xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 1767723dbe26e7149232d5a3a34f3be543ba5bb6)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //  Helper functions to implement forward reference resolution, etc.
46 //===----------------------------------------------------------------------===//
47 
48 /// ConvertToString - Convert a string from a record into an std::string, return
49 /// true on failure.
50 template<typename StrTy>
51 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                             StrTy &Result) {
53   if (Idx > Record.size())
54     return true;
55 
56   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57     Result += (char)Record[i];
58   return false;
59 }
60 
61 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62   switch (Val) {
63   default: // Map unknown/new linkages to external
64   case 0:  return GlobalValue::ExternalLinkage;
65   case 1:  return GlobalValue::WeakAnyLinkage;
66   case 2:  return GlobalValue::AppendingLinkage;
67   case 3:  return GlobalValue::InternalLinkage;
68   case 4:  return GlobalValue::LinkOnceAnyLinkage;
69   case 5:  return GlobalValue::DLLImportLinkage;
70   case 6:  return GlobalValue::DLLExportLinkage;
71   case 7:  return GlobalValue::ExternalWeakLinkage;
72   case 8:  return GlobalValue::CommonLinkage;
73   case 9:  return GlobalValue::PrivateLinkage;
74   case 10: return GlobalValue::WeakODRLinkage;
75   case 11: return GlobalValue::LinkOnceODRLinkage;
76   case 12: return GlobalValue::AvailableExternallyLinkage;
77   case 13: return GlobalValue::LinkerPrivateLinkage;
78   case 14: return GlobalValue::LinkerWeakLinkage;
79   }
80 }
81 
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83   switch (Val) {
84   default: // Map unknown visibilities to default.
85   case 0: return GlobalValue::DefaultVisibility;
86   case 1: return GlobalValue::HiddenVisibility;
87   case 2: return GlobalValue::ProtectedVisibility;
88   }
89 }
90 
91 static int GetDecodedCastOpcode(unsigned Val) {
92   switch (Val) {
93   default: return -1;
94   case bitc::CAST_TRUNC   : return Instruction::Trunc;
95   case bitc::CAST_ZEXT    : return Instruction::ZExt;
96   case bitc::CAST_SEXT    : return Instruction::SExt;
97   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102   case bitc::CAST_FPEXT   : return Instruction::FPExt;
103   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105   case bitc::CAST_BITCAST : return Instruction::BitCast;
106   }
107 }
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109   switch (Val) {
110   default: return -1;
111   case bitc::BINOP_ADD:
112     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
113   case bitc::BINOP_SUB:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
115   case bitc::BINOP_MUL:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
117   case bitc::BINOP_UDIV: return Instruction::UDiv;
118   case bitc::BINOP_SDIV:
119     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
120   case bitc::BINOP_UREM: return Instruction::URem;
121   case bitc::BINOP_SREM:
122     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
123   case bitc::BINOP_SHL:  return Instruction::Shl;
124   case bitc::BINOP_LSHR: return Instruction::LShr;
125   case bitc::BINOP_ASHR: return Instruction::AShr;
126   case bitc::BINOP_AND:  return Instruction::And;
127   case bitc::BINOP_OR:   return Instruction::Or;
128   case bitc::BINOP_XOR:  return Instruction::Xor;
129   }
130 }
131 
132 namespace llvm {
133 namespace {
134   /// @brief A class for maintaining the slot number definition
135   /// as a placeholder for the actual definition for forward constants defs.
136   class ConstantPlaceHolder : public ConstantExpr {
137     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139   public:
140     // allocate space for exactly one operand
141     void *operator new(size_t s) {
142       return User::operator new(s, 1);
143     }
144     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147     }
148 
149     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150     static inline bool classof(const ConstantPlaceHolder *) { return true; }
151     static bool classof(const Value *V) {
152       return isa<ConstantExpr>(V) &&
153              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154     }
155 
156 
157     /// Provide fast operand accessors
158     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159   };
160 }
161 
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165 };
166 }
167 
168 
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170   if (Idx == size()) {
171     push_back(V);
172     return;
173   }
174 
175   if (Idx >= size())
176     resize(Idx+1);
177 
178   WeakVH &OldV = ValuePtrs[Idx];
179   if (OldV == 0) {
180     OldV = V;
181     return;
182   }
183 
184   // Handle constants and non-constants (e.g. instrs) differently for
185   // efficiency.
186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
188     OldV = V;
189   } else {
190     // If there was a forward reference to this value, replace it.
191     Value *PrevVal = OldV;
192     OldV->replaceAllUsesWith(V);
193     delete PrevVal;
194   }
195 }
196 
197 
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                     const Type *Ty) {
200   if (Idx >= size())
201     resize(Idx + 1);
202 
203   if (Value *V = ValuePtrs[Idx]) {
204     assert(Ty == V->getType() && "Type mismatch in constant table!");
205     return cast<Constant>(V);
206   }
207 
208   // Create and return a placeholder, which will later be RAUW'd.
209   Constant *C = new ConstantPlaceHolder(Ty, Context);
210   ValuePtrs[Idx] = C;
211   return C;
212 }
213 
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215   if (Idx >= size())
216     resize(Idx + 1);
217 
218   if (Value *V = ValuePtrs[Idx]) {
219     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220     return V;
221   }
222 
223   // No type specified, must be invalid reference.
224   if (Ty == 0) return 0;
225 
226   // Create and return a placeholder, which will later be RAUW'd.
227   Value *V = new Argument(Ty);
228   ValuePtrs[Idx] = V;
229   return V;
230 }
231 
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references.  The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants.  Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant.  Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240   // Sort the values by-pointer so that they are efficient to look up with a
241   // binary search.
242   std::sort(ResolveConstants.begin(), ResolveConstants.end());
243 
244   SmallVector<Constant*, 64> NewOps;
245 
246   while (!ResolveConstants.empty()) {
247     Value *RealVal = operator[](ResolveConstants.back().second);
248     Constant *Placeholder = ResolveConstants.back().first;
249     ResolveConstants.pop_back();
250 
251     // Loop over all users of the placeholder, updating them to reference the
252     // new value.  If they reference more than one placeholder, update them all
253     // at once.
254     while (!Placeholder->use_empty()) {
255       Value::use_iterator UI = Placeholder->use_begin();
256 
257       // If the using object isn't uniqued, just update the operands.  This
258       // handles instructions and initializers for global variables.
259       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260         UI.getUse().set(RealVal);
261         continue;
262       }
263 
264       // Otherwise, we have a constant that uses the placeholder.  Replace that
265       // constant with a new constant that has *all* placeholder uses updated.
266       Constant *UserC = cast<Constant>(*UI);
267       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268            I != E; ++I) {
269         Value *NewOp;
270         if (!isa<ConstantPlaceHolder>(*I)) {
271           // Not a placeholder reference.
272           NewOp = *I;
273         } else if (*I == Placeholder) {
274           // Common case is that it just references this one placeholder.
275           NewOp = RealVal;
276         } else {
277           // Otherwise, look up the placeholder in ResolveConstants.
278           ResolveConstantsTy::iterator It =
279             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                             0));
282           assert(It != ResolveConstants.end() && It->first == *I);
283           NewOp = operator[](It->second);
284         }
285 
286         NewOps.push_back(cast<Constant>(NewOp));
287       }
288 
289       // Make the new constant.
290       Constant *NewC;
291       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                         NewOps.size());
294       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                          UserCS->getType()->isPacked());
297       } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
298         NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
299       } else if (isa<ConstantVector>(UserC)) {
300         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
301       } else {
302         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
303         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
304                                                           NewOps.size());
305       }
306 
307       UserC->replaceAllUsesWith(NewC);
308       UserC->destroyConstant();
309       NewOps.clear();
310     }
311 
312     // Update all ValueHandles, they should be the only users at this point.
313     Placeholder->replaceAllUsesWith(RealVal);
314     delete Placeholder;
315   }
316 }
317 
318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319   if (Idx == size()) {
320     push_back(V);
321     return;
322   }
323 
324   if (Idx >= size())
325     resize(Idx+1);
326 
327   WeakVH &OldV = MDValuePtrs[Idx];
328   if (OldV == 0) {
329     OldV = V;
330     return;
331   }
332 
333   // If there was a forward reference to this value, replace it.
334   Value *PrevVal = OldV;
335   OldV->replaceAllUsesWith(V);
336   delete PrevVal;
337   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338   // value for Idx.
339   MDValuePtrs[Idx] = V;
340 }
341 
342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343   if (Idx >= size())
344     resize(Idx + 1);
345 
346   if (Value *V = MDValuePtrs[Idx]) {
347     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348     return V;
349   }
350 
351   // Create and return a placeholder, which will later be RAUW'd.
352   Value *V = new Argument(Type::getMetadataTy(Context));
353   MDValuePtrs[Idx] = V;
354   return V;
355 }
356 
357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358   // If the TypeID is in range, return it.
359   if (ID < TypeList.size())
360     return TypeList[ID].get();
361   if (!isTypeTable) return 0;
362 
363   // The type table allows forward references.  Push as many Opaque types as
364   // needed to get up to ID.
365   while (TypeList.size() <= ID)
366     TypeList.push_back(OpaqueType::get(Context));
367   return TypeList.back().get();
368 }
369 
370 //===----------------------------------------------------------------------===//
371 //  Functions for parsing blocks from the bitcode file
372 //===----------------------------------------------------------------------===//
373 
374 bool BitcodeReader::ParseAttributeBlock() {
375   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376     return Error("Malformed block record");
377 
378   if (!MAttributes.empty())
379     return Error("Multiple PARAMATTR blocks found!");
380 
381   SmallVector<uint64_t, 64> Record;
382 
383   SmallVector<AttributeWithIndex, 8> Attrs;
384 
385   // Read all the records.
