xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 1202f559bdeebb62dbba29ee05ffafbfecd57d92)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976                                                             uint64_t Version) {
977   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978   // like getDecodedLinkage() above. Any future change to the linkage enum and
979   // to getDecodedLinkage() will need to be taken into account here as above.
980   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982   RawFlags = RawFlags >> 4;
983   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984   // The Live flag wasn't introduced until version 3. For dead stripping
985   // to work correctly on earlier versions, we must conservatively treat all
986   // values as live.
987   bool Live = (RawFlags & 0x2) || Version < 3;
988   bool Local = (RawFlags & 0x4);
989   bool AutoHide = (RawFlags & 0x8);
990 
991   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992                                      Live, Local, AutoHide);
993 }
994 
995 // Decode the flags for GlobalVariable in the summary
996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997   return GlobalVarSummary::GVarFlags(
998       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999       (RawFlags & 0x4) ? true : false,
1000       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002 
1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown visibilities to default.
1006   case 0: return GlobalValue::DefaultVisibility;
1007   case 1: return GlobalValue::HiddenVisibility;
1008   case 2: return GlobalValue::ProtectedVisibility;
1009   }
1010 }
1011 
1012 static GlobalValue::DLLStorageClassTypes
1013 getDecodedDLLStorageClass(unsigned Val) {
1014   switch (Val) {
1015   default: // Map unknown values to default.
1016   case 0: return GlobalValue::DefaultStorageClass;
1017   case 1: return GlobalValue::DLLImportStorageClass;
1018   case 2: return GlobalValue::DLLExportStorageClass;
1019   }
1020 }
1021 
1022 static bool getDecodedDSOLocal(unsigned Val) {
1023   switch(Val) {
1024   default: // Map unknown values to preemptable.
1025   case 0:  return false;
1026   case 1:  return true;
1027   }
1028 }
1029 
1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031   switch (Val) {
1032     case 0: return GlobalVariable::NotThreadLocal;
1033     default: // Map unknown non-zero value to general dynamic.
1034     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035     case 2: return GlobalVariable::LocalDynamicTLSModel;
1036     case 3: return GlobalVariable::InitialExecTLSModel;
1037     case 4: return GlobalVariable::LocalExecTLSModel;
1038   }
1039 }
1040 
1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042   switch (Val) {
1043     default: // Map unknown to UnnamedAddr::None.
1044     case 0: return GlobalVariable::UnnamedAddr::None;
1045     case 1: return GlobalVariable::UnnamedAddr::Global;
1046     case 2: return GlobalVariable::UnnamedAddr::Local;
1047   }
1048 }
1049 
1050 static int getDecodedCastOpcode(unsigned Val) {
1051   switch (Val) {
1052   default: return -1;
1053   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1054   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1055   case bitc::CAST_SEXT    : return Instruction::SExt;
1056   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1057   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1058   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1059   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1060   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1062   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064   case bitc::CAST_BITCAST : return Instruction::BitCast;
1065   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066   }
1067 }
1068 
1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // UnOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::UNOP_FNEG:
1079     return IsFP ? Instruction::FNeg : -1;
1080   }
1081 }
1082 
1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084   bool IsFP = Ty->isFPOrFPVectorTy();
1085   // BinOps are only valid for int/fp or vector of int/fp types
1086   if (!IsFP && !Ty->isIntOrIntVectorTy())
1087     return -1;
1088 
1089   switch (Val) {
1090   default:
1091     return -1;
1092   case bitc::BINOP_ADD:
1093     return IsFP ? Instruction::FAdd : Instruction::Add;
1094   case bitc::BINOP_SUB:
1095     return IsFP ? Instruction::FSub : Instruction::Sub;
1096   case bitc::BINOP_MUL:
1097     return IsFP ? Instruction::FMul : Instruction::Mul;
1098   case bitc::BINOP_UDIV:
1099     return IsFP ? -1 : Instruction::UDiv;
1100   case bitc::BINOP_SDIV:
1101     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102   case bitc::BINOP_UREM:
1103     return IsFP ? -1 : Instruction::URem;
1104   case bitc::BINOP_SREM:
1105     return IsFP ? Instruction::FRem : Instruction::SRem;
1106   case bitc::BINOP_SHL:
1107     return IsFP ? -1 : Instruction::Shl;
1108   case bitc::BINOP_LSHR:
1109     return IsFP ? -1 : Instruction::LShr;
1110   case bitc::BINOP_ASHR:
1111     return IsFP ? -1 : Instruction::AShr;
1112   case bitc::BINOP_AND:
1113     return IsFP ? -1 : Instruction::And;
1114   case bitc::BINOP_OR:
1115     return IsFP ? -1 : Instruction::Or;
1116   case bitc::BINOP_XOR:
1117     return IsFP ? -1 : Instruction::Xor;
1118   }
1119 }
1120 
1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122   switch (Val) {
1123   default: return AtomicRMWInst::BAD_BINOP;
1124   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127   case bitc::RMW_AND: return AtomicRMWInst::And;
1128   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129   case bitc::RMW_OR: return AtomicRMWInst::Or;
1130   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137   }
1138 }
1139 
1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141   switch (Val) {
1142   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148   default: // Map unknown orderings to sequentially-consistent.
1149   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150   }
1151 }
1152 
1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154   switch (Val) {
1155   default: // Map unknown selection kinds to any.
1156   case bitc::COMDAT_SELECTION_KIND_ANY:
1157     return Comdat::Any;
1158   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159     return Comdat::ExactMatch;
1160   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161     return Comdat::Largest;
1162   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163     return Comdat::NoDuplicates;
1164   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165     return Comdat::SameSize;
1166   }
1167 }
1168 
1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170   FastMathFlags FMF;
1171   if (0 != (Val & bitc::UnsafeAlgebra))
1172     FMF.setFast();
1173   if (0 != (Val & bitc::AllowReassoc))
1174     FMF.setAllowReassoc();
1175   if (0 != (Val & bitc::NoNaNs))
1176     FMF.setNoNaNs();
1177   if (0 != (Val & bitc::NoInfs))
1178     FMF.setNoInfs();
1179   if (0 != (Val & bitc::NoSignedZeros))
1180     FMF.setNoSignedZeros();
1181   if (0 != (Val & bitc::AllowReciprocal))
1182     FMF.setAllowReciprocal();
1183   if (0 != (Val & bitc::AllowContract))
1184     FMF.setAllowContract(true);
1185   if (0 != (Val & bitc::ApproxFunc))
1186     FMF.setApproxFunc();
1187   return FMF;
1188 }
1189 
1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191   switch (Val) {
1192   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194   }
1195 }
1196 
1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198   // The type table size is always specified correctly.
1199   if (ID >= TypeList.size())
1200     return nullptr;
1201 
1202   if (Type *Ty = TypeList[ID])
1203     return Ty;
1204 
1205   // If we have a forward reference, the only possible case is when it is to a
1206   // named struct.  Just create a placeholder for now.
1207   return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209 
1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211                                                       StringRef Name) {
1212   auto *Ret = StructType::create(Context, Name);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218   auto *Ret = StructType::create(Context);
1219   IdentifiedStructTypes.push_back(Ret);
1220   return Ret;
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 //  Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226 
1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228   switch (Val) {
1229   case Attribute::EndAttrKinds:
1230   case Attribute::EmptyKey:
1231   case Attribute::TombstoneKey:
1232     llvm_unreachable("Synthetic enumerators which should never get here");
1233 
1234   case Attribute::None:            return 0;
1235   case Attribute::ZExt:            return 1 << 0;
1236   case Attribute::SExt:            return 1 << 1;
1237   case Attribute::NoReturn:        return 1 << 2;
1238   case Attribute::InReg:           return 1 << 3;
1239   case Attribute::StructRet:       return 1 << 4;
1240   case Attribute::NoUnwind:        return 1 << 5;
1241   case Attribute::NoAlias:         return 1 << 6;
1242   case Attribute::ByVal:           return 1 << 7;
1243   case Attribute::Nest:            return 1 << 8;
1244   case Attribute::ReadNone:        return 1 << 9;
1245   case Attribute::ReadOnly:        return 1 << 10;
1246   case Attribute::NoInline:        return 1 << 11;
1247   case Attribute::AlwaysInline:    return 1 << 12;
1248   case Attribute::OptimizeForSize: return 1 << 13;
1249   case Attribute::StackProtect:    return 1 << 14;
1250   case Attribute::StackProtectReq: return 1 << 15;
1251   case Attribute::Alignment:       return 31 << 16;
1252   case Attribute::NoCapture:       return 1 << 21;
1253   case Attribute::NoRedZone:       return 1 << 22;
1254   case Attribute::NoImplicitFloat: return 1 << 23;
1255   case Attribute::Naked:           return 1 << 24;
1256   case Attribute::InlineHint:      return 1 << 25;
1257   case Attribute::StackAlignment:  return 7 << 26;
1258   case Attribute::ReturnsTwice:    return 1 << 29;
1259   case Attribute::UWTable:         return 1 << 30;
1260   case Attribute::NonLazyBind:     return 1U << 31;
1261   case Attribute::SanitizeAddress: return 1ULL << 32;
1262   case Attribute::MinSize:         return 1ULL << 33;
1263   case Attribute::NoDuplicate:     return 1ULL << 34;
1264   case Attribute::StackProtectStrong: return 1ULL << 35;
1265   case Attribute::SanitizeThread:  return 1ULL << 36;
1266   case Attribute::SanitizeMemory:  return 1ULL << 37;
1267   case Attribute::NoBuiltin:       return 1ULL << 38;
1268   case Attribute::Returned:        return 1ULL << 39;
1269   case Attribute::Cold:            return 1ULL << 40;
1270   case Attribute::Builtin:         return 1ULL << 41;
1271   case Attribute::OptimizeNone:    return 1ULL << 42;
1272   case Attribute::InAlloca:        return 1ULL << 43;
1273   case Attribute::NonNull:         return 1ULL << 44;
1274   case Attribute::JumpTable:       return 1ULL << 45;
1275   case Attribute::Convergent:      return 1ULL << 46;
1276   case Attribute::SafeStack:       return 1ULL << 47;
1277   case Attribute::NoRecurse:       return 1ULL << 48;
1278   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1279   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280   case Attribute::SwiftSelf:       return 1ULL << 51;
1281   case Attribute::SwiftError:      return 1ULL << 52;
1282   case Attribute::WriteOnly:       return 1ULL << 53;
1283   case Attribute::Speculatable:    return 1ULL << 54;
1284   case Attribute::StrictFP:        return 1ULL << 55;
1285   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286   case Attribute::NoCfCheck:       return 1ULL << 57;
1287   case Attribute::OptForFuzzing:   return 1ULL << 58;
1288   case Attribute::ShadowCallStack: return 1ULL << 59;
1289   case Attribute::SpeculativeLoadHardening:
1290     return 1ULL << 60;
1291   case Attribute::ImmArg:
1292     return 1ULL << 61;
1293   case Attribute::WillReturn:
1294     return 1ULL << 62;
1295   case Attribute::NoFree:
1296     return 1ULL << 63;
1297   default:
1298     // Other attributes are not supported in the raw format,
1299     // as we ran out of space.
