1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 158 std::vector<Type*> TypeList; 159 BitcodeReaderValueList ValueList; 160 BitcodeReaderMDValueList MDValueList; 161 std::vector<Comdat *> ComdatList; 162 SmallVector<Instruction *, 64> InstructionList; 163 164 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 165 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 166 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 168 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 169 170 SmallVector<Instruction*, 64> InstsWithTBAATag; 171 172 /// The set of attributes by index. Index zero in the file is for null, and 173 /// is thus not represented here. As such all indices are off by one. 174 std::vector<AttributeSet> MAttributes; 175 176 /// The set of attribute groups. 177 std::map<unsigned, AttributeSet> MAttributeGroups; 178 179 /// While parsing a function body, this is a list of the basic blocks for the 180 /// function. 181 std::vector<BasicBlock*> FunctionBBs; 182 183 // When reading the module header, this list is populated with functions that 184 // have bodies later in the file. 185 std::vector<Function*> FunctionsWithBodies; 186 187 // When intrinsic functions are encountered which require upgrading they are 188 // stored here with their replacement function. 189 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 190 UpgradedIntrinsicMap UpgradedIntrinsics; 191 192 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 193 DenseMap<unsigned, unsigned> MDKindMap; 194 195 // Several operations happen after the module header has been read, but 196 // before function bodies are processed. This keeps track of whether 197 // we've done this yet. 198 bool SeenFirstFunctionBody = false; 199 200 /// When function bodies are initially scanned, this map contains info about 201 /// where to find deferred function body in the stream. 202 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 203 204 /// When Metadata block is initially scanned when parsing the module, we may 205 /// choose to defer parsing of the metadata. This vector contains info about 206 /// which Metadata blocks are deferred. 207 std::vector<uint64_t> DeferredMetadataInfo; 208 209 /// These are basic blocks forward-referenced by block addresses. They are 210 /// inserted lazily into functions when they're loaded. The basic block ID is 211 /// its index into the vector. 212 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 213 std::deque<Function *> BasicBlockFwdRefQueue; 214 215 /// Indicates that we are using a new encoding for instruction operands where 216 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 217 /// instruction number, for a more compact encoding. Some instruction 218 /// operands are not relative to the instruction ID: basic block numbers, and 219 /// types. Once the old style function blocks have been phased out, we would 220 /// not need this flag. 221 bool UseRelativeIDs = false; 222 223 /// True if all functions will be materialized, negating the need to process 224 /// (e.g.) blockaddress forward references. 225 bool WillMaterializeAllForwardRefs = false; 226 227 /// Functions that have block addresses taken. This is usually empty. 228 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 std::vector<std::string> BundleTags; 236 237 public: 238 std::error_code error(BitcodeError E, const Twine &Message); 239 std::error_code error(BitcodeError E); 240 std::error_code error(const Twine &Message); 241 242 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 243 DiagnosticHandlerFunction DiagnosticHandler); 244 BitcodeReader(LLVMContext &Context, 245 DiagnosticHandlerFunction DiagnosticHandler); 246 ~BitcodeReader() override { freeState(); } 247 248 std::error_code materializeForwardReferencedFunctions(); 249 250 void freeState(); 251 252 void releaseBuffer(); 253 254 bool isDematerializable(const GlobalValue *GV) const override; 255 std::error_code materialize(GlobalValue *GV) override; 256 std::error_code materializeModule(Module *M) override; 257 std::vector<StructType *> getIdentifiedStructTypes() const override; 258 void dematerialize(GlobalValue *GV) override; 259 260 /// \brief Main interface to parsing a bitcode buffer. 261 /// \returns true if an error occurred. 262 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 263 Module *M, 264 bool ShouldLazyLoadMetadata = false); 265 266 /// \brief Cheap mechanism to just extract module triple 267 /// \returns true if an error occurred. 268 ErrorOr<std::string> parseTriple(); 269 270 static uint64_t decodeSignRotatedValue(uint64_t V); 271 272 /// Materialize any deferred Metadata block. 273 std::error_code materializeMetadata() override; 274 275 void setStripDebugInfo() override; 276 277 private: 278 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 279 // ProducerIdentification data member, and do some basic enforcement on the 280 // "epoch" encoded in the bitcode. 281 std::error_code parseBitcodeVersion(); 282 283 std::vector<StructType *> IdentifiedStructTypes; 284 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 285 StructType *createIdentifiedStructType(LLVMContext &Context); 286 287 Type *getTypeByID(unsigned ID); 288 Value *getFnValueByID(unsigned ID, Type *Ty, 289 OperatorConstraint OC = OC_None) { 290 if (Ty && Ty->isMetadataTy()) 291 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 292 return ValueList.getValueFwdRef(ID, Ty, OC); 293 } 294 Metadata *getFnMetadataByID(unsigned ID) { 295 return MDValueList.getValueFwdRef(ID); 296 } 297 BasicBlock *getBasicBlock(unsigned ID) const { 298 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 299 return FunctionBBs[ID]; 300 } 301 AttributeSet getAttributes(unsigned i) const { 302 if (i-1 < MAttributes.size()) 303 return MAttributes[i-1]; 304 return AttributeSet(); 305 } 306 307 /// Read a value/type pair out of the specified record from slot 'Slot'. 308 /// Increment Slot past the number of slots used in the record. Return true on 309 /// failure. 310 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 311 unsigned InstNum, Value *&ResVal) { 312 if (Slot == Record.size()) return true; 313 unsigned ValNo = (unsigned)Record[Slot++]; 314 // Adjust the ValNo, if it was encoded relative to the InstNum. 315 if (UseRelativeIDs) 316 ValNo = InstNum - ValNo; 317 if (ValNo < InstNum) { 318 // If this is not a forward reference, just return the value we already 319 // have. 320 ResVal = getFnValueByID(ValNo, nullptr); 321 return ResVal == nullptr; 322 } 323 if (Slot == Record.size()) 324 return true; 325 326 unsigned TypeNo = (unsigned)Record[Slot++]; 327 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 328 return ResVal == nullptr; 329 } 330 331 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 332 /// past the number of slots used by the value in the record. Return true if 333 /// there is an error. 334 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 335 unsigned InstNum, Type *Ty, Value *&ResVal, 336 OperatorConstraint OC = OC_None) { 337 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 338 return true; 339 // All values currently take a single record slot. 340 ++Slot; 341 return false; 342 } 343 344 /// Like popValue, but does not increment the Slot number. 345 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty, Value *&ResVal, 347 OperatorConstraint OC = OC_None) { 348 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty, OC); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty, 367 OperatorConstraint OC = OC_None) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty, OC); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(); 401 std::error_code parseMetadataAttachment(Function &F); 402 ErrorOr<std::string> parseModuleTriple(); 403 std::error_code parseUseLists(); 404 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 405 std::error_code initStreamFromBuffer(); 406 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code findFunctionInStream( 408 Function *F, 409 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 410 }; 411 412 /// Class to manage reading and parsing function summary index bitcode 413 /// files/sections. 414 class FunctionIndexBitcodeReader { 415 DiagnosticHandlerFunction DiagnosticHandler; 416 417 /// Eventually points to the function index built during parsing. 418 FunctionInfoIndex *TheIndex = nullptr; 419 420 std::unique_ptr<MemoryBuffer> Buffer; 421 std::unique_ptr<BitstreamReader> StreamFile; 422 BitstreamCursor Stream; 423 424 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 425 /// 426 /// If false, the summary section is fully parsed into the index during 427 /// the initial parse. Otherwise, if true, the caller is expected to 428 /// invoke \a readFunctionSummary for each summary needed, and the summary 429 /// section is thus parsed lazily. 430 bool IsLazy = false; 431 432 /// Used to indicate whether caller only wants to check for the presence 433 /// of the function summary bitcode section. All blocks are skipped, 434 /// but the SeenFuncSummary boolean is set. 435 bool CheckFuncSummaryPresenceOnly = false; 436 437 /// Indicates whether we have encountered a function summary section 438 /// yet during parsing, used when checking if file contains function 439 /// summary section. 440 bool SeenFuncSummary = false; 441 442 /// \brief Map populated during function summary section parsing, and 443 /// consumed during ValueSymbolTable parsing. 444 /// 445 /// Used to correlate summary records with VST entries. For the per-module 446 /// index this maps the ValueID to the parsed function summary, and 447 /// for the combined index this maps the summary record's bitcode 448 /// offset to the function summary (since in the combined index the 449 /// VST records do not hold value IDs but rather hold the function 450 /// summary record offset). 451 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 452 453 /// Map populated during module path string table parsing, from the 454 /// module ID to a string reference owned by the index's module 455 /// path string table, used to correlate with combined index function 456 /// summary records. 457 DenseMap<uint64_t, StringRef> ModuleIdMap; 458 459 public: 460 std::error_code error(BitcodeError E, const Twine &Message); 461 std::error_code error(BitcodeError E); 462 std::error_code error(const Twine &Message); 463 464 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 465 DiagnosticHandlerFunction DiagnosticHandler, 466 bool IsLazy = false, 467 bool CheckFuncSummaryPresenceOnly = false); 468 FunctionIndexBitcodeReader(LLVMContext &Context, 469 DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 522 const Twine &Message) { 523 return error(DiagnosticHandler, 524 make_error_code(BitcodeError::CorruptedBitcode), Message); 525 } 526 527 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 528 if (!ProducerIdentification.empty()) { 529 Twine MsgWithID = Message + " (Producer: '" + ProducerIdentification + 530 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"; 531 return ::error(DiagnosticHandler, make_error_code(E), MsgWithID); 532 } 533 return ::error(DiagnosticHandler, make_error_code(E), Message); 534 } 535 536 std::error_code BitcodeReader::error(const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 Twine MsgWithID = Message + " (Producer: '" + ProducerIdentification + 539 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"; 540 return ::error(DiagnosticHandler, 541 make_error_code(BitcodeError::CorruptedBitcode), MsgWithID); 542 } 543 return ::error(DiagnosticHandler, 544 make_error_code(BitcodeError::CorruptedBitcode), Message); 545 } 546 547 std::error_code BitcodeReader::error(BitcodeError E) { 548 return ::error(DiagnosticHandler, make_error_code(E)); 549 } 550 551 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 552 LLVMContext &C) { 553 if (F) 554 return F; 555 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 556 } 557 558 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 559 DiagnosticHandlerFunction DiagnosticHandler) 560 : Context(Context), 561 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 562 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 563 564 BitcodeReader::BitcodeReader(LLVMContext &Context, 565 DiagnosticHandlerFunction DiagnosticHandler) 566 : Context(Context), 567 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 568 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 569 570 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 571 if (WillMaterializeAllForwardRefs) 572 return std::error_code(); 573 574 // Prevent recursion. 575 WillMaterializeAllForwardRefs = true; 576 577 while (!BasicBlockFwdRefQueue.empty()) { 578 Function *F = BasicBlockFwdRefQueue.front(); 579 BasicBlockFwdRefQueue.pop_front(); 580 assert(F && "Expected valid function"); 581 if (!BasicBlockFwdRefs.count(F)) 582 // Already materialized. 583 continue; 584 585 // Check for a function that isn't materializable to prevent an infinite 586 // loop. When parsing a blockaddress stored in a global variable, there 587 // isn't a trivial way to check if a function will have a body without a 588 // linear search through FunctionsWithBodies, so just check it here. 589 if (!F->isMaterializable()) 590 return error("Never resolved function from blockaddress"); 591 592 // Try to materialize F. 593 if (std::error_code EC = materialize(F)) 594 return EC; 595 } 596 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 597 598 // Reset state. 599 WillMaterializeAllForwardRefs = false; 600 return std::error_code(); 601 } 602 603 void BitcodeReader::freeState() { 604 Buffer = nullptr; 605 std::vector<Type*>().swap(TypeList); 606 ValueList.clear(); 607 MDValueList.clear(); 608 std::vector<Comdat *>().swap(ComdatList); 609 610 std::vector<AttributeSet>().swap(MAttributes); 611 std::vector<BasicBlock*>().swap(FunctionBBs); 612 std::vector<Function*>().swap(FunctionsWithBodies); 613 DeferredFunctionInfo.clear(); 614 DeferredMetadataInfo.clear(); 615 MDKindMap.clear(); 616 617 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 618 BasicBlockFwdRefQueue.clear(); 619 } 620 621 //===----------------------------------------------------------------------===// 622 // Helper functions to implement forward reference resolution, etc. 623 //===----------------------------------------------------------------------===// 624 625 /// Convert a string from a record into an std::string, return true on failure. 626 template <typename StrTy> 627 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 628 StrTy &Result) { 629 if (Idx > Record.size()) 630 return true; 631 632 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 633 Result += (char)Record[i]; 634 return false; 635 } 636 637 static bool hasImplicitComdat(size_t Val) { 638 switch (Val) { 639 default: 640 return false; 641 case 1: // Old WeakAnyLinkage 642 case 4: // Old LinkOnceAnyLinkage 643 case 10: // Old WeakODRLinkage 644 case 11: // Old LinkOnceODRLinkage 645 return true; 646 } 647 } 648 649 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 650 switch (Val) { 651 default: // Map unknown/new linkages to external 652 case 0: 653 return GlobalValue::ExternalLinkage; 654 case 2: 655 return GlobalValue::AppendingLinkage; 656 case 3: 657 return GlobalValue::InternalLinkage; 658 case 5: 659 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 660 case 6: 661 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 662 case 7: 663 return GlobalValue::ExternalWeakLinkage; 664 case 8: 665 return GlobalValue::CommonLinkage; 666 case 9: 667 return GlobalValue::PrivateLinkage; 668 case 12: 669 return GlobalValue::AvailableExternallyLinkage; 670 case 13: 671 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 672 case 14: 673 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 674 case 15: 675 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 676 case 1: // Old value with implicit comdat. 677 case 16: 678 return GlobalValue::WeakAnyLinkage; 679 case 10: // Old value with implicit comdat. 680 case 17: 681 return GlobalValue::WeakODRLinkage; 682 case 4: // Old value with implicit comdat. 683 case 18: 684 return GlobalValue::LinkOnceAnyLinkage; 685 case 11: // Old value with implicit comdat. 686 case 19: 687 return GlobalValue::LinkOnceODRLinkage; 688 } 689 } 690 691 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 692 switch (Val) { 693 default: // Map unknown visibilities to default. 694 case 0: return GlobalValue::DefaultVisibility; 695 case 1: return GlobalValue::HiddenVisibility; 696 case 2: return GlobalValue::ProtectedVisibility; 697 } 698 } 699 700 static GlobalValue::DLLStorageClassTypes 701 getDecodedDLLStorageClass(unsigned Val) { 702 switch (Val) { 703 default: // Map unknown values to default. 704 case 0: return GlobalValue::DefaultStorageClass; 705 case 1: return GlobalValue::DLLImportStorageClass; 706 case 2: return GlobalValue::DLLExportStorageClass; 707 } 708 } 709 710 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 711 switch (Val) { 712 case 0: return GlobalVariable::NotThreadLocal; 713 default: // Map unknown non-zero value to general dynamic. 714 case 1: return GlobalVariable::GeneralDynamicTLSModel; 715 case 2: return GlobalVariable::LocalDynamicTLSModel; 716 case 3: return GlobalVariable::InitialExecTLSModel; 717 case 4: return GlobalVariable::LocalExecTLSModel; 718 } 719 } 720 721 static int getDecodedCastOpcode(unsigned Val) { 722 switch (Val) { 723 default: return -1; 724 case bitc::CAST_TRUNC : return Instruction::Trunc; 725 case bitc::CAST_ZEXT : return Instruction::ZExt; 726 case bitc::CAST_SEXT : return Instruction::SExt; 727 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 728 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 729 case bitc::CAST_UITOFP : return Instruction::UIToFP; 730 case bitc::CAST_SITOFP : return Instruction::SIToFP; 731 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 732 case bitc::CAST_FPEXT : return Instruction::FPExt; 733 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 734 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 735 case bitc::CAST_BITCAST : return Instruction::BitCast; 736 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 737 } 738 } 739 740 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 741 bool IsFP = Ty->isFPOrFPVectorTy(); 742 // BinOps are only valid for int/fp or vector of int/fp types 743 if (!IsFP && !Ty->isIntOrIntVectorTy()) 744 return -1; 745 746 switch (Val) { 747 default: 748 return -1; 749 case bitc::BINOP_ADD: 750 return IsFP ? Instruction::FAdd : Instruction::Add; 751 case bitc::BINOP_SUB: 752 return IsFP ? Instruction::FSub : Instruction::Sub; 753 case bitc::BINOP_MUL: 754 return IsFP ? Instruction::FMul : Instruction::Mul; 755 case bitc::BINOP_UDIV: 756 return IsFP ? -1 : Instruction::UDiv; 757 case bitc::BINOP_SDIV: 758 return IsFP ? Instruction::FDiv : Instruction::SDiv; 759 case bitc::BINOP_UREM: 760 return IsFP ? -1 : Instruction::URem; 761 case bitc::BINOP_SREM: 762 return IsFP ? Instruction::FRem : Instruction::SRem; 763 case bitc::BINOP_SHL: 764 return IsFP ? -1 : Instruction::Shl; 765 case bitc::BINOP_LSHR: 766 return IsFP ? -1 : Instruction::LShr; 767 case bitc::BINOP_ASHR: 768 return IsFP ? -1 : Instruction::AShr; 769 case bitc::BINOP_AND: 770 return IsFP ? -1 : Instruction::And; 771 case bitc::BINOP_OR: 772 return IsFP ? -1 : Instruction::Or; 773 case bitc::BINOP_XOR: 774 return IsFP ? -1 : Instruction::Xor; 775 } 776 } 777 778 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 779 switch (Val) { 780 default: return AtomicRMWInst::BAD_BINOP; 781 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 782 case bitc::RMW_ADD: return AtomicRMWInst::Add; 783 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 784 case bitc::RMW_AND: return AtomicRMWInst::And; 785 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 786 case bitc::RMW_OR: return AtomicRMWInst::Or; 787 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 788 case bitc::RMW_MAX: return AtomicRMWInst::Max; 789 case bitc::RMW_MIN: return AtomicRMWInst::Min; 790 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 791 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 792 } 793 } 794 795 static AtomicOrdering getDecodedOrdering(unsigned Val) { 796 switch (Val) { 797 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 798 case bitc::ORDERING_UNORDERED: return Unordered; 799 case bitc::ORDERING_MONOTONIC: return Monotonic; 800 case bitc::ORDERING_ACQUIRE: return Acquire; 801 case bitc::ORDERING_RELEASE: return Release; 802 case bitc::ORDERING_ACQREL: return AcquireRelease; 803 default: // Map unknown orderings to sequentially-consistent. 804 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 805 } 806 } 807 808 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 809 switch (Val) { 810 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 811 default: // Map unknown scopes to cross-thread. 812 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 813 } 814 } 815 816 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 817 switch (Val) { 818 default: // Map unknown selection kinds to any. 819 case bitc::COMDAT_SELECTION_KIND_ANY: 820 return Comdat::Any; 821 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 822 return Comdat::ExactMatch; 823 case bitc::COMDAT_SELECTION_KIND_LARGEST: 824 return Comdat::Largest; 825 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 826 return Comdat::NoDuplicates; 827 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 828 return Comdat::SameSize; 829 } 830 } 831 832 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 833 FastMathFlags FMF; 834 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 835 FMF.setUnsafeAlgebra(); 836 if (0 != (Val & FastMathFlags::NoNaNs)) 837 FMF.setNoNaNs(); 838 if (0 != (Val & FastMathFlags::NoInfs)) 839 FMF.setNoInfs(); 840 if (0 != (Val & FastMathFlags::NoSignedZeros)) 841 FMF.setNoSignedZeros(); 842 if (0 != (Val & FastMathFlags::AllowReciprocal)) 843 FMF.setAllowReciprocal(); 844 return FMF; 845 } 846 847 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 848 switch (Val) { 849 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 850 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 851 } 852 } 853 854 namespace llvm { 855 namespace { 856 /// \brief A class for maintaining the slot number definition 857 /// as a placeholder for the actual definition for forward constants defs. 858 class ConstantPlaceHolder : public ConstantExpr { 859 void operator=(const ConstantPlaceHolder &) = delete; 860 861 public: 862 // allocate space for exactly one operand 863 void *operator new(size_t s) { return User::operator new(s, 1); } 864 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 865 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 866 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 867 } 868 869 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 870 static bool classof(const Value *V) { 871 return isa<ConstantExpr>(V) && 872 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 873 } 874 875 /// Provide fast operand accessors 876 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 877 }; 878 } 879 880 // FIXME: can we inherit this from ConstantExpr? 881 template <> 882 struct OperandTraits<ConstantPlaceHolder> : 883 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 884 }; 885 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 886 } 887 888 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 889 if (Idx == size()) { 890 push_back(V); 891 return false; 892 } 893 894 if (Idx >= size()) 895 resize(Idx+1); 896 897 WeakVH &OldV = ValuePtrs[Idx]; 898 if (!OldV) { 899 OldV = V; 900 return false; 901 } 902 903 // Handle constants and non-constants (e.g. instrs) differently for 904 // efficiency. 905 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 906 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 907 OldV = V; 908 } else { 909 // If there was a forward reference to this value, replace it. 910 Value *PrevVal = OldV; 911 // Check operator constraints. We only put cleanuppads or catchpads in 912 // the forward value map if the value is constrained to match. 