386   while (1) {
387     unsigned Code = Stream.ReadCode();
388     if (Code == bitc::END_BLOCK) {
389       if (Stream.ReadBlockEnd())
390         return Error("Error at end of PARAMATTR block");
391       return false;
392     }
393 
394     if (Code == bitc::ENTER_SUBBLOCK) {
395       // No known subblocks, always skip them.
396       Stream.ReadSubBlockID();
397       if (Stream.SkipBlock())
398         return Error("Malformed block record");
399       continue;
400     }
401 
402     if (Code == bitc::DEFINE_ABBREV) {
403       Stream.ReadAbbrevRecord();
404       continue;
405     }
406 
407     // Read a record.
408     Record.clear();
409     switch (Stream.ReadRecord(Code, Record)) {
410     default:  // Default behavior: ignore.
411       break;
412     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413       if (Record.size() & 1)
414         return Error("Invalid ENTRY record");
415 
416       // FIXME : Remove this autoupgrade code in LLVM 3.0.
417       // If Function attributes are using index 0 then transfer them
418       // to index ~0. Index 0 is used for return value attributes but used to be
419       // used for function attributes.
420       Attributes RetAttribute = Attribute::None;
421       Attributes FnAttribute = Attribute::None;
422       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423         // FIXME: remove in LLVM 3.0
424         // The alignment is stored as a 16-bit raw value from bits 31--16.
425         // We shift the bits above 31 down by 11 bits.
426 
427         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428         if (Alignment && !isPowerOf2_32(Alignment))
429           return Error("Alignment is not a power of two.");
430 
431         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432         if (Alignment)
433           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435         Record[i+1] = ReconstitutedAttr;
436 
437         if (Record[i] == 0)
438           RetAttribute = Record[i+1];
439         else if (Record[i] == ~0U)
440           FnAttribute = Record[i+1];
441       }
442 
443       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                               Attribute::ReadOnly|Attribute::ReadNone);
445 
446       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447           (RetAttribute & OldRetAttrs) != 0) {
448         if (FnAttribute == Attribute::None) { // add a slot so they get added.
449           Record.push_back(~0U);
450           Record.push_back(0);
451         }
452 
453         FnAttribute  |= RetAttribute & OldRetAttrs;
454         RetAttribute &= ~OldRetAttrs;
455       }
456 
457       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458         if (Record[i] == 0) {
459           if (RetAttribute != Attribute::None)
460             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461         } else if (Record[i] == ~0U) {
462           if (FnAttribute != Attribute::None)
463             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464         } else if (Record[i+1] != Attribute::None)
465           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466       }
467 
468       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469       Attrs.clear();
470       break;
471     }
472     }
473   }
474 }
475 
476 
477 bool BitcodeReader::ParseTypeTable() {
478   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479     return Error("Malformed block record");
480 
481   if (!TypeList.empty())
482     return Error("Multiple TYPE_BLOCKs found!");
483 
484   SmallVector<uint64_t, 64> Record;
485   unsigned NumRecords = 0;
486 
487   // Read all the records for this type table.
488   while (1) {
489     unsigned Code = Stream.ReadCode();
490     if (Code == bitc::END_BLOCK) {
491       if (NumRecords != TypeList.size())
492         return Error("Invalid type forward reference in TYPE_BLOCK");
493       if (Stream.ReadBlockEnd())
494         return Error("Error at end of type table block");
495       return false;
496     }
497 
498     if (Code == bitc::ENTER_SUBBLOCK) {
499       // No known subblocks, always skip them.
500       Stream.ReadSubBlockID();
501       if (Stream.SkipBlock())
502         return Error("Malformed block record");
503       continue;
504     }
505 
506     if (Code == bitc::DEFINE_ABBREV) {
507       Stream.ReadAbbrevRecord();
508       continue;
509     }
510 
511     // Read a record.
512     Record.clear();
513     const Type *ResultTy = 0;
514     switch (Stream.ReadRecord(Code, Record)) {
515     default:  // Default behavior: unknown type.
516       ResultTy = 0;
517       break;
518     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520       // type list.  This allows us to reserve space.
521       if (Record.size() < 1)
522         return Error("Invalid TYPE_CODE_NUMENTRY record");
523       TypeList.reserve(Record[0]);
524       continue;
525     case bitc::TYPE_CODE_VOID:      // VOID
526       ResultTy = Type::getVoidTy(Context);
527       break;
528     case bitc::TYPE_CODE_FLOAT:     // FLOAT
529       ResultTy = Type::getFloatTy(Context);
530       break;
531     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532       ResultTy = Type::getDoubleTy(Context);
533       break;
534     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535       ResultTy = Type::getX86_FP80Ty(Context);
536       break;
537     case bitc::TYPE_CODE_FP128:     // FP128
538       ResultTy = Type::getFP128Ty(Context);
539       break;
540     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541       ResultTy = Type::getPPC_FP128Ty(Context);
542       break;
543     case bitc::TYPE_CODE_LABEL:     // LABEL
544       ResultTy = Type::getLabelTy(Context);
545       break;
546     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547       ResultTy = 0;
548       break;
549     case bitc::TYPE_CODE_METADATA:  // METADATA
550       ResultTy = Type::getMetadataTy(Context);
551       break;
552     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
553       if (Record.size() < 1)
554         return Error("Invalid Integer type record");
555 
556       ResultTy = IntegerType::get(Context, Record[0]);
557       break;
558     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
559                                     //          [pointee type, address space]
560       if (Record.size() < 1)
561         return Error("Invalid POINTER type record");
562       unsigned AddressSpace = 0;
563       if (Record.size() == 2)
564         AddressSpace = Record[1];
565       ResultTy = PointerType::get(getTypeByID(Record[0], true),
566                                         AddressSpace);
567       break;
568     }
569     case bitc::TYPE_CODE_FUNCTION: {
570       // FIXME: attrid is dead, remove it in LLVM 3.0
571       // FUNCTION: [vararg, attrid, retty, paramty x N]
572       if (Record.size() < 3)
573         return Error("Invalid FUNCTION type record");
574       std::vector<const Type*> ArgTys;
575       for (unsigned i = 3, e = Record.size(); i != e; ++i)
576         ArgTys.push_back(getTypeByID(Record[i], true));
577 
578       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
579                                    Record[0]);
580       break;
581     }
582     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
583       if (Record.size() < 1)
584         return Error("Invalid STRUCT type record");
585       std::vector<const Type*> EltTys;
586       for (unsigned i = 1, e = Record.size(); i != e; ++i)
587         EltTys.push_back(getTypeByID(Record[i], true));
588       ResultTy = StructType::get(Context, EltTys, Record[0]);
589       break;
590     }
591     case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
592       SmallVector<const Type*, 8> EltTys;
593       for (unsigned i = 0, e = Record.size(); i != e; ++i)
594         EltTys.push_back(getTypeByID(Record[i], true));
595       ResultTy = UnionType::get(&EltTys[0], EltTys.size());
596       break;
597     }
598     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
599       if (Record.size() < 2)
600         return Error("Invalid ARRAY type record");
601       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
602       break;
603     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
604       if (Record.size() < 2)
605         return Error("Invalid VECTOR type record");
606       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
607       break;
608     }
609 
610     if (NumRecords == TypeList.size()) {
611       // If this is a new type slot, just append it.
612       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
613       ++NumRecords;
614     } else if (ResultTy == 0) {
615       // Otherwise, this was forward referenced, so an opaque type was created,
616       // but the result type is actually just an opaque.  Leave the one we
617       // created previously.
618       ++NumRecords;
619     } else {
620       // Otherwise, this was forward referenced, so an opaque type was created.
621       // Resolve the opaque type to the real type now.
622       assert(NumRecords < TypeList.size() && "Typelist imbalance");
623       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
624 
625       // Don't directly push the new type on the Tab. Instead we want to replace
626       // the opaque type we previously inserted with the new concrete value. The
627       // refinement from the abstract (opaque) type to the new type causes all
628       // uses of the abstract type to use the concrete type (NewTy). This will
629       // also cause the opaque type to be deleted.
630       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
631 
632       // This should have replaced the old opaque type with the new type in the
633       // value table... or with a preexisting type that was already in the
634       // system.  Let's just make sure it did.
635       assert(TypeList[NumRecords-1].get() != OldTy &&
636              "refineAbstractType didn't work!");
637     }
638   }
639 }
640 
641 
642 bool BitcodeReader::ParseTypeSymbolTable() {
643   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
644     return Error("Malformed block record");
645 
646   SmallVector<uint64_t, 64> Record;
647 
648   // Read all the records for this type table.
649   std::string TypeName;
650   while (1) {
651     unsigned Code = Stream.ReadCode();
652     if (Code == bitc::END_BLOCK) {
653       if (Stream.ReadBlockEnd())
654         return Error("Error at end of type symbol table block");
655       return false;
656     }
657 
658     if (Code == bitc::ENTER_SUBBLOCK) {
659       // No known subblocks, always skip them.
660       Stream.ReadSubBlockID();
661       if (Stream.SkipBlock())
662         return Error("Malformed block record");
663       continue;
664     }
665 
666     if (Code == bitc::DEFINE_ABBREV) {
667       Stream.ReadAbbrevRecord();
668       continue;
669     }
670 
671     // Read a record.
672     Record.clear();
673     switch (Stream.ReadRecord(Code, Record)) {
674     default:  // Default behavior: unknown type.
