1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 void addThisModule(); 755 ModuleSummaryIndex::ModuleInfo *getThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 Flags.NoInline = (RawFlags >> 4) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 897 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 898 } 899 900 // Decode the flags for GlobalVariable in the summary 901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 902 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 903 } 904 905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown visibilities to default. 908 case 0: return GlobalValue::DefaultVisibility; 909 case 1: return GlobalValue::HiddenVisibility; 910 case 2: return GlobalValue::ProtectedVisibility; 911 } 912 } 913 914 static GlobalValue::DLLStorageClassTypes 915 getDecodedDLLStorageClass(unsigned Val) { 916 switch (Val) { 917 default: // Map unknown values to default. 918 case 0: return GlobalValue::DefaultStorageClass; 919 case 1: return GlobalValue::DLLImportStorageClass; 920 case 2: return GlobalValue::DLLExportStorageClass; 921 } 922 } 923 924 static bool getDecodedDSOLocal(unsigned Val) { 925 switch(Val) { 926 default: // Map unknown values to preemptable. 927 case 0: return false; 928 case 1: return true; 929 } 930 } 931 932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 933 switch (Val) { 934 case 0: return GlobalVariable::NotThreadLocal; 935 default: // Map unknown non-zero value to general dynamic. 936 case 1: return GlobalVariable::GeneralDynamicTLSModel; 937 case 2: return GlobalVariable::LocalDynamicTLSModel; 938 case 3: return GlobalVariable::InitialExecTLSModel; 939 case 4: return GlobalVariable::LocalExecTLSModel; 940 } 941 } 942 943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 944 switch (Val) { 945 default: // Map unknown to UnnamedAddr::None. 946 case 0: return GlobalVariable::UnnamedAddr::None; 947 case 1: return GlobalVariable::UnnamedAddr::Global; 948 case 2: return GlobalVariable::UnnamedAddr::Local; 949 } 950 } 951 952 static int getDecodedCastOpcode(unsigned Val) { 953 switch (Val) { 954 default: return -1; 955 case bitc::CAST_TRUNC : return Instruction::Trunc; 956 case bitc::CAST_ZEXT : return Instruction::ZExt; 957 case bitc::CAST_SEXT : return Instruction::SExt; 958 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 959 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 960 case bitc::CAST_UITOFP : return Instruction::UIToFP; 961 case bitc::CAST_SITOFP : return Instruction::SIToFP; 962 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 963 case bitc::CAST_FPEXT : return Instruction::FPExt; 964 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 965 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 966 case bitc::CAST_BITCAST : return Instruction::BitCast; 967 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 968 } 969 } 970 971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 972 bool IsFP = Ty->isFPOrFPVectorTy(); 973 // UnOps are only valid for int/fp or vector of int/fp types 974 if (!IsFP && !Ty->isIntOrIntVectorTy()) 975 return -1; 976 977 switch (Val) { 978 default: 979 return -1; 980 case bitc::UNOP_NEG: 981 return IsFP ? Instruction::FNeg : -1; 982 } 983 } 984 985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 986 bool IsFP = Ty->isFPOrFPVectorTy(); 987 // BinOps are only valid for int/fp or vector of int/fp types 988 if (!IsFP && !Ty->isIntOrIntVectorTy()) 989 return -1; 990 991 switch (Val) { 992 default: 993 return -1; 994 case bitc::BINOP_ADD: 995 return IsFP ? Instruction::FAdd : Instruction::Add; 996 case bitc::BINOP_SUB: 997 return IsFP ? Instruction::FSub : Instruction::Sub; 998 case bitc::BINOP_MUL: 999 return IsFP ? Instruction::FMul : Instruction::Mul; 1000 case bitc::BINOP_UDIV: 1001 return IsFP ? -1 : Instruction::UDiv; 1002 case bitc::BINOP_SDIV: 1003 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1004 case bitc::BINOP_UREM: 1005 return IsFP ? -1 : Instruction::URem; 1006 case bitc::BINOP_SREM: 1007 return IsFP ? Instruction::FRem : Instruction::SRem; 1008 case bitc::BINOP_SHL: 1009 return IsFP ? -1 : Instruction::Shl; 1010 case bitc::BINOP_LSHR: 1011 return IsFP ? -1 : Instruction::LShr; 1012 case bitc::BINOP_ASHR: 1013 return IsFP ? -1 : Instruction::AShr; 1014 case bitc::BINOP_AND: 1015 return IsFP ? -1 : Instruction::And; 1016 case bitc::BINOP_OR: 1017 return IsFP ? -1 : Instruction::Or; 1018 case bitc::BINOP_XOR: 1019 return IsFP ? -1 : Instruction::Xor; 1020 } 1021 } 1022 1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1024 switch (Val) { 1025 default: return AtomicRMWInst::BAD_BINOP; 1026 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1027 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1028 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1029 case bitc::RMW_AND: return AtomicRMWInst::And; 1030 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1031 case bitc::RMW_OR: return AtomicRMWInst::Or; 1032 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1033 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1034 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1035 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1036 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1037 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1038 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1039 } 1040 } 1041 1042 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1043 switch (Val) { 1044 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1045 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1046 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1047 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1048 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1049 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1050 default: // Map unknown orderings to sequentially-consistent. 1051 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1052 } 1053 } 1054 1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1056 switch (Val) { 1057 default: // Map unknown selection kinds to any. 1058 case bitc::COMDAT_SELECTION_KIND_ANY: 1059 return Comdat::Any; 1060 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1061 return Comdat::ExactMatch; 1062 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1063 return Comdat::Largest; 1064 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1065 return Comdat::NoDuplicates; 1066 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1067 return Comdat::SameSize; 1068 } 1069 } 1070 1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1072 FastMathFlags FMF; 1073 if (0 != (Val & bitc::UnsafeAlgebra)) 1074 FMF.setFast(); 1075 if (0 != (Val & bitc::AllowReassoc)) 1076 FMF.setAllowReassoc(); 1077 if (0 != (Val & bitc::NoNaNs)) 1078 FMF.setNoNaNs(); 1079 if (0 != (Val & bitc::NoInfs)) 1080 FMF.setNoInfs(); 1081 if (0 != (Val & bitc::NoSignedZeros)) 1082 FMF.setNoSignedZeros(); 1083 if (0 != (Val & bitc::AllowReciprocal)) 1084 FMF.setAllowReciprocal(); 1085 if (0 != (Val & bitc::AllowContract)) 1086 FMF.setAllowContract(true); 1087 if (0 != (Val & bitc::ApproxFunc)) 1088 FMF.setApproxFunc(); 1089 return FMF; 1090 } 1091 1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1093 switch (Val) { 1094 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1095 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1096 } 1097 } 1098 1099 Type *BitcodeReader::getTypeByID(unsigned ID) { 1100 // The type table size is always specified correctly. 1101 if (ID >= TypeList.size()) 1102 return nullptr; 1103 1104 if (Type *Ty = TypeList[ID]) 1105 return Ty; 1106 1107 // If we have a forward reference, the only possible case is when it is to a 1108 // named struct. Just create a placeholder for now. 1109 return TypeList[ID] = createIdentifiedStructType(Context); 1110 } 1111 1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1113 StringRef Name) { 1114 auto *Ret = StructType::create(Context, Name); 1115 IdentifiedStructTypes.push_back(Ret); 1116 return Ret; 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1120 auto *Ret = StructType::create(Context); 1121 IdentifiedStructTypes.push_back(Ret); 1122 return Ret; 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // Functions for parsing blocks from the bitcode file 1127 //===----------------------------------------------------------------------===// 1128 1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1130 switch (Val) { 1131 case Attribute::EndAttrKinds: 1132 llvm_unreachable("Synthetic enumerators which should never get here"); 1133 1134 case Attribute::None: return 0; 1135 case Attribute::ZExt: return 1 << 0; 1136 case Attribute::SExt: return 1 << 1; 1137 case Attribute::NoReturn: return 1 << 2; 1138 case Attribute::InReg: return 1 << 3; 1139 case Attribute::StructRet: return 1 << 4; 1140 case Attribute::NoUnwind: return 1 << 5; 1141 case Attribute::NoAlias: return 1 << 6; 1142 case Attribute::ByVal: return 1 << 7; 1143 case Attribute::Nest: return 1 << 8; 1144 case Attribute::ReadNone: return 1 << 9; 1145 case Attribute::ReadOnly: return 1 << 10; 1146 case Attribute::NoInline: return 1 << 11; 1147 case Attribute::AlwaysInline: return 1 << 12; 1148 case Attribute::OptimizeForSize: return 1 << 13; 1149 case Attribute::StackProtect: return 1 << 14; 1150 case Attribute::StackProtectReq: return 1 << 15; 1151 case Attribute::Alignment: return 31 << 16; 1152 case Attribute::NoCapture: return 1 << 21; 1153 case Attribute::NoRedZone: return 1 << 22; 1154 case Attribute::NoImplicitFloat: return 1 << 23; 1155 case Attribute::Naked: return 1 << 24; 1156 case Attribute::InlineHint: return 1 << 25; 1157 case Attribute::StackAlignment: return 7 << 26; 1158 case Attribute::ReturnsTwice: return 1 << 29; 1159 case Attribute::UWTable: return 1 << 30; 1160 case Attribute::NonLazyBind: return 1U << 31; 1161 case Attribute::SanitizeAddress: return 1ULL << 32; 1162 case Attribute::MinSize: return 1ULL << 33; 1163 case Attribute::NoDuplicate: return 1ULL << 34; 1164 case Attribute::StackProtectStrong: return 1ULL << 35; 1165 case Attribute::SanitizeThread: return 1ULL << 36; 1166 case Attribute::SanitizeMemory: return 1ULL << 37; 1167 case Attribute::NoBuiltin: return 1ULL << 38; 1168 case Attribute::Returned: return 1ULL << 39; 1169 case Attribute::Cold: return 1ULL << 40; 1170 case Attribute::Builtin: return 1ULL << 41; 1171 case Attribute::OptimizeNone: return 1ULL << 42; 1172 case Attribute::InAlloca: return 1ULL << 43; 1173 case Attribute::NonNull: return 1ULL << 44; 1174 case Attribute::JumpTable: return 1ULL << 45; 1175 case Attribute::Convergent: return 1ULL << 46; 1176 case Attribute::SafeStack: return 1ULL << 47; 1177 case Attribute::NoRecurse: return 1ULL << 48; 1178 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1179 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1180 case Attribute::SwiftSelf: return 1ULL << 51; 1181 case Attribute::SwiftError: return 1ULL << 52; 1182 case Attribute::WriteOnly: return 1ULL << 53; 1183 case Attribute::Speculatable: return 1ULL << 54; 1184 case Attribute::StrictFP: return 1ULL << 55; 1185 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1186 case Attribute::NoCfCheck: return 1ULL << 57; 1187 case Attribute::OptForFuzzing: return 1ULL << 58; 1188 case Attribute::ShadowCallStack: return 1ULL << 59; 1189 case Attribute::SpeculativeLoadHardening: 1190 return 1ULL << 60; 1191 case Attribute::Dereferenceable: 1192 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1193 break; 1194 case Attribute::DereferenceableOrNull: 1195 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1196 "format"); 1197 break; 1198 case Attribute::ArgMemOnly: 1199 llvm_unreachable("argmemonly attribute not supported in raw format"); 1200 break; 1201 case Attribute::AllocSize: 1202 llvm_unreachable("allocsize not supported in raw format"); 1203 break; 1204 } 1205 llvm_unreachable("Unsupported attribute type"); 1206 } 1207 1208 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1209 if (!Val) return; 1210 1211 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1212 I = Attribute::AttrKind(I + 1)) { 1213 if (I == Attribute::Dereferenceable || 1214 I == Attribute::DereferenceableOrNull || 1215 I == Attribute::ArgMemOnly || 1216 I == Attribute::AllocSize) 1217 continue; 1218 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1219 if (I == Attribute::Alignment) 1220 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1221 else if (I == Attribute::StackAlignment) 1222 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1223 else 1224 B.addAttribute(I); 1225 } 1226 } 1227 } 1228 1229 /// This fills an AttrBuilder object with the LLVM attributes that have 1230 /// been decoded from the given integer. This function must stay in sync with 1231 /// 'encodeLLVMAttributesForBitcode'. 1232 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1233 uint64_t EncodedAttrs) { 1234 // FIXME: Remove in 4.0. 1235 1236 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1237 // the bits above 31 down by 11 bits. 1238 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1239 assert((!Alignment || isPowerOf2_32(Alignment)) && 1240 "Alignment must be a power of two."); 1241 1242 if (Alignment) 1243 B.addAlignmentAttr(Alignment); 1244 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1245 (EncodedAttrs & 0xffff)); 1246 } 1247 1248 Error BitcodeReader::parseAttributeBlock() { 1249 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1250 return error("Invalid record"); 1251 1252 if (!MAttributes.empty()) 1253 return error("Invalid multiple blocks"); 1254 1255 SmallVector<uint64_t, 64> Record; 1256 1257 SmallVector<AttributeList, 8> Attrs; 1258 1259 // Read all the records. 1260 while (true) { 1261 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1262 1263 switch (Entry.Kind) { 1264 case BitstreamEntry::SubBlock: // Handled for us already. 1265 case BitstreamEntry::Error: 1266 return error("Malformed block"); 1267 case BitstreamEntry::EndBlock: 1268 return Error::success(); 1269 case BitstreamEntry::Record: 1270 // The interesting case. 1271 break; 1272 } 1273 1274 // Read a record. 1275 Record.clear(); 1276 switch (Stream.readRecord(Entry.ID, Record)) { 1277 default: // Default behavior: ignore. 1278 break; 1279 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1280 // FIXME: Remove in 4.0. 1281 if (Record.size() & 1) 1282 return error("Invalid record"); 1283 1284 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1285 AttrBuilder B; 1286 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1287 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1288 } 1289 1290 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1291 Attrs.clear(); 1292 break; 1293 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1294 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1295 Attrs.push_back(MAttributeGroups[Record[i]]); 1296 1297 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1298 Attrs.clear(); 1299 break; 1300 } 1301 } 1302 } 1303 1304 // Returns Attribute::None on unrecognized codes. 1305 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1306 switch (Code) { 1307 default: 1308 return Attribute::None; 1309 case bitc::ATTR_KIND_ALIGNMENT: 1310 return Attribute::Alignment; 1311 case bitc::ATTR_KIND_ALWAYS_INLINE: 1312 return Attribute::AlwaysInline; 1313 case bitc::ATTR_KIND_ARGMEMONLY: 1314 return Attribute::ArgMemOnly; 1315 case bitc::ATTR_KIND_BUILTIN: 1316 return Attribute::Builtin; 1317 case bitc::ATTR_KIND_BY_VAL: 1318 return Attribute::ByVal; 1319 case bitc::ATTR_KIND_IN_ALLOCA: 1320 return Attribute::InAlloca; 1321 case bitc::ATTR_KIND_COLD: 1322 return Attribute::Cold; 1323 case bitc::ATTR_KIND_CONVERGENT: 1324 return Attribute::Convergent; 1325 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1326 return Attribute::InaccessibleMemOnly; 1327 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1328 return Attribute::InaccessibleMemOrArgMemOnly; 1329 case bitc::ATTR_KIND_INLINE_HINT: 1330 return Attribute::InlineHint; 1331 case bitc::ATTR_KIND_IN_REG: 1332 return Attribute::InReg; 1333 case bitc::ATTR_KIND_JUMP_TABLE: 1334 return Attribute::JumpTable; 1335 case bitc::ATTR_KIND_MIN_SIZE: 1336 return Attribute::MinSize; 1337 case bitc::ATTR_KIND_NAKED: 1338 return Attribute::Naked; 1339 case bitc::ATTR_KIND_NEST: 1340 return Attribute::Nest; 1341 case bitc::ATTR_KIND_NO_ALIAS: 1342 return Attribute::NoAlias; 1343 case bitc::ATTR_KIND_NO_BUILTIN: 1344 return Attribute::NoBuiltin; 1345 case bitc::ATTR_KIND_NO_CAPTURE: 1346 return Attribute::NoCapture; 1347 case bitc::ATTR_KIND_NO_DUPLICATE: 1348 return Attribute::NoDuplicate; 1349 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1350 return Attribute::NoImplicitFloat; 1351 case bitc::ATTR_KIND_NO_INLINE: 1352 return Attribute::NoInline; 1353 case bitc::ATTR_KIND_NO_RECURSE: 1354 return Attribute::NoRecurse; 1355 case bitc::ATTR_KIND_NON_LAZY_BIND: 1356 return Attribute::NonLazyBind; 1357 case bitc::ATTR_KIND_NON_NULL: 1358 return Attribute::NonNull; 1359 case bitc::ATTR_KIND_DEREFERENCEABLE: 1360 return Attribute::Dereferenceable; 1361 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1362 return Attribute::DereferenceableOrNull; 1363 case bitc::ATTR_KIND_ALLOC_SIZE: 1364 return Attribute::AllocSize; 1365 case bitc::ATTR_KIND_NO_RED_ZONE: 1366 return Attribute::NoRedZone; 1367 case bitc::ATTR_KIND_NO_RETURN: 1368 return Attribute::NoReturn; 1369 case bitc::ATTR_KIND_NOCF_CHECK: 1370 return Attribute::NoCfCheck; 1371 case bitc::ATTR_KIND_NO_UNWIND: 1372 return Attribute::NoUnwind; 1373 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1374 return Attribute::OptForFuzzing; 1375 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1376 return Attribute::OptimizeForSize; 1377 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1378 return Attribute::OptimizeNone; 1379 case bitc::ATTR_KIND_READ_NONE: 1380 return Attribute::ReadNone; 1381 case bitc::ATTR_KIND_READ_ONLY: 1382 return Attribute::ReadOnly; 1383 case bitc::ATTR_KIND_RETURNED: 1384 return Attribute::Returned; 1385 case bitc::ATTR_KIND_RETURNS_TWICE: 1386 return Attribute::ReturnsTwice; 1387 case bitc::ATTR_KIND_S_EXT: 1388 return Attribute::SExt; 1389 case bitc::ATTR_KIND_SPECULATABLE: 1390 return Attribute::Speculatable; 1391 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1392 return Attribute::StackAlignment; 1393 case bitc::ATTR_KIND_STACK_PROTECT: 1394 return Attribute::StackProtect; 1395 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1396 return Attribute::StackProtectReq; 1397 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1398 return Attribute::StackProtectStrong; 1399 case bitc::ATTR_KIND_SAFESTACK: 1400 return Attribute::SafeStack; 1401 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1402 return Attribute::ShadowCallStack; 1403 case bitc::ATTR_KIND_STRICT_FP: 1404 return Attribute::StrictFP; 1405 case bitc::ATTR_KIND_STRUCT_RET: 1406 return Attribute::StructRet; 1407 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1408 return Attribute::SanitizeAddress; 1409 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1410 return Attribute::SanitizeHWAddress; 1411 case bitc::ATTR_KIND_SANITIZE_THREAD: 1412 return Attribute::SanitizeThread; 1413 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1414 return Attribute::SanitizeMemory; 1415 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1416 return Attribute::SpeculativeLoadHardening; 1417 case bitc::ATTR_KIND_SWIFT_ERROR: 1418 return Attribute::SwiftError; 1419 case bitc::ATTR_KIND_SWIFT_SELF: 1420 return Attribute::SwiftSelf; 1421 case bitc::ATTR_KIND_UW_TABLE: 1422 return Attribute::UWTable; 1423 case bitc::ATTR_KIND_WRITEONLY: 1424 return Attribute::WriteOnly; 1425 case bitc::ATTR_KIND_Z_EXT: 1426 return Attribute::ZExt; 1427 } 1428 } 1429 1430 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1431 unsigned &Alignment) { 1432 // Note: Alignment in bitcode files is incremented by 1, so that zero 1433 // can be used for default alignment. 1434 if (Exponent > Value::MaxAlignmentExponent + 1) 1435 return error("Invalid alignment value"); 1436 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1437 return Error::success(); 1438 } 1439 1440 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1441 *Kind = getAttrFromCode(Code); 1442 if (*Kind == Attribute::None) 1443 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1444 return Error::success(); 1445 } 1446 1447 Error BitcodeReader::parseAttributeGroupBlock() { 1448 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1449 return error("Invalid record"); 1450 1451 if (!MAttributeGroups.empty()) 1452 return error("Invalid multiple blocks"); 1453 1454 SmallVector<uint64_t, 64> Record; 1455 1456 // Read all the records. 1457 while (true) { 1458 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1459 1460 switch (Entry.Kind) { 1461 case BitstreamEntry::SubBlock: // Handled for us already. 1462 case BitstreamEntry::Error: 1463 return error("Malformed block"); 1464 case BitstreamEntry::EndBlock: 1465 return Error::success(); 1466 case BitstreamEntry::Record: 1467 // The interesting case. 1468 break; 1469 } 1470 1471 // Read a record. 1472 Record.clear(); 1473 switch (Stream.readRecord(Entry.ID, Record)) { 1474 default: // Default behavior: ignore. 1475 break; 1476 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1477 if (Record.size() < 3) 1478 return error("Invalid record"); 1479 1480 uint64_t GrpID = Record[0]; 1481 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1482 1483 AttrBuilder B; 1484 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1485 if (Record[i] == 0) { // Enum attribute 1486 Attribute::AttrKind Kind; 1487 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1488 return Err; 1489 1490 B.addAttribute(Kind); 1491 } else if (Record[i] == 1) { // Integer attribute 1492 Attribute::AttrKind Kind; 1493 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1494 return Err; 1495 if (Kind == Attribute::Alignment) 1496 B.addAlignmentAttr(Record[++i]); 1497 else if (Kind == Attribute::StackAlignment) 1498 B.addStackAlignmentAttr(Record[++i]); 1499 else if (Kind == Attribute::Dereferenceable) 1500 B.addDereferenceableAttr(Record[++i]); 1501 else if (Kind == Attribute::DereferenceableOrNull) 1502 B.addDereferenceableOrNullAttr(Record[++i]); 1503 else if (Kind == Attribute::AllocSize) 1504 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1505 } else { // String attribute 1506 assert((Record[i] == 3 || Record[i] == 4) && 1507 "Invalid attribute group entry"); 1508 bool HasValue = (Record[i++] == 4); 1509 SmallString<64> KindStr; 1510 SmallString<64> ValStr; 1511 1512 while (Record[i] != 0 && i != e) 1513 KindStr += Record[i++]; 1514 assert(Record[i] == 0 && "Kind string not null terminated"); 1515 1516 if (HasValue) { 1517 // Has a value associated with it. 1518 ++i; // Skip the '0' that terminates the "kind" string. 