1300     return 0;
1301   }
1302   llvm_unreachable("Unsupported attribute type");
1303 }
1304 
1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306   if (!Val) return;
1307 
1308   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309        I = Attribute::AttrKind(I + 1)) {
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // Deprecated, but still needed to read old bitcode files.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CALLBACK:
1442     return Attribute::NoCallback;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NO_MERGE:
1456     return Attribute::NoMerge;
1457   case bitc::ATTR_KIND_NON_LAZY_BIND:
1458     return Attribute::NonLazyBind;
1459   case bitc::ATTR_KIND_NON_NULL:
1460     return Attribute::NonNull;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE:
1462     return Attribute::Dereferenceable;
1463   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464     return Attribute::DereferenceableOrNull;
1465   case bitc::ATTR_KIND_ALLOC_SIZE:
1466     return Attribute::AllocSize;
1467   case bitc::ATTR_KIND_NO_RED_ZONE:
1468     return Attribute::NoRedZone;
1469   case bitc::ATTR_KIND_NO_RETURN:
1470     return Attribute::NoReturn;
1471   case bitc::ATTR_KIND_NOSYNC:
1472     return Attribute::NoSync;
1473   case bitc::ATTR_KIND_NOCF_CHECK:
1474     return Attribute::NoCfCheck;
1475   case bitc::ATTR_KIND_NO_UNWIND:
1476     return Attribute::NoUnwind;
1477   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1478     return Attribute::NoSanitizeCoverage;
1479   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1480     return Attribute::NullPointerIsValid;
1481   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1482     return Attribute::OptForFuzzing;
1483   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1484     return Attribute::OptimizeForSize;
1485   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1486     return Attribute::OptimizeNone;
1487   case bitc::ATTR_KIND_READ_NONE:
1488     return Attribute::ReadNone;
1489   case bitc::ATTR_KIND_READ_ONLY:
1490     return Attribute::ReadOnly;
1491   case bitc::ATTR_KIND_RETURNED:
1492     return Attribute::Returned;
1493   case bitc::ATTR_KIND_RETURNS_TWICE:
1494     return Attribute::ReturnsTwice;
1495   case bitc::ATTR_KIND_S_EXT:
1496     return Attribute::SExt;
1497   case bitc::ATTR_KIND_SPECULATABLE:
1498     return Attribute::Speculatable;
1499   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1500     return Attribute::StackAlignment;
1501   case bitc::ATTR_KIND_STACK_PROTECT:
1502     return Attribute::StackProtect;
1503   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1504     return Attribute::StackProtectReq;
1505   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1506     return Attribute::StackProtectStrong;
1507   case bitc::ATTR_KIND_SAFESTACK:
1508     return Attribute::SafeStack;
1509   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1510     return Attribute::ShadowCallStack;
1511   case bitc::ATTR_KIND_STRICT_FP:
1512     return Attribute::StrictFP;
1513   case bitc::ATTR_KIND_STRUCT_RET:
1514     return Attribute::StructRet;
1515   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1516     return Attribute::SanitizeAddress;
1517   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1518     return Attribute::SanitizeHWAddress;
1519   case bitc::ATTR_KIND_SANITIZE_THREAD:
1520     return Attribute::SanitizeThread;
1521   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1522     return Attribute::SanitizeMemory;
1523   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1524     return Attribute::SpeculativeLoadHardening;
1525   case bitc::ATTR_KIND_SWIFT_ERROR:
1526     return Attribute::SwiftError;
1527   case bitc::ATTR_KIND_SWIFT_SELF:
1528     return Attribute::SwiftSelf;
1529   case bitc::ATTR_KIND_SWIFT_ASYNC:
1530     return Attribute::SwiftAsync;
1531   case bitc::ATTR_KIND_UW_TABLE:
1532     return Attribute::UWTable;
1533   case bitc::ATTR_KIND_VSCALE_RANGE:
1534     return Attribute::VScaleRange;
1535   case bitc::ATTR_KIND_WILLRETURN:
1536     return Attribute::WillReturn;
1537   case bitc::ATTR_KIND_WRITEONLY:
1538     return Attribute::WriteOnly;
1539   case bitc::ATTR_KIND_Z_EXT:
1540     return Attribute::ZExt;
1541   case bitc::ATTR_KIND_IMMARG:
1542     return Attribute::ImmArg;
1543   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1544     return Attribute::SanitizeMemTag;
1545   case bitc::ATTR_KIND_PREALLOCATED:
1546     return Attribute::Preallocated;
1547   case bitc::ATTR_KIND_NOUNDEF:
1548     return Attribute::NoUndef;
1549   case bitc::ATTR_KIND_BYREF:
1550     return Attribute::ByRef;
1551   case bitc::ATTR_KIND_MUSTPROGRESS:
1552     return Attribute::MustProgress;
1553   case bitc::ATTR_KIND_HOT:
1554     return Attribute::Hot;
1555   }
1556 }
1557 
1558 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1559                                          MaybeAlign &Alignment) {
1560   // Note: Alignment in bitcode files is incremented by 1, so that zero
1561   // can be used for default alignment.
1562   if (Exponent > Value::MaxAlignmentExponent + 1)
1563     return error("Invalid alignment value");
1564   Alignment = decodeMaybeAlign(Exponent);
1565   return Error::success();
1566 }
1567 
1568 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1569   *Kind = getAttrFromCode(Code);
1570   if (*Kind == Attribute::None)
1571     return error("Unknown attribute kind (" + Twine(Code) + ")");
1572   return Error::success();
1573 }
1574 
1575 Error BitcodeReader::parseAttributeGroupBlock() {
1576   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1577     return Err;
1578 
1579   if (!MAttributeGroups.empty())
1580     return error("Invalid multiple blocks");
1581 
1582   SmallVector<uint64_t, 64> Record;
1583 
1584   // Read all the records.
1585   while (true) {
1586     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1587     if (!MaybeEntry)
1588       return MaybeEntry.takeError();
1589     BitstreamEntry Entry = MaybeEntry.get();
1590 
1591     switch (Entry.Kind) {
1592     case BitstreamEntry::SubBlock: // Handled for us already.
1593     case BitstreamEntry::Error:
1594       return error("Malformed block");
1595     case BitstreamEntry::EndBlock:
1596       return Error::success();
1597     case BitstreamEntry::Record:
1598       // The interesting case.
1599       break;
1600     }
1601 
1602     // Read a record.
1603     Record.clear();
1604     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1605     if (!MaybeRecord)
1606       return MaybeRecord.takeError();
1607     switch (MaybeRecord.get()) {
1608     default:  // Default behavior: ignore.
1609       break;
1610     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1611       if (Record.size() < 3)
1612         return error("Invalid record");
1613 
1614       uint64_t GrpID = Record[0];
1615       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1616 
1617       AttrBuilder B;
1618       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1619         if (Record[i] == 0) {        // Enum attribute
1620           Attribute::AttrKind Kind;
1621           if (Error Err = parseAttrKind(Record[++i], &Kind))
1622             return Err;
1623 
1624           // Upgrade old-style byval attribute to one with a type, even if it's
1625           // nullptr. We will have to insert the real type when we associate
1626           // this AttributeList with a function.
1627           if (Kind == Attribute::ByVal)
1628             B.addByValAttr(nullptr);
1629           else if (Kind == Attribute::StructRet)
1630             B.addStructRetAttr(nullptr);
1631           else if (Kind == Attribute::InAlloca)
1632             B.addInAllocaAttr(nullptr);
1633 
1634           B.addAttribute(Kind);
1635         } else if (Record[i] == 1) { // Integer attribute
1636           Attribute::AttrKind Kind;
1637           if (Error Err = parseAttrKind(Record[++i], &Kind))
1638             return Err;
1639           if (Kind == Attribute::Alignment)
1640             B.addAlignmentAttr(Record[++i]);
1641           else if (Kind == Attribute::StackAlignment)
1642             B.addStackAlignmentAttr(Record[++i]);
1643           else if (Kind == Attribute::Dereferenceable)
1644             B.addDereferenceableAttr(Record[++i]);
1645           else if (Kind == Attribute::DereferenceableOrNull)
1646             B.addDereferenceableOrNullAttr(Record[++i]);
1647           else if (Kind == Attribute::AllocSize)
1648             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1649           else if (Kind == Attribute::VScaleRange)
1650             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1651         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1652           bool HasValue = (Record[i++] == 4);
1653           SmallString<64> KindStr;
1654           SmallString<64> ValStr;
1655 
1656           while (Record[i] != 0 && i != e)
1657             KindStr += Record[i++];
1658           assert(Record[i] == 0 && "Kind string not null terminated");
1659 
1660           if (HasValue) {
1661             // Has a value associated with it.
1662             ++i; // Skip the '0' that terminates the "kind" string.
1663             while (Record[i] != 0 && i != e)
1664               ValStr += Record[i++];
1665             assert(Record[i] == 0 && "Value string not null terminated");
1666           }
1667 
1668           B.addAttribute(KindStr.str(), ValStr.str());
1669         } else {
1670           assert((Record[i] == 5 || Record[i] == 6) &&
1671                  "Invalid attribute group entry");
1672           bool HasType = Record[i] == 6;
1673           Attribute::AttrKind Kind;
1674           if (Error Err = parseAttrKind(Record[++i], &Kind))
1675             return Err;
1676           if (Kind == Attribute::ByVal) {
1677             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1678           } else if (Kind == Attribute::StructRet) {
1679             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1680           } else if (Kind == Attribute::ByRef) {
1681             B.addByRefAttr(getTypeByID(Record[++i]));
1682           } else if (Kind == Attribute::Preallocated) {
1683             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1684           } else if (Kind == Attribute::InAlloca) {
1685             B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1686           }
1687         }
1688       }
1689 
1690       UpgradeAttributes(B);
1691       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1692       break;
1693     }
1694     }
1695   }
1696 }
1697 
1698 Error BitcodeReader::parseTypeTable() {
1699   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1700     return Err;
1701 
1702   return parseTypeTableBody();
1703 }
1704 
1705 Error BitcodeReader::parseTypeTableBody() {
1706   if (!TypeList.empty())
1707     return error("Invalid multiple blocks");
1708 
1709   SmallVector<uint64_t, 64> Record;
1710   unsigned NumRecords = 0;
1711 
1712   SmallString<64> TypeName;
1713 
1714   // Read all the records for this type table.