675       break;
676     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
677       if (ConvertToString(Record, 1, TypeName))
678         return Error("Invalid TST_ENTRY record");
679       unsigned TypeID = Record[0];
680       if (TypeID >= TypeList.size())
681         return Error("Invalid Type ID in TST_ENTRY record");
682 
683       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
684       TypeName.clear();
685       break;
686     }
687   }
688 }
689 
690 bool BitcodeReader::ParseValueSymbolTable() {
691   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
692     return Error("Malformed block record");
693 
694   SmallVector<uint64_t, 64> Record;
695 
696   // Read all the records for this value table.
697   SmallString<128> ValueName;
698   while (1) {
699     unsigned Code = Stream.ReadCode();
700     if (Code == bitc::END_BLOCK) {
701       if (Stream.ReadBlockEnd())
702         return Error("Error at end of value symbol table block");
703       return false;
704     }
705     if (Code == bitc::ENTER_SUBBLOCK) {
706       // No known subblocks, always skip them.
707       Stream.ReadSubBlockID();
708       if (Stream.SkipBlock())
709         return Error("Malformed block record");
710       continue;
711     }
712 
713     if (Code == bitc::DEFINE_ABBREV) {
714       Stream.ReadAbbrevRecord();
715       continue;
716     }
717 
718     // Read a record.
719     Record.clear();
720     switch (Stream.ReadRecord(Code, Record)) {
721     default:  // Default behavior: unknown type.
722       break;
723     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
724       if (ConvertToString(Record, 1, ValueName))
725         return Error("Invalid VST_ENTRY record");
726       unsigned ValueID = Record[0];
727       if (ValueID >= ValueList.size())
728         return Error("Invalid Value ID in VST_ENTRY record");
729       Value *V = ValueList[ValueID];
730 
731       V->setName(StringRef(ValueName.data(), ValueName.size()));
732       ValueName.clear();
733       break;
734     }
735     case bitc::VST_CODE_BBENTRY: {
736       if (ConvertToString(Record, 1, ValueName))
737         return Error("Invalid VST_BBENTRY record");
738       BasicBlock *BB = getBasicBlock(Record[0]);
739       if (BB == 0)
740         return Error("Invalid BB ID in VST_BBENTRY record");
741 
742       BB->setName(StringRef(ValueName.data(), ValueName.size()));
743       ValueName.clear();
744       break;
745     }
746     }
747   }
748 }
749 
750 bool BitcodeReader::ParseMetadata() {
751   unsigned NextMDValueNo = MDValueList.size();
752 
753   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
754     return Error("Malformed block record");
755 
756   SmallVector<uint64_t, 64> Record;
757 
758   // Read all the records.
759   while (1) {
760     unsigned Code = Stream.ReadCode();
761     if (Code == bitc::END_BLOCK) {
762       if (Stream.ReadBlockEnd())
763         return Error("Error at end of PARAMATTR block");
764       return false;
765     }
766 
767     if (Code == bitc::ENTER_SUBBLOCK) {
768       // No known subblocks, always skip them.
769       Stream.ReadSubBlockID();
770       if (Stream.SkipBlock())
771         return Error("Malformed block record");
772       continue;
773     }
774 
775     if (Code == bitc::DEFINE_ABBREV) {
776       Stream.ReadAbbrevRecord();
777       continue;
778     }
779 
780     bool IsFunctionLocal = false;
781     // Read a record.
782     Record.clear();
783     switch (Stream.ReadRecord(Code, Record)) {
784     default:  // Default behavior: ignore.
785       break;
786     case bitc::METADATA_NAME: {
787       // Read named of the named metadata.
788       unsigned NameLength = Record.size();
789       SmallString<8> Name;
790       Name.resize(NameLength);
791       for (unsigned i = 0; i != NameLength; ++i)
792         Name[i] = Record[i];
793       Record.clear();
794       Code = Stream.ReadCode();
795 
796       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
797       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
798         assert ( 0 && "Inavlid Named Metadata record");
799 
800       // Read named metadata elements.
801       unsigned Size = Record.size();
802       SmallVector<MDNode *, 8> Elts;
803       for (unsigned i = 0; i != Size; ++i) {
804         if (Record[i] == ~0U) {
805           Elts.push_back(NULL);
806           continue;
807         }
808         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
809         if (MD == 0)
810           return Error("Malformed metadata record");
811         Elts.push_back(MD);
812       }
813       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
814                                      Elts.size(), TheModule);
815       MDValueList.AssignValue(V, NextMDValueNo++);
816       break;
817     }
818     case bitc::METADATA_FN_NODE:
819       IsFunctionLocal = true;
820       // fall-through
821     case bitc::METADATA_NODE: {
822       if (Record.empty() || Record.size() % 2 == 1)
823         return Error("Invalid METADATA_NODE record");
824 
825       unsigned Size = Record.size();
826       SmallVector<Value*, 8> Elts;
827       for (unsigned i = 0; i != Size; i += 2) {
828         const Type *Ty = getTypeByID(Record[i], false);
829         if (Ty->isMetadataTy())
830           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
831         else if (!Ty->isVoidTy())
832           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
833         else
834           Elts.push_back(NULL);
835       }
836       Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
837                                                IsFunctionLocal);
838       IsFunctionLocal = false;
839       MDValueList.AssignValue(V, NextMDValueNo++);
840       break;
841     }
842     case bitc::METADATA_STRING: {
843       unsigned MDStringLength = Record.size();
844       SmallString<8> String;
845       String.resize(MDStringLength);
846       for (unsigned i = 0; i != MDStringLength; ++i)
847         String[i] = Record[i];
848       Value *V = MDString::get(Context,
849                                StringRef(String.data(), String.size()));
850       MDValueList.AssignValue(V, NextMDValueNo++);
851       break;
852     }
853     case bitc::METADATA_KIND: {
854       unsigned RecordLength = Record.size();
855       if (Record.empty() || RecordLength < 2)
856         return Error("Invalid METADATA_KIND record");
857       SmallString<8> Name;
858       Name.resize(RecordLength-1);
859       unsigned Kind = Record[0];
860       (void) Kind;
861       for (unsigned i = 1; i != RecordLength; ++i)
862         Name[i-1] = Record[i];
863 
864       unsigned NewKind = TheModule->getMDKindID(Name.str());
865       assert(Kind == NewKind &&
866              "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
867       break;
868     }
869     }
870   }
871 }
872 
873 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
874 /// the LSB for dense VBR encoding.
875 static uint64_t DecodeSignRotatedValue(uint64_t V) {
876   if ((V & 1) == 0)
877     return V >> 1;
878   if (V != 1)
879     return -(V >> 1);
880   // There is no such thing as -0 with integers.  "-0" really means MININT.
881   return 1ULL << 63;
882 }
883 
884 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
885 /// values and aliases that we can.
886 bool BitcodeReader::ResolveGlobalAndAliasInits() {
887   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
888   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
889 
890   GlobalInitWorklist.swap(GlobalInits);
891   AliasInitWorklist.swap(AliasInits);
892 
893   while (!GlobalInitWorklist.empty()) {
894     unsigned ValID = GlobalInitWorklist.back().second;
895     if (ValID >= ValueList.size()) {
896       // Not ready to resolve this yet, it requires something later in the file.
897       GlobalInits.push_back(GlobalInitWorklist.back());
898     } else {
899       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
900         GlobalInitWorklist.back().first->setInitializer(C);
901       else
902         return Error("Global variable initializer is not a constant!");
903     }
904     GlobalInitWorklist.pop_back();
905   }
906 
907   while (!AliasInitWorklist.empty()) {
908     unsigned ValID = AliasInitWorklist.back().second;
909     if (ValID >= ValueList.size()) {
910       AliasInits.push_back(AliasInitWorklist.back());
911     } else {
912       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
913         AliasInitWorklist.back().first->setAliasee(C);
914       else
915         return Error("Alias initializer is not a constant!");
916     }
917     AliasInitWorklist.pop_back();
918   }
919   return false;
920 }
921 
922 bool BitcodeReader::ParseConstants() {
923   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
924     return Error("Malformed block record");
925 
926   SmallVector<uint64_t, 64> Record;
927 
928   // Read all the records for this value table.
929   const Type *CurTy = Type::getInt32Ty(Context);
930   unsigned NextCstNo = ValueList.size();
931   while (1) {
932     unsigned Code = Stream.ReadCode();
933     if (Code == bitc::END_BLOCK)
934       break;
935 
936     if (Code == bitc::ENTER_SUBBLOCK) {
937       // No known subblocks, always skip them.
938       Stream.ReadSubBlockID();
939       if (Stream.SkipBlock())
940         return Error("Malformed block record");
941       continue;
942     }
943 
944     if (Code == bitc::DEFINE_ABBREV) {
945       Stream.ReadAbbrevRecord();
946       continue;
947     }
948 
949     // Read a record.
950     Record.clear();
951     Value *V = 0;
952     unsigned BitCode = Stream.ReadRecord(Code, Record);
953     switch (BitCode) {
954     default:  // Default behavior: unknown constant
955     case bitc::CST_CODE_UNDEF:     // UNDEF
956       V = UndefValue::get(CurTy);
957       break;
958     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
959       if (Record.empty())
960         return Error("Malformed CST_SETTYPE record");
961       if (Record[0] >= TypeList.size())
962         return Error("Invalid Type ID in CST_SETTYPE record");
963       CurTy = TypeList[Record[0]];
964       continue;  // Skip the ValueList manipulation.