1519 while (Record[i] != 0 && i != e) 1520 ValStr += Record[i++]; 1521 assert(Record[i] == 0 && "Value string not null terminated"); 1522 } 1523 1524 B.addAttribute(KindStr.str(), ValStr.str()); 1525 } 1526 } 1527 1528 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1529 break; 1530 } 1531 } 1532 } 1533 } 1534 1535 Error BitcodeReader::parseTypeTable() { 1536 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1537 return error("Invalid record"); 1538 1539 return parseTypeTableBody(); 1540 } 1541 1542 Error BitcodeReader::parseTypeTableBody() { 1543 if (!TypeList.empty()) 1544 return error("Invalid multiple blocks"); 1545 1546 SmallVector<uint64_t, 64> Record; 1547 unsigned NumRecords = 0; 1548 1549 SmallString<64> TypeName; 1550 1551 // Read all the records for this type table. 1552 while (true) { 1553 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1554 1555 switch (Entry.Kind) { 1556 case BitstreamEntry::SubBlock: // Handled for us already. 1557 case BitstreamEntry::Error: 1558 return error("Malformed block"); 1559 case BitstreamEntry::EndBlock: 1560 if (NumRecords != TypeList.size()) 1561 return error("Malformed block"); 1562 return Error::success(); 1563 case BitstreamEntry::Record: 1564 // The interesting case. 1565 break; 1566 } 1567 1568 // Read a record. 1569 Record.clear(); 1570 Type *ResultTy = nullptr; 1571 switch (Stream.readRecord(Entry.ID, Record)) { 1572 default: 1573 return error("Invalid value"); 1574 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1575 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1576 // type list. This allows us to reserve space. 1577 if (Record.size() < 1) 1578 return error("Invalid record"); 1579 TypeList.resize(Record[0]); 1580 continue; 1581 case bitc::TYPE_CODE_VOID: // VOID 1582 ResultTy = Type::getVoidTy(Context); 1583 break; 1584 case bitc::TYPE_CODE_HALF: // HALF 1585 ResultTy = Type::getHalfTy(Context); 1586 break; 1587 case bitc::TYPE_CODE_FLOAT: // FLOAT 1588 ResultTy = Type::getFloatTy(Context); 1589 break; 1590 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1591 ResultTy = Type::getDoubleTy(Context); 1592 break; 1593 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1594 ResultTy = Type::getX86_FP80Ty(Context); 1595 break; 1596 case bitc::TYPE_CODE_FP128: // FP128 1597 ResultTy = Type::getFP128Ty(Context); 1598 break; 1599 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1600 ResultTy = Type::getPPC_FP128Ty(Context); 1601 break; 1602 case bitc::TYPE_CODE_LABEL: // LABEL 1603 ResultTy = Type::getLabelTy(Context); 1604 break; 1605 case bitc::TYPE_CODE_METADATA: // METADATA 1606 ResultTy = Type::getMetadataTy(Context); 1607 break; 1608 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1609 ResultTy = Type::getX86_MMXTy(Context); 1610 break; 1611 case bitc::TYPE_CODE_TOKEN: // TOKEN 1612 ResultTy = Type::getTokenTy(Context); 1613 break; 1614 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1615 if (Record.size() < 1) 1616 return error("Invalid record"); 1617 1618 uint64_t NumBits = Record[0]; 1619 if (NumBits < IntegerType::MIN_INT_BITS || 1620 NumBits > IntegerType::MAX_INT_BITS) 1621 return error("Bitwidth for integer type out of range"); 1622 ResultTy = IntegerType::get(Context, NumBits); 1623 break; 1624 } 1625 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1626 // [pointee type, address space] 1627 if (Record.size() < 1) 1628 return error("Invalid record"); 1629 unsigned AddressSpace = 0; 1630 if (Record.size() == 2) 1631 AddressSpace = Record[1]; 1632 ResultTy = getTypeByID(Record[0]); 1633 if (!ResultTy || 1634 !PointerType::isValidElementType(ResultTy)) 1635 return error("Invalid type"); 1636 ResultTy = PointerType::get(ResultTy, AddressSpace); 1637 break; 1638 } 1639 case bitc::TYPE_CODE_FUNCTION_OLD: { 1640 // FIXME: attrid is dead, remove it in LLVM 4.0 1641 // FUNCTION: [vararg, attrid, retty, paramty x N] 1642 if (Record.size() < 3) 1643 return error("Invalid record"); 1644 SmallVector<Type*, 8> ArgTys; 1645 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1646 if (Type *T = getTypeByID(Record[i])) 1647 ArgTys.push_back(T); 1648 else 1649 break; 1650 } 1651 1652 ResultTy = getTypeByID(Record[2]); 1653 if (!ResultTy || ArgTys.size() < Record.size()-3) 1654 return error("Invalid type"); 1655 1656 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1657 break; 1658 } 1659 case bitc::TYPE_CODE_FUNCTION: { 1660 // FUNCTION: [vararg, retty, paramty x N] 1661 if (Record.size() < 2) 1662 return error("Invalid record"); 1663 SmallVector<Type*, 8> ArgTys; 1664 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1665 if (Type *T = getTypeByID(Record[i])) { 1666 if (!FunctionType::isValidArgumentType(T)) 1667 return error("Invalid function argument type"); 1668 ArgTys.push_back(T); 1669 } 1670 else 1671 break; 1672 } 1673 1674 ResultTy = getTypeByID(Record[1]); 1675 if (!ResultTy || ArgTys.size() < Record.size()-2) 1676 return error("Invalid type"); 1677 1678 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1679 break; 1680 } 1681 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1682 if (Record.size() < 1) 1683 return error("Invalid record"); 1684 SmallVector<Type*, 8> EltTys; 1685 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1686 if (Type *T = getTypeByID(Record[i])) 1687 EltTys.push_back(T); 1688 else 1689 break; 1690 } 1691 if (EltTys.size() != Record.size()-1) 1692 return error("Invalid type"); 1693 ResultTy = StructType::get(Context, EltTys, Record[0]); 1694 break; 1695 } 1696 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1697 if (convertToString(Record, 0, TypeName)) 1698 return error("Invalid record"); 1699 continue; 1700 1701 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1702 if (Record.size() < 1) 1703 return error("Invalid record"); 1704 1705 if (NumRecords >= TypeList.size()) 1706 return error("Invalid TYPE table"); 1707 1708 // Check to see if this was forward referenced, if so fill in the temp. 1709 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1710 if (Res) { 1711 Res->setName(TypeName); 1712 TypeList[NumRecords] = nullptr; 1713 } else // Otherwise, create a new struct. 1714 Res = createIdentifiedStructType(Context, TypeName); 1715 TypeName.clear(); 1716 1717 SmallVector<Type*, 8> EltTys; 1718 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1719 if (Type *T = getTypeByID(Record[i])) 1720 EltTys.push_back(T); 1721 else 1722 break; 1723 } 1724 if (EltTys.size() != Record.size()-1) 1725 return error("Invalid record"); 1726 Res->setBody(EltTys, Record[0]); 1727 ResultTy = Res; 1728 break; 1729 } 1730 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1731 if (Record.size() != 1) 1732 return error("Invalid record"); 1733 1734 if (NumRecords >= TypeList.size()) 1735 return error("Invalid TYPE table"); 1736 1737 // Check to see if this was forward referenced, if so fill in the temp. 1738 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1739 if (Res) { 1740 Res->setName(TypeName); 1741 TypeList[NumRecords] = nullptr; 1742 } else // Otherwise, create a new struct with no body. 1743 Res = createIdentifiedStructType(Context, TypeName); 1744 TypeName.clear(); 1745 ResultTy = Res; 1746 break; 1747 } 1748 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1749 if (Record.size() < 2) 1750 return error("Invalid record"); 1751 ResultTy = getTypeByID(Record[1]); 1752 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1753 return error("Invalid type"); 1754 ResultTy = ArrayType::get(ResultTy, Record[0]); 1755 break; 1756 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1757 if (Record.size() < 2) 1758 return error("Invalid record"); 1759 if (Record[0] == 0) 1760 return error("Invalid vector length"); 1761 ResultTy = getTypeByID(Record[1]); 1762 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1763 return error("Invalid type"); 1764 ResultTy = VectorType::get(ResultTy, Record[0]); 1765 break; 1766 } 1767 1768 if (NumRecords >= TypeList.size()) 1769 return error("Invalid TYPE table"); 1770 if (TypeList[NumRecords]) 1771 return error( 1772 "Invalid TYPE table: Only named structs can be forward referenced"); 1773 assert(ResultTy && "Didn't read a type?"); 1774 TypeList[NumRecords++] = ResultTy; 1775 } 1776 } 1777 1778 Error BitcodeReader::parseOperandBundleTags() { 1779 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1780 return error("Invalid record"); 1781 1782 if (!BundleTags.empty()) 1783 return error("Invalid multiple blocks"); 1784 1785 SmallVector<uint64_t, 64> Record; 1786 1787 while (true) { 1788 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1789 1790 switch (Entry.Kind) { 1791 case BitstreamEntry::SubBlock: // Handled for us already. 1792 case BitstreamEntry::Error: 1793 return error("Malformed block"); 1794 case BitstreamEntry::EndBlock: 1795 return Error::success(); 1796 case BitstreamEntry::Record: 1797 // The interesting case. 1798 break; 1799 } 1800 1801 // Tags are implicitly mapped to integers by their order. 1802 1803 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1804 return error("Invalid record"); 1805 1806 // OPERAND_BUNDLE_TAG: [strchr x N] 1807 BundleTags.emplace_back(); 1808 if (convertToString(Record, 0, BundleTags.back())) 1809 return error("Invalid record"); 1810 Record.clear(); 1811 } 1812 } 1813 1814 Error BitcodeReader::parseSyncScopeNames() { 1815 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1816 return error("Invalid record"); 1817 1818 if (!SSIDs.empty()) 1819 return error("Invalid multiple synchronization scope names blocks"); 1820 1821 SmallVector<uint64_t, 64> Record; 1822 while (true) { 1823 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1824 switch (Entry.Kind) { 1825 case BitstreamEntry::SubBlock: // Handled for us already. 1826 case BitstreamEntry::Error: 1827 return error("Malformed block"); 1828 case BitstreamEntry::EndBlock: 1829 if (SSIDs.empty()) 1830 return error("Invalid empty synchronization scope names block"); 1831 return Error::success(); 1832 case BitstreamEntry::Record: 1833 // The interesting case. 1834 break; 1835 } 1836 1837 // Synchronization scope names are implicitly mapped to synchronization 1838 // scope IDs by their order. 1839 1840 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1841 return error("Invalid record"); 1842 1843 SmallString<16> SSN; 1844 if (convertToString(Record, 0, SSN)) 1845 return error("Invalid record"); 1846 1847 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1848 Record.clear(); 1849 } 1850 } 1851 1852 /// Associate a value with its name from the given index in the provided record. 1853 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1854 unsigned NameIndex, Triple &TT) { 1855 SmallString<128> ValueName; 1856 if (convertToString(Record, NameIndex, ValueName)) 1857 return error("Invalid record"); 1858 unsigned ValueID = Record[0]; 1859 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1860 return error("Invalid record"); 1861 Value *V = ValueList[ValueID]; 1862 1863 StringRef NameStr(ValueName.data(), ValueName.size()); 1864 if (NameStr.find_first_of(0) != StringRef::npos) 1865 return error("Invalid value name"); 1866 V->setName(NameStr); 1867 auto *GO = dyn_cast<GlobalObject>(V); 1868 if (GO) { 1869 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1870 if (TT.supportsCOMDAT()) 1871 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1872 else 1873 GO->setComdat(nullptr); 1874 } 1875 } 1876 return V; 1877 } 1878 1879 /// Helper to note and return the current location, and jump to the given 1880 /// offset. 1881 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1882 BitstreamCursor &Stream) { 1883 // Save the current parsing location so we can jump back at the end 1884 // of the VST read. 1885 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1886 Stream.JumpToBit(Offset * 32); 1887 #ifndef NDEBUG 1888 // Do some checking if we are in debug mode. 1889 BitstreamEntry Entry = Stream.advance(); 1890 assert(Entry.Kind == BitstreamEntry::SubBlock); 1891 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1892 #else 1893 // In NDEBUG mode ignore the output so we don't get an unused variable 1894 // warning. 1895 Stream.advance(); 1896 #endif 1897 return CurrentBit; 1898 } 1899 1900 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1901 Function *F, 1902 ArrayRef<uint64_t> Record) { 1903 // Note that we subtract 1 here because the offset is relative to one word 1904 // before the start of the identification or module block, which was 1905 // historically always the start of the regular bitcode header. 1906 uint64_t FuncWordOffset = Record[1] - 1; 1907 uint64_t FuncBitOffset = FuncWordOffset * 32; 1908 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1909 // Set the LastFunctionBlockBit to point to the last function block. 1910 // Later when parsing is resumed after function materialization, 1911 // we can simply skip that last function block. 1912 if (FuncBitOffset > LastFunctionBlockBit) 1913 LastFunctionBlockBit = FuncBitOffset; 1914 } 1915 1916 /// Read a new-style GlobalValue symbol table. 1917 Error BitcodeReader::parseGlobalValueSymbolTable() { 1918 unsigned FuncBitcodeOffsetDelta = 1919 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1920 1921 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1922 return error("Invalid record"); 1923 1924 SmallVector<uint64_t, 64> Record; 1925 while (true) { 1926 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1927 1928 switch (Entry.Kind) { 1929 case BitstreamEntry::SubBlock: 1930 case BitstreamEntry::Error: 1931 return error("Malformed block"); 1932 case BitstreamEntry::EndBlock: 1933 return Error::success(); 1934 case BitstreamEntry::Record: 1935 break; 1936 } 1937 1938 Record.clear(); 1939 switch (Stream.readRecord(Entry.ID, Record)) { 1940 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1941 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1942 cast<Function>(ValueList[Record[0]]), Record); 1943 break; 1944 } 1945 } 1946 } 1947 1948 /// Parse the value symbol table at either the current parsing location or 1949 /// at the given bit offset if provided. 1950 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1951 uint64_t CurrentBit; 1952 // Pass in the Offset to distinguish between calling for the module-level 1953 // VST (where we want to jump to the VST offset) and the function-level 1954 // VST (where we don't). 1955 if (Offset > 0) { 1956 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1957 // If this module uses a string table, read this as a module-level VST. 1958 if (UseStrtab) { 1959 if (Error Err = parseGlobalValueSymbolTable()) 1960 return Err; 1961 Stream.JumpToBit(CurrentBit); 1962 return Error::success(); 1963 } 1964 // Otherwise, the VST will be in a similar format to a function-level VST, 1965 // and will contain symbol names. 1966 } 1967 1968 // Compute the delta between the bitcode indices in the VST (the word offset 1969 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1970 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1971 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1972 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1973 // just before entering the VST subblock because: 1) the EnterSubBlock 1974 // changes the AbbrevID width; 2) the VST block is nested within the same 1975 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1976 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1977 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1978 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1979 unsigned FuncBitcodeOffsetDelta = 1980 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1981 1982 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1983 return error("Invalid record"); 1984 1985 SmallVector<uint64_t, 64> Record; 1986 1987 Triple TT(TheModule->getTargetTriple()); 1988 1989 // Read all the records for this value table. 1990 SmallString<128> ValueName; 1991 1992 while (true) { 1993 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (Offset > 0) 2001 Stream.JumpToBit(CurrentBit); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Read a record. 2009 Record.clear(); 2010 switch (Stream.readRecord(Entry.ID, Record)) { 2011 default: // Default behavior: unknown type. 2012 break; 2013 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2014 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2015 if (Error Err = ValOrErr.takeError()) 2016 return Err; 2017 ValOrErr.get(); 2018 break; 2019 } 2020 case bitc::VST_CODE_FNENTRY: { 2021 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2022 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2023 if (Error Err = ValOrErr.takeError()) 2024 return Err; 2025 Value *V = ValOrErr.get(); 2026 2027 // Ignore function offsets emitted for aliases of functions in older 2028 // versions of LLVM. 2029 if (auto *F = dyn_cast<Function>(V)) 2030 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2031 break; 2032 } 2033 case bitc::VST_CODE_BBENTRY: { 2034 if (convertToString(Record, 1, ValueName)) 2035 return error("Invalid record"); 2036 BasicBlock *BB = getBasicBlock(Record[0]); 2037 if (!BB) 2038 return error("Invalid record"); 2039 2040 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2041 ValueName.clear(); 2042 break; 2043 } 2044 } 2045 } 2046 } 2047 2048 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2049 /// encoding. 2050 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2051 if ((V & 1) == 0) 2052 return V >> 1; 2053 if (V != 1) 2054 return -(V >> 1); 2055 // There is no such thing as -0 with integers. "-0" really means MININT. 2056 return 1ULL << 63; 2057 } 2058 2059 /// Resolve all of the initializers for global values and aliases that we can. 2060 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2061 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2062 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2063 IndirectSymbolInitWorklist; 2064 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2065 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2066 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2067 2068 GlobalInitWorklist.swap(GlobalInits); 2069 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2070 FunctionPrefixWorklist.swap(FunctionPrefixes); 2071 FunctionPrologueWorklist.swap(FunctionPrologues); 2072 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2073 2074 while (!GlobalInitWorklist.empty()) { 2075 unsigned ValID = GlobalInitWorklist.back().second; 2076 if (ValID >= ValueList.size()) { 2077 // Not ready to resolve this yet, it requires something later in the file. 2078 GlobalInits.push_back(GlobalInitWorklist.back()); 2079 } else { 2080 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2081 GlobalInitWorklist.back().first->setInitializer(C); 2082 else 2083 return error("Expected a constant"); 2084 } 2085 GlobalInitWorklist.pop_back(); 2086 } 2087 2088 while (!IndirectSymbolInitWorklist.empty()) { 2089 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2090 if (ValID >= ValueList.size()) { 2091 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2092 } else { 2093 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2094 if (!C) 2095 return error("Expected a constant"); 2096 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2097 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2098 return error("Alias and aliasee types don't match"); 2099 GIS->setIndirectSymbol(C); 2100 } 2101 IndirectSymbolInitWorklist.pop_back(); 2102 } 2103 2104 while (!FunctionPrefixWorklist.empty()) { 2105 unsigned ValID = FunctionPrefixWorklist.back().second; 2106 if (ValID >= ValueList.size()) { 2107 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2108 } else { 2109 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2110 FunctionPrefixWorklist.back().first->setPrefixData(C); 2111 else 2112 return error("Expected a constant"); 2113 } 2114 FunctionPrefixWorklist.pop_back(); 2115 } 2116 2117 while (!FunctionPrologueWorklist.empty()) { 2118 unsigned ValID = FunctionPrologueWorklist.back().second; 2119 if (ValID >= ValueList.size()) { 2120 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2121 } else { 2122 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2123 FunctionPrologueWorklist.back().first->setPrologueData(C); 2124 else 2125 return error("Expected a constant"); 2126 } 2127 FunctionPrologueWorklist.pop_back(); 2128 } 2129 2130 while (!FunctionPersonalityFnWorklist.empty()) { 2131 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2132 if (ValID >= ValueList.size()) { 2133 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2134 } else { 2135 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2136 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2137 else 2138 return error("Expected a constant"); 2139 } 2140 FunctionPersonalityFnWorklist.pop_back(); 2141 } 2142 2143 return Error::success(); 2144 } 2145 2146 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2147 SmallVector<uint64_t, 8> Words(Vals.size()); 2148 transform(Vals, Words.begin(), 2149 BitcodeReader::decodeSignRotatedValue); 2150 2151 return APInt(TypeBits, Words); 2152 } 2153 2154 Error BitcodeReader::parseConstants() { 2155 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2156 return error("Invalid record"); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 2160 // Read all the records for this value table. 2161 Type *CurTy = Type::getInt32Ty(Context); 2162 unsigned NextCstNo = ValueList.size(); 2163 2164 while (true) { 2165 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2166 2167 switch (Entry.Kind) { 2168 case BitstreamEntry::SubBlock: // Handled for us already. 2169 case BitstreamEntry::Error: 2170 return error("Malformed block"); 2171 case BitstreamEntry::EndBlock: 2172 if (NextCstNo != ValueList.size()) 2173 return error("Invalid constant reference"); 2174 2175 // Once all the constants have been read, go through and resolve forward 2176 // references. 2177 ValueList.resolveConstantForwardRefs(); 2178 return Error::success(); 2179 case BitstreamEntry::Record: 2180 // The interesting case. 2181 break; 2182 } 2183 2184 // Read a record. 2185 Record.clear(); 2186 Type *VoidType = Type::getVoidTy(Context); 2187 Value *V = nullptr; 2188 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2189 switch (BitCode) { 2190 default: // Default behavior: unknown constant 2191 case bitc::CST_CODE_UNDEF: // UNDEF 2192 V = UndefValue::get(CurTy); 2193 break; 2194 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2195 if (Record.empty()) 2196 return error("Invalid record"); 2197 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2198 return error("Invalid record"); 2199 if (TypeList[Record[0]] == VoidType) 2200 return error("Invalid constant type"); 2201 CurTy = TypeList[Record[0]]; 2202 continue; // Skip the ValueList manipulation. 