1715   while (true) {
1716     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1717     if (!MaybeEntry)
1718       return MaybeEntry.takeError();
1719     BitstreamEntry Entry = MaybeEntry.get();
1720 
1721     switch (Entry.Kind) {
1722     case BitstreamEntry::SubBlock: // Handled for us already.
1723     case BitstreamEntry::Error:
1724       return error("Malformed block");
1725     case BitstreamEntry::EndBlock:
1726       if (NumRecords != TypeList.size())
1727         return error("Malformed block");
1728       return Error::success();
1729     case BitstreamEntry::Record:
1730       // The interesting case.
1731       break;
1732     }
1733 
1734     // Read a record.
1735     Record.clear();
1736     Type *ResultTy = nullptr;
1737     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1738     if (!MaybeRecord)
1739       return MaybeRecord.takeError();
1740     switch (MaybeRecord.get()) {
1741     default:
1742       return error("Invalid value");
1743     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1744       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1745       // type list.  This allows us to reserve space.
1746       if (Record.empty())
1747         return error("Invalid record");
1748       TypeList.resize(Record[0]);
1749       continue;
1750     case bitc::TYPE_CODE_VOID:      // VOID
1751       ResultTy = Type::getVoidTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_HALF:     // HALF
1754       ResultTy = Type::getHalfTy(Context);
1755       break;
1756     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1757       ResultTy = Type::getBFloatTy(Context);
1758       break;
1759     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1760       ResultTy = Type::getFloatTy(Context);
1761       break;
1762     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1763       ResultTy = Type::getDoubleTy(Context);
1764       break;
1765     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1766       ResultTy = Type::getX86_FP80Ty(Context);
1767       break;
1768     case bitc::TYPE_CODE_FP128:     // FP128
1769       ResultTy = Type::getFP128Ty(Context);
1770       break;
1771     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1772       ResultTy = Type::getPPC_FP128Ty(Context);
1773       break;
1774     case bitc::TYPE_CODE_LABEL:     // LABEL
1775       ResultTy = Type::getLabelTy(Context);
1776       break;
1777     case bitc::TYPE_CODE_METADATA:  // METADATA
1778       ResultTy = Type::getMetadataTy(Context);
1779       break;
1780     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1781       ResultTy = Type::getX86_MMXTy(Context);
1782       break;
1783     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1784       ResultTy = Type::getX86_AMXTy(Context);
1785       break;
1786     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1787       ResultTy = Type::getTokenTy(Context);
1788       break;
1789     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1790       if (Record.empty())
1791         return error("Invalid record");
1792 
1793       uint64_t NumBits = Record[0];
1794       if (NumBits < IntegerType::MIN_INT_BITS ||
1795           NumBits > IntegerType::MAX_INT_BITS)
1796         return error("Bitwidth for integer type out of range");
1797       ResultTy = IntegerType::get(Context, NumBits);
1798       break;
1799     }
1800     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1801                                     //          [pointee type, address space]
1802       if (Record.empty())
1803         return error("Invalid record");
1804       unsigned AddressSpace = 0;
1805       if (Record.size() == 2)
1806         AddressSpace = Record[1];
1807       ResultTy = getTypeByID(Record[0]);
1808       if (!ResultTy ||
1809           !PointerType::isValidElementType(ResultTy))
1810         return error("Invalid type");
1811       ResultTy = PointerType::get(ResultTy, AddressSpace);
1812       break;
1813     }
1814     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1815       if (Record.size() != 1)
1816         return error("Invalid record");
1817       unsigned AddressSpace = Record[0];
1818       ResultTy = PointerType::get(Context, AddressSpace);
1819       break;
1820     }
1821     case bitc::TYPE_CODE_FUNCTION_OLD: {
1822       // Deprecated, but still needed to read old bitcode files.
1823       // FUNCTION: [vararg, attrid, retty, paramty x N]
1824       if (Record.size() < 3)
1825         return error("Invalid record");
1826       SmallVector<Type*, 8> ArgTys;
1827       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1828         if (Type *T = getTypeByID(Record[i]))
1829           ArgTys.push_back(T);
1830         else
1831           break;
1832       }
1833 
1834       ResultTy = getTypeByID(Record[2]);
1835       if (!ResultTy || ArgTys.size() < Record.size()-3)
1836         return error("Invalid type");
1837 
1838       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1839       break;
1840     }
1841     case bitc::TYPE_CODE_FUNCTION: {
1842       // FUNCTION: [vararg, retty, paramty x N]
1843       if (Record.size() < 2)
1844         return error("Invalid record");
1845       SmallVector<Type*, 8> ArgTys;
1846       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1847         if (Type *T = getTypeByID(Record[i])) {
1848           if (!FunctionType::isValidArgumentType(T))
1849             return error("Invalid function argument type");
1850           ArgTys.push_back(T);
1851         }
1852         else
1853           break;
1854       }
1855 
1856       ResultTy = getTypeByID(Record[1]);
1857       if (!ResultTy || ArgTys.size() < Record.size()-2)
1858         return error("Invalid type");
1859 
1860       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1861       break;
1862     }
1863     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1864       if (Record.empty())
1865         return error("Invalid record");
1866       SmallVector<Type*, 8> EltTys;
1867       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1868         if (Type *T = getTypeByID(Record[i]))
1869           EltTys.push_back(T);
1870         else
1871           break;
1872       }
1873       if (EltTys.size() != Record.size()-1)
1874         return error("Invalid type");
1875       ResultTy = StructType::get(Context, EltTys, Record[0]);
1876       break;
1877     }
1878     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1879       if (convertToString(Record, 0, TypeName))
1880         return error("Invalid record");
1881       continue;
1882 
1883     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1884       if (Record.empty())
1885         return error("Invalid record");
1886 
1887       if (NumRecords >= TypeList.size())
1888         return error("Invalid TYPE table");
1889 
1890       // Check to see if this was forward referenced, if so fill in the temp.
1891       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1892       if (Res) {
1893         Res->setName(TypeName);
1894         TypeList[NumRecords] = nullptr;
1895       } else  // Otherwise, create a new struct.
1896         Res = createIdentifiedStructType(Context, TypeName);
1897       TypeName.clear();
1898 
1899       SmallVector<Type*, 8> EltTys;
1900       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1901         if (Type *T = getTypeByID(Record[i]))
1902           EltTys.push_back(T);
1903         else
1904           break;
1905       }
1906       if (EltTys.size() != Record.size()-1)
1907         return error("Invalid record");
1908       Res->setBody(EltTys, Record[0]);
1909       ResultTy = Res;
1910       break;
1911     }
1912     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1913       if (Record.size() != 1)
1914         return error("Invalid record");
1915 
1916       if (NumRecords >= TypeList.size())
1917         return error("Invalid TYPE table");
1918 
1919       // Check to see if this was forward referenced, if so fill in the temp.
1920       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1921       if (Res) {
1922         Res->setName(TypeName);
1923         TypeList[NumRecords] = nullptr;
1924       } else  // Otherwise, create a new struct with no body.
1925         Res = createIdentifiedStructType(Context, TypeName);
1926       TypeName.clear();
1927       ResultTy = Res;
1928       break;
1929     }
1930     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1931       if (Record.size() < 2)
1932         return error("Invalid record");
1933       ResultTy = getTypeByID(Record[1]);
1934       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1935         return error("Invalid type");
1936       ResultTy = ArrayType::get(ResultTy, Record[0]);
1937       break;
1938     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1939                                     //         [numelts, eltty, scalable]
1940       if (Record.size() < 2)
1941         return error("Invalid record");
1942       if (Record[0] == 0)
1943         return error("Invalid vector length");
1944       ResultTy = getTypeByID(Record[1]);
1945       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1946         return error("Invalid type");
1947       bool Scalable = Record.size() > 2 ? Record[2] : false;
1948       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1949       break;
1950     }
1951 
1952     if (NumRecords >= TypeList.size())
1953       return error("Invalid TYPE table");
1954     if (TypeList[NumRecords])
1955       return error(
1956           "Invalid TYPE table: Only named structs can be forward referenced");
1957     assert(ResultTy && "Didn't read a type?");
1958     TypeList[NumRecords++] = ResultTy;
1959   }
1960 }
1961 
1962 Error BitcodeReader::parseOperandBundleTags() {
1963   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1964     return Err;
1965 
1966   if (!BundleTags.empty())
1967     return error("Invalid multiple blocks");
1968 
1969   SmallVector<uint64_t, 64> Record;
1970 
1971   while (true) {
1972     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1973     if (!MaybeEntry)
1974       return MaybeEntry.takeError();
1975     BitstreamEntry Entry = MaybeEntry.get();
1976 
1977     switch (Entry.Kind) {
1978     case BitstreamEntry::SubBlock: // Handled for us already.
1979     case BitstreamEntry::Error:
1980       return error("Malformed block");
1981     case BitstreamEntry::EndBlock:
1982       return Error::success();
1983     case BitstreamEntry::Record:
1984       // The interesting case.
1985       break;
1986     }
1987 
1988     // Tags are implicitly mapped to integers by their order.
1989 
1990     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1991     if (!MaybeRecord)
1992       return MaybeRecord.takeError();
1993     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1994       return error("Invalid record");
1995 
1996     // OPERAND_BUNDLE_TAG: [strchr x N]
1997     BundleTags.emplace_back();
1998     if (convertToString(Record, 0, BundleTags.back()))
1999       return error("Invalid record");
2000     Record.clear();
2001   }
2002 }
2003 
2004 Error BitcodeReader::parseSyncScopeNames() {
2005   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2006     return Err;
2007 
2008   if (!SSIDs.empty())
2009     return error("Invalid multiple synchronization scope names blocks");
2010 
2011   SmallVector<uint64_t, 64> Record;
2012   while (true) {
2013     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2014     if (!MaybeEntry)
2015       return MaybeEntry.takeError();
2016     BitstreamEntry Entry = MaybeEntry.get();
2017 
2018     switch (Entry.Kind) {
2019     case BitstreamEntry::SubBlock: // Handled for us already.
2020     case BitstreamEntry::Error:
2021       return error("Malformed block");
2022     case BitstreamEntry::EndBlock:
2023       if (SSIDs.empty())
2024         return error("Invalid empty synchronization scope names block");
2025       return Error::success();
2026     case BitstreamEntry::Record:
2027       // The interesting case.
2028       break;
2029     }
2030 
2031     // Synchronization scope names are implicitly mapped to synchronization
2032     // scope IDs by their order.