913 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 914 if (!isa<CatchPadInst>(V)) 915 return true; 916 // Delete the dummy basic block that was created with the sentinel 917 // catchpad. 918 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 919 assert(DummyBlock == CatchPad->getNormalDest()); 920 CatchPad->dropAllReferences(); 921 delete DummyBlock; 922 } else if (isa<CleanupPadInst>(PrevVal)) { 923 if (!isa<CleanupPadInst>(V)) 924 return true; 925 } 926 OldV->replaceAllUsesWith(V); 927 delete PrevVal; 928 } 929 930 return false; 931 } 932 933 934 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 935 Type *Ty) { 936 if (Idx >= size()) 937 resize(Idx + 1); 938 939 if (Value *V = ValuePtrs[Idx]) { 940 if (Ty != V->getType()) 941 report_fatal_error("Type mismatch in constant table!"); 942 return cast<Constant>(V); 943 } 944 945 // Create and return a placeholder, which will later be RAUW'd. 946 Constant *C = new ConstantPlaceHolder(Ty, Context); 947 ValuePtrs[Idx] = C; 948 return C; 949 } 950 951 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 952 OperatorConstraint OC) { 953 // Bail out for a clearly invalid value. This would make us call resize(0) 954 if (Idx == UINT_MAX) 955 return nullptr; 956 957 if (Idx >= size()) 958 resize(Idx + 1); 959 960 if (Value *V = ValuePtrs[Idx]) { 961 // If the types don't match, it's invalid. 962 if (Ty && Ty != V->getType()) 963 return nullptr; 964 if (!OC) 965 return V; 966 // Use dyn_cast to enforce operator constraints 967 switch (OC) { 968 case OC_CatchPad: 969 return dyn_cast<CatchPadInst>(V); 970 case OC_CleanupPad: 971 return dyn_cast<CleanupPadInst>(V); 972 default: 973 llvm_unreachable("Unexpected operator constraint"); 974 } 975 } 976 977 // No type specified, must be invalid reference. 978 if (!Ty) return nullptr; 979 980 // Create and return a placeholder, which will later be RAUW'd. 981 Value *V; 982 switch (OC) { 983 case OC_None: 984 V = new Argument(Ty); 985 break; 986 case OC_CatchPad: { 987 BasicBlock *BB = BasicBlock::Create(Context); 988 V = CatchPadInst::Create(BB, BB, {}); 989 break; 990 } 991 default: 992 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 993 V = CleanupPadInst::Create(Context, {}); 994 break; 995 } 996 997 ValuePtrs[Idx] = V; 998 return V; 999 } 1000 1001 /// Once all constants are read, this method bulk resolves any forward 1002 /// references. The idea behind this is that we sometimes get constants (such 1003 /// as large arrays) which reference *many* forward ref constants. Replacing 1004 /// each of these causes a lot of thrashing when building/reuniquing the 1005 /// constant. Instead of doing this, we look at all the uses and rewrite all 1006 /// the place holders at once for any constant that uses a placeholder. 1007 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1008 // Sort the values by-pointer so that they are efficient to look up with a 1009 // binary search. 1010 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1011 1012 SmallVector<Constant*, 64> NewOps; 1013 1014 while (!ResolveConstants.empty()) { 1015 Value *RealVal = operator[](ResolveConstants.back().second); 1016 Constant *Placeholder = ResolveConstants.back().first; 1017 ResolveConstants.pop_back(); 1018 1019 // Loop over all users of the placeholder, updating them to reference the 1020 // new value. If they reference more than one placeholder, update them all 1021 // at once. 1022 while (!Placeholder->use_empty()) { 1023 auto UI = Placeholder->user_begin(); 1024 User *U = *UI; 1025 1026 // If the using object isn't uniqued, just update the operands. This 1027 // handles instructions and initializers for global variables. 1028 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1029 UI.getUse().set(RealVal); 1030 continue; 1031 } 1032 1033 // Otherwise, we have a constant that uses the placeholder. Replace that 1034 // constant with a new constant that has *all* placeholder uses updated. 1035 Constant *UserC = cast<Constant>(U); 1036 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1037 I != E; ++I) { 1038 Value *NewOp; 1039 if (!isa<ConstantPlaceHolder>(*I)) { 1040 // Not a placeholder reference. 1041 NewOp = *I; 1042 } else if (*I == Placeholder) { 1043 // Common case is that it just references this one placeholder. 1044 NewOp = RealVal; 1045 } else { 1046 // Otherwise, look up the placeholder in ResolveConstants. 1047 ResolveConstantsTy::iterator It = 1048 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1049 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1050 0)); 1051 assert(It != ResolveConstants.end() && It->first == *I); 1052 NewOp = operator[](It->second); 1053 } 1054 1055 NewOps.push_back(cast<Constant>(NewOp)); 1056 } 1057 1058 // Make the new constant. 1059 Constant *NewC; 1060 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1061 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1062 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1063 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1064 } else if (isa<ConstantVector>(UserC)) { 1065 NewC = ConstantVector::get(NewOps); 1066 } else { 1067 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1068 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1069 } 1070 1071 UserC->replaceAllUsesWith(NewC); 1072 UserC->destroyConstant(); 1073 NewOps.clear(); 1074 } 1075 1076 // Update all ValueHandles, they should be the only users at this point. 1077 Placeholder->replaceAllUsesWith(RealVal); 1078 delete Placeholder; 1079 } 1080 } 1081 1082 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1083 if (Idx == size()) { 1084 push_back(MD); 1085 return; 1086 } 1087 1088 if (Idx >= size()) 1089 resize(Idx+1); 1090 1091 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1092 if (!OldMD) { 1093 OldMD.reset(MD); 1094 return; 1095 } 1096 1097 // If there was a forward reference to this value, replace it. 1098 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1099 PrevMD->replaceAllUsesWith(MD); 1100 --NumFwdRefs; 1101 } 1102 1103 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1104 if (Idx >= size()) 1105 resize(Idx + 1); 1106 1107 if (Metadata *MD = MDValuePtrs[Idx]) 1108 return MD; 1109 1110 // Track forward refs to be resolved later. 1111 if (AnyFwdRefs) { 1112 MinFwdRef = std::min(MinFwdRef, Idx); 1113 MaxFwdRef = std::max(MaxFwdRef, Idx); 1114 } else { 1115 AnyFwdRefs = true; 1116 MinFwdRef = MaxFwdRef = Idx; 1117 } 1118 ++NumFwdRefs; 1119 1120 // Create and return a placeholder, which will later be RAUW'd. 1121 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1122 MDValuePtrs[Idx].reset(MD); 1123 return MD; 1124 } 1125 1126 void BitcodeReaderMDValueList::tryToResolveCycles() { 1127 if (!AnyFwdRefs) 1128 // Nothing to do. 1129 return; 1130 1131 if (NumFwdRefs) 1132 // Still forward references... can't resolve cycles. 1133 return; 1134 1135 // Resolve any cycles. 1136 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1137 auto &MD = MDValuePtrs[I]; 1138 auto *N = dyn_cast_or_null<MDNode>(MD); 1139 if (!N) 1140 continue; 1141 1142 assert(!N->isTemporary() && "Unexpected forward reference"); 1143 N->resolveCycles(); 1144 } 1145 1146 // Make sure we return early again until there's another forward ref. 1147 AnyFwdRefs = false; 1148 } 1149 1150 Type *BitcodeReader::getTypeByID(unsigned ID) { 1151 // The type table size is always specified correctly. 1152 if (ID >= TypeList.size()) 1153 return nullptr; 1154 1155 if (Type *Ty = TypeList[ID]) 1156 return Ty; 1157 1158 // If we have a forward reference, the only possible case is when it is to a 1159 // named struct. Just create a placeholder for now. 1160 return TypeList[ID] = createIdentifiedStructType(Context); 1161 } 1162 1163 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1164 StringRef Name) { 1165 auto *Ret = StructType::create(Context, Name); 1166 IdentifiedStructTypes.push_back(Ret); 1167 return Ret; 1168 } 1169 1170 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1171 auto *Ret = StructType::create(Context); 1172 IdentifiedStructTypes.push_back(Ret); 1173 return Ret; 1174 } 1175 1176 1177 //===----------------------------------------------------------------------===// 1178 // Functions for parsing blocks from the bitcode file 1179 //===----------------------------------------------------------------------===// 1180 1181 1182 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1183 /// been decoded from the given integer. This function must stay in sync with 1184 /// 'encodeLLVMAttributesForBitcode'. 1185 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1186 uint64_t EncodedAttrs) { 1187 // FIXME: Remove in 4.0. 1188 1189 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1190 // the bits above 31 down by 11 bits. 1191 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1192 assert((!Alignment || isPowerOf2_32(Alignment)) && 1193 "Alignment must be a power of two."); 1194 1195 if (Alignment) 1196 B.addAlignmentAttr(Alignment); 1197 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1198 (EncodedAttrs & 0xffff)); 1199 } 1200 1201 std::error_code BitcodeReader::parseAttributeBlock() { 1202 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1203 return error("Invalid record"); 1204 1205 if (!MAttributes.empty()) 1206 return error("Invalid multiple blocks"); 1207 1208 SmallVector<uint64_t, 64> Record; 1209 1210 SmallVector<AttributeSet, 8> Attrs; 1211 1212 // Read all the records. 1213 while (1) { 1214 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1215 1216 switch (Entry.Kind) { 1217 case BitstreamEntry::SubBlock: // Handled for us already. 1218 case BitstreamEntry::Error: 1219 return error("Malformed block"); 1220 case BitstreamEntry::EndBlock: 1221 return std::error_code(); 1222 case BitstreamEntry::Record: 1223 // The interesting case. 1224 break; 1225 } 1226 1227 // Read a record. 1228 Record.clear(); 1229 switch (Stream.readRecord(Entry.ID, Record)) { 1230 default: // Default behavior: ignore. 1231 break; 1232 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1233 // FIXME: Remove in 4.0. 1234 if (Record.size() & 1) 1235 return error("Invalid record"); 1236 1237 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1238 AttrBuilder B; 1239 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1240 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1241 } 1242 1243 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1244 Attrs.clear(); 1245 break; 1246 } 1247 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1248 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1249 Attrs.push_back(MAttributeGroups[Record[i]]); 1250 1251 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1252 Attrs.clear(); 1253 break; 1254 } 1255 } 1256 } 1257 } 1258 1259 // Returns Attribute::None on unrecognized codes. 1260 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1261 switch (Code) { 1262 default: 1263 return Attribute::None; 1264 case bitc::ATTR_KIND_ALIGNMENT: 1265 return Attribute::Alignment; 1266 case bitc::ATTR_KIND_ALWAYS_INLINE: 1267 return Attribute::AlwaysInline; 1268 case bitc::ATTR_KIND_ARGMEMONLY: 1269 return Attribute::ArgMemOnly; 1270 case bitc::ATTR_KIND_BUILTIN: 1271 return Attribute::Builtin; 1272 case bitc::ATTR_KIND_BY_VAL: 1273 return Attribute::ByVal; 1274 case bitc::ATTR_KIND_IN_ALLOCA: 1275 return Attribute::InAlloca; 1276 case bitc::ATTR_KIND_COLD: 1277 return Attribute::Cold; 1278 case bitc::ATTR_KIND_CONVERGENT: 1279 return Attribute::Convergent; 1280 case bitc::ATTR_KIND_INLINE_HINT: 1281 return Attribute::InlineHint; 1282 case bitc::ATTR_KIND_IN_REG: 1283 return Attribute::InReg; 1284 case bitc::ATTR_KIND_JUMP_TABLE: 1285 return Attribute::JumpTable; 1286 case bitc::ATTR_KIND_MIN_SIZE: 1287 return Attribute::MinSize; 1288 case bitc::ATTR_KIND_NAKED: 1289 return Attribute::Naked; 1290 case bitc::ATTR_KIND_NEST: 1291 return Attribute::Nest; 1292 case bitc::ATTR_KIND_NO_ALIAS: 1293 return Attribute::NoAlias; 1294 case bitc::ATTR_KIND_NO_BUILTIN: 1295 return Attribute::NoBuiltin; 1296 case bitc::ATTR_KIND_NO_CAPTURE: 1297 return Attribute::NoCapture; 1298 case bitc::ATTR_KIND_NO_DUPLICATE: 1299 return Attribute::NoDuplicate; 1300 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1301 return Attribute::NoImplicitFloat; 1302 case bitc::ATTR_KIND_NO_INLINE: 1303 return Attribute::NoInline; 1304 case bitc::ATTR_KIND_NON_LAZY_BIND: 1305 return Attribute::NonLazyBind; 1306 case bitc::ATTR_KIND_NON_NULL: 1307 return Attribute::NonNull; 1308 case bitc::ATTR_KIND_DEREFERENCEABLE: 1309 return Attribute::Dereferenceable; 1310 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1311 return Attribute::DereferenceableOrNull; 1312 case bitc::ATTR_KIND_NO_RED_ZONE: 1313 return Attribute::NoRedZone; 1314 case bitc::ATTR_KIND_NO_RETURN: 1315 return Attribute::NoReturn; 1316 case bitc::ATTR_KIND_NO_UNWIND: 1317 return Attribute::NoUnwind; 1318 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1319 return Attribute::OptimizeForSize; 1320 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1321 return Attribute::OptimizeNone; 1322 case bitc::ATTR_KIND_READ_NONE: 1323 return Attribute::ReadNone; 1324 case bitc::ATTR_KIND_READ_ONLY: 1325 return Attribute::ReadOnly; 1326 case bitc::ATTR_KIND_RETURNED: 1327 return Attribute::Returned; 1328 case bitc::ATTR_KIND_RETURNS_TWICE: 1329 return Attribute::ReturnsTwice; 1330 case bitc::ATTR_KIND_S_EXT: 1331 return Attribute::SExt; 1332 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1333 return Attribute::StackAlignment; 1334 case bitc::ATTR_KIND_STACK_PROTECT: 1335 return Attribute::StackProtect; 1336 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1337 return Attribute::StackProtectReq; 1338 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1339 return Attribute::StackProtectStrong; 1340 case bitc::ATTR_KIND_SAFESTACK: 1341 return Attribute::SafeStack; 1342 case bitc::ATTR_KIND_STRUCT_RET: 1343 return Attribute::StructRet; 1344 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1345 return Attribute::SanitizeAddress; 1346 case bitc::ATTR_KIND_SANITIZE_THREAD: 1347 return Attribute::SanitizeThread; 1348 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1349 return Attribute::SanitizeMemory; 1350 case bitc::ATTR_KIND_UW_TABLE: 1351 return Attribute::UWTable; 1352 case bitc::ATTR_KIND_Z_EXT: 1353 return Attribute::ZExt; 1354 } 1355 } 1356 1357 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1358 unsigned &Alignment) { 1359 // Note: Alignment in bitcode files is incremented by 1, so that zero 1360 // can be used for default alignment. 1361 if (Exponent > Value::MaxAlignmentExponent + 1) 1362 return error("Invalid alignment value"); 1363 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1364 return std::error_code(); 1365 } 1366 1367 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1368 Attribute::AttrKind *Kind) { 1369 *Kind = getAttrFromCode(Code); 1370 if (*Kind == Attribute::None) 1371 return error(BitcodeError::CorruptedBitcode, 1372 "Unknown attribute kind (" + Twine(Code) + ")"); 1373 return std::error_code(); 1374 } 1375 1376 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1377 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1378 return error("Invalid record"); 1379 1380 if (!MAttributeGroups.empty()) 1381 return error("Invalid multiple blocks"); 1382 1383 SmallVector<uint64_t, 64> Record; 1384 1385 // Read all the records. 1386 while (1) { 1387 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1388 1389 switch (Entry.Kind) { 1390 case BitstreamEntry::SubBlock: // Handled for us already. 1391 case BitstreamEntry::Error: 1392 return error("Malformed block"); 1393 case BitstreamEntry::EndBlock: 1394 return std::error_code(); 1395 case BitstreamEntry::Record: 1396 // The interesting case. 1397 break; 1398 } 1399 1400 // Read a record. 1401 Record.clear(); 1402 switch (Stream.readRecord(Entry.ID, Record)) { 1403 default: // Default behavior: ignore. 1404 break; 1405 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1406 if (Record.size() < 3) 1407 return error("Invalid record"); 1408 1409 uint64_t GrpID = Record[0]; 1410 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1411 1412 AttrBuilder B; 1413 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1414 if (Record[i] == 0) { // Enum attribute 1415 Attribute::AttrKind Kind; 1416 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1417 return EC; 1418 1419 B.addAttribute(Kind); 1420 } else if (Record[i] == 1) { // Integer attribute 1421 Attribute::AttrKind Kind; 1422 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1423 return EC; 1424 if (Kind == Attribute::Alignment) 1425 B.addAlignmentAttr(Record[++i]); 1426 else if (Kind == Attribute::StackAlignment) 1427 B.addStackAlignmentAttr(Record[++i]); 1428 else if (Kind == Attribute::Dereferenceable) 1429 B.addDereferenceableAttr(Record[++i]); 1430 else if (Kind == Attribute::DereferenceableOrNull) 1431 B.addDereferenceableOrNullAttr(Record[++i]); 1432 } else { // String attribute 1433 assert((Record[i] == 3 || Record[i] == 4) && 1434 "Invalid attribute group entry"); 1435 bool HasValue = (Record[i++] == 4); 1436 SmallString<64> KindStr; 1437 SmallString<64> ValStr; 1438 1439 while (Record[i] != 0 && i != e) 1440 KindStr += Record[i++]; 1441 assert(Record[i] == 0 && "Kind string not null terminated"); 1442 1443 if (HasValue) { 1444 // Has a value associated with it. 1445 ++i; // Skip the '0' that terminates the "kind" string. 1446 while (Record[i] != 0 && i != e) 1447 ValStr += Record[i++]; 1448 assert(Record[i] == 0 && "Value string not null terminated"); 1449 } 1450 1451 B.addAttribute(KindStr.str(), ValStr.str()); 1452 } 1453 } 1454 1455 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1456 break; 1457 } 1458 } 1459 } 1460 } 1461 1462 std::error_code BitcodeReader::parseTypeTable() { 1463 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1464 return error("Invalid record"); 1465 1466 return parseTypeTableBody(); 1467 } 1468 1469 std::error_code BitcodeReader::parseTypeTableBody() { 1470 if (!TypeList.empty()) 1471 return error("Invalid multiple blocks"); 1472 1473 SmallVector<uint64_t, 64> Record; 1474 unsigned NumRecords = 0; 1475 1476 SmallString<64> TypeName; 1477 1478 // Read all the records for this type table. 1479 while (1) { 1480 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1481 1482 switch (Entry.Kind) { 1483 case BitstreamEntry::SubBlock: // Handled for us already. 1484 case BitstreamEntry::Error: 1485 return error("Malformed block"); 1486 case BitstreamEntry::EndBlock: 1487 if (NumRecords != TypeList.size()) 1488 return error("Malformed block"); 1489 return std::error_code(); 1490 case BitstreamEntry::Record: 1491 // The interesting case. 1492 break; 1493 } 1494 1495 // Read a record. 1496 Record.clear(); 1497 Type *ResultTy = nullptr; 1498 switch (Stream.readRecord(Entry.ID, Record)) { 1499 default: 1500 return error("Invalid value"); 1501 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1502 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1503 // type list. This allows us to reserve space. 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 TypeList.resize(Record[0]); 1507 continue; 1508 case bitc::TYPE_CODE_VOID: // VOID 1509 ResultTy = Type::getVoidTy(Context); 1510 break; 1511 case bitc::TYPE_CODE_HALF: // HALF 1512 ResultTy = Type::getHalfTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_FLOAT: // FLOAT 1515 ResultTy = Type::getFloatTy(Context); 1516 break; 1517 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1518 ResultTy = Type::getDoubleTy(Context); 1519 break; 1520 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1521 ResultTy = Type::getX86_FP80Ty(Context); 1522 break; 1523 case bitc::TYPE_CODE_FP128: // FP128 1524 ResultTy = Type::getFP128Ty(Context); 1525 break; 1526 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1527 ResultTy = Type::getPPC_FP128Ty(Context); 1528 break; 1529 case bitc::TYPE_CODE_LABEL: // LABEL 1530 ResultTy = Type::getLabelTy(Context); 1531 break; 1532 case bitc::TYPE_CODE_METADATA: // METADATA 1533 ResultTy = Type::getMetadataTy(Context); 1534 break; 1535 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1536 ResultTy = Type::getX86_MMXTy(Context); 1537 break; 1538 case bitc::TYPE_CODE_TOKEN: // TOKEN 1539 ResultTy = Type::getTokenTy(Context); 1540 break; 1541 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1542 if (Record.size() < 1) 1543 return error("Invalid record"); 1544 1545 uint64_t NumBits = Record[0]; 1546 if (NumBits < IntegerType::MIN_INT_BITS || 1547 NumBits > IntegerType::MAX_INT_BITS) 1548 return error("Bitwidth for integer type out of range"); 1549 ResultTy = IntegerType::get(Context, NumBits); 1550 break; 1551 } 1552 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1553 // [pointee type, address space] 1554 if (Record.size() < 1) 1555 return error("Invalid record"); 1556 unsigned AddressSpace = 0; 1557 if (Record.size() == 2) 1558 AddressSpace = Record[1]; 1559 ResultTy = getTypeByID(Record[0]); 1560 if (!ResultTy || 1561 !PointerType::isValidElementType(ResultTy)) 1562 return error("Invalid type"); 1563 ResultTy = PointerType::get(ResultTy, AddressSpace); 1564 break; 1565 } 1566 case bitc::TYPE_CODE_FUNCTION_OLD: { 1567 // FIXME: attrid is dead, remove it in LLVM 4.0 1568 // FUNCTION: [vararg, attrid, retty, paramty x N] 1569 if (Record.size() < 3) 1570 return error("Invalid record"); 1571 SmallVector<Type*, 8> ArgTys; 1572 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1573 if (Type *T = getTypeByID(Record[i])) 1574 ArgTys.push_back(T); 1575 else 1576 break; 1577 } 1578 1579 ResultTy = getTypeByID(Record[2]); 1580 if (!ResultTy || ArgTys.size() < Record.size()-3) 1581 return error("Invalid type"); 1582 1583 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_FUNCTION: { 1587 // FUNCTION: [vararg, retty, paramty x N] 1588 if (Record.size() < 2) 1589 return error("Invalid record"); 1590 SmallVector<Type*, 8> ArgTys; 1591 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1592 if (Type *T = getTypeByID(Record[i])) { 1593 if (!FunctionType::isValidArgumentType(T)) 1594 return error("Invalid function argument type"); 1595 ArgTys.push_back(T); 1596 } 1597 else 1598 break; 1599 } 1600 1601 ResultTy = getTypeByID(Record[1]); 1602 if (!ResultTy || ArgTys.size() < Record.size()-2) 1603 return error("Invalid type"); 1604 1605 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1606 break; 1607 } 1608 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1609 if (Record.size() < 1) 1610 return error("Invalid record"); 1611 SmallVector<Type*, 8> EltTys; 1612 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1613 if (Type *T = getTypeByID(Record[i])) 1614 EltTys.push_back(T); 1615 else 1616 break; 1617 } 1618 if (EltTys.size() != Record.size()-1) 1619 return error("Invalid type"); 1620 ResultTy = StructType::get(Context, EltTys, Record[0]); 1621 break; 1622 } 1623 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1624 if (convertToString(Record, 0, TypeName)) 1625 return error("Invalid record"); 1626 continue; 1627 1628 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1629 if (Record.size() < 1) 1630 return error("Invalid record"); 1631 1632 if (NumRecords >= TypeList.size()) 1633 return error("Invalid TYPE table"); 1634 1635 // Check to see if this was forward referenced, if so fill in the temp. 1636 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1637 if (Res) { 1638 Res->setName(TypeName); 1639 TypeList[NumRecords] = nullptr; 1640 } else // Otherwise, create a new struct. 