965     case bitc::CST_CODE_NULL:      // NULL
966       V = Constant::getNullValue(CurTy);
967       break;
968     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
969       if (!CurTy->isIntegerTy() || Record.empty())
970         return Error("Invalid CST_INTEGER record");
971       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
972       break;
973     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
974       if (!CurTy->isIntegerTy() || Record.empty())
975         return Error("Invalid WIDE_INTEGER record");
976 
977       unsigned NumWords = Record.size();
978       SmallVector<uint64_t, 8> Words;
979       Words.resize(NumWords);
980       for (unsigned i = 0; i != NumWords; ++i)
981         Words[i] = DecodeSignRotatedValue(Record[i]);
982       V = ConstantInt::get(Context,
983                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
984                            NumWords, &Words[0]));
985       break;
986     }
987     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
988       if (Record.empty())
989         return Error("Invalid FLOAT record");
990       if (CurTy->isFloatTy())
991         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
992       else if (CurTy->isDoubleTy())
993         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
994       else if (CurTy->isX86_FP80Ty()) {
995         // Bits are not stored the same way as a normal i80 APInt, compensate.
996         uint64_t Rearrange[2];
997         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
998         Rearrange[1] = Record[0] >> 48;
999         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1000       } else if (CurTy->isFP128Ty())
1001         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1002       else if (CurTy->isPPC_FP128Ty())
1003         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1004       else
1005         V = UndefValue::get(CurTy);
1006       break;
1007     }
1008 
1009     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1010       if (Record.empty())
1011         return Error("Invalid CST_AGGREGATE record");
1012 
1013       unsigned Size = Record.size();
1014       std::vector<Constant*> Elts;
1015 
1016       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1017         for (unsigned i = 0; i != Size; ++i)
1018           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1019                                                      STy->getElementType(i)));
1020         V = ConstantStruct::get(STy, Elts);
1021       } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1022         uint64_t Index = Record[0];
1023         Constant *Val = ValueList.getConstantFwdRef(Record[1],
1024                                         UnTy->getElementType(Index));
1025         V = ConstantUnion::get(UnTy, Val);
1026       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1027         const Type *EltTy = ATy->getElementType();
1028         for (unsigned i = 0; i != Size; ++i)
1029           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1030         V = ConstantArray::get(ATy, Elts);
1031       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1032         const Type *EltTy = VTy->getElementType();
1033         for (unsigned i = 0; i != Size; ++i)
1034           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1035         V = ConstantVector::get(Elts);
1036       } else {
1037         V = UndefValue::get(CurTy);
1038       }
1039       break;
1040     }
1041     case bitc::CST_CODE_STRING: { // STRING: [values]
1042       if (Record.empty())
1043         return Error("Invalid CST_AGGREGATE record");
1044 
1045       const ArrayType *ATy = cast<ArrayType>(CurTy);
1046       const Type *EltTy = ATy->getElementType();
1047 
1048       unsigned Size = Record.size();
1049       std::vector<Constant*> Elts;
1050       for (unsigned i = 0; i != Size; ++i)
1051         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1052       V = ConstantArray::get(ATy, Elts);
1053       break;
1054     }
1055     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1056       if (Record.empty())
1057         return Error("Invalid CST_AGGREGATE record");
1058 
1059       const ArrayType *ATy = cast<ArrayType>(CurTy);
1060       const Type *EltTy = ATy->getElementType();
1061 
1062       unsigned Size = Record.size();
1063       std::vector<Constant*> Elts;
1064       for (unsigned i = 0; i != Size; ++i)
1065         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1066       Elts.push_back(Constant::getNullValue(EltTy));
1067       V = ConstantArray::get(ATy, Elts);
1068       break;
1069     }
1070     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1071       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1072       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1073       if (Opc < 0) {
1074         V = UndefValue::get(CurTy);  // Unknown binop.
1075       } else {
1076         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1077         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1078         unsigned Flags = 0;
1079         if (Record.size() >= 4) {
1080           if (Opc == Instruction::Add ||
1081               Opc == Instruction::Sub ||
1082               Opc == Instruction::Mul) {
1083             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1084               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1085             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1086               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1087           } else if (Opc == Instruction::SDiv) {
1088             if (Record[3] & (1 << bitc::SDIV_EXACT))
1089               Flags |= SDivOperator::IsExact;
1090           }
1091         }
1092         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1093       }
1094       break;
1095     }
1096     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1097       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1098       int Opc = GetDecodedCastOpcode(Record[0]);
1099       if (Opc < 0) {
1100         V = UndefValue::get(CurTy);  // Unknown cast.
1101       } else {
1102         const Type *OpTy = getTypeByID(Record[1]);
1103         if (!OpTy) return Error("Invalid CE_CAST record");
1104         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1105         V = ConstantExpr::getCast(Opc, Op, CurTy);
1106       }
1107       break;
1108     }
1109     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1110     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1111       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1112       SmallVector<Constant*, 16> Elts;
1113       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1114         const Type *ElTy = getTypeByID(Record[i]);
1115         if (!ElTy) return Error("Invalid CE_GEP record");
1116         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1117       }
1118       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1119         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1120                                                    Elts.size()-1);
1121       else
1122         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1123                                            Elts.size()-1);
1124       break;
1125     }
1126     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1127       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1128       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1129                                                               Type::getInt1Ty(Context)),
1130                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1131                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1132       break;
1133     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1134       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1135       const VectorType *OpTy =
1136         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1137       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1138       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1139       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1140       V = ConstantExpr::getExtractElement(Op0, Op1);
1141       break;
1142     }
1143     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1144       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1145       if (Record.size() < 3 || OpTy == 0)
1146         return Error("Invalid CE_INSERTELT record");
1147       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1148       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1149                                                   OpTy->getElementType());
1150       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1151       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1152       break;
1153     }
1154     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1155       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1156       if (Record.size() < 3 || OpTy == 0)
1157         return Error("Invalid CE_SHUFFLEVEC record");
1158       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1159       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1160       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1161                                                  OpTy->getNumElements());
1162       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1163       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1164       break;
1165     }
1166     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1167       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1168       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1169       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1170         return Error("Invalid CE_SHUFVEC_EX record");
1171       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1172       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1173       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1174                                                  RTy->getNumElements());
1175       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1176       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1177       break;
1178     }
1179     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1180       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1181       const Type *OpTy = getTypeByID(Record[0]);
1182       if (OpTy == 0) return Error("Invalid CE_CMP record");
1183       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1184       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1185 
1186       if (OpTy->isFPOrFPVectorTy())
1187         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1188       else
1189         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1190       break;
1191     }
1192     case bitc::CST_CODE_INLINEASM: {
1193       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1194       std::string AsmStr, ConstrStr;
1195       bool HasSideEffects = Record[0] & 1;
1196       bool IsAlignStack = Record[0] >> 1;
1197       unsigned AsmStrSize = Record[1];
1198       if (2+AsmStrSize >= Record.size())
1199         return Error("Invalid INLINEASM record");
1200       unsigned ConstStrSize = Record[2+AsmStrSize];
1201       if (3+AsmStrSize+ConstStrSize > Record.size())
1202         return Error("Invalid INLINEASM record");
1203 
1204       for (unsigned i = 0; i != AsmStrSize; ++i)
1205         AsmStr += (char)Record[2+i];
1206       for (unsigned i = 0; i != ConstStrSize; ++i)
1207         ConstrStr += (char)Record[3+AsmStrSize+i];
1208       const PointerType *PTy = cast<PointerType>(CurTy);
1209       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1210                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1211       break;
1212     }
1213     case bitc::CST_CODE_BLOCKADDRESS:{
1214       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1215       const Type *FnTy = getTypeByID(Record[0]);
1216       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1217       Function *Fn =
1218         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1219       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1220 
1221       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1222                                                   Type::getInt8Ty(Context),
1223                                             false, GlobalValue::InternalLinkage,
1224                                                   0, "");
1225       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1226       V = FwdRef;
1227       break;
1228     }
1229     }
1230 
1231     ValueList.AssignValue(V, NextCstNo);
1232     ++NextCstNo;
1233   }
1234 
1235   if (NextCstNo != ValueList.size())
1236     return Error("Invalid constant reference!");
1237 
1238   if (Stream.ReadBlockEnd())
1239     return Error("Error at end of constants block");
1240 
1241   // Once all the constants have been read, go through and resolve forward
1242   // references.
1243   ValueList.ResolveConstantForwardRefs();
1244   return false;
1245 }
1246 
1247 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1248 /// remember where it is and then skip it.  This lets us lazily deserialize the
1249 /// functions.
1250 bool BitcodeReader::RememberAndSkipFunctionBody() {
1251   // Get the function we are talking about.
1252   if (FunctionsWithBodies.empty())
1253     return Error("Insufficient function protos");
1254 
1255   Function *Fn = FunctionsWithBodies.back();
1256   FunctionsWithBodies.pop_back();
1257 
1258   // Save the current stream state.
1259   uint64_t CurBit = Stream.GetCurrentBitNo();
1260   DeferredFunctionInfo[Fn] = CurBit;
1261 
1262   // Skip over the function block for now.
1263   if (Stream.SkipBlock())
1264     return Error("Malformed block record");
1265   return false;
1266 }
1267 
1268 bool BitcodeReader::ParseModule() {
1269   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1270     return Error("Malformed block record");
1271 
1272   SmallVector<uint64_t, 64> Record;
1273   std::vector<std::string> SectionTable;
1274   std::vector<std::string> GCTable;
1275 
1276   // Read all the records for this module.
1277   while (!Stream.AtEndOfStream()) {
1278     unsigned Code = Stream.ReadCode();
1279     if (Code == bitc::END_BLOCK) {
1280       if (Stream.ReadBlockEnd())
1281         return Error("Error at end of module block");
1282 
1283       // Patch the initializers for globals and aliases up.