2033 
2034     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2035     if (!MaybeRecord)
2036       return MaybeRecord.takeError();
2037     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2038       return error("Invalid record");
2039 
2040     SmallString<16> SSN;
2041     if (convertToString(Record, 0, SSN))
2042       return error("Invalid record");
2043 
2044     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2045     Record.clear();
2046   }
2047 }
2048 
2049 /// Associate a value with its name from the given index in the provided record.
2050 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2051                                              unsigned NameIndex, Triple &TT) {
2052   SmallString<128> ValueName;
2053   if (convertToString(Record, NameIndex, ValueName))
2054     return error("Invalid record");
2055   unsigned ValueID = Record[0];
2056   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2057     return error("Invalid record");
2058   Value *V = ValueList[ValueID];
2059 
2060   StringRef NameStr(ValueName.data(), ValueName.size());
2061   if (NameStr.find_first_of(0) != StringRef::npos)
2062     return error("Invalid value name");
2063   V->setName(NameStr);
2064   auto *GO = dyn_cast<GlobalObject>(V);
2065   if (GO) {
2066     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2067       if (TT.supportsCOMDAT())
2068         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2069       else
2070         GO->setComdat(nullptr);
2071     }
2072   }
2073   return V;
2074 }
2075 
2076 /// Helper to note and return the current location, and jump to the given
2077 /// offset.
2078 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2079                                                  BitstreamCursor &Stream) {
2080   // Save the current parsing location so we can jump back at the end
2081   // of the VST read.
2082   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2083   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2084     return std::move(JumpFailed);
2085   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2086   if (!MaybeEntry)
2087     return MaybeEntry.takeError();
2088   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2089   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2090   return CurrentBit;
2091 }
2092 
2093 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2094                                             Function *F,
2095                                             ArrayRef<uint64_t> Record) {
2096   // Note that we subtract 1 here because the offset is relative to one word
2097   // before the start of the identification or module block, which was
2098   // historically always the start of the regular bitcode header.
2099   uint64_t FuncWordOffset = Record[1] - 1;
2100   uint64_t FuncBitOffset = FuncWordOffset * 32;
2101   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2102   // Set the LastFunctionBlockBit to point to the last function block.
2103   // Later when parsing is resumed after function materialization,
2104   // we can simply skip that last function block.
2105   if (FuncBitOffset > LastFunctionBlockBit)
2106     LastFunctionBlockBit = FuncBitOffset;
2107 }
2108 
2109 /// Read a new-style GlobalValue symbol table.
2110 Error BitcodeReader::parseGlobalValueSymbolTable() {
2111   unsigned FuncBitcodeOffsetDelta =
2112       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2113 
2114   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2115     return Err;
2116 
2117   SmallVector<uint64_t, 64> Record;
2118   while (true) {
2119     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2120     if (!MaybeEntry)
2121       return MaybeEntry.takeError();
2122     BitstreamEntry Entry = MaybeEntry.get();
2123 
2124     switch (Entry.Kind) {
2125     case BitstreamEntry::SubBlock:
2126     case BitstreamEntry::Error:
2127       return error("Malformed block");
2128     case BitstreamEntry::EndBlock:
2129       return Error::success();
2130     case BitstreamEntry::Record:
2131       break;
2132     }
2133 
2134     Record.clear();
2135     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2136     if (!MaybeRecord)
2137       return MaybeRecord.takeError();
2138     switch (MaybeRecord.get()) {
2139     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2140       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2141                               cast<Function>(ValueList[Record[0]]), Record);
2142       break;
2143     }
2144   }
2145 }
2146 
2147 /// Parse the value symbol table at either the current parsing location or
2148 /// at the given bit offset if provided.
2149 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2150   uint64_t CurrentBit;
2151   // Pass in the Offset to distinguish between calling for the module-level
2152   // VST (where we want to jump to the VST offset) and the function-level
2153   // VST (where we don't).
2154   if (Offset > 0) {
2155     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2156     if (!MaybeCurrentBit)
2157       return MaybeCurrentBit.takeError();
2158     CurrentBit = MaybeCurrentBit.get();
2159     // If this module uses a string table, read this as a module-level VST.
2160     if (UseStrtab) {
2161       if (Error Err = parseGlobalValueSymbolTable())
2162         return Err;
2163       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2164         return JumpFailed;
2165       return Error::success();
2166     }
2167     // Otherwise, the VST will be in a similar format to a function-level VST,
2168     // and will contain symbol names.
2169   }
2170 
2171   // Compute the delta between the bitcode indices in the VST (the word offset
2172   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2173   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2174   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2175   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2176   // just before entering the VST subblock because: 1) the EnterSubBlock
2177   // changes the AbbrevID width; 2) the VST block is nested within the same
2178   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2179   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2180   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2181   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2182   unsigned FuncBitcodeOffsetDelta =
2183       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2184 
2185   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2186     return Err;
2187 
2188   SmallVector<uint64_t, 64> Record;
2189 
2190   Triple TT(TheModule->getTargetTriple());
2191 
2192   // Read all the records for this value table.
2193   SmallString<128> ValueName;
2194 
2195   while (true) {
2196     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2197     if (!MaybeEntry)
2198       return MaybeEntry.takeError();
2199     BitstreamEntry Entry = MaybeEntry.get();
2200 
2201     switch (Entry.Kind) {
2202     case BitstreamEntry::SubBlock: // Handled for us already.
2203     case BitstreamEntry::Error:
2204       return error("Malformed block");
2205     case BitstreamEntry::EndBlock:
2206       if (Offset > 0)
2207         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2208           return JumpFailed;
2209       return Error::success();
2210     case BitstreamEntry::Record:
2211       // The interesting case.
2212       break;
2213     }
2214 
2215     // Read a record.
2216     Record.clear();
2217     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2218     if (!MaybeRecord)
2219       return MaybeRecord.takeError();
2220     switch (MaybeRecord.get()) {
2221     default:  // Default behavior: unknown type.
2222       break;
2223     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2224       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2225       if (Error Err = ValOrErr.takeError())
2226         return Err;
2227       ValOrErr.get();
2228       break;
2229     }
2230     case bitc::VST_CODE_FNENTRY: {
2231       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2232       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2233       if (Error Err = ValOrErr.takeError())
2234         return Err;
2235       Value *V = ValOrErr.get();
2236 
2237       // Ignore function offsets emitted for aliases of functions in older
2238       // versions of LLVM.
2239       if (auto *F = dyn_cast<Function>(V))
2240         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2241       break;
2242     }
2243     case bitc::VST_CODE_BBENTRY: {
2244       if (convertToString(Record, 1, ValueName))
2245         return error("Invalid record");
2246       BasicBlock *BB = getBasicBlock(Record[0]);
2247       if (!BB)
2248         return error("Invalid record");
2249 
2250       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2251       ValueName.clear();
2252       break;
2253     }
2254     }
2255   }
2256 }
2257 
2258 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2259 /// encoding.
2260 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2261   if ((V & 1) == 0)
2262     return V >> 1;
2263   if (V != 1)
2264     return -(V >> 1);
2265   // There is no such thing as -0 with integers.  "-0" really means MININT.
2266   return 1ULL << 63;
2267 }
2268 
2269 /// Resolve all of the initializers for global values and aliases that we can.
2270 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2271   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2272   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2273       IndirectSymbolInitWorklist;
2274   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2275   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2276   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2277 
2278   GlobalInitWorklist.swap(GlobalInits);
2279   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2280   FunctionPrefixWorklist.swap(FunctionPrefixes);
2281   FunctionPrologueWorklist.swap(FunctionPrologues);
2282   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2283 
2284   while (!GlobalInitWorklist.empty()) {
2285     unsigned ValID = GlobalInitWorklist.back().second;
2286     if (ValID >= ValueList.size()) {
2287       // Not ready to resolve this yet, it requires something later in the file.
2288       GlobalInits.push_back(GlobalInitWorklist.back());
2289     } else {
2290       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291         GlobalInitWorklist.back().first->setInitializer(C);
2292       else
2293         return error("Expected a constant");
2294     }
2295     GlobalInitWorklist.pop_back();
2296   }
2297 
2298   while (!IndirectSymbolInitWorklist.empty()) {
2299     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2300     if (ValID >= ValueList.size()) {
2301       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2302     } else {
2303       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2304       if (!C)
2305         return error("Expected a constant");
2306       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2307       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2308         return error("Alias and aliasee types don't match");
2309       GIS->setIndirectSymbol(C);
2310     }
2311     IndirectSymbolInitWorklist.pop_back();
2312   }
2313 
2314   while (!FunctionPrefixWorklist.empty()) {
2315     unsigned ValID = FunctionPrefixWorklist.back().second;
2316     if (ValID >= ValueList.size()) {
2317       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2318     } else {
2319       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2320         FunctionPrefixWorklist.back().first->setPrefixData(C);
2321       else
2322         return error("Expected a constant");
2323     }
2324     FunctionPrefixWorklist.pop_back();
2325   }
2326 
2327   while (!FunctionPrologueWorklist.empty()) {
2328     unsigned ValID = FunctionPrologueWorklist.back().second;
2329     if (ValID >= ValueList.size()) {
2330       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2331     } else {
2332       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2333         FunctionPrologueWorklist.back().first->setPrologueData(C);
2334       else
2335         return error("Expected a constant");
2336     }
2337     FunctionPrologueWorklist.pop_back();
2338   }
2339 
2340   while (!FunctionPersonalityFnWorklist.empty()) {
2341     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2342     if (ValID >= ValueList.size()) {
2343       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2344     } else {
2345       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2346         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2347       else
2348         return error("Expected a constant");
2349     }
2350     FunctionPersonalityFnWorklist.pop_back();
2351   }
2352 
2353   return Error::success();
2354 }
2355 
2356 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2357   SmallVector<uint64_t, 8> Words(Vals.size());
2358   transform(Vals, Words.begin(),
2359                  BitcodeReader::decodeSignRotatedValue);
2360 
2361   return APInt(TypeBits, Words);
2362 }
2363 
2364 Error BitcodeReader::parseConstants() {
2365   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2366     return Err;
2367 
2368   SmallVector<uint64_t, 64> Record;
2369 
2370   // Read all the records for this value table.
2371   Type *CurTy = Type::getInt32Ty(Context);
2372   Type *CurFullTy = Type::getInt32Ty(Context);
2373   unsigned NextCstNo = ValueList.size();
2374 
2375   struct DelayedShufTy {
2376     VectorType *OpTy;
2377     VectorType *RTy;
2378     Type *CurFullTy;
2379     uint64_t Op0Idx;
2380     uint64_t Op1Idx;
2381     uint64_t Op2Idx;
2382     unsigned CstNo;
2383   };
2384   std::vector<DelayedShufTy> DelayedShuffles;
2385   while (true) {
2386     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2387     if (!MaybeEntry)
2388       return MaybeEntry.takeError();
2389     BitstreamEntry Entry = MaybeEntry.get();
2390 
2391     switch (Entry.Kind) {
2392     case BitstreamEntry::SubBlock: // Handled for us already.