1641 Res = createIdentifiedStructType(Context, TypeName); 1642 TypeName.clear(); 1643 1644 SmallVector<Type*, 8> EltTys; 1645 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1646 if (Type *T = getTypeByID(Record[i])) 1647 EltTys.push_back(T); 1648 else 1649 break; 1650 } 1651 if (EltTys.size() != Record.size()-1) 1652 return error("Invalid record"); 1653 Res->setBody(EltTys, Record[0]); 1654 ResultTy = Res; 1655 break; 1656 } 1657 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1658 if (Record.size() != 1) 1659 return error("Invalid record"); 1660 1661 if (NumRecords >= TypeList.size()) 1662 return error("Invalid TYPE table"); 1663 1664 // Check to see if this was forward referenced, if so fill in the temp. 1665 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1666 if (Res) { 1667 Res->setName(TypeName); 1668 TypeList[NumRecords] = nullptr; 1669 } else // Otherwise, create a new struct with no body. 1670 Res = createIdentifiedStructType(Context, TypeName); 1671 TypeName.clear(); 1672 ResultTy = Res; 1673 break; 1674 } 1675 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1676 if (Record.size() < 2) 1677 return error("Invalid record"); 1678 ResultTy = getTypeByID(Record[1]); 1679 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1680 return error("Invalid type"); 1681 ResultTy = ArrayType::get(ResultTy, Record[0]); 1682 break; 1683 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1684 if (Record.size() < 2) 1685 return error("Invalid record"); 1686 if (Record[0] == 0) 1687 return error("Invalid vector length"); 1688 ResultTy = getTypeByID(Record[1]); 1689 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1690 return error("Invalid type"); 1691 ResultTy = VectorType::get(ResultTy, Record[0]); 1692 break; 1693 } 1694 1695 if (NumRecords >= TypeList.size()) 1696 return error("Invalid TYPE table"); 1697 if (TypeList[NumRecords]) 1698 return error( 1699 "Invalid TYPE table: Only named structs can be forward referenced"); 1700 assert(ResultTy && "Didn't read a type?"); 1701 TypeList[NumRecords++] = ResultTy; 1702 } 1703 } 1704 1705 std::error_code BitcodeReader::parseOperandBundleTags() { 1706 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1707 return error("Invalid record"); 1708 1709 if (!BundleTags.empty()) 1710 return error("Invalid multiple blocks"); 1711 1712 SmallVector<uint64_t, 64> Record; 1713 1714 while (1) { 1715 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1716 1717 switch (Entry.Kind) { 1718 case BitstreamEntry::SubBlock: // Handled for us already. 1719 case BitstreamEntry::Error: 1720 return error("Malformed block"); 1721 case BitstreamEntry::EndBlock: 1722 return std::error_code(); 1723 case BitstreamEntry::Record: 1724 // The interesting case. 1725 break; 1726 } 1727 1728 // Tags are implicitly mapped to integers by their order. 1729 1730 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1731 return error("Invalid record"); 1732 1733 // OPERAND_BUNDLE_TAG: [strchr x N] 1734 BundleTags.emplace_back(); 1735 if (convertToString(Record, 0, BundleTags.back())) 1736 return error("Invalid record"); 1737 Record.clear(); 1738 } 1739 } 1740 1741 /// Associate a value with its name from the given index in the provided record. 1742 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1743 unsigned NameIndex, Triple &TT) { 1744 SmallString<128> ValueName; 1745 if (convertToString(Record, NameIndex, ValueName)) 1746 return error("Invalid record"); 1747 unsigned ValueID = Record[0]; 1748 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1749 return error("Invalid record"); 1750 Value *V = ValueList[ValueID]; 1751 1752 V->setName(StringRef(ValueName.data(), ValueName.size())); 1753 auto *GO = dyn_cast<GlobalObject>(V); 1754 if (GO) { 1755 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1756 if (TT.isOSBinFormatMachO()) 1757 GO->setComdat(nullptr); 1758 else 1759 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1760 } 1761 } 1762 return V; 1763 } 1764 1765 /// Parse the value symbol table at either the current parsing location or 1766 /// at the given bit offset if provided. 1767 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1768 uint64_t CurrentBit; 1769 // Pass in the Offset to distinguish between calling for the module-level 1770 // VST (where we want to jump to the VST offset) and the function-level 1771 // VST (where we don't). 1772 if (Offset > 0) { 1773 // Save the current parsing location so we can jump back at the end 1774 // of the VST read. 1775 CurrentBit = Stream.GetCurrentBitNo(); 1776 Stream.JumpToBit(Offset * 32); 1777 #ifndef NDEBUG 1778 // Do some checking if we are in debug mode. 1779 BitstreamEntry Entry = Stream.advance(); 1780 assert(Entry.Kind == BitstreamEntry::SubBlock); 1781 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1782 #else 1783 // In NDEBUG mode ignore the output so we don't get an unused variable 1784 // warning. 1785 Stream.advance(); 1786 #endif 1787 } 1788 1789 // Compute the delta between the bitcode indices in the VST (the word offset 1790 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1791 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1792 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1793 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1794 // just before entering the VST subblock because: 1) the EnterSubBlock 1795 // changes the AbbrevID width; 2) the VST block is nested within the same 1796 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1797 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1798 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1799 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1800 unsigned FuncBitcodeOffsetDelta = 1801 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1802 1803 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1804 return error("Invalid record"); 1805 1806 SmallVector<uint64_t, 64> Record; 1807 1808 Triple TT(TheModule->getTargetTriple()); 1809 1810 // Read all the records for this value table. 1811 SmallString<128> ValueName; 1812 while (1) { 1813 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1814 1815 switch (Entry.Kind) { 1816 case BitstreamEntry::SubBlock: // Handled for us already. 1817 case BitstreamEntry::Error: 1818 return error("Malformed block"); 1819 case BitstreamEntry::EndBlock: 1820 if (Offset > 0) 1821 Stream.JumpToBit(CurrentBit); 1822 return std::error_code(); 1823 case BitstreamEntry::Record: 1824 // The interesting case. 1825 break; 1826 } 1827 1828 // Read a record. 1829 Record.clear(); 1830 switch (Stream.readRecord(Entry.ID, Record)) { 1831 default: // Default behavior: unknown type. 1832 break; 1833 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1834 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1835 if (std::error_code EC = ValOrErr.getError()) 1836 return EC; 1837 ValOrErr.get(); 1838 break; 1839 } 1840 case bitc::VST_CODE_FNENTRY: { 1841 // VST_FNENTRY: [valueid, offset, namechar x N] 1842 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1843 if (std::error_code EC = ValOrErr.getError()) 1844 return EC; 1845 Value *V = ValOrErr.get(); 1846 1847 auto *GO = dyn_cast<GlobalObject>(V); 1848 if (!GO) { 1849 // If this is an alias, need to get the actual Function object 1850 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1851 auto *GA = dyn_cast<GlobalAlias>(V); 1852 if (GA) 1853 GO = GA->getBaseObject(); 1854 assert(GO); 1855 } 1856 1857 uint64_t FuncWordOffset = Record[1]; 1858 Function *F = dyn_cast<Function>(GO); 1859 assert(F); 1860 uint64_t FuncBitOffset = FuncWordOffset * 32; 1861 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1862 // Set the LastFunctionBlockBit to point to the last function block. 1863 // Later when parsing is resumed after function materialization, 1864 // we can simply skip that last function block. 1865 if (FuncBitOffset > LastFunctionBlockBit) 1866 LastFunctionBlockBit = FuncBitOffset; 1867 break; 1868 } 1869 case bitc::VST_CODE_BBENTRY: { 1870 if (convertToString(Record, 1, ValueName)) 1871 return error("Invalid record"); 1872 BasicBlock *BB = getBasicBlock(Record[0]); 1873 if (!BB) 1874 return error("Invalid record"); 1875 1876 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1877 ValueName.clear(); 1878 break; 1879 } 1880 } 1881 } 1882 } 1883 1884 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1885 1886 std::error_code BitcodeReader::parseMetadata() { 1887 IsMetadataMaterialized = true; 1888 unsigned NextMDValueNo = MDValueList.size(); 1889 1890 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1891 return error("Invalid record"); 1892 1893 SmallVector<uint64_t, 64> Record; 1894 1895 auto getMD = 1896 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1897 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1898 if (ID) 1899 return getMD(ID - 1); 1900 return nullptr; 1901 }; 1902 auto getMDString = [&](unsigned ID) -> MDString *{ 1903 // This requires that the ID is not really a forward reference. In 1904 // particular, the MDString must already have been resolved. 1905 return cast_or_null<MDString>(getMDOrNull(ID)); 1906 }; 1907 1908 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1909 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1910 1911 // Read all the records. 1912 while (1) { 1913 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1914 1915 switch (Entry.Kind) { 1916 case BitstreamEntry::SubBlock: // Handled for us already. 1917 case BitstreamEntry::Error: 1918 return error("Malformed block"); 1919 case BitstreamEntry::EndBlock: 1920 MDValueList.tryToResolveCycles(); 1921 return std::error_code(); 1922 case BitstreamEntry::Record: 1923 // The interesting case. 1924 break; 1925 } 1926 1927 // Read a record. 1928 Record.clear(); 1929 unsigned Code = Stream.readRecord(Entry.ID, Record); 1930 bool IsDistinct = false; 1931 switch (Code) { 1932 default: // Default behavior: ignore. 1933 break; 1934 case bitc::METADATA_NAME: { 1935 // Read name of the named metadata. 1936 SmallString<8> Name(Record.begin(), Record.end()); 1937 Record.clear(); 1938 Code = Stream.ReadCode(); 1939 1940 unsigned NextBitCode = Stream.readRecord(Code, Record); 1941 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1943 1944 // Read named metadata elements. 1945 unsigned Size = Record.size(); 1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1947 for (unsigned i = 0; i != Size; ++i) { 1948 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1949 if (!MD) 1950 return error("Invalid record"); 1951 NMD->addOperand(MD); 1952 } 1953 break; 1954 } 1955 case bitc::METADATA_OLD_FN_NODE: { 1956 // FIXME: Remove in 4.0. 1957 // This is a LocalAsMetadata record, the only type of function-local 1958 // metadata. 1959 if (Record.size() % 2 == 1) 1960 return error("Invalid record"); 1961 1962 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1963 // to be legal, but there's no upgrade path. 1964 auto dropRecord = [&] { 1965 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1966 }; 1967 if (Record.size() != 2) { 1968 dropRecord(); 1969 break; 1970 } 1971 1972 Type *Ty = getTypeByID(Record[0]); 1973 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1974 dropRecord(); 1975 break; 1976 } 1977 1978 MDValueList.assignValue( 1979 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1980 NextMDValueNo++); 1981 break; 1982 } 1983 case bitc::METADATA_OLD_NODE: { 1984 // FIXME: Remove in 4.0. 1985 if (Record.size() % 2 == 1) 1986 return error("Invalid record"); 1987 1988 unsigned Size = Record.size(); 1989 SmallVector<Metadata *, 8> Elts; 1990 for (unsigned i = 0; i != Size; i += 2) { 1991 Type *Ty = getTypeByID(Record[i]); 1992 if (!Ty) 1993 return error("Invalid record"); 1994 if (Ty->isMetadataTy()) 1995 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1996 else if (!Ty->isVoidTy()) { 1997 auto *MD = 1998 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1999 assert(isa<ConstantAsMetadata>(MD) && 2000 "Expected non-function-local metadata"); 2001 Elts.push_back(MD); 2002 } else 2003 Elts.push_back(nullptr); 2004 } 2005 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2006 break; 2007 } 2008 case bitc::METADATA_VALUE: { 2009 if (Record.size() != 2) 2010 return error("Invalid record"); 2011 2012 Type *Ty = getTypeByID(Record[0]); 2013 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2014 return error("Invalid record"); 2015 2016 MDValueList.assignValue( 2017 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2018 NextMDValueNo++); 2019 break; 2020 } 2021 case bitc::METADATA_DISTINCT_NODE: 2022 IsDistinct = true; 2023 // fallthrough... 2024 case bitc::METADATA_NODE: { 2025 SmallVector<Metadata *, 8> Elts; 2026 Elts.reserve(Record.size()); 2027 for (unsigned ID : Record) 2028 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2029 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2030 : MDNode::get(Context, Elts), 2031 NextMDValueNo++); 2032 break; 2033 } 2034 case bitc::METADATA_LOCATION: { 2035 if (Record.size() != 5) 2036 return error("Invalid record"); 2037 2038 unsigned Line = Record[1]; 2039 unsigned Column = Record[2]; 2040 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2041 Metadata *InlinedAt = 2042 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2043 MDValueList.assignValue( 2044 GET_OR_DISTINCT(DILocation, Record[0], 2045 (Context, Line, Column, Scope, InlinedAt)), 2046 NextMDValueNo++); 2047 break; 2048 } 2049 case bitc::METADATA_GENERIC_DEBUG: { 2050 if (Record.size() < 4) 2051 return error("Invalid record"); 2052 2053 unsigned Tag = Record[1]; 2054 unsigned Version = Record[2]; 2055 2056 if (Tag >= 1u << 16 || Version != 0) 2057 return error("Invalid record"); 2058 2059 auto *Header = getMDString(Record[3]); 2060 SmallVector<Metadata *, 8> DwarfOps; 2061 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2062 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2063 : nullptr); 2064 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2065 (Context, Tag, Header, DwarfOps)), 2066 NextMDValueNo++); 2067 break; 2068 } 2069 case bitc::METADATA_SUBRANGE: { 2070 if (Record.size() != 3) 2071 return error("Invalid record"); 2072 2073 MDValueList.assignValue( 2074 GET_OR_DISTINCT(DISubrange, Record[0], 2075 (Context, Record[1], unrotateSign(Record[2]))), 2076 NextMDValueNo++); 2077 break; 2078 } 2079 case bitc::METADATA_ENUMERATOR: { 2080 if (Record.size() != 3) 2081 return error("Invalid record"); 2082 2083 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2084 (Context, unrotateSign(Record[1]), 2085 getMDString(Record[2]))), 2086 NextMDValueNo++); 2087 break; 2088 } 2089 case bitc::METADATA_BASIC_TYPE: { 2090 if (Record.size() != 6) 2091 return error("Invalid record"); 2092 2093 MDValueList.assignValue( 2094 GET_OR_DISTINCT(DIBasicType, Record[0], 2095 (Context, Record[1], getMDString(Record[2]), 2096 Record[3], Record[4], Record[5])), 2097 NextMDValueNo++); 2098 break; 2099 } 2100 case bitc::METADATA_DERIVED_TYPE: { 2101 if (Record.size() != 12) 2102 return error("Invalid record"); 2103 2104 MDValueList.assignValue( 2105 GET_OR_DISTINCT(DIDerivedType, Record[0], 2106 (Context, Record[1], getMDString(Record[2]), 2107 getMDOrNull(Record[3]), Record[4], 2108 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2109 Record[7], Record[8], Record[9], Record[10], 2110 getMDOrNull(Record[11]))), 2111 NextMDValueNo++); 2112 break; 2113 } 2114 case bitc::METADATA_COMPOSITE_TYPE: { 2115 if (Record.size() != 16) 2116 return error("Invalid record"); 2117 2118 MDValueList.assignValue( 2119 GET_OR_DISTINCT(DICompositeType, Record[0], 2120 (Context, Record[1], getMDString(Record[2]), 2121 getMDOrNull(Record[3]), Record[4], 2122 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2123 Record[7], Record[8], Record[9], Record[10], 2124 getMDOrNull(Record[11]), Record[12], 2125 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2126 getMDString(Record[15]))), 2127 NextMDValueNo++); 2128 break; 2129 } 2130 case bitc::METADATA_SUBROUTINE_TYPE: { 2131 if (Record.size() != 3) 2132 return error("Invalid record"); 2133 2134 MDValueList.assignValue( 2135 GET_OR_DISTINCT(DISubroutineType, Record[0], 2136 (Context, Record[1], getMDOrNull(Record[2]))), 2137 NextMDValueNo++); 2138 break; 2139 } 2140 2141 case bitc::METADATA_MODULE: { 2142 if (Record.size() != 6) 2143 return error("Invalid record"); 2144 2145 MDValueList.assignValue( 2146 GET_OR_DISTINCT(DIModule, Record[0], 2147 (Context, getMDOrNull(Record[1]), 2148 getMDString(Record[2]), getMDString(Record[3]), 2149 getMDString(Record[4]), getMDString(Record[5]))), 2150 NextMDValueNo++); 2151 break; 2152 } 2153 2154 case bitc::METADATA_FILE: { 2155 if (Record.size() != 3) 2156 return error("Invalid record"); 2157 2158 MDValueList.assignValue( 2159 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2160 getMDString(Record[2]))), 2161 NextMDValueNo++); 2162 break; 2163 } 2164 case bitc::METADATA_COMPILE_UNIT: { 2165 if (Record.size() < 14 || Record.size() > 15) 2166 return error("Invalid record"); 2167 2168 // Ignore Record[1], which indicates whether this compile unit is 2169 // distinct. It's always distinct. 2170 MDValueList.assignValue( 2171 DICompileUnit::getDistinct( 2172 Context, Record[1], getMDOrNull(Record[2]), 2173 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2174 Record[6], getMDString(Record[7]), Record[8], 2175 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2176 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2177 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2178 NextMDValueNo++); 2179 break; 2180 } 2181 case bitc::METADATA_SUBPROGRAM: { 2182 if (Record.size() != 19) 2183 return error("Invalid record"); 2184 2185 MDValueList.assignValue( 2186 GET_OR_DISTINCT( 2187 DISubprogram, 2188 Record[0] || Record[8], // All definitions should be distinct. 2189 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2190 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2191 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2192 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2193 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 2194 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 2195 NextMDValueNo++); 2196 break; 2197 } 2198 case bitc::METADATA_LEXICAL_BLOCK: { 2199 if (Record.size() != 5) 2200 return error("Invalid record"); 2201 2202 MDValueList.assignValue( 2203 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2204 (Context, getMDOrNull(Record[1]), 2205 getMDOrNull(Record[2]), Record[3], Record[4])), 2206 NextMDValueNo++); 2207 break; 2208 } 2209 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2210 if (Record.size() != 4) 2211 return error("Invalid record"); 2212 2213 MDValueList.assignValue( 2214 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2215 (Context, getMDOrNull(Record[1]), 2216 getMDOrNull(Record[2]), Record[3])), 2217 NextMDValueNo++); 2218 break; 2219 } 2220 case bitc::METADATA_NAMESPACE: { 2221 if (Record.size() != 5) 2222 return error("Invalid record"); 2223 2224 MDValueList.assignValue( 2225 GET_OR_DISTINCT(DINamespace, Record[0], 2226 (Context, getMDOrNull(Record[1]), 2227 getMDOrNull(Record[2]), getMDString(Record[3]), 2228 Record[4])), 2229 NextMDValueNo++); 2230 break; 2231 } 2232 case bitc::METADATA_TEMPLATE_TYPE: { 2233 if (Record.size() != 3) 2234 return error("Invalid record"); 2235 2236 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2237 Record[0], 2238 (Context, getMDString(Record[1]), 2239 getMDOrNull(Record[2]))), 2240 NextMDValueNo++); 2241 break; 2242 } 2243 case bitc::METADATA_TEMPLATE_VALUE: { 2244 if (Record.size() != 5) 2245 return error("Invalid record"); 2246 2247 MDValueList.assignValue( 2248 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2249 (Context, Record[1], getMDString(Record[2]), 2250 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2251 NextMDValueNo++); 2252 break; 2253 } 2254 case bitc::METADATA_GLOBAL_VAR: { 2255 if (Record.size() != 11) 2256 return error("Invalid record"); 2257 2258 MDValueList.assignValue( 2259 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2260 (Context, getMDOrNull(Record[1]), 2261 getMDString(Record[2]), getMDString(Record[3]), 2262 getMDOrNull(Record[4]), Record[5], 2263 getMDOrNull(Record[6]), Record[7], Record[8], 2264 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2265 NextMDValueNo++); 2266 break; 2267 } 2268 case bitc::METADATA_LOCAL_VAR: { 2269 // 10th field is for the obseleted 'inlinedAt:' field. 2270 if (Record.size() < 8 || Record.size() > 10) 2271 return error("Invalid record"); 2272 2273 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2274 // DW_TAG_arg_variable. 2275 bool HasTag = Record.size() > 8; 2276 MDValueList.assignValue( 2277 GET_OR_DISTINCT(DILocalVariable, Record[0], 2278 (Context, getMDOrNull(Record[1 + HasTag]), 2279 getMDString(Record[2 + HasTag]), 2280 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2281 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2282 Record[7 + HasTag])), 2283 NextMDValueNo++); 2284 break; 2285 } 2286 case bitc::METADATA_EXPRESSION: { 2287 if (Record.size() < 1) 2288 return error("Invalid record"); 2289 2290 MDValueList.assignValue( 2291 GET_OR_DISTINCT(DIExpression, Record[0], 2292 (Context, makeArrayRef(Record).slice(1))), 2293 NextMDValueNo++); 2294 break; 2295 } 2296 case bitc::METADATA_OBJC_PROPERTY: { 2297 if (Record.size() != 8) 2298 return error("Invalid record"); 2299 2300 MDValueList.assignValue( 2301 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2302 (Context, getMDString(Record[1]), 2303 getMDOrNull(Record[2]), Record[3], 2304 getMDString(Record[4]), getMDString(Record[5]), 2305 Record[6], getMDOrNull(Record[7]))), 2306 NextMDValueNo++); 2307 break; 2308 } 2309 case bitc::METADATA_IMPORTED_ENTITY: { 2310 if (Record.size() != 6) 2311 return error("Invalid record"); 2312 2313 MDValueList.assignValue( 2314 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2315 (Context, Record[1], getMDOrNull(Record[2]), 2316 getMDOrNull(Record[3]), Record[4], 2317 getMDString(Record[5]))), 2318 NextMDValueNo++); 2319 break; 2320 } 2321 case bitc::METADATA_STRING: { 2322 std::string String(Record.begin(), Record.end()); 2323 llvm::UpgradeMDStringConstant(String); 2324 Metadata *MD = MDString::get(Context, String); 2325 MDValueList.assignValue(MD, NextMDValueNo++); 2326 break; 2327 } 2328 case bitc::METADATA_KIND: { 2329 if (Record.size() < 2) 2330 return error("Invalid record"); 2331 2332 unsigned Kind = Record[0]; 2333 SmallString<8> Name(Record.begin()+1, Record.end()); 2334 2335 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2336 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2337 return error("Conflicting METADATA_KIND records"); 2338 break; 2339 } 2340 } 2341 } 2342 #undef GET_OR_DISTINCT 2343 } 2344 2345 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2346 /// encoding. 2347 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2348 if ((V & 1) == 0) 2349 return V >> 1; 2350 if (V != 1) 2351 return -(V >> 1); 2352 // There is no such thing as -0 with integers. "-0" really means MININT. 