1284       ResolveGlobalAndAliasInits();
1285       if (!GlobalInits.empty() || !AliasInits.empty())
1286         return Error("Malformed global initializer set");
1287       if (!FunctionsWithBodies.empty())
1288         return Error("Too few function bodies found");
1289 
1290       // Look for intrinsic functions which need to be upgraded at some point
1291       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1292            FI != FE; ++FI) {
1293         Function* NewFn;
1294         if (UpgradeIntrinsicFunction(FI, NewFn))
1295           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1296       }
1297 
1298       // Force deallocation of memory for these vectors to favor the client that
1299       // want lazy deserialization.
1300       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1301       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1302       std::vector<Function*>().swap(FunctionsWithBodies);
1303       return false;
1304     }
1305 
1306     if (Code == bitc::ENTER_SUBBLOCK) {
1307       switch (Stream.ReadSubBlockID()) {
1308       default:  // Skip unknown content.
1309         if (Stream.SkipBlock())
1310           return Error("Malformed block record");
1311         break;
1312       case bitc::BLOCKINFO_BLOCK_ID:
1313         if (Stream.ReadBlockInfoBlock())
1314           return Error("Malformed BlockInfoBlock");
1315         break;
1316       case bitc::PARAMATTR_BLOCK_ID:
1317         if (ParseAttributeBlock())
1318           return true;
1319         break;
1320       case bitc::TYPE_BLOCK_ID:
1321         if (ParseTypeTable())
1322           return true;
1323         break;
1324       case bitc::TYPE_SYMTAB_BLOCK_ID:
1325         if (ParseTypeSymbolTable())
1326           return true;
1327         break;
1328       case bitc::VALUE_SYMTAB_BLOCK_ID:
1329         if (ParseValueSymbolTable())
1330           return true;
1331         break;
1332       case bitc::CONSTANTS_BLOCK_ID:
1333         if (ParseConstants() || ResolveGlobalAndAliasInits())
1334           return true;
1335         break;
1336       case bitc::METADATA_BLOCK_ID:
1337         if (ParseMetadata())
1338           return true;
1339         break;
1340       case bitc::FUNCTION_BLOCK_ID:
1341         // If this is the first function body we've seen, reverse the
1342         // FunctionsWithBodies list.
1343         if (!HasReversedFunctionsWithBodies) {
1344           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1345           HasReversedFunctionsWithBodies = true;
1346         }
1347 
1348         if (RememberAndSkipFunctionBody())
1349           return true;
1350         break;
1351       }
1352       continue;
1353     }
1354 
1355     if (Code == bitc::DEFINE_ABBREV) {
1356       Stream.ReadAbbrevRecord();
1357       continue;
1358     }
1359 
1360     // Read a record.
1361     switch (Stream.ReadRecord(Code, Record)) {
1362     default: break;  // Default behavior, ignore unknown content.
1363     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1364       if (Record.size() < 1)
1365         return Error("Malformed MODULE_CODE_VERSION");
1366       // Only version #0 is supported so far.
1367       if (Record[0] != 0)
1368         return Error("Unknown bitstream version!");
1369       break;
1370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1371       std::string S;
1372       if (ConvertToString(Record, 0, S))
1373         return Error("Invalid MODULE_CODE_TRIPLE record");
1374       TheModule->setTargetTriple(S);
1375       break;
1376     }
1377     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1378       std::string S;
1379       if (ConvertToString(Record, 0, S))
1380         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1381       TheModule->setDataLayout(S);
1382       break;
1383     }
1384     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1385       std::string S;
1386       if (ConvertToString(Record, 0, S))
1387         return Error("Invalid MODULE_CODE_ASM record");
1388       TheModule->setModuleInlineAsm(S);
1389       break;
1390     }
1391     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1392       std::string S;
1393       if (ConvertToString(Record, 0, S))
1394         return Error("Invalid MODULE_CODE_DEPLIB record");
1395       TheModule->addLibrary(S);
1396       break;
1397     }
1398     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1399       std::string S;
1400       if (ConvertToString(Record, 0, S))
1401         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1402       SectionTable.push_back(S);
1403       break;
1404     }
1405     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1406       std::string S;
1407       if (ConvertToString(Record, 0, S))
1408         return Error("Invalid MODULE_CODE_GCNAME record");
1409       GCTable.push_back(S);
1410       break;
1411     }
1412     // GLOBALVAR: [pointer type, isconst, initid,
1413     //             linkage, alignment, section, visibility, threadlocal]
1414     case bitc::MODULE_CODE_GLOBALVAR: {
1415       if (Record.size() < 6)
1416         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1417       const Type *Ty = getTypeByID(Record[0]);
1418       if (!Ty->isPointerTy())
1419         return Error("Global not a pointer type!");
1420       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1421       Ty = cast<PointerType>(Ty)->getElementType();
1422 
1423       bool isConstant = Record[1];
1424       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1425       unsigned Alignment = (1 << Record[4]) >> 1;
1426       std::string Section;
1427       if (Record[5]) {
1428         if (Record[5]-1 >= SectionTable.size())
1429           return Error("Invalid section ID");
1430         Section = SectionTable[Record[5]-1];
1431       }
1432       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1433       if (Record.size() > 6)
1434         Visibility = GetDecodedVisibility(Record[6]);
1435       bool isThreadLocal = false;
1436       if (Record.size() > 7)
1437         isThreadLocal = Record[7];
1438 
1439       GlobalVariable *NewGV =
1440         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1441                            isThreadLocal, AddressSpace);
1442       NewGV->setAlignment(Alignment);
1443       if (!Section.empty())
1444         NewGV->setSection(Section);
1445       NewGV->setVisibility(Visibility);
1446       NewGV->setThreadLocal(isThreadLocal);
1447 
1448       ValueList.push_back(NewGV);
1449 
1450       // Remember which value to use for the global initializer.
1451       if (unsigned InitID = Record[2])
1452         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1453       break;
1454     }
1455     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1456     //             alignment, section, visibility, gc]
1457     case bitc::MODULE_CODE_FUNCTION: {
1458       if (Record.size() < 8)
1459         return Error("Invalid MODULE_CODE_FUNCTION record");
1460       const Type *Ty = getTypeByID(Record[0]);
1461       if (!Ty->isPointerTy())
1462         return Error("Function not a pointer type!");
1463       const FunctionType *FTy =
1464         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1465       if (!FTy)
1466         return Error("Function not a pointer to function type!");
1467 
1468       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1469                                         "", TheModule);
1470 
1471       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1472       bool isProto = Record[2];
1473       Func->setLinkage(GetDecodedLinkage(Record[3]));
1474       Func->setAttributes(getAttributes(Record[4]));
1475 
1476       Func->setAlignment((1 << Record[5]) >> 1);
1477       if (Record[6]) {
1478         if (Record[6]-1 >= SectionTable.size())
1479           return Error("Invalid section ID");
1480         Func->setSection(SectionTable[Record[6]-1]);
1481       }
1482       Func->setVisibility(GetDecodedVisibility(Record[7]));
1483       if (Record.size() > 8 && Record[8]) {
1484         if (Record[8]-1 > GCTable.size())
1485           return Error("Invalid GC ID");
1486         Func->setGC(GCTable[Record[8]-1].c_str());
1487       }
1488       ValueList.push_back(Func);
1489 
1490       // If this is a function with a body, remember the prototype we are
1491       // creating now, so that we can match up the body with them later.
1492       if (!isProto)
1493         FunctionsWithBodies.push_back(Func);
1494       break;
1495     }
1496     // ALIAS: [alias type, aliasee val#, linkage]
1497     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1498     case bitc::MODULE_CODE_ALIAS: {
1499       if (Record.size() < 3)
1500         return Error("Invalid MODULE_ALIAS record");
1501       const Type *Ty = getTypeByID(Record[0]);
1502       if (!Ty->isPointerTy())
1503         return Error("Function not a pointer type!");
1504 
1505       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1506                                            "", 0, TheModule);
1507       // Old bitcode files didn't have visibility field.
1508       if (Record.size() > 3)
1509         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1510       ValueList.push_back(NewGA);
1511       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1512       break;
1513     }
1514     /// MODULE_CODE_PURGEVALS: [numvals]
1515     case bitc::MODULE_CODE_PURGEVALS:
1516       // Trim down the value list to the specified size.
1517       if (Record.size() < 1 || Record[0] > ValueList.size())
1518         return Error("Invalid MODULE_PURGEVALS record");
1519       ValueList.shrinkTo(Record[0]);
1520       break;
1521     }
1522     Record.clear();
1523   }
1524 
1525   return Error("Premature end of bitstream");
1526 }
1527 
1528 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1529   TheModule = 0;
1530 
1531   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1532   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1533 
1534   if (Buffer->getBufferSize() & 3) {
1535     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1536       return Error("Invalid bitcode signature");
1537     else
1538       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1539   }
1540 
1541   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1542   // The magic number is 0x0B17C0DE stored in little endian.
1543   if (isBitcodeWrapper(BufPtr, BufEnd))
1544     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1545       return Error("Invalid bitcode wrapper header");
1546 
1547   StreamFile.init(BufPtr, BufEnd);
1548   Stream.init(StreamFile);
1549 
1550   // Sniff for the signature.
1551   if (Stream.Read(8) != 'B' ||
1552       Stream.Read(8) != 'C' ||
1553       Stream.Read(4) != 0x0 ||
1554       Stream.Read(4) != 0xC ||
1555       Stream.Read(4) != 0xE ||
1556       Stream.Read(4) != 0xD)
1557     return Error("Invalid bitcode signature");
1558 
1559   // We expect a number of well-defined blocks, though we don't necessarily
1560   // need to understand them all.