2393     case BitstreamEntry::Error:
2394       return error("Malformed block");
2395     case BitstreamEntry::EndBlock:
2396       // Once all the constants have been read, go through and resolve forward
2397       // references.
2398       //
2399       // We have to treat shuffles specially because they don't have three
2400       // operands anymore.  We need to convert the shuffle mask into an array,
2401       // and we can't convert a forward reference.
2402       for (auto &DelayedShuffle : DelayedShuffles) {
2403         VectorType *OpTy = DelayedShuffle.OpTy;
2404         VectorType *RTy = DelayedShuffle.RTy;
2405         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2406         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2407         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2408         uint64_t CstNo = DelayedShuffle.CstNo;
2409         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2410         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2411         Type *ShufTy =
2412             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2413         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2414         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2415           return error("Invalid shufflevector operands");
2416         SmallVector<int, 16> Mask;
2417         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2418         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2419         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2420       }
2421 
2422       if (NextCstNo != ValueList.size())
2423         return error("Invalid constant reference");
2424 
2425       ValueList.resolveConstantForwardRefs();
2426       return Error::success();
2427     case BitstreamEntry::Record:
2428       // The interesting case.
2429       break;
2430     }
2431 
2432     // Read a record.
2433     Record.clear();
2434     Type *VoidType = Type::getVoidTy(Context);
2435     Value *V = nullptr;
2436     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2437     if (!MaybeBitCode)
2438       return MaybeBitCode.takeError();
2439     switch (unsigned BitCode = MaybeBitCode.get()) {
2440     default:  // Default behavior: unknown constant
2441     case bitc::CST_CODE_UNDEF:     // UNDEF
2442       V = UndefValue::get(CurTy);
2443       break;
2444     case bitc::CST_CODE_POISON:    // POISON
2445       V = PoisonValue::get(CurTy);
2446       break;
2447     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2448       if (Record.empty())
2449         return error("Invalid record");
2450       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2451         return error("Invalid record");
2452       if (TypeList[Record[0]] == VoidType)
2453         return error("Invalid constant type");
2454       CurFullTy = TypeList[Record[0]];
2455       CurTy = flattenPointerTypes(CurFullTy);
2456       continue;  // Skip the ValueList manipulation.
2457     case bitc::CST_CODE_NULL:      // NULL
2458       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2459         return error("Invalid type for a constant null value");
2460       V = Constant::getNullValue(CurTy);
2461       break;
2462     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2463       if (!CurTy->isIntegerTy() || Record.empty())
2464         return error("Invalid record");
2465       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2466       break;
2467     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2468       if (!CurTy->isIntegerTy() || Record.empty())
2469         return error("Invalid record");
2470 
2471       APInt VInt =
2472           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2473       V = ConstantInt::get(Context, VInt);
2474 
2475       break;
2476     }
2477     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2478       if (Record.empty())
2479         return error("Invalid record");
2480       if (CurTy->isHalfTy())
2481         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2482                                              APInt(16, (uint16_t)Record[0])));
2483       else if (CurTy->isBFloatTy())
2484         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2485                                              APInt(16, (uint32_t)Record[0])));
2486       else if (CurTy->isFloatTy())
2487         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2488                                              APInt(32, (uint32_t)Record[0])));
2489       else if (CurTy->isDoubleTy())
2490         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2491                                              APInt(64, Record[0])));
2492       else if (CurTy->isX86_FP80Ty()) {
2493         // Bits are not stored the same way as a normal i80 APInt, compensate.
2494         uint64_t Rearrange[2];
2495         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2496         Rearrange[1] = Record[0] >> 48;
2497         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2498                                              APInt(80, Rearrange)));
2499       } else if (CurTy->isFP128Ty())
2500         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2501                                              APInt(128, Record)));
2502       else if (CurTy->isPPC_FP128Ty())
2503         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2504                                              APInt(128, Record)));
2505       else
2506         V = UndefValue::get(CurTy);
2507       break;
2508     }
2509 
2510     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2511       if (Record.empty())
2512         return error("Invalid record");
2513 
2514       unsigned Size = Record.size();
2515       SmallVector<Constant*, 16> Elts;
2516 
2517       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2518         for (unsigned i = 0; i != Size; ++i)
2519           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2520                                                      STy->getElementType(i)));
2521         V = ConstantStruct::get(STy, Elts);
2522       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2523         Type *EltTy = ATy->getElementType();
2524         for (unsigned i = 0; i != Size; ++i)
2525           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2526         V = ConstantArray::get(ATy, Elts);
2527       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2528         Type *EltTy = VTy->getElementType();
2529         for (unsigned i = 0; i != Size; ++i)
2530           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2531         V = ConstantVector::get(Elts);
2532       } else {
2533         V = UndefValue::get(CurTy);
2534       }
2535       break;
2536     }
2537     case bitc::CST_CODE_STRING:    // STRING: [values]
2538     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2539       if (Record.empty())
2540         return error("Invalid record");
2541 
2542       SmallString<16> Elts(Record.begin(), Record.end());
2543       V = ConstantDataArray::getString(Context, Elts,
2544                                        BitCode == bitc::CST_CODE_CSTRING);
2545       break;
2546     }
2547     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2548       if (Record.empty())
2549         return error("Invalid record");
2550 
2551       Type *EltTy;
2552       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2553         EltTy = Array->getElementType();
2554       else
2555         EltTy = cast<VectorType>(CurTy)->getElementType();
2556       if (EltTy->isIntegerTy(8)) {
2557         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2558         if (isa<VectorType>(CurTy))
2559           V = ConstantDataVector::get(Context, Elts);
2560         else
2561           V = ConstantDataArray::get(Context, Elts);
2562       } else if (EltTy->isIntegerTy(16)) {
2563         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::get(Context, Elts);
2566         else
2567           V = ConstantDataArray::get(Context, Elts);
2568       } else if (EltTy->isIntegerTy(32)) {
2569         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::get(Context, Elts);
2572         else
2573           V = ConstantDataArray::get(Context, Elts);
2574       } else if (EltTy->isIntegerTy(64)) {
2575         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2576         if (isa<VectorType>(CurTy))
2577           V = ConstantDataVector::get(Context, Elts);
2578         else
2579           V = ConstantDataArray::get(Context, Elts);
2580       } else if (EltTy->isHalfTy()) {
2581         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2582         if (isa<VectorType>(CurTy))
2583           V = ConstantDataVector::getFP(EltTy, Elts);
2584         else
2585           V = ConstantDataArray::getFP(EltTy, Elts);
2586       } else if (EltTy->isBFloatTy()) {
2587         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2588         if (isa<VectorType>(CurTy))
2589           V = ConstantDataVector::getFP(EltTy, Elts);
2590         else
2591           V = ConstantDataArray::getFP(EltTy, Elts);
2592       } else if (EltTy->isFloatTy()) {
2593         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2594         if (isa<VectorType>(CurTy))
2595           V = ConstantDataVector::getFP(EltTy, Elts);
2596         else
2597           V = ConstantDataArray::getFP(EltTy, Elts);
2598       } else if (EltTy->isDoubleTy()) {
2599         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2600         if (isa<VectorType>(CurTy))
2601           V = ConstantDataVector::getFP(EltTy, Elts);
2602         else
2603           V = ConstantDataArray::getFP(EltTy, Elts);
2604       } else {
2605         return error("Invalid type for value");
2606       }
2607       break;
2608     }
2609     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2610       if (Record.size() < 2)
2611         return error("Invalid record");
2612       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2613       if (Opc < 0) {
2614         V = UndefValue::get(CurTy);  // Unknown unop.
2615       } else {
2616         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2617         unsigned Flags = 0;
2618         V = ConstantExpr::get(Opc, LHS, Flags);
2619       }
2620       break;
2621     }
2622     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2623       if (Record.size() < 3)
2624         return error("Invalid record");
2625       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2626       if (Opc < 0) {
2627         V = UndefValue::get(CurTy);  // Unknown binop.
2628       } else {
2629         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2630         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2631         unsigned Flags = 0;
2632         if (Record.size() >= 4) {
2633           if (Opc == Instruction::Add ||
2634               Opc == Instruction::Sub ||
2635               Opc == Instruction::Mul ||
2636               Opc == Instruction::Shl) {
2637             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2638               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2639             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2640               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2641           } else if (Opc == Instruction::SDiv ||
2642                      Opc == Instruction::UDiv ||
2643                      Opc == Instruction::LShr ||
2644                      Opc == Instruction::AShr) {
2645             if (Record[3] & (1 << bitc::PEO_EXACT))
2646               Flags |= SDivOperator::IsExact;
2647           }
2648         }
2649         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2650       }
2651       break;
2652     }
2653     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2654       if (Record.size() < 3)
2655         return error("Invalid record");
2656       int Opc = getDecodedCastOpcode(Record[0]);
2657       if (Opc < 0) {
2658         V = UndefValue::get(CurTy);  // Unknown cast.
2659       } else {
2660         Type *OpTy = getTypeByID(Record[1]);
2661         if (!OpTy)
2662           return error("Invalid record");
2663         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2664         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2665         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2666       }
2667       break;
2668     }
2669     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2670     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2672                                                      // operands]
2673       unsigned OpNum = 0;
2674       Type *PointeeType = nullptr;
2675       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2676           Record.size() % 2)
2677         PointeeType = getTypeByID(Record[OpNum++]);
2678 
2679       bool InBounds = false;
2680       Optional<unsigned> InRangeIndex;
2681       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2682         uint64_t Op = Record[OpNum++];
2683         InBounds = Op & 1;
2684         InRangeIndex = Op >> 1;
2685       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2686         InBounds = true;
2687 
2688       SmallVector<Constant*, 16> Elts;
2689       Type *Elt0FullTy = nullptr;
2690       while (OpNum != Record.size()) {
2691         if (!Elt0FullTy)
2692           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2693         Type *ElTy = getTypeByID(Record[OpNum++]);
2694         if (!ElTy)
2695           return error("Invalid record");
2696         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2697       }
2698 
2699       if (Elts.size() < 1)
2700         return error("Invalid gep with no operands");
2701 
2702       Type *ImplicitPointeeType =
2703           getPointerElementFlatType(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = ImplicitPointeeType;
2706       else if (PointeeType != ImplicitPointeeType)
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       Type *SelectorTy = Type::getInt1Ty(Context);
2720 
2721       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2722       // Get the type from the ValueList before getting a forward ref.