2353 return 1ULL << 63; 2354 } 2355 2356 /// Resolve all of the initializers for global values and aliases that we can. 2357 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2358 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2359 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2360 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2361 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2362 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2363 2364 GlobalInitWorklist.swap(GlobalInits); 2365 AliasInitWorklist.swap(AliasInits); 2366 FunctionPrefixWorklist.swap(FunctionPrefixes); 2367 FunctionPrologueWorklist.swap(FunctionPrologues); 2368 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2369 2370 while (!GlobalInitWorklist.empty()) { 2371 unsigned ValID = GlobalInitWorklist.back().second; 2372 if (ValID >= ValueList.size()) { 2373 // Not ready to resolve this yet, it requires something later in the file. 2374 GlobalInits.push_back(GlobalInitWorklist.back()); 2375 } else { 2376 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2377 GlobalInitWorklist.back().first->setInitializer(C); 2378 else 2379 return error("Expected a constant"); 2380 } 2381 GlobalInitWorklist.pop_back(); 2382 } 2383 2384 while (!AliasInitWorklist.empty()) { 2385 unsigned ValID = AliasInitWorklist.back().second; 2386 if (ValID >= ValueList.size()) { 2387 AliasInits.push_back(AliasInitWorklist.back()); 2388 } else { 2389 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2390 if (!C) 2391 return error("Expected a constant"); 2392 GlobalAlias *Alias = AliasInitWorklist.back().first; 2393 if (C->getType() != Alias->getType()) 2394 return error("Alias and aliasee types don't match"); 2395 Alias->setAliasee(C); 2396 } 2397 AliasInitWorklist.pop_back(); 2398 } 2399 2400 while (!FunctionPrefixWorklist.empty()) { 2401 unsigned ValID = FunctionPrefixWorklist.back().second; 2402 if (ValID >= ValueList.size()) { 2403 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2404 } else { 2405 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2406 FunctionPrefixWorklist.back().first->setPrefixData(C); 2407 else 2408 return error("Expected a constant"); 2409 } 2410 FunctionPrefixWorklist.pop_back(); 2411 } 2412 2413 while (!FunctionPrologueWorklist.empty()) { 2414 unsigned ValID = FunctionPrologueWorklist.back().second; 2415 if (ValID >= ValueList.size()) { 2416 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2417 } else { 2418 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2419 FunctionPrologueWorklist.back().first->setPrologueData(C); 2420 else 2421 return error("Expected a constant"); 2422 } 2423 FunctionPrologueWorklist.pop_back(); 2424 } 2425 2426 while (!FunctionPersonalityFnWorklist.empty()) { 2427 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2428 if (ValID >= ValueList.size()) { 2429 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2430 } else { 2431 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2432 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2433 else 2434 return error("Expected a constant"); 2435 } 2436 FunctionPersonalityFnWorklist.pop_back(); 2437 } 2438 2439 return std::error_code(); 2440 } 2441 2442 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2443 SmallVector<uint64_t, 8> Words(Vals.size()); 2444 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2445 BitcodeReader::decodeSignRotatedValue); 2446 2447 return APInt(TypeBits, Words); 2448 } 2449 2450 std::error_code BitcodeReader::parseConstants() { 2451 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2452 return error("Invalid record"); 2453 2454 SmallVector<uint64_t, 64> Record; 2455 2456 // Read all the records for this value table. 2457 Type *CurTy = Type::getInt32Ty(Context); 2458 unsigned NextCstNo = ValueList.size(); 2459 while (1) { 2460 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2461 2462 switch (Entry.Kind) { 2463 case BitstreamEntry::SubBlock: // Handled for us already. 2464 case BitstreamEntry::Error: 2465 return error("Malformed block"); 2466 case BitstreamEntry::EndBlock: 2467 if (NextCstNo != ValueList.size()) 2468 return error("Invalid ronstant reference"); 2469 2470 // Once all the constants have been read, go through and resolve forward 2471 // references. 2472 ValueList.resolveConstantForwardRefs(); 2473 return std::error_code(); 2474 case BitstreamEntry::Record: 2475 // The interesting case. 2476 break; 2477 } 2478 2479 // Read a record. 2480 Record.clear(); 2481 Value *V = nullptr; 2482 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2483 switch (BitCode) { 2484 default: // Default behavior: unknown constant 2485 case bitc::CST_CODE_UNDEF: // UNDEF 2486 V = UndefValue::get(CurTy); 2487 break; 2488 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2489 if (Record.empty()) 2490 return error("Invalid record"); 2491 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2492 return error("Invalid record"); 2493 CurTy = TypeList[Record[0]]; 2494 continue; // Skip the ValueList manipulation. 2495 case bitc::CST_CODE_NULL: // NULL 2496 V = Constant::getNullValue(CurTy); 2497 break; 2498 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2499 if (!CurTy->isIntegerTy() || Record.empty()) 2500 return error("Invalid record"); 2501 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2502 break; 2503 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2504 if (!CurTy->isIntegerTy() || Record.empty()) 2505 return error("Invalid record"); 2506 2507 APInt VInt = 2508 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2509 V = ConstantInt::get(Context, VInt); 2510 2511 break; 2512 } 2513 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2514 if (Record.empty()) 2515 return error("Invalid record"); 2516 if (CurTy->isHalfTy()) 2517 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2518 APInt(16, (uint16_t)Record[0]))); 2519 else if (CurTy->isFloatTy()) 2520 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2521 APInt(32, (uint32_t)Record[0]))); 2522 else if (CurTy->isDoubleTy()) 2523 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2524 APInt(64, Record[0]))); 2525 else if (CurTy->isX86_FP80Ty()) { 2526 // Bits are not stored the same way as a normal i80 APInt, compensate. 2527 uint64_t Rearrange[2]; 2528 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2529 Rearrange[1] = Record[0] >> 48; 2530 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2531 APInt(80, Rearrange))); 2532 } else if (CurTy->isFP128Ty()) 2533 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2534 APInt(128, Record))); 2535 else if (CurTy->isPPC_FP128Ty()) 2536 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2537 APInt(128, Record))); 2538 else 2539 V = UndefValue::get(CurTy); 2540 break; 2541 } 2542 2543 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2544 if (Record.empty()) 2545 return error("Invalid record"); 2546 2547 unsigned Size = Record.size(); 2548 SmallVector<Constant*, 16> Elts; 2549 2550 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2551 for (unsigned i = 0; i != Size; ++i) 2552 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2553 STy->getElementType(i))); 2554 V = ConstantStruct::get(STy, Elts); 2555 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2556 Type *EltTy = ATy->getElementType(); 2557 for (unsigned i = 0; i != Size; ++i) 2558 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2559 V = ConstantArray::get(ATy, Elts); 2560 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2561 Type *EltTy = VTy->getElementType(); 2562 for (unsigned i = 0; i != Size; ++i) 2563 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2564 V = ConstantVector::get(Elts); 2565 } else { 2566 V = UndefValue::get(CurTy); 2567 } 2568 break; 2569 } 2570 case bitc::CST_CODE_STRING: // STRING: [values] 2571 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2572 if (Record.empty()) 2573 return error("Invalid record"); 2574 2575 SmallString<16> Elts(Record.begin(), Record.end()); 2576 V = ConstantDataArray::getString(Context, Elts, 2577 BitCode == bitc::CST_CODE_CSTRING); 2578 break; 2579 } 2580 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2581 if (Record.empty()) 2582 return error("Invalid record"); 2583 2584 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2585 unsigned Size = Record.size(); 2586 2587 if (EltTy->isIntegerTy(8)) { 2588 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::get(Context, Elts); 2591 else 2592 V = ConstantDataArray::get(Context, Elts); 2593 } else if (EltTy->isIntegerTy(16)) { 2594 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2595 if (isa<VectorType>(CurTy)) 2596 V = ConstantDataVector::get(Context, Elts); 2597 else 2598 V = ConstantDataArray::get(Context, Elts); 2599 } else if (EltTy->isIntegerTy(32)) { 2600 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2601 if (isa<VectorType>(CurTy)) 2602 V = ConstantDataVector::get(Context, Elts); 2603 else 2604 V = ConstantDataArray::get(Context, Elts); 2605 } else if (EltTy->isIntegerTy(64)) { 2606 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2607 if (isa<VectorType>(CurTy)) 2608 V = ConstantDataVector::get(Context, Elts); 2609 else 2610 V = ConstantDataArray::get(Context, Elts); 2611 } else if (EltTy->isFloatTy()) { 2612 SmallVector<float, 16> Elts(Size); 2613 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2614 if (isa<VectorType>(CurTy)) 2615 V = ConstantDataVector::get(Context, Elts); 2616 else 2617 V = ConstantDataArray::get(Context, Elts); 2618 } else if (EltTy->isDoubleTy()) { 2619 SmallVector<double, 16> Elts(Size); 2620 std::transform(Record.begin(), Record.end(), Elts.begin(), 2621 BitsToDouble); 2622 if (isa<VectorType>(CurTy)) 2623 V = ConstantDataVector::get(Context, Elts); 2624 else 2625 V = ConstantDataArray::get(Context, Elts); 2626 } else { 2627 return error("Invalid type for value"); 2628 } 2629 break; 2630 } 2631 2632 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2633 if (Record.size() < 3) 2634 return error("Invalid record"); 2635 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2636 if (Opc < 0) { 2637 V = UndefValue::get(CurTy); // Unknown binop. 2638 } else { 2639 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2640 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2641 unsigned Flags = 0; 2642 if (Record.size() >= 4) { 2643 if (Opc == Instruction::Add || 2644 Opc == Instruction::Sub || 2645 Opc == Instruction::Mul || 2646 Opc == Instruction::Shl) { 2647 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2648 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2649 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2650 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2651 } else if (Opc == Instruction::SDiv || 2652 Opc == Instruction::UDiv || 2653 Opc == Instruction::LShr || 2654 Opc == Instruction::AShr) { 2655 if (Record[3] & (1 << bitc::PEO_EXACT)) 2656 Flags |= SDivOperator::IsExact; 2657 } 2658 } 2659 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2660 } 2661 break; 2662 } 2663 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2664 if (Record.size() < 3) 2665 return error("Invalid record"); 2666 int Opc = getDecodedCastOpcode(Record[0]); 2667 if (Opc < 0) { 2668 V = UndefValue::get(CurTy); // Unknown cast. 2669 } else { 2670 Type *OpTy = getTypeByID(Record[1]); 2671 if (!OpTy) 2672 return error("Invalid record"); 2673 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2674 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2675 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2676 } 2677 break; 2678 } 2679 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2680 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2681 unsigned OpNum = 0; 2682 Type *PointeeType = nullptr; 2683 if (Record.size() % 2) 2684 PointeeType = getTypeByID(Record[OpNum++]); 2685 SmallVector<Constant*, 16> Elts; 2686 while (OpNum != Record.size()) { 2687 Type *ElTy = getTypeByID(Record[OpNum++]); 2688 if (!ElTy) 2689 return error("Invalid record"); 2690 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2691 } 2692 2693 if (PointeeType && 2694 PointeeType != 2695 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2696 ->getElementType()) 2697 return error("Explicit gep operator type does not match pointee type " 2698 "of pointer operand"); 2699 2700 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2701 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2702 BitCode == 2703 bitc::CST_CODE_CE_INBOUNDS_GEP); 2704 break; 2705 } 2706 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2707 if (Record.size() < 3) 2708 return error("Invalid record"); 2709 2710 Type *SelectorTy = Type::getInt1Ty(Context); 2711 2712 // The selector might be an i1 or an <n x i1> 2713 // Get the type from the ValueList before getting a forward ref. 2714 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2715 if (Value *V = ValueList[Record[0]]) 2716 if (SelectorTy != V->getType()) 2717 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2718 2719 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2720 SelectorTy), 2721 ValueList.getConstantFwdRef(Record[1],CurTy), 2722 ValueList.getConstantFwdRef(Record[2],CurTy)); 2723 break; 2724 } 2725 case bitc::CST_CODE_CE_EXTRACTELT 2726 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2727 if (Record.size() < 3) 2728 return error("Invalid record"); 2729 VectorType *OpTy = 2730 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2731 if (!OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2734 Constant *Op1 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else // TODO: Remove with llvm 4.0 2741 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2742 if (!Op1) 2743 return error("Invalid record"); 2744 V = ConstantExpr::getExtractElement(Op0, Op1); 2745 break; 2746 } 2747 case bitc::CST_CODE_CE_INSERTELT 2748 : { // CE_INSERTELT: [opval, opval, opty, opval] 2749 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2750 if (Record.size() < 3 || !OpTy) 2751 return error("Invalid record"); 2752 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2753 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2754 OpTy->getElementType()); 2755 Constant *Op2 = nullptr; 2756 if (Record.size() == 4) { 2757 Type *IdxTy = getTypeByID(Record[2]); 2758 if (!IdxTy) 2759 return error("Invalid record"); 2760 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2761 } else // TODO: Remove with llvm 4.0 2762 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2763 if (!Op2) 2764 return error("Invalid record"); 2765 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2766 break; 2767 } 2768 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2769 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2770 if (Record.size() < 3 || !OpTy) 2771 return error("Invalid record"); 2772 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2773 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2774 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2775 OpTy->getNumElements()); 2776 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2777 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2778 break; 2779 } 2780 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2781 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2782 VectorType *OpTy = 2783 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2784 if (Record.size() < 4 || !RTy || !OpTy) 2785 return error("Invalid record"); 2786 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2787 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2788 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2789 RTy->getNumElements()); 2790 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2791 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2792 break; 2793 } 2794 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2795 if (Record.size() < 4) 2796 return error("Invalid record"); 2797 Type *OpTy = getTypeByID(Record[0]); 2798 if (!OpTy) 2799 return error("Invalid record"); 2800 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2801 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2802 2803 if (OpTy->isFPOrFPVectorTy()) 2804 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2805 else 2806 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2807 break; 2808 } 2809 // This maintains backward compatibility, pre-asm dialect keywords. 2810 // FIXME: Remove with the 4.0 release. 2811 case bitc::CST_CODE_INLINEASM_OLD: { 2812 if (Record.size() < 2) 2813 return error("Invalid record"); 2814 std::string AsmStr, ConstrStr; 2815 bool HasSideEffects = Record[0] & 1; 2816 bool IsAlignStack = Record[0] >> 1; 2817 unsigned AsmStrSize = Record[1]; 2818 if (2+AsmStrSize >= Record.size()) 2819 return error("Invalid record"); 2820 unsigned ConstStrSize = Record[2+AsmStrSize]; 2821 if (3+AsmStrSize+ConstStrSize > Record.size()) 2822 return error("Invalid record"); 2823 2824 for (unsigned i = 0; i != AsmStrSize; ++i) 2825 AsmStr += (char)Record[2+i]; 2826 for (unsigned i = 0; i != ConstStrSize; ++i) 2827 ConstrStr += (char)Record[3+AsmStrSize+i]; 2828 PointerType *PTy = cast<PointerType>(CurTy); 2829 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2830 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2831 break; 2832 } 2833 // This version adds support for the asm dialect keywords (e.g., 2834 // inteldialect). 2835 case bitc::CST_CODE_INLINEASM: { 2836 if (Record.size() < 2) 2837 return error("Invalid record"); 2838 std::string AsmStr, ConstrStr; 2839 bool HasSideEffects = Record[0] & 1; 2840 bool IsAlignStack = (Record[0] >> 1) & 1; 2841 unsigned AsmDialect = Record[0] >> 2; 2842 unsigned AsmStrSize = Record[1]; 2843 if (2+AsmStrSize >= Record.size()) 2844 return error("Invalid record"); 2845 unsigned ConstStrSize = Record[2+AsmStrSize]; 2846 if (3+AsmStrSize+ConstStrSize > Record.size()) 2847 return error("Invalid record"); 2848 2849 for (unsigned i = 0; i != AsmStrSize; ++i) 2850 AsmStr += (char)Record[2+i]; 2851 for (unsigned i = 0; i != ConstStrSize; ++i) 2852 ConstrStr += (char)Record[3+AsmStrSize+i]; 2853 PointerType *PTy = cast<PointerType>(CurTy); 2854 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2856 InlineAsm::AsmDialect(AsmDialect)); 2857 break; 2858 } 2859 case bitc::CST_CODE_BLOCKADDRESS:{ 2860 if (Record.size() < 3) 2861 return error("Invalid record"); 2862 Type *FnTy = getTypeByID(Record[0]); 2863 if (!FnTy) 2864 return error("Invalid record"); 2865 Function *Fn = 2866 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2867 if (!Fn) 2868 return error("Invalid record"); 2869 2870 // Don't let Fn get dematerialized. 2871 BlockAddressesTaken.insert(Fn); 2872 2873 // If the function is already parsed we can insert the block address right 2874 // away. 2875 BasicBlock *BB; 2876 unsigned BBID = Record[2]; 2877 if (!BBID) 2878 // Invalid reference to entry block. 2879 return error("Invalid ID"); 2880 if (!Fn->empty()) { 2881 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2882 for (size_t I = 0, E = BBID; I != E; ++I) { 2883 if (BBI == BBE) 2884 return error("Invalid ID"); 2885 ++BBI; 2886 } 2887 BB = &*BBI; 2888 } else { 2889 // Otherwise insert a placeholder and remember it so it can be inserted 2890 // when the function is parsed. 2891 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2892 if (FwdBBs.empty()) 2893 BasicBlockFwdRefQueue.push_back(Fn); 2894 if (FwdBBs.size() < BBID + 1) 2895 FwdBBs.resize(BBID + 1); 2896 if (!FwdBBs[BBID]) 2897 FwdBBs[BBID] = BasicBlock::Create(Context); 2898 BB = FwdBBs[BBID]; 2899 } 2900 V = BlockAddress::get(Fn, BB); 2901 break; 2902 } 2903 } 2904 2905 if (ValueList.assignValue(V, NextCstNo)) 2906 return error("Invalid forward reference"); 2907 ++NextCstNo; 2908 } 2909 } 2910 2911 std::error_code BitcodeReader::parseUseLists() { 2912 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2913 return error("Invalid record"); 2914 2915 // Read all the records. 2916 SmallVector<uint64_t, 64> Record; 2917 while (1) { 2918 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2919 2920 switch (Entry.Kind) { 2921 case BitstreamEntry::SubBlock: // Handled for us already. 2922 case BitstreamEntry::Error: 2923 return error("Malformed block"); 2924 case BitstreamEntry::EndBlock: 2925 return std::error_code(); 2926 case BitstreamEntry::Record: 2927 // The interesting case. 2928 break; 2929 } 2930 2931 // Read a use list record. 2932 Record.clear(); 2933 bool IsBB = false; 2934 switch (Stream.readRecord(Entry.ID, Record)) { 2935 default: // Default behavior: unknown type. 2936 break; 2937 case bitc::USELIST_CODE_BB: 2938 IsBB = true; 2939 // fallthrough 2940 case bitc::USELIST_CODE_DEFAULT: { 2941 unsigned RecordLength = Record.size(); 2942 if (RecordLength < 3) 2943 // Records should have at least an ID and two indexes. 2944 return error("Invalid record"); 2945 unsigned ID = Record.back(); 2946 Record.pop_back(); 2947 2948 Value *V; 2949 if (IsBB) { 2950 assert(ID < FunctionBBs.size() && "Basic block not found"); 2951 V = FunctionBBs[ID]; 2952 } else 2953 V = ValueList[ID]; 2954 unsigned NumUses = 0; 2955 SmallDenseMap<const Use *, unsigned, 16> Order; 2956 for (const Use &U : V->uses()) { 2957 if (++NumUses > Record.size()) 2958 break; 2959 Order[&U] = Record[NumUses - 1]; 2960 } 2961 if (Order.size() != Record.size() || NumUses > Record.size()) 2962 // Mismatches can happen if the functions are being materialized lazily 2963 // (out-of-order), or a value has been upgraded. 2964 break; 2965 2966 V->sortUseList([&](const Use &L, const Use &R) { 2967 return Order.lookup(&L) < Order.lookup(&R); 2968 }); 2969 break; 2970 } 2971 } 2972 } 2973 } 2974 2975 /// When we see the block for metadata, remember where it is and then skip it. 2976 /// This lets us lazily deserialize the metadata. 2977 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2978 // Save the current stream state. 2979 uint64_t CurBit = Stream.GetCurrentBitNo(); 2980 DeferredMetadataInfo.push_back(CurBit); 2981 2982 // Skip over the block for now. 2983 if (Stream.SkipBlock()) 2984 return error("Invalid record"); 2985 return std::error_code(); 2986 } 2987 2988 std::error_code BitcodeReader::materializeMetadata() { 2989 for (uint64_t BitPos : DeferredMetadataInfo) { 2990 // Move the bit stream to the saved position. 2991 Stream.JumpToBit(BitPos); 2992 if (std::error_code EC = parseMetadata()) 2993 return EC; 2994 } 2995 DeferredMetadataInfo.clear(); 2996 return std::error_code(); 2997 } 2998 2999 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3000 3001 /// When we see the block for a function body, remember where it is and then 3002 /// skip it. This lets us lazily deserialize the functions. 3003 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3004 // Get the function we are talking about. 3005 if (FunctionsWithBodies.empty()) 3006 return error("Insufficient function protos"); 3007 3008 Function *Fn = FunctionsWithBodies.back(); 3009 FunctionsWithBodies.pop_back(); 3010 3011 // Save the current stream state. 3012 uint64_t CurBit = Stream.GetCurrentBitNo(); 3013 assert( 3014 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3015 "Mismatch between VST and scanned function offsets"); 3016 DeferredFunctionInfo[Fn] = CurBit; 3017 3018 // Skip over the function block for now. 3019 if (Stream.SkipBlock()) 3020 return error("Invalid record"); 3021 return std::error_code(); 3022 } 3023 3024 std::error_code BitcodeReader::globalCleanup() { 3025 // Patch the initializers for globals and aliases up. 3026 resolveGlobalAndAliasInits(); 3027 if (!GlobalInits.empty() || !AliasInits.empty()) 3028 return error("Malformed global initializer set"); 3029 3030 // Look for intrinsic functions which need to be upgraded at some point 3031 for (Function &F : *TheModule) { 3032 Function *NewFn; 3033 if (UpgradeIntrinsicFunction(&F, NewFn)) 3034 UpgradedIntrinsics[&F] = NewFn; 3035 } 3036 3037 // Look for global variables which need to be renamed. 3038 for (GlobalVariable &GV : TheModule->globals()) 3039 UpgradeGlobalVariable(&GV); 3040 3041 // Force deallocation of memory for these vectors to favor the client that 3042 // want lazy deserialization. 3043 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3044 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3045 return std::error_code(); 3046 } 3047 3048 /// Support for lazy parsing of function bodies. This is required if we 3049 /// either have an old bitcode file without a VST forward declaration record, 3050 /// or if we have an anonymous function being materialized, since anonymous 3051 /// functions do not have a name and are therefore not in the VST. 3052 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3053 Stream.JumpToBit(NextUnreadBit); 3054 3055 if (Stream.AtEndOfStream()) return error("Could not find function in stream"); 3056 3057 assert(SeenFirstFunctionBody); 3058 // An old bitcode file with the symbol table at the end would have 3059 // finished the parse greedily. 