1561   while (!Stream.AtEndOfStream()) {
1562     unsigned Code = Stream.ReadCode();
1563 
1564     if (Code != bitc::ENTER_SUBBLOCK)
1565       return Error("Invalid record at top-level");
1566 
1567     unsigned BlockID = Stream.ReadSubBlockID();
1568 
1569     // We only know the MODULE subblock ID.
1570     switch (BlockID) {
1571     case bitc::BLOCKINFO_BLOCK_ID:
1572       if (Stream.ReadBlockInfoBlock())
1573         return Error("Malformed BlockInfoBlock");
1574       break;
1575     case bitc::MODULE_BLOCK_ID:
1576       // Reject multiple MODULE_BLOCK's in a single bitstream.
1577       if (TheModule)
1578         return Error("Multiple MODULE_BLOCKs in same stream");
1579       TheModule = M;
1580       if (ParseModule())
1581         return true;
1582       break;
1583     default:
1584       if (Stream.SkipBlock())
1585         return Error("Malformed block record");
1586       break;
1587     }
1588   }
1589 
1590   return false;
1591 }
1592 
1593 /// ParseMetadataAttachment - Parse metadata attachments.
1594 bool BitcodeReader::ParseMetadataAttachment() {
1595   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1596     return Error("Malformed block record");
1597 
1598   SmallVector<uint64_t, 64> Record;
1599   while(1) {
1600     unsigned Code = Stream.ReadCode();
1601     if (Code == bitc::END_BLOCK) {
1602       if (Stream.ReadBlockEnd())
1603         return Error("Error at end of PARAMATTR block");
1604       break;
1605     }
1606     if (Code == bitc::DEFINE_ABBREV) {
1607       Stream.ReadAbbrevRecord();
1608       continue;
1609     }
1610     // Read a metadata attachment record.
1611     Record.clear();
1612     switch (Stream.ReadRecord(Code, Record)) {
1613     default:  // Default behavior: ignore.
1614       break;
1615     case bitc::METADATA_ATTACHMENT: {
1616       unsigned RecordLength = Record.size();
1617       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1618         return Error ("Invalid METADATA_ATTACHMENT reader!");
1619       Instruction *Inst = InstructionList[Record[0]];
1620       for (unsigned i = 1; i != RecordLength; i = i+2) {
1621         unsigned Kind = Record[i];
1622         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1623         Inst->setMetadata(Kind, cast<MDNode>(Node));
1624       }
1625       break;
1626     }
1627     }
1628   }
1629   return false;
1630 }
1631 
1632 /// ParseFunctionBody - Lazily parse the specified function body block.
1633 bool BitcodeReader::ParseFunctionBody(Function *F) {
1634   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1635     return Error("Malformed block record");
1636 
1637   InstructionList.clear();
1638   unsigned ModuleValueListSize = ValueList.size();
1639 
1640   // Add all the function arguments to the value table.
1641   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1642     ValueList.push_back(I);
1643 
1644   unsigned NextValueNo = ValueList.size();
1645   BasicBlock *CurBB = 0;
1646   unsigned CurBBNo = 0;
1647 
1648   DebugLoc LastLoc;
1649 
1650   // Read all the records.
1651   SmallVector<uint64_t, 64> Record;
1652   while (1) {
1653     unsigned Code = Stream.ReadCode();
1654     if (Code == bitc::END_BLOCK) {
1655       if (Stream.ReadBlockEnd())
1656         return Error("Error at end of function block");
1657       break;
1658     }
1659 
1660     if (Code == bitc::ENTER_SUBBLOCK) {
1661       switch (Stream.ReadSubBlockID()) {
1662       default:  // Skip unknown content.
1663         if (Stream.SkipBlock())
1664           return Error("Malformed block record");
1665         break;
1666       case bitc::CONSTANTS_BLOCK_ID:
1667         if (ParseConstants()) return true;
1668         NextValueNo = ValueList.size();
1669         break;
1670       case bitc::VALUE_SYMTAB_BLOCK_ID:
1671         if (ParseValueSymbolTable()) return true;
1672         break;
1673       case bitc::METADATA_ATTACHMENT_ID:
1674         if (ParseMetadataAttachment()) return true;
1675         break;
1676       case bitc::METADATA_BLOCK_ID:
1677         if (ParseMetadata()) return true;
1678         break;
1679       }
1680       continue;
1681     }
1682 
1683     if (Code == bitc::DEFINE_ABBREV) {
1684       Stream.ReadAbbrevRecord();
1685       continue;
1686     }
1687 
1688     // Read a record.
1689     Record.clear();
1690     Instruction *I = 0;
1691     unsigned BitCode = Stream.ReadRecord(Code, Record);
1692     switch (BitCode) {
1693     default: // Default behavior: reject
1694       return Error("Unknown instruction");
1695     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1696       if (Record.size() < 1 || Record[0] == 0)
1697         return Error("Invalid DECLAREBLOCKS record");
1698       // Create all the basic blocks for the function.
1699       FunctionBBs.resize(Record[0]);
1700       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1701         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1702       CurBB = FunctionBBs[0];
1703       continue;
1704 
1705 
1706     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1707       // This record indicates that the last instruction is at the same
1708       // location as the previous instruction with a location.
1709       I = 0;
1710 
1711       // Get the last instruction emitted.
1712       if (CurBB && !CurBB->empty())
1713         I = &CurBB->back();
1714       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1715                !FunctionBBs[CurBBNo-1]->empty())
1716         I = &FunctionBBs[CurBBNo-1]->back();
1717 
1718       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1719       I->setDebugLoc(LastLoc);
1720       I = 0;
1721       continue;
1722 
1723     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1724       I = 0;     // Get the last instruction emitted.
1725       if (CurBB && !CurBB->empty())
1726         I = &CurBB->back();
1727       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1728                !FunctionBBs[CurBBNo-1]->empty())
1729         I = &FunctionBBs[CurBBNo-1]->back();
1730       if (I == 0 || Record.size() < 4)
1731         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1732 
1733       unsigned Line = Record[0], Col = Record[1];
1734       unsigned ScopeID = Record[2], IAID = Record[3];
1735 
1736       MDNode *Scope = 0, *IA = 0;
1737       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1738       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1739       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1740       I->setDebugLoc(LastLoc);
1741       I = 0;
1742       continue;
1743     }
1744 
1745     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1746       unsigned OpNum = 0;
1747       Value *LHS, *RHS;
1748       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1749           getValue(Record, OpNum, LHS->getType(), RHS) ||
1750           OpNum+1 > Record.size())
1751         return Error("Invalid BINOP record");
1752 
1753       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1754       if (Opc == -1) return Error("Invalid BINOP record");
1755       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1756       InstructionList.push_back(I);
1757       if (OpNum < Record.size()) {
1758         if (Opc == Instruction::Add ||
1759             Opc == Instruction::Sub ||
1760             Opc == Instruction::Mul) {
1761           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1762             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1763           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1764             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1765         } else if (Opc == Instruction::SDiv) {
1766           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1767             cast<BinaryOperator>(I)->setIsExact(true);
1768         }
1769       }
1770       break;
1771     }
1772     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1773       unsigned OpNum = 0;
1774       Value *Op;
1775       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1776           OpNum+2 != Record.size())
1777         return Error("Invalid CAST record");
1778 
1779       const Type *ResTy = getTypeByID(Record[OpNum]);
1780       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1781       if (Opc == -1 || ResTy == 0)
1782         return Error("Invalid CAST record");
1783       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1784       InstructionList.push_back(I);
1785       break;
1786     }
1787     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1788     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1789       unsigned OpNum = 0;
1790       Value *BasePtr;
1791       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1792         return Error("Invalid GEP record");
1793 
1794       SmallVector<Value*, 16> GEPIdx;
1795       while (OpNum != Record.size()) {
1796         Value *Op;
1797         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1798           return Error("Invalid GEP record");
1799         GEPIdx.push_back(Op);
1800       }
1801 
1802       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1803       InstructionList.push_back(I);
1804       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1805         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1806       break;
1807     }
1808 
1809     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1810                                        // EXTRACTVAL: [opty, opval, n x indices]
1811       unsigned OpNum = 0;
1812       Value *Agg;
1813       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1814         return Error("Invalid EXTRACTVAL record");
1815 
1816       SmallVector<unsigned, 4> EXTRACTVALIdx;
1817       for (unsigned RecSize = Record.size();
1818            OpNum != RecSize; ++OpNum) {
1819         uint64_t Index = Record[OpNum];
1820         if ((unsigned)Index != Index)
1821           return Error("Invalid EXTRACTVAL index");
1822         EXTRACTVALIdx.push_back((unsigned)Index);
1823       }
1824 
1825       I = ExtractValueInst::Create(Agg,
1826                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1827       InstructionList.push_back(I);
1828       break;
1829     }
1830 
1831     case bitc::FUNC_CODE_INST_INSERTVAL: {
1832                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1833       unsigned OpNum = 0;
1834       Value *Agg;
1835       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1836         return Error("Invalid INSERTVAL record");
1837       Value *Val;
1838       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1839         return Error("Invalid INSERTVAL record");
1840 
1841       SmallVector<unsigned, 4> INSERTVALIdx;
1842       for (unsigned RecSize = Record.size();
1843            OpNum != RecSize; ++OpNum) {
1844         uint64_t Index = Record[OpNum];
1845         if ((unsigned)Index != Index)
1846           return Error("Invalid INSERTVAL index");
1847         INSERTVALIdx.push_back((unsigned)Index);
1848       }
1849 
1850       I = InsertValueInst::Create(Agg, Val,
1851                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1852       InstructionList.push_back(I);
1853       break;
1854     }
1855 
1856     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1857       // obsolete form of select
1858       // handles select i1 ... in old bitcode
1859       unsigned OpNum = 0;
1860       Value *TrueVal, *FalseVal, *Cond;
1861       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1862           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1863           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1864         return Error("Invalid SELECT record");
1865 
1866       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1867       InstructionList.push_back(I);
1868       break;
1869     }
1870 
1871     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1872       // new form of select
1873       // handles select i1 or select [N x i1]
1874       unsigned OpNum = 0;
1875       Value *TrueVal, *FalseVal, *Cond;
1876       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1877           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1878           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1879         return Error("Invalid SELECT record");
1880 
1881       // select condition can be either i1 or [N x i1]
1882       if (const VectorType* vector_type =
1883           dyn_cast<const VectorType>(Cond->getType())) {
1884         // expect <n x i1>
1885         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1886           return Error("Invalid SELECT condition type");
1887       } else {
1888         // expect i1
1889         if (Cond->getType() != Type::getInt1Ty(Context))
1890           return Error("Invalid SELECT condition type");
1891       }
1892 
1893       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1894       InstructionList.push_back(I);
1895       break;
1896     }
1897 
1898     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1899       unsigned OpNum = 0;
1900       Value *Vec, *Idx;
1901       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1902           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1903         return Error("Invalid EXTRACTELT record");
1904       I = ExtractElementInst::Create(Vec, Idx);
1905       InstructionList.push_back(I);
1906       break;
1907     }
1908 
1909     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1910       unsigned OpNum = 0;
1911       Value *Vec, *Elt, *Idx;
1912       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1913           getValue(Record, OpNum,
1914                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1915           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1916         return Error("Invalid INSERTELT record");
1917       I = InsertElementInst::Create(Vec, Elt, Idx);
1918       InstructionList.push_back(I);
1919       break;
1920     }
1921 
1922     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1923       unsigned OpNum = 0;
1924       Value *Vec1, *Vec2, *Mask;
1925       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1926           getValue(Record, OpNum, Vec1->getType(), Vec2))
1927         return Error("Invalid SHUFFLEVEC record");
1928 
1929       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1930         return Error("Invalid SHUFFLEVEC record");
1931       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1932       InstructionList.push_back(I);
1933       break;
1934     }
1935 
1936     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1937       // Old form of ICmp/FCmp returning bool
1938       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1939       // both legal on vectors but had different behaviour.