2723       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2724         if (Value *V = ValueList[Record[0]])
2725           if (SelectorTy != V->getType())
2726             SelectorTy = VectorType::get(SelectorTy,
2727                                          VTy->getElementCount());
2728 
2729       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2730                                                               SelectorTy),
2731                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2732                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2733       break;
2734     }
2735     case bitc::CST_CODE_CE_EXTRACTELT
2736         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2737       if (Record.size() < 3)
2738         return error("Invalid record");
2739       VectorType *OpTy =
2740         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2741       if (!OpTy)
2742         return error("Invalid record");
2743       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2744       Constant *Op1 = nullptr;
2745       if (Record.size() == 4) {
2746         Type *IdxTy = getTypeByID(Record[2]);
2747         if (!IdxTy)
2748           return error("Invalid record");
2749         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2750       } else {
2751         // Deprecated, but still needed to read old bitcode files.
2752         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2753       }
2754       if (!Op1)
2755         return error("Invalid record");
2756       V = ConstantExpr::getExtractElement(Op0, Op1);
2757       break;
2758     }
2759     case bitc::CST_CODE_CE_INSERTELT
2760         : { // CE_INSERTELT: [opval, opval, opty, opval]
2761       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2762       if (Record.size() < 3 || !OpTy)
2763         return error("Invalid record");
2764       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2765       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2766                                                   OpTy->getElementType());
2767       Constant *Op2 = nullptr;
2768       if (Record.size() == 4) {
2769         Type *IdxTy = getTypeByID(Record[2]);
2770         if (!IdxTy)
2771           return error("Invalid record");
2772         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2773       } else {
2774         // Deprecated, but still needed to read old bitcode files.
2775         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2776       }
2777       if (!Op2)
2778         return error("Invalid record");
2779       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2780       break;
2781     }
2782     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2783       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2784       if (Record.size() < 3 || !OpTy)
2785         return error("Invalid record");
2786       DelayedShuffles.push_back(
2787           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2788       ++NextCstNo;
2789       continue;
2790     }
2791     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2792       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2793       VectorType *OpTy =
2794         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2795       if (Record.size() < 4 || !RTy || !OpTy)
2796         return error("Invalid record");
2797       DelayedShuffles.push_back(
2798           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2799       ++NextCstNo;
2800       continue;
2801     }
2802     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2803       if (Record.size() < 4)
2804         return error("Invalid record");
2805       Type *OpTy = getTypeByID(Record[0]);
2806       if (!OpTy)
2807         return error("Invalid record");
2808       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2809       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2810 
2811       if (OpTy->isFPOrFPVectorTy())
2812         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2813       else
2814         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2815       break;
2816     }
2817     // This maintains backward compatibility, pre-asm dialect keywords.
2818     // Deprecated, but still needed to read old bitcode files.
2819     case bitc::CST_CODE_INLINEASM_OLD: {
2820       if (Record.size() < 2)
2821         return error("Invalid record");
2822       std::string AsmStr, ConstrStr;
2823       bool HasSideEffects = Record[0] & 1;
2824       bool IsAlignStack = Record[0] >> 1;
2825       unsigned AsmStrSize = Record[1];
2826       if (2+AsmStrSize >= Record.size())
2827         return error("Invalid record");
2828       unsigned ConstStrSize = Record[2+AsmStrSize];
2829       if (3+AsmStrSize+ConstStrSize > Record.size())
2830         return error("Invalid record");
2831 
2832       for (unsigned i = 0; i != AsmStrSize; ++i)
2833         AsmStr += (char)Record[2+i];
2834       for (unsigned i = 0; i != ConstStrSize; ++i)
2835         ConstrStr += (char)Record[3+AsmStrSize+i];
2836       UpgradeInlineAsmString(&AsmStr);
2837       V = InlineAsm::get(
2838           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2839           ConstrStr, HasSideEffects, IsAlignStack);
2840       break;
2841     }
2842     // This version adds support for the asm dialect keywords (e.g.,
2843     // inteldialect).
2844     case bitc::CST_CODE_INLINEASM_OLD2: {
2845       if (Record.size() < 2)
2846         return error("Invalid record");
2847       std::string AsmStr, ConstrStr;
2848       bool HasSideEffects = Record[0] & 1;
2849       bool IsAlignStack = (Record[0] >> 1) & 1;
2850       unsigned AsmDialect = Record[0] >> 2;
2851       unsigned AsmStrSize = Record[1];
2852       if (2+AsmStrSize >= Record.size())
2853         return error("Invalid record");
2854       unsigned ConstStrSize = Record[2+AsmStrSize];
2855       if (3+AsmStrSize+ConstStrSize > Record.size())
2856         return error("Invalid record");
2857 
2858       for (unsigned i = 0; i != AsmStrSize; ++i)
2859         AsmStr += (char)Record[2+i];
2860       for (unsigned i = 0; i != ConstStrSize; ++i)
2861         ConstrStr += (char)Record[3+AsmStrSize+i];
2862       UpgradeInlineAsmString(&AsmStr);
2863       V = InlineAsm::get(
2864           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2865           ConstrStr, HasSideEffects, IsAlignStack,
2866           InlineAsm::AsmDialect(AsmDialect));
2867       break;
2868     }
2869     // This version adds support for the unwind keyword.
2870     case bitc::CST_CODE_INLINEASM: {
2871       if (Record.size() < 2)
2872         return error("Invalid record");
2873       std::string AsmStr, ConstrStr;
2874       bool HasSideEffects = Record[0] & 1;
2875       bool IsAlignStack = (Record[0] >> 1) & 1;
2876       unsigned AsmDialect = (Record[0] >> 2) & 1;
2877       bool CanThrow = (Record[0] >> 3) & 1;
2878       unsigned AsmStrSize = Record[1];
2879       if (2 + AsmStrSize >= Record.size())
2880         return error("Invalid record");
2881       unsigned ConstStrSize = Record[2 + AsmStrSize];
2882       if (3 + AsmStrSize + ConstStrSize > Record.size())
2883         return error("Invalid record");
2884 
2885       for (unsigned i = 0; i != AsmStrSize; ++i)
2886         AsmStr += (char)Record[2 + i];
2887       for (unsigned i = 0; i != ConstStrSize; ++i)
2888         ConstrStr += (char)Record[3 + AsmStrSize + i];
2889       UpgradeInlineAsmString(&AsmStr);
2890       V = InlineAsm::get(
2891           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2892           ConstrStr, HasSideEffects, IsAlignStack,
2893           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2894       break;
2895     }
2896     case bitc::CST_CODE_BLOCKADDRESS:{
2897       if (Record.size() < 3)
2898         return error("Invalid record");
2899       Type *FnTy = getTypeByID(Record[0]);
2900       if (!FnTy)
2901         return error("Invalid record");
2902       Function *Fn =
2903         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2904       if (!Fn)
2905         return error("Invalid record");
2906 
2907       // If the function is already parsed we can insert the block address right
2908       // away.
2909       BasicBlock *BB;
2910       unsigned BBID = Record[2];
2911       if (!BBID)
2912         // Invalid reference to entry block.
2913         return error("Invalid ID");
2914       if (!Fn->empty()) {
2915         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2916         for (size_t I = 0, E = BBID; I != E; ++I) {
2917           if (BBI == BBE)
2918             return error("Invalid ID");
2919           ++BBI;
2920         }
2921         BB = &*BBI;
2922       } else {
2923         // Otherwise insert a placeholder and remember it so it can be inserted
2924         // when the function is parsed.
2925         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2926         if (FwdBBs.empty())
2927           BasicBlockFwdRefQueue.push_back(Fn);
2928         if (FwdBBs.size() < BBID + 1)
2929           FwdBBs.resize(BBID + 1);
2930         if (!FwdBBs[BBID])
2931           FwdBBs[BBID] = BasicBlock::Create(Context);
2932         BB = FwdBBs[BBID];
2933       }
2934       V = BlockAddress::get(Fn, BB);
2935       break;
2936     }
2937     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2938       if (Record.size() < 2)
2939         return error("Invalid record");
2940       Type *GVTy = getTypeByID(Record[0]);
2941       if (!GVTy)
2942         return error("Invalid record");
2943       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2944           ValueList.getConstantFwdRef(Record[1], GVTy));
2945       if (!GV)
2946         return error("Invalid record");
2947 
2948       V = DSOLocalEquivalent::get(GV);
2949       break;
2950     }
2951     }
2952 
2953     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2954            "Incorrect fully structured type provided for Constant");
2955     ValueList.assignValue(V, NextCstNo, CurFullTy);
2956     ++NextCstNo;
2957   }
2958 }
2959 
2960 Error BitcodeReader::parseUseLists() {
2961   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2962     return Err;
2963 
2964   // Read all the records.
2965   SmallVector<uint64_t, 64> Record;
2966 
2967   while (true) {
2968     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2969     if (!MaybeEntry)
2970       return MaybeEntry.takeError();
2971     BitstreamEntry Entry = MaybeEntry.get();
2972 
2973     switch (Entry.Kind) {
2974     case BitstreamEntry::SubBlock: // Handled for us already.
2975     case BitstreamEntry::Error:
2976       return error("Malformed block");
2977     case BitstreamEntry::EndBlock:
2978       return Error::success();
2979     case BitstreamEntry::Record:
2980       // The interesting case.
2981       break;
2982     }
2983 
2984     // Read a use list record.
2985     Record.clear();
2986     bool IsBB = false;
2987     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2988     if (!MaybeRecord)
2989       return MaybeRecord.takeError();
2990     switch (MaybeRecord.get()) {
2991     default:  // Default behavior: unknown type.
2992       break;
2993     case bitc::USELIST_CODE_BB:
2994       IsBB = true;
2995       LLVM_FALLTHROUGH;
2996     case bitc::USELIST_CODE_DEFAULT: {
2997       unsigned RecordLength = Record.size();
2998       if (RecordLength < 3)
2999         // Records should have at least an ID and two indexes.
3000         return error("Invalid record");
3001       unsigned ID = Record.pop_back_val();
3002 
3003       Value *V;
3004       if (IsBB) {
3005         assert(ID < FunctionBBs.size() && "Basic block not found");
3006         V = FunctionBBs[ID];
3007       } else
3008         V = ValueList[ID];
3009       unsigned NumUses = 0;
3010       SmallDenseMap<const Use *, unsigned, 16> Order;
3011       for (const Use &U : V->materialized_uses()) {
3012         if (++NumUses > Record.size())
3013           break;
3014         Order[&U] = Record[NumUses - 1];
3015       }
3016       if (Order.size() != Record.size() || NumUses > Record.size())
3017         // Mismatches can happen if the functions are being materialized lazily
3018         // (out-of-order), or a value has been upgraded.
