1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/AutoUpgrade.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 #include "llvm/OperandTraits.h" 27 using namespace llvm; 28 29 void BitcodeReader::FreeState() { 30 delete Buffer; 31 Buffer = 0; 32 std::vector<PATypeHolder>().swap(TypeList); 33 ValueList.clear(); 34 35 std::vector<AttrListPtr>().swap(MAttributes); 36 std::vector<BasicBlock*>().swap(FunctionBBs); 37 std::vector<Function*>().swap(FunctionsWithBodies); 38 DeferredFunctionInfo.clear(); 39 } 40 41 //===----------------------------------------------------------------------===// 42 // Helper functions to implement forward reference resolution, etc. 43 //===----------------------------------------------------------------------===// 44 45 /// ConvertToString - Convert a string from a record into an std::string, return 46 /// true on failure. 47 template<typename StrTy> 48 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 49 StrTy &Result) { 50 if (Idx > Record.size()) 51 return true; 52 53 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 54 Result += (char)Record[i]; 55 return false; 56 } 57 58 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 59 switch (Val) { 60 default: // Map unknown/new linkages to external 61 case 0: return GlobalValue::ExternalLinkage; 62 case 1: return GlobalValue::WeakAnyLinkage; 63 case 2: return GlobalValue::AppendingLinkage; 64 case 3: return GlobalValue::InternalLinkage; 65 case 4: return GlobalValue::LinkOnceAnyLinkage; 66 case 5: return GlobalValue::DLLImportLinkage; 67 case 6: return GlobalValue::DLLExportLinkage; 68 case 7: return GlobalValue::ExternalWeakAnyLinkage; 69 case 8: return GlobalValue::CommonAnyLinkage; 70 case 9: return GlobalValue::PrivateLinkage; 71 case 10: return GlobalValue::WeakODRLinkage; 72 case 11: return GlobalValue::LinkOnceODRLinkage; 73 case 12: return GlobalValue::ExternalWeakODRLinkage; 74 case 13: return GlobalValue::CommonODRLinkage; 75 } 76 } 77 78 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 79 switch (Val) { 80 default: // Map unknown visibilities to default. 81 case 0: return GlobalValue::DefaultVisibility; 82 case 1: return GlobalValue::HiddenVisibility; 83 case 2: return GlobalValue::ProtectedVisibility; 84 } 85 } 86 87 static int GetDecodedCastOpcode(unsigned Val) { 88 switch (Val) { 89 default: return -1; 90 case bitc::CAST_TRUNC : return Instruction::Trunc; 91 case bitc::CAST_ZEXT : return Instruction::ZExt; 92 case bitc::CAST_SEXT : return Instruction::SExt; 93 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 94 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 95 case bitc::CAST_UITOFP : return Instruction::UIToFP; 96 case bitc::CAST_SITOFP : return Instruction::SIToFP; 97 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 98 case bitc::CAST_FPEXT : return Instruction::FPExt; 99 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 100 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 101 case bitc::CAST_BITCAST : return Instruction::BitCast; 102 } 103 } 104 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 105 switch (Val) { 106 default: return -1; 107 case bitc::BINOP_ADD: return Instruction::Add; 108 case bitc::BINOP_SUB: return Instruction::Sub; 109 case bitc::BINOP_MUL: return Instruction::Mul; 110 case bitc::BINOP_UDIV: return Instruction::UDiv; 111 case bitc::BINOP_SDIV: 112 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 113 case bitc::BINOP_UREM: return Instruction::URem; 114 case bitc::BINOP_SREM: 115 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 116 case bitc::BINOP_SHL: return Instruction::Shl; 117 case bitc::BINOP_LSHR: return Instruction::LShr; 118 case bitc::BINOP_ASHR: return Instruction::AShr; 119 case bitc::BINOP_AND: return Instruction::And; 120 case bitc::BINOP_OR: return Instruction::Or; 121 case bitc::BINOP_XOR: return Instruction::Xor; 122 } 123 } 124 125 namespace llvm { 126 namespace { 127 /// @brief A class for maintaining the slot number definition 128 /// as a placeholder for the actual definition for forward constants defs. 129 class ConstantPlaceHolder : public ConstantExpr { 130 ConstantPlaceHolder(); // DO NOT IMPLEMENT 131 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 132 public: 133 // allocate space for exactly one operand 134 void *operator new(size_t s) { 135 return User::operator new(s, 1); 136 } 137 explicit ConstantPlaceHolder(const Type *Ty) 138 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 139 Op<0>() = UndefValue::get(Type::Int32Ty); 140 } 141 142 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 143 static inline bool classof(const ConstantPlaceHolder *) { return true; } 144 static bool classof(const Value *V) { 145 return isa<ConstantExpr>(V) && 146 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 147 } 148 149 150 /// Provide fast operand accessors 151 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 152 }; 153 } 154 155 156 // FIXME: can we inherit this from ConstantExpr? 157 template <> 158 struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> { 159 }; 160 161 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 162 } 163 164 void BitcodeReaderValueList::resize(unsigned Desired) { 165 if (Desired > Capacity) { 166 // Since we expect many values to come from the bitcode file we better 167 // allocate the double amount, so that the array size grows exponentially 168 // at each reallocation. Also, add a small amount of 100 extra elements 169 // each time, to reallocate less frequently when the array is still small. 170 // 171 Capacity = Desired * 2 + 100; 172 Use *New = allocHungoffUses(Capacity); 173 Use *Old = OperandList; 174 unsigned Ops = getNumOperands(); 175 for (int i(Ops - 1); i >= 0; --i) 176 New[i] = Old[i].get(); 177 OperandList = New; 178 if (Old) Use::zap(Old, Old + Ops, true); 179 } 180 } 181 182 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 183 const Type *Ty) { 184 if (Idx >= size()) { 185 // Insert a bunch of null values. 186 resize(Idx + 1); 187 NumOperands = Idx+1; 188 } 189 190 if (Value *V = OperandList[Idx]) { 191 assert(Ty == V->getType() && "Type mismatch in constant table!"); 192 return cast<Constant>(V); 193 } 194 195 // Create and return a placeholder, which will later be RAUW'd. 196 Constant *C = new ConstantPlaceHolder(Ty); 197 OperandList[Idx] = C; 198 return C; 199 } 200 201 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 202 if (Idx >= size()) { 203 // Insert a bunch of null values. 204 resize(Idx + 1); 205 NumOperands = Idx+1; 206 } 207 208 if (Value *V = OperandList[Idx]) { 209 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 210 return V; 211 } 212 213 // No type specified, must be invalid reference. 214 if (Ty == 0) return 0; 215 216 // Create and return a placeholder, which will later be RAUW'd. 217 Value *V = new Argument(Ty); 218 OperandList[Idx] = V; 219 return V; 220 } 221 222 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 223 /// resolves any forward references. The idea behind this is that we sometimes 224 /// get constants (such as large arrays) which reference *many* forward ref 225 /// constants. Replacing each of these causes a lot of thrashing when 226 /// building/reuniquing the constant. Instead of doing this, we look at all the 227 /// uses and rewrite all the place holders at once for any constant that uses 228 /// a placeholder. 229 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 230 // Sort the values by-pointer so that they are efficient to look up with a 231 // binary search. 232 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 233 234 SmallVector<Constant*, 64> NewOps; 235 236 while (!ResolveConstants.empty()) { 237 Value *RealVal = getOperand(ResolveConstants.back().second); 238 Constant *Placeholder = ResolveConstants.back().first; 239 ResolveConstants.pop_back(); 240 241 // Loop over all users of the placeholder, updating them to reference the 242 // new value. If they reference more than one placeholder, update them all 243 // at once. 244 while (!Placeholder->use_empty()) { 245 Value::use_iterator UI = Placeholder->use_begin(); 246 247 // If the using object isn't uniqued, just update the operands. This 248 // handles instructions and initializers for global variables. 249 if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) { 250 UI.getUse().set(RealVal); 251 continue; 252 } 253 254 // Otherwise, we have a constant that uses the placeholder. Replace that 255 // constant with a new constant that has *all* placeholder uses updated. 256 Constant *UserC = cast<Constant>(*UI); 257 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 258 I != E; ++I) { 259 Value *NewOp; 260 if (!isa<ConstantPlaceHolder>(*I)) { 261 // Not a placeholder reference. 262 NewOp = *I; 263 } else if (*I == Placeholder) { 264 // Common case is that it just references this one placeholder. 265 NewOp = RealVal; 266 } else { 267 // Otherwise, look up the placeholder in ResolveConstants. 