3060 assert(SeenValueSymbolTable); 3061 3062 SmallVector<uint64_t, 64> Record; 3063 3064 while (1) { 3065 BitstreamEntry Entry = Stream.advance(); 3066 switch (Entry.Kind) { 3067 default: 3068 return error("Expect SubBlock"); 3069 case BitstreamEntry::SubBlock: 3070 switch (Entry.ID) { 3071 default: 3072 return error("Expect function block"); 3073 case bitc::FUNCTION_BLOCK_ID: 3074 if (std::error_code EC = rememberAndSkipFunctionBody()) return EC; 3075 NextUnreadBit = Stream.GetCurrentBitNo(); 3076 return std::error_code(); 3077 } 3078 } 3079 } 3080 } 3081 3082 std::error_code BitcodeReader::parseBitcodeVersion() { 3083 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3084 return error("Invalid record"); 3085 3086 // Read all the records. 3087 SmallVector<uint64_t, 64> Record; 3088 while (1) { 3089 BitstreamEntry Entry = Stream.advance(); 3090 3091 switch (Entry.Kind) { 3092 default: 3093 case BitstreamEntry::Error: 3094 return error("Malformed block"); 3095 case BitstreamEntry::EndBlock: 3096 return std::error_code(); 3097 case BitstreamEntry::Record: 3098 // The interesting case. 3099 break; 3100 } 3101 3102 // Read a record. 3103 Record.clear(); 3104 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3105 switch (BitCode) { 3106 default: // Default behavior: reject 3107 return error("Invalid value"); 3108 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3109 // N] 3110 convertToString(Record, 0, ProducerIdentification); 3111 break; 3112 } 3113 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3114 unsigned epoch = (unsigned)Record[0]; 3115 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3116 return error( 3117 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3118 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3119 } 3120 } 3121 } 3122 } 3123 } 3124 3125 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3126 bool ShouldLazyLoadMetadata) { 3127 if (ResumeBit) 3128 Stream.JumpToBit(ResumeBit); 3129 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3130 return error("Invalid record"); 3131 3132 SmallVector<uint64_t, 64> Record; 3133 std::vector<std::string> SectionTable; 3134 std::vector<std::string> GCTable; 3135 3136 // Read all the records for this module. 3137 while (1) { 3138 BitstreamEntry Entry = Stream.advance(); 3139 3140 switch (Entry.Kind) { 3141 case BitstreamEntry::Error: 3142 return error("Malformed block"); 3143 case BitstreamEntry::EndBlock: 3144 return globalCleanup(); 3145 3146 case BitstreamEntry::SubBlock: 3147 switch (Entry.ID) { 3148 default: // Skip unknown content. 3149 if (Stream.SkipBlock()) 3150 return error("Invalid record"); 3151 break; 3152 case bitc::BLOCKINFO_BLOCK_ID: 3153 if (Stream.ReadBlockInfoBlock()) 3154 return error("Malformed block"); 3155 break; 3156 case bitc::PARAMATTR_BLOCK_ID: 3157 if (std::error_code EC = parseAttributeBlock()) 3158 return EC; 3159 break; 3160 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3161 if (std::error_code EC = parseAttributeGroupBlock()) 3162 return EC; 3163 break; 3164 case bitc::TYPE_BLOCK_ID_NEW: 3165 if (std::error_code EC = parseTypeTable()) 3166 return EC; 3167 break; 3168 case bitc::VALUE_SYMTAB_BLOCK_ID: 3169 if (!SeenValueSymbolTable) { 3170 // Either this is an old form VST without function index and an 3171 // associated VST forward declaration record (which would have caused 3172 // the VST to be jumped to and parsed before it was encountered 3173 // normally in the stream), or there were no function blocks to 3174 // trigger an earlier parsing of the VST. 3175 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3176 if (std::error_code EC = parseValueSymbolTable()) 3177 return EC; 3178 SeenValueSymbolTable = true; 3179 } else { 3180 // We must have had a VST forward declaration record, which caused 3181 // the parser to jump to and parse the VST earlier. 3182 assert(VSTOffset > 0); 3183 if (Stream.SkipBlock()) 3184 return error("Invalid record"); 3185 } 3186 break; 3187 case bitc::CONSTANTS_BLOCK_ID: 3188 if (std::error_code EC = parseConstants()) 3189 return EC; 3190 if (std::error_code EC = resolveGlobalAndAliasInits()) 3191 return EC; 3192 break; 3193 case bitc::METADATA_BLOCK_ID: 3194 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3195 if (std::error_code EC = rememberAndSkipMetadata()) 3196 return EC; 3197 break; 3198 } 3199 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3200 if (std::error_code EC = parseMetadata()) 3201 return EC; 3202 break; 3203 case bitc::FUNCTION_BLOCK_ID: 3204 // If this is the first function body we've seen, reverse the 3205 // FunctionsWithBodies list. 3206 if (!SeenFirstFunctionBody) { 3207 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3208 if (std::error_code EC = globalCleanup()) 3209 return EC; 3210 SeenFirstFunctionBody = true; 3211 } 3212 3213 if (VSTOffset > 0) { 3214 // If we have a VST forward declaration record, make sure we 3215 // parse the VST now if we haven't already. It is needed to 3216 // set up the DeferredFunctionInfo vector for lazy reading. 3217 if (!SeenValueSymbolTable) { 3218 if (std::error_code EC = 3219 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3220 return EC; 3221 SeenValueSymbolTable = true; 3222 // Fall through so that we record the NextUnreadBit below. 3223 // This is necessary in case we have an anonymous function that 3224 // is later materialized. Since it will not have a VST entry we 3225 // need to fall back to the lazy parse to find its offset. 3226 } else { 3227 // If we have a VST forward declaration record, but have already 3228 // parsed the VST (just above, when the first function body was 3229 // encountered here), then we are resuming the parse after 3230 // materializing functions. The ResumeBit points to the 3231 // start of the last function block recorded in the 3232 // DeferredFunctionInfo map. Skip it. 3233 if (Stream.SkipBlock()) 3234 return error("Invalid record"); 3235 continue; 3236 } 3237 } 3238 3239 // Support older bitcode files that did not have the function 3240 // index in the VST, nor a VST forward declaration record, as 3241 // well as anonymous functions that do not have VST entries. 3242 // Build the DeferredFunctionInfo vector on the fly. 3243 if (std::error_code EC = rememberAndSkipFunctionBody()) 3244 return EC; 3245 3246 // Suspend parsing when we reach the function bodies. Subsequent 3247 // materialization calls will resume it when necessary. If the bitcode 3248 // file is old, the symbol table will be at the end instead and will not 3249 // have been seen yet. In this case, just finish the parse now. 3250 if (SeenValueSymbolTable) { 3251 NextUnreadBit = Stream.GetCurrentBitNo(); 3252 return std::error_code(); 3253 } 3254 break; 3255 case bitc::USELIST_BLOCK_ID: 3256 if (std::error_code EC = parseUseLists()) 3257 return EC; 3258 break; 3259 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3260 if (std::error_code EC = parseOperandBundleTags()) 3261 return EC; 3262 break; 3263 } 3264 continue; 3265 3266 case BitstreamEntry::Record: 3267 // The interesting case. 3268 break; 3269 } 3270 3271 3272 // Read a record. 3273 auto BitCode = Stream.readRecord(Entry.ID, Record); 3274 switch (BitCode) { 3275 default: break; // Default behavior, ignore unknown content. 3276 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3277 if (Record.size() < 1) 3278 return error("Invalid record"); 3279 // Only version #0 and #1 are supported so far. 3280 unsigned module_version = Record[0]; 3281 switch (module_version) { 3282 default: 3283 return error("Invalid value"); 3284 case 0: 3285 UseRelativeIDs = false; 3286 break; 3287 case 1: 3288 UseRelativeIDs = true; 3289 break; 3290 } 3291 break; 3292 } 3293 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3294 std::string S; 3295 if (convertToString(Record, 0, S)) 3296 return error("Invalid record"); 3297 TheModule->setTargetTriple(S); 3298 break; 3299 } 3300 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3301 std::string S; 3302 if (convertToString(Record, 0, S)) 3303 return error("Invalid record"); 3304 TheModule->setDataLayout(S); 3305 break; 3306 } 3307 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3308 std::string S; 3309 if (convertToString(Record, 0, S)) 3310 return error("Invalid record"); 3311 TheModule->setModuleInlineAsm(S); 3312 break; 3313 } 3314 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3315 // FIXME: Remove in 4.0. 3316 std::string S; 3317 if (convertToString(Record, 0, S)) 3318 return error("Invalid record"); 3319 // Ignore value. 3320 break; 3321 } 3322 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3323 std::string S; 3324 if (convertToString(Record, 0, S)) 3325 return error("Invalid record"); 3326 SectionTable.push_back(S); 3327 break; 3328 } 3329 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3330 std::string S; 3331 if (convertToString(Record, 0, S)) 3332 return error("Invalid record"); 3333 GCTable.push_back(S); 3334 break; 3335 } 3336 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3337 if (Record.size() < 2) 3338 return error("Invalid record"); 3339 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3340 unsigned ComdatNameSize = Record[1]; 3341 std::string ComdatName; 3342 ComdatName.reserve(ComdatNameSize); 3343 for (unsigned i = 0; i != ComdatNameSize; ++i) 3344 ComdatName += (char)Record[2 + i]; 3345 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3346 C->setSelectionKind(SK); 3347 ComdatList.push_back(C); 3348 break; 3349 } 3350 // GLOBALVAR: [pointer type, isconst, initid, 3351 // linkage, alignment, section, visibility, threadlocal, 3352 // unnamed_addr, externally_initialized, dllstorageclass, 3353 // comdat] 3354 case bitc::MODULE_CODE_GLOBALVAR: { 3355 if (Record.size() < 6) 3356 return error("Invalid record"); 3357 Type *Ty = getTypeByID(Record[0]); 3358 if (!Ty) 3359 return error("Invalid record"); 3360 bool isConstant = Record[1] & 1; 3361 bool explicitType = Record[1] & 2; 3362 unsigned AddressSpace; 3363 if (explicitType) { 3364 AddressSpace = Record[1] >> 2; 3365 } else { 3366 if (!Ty->isPointerTy()) 3367 return error("Invalid type for value"); 3368 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3369 Ty = cast<PointerType>(Ty)->getElementType(); 3370 } 3371 3372 uint64_t RawLinkage = Record[3]; 3373 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3374 unsigned Alignment; 3375 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3376 return EC; 3377 std::string Section; 3378 if (Record[5]) { 3379 if (Record[5]-1 >= SectionTable.size()) 3380 return error("Invalid ID"); 3381 Section = SectionTable[Record[5]-1]; 3382 } 3383 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3384 // Local linkage must have default visibility. 3385 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3386 // FIXME: Change to an error if non-default in 4.0. 3387 Visibility = getDecodedVisibility(Record[6]); 3388 3389 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3390 if (Record.size() > 7) 3391 TLM = getDecodedThreadLocalMode(Record[7]); 3392 3393 bool UnnamedAddr = false; 3394 if (Record.size() > 8) 3395 UnnamedAddr = Record[8]; 3396 3397 bool ExternallyInitialized = false; 3398 if (Record.size() > 9) 3399 ExternallyInitialized = Record[9]; 3400 3401 GlobalVariable *NewGV = 3402 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3403 TLM, AddressSpace, ExternallyInitialized); 3404 NewGV->setAlignment(Alignment); 3405 if (!Section.empty()) 3406 NewGV->setSection(Section); 3407 NewGV->setVisibility(Visibility); 3408 NewGV->setUnnamedAddr(UnnamedAddr); 3409 3410 if (Record.size() > 10) 3411 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3412 else 3413 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3414 3415 ValueList.push_back(NewGV); 3416 3417 // Remember which value to use for the global initializer. 3418 if (unsigned InitID = Record[2]) 3419 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3420 3421 if (Record.size() > 11) { 3422 if (unsigned ComdatID = Record[11]) { 3423 if (ComdatID > ComdatList.size()) 3424 return error("Invalid global variable comdat ID"); 3425 NewGV->setComdat(ComdatList[ComdatID - 1]); 3426 } 3427 } else if (hasImplicitComdat(RawLinkage)) { 3428 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3429 } 3430 break; 3431 } 3432 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3433 // alignment, section, visibility, gc, unnamed_addr, 3434 // prologuedata, dllstorageclass, comdat, prefixdata] 3435 case bitc::MODULE_CODE_FUNCTION: { 3436 if (Record.size() < 8) 3437 return error("Invalid record"); 3438 Type *Ty = getTypeByID(Record[0]); 3439 if (!Ty) 3440 return error("Invalid record"); 3441 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3442 Ty = PTy->getElementType(); 3443 auto *FTy = dyn_cast<FunctionType>(Ty); 3444 if (!FTy) 3445 return error("Invalid type for value"); 3446 auto CC = static_cast<CallingConv::ID>(Record[1]); 3447 if (CC & ~CallingConv::MaxID) 3448 return error("Invalid calling convention ID"); 3449 3450 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3451 "", TheModule); 3452 3453 Func->setCallingConv(CC); 3454 bool isProto = Record[2]; 3455 uint64_t RawLinkage = Record[3]; 3456 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3457 Func->setAttributes(getAttributes(Record[4])); 3458 3459 unsigned Alignment; 3460 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3461 return EC; 3462 Func->setAlignment(Alignment); 3463 if (Record[6]) { 3464 if (Record[6]-1 >= SectionTable.size()) 3465 return error("Invalid ID"); 3466 Func->setSection(SectionTable[Record[6]-1]); 3467 } 3468 // Local linkage must have default visibility. 3469 if (!Func->hasLocalLinkage()) 3470 // FIXME: Change to an error if non-default in 4.0. 3471 Func->setVisibility(getDecodedVisibility(Record[7])); 3472 if (Record.size() > 8 && Record[8]) { 3473 if (Record[8]-1 >= GCTable.size()) 3474 return error("Invalid ID"); 3475 Func->setGC(GCTable[Record[8]-1].c_str()); 3476 } 3477 bool UnnamedAddr = false; 3478 if (Record.size() > 9) 3479 UnnamedAddr = Record[9]; 3480 Func->setUnnamedAddr(UnnamedAddr); 3481 if (Record.size() > 10 && Record[10] != 0) 3482 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3483 3484 if (Record.size() > 11) 3485 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3486 else 3487 upgradeDLLImportExportLinkage(Func, RawLinkage); 3488 3489 if (Record.size() > 12) { 3490 if (unsigned ComdatID = Record[12]) { 3491 if (ComdatID > ComdatList.size()) 3492 return error("Invalid function comdat ID"); 3493 Func->setComdat(ComdatList[ComdatID - 1]); 3494 } 3495 } else if (hasImplicitComdat(RawLinkage)) { 3496 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3497 } 3498 3499 if (Record.size() > 13 && Record[13] != 0) 3500 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3501 3502 if (Record.size() > 14 && Record[14] != 0) 3503 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3504 3505 ValueList.push_back(Func); 3506 3507 // If this is a function with a body, remember the prototype we are 3508 // creating now, so that we can match up the body with them later. 3509 if (!isProto) { 3510 Func->setIsMaterializable(true); 3511 FunctionsWithBodies.push_back(Func); 3512 DeferredFunctionInfo[Func] = 0; 3513 } 3514 break; 3515 } 3516 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3517 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3518 case bitc::MODULE_CODE_ALIAS: 3519 case bitc::MODULE_CODE_ALIAS_OLD: { 3520 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3521 if (Record.size() < (3 + (unsigned)NewRecord)) 3522 return error("Invalid record"); 3523 unsigned OpNum = 0; 3524 Type *Ty = getTypeByID(Record[OpNum++]); 3525 if (!Ty) 3526 return error("Invalid record"); 3527 3528 unsigned AddrSpace; 3529 if (!NewRecord) { 3530 auto *PTy = dyn_cast<PointerType>(Ty); 3531 if (!PTy) 3532 return error("Invalid type for value"); 3533 Ty = PTy->getElementType(); 3534 AddrSpace = PTy->getAddressSpace(); 3535 } else { 3536 AddrSpace = Record[OpNum++]; 3537 } 3538 3539 auto Val = Record[OpNum++]; 3540 auto Linkage = Record[OpNum++]; 3541 auto *NewGA = GlobalAlias::create( 3542 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3543 // Old bitcode files didn't have visibility field. 3544 // Local linkage must have default visibility. 3545 if (OpNum != Record.size()) { 3546 auto VisInd = OpNum++; 3547 if (!NewGA->hasLocalLinkage()) 3548 // FIXME: Change to an error if non-default in 4.0. 3549 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3550 } 3551 if (OpNum != Record.size()) 3552 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3553 else 3554 upgradeDLLImportExportLinkage(NewGA, Linkage); 3555 if (OpNum != Record.size()) 3556 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3557 if (OpNum != Record.size()) 3558 NewGA->setUnnamedAddr(Record[OpNum++]); 3559 ValueList.push_back(NewGA); 3560 AliasInits.push_back(std::make_pair(NewGA, Val)); 3561 break; 3562 } 3563 /// MODULE_CODE_PURGEVALS: [numvals] 3564 case bitc::MODULE_CODE_PURGEVALS: 3565 // Trim down the value list to the specified size. 3566 if (Record.size() < 1 || Record[0] > ValueList.size()) 3567 return error("Invalid record"); 3568 ValueList.shrinkTo(Record[0]); 3569 break; 3570 /// MODULE_CODE_VSTOFFSET: [offset] 3571 case bitc::MODULE_CODE_VSTOFFSET: 3572 if (Record.size() < 1) 3573 return error("Invalid record"); 3574 VSTOffset = Record[0]; 3575 break; 3576 } 3577 Record.clear(); 3578 } 3579 } 3580 3581 /// Helper to read the header common to all bitcode files. 3582 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3583 // Sniff for the signature. 3584 if (Stream.Read(8) != 'B' || 3585 Stream.Read(8) != 'C' || 3586 Stream.Read(4) != 0x0 || 3587 Stream.Read(4) != 0xC || 3588 Stream.Read(4) != 0xE || 3589 Stream.Read(4) != 0xD) 3590 return false; 3591 return true; 3592 } 3593 3594 std::error_code 3595 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3596 Module *M, bool ShouldLazyLoadMetadata) { 3597 TheModule = M; 3598 3599 if (std::error_code EC = initStream(std::move(Streamer))) 3600 return EC; 3601 3602 // Sniff for the signature. 3603 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3604 3605 // We expect a number of well-defined blocks, though we don't necessarily 3606 // need to understand them all. 3607 while (1) { 3608 if (Stream.AtEndOfStream()) { 3609 // We didn't really read a proper Module. 3610 return error("Malformed IR file"); 3611 } 3612 3613 BitstreamEntry Entry = 3614 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3615 3616 if (Entry.Kind != BitstreamEntry::SubBlock) 3617 return error("Malformed block"); 3618 3619 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3620 parseBitcodeVersion(); 3621 continue; 3622 } 3623 3624 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3625 return parseModule(0, ShouldLazyLoadMetadata); 3626 3627 if (Stream.SkipBlock()) 3628 return error("Invalid record"); 3629 } 3630 } 3631 3632 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3633 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3634 return error("Invalid record"); 3635 3636 SmallVector<uint64_t, 64> Record; 3637 3638 std::string Triple; 3639 // Read all the records for this module. 3640 while (1) { 3641 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3642 3643 switch (Entry.Kind) { 3644 case BitstreamEntry::SubBlock: // Handled for us already. 3645 case BitstreamEntry::Error: 3646 return error("Malformed block"); 3647 case BitstreamEntry::EndBlock: 3648 return Triple; 3649 case BitstreamEntry::Record: 3650 // The interesting case. 3651 break; 3652 } 3653 3654 // Read a record. 3655 switch (Stream.readRecord(Entry.ID, Record)) { 3656 default: break; // Default behavior, ignore unknown content. 3657 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3658 std::string S; 3659 if (convertToString(Record, 0, S)) 3660 return error("Invalid record"); 3661 Triple = S; 3662 break; 3663 } 3664 } 3665 Record.clear(); 3666 } 3667 llvm_unreachable("Exit infinite loop"); 3668 } 3669 3670 ErrorOr<std::string> BitcodeReader::parseTriple() { 3671 if (std::error_code EC = initStream(nullptr)) 3672 return EC; 3673 3674 // Sniff for the signature. 3675 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3676 3677 // We expect a number of well-defined blocks, though we don't necessarily 3678 // need to understand them all. 3679 while (1) { 3680 BitstreamEntry Entry = Stream.advance(); 3681 3682 switch (Entry.Kind) { 3683 case BitstreamEntry::Error: 3684 return error("Malformed block"); 3685 case BitstreamEntry::EndBlock: 3686 return std::error_code(); 3687 3688 case BitstreamEntry::SubBlock: 3689 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3690 return parseModuleTriple(); 3691 3692 // Ignore other sub-blocks. 3693 if (Stream.SkipBlock()) 3694 return error("Malformed block"); 3695 continue; 3696 3697 case BitstreamEntry::Record: 3698 Stream.skipRecord(Entry.ID); 3699 continue; 3700 } 3701 } 3702 } 3703 3704 /// Parse metadata attachments. 3705 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3706 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3707 return error("Invalid record"); 3708 3709 SmallVector<uint64_t, 64> Record; 3710 while (1) { 3711 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3712 3713 switch (Entry.Kind) { 3714 case BitstreamEntry::SubBlock: // Handled for us already. 3715 case BitstreamEntry::Error: 3716 return error("Malformed block"); 3717 case BitstreamEntry::EndBlock: 3718 return std::error_code(); 3719 case BitstreamEntry::Record: 3720 // The interesting case. 3721 break; 3722 } 3723 3724 // Read a metadata attachment record. 3725 Record.clear(); 3726 switch (Stream.readRecord(Entry.ID, Record)) { 3727 default: // Default behavior: ignore. 3728 break; 3729 case bitc::METADATA_ATTACHMENT: { 3730 unsigned RecordLength = Record.size(); 3731 if (Record.empty()) 3732 return error("Invalid record"); 3733 if (RecordLength % 2 == 0) { 3734 // A function attachment. 3735 for (unsigned I = 0; I != RecordLength; I += 2) { 3736 auto K = MDKindMap.find(Record[I]); 3737 if (K == MDKindMap.end()) 3738 return error("Invalid ID"); 3739 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3740 F.setMetadata(K->second, cast<MDNode>(MD)); 3741 } 3742 continue; 3743 } 3744 3745 // An instruction attachment. 3746 Instruction *Inst = InstructionList[Record[0]]; 3747 for (unsigned i = 1; i != RecordLength; i = i+2) { 3748 unsigned Kind = Record[i]; 3749 DenseMap<unsigned, unsigned>::iterator I = 3750 MDKindMap.find(Kind); 3751 if (I == MDKindMap.end()) 3752 return error("Invalid ID"); 3753 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3754 if (isa<LocalAsMetadata>(Node)) 3755 // Drop the attachment. This used to be legal, but there's no 3756 // upgrade path. 3757 break; 3758 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3759 if (I->second == LLVMContext::MD_tbaa) 3760 InstsWithTBAATag.push_back(Inst); 3761 } 3762 break; 3763 } 3764 } 3765 } 3766 } 3767 3768 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3769 Type *ValType, Type *PtrType) { 3770 if (!isa<PointerType>(PtrType)) 3771 return error(DH, "Load/Store operand is not a pointer type"); 3772 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3773 3774 if (ValType && ValType != ElemType) 3775 return error(DH, "Explicit load/store type does not match pointee type of " 3776 "pointer operand"); 3777 if (!PointerType::isLoadableOrStorableType(ElemType)) 3778 return error(DH, "Cannot load/store from pointer"); 3779 return std::error_code(); 3780 } 3781 3782 /// Lazily parse the specified function body block. 3783 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3784 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3785 return error("Invalid record"); 3786 3787 InstructionList.clear(); 3788 unsigned ModuleValueListSize = ValueList.size(); 3789 unsigned ModuleMDValueListSize = MDValueList.size(); 3790 3791 // Add all the function arguments to the value table. 3792 for (Argument &I : F->args()) 3793 ValueList.push_back(&I); 3794 3795 unsigned NextValueNo = ValueList.size(); 3796 BasicBlock *CurBB = nullptr; 3797 unsigned CurBBNo = 0; 3798 3799 DebugLoc LastLoc; 3800 auto getLastInstruction = [&]() -> Instruction * { 3801 if (CurBB && !CurBB->empty()) 3802 return &CurBB->back(); 3803 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3804 !FunctionBBs[CurBBNo - 1]->empty()) 3805 return &FunctionBBs[CurBBNo - 1]->back(); 3806 return nullptr; 3807 }; 3808 3809 std::vector<OperandBundleDef> OperandBundles; 3810 3811 // Read all the records. 