3019         break;
3020 
3021       V->sortUseList([&](const Use &L, const Use &R) {
3022         return Order.lookup(&L) < Order.lookup(&R);
3023       });
3024       break;
3025     }
3026     }
3027   }
3028 }
3029 
3030 /// When we see the block for metadata, remember where it is and then skip it.
3031 /// This lets us lazily deserialize the metadata.
3032 Error BitcodeReader::rememberAndSkipMetadata() {
3033   // Save the current stream state.
3034   uint64_t CurBit = Stream.GetCurrentBitNo();
3035   DeferredMetadataInfo.push_back(CurBit);
3036 
3037   // Skip over the block for now.
3038   if (Error Err = Stream.SkipBlock())
3039     return Err;
3040   return Error::success();
3041 }
3042 
3043 Error BitcodeReader::materializeMetadata() {
3044   for (uint64_t BitPos : DeferredMetadataInfo) {
3045     // Move the bit stream to the saved position.
3046     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3047       return JumpFailed;
3048     if (Error Err = MDLoader->parseModuleMetadata())
3049       return Err;
3050   }
3051 
3052   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3053   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3054   // multiple times.
3055   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3056     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3057       NamedMDNode *LinkerOpts =
3058           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3059       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3060         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3061     }
3062   }
3063 
3064   DeferredMetadataInfo.clear();
3065   return Error::success();
3066 }
3067 
3068 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3069 
3070 /// When we see the block for a function body, remember where it is and then
3071 /// skip it.  This lets us lazily deserialize the functions.
3072 Error BitcodeReader::rememberAndSkipFunctionBody() {
3073   // Get the function we are talking about.
3074   if (FunctionsWithBodies.empty())
3075     return error("Insufficient function protos");
3076 
3077   Function *Fn = FunctionsWithBodies.back();
3078   FunctionsWithBodies.pop_back();
3079 
3080   // Save the current stream state.
3081   uint64_t CurBit = Stream.GetCurrentBitNo();
3082   assert(
3083       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3084       "Mismatch between VST and scanned function offsets");
3085   DeferredFunctionInfo[Fn] = CurBit;
3086 
3087   // Skip over the function block for now.
3088   if (Error Err = Stream.SkipBlock())
3089     return Err;
3090   return Error::success();
3091 }
3092 
3093 Error BitcodeReader::globalCleanup() {
3094   // Patch the initializers for globals and aliases up.
3095   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3096     return Err;
3097   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3098     return error("Malformed global initializer set");
3099 
3100   // Look for intrinsic functions which need to be upgraded at some point
3101   // and functions that need to have their function attributes upgraded.
3102   for (Function &F : *TheModule) {
3103     MDLoader->upgradeDebugIntrinsics(F);
3104     Function *NewFn;
3105     if (UpgradeIntrinsicFunction(&F, NewFn))
3106       UpgradedIntrinsics[&F] = NewFn;
3107     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3108       // Some types could be renamed during loading if several modules are
3109       // loaded in the same LLVMContext (LTO scenario). In this case we should
3110       // remangle intrinsics names as well.
3111       RemangledIntrinsics[&F] = Remangled.getValue();
3112     // Look for functions that rely on old function attribute behavior.
3113     UpgradeFunctionAttributes(F);
3114   }
3115 
3116   // Look for global variables which need to be renamed.
3117   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3118   for (GlobalVariable &GV : TheModule->globals())
3119     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3120       UpgradedVariables.emplace_back(&GV, Upgraded);
3121   for (auto &Pair : UpgradedVariables) {
3122     Pair.first->eraseFromParent();
3123     TheModule->getGlobalList().push_back(Pair.second);
3124   }
3125 
3126   // Force deallocation of memory for these vectors to favor the client that
3127   // want lazy deserialization.
3128   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3129   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3130       IndirectSymbolInits);
3131   return Error::success();
3132 }
3133 
3134 /// Support for lazy parsing of function bodies. This is required if we
3135 /// either have an old bitcode file without a VST forward declaration record,
3136 /// or if we have an anonymous function being materialized, since anonymous
3137 /// functions do not have a name and are therefore not in the VST.
3138 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3139   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3140     return JumpFailed;
3141 
3142   if (Stream.AtEndOfStream())
3143     return error("Could not find function in stream");
3144 
3145   if (!SeenFirstFunctionBody)
3146     return error("Trying to materialize functions before seeing function blocks");
3147 
3148   // An old bitcode file with the symbol table at the end would have
3149   // finished the parse greedily.
3150   assert(SeenValueSymbolTable);
3151 
3152   SmallVector<uint64_t, 64> Record;
3153 
3154   while (true) {
3155     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3156     if (!MaybeEntry)
3157       return MaybeEntry.takeError();
3158     llvm::BitstreamEntry Entry = MaybeEntry.get();
3159 
3160     switch (Entry.Kind) {
3161     default:
3162       return error("Expect SubBlock");
3163     case BitstreamEntry::SubBlock:
3164       switch (Entry.ID) {
3165       default:
3166         return error("Expect function block");
3167       case bitc::FUNCTION_BLOCK_ID:
3168         if (Error Err = rememberAndSkipFunctionBody())
3169           return Err;
3170         NextUnreadBit = Stream.GetCurrentBitNo();
3171         return Error::success();
3172       }
3173     }
3174   }
3175 }
3176 
3177 bool BitcodeReaderBase::readBlockInfo() {
3178   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3179       Stream.ReadBlockInfoBlock();
3180   if (!MaybeNewBlockInfo)
3181     return true; // FIXME Handle the error.
3182   Optional<BitstreamBlockInfo> NewBlockInfo =
3183       std::move(MaybeNewBlockInfo.get());
3184   if (!NewBlockInfo)
3185     return true;
3186   BlockInfo = std::move(*NewBlockInfo);
3187   return false;
3188 }
3189 
3190 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3191   // v1: [selection_kind, name]
3192   // v2: [strtab_offset, strtab_size, selection_kind]
3193   StringRef Name;
3194   std::tie(Name, Record) = readNameFromStrtab(Record);
3195 
3196   if (Record.empty())
3197     return error("Invalid record");
3198   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3199   std::string OldFormatName;
3200   if (!UseStrtab) {
3201     if (Record.size() < 2)
3202       return error("Invalid record");
3203     unsigned ComdatNameSize = Record[1];
3204     OldFormatName.reserve(ComdatNameSize);
3205     for (unsigned i = 0; i != ComdatNameSize; ++i)
3206       OldFormatName += (char)Record[2 + i];
3207     Name = OldFormatName;
3208   }
3209   Comdat *C = TheModule->getOrInsertComdat(Name);
3210   C->setSelectionKind(SK);
3211   ComdatList.push_back(C);
3212   return Error::success();
3213 }
3214 
3215 static void inferDSOLocal(GlobalValue *GV) {
3216   // infer dso_local from linkage and visibility if it is not encoded.
3217   if (GV->hasLocalLinkage() ||
3218       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3219     GV->setDSOLocal(true);
3220 }
3221 
3222 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3223   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3224   // visibility, threadlocal, unnamed_addr, externally_initialized,
3225   // dllstorageclass, comdat, attributes, preemption specifier,
3226   // partition strtab offset, partition strtab size] (name in VST)
3227   // v2: [strtab_offset, strtab_size, v1]
3228   StringRef Name;
3229   std::tie(Name, Record) = readNameFromStrtab(Record);
3230 
3231   if (Record.size() < 6)
3232     return error("Invalid record");
3233   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3234   Type *Ty = flattenPointerTypes(FullTy);
3235   if (!Ty)
3236     return error("Invalid record");
3237   bool isConstant = Record[1] & 1;
3238   bool explicitType = Record[1] & 2;
3239   unsigned AddressSpace;
3240   if (explicitType) {
3241     AddressSpace = Record[1] >> 2;
3242   } else {
3243     if (!Ty->isPointerTy())
3244       return error("Invalid type for value");
3245     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3246     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3247   }
3248 
3249   uint64_t RawLinkage = Record[3];
3250   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3251   MaybeAlign Alignment;
3252   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3253     return Err;
3254   std::string Section;
3255   if (Record[5]) {
3256     if (Record[5] - 1 >= SectionTable.size())
3257       return error("Invalid ID");
3258     Section = SectionTable[Record[5] - 1];
3259   }
3260   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3261   // Local linkage must have default visibility.
3262   // auto-upgrade `hidden` and `protected` for old bitcode.
3263   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3264     Visibility = getDecodedVisibility(Record[6]);
3265 
3266   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3267   if (Record.size() > 7)
3268     TLM = getDecodedThreadLocalMode(Record[7]);
3269 
3270   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3271   if (Record.size() > 8)
3272     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3273 
3274   bool ExternallyInitialized = false;
3275   if (Record.size() > 9)
3276     ExternallyInitialized = Record[9];
3277 
3278   GlobalVariable *NewGV =
3279       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3280                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3281   NewGV->setAlignment(Alignment);
3282   if (!Section.empty())
3283     NewGV->setSection(Section);
3284   NewGV->setVisibility(Visibility);
3285   NewGV->setUnnamedAddr(UnnamedAddr);
3286 
3287   if (Record.size() > 10)
3288     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3289   else
3290     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3291 
3292   FullTy = PointerType::get(FullTy, AddressSpace);
3293   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3294          "Incorrect fully specified type for GlobalVariable");
3295   ValueList.push_back(NewGV, FullTy);
3296 
3297   // Remember which value to use for the global initializer.
3298   if (unsigned InitID = Record[2])
3299     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3300 
3301   if (Record.size() > 11) {
3302     if (unsigned ComdatID = Record[11]) {
3303       if (ComdatID > ComdatList.size())
3304         return error("Invalid global variable comdat ID");
3305       NewGV->setComdat(ComdatList[ComdatID - 1]);
3306     }
3307   } else if (hasImplicitComdat(RawLinkage)) {
3308     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3309   }
3310 
3311   if (Record.size() > 12) {
3312     auto AS = getAttributes(Record[12]).getFnAttributes();
3313     NewGV->setAttributes(AS);
3314   }
3315 
3316   if (Record.size() > 13) {
3317     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3318   }
3319   inferDSOLocal(NewGV);
3320 
3321   // Check whether we have enough values to read a partition name.