1940     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1941       // FCmp/ICmp returning bool or vector of bool
1942 
1943       unsigned OpNum = 0;
1944       Value *LHS, *RHS;
1945       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1946           getValue(Record, OpNum, LHS->getType(), RHS) ||
1947           OpNum+1 != Record.size())
1948         return Error("Invalid CMP record");
1949 
1950       if (LHS->getType()->isFPOrFPVectorTy())
1951         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1952       else
1953         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1954       InstructionList.push_back(I);
1955       break;
1956     }
1957 
1958     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1959       if (Record.size() != 2)
1960         return Error("Invalid GETRESULT record");
1961       unsigned OpNum = 0;
1962       Value *Op;
1963       getValueTypePair(Record, OpNum, NextValueNo, Op);
1964       unsigned Index = Record[1];
1965       I = ExtractValueInst::Create(Op, Index);
1966       InstructionList.push_back(I);
1967       break;
1968     }
1969 
1970     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1971       {
1972         unsigned Size = Record.size();
1973         if (Size == 0) {
1974           I = ReturnInst::Create(Context);
1975           InstructionList.push_back(I);
1976           break;
1977         }
1978 
1979         unsigned OpNum = 0;
1980         SmallVector<Value *,4> Vs;
1981         do {
1982           Value *Op = NULL;
1983           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1984             return Error("Invalid RET record");
1985           Vs.push_back(Op);
1986         } while(OpNum != Record.size());
1987 
1988         const Type *ReturnType = F->getReturnType();
1989         if (Vs.size() > 1 ||
1990             (ReturnType->isStructTy() &&
1991              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1992           Value *RV = UndefValue::get(ReturnType);
1993           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1994             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1995             InstructionList.push_back(I);
1996             CurBB->getInstList().push_back(I);
1997             ValueList.AssignValue(I, NextValueNo++);
1998             RV = I;
1999           }
2000           I = ReturnInst::Create(Context, RV);
2001           InstructionList.push_back(I);
2002           break;
2003         }
2004 
2005         I = ReturnInst::Create(Context, Vs[0]);
2006         InstructionList.push_back(I);
2007         break;
2008       }
2009     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2010       if (Record.size() != 1 && Record.size() != 3)
2011         return Error("Invalid BR record");
2012       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2013       if (TrueDest == 0)
2014         return Error("Invalid BR record");
2015 
2016       if (Record.size() == 1) {
2017         I = BranchInst::Create(TrueDest);
2018         InstructionList.push_back(I);
2019       }
2020       else {
2021         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2022         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2023         if (FalseDest == 0 || Cond == 0)
2024           return Error("Invalid BR record");
2025         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2026         InstructionList.push_back(I);
2027       }
2028       break;
2029     }
2030     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2031       if (Record.size() < 3 || (Record.size() & 1) == 0)
2032         return Error("Invalid SWITCH record");
2033       const Type *OpTy = getTypeByID(Record[0]);
2034       Value *Cond = getFnValueByID(Record[1], OpTy);
2035       BasicBlock *Default = getBasicBlock(Record[2]);
2036       if (OpTy == 0 || Cond == 0 || Default == 0)
2037         return Error("Invalid SWITCH record");
2038       unsigned NumCases = (Record.size()-3)/2;
2039       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2040       InstructionList.push_back(SI);
2041       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2042         ConstantInt *CaseVal =
2043           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2044         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2045         if (CaseVal == 0 || DestBB == 0) {
2046           delete SI;
2047           return Error("Invalid SWITCH record!");
2048         }
2049         SI->addCase(CaseVal, DestBB);
2050       }
2051       I = SI;
2052       break;
2053     }
2054     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2055       if (Record.size() < 2)
2056         return Error("Invalid INDIRECTBR record");
2057       const Type *OpTy = getTypeByID(Record[0]);
2058       Value *Address = getFnValueByID(Record[1], OpTy);
2059       if (OpTy == 0 || Address == 0)
2060         return Error("Invalid INDIRECTBR record");
2061       unsigned NumDests = Record.size()-2;
2062       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2063       InstructionList.push_back(IBI);
2064       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2065         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2066           IBI->addDestination(DestBB);
2067         } else {
2068           delete IBI;
2069           return Error("Invalid INDIRECTBR record!");
2070         }
2071       }
2072       I = IBI;
2073       break;
2074     }
2075 
2076     case bitc::FUNC_CODE_INST_INVOKE: {
2077       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2078       if (Record.size() < 4) return Error("Invalid INVOKE record");
2079       AttrListPtr PAL = getAttributes(Record[0]);
2080       unsigned CCInfo = Record[1];
2081       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2082       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2083 
2084       unsigned OpNum = 4;
2085       Value *Callee;
2086       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2087         return Error("Invalid INVOKE record");
2088 
2089       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2090       const FunctionType *FTy = !CalleeTy ? 0 :
2091         dyn_cast<FunctionType>(CalleeTy->getElementType());
2092 
2093       // Check that the right number of fixed parameters are here.
2094       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2095           Record.size() < OpNum+FTy->getNumParams())
2096         return Error("Invalid INVOKE record");
2097 
2098       SmallVector<Value*, 16> Ops;
2099       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2100         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2101         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2102       }
2103 
2104       if (!FTy->isVarArg()) {
2105         if (Record.size() != OpNum)
2106           return Error("Invalid INVOKE record");
2107       } else {
2108         // Read type/value pairs for varargs params.
2109         while (OpNum != Record.size()) {
2110           Value *Op;
2111           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2112             return Error("Invalid INVOKE record");
2113           Ops.push_back(Op);
2114         }
2115       }
2116 
2117       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2118                              Ops.begin(), Ops.end());
2119       InstructionList.push_back(I);
2120       cast<InvokeInst>(I)->setCallingConv(
2121         static_cast<CallingConv::ID>(CCInfo));
2122       cast<InvokeInst>(I)->setAttributes(PAL);
2123       break;
2124     }
2125     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2126       I = new UnwindInst(Context);
2127       InstructionList.push_back(I);
2128       break;
2129     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2130       I = new UnreachableInst(Context);
2131       InstructionList.push_back(I);
2132       break;
2133     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2134       if (Record.size() < 1 || ((Record.size()-1)&1))
2135         return Error("Invalid PHI record");
2136       const Type *Ty = getTypeByID(Record[0]);
2137       if (!Ty) return Error("Invalid PHI record");
2138 
2139       PHINode *PN = PHINode::Create(Ty);
2140       InstructionList.push_back(PN);
2141       PN->reserveOperandSpace((Record.size()-1)/2);
2142 
2143       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2144         Value *V = getFnValueByID(Record[1+i], Ty);
2145         BasicBlock *BB = getBasicBlock(Record[2+i]);
2146         if (!V || !BB) return Error("Invalid PHI record");
2147         PN->addIncoming(V, BB);
2148       }
2149       I = PN;
2150       break;
2151     }
2152 
2153     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2154       // Autoupgrade malloc instruction to malloc call.
2155       // FIXME: Remove in LLVM 3.0.
2156       if (Record.size() < 3)
2157         return Error("Invalid MALLOC record");
2158       const PointerType *Ty =
2159         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2160       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2161       if (!Ty || !Size) return Error("Invalid MALLOC record");
2162       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2163       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2164       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2165       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2166       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2167                                  AllocSize, Size, NULL);
2168       InstructionList.push_back(I);
2169       break;
2170     }
2171     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2172       unsigned OpNum = 0;
2173       Value *Op;
2174       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2175           OpNum != Record.size())
2176         return Error("Invalid FREE record");
2177       if (!CurBB) return Error("Invalid free instruction with no BB");
2178       I = CallInst::CreateFree(Op, CurBB);
2179       InstructionList.push_back(I);
2180       break;
2181     }
2182     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2183       // For backward compatibility, tolerate a lack of an opty, and use i32.