2203 case bitc::CST_CODE_NULL: // NULL 2204 V = Constant::getNullValue(CurTy); 2205 break; 2206 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2207 if (!CurTy->isIntegerTy() || Record.empty()) 2208 return error("Invalid record"); 2209 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2210 break; 2211 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2212 if (!CurTy->isIntegerTy() || Record.empty()) 2213 return error("Invalid record"); 2214 2215 APInt VInt = 2216 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2217 V = ConstantInt::get(Context, VInt); 2218 2219 break; 2220 } 2221 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2222 if (Record.empty()) 2223 return error("Invalid record"); 2224 if (CurTy->isHalfTy()) 2225 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2226 APInt(16, (uint16_t)Record[0]))); 2227 else if (CurTy->isFloatTy()) 2228 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2229 APInt(32, (uint32_t)Record[0]))); 2230 else if (CurTy->isDoubleTy()) 2231 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2232 APInt(64, Record[0]))); 2233 else if (CurTy->isX86_FP80Ty()) { 2234 // Bits are not stored the same way as a normal i80 APInt, compensate. 2235 uint64_t Rearrange[2]; 2236 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2237 Rearrange[1] = Record[0] >> 48; 2238 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2239 APInt(80, Rearrange))); 2240 } else if (CurTy->isFP128Ty()) 2241 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2242 APInt(128, Record))); 2243 else if (CurTy->isPPC_FP128Ty()) 2244 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2245 APInt(128, Record))); 2246 else 2247 V = UndefValue::get(CurTy); 2248 break; 2249 } 2250 2251 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2252 if (Record.empty()) 2253 return error("Invalid record"); 2254 2255 unsigned Size = Record.size(); 2256 SmallVector<Constant*, 16> Elts; 2257 2258 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2259 for (unsigned i = 0; i != Size; ++i) 2260 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2261 STy->getElementType(i))); 2262 V = ConstantStruct::get(STy, Elts); 2263 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2264 Type *EltTy = ATy->getElementType(); 2265 for (unsigned i = 0; i != Size; ++i) 2266 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2267 V = ConstantArray::get(ATy, Elts); 2268 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2269 Type *EltTy = VTy->getElementType(); 2270 for (unsigned i = 0; i != Size; ++i) 2271 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2272 V = ConstantVector::get(Elts); 2273 } else { 2274 V = UndefValue::get(CurTy); 2275 } 2276 break; 2277 } 2278 case bitc::CST_CODE_STRING: // STRING: [values] 2279 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2280 if (Record.empty()) 2281 return error("Invalid record"); 2282 2283 SmallString<16> Elts(Record.begin(), Record.end()); 2284 V = ConstantDataArray::getString(Context, Elts, 2285 BitCode == bitc::CST_CODE_CSTRING); 2286 break; 2287 } 2288 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2289 if (Record.empty()) 2290 return error("Invalid record"); 2291 2292 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2293 if (EltTy->isIntegerTy(8)) { 2294 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::get(Context, Elts); 2297 else 2298 V = ConstantDataArray::get(Context, Elts); 2299 } else if (EltTy->isIntegerTy(16)) { 2300 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2301 if (isa<VectorType>(CurTy)) 2302 V = ConstantDataVector::get(Context, Elts); 2303 else 2304 V = ConstantDataArray::get(Context, Elts); 2305 } else if (EltTy->isIntegerTy(32)) { 2306 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2307 if (isa<VectorType>(CurTy)) 2308 V = ConstantDataVector::get(Context, Elts); 2309 else 2310 V = ConstantDataArray::get(Context, Elts); 2311 } else if (EltTy->isIntegerTy(64)) { 2312 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2313 if (isa<VectorType>(CurTy)) 2314 V = ConstantDataVector::get(Context, Elts); 2315 else 2316 V = ConstantDataArray::get(Context, Elts); 2317 } else if (EltTy->isHalfTy()) { 2318 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2319 if (isa<VectorType>(CurTy)) 2320 V = ConstantDataVector::getFP(Context, Elts); 2321 else 2322 V = ConstantDataArray::getFP(Context, Elts); 2323 } else if (EltTy->isFloatTy()) { 2324 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2325 if (isa<VectorType>(CurTy)) 2326 V = ConstantDataVector::getFP(Context, Elts); 2327 else 2328 V = ConstantDataArray::getFP(Context, Elts); 2329 } else if (EltTy->isDoubleTy()) { 2330 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2331 if (isa<VectorType>(CurTy)) 2332 V = ConstantDataVector::getFP(Context, Elts); 2333 else 2334 V = ConstantDataArray::getFP(Context, Elts); 2335 } else { 2336 return error("Invalid type for value"); 2337 } 2338 break; 2339 } 2340 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2341 if (Record.size() < 2) 2342 return error("Invalid record"); 2343 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2344 if (Opc < 0) { 2345 V = UndefValue::get(CurTy); // Unknown unop. 2346 } else { 2347 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2348 unsigned Flags = 0; 2349 V = ConstantExpr::get(Opc, LHS, Flags); 2350 } 2351 break; 2352 } 2353 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2354 if (Record.size() < 3) 2355 return error("Invalid record"); 2356 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2357 if (Opc < 0) { 2358 V = UndefValue::get(CurTy); // Unknown binop. 2359 } else { 2360 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2361 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2362 unsigned Flags = 0; 2363 if (Record.size() >= 4) { 2364 if (Opc == Instruction::Add || 2365 Opc == Instruction::Sub || 2366 Opc == Instruction::Mul || 2367 Opc == Instruction::Shl) { 2368 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2369 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2370 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2371 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2372 } else if (Opc == Instruction::SDiv || 2373 Opc == Instruction::UDiv || 2374 Opc == Instruction::LShr || 2375 Opc == Instruction::AShr) { 2376 if (Record[3] & (1 << bitc::PEO_EXACT)) 2377 Flags |= SDivOperator::IsExact; 2378 } 2379 } 2380 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2381 } 2382 break; 2383 } 2384 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2385 if (Record.size() < 3) 2386 return error("Invalid record"); 2387 int Opc = getDecodedCastOpcode(Record[0]); 2388 if (Opc < 0) { 2389 V = UndefValue::get(CurTy); // Unknown cast. 2390 } else { 2391 Type *OpTy = getTypeByID(Record[1]); 2392 if (!OpTy) 2393 return error("Invalid record"); 2394 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2395 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2396 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2397 } 2398 break; 2399 } 2400 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2401 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2402 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2403 // operands] 2404 unsigned OpNum = 0; 2405 Type *PointeeType = nullptr; 2406 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2407 Record.size() % 2) 2408 PointeeType = getTypeByID(Record[OpNum++]); 2409 2410 bool InBounds = false; 2411 Optional<unsigned> InRangeIndex; 2412 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2413 uint64_t Op = Record[OpNum++]; 2414 InBounds = Op & 1; 2415 InRangeIndex = Op >> 1; 2416 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2417 InBounds = true; 2418 2419 SmallVector<Constant*, 16> Elts; 2420 while (OpNum != Record.size()) { 2421 Type *ElTy = getTypeByID(Record[OpNum++]); 2422 if (!ElTy) 2423 return error("Invalid record"); 2424 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2425 } 2426 2427 if (PointeeType && 2428 PointeeType != 2429 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2430 ->getElementType()) 2431 return error("Explicit gep operator type does not match pointee type " 2432 "of pointer operand"); 2433 2434 if (Elts.size() < 1) 2435 return error("Invalid gep with no operands"); 2436 2437 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2438 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2439 InBounds, InRangeIndex); 2440 break; 2441 } 2442 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2443 if (Record.size() < 3) 2444 return error("Invalid record"); 2445 2446 Type *SelectorTy = Type::getInt1Ty(Context); 2447 2448 // The selector might be an i1 or an <n x i1> 2449 // Get the type from the ValueList before getting a forward ref. 2450 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2451 if (Value *V = ValueList[Record[0]]) 2452 if (SelectorTy != V->getType()) 2453 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2454 2455 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2456 SelectorTy), 2457 ValueList.getConstantFwdRef(Record[1],CurTy), 2458 ValueList.getConstantFwdRef(Record[2],CurTy)); 2459 break; 2460 } 2461 case bitc::CST_CODE_CE_EXTRACTELT 2462 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2463 if (Record.size() < 3) 2464 return error("Invalid record"); 2465 VectorType *OpTy = 2466 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2467 if (!OpTy) 2468 return error("Invalid record"); 2469 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2470 Constant *Op1 = nullptr; 2471 if (Record.size() == 4) { 2472 Type *IdxTy = getTypeByID(Record[2]); 2473 if (!IdxTy) 2474 return error("Invalid record"); 2475 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2476 } else // TODO: Remove with llvm 4.0 2477 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2478 if (!Op1) 2479 return error("Invalid record"); 2480 V = ConstantExpr::getExtractElement(Op0, Op1); 2481 break; 2482 } 2483 case bitc::CST_CODE_CE_INSERTELT 2484 : { // CE_INSERTELT: [opval, opval, opty, opval] 2485 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2486 if (Record.size() < 3 || !OpTy) 2487 return error("Invalid record"); 2488 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2489 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2490 OpTy->getElementType()); 2491 Constant *Op2 = nullptr; 2492 if (Record.size() == 4) { 2493 Type *IdxTy = getTypeByID(Record[2]); 2494 if (!IdxTy) 2495 return error("Invalid record"); 2496 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2497 } else // TODO: Remove with llvm 4.0 2498 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2499 if (!Op2) 2500 return error("Invalid record"); 2501 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2502 break; 2503 } 2504 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2505 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2506 if (Record.size() < 3 || !OpTy) 2507 return error("Invalid record"); 2508 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2509 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2510 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2511 OpTy->getNumElements()); 2512 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2513 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2514 break; 2515 } 2516 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2517 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2518 VectorType *OpTy = 2519 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2520 if (Record.size() < 4 || !RTy || !OpTy) 2521 return error("Invalid record"); 2522 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2523 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2524 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2525 RTy->getNumElements()); 2526 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2527 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2528 break; 2529 } 2530 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2531 if (Record.size() < 4) 2532 return error("Invalid record"); 2533 Type *OpTy = getTypeByID(Record[0]); 2534 if (!OpTy) 2535 return error("Invalid record"); 2536 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2537 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2538 2539 if (OpTy->isFPOrFPVectorTy()) 2540 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2541 else 2542 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2543 break; 2544 } 2545 // This maintains backward compatibility, pre-asm dialect keywords. 2546 // FIXME: Remove with the 4.0 release. 2547 case bitc::CST_CODE_INLINEASM_OLD: { 2548 if (Record.size() < 2) 2549 return error("Invalid record"); 2550 std::string AsmStr, ConstrStr; 2551 bool HasSideEffects = Record[0] & 1; 2552 bool IsAlignStack = Record[0] >> 1; 2553 unsigned AsmStrSize = Record[1]; 2554 if (2+AsmStrSize >= Record.size()) 2555 return error("Invalid record"); 2556 unsigned ConstStrSize = Record[2+AsmStrSize]; 2557 if (3+AsmStrSize+ConstStrSize > Record.size()) 2558 return error("Invalid record"); 2559 2560 for (unsigned i = 0; i != AsmStrSize; ++i) 2561 AsmStr += (char)Record[2+i]; 2562 for (unsigned i = 0; i != ConstStrSize; ++i) 2563 ConstrStr += (char)Record[3+AsmStrSize+i]; 2564 PointerType *PTy = cast<PointerType>(CurTy); 2565 UpgradeInlineAsmString(&AsmStr); 2566 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2567 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2568 break; 2569 } 2570 // This version adds support for the asm dialect keywords (e.g., 2571 // inteldialect). 2572 case bitc::CST_CODE_INLINEASM: { 2573 if (Record.size() < 2) 2574 return error("Invalid record"); 2575 std::string AsmStr, ConstrStr; 2576 bool HasSideEffects = Record[0] & 1; 2577 bool IsAlignStack = (Record[0] >> 1) & 1; 2578 unsigned AsmDialect = Record[0] >> 2; 2579 unsigned AsmStrSize = Record[1]; 2580 if (2+AsmStrSize >= Record.size()) 2581 return error("Invalid record"); 2582 unsigned ConstStrSize = Record[2+AsmStrSize]; 2583 if (3+AsmStrSize+ConstStrSize > Record.size()) 2584 return error("Invalid record"); 2585 2586 for (unsigned i = 0; i != AsmStrSize; ++i) 2587 AsmStr += (char)Record[2+i]; 2588 for (unsigned i = 0; i != ConstStrSize; ++i) 2589 ConstrStr += (char)Record[3+AsmStrSize+i]; 2590 PointerType *PTy = cast<PointerType>(CurTy); 2591 UpgradeInlineAsmString(&AsmStr); 2592 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2593 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2594 InlineAsm::AsmDialect(AsmDialect)); 2595 break; 2596 } 2597 case bitc::CST_CODE_BLOCKADDRESS:{ 2598 if (Record.size() < 3) 2599 return error("Invalid record"); 2600 Type *FnTy = getTypeByID(Record[0]); 2601 if (!FnTy) 2602 return error("Invalid record"); 2603 Function *Fn = 2604 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2605 if (!Fn) 2606 return error("Invalid record"); 2607 2608 // If the function is already parsed we can insert the block address right 2609 // away. 2610 BasicBlock *BB; 2611 unsigned BBID = Record[2]; 2612 if (!BBID) 2613 // Invalid reference to entry block. 2614 return error("Invalid ID"); 2615 if (!Fn->empty()) { 2616 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2617 for (size_t I = 0, E = BBID; I != E; ++I) { 2618 if (BBI == BBE) 2619 return error("Invalid ID"); 2620 ++BBI; 2621 } 2622 BB = &*BBI; 2623 } else { 2624 // Otherwise insert a placeholder and remember it so it can be inserted 2625 // when the function is parsed. 2626 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2627 if (FwdBBs.empty()) 2628 BasicBlockFwdRefQueue.push_back(Fn); 2629 if (FwdBBs.size() < BBID + 1) 2630 FwdBBs.resize(BBID + 1); 2631 if (!FwdBBs[BBID]) 2632 FwdBBs[BBID] = BasicBlock::Create(Context); 2633 BB = FwdBBs[BBID]; 2634 } 2635 V = BlockAddress::get(Fn, BB); 2636 break; 2637 } 2638 } 2639 2640 ValueList.assignValue(V, NextCstNo); 2641 ++NextCstNo; 2642 } 2643 } 2644 2645 Error BitcodeReader::parseUseLists() { 2646 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2647 return error("Invalid record"); 2648 2649 // Read all the records. 2650 SmallVector<uint64_t, 64> Record; 2651 2652 while (true) { 2653 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2654 2655 switch (Entry.Kind) { 2656 case BitstreamEntry::SubBlock: // Handled for us already. 2657 case BitstreamEntry::Error: 2658 return error("Malformed block"); 2659 case BitstreamEntry::EndBlock: 2660 return Error::success(); 2661 case BitstreamEntry::Record: 2662 // The interesting case. 2663 break; 2664 } 2665 2666 // Read a use list record. 2667 Record.clear(); 2668 bool IsBB = false; 2669 switch (Stream.readRecord(Entry.ID, Record)) { 2670 default: // Default behavior: unknown type. 2671 break; 2672 case bitc::USELIST_CODE_BB: 2673 IsBB = true; 2674 LLVM_FALLTHROUGH; 2675 case bitc::USELIST_CODE_DEFAULT: { 2676 unsigned RecordLength = Record.size(); 2677 if (RecordLength < 3) 2678 // Records should have at least an ID and two indexes. 2679 return error("Invalid record"); 2680 unsigned ID = Record.back(); 2681 Record.pop_back(); 2682 2683 Value *V; 2684 if (IsBB) { 2685 assert(ID < FunctionBBs.size() && "Basic block not found"); 2686 V = FunctionBBs[ID]; 2687 } else 2688 V = ValueList[ID]; 2689 unsigned NumUses = 0; 2690 SmallDenseMap<const Use *, unsigned, 16> Order; 2691 for (const Use &U : V->materialized_uses()) { 2692 if (++NumUses > Record.size()) 2693 break; 2694 Order[&U] = Record[NumUses - 1]; 2695 } 2696 if (Order.size() != Record.size() || NumUses > Record.size()) 2697 // Mismatches can happen if the functions are being materialized lazily 2698 // (out-of-order), or a value has been upgraded. 2699 break; 2700 2701 V->sortUseList([&](const Use &L, const Use &R) { 2702 return Order.lookup(&L) < Order.lookup(&R); 2703 }); 2704 break; 2705 } 2706 } 2707 } 2708 } 2709 2710 /// When we see the block for metadata, remember where it is and then skip it. 2711 /// This lets us lazily deserialize the metadata. 2712 Error BitcodeReader::rememberAndSkipMetadata() { 2713 // Save the current stream state. 2714 uint64_t CurBit = Stream.GetCurrentBitNo(); 2715 DeferredMetadataInfo.push_back(CurBit); 2716 2717 // Skip over the block for now. 2718 if (Stream.SkipBlock()) 2719 return error("Invalid record"); 2720 return Error::success(); 2721 } 2722 2723 Error BitcodeReader::materializeMetadata() { 2724 for (uint64_t BitPos : DeferredMetadataInfo) { 2725 // Move the bit stream to the saved position. 2726 Stream.JumpToBit(BitPos); 2727 if (Error Err = MDLoader->parseModuleMetadata()) 2728 return Err; 2729 } 2730 2731 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2732 // metadata. 2733 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2734 NamedMDNode *LinkerOpts = 2735 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2736 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2737 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2738 } 2739 2740 DeferredMetadataInfo.clear(); 2741 return Error::success(); 2742 } 2743 2744 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2745 2746 /// When we see the block for a function body, remember where it is and then 2747 /// skip it. This lets us lazily deserialize the functions. 2748 Error BitcodeReader::rememberAndSkipFunctionBody() { 2749 // Get the function we are talking about. 2750 if (FunctionsWithBodies.empty()) 2751 return error("Insufficient function protos"); 2752 2753 Function *Fn = FunctionsWithBodies.back(); 2754 FunctionsWithBodies.pop_back(); 2755 2756 // Save the current stream state. 2757 uint64_t CurBit = Stream.GetCurrentBitNo(); 2758 assert( 2759 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2760 "Mismatch between VST and scanned function offsets"); 2761 DeferredFunctionInfo[Fn] = CurBit; 2762 2763 // Skip over the function block for now. 2764 if (Stream.SkipBlock()) 2765 return error("Invalid record"); 2766 return Error::success(); 2767 } 2768 2769 Error BitcodeReader::globalCleanup() { 2770 // Patch the initializers for globals and aliases up. 2771 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2772 return Err; 2773 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2774 return error("Malformed global initializer set"); 2775 2776 // Look for intrinsic functions which need to be upgraded at some point 2777 for (Function &F : *TheModule) { 2778 MDLoader->upgradeDebugIntrinsics(F); 2779 Function *NewFn; 2780 if (UpgradeIntrinsicFunction(&F, NewFn)) 2781 UpgradedIntrinsics[&F] = NewFn; 2782 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2783 // Some types could be renamed during loading if several modules are 2784 // loaded in the same LLVMContext (LTO scenario). In this case we should 2785 // remangle intrinsics names as well. 2786 RemangledIntrinsics[&F] = Remangled.getValue(); 2787 } 2788 2789 // Look for global variables which need to be renamed. 2790 for (GlobalVariable &GV : TheModule->globals()) 2791 UpgradeGlobalVariable(&GV); 2792 2793 // Force deallocation of memory for these vectors to favor the client that 2794 // want lazy deserialization. 2795 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2796 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2797 IndirectSymbolInits); 2798 return Error::success(); 2799 } 2800 2801 /// Support for lazy parsing of function bodies. This is required if we 2802 /// either have an old bitcode file without a VST forward declaration record, 2803 /// or if we have an anonymous function being materialized, since anonymous 2804 /// functions do not have a name and are therefore not in the VST. 2805 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2806 Stream.JumpToBit(NextUnreadBit); 2807 2808 if (Stream.AtEndOfStream()) 2809 return error("Could not find function in stream"); 2810 2811 if (!SeenFirstFunctionBody) 2812 return error("Trying to materialize functions before seeing function blocks"); 2813 2814 // An old bitcode file with the symbol table at the end would have 2815 // finished the parse greedily. 