&Visited)) 5199 return error("alloca of unsized type"); 5200 if (!Align) 5201 Align = DL.getPrefTypeAlign(Ty); 5202 5203 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5204 AI->setUsedWithInAlloca(InAlloca); 5205 AI->setSwiftError(SwiftError); 5206 I = AI; 5207 ResTypeID = TODOTypeID; 5208 InstructionList.push_back(I); 5209 break; 5210 } 5211 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5212 unsigned OpNum = 0; 5213 Value *Op; 5214 unsigned OpTypeID; 5215 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5216 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5217 return error("Invalid record"); 5218 5219 if (!isa<PointerType>(Op->getType())) 5220 return error("Load operand is not a pointer type"); 5221 5222 Type *Ty = nullptr; 5223 if (OpNum + 3 == Record.size()) { 5224 ResTypeID = Record[OpNum++]; 5225 Ty = getTypeByID(ResTypeID); 5226 } else { 5227 ResTypeID = getContainedTypeID(OpTypeID); 5228 Ty = Op->getType()->getPointerElementType(); 5229 } 5230 5231 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5232 return Err; 5233 5234 MaybeAlign Align; 5235 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5236 return Err; 5237 SmallPtrSet<Type *, 4> Visited; 5238 if (!Align && !Ty->isSized(&Visited)) 5239 return error("load of unsized type"); 5240 if (!Align) 5241 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5242 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5243 InstructionList.push_back(I); 5244 break; 5245 } 5246 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5247 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5248 unsigned OpNum = 0; 5249 Value *Op; 5250 unsigned OpTypeID; 5251 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5252 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5253 return error("Invalid record"); 5254 5255 if (!isa<PointerType>(Op->getType())) 5256 return error("Load operand is not a pointer type"); 5257 5258 Type *Ty = nullptr; 5259 if (OpNum + 5 == Record.size()) { 5260 ResTypeID = Record[OpNum++]; 5261 Ty = getTypeByID(ResTypeID); 5262 } else { 5263 ResTypeID = getContainedTypeID(OpTypeID); 5264 Ty = Op->getType()->getPointerElementType(); 5265 } 5266 5267 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5268 return Err; 5269 5270 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5271 if (Ordering == AtomicOrdering::NotAtomic || 5272 Ordering == AtomicOrdering::Release || 5273 Ordering == AtomicOrdering::AcquireRelease) 5274 return error("Invalid record"); 5275 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5276 return error("Invalid record"); 5277 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5278 5279 MaybeAlign Align; 5280 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5281 return Err; 5282 if (!Align) 5283 return error("Alignment missing from atomic load"); 5284 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5285 InstructionList.push_back(I); 5286 break; 5287 } 5288 case bitc::FUNC_CODE_INST_STORE: 5289 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5290 unsigned OpNum = 0; 5291 Value *Val, *Ptr; 5292 unsigned PtrTypeID, ValTypeID; 5293 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5294 (BitCode == bitc::FUNC_CODE_INST_STORE 5295 ? getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID) 5296 : popValue(Record, OpNum, NextValueNo, 5297 Ptr->getType()->getPointerElementType(), 5298 getContainedTypeID(PtrTypeID), Val)) || 5299 OpNum + 2 != Record.size()) 5300 return error("Invalid record"); 5301 5302 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5303 return Err; 5304 MaybeAlign Align; 5305 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5306 return Err; 5307 SmallPtrSet<Type *, 4> Visited; 5308 if (!Align && !Val->getType()->isSized(&Visited)) 5309 return error("store of unsized type"); 5310 if (!Align) 5311 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5312 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5313 InstructionList.push_back(I); 5314 break; 5315 } 5316 case bitc::FUNC_CODE_INST_STOREATOMIC: 5317 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5318 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5319 unsigned OpNum = 0; 5320 Value *Val, *Ptr; 5321 unsigned PtrTypeID, ValTypeID; 5322 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5323 !isa<PointerType>(Ptr->getType()) || 5324 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5325 ? getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID) 5326 : popValue(Record, OpNum, NextValueNo, 5327 Ptr->getType()->getPointerElementType(), 5328 getContainedTypeID(PtrTypeID), Val)) || 5329 OpNum + 4 != Record.size()) 5330 return error("Invalid record"); 5331 5332 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5333 return Err; 5334 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5335 if (Ordering == AtomicOrdering::NotAtomic || 5336 Ordering == AtomicOrdering::Acquire || 5337 Ordering == AtomicOrdering::AcquireRelease) 5338 return error("Invalid record"); 5339 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5340 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5341 return error("Invalid record"); 5342 5343 MaybeAlign Align; 5344 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5345 return Err; 5346 if (!Align) 5347 return error("Alignment missing from atomic store"); 5348 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5349 InstructionList.push_back(I); 5350 break; 5351 } 5352 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5353 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5354 // failure_ordering?, weak?] 5355 const size_t NumRecords = Record.size(); 5356 unsigned OpNum = 0; 5357 Value *Ptr = nullptr; 5358 unsigned PtrTypeID; 5359 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5360 return error("Invalid record"); 5361 5362 if (!isa<PointerType>(Ptr->getType())) 5363 return error("Cmpxchg operand is not a pointer type"); 5364 5365 Value *Cmp = nullptr; 5366 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5367 if (popValue(Record, OpNum, NextValueNo, 5368 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5369 CmpTypeID, Cmp)) 5370 return error("Invalid record"); 5371 5372 Value *New = nullptr; 5373 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5374 New) || 5375 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5376 return error("Invalid record"); 5377 5378 const AtomicOrdering SuccessOrdering = 5379 getDecodedOrdering(Record[OpNum + 1]); 5380 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5381 SuccessOrdering == AtomicOrdering::Unordered) 5382 return error("Invalid record"); 5383 5384 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5385 5386 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5387 return Err; 5388 5389 const AtomicOrdering FailureOrdering = 5390 NumRecords < 7 5391 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5392 : getDecodedOrdering(Record[OpNum + 3]); 5393 5394 if (FailureOrdering == AtomicOrdering::NotAtomic || 5395 FailureOrdering == AtomicOrdering::Unordered) 5396 return error("Invalid record"); 5397 5398 const Align Alignment( 5399 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5400 5401 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5402 FailureOrdering, SSID); 5403 ResTypeID = TODOTypeID; 5404 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5405 5406 if (NumRecords < 8) { 5407 // Before weak cmpxchgs existed, the instruction simply returned the 5408 // value loaded from memory, so bitcode files from that era will be 5409 // expecting the first component of a modern cmpxchg. 5410 CurBB->getInstList().push_back(I); 5411 I = ExtractValueInst::Create(I, 0); 5412 ResTypeID = TODOTypeID; 5413 } else { 5414 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5415 } 5416 5417 InstructionList.push_back(I); 5418 break; 5419 } 5420 case bitc::FUNC_CODE_INST_CMPXCHG: { 5421 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5422 // failure_ordering, weak, align?] 5423 const size_t NumRecords = Record.size(); 5424 unsigned OpNum = 0; 5425 Value *Ptr = nullptr; 5426 unsigned PtrTypeID; 5427 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5428 return error("Invalid record"); 5429 5430 if (!isa<PointerType>(Ptr->getType())) 5431 return error("Cmpxchg operand is not a pointer type"); 5432 5433 Value *Cmp = nullptr; 5434 unsigned CmpTypeID; 5435 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID)) 5436 return error("Invalid record"); 5437 5438 Value *Val = nullptr; 5439 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val)) 5440 return error("Invalid record"); 5441 5442 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5443 return error("Invalid record"); 5444 5445 const bool IsVol = Record[OpNum]; 5446 5447 const AtomicOrdering SuccessOrdering = 5448 getDecodedOrdering(Record[OpNum + 1]); 5449 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5450 return error("Invalid cmpxchg success ordering"); 5451 5452 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5453 5454 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5455 return Err; 5456 5457 const AtomicOrdering FailureOrdering = 5458 getDecodedOrdering(Record[OpNum + 3]); 5459 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5460 return error("Invalid cmpxchg failure ordering"); 5461 5462 const bool IsWeak = Record[OpNum + 4]; 5463 5464 MaybeAlign Alignment; 5465 5466 if (NumRecords == (OpNum + 6)) { 5467 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5468 return Err; 5469 } 5470 if (!Alignment) 