3812 SmallVector<uint64_t, 64> Record; 3813 while (1) { 3814 BitstreamEntry Entry = Stream.advance(); 3815 3816 switch (Entry.Kind) { 3817 case BitstreamEntry::Error: 3818 return error("Malformed block"); 3819 case BitstreamEntry::EndBlock: 3820 goto OutOfRecordLoop; 3821 3822 case BitstreamEntry::SubBlock: 3823 switch (Entry.ID) { 3824 default: // Skip unknown content. 3825 if (Stream.SkipBlock()) 3826 return error("Invalid record"); 3827 break; 3828 case bitc::CONSTANTS_BLOCK_ID: 3829 if (std::error_code EC = parseConstants()) 3830 return EC; 3831 NextValueNo = ValueList.size(); 3832 break; 3833 case bitc::VALUE_SYMTAB_BLOCK_ID: 3834 if (std::error_code EC = parseValueSymbolTable()) 3835 return EC; 3836 break; 3837 case bitc::METADATA_ATTACHMENT_ID: 3838 if (std::error_code EC = parseMetadataAttachment(*F)) 3839 return EC; 3840 break; 3841 case bitc::METADATA_BLOCK_ID: 3842 if (std::error_code EC = parseMetadata()) 3843 return EC; 3844 break; 3845 case bitc::USELIST_BLOCK_ID: 3846 if (std::error_code EC = parseUseLists()) 3847 return EC; 3848 break; 3849 } 3850 continue; 3851 3852 case BitstreamEntry::Record: 3853 // The interesting case. 3854 break; 3855 } 3856 3857 // Read a record. 3858 Record.clear(); 3859 Instruction *I = nullptr; 3860 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3861 switch (BitCode) { 3862 default: // Default behavior: reject 3863 return error("Invalid value"); 3864 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3865 if (Record.size() < 1 || Record[0] == 0) 3866 return error("Invalid record"); 3867 // Create all the basic blocks for the function. 3868 FunctionBBs.resize(Record[0]); 3869 3870 // See if anything took the address of blocks in this function. 3871 auto BBFRI = BasicBlockFwdRefs.find(F); 3872 if (BBFRI == BasicBlockFwdRefs.end()) { 3873 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3874 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3875 } else { 3876 auto &BBRefs = BBFRI->second; 3877 // Check for invalid basic block references. 3878 if (BBRefs.size() > FunctionBBs.size()) 3879 return error("Invalid ID"); 3880 assert(!BBRefs.empty() && "Unexpected empty array"); 3881 assert(!BBRefs.front() && "Invalid reference to entry block"); 3882 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3883 ++I) 3884 if (I < RE && BBRefs[I]) { 3885 BBRefs[I]->insertInto(F); 3886 FunctionBBs[I] = BBRefs[I]; 3887 } else { 3888 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3889 } 3890 3891 // Erase from the table. 3892 BasicBlockFwdRefs.erase(BBFRI); 3893 } 3894 3895 CurBB = FunctionBBs[0]; 3896 continue; 3897 } 3898 3899 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3900 // This record indicates that the last instruction is at the same 3901 // location as the previous instruction with a location. 3902 I = getLastInstruction(); 3903 3904 if (!I) 3905 return error("Invalid record"); 3906 I->setDebugLoc(LastLoc); 3907 I = nullptr; 3908 continue; 3909 3910 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3911 I = getLastInstruction(); 3912 if (!I || Record.size() < 4) 3913 return error("Invalid record"); 3914 3915 unsigned Line = Record[0], Col = Record[1]; 3916 unsigned ScopeID = Record[2], IAID = Record[3]; 3917 3918 MDNode *Scope = nullptr, *IA = nullptr; 3919 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3920 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3921 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3922 I->setDebugLoc(LastLoc); 3923 I = nullptr; 3924 continue; 3925 } 3926 3927 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3928 unsigned OpNum = 0; 3929 Value *LHS, *RHS; 3930 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3931 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3932 OpNum+1 > Record.size()) 3933 return error("Invalid record"); 3934 3935 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3936 if (Opc == -1) 3937 return error("Invalid record"); 3938 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3939 InstructionList.push_back(I); 3940 if (OpNum < Record.size()) { 3941 if (Opc == Instruction::Add || 3942 Opc == Instruction::Sub || 3943 Opc == Instruction::Mul || 3944 Opc == Instruction::Shl) { 3945 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3946 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3947 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3948 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3949 } else if (Opc == Instruction::SDiv || 3950 Opc == Instruction::UDiv || 3951 Opc == Instruction::LShr || 3952 Opc == Instruction::AShr) { 3953 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3954 cast<BinaryOperator>(I)->setIsExact(true); 3955 } else if (isa<FPMathOperator>(I)) { 3956 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3957 if (FMF.any()) 3958 I->setFastMathFlags(FMF); 3959 } 3960 3961 } 3962 break; 3963 } 3964 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3965 unsigned OpNum = 0; 3966 Value *Op; 3967 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3968 OpNum+2 != Record.size()) 3969 return error("Invalid record"); 3970 3971 Type *ResTy = getTypeByID(Record[OpNum]); 3972 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3973 if (Opc == -1 || !ResTy) 3974 return error("Invalid record"); 3975 Instruction *Temp = nullptr; 3976 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3977 if (Temp) { 3978 InstructionList.push_back(Temp); 3979 CurBB->getInstList().push_back(Temp); 3980 } 3981 } else { 3982 auto CastOp = (Instruction::CastOps)Opc; 3983 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3984 return error("Invalid cast"); 3985 I = CastInst::Create(CastOp, Op, ResTy); 3986 } 3987 InstructionList.push_back(I); 3988 break; 3989 } 3990 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3991 case bitc::FUNC_CODE_INST_GEP_OLD: 3992 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3993 unsigned OpNum = 0; 3994 3995 Type *Ty; 3996 bool InBounds; 3997 3998 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3999 InBounds = Record[OpNum++]; 4000 Ty = getTypeByID(Record[OpNum++]); 4001 } else { 4002 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4003 Ty = nullptr; 4004 } 4005 4006 Value *BasePtr; 4007 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4008 return error("Invalid record"); 4009 4010 if (!Ty) 4011 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4012 ->getElementType(); 4013 else if (Ty != 4014 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4015 ->getElementType()) 4016 return error( 4017 "Explicit gep type does not match pointee type of pointer operand"); 4018 4019 SmallVector<Value*, 16> GEPIdx; 4020 while (OpNum != Record.size()) { 4021 Value *Op; 4022 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4023 return error("Invalid record"); 4024 GEPIdx.push_back(Op); 4025 } 4026 4027 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4028 4029 InstructionList.push_back(I); 4030 if (InBounds) 4031 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4032 break; 4033 } 4034 4035 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4036 // EXTRACTVAL: [opty, opval, n x indices] 4037 unsigned OpNum = 0; 4038 Value *Agg; 4039 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4040 return error("Invalid record"); 4041 4042 unsigned RecSize = Record.size(); 4043 if (OpNum == RecSize) 4044 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4045 4046 SmallVector<unsigned, 4> EXTRACTVALIdx; 4047 Type *CurTy = Agg->getType(); 4048 for (; OpNum != RecSize; ++OpNum) { 4049 bool IsArray = CurTy->isArrayTy(); 4050 bool IsStruct = CurTy->isStructTy(); 4051 uint64_t Index = Record[OpNum]; 4052 4053 if (!IsStruct && !IsArray) 4054 return error("EXTRACTVAL: Invalid type"); 4055 if ((unsigned)Index != Index) 4056 return error("Invalid value"); 4057 if (IsStruct && Index >= CurTy->subtypes().size()) 4058 return error("EXTRACTVAL: Invalid struct index"); 4059 if (IsArray && Index >= CurTy->getArrayNumElements()) 4060 return error("EXTRACTVAL: Invalid array index"); 4061 EXTRACTVALIdx.push_back((unsigned)Index); 4062 4063 if (IsStruct) 4064 CurTy = CurTy->subtypes()[Index]; 4065 else 4066 CurTy = CurTy->subtypes()[0]; 4067 } 4068 4069 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4070 InstructionList.push_back(I); 4071 break; 4072 } 4073 4074 case bitc::FUNC_CODE_INST_INSERTVAL: { 4075 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4076 unsigned OpNum = 0; 4077 Value *Agg; 4078 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4079 return error("Invalid record"); 4080 Value *Val; 4081 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4082 return error("Invalid record"); 4083 4084 unsigned RecSize = Record.size(); 4085 if (OpNum == RecSize) 4086 return error("INSERTVAL: Invalid instruction with 0 indices"); 4087 4088 SmallVector<unsigned, 4> INSERTVALIdx; 4089 Type *CurTy = Agg->getType(); 4090 for (; OpNum != RecSize; ++OpNum) { 4091 bool IsArray = CurTy->isArrayTy(); 4092 bool IsStruct = CurTy->isStructTy(); 4093 uint64_t Index = Record[OpNum]; 4094 4095 if (!IsStruct && !IsArray) 4096 return error("INSERTVAL: Invalid type"); 4097 if ((unsigned)Index != Index) 4098 return error("Invalid value"); 4099 if (IsStruct && Index >= CurTy->subtypes().size()) 4100 return error("INSERTVAL: Invalid struct index"); 4101 if (IsArray && Index >= CurTy->getArrayNumElements()) 4102 return error("INSERTVAL: Invalid array index"); 4103 4104 INSERTVALIdx.push_back((unsigned)Index); 4105 if (IsStruct) 4106 CurTy = CurTy->subtypes()[Index]; 4107 else 4108 CurTy = CurTy->subtypes()[0]; 4109 } 4110 4111 if (CurTy != Val->getType()) 4112 return error("Inserted value type doesn't match aggregate type"); 4113 4114 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4115 InstructionList.push_back(I); 4116 break; 4117 } 4118 4119 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4120 // obsolete form of select 4121 // handles select i1 ... in old bitcode 4122 unsigned OpNum = 0; 4123 Value *TrueVal, *FalseVal, *Cond; 4124 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4125 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4126 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4127 return error("Invalid record"); 4128 4129 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4130 InstructionList.push_back(I); 4131 break; 4132 } 4133 4134 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4135 // new form of select 4136 // handles select i1 or select [N x i1] 4137 unsigned OpNum = 0; 4138 Value *TrueVal, *FalseVal, *Cond; 4139 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4140 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4141 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4142 return error("Invalid record"); 4143 4144 // select condition can be either i1 or [N x i1] 4145 if (VectorType* vector_type = 4146 dyn_cast<VectorType>(Cond->getType())) { 4147 // expect <n x i1> 4148 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4149 return error("Invalid type for value"); 4150 } else { 4151 // expect i1 4152 if (Cond->getType() != Type::getInt1Ty(Context)) 4153 return error("Invalid type for value"); 4154 } 4155 4156 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4157 InstructionList.push_back(I); 4158 break; 4159 } 4160 4161 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4162 unsigned OpNum = 0; 4163 Value *Vec, *Idx; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4165 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4166 return error("Invalid record"); 4167 if (!Vec->getType()->isVectorTy()) 4168 return error("Invalid type for value"); 4169 I = ExtractElementInst::Create(Vec, Idx); 4170 InstructionList.push_back(I); 4171 break; 4172 } 4173 4174 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4175 unsigned OpNum = 0; 4176 Value *Vec, *Elt, *Idx; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4178 return error("Invalid record"); 4179 if (!Vec->getType()->isVectorTy()) 4180 return error("Invalid type for value"); 4181 if (popValue(Record, OpNum, NextValueNo, 4182 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4183 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4184 return error("Invalid record"); 4185 I = InsertElementInst::Create(Vec, Elt, Idx); 4186 InstructionList.push_back(I); 4187 break; 4188 } 4189 4190 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4191 unsigned OpNum = 0; 4192 Value *Vec1, *Vec2, *Mask; 4193 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4194 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4195 return error("Invalid record"); 4196 4197 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4198 return error("Invalid record"); 4199 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4200 return error("Invalid type for value"); 4201 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4202 InstructionList.push_back(I); 4203 break; 4204 } 4205 4206 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4207 // Old form of ICmp/FCmp returning bool 4208 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4209 // both legal on vectors but had different behaviour. 4210 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4211 // FCmp/ICmp returning bool or vector of bool 4212 4213 unsigned OpNum = 0; 4214 Value *LHS, *RHS; 4215 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4216 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4217 return error("Invalid record"); 4218 4219 unsigned PredVal = Record[OpNum]; 4220 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4221 FastMathFlags FMF; 4222 if (IsFP && Record.size() > OpNum+1) 4223 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4224 4225 if (OpNum+1 != Record.size()) 4226 return error("Invalid record"); 4227 4228 if (LHS->getType()->isFPOrFPVectorTy()) 4229 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4230 else 4231 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4232 4233 if (FMF.any()) 4234 I->setFastMathFlags(FMF); 4235 InstructionList.push_back(I); 4236 break; 4237 } 4238 4239 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4240 { 4241 unsigned Size = Record.size(); 4242 if (Size == 0) { 4243 I = ReturnInst::Create(Context); 4244 InstructionList.push_back(I); 4245 break; 4246 } 4247 4248 unsigned OpNum = 0; 4249 Value *Op = nullptr; 4250 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4251 return error("Invalid record"); 4252 if (OpNum != Record.size()) 4253 return error("Invalid record"); 4254 4255 I = ReturnInst::Create(Context, Op); 4256 InstructionList.push_back(I); 4257 break; 4258 } 4259 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4260 if (Record.size() != 1 && Record.size() != 3) 4261 return error("Invalid record"); 4262 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4263 if (!TrueDest) 4264 return error("Invalid record"); 4265 4266 if (Record.size() == 1) { 4267 I = BranchInst::Create(TrueDest); 4268 InstructionList.push_back(I); 4269 } 4270 else { 4271 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4272 Value *Cond = getValue(Record, 2, NextValueNo, 4273 Type::getInt1Ty(Context)); 4274 if (!FalseDest || !Cond) 4275 return error("Invalid record"); 4276 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4277 InstructionList.push_back(I); 4278 } 4279 break; 4280 } 4281 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4282 if (Record.size() != 1 && Record.size() != 2) 4283 return error("Invalid record"); 4284 unsigned Idx = 0; 4285 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4286 Type::getTokenTy(Context), OC_CleanupPad); 4287 if (!CleanupPad) 4288 return error("Invalid record"); 4289 BasicBlock *UnwindDest = nullptr; 4290 if (Record.size() == 2) { 4291 UnwindDest = getBasicBlock(Record[Idx++]); 4292 if (!UnwindDest) 4293 return error("Invalid record"); 4294 } 4295 4296 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4297 UnwindDest); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4302 if (Record.size() != 2) 4303 return error("Invalid record"); 4304 unsigned Idx = 0; 4305 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4306 Type::getTokenTy(Context), OC_CatchPad); 4307 if (!CatchPad) 4308 return error("Invalid record"); 4309 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4310 if (!BB) 4311 return error("Invalid record"); 4312 4313 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4314 InstructionList.push_back(I); 4315 break; 4316 } 4317 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4318 if (Record.size() < 3) 4319 return error("Invalid record"); 4320 unsigned Idx = 0; 4321 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4322 if (!NormalBB) 4323 return error("Invalid record"); 4324 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4325 if (!UnwindBB) 4326 return error("Invalid record"); 4327 unsigned NumArgOperands = Record[Idx++]; 4328 SmallVector<Value *, 2> Args; 4329 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4330 Value *Val; 4331 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4332 return error("Invalid record"); 4333 Args.push_back(Val); 4334 } 4335 if (Record.size() != Idx) 4336 return error("Invalid record"); 4337 4338 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4339 InstructionList.push_back(I); 4340 break; 4341 } 4342 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4343 if (Record.size() < 1) 4344 return error("Invalid record"); 4345 unsigned Idx = 0; 4346 bool HasUnwindDest = !!Record[Idx++]; 4347 BasicBlock *UnwindDest = nullptr; 4348 if (HasUnwindDest) { 4349 if (Idx == Record.size()) 4350 return error("Invalid record"); 4351 UnwindDest = getBasicBlock(Record[Idx++]); 4352 if (!UnwindDest) 4353 return error("Invalid record"); 4354 } 4355 unsigned NumArgOperands = Record[Idx++]; 4356 SmallVector<Value *, 2> Args; 4357 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4358 Value *Val; 4359 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4360 return error("Invalid record"); 4361 Args.push_back(Val); 4362 } 4363 if (Record.size() != Idx) 4364 return error("Invalid record"); 4365 4366 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4367 InstructionList.push_back(I); 4368 break; 4369 } 4370 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4371 if (Record.size() < 1) 4372 return error("Invalid record"); 4373 unsigned Idx = 0; 4374 unsigned NumArgOperands = Record[Idx++]; 4375 SmallVector<Value *, 2> Args; 4376 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4377 Value *Val; 4378 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4379 return error("Invalid record"); 4380 Args.push_back(Val); 4381 } 4382 if (Record.size() != Idx) 4383 return error("Invalid record"); 4384 4385 I = CleanupPadInst::Create(Context, Args); 4386 InstructionList.push_back(I); 4387 break; 4388 } 4389 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4390 if (Record.size() > 1) 4391 return error("Invalid record"); 4392 BasicBlock *BB = nullptr; 4393 if (Record.size() == 1) { 4394 BB = getBasicBlock(Record[0]); 4395 if (!BB) 4396 return error("Invalid record"); 4397 } 4398 I = CatchEndPadInst::Create(Context, BB); 4399 InstructionList.push_back(I); 4400 break; 4401 } 4402 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4403 if (Record.size() != 1 && Record.size() != 2) 4404 return error("Invalid record"); 4405 unsigned Idx = 0; 4406 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4407 Type::getTokenTy(Context), OC_CleanupPad); 4408 if (!CleanupPad) 4409 return error("Invalid record"); 4410 4411 BasicBlock *BB = nullptr; 4412 if (Record.size() == 2) { 4413 BB = getBasicBlock(Record[Idx++]); 4414 if (!BB) 4415 return error("Invalid record"); 4416 } 4417 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4422 // Check magic 4423 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4424 // "New" SwitchInst format with case ranges. The changes to write this 4425 // format were reverted but we still recognize bitcode that uses it. 4426 // Hopefully someday we will have support for case ranges and can use 4427 // this format again. 4428 4429 Type *OpTy = getTypeByID(Record[1]); 4430 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4431 4432 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4433 BasicBlock *Default = getBasicBlock(Record[3]); 4434 if (!OpTy || !Cond || !Default) 4435 return error("Invalid record"); 4436 4437 unsigned NumCases = Record[4]; 4438 4439 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4440 InstructionList.push_back(SI); 4441 4442 unsigned CurIdx = 5; 4443 for (unsigned i = 0; i != NumCases; ++i) { 4444 SmallVector<ConstantInt*, 1> CaseVals; 4445 unsigned NumItems = Record[CurIdx++]; 4446 for (unsigned ci = 0; ci != NumItems; ++ci) { 4447 bool isSingleNumber = Record[CurIdx++]; 4448 4449 APInt Low; 4450 unsigned ActiveWords = 1; 4451 if (ValueBitWidth > 64) 4452 ActiveWords = Record[CurIdx++]; 4453 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4454 ValueBitWidth); 4455 CurIdx += ActiveWords; 4456 4457 if (!isSingleNumber) { 4458 ActiveWords = 1; 4459 if (ValueBitWidth > 64) 4460 ActiveWords = Record[CurIdx++]; 4461 APInt High = readWideAPInt( 4462 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4463 CurIdx += ActiveWords; 4464 4465 // FIXME: It is not clear whether values in the range should be 4466 // compared as signed or unsigned values. The partially 4467 // implemented changes that used this format in the past used 4468 // unsigned comparisons. 4469 for ( ; Low.ule(High); ++Low) 4470 CaseVals.push_back(ConstantInt::get(Context, Low)); 4471 } else 4472 CaseVals.push_back(ConstantInt::get(Context, Low)); 4473 } 4474 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4475 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4476 cve = CaseVals.end(); cvi != cve; ++cvi) 4477 SI->addCase(*cvi, DestBB); 4478 } 4479 I = SI; 4480 break; 4481 } 4482 4483 // Old SwitchInst format without case ranges. 4484 4485 if (Record.size() < 3 || (Record.size() & 1) == 0) 4486 return error("Invalid record"); 4487 Type *OpTy = getTypeByID(Record[0]); 4488 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4489 BasicBlock *Default = getBasicBlock(Record[2]); 4490 if (!OpTy || !Cond || !Default) 4491 return error("Invalid record"); 4492 unsigned NumCases = (Record.size()-3)/2; 4493 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4494 InstructionList.push_back(SI); 4495 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4496 ConstantInt *CaseVal = 4497 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4498 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4499 if (!CaseVal || !DestBB) { 4500 delete SI; 4501 return error("Invalid record"); 4502 } 4503 SI->addCase(CaseVal, DestBB); 4504 } 4505 I = SI; 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4509 if (Record.size() < 2) 4510 return error("Invalid record"); 4511 Type *OpTy = getTypeByID(Record[0]); 4512 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4513 if (!OpTy || !Address) 4514 return error("Invalid record"); 4515 unsigned NumDests = Record.size()-2; 4516 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4517 InstructionList.push_back(IBI); 4518 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4519 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4520 IBI->addDestination(DestBB); 4521 } else { 4522 delete IBI; 4523 return error("Invalid record"); 4524 } 4525 } 4526 I = IBI; 4527 break; 4528 } 4529 4530 case bitc::FUNC_CODE_INST_INVOKE: { 4531 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4532 if (Record.size() < 4) 4533 return error("Invalid record"); 4534 unsigned OpNum = 0; 4535 AttributeSet PAL = getAttributes(Record[OpNum++]); 4536 unsigned CCInfo = Record[OpNum++]; 4537 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4538 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4539 4540 FunctionType *FTy = nullptr; 4541 if (CCInfo >> 13 & 1 && 4542 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4543 return error("Explicit invoke type is not a function type"); 4544 4545 Value *Callee; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4547 return error("Invalid record"); 4548 4549 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4550 if (!CalleeTy) 4551 return error("Callee is not a pointer"); 4552 if (!FTy) { 4553 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4554 if (!FTy) 4555 return error("Callee is not of pointer to function type"); 4556 } else if (CalleeTy->getElementType() != FTy) 4557 return error("Explicit invoke type does not match pointee type of " 4558 "callee operand"); 4559 if (Record.size() < FTy->getNumParams() + OpNum) 4560 return error("Insufficient operands to call"); 4561 4562 SmallVector<Value*, 16> Ops; 4563 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4564 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4565 FTy->getParamType(i))); 4566 if (!Ops.back()) 4567 return error("Invalid record"); 4568 } 4569 4570 if (!FTy->isVarArg()) { 4571 if (Record.size() != OpNum) 4572 return error("Invalid record"); 4573 } else { 4574 // Read type/value pairs for varargs params. 