2816 assert(SeenValueSymbolTable); 2817 2818 SmallVector<uint64_t, 64> Record; 2819 2820 while (true) { 2821 BitstreamEntry Entry = Stream.advance(); 2822 switch (Entry.Kind) { 2823 default: 2824 return error("Expect SubBlock"); 2825 case BitstreamEntry::SubBlock: 2826 switch (Entry.ID) { 2827 default: 2828 return error("Expect function block"); 2829 case bitc::FUNCTION_BLOCK_ID: 2830 if (Error Err = rememberAndSkipFunctionBody()) 2831 return Err; 2832 NextUnreadBit = Stream.GetCurrentBitNo(); 2833 return Error::success(); 2834 } 2835 } 2836 } 2837 } 2838 2839 bool BitcodeReaderBase::readBlockInfo() { 2840 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2841 if (!NewBlockInfo) 2842 return true; 2843 BlockInfo = std::move(*NewBlockInfo); 2844 return false; 2845 } 2846 2847 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2848 // v1: [selection_kind, name] 2849 // v2: [strtab_offset, strtab_size, selection_kind] 2850 StringRef Name; 2851 std::tie(Name, Record) = readNameFromStrtab(Record); 2852 2853 if (Record.empty()) 2854 return error("Invalid record"); 2855 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2856 std::string OldFormatName; 2857 if (!UseStrtab) { 2858 if (Record.size() < 2) 2859 return error("Invalid record"); 2860 unsigned ComdatNameSize = Record[1]; 2861 OldFormatName.reserve(ComdatNameSize); 2862 for (unsigned i = 0; i != ComdatNameSize; ++i) 2863 OldFormatName += (char)Record[2 + i]; 2864 Name = OldFormatName; 2865 } 2866 Comdat *C = TheModule->getOrInsertComdat(Name); 2867 C->setSelectionKind(SK); 2868 ComdatList.push_back(C); 2869 return Error::success(); 2870 } 2871 2872 static void inferDSOLocal(GlobalValue *GV) { 2873 // infer dso_local from linkage and visibility if it is not encoded. 2874 if (GV->hasLocalLinkage() || 2875 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2876 GV->setDSOLocal(true); 2877 } 2878 2879 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2880 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2881 // visibility, threadlocal, unnamed_addr, externally_initialized, 2882 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2883 // v2: [strtab_offset, strtab_size, v1] 2884 StringRef Name; 2885 std::tie(Name, Record) = readNameFromStrtab(Record); 2886 2887 if (Record.size() < 6) 2888 return error("Invalid record"); 2889 Type *Ty = getTypeByID(Record[0]); 2890 if (!Ty) 2891 return error("Invalid record"); 2892 bool isConstant = Record[1] & 1; 2893 bool explicitType = Record[1] & 2; 2894 unsigned AddressSpace; 2895 if (explicitType) { 2896 AddressSpace = Record[1] >> 2; 2897 } else { 2898 if (!Ty->isPointerTy()) 2899 return error("Invalid type for value"); 2900 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2901 Ty = cast<PointerType>(Ty)->getElementType(); 2902 } 2903 2904 uint64_t RawLinkage = Record[3]; 2905 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2906 unsigned Alignment; 2907 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2908 return Err; 2909 std::string Section; 2910 if (Record[5]) { 2911 if (Record[5] - 1 >= SectionTable.size()) 2912 return error("Invalid ID"); 2913 Section = SectionTable[Record[5] - 1]; 2914 } 2915 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2916 // Local linkage must have default visibility. 2917 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2918 // FIXME: Change to an error if non-default in 4.0. 2919 Visibility = getDecodedVisibility(Record[6]); 2920 2921 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2922 if (Record.size() > 7) 2923 TLM = getDecodedThreadLocalMode(Record[7]); 2924 2925 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2926 if (Record.size() > 8) 2927 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2928 2929 bool ExternallyInitialized = false; 2930 if (Record.size() > 9) 2931 ExternallyInitialized = Record[9]; 2932 2933 GlobalVariable *NewGV = 2934 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2935 nullptr, TLM, AddressSpace, ExternallyInitialized); 2936 NewGV->setAlignment(Alignment); 2937 if (!Section.empty()) 2938 NewGV->setSection(Section); 2939 NewGV->setVisibility(Visibility); 2940 NewGV->setUnnamedAddr(UnnamedAddr); 2941 2942 if (Record.size() > 10) 2943 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2944 else 2945 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2946 2947 ValueList.push_back(NewGV); 2948 2949 // Remember which value to use for the global initializer. 2950 if (unsigned InitID = Record[2]) 2951 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2952 2953 if (Record.size() > 11) { 2954 if (unsigned ComdatID = Record[11]) { 2955 if (ComdatID > ComdatList.size()) 2956 return error("Invalid global variable comdat ID"); 2957 NewGV->setComdat(ComdatList[ComdatID - 1]); 2958 } 2959 } else if (hasImplicitComdat(RawLinkage)) { 2960 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2961 } 2962 2963 if (Record.size() > 12) { 2964 auto AS = getAttributes(Record[12]).getFnAttributes(); 2965 NewGV->setAttributes(AS); 2966 } 2967 2968 if (Record.size() > 13) { 2969 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2970 } 2971 inferDSOLocal(NewGV); 2972 2973 return Error::success(); 2974 } 2975 2976 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2977 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2978 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2979 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2980 // v2: [strtab_offset, strtab_size, v1] 2981 StringRef Name; 2982 std::tie(Name, Record) = readNameFromStrtab(Record); 2983 2984 if (Record.size() < 8) 2985 return error("Invalid record"); 2986 Type *Ty = getTypeByID(Record[0]); 2987 if (!Ty) 2988 return error("Invalid record"); 2989 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2990 Ty = PTy->getElementType(); 2991 auto *FTy = dyn_cast<FunctionType>(Ty); 2992 if (!FTy) 2993 return error("Invalid type for value"); 2994 auto CC = static_cast<CallingConv::ID>(Record[1]); 2995 if (CC & ~CallingConv::MaxID) 2996 return error("Invalid calling convention ID"); 2997 2998 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 2999 if (Record.size() > 16) 3000 AddrSpace = Record[16]; 3001 3002 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3003 AddrSpace, Name, TheModule); 3004 3005 Func->setCallingConv(CC); 3006 bool isProto = Record[2]; 3007 uint64_t RawLinkage = Record[3]; 3008 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3009 Func->setAttributes(getAttributes(Record[4])); 3010 3011 unsigned Alignment; 3012 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3013 return Err; 3014 Func->setAlignment(Alignment); 3015 if (Record[6]) { 3016 if (Record[6] - 1 >= SectionTable.size()) 3017 return error("Invalid ID"); 3018 Func->setSection(SectionTable[Record[6] - 1]); 3019 } 3020 // Local linkage must have default visibility. 3021 if (!Func->hasLocalLinkage()) 3022 // FIXME: Change to an error if non-default in 4.0. 3023 Func->setVisibility(getDecodedVisibility(Record[7])); 3024 if (Record.size() > 8 && Record[8]) { 3025 if (Record[8] - 1 >= GCTable.size()) 3026 return error("Invalid ID"); 3027 Func->setGC(GCTable[Record[8] - 1]); 3028 } 3029 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3030 if (Record.size() > 9) 3031 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3032 Func->setUnnamedAddr(UnnamedAddr); 3033 if (Record.size() > 10 && Record[10] != 0) 3034 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3035 3036 if (Record.size() > 11) 3037 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3038 else 3039 upgradeDLLImportExportLinkage(Func, RawLinkage); 3040 3041 if (Record.size() > 12) { 3042 if (unsigned ComdatID = Record[12]) { 3043 if (ComdatID > ComdatList.size()) 3044 return error("Invalid function comdat ID"); 3045 Func->setComdat(ComdatList[ComdatID - 1]); 3046 } 3047 } else if (hasImplicitComdat(RawLinkage)) { 3048 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3049 } 3050 3051 if (Record.size() > 13 && Record[13] != 0) 3052 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3053 3054 if (Record.size() > 14 && Record[14] != 0) 3055 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3056 3057 if (Record.size() > 15) { 3058 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3059 } 3060 inferDSOLocal(Func); 3061 3062 ValueList.push_back(Func); 3063 3064 // If this is a function with a body, remember the prototype we are 3065 // creating now, so that we can match up the body with them later. 3066 if (!isProto) { 3067 Func->setIsMaterializable(true); 3068 FunctionsWithBodies.push_back(Func); 3069 DeferredFunctionInfo[Func] = 0; 3070 } 3071 return Error::success(); 3072 } 3073 3074 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3075 unsigned BitCode, ArrayRef<uint64_t> Record) { 3076 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3077 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3078 // dllstorageclass, threadlocal, unnamed_addr, 3079 // preemption specifier] (name in VST) 3080 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3081 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3082 // preemption specifier] (name in VST) 3083 // v2: [strtab_offset, strtab_size, v1] 3084 StringRef Name; 3085 std::tie(Name, Record) = readNameFromStrtab(Record); 3086 3087 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3088 if (Record.size() < (3 + (unsigned)NewRecord)) 3089 return error("Invalid record"); 3090 unsigned OpNum = 0; 3091 Type *Ty = getTypeByID(Record[OpNum++]); 3092 if (!Ty) 3093 return error("Invalid record"); 3094 3095 unsigned AddrSpace; 3096 if (!NewRecord) { 3097 auto *PTy = dyn_cast<PointerType>(Ty); 3098 if (!PTy) 3099 return error("Invalid type for value"); 3100 Ty = PTy->getElementType(); 3101 AddrSpace = PTy->getAddressSpace(); 3102 } else { 3103 AddrSpace = Record[OpNum++]; 3104 } 3105 3106 auto Val = Record[OpNum++]; 3107 auto Linkage = Record[OpNum++]; 3108 GlobalIndirectSymbol *NewGA; 3109 if (BitCode == bitc::MODULE_CODE_ALIAS || 3110 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3111 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3112 TheModule); 3113 else 3114 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3115 nullptr, TheModule); 3116 // Old bitcode files didn't have visibility field. 3117 // Local linkage must have default visibility. 3118 if (OpNum != Record.size()) { 3119 auto VisInd = OpNum++; 3120 if (!NewGA->hasLocalLinkage()) 3121 // FIXME: Change to an error if non-default in 4.0. 3122 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3123 } 3124 if (BitCode == bitc::MODULE_CODE_ALIAS || 3125 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3126 if (OpNum != Record.size()) 3127 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3128 else 3129 upgradeDLLImportExportLinkage(NewGA, Linkage); 3130 if (OpNum != Record.size()) 3131 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3132 if (OpNum != Record.size()) 3133 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3134 } 3135 if (OpNum != Record.size()) 3136 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3137 inferDSOLocal(NewGA); 3138 3139 ValueList.push_back(NewGA); 3140 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3141 return Error::success(); 3142 } 3143 3144 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3145 bool ShouldLazyLoadMetadata) { 3146 if (ResumeBit) 3147 Stream.JumpToBit(ResumeBit); 3148 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3149 return error("Invalid record"); 3150 3151 SmallVector<uint64_t, 64> Record; 3152 3153 // Read all the records for this module. 3154 while (true) { 3155 BitstreamEntry Entry = Stream.advance(); 3156 3157 switch (Entry.Kind) { 3158 case BitstreamEntry::Error: 3159 return error("Malformed block"); 3160 case BitstreamEntry::EndBlock: 3161 return globalCleanup(); 3162 3163 case BitstreamEntry::SubBlock: 3164 switch (Entry.ID) { 3165 default: // Skip unknown content. 3166 if (Stream.SkipBlock()) 3167 return error("Invalid record"); 3168 break; 3169 case bitc::BLOCKINFO_BLOCK_ID: 3170 if (readBlockInfo()) 3171 return error("Malformed block"); 3172 break; 3173 case bitc::PARAMATTR_BLOCK_ID: 3174 if (Error Err = parseAttributeBlock()) 3175 return Err; 3176 break; 3177 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3178 if (Error Err = parseAttributeGroupBlock()) 3179 return Err; 3180 break; 3181 case bitc::TYPE_BLOCK_ID_NEW: 3182 if (Error Err = parseTypeTable()) 3183 return Err; 3184 break; 3185 case bitc::VALUE_SYMTAB_BLOCK_ID: 3186 if (!SeenValueSymbolTable) { 3187 // Either this is an old form VST without function index and an 3188 // associated VST forward declaration record (which would have caused 3189 // the VST to be jumped to and parsed before it was encountered 3190 // normally in the stream), or there were no function blocks to 3191 // trigger an earlier parsing of the VST. 3192 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3193 if (Error Err = parseValueSymbolTable()) 3194 return Err; 3195 SeenValueSymbolTable = true; 3196 } else { 3197 // We must have had a VST forward declaration record, which caused 3198 // the parser to jump to and parse the VST earlier. 3199 assert(VSTOffset > 0); 3200 if (Stream.SkipBlock()) 3201 return error("Invalid record"); 3202 } 3203 break; 3204 case bitc::CONSTANTS_BLOCK_ID: 3205 if (Error Err = parseConstants()) 3206 return Err; 3207 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3208 return Err; 3209 break; 3210 case bitc::METADATA_BLOCK_ID: 3211 if (ShouldLazyLoadMetadata) { 3212 if (Error Err = rememberAndSkipMetadata()) 3213 return Err; 3214 break; 3215 } 3216 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3217 if (Error Err = MDLoader->parseModuleMetadata()) 3218 return Err; 3219 break; 3220 case bitc::METADATA_KIND_BLOCK_ID: 3221 if (Error Err = MDLoader->parseMetadataKinds()) 3222 return Err; 3223 break; 3224 case bitc::FUNCTION_BLOCK_ID: 3225 // If this is the first function body we've seen, reverse the 3226 // FunctionsWithBodies list. 3227 if (!SeenFirstFunctionBody) { 3228 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3229 if (Error Err = globalCleanup()) 3230 return Err; 3231 SeenFirstFunctionBody = true; 3232 } 3233 3234 if (VSTOffset > 0) { 3235 // If we have a VST forward declaration record, make sure we 3236 // parse the VST now if we haven't already. It is needed to 3237 // set up the DeferredFunctionInfo vector for lazy reading. 3238 if (!SeenValueSymbolTable) { 3239 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3240 return Err; 3241 SeenValueSymbolTable = true; 3242 // Fall through so that we record the NextUnreadBit below. 3243 // This is necessary in case we have an anonymous function that 3244 // is later materialized. Since it will not have a VST entry we 3245 // need to fall back to the lazy parse to find its offset. 3246 } else { 3247 // If we have a VST forward declaration record, but have already 3248 // parsed the VST (just above, when the first function body was 3249 // encountered here), then we are resuming the parse after 3250 // materializing functions. The ResumeBit points to the 3251 // start of the last function block recorded in the 3252 // DeferredFunctionInfo map. Skip it. 3253 if (Stream.SkipBlock()) 3254 return error("Invalid record"); 3255 continue; 3256 } 3257 } 3258 3259 // Support older bitcode files that did not have the function 3260 // index in the VST, nor a VST forward declaration record, as 3261 // well as anonymous functions that do not have VST entries. 3262 // Build the DeferredFunctionInfo vector on the fly. 3263 if (Error Err = rememberAndSkipFunctionBody()) 3264 return Err; 3265 3266 // Suspend parsing when we reach the function bodies. Subsequent 3267 // materialization calls will resume it when necessary. If the bitcode 3268 // file is old, the symbol table will be at the end instead and will not 3269 // have been seen yet. In this case, just finish the parse now. 3270 if (SeenValueSymbolTable) { 3271 NextUnreadBit = Stream.GetCurrentBitNo(); 3272 // After the VST has been parsed, we need to make sure intrinsic name 3273 // are auto-upgraded. 3274 return globalCleanup(); 3275 } 3276 break; 3277 case bitc::USELIST_BLOCK_ID: 3278 if (Error Err = parseUseLists()) 3279 return Err; 3280 break; 3281 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3282 if (Error Err = parseOperandBundleTags()) 3283 return Err; 3284 break; 3285 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3286 if (Error Err = parseSyncScopeNames()) 3287 return Err; 3288 break; 3289 } 3290 continue; 3291 3292 case BitstreamEntry::Record: 3293 // The interesting case. 3294 break; 3295 } 3296 3297 // Read a record. 3298 auto BitCode = Stream.readRecord(Entry.ID, Record); 3299 switch (BitCode) { 3300 default: break; // Default behavior, ignore unknown content. 3301 case bitc::MODULE_CODE_VERSION: { 3302 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3303 if (!VersionOrErr) 3304 return VersionOrErr.takeError(); 3305 UseRelativeIDs = *VersionOrErr >= 1; 3306 break; 3307 } 3308 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3309 std::string S; 3310 if (convertToString(Record, 0, S)) 3311 return error("Invalid record"); 3312 TheModule->setTargetTriple(S); 3313 break; 3314 } 3315 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3316 std::string S; 3317 if (convertToString(Record, 0, S)) 3318 return error("Invalid record"); 3319 TheModule->setDataLayout(S); 3320 break; 3321 } 3322 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3323 std::string S; 3324 if (convertToString(Record, 0, S)) 3325 return error("Invalid record"); 3326 TheModule->setModuleInlineAsm(S); 3327 break; 3328 } 3329 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3330 // FIXME: Remove in 4.0. 3331 std::string S; 3332 if (convertToString(Record, 0, S)) 3333 return error("Invalid record"); 3334 // Ignore value. 3335 break; 3336 } 3337 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3338 std::string S; 3339 if (convertToString(Record, 0, S)) 3340 return error("Invalid record"); 3341 SectionTable.push_back(S); 3342 break; 3343 } 3344 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3345 std::string S; 3346 if (convertToString(Record, 0, S)) 3347 return error("Invalid record"); 3348 GCTable.push_back(S); 3349 break; 3350 } 3351 case bitc::MODULE_CODE_COMDAT: 3352 if (Error Err = parseComdatRecord(Record)) 3353 return Err; 3354 break; 3355 case bitc::MODULE_CODE_GLOBALVAR: 3356 if (Error Err = parseGlobalVarRecord(Record)) 3357 return Err; 3358 break; 3359 case bitc::MODULE_CODE_FUNCTION: 3360 if (Error Err = parseFunctionRecord(Record)) 3361 return Err; 3362 break; 3363 case bitc::MODULE_CODE_IFUNC: 3364 case bitc::MODULE_CODE_ALIAS: 3365 case bitc::MODULE_CODE_ALIAS_OLD: 3366 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3367 return Err; 3368 break; 3369 /// MODULE_CODE_VSTOFFSET: [offset] 3370 case bitc::MODULE_CODE_VSTOFFSET: 3371 if (Record.size() < 1) 3372 return error("Invalid record"); 3373 // Note that we subtract 1 here because the offset is relative to one word 3374 // before the start of the identification or module block, which was 3375 // historically always the start of the regular bitcode header. 3376 VSTOffset = Record[0] - 1; 3377 break; 3378 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3379 case bitc::MODULE_CODE_SOURCE_FILENAME: 3380 SmallString<128> ValueName; 3381 if (convertToString(Record, 0, ValueName)) 3382 return error("Invalid record"); 3383 TheModule->setSourceFileName(ValueName); 3384 break; 3385 } 3386 Record.clear(); 3387 } 3388 } 3389 3390 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3391 bool IsImporting) { 3392 TheModule = M; 3393 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3394 [&](unsigned ID) { return getTypeByID(ID); }); 3395 return parseModule(0, ShouldLazyLoadMetadata); 3396 } 3397 3398 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3399 if (!isa<PointerType>(PtrType)) 3400 return error("Load/Store operand is not a pointer type"); 3401 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3402 3403 if (ValType && ValType != ElemType) 3404 return error("Explicit load/store type does not match pointee " 3405 "type of pointer operand"); 3406 if (!PointerType::isLoadableOrStorableType(ElemType)) 3407 return error("Cannot load/store from pointer"); 3408 return Error::success(); 3409 } 3410 3411 /// Lazily parse the specified function body block. 3412 Error BitcodeReader::parseFunctionBody(Function *F) { 3413 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3414 return error("Invalid record"); 3415 3416 // Unexpected unresolved metadata when parsing function. 3417 if (MDLoader->hasFwdRefs()) 3418 return error("Invalid function metadata: incoming forward references"); 3419 3420 InstructionList.clear(); 3421 unsigned ModuleValueListSize = ValueList.size(); 3422 unsigned ModuleMDLoaderSize = MDLoader->size(); 3423 3424 // Add all the function arguments to the value table. 3425 for (Argument &I : F->args()) 3426 ValueList.push_back(&I); 3427 3428 unsigned NextValueNo = ValueList.size(); 3429 BasicBlock *CurBB = nullptr; 3430 unsigned CurBBNo = 0; 3431 3432 DebugLoc LastLoc; 3433 auto getLastInstruction = [&]() -> Instruction * { 3434 if (CurBB && !CurBB->empty()) 3435 return &CurBB->back(); 3436 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3437 !FunctionBBs[CurBBNo - 1]->empty()) 3438 return &FunctionBBs[CurBBNo - 1]->back(); 3439 return nullptr; 3440 }; 3441 3442 std::vector<OperandBundleDef> OperandBundles; 3443 3444 // Read all the records. 3445 SmallVector<uint64_t, 64> Record; 3446 3447 while (true) { 3448 BitstreamEntry Entry = Stream.advance(); 3449 3450 switch (Entry.Kind) { 3451 case BitstreamEntry::Error: 3452 return error("Malformed block"); 3453 case BitstreamEntry::EndBlock: 3454 goto OutOfRecordLoop; 3455 3456 case BitstreamEntry::SubBlock: 3457 switch (Entry.ID) { 3458 default: // Skip unknown content. 3459 if (Stream.SkipBlock()) 3460 return error("Invalid record"); 3461 break; 3462 case bitc::CONSTANTS_BLOCK_ID: 3463 if (Error Err = parseConstants()) 3464 return Err; 3465 NextValueNo = ValueList.size(); 3466 break; 3467 case bitc::VALUE_SYMTAB_BLOCK_ID: 3468 if (Error Err = parseValueSymbolTable()) 3469 return Err; 3470 break; 3471 case bitc::METADATA_ATTACHMENT_ID: 3472 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3473 return Err; 3474 break; 3475 case bitc::METADATA_BLOCK_ID: 3476 assert(DeferredMetadataInfo.empty() && 3477 "Must read all module-level metadata before function-level"); 3478 if (Error Err = MDLoader->parseFunctionMetadata()) 3479 return Err; 3480 break; 3481 case bitc::USELIST_BLOCK_ID: 3482 if (Error Err = parseUseLists()) 3483 return Err; 3484 break; 3485 } 3486 continue; 3487 3488 case BitstreamEntry::Record: 3489 // The interesting case. 3490 break; 3491 } 3492 3493 // Read a record. 3494 Record.clear(); 3495 Instruction *I = nullptr; 3496 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3497 switch (BitCode) { 3498 default: // Default behavior: reject 3499 return error("Invalid value"); 3500 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3501 if (Record.size() < 1 || Record[0] == 0) 3502 return error("Invalid record"); 3503 // Create all the basic blocks for the function. 3504 FunctionBBs.resize(Record[0]); 3505 3506 // See if anything took the address of blocks in this function. 