268 ResolveConstantsTy::iterator It = 269 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 270 std::pair<Constant*, unsigned>(cast<Constant>(*I), 271 0)); 272 assert(It != ResolveConstants.end() && It->first == *I); 273 NewOp = this->getOperand(It->second); 274 } 275 276 NewOps.push_back(cast<Constant>(NewOp)); 277 } 278 279 // Make the new constant. 280 Constant *NewC; 281 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 282 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size()); 283 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 284 NewC = ConstantStruct::get(&NewOps[0], NewOps.size(), 285 UserCS->getType()->isPacked()); 286 } else if (isa<ConstantVector>(UserC)) { 287 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 288 } else { 289 // Must be a constant expression. 290 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 291 NewOps.size()); 292 } 293 294 UserC->replaceAllUsesWith(NewC); 295 UserC->destroyConstant(); 296 NewOps.clear(); 297 } 298 299 delete Placeholder; 300 } 301 } 302 303 304 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 305 // If the TypeID is in range, return it. 306 if (ID < TypeList.size()) 307 return TypeList[ID].get(); 308 if (!isTypeTable) return 0; 309 310 // The type table allows forward references. Push as many Opaque types as 311 // needed to get up to ID. 312 while (TypeList.size() <= ID) 313 TypeList.push_back(OpaqueType::get()); 314 return TypeList.back().get(); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Functions for parsing blocks from the bitcode file 319 //===----------------------------------------------------------------------===// 320 321 bool BitcodeReader::ParseAttributeBlock() { 322 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 323 return Error("Malformed block record"); 324 325 if (!MAttributes.empty()) 326 return Error("Multiple PARAMATTR blocks found!"); 327 328 SmallVector<uint64_t, 64> Record; 329 330 SmallVector<AttributeWithIndex, 8> Attrs; 331 332 // Read all the records. 333 while (1) { 334 unsigned Code = Stream.ReadCode(); 335 if (Code == bitc::END_BLOCK) { 336 if (Stream.ReadBlockEnd()) 337 return Error("Error at end of PARAMATTR block"); 338 return false; 339 } 340 341 if (Code == bitc::ENTER_SUBBLOCK) { 342 // No known subblocks, always skip them. 343 Stream.ReadSubBlockID(); 344 if (Stream.SkipBlock()) 345 return Error("Malformed block record"); 346 continue; 347 } 348 349 if (Code == bitc::DEFINE_ABBREV) { 350 Stream.ReadAbbrevRecord(); 351 continue; 352 } 353 354 // Read a record. 355 Record.clear(); 356 switch (Stream.ReadRecord(Code, Record)) { 357 default: // Default behavior: ignore. 358 break; 359 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 360 if (Record.size() & 1) 361 return Error("Invalid ENTRY record"); 362 363 // FIXME : Remove this autoupgrade code in LLVM 3.0. 364 // If Function attributes are using index 0 then transfer them 365 // to index ~0. Index 0 is used for return value attributes but used to be 366 // used for function attributes. 367 Attributes RetAttribute = Attribute::None; 368 Attributes FnAttribute = Attribute::None; 369 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 370 // FIXME: remove in LLVM 3.0 371 // The alignment is stored as a 16-bit raw value from bits 31--16. 372 // We shift the bits above 31 down by 11 bits. 373 374 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 375 if (Alignment && !isPowerOf2_32(Alignment)) 376 return Error("Alignment is not a power of two."); 377 378 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 379 if (Alignment) 380 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 381 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 382 Record[i+1] = ReconstitutedAttr; 383 384 if (Record[i] == 0) 385 RetAttribute = Record[i+1]; 386 else if (Record[i] == ~0U) 387 FnAttribute = Record[i+1]; 388 } 389 390 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 391 Attribute::ReadOnly|Attribute::ReadNone); 392 393 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 394 (RetAttribute & OldRetAttrs) != 0) { 395 if (FnAttribute == Attribute::None) { // add a slot so they get added. 396 Record.push_back(~0U); 397 Record.push_back(0); 398 } 399 400 FnAttribute |= RetAttribute & OldRetAttrs; 401 RetAttribute &= ~OldRetAttrs; 402 } 403 404 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 405 if (Record[i] == 0) { 406 if (RetAttribute != Attribute::None) 407 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 408 } else if (Record[i] == ~0U) { 409 if (FnAttribute != Attribute::None) 410 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 411 } else if (Record[i+1] != Attribute::None) 412 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 413 } 414 415 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 416 Attrs.clear(); 417 break; 418 } 419 } 420 } 421 } 422 423 424 bool BitcodeReader::ParseTypeTable() { 425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 426 return Error("Malformed block record"); 427 428 if (!TypeList.empty()) 429 return Error("Multiple TYPE_BLOCKs found!"); 430 431 SmallVector<uint64_t, 64> Record; 432 unsigned NumRecords = 0; 433 434 // Read all the records for this type table. 435 while (1) { 436 unsigned Code = Stream.ReadCode(); 437 if (Code == bitc::END_BLOCK) { 438 if (NumRecords != TypeList.size()) 439 return Error("Invalid type forward reference in TYPE_BLOCK"); 440 if (Stream.ReadBlockEnd()) 441 return Error("Error at end of type table block"); 442 return false; 443 } 444 445 if (Code == bitc::ENTER_SUBBLOCK) { 446 // No known subblocks, always skip them. 447 Stream.ReadSubBlockID(); 448 if (Stream.SkipBlock()) 449 return Error("Malformed block record"); 450 continue; 451 } 452 453 if (Code == bitc::DEFINE_ABBREV) { 454 Stream.ReadAbbrevRecord(); 455 continue; 456 } 457 458 // Read a record. 459 Record.clear(); 460 const Type *ResultTy = 0; 461 switch (Stream.ReadRecord(Code, Record)) { 462 default: // Default behavior: unknown type. 463 ResultTy = 0; 464 break; 465 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 466 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 467 // type list. This allows us to reserve space. 468 if (Record.size() < 1) 469 return Error("Invalid TYPE_CODE_NUMENTRY record"); 470 TypeList.reserve(Record[0]); 471 continue; 472 case bitc::TYPE_CODE_VOID: // VOID 473 ResultTy = Type::VoidTy; 474 break; 475 case bitc::TYPE_CODE_FLOAT: // FLOAT 476 ResultTy = Type::FloatTy; 477 break; 478 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 479 ResultTy = Type::DoubleTy; 480 break; 481 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 482 ResultTy = Type::X86_FP80Ty; 483 break; 484 case bitc::TYPE_CODE_FP128: // FP128 485 ResultTy = Type::FP128Ty; 486 break; 487 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 488 ResultTy = Type::PPC_FP128Ty; 489 break; 490 case bitc::TYPE_CODE_LABEL: // LABEL 491 ResultTy = Type::LabelTy; 492 break; 493 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 494 ResultTy = 0; 495 break; 496 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 497 if (Record.size() < 1) 498 return Error("Invalid Integer type record"); 499 500 ResultTy = IntegerType::get(Record[0]); 501 break; 502 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 503 // [pointee type, address space] 504 if (Record.size() < 1) 505 return Error("Invalid POINTER type record"); 506 unsigned AddressSpace = 0; 507 if (Record.size() == 2) 508 AddressSpace = Record[1]; 509 ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace); 510 break; 511 } 512 case bitc::TYPE_CODE_FUNCTION: { 513 // FIXME: attrid is dead, remove it in LLVM 3.0 514 // FUNCTION: [vararg, attrid, retty, paramty x N] 515 if (Record.size() < 3) 516 return Error("Invalid FUNCTION type record"); 517 std::vector<const Type*> ArgTys; 518 for (unsigned i = 3, e = Record.size(); i != e; ++i) 519 ArgTys.push_back(getTypeByID(Record[i], true)); 520 521 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 522 Record[0]); 523 break; 524 } 525 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 526 if (Record.size() < 1) 527 return Error("Invalid STRUCT type record"); 528 std::vector<const Type*> EltTys; 529 for (unsigned i = 1, e = Record.size(); i != e; ++i) 530 EltTys.push_back(getTypeByID(Record[i], true)); 531 ResultTy = StructType::get(EltTys, Record[0]); 532 break; 533 } 534 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 535 if (Record.size() < 2) 536 return Error("Invalid ARRAY type record"); 537 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 538 break; 539 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 540 if (Record.size() < 2) 541 return Error("Invalid VECTOR type record"); 542 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 543 break; 544 } 545 546 if (NumRecords == TypeList.size()) { 547 // If this is a new type slot, just append it. 548 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 549 ++NumRecords; 550 } else if (ResultTy == 0) { 551 // Otherwise, this was forward referenced, so an opaque type was created, 552 // but the result type is actually just an opaque. Leave the one we 553 // created previously. 