5471 Alignment = 5472 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5473 5474 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5475 FailureOrdering, SSID); 5476 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5477 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5478 ResTypeID = TODOTypeID; 5479 5480 InstructionList.push_back(I); 5481 break; 5482 } 5483 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5484 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5485 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5486 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5487 const size_t NumRecords = Record.size(); 5488 unsigned OpNum = 0; 5489 5490 Value *Ptr = nullptr; 5491 unsigned PtrTypeID; 5492 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5493 return error("Invalid record"); 5494 5495 if (!isa<PointerType>(Ptr->getType())) 5496 return error("Invalid record"); 5497 5498 Value *Val = nullptr; 5499 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5500 if (popValue(Record, OpNum, NextValueNo, 5501 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5502 getContainedTypeID(PtrTypeID), Val)) 5503 return error("Invalid record"); 5504 } else { 5505 unsigned ValTypeID; 5506 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5507 return error("Invalid record"); 5508 } 5509 5510 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5511 return error("Invalid record"); 5512 5513 const AtomicRMWInst::BinOp Operation = 5514 getDecodedRMWOperation(Record[OpNum]); 5515 if (Operation < AtomicRMWInst::FIRST_BINOP || 5516 Operation > AtomicRMWInst::LAST_BINOP) 5517 return error("Invalid record"); 5518 5519 const bool IsVol = Record[OpNum + 1]; 5520 5521 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5522 if (Ordering == AtomicOrdering::NotAtomic || 5523 Ordering == AtomicOrdering::Unordered) 5524 return error("Invalid record"); 5525 5526 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5527 5528 MaybeAlign Alignment; 5529 5530 if (NumRecords == (OpNum + 5)) { 5531 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5532 return Err; 5533 } 5534 5535 if (!Alignment) 5536 Alignment = 5537 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5538 5539 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5540 ResTypeID = TODOTypeID; 5541 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5542 5543 InstructionList.push_back(I); 5544 break; 5545 } 5546 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5547 if (2 != Record.size()) 5548 return error("Invalid record"); 5549 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5550 if (Ordering == AtomicOrdering::NotAtomic || 5551 Ordering == AtomicOrdering::Unordered || 5552 Ordering == AtomicOrdering::Monotonic) 5553 return error("Invalid record"); 5554 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5555 I = new FenceInst(Context, Ordering, SSID); 5556 InstructionList.push_back(I); 5557 break; 5558 } 5559 case bitc::FUNC_CODE_INST_CALL: { 5560 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5561 if (Record.size() < 3) 5562 return error("Invalid record"); 5563 5564 unsigned OpNum = 0; 5565 AttributeList PAL = getAttributes(Record[OpNum++]); 5566 unsigned CCInfo = Record[OpNum++]; 5567 5568 FastMathFlags FMF; 5569 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5570 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5571 if (!FMF.any()) 5572 return error("Fast math flags indicator set for call with no FMF"); 5573 } 5574 5575 FunctionType *FTy = nullptr; 5576 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5577 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5578 if (!FTy) 5579 return error("Explicit call type is not a function type"); 5580 } 5581 5582 Value *Callee; 5583 unsigned CalleeTypeID; 5584 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5585 return error("Invalid record"); 5586 5587 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5588 if (!OpTy) 5589 return error("Callee is not a pointer type"); 5590 if (!FTy) { 5591 FTy = 5592 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5593 if (!FTy) 5594 return error("Callee is not of pointer to function type"); 5595 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5596 return error("Explicit call type does not match pointee type of " 5597 "callee operand"); 5598 if (Record.size() < FTy->getNumParams() + OpNum) 5599 return error("Insufficient operands to call"); 5600 5601 SmallVector<Value*, 16> Args; 5602 SmallVector<Type *, 16> ArgsTys; 5603 // Read the fixed params. 5604 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5605 if (FTy->getParamType(i)->isLabelTy()) 5606 Args.push_back(getBasicBlock(Record[OpNum])); 5607 else 5608 Args.push_back(getValue(Record, OpNum, NextValueNo, 5609 FTy->getParamType(i), TODOTypeID)); 5610 ArgsTys.push_back(FTy->getParamType(i)); 5611 if (!Args.back()) 5612 return error("Invalid record"); 5613 } 5614 5615 // Read type/value pairs for varargs params. 5616 if (!FTy->isVarArg()) { 5617 if (OpNum != Record.size()) 5618 return error("Invalid record"); 5619 } else { 5620 while (OpNum != Record.size()) { 5621 Value *Op; 5622 unsigned OpTypeID; 5623 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5624 return error("Invalid record"); 5625 Args.push_back(Op); 5626 ArgsTys.push_back(Op->getType()); 5627 } 5628 } 5629 5630 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5631 ResTypeID = TODOTypeID; 5632 OperandBundles.clear(); 5633 InstructionList.push_back(I); 5634 cast<CallInst>(I)->setCallingConv( 5635 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5636 CallInst::TailCallKind TCK = CallInst::TCK_None; 5637 if (CCInfo & 1 << bitc::CALL_TAIL) 5638 TCK = CallInst::TCK_Tail; 5639 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5640 TCK = CallInst::TCK_MustTail; 5641 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5642 TCK = CallInst::TCK_NoTail; 5643 cast<CallInst>(I)->setTailCallKind(TCK); 5644 cast<CallInst>(I)->setAttributes(PAL); 5645 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5646 if (FMF.any()) { 5647 if (!isa<FPMathOperator>(I)) 5648 return error("Fast-math-flags specified for call without " 5649 "floating-point scalar or vector return type"); 5650 I->setFastMathFlags(FMF); 5651 } 5652 break; 5653 } 5654 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5655 if (Record.size() < 3) 5656 return error("Invalid record"); 5657 unsigned OpTyID = Record[0]; 5658 Type *OpTy = getTypeByID(OpTyID); 5659 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5660 ResTypeID = Record[2]; 5661 Type *ResTy = getTypeByID(ResTypeID); 5662 if (!OpTy || !Op || !ResTy) 5663 return error("Invalid record"); 5664 I = new VAArgInst(Op, ResTy); 5665 InstructionList.push_back(I); 5666 break; 5667 } 5668 5669 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5670 // A call or an invoke can be optionally prefixed with some variable 5671 // number of operand bundle blocks. These blocks are read into 5672 // OperandBundles and consumed at the next call or invoke instruction. 5673 5674 if (Record.empty() || Record[0] >= BundleTags.size()) 5675 return error("Invalid record"); 5676 5677 std::vector<Value *> Inputs; 5678 5679 unsigned OpNum = 1; 5680 while (OpNum != Record.size()) { 5681 Value *Op; 5682 unsigned OpTypeID; 5683 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5684 return error("Invalid record"); 5685 Inputs.push_back(Op); 5686 } 5687 5688 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5689 continue; 5690 } 5691 5692 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5693 unsigned OpNum = 0; 5694 Value *Op = nullptr; 5695 unsigned OpTypeID; 5696 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5697 return error("Invalid record"); 5698 if (OpNum != Record.size()) 5699 return error("Invalid record"); 5700 5701 I = new FreezeInst(Op); 5702 ResTypeID = OpTypeID; 5703 InstructionList.push_back(I); 5704 break; 5705 } 5706 } 5707 5708 // Add instruction to end of current BB. If there is no current BB, reject 5709 // this file. 5710 if (!CurBB) { 5711 I->deleteValue(); 5712 return error("Invalid instruction with no BB"); 5713 } 5714 if (!OperandBundles.empty()) { 5715 I->deleteValue(); 5716 return error("Operand bundles found with no consumer"); 5717 } 5718 CurBB->getInstList().push_back(I); 5719 5720 // If this was a terminator instruction, move to the next block. 5721 if (I->isTerminator()) { 5722 ++CurBBNo; 5723 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5724 } 5725 5726 // Non-void values get registered in the value table for future use. 5727 if (!I->getType()->isVoidTy()) { 5728 assert(ResTypeID != InvalidTypeID && "Should have ID for non-void type"); 5729 ValueList.assignValue(NextValueNo++, I, ResTypeID); 5730 } 5731 } 5732 5733 OutOfRecordLoop: 5734 5735 if (!OperandBundles.empty()) 5736 return error("Operand bundles found with no consumer"); 5737 5738 // Check the function list for unresolved values. 5739 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5740 if (!A->getParent()) { 5741 // We found at least one unresolved value. Nuke them all to avoid leaks. 5742 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5743 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5744 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5745 delete A; 5746 } 5747 } 5748 return error("Never resolved value found in function"); 5749 } 5750 } 5751 5752 // Unexpected unresolved metadata about to be dropped. 