4575 while (OpNum != Record.size()) { 4576 Value *Op; 4577 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4578 return error("Invalid record"); 4579 Ops.push_back(Op); 4580 } 4581 } 4582 4583 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4584 OperandBundles.clear(); 4585 InstructionList.push_back(I); 4586 cast<InvokeInst>(I)->setCallingConv( 4587 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4588 cast<InvokeInst>(I)->setAttributes(PAL); 4589 break; 4590 } 4591 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4592 unsigned Idx = 0; 4593 Value *Val = nullptr; 4594 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4595 return error("Invalid record"); 4596 I = ResumeInst::Create(Val); 4597 InstructionList.push_back(I); 4598 break; 4599 } 4600 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4601 I = new UnreachableInst(Context); 4602 InstructionList.push_back(I); 4603 break; 4604 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4605 if (Record.size() < 1 || ((Record.size()-1)&1)) 4606 return error("Invalid record"); 4607 Type *Ty = getTypeByID(Record[0]); 4608 if (!Ty) 4609 return error("Invalid record"); 4610 4611 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4612 InstructionList.push_back(PN); 4613 4614 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4615 Value *V; 4616 // With the new function encoding, it is possible that operands have 4617 // negative IDs (for forward references). Use a signed VBR 4618 // representation to keep the encoding small. 4619 if (UseRelativeIDs) 4620 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4621 else 4622 V = getValue(Record, 1+i, NextValueNo, Ty); 4623 BasicBlock *BB = getBasicBlock(Record[2+i]); 4624 if (!V || !BB) 4625 return error("Invalid record"); 4626 PN->addIncoming(V, BB); 4627 } 4628 I = PN; 4629 break; 4630 } 4631 4632 case bitc::FUNC_CODE_INST_LANDINGPAD: 4633 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4634 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4635 unsigned Idx = 0; 4636 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4637 if (Record.size() < 3) 4638 return error("Invalid record"); 4639 } else { 4640 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4641 if (Record.size() < 4) 4642 return error("Invalid record"); 4643 } 4644 Type *Ty = getTypeByID(Record[Idx++]); 4645 if (!Ty) 4646 return error("Invalid record"); 4647 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4648 Value *PersFn = nullptr; 4649 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4650 return error("Invalid record"); 4651 4652 if (!F->hasPersonalityFn()) 4653 F->setPersonalityFn(cast<Constant>(PersFn)); 4654 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4655 return error("Personality function mismatch"); 4656 } 4657 4658 bool IsCleanup = !!Record[Idx++]; 4659 unsigned NumClauses = Record[Idx++]; 4660 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4661 LP->setCleanup(IsCleanup); 4662 for (unsigned J = 0; J != NumClauses; ++J) { 4663 LandingPadInst::ClauseType CT = 4664 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4665 Value *Val; 4666 4667 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4668 delete LP; 4669 return error("Invalid record"); 4670 } 4671 4672 assert((CT != LandingPadInst::Catch || 4673 !isa<ArrayType>(Val->getType())) && 4674 "Catch clause has a invalid type!"); 4675 assert((CT != LandingPadInst::Filter || 4676 isa<ArrayType>(Val->getType())) && 4677 "Filter clause has invalid type!"); 4678 LP->addClause(cast<Constant>(Val)); 4679 } 4680 4681 I = LP; 4682 InstructionList.push_back(I); 4683 break; 4684 } 4685 4686 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4687 if (Record.size() != 4) 4688 return error("Invalid record"); 4689 uint64_t AlignRecord = Record[3]; 4690 const uint64_t InAllocaMask = uint64_t(1) << 5; 4691 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4692 // Reserve bit 7 for SwiftError flag. 4693 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4694 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4695 bool InAlloca = AlignRecord & InAllocaMask; 4696 Type *Ty = getTypeByID(Record[0]); 4697 if ((AlignRecord & ExplicitTypeMask) == 0) { 4698 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4699 if (!PTy) 4700 return error("Old-style alloca with a non-pointer type"); 4701 Ty = PTy->getElementType(); 4702 } 4703 Type *OpTy = getTypeByID(Record[1]); 4704 Value *Size = getFnValueByID(Record[2], OpTy); 4705 unsigned Align; 4706 if (std::error_code EC = 4707 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4708 return EC; 4709 } 4710 if (!Ty || !Size) 4711 return error("Invalid record"); 4712 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4713 AI->setUsedWithInAlloca(InAlloca); 4714 I = AI; 4715 InstructionList.push_back(I); 4716 break; 4717 } 4718 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4719 unsigned OpNum = 0; 4720 Value *Op; 4721 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4722 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4723 return error("Invalid record"); 4724 4725 Type *Ty = nullptr; 4726 if (OpNum + 3 == Record.size()) 4727 Ty = getTypeByID(Record[OpNum++]); 4728 if (std::error_code EC = 4729 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4730 return EC; 4731 if (!Ty) 4732 Ty = cast<PointerType>(Op->getType())->getElementType(); 4733 4734 unsigned Align; 4735 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4736 return EC; 4737 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4738 4739 InstructionList.push_back(I); 4740 break; 4741 } 4742 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4743 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4744 unsigned OpNum = 0; 4745 Value *Op; 4746 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4747 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4748 return error("Invalid record"); 4749 4750 Type *Ty = nullptr; 4751 if (OpNum + 5 == Record.size()) 4752 Ty = getTypeByID(Record[OpNum++]); 4753 if (std::error_code EC = 4754 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4755 return EC; 4756 if (!Ty) 4757 Ty = cast<PointerType>(Op->getType())->getElementType(); 4758 4759 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4760 if (Ordering == NotAtomic || Ordering == Release || 4761 Ordering == AcquireRelease) 4762 return error("Invalid record"); 4763 if (Ordering != NotAtomic && Record[OpNum] == 0) 4764 return error("Invalid record"); 4765 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4766 4767 unsigned Align; 4768 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4769 return EC; 4770 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4771 4772 InstructionList.push_back(I); 4773 break; 4774 } 4775 case bitc::FUNC_CODE_INST_STORE: 4776 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4777 unsigned OpNum = 0; 4778 Value *Val, *Ptr; 4779 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4780 (BitCode == bitc::FUNC_CODE_INST_STORE 4781 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4782 : popValue(Record, OpNum, NextValueNo, 4783 cast<PointerType>(Ptr->getType())->getElementType(), 4784 Val)) || 4785 OpNum + 2 != Record.size()) 4786 return error("Invalid record"); 4787 4788 if (std::error_code EC = typeCheckLoadStoreInst( 4789 DiagnosticHandler, Val->getType(), Ptr->getType())) 4790 return EC; 4791 unsigned Align; 4792 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4793 return EC; 4794 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4795 InstructionList.push_back(I); 4796 break; 4797 } 4798 case bitc::FUNC_CODE_INST_STOREATOMIC: 4799 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4800 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4801 unsigned OpNum = 0; 4802 Value *Val, *Ptr; 4803 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4804 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4805 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4806 : popValue(Record, OpNum, NextValueNo, 4807 cast<PointerType>(Ptr->getType())->getElementType(), 4808 Val)) || 4809 OpNum + 4 != Record.size()) 4810 return error("Invalid record"); 4811 4812 if (std::error_code EC = typeCheckLoadStoreInst( 4813 DiagnosticHandler, Val->getType(), Ptr->getType())) 4814 return EC; 4815 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4816 if (Ordering == NotAtomic || Ordering == Acquire || 4817 Ordering == AcquireRelease) 4818 return error("Invalid record"); 4819 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4820 if (Ordering != NotAtomic && Record[OpNum] == 0) 4821 return error("Invalid record"); 4822 4823 unsigned Align; 4824 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4825 return EC; 4826 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4827 InstructionList.push_back(I); 4828 break; 4829 } 4830 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4831 case bitc::FUNC_CODE_INST_CMPXCHG: { 4832 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4833 // failureordering?, isweak?] 4834 unsigned OpNum = 0; 4835 Value *Ptr, *Cmp, *New; 4836 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4837 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4838 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4839 : popValue(Record, OpNum, NextValueNo, 4840 cast<PointerType>(Ptr->getType())->getElementType(), 4841 Cmp)) || 4842 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4843 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4844 return error("Invalid record"); 4845 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4846 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4847 return error("Invalid record"); 4848 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4849 4850 if (std::error_code EC = typeCheckLoadStoreInst( 4851 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4852 return EC; 4853 AtomicOrdering FailureOrdering; 4854 if (Record.size() < 7) 4855 FailureOrdering = 4856 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4857 else 4858 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4859 4860 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4861 SynchScope); 4862 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4863 4864 if (Record.size() < 8) { 4865 // Before weak cmpxchgs existed, the instruction simply returned the 4866 // value loaded from memory, so bitcode files from that era will be 4867 // expecting the first component of a modern cmpxchg. 4868 CurBB->getInstList().push_back(I); 4869 I = ExtractValueInst::Create(I, 0); 4870 } else { 4871 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4872 } 4873 4874 InstructionList.push_back(I); 4875 break; 4876 } 4877 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4878 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4879 unsigned OpNum = 0; 4880 Value *Ptr, *Val; 4881 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4882 popValue(Record, OpNum, NextValueNo, 4883 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4884 OpNum+4 != Record.size()) 4885 return error("Invalid record"); 4886 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4887 if (Operation < AtomicRMWInst::FIRST_BINOP || 4888 Operation > AtomicRMWInst::LAST_BINOP) 4889 return error("Invalid record"); 4890 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4891 if (Ordering == NotAtomic || Ordering == Unordered) 4892 return error("Invalid record"); 4893 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4894 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4895 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4900 if (2 != Record.size()) 4901 return error("Invalid record"); 4902 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4903 if (Ordering == NotAtomic || Ordering == Unordered || 4904 Ordering == Monotonic) 4905 return error("Invalid record"); 4906 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4907 I = new FenceInst(Context, Ordering, SynchScope); 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 case bitc::FUNC_CODE_INST_CALL: { 4912 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4913 if (Record.size() < 3) 4914 return error("Invalid record"); 4915 4916 unsigned OpNum = 0; 4917 AttributeSet PAL = getAttributes(Record[OpNum++]); 4918 unsigned CCInfo = Record[OpNum++]; 4919 4920 FunctionType *FTy = nullptr; 4921 if (CCInfo >> 15 & 1 && 4922 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4923 return error("Explicit call type is not a function type"); 4924 4925 Value *Callee; 4926 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4927 return error("Invalid record"); 4928 4929 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4930 if (!OpTy) 4931 return error("Callee is not a pointer type"); 4932 if (!FTy) { 4933 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4934 if (!FTy) 4935 return error("Callee is not of pointer to function type"); 4936 } else if (OpTy->getElementType() != FTy) 4937 return error("Explicit call type does not match pointee type of " 4938 "callee operand"); 4939 if (Record.size() < FTy->getNumParams() + OpNum) 4940 return error("Insufficient operands to call"); 4941 4942 SmallVector<Value*, 16> Args; 4943 // Read the fixed params. 4944 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4945 if (FTy->getParamType(i)->isLabelTy()) 4946 Args.push_back(getBasicBlock(Record[OpNum])); 4947 else 4948 Args.push_back(getValue(Record, OpNum, NextValueNo, 4949 FTy->getParamType(i))); 4950 if (!Args.back()) 4951 return error("Invalid record"); 4952 } 4953 4954 // Read type/value pairs for varargs params. 4955 if (!FTy->isVarArg()) { 4956 if (OpNum != Record.size()) 4957 return error("Invalid record"); 4958 } else { 4959 while (OpNum != Record.size()) { 4960 Value *Op; 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4962 return error("Invalid record"); 4963 Args.push_back(Op); 4964 } 4965 } 4966 4967 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4968 OperandBundles.clear(); 4969 InstructionList.push_back(I); 4970 cast<CallInst>(I)->setCallingConv( 4971 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> 1)); 4972 CallInst::TailCallKind TCK = CallInst::TCK_None; 4973 if (CCInfo & 1) 4974 TCK = CallInst::TCK_Tail; 4975 if (CCInfo & (1 << 14)) 4976 TCK = CallInst::TCK_MustTail; 4977 cast<CallInst>(I)->setTailCallKind(TCK); 4978 cast<CallInst>(I)->setAttributes(PAL); 4979 break; 4980 } 4981 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4982 if (Record.size() < 3) 4983 return error("Invalid record"); 4984 Type *OpTy = getTypeByID(Record[0]); 4985 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4986 Type *ResTy = getTypeByID(Record[2]); 4987 if (!OpTy || !Op || !ResTy) 4988 return error("Invalid record"); 4989 I = new VAArgInst(Op, ResTy); 4990 InstructionList.push_back(I); 4991 break; 4992 } 4993 4994 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4995 // A call or an invoke can be optionally prefixed with some variable 4996 // number of operand bundle blocks. These blocks are read into 4997 // OperandBundles and consumed at the next call or invoke instruction. 4998 4999 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5000 return error("Invalid record"); 5001 5002 OperandBundles.emplace_back(); 5003 OperandBundles.back().Tag = BundleTags[Record[0]]; 5004 5005 std::vector<Value *> &Inputs = OperandBundles.back().Inputs; 5006 5007 unsigned OpNum = 1; 5008 while (OpNum != Record.size()) { 5009 Value *Op; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5011 return error("Invalid record"); 5012 Inputs.push_back(Op); 5013 } 5014 5015 continue; 5016 } 5017 } 5018 5019 // Add instruction to end of current BB. If there is no current BB, reject 5020 // this file. 5021 if (!CurBB) { 5022 delete I; 5023 return error("Invalid instruction with no BB"); 5024 } 5025 if (!OperandBundles.empty()) { 5026 delete I; 5027 return error("Operand bundles found with no consumer"); 5028 } 5029 CurBB->getInstList().push_back(I); 5030 5031 // If this was a terminator instruction, move to the next block. 5032 if (isa<TerminatorInst>(I)) { 5033 ++CurBBNo; 5034 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5035 } 5036 5037 // Non-void values get registered in the value table for future use. 5038 if (I && !I->getType()->isVoidTy()) 5039 if (ValueList.assignValue(I, NextValueNo++)) 5040 return error("Invalid forward reference"); 5041 } 5042 5043 OutOfRecordLoop: 5044 5045 if (!OperandBundles.empty()) 5046 return error("Operand bundles found with no consumer"); 5047 5048 // Check the function list for unresolved values. 5049 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5050 if (!A->getParent()) { 5051 // We found at least one unresolved value. Nuke them all to avoid leaks. 5052 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5053 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5054 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5055 delete A; 5056 } 5057 } 5058 return error("Never resolved value found in function"); 5059 } 5060 } 5061 5062 // FIXME: Check for unresolved forward-declared metadata references 5063 // and clean up leaks. 5064 5065 // Trim the value list down to the size it was before we parsed this function. 5066 ValueList.shrinkTo(ModuleValueListSize); 5067 MDValueList.shrinkTo(ModuleMDValueListSize); 5068 std::vector<BasicBlock*>().swap(FunctionBBs); 5069 return std::error_code(); 5070 } 5071 5072 /// Find the function body in the bitcode stream 5073 std::error_code BitcodeReader::findFunctionInStream( 5074 Function *F, 5075 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5076 while (DeferredFunctionInfoIterator->second == 0) { 5077 // This is the fallback handling for the old format bitcode that 5078 // didn't contain the function index in the VST, or when we have 5079 // an anonymous function which would not have a VST entry. 5080 // Assert that we have one of those two cases. 5081 assert(VSTOffset == 0 || !F->hasName()); 5082 // Parse the next body in the stream and set its position in the 5083 // DeferredFunctionInfo map. 5084 if (std::error_code EC = rememberAndSkipFunctionBodies()) return EC; 5085 } 5086 return std::error_code(); 5087 } 5088 5089 //===----------------------------------------------------------------------===// 5090 // GVMaterializer implementation 5091 //===----------------------------------------------------------------------===// 5092 5093 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5094 5095 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5096 if (std::error_code EC = materializeMetadata()) 5097 return EC; 5098 5099 Function *F = dyn_cast<Function>(GV); 5100 // If it's not a function or is already material, ignore the request. 5101 if (!F || !F->isMaterializable()) 5102 return std::error_code(); 5103 5104 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5105 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5106 // If its position is recorded as 0, its body is somewhere in the stream 5107 // but we haven't seen it yet. 5108 if (DFII->second == 0) 5109 if (std::error_code EC = findFunctionInStream(F, DFII)) 5110 return EC; 5111 5112 // Move the bit stream to the saved position of the deferred function body. 5113 Stream.JumpToBit(DFII->second); 5114 5115 if (std::error_code EC = parseFunctionBody(F)) 5116 return EC; 5117 F->setIsMaterializable(false); 5118 5119 if (StripDebugInfo) 5120 stripDebugInfo(*F); 5121 5122 // Upgrade any old intrinsic calls in the function. 5123 for (auto &I : UpgradedIntrinsics) { 5124 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5125 User *U = *UI; 5126 ++UI; 5127 if (CallInst *CI = dyn_cast<CallInst>(U)) 5128 UpgradeIntrinsicCall(CI, I.second); 5129 } 5130 } 5131 5132 // Bring in any functions that this function forward-referenced via 5133 // blockaddresses. 5134 return materializeForwardReferencedFunctions(); 5135 } 5136 5137 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5138 const Function *F = dyn_cast<Function>(GV); 5139 if (!F || F->isDeclaration()) 5140 return false; 5141 5142 // Dematerializing F would leave dangling references that wouldn't be 5143 // reconnected on re-materialization. 5144 if (BlockAddressesTaken.count(F)) 5145 return false; 5146 5147 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5148 } 5149 5150 void BitcodeReader::dematerialize(GlobalValue *GV) { 5151 Function *F = dyn_cast<Function>(GV); 5152 // If this function isn't dematerializable, this is a noop. 5153 if (!F || !isDematerializable(F)) 5154 return; 5155 5156 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5157 5158 // Just forget the function body, we can remat it later. 5159 F->dropAllReferences(); 5160 F->setIsMaterializable(true); 5161 } 5162 5163 std::error_code BitcodeReader::materializeModule(Module *M) { 5164 assert(M == TheModule && 5165 "Can only Materialize the Module this BitcodeReader is attached to."); 5166 5167 if (std::error_code EC = materializeMetadata()) 5168 return EC; 5169 5170 // Promise to materialize all forward references. 5171 WillMaterializeAllForwardRefs = true; 5172 5173 // Iterate over the module, deserializing any functions that are still on 5174 // disk. 5175 for (Function &F : *TheModule) { 5176 if (std::error_code EC = materialize(&F)) 5177 return EC; 5178 } 5179 // At this point, if there are any function bodies, parse the rest of 5180 // the bits in the module past the last function block we have recorded 5181 // through either lazy scanning or the VST. 5182 if (LastFunctionBlockBit || NextUnreadBit) 5183 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5184 : NextUnreadBit); 5185 5186 // Check that all block address forward references got resolved (as we 5187 // promised above). 5188 if (!BasicBlockFwdRefs.empty()) 5189 return error("Never resolved function from blockaddress"); 5190 5191 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5192 // delete the old functions to clean up. We can't do this unless the entire 5193 // module is materialized because there could always be another function body 5194 // with calls to the old function. 