3507 auto BBFRI = BasicBlockFwdRefs.find(F); 3508 if (BBFRI == BasicBlockFwdRefs.end()) { 3509 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3510 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3511 } else { 3512 auto &BBRefs = BBFRI->second; 3513 // Check for invalid basic block references. 3514 if (BBRefs.size() > FunctionBBs.size()) 3515 return error("Invalid ID"); 3516 assert(!BBRefs.empty() && "Unexpected empty array"); 3517 assert(!BBRefs.front() && "Invalid reference to entry block"); 3518 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3519 ++I) 3520 if (I < RE && BBRefs[I]) { 3521 BBRefs[I]->insertInto(F); 3522 FunctionBBs[I] = BBRefs[I]; 3523 } else { 3524 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3525 } 3526 3527 // Erase from the table. 3528 BasicBlockFwdRefs.erase(BBFRI); 3529 } 3530 3531 CurBB = FunctionBBs[0]; 3532 continue; 3533 } 3534 3535 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3536 // This record indicates that the last instruction is at the same 3537 // location as the previous instruction with a location. 3538 I = getLastInstruction(); 3539 3540 if (!I) 3541 return error("Invalid record"); 3542 I->setDebugLoc(LastLoc); 3543 I = nullptr; 3544 continue; 3545 3546 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3547 I = getLastInstruction(); 3548 if (!I || Record.size() < 4) 3549 return error("Invalid record"); 3550 3551 unsigned Line = Record[0], Col = Record[1]; 3552 unsigned ScopeID = Record[2], IAID = Record[3]; 3553 bool isImplicitCode = Record.size() == 5 && Record[4]; 3554 3555 MDNode *Scope = nullptr, *IA = nullptr; 3556 if (ScopeID) { 3557 Scope = dyn_cast_or_null<MDNode>( 3558 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3559 if (!Scope) 3560 return error("Invalid record"); 3561 } 3562 if (IAID) { 3563 IA = dyn_cast_or_null<MDNode>( 3564 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3565 if (!IA) 3566 return error("Invalid record"); 3567 } 3568 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3569 I->setDebugLoc(LastLoc); 3570 I = nullptr; 3571 continue; 3572 } 3573 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3574 unsigned OpNum = 0; 3575 Value *LHS; 3576 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3577 OpNum+1 > Record.size()) 3578 return error("Invalid record"); 3579 3580 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3581 if (Opc == -1) 3582 return error("Invalid record"); 3583 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3584 InstructionList.push_back(I); 3585 if (OpNum < Record.size()) { 3586 if (isa<FPMathOperator>(I)) { 3587 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3588 if (FMF.any()) 3589 I->setFastMathFlags(FMF); 3590 } 3591 } 3592 break; 3593 } 3594 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3595 unsigned OpNum = 0; 3596 Value *LHS, *RHS; 3597 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3598 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3599 OpNum+1 > Record.size()) 3600 return error("Invalid record"); 3601 3602 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3603 if (Opc == -1) 3604 return error("Invalid record"); 3605 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3606 InstructionList.push_back(I); 3607 if (OpNum < Record.size()) { 3608 if (Opc == Instruction::Add || 3609 Opc == Instruction::Sub || 3610 Opc == Instruction::Mul || 3611 Opc == Instruction::Shl) { 3612 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3613 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3614 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3615 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3616 } else if (Opc == Instruction::SDiv || 3617 Opc == Instruction::UDiv || 3618 Opc == Instruction::LShr || 3619 Opc == Instruction::AShr) { 3620 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3621 cast<BinaryOperator>(I)->setIsExact(true); 3622 } else if (isa<FPMathOperator>(I)) { 3623 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3624 if (FMF.any()) 3625 I->setFastMathFlags(FMF); 3626 } 3627 3628 } 3629 break; 3630 } 3631 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3632 unsigned OpNum = 0; 3633 Value *Op; 3634 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3635 OpNum+2 != Record.size()) 3636 return error("Invalid record"); 3637 3638 Type *ResTy = getTypeByID(Record[OpNum]); 3639 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3640 if (Opc == -1 || !ResTy) 3641 return error("Invalid record"); 3642 Instruction *Temp = nullptr; 3643 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3644 if (Temp) { 3645 InstructionList.push_back(Temp); 3646 CurBB->getInstList().push_back(Temp); 3647 } 3648 } else { 3649 auto CastOp = (Instruction::CastOps)Opc; 3650 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3651 return error("Invalid cast"); 3652 I = CastInst::Create(CastOp, Op, ResTy); 3653 } 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3658 case bitc::FUNC_CODE_INST_GEP_OLD: 3659 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3660 unsigned OpNum = 0; 3661 3662 Type *Ty; 3663 bool InBounds; 3664 3665 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3666 InBounds = Record[OpNum++]; 3667 Ty = getTypeByID(Record[OpNum++]); 3668 } else { 3669 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3670 Ty = nullptr; 3671 } 3672 3673 Value *BasePtr; 3674 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3675 return error("Invalid record"); 3676 3677 if (!Ty) 3678 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3679 ->getElementType(); 3680 else if (Ty != 3681 cast<PointerType>(BasePtr->getType()->getScalarType()) 3682 ->getElementType()) 3683 return error( 3684 "Explicit gep type does not match pointee type of pointer operand"); 3685 3686 SmallVector<Value*, 16> GEPIdx; 3687 while (OpNum != Record.size()) { 3688 Value *Op; 3689 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3690 return error("Invalid record"); 3691 GEPIdx.push_back(Op); 3692 } 3693 3694 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3695 3696 InstructionList.push_back(I); 3697 if (InBounds) 3698 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3699 break; 3700 } 3701 3702 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3703 // EXTRACTVAL: [opty, opval, n x indices] 3704 unsigned OpNum = 0; 3705 Value *Agg; 3706 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3707 return error("Invalid record"); 3708 3709 unsigned RecSize = Record.size(); 3710 if (OpNum == RecSize) 3711 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3712 3713 SmallVector<unsigned, 4> EXTRACTVALIdx; 3714 Type *CurTy = Agg->getType(); 3715 for (; OpNum != RecSize; ++OpNum) { 3716 bool IsArray = CurTy->isArrayTy(); 3717 bool IsStruct = CurTy->isStructTy(); 3718 uint64_t Index = Record[OpNum]; 3719 3720 if (!IsStruct && !IsArray) 3721 return error("EXTRACTVAL: Invalid type"); 3722 if ((unsigned)Index != Index) 3723 return error("Invalid value"); 3724 if (IsStruct && Index >= CurTy->getStructNumElements()) 3725 return error("EXTRACTVAL: Invalid struct index"); 3726 if (IsArray && Index >= CurTy->getArrayNumElements()) 3727 return error("EXTRACTVAL: Invalid array index"); 3728 EXTRACTVALIdx.push_back((unsigned)Index); 3729 3730 if (IsStruct) 3731 CurTy = CurTy->getStructElementType(Index); 3732 else 3733 CurTy = CurTy->getArrayElementType(); 3734 } 3735 3736 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3737 InstructionList.push_back(I); 3738 break; 3739 } 3740 3741 case bitc::FUNC_CODE_INST_INSERTVAL: { 3742 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3743 unsigned OpNum = 0; 3744 Value *Agg; 3745 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3746 return error("Invalid record"); 3747 Value *Val; 3748 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3749 return error("Invalid record"); 3750 3751 unsigned RecSize = Record.size(); 3752 if (OpNum == RecSize) 3753 return error("INSERTVAL: Invalid instruction with 0 indices"); 3754 3755 SmallVector<unsigned, 4> INSERTVALIdx; 3756 Type *CurTy = Agg->getType(); 3757 for (; OpNum != RecSize; ++OpNum) { 3758 bool IsArray = CurTy->isArrayTy(); 3759 bool IsStruct = CurTy->isStructTy(); 3760 uint64_t Index = Record[OpNum]; 3761 3762 if (!IsStruct && !IsArray) 3763 return error("INSERTVAL: Invalid type"); 3764 if ((unsigned)Index != Index) 3765 return error("Invalid value"); 3766 if (IsStruct && Index >= CurTy->getStructNumElements()) 3767 return error("INSERTVAL: Invalid struct index"); 3768 if (IsArray && Index >= CurTy->getArrayNumElements()) 3769 return error("INSERTVAL: Invalid array index"); 3770 3771 INSERTVALIdx.push_back((unsigned)Index); 3772 if (IsStruct) 3773 CurTy = CurTy->getStructElementType(Index); 3774 else 3775 CurTy = CurTy->getArrayElementType(); 3776 } 3777 3778 if (CurTy != Val->getType()) 3779 return error("Inserted value type doesn't match aggregate type"); 3780 3781 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3782 InstructionList.push_back(I); 3783 break; 3784 } 3785 3786 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3787 // obsolete form of select 3788 // handles select i1 ... in old bitcode 3789 unsigned OpNum = 0; 3790 Value *TrueVal, *FalseVal, *Cond; 3791 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3792 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3793 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3794 return error("Invalid record"); 3795 3796 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3797 InstructionList.push_back(I); 3798 break; 3799 } 3800 3801 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3802 // new form of select 3803 // handles select i1 or select [N x i1] 3804 unsigned OpNum = 0; 3805 Value *TrueVal, *FalseVal, *Cond; 3806 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3807 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3808 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3809 return error("Invalid record"); 3810 3811 // select condition can be either i1 or [N x i1] 3812 if (VectorType* vector_type = 3813 dyn_cast<VectorType>(Cond->getType())) { 3814 // expect <n x i1> 3815 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3816 return error("Invalid type for value"); 3817 } else { 3818 // expect i1 3819 if (Cond->getType() != Type::getInt1Ty(Context)) 3820 return error("Invalid type for value"); 3821 } 3822 3823 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3824 InstructionList.push_back(I); 3825 break; 3826 } 3827 3828 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3829 unsigned OpNum = 0; 3830 Value *Vec, *Idx; 3831 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3832 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3833 return error("Invalid record"); 3834 if (!Vec->getType()->isVectorTy()) 3835 return error("Invalid type for value"); 3836 I = ExtractElementInst::Create(Vec, Idx); 3837 InstructionList.push_back(I); 3838 break; 3839 } 3840 3841 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3842 unsigned OpNum = 0; 3843 Value *Vec, *Elt, *Idx; 3844 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3845 return error("Invalid record"); 3846 if (!Vec->getType()->isVectorTy()) 3847 return error("Invalid type for value"); 3848 if (popValue(Record, OpNum, NextValueNo, 3849 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3850 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3851 return error("Invalid record"); 3852 I = InsertElementInst::Create(Vec, Elt, Idx); 3853 InstructionList.push_back(I); 3854 break; 3855 } 3856 3857 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3858 unsigned OpNum = 0; 3859 Value *Vec1, *Vec2, *Mask; 3860 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3861 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3862 return error("Invalid record"); 3863 3864 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3865 return error("Invalid record"); 3866 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3867 return error("Invalid type for value"); 3868 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3869 InstructionList.push_back(I); 3870 break; 3871 } 3872 3873 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3874 // Old form of ICmp/FCmp returning bool 3875 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3876 // both legal on vectors but had different behaviour. 3877 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3878 // FCmp/ICmp returning bool or vector of bool 3879 3880 unsigned OpNum = 0; 3881 Value *LHS, *RHS; 3882 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3883 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3884 return error("Invalid record"); 3885 3886 unsigned PredVal = Record[OpNum]; 3887 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3888 FastMathFlags FMF; 3889 if (IsFP && Record.size() > OpNum+1) 3890 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3891 3892 if (OpNum+1 != Record.size()) 3893 return error("Invalid record"); 3894 3895 if (LHS->getType()->isFPOrFPVectorTy()) 3896 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3897 else 3898 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3899 3900 if (FMF.any()) 3901 I->setFastMathFlags(FMF); 3902 InstructionList.push_back(I); 3903 break; 3904 } 3905 3906 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3907 { 3908 unsigned Size = Record.size(); 3909 if (Size == 0) { 3910 I = ReturnInst::Create(Context); 3911 InstructionList.push_back(I); 3912 break; 3913 } 3914 3915 unsigned OpNum = 0; 3916 Value *Op = nullptr; 3917 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3918 return error("Invalid record"); 3919 if (OpNum != Record.size()) 3920 return error("Invalid record"); 3921 3922 I = ReturnInst::Create(Context, Op); 3923 InstructionList.push_back(I); 3924 break; 3925 } 3926 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3927 if (Record.size() != 1 && Record.size() != 3) 3928 return error("Invalid record"); 3929 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3930 if (!TrueDest) 3931 return error("Invalid record"); 3932 3933 if (Record.size() == 1) { 3934 I = BranchInst::Create(TrueDest); 3935 InstructionList.push_back(I); 3936 } 3937 else { 3938 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3939 Value *Cond = getValue(Record, 2, NextValueNo, 3940 Type::getInt1Ty(Context)); 3941 if (!FalseDest || !Cond) 3942 return error("Invalid record"); 3943 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3944 InstructionList.push_back(I); 3945 } 3946 break; 3947 } 3948 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3949 if (Record.size() != 1 && Record.size() != 2) 3950 return error("Invalid record"); 3951 unsigned Idx = 0; 3952 Value *CleanupPad = 3953 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3954 if (!CleanupPad) 3955 return error("Invalid record"); 3956 BasicBlock *UnwindDest = nullptr; 3957 if (Record.size() == 2) { 3958 UnwindDest = getBasicBlock(Record[Idx++]); 3959 if (!UnwindDest) 3960 return error("Invalid record"); 3961 } 3962 3963 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3964 InstructionList.push_back(I); 3965 break; 3966 } 3967 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3968 if (Record.size() != 2) 3969 return error("Invalid record"); 3970 unsigned Idx = 0; 3971 Value *CatchPad = 3972 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3973 if (!CatchPad) 3974 return error("Invalid record"); 3975 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3976 if (!BB) 3977 return error("Invalid record"); 3978 3979 I = CatchReturnInst::Create(CatchPad, BB); 3980 InstructionList.push_back(I); 3981 break; 3982 } 3983 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3984 // We must have, at minimum, the outer scope and the number of arguments. 3985 if (Record.size() < 2) 3986 return error("Invalid record"); 3987 3988 unsigned Idx = 0; 3989 3990 Value *ParentPad = 3991 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3992 3993 unsigned NumHandlers = Record[Idx++]; 3994 3995 SmallVector<BasicBlock *, 2> Handlers; 3996 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3997 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3998 if (!BB) 3999 return error("Invalid record"); 4000 Handlers.push_back(BB); 4001 } 4002 4003 BasicBlock *UnwindDest = nullptr; 4004 if (Idx + 1 == Record.size()) { 4005 UnwindDest = getBasicBlock(Record[Idx++]); 4006 if (!UnwindDest) 4007 return error("Invalid record"); 4008 } 4009 4010 if (Record.size() != Idx) 4011 return error("Invalid record"); 4012 4013 auto *CatchSwitch = 4014 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4015 for (BasicBlock *Handler : Handlers) 4016 CatchSwitch->addHandler(Handler); 4017 I = CatchSwitch; 4018 InstructionList.push_back(I); 4019 break; 4020 } 4021 case bitc::FUNC_CODE_INST_CATCHPAD: 4022 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4023 // We must have, at minimum, the outer scope and the number of arguments. 4024 if (Record.size() < 2) 4025 return error("Invalid record"); 4026 4027 unsigned Idx = 0; 4028 4029 Value *ParentPad = 4030 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4031 4032 unsigned NumArgOperands = Record[Idx++]; 4033 4034 SmallVector<Value *, 2> Args; 4035 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4036 Value *Val; 4037 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4038 return error("Invalid record"); 4039 Args.push_back(Val); 4040 } 4041 4042 if (Record.size() != Idx) 4043 return error("Invalid record"); 4044 4045 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4046 I = CleanupPadInst::Create(ParentPad, Args); 4047 else 4048 I = CatchPadInst::Create(ParentPad, Args); 4049 InstructionList.push_back(I); 4050 break; 4051 } 4052 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4053 // Check magic 4054 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4055 // "New" SwitchInst format with case ranges. The changes to write this 4056 // format were reverted but we still recognize bitcode that uses it. 4057 // Hopefully someday we will have support for case ranges and can use 4058 // this format again. 4059 4060 Type *OpTy = getTypeByID(Record[1]); 4061 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4062 4063 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4064 BasicBlock *Default = getBasicBlock(Record[3]); 4065 if (!OpTy || !Cond || !Default) 4066 return error("Invalid record"); 4067 4068 unsigned NumCases = Record[4]; 4069 4070 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4071 InstructionList.push_back(SI); 4072 4073 unsigned CurIdx = 5; 4074 for (unsigned i = 0; i != NumCases; ++i) { 4075 SmallVector<ConstantInt*, 1> CaseVals; 4076 unsigned NumItems = Record[CurIdx++]; 4077 for (unsigned ci = 0; ci != NumItems; ++ci) { 4078 bool isSingleNumber = Record[CurIdx++]; 4079 4080 APInt Low; 4081 unsigned ActiveWords = 1; 4082 if (ValueBitWidth > 64) 4083 ActiveWords = Record[CurIdx++]; 4084 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4085 ValueBitWidth); 4086 CurIdx += ActiveWords; 4087 4088 if (!isSingleNumber) { 4089 ActiveWords = 1; 4090 if (ValueBitWidth > 64) 4091 ActiveWords = Record[CurIdx++]; 4092 APInt High = readWideAPInt( 4093 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4094 CurIdx += ActiveWords; 4095 4096 // FIXME: It is not clear whether values in the range should be 4097 // compared as signed or unsigned values. The partially 4098 // implemented changes that used this format in the past used 4099 // unsigned comparisons. 4100 for ( ; Low.ule(High); ++Low) 4101 CaseVals.push_back(ConstantInt::get(Context, Low)); 4102 } else 4103 CaseVals.push_back(ConstantInt::get(Context, Low)); 4104 } 4105 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4106 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4107 cve = CaseVals.end(); cvi != cve; ++cvi) 4108 SI->addCase(*cvi, DestBB); 4109 } 4110 I = SI; 4111 break; 4112 } 4113 4114 // Old SwitchInst format without case ranges. 4115 4116 if (Record.size() < 3 || (Record.size() & 1) == 0) 4117 return error("Invalid record"); 4118 Type *OpTy = getTypeByID(Record[0]); 4119 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4120 BasicBlock *Default = getBasicBlock(Record[2]); 4121 if (!OpTy || !Cond || !Default) 4122 return error("Invalid record"); 4123 unsigned NumCases = (Record.size()-3)/2; 4124 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4125 InstructionList.push_back(SI); 4126 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4127 ConstantInt *CaseVal = 4128 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4129 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4130 if (!CaseVal || !DestBB) { 4131 delete SI; 4132 return error("Invalid record"); 4133 } 4134 SI->addCase(CaseVal, DestBB); 4135 } 4136 I = SI; 4137 break; 4138 } 4139 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4140 if (Record.size() < 2) 4141 return error("Invalid record"); 4142 Type *OpTy = getTypeByID(Record[0]); 4143 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4144 if (!OpTy || !Address) 4145 return error("Invalid record"); 4146 unsigned NumDests = Record.size()-2; 4147 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4148 InstructionList.push_back(IBI); 4149 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4150 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4151 IBI->addDestination(DestBB); 4152 } else { 4153 delete IBI; 4154 return error("Invalid record"); 4155 } 4156 } 4157 I = IBI; 4158 break; 4159 } 4160 4161 case bitc::FUNC_CODE_INST_INVOKE: { 4162 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4163 if (Record.size() < 4) 4164 return error("Invalid record"); 4165 unsigned OpNum = 0; 4166 AttributeList PAL = getAttributes(Record[OpNum++]); 4167 unsigned CCInfo = Record[OpNum++]; 4168 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4169 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4170 4171 FunctionType *FTy = nullptr; 4172 if (CCInfo >> 13 & 1 && 4173 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4174 return error("Explicit invoke type is not a function type"); 4175 4176 Value *Callee; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4178 return error("Invalid record"); 4179 4180 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4181 if (!CalleeTy) 4182 return error("Callee is not a pointer"); 4183 if (!FTy) { 4184 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4185 if (!FTy) 4186 return error("Callee is not of pointer to function type"); 4187 } else if (CalleeTy->getElementType() != FTy) 4188 return error("Explicit invoke type does not match pointee type of " 4189 "callee operand"); 4190 if (Record.size() < FTy->getNumParams() + OpNum) 4191 return error("Insufficient operands to call"); 4192 4193 SmallVector<Value*, 16> Ops; 4194 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4195 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4196 FTy->getParamType(i))); 4197 if (!Ops.back()) 4198 return error("Invalid record"); 4199 } 4200 4201 if (!FTy->isVarArg()) { 4202 if (Record.size() != OpNum) 4203 return error("Invalid record"); 4204 } else { 4205 // Read type/value pairs for varargs params. 