5753 if (MDLoader->hasFwdRefs()) 5754 return error("Invalid function metadata: outgoing forward refs"); 5755 5756 // Trim the value list down to the size it was before we parsed this function. 5757 ValueList.shrinkTo(ModuleValueListSize); 5758 MDLoader->shrinkTo(ModuleMDLoaderSize); 5759 std::vector<BasicBlock*>().swap(FunctionBBs); 5760 return Error::success(); 5761 } 5762 5763 /// Find the function body in the bitcode stream 5764 Error BitcodeReader::findFunctionInStream( 5765 Function *F, 5766 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5767 while (DeferredFunctionInfoIterator->second == 0) { 5768 // This is the fallback handling for the old format bitcode that 5769 // didn't contain the function index in the VST, or when we have 5770 // an anonymous function which would not have a VST entry. 5771 // Assert that we have one of those two cases. 5772 assert(VSTOffset == 0 || !F->hasName()); 5773 // Parse the next body in the stream and set its position in the 5774 // DeferredFunctionInfo map. 5775 if (Error Err = rememberAndSkipFunctionBodies()) 5776 return Err; 5777 } 5778 return Error::success(); 5779 } 5780 5781 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5782 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5783 return SyncScope::ID(Val); 5784 if (Val >= SSIDs.size()) 5785 return SyncScope::System; // Map unknown synchronization scopes to system. 5786 return SSIDs[Val]; 5787 } 5788 5789 //===----------------------------------------------------------------------===// 5790 // GVMaterializer implementation 5791 //===----------------------------------------------------------------------===// 5792 5793 Error BitcodeReader::materialize(GlobalValue *GV) { 5794 Function *F = dyn_cast<Function>(GV); 5795 // If it's not a function or is already material, ignore the request. 5796 if (!F || !F->isMaterializable()) 5797 return Error::success(); 5798 5799 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5800 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5801 // If its position is recorded as 0, its body is somewhere in the stream 5802 // but we haven't seen it yet. 5803 if (DFII->second == 0) 5804 if (Error Err = findFunctionInStream(F, DFII)) 5805 return Err; 5806 5807 // Materialize metadata before parsing any function bodies. 5808 if (Error Err = materializeMetadata()) 5809 return Err; 5810 5811 // Move the bit stream to the saved position of the deferred function body. 5812 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5813 return JumpFailed; 5814 if (Error Err = parseFunctionBody(F)) 5815 return Err; 5816 F->setIsMaterializable(false); 5817 5818 if (StripDebugInfo) 5819 stripDebugInfo(*F); 5820 5821 // Upgrade any old intrinsic calls in the function. 5822 for (auto &I : UpgradedIntrinsics) { 5823 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5824 if (CallInst *CI = dyn_cast<CallInst>(U)) 5825 UpgradeIntrinsicCall(CI, I.second); 5826 } 5827 5828 // Update calls to the remangled intrinsics 5829 for (auto &I : RemangledIntrinsics) 5830 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5831 // Don't expect any other users than call sites 5832 cast<CallBase>(U)->setCalledFunction(I.second); 5833 5834 // Finish fn->subprogram upgrade for materialized functions. 5835 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5836 F->setSubprogram(SP); 5837 5838 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5839 if (!MDLoader->isStrippingTBAA()) { 5840 for (auto &I : instructions(F)) { 5841 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5842 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5843 continue; 5844 MDLoader->setStripTBAA(true); 5845 stripTBAA(F->getParent()); 5846 } 5847 } 5848 5849 for (auto &I : instructions(F)) { 5850 // "Upgrade" older incorrect branch weights by dropping them. 5851 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5852 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5853 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5854 StringRef ProfName = MDS->getString(); 5855 // Check consistency of !prof branch_weights metadata. 5856 if (!ProfName.equals("branch_weights")) 5857 continue; 5858 unsigned ExpectedNumOperands = 0; 5859 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5860 ExpectedNumOperands = BI->getNumSuccessors(); 5861 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5862 ExpectedNumOperands = SI->getNumSuccessors(); 5863 else if (isa<CallInst>(&I)) 5864 ExpectedNumOperands = 1; 5865 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5866 ExpectedNumOperands = IBI->getNumDestinations(); 5867 else if (isa<SelectInst>(&I)) 5868 ExpectedNumOperands = 2; 5869 else 5870 continue; // ignore and continue. 5871 5872 // If branch weight doesn't match, just strip branch weight. 5873 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5874 I.setMetadata(LLVMContext::MD_prof, nullptr); 5875 } 5876 } 5877 5878 // Remove incompatible attributes on function calls. 5879 if (auto *CI = dyn_cast<CallBase>(&I)) { 5880 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5881 CI->getFunctionType()->getReturnType())); 5882 5883 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5884 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5885 CI->getArgOperand(ArgNo)->getType())); 5886 } 5887 } 5888 5889 // Look for functions that rely on old function attribute behavior. 5890 UpgradeFunctionAttributes(*F); 5891 5892 // Bring in any functions that this function forward-referenced via 5893 // blockaddresses. 5894 return materializeForwardReferencedFunctions(); 5895 } 5896 5897 Error BitcodeReader::materializeModule() { 5898 if (Error Err = materializeMetadata()) 5899 return Err; 5900 5901 // Promise to materialize all forward references. 5902 WillMaterializeAllForwardRefs = true; 5903 5904 // Iterate over the module, deserializing any functions that are still on 5905 // disk. 5906 for (Function &F : *TheModule) { 5907 if (Error Err = materialize(&F)) 5908 return Err; 5909 } 5910 // At this point, if there are any function bodies, parse the rest of 5911 // the bits in the module past the last function block we have recorded 5912 // through either lazy scanning or the VST. 5913 if (LastFunctionBlockBit || NextUnreadBit) 5914 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5915 ? LastFunctionBlockBit 5916 : NextUnreadBit)) 5917 return Err; 5918 5919 // Check that all block address forward references got resolved (as we 5920 // promised above). 5921 if (!BasicBlockFwdRefs.empty()) 5922 return error("Never resolved function from blockaddress"); 5923 5924 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5925 // delete the old functions to clean up. We can't do this unless the entire 5926 // module is materialized because there could always be another function body 5927 // with calls to the old function. 5928 for (auto &I : UpgradedIntrinsics) { 5929 for (auto *U : I.first->users()) { 5930 if (CallInst *CI = dyn_cast<CallInst>(U)) 5931 UpgradeIntrinsicCall(CI, I.second); 5932 } 5933 if (!I.first->use_empty()) 5934 I.first->replaceAllUsesWith(I.second); 5935 I.first->eraseFromParent(); 5936 } 5937 UpgradedIntrinsics.clear(); 5938 // Do the same for remangled intrinsics 5939 for (auto &I : RemangledIntrinsics) { 5940 I.first->replaceAllUsesWith(I.second); 5941 I.first->eraseFromParent(); 5942 } 5943 RemangledIntrinsics.clear(); 5944 5945 UpgradeDebugInfo(*TheModule); 5946 5947 UpgradeModuleFlags(*TheModule); 5948 5949 UpgradeARCRuntime(*TheModule); 5950 5951 return Error::success(); 5952 } 5953 5954 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5955 return IdentifiedStructTypes; 5956 } 5957 5958 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5959 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5960 StringRef ModulePath, unsigned ModuleId) 5961 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5962 ModulePath(ModulePath), ModuleId(ModuleId) {} 5963 5964 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5965 TheIndex.addModule(ModulePath, ModuleId); 5966 } 5967 5968 ModuleSummaryIndex::ModuleInfo * 5969 ModuleSummaryIndexBitcodeReader::getThisModule() { 5970 return TheIndex.getModule(ModulePath); 5971 } 5972 5973 std::pair<ValueInfo, GlobalValue::GUID> 5974 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5975 auto VGI = ValueIdToValueInfoMap[ValueId]; 5976 assert(VGI.first); 5977 return VGI; 5978 } 5979 5980 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5981 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5982 StringRef SourceFileName) { 5983 std::string GlobalId = 5984 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5985 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5986 auto OriginalNameID = ValueGUID; 5987 if (GlobalValue::isLocalLinkage(Linkage)) 5988 OriginalNameID = GlobalValue::getGUID(ValueName); 5989 if (PrintSummaryGUIDs) 5990 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5991 << ValueName << "\n"; 5992 5993 // UseStrtab is false for legacy summary formats and value names are 5994 // created on stack. In that case we save the name in a string saver in 5995 // the index so that the value name can be recorded. 5996 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5997 TheIndex.getOrInsertValueInfo( 5998 ValueGUID, 5999 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6000 OriginalNameID); 6001 } 6002 6003 // Specialized value symbol table parser used when reading module index 6004 // blocks where we don't actually create global values. The parsed information 6005 // is saved in the bitcode reader for use when later parsing summaries. 