554 ++NumRecords; 555 } else { 556 // Otherwise, this was forward referenced, so an opaque type was created. 557 // Resolve the opaque type to the real type now. 558 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 559 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 560 561 // Don't directly push the new type on the Tab. Instead we want to replace 562 // the opaque type we previously inserted with the new concrete value. The 563 // refinement from the abstract (opaque) type to the new type causes all 564 // uses of the abstract type to use the concrete type (NewTy). This will 565 // also cause the opaque type to be deleted. 566 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 567 568 // This should have replaced the old opaque type with the new type in the 569 // value table... or with a preexisting type that was already in the 570 // system. Let's just make sure it did. 571 assert(TypeList[NumRecords-1].get() != OldTy && 572 "refineAbstractType didn't work!"); 573 } 574 } 575 } 576 577 578 bool BitcodeReader::ParseTypeSymbolTable() { 579 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 580 return Error("Malformed block record"); 581 582 SmallVector<uint64_t, 64> Record; 583 584 // Read all the records for this type table. 585 std::string TypeName; 586 while (1) { 587 unsigned Code = Stream.ReadCode(); 588 if (Code == bitc::END_BLOCK) { 589 if (Stream.ReadBlockEnd()) 590 return Error("Error at end of type symbol table block"); 591 return false; 592 } 593 594 if (Code == bitc::ENTER_SUBBLOCK) { 595 // No known subblocks, always skip them. 596 Stream.ReadSubBlockID(); 597 if (Stream.SkipBlock()) 598 return Error("Malformed block record"); 599 continue; 600 } 601 602 if (Code == bitc::DEFINE_ABBREV) { 603 Stream.ReadAbbrevRecord(); 604 continue; 605 } 606 607 // Read a record. 608 Record.clear(); 609 switch (Stream.ReadRecord(Code, Record)) { 610 default: // Default behavior: unknown type. 611 break; 612 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 613 if (ConvertToString(Record, 1, TypeName)) 614 return Error("Invalid TST_ENTRY record"); 615 unsigned TypeID = Record[0]; 616 if (TypeID >= TypeList.size()) 617 return Error("Invalid Type ID in TST_ENTRY record"); 618 619 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 620 TypeName.clear(); 621 break; 622 } 623 } 624 } 625 626 bool BitcodeReader::ParseValueSymbolTable() { 627 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 628 return Error("Malformed block record"); 629 630 SmallVector<uint64_t, 64> Record; 631 632 // Read all the records for this value table. 633 SmallString<128> ValueName; 634 while (1) { 635 unsigned Code = Stream.ReadCode(); 636 if (Code == bitc::END_BLOCK) { 637 if (Stream.ReadBlockEnd()) 638 return Error("Error at end of value symbol table block"); 639 return false; 640 } 641 if (Code == bitc::ENTER_SUBBLOCK) { 642 // No known subblocks, always skip them. 643 Stream.ReadSubBlockID(); 644 if (Stream.SkipBlock()) 645 return Error("Malformed block record"); 646 continue; 647 } 648 649 if (Code == bitc::DEFINE_ABBREV) { 650 Stream.ReadAbbrevRecord(); 651 continue; 652 } 653 654 // Read a record. 655 Record.clear(); 656 switch (Stream.ReadRecord(Code, Record)) { 657 default: // Default behavior: unknown type. 658 break; 659 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 660 if (ConvertToString(Record, 1, ValueName)) 661 return Error("Invalid TST_ENTRY record"); 662 unsigned ValueID = Record[0]; 663 if (ValueID >= ValueList.size()) 664 return Error("Invalid Value ID in VST_ENTRY record"); 665 Value *V = ValueList[ValueID]; 666 667 V->setName(&ValueName[0], ValueName.size()); 668 ValueName.clear(); 669 break; 670 } 671 case bitc::VST_CODE_BBENTRY: { 672 if (ConvertToString(Record, 1, ValueName)) 673 return Error("Invalid VST_BBENTRY record"); 674 BasicBlock *BB = getBasicBlock(Record[0]); 675 if (BB == 0) 676 return Error("Invalid BB ID in VST_BBENTRY record"); 677 678 BB->setName(&ValueName[0], ValueName.size()); 679 ValueName.clear(); 680 break; 681 } 682 } 683 } 684 } 685 686 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 687 /// the LSB for dense VBR encoding. 688 static uint64_t DecodeSignRotatedValue(uint64_t V) { 689 if ((V & 1) == 0) 690 return V >> 1; 691 if (V != 1) 692 return -(V >> 1); 693 // There is no such thing as -0 with integers. "-0" really means MININT. 694 return 1ULL << 63; 695 } 696 697 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 698 /// values and aliases that we can. 699 bool BitcodeReader::ResolveGlobalAndAliasInits() { 700 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 701 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 702 703 GlobalInitWorklist.swap(GlobalInits); 704 AliasInitWorklist.swap(AliasInits); 705 706 while (!GlobalInitWorklist.empty()) { 707 unsigned ValID = GlobalInitWorklist.back().second; 708 if (ValID >= ValueList.size()) { 709 // Not ready to resolve this yet, it requires something later in the file. 710 GlobalInits.push_back(GlobalInitWorklist.back()); 711 } else { 712 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 713 GlobalInitWorklist.back().first->setInitializer(C); 714 else 715 return Error("Global variable initializer is not a constant!"); 716 } 717 GlobalInitWorklist.pop_back(); 718 } 719 720 while (!AliasInitWorklist.empty()) { 721 unsigned ValID = AliasInitWorklist.back().second; 722 if (ValID >= ValueList.size()) { 723 AliasInits.push_back(AliasInitWorklist.back()); 724 } else { 725 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 726 AliasInitWorklist.back().first->setAliasee(C); 727 else 728 return Error("Alias initializer is not a constant!"); 729 } 730 AliasInitWorklist.pop_back(); 731 } 732 return false; 733 } 734 735 736 bool BitcodeReader::ParseConstants() { 737 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 738 return Error("Malformed block record"); 739 740 SmallVector<uint64_t, 64> Record; 741 742 // Read all the records for this value table. 743 const Type *CurTy = Type::Int32Ty; 744 unsigned NextCstNo = ValueList.size(); 745 while (1) { 746 unsigned Code = Stream.ReadCode(); 747 if (Code == bitc::END_BLOCK) 748 break; 749 750 if (Code == bitc::ENTER_SUBBLOCK) { 751 // No known subblocks, always skip them. 752 Stream.ReadSubBlockID(); 753 if (Stream.SkipBlock()) 754 return Error("Malformed block record"); 755 continue; 756 } 757 758 if (Code == bitc::DEFINE_ABBREV) { 759 Stream.ReadAbbrevRecord(); 760 continue; 761 } 762 763 // Read a record. 764 Record.clear(); 765 Value *V = 0; 766 switch (Stream.ReadRecord(Code, Record)) { 767 default: // Default behavior: unknown constant 768 case bitc::CST_CODE_UNDEF: // UNDEF 769 V = UndefValue::get(CurTy); 770 break; 771 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 772 if (Record.empty()) 773 return Error("Malformed CST_SETTYPE record"); 774 if (Record[0] >= TypeList.size()) 775 return Error("Invalid Type ID in CST_SETTYPE record"); 776 CurTy = TypeList[Record[0]]; 777 continue; // Skip the ValueList manipulation. 778 case bitc::CST_CODE_NULL: // NULL 779 V = Constant::getNullValue(CurTy); 780 break; 781 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 782 if (!isa<IntegerType>(CurTy) || Record.empty()) 783 return Error("Invalid CST_INTEGER record"); 784 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 785 break; 786 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 787 if (!isa<IntegerType>(CurTy) || Record.empty()) 788 return Error("Invalid WIDE_INTEGER record"); 789 790 unsigned NumWords = Record.size(); 791 SmallVector<uint64_t, 8> Words; 792 Words.resize(NumWords); 793 for (unsigned i = 0; i != NumWords; ++i) 794 Words[i] = DecodeSignRotatedValue(Record[i]); 795 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 796 NumWords, &Words[0])); 797 break; 798 } 799 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 800 if (Record.empty()) 801 return Error("Invalid FLOAT record"); 802 if (CurTy == Type::FloatTy) 803 V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0]))); 804 else if (CurTy == Type::DoubleTy) 805 V = ConstantFP::get(APFloat(APInt(64, Record[0]))); 806 else if (CurTy == Type::X86_FP80Ty) 807 V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0]))); 808 else if (CurTy == Type::FP128Ty) 809 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true)); 810 else if (CurTy == Type::PPC_FP128Ty) 811 V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]))); 812 else 813 V = UndefValue::get(CurTy); 814 break; 815 } 816 817 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 818 if (Record.empty()) 819 return Error("Invalid CST_AGGREGATE record"); 820 821 unsigned Size = Record.size(); 822 std::vector<Constant*> Elts; 823 824 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 825 for (unsigned i = 0; i != Size; ++i) 826 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 827 STy->getElementType(i))); 828 V = ConstantStruct::get(STy, Elts); 829 