5195 for (auto &I : UpgradedIntrinsics) { 5196 for (auto *U : I.first->users()) { 5197 if (CallInst *CI = dyn_cast<CallInst>(U)) 5198 UpgradeIntrinsicCall(CI, I.second); 5199 } 5200 if (!I.first->use_empty()) 5201 I.first->replaceAllUsesWith(I.second); 5202 I.first->eraseFromParent(); 5203 } 5204 UpgradedIntrinsics.clear(); 5205 5206 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5207 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5208 5209 UpgradeDebugInfo(*M); 5210 return std::error_code(); 5211 } 5212 5213 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5214 return IdentifiedStructTypes; 5215 } 5216 5217 std::error_code 5218 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5219 if (Streamer) 5220 return initLazyStream(std::move(Streamer)); 5221 return initStreamFromBuffer(); 5222 } 5223 5224 std::error_code BitcodeReader::initStreamFromBuffer() { 5225 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5226 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5227 5228 if (Buffer->getBufferSize() & 3) 5229 return error("Invalid bitcode signature"); 5230 5231 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5232 // The magic number is 0x0B17C0DE stored in little endian. 5233 if (isBitcodeWrapper(BufPtr, BufEnd)) 5234 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5235 return error("Invalid bitcode wrapper header"); 5236 5237 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5238 Stream.init(&*StreamFile); 5239 5240 return std::error_code(); 5241 } 5242 5243 std::error_code 5244 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5245 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5246 // see it. 5247 auto OwnedBytes = 5248 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5249 StreamingMemoryObject &Bytes = *OwnedBytes; 5250 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5251 Stream.init(&*StreamFile); 5252 5253 unsigned char buf[16]; 5254 if (Bytes.readBytes(buf, 16, 0) != 16) 5255 return error("Invalid bitcode signature"); 5256 5257 if (!isBitcode(buf, buf + 16)) 5258 return error("Invalid bitcode signature"); 5259 5260 if (isBitcodeWrapper(buf, buf + 4)) { 5261 const unsigned char *bitcodeStart = buf; 5262 const unsigned char *bitcodeEnd = buf + 16; 5263 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5264 Bytes.dropLeadingBytes(bitcodeStart - buf); 5265 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5266 } 5267 return std::error_code(); 5268 } 5269 5270 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5271 const Twine &Message) { 5272 return ::error(DiagnosticHandler, make_error_code(E), Message); 5273 } 5274 5275 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5276 return ::error(DiagnosticHandler, 5277 make_error_code(BitcodeError::CorruptedBitcode), Message); 5278 } 5279 5280 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5281 return ::error(DiagnosticHandler, make_error_code(E)); 5282 } 5283 5284 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5285 MemoryBuffer *Buffer, LLVMContext &Context, 5286 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5287 bool CheckFuncSummaryPresenceOnly) 5288 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5289 Buffer(Buffer), 5290 IsLazy(IsLazy), 5291 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5292 5293 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5294 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5295 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5296 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5297 Buffer(nullptr), 5298 IsLazy(IsLazy), 5299 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5300 5301 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5302 5303 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5304 5305 // Specialized value symbol table parser used when reading function index 5306 // blocks where we don't actually create global values. 5307 // At the end of this routine the function index is populated with a map 5308 // from function name to FunctionInfo. The function info contains 5309 // the function block's bitcode offset as well as the offset into the 5310 // function summary section. 5311 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5312 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5313 return error("Invalid record"); 5314 5315 SmallVector<uint64_t, 64> Record; 5316 5317 // Read all the records for this value table. 5318 SmallString<128> ValueName; 5319 while (1) { 5320 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5321 5322 switch (Entry.Kind) { 5323 case BitstreamEntry::SubBlock: // Handled for us already. 5324 case BitstreamEntry::Error: 5325 return error("Malformed block"); 5326 case BitstreamEntry::EndBlock: 5327 return std::error_code(); 5328 case BitstreamEntry::Record: 5329 // The interesting case. 5330 break; 5331 } 5332 5333 // Read a record. 5334 Record.clear(); 5335 switch (Stream.readRecord(Entry.ID, Record)) { 5336 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5337 break; 5338 case bitc::VST_CODE_FNENTRY: { 5339 // VST_FNENTRY: [valueid, offset, namechar x N] 5340 if (convertToString(Record, 2, ValueName)) 5341 return error("Invalid record"); 5342 unsigned ValueID = Record[0]; 5343 uint64_t FuncOffset = Record[1]; 5344 std::unique_ptr<FunctionInfo> FuncInfo = 5345 llvm::make_unique<FunctionInfo>(FuncOffset); 5346 if (foundFuncSummary() && !IsLazy) { 5347 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5348 SummaryMap.find(ValueID); 5349 assert(SMI != SummaryMap.end() && "Summary info not found"); 5350 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5351 } 5352 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5353 5354 ValueName.clear(); 5355 break; 5356 } 5357 case bitc::VST_CODE_COMBINED_FNENTRY: { 5358 // VST_FNENTRY: [offset, namechar x N] 5359 if (convertToString(Record, 1, ValueName)) 5360 return error("Invalid record"); 5361 uint64_t FuncSummaryOffset = Record[0]; 5362 std::unique_ptr<FunctionInfo> FuncInfo = 5363 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5364 if (foundFuncSummary() && !IsLazy) { 5365 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5366 SummaryMap.find(FuncSummaryOffset); 5367 assert(SMI != SummaryMap.end() && "Summary info not found"); 5368 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5369 } 5370 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5371 5372 ValueName.clear(); 5373 break; 5374 } 5375 } 5376 } 5377 } 5378 5379 // Parse just the blocks needed for function index building out of the module. 5380 // At the end of this routine the function Index is populated with a map 5381 // from function name to FunctionInfo. The function info contains 5382 // either the parsed function summary information (when parsing summaries 5383 // eagerly), or just to the function summary record's offset 5384 // if parsing lazily (IsLazy). 5385 std::error_code FunctionIndexBitcodeReader::parseModule() { 5386 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5387 return error("Invalid record"); 5388 5389 // Read the function index for this module. 5390 while (1) { 5391 BitstreamEntry Entry = Stream.advance(); 5392 5393 switch (Entry.Kind) { 5394 case BitstreamEntry::Error: 5395 return error("Malformed block"); 5396 case BitstreamEntry::EndBlock: 5397 return std::error_code(); 5398 5399 case BitstreamEntry::SubBlock: 5400 if (CheckFuncSummaryPresenceOnly) { 5401 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5402 SeenFuncSummary = true; 5403 if (Stream.SkipBlock()) return error("Invalid record"); 5404 // No need to parse the rest since we found the summary. 5405 return std::error_code(); 5406 } 5407 switch (Entry.ID) { 5408 default: // Skip unknown content. 5409 if (Stream.SkipBlock()) return error("Invalid record"); 5410 break; 5411 case bitc::BLOCKINFO_BLOCK_ID: 5412 // Need to parse these to get abbrev ids (e.g. for VST) 5413 if (Stream.ReadBlockInfoBlock()) return error("Malformed block"); 5414 break; 5415 case bitc::VALUE_SYMTAB_BLOCK_ID: 5416 if (std::error_code EC = parseValueSymbolTable()) return EC; 5417 break; 5418 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5419 SeenFuncSummary = true; 5420 if (IsLazy) { 5421 // Lazy parsing of summary info, skip it. 5422 if (Stream.SkipBlock()) return error("Invalid record"); 5423 } else if (std::error_code EC = parseEntireSummary()) 5424 return EC; 5425 break; 5426 case bitc::MODULE_STRTAB_BLOCK_ID: 5427 if (std::error_code EC = parseModuleStringTable()) return EC; 5428 break; 5429 } 5430 continue; 5431 5432 case BitstreamEntry::Record: 5433 Stream.skipRecord(Entry.ID); 5434 continue; 5435 } 5436 } 5437 } 5438 5439 // Eagerly parse the entire function summary block (i.e. for all functions 5440 // in the index). This populates the FunctionSummary objects in 5441 // the index. 5442 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5443 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5444 return error("Invalid record"); 5445 5446 SmallVector<uint64_t, 64> Record; 5447 5448 while (1) { 5449 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5450 5451 switch (Entry.Kind) { 5452 case BitstreamEntry::SubBlock: // Handled for us already. 5453 case BitstreamEntry::Error: 5454 return error("Malformed block"); 5455 case BitstreamEntry::EndBlock: 5456 return std::error_code(); 5457 case BitstreamEntry::Record: 5458 // The interesting case. 5459 break; 5460 } 5461 5462 // Read a record. The record format depends on whether this 5463 // is a per-module index or a combined index file. In the per-module 5464 // case the records contain the associated value's ID for correlation 5465 // with VST entries. In the combined index the correlation is done 5466 // via the bitcode offset of the summary records (which were saved 5467 // in the combined index VST entries). The records also contain 5468 // information used for ThinLTO renaming and importing. 5469 Record.clear(); 5470 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5471 switch (Stream.readRecord(Entry.ID, Record)) { 5472 default: // Default behavior: ignore. 5473 break; 5474 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5475 case bitc::FS_CODE_PERMODULE_ENTRY: { 5476 unsigned ValueID = Record[0]; 5477 bool IsLocal = Record[1]; 5478 unsigned InstCount = Record[2]; 5479 std::unique_ptr<FunctionSummary> FS = 5480 llvm::make_unique<FunctionSummary>(InstCount); 5481 FS->setLocalFunction(IsLocal); 5482 // The module path string ref set in the summary must be owned by the 5483 // index's module string table. Since we don't have a module path 5484 // string table section in the per-module index, we create a single 5485 // module path string table entry with an empty (0) ID to take 5486 // ownership. 5487 FS->setModulePath( 5488 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5489 SummaryMap[ValueID] = std::move(FS); 5490 } 5491 // FS_COMBINED_ENTRY: [modid, instcount] 5492 case bitc::FS_CODE_COMBINED_ENTRY: { 5493 uint64_t ModuleId = Record[0]; 5494 unsigned InstCount = Record[1]; 5495 std::unique_ptr<FunctionSummary> FS = 5496 llvm::make_unique<FunctionSummary>(InstCount); 5497 FS->setModulePath(ModuleIdMap[ModuleId]); 5498 SummaryMap[CurRecordBit] = std::move(FS); 5499 } 5500 } 5501 } 5502 llvm_unreachable("Exit infinite loop"); 5503 } 5504 5505 // Parse the module string table block into the Index. 5506 // This populates the ModulePathStringTable map in the index. 5507 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5508 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5509 return error("Invalid record"); 5510 5511 SmallVector<uint64_t, 64> Record; 5512 5513 SmallString<128> ModulePath; 5514 while (1) { 5515 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5516 5517 switch (Entry.Kind) { 5518 case BitstreamEntry::SubBlock: // Handled for us already. 5519 case BitstreamEntry::Error: 5520 return error("Malformed block"); 5521 case BitstreamEntry::EndBlock: 5522 return std::error_code(); 5523 case BitstreamEntry::Record: 5524 // The interesting case. 5525 break; 5526 } 5527 5528 Record.clear(); 5529 switch (Stream.readRecord(Entry.ID, Record)) { 5530 default: // Default behavior: ignore. 5531 break; 5532 case bitc::MST_CODE_ENTRY: { 5533 // MST_ENTRY: [modid, namechar x N] 5534 if (convertToString(Record, 1, ModulePath)) 5535 return error("Invalid record"); 5536 uint64_t ModuleId = Record[0]; 5537 StringRef ModulePathInMap = 5538 TheIndex->addModulePath(ModulePath, ModuleId); 5539 ModuleIdMap[ModuleId] = ModulePathInMap; 5540 ModulePath.clear(); 5541 break; 5542 } 5543 } 5544 } 5545 llvm_unreachable("Exit infinite loop"); 5546 } 5547 5548 // Parse the function info index from the bitcode streamer into the given index. 5549 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5550 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5551 TheIndex = I; 5552 5553 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5554 5555 // Sniff for the signature. 5556 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5557 5558 // We expect a number of well-defined blocks, though we don't necessarily 5559 // need to understand them all. 5560 while (1) { 5561 if (Stream.AtEndOfStream()) { 5562 // We didn't really read a proper Module block. 5563 return error("Malformed block"); 5564 } 5565 5566 BitstreamEntry Entry = 5567 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5568 5569 if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block"); 5570 5571 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5572 // building the function summary index. 5573 if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule(); 5574 5575 if (Stream.SkipBlock()) return error("Invalid record"); 5576 } 5577 } 5578 5579 // Parse the function information at the given offset in the buffer into 5580 // the index. Used to support lazy parsing of function summaries from the 5581 // combined index during importing. 5582 // TODO: This function is not yet complete as it won't have a consumer 5583 // until ThinLTO function importing is added. 5584 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5585 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5586 size_t FunctionSummaryOffset) { 5587 TheIndex = I; 5588 5589 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5590 5591 // Sniff for the signature. 5592 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5593 5594 Stream.JumpToBit(FunctionSummaryOffset); 5595 5596 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5597 5598 switch (Entry.Kind) { 5599 default: 5600 return error("Malformed block"); 5601 case BitstreamEntry::Record: 5602 // The expected case. 5603 break; 5604 } 5605 5606 // TODO: Read a record. This interface will be completed when ThinLTO 5607 // importing is added so that it can be tested. 5608 SmallVector<uint64_t, 64> Record; 5609 switch (Stream.readRecord(Entry.ID, Record)) { 5610 case bitc::FS_CODE_COMBINED_ENTRY: 5611 default: 5612 return error("Invalid record"); 5613 } 5614 5615 return std::error_code(); 5616 } 5617 5618 std::error_code FunctionIndexBitcodeReader::initStream( 5619 std::unique_ptr<DataStreamer> Streamer) { 5620 if (Streamer) return initLazyStream(std::move(Streamer)); 5621 return initStreamFromBuffer(); 5622 } 5623 5624 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5625 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5626 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5627 5628 if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature"); 5629 5630 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5631 // The magic number is 0x0B17C0DE stored in little endian. 5632 if (isBitcodeWrapper(BufPtr, BufEnd)) 5633 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5634 return error("Invalid bitcode wrapper header"); 5635 5636 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5637 Stream.init(&*StreamFile); 5638 5639 return std::error_code(); 5640 } 5641 5642 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5643 std::unique_ptr<DataStreamer> Streamer) { 5644 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5645 // see it. 5646 auto OwnedBytes = 5647 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5648 StreamingMemoryObject &Bytes = *OwnedBytes; 5649 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5650 Stream.init(&*StreamFile); 5651 5652 unsigned char buf[16]; 5653 if (Bytes.readBytes(buf, 16, 0) != 16) 5654 return error("Invalid bitcode signature"); 5655 5656 if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature"); 5657 5658 if (isBitcodeWrapper(buf, buf + 4)) { 5659 const unsigned char *bitcodeStart = buf; 5660 const unsigned char *bitcodeEnd = buf + 16; 5661 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5662 Bytes.dropLeadingBytes(bitcodeStart - buf); 5663 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5664 } 5665 return std::error_code(); 5666 } 5667 5668 namespace { 5669 class BitcodeErrorCategoryType : public std::error_category { 5670 const char *name() const LLVM_NOEXCEPT override { 5671 return "llvm.bitcode"; 5672 } 5673 std::string message(int IE) const override { 5674 BitcodeError E = static_cast<BitcodeError>(IE); 5675 switch (E) { 5676 case BitcodeError::InvalidBitcodeSignature: 5677 return "Invalid bitcode signature"; 5678 case BitcodeError::CorruptedBitcode: 5679 return "Corrupted bitcode"; 5680 } 5681 llvm_unreachable("Unknown error type!"); 5682 } 5683 }; 5684 } 5685 5686 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5687 5688 const std::error_category &llvm::BitcodeErrorCategory() { 5689 return *ErrorCategory; 5690 } 5691 5692 //===----------------------------------------------------------------------===// 5693 // External interface 5694 //===----------------------------------------------------------------------===// 5695 5696 static ErrorOr<std::unique_ptr<Module>> 5697 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5698 BitcodeReader *R, LLVMContext &Context, 5699 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5700 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5701 M->setMaterializer(R); 5702 5703 auto cleanupOnError = [&](std::error_code EC) { 5704 R->releaseBuffer(); // Never take ownership on error. 5705 return EC; 5706 }; 5707 5708 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5709 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5710 ShouldLazyLoadMetadata)) 5711 return cleanupOnError(EC); 5712 5713 if (MaterializeAll) { 5714 // Read in the entire module, and destroy the BitcodeReader. 5715 if (std::error_code EC = M->materializeAllPermanently()) 5716 return cleanupOnError(EC); 5717 } else { 5718 // Resolve forward references from blockaddresses. 5719 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5720 return cleanupOnError(EC); 5721 } 5722 return std::move(M); 5723 } 5724 5725 /// \brief Get a lazy one-at-time loading module from bitcode. 5726 /// 5727 /// This isn't always used in a lazy context. In particular, it's also used by 5728 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5729 /// in forward-referenced functions from block address references. 5730 /// 5731 /// \param[in] MaterializeAll Set to \c true if we should materialize 5732 /// everything. 5733 static ErrorOr<std::unique_ptr<Module>> 5734 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5735 LLVMContext &Context, bool MaterializeAll, 5736 DiagnosticHandlerFunction DiagnosticHandler, 5737 bool ShouldLazyLoadMetadata = false) { 5738 BitcodeReader *R = 5739 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5740 5741 ErrorOr<std::unique_ptr<Module>> Ret = 5742 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5743 MaterializeAll, ShouldLazyLoadMetadata); 5744 if (!Ret) 5745 return Ret; 5746 5747 Buffer.release(); // The BitcodeReader owns it now. 5748 return Ret; 5749 } 5750 5751 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5752 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5753 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5754 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5755 DiagnosticHandler, ShouldLazyLoadMetadata); 5756 } 5757 5758 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5759 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5760 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5761 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5762 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5763 5764 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5765 false); 5766 } 5767 5768 ErrorOr<std::unique_ptr<Module>> 5769 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5770 DiagnosticHandlerFunction DiagnosticHandler) { 5771 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5772 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5773 DiagnosticHandler); 5774 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5775 // written. We must defer until the Module has been fully materialized. 5776 } 5777 5778 std::string 5779 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5780 DiagnosticHandlerFunction DiagnosticHandler) { 5781 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5782 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5783 DiagnosticHandler); 5784 ErrorOr<std::string> Triple = R->parseTriple(); 5785 if (Triple.getError()) 5786 return ""; 5787 return Triple.get(); 5788 } 5789 5790 // Parse the specified bitcode buffer, returning the function info index. 5791 // If IsLazy is false, parse the entire function summary into 5792 // the index. Otherwise skip the function summary section, and only create 5793 // an index object with a map from function name to function summary offset. 5794 // The index is used to perform lazy function summary reading later. 5795 ErrorOr<std::unique_ptr<FunctionInfoIndex>> llvm::getFunctionInfoIndex( 5796 MemoryBufferRef Buffer, LLVMContext &Context, 5797 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) { 5798 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5799 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5800 5801 std::unique_ptr<FunctionInfoIndex> Index = 5802 llvm::make_unique<FunctionInfoIndex>(); 5803 5804 auto cleanupOnError = [&](std::error_code EC) { 5805 R.releaseBuffer(); // Never take ownership on error. 5806 return EC; 5807 }; 5808 5809 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5810 return cleanupOnError(EC); 5811 5812 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5813 return std::move(Index); 5814 } 5815 5816 // Check if the given bitcode buffer contains a function summary block. 5817 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5818 DiagnosticHandlerFunction DiagnosticHandler) { 5819 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5820 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5821 true); 5822 5823 auto cleanupOnError = [&](std::error_code EC) { 5824 R.releaseBuffer(); // Never take ownership on error. 5825 return false; 5826 }; 5827 5828 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5829 return cleanupOnError(EC); 5830 5831 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5832 return R.foundFuncSummary(); 5833 } 5834 5835 // This method supports lazy reading of function summary data from the combined 5836 // index during ThinLTO function importing. When reading the combined index 5837 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5838 // Then this method is called for each function considered for importing, 5839 // to parse the summary information for the given function name into 5840 // the index. 5841 std::error_code llvm::readFunctionSummary( 5842 MemoryBufferRef Buffer, LLVMContext &Context, 5843 DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName, 5844 std::unique_ptr<FunctionInfoIndex> Index) { 5845 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5846 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5847 5848 auto cleanupOnError = [&](std::error_code EC) { 5849 R.releaseBuffer(); // Never take ownership on error. 5850 return EC; 5851 }; 5852 5853 // Lookup the given function name in the FunctionMap, which may 5854 // contain a list of function infos in the case of a COMDAT. Walk through 5855 // and parse each function summary info at the function summary offset 5856 // recorded when parsing the value symbol table. 5857 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5858 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5859 if (std::error_code EC = 5860 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5861 return cleanupOnError(EC); 5862 } 5863 5864 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5865 return std::error_code(); 5866 } 5867