6006 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6007 uint64_t Offset, 6008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6009 // With a strtab the VST is not required to parse the summary. 6010 if (UseStrtab) 6011 return Error::success(); 6012 6013 assert(Offset > 0 && "Expected non-zero VST offset"); 6014 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6015 if (!MaybeCurrentBit) 6016 return MaybeCurrentBit.takeError(); 6017 uint64_t CurrentBit = MaybeCurrentBit.get(); 6018 6019 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6020 return Err; 6021 6022 SmallVector<uint64_t, 64> Record; 6023 6024 // Read all the records for this value table. 6025 SmallString<128> ValueName; 6026 6027 while (true) { 6028 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6029 if (!MaybeEntry) 6030 return MaybeEntry.takeError(); 6031 BitstreamEntry Entry = MaybeEntry.get(); 6032 6033 switch (Entry.Kind) { 6034 case BitstreamEntry::SubBlock: // Handled for us already. 6035 case BitstreamEntry::Error: 6036 return error("Malformed block"); 6037 case BitstreamEntry::EndBlock: 6038 // Done parsing VST, jump back to wherever we came from. 6039 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6040 return JumpFailed; 6041 return Error::success(); 6042 case BitstreamEntry::Record: 6043 // The interesting case. 6044 break; 6045 } 6046 6047 // Read a record. 6048 Record.clear(); 6049 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6050 if (!MaybeRecord) 6051 return MaybeRecord.takeError(); 6052 switch (MaybeRecord.get()) { 6053 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6054 break; 6055 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6056 if (convertToString(Record, 1, ValueName)) 6057 return error("Invalid record"); 6058 unsigned ValueID = Record[0]; 6059 assert(!SourceFileName.empty()); 6060 auto VLI = ValueIdToLinkageMap.find(ValueID); 6061 assert(VLI != ValueIdToLinkageMap.end() && 6062 "No linkage found for VST entry?"); 6063 auto Linkage = VLI->second; 6064 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6065 ValueName.clear(); 6066 break; 6067 } 6068 case bitc::VST_CODE_FNENTRY: { 6069 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6070 if (convertToString(Record, 2, ValueName)) 6071 return error("Invalid record"); 6072 unsigned ValueID = Record[0]; 6073 assert(!SourceFileName.empty()); 6074 auto VLI = ValueIdToLinkageMap.find(ValueID); 6075 assert(VLI != ValueIdToLinkageMap.end() && 6076 "No linkage found for VST entry?"); 6077 auto Linkage = VLI->second; 6078 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6079 ValueName.clear(); 6080 break; 6081 } 6082 case bitc::VST_CODE_COMBINED_ENTRY: { 6083 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6084 unsigned ValueID = Record[0]; 6085 GlobalValue::GUID RefGUID = Record[1]; 6086 // The "original name", which is the second value of the pair will be 6087 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6088 ValueIdToValueInfoMap[ValueID] = 6089 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6090 break; 6091 } 6092 } 6093 } 6094 } 6095 6096 // Parse just the blocks needed for building the index out of the module. 6097 // At the end of this routine the module Index is populated with a map 6098 // from global value id to GlobalValueSummary objects. 6099 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6100 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6101 return Err; 6102 6103 SmallVector<uint64_t, 64> Record; 6104 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6105 unsigned ValueId = 0; 6106 6107 // Read the index for this module. 6108 while (true) { 6109 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6110 if (!MaybeEntry) 6111 return MaybeEntry.takeError(); 6112 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6113 6114 switch (Entry.Kind) { 6115 case BitstreamEntry::Error: 6116 return error("Malformed block"); 6117 case BitstreamEntry::EndBlock: 6118 return Error::success(); 6119 6120 case BitstreamEntry::SubBlock: 6121 switch (Entry.ID) { 6122 default: // Skip unknown content. 6123 if (Error Err = Stream.SkipBlock()) 6124 return Err; 6125 break; 6126 case bitc::BLOCKINFO_BLOCK_ID: 6127 // Need to parse these to get abbrev ids (e.g. for VST) 6128 if (Error Err = readBlockInfo()) 6129 return Err; 6130 break; 6131 case bitc::VALUE_SYMTAB_BLOCK_ID: 6132 // Should have been parsed earlier via VSTOffset, unless there 6133 // is no summary section. 6134 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6135 !SeenGlobalValSummary) && 6136 "Expected early VST parse via VSTOffset record"); 6137 if (Error Err = Stream.SkipBlock()) 6138 return Err; 6139 break; 6140 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6141 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6142 // Add the module if it is a per-module index (has a source file name). 6143 if (!SourceFileName.empty()) 6144 addThisModule(); 6145 assert(!SeenValueSymbolTable && 6146 "Already read VST when parsing summary block?"); 6147 // We might not have a VST if there were no values in the 6148 // summary. An empty summary block generated when we are 6149 // performing ThinLTO compiles so we don't later invoke 6150 // the regular LTO process on them. 6151 if (VSTOffset > 0) { 6152 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6153 return Err; 6154 SeenValueSymbolTable = true; 6155 } 6156 SeenGlobalValSummary = true; 6157 if (Error Err = parseEntireSummary(Entry.ID)) 6158 return Err; 6159 break; 6160 case bitc::MODULE_STRTAB_BLOCK_ID: 6161 if (Error Err = parseModuleStringTable()) 6162 return Err; 6163 break; 6164 } 6165 continue; 6166 6167 case BitstreamEntry::Record: { 6168 Record.clear(); 6169 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6170 if (!MaybeBitCode) 6171 return MaybeBitCode.takeError(); 6172 switch (MaybeBitCode.get()) { 6173 default: 6174 break; // Default behavior, ignore unknown content. 6175 case bitc::MODULE_CODE_VERSION: { 6176 if (Error Err = parseVersionRecord(Record).takeError()) 6177 return Err; 6178 break; 6179 } 6180 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6181 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6182 SmallString<128> ValueName; 6183 if (convertToString(Record, 0, ValueName)) 6184 return error("Invalid record"); 6185 SourceFileName = ValueName.c_str(); 6186 break; 6187 } 6188 /// MODULE_CODE_HASH: [5*i32] 6189 case bitc::MODULE_CODE_HASH: { 6190 if (Record.size() != 5) 6191 return error("Invalid hash length " + Twine(Record.size()).str()); 6192 auto &Hash = getThisModule()->second.second; 6193 int Pos = 0; 6194 for (auto &Val : Record) { 6195 assert(!(Val >> 32) && "Unexpected high bits set"); 6196 Hash[Pos++] = Val; 6197 } 6198 break; 6199 } 6200 /// MODULE_CODE_VSTOFFSET: [offset] 6201 case bitc::MODULE_CODE_VSTOFFSET: 6202 if (Record.empty()) 6203 return error("Invalid record"); 6204 // Note that we subtract 1 here because the offset is relative to one 6205 // word before the start of the identification or module block, which 6206 // was historically always the start of the regular bitcode header. 6207 VSTOffset = Record[0] - 1; 6208 break; 6209 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6210 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6211 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6212 // v2: [strtab offset, strtab size, v1] 6213 case bitc::MODULE_CODE_GLOBALVAR: 6214 case bitc::MODULE_CODE_FUNCTION: 6215 case bitc::MODULE_CODE_ALIAS: { 6216 StringRef Name; 6217 ArrayRef<uint64_t> GVRecord; 6218 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6219 if (GVRecord.size() <= 3) 6220 return error("Invalid record"); 6221 uint64_t RawLinkage = GVRecord[3]; 6222 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6223 if (!UseStrtab) { 6224 ValueIdToLinkageMap[ValueId++] = Linkage; 6225 break; 6226 } 6227 6228 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6229 break; 6230 } 6231 } 6232 } 6233 continue; 6234 } 6235 } 6236 } 6237 6238 std::vector<ValueInfo> 6239 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6240 std::vector<ValueInfo> Ret; 6241 Ret.reserve(Record.size()); 6242 for (uint64_t RefValueId : Record) 6243 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6244 return Ret; 6245 } 6246 6247 std::vector<FunctionSummary::EdgeTy> 6248 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6249 bool IsOldProfileFormat, 6250 bool HasProfile, bool HasRelBF) { 6251 std::vector<FunctionSummary::EdgeTy> Ret; 6252 Ret.reserve(Record.size()); 6253 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6254 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6255 uint64_t RelBF = 0; 6256 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6257 if (IsOldProfileFormat) { 6258 I += 1; // Skip old callsitecount field 6259 if (HasProfile) 6260 I += 1; // Skip old profilecount field 6261 } else if (HasProfile) 6262 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6263 else if (HasRelBF) 6264 RelBF = Record[++I]; 6265 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6266 } 6267 return Ret; 6268 } 6269 6270 static void 6271 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6272 WholeProgramDevirtResolution &Wpd) { 6273 uint64_t ArgNum = Record[Slot++]; 6274 WholeProgramDevirtResolution::ByArg &B = 6275 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6276 Slot += ArgNum; 6277 6278 B.TheKind = 6279 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6280 B.Info = Record[Slot++]; 