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 830 const Type *EltTy = ATy->getElementType(); 831 for (unsigned i = 0; i != Size; ++i) 832 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 833 V = ConstantArray::get(ATy, Elts); 834 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 835 const Type *EltTy = VTy->getElementType(); 836 for (unsigned i = 0; i != Size; ++i) 837 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 838 V = ConstantVector::get(Elts); 839 } else { 840 V = UndefValue::get(CurTy); 841 } 842 break; 843 } 844 case bitc::CST_CODE_STRING: { // STRING: [values] 845 if (Record.empty()) 846 return Error("Invalid CST_AGGREGATE record"); 847 848 const ArrayType *ATy = cast<ArrayType>(CurTy); 849 const Type *EltTy = ATy->getElementType(); 850 851 unsigned Size = Record.size(); 852 std::vector<Constant*> Elts; 853 for (unsigned i = 0; i != Size; ++i) 854 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 855 V = ConstantArray::get(ATy, Elts); 856 break; 857 } 858 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 859 if (Record.empty()) 860 return Error("Invalid CST_AGGREGATE record"); 861 862 const ArrayType *ATy = cast<ArrayType>(CurTy); 863 const Type *EltTy = ATy->getElementType(); 864 865 unsigned Size = Record.size(); 866 std::vector<Constant*> Elts; 867 for (unsigned i = 0; i != Size; ++i) 868 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 869 Elts.push_back(Constant::getNullValue(EltTy)); 870 V = ConstantArray::get(ATy, Elts); 871 break; 872 } 873 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 874 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 875 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 876 if (Opc < 0) { 877 V = UndefValue::get(CurTy); // Unknown binop. 878 } else { 879 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 880 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 881 V = ConstantExpr::get(Opc, LHS, RHS); 882 } 883 break; 884 } 885 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 886 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 887 int Opc = GetDecodedCastOpcode(Record[0]); 888 if (Opc < 0) { 889 V = UndefValue::get(CurTy); // Unknown cast. 890 } else { 891 const Type *OpTy = getTypeByID(Record[1]); 892 if (!OpTy) return Error("Invalid CE_CAST record"); 893 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 894 V = ConstantExpr::getCast(Opc, Op, CurTy); 895 } 896 break; 897 } 898 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 899 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 900 SmallVector<Constant*, 16> Elts; 901 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 902 const Type *ElTy = getTypeByID(Record[i]); 903 if (!ElTy) return Error("Invalid CE_GEP record"); 904 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 905 } 906 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 907 break; 908 } 909 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 910 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 911 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 912 Type::Int1Ty), 913 ValueList.getConstantFwdRef(Record[1],CurTy), 914 ValueList.getConstantFwdRef(Record[2],CurTy)); 915 break; 916 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 917 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 918 const VectorType *OpTy = 919 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 920 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 921 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 922 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 923 V = ConstantExpr::getExtractElement(Op0, Op1); 924 break; 925 } 926 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 927 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 928 if (Record.size() < 3 || OpTy == 0) 929 return Error("Invalid CE_INSERTELT record"); 930 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 931 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 932 OpTy->getElementType()); 933 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 934 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 935 break; 936 } 937 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 938 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 939 if (Record.size() < 3 || OpTy == 0) 940 return Error("Invalid CE_SHUFFLEVEC record"); 941 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 942 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 943 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 944 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 945 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 946 break; 947 } 948 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 949 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 950 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 951 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 952 return Error("Invalid CE_SHUFVEC_EX record"); 953 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 954 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 955 const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements()); 956 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 957 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 958 break; 959 } 960 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 961 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 962 const Type *OpTy = getTypeByID(Record[0]); 963 if (OpTy == 0) return Error("Invalid CE_CMP record"); 964 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 965 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 966 967 if (OpTy->isFloatingPoint()) 968 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 969 else if (!isa<VectorType>(OpTy)) 970 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 971 else if (OpTy->isFPOrFPVector()) 972 V = ConstantExpr::getVFCmp(Record[3], Op0, Op1); 973 else 974 V = ConstantExpr::getVICmp(Record[3], Op0, Op1); 975 break; 976 } 977 case bitc::CST_CODE_INLINEASM: { 978 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 979 std::string AsmStr, ConstrStr; 980 bool HasSideEffects = Record[0]; 981 unsigned AsmStrSize = Record[1]; 982 if (2+AsmStrSize >= Record.size()) 983 return Error("Invalid INLINEASM record"); 984 unsigned ConstStrSize = Record[2+AsmStrSize]; 985 if (3+AsmStrSize+ConstStrSize > Record.size()) 986 return Error("Invalid INLINEASM record"); 987 988 for (unsigned i = 0; i != AsmStrSize; ++i) 989 AsmStr += (char)Record[2+i]; 990 for (unsigned i = 0; i != ConstStrSize; ++i) 991 ConstrStr += (char)Record[3+AsmStrSize+i]; 992 const PointerType *PTy = cast<PointerType>(CurTy); 993 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 994 AsmStr, ConstrStr, HasSideEffects); 995 break; 996 } 997 } 998 999 ValueList.AssignValue(V, NextCstNo); 1000 ++NextCstNo; 1001 } 1002 1003 if (NextCstNo != ValueList.size()) 1004 return Error("Invalid constant reference!"); 1005 1006 if (Stream.ReadBlockEnd()) 1007 return Error("Error at end of constants block"); 1008 1009 // Once all the constants have been read, go through and resolve forward 1010 // references. 1011 ValueList.ResolveConstantForwardRefs(); 1012 return false; 1013 } 1014 1015 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1016 /// remember where it is and then skip it. This lets us lazily deserialize the 1017 /// functions. 1018 bool BitcodeReader::RememberAndSkipFunctionBody() { 1019 // Get the function we are talking about. 1020 if (FunctionsWithBodies.empty()) 1021 return Error("Insufficient function protos"); 1022 1023 Function *Fn = FunctionsWithBodies.back(); 1024 FunctionsWithBodies.pop_back(); 1025 1026 // Save the current stream state. 1027 uint64_t CurBit = Stream.GetCurrentBitNo(); 1028 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 1029 1030 // Set the functions linkage to GhostLinkage so we know it is lazily 1031 // deserialized. 1032 Fn->setLinkage(GlobalValue::GhostLinkage); 1033 1034 // Skip over the function block for now. 1035 if (Stream.SkipBlock()) 1036 return Error("Malformed block record"); 1037 return false; 1038 } 1039 1040 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 1041 // Reject multiple MODULE_BLOCK's in a single bitstream. 1042 if (TheModule) 1043 return Error("Multiple MODULE_BLOCKs in same stream"); 1044 1045 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1046 return Error("Malformed block record"); 1047 1048 // Otherwise, create the module. 1049 TheModule = new Module(ModuleID); 1050 1051 SmallVector<uint64_t, 64> Record; 1052 std::vector<std::string> SectionTable; 1053 std::vector<std::string> GCTable; 1054 1055 // Read all the records for this module. 