4206 while (OpNum != Record.size()) { 4207 Value *Op; 4208 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4209 return error("Invalid record"); 4210 Ops.push_back(Op); 4211 } 4212 } 4213 4214 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4215 OperandBundles); 4216 OperandBundles.clear(); 4217 InstructionList.push_back(I); 4218 cast<InvokeInst>(I)->setCallingConv( 4219 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4220 cast<InvokeInst>(I)->setAttributes(PAL); 4221 break; 4222 } 4223 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4224 unsigned Idx = 0; 4225 Value *Val = nullptr; 4226 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4227 return error("Invalid record"); 4228 I = ResumeInst::Create(Val); 4229 InstructionList.push_back(I); 4230 break; 4231 } 4232 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4233 I = new UnreachableInst(Context); 4234 InstructionList.push_back(I); 4235 break; 4236 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4237 if (Record.size() < 1 || ((Record.size()-1)&1)) 4238 return error("Invalid record"); 4239 Type *Ty = getTypeByID(Record[0]); 4240 if (!Ty) 4241 return error("Invalid record"); 4242 4243 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4244 InstructionList.push_back(PN); 4245 4246 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4247 Value *V; 4248 // With the new function encoding, it is possible that operands have 4249 // negative IDs (for forward references). Use a signed VBR 4250 // representation to keep the encoding small. 4251 if (UseRelativeIDs) 4252 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4253 else 4254 V = getValue(Record, 1+i, NextValueNo, Ty); 4255 BasicBlock *BB = getBasicBlock(Record[2+i]); 4256 if (!V || !BB) 4257 return error("Invalid record"); 4258 PN->addIncoming(V, BB); 4259 } 4260 I = PN; 4261 break; 4262 } 4263 4264 case bitc::FUNC_CODE_INST_LANDINGPAD: 4265 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4266 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4267 unsigned Idx = 0; 4268 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4269 if (Record.size() < 3) 4270 return error("Invalid record"); 4271 } else { 4272 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4273 if (Record.size() < 4) 4274 return error("Invalid record"); 4275 } 4276 Type *Ty = getTypeByID(Record[Idx++]); 4277 if (!Ty) 4278 return error("Invalid record"); 4279 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4280 Value *PersFn = nullptr; 4281 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4282 return error("Invalid record"); 4283 4284 if (!F->hasPersonalityFn()) 4285 F->setPersonalityFn(cast<Constant>(PersFn)); 4286 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4287 return error("Personality function mismatch"); 4288 } 4289 4290 bool IsCleanup = !!Record[Idx++]; 4291 unsigned NumClauses = Record[Idx++]; 4292 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4293 LP->setCleanup(IsCleanup); 4294 for (unsigned J = 0; J != NumClauses; ++J) { 4295 LandingPadInst::ClauseType CT = 4296 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4297 Value *Val; 4298 4299 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4300 delete LP; 4301 return error("Invalid record"); 4302 } 4303 4304 assert((CT != LandingPadInst::Catch || 4305 !isa<ArrayType>(Val->getType())) && 4306 "Catch clause has a invalid type!"); 4307 assert((CT != LandingPadInst::Filter || 4308 isa<ArrayType>(Val->getType())) && 4309 "Filter clause has invalid type!"); 4310 LP->addClause(cast<Constant>(Val)); 4311 } 4312 4313 I = LP; 4314 InstructionList.push_back(I); 4315 break; 4316 } 4317 4318 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4319 if (Record.size() != 4) 4320 return error("Invalid record"); 4321 uint64_t AlignRecord = Record[3]; 4322 const uint64_t InAllocaMask = uint64_t(1) << 5; 4323 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4324 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4325 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4326 SwiftErrorMask; 4327 bool InAlloca = AlignRecord & InAllocaMask; 4328 bool SwiftError = AlignRecord & SwiftErrorMask; 4329 Type *Ty = getTypeByID(Record[0]); 4330 if ((AlignRecord & ExplicitTypeMask) == 0) { 4331 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4332 if (!PTy) 4333 return error("Old-style alloca with a non-pointer type"); 4334 Ty = PTy->getElementType(); 4335 } 4336 Type *OpTy = getTypeByID(Record[1]); 4337 Value *Size = getFnValueByID(Record[2], OpTy); 4338 unsigned Align; 4339 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4340 return Err; 4341 } 4342 if (!Ty || !Size) 4343 return error("Invalid record"); 4344 4345 // FIXME: Make this an optional field. 4346 const DataLayout &DL = TheModule->getDataLayout(); 4347 unsigned AS = DL.getAllocaAddrSpace(); 4348 4349 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4350 AI->setUsedWithInAlloca(InAlloca); 4351 AI->setSwiftError(SwiftError); 4352 I = AI; 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4357 unsigned OpNum = 0; 4358 Value *Op; 4359 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4360 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4361 return error("Invalid record"); 4362 4363 Type *Ty = nullptr; 4364 if (OpNum + 3 == Record.size()) 4365 Ty = getTypeByID(Record[OpNum++]); 4366 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4367 return Err; 4368 if (!Ty) 4369 Ty = cast<PointerType>(Op->getType())->getElementType(); 4370 4371 unsigned Align; 4372 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4373 return Err; 4374 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4375 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4380 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4381 unsigned OpNum = 0; 4382 Value *Op; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4384 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4385 return error("Invalid record"); 4386 4387 Type *Ty = nullptr; 4388 if (OpNum + 5 == Record.size()) 4389 Ty = getTypeByID(Record[OpNum++]); 4390 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4391 return Err; 4392 if (!Ty) 4393 Ty = cast<PointerType>(Op->getType())->getElementType(); 4394 4395 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4396 if (Ordering == AtomicOrdering::NotAtomic || 4397 Ordering == AtomicOrdering::Release || 4398 Ordering == AtomicOrdering::AcquireRelease) 4399 return error("Invalid record"); 4400 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4401 return error("Invalid record"); 4402 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4403 4404 unsigned Align; 4405 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4406 return Err; 4407 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4408 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 case bitc::FUNC_CODE_INST_STORE: 4413 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4414 unsigned OpNum = 0; 4415 Value *Val, *Ptr; 4416 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4417 (BitCode == bitc::FUNC_CODE_INST_STORE 4418 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4419 : popValue(Record, OpNum, NextValueNo, 4420 cast<PointerType>(Ptr->getType())->getElementType(), 4421 Val)) || 4422 OpNum + 2 != Record.size()) 4423 return error("Invalid record"); 4424 4425 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4426 return Err; 4427 unsigned Align; 4428 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4429 return Err; 4430 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4431 InstructionList.push_back(I); 4432 break; 4433 } 4434 case bitc::FUNC_CODE_INST_STOREATOMIC: 4435 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4436 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4437 unsigned OpNum = 0; 4438 Value *Val, *Ptr; 4439 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4440 !isa<PointerType>(Ptr->getType()) || 4441 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4442 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4443 : popValue(Record, OpNum, NextValueNo, 4444 cast<PointerType>(Ptr->getType())->getElementType(), 4445 Val)) || 4446 OpNum + 4 != Record.size()) 4447 return error("Invalid record"); 4448 4449 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4450 return Err; 4451 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4452 if (Ordering == AtomicOrdering::NotAtomic || 4453 Ordering == AtomicOrdering::Acquire || 4454 Ordering == AtomicOrdering::AcquireRelease) 4455 return error("Invalid record"); 4456 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4457 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4458 return error("Invalid record"); 4459 4460 unsigned Align; 4461 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4462 return Err; 4463 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4468 case bitc::FUNC_CODE_INST_CMPXCHG: { 4469 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4470 // failureordering?, isweak?] 4471 unsigned OpNum = 0; 4472 Value *Ptr, *Cmp, *New; 4473 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4474 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4475 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4476 : popValue(Record, OpNum, NextValueNo, 4477 cast<PointerType>(Ptr->getType())->getElementType(), 4478 Cmp)) || 4479 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4480 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4481 return error("Invalid record"); 4482 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4483 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4484 SuccessOrdering == AtomicOrdering::Unordered) 4485 return error("Invalid record"); 4486 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4487 4488 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4489 return Err; 4490 AtomicOrdering FailureOrdering; 4491 if (Record.size() < 7) 4492 FailureOrdering = 4493 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4494 else 4495 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4496 4497 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4498 SSID); 4499 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4500 4501 if (Record.size() < 8) { 4502 // Before weak cmpxchgs existed, the instruction simply returned the 4503 // value loaded from memory, so bitcode files from that era will be 4504 // expecting the first component of a modern cmpxchg. 4505 CurBB->getInstList().push_back(I); 4506 I = ExtractValueInst::Create(I, 0); 4507 } else { 4508 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4509 } 4510 4511 InstructionList.push_back(I); 4512 break; 4513 } 4514 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4515 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4516 unsigned OpNum = 0; 4517 Value *Ptr, *Val; 4518 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4519 !isa<PointerType>(Ptr->getType()) || 4520 popValue(Record, OpNum, NextValueNo, 4521 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4522 OpNum+4 != Record.size()) 4523 return error("Invalid record"); 4524 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4525 if (Operation < AtomicRMWInst::FIRST_BINOP || 4526 Operation > AtomicRMWInst::LAST_BINOP) 4527 return error("Invalid record"); 4528 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4529 if (Ordering == AtomicOrdering::NotAtomic || 4530 Ordering == AtomicOrdering::Unordered) 4531 return error("Invalid record"); 4532 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4533 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4534 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4535 InstructionList.push_back(I); 4536 break; 4537 } 4538 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4539 if (2 != Record.size()) 4540 return error("Invalid record"); 4541 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4542 if (Ordering == AtomicOrdering::NotAtomic || 4543 Ordering == AtomicOrdering::Unordered || 4544 Ordering == AtomicOrdering::Monotonic) 4545 return error("Invalid record"); 4546 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4547 I = new FenceInst(Context, Ordering, SSID); 4548 InstructionList.push_back(I); 4549 break; 4550 } 4551 case bitc::FUNC_CODE_INST_CALL: { 4552 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4553 if (Record.size() < 3) 4554 return error("Invalid record"); 4555 4556 unsigned OpNum = 0; 4557 AttributeList PAL = getAttributes(Record[OpNum++]); 4558 unsigned CCInfo = Record[OpNum++]; 4559 4560 FastMathFlags FMF; 4561 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4562 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4563 if (!FMF.any()) 4564 return error("Fast math flags indicator set for call with no FMF"); 4565 } 4566 4567 FunctionType *FTy = nullptr; 4568 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4569 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4570 return error("Explicit call type is not a function type"); 4571 4572 Value *Callee; 4573 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4574 return error("Invalid record"); 4575 4576 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4577 if (!OpTy) 4578 return error("Callee is not a pointer type"); 4579 if (!FTy) { 4580 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4581 if (!FTy) 4582 return error("Callee is not of pointer to function type"); 4583 } else if (OpTy->getElementType() != FTy) 4584 return error("Explicit call type does not match pointee type of " 4585 "callee operand"); 4586 if (Record.size() < FTy->getNumParams() + OpNum) 4587 return error("Insufficient operands to call"); 4588 4589 SmallVector<Value*, 16> Args; 4590 // Read the fixed params. 4591 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4592 if (FTy->getParamType(i)->isLabelTy()) 4593 Args.push_back(getBasicBlock(Record[OpNum])); 4594 else 4595 Args.push_back(getValue(Record, OpNum, NextValueNo, 4596 FTy->getParamType(i))); 4597 if (!Args.back()) 4598 return error("Invalid record"); 4599 } 4600 4601 // Read type/value pairs for varargs params. 4602 if (!FTy->isVarArg()) { 4603 if (OpNum != Record.size()) 4604 return error("Invalid record"); 4605 } else { 4606 while (OpNum != Record.size()) { 4607 Value *Op; 4608 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4609 return error("Invalid record"); 4610 Args.push_back(Op); 4611 } 4612 } 4613 4614 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4615 OperandBundles.clear(); 4616 InstructionList.push_back(I); 4617 cast<CallInst>(I)->setCallingConv( 4618 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4619 CallInst::TailCallKind TCK = CallInst::TCK_None; 4620 if (CCInfo & 1 << bitc::CALL_TAIL) 4621 TCK = CallInst::TCK_Tail; 4622 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4623 TCK = CallInst::TCK_MustTail; 4624 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4625 TCK = CallInst::TCK_NoTail; 4626 cast<CallInst>(I)->setTailCallKind(TCK); 4627 cast<CallInst>(I)->setAttributes(PAL); 4628 if (FMF.any()) { 4629 if (!isa<FPMathOperator>(I)) 4630 return error("Fast-math-flags specified for call without " 4631 "floating-point scalar or vector return type"); 4632 I->setFastMathFlags(FMF); 4633 } 4634 break; 4635 } 4636 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4637 if (Record.size() < 3) 4638 return error("Invalid record"); 4639 Type *OpTy = getTypeByID(Record[0]); 4640 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4641 Type *ResTy = getTypeByID(Record[2]); 4642 if (!OpTy || !Op || !ResTy) 4643 return error("Invalid record"); 4644 I = new VAArgInst(Op, ResTy); 4645 InstructionList.push_back(I); 4646 break; 4647 } 4648 4649 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4650 // A call or an invoke can be optionally prefixed with some variable 4651 // number of operand bundle blocks. These blocks are read into 4652 // OperandBundles and consumed at the next call or invoke instruction. 4653 4654 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4655 return error("Invalid record"); 4656 4657 std::vector<Value *> Inputs; 4658 4659 unsigned OpNum = 1; 4660 while (OpNum != Record.size()) { 4661 Value *Op; 4662 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4663 return error("Invalid record"); 4664 Inputs.push_back(Op); 4665 } 4666 4667 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4668 continue; 4669 } 4670 } 4671 4672 // Add instruction to end of current BB. If there is no current BB, reject 4673 // this file. 4674 if (!CurBB) { 4675 I->deleteValue(); 4676 return error("Invalid instruction with no BB"); 4677 } 4678 if (!OperandBundles.empty()) { 4679 I->deleteValue(); 4680 return error("Operand bundles found with no consumer"); 4681 } 4682 CurBB->getInstList().push_back(I); 4683 4684 // If this was a terminator instruction, move to the next block. 4685 if (I->isTerminator()) { 4686 ++CurBBNo; 4687 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4688 } 4689 4690 // Non-void values get registered in the value table for future use. 4691 if (I && !I->getType()->isVoidTy()) 4692 ValueList.assignValue(I, NextValueNo++); 4693 } 4694 4695 OutOfRecordLoop: 4696 4697 if (!OperandBundles.empty()) 4698 return error("Operand bundles found with no consumer"); 4699 4700 // Check the function list for unresolved values. 4701 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4702 if (!A->getParent()) { 4703 // We found at least one unresolved value. Nuke them all to avoid leaks. 4704 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4705 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4706 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4707 delete A; 4708 } 4709 } 4710 return error("Never resolved value found in function"); 4711 } 4712 } 4713 4714 // Unexpected unresolved metadata about to be dropped. 4715 if (MDLoader->hasFwdRefs()) 4716 return error("Invalid function metadata: outgoing forward refs"); 4717 4718 // Trim the value list down to the size it was before we parsed this function. 4719 ValueList.shrinkTo(ModuleValueListSize); 4720 MDLoader->shrinkTo(ModuleMDLoaderSize); 4721 std::vector<BasicBlock*>().swap(FunctionBBs); 4722 return Error::success(); 4723 } 4724 4725 /// Find the function body in the bitcode stream 4726 Error BitcodeReader::findFunctionInStream( 4727 Function *F, 4728 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4729 while (DeferredFunctionInfoIterator->second == 0) { 4730 // This is the fallback handling for the old format bitcode that 4731 // didn't contain the function index in the VST, or when we have 4732 // an anonymous function which would not have a VST entry. 4733 // Assert that we have one of those two cases. 4734 assert(VSTOffset == 0 || !F->hasName()); 4735 // Parse the next body in the stream and set its position in the 4736 // DeferredFunctionInfo map. 4737 if (Error Err = rememberAndSkipFunctionBodies()) 4738 return Err; 4739 } 4740 return Error::success(); 4741 } 4742 4743 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4744 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4745 return SyncScope::ID(Val); 4746 if (Val >= SSIDs.size()) 4747 return SyncScope::System; // Map unknown synchronization scopes to system. 4748 return SSIDs[Val]; 4749 } 4750 4751 //===----------------------------------------------------------------------===// 4752 // GVMaterializer implementation 4753 //===----------------------------------------------------------------------===// 4754 4755 Error BitcodeReader::materialize(GlobalValue *GV) { 4756 Function *F = dyn_cast<Function>(GV); 4757 // If it's not a function or is already material, ignore the request. 4758 if (!F || !F->isMaterializable()) 4759 return Error::success(); 4760 4761 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4762 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4763 // If its position is recorded as 0, its body is somewhere in the stream 4764 // but we haven't seen it yet. 4765 if (DFII->second == 0) 4766 if (Error Err = findFunctionInStream(F, DFII)) 4767 return Err; 4768 4769 // Materialize metadata before parsing any function bodies. 4770 if (Error Err = materializeMetadata()) 4771 return Err; 4772 4773 // Move the bit stream to the saved position of the deferred function body. 4774 Stream.JumpToBit(DFII->second); 4775 4776 if (Error Err = parseFunctionBody(F)) 4777 return Err; 4778 F->setIsMaterializable(false); 4779 4780 if (StripDebugInfo) 4781 stripDebugInfo(*F); 4782 4783 // Upgrade any old intrinsic calls in the function. 4784 for (auto &I : UpgradedIntrinsics) { 4785 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4786 UI != UE;) { 4787 User *U = *UI; 4788 ++UI; 4789 if (CallInst *CI = dyn_cast<CallInst>(U)) 4790 UpgradeIntrinsicCall(CI, I.second); 4791 } 4792 } 4793 4794 // Update calls to the remangled intrinsics 4795 for (auto &I : RemangledIntrinsics) 4796 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4797 UI != UE;) 4798 // Don't expect any other users than call sites 4799 CallSite(*UI++).setCalledFunction(I.second); 4800 4801 // Finish fn->subprogram upgrade for materialized functions. 4802 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4803 F->setSubprogram(SP); 4804 4805 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4806 if (!MDLoader->isStrippingTBAA()) { 4807 for (auto &I : instructions(F)) { 4808 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4809 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4810 continue; 4811 MDLoader->setStripTBAA(true); 4812 stripTBAA(F->getParent()); 4813 } 4814 } 4815 4816 // Bring in any functions that this function forward-referenced via 4817 // blockaddresses. 4818 return materializeForwardReferencedFunctions(); 4819 } 4820 4821 Error BitcodeReader::materializeModule() { 4822 if (Error Err = materializeMetadata()) 4823 return Err; 4824 4825 // Promise to materialize all forward references. 4826 WillMaterializeAllForwardRefs = true; 4827 4828 // Iterate over the module, deserializing any functions that are still on 4829 // disk. 4830 for (Function &F : *TheModule) { 4831 if (Error Err = materialize(&F)) 4832 return Err; 4833 } 4834 // At this point, if there are any function bodies, parse the rest of 4835 // the bits in the module past the last function block we have recorded 4836 // through either lazy scanning or the VST. 4837 if (LastFunctionBlockBit || NextUnreadBit) 4838 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4839 ? LastFunctionBlockBit 4840 : NextUnreadBit)) 4841 return Err; 4842 4843 // Check that all block address forward references got resolved (as we 4844 // promised above). 