6281 B.Byte = Record[Slot++]; 6282 B.Bit = Record[Slot++]; 6283 } 6284 6285 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6286 StringRef Strtab, size_t &Slot, 6287 TypeIdSummary &TypeId) { 6288 uint64_t Id = Record[Slot++]; 6289 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6290 6291 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6292 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6293 static_cast<size_t>(Record[Slot + 1])}; 6294 Slot += 2; 6295 6296 uint64_t ResByArgNum = Record[Slot++]; 6297 for (uint64_t I = 0; I != ResByArgNum; ++I) 6298 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6299 } 6300 6301 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6302 StringRef Strtab, 6303 ModuleSummaryIndex &TheIndex) { 6304 size_t Slot = 0; 6305 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6306 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6307 Slot += 2; 6308 6309 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6310 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6311 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6312 TypeId.TTRes.SizeM1 = Record[Slot++]; 6313 TypeId.TTRes.BitMask = Record[Slot++]; 6314 TypeId.TTRes.InlineBits = Record[Slot++]; 6315 6316 while (Slot < Record.size()) 6317 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6318 } 6319 6320 std::vector<FunctionSummary::ParamAccess> 6321 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6322 auto ReadRange = [&]() { 6323 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6324 BitcodeReader::decodeSignRotatedValue(Record.front())); 6325 Record = Record.drop_front(); 6326 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6327 BitcodeReader::decodeSignRotatedValue(Record.front())); 6328 Record = Record.drop_front(); 6329 ConstantRange Range{Lower, Upper}; 6330 assert(!Range.isFullSet()); 6331 assert(!Range.isUpperSignWrapped()); 6332 return Range; 6333 }; 6334 6335 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6336 while (!Record.empty()) { 6337 PendingParamAccesses.emplace_back(); 6338 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6339 ParamAccess.ParamNo = Record.front(); 6340 Record = Record.drop_front(); 6341 ParamAccess.Use = ReadRange(); 6342 ParamAccess.Calls.resize(Record.front()); 6343 Record = Record.drop_front(); 6344 for (auto &Call : ParamAccess.Calls) { 6345 Call.ParamNo = Record.front(); 6346 Record = Record.drop_front(); 6347 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6348 Record = Record.drop_front(); 6349 Call.Offsets = ReadRange(); 6350 } 6351 } 6352 return PendingParamAccesses; 6353 } 6354 6355 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6356 ArrayRef<uint64_t> Record, size_t &Slot, 6357 TypeIdCompatibleVtableInfo &TypeId) { 6358 uint64_t Offset = Record[Slot++]; 6359 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6360 TypeId.push_back({Offset, Callee}); 6361 } 6362 6363 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6364 ArrayRef<uint64_t> Record) { 6365 size_t Slot = 0; 6366 TypeIdCompatibleVtableInfo &TypeId = 6367 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6368 {Strtab.data() + Record[Slot], 6369 static_cast<size_t>(Record[Slot + 1])}); 6370 Slot += 2; 6371 6372 while (Slot < Record.size()) 6373 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6374 } 6375 6376 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6377 unsigned WOCnt) { 6378 // Readonly and writeonly refs are in the end of the refs list. 6379 assert(ROCnt + WOCnt <= Refs.size()); 6380 unsigned FirstWORef = Refs.size() - WOCnt; 6381 unsigned RefNo = FirstWORef - ROCnt; 6382 for (; RefNo < FirstWORef; ++RefNo) 6383 Refs[RefNo].setReadOnly(); 6384 for (; RefNo < Refs.size(); ++RefNo) 6385 Refs[RefNo].setWriteOnly(); 6386 } 6387 6388 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6389 // objects in the index. 6390 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6391 if (Error Err = Stream.EnterSubBlock(ID)) 6392 return Err; 6393 SmallVector<uint64_t, 64> Record; 6394 6395 // Parse version 6396 { 6397 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6398 if (!MaybeEntry) 6399 return MaybeEntry.takeError(); 6400 BitstreamEntry Entry = MaybeEntry.get(); 6401 6402 if (Entry.Kind != BitstreamEntry::Record) 6403 return error("Invalid Summary Block: record for version expected"); 6404 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6405 if (!MaybeRecord) 6406 return MaybeRecord.takeError(); 6407 if (MaybeRecord.get() != bitc::FS_VERSION) 6408 return error("Invalid Summary Block: version expected"); 6409 } 6410 const uint64_t Version = Record[0]; 6411 const bool IsOldProfileFormat = Version == 1; 6412 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6413 return error("Invalid summary version " + Twine(Version) + 6414 ". Version should be in the range [1-" + 6415 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6416 "]."); 6417 Record.clear(); 6418 6419 // Keep around the last seen summary to be used when we see an optional 6420 // "OriginalName" attachement. 6421 GlobalValueSummary *LastSeenSummary = nullptr; 6422 GlobalValue::GUID LastSeenGUID = 0; 6423 6424 // We can expect to see any number of type ID information records before 6425 // each function summary records; these variables store the information 6426 // collected so far so that it can be used to create the summary object. 6427 std::vector<GlobalValue::GUID> PendingTypeTests; 6428 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6429 PendingTypeCheckedLoadVCalls; 6430 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6431 PendingTypeCheckedLoadConstVCalls; 6432 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6433 6434 while (true) { 6435 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6436 if (!MaybeEntry) 6437 return MaybeEntry.takeError(); 6438 BitstreamEntry Entry = MaybeEntry.get(); 6439 6440 switch (Entry.Kind) { 6441 case BitstreamEntry::SubBlock: // Handled for us already. 6442 case BitstreamEntry::Error: 6443 return error("Malformed block"); 6444 case BitstreamEntry::EndBlock: 6445 return Error::success(); 6446 case BitstreamEntry::Record: 6447 // The interesting case. 6448 break; 6449 } 6450 6451 // Read a record. The record format depends on whether this 6452 // is a per-module index or a combined index file. In the per-module 6453 // case the records contain the associated value's ID for correlation 6454 // with VST entries. In the combined index the correlation is done 6455 // via the bitcode offset of the summary records (which were saved 6456 // in the combined index VST entries). The records also contain 6457 // information used for ThinLTO renaming and importing. 6458 Record.clear(); 6459 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6460 if (!MaybeBitCode) 6461 return MaybeBitCode.takeError(); 6462 switch (unsigned BitCode = MaybeBitCode.get()) { 6463 default: // Default behavior: ignore. 6464 break; 6465 case bitc::FS_FLAGS: { // [flags] 6466 TheIndex.setFlags(Record[0]); 6467 break; 6468 } 6469 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6470 uint64_t ValueID = Record[0]; 6471 GlobalValue::GUID RefGUID = Record[1]; 6472 ValueIdToValueInfoMap[ValueID] = 6473 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6474 break; 6475 } 6476 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6477 // numrefs x valueid, n x (valueid)] 6478 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6479 // numrefs x valueid, 6480 // n x (valueid, hotness)] 6481 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6482 // numrefs x valueid, 6483 // n x (valueid, relblockfreq)] 6484 case bitc::FS_PERMODULE: 6485 case bitc::FS_PERMODULE_RELBF: 6486 case bitc::FS_PERMODULE_PROFILE: { 6487 unsigned ValueID = Record[0]; 6488 uint64_t RawFlags = Record[1]; 6489 unsigned InstCount = Record[2]; 6490 uint64_t RawFunFlags = 0; 6491 unsigned NumRefs = Record[3]; 6492 unsigned NumRORefs = 0, NumWORefs = 0; 6493 int RefListStartIndex = 4; 6494 if (Version >= 4) { 6495 RawFunFlags = Record[3]; 6496 NumRefs = Record[4]; 6497 RefListStartIndex = 5; 6498 if (Version >= 5) { 6499 NumRORefs = Record[5]; 6500 RefListStartIndex = 6; 6501 if (Version >= 7) { 6502 NumWORefs = Record[6]; 6503 RefListStartIndex = 7; 6504 } 6505 } 6506 } 6507 6508 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6509 // The module path string ref set in the summary must be owned by the 6510 // index's module string table. Since we don't have a module path 6511 // string table section in the per-module index, we create a single 6512 // module path string table entry with an empty (0) ID to take 6513 // ownership. 6514 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6515 assert(Record.size() >= RefListStartIndex + NumRefs && 6516 "Record size inconsistent with number of references"); 6517 std::vector<ValueInfo> Refs = makeRefList( 6518 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6519 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6520 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6521 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6522 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6523 IsOldProfileFormat, HasProfile, HasRelBF); 6524 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6525 auto FS = std::make_unique<FunctionSummary>( 6526 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6527 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6528 std::move(PendingTypeTestAssumeVCalls), 6529 std::move(PendingTypeCheckedLoadVCalls), 6530 std::move(PendingTypeTestAssumeConstVCalls), 6531 std::move(PendingTypeCheckedLoadConstVCalls), 6532 std::move(PendingParamAccesses)); 6533 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6534 FS->setModulePath(getThisModule()->first()); 6535 FS->setOriginalName(VIAndOriginalGUID.second); 6536 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6537 break; 6538 } 6539 // FS_ALIAS: [valueid, flags, valueid] 6540 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6541 // they expect all aliasee summaries to be available. 