1056 while (!Stream.AtEndOfStream()) { 1057 unsigned Code = Stream.ReadCode(); 1058 if (Code == bitc::END_BLOCK) { 1059 if (Stream.ReadBlockEnd()) 1060 return Error("Error at end of module block"); 1061 1062 // Patch the initializers for globals and aliases up. 1063 ResolveGlobalAndAliasInits(); 1064 if (!GlobalInits.empty() || !AliasInits.empty()) 1065 return Error("Malformed global initializer set"); 1066 if (!FunctionsWithBodies.empty()) 1067 return Error("Too few function bodies found"); 1068 1069 // Look for intrinsic functions which need to be upgraded at some point 1070 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1071 FI != FE; ++FI) { 1072 Function* NewFn; 1073 if (UpgradeIntrinsicFunction(FI, NewFn)) 1074 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1075 } 1076 1077 // Force deallocation of memory for these vectors to favor the client that 1078 // want lazy deserialization. 1079 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1080 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1081 std::vector<Function*>().swap(FunctionsWithBodies); 1082 return false; 1083 } 1084 1085 if (Code == bitc::ENTER_SUBBLOCK) { 1086 switch (Stream.ReadSubBlockID()) { 1087 default: // Skip unknown content. 1088 if (Stream.SkipBlock()) 1089 return Error("Malformed block record"); 1090 break; 1091 case bitc::BLOCKINFO_BLOCK_ID: 1092 if (Stream.ReadBlockInfoBlock()) 1093 return Error("Malformed BlockInfoBlock"); 1094 break; 1095 case bitc::PARAMATTR_BLOCK_ID: 1096 if (ParseAttributeBlock()) 1097 return true; 1098 break; 1099 case bitc::TYPE_BLOCK_ID: 1100 if (ParseTypeTable()) 1101 return true; 1102 break; 1103 case bitc::TYPE_SYMTAB_BLOCK_ID: 1104 if (ParseTypeSymbolTable()) 1105 return true; 1106 break; 1107 case bitc::VALUE_SYMTAB_BLOCK_ID: 1108 if (ParseValueSymbolTable()) 1109 return true; 1110 break; 1111 case bitc::CONSTANTS_BLOCK_ID: 1112 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1113 return true; 1114 break; 1115 case bitc::FUNCTION_BLOCK_ID: 1116 // If this is the first function body we've seen, reverse the 1117 // FunctionsWithBodies list. 1118 if (!HasReversedFunctionsWithBodies) { 1119 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1120 HasReversedFunctionsWithBodies = true; 1121 } 1122 1123 if (RememberAndSkipFunctionBody()) 1124 return true; 1125 break; 1126 } 1127 continue; 1128 } 1129 1130 if (Code == bitc::DEFINE_ABBREV) { 1131 Stream.ReadAbbrevRecord(); 1132 continue; 1133 } 1134 1135 // Read a record. 1136 switch (Stream.ReadRecord(Code, Record)) { 1137 default: break; // Default behavior, ignore unknown content. 1138 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1139 if (Record.size() < 1) 1140 return Error("Malformed MODULE_CODE_VERSION"); 1141 // Only version #0 is supported so far. 1142 if (Record[0] != 0) 1143 return Error("Unknown bitstream version!"); 1144 break; 1145 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1146 std::string S; 1147 if (ConvertToString(Record, 0, S)) 1148 return Error("Invalid MODULE_CODE_TRIPLE record"); 1149 TheModule->setTargetTriple(S); 1150 break; 1151 } 1152 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1153 std::string S; 1154 if (ConvertToString(Record, 0, S)) 1155 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1156 TheModule->setDataLayout(S); 1157 break; 1158 } 1159 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1160 std::string S; 1161 if (ConvertToString(Record, 0, S)) 1162 return Error("Invalid MODULE_CODE_ASM record"); 1163 TheModule->setModuleInlineAsm(S); 1164 break; 1165 } 1166 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1167 std::string S; 1168 if (ConvertToString(Record, 0, S)) 1169 return Error("Invalid MODULE_CODE_DEPLIB record"); 1170 TheModule->addLibrary(S); 1171 break; 1172 } 1173 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1174 std::string S; 1175 if (ConvertToString(Record, 0, S)) 1176 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1177 SectionTable.push_back(S); 1178 break; 1179 } 1180 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1181 std::string S; 1182 if (ConvertToString(Record, 0, S)) 1183 return Error("Invalid MODULE_CODE_GCNAME record"); 1184 GCTable.push_back(S); 1185 break; 1186 } 1187 // GLOBALVAR: [pointer type, isconst, initid, 1188 // linkage, alignment, section, visibility, threadlocal] 1189 case bitc::MODULE_CODE_GLOBALVAR: { 1190 if (Record.size() < 6) 1191 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1192 const Type *Ty = getTypeByID(Record[0]); 1193 if (!isa<PointerType>(Ty)) 1194 return Error("Global not a pointer type!"); 1195 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1196 Ty = cast<PointerType>(Ty)->getElementType(); 1197 1198 bool isConstant = Record[1]; 1199 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1200 unsigned Alignment = (1 << Record[4]) >> 1; 1201 std::string Section; 1202 if (Record[5]) { 1203 if (Record[5]-1 >= SectionTable.size()) 1204 return Error("Invalid section ID"); 1205 Section = SectionTable[Record[5]-1]; 1206 } 1207 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1208 if (Record.size() > 6) 1209 Visibility = GetDecodedVisibility(Record[6]); 1210 bool isThreadLocal = false; 1211 if (Record.size() > 7) 1212 isThreadLocal = Record[7]; 1213 1214 GlobalVariable *NewGV = 1215 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule, 1216 isThreadLocal, AddressSpace); 1217 NewGV->setAlignment(Alignment); 1218 if (!Section.empty()) 1219 NewGV->setSection(Section); 1220 NewGV->setVisibility(Visibility); 1221 NewGV->setThreadLocal(isThreadLocal); 1222 1223 ValueList.push_back(NewGV); 1224 1225 // Remember which value to use for the global initializer. 1226 if (unsigned InitID = Record[2]) 1227 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1228 break; 1229 } 1230 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1231 // alignment, section, visibility, gc] 1232 case bitc::MODULE_CODE_FUNCTION: { 1233 if (Record.size() < 8) 1234 return Error("Invalid MODULE_CODE_FUNCTION record"); 1235 const Type *Ty = getTypeByID(Record[0]); 1236 if (!isa<PointerType>(Ty)) 1237 return Error("Function not a pointer type!"); 1238 const FunctionType *FTy = 1239 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1240 if (!FTy) 1241 return Error("Function not a pointer to function type!"); 1242 1243 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1244 "", TheModule); 1245 1246 Func->setCallingConv(Record[1]); 1247 bool isProto = Record[2]; 1248 Func->setLinkage(GetDecodedLinkage(Record[3])); 1249 Func->setAttributes(getAttributes(Record[4])); 1250 1251 Func->setAlignment((1 << Record[5]) >> 1); 1252 if (Record[6]) { 1253 if (Record[6]-1 >= SectionTable.size()) 1254 return Error("Invalid section ID"); 1255 Func->setSection(SectionTable[Record[6]-1]); 1256 } 1257 Func->setVisibility(GetDecodedVisibility(Record[7])); 1258 if (Record.size() > 8 && Record[8]) { 1259 if (Record[8]-1 > GCTable.size()) 1260 return Error("Invalid GC ID"); 1261 Func->setGC(GCTable[Record[8]-1].c_str()); 1262 } 1263 ValueList.push_back(Func); 1264 1265 // If this is a function with a body, remember the prototype we are 1266 // creating now, so that we can match up the body with them later. 1267 if (!isProto) 1268 FunctionsWithBodies.push_back(Func); 1269 break; 1270 } 1271 // ALIAS: [alias type, aliasee val#, linkage] 1272 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1273 case bitc::MODULE_CODE_ALIAS: { 1274 if (Record.size() < 3) 1275 return Error("Invalid MODULE_ALIAS record"); 1276 const Type *Ty = getTypeByID(Record[0]); 1277 if (!isa<PointerType>(Ty)) 1278 return Error("Function not a pointer type!"); 1279 1280 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1281 "", 0, TheModule); 1282 // Old bitcode files didn't have visibility field. 1283 if (Record.size() > 3) 1284 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1285 ValueList.push_back(NewGA); 1286 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1287 break; 1288 } 1289 /// MODULE_CODE_PURGEVALS: [numvals] 1290 case bitc::MODULE_CODE_PURGEVALS: 1291 // Trim down the value list to the specified size. 1292 if (Record.size() < 1 || Record[0] > ValueList.size()) 1293 return Error("Invalid MODULE_PURGEVALS record"); 1294 ValueList.shrinkTo(Record[0]); 1295 break; 1296 } 1297 Record.clear(); 1298 } 1299 1300 return Error("Premature end of bitstream"); 1301 } 1302 1303 /// SkipWrapperHeader - Some systems wrap bc files with a special header for 1304 /// padding or other reasons. The format of this header is: 1305 /// 1306 /// struct bc_header { 1307 /// uint32_t Magic; // 0x0B17C0DE 1308 /// uint32_t Version; // Version, currently always 0. 1309 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1310 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1311 /// ... potentially other gunk ... 1312 /// }; 1313 /// 1314 /// This function is called when we find a file with a matching magic number. 1315 /// In this case, skip down to the subsection of the file that is actually a BC 1316 /// file. 1317 static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) { 1318 enum { 1319 KnownHeaderSize = 4*4, // Size of header we read. 1320 OffsetField = 2*4, // Offset in bytes to Offset field. 1321 SizeField = 3*4 // Offset in bytes to Size field. 1322 }; 1323 1324 1325 // Must contain the header! 