2184       // LLVM 3.0: Remove this.
2185       if (Record.size() < 3 || Record.size() > 4)
2186         return Error("Invalid ALLOCA record");
2187       unsigned OpNum = 0;
2188       const PointerType *Ty =
2189         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2190       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2191                                               Type::getInt32Ty(Context);
2192       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2193       unsigned Align = Record[OpNum++];
2194       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2195       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2196       InstructionList.push_back(I);
2197       break;
2198     }
2199     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2200       unsigned OpNum = 0;
2201       Value *Op;
2202       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2203           OpNum+2 != Record.size())
2204         return Error("Invalid LOAD record");
2205 
2206       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2207       InstructionList.push_back(I);
2208       break;
2209     }
2210     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2211       unsigned OpNum = 0;
2212       Value *Val, *Ptr;
2213       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2214           getValue(Record, OpNum,
2215                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2216           OpNum+2 != Record.size())
2217         return Error("Invalid STORE record");
2218 
2219       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2220       InstructionList.push_back(I);
2221       break;
2222     }
2223     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2224       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2225       unsigned OpNum = 0;
2226       Value *Val, *Ptr;
2227       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2228           getValue(Record, OpNum,
2229                    PointerType::getUnqual(Val->getType()), Ptr)||
2230           OpNum+2 != Record.size())
2231         return Error("Invalid STORE record");
2232 
2233       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2234       InstructionList.push_back(I);
2235       break;
2236     }
2237     case bitc::FUNC_CODE_INST_CALL: {
2238       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2239       if (Record.size() < 3)
2240         return Error("Invalid CALL record");
2241 
2242       AttrListPtr PAL = getAttributes(Record[0]);
2243       unsigned CCInfo = Record[1];
2244 
2245       unsigned OpNum = 2;
2246       Value *Callee;
2247       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2248         return Error("Invalid CALL record");
2249 
2250       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2251       const FunctionType *FTy = 0;
2252       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2253       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2254         return Error("Invalid CALL record");
2255 
2256       SmallVector<Value*, 16> Args;
2257       // Read the fixed params.
2258       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2259         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2260           Args.push_back(getBasicBlock(Record[OpNum]));
2261         else
2262           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2263         if (Args.back() == 0) return Error("Invalid CALL record");
2264       }
2265 
2266       // Read type/value pairs for varargs params.
2267       if (!FTy->isVarArg()) {
2268         if (OpNum != Record.size())
2269           return Error("Invalid CALL record");
2270       } else {
2271         while (OpNum != Record.size()) {
2272           Value *Op;
2273           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2274             return Error("Invalid CALL record");
2275           Args.push_back(Op);
2276         }
2277       }
2278 
2279       I = CallInst::Create(Callee, Args.begin(), Args.end());
2280       InstructionList.push_back(I);
2281       cast<CallInst>(I)->setCallingConv(
2282         static_cast<CallingConv::ID>(CCInfo>>1));
2283       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2284       cast<CallInst>(I)->setAttributes(PAL);
2285       break;
2286     }
2287     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2288       if (Record.size() < 3)
2289         return Error("Invalid VAARG record");
2290       const Type *OpTy = getTypeByID(Record[0]);
2291       Value *Op = getFnValueByID(Record[1], OpTy);
2292       const Type *ResTy = getTypeByID(Record[2]);
2293       if (!OpTy || !Op || !ResTy)
2294         return Error("Invalid VAARG record");
2295       I = new VAArgInst(Op, ResTy);
2296       InstructionList.push_back(I);
2297       break;
2298     }
2299     }
2300 
2301     // Add instruction to end of current BB.  If there is no current BB, reject
2302     // this file.
2303     if (CurBB == 0) {
2304       delete I;
2305       return Error("Invalid instruction with no BB");
2306     }
2307     CurBB->getInstList().push_back(I);
2308 
2309     // If this was a terminator instruction, move to the next block.
2310     if (isa<TerminatorInst>(I)) {
2311       ++CurBBNo;
2312       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2313     }
2314 
2315     // Non-void values get registered in the value table for future use.
2316     if (I && !I->getType()->isVoidTy())
2317       ValueList.AssignValue(I, NextValueNo++);
2318   }
2319 
2320   // Check the function list for unresolved values.
2321   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2322     if (A->getParent() == 0) {
2323       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2324       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2325         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2326           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2327           delete A;
2328         }
2329       }
2330       return Error("Never resolved value found in function!");
2331     }
2332   }
2333 
2334   // See if anything took the address of blocks in this function.  If so,
2335   // resolve them now.
2336   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2337     BlockAddrFwdRefs.find(F);
2338   if (BAFRI != BlockAddrFwdRefs.end()) {
2339     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2340     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2341       unsigned BlockIdx = RefList[i].first;
2342       if (BlockIdx >= FunctionBBs.size())
2343         return Error("Invalid blockaddress block #");
2344 
2345       GlobalVariable *FwdRef = RefList[i].second;
2346       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2347       FwdRef->eraseFromParent();
2348     }
2349 
2350     BlockAddrFwdRefs.erase(BAFRI);
2351   }
2352 
2353   // Trim the value list down to the size it was before we parsed this function.
2354   ValueList.shrinkTo(ModuleValueListSize);
2355   std::vector<BasicBlock*>().swap(FunctionBBs);
2356 
2357   return false;
2358 }
2359 
2360 //===----------------------------------------------------------------------===//
2361 // GVMaterializer implementation
2362 //===----------------------------------------------------------------------===//
2363 
2364 
2365 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2366   if (const Function *F = dyn_cast<Function>(GV)) {
2367     return F->isDeclaration() &&
2368       DeferredFunctionInfo.count(const_cast<Function*>(F));
2369   }
2370   return false;
2371 }
2372 
2373 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2374   Function *F = dyn_cast<Function>(GV);
2375   // If it's not a function or is already material, ignore the request.
2376   if (!F || !F->isMaterializable()) return false;
2377 
2378   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2379   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2380 
2381   // Move the bit stream to the saved position of the deferred function body.
2382   Stream.JumpToBit(DFII->second);
2383 
2384   if (ParseFunctionBody(F)) {
2385     if (ErrInfo) *ErrInfo = ErrorString;
2386     return true;
2387   }
2388 
2389   // Upgrade any old intrinsic calls in the function.
2390   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2391        E = UpgradedIntrinsics.end(); I != E; ++I) {
2392     if (I->first != I->second) {
2393       for (Value::use_iterator UI = I->first->use_begin(),
2394            UE = I->first->use_end(); UI != UE; ) {
2395         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2396           UpgradeIntrinsicCall(CI, I->second);
2397       }
2398     }
2399   }
2400 
2401   return false;
2402 }
2403 
2404 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2405   const Function *F = dyn_cast<Function>(GV);
2406   if (!F || F->isDeclaration())
2407     return false;
2408   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2409 }
2410 
2411 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2412   Function *F = dyn_cast<Function>(GV);
2413   // If this function isn't dematerializable, this is a noop.
2414   if (!F || !isDematerializable(F))
2415     return;
2416 
2417   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2418 
2419   // Just forget the function body, we can remat it later.
2420   F->deleteBody();
2421 }
2422 
2423 
2424 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2425   assert(M == TheModule &&
2426          "Can only Materialize the Module this BitcodeReader is attached to.");
2427   // Iterate over the module, deserializing any functions that are still on
2428   // disk.
2429   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2430        F != E; ++F)
2431     if (F->isMaterializable() &&
2432         Materialize(F, ErrInfo))
2433       return true;
2434 
2435   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2436   // delete the old functions to clean up. We can't do this unless the entire
2437   // module is materialized because there could always be another function body
2438   // with calls to the old function.
2439   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2440        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2441     if (I->first != I->second) {
2442       for (Value::use_iterator UI = I->first->use_begin(),
2443            UE = I->first->use_end(); UI != UE; ) {
2444         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2445           UpgradeIntrinsicCall(CI, I->second);
2446       }
2447       if (!I->first->use_empty())
2448         I->first->replaceAllUsesWith(I->second);
2449       I->first->eraseFromParent();
2450     }
2451   }
2452   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2453 
2454   // Check debug info intrinsics.
2455   CheckDebugInfoIntrinsics(TheModule);
2456 
2457   return false;
2458 }
2459 
2460 
2461 //===----------------------------------------------------------------------===//
2462 // External interface
2463 //===----------------------------------------------------------------------===//
2464 
2465 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2466 ///
2467 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2468                                    LLVMContext& Context,
2469                                    std::string *ErrMsg) {
2470   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2471   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2472   M->setMaterializer(R);
2473   if (R->ParseBitcodeInto(M)) {
2474     if (ErrMsg)
2475       *ErrMsg = R->getErrorString();
2476 
2477     delete M;  // Also deletes R.
2478     return 0;
2479   }
2480   // Have the BitcodeReader dtor delete 'Buffer'.
2481   R->setBufferOwned(true);
2482   return M;
2483 }
2484 
2485 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2486 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2487 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2488                                std::string *ErrMsg){
2489   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2490   if (!M) return 0;
2491 
2492   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2493   // there was an error.
2494   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2495 
2496   // Read in the entire module, and destroy the BitcodeReader.
2497   if (M->MaterializeAllPermanently(ErrMsg)) {
2498     delete M;
2499     return NULL;
2500   }
2501   return M;
2502 }
2503