6542 case bitc::FS_ALIAS: { 6543 unsigned ValueID = Record[0]; 6544 uint64_t RawFlags = Record[1]; 6545 unsigned AliaseeID = Record[2]; 6546 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6547 auto AS = std::make_unique<AliasSummary>(Flags); 6548 // The module path string ref set in the summary must be owned by the 6549 // index's module string table. Since we don't have a module path 6550 // string table section in the per-module index, we create a single 6551 // module path string table entry with an empty (0) ID to take 6552 // ownership. 6553 AS->setModulePath(getThisModule()->first()); 6554 6555 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6556 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6557 if (!AliaseeInModule) 6558 return error("Alias expects aliasee summary to be parsed"); 6559 AS->setAliasee(AliaseeVI, AliaseeInModule); 6560 6561 auto GUID = getValueInfoFromValueId(ValueID); 6562 AS->setOriginalName(GUID.second); 6563 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6564 break; 6565 } 6566 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6567 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6568 unsigned ValueID = Record[0]; 6569 uint64_t RawFlags = Record[1]; 6570 unsigned RefArrayStart = 2; 6571 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6572 /* WriteOnly */ false, 6573 /* Constant */ false, 6574 GlobalObject::VCallVisibilityPublic); 6575 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6576 if (Version >= 5) { 6577 GVF = getDecodedGVarFlags(Record[2]); 6578 RefArrayStart = 3; 6579 } 6580 std::vector<ValueInfo> Refs = 6581 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6582 auto FS = 6583 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6584 FS->setModulePath(getThisModule()->first()); 6585 auto GUID = getValueInfoFromValueId(ValueID); 6586 FS->setOriginalName(GUID.second); 6587 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6588 break; 6589 } 6590 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6591 // numrefs, numrefs x valueid, 6592 // n x (valueid, offset)] 6593 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6594 unsigned ValueID = Record[0]; 6595 uint64_t RawFlags = Record[1]; 6596 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6597 unsigned NumRefs = Record[3]; 6598 unsigned RefListStartIndex = 4; 6599 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6600 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6601 std::vector<ValueInfo> Refs = makeRefList( 6602 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6603 VTableFuncList VTableFuncs; 6604 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6605 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6606 uint64_t Offset = Record[++I]; 6607 VTableFuncs.push_back({Callee, Offset}); 6608 } 6609 auto VS = 6610 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6611 VS->setModulePath(getThisModule()->first()); 6612 VS->setVTableFuncs(VTableFuncs); 6613 auto GUID = getValueInfoFromValueId(ValueID); 6614 VS->setOriginalName(GUID.second); 6615 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6616 break; 6617 } 6618 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6619 // numrefs x valueid, n x (valueid)] 6620 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6621 // numrefs x valueid, n x (valueid, hotness)] 6622 case bitc::FS_COMBINED: 6623 case bitc::FS_COMBINED_PROFILE: { 6624 unsigned ValueID = Record[0]; 6625 uint64_t ModuleId = Record[1]; 6626 uint64_t RawFlags = Record[2]; 6627 unsigned InstCount = Record[3]; 6628 uint64_t RawFunFlags = 0; 6629 uint64_t EntryCount = 0; 6630 unsigned NumRefs = Record[4]; 6631 unsigned NumRORefs = 0, NumWORefs = 0; 6632 int RefListStartIndex = 5; 6633 6634 if (Version >= 4) { 6635 RawFunFlags = Record[4]; 6636 RefListStartIndex = 6; 6637 size_t NumRefsIndex = 5; 6638 if (Version >= 5) { 6639 unsigned NumRORefsOffset = 1; 6640 RefListStartIndex = 7; 6641 if (Version >= 6) { 6642 NumRefsIndex = 6; 6643 EntryCount = Record[5]; 6644 RefListStartIndex = 8; 6645 if (Version >= 7) { 6646 RefListStartIndex = 9; 6647 NumWORefs = Record[8]; 6648 NumRORefsOffset = 2; 6649 } 6650 } 6651 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6652 } 6653 NumRefs = Record[NumRefsIndex]; 6654 } 6655 6656 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6657 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6658 assert(Record.size() >= RefListStartIndex + NumRefs && 6659 "Record size inconsistent with number of references"); 6660 std::vector<ValueInfo> Refs = makeRefList( 6661 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6662 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6663 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6664 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6665 IsOldProfileFormat, HasProfile, false); 6666 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6667 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6668 auto FS = std::make_unique<FunctionSummary>( 6669 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6670 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6671 std::move(PendingTypeTestAssumeVCalls), 6672 std::move(PendingTypeCheckedLoadVCalls), 6673 std::move(PendingTypeTestAssumeConstVCalls), 6674 std::move(PendingTypeCheckedLoadConstVCalls), 6675 std::move(PendingParamAccesses)); 6676 LastSeenSummary = FS.get(); 6677 LastSeenGUID = VI.getGUID(); 6678 FS->setModulePath(ModuleIdMap[ModuleId]); 6679 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6680 break; 6681 } 6682 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6683 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6684 // they expect all aliasee summaries to be available. 6685 case bitc::FS_COMBINED_ALIAS: { 6686 unsigned ValueID = Record[0]; 6687 uint64_t ModuleId = Record[1]; 6688 uint64_t RawFlags = Record[2]; 6689 unsigned AliaseeValueId = Record[3]; 6690 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6691 auto AS = std::make_unique<AliasSummary>(Flags); 6692 LastSeenSummary = AS.get(); 6693 AS->setModulePath(ModuleIdMap[ModuleId]); 6694 6695 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6696 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6697 AS->setAliasee(AliaseeVI, AliaseeInModule); 6698 6699 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6700 LastSeenGUID = VI.getGUID(); 6701 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6702 break; 6703 } 6704 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6705 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6706 unsigned ValueID = Record[0]; 6707 uint64_t ModuleId = Record[1]; 6708 uint64_t RawFlags = Record[2]; 6709 unsigned RefArrayStart = 3; 6710 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6711 /* WriteOnly */ false, 6712 /* Constant */ false, 6713 GlobalObject::VCallVisibilityPublic); 6714 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6715 if (Version >= 5) { 6716 GVF = getDecodedGVarFlags(Record[3]); 6717 RefArrayStart = 4; 6718 } 6719 std::vector<ValueInfo> Refs = 6720 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6721 auto FS = 6722 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6723 LastSeenSummary = FS.get(); 6724 FS->setModulePath(ModuleIdMap[ModuleId]); 6725 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6726 LastSeenGUID = VI.getGUID(); 6727 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6728 break; 6729 } 6730 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6731 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6732 uint64_t OriginalName = Record[0]; 6733 if (!LastSeenSummary) 6734 return error("Name attachment that does not follow a combined record"); 6735 LastSeenSummary->setOriginalName(OriginalName); 6736 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6737 // Reset the LastSeenSummary 6738 LastSeenSummary = nullptr; 6739 LastSeenGUID = 0; 6740 break; 6741 } 6742 case bitc::FS_TYPE_TESTS: 6743 assert(PendingTypeTests.empty()); 6744 llvm::append_range(PendingTypeTests, Record); 6745 break; 6746 6747 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6748 assert(PendingTypeTestAssumeVCalls.empty()); 6749 for (unsigned I = 0; I != Record.size(); I += 2) 6750 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6751 break; 6752 6753 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6754 assert(PendingTypeCheckedLoadVCalls.empty()); 6755 for (unsigned I = 0; I != Record.size(); I += 2) 6756 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6757 break; 6758 6759 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6760 PendingTypeTestAssumeConstVCalls.push_back( 6761 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6762 break; 6763 6764 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6765 PendingTypeCheckedLoadConstVCalls.push_back( 6766 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6767 break; 6768 6769 case bitc::FS_CFI_FUNCTION_DEFS: { 6770 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6771 for (unsigned I = 0; I != Record.size(); I += 2) 6772 CfiFunctionDefs.insert( 6773 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6774 break; 6775 } 6776 6777 case bitc::FS_CFI_FUNCTION_DECLS: { 6778 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6779 for (unsigned I = 0; I != Record.size(); I += 2) 6780 CfiFunctionDecls.insert( 6781 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6782 break; 6783 } 6784 6785 case bitc::FS_TYPE_ID: 6786 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6787 break; 6788 6789 case bitc::FS_TYPE_ID_METADATA: 6790 parseTypeIdCompatibleVtableSummaryRecord(Record); 6791 break; 6792 6793 case bitc::FS_BLOCK_COUNT: 6794 TheIndex.addBlockCount(Record[0]); 6795 break; 6796 6797 case bitc::FS_PARAM_ACCESS: { 6798 PendingParamAccesses = parseParamAccesses(Record); 6799 break; 6800 } 6801 } 6802 } 6803 llvm_unreachable("Exit infinite loop"); 6804 } 6805 6806 // Parse the module string table block into the Index. 