1326 if (BufEnd-BufPtr < KnownHeaderSize) return true; 1327 1328 unsigned Offset = ( BufPtr[OffsetField ] | 1329 (BufPtr[OffsetField+1] << 8) | 1330 (BufPtr[OffsetField+2] << 16) | 1331 (BufPtr[OffsetField+3] << 24)); 1332 unsigned Size = ( BufPtr[SizeField ] | 1333 (BufPtr[SizeField +1] << 8) | 1334 (BufPtr[SizeField +2] << 16) | 1335 (BufPtr[SizeField +3] << 24)); 1336 1337 // Verify that Offset+Size fits in the file. 1338 if (Offset+Size > unsigned(BufEnd-BufPtr)) 1339 return true; 1340 BufPtr += Offset; 1341 BufEnd = BufPtr+Size; 1342 return false; 1343 } 1344 1345 bool BitcodeReader::ParseBitcode() { 1346 TheModule = 0; 1347 1348 if (Buffer->getBufferSize() & 3) 1349 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1350 1351 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1352 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1353 1354 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1355 // The magic number is 0x0B17C0DE stored in little endian. 1356 if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 && 1357 BufPtr[2] == 0x17 && BufPtr[3] == 0x0B) 1358 if (SkipWrapperHeader(BufPtr, BufEnd)) 1359 return Error("Invalid bitcode wrapper header"); 1360 1361 Stream.init(BufPtr, BufEnd); 1362 1363 // Sniff for the signature. 1364 if (Stream.Read(8) != 'B' || 1365 Stream.Read(8) != 'C' || 1366 Stream.Read(4) != 0x0 || 1367 Stream.Read(4) != 0xC || 1368 Stream.Read(4) != 0xE || 1369 Stream.Read(4) != 0xD) 1370 return Error("Invalid bitcode signature"); 1371 1372 // We expect a number of well-defined blocks, though we don't necessarily 1373 // need to understand them all. 1374 while (!Stream.AtEndOfStream()) { 1375 unsigned Code = Stream.ReadCode(); 1376 1377 if (Code != bitc::ENTER_SUBBLOCK) 1378 return Error("Invalid record at top-level"); 1379 1380 unsigned BlockID = Stream.ReadSubBlockID(); 1381 1382 // We only know the MODULE subblock ID. 1383 switch (BlockID) { 1384 case bitc::BLOCKINFO_BLOCK_ID: 1385 if (Stream.ReadBlockInfoBlock()) 1386 return Error("Malformed BlockInfoBlock"); 1387 break; 1388 case bitc::MODULE_BLOCK_ID: 1389 if (ParseModule(Buffer->getBufferIdentifier())) 1390 return true; 1391 break; 1392 default: 1393 if (Stream.SkipBlock()) 1394 return Error("Malformed block record"); 1395 break; 1396 } 1397 } 1398 1399 return false; 1400 } 1401 1402 1403 /// ParseFunctionBody - Lazily parse the specified function body block. 1404 bool BitcodeReader::ParseFunctionBody(Function *F) { 1405 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1406 return Error("Malformed block record"); 1407 1408 unsigned ModuleValueListSize = ValueList.size(); 1409 1410 // Add all the function arguments to the value table. 1411 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1412 ValueList.push_back(I); 1413 1414 unsigned NextValueNo = ValueList.size(); 1415 BasicBlock *CurBB = 0; 1416 unsigned CurBBNo = 0; 1417 1418 // Read all the records. 1419 SmallVector<uint64_t, 64> Record; 1420 while (1) { 1421 unsigned Code = Stream.ReadCode(); 1422 if (Code == bitc::END_BLOCK) { 1423 if (Stream.ReadBlockEnd()) 1424 return Error("Error at end of function block"); 1425 break; 1426 } 1427 1428 if (Code == bitc::ENTER_SUBBLOCK) { 1429 switch (Stream.ReadSubBlockID()) { 1430 default: // Skip unknown content. 1431 if (Stream.SkipBlock()) 1432 return Error("Malformed block record"); 1433 break; 1434 case bitc::CONSTANTS_BLOCK_ID: 1435 if (ParseConstants()) return true; 1436 NextValueNo = ValueList.size(); 1437 break; 1438 case bitc::VALUE_SYMTAB_BLOCK_ID: 1439 if (ParseValueSymbolTable()) return true; 1440 break; 1441 } 1442 continue; 1443 } 1444 1445 if (Code == bitc::DEFINE_ABBREV) { 1446 Stream.ReadAbbrevRecord(); 1447 continue; 1448 } 1449 1450 // Read a record. 1451 Record.clear(); 1452 Instruction *I = 0; 1453 switch (Stream.ReadRecord(Code, Record)) { 1454 default: // Default behavior: reject 1455 return Error("Unknown instruction"); 1456 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1457 if (Record.size() < 1 || Record[0] == 0) 1458 return Error("Invalid DECLAREBLOCKS record"); 1459 // Create all the basic blocks for the function. 1460 FunctionBBs.resize(Record[0]); 1461 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1462 FunctionBBs[i] = BasicBlock::Create("", F); 1463 CurBB = FunctionBBs[0]; 1464 continue; 1465 1466 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1467 unsigned OpNum = 0; 1468 Value *LHS, *RHS; 1469 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1470 getValue(Record, OpNum, LHS->getType(), RHS) || 1471 OpNum+1 != Record.size()) 1472 return Error("Invalid BINOP record"); 1473 1474 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1475 if (Opc == -1) return Error("Invalid BINOP record"); 1476 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1477 break; 1478 } 1479 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1480 unsigned OpNum = 0; 1481 Value *Op; 1482 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1483 OpNum+2 != Record.size()) 1484 return Error("Invalid CAST record"); 1485 1486 const Type *ResTy = getTypeByID(Record[OpNum]); 1487 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1488 if (Opc == -1 || ResTy == 0) 1489 return Error("Invalid CAST record"); 1490 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1491 break; 1492 } 1493 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1494 unsigned OpNum = 0; 1495 Value *BasePtr; 1496 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1497 return Error("Invalid GEP record"); 1498 1499 SmallVector<Value*, 16> GEPIdx; 1500 while (OpNum != Record.size()) { 1501 Value *Op; 1502 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1503 return Error("Invalid GEP record"); 1504 GEPIdx.push_back(Op); 1505 } 1506 1507 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1508 break; 1509 } 1510 1511 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1512 // EXTRACTVAL: [opty, opval, n x indices] 1513 unsigned OpNum = 0; 1514 Value *Agg; 1515 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1516 return Error("Invalid EXTRACTVAL record"); 1517 1518 SmallVector<unsigned, 4> EXTRACTVALIdx; 1519 for (unsigned RecSize = Record.size(); 1520 OpNum != RecSize; ++OpNum) { 1521 uint64_t Index = Record[OpNum]; 1522 if ((unsigned)Index != Index) 1523 return Error("Invalid EXTRACTVAL index"); 1524 EXTRACTVALIdx.push_back((unsigned)Index); 1525 } 1526 1527 I = ExtractValueInst::Create(Agg, 1528 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1529 break; 1530 } 1531 1532 case bitc::FUNC_CODE_INST_INSERTVAL: { 1533 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1534 unsigned OpNum = 0; 1535 Value *Agg; 1536 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1537 return Error("Invalid INSERTVAL record"); 1538 Value *Val; 1539 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1540 return Error("Invalid INSERTVAL record"); 1541 1542 SmallVector<unsigned, 4> INSERTVALIdx; 1543 for (unsigned RecSize = Record.size(); 1544 OpNum != RecSize; ++OpNum) { 1545 uint64_t Index = Record[OpNum]; 1546 if ((unsigned)Index != Index) 1547 return Error("Invalid INSERTVAL index"); 1548 INSERTVALIdx.push_back((unsigned)Index); 1549 } 1550 1551 I = InsertValueInst::Create(Agg, Val, 1552 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1553 break; 1554 } 1555 1556 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1557 // obsolete form of select 1558 // handles select i1 ... in old bitcode 1559 unsigned OpNum = 0; 1560 Value *TrueVal, *FalseVal, *Cond; 1561 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1562 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1563 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1564 return Error("Invalid SELECT record"); 1565 1566 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1567 break; 1568 } 1569 1570 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1571 // new form of select 1572 // handles select i1 or select [N x i1] 1573 unsigned OpNum = 0; 1574 Value *TrueVal, *FalseVal, *Cond; 1575 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1576 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1577 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1578 return Error("Invalid SELECT record"); 1579 1580 // select condition can be either i1 or [N x i1] 1581 if (const VectorType* vector_type = 1582 dyn_cast<const VectorType>(Cond->getType())) { 1583 // expect <n x i1> 1584 if (vector_type->getElementType() != Type::Int1Ty) 1585 return Error("Invalid SELECT condition type"); 1586 } else { 1587 // expect i1 1588 if (Cond->getType() != Type::Int1Ty) 1589 return Error("Invalid SELECT condition type"); 1590 } 1591 1592 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1593 break; 1594 } 1595 1596 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1597 unsigned OpNum = 0; 1598 Value *Vec, *Idx; 1599 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1600 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1601 return Error("Invalid EXTRACTELT record"); 1602 I = new ExtractElementInst(Vec, Idx); 1603 break; 1604 } 1605 1606 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1607 