4845 if (!BasicBlockFwdRefs.empty()) 4846 return error("Never resolved function from blockaddress"); 4847 4848 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4849 // delete the old functions to clean up. We can't do this unless the entire 4850 // module is materialized because there could always be another function body 4851 // with calls to the old function. 4852 for (auto &I : UpgradedIntrinsics) { 4853 for (auto *U : I.first->users()) { 4854 if (CallInst *CI = dyn_cast<CallInst>(U)) 4855 UpgradeIntrinsicCall(CI, I.second); 4856 } 4857 if (!I.first->use_empty()) 4858 I.first->replaceAllUsesWith(I.second); 4859 I.first->eraseFromParent(); 4860 } 4861 UpgradedIntrinsics.clear(); 4862 // Do the same for remangled intrinsics 4863 for (auto &I : RemangledIntrinsics) { 4864 I.first->replaceAllUsesWith(I.second); 4865 I.first->eraseFromParent(); 4866 } 4867 RemangledIntrinsics.clear(); 4868 4869 UpgradeDebugInfo(*TheModule); 4870 4871 UpgradeModuleFlags(*TheModule); 4872 4873 UpgradeRetainReleaseMarker(*TheModule); 4874 4875 return Error::success(); 4876 } 4877 4878 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4879 return IdentifiedStructTypes; 4880 } 4881 4882 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4883 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4884 StringRef ModulePath, unsigned ModuleId) 4885 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4886 ModulePath(ModulePath), ModuleId(ModuleId) {} 4887 4888 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4889 TheIndex.addModule(ModulePath, ModuleId); 4890 } 4891 4892 ModuleSummaryIndex::ModuleInfo * 4893 ModuleSummaryIndexBitcodeReader::getThisModule() { 4894 return TheIndex.getModule(ModulePath); 4895 } 4896 4897 std::pair<ValueInfo, GlobalValue::GUID> 4898 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4899 auto VGI = ValueIdToValueInfoMap[ValueId]; 4900 assert(VGI.first); 4901 return VGI; 4902 } 4903 4904 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4905 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4906 StringRef SourceFileName) { 4907 std::string GlobalId = 4908 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4909 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4910 auto OriginalNameID = ValueGUID; 4911 if (GlobalValue::isLocalLinkage(Linkage)) 4912 OriginalNameID = GlobalValue::getGUID(ValueName); 4913 if (PrintSummaryGUIDs) 4914 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4915 << ValueName << "\n"; 4916 4917 // UseStrtab is false for legacy summary formats and value names are 4918 // created on stack. In that case we save the name in a string saver in 4919 // the index so that the value name can be recorded. 4920 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4921 TheIndex.getOrInsertValueInfo( 4922 ValueGUID, 4923 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 4924 OriginalNameID); 4925 } 4926 4927 // Specialized value symbol table parser used when reading module index 4928 // blocks where we don't actually create global values. The parsed information 4929 // is saved in the bitcode reader for use when later parsing summaries. 4930 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4931 uint64_t Offset, 4932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4933 // With a strtab the VST is not required to parse the summary. 4934 if (UseStrtab) 4935 return Error::success(); 4936 4937 assert(Offset > 0 && "Expected non-zero VST offset"); 4938 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4939 4940 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4941 return error("Invalid record"); 4942 4943 SmallVector<uint64_t, 64> Record; 4944 4945 // Read all the records for this value table. 4946 SmallString<128> ValueName; 4947 4948 while (true) { 4949 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4950 4951 switch (Entry.Kind) { 4952 case BitstreamEntry::SubBlock: // Handled for us already. 4953 case BitstreamEntry::Error: 4954 return error("Malformed block"); 4955 case BitstreamEntry::EndBlock: 4956 // Done parsing VST, jump back to wherever we came from. 4957 Stream.JumpToBit(CurrentBit); 4958 return Error::success(); 4959 case BitstreamEntry::Record: 4960 // The interesting case. 4961 break; 4962 } 4963 4964 // Read a record. 4965 Record.clear(); 4966 switch (Stream.readRecord(Entry.ID, Record)) { 4967 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4968 break; 4969 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4970 if (convertToString(Record, 1, ValueName)) 4971 return error("Invalid record"); 4972 unsigned ValueID = Record[0]; 4973 assert(!SourceFileName.empty()); 4974 auto VLI = ValueIdToLinkageMap.find(ValueID); 4975 assert(VLI != ValueIdToLinkageMap.end() && 4976 "No linkage found for VST entry?"); 4977 auto Linkage = VLI->second; 4978 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4979 ValueName.clear(); 4980 break; 4981 } 4982 case bitc::VST_CODE_FNENTRY: { 4983 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4984 if (convertToString(Record, 2, ValueName)) 4985 return error("Invalid record"); 4986 unsigned ValueID = Record[0]; 4987 assert(!SourceFileName.empty()); 4988 auto VLI = ValueIdToLinkageMap.find(ValueID); 4989 assert(VLI != ValueIdToLinkageMap.end() && 4990 "No linkage found for VST entry?"); 4991 auto Linkage = VLI->second; 4992 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4993 ValueName.clear(); 4994 break; 4995 } 4996 case bitc::VST_CODE_COMBINED_ENTRY: { 4997 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4998 unsigned ValueID = Record[0]; 4999 GlobalValue::GUID RefGUID = Record[1]; 5000 // The "original name", which is the second value of the pair will be 5001 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5002 ValueIdToValueInfoMap[ValueID] = 5003 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5004 break; 5005 } 5006 } 5007 } 5008 } 5009 5010 // Parse just the blocks needed for building the index out of the module. 5011 // At the end of this routine the module Index is populated with a map 5012 // from global value id to GlobalValueSummary objects. 5013 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5014 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5015 return error("Invalid record"); 5016 5017 SmallVector<uint64_t, 64> Record; 5018 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5019 unsigned ValueId = 0; 5020 5021 // Read the index for this module. 5022 while (true) { 5023 BitstreamEntry Entry = Stream.advance(); 5024 5025 switch (Entry.Kind) { 5026 case BitstreamEntry::Error: 5027 return error("Malformed block"); 5028 case BitstreamEntry::EndBlock: 5029 return Error::success(); 5030 5031 case BitstreamEntry::SubBlock: 5032 switch (Entry.ID) { 5033 default: // Skip unknown content. 5034 if (Stream.SkipBlock()) 5035 return error("Invalid record"); 5036 break; 5037 case bitc::BLOCKINFO_BLOCK_ID: 5038 // Need to parse these to get abbrev ids (e.g. for VST) 5039 if (readBlockInfo()) 5040 return error("Malformed block"); 5041 break; 5042 case bitc::VALUE_SYMTAB_BLOCK_ID: 5043 // Should have been parsed earlier via VSTOffset, unless there 5044 // is no summary section. 5045 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5046 !SeenGlobalValSummary) && 5047 "Expected early VST parse via VSTOffset record"); 5048 if (Stream.SkipBlock()) 5049 return error("Invalid record"); 5050 break; 5051 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5052 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5053 // Add the module if it is a per-module index (has a source file name). 5054 if (!SourceFileName.empty()) 5055 addThisModule(); 5056 assert(!SeenValueSymbolTable && 5057 "Already read VST when parsing summary block?"); 5058 // We might not have a VST if there were no values in the 5059 // summary. An empty summary block generated when we are 5060 // performing ThinLTO compiles so we don't later invoke 5061 // the regular LTO process on them. 5062 if (VSTOffset > 0) { 5063 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5064 return Err; 5065 SeenValueSymbolTable = true; 5066 } 5067 SeenGlobalValSummary = true; 5068 if (Error Err = parseEntireSummary(Entry.ID)) 5069 return Err; 5070 break; 5071 case bitc::MODULE_STRTAB_BLOCK_ID: 5072 if (Error Err = parseModuleStringTable()) 5073 return Err; 5074 break; 5075 } 5076 continue; 5077 5078 case BitstreamEntry::Record: { 5079 Record.clear(); 5080 auto BitCode = Stream.readRecord(Entry.ID, Record); 5081 switch (BitCode) { 5082 default: 5083 break; // Default behavior, ignore unknown content. 5084 case bitc::MODULE_CODE_VERSION: { 5085 if (Error Err = parseVersionRecord(Record).takeError()) 5086 return Err; 5087 break; 5088 } 5089 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5090 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5091 SmallString<128> ValueName; 5092 if (convertToString(Record, 0, ValueName)) 5093 return error("Invalid record"); 5094 SourceFileName = ValueName.c_str(); 5095 break; 5096 } 5097 /// MODULE_CODE_HASH: [5*i32] 5098 case bitc::MODULE_CODE_HASH: { 5099 if (Record.size() != 5) 5100 return error("Invalid hash length " + Twine(Record.size()).str()); 5101 auto &Hash = getThisModule()->second.second; 5102 int Pos = 0; 5103 for (auto &Val : Record) { 5104 assert(!(Val >> 32) && "Unexpected high bits set"); 5105 Hash[Pos++] = Val; 5106 } 5107 break; 5108 } 5109 /// MODULE_CODE_VSTOFFSET: [offset] 5110 case bitc::MODULE_CODE_VSTOFFSET: 5111 if (Record.size() < 1) 5112 return error("Invalid record"); 5113 // Note that we subtract 1 here because the offset is relative to one 5114 // word before the start of the identification or module block, which 5115 // was historically always the start of the regular bitcode header. 5116 VSTOffset = Record[0] - 1; 5117 break; 5118 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5119 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5120 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5121 // v2: [strtab offset, strtab size, v1] 5122 case bitc::MODULE_CODE_GLOBALVAR: 5123 case bitc::MODULE_CODE_FUNCTION: 5124 case bitc::MODULE_CODE_ALIAS: { 5125 StringRef Name; 5126 ArrayRef<uint64_t> GVRecord; 5127 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5128 if (GVRecord.size() <= 3) 5129 return error("Invalid record"); 5130 uint64_t RawLinkage = GVRecord[3]; 5131 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5132 if (!UseStrtab) { 5133 ValueIdToLinkageMap[ValueId++] = Linkage; 5134 break; 5135 } 5136 5137 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5138 break; 5139 } 5140 } 5141 } 5142 continue; 5143 } 5144 } 5145 } 5146 5147 std::vector<ValueInfo> 5148 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5149 std::vector<ValueInfo> Ret; 5150 Ret.reserve(Record.size()); 5151 for (uint64_t RefValueId : Record) 5152 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5153 return Ret; 5154 } 5155 5156 std::vector<FunctionSummary::EdgeTy> 5157 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5158 bool IsOldProfileFormat, 5159 bool HasProfile, bool HasRelBF) { 5160 std::vector<FunctionSummary::EdgeTy> Ret; 5161 Ret.reserve(Record.size()); 5162 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5163 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5164 uint64_t RelBF = 0; 5165 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5166 if (IsOldProfileFormat) { 5167 I += 1; // Skip old callsitecount field 5168 if (HasProfile) 5169 I += 1; // Skip old profilecount field 5170 } else if (HasProfile) 5171 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5172 else if (HasRelBF) 5173 RelBF = Record[++I]; 5174 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5175 } 5176 return Ret; 5177 } 5178 5179 static void 5180 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5181 WholeProgramDevirtResolution &Wpd) { 5182 uint64_t ArgNum = Record[Slot++]; 5183 WholeProgramDevirtResolution::ByArg &B = 5184 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5185 Slot += ArgNum; 5186 5187 B.TheKind = 5188 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5189 B.Info = Record[Slot++]; 5190 B.Byte = Record[Slot++]; 5191 B.Bit = Record[Slot++]; 5192 } 5193 5194 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5195 StringRef Strtab, size_t &Slot, 5196 TypeIdSummary &TypeId) { 5197 uint64_t Id = Record[Slot++]; 5198 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5199 5200 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5201 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5202 static_cast<size_t>(Record[Slot + 1])}; 5203 Slot += 2; 5204 5205 uint64_t ResByArgNum = Record[Slot++]; 5206 for (uint64_t I = 0; I != ResByArgNum; ++I) 5207 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5208 } 5209 5210 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5211 StringRef Strtab, 5212 ModuleSummaryIndex &TheIndex) { 5213 size_t Slot = 0; 5214 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5215 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5216 Slot += 2; 5217 5218 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5219 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5220 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5221 TypeId.TTRes.SizeM1 = Record[Slot++]; 5222 TypeId.TTRes.BitMask = Record[Slot++]; 5223 TypeId.TTRes.InlineBits = Record[Slot++]; 5224 5225 while (Slot < Record.size()) 5226 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5227 } 5228 5229 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5230 // Read-only refs are in the end of the refs list. 5231 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5232 Refs[RefNo].setReadOnly(); 5233 } 5234 5235 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5236 // objects in the index. 5237 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5238 if (Stream.EnterSubBlock(ID)) 5239 return error("Invalid record"); 5240 SmallVector<uint64_t, 64> Record; 5241 5242 // Parse version 5243 { 5244 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5245 if (Entry.Kind != BitstreamEntry::Record) 5246 return error("Invalid Summary Block: record for version expected"); 5247 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5248 return error("Invalid Summary Block: version expected"); 5249 } 5250 const uint64_t Version = Record[0]; 5251 const bool IsOldProfileFormat = Version == 1; 5252 if (Version < 1 || Version > 6) 5253 return error("Invalid summary version " + Twine(Version) + 5254 ". Version should be in the range [1-6]."); 5255 Record.clear(); 5256 5257 // Keep around the last seen summary to be used when we see an optional 5258 // "OriginalName" attachement. 5259 GlobalValueSummary *LastSeenSummary = nullptr; 5260 GlobalValue::GUID LastSeenGUID = 0; 5261 5262 // We can expect to see any number of type ID information records before 5263 // each function summary records; these variables store the information 5264 // collected so far so that it can be used to create the summary object. 5265 std::vector<GlobalValue::GUID> PendingTypeTests; 5266 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5267 PendingTypeCheckedLoadVCalls; 5268 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5269 PendingTypeCheckedLoadConstVCalls; 5270 5271 while (true) { 5272 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5273 5274 switch (Entry.Kind) { 5275 case BitstreamEntry::SubBlock: // Handled for us already. 5276 case BitstreamEntry::Error: 5277 return error("Malformed block"); 5278 case BitstreamEntry::EndBlock: 5279 return Error::success(); 5280 case BitstreamEntry::Record: 5281 // The interesting case. 5282 break; 5283 } 5284 5285 // Read a record. The record format depends on whether this 5286 // is a per-module index or a combined index file. In the per-module 5287 // case the records contain the associated value's ID for correlation 5288 // with VST entries. In the combined index the correlation is done 5289 // via the bitcode offset of the summary records (which were saved 5290 // in the combined index VST entries). The records also contain 5291 // information used for ThinLTO renaming and importing. 5292 Record.clear(); 5293 auto BitCode = Stream.readRecord(Entry.ID, Record); 5294 switch (BitCode) { 5295 default: // Default behavior: ignore. 5296 break; 5297 case bitc::FS_FLAGS: { // [flags] 5298 uint64_t Flags = Record[0]; 5299 // Scan flags. 5300 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5301 5302 // 1 bit: WithGlobalValueDeadStripping flag. 5303 // Set on combined index only. 5304 if (Flags & 0x1) 5305 TheIndex.setWithGlobalValueDeadStripping(); 5306 // 1 bit: SkipModuleByDistributedBackend flag. 5307 // Set on combined index only. 5308 if (Flags & 0x2) 5309 TheIndex.setSkipModuleByDistributedBackend(); 5310 // 1 bit: HasSyntheticEntryCounts flag. 5311 // Set on combined index only. 5312 if (Flags & 0x4) 5313 TheIndex.setHasSyntheticEntryCounts(); 5314 // 1 bit: DisableSplitLTOUnit flag. 5315 // Set on per module indexes. It is up to the client to validate 5316 // the consistency of this flag across modules being linked. 5317 if (Flags & 0x8) 5318 TheIndex.setEnableSplitLTOUnit(); 5319 // 1 bit: PartiallySplitLTOUnits flag. 5320 // Set on combined index only. 5321 if (Flags & 0x10) 5322 TheIndex.setPartiallySplitLTOUnits(); 5323 break; 5324 } 5325 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5326 uint64_t ValueID = Record[0]; 5327 GlobalValue::GUID RefGUID = Record[1]; 5328 ValueIdToValueInfoMap[ValueID] = 5329 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5330 break; 5331 } 5332 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5333 // numrefs x valueid, n x (valueid)] 5334 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5335 // numrefs x valueid, 5336 // n x (valueid, hotness)] 5337 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5338 // numrefs x valueid, 5339 // n x (valueid, relblockfreq)] 5340 case bitc::FS_PERMODULE: 5341 case bitc::FS_PERMODULE_RELBF: 5342 case bitc::FS_PERMODULE_PROFILE: { 5343 unsigned ValueID = Record[0]; 5344 uint64_t RawFlags = Record[1]; 5345 unsigned InstCount = Record[2]; 5346 uint64_t RawFunFlags = 0; 5347 unsigned NumRefs = Record[3]; 5348 unsigned NumImmutableRefs = 0; 5349 int RefListStartIndex = 4; 5350 if (Version >= 4) { 5351 RawFunFlags = Record[3]; 5352 NumRefs = Record[4]; 5353 RefListStartIndex = 5; 5354 if (Version >= 5) { 5355 NumImmutableRefs = Record[5]; 5356 RefListStartIndex = 6; 5357 } 5358 } 5359 5360 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5361 // The module path string ref set in the summary must be owned by the 5362 // index's module string table. Since we don't have a module path 5363 // string table section in the per-module index, we create a single 5364 // module path string table entry with an empty (0) ID to take 5365 // ownership. 5366 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5367 assert(Record.size() >= RefListStartIndex + NumRefs && 5368 "Record size inconsistent with number of references"); 5369 std::vector<ValueInfo> Refs = makeRefList( 5370 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5371 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5372 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5373 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5374 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5375 IsOldProfileFormat, HasProfile, HasRelBF); 5376 setImmutableRefs(Refs, NumImmutableRefs); 5377 auto FS = llvm::make_unique<FunctionSummary>( 5378 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5379 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5380 std::move(PendingTypeTestAssumeVCalls), 5381 std::move(PendingTypeCheckedLoadVCalls), 5382 std::move(PendingTypeTestAssumeConstVCalls), 5383 std::move(PendingTypeCheckedLoadConstVCalls)); 5384 PendingTypeTests.clear(); 5385 PendingTypeTestAssumeVCalls.clear(); 5386 PendingTypeCheckedLoadVCalls.clear(); 5387 PendingTypeTestAssumeConstVCalls.clear(); 5388 PendingTypeCheckedLoadConstVCalls.clear(); 5389 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5390 FS->setModulePath(getThisModule()->first()); 5391 FS->setOriginalName(VIAndOriginalGUID.second); 5392 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5393 break; 5394 } 5395 // FS_ALIAS: [valueid, flags, valueid] 5396 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5397 // they expect all aliasee summaries to be available. 5398 case bitc::FS_ALIAS: { 5399 unsigned ValueID = Record[0]; 5400 uint64_t RawFlags = Record[1]; 5401 unsigned AliaseeID = Record[2]; 5402 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5403 auto AS = llvm::make_unique<AliasSummary>(Flags); 5404 // The module path string ref set in the summary must be owned by the 5405 // index's module string table. Since we don't have a module path 5406 // string table section in the per-module index, we create a single 5407 // module path string table entry with an empty (0) ID to take 5408 // ownership. 