6807 // This populates the ModulePathStringTable map in the index. 6808 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6809 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6810 return Err; 6811 6812 SmallVector<uint64_t, 64> Record; 6813 6814 SmallString<128> ModulePath; 6815 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6816 6817 while (true) { 6818 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6819 if (!MaybeEntry) 6820 return MaybeEntry.takeError(); 6821 BitstreamEntry Entry = MaybeEntry.get(); 6822 6823 switch (Entry.Kind) { 6824 case BitstreamEntry::SubBlock: // Handled for us already. 6825 case BitstreamEntry::Error: 6826 return error("Malformed block"); 6827 case BitstreamEntry::EndBlock: 6828 return Error::success(); 6829 case BitstreamEntry::Record: 6830 // The interesting case. 6831 break; 6832 } 6833 6834 Record.clear(); 6835 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6836 if (!MaybeRecord) 6837 return MaybeRecord.takeError(); 6838 switch (MaybeRecord.get()) { 6839 default: // Default behavior: ignore. 6840 break; 6841 case bitc::MST_CODE_ENTRY: { 6842 // MST_ENTRY: [modid, namechar x N] 6843 uint64_t ModuleId = Record[0]; 6844 6845 if (convertToString(Record, 1, ModulePath)) 6846 return error("Invalid record"); 6847 6848 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6849 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6850 6851 ModulePath.clear(); 6852 break; 6853 } 6854 /// MST_CODE_HASH: [5*i32] 6855 case bitc::MST_CODE_HASH: { 6856 if (Record.size() != 5) 6857 return error("Invalid hash length " + Twine(Record.size()).str()); 6858 if (!LastSeenModule) 6859 return error("Invalid hash that does not follow a module path"); 6860 int Pos = 0; 6861 for (auto &Val : Record) { 6862 assert(!(Val >> 32) && "Unexpected high bits set"); 6863 LastSeenModule->second.second[Pos++] = Val; 6864 } 6865 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6866 LastSeenModule = nullptr; 6867 break; 6868 } 6869 } 6870 } 6871 llvm_unreachable("Exit infinite loop"); 6872 } 6873 6874 namespace { 6875 6876 // FIXME: This class is only here to support the transition to llvm::Error. It 6877 // will be removed once this transition is complete. Clients should prefer to 6878 // deal with the Error value directly, rather than converting to error_code. 6879 class BitcodeErrorCategoryType : public std::error_category { 6880 const char *name() const noexcept override { 6881 return "llvm.bitcode"; 6882 } 6883 6884 std::string message(int IE) const override { 6885 BitcodeError E = static_cast<BitcodeError>(IE); 6886 switch (E) { 6887 case BitcodeError::CorruptedBitcode: 6888 return "Corrupted bitcode"; 6889 } 6890 llvm_unreachable("Unknown error type!"); 6891 } 6892 }; 6893 6894 } // end anonymous namespace 6895 6896 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6897 6898 const std::error_category &llvm::BitcodeErrorCategory() { 6899 return *ErrorCategory; 6900 } 6901 6902 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6903 unsigned Block, unsigned RecordID) { 6904 if (Error Err = Stream.EnterSubBlock(Block)) 6905 return std::move(Err); 6906 6907 StringRef Strtab; 6908 while (true) { 6909 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6910 if (!MaybeEntry) 6911 return MaybeEntry.takeError(); 6912 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6913 6914 switch (Entry.Kind) { 6915 case BitstreamEntry::EndBlock: 6916 return Strtab; 6917 6918 case BitstreamEntry::Error: 6919 return error("Malformed block"); 6920 6921 case BitstreamEntry::SubBlock: 6922 if (Error Err = Stream.SkipBlock()) 6923 return std::move(Err); 6924 break; 6925 6926 case BitstreamEntry::Record: 6927 StringRef Blob; 6928 SmallVector<uint64_t, 1> Record; 6929 Expected<unsigned> MaybeRecord = 6930 Stream.readRecord(Entry.ID, Record, &Blob); 6931 if (!MaybeRecord) 6932 return MaybeRecord.takeError(); 6933 if (MaybeRecord.get() == RecordID) 6934 Strtab = Blob; 6935 break; 6936 } 6937 } 6938 } 6939 6940 //===----------------------------------------------------------------------===// 6941 // External interface 6942 //===----------------------------------------------------------------------===// 6943 6944 Expected<std::vector<BitcodeModule>> 6945 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6946 auto FOrErr = getBitcodeFileContents(Buffer); 6947 if (!FOrErr) 6948 return FOrErr.takeError(); 6949 return std::move(FOrErr->Mods); 6950 } 6951 6952 Expected<BitcodeFileContents> 6953 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6954 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6955 if (!StreamOrErr) 6956 return StreamOrErr.takeError(); 6957 BitstreamCursor &Stream = *StreamOrErr; 6958 6959 BitcodeFileContents F; 6960 while (true) { 6961 uint64_t BCBegin = Stream.getCurrentByteNo(); 6962 6963 // We may be consuming bitcode from a client that leaves garbage at the end 6964 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6965 // the end that there cannot possibly be another module, stop looking. 6966 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6967 return F; 6968 6969 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6970 if (!MaybeEntry) 6971 return MaybeEntry.takeError(); 6972 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6973 6974 switch (Entry.Kind) { 6975 case BitstreamEntry::EndBlock: 6976 case BitstreamEntry::Error: 6977 return error("Malformed block"); 6978 6979 case BitstreamEntry::SubBlock: { 6980 uint64_t IdentificationBit = -1ull; 6981 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6982 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6983 if (Error Err = Stream.SkipBlock()) 6984 return std::move(Err); 6985 6986 { 6987 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6988 if (!MaybeEntry) 6989 return MaybeEntry.takeError(); 6990 Entry = MaybeEntry.get(); 6991 } 6992 6993 if (Entry.Kind != BitstreamEntry::SubBlock || 6994 Entry.ID != bitc::MODULE_BLOCK_ID) 6995 return error("Malformed block"); 6996 } 6997 6998 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6999 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7000 if (Error Err = Stream.SkipBlock()) 7001 return std::move(Err); 7002 7003 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7004 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7005 Buffer.getBufferIdentifier(), IdentificationBit, 7006 ModuleBit}); 7007 continue; 7008 } 7009 7010 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7011 Expected<StringRef> Strtab = 7012 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7013 if (!Strtab) 7014 return Strtab.takeError(); 7015 // This string table is used by every preceding bitcode module that does 7016 // not have its own string table. A bitcode file may have multiple 7017 // string tables if it was created by binary concatenation, for example 7018 // with "llvm-cat -b". 7019 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7020 if (!I.Strtab.empty()) 7021 break; 7022 I.Strtab = *Strtab; 7023 } 7024 // Similarly, the string table is used by every preceding symbol table; 7025 // normally there will be just one unless the bitcode file was created 7026 // by binary concatenation. 7027 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7028 F.StrtabForSymtab = *Strtab; 7029 continue; 7030 } 7031 7032 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7033 Expected<StringRef> SymtabOrErr = 7034 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7035 if (!SymtabOrErr) 7036 return SymtabOrErr.takeError(); 7037 7038 // We can expect the bitcode file to have multiple symbol tables if it 7039 // was created by binary concatenation. In that case we silently 7040 // ignore any subsequent symbol tables, which is fine because this is a 7041 // low level function. The client is expected to notice that the number 7042 // of modules in the symbol table does not match the number of modules 7043 // in the input file and regenerate the symbol table. 7044 if (F.Symtab.empty()) 7045 F.Symtab = *SymtabOrErr; 7046 continue; 7047 } 7048 7049 if (Error Err = Stream.SkipBlock()) 7050 return std::move(Err); 7051 continue; 7052 } 7053 case BitstreamEntry::Record: 7054 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7055 return std::move(E); 7056 continue; 7057 } 7058 } 7059 } 7060 7061 /// Get a lazy one-at-time loading module from bitcode. 7062 /// 7063 /// This isn't always used in a lazy context. In particular, it's also used by 7064 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7065 /// in forward-referenced functions from block address references. 