unsigned OpNum = 0; 1608 Value *Vec, *Elt, *Idx; 1609 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1610 getValue(Record, OpNum, 1611 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1612 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1613 return Error("Invalid INSERTELT record"); 1614 I = InsertElementInst::Create(Vec, Elt, Idx); 1615 break; 1616 } 1617 1618 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1619 unsigned OpNum = 0; 1620 Value *Vec1, *Vec2, *Mask; 1621 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1622 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1623 return Error("Invalid SHUFFLEVEC record"); 1624 1625 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1626 return Error("Invalid SHUFFLEVEC record"); 1627 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1628 break; 1629 } 1630 1631 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1632 // VFCmp/VICmp 1633 // or old form of ICmp/FCmp returning bool 1634 unsigned OpNum = 0; 1635 Value *LHS, *RHS; 1636 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1637 getValue(Record, OpNum, LHS->getType(), RHS) || 1638 OpNum+1 != Record.size()) 1639 return Error("Invalid CMP record"); 1640 1641 if (LHS->getType()->isFloatingPoint()) 1642 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1643 else if (!isa<VectorType>(LHS->getType())) 1644 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1645 else if (LHS->getType()->isFPOrFPVector()) 1646 I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1647 else 1648 I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1649 break; 1650 } 1651 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1652 // Fcmp/ICmp returning bool or vector of bool 1653 unsigned OpNum = 0; 1654 Value *LHS, *RHS; 1655 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1656 getValue(Record, OpNum, LHS->getType(), RHS) || 1657 OpNum+1 != Record.size()) 1658 return Error("Invalid CMP2 record"); 1659 1660 if (LHS->getType()->isFPOrFPVector()) 1661 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1662 else 1663 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1664 break; 1665 } 1666 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1667 if (Record.size() != 2) 1668 return Error("Invalid GETRESULT record"); 1669 unsigned OpNum = 0; 1670 Value *Op; 1671 getValueTypePair(Record, OpNum, NextValueNo, Op); 1672 unsigned Index = Record[1]; 1673 I = ExtractValueInst::Create(Op, Index); 1674 break; 1675 } 1676 1677 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1678 { 1679 unsigned Size = Record.size(); 1680 if (Size == 0) { 1681 I = ReturnInst::Create(); 1682 break; 1683 } 1684 1685 unsigned OpNum = 0; 1686 SmallVector<Value *,4> Vs; 1687 do { 1688 Value *Op = NULL; 1689 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1690 return Error("Invalid RET record"); 1691 Vs.push_back(Op); 1692 } while(OpNum != Record.size()); 1693 1694 const Type *ReturnType = F->getReturnType(); 1695 if (Vs.size() > 1 || 1696 (isa<StructType>(ReturnType) && 1697 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1698 Value *RV = UndefValue::get(ReturnType); 1699 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1700 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1701 CurBB->getInstList().push_back(I); 1702 ValueList.AssignValue(I, NextValueNo++); 1703 RV = I; 1704 } 1705 I = ReturnInst::Create(RV); 1706 break; 1707 } 1708 1709 I = ReturnInst::Create(Vs[0]); 1710 break; 1711 } 1712 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1713 if (Record.size() != 1 && Record.size() != 3) 1714 return Error("Invalid BR record"); 1715 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1716 if (TrueDest == 0) 1717 return Error("Invalid BR record"); 1718 1719 if (Record.size() == 1) 1720 I = BranchInst::Create(TrueDest); 1721 else { 1722 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1723 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1724 if (FalseDest == 0 || Cond == 0) 1725 return Error("Invalid BR record"); 1726 I = BranchInst::Create(TrueDest, FalseDest, Cond); 1727 } 1728 break; 1729 } 1730 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1731 if (Record.size() < 3 || (Record.size() & 1) == 0) 1732 return Error("Invalid SWITCH record"); 1733 const Type *OpTy = getTypeByID(Record[0]); 1734 Value *Cond = getFnValueByID(Record[1], OpTy); 1735 BasicBlock *Default = getBasicBlock(Record[2]); 1736 if (OpTy == 0 || Cond == 0 || Default == 0) 1737 return Error("Invalid SWITCH record"); 1738 unsigned NumCases = (Record.size()-3)/2; 1739 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 1740 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1741 ConstantInt *CaseVal = 1742 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1743 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1744 if (CaseVal == 0 || DestBB == 0) { 1745 delete SI; 1746 return Error("Invalid SWITCH record!"); 1747 } 1748 SI->addCase(CaseVal, DestBB); 1749 } 1750 I = SI; 1751 break; 1752 } 1753 1754 case bitc::FUNC_CODE_INST_INVOKE: { 1755 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1756 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1757 AttrListPtr PAL = getAttributes(Record[0]); 1758 unsigned CCInfo = Record[1]; 1759 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1760 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1761 1762 unsigned OpNum = 4; 1763 Value *Callee; 1764 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1765 return Error("Invalid INVOKE record"); 1766 1767 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1768 const FunctionType *FTy = !CalleeTy ? 0 : 1769 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1770 1771 // Check that the right number of fixed parameters are here. 1772 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1773 Record.size() < OpNum+FTy->getNumParams()) 1774 return Error("Invalid INVOKE record"); 1775 1776 SmallVector<Value*, 16> Ops; 1777 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1778 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1779 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1780 } 1781 1782 if (!FTy->isVarArg()) { 1783 if (Record.size() != OpNum) 1784 return Error("Invalid INVOKE record"); 1785 } else { 1786 // Read type/value pairs for varargs params. 1787 while (OpNum != Record.size()) { 1788 Value *Op; 1789 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1790 return Error("Invalid INVOKE record"); 1791 Ops.push_back(Op); 1792 } 1793 } 1794 1795 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 1796 Ops.begin(), Ops.end()); 1797 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1798 cast<InvokeInst>(I)->setAttributes(PAL); 1799 break; 1800 } 1801 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1802 I = new UnwindInst(); 1803 break; 1804 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1805 I = new UnreachableInst(); 1806 break; 1807 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1808 if (Record.size() < 1 || ((Record.size()-1)&1)) 1809 return Error("Invalid PHI record"); 1810 const Type *Ty = getTypeByID(Record[0]); 1811 if (!Ty) return Error("Invalid PHI record"); 1812 1813 PHINode *PN = PHINode::Create(Ty); 1814 PN->reserveOperandSpace((Record.size()-1)/2); 1815 1816 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1817 Value *V = getFnValueByID(Record[1+i], Ty); 1818 BasicBlock *BB = getBasicBlock(Record[2+i]); 1819 if (!V || !BB) return Error("Invalid PHI record"); 1820 PN->addIncoming(V, BB); 1821 } 1822 I = PN; 1823 break; 1824 } 1825 1826 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1827 if (Record.size() < 3) 1828 return Error("Invalid MALLOC record"); 1829 const PointerType *Ty = 1830 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1831 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1832 unsigned Align = Record[2]; 1833 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1834 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1835 break; 1836 } 1837 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1838 unsigned OpNum = 0; 1839 Value *Op; 1840 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1841 OpNum != Record.size()) 1842 return Error("Invalid FREE record"); 1843 I = new FreeInst(Op); 1844 break; 1845 } 1846 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1847 if (Record.size() < 3) 1848 return Error("Invalid ALLOCA record"); 1849 const PointerType *Ty = 1850 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1851 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1852 unsigned Align = Record[2]; 1853 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1854 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1855 break; 1856 } 1857 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1858 unsigned OpNum = 0; 1859 Value *Op; 1860 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1861 OpNum+2 != Record.size()) 1862 return Error("Invalid LOAD record"); 1863 1864 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1865 break; 1866 } 