5409 AS->setModulePath(getThisModule()->first()); 5410 5411 GlobalValue::GUID AliaseeGUID = 5412 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5413 auto AliaseeInModule = 5414 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5415 if (!AliaseeInModule) 5416 return error("Alias expects aliasee summary to be parsed"); 5417 AS->setAliasee(AliaseeInModule); 5418 AS->setAliaseeGUID(AliaseeGUID); 5419 5420 auto GUID = getValueInfoFromValueId(ValueID); 5421 AS->setOriginalName(GUID.second); 5422 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5423 break; 5424 } 5425 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5426 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5427 unsigned ValueID = Record[0]; 5428 uint64_t RawFlags = Record[1]; 5429 unsigned RefArrayStart = 2; 5430 GlobalVarSummary::GVarFlags GVF; 5431 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5432 if (Version >= 5) { 5433 GVF = getDecodedGVarFlags(Record[2]); 5434 RefArrayStart = 3; 5435 } 5436 std::vector<ValueInfo> Refs = 5437 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5438 auto FS = 5439 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5440 FS->setModulePath(getThisModule()->first()); 5441 auto GUID = getValueInfoFromValueId(ValueID); 5442 FS->setOriginalName(GUID.second); 5443 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5444 break; 5445 } 5446 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5447 // numrefs x valueid, n x (valueid)] 5448 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5449 // numrefs x valueid, n x (valueid, hotness)] 5450 case bitc::FS_COMBINED: 5451 case bitc::FS_COMBINED_PROFILE: { 5452 unsigned ValueID = Record[0]; 5453 uint64_t ModuleId = Record[1]; 5454 uint64_t RawFlags = Record[2]; 5455 unsigned InstCount = Record[3]; 5456 uint64_t RawFunFlags = 0; 5457 uint64_t EntryCount = 0; 5458 unsigned NumRefs = Record[4]; 5459 unsigned NumImmutableRefs = 0; 5460 int RefListStartIndex = 5; 5461 5462 if (Version >= 4) { 5463 RawFunFlags = Record[4]; 5464 RefListStartIndex = 6; 5465 size_t NumRefsIndex = 5; 5466 if (Version >= 5) { 5467 RefListStartIndex = 7; 5468 if (Version >= 6) { 5469 NumRefsIndex = 6; 5470 EntryCount = Record[5]; 5471 RefListStartIndex = 8; 5472 } 5473 NumImmutableRefs = Record[RefListStartIndex - 1]; 5474 } 5475 NumRefs = Record[NumRefsIndex]; 5476 } 5477 5478 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5479 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5480 assert(Record.size() >= RefListStartIndex + NumRefs && 5481 "Record size inconsistent with number of references"); 5482 std::vector<ValueInfo> Refs = makeRefList( 5483 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5484 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5485 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5486 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5487 IsOldProfileFormat, HasProfile, false); 5488 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5489 setImmutableRefs(Refs, NumImmutableRefs); 5490 auto FS = llvm::make_unique<FunctionSummary>( 5491 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5492 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5493 std::move(PendingTypeTestAssumeVCalls), 5494 std::move(PendingTypeCheckedLoadVCalls), 5495 std::move(PendingTypeTestAssumeConstVCalls), 5496 std::move(PendingTypeCheckedLoadConstVCalls)); 5497 PendingTypeTests.clear(); 5498 PendingTypeTestAssumeVCalls.clear(); 5499 PendingTypeCheckedLoadVCalls.clear(); 5500 PendingTypeTestAssumeConstVCalls.clear(); 5501 PendingTypeCheckedLoadConstVCalls.clear(); 5502 LastSeenSummary = FS.get(); 5503 LastSeenGUID = VI.getGUID(); 5504 FS->setModulePath(ModuleIdMap[ModuleId]); 5505 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5506 break; 5507 } 5508 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5509 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5510 // they expect all aliasee summaries to be available. 5511 case bitc::FS_COMBINED_ALIAS: { 5512 unsigned ValueID = Record[0]; 5513 uint64_t ModuleId = Record[1]; 5514 uint64_t RawFlags = Record[2]; 5515 unsigned AliaseeValueId = Record[3]; 5516 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5517 auto AS = llvm::make_unique<AliasSummary>(Flags); 5518 LastSeenSummary = AS.get(); 5519 AS->setModulePath(ModuleIdMap[ModuleId]); 5520 5521 auto AliaseeGUID = 5522 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5523 auto AliaseeInModule = 5524 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5525 AS->setAliasee(AliaseeInModule); 5526 AS->setAliaseeGUID(AliaseeGUID); 5527 5528 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5529 LastSeenGUID = VI.getGUID(); 5530 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5531 break; 5532 } 5533 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5534 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5535 unsigned ValueID = Record[0]; 5536 uint64_t ModuleId = Record[1]; 5537 uint64_t RawFlags = Record[2]; 5538 unsigned RefArrayStart = 3; 5539 GlobalVarSummary::GVarFlags GVF; 5540 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5541 if (Version >= 5) { 5542 GVF = getDecodedGVarFlags(Record[3]); 5543 RefArrayStart = 4; 5544 } 5545 std::vector<ValueInfo> Refs = 5546 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5547 auto FS = 5548 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5549 LastSeenSummary = FS.get(); 5550 FS->setModulePath(ModuleIdMap[ModuleId]); 5551 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5552 LastSeenGUID = VI.getGUID(); 5553 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5554 break; 5555 } 5556 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5557 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5558 uint64_t OriginalName = Record[0]; 5559 if (!LastSeenSummary) 5560 return error("Name attachment that does not follow a combined record"); 5561 LastSeenSummary->setOriginalName(OriginalName); 5562 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5563 // Reset the LastSeenSummary 5564 LastSeenSummary = nullptr; 5565 LastSeenGUID = 0; 5566 break; 5567 } 5568 case bitc::FS_TYPE_TESTS: 5569 assert(PendingTypeTests.empty()); 5570 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5571 Record.end()); 5572 break; 5573 5574 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5575 assert(PendingTypeTestAssumeVCalls.empty()); 5576 for (unsigned I = 0; I != Record.size(); I += 2) 5577 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5578 break; 5579 5580 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5581 assert(PendingTypeCheckedLoadVCalls.empty()); 5582 for (unsigned I = 0; I != Record.size(); I += 2) 5583 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5584 break; 5585 5586 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5587 PendingTypeTestAssumeConstVCalls.push_back( 5588 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5589 break; 5590 5591 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5592 PendingTypeCheckedLoadConstVCalls.push_back( 5593 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5594 break; 5595 5596 case bitc::FS_CFI_FUNCTION_DEFS: { 5597 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5598 for (unsigned I = 0; I != Record.size(); I += 2) 5599 CfiFunctionDefs.insert( 5600 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5601 break; 5602 } 5603 5604 case bitc::FS_CFI_FUNCTION_DECLS: { 5605 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5606 for (unsigned I = 0; I != Record.size(); I += 2) 5607 CfiFunctionDecls.insert( 5608 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5609 break; 5610 } 5611 5612 case bitc::FS_TYPE_ID: 5613 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5614 break; 5615 } 5616 } 5617 llvm_unreachable("Exit infinite loop"); 5618 } 5619 5620 // Parse the module string table block into the Index. 5621 // This populates the ModulePathStringTable map in the index. 5622 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5623 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5624 return error("Invalid record"); 5625 5626 SmallVector<uint64_t, 64> Record; 5627 5628 SmallString<128> ModulePath; 5629 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5630 5631 while (true) { 5632 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5633 5634 switch (Entry.Kind) { 5635 case BitstreamEntry::SubBlock: // Handled for us already. 5636 case BitstreamEntry::Error: 5637 return error("Malformed block"); 5638 case BitstreamEntry::EndBlock: 5639 return Error::success(); 5640 case BitstreamEntry::Record: 5641 // The interesting case. 5642 break; 5643 } 5644 5645 Record.clear(); 5646 switch (Stream.readRecord(Entry.ID, Record)) { 5647 default: // Default behavior: ignore. 5648 break; 5649 case bitc::MST_CODE_ENTRY: { 5650 // MST_ENTRY: [modid, namechar x N] 5651 uint64_t ModuleId = Record[0]; 5652 5653 if (convertToString(Record, 1, ModulePath)) 5654 return error("Invalid record"); 5655 5656 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5657 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5658 5659 ModulePath.clear(); 5660 break; 5661 } 5662 /// MST_CODE_HASH: [5*i32] 5663 case bitc::MST_CODE_HASH: { 5664 if (Record.size() != 5) 5665 return error("Invalid hash length " + Twine(Record.size()).str()); 5666 if (!LastSeenModule) 5667 return error("Invalid hash that does not follow a module path"); 5668 int Pos = 0; 5669 for (auto &Val : Record) { 5670 assert(!(Val >> 32) && "Unexpected high bits set"); 5671 LastSeenModule->second.second[Pos++] = Val; 5672 } 5673 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5674 LastSeenModule = nullptr; 5675 break; 5676 } 5677 } 5678 } 5679 llvm_unreachable("Exit infinite loop"); 5680 } 5681 5682 namespace { 5683 5684 // FIXME: This class is only here to support the transition to llvm::Error. It 5685 // will be removed once this transition is complete. Clients should prefer to 5686 // deal with the Error value directly, rather than converting to error_code. 5687 class BitcodeErrorCategoryType : public std::error_category { 5688 const char *name() const noexcept override { 5689 return "llvm.bitcode"; 5690 } 5691 5692 std::string message(int IE) const override { 5693 BitcodeError E = static_cast<BitcodeError>(IE); 5694 switch (E) { 5695 case BitcodeError::CorruptedBitcode: 5696 return "Corrupted bitcode"; 5697 } 5698 llvm_unreachable("Unknown error type!"); 5699 } 5700 }; 5701 5702 } // end anonymous namespace 5703 5704 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5705 5706 const std::error_category &llvm::BitcodeErrorCategory() { 5707 return *ErrorCategory; 5708 } 5709 5710 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5711 unsigned Block, unsigned RecordID) { 5712 if (Stream.EnterSubBlock(Block)) 5713 return error("Invalid record"); 5714 5715 StringRef Strtab; 5716 while (true) { 5717 BitstreamEntry Entry = Stream.advance(); 5718 switch (Entry.Kind) { 5719 case BitstreamEntry::EndBlock: 5720 return Strtab; 5721 5722 case BitstreamEntry::Error: 5723 return error("Malformed block"); 5724 5725 case BitstreamEntry::SubBlock: 5726 if (Stream.SkipBlock()) 5727 return error("Malformed block"); 5728 break; 5729 5730 case BitstreamEntry::Record: 5731 StringRef Blob; 5732 SmallVector<uint64_t, 1> Record; 5733 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5734 Strtab = Blob; 5735 break; 5736 } 5737 } 5738 } 5739 5740 //===----------------------------------------------------------------------===// 5741 // External interface 5742 //===----------------------------------------------------------------------===// 5743 5744 Expected<std::vector<BitcodeModule>> 5745 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5746 auto FOrErr = getBitcodeFileContents(Buffer); 5747 if (!FOrErr) 5748 return FOrErr.takeError(); 5749 return std::move(FOrErr->Mods); 5750 } 5751 5752 Expected<BitcodeFileContents> 5753 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5754 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5755 if (!StreamOrErr) 5756 return StreamOrErr.takeError(); 5757 BitstreamCursor &Stream = *StreamOrErr; 5758 5759 BitcodeFileContents F; 5760 while (true) { 5761 uint64_t BCBegin = Stream.getCurrentByteNo(); 5762 5763 // We may be consuming bitcode from a client that leaves garbage at the end 5764 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5765 // the end that there cannot possibly be another module, stop looking. 5766 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5767 return F; 5768 5769 BitstreamEntry Entry = Stream.advance(); 5770 switch (Entry.Kind) { 5771 case BitstreamEntry::EndBlock: 5772 case BitstreamEntry::Error: 5773 return error("Malformed block"); 5774 5775 case BitstreamEntry::SubBlock: { 5776 uint64_t IdentificationBit = -1ull; 5777 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5778 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5779 if (Stream.SkipBlock()) 5780 return error("Malformed block"); 5781 5782 Entry = Stream.advance(); 5783 if (Entry.Kind != BitstreamEntry::SubBlock || 5784 Entry.ID != bitc::MODULE_BLOCK_ID) 5785 return error("Malformed block"); 5786 } 5787 5788 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5789 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5790 if (Stream.SkipBlock()) 5791 return error("Malformed block"); 5792 5793 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5794 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5795 Buffer.getBufferIdentifier(), IdentificationBit, 5796 ModuleBit}); 5797 continue; 5798 } 5799 5800 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5801 Expected<StringRef> Strtab = 5802 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5803 if (!Strtab) 5804 return Strtab.takeError(); 5805 // This string table is used by every preceding bitcode module that does 5806 // not have its own string table. A bitcode file may have multiple 5807 // string tables if it was created by binary concatenation, for example 5808 // with "llvm-cat -b". 5809 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5810 if (!I->Strtab.empty()) 5811 break; 5812 I->Strtab = *Strtab; 5813 } 5814 // Similarly, the string table is used by every preceding symbol table; 5815 // normally there will be just one unless the bitcode file was created 5816 // by binary concatenation. 5817 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5818 F.StrtabForSymtab = *Strtab; 5819 continue; 5820 } 5821 5822 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5823 Expected<StringRef> SymtabOrErr = 5824 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5825 if (!SymtabOrErr) 5826 return SymtabOrErr.takeError(); 5827 5828 // We can expect the bitcode file to have multiple symbol tables if it 5829 // was created by binary concatenation. In that case we silently 5830 // ignore any subsequent symbol tables, which is fine because this is a 5831 // low level function. The client is expected to notice that the number 5832 // of modules in the symbol table does not match the number of modules 5833 // in the input file and regenerate the symbol table. 5834 if (F.Symtab.empty()) 5835 F.Symtab = *SymtabOrErr; 5836 continue; 5837 } 5838 5839 if (Stream.SkipBlock()) 5840 return error("Malformed block"); 5841 continue; 5842 } 5843 case BitstreamEntry::Record: 5844 Stream.skipRecord(Entry.ID); 5845 continue; 5846 } 5847 } 5848 } 5849 5850 /// Get a lazy one-at-time loading module from bitcode. 5851 /// 5852 /// This isn't always used in a lazy context. In particular, it's also used by 5853 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5854 /// in forward-referenced functions from block address references. 5855 /// 5856 /// \param[in] MaterializeAll Set to \c true if we should materialize 5857 /// everything. 5858 Expected<std::unique_ptr<Module>> 5859 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5860 bool ShouldLazyLoadMetadata, bool IsImporting) { 5861 BitstreamCursor Stream(Buffer); 5862 5863 std::string ProducerIdentification; 5864 if (IdentificationBit != -1ull) { 5865 Stream.JumpToBit(IdentificationBit); 5866 Expected<std::string> ProducerIdentificationOrErr = 5867 readIdentificationBlock(Stream); 5868 if (!ProducerIdentificationOrErr) 5869 return ProducerIdentificationOrErr.takeError(); 5870 5871 ProducerIdentification = *ProducerIdentificationOrErr; 5872 } 5873 5874 Stream.JumpToBit(ModuleBit); 5875 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5876 Context); 5877 5878 std::unique_ptr<Module> M = 5879 llvm::make_unique<Module>(ModuleIdentifier, Context); 5880 M->setMaterializer(R); 5881 5882 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5883 if (Error Err = 5884 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5885 return std::move(Err); 5886 5887 if (MaterializeAll) { 5888 // Read in the entire module, and destroy the BitcodeReader. 5889 if (Error Err = M->materializeAll()) 5890 return std::move(Err); 5891 } else { 5892 // Resolve forward references from blockaddresses. 5893 if (Error Err = R->materializeForwardReferencedFunctions()) 5894 return std::move(Err); 5895 } 5896 return std::move(M); 5897 } 5898 5899 Expected<std::unique_ptr<Module>> 5900 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5901 bool IsImporting) { 5902 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5903 } 5904 5905 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5906 // We don't use ModuleIdentifier here because the client may need to control the 5907 // module path used in the combined summary (e.g. when reading summaries for 5908 // regular LTO modules). 5909 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5910 StringRef ModulePath, uint64_t ModuleId) { 5911 BitstreamCursor Stream(Buffer); 5912 Stream.JumpToBit(ModuleBit); 5913 5914 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5915 ModulePath, ModuleId); 5916 return R.parseModule(); 5917 } 5918 5919 // Parse the specified bitcode buffer, returning the function info index. 5920 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5921 BitstreamCursor Stream(Buffer); 5922 Stream.JumpToBit(ModuleBit); 5923 5924 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5925 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5926 ModuleIdentifier, 0); 5927 5928 if (Error Err = R.parseModule()) 5929 return std::move(Err); 5930 5931 return std::move(Index); 5932 } 5933 5934 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 5935 unsigned ID) { 5936 if (Stream.EnterSubBlock(ID)) 5937 return error("Invalid record"); 5938 SmallVector<uint64_t, 64> Record; 5939 5940 while (true) { 5941 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5942 5943 switch (Entry.Kind) { 5944 case BitstreamEntry::SubBlock: // Handled for us already. 5945 case BitstreamEntry::Error: 5946 return error("Malformed block"); 5947 case BitstreamEntry::EndBlock: 5948 // If no flags record found, conservatively return true to mimic 5949 // behavior before this flag was added. 5950 return true; 5951 case BitstreamEntry::Record: 5952 // The interesting case. 5953 break; 5954 } 5955 5956 // Look for the FS_FLAGS record. 5957 Record.clear(); 5958 auto BitCode = Stream.readRecord(Entry.ID, Record); 5959 switch (BitCode) { 5960 default: // Default behavior: ignore. 5961 break; 5962 case bitc::FS_FLAGS: { // [flags] 5963 uint64_t Flags = Record[0]; 5964 // Scan flags. 5965 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5966 5967 return Flags & 0x8; 5968 } 5969 } 5970 } 5971 llvm_unreachable("Exit infinite loop"); 5972 } 5973 5974 // Check if the given bitcode buffer contains a global value summary block. 5975 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5976 BitstreamCursor Stream(Buffer); 5977 Stream.JumpToBit(ModuleBit); 5978 5979 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5980 return error("Invalid record"); 5981 5982 while (true) { 5983 BitstreamEntry Entry = Stream.advance(); 5984 5985 switch (Entry.Kind) { 5986 case BitstreamEntry::Error: 5987 return error("Malformed block"); 5988 case BitstreamEntry::EndBlock: 5989 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 5990 /*EnableSplitLTOUnit=*/false}; 5991 5992 case BitstreamEntry::SubBlock: 5993 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5994 Expected<bool> EnableSplitLTOUnit = 5995 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 5996 if (!EnableSplitLTOUnit) 5997 return EnableSplitLTOUnit.takeError(); 5998 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 5999 *EnableSplitLTOUnit}; 6000 } 6001 6002 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6003 Expected<bool> EnableSplitLTOUnit = 6004 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6005 if (!EnableSplitLTOUnit) 6006 return EnableSplitLTOUnit.takeError(); 6007 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6008 *EnableSplitLTOUnit}; 6009 } 6010 6011 // Ignore other sub-blocks. 6012 if (Stream.SkipBlock()) 6013 return error("Malformed block"); 6014 continue; 6015 6016 case BitstreamEntry::Record: 6017 Stream.skipRecord(Entry.ID); 6018 continue; 6019 } 6020 } 6021 } 6022 6023 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6024 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6025 if (!MsOrErr) 6026 return MsOrErr.takeError(); 6027 6028 if (MsOrErr->size() != 1) 6029 return error("Expected a single module"); 6030 6031 return (*MsOrErr)[0]; 6032 } 6033 6034 Expected<std::unique_ptr<Module>> 6035 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6036 bool ShouldLazyLoadMetadata, bool IsImporting) { 6037 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6038 if (!BM) 6039 return BM.takeError(); 6040 6041 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6042 } 6043 6044 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6045 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6046 bool ShouldLazyLoadMetadata, bool IsImporting) { 6047 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6048 IsImporting); 6049 if (MOrErr) 6050 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6051 return MOrErr; 6052 } 6053 6054 Expected<std::unique_ptr<Module>> 6055 BitcodeModule::parseModule(LLVMContext &Context) { 6056 return getModuleImpl(Context, true, false, false); 6057 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6058 // written. We must defer until the Module has been fully materialized. 6059 } 6060 6061 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6062 LLVMContext &Context) { 6063 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6064 if (!BM) 6065 return BM.takeError(); 6066 6067 return BM->parseModule(Context); 6068 } 6069 6070 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6071 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6072 if (!StreamOrErr) 6073 return StreamOrErr.takeError(); 6074 6075 return readTriple(*StreamOrErr); 6076 } 6077 6078 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6079 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6080 if (!StreamOrErr) 6081 return StreamOrErr.takeError(); 6082 6083 return hasObjCCategory(*StreamOrErr); 6084 } 6085 6086 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6087 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6088 if (!StreamOrErr) 6089 return StreamOrErr.takeError(); 6090 6091 return readIdentificationCode(*StreamOrErr); 6092 } 6093 6094 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6095 ModuleSummaryIndex &CombinedIndex, 6096 uint64_t ModuleId) { 6097 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6098 if (!BM) 6099 return BM.takeError(); 6100 6101 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6102 } 6103 6104 Expected<std::unique_ptr<ModuleSummaryIndex>> 6105 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6106 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6107 if (!BM) 6108 return BM.takeError(); 6109 6110 return BM->getSummary(); 6111 } 6112 6113 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6114 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6115 if (!BM) 6116 return BM.takeError(); 6117 6118 return BM->getLTOInfo(); 6119 } 6120 6121 Expected<std::unique_ptr<ModuleSummaryIndex>> 6122 llvm::getModuleSummaryIndexForFile(StringRef Path, 6123 bool IgnoreEmptyThinLTOIndexFile) { 6124 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6125 MemoryBuffer::getFileOrSTDIN(Path); 6126 if (!FileOrErr) 6127 return errorCodeToError(FileOrErr.getError()); 6128 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6129 return nullptr; 6130 return getModuleSummaryIndex(**FileOrErr); 6131 } 6132