7066 /// 7067 /// \param[in] MaterializeAll Set to \c true if we should materialize 7068 /// everything. 7069 Expected<std::unique_ptr<Module>> 7070 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7071 bool ShouldLazyLoadMetadata, bool IsImporting, 7072 DataLayoutCallbackTy DataLayoutCallback) { 7073 BitstreamCursor Stream(Buffer); 7074 7075 std::string ProducerIdentification; 7076 if (IdentificationBit != -1ull) { 7077 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7078 return std::move(JumpFailed); 7079 if (Error E = 7080 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7081 return std::move(E); 7082 } 7083 7084 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7085 return std::move(JumpFailed); 7086 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7087 Context); 7088 7089 std::unique_ptr<Module> M = 7090 std::make_unique<Module>(ModuleIdentifier, Context); 7091 M->setMaterializer(R); 7092 7093 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7094 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7095 IsImporting, DataLayoutCallback)) 7096 return std::move(Err); 7097 7098 if (MaterializeAll) { 7099 // Read in the entire module, and destroy the BitcodeReader. 7100 if (Error Err = M->materializeAll()) 7101 return std::move(Err); 7102 } else { 7103 // Resolve forward references from blockaddresses. 7104 if (Error Err = R->materializeForwardReferencedFunctions()) 7105 return std::move(Err); 7106 } 7107 return std::move(M); 7108 } 7109 7110 Expected<std::unique_ptr<Module>> 7111 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7112 bool IsImporting) { 7113 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7114 [](StringRef) { return None; }); 7115 } 7116 7117 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7118 // We don't use ModuleIdentifier here because the client may need to control the 7119 // module path used in the combined summary (e.g. when reading summaries for 7120 // regular LTO modules). 7121 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7122 StringRef ModulePath, uint64_t ModuleId) { 7123 BitstreamCursor Stream(Buffer); 7124 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7125 return JumpFailed; 7126 7127 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7128 ModulePath, ModuleId); 7129 return R.parseModule(); 7130 } 7131 7132 // Parse the specified bitcode buffer, returning the function info index. 7133 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7134 BitstreamCursor Stream(Buffer); 7135 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7136 return std::move(JumpFailed); 7137 7138 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7139 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7140 ModuleIdentifier, 0); 7141 7142 if (Error Err = R.parseModule()) 7143 return std::move(Err); 7144 7145 return std::move(Index); 7146 } 7147 7148 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7149 unsigned ID) { 7150 if (Error Err = Stream.EnterSubBlock(ID)) 7151 return std::move(Err); 7152 SmallVector<uint64_t, 64> Record; 7153 7154 while (true) { 7155 BitstreamEntry Entry; 7156 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7157 return std::move(E); 7158 7159 switch (Entry.Kind) { 7160 case BitstreamEntry::SubBlock: // Handled for us already. 7161 case BitstreamEntry::Error: 7162 return error("Malformed block"); 7163 case BitstreamEntry::EndBlock: 7164 // If no flags record found, conservatively return true to mimic 7165 // behavior before this flag was added. 7166 return true; 7167 case BitstreamEntry::Record: 7168 // The interesting case. 7169 break; 7170 } 7171 7172 // Look for the FS_FLAGS record. 7173 Record.clear(); 7174 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7175 if (!MaybeBitCode) 7176 return MaybeBitCode.takeError(); 7177 switch (MaybeBitCode.get()) { 7178 default: // Default behavior: ignore. 7179 break; 7180 case bitc::FS_FLAGS: { // [flags] 7181 uint64_t Flags = Record[0]; 7182 // Scan flags. 7183 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7184 7185 return Flags & 0x8; 7186 } 7187 } 7188 } 7189 llvm_unreachable("Exit infinite loop"); 7190 } 7191 7192 // Check if the given bitcode buffer contains a global value summary block. 7193 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7194 BitstreamCursor Stream(Buffer); 7195 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7196 return std::move(JumpFailed); 7197 7198 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7199 return std::move(Err); 7200 7201 while (true) { 7202 llvm::BitstreamEntry Entry; 7203 if (Error E = Stream.advance().moveInto(Entry)) 7204 return std::move(E); 7205 7206 switch (Entry.Kind) { 7207 case BitstreamEntry::Error: 7208 return error("Malformed block"); 7209 case BitstreamEntry::EndBlock: 7210 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7211 /*EnableSplitLTOUnit=*/false}; 7212 7213 case BitstreamEntry::SubBlock: 7214 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7215 Expected<bool> EnableSplitLTOUnit = 7216 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7217 if (!EnableSplitLTOUnit) 7218 return EnableSplitLTOUnit.takeError(); 7219 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7220 *EnableSplitLTOUnit}; 7221 } 7222 7223 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7224 Expected<bool> EnableSplitLTOUnit = 7225 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7226 if (!EnableSplitLTOUnit) 7227 return EnableSplitLTOUnit.takeError(); 7228 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7229 *EnableSplitLTOUnit}; 7230 } 7231 7232 // Ignore other sub-blocks. 7233 if (Error Err = Stream.SkipBlock()) 7234 return std::move(Err); 7235 continue; 7236 7237 case BitstreamEntry::Record: 7238 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7239 continue; 7240 else 7241 return StreamFailed.takeError(); 7242 } 7243 } 7244 } 7245 7246 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7247 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7248 if (!MsOrErr) 7249 return MsOrErr.takeError(); 7250 7251 if (MsOrErr->size() != 1) 7252 return error("Expected a single module"); 7253 7254 return (*MsOrErr)[0]; 7255 } 7256 7257 Expected<std::unique_ptr<Module>> 7258 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7259 bool ShouldLazyLoadMetadata, bool IsImporting) { 7260 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7261 if (!BM) 7262 return BM.takeError(); 7263 7264 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7265 } 7266 7267 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7268 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7269 bool ShouldLazyLoadMetadata, bool IsImporting) { 7270 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7271 IsImporting); 7272 if (MOrErr) 7273 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7274 return MOrErr; 7275 } 7276 7277 Expected<std::unique_ptr<Module>> 7278 BitcodeModule::parseModule(LLVMContext &Context, 7279 DataLayoutCallbackTy DataLayoutCallback) { 7280 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7281 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7282 // written. We must defer until the Module has been fully materialized. 7283 } 7284 7285 Expected<std::unique_ptr<Module>> 7286 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7287 DataLayoutCallbackTy DataLayoutCallback) { 7288 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7289 if (!BM) 7290 return BM.takeError(); 7291 7292 return BM->parseModule(Context, DataLayoutCallback); 7293 } 7294 7295 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7296 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7297 if (!StreamOrErr) 7298 return StreamOrErr.takeError(); 7299 7300 return readTriple(*StreamOrErr); 7301 } 7302 7303 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7304 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7305 if (!StreamOrErr) 7306 return StreamOrErr.takeError(); 7307 7308 return hasObjCCategory(*StreamOrErr); 7309 } 7310 7311 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7312 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7313 if (!StreamOrErr) 7314 return StreamOrErr.takeError(); 7315 7316 return readIdentificationCode(*StreamOrErr); 7317 } 7318 7319 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7320 ModuleSummaryIndex &CombinedIndex, 7321 uint64_t ModuleId) { 7322 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7323 if (!BM) 7324 return BM.takeError(); 7325 7326 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7327 } 7328 7329 Expected<std::unique_ptr<ModuleSummaryIndex>> 7330 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7331 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7332 if (!BM) 7333 return BM.takeError(); 7334 7335 return BM->getSummary(); 7336 } 7337 7338 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7339 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7340 if (!BM) 7341 return BM.takeError(); 7342 7343 return BM->getLTOInfo(); 7344 } 7345 7346 Expected<std::unique_ptr<ModuleSummaryIndex>> 7347 llvm::getModuleSummaryIndexForFile(StringRef Path, 7348 bool IgnoreEmptyThinLTOIndexFile) { 7349 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7350 MemoryBuffer::getFileOrSTDIN(Path); 7351 if (!FileOrErr) 7352 return errorCodeToError(FileOrErr.getError()); 7353 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7354 return nullptr; 7355 return getModuleSummaryIndex(**FileOrErr); 7356 } 7357