1867 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 1868 unsigned OpNum = 0; 1869 Value *Val, *Ptr; 1870 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 1871 getValue(Record, OpNum, 1872 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 1873 OpNum+2 != Record.size()) 1874 return Error("Invalid STORE record"); 1875 1876 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1877 break; 1878 } 1879 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1880 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 1881 unsigned OpNum = 0; 1882 Value *Val, *Ptr; 1883 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1884 getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)|| 1885 OpNum+2 != Record.size()) 1886 return Error("Invalid STORE record"); 1887 1888 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1889 break; 1890 } 1891 case bitc::FUNC_CODE_INST_CALL: { 1892 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1893 if (Record.size() < 3) 1894 return Error("Invalid CALL record"); 1895 1896 AttrListPtr PAL = getAttributes(Record[0]); 1897 unsigned CCInfo = Record[1]; 1898 1899 unsigned OpNum = 2; 1900 Value *Callee; 1901 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1902 return Error("Invalid CALL record"); 1903 1904 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1905 const FunctionType *FTy = 0; 1906 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1907 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1908 return Error("Invalid CALL record"); 1909 1910 SmallVector<Value*, 16> Args; 1911 // Read the fixed params. 1912 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1913 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1914 Args.push_back(getBasicBlock(Record[OpNum])); 1915 else 1916 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1917 if (Args.back() == 0) return Error("Invalid CALL record"); 1918 } 1919 1920 // Read type/value pairs for varargs params. 1921 if (!FTy->isVarArg()) { 1922 if (OpNum != Record.size()) 1923 return Error("Invalid CALL record"); 1924 } else { 1925 while (OpNum != Record.size()) { 1926 Value *Op; 1927 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1928 return Error("Invalid CALL record"); 1929 Args.push_back(Op); 1930 } 1931 } 1932 1933 I = CallInst::Create(Callee, Args.begin(), Args.end()); 1934 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1935 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1936 cast<CallInst>(I)->setAttributes(PAL); 1937 break; 1938 } 1939 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1940 if (Record.size() < 3) 1941 return Error("Invalid VAARG record"); 1942 const Type *OpTy = getTypeByID(Record[0]); 1943 Value *Op = getFnValueByID(Record[1], OpTy); 1944 const Type *ResTy = getTypeByID(Record[2]); 1945 if (!OpTy || !Op || !ResTy) 1946 return Error("Invalid VAARG record"); 1947 I = new VAArgInst(Op, ResTy); 1948 break; 1949 } 1950 } 1951 1952 // Add instruction to end of current BB. If there is no current BB, reject 1953 // this file. 1954 if (CurBB == 0) { 1955 delete I; 1956 return Error("Invalid instruction with no BB"); 1957 } 1958 CurBB->getInstList().push_back(I); 1959 1960 // If this was a terminator instruction, move to the next block. 1961 if (isa<TerminatorInst>(I)) { 1962 ++CurBBNo; 1963 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1964 } 1965 1966 // Non-void values get registered in the value table for future use. 1967 if (I && I->getType() != Type::VoidTy) 1968 ValueList.AssignValue(I, NextValueNo++); 1969 } 1970 1971 // Check the function list for unresolved values. 1972 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1973 if (A->getParent() == 0) { 1974 // We found at least one unresolved value. Nuke them all to avoid leaks. 1975 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1976 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1977 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1978 delete A; 1979 } 1980 } 1981 return Error("Never resolved value found in function!"); 1982 } 1983 } 1984 1985 // Trim the value list down to the size it was before we parsed this function. 1986 ValueList.shrinkTo(ModuleValueListSize); 1987 std::vector<BasicBlock*>().swap(FunctionBBs); 1988 1989 return false; 1990 } 1991 1992 //===----------------------------------------------------------------------===// 1993 // ModuleProvider implementation 1994 //===----------------------------------------------------------------------===// 1995 1996 1997 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1998 // If it already is material, ignore the request. 1999 if (!F->hasNotBeenReadFromBitcode()) return false; 2000 2001 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 2002 DeferredFunctionInfo.find(F); 2003 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2004 2005 // Move the bit stream to the saved position of the deferred function body and 2006 // restore the real linkage type for the function. 2007 Stream.JumpToBit(DFII->second.first); 2008 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 2009 2010 if (ParseFunctionBody(F)) { 2011 if (ErrInfo) *ErrInfo = ErrorString; 2012 return true; 2013 } 2014 2015 // Upgrade any old intrinsic calls in the function. 2016 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2017 E = UpgradedIntrinsics.end(); I != E; ++I) { 2018 if (I->first != I->second) { 2019 for (Value::use_iterator UI = I->first->use_begin(), 2020 UE = I->first->use_end(); UI != UE; ) { 2021 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2022 UpgradeIntrinsicCall(CI, I->second); 2023 } 2024 } 2025 } 2026 2027 return false; 2028 } 2029 2030 void BitcodeReader::dematerializeFunction(Function *F) { 2031 // If this function isn't materialized, or if it is a proto, this is a noop. 2032 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 2033 return; 2034 2035 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2036 2037 // Just forget the function body, we can remat it later. 2038 F->deleteBody(); 2039 F->setLinkage(GlobalValue::GhostLinkage); 2040 } 2041 2042 2043 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 2044 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 2045 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 2046 ++I) { 2047 Function *F = I->first; 2048 if (F->hasNotBeenReadFromBitcode() && 2049 materializeFunction(F, ErrInfo)) 2050 return 0; 2051 } 2052 2053 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2054 // delete the old functions to clean up. We can't do this unless the entire 2055 // module is materialized because there could always be another function body 2056 // with calls to the old function. 2057 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2058 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2059 if (I->first != I->second) { 2060 for (Value::use_iterator UI = I->first->use_begin(), 2061 UE = I->first->use_end(); UI != UE; ) { 2062 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2063 UpgradeIntrinsicCall(CI, I->second); 2064 } 2065 ValueList.replaceUsesOfWith(I->first, I->second); 2066 I->first->eraseFromParent(); 2067 } 2068 } 2069 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2070 2071 return TheModule; 2072 } 2073 2074 2075 /// This method is provided by the parent ModuleProvde class and overriden 2076 /// here. It simply releases the module from its provided and frees up our 2077 /// state. 2078 /// @brief Release our hold on the generated module 2079 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 2080 // Since we're losing control of this Module, we must hand it back complete 2081 Module *M = ModuleProvider::releaseModule(ErrInfo); 2082 FreeState(); 2083 return M; 2084 } 2085 2086 2087 //===----------------------------------------------------------------------===// 2088 // External interface 2089 //===----------------------------------------------------------------------===// 2090 2091 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 2092 /// 2093 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 2094 std::string *ErrMsg) { 2095 BitcodeReader *R = new BitcodeReader(Buffer); 2096 if (R->ParseBitcode()) { 2097 if (ErrMsg) 2098 *ErrMsg = R->getErrorString(); 2099 2100 // Don't let the BitcodeReader dtor delete 'Buffer'. 2101 R->releaseMemoryBuffer(); 2102 delete R; 2103 return 0; 2104 } 2105 return R; 2106 } 2107 2108 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2109 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2110 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 2111 BitcodeReader *R; 2112 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 2113 if (!R) return 0; 2114 2115 // Read in the entire module. 2116 Module *M = R->materializeModule(ErrMsg); 2117 2118 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2119 // there was an error. 2120 R->releaseMemoryBuffer(); 2121 2122 // If there was no error, tell ModuleProvider not to delete it when its dtor 2123 // is run. 2124 if (M) 2125 M = R->releaseModule(ErrMsg); 2126 2127 delete R; 2128 return M; 2129 } 2130