3322   if (Record.size() > 15)
3323     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3324 
3325   return Error::success();
3326 }
3327 
3328 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3329   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3330   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3331   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3332   // v2: [strtab_offset, strtab_size, v1]
3333   StringRef Name;
3334   std::tie(Name, Record) = readNameFromStrtab(Record);
3335 
3336   if (Record.size() < 8)
3337     return error("Invalid record");
3338   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3339   Type *FTy = flattenPointerTypes(FullFTy);
3340   if (!FTy)
3341     return error("Invalid record");
3342   if (isa<PointerType>(FTy))
3343     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3344 
3345   if (!isa<FunctionType>(FTy))
3346     return error("Invalid type for value");
3347   auto CC = static_cast<CallingConv::ID>(Record[1]);
3348   if (CC & ~CallingConv::MaxID)
3349     return error("Invalid calling convention ID");
3350 
3351   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3352   if (Record.size() > 16)
3353     AddrSpace = Record[16];
3354 
3355   Function *Func =
3356       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3357                        AddrSpace, Name, TheModule);
3358 
3359   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3360          "Incorrect fully specified type provided for function");
3361   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3362 
3363   Func->setCallingConv(CC);
3364   bool isProto = Record[2];
3365   uint64_t RawLinkage = Record[3];
3366   Func->setLinkage(getDecodedLinkage(RawLinkage));
3367   Func->setAttributes(getAttributes(Record[4]));
3368 
3369   // Upgrade any old-style byval or sret without a type by propagating the
3370   // argument's pointee type. There should be no opaque pointers where the byval
3371   // type is implicit.
3372   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3373     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3374                                      Attribute::InAlloca}) {
3375       if (!Func->hasParamAttribute(i, Kind))
3376         continue;
3377 
3378       Func->removeParamAttr(i, Kind);
3379 
3380       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3381       Type *PtrEltTy = getPointerElementFlatType(PTy);
3382       Attribute NewAttr;
3383       switch (Kind) {
3384       case Attribute::ByVal:
3385         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3386         break;
3387       case Attribute::StructRet:
3388         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3389         break;
3390       case Attribute::InAlloca:
3391         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3392         break;
3393       default:
3394         llvm_unreachable("not an upgraded type attribute");
3395       }
3396 
3397       Func->addParamAttr(i, NewAttr);
3398     }
3399   }
3400 
3401   MaybeAlign Alignment;
3402   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3403     return Err;
3404   Func->setAlignment(Alignment);
3405   if (Record[6]) {
3406     if (Record[6] - 1 >= SectionTable.size())
3407       return error("Invalid ID");
3408     Func->setSection(SectionTable[Record[6] - 1]);
3409   }
3410   // Local linkage must have default visibility.
3411   // auto-upgrade `hidden` and `protected` for old bitcode.
3412   if (!Func->hasLocalLinkage())
3413     Func->setVisibility(getDecodedVisibility(Record[7]));
3414   if (Record.size() > 8 && Record[8]) {
3415     if (Record[8] - 1 >= GCTable.size())
3416       return error("Invalid ID");
3417     Func->setGC(GCTable[Record[8] - 1]);
3418   }
3419   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3420   if (Record.size() > 9)
3421     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3422   Func->setUnnamedAddr(UnnamedAddr);
3423   if (Record.size() > 10 && Record[10] != 0)
3424     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3425 
3426   if (Record.size() > 11)
3427     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3428   else
3429     upgradeDLLImportExportLinkage(Func, RawLinkage);
3430 
3431   if (Record.size() > 12) {
3432     if (unsigned ComdatID = Record[12]) {
3433       if (ComdatID > ComdatList.size())
3434         return error("Invalid function comdat ID");
3435       Func->setComdat(ComdatList[ComdatID - 1]);
3436     }
3437   } else if (hasImplicitComdat(RawLinkage)) {
3438     Func->setComdat(reinterpret_cast<Comdat *>(1));
3439   }
3440 
3441   if (Record.size() > 13 && Record[13] != 0)
3442     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3443 
3444   if (Record.size() > 14 && Record[14] != 0)
3445     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3446 
3447   if (Record.size() > 15) {
3448     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3449   }
3450   inferDSOLocal(Func);
3451 
3452   // Record[16] is the address space number.
3453 
3454   // Check whether we have enough values to read a partition name.
3455   if (Record.size() > 18)
3456     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3457 
3458   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3459   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3460          "Incorrect fully specified type provided for Function");
3461   ValueList.push_back(Func, FullTy);
3462 
3463   // If this is a function with a body, remember the prototype we are
3464   // creating now, so that we can match up the body with them later.
3465   if (!isProto) {
3466     Func->setIsMaterializable(true);
3467     FunctionsWithBodies.push_back(Func);
3468     DeferredFunctionInfo[Func] = 0;
3469   }
3470   return Error::success();
3471 }
3472 
3473 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3474     unsigned BitCode, ArrayRef<uint64_t> Record) {
3475   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3476   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3477   // dllstorageclass, threadlocal, unnamed_addr,
3478   // preemption specifier] (name in VST)
3479   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3480   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3481   // preemption specifier] (name in VST)
3482   // v2: [strtab_offset, strtab_size, v1]
3483   StringRef Name;
3484   std::tie(Name, Record) = readNameFromStrtab(Record);
3485 
3486   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3487   if (Record.size() < (3 + (unsigned)NewRecord))
3488     return error("Invalid record");
3489   unsigned OpNum = 0;
3490   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3491   Type *Ty = flattenPointerTypes(FullTy);
3492   if (!Ty)
3493     return error("Invalid record");
3494 
3495   unsigned AddrSpace;
3496   if (!NewRecord) {
3497     auto *PTy = dyn_cast<PointerType>(Ty);
3498     if (!PTy)
3499       return error("Invalid type for value");
3500     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3501     AddrSpace = PTy->getAddressSpace();
3502   } else {
3503     AddrSpace = Record[OpNum++];
3504   }
3505 
3506   auto Val = Record[OpNum++];
3507   auto Linkage = Record[OpNum++];
3508   GlobalIndirectSymbol *NewGA;
3509   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3510       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3511     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3512                                 TheModule);
3513   else
3514     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3515                                 nullptr, TheModule);
3516 
3517   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3518          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3519   // Local linkage must have default visibility.
3520   // auto-upgrade `hidden` and `protected` for old bitcode.
3521   if (OpNum != Record.size()) {
3522     auto VisInd = OpNum++;
3523     if (!NewGA->hasLocalLinkage())
3524       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3525   }
3526   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3527       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3528     if (OpNum != Record.size())
3529       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3530     else
3531       upgradeDLLImportExportLinkage(NewGA, Linkage);
3532     if (OpNum != Record.size())
3533       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3534     if (OpNum != Record.size())
3535       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3536   }
3537   if (OpNum != Record.size())
3538     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3539   inferDSOLocal(NewGA);
3540 
3541   // Check whether we have enough values to read a partition name.
3542   if (OpNum + 1 < Record.size()) {
3543     NewGA->setPartition(
3544         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3545     OpNum += 2;
3546   }
3547 
3548   FullTy = PointerType::get(FullTy, AddrSpace);
3549   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3550          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3551   ValueList.push_back(NewGA, FullTy);
3552   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3553   return Error::success();
3554 }
3555 
3556 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3557                                  bool ShouldLazyLoadMetadata,
3558                                  DataLayoutCallbackTy DataLayoutCallback) {
3559   if (ResumeBit) {
3560     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3561       return JumpFailed;
3562   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3563     return Err;
3564 
3565   SmallVector<uint64_t, 64> Record;
3566 
3567   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3568   // finalize the datalayout before we run any of that code.
3569   bool ResolvedDataLayout = false;
3570   auto ResolveDataLayout = [&] {
3571     if (ResolvedDataLayout)
3572       return;
3573 
3574     // datalayout and triple can't be parsed after this point.
3575     ResolvedDataLayout = true;
3576 
3577     // Upgrade data layout string.
3578     std::string DL = llvm::UpgradeDataLayoutString(
3579         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3580     TheModule->setDataLayout(DL);
3581 
3582     if (auto LayoutOverride =
3583             DataLayoutCallback(TheModule->getTargetTriple()))
3584       TheModule->setDataLayout(*LayoutOverride);
3585   };
3586 
3587   // Read all the records for this module.
3588   while (true) {
3589     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3590     if (!MaybeEntry)
3591       return MaybeEntry.takeError();
3592     llvm::BitstreamEntry Entry = MaybeEntry.get();
3593 
3594     switch (Entry.Kind) {
3595     case BitstreamEntry::Error:
3596       return error("Malformed block");
3597     case BitstreamEntry::EndBlock:
3598       ResolveDataLayout();
3599       return globalCleanup();
3600 
3601     case BitstreamEntry::SubBlock:
3602       switch (Entry.ID) {
3603       default:  // Skip unknown content.
3604         if (Error Err = Stream.SkipBlock())
3605           return Err;
3606         break;
3607       case bitc::BLOCKINFO_BLOCK_ID:
3608         if (readBlockInfo())
3609           return error("Malformed block");
3610         break;
3611       case bitc::PARAMATTR_BLOCK_ID:
3612         if (Error Err = parseAttributeBlock())
3613           return Err;
3614         break;
3615       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3616         if (Error Err = parseAttributeGroupBlock())
3617           return Err;
3618         break;
3619       case bitc::TYPE_BLOCK_ID_NEW:
3620         if (Error Err = parseTypeTable())
3621           return Err;
3622         break;
3623       case bitc::VALUE_SYMTAB_BLOCK_ID:
3624         if (!SeenValueSymbolTable) {
3625           // Either this is an old form VST without function index and an
3626           // associated VST forward declaration record (which would have caused
3627           // the VST to be jumped to and parsed before it was encountered
3628           // normally in the stream), or there were no function blocks to
3629           // trigger an earlier parsing of the VST.
3630           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3631           if (Error Err = parseValueSymbolTable())
3632             return Err;
3633           SeenValueSymbolTable = true;
3634         } else {
3635           // We must have had a VST forward declaration record, which caused
3636           // the parser to jump to and parse the VST earlier.
3637           assert(VSTOffset > 0);
3638           if (Error Err = Stream.SkipBlock())
3639             return Err;
3640         }
3641         break;
3642       case bitc::CONSTANTS_BLOCK_ID:
3643         if (Error Err = parseConstants())
3644           return Err;
3645         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3646           return Err;
3647         break;
3648       case bitc::METADATA_BLOCK_ID:
3649         if (ShouldLazyLoadMetadata) {
3650           if (Error Err = rememberAndSkipMetadata())
3651             return Err;
3652           break;
3653         }
3654         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3655         if (Error Err = MDLoader->parseModuleMetadata())
3656           return Err;
3657         break;
3658       case bitc::METADATA_KIND_BLOCK_ID:
3659         if (Error Err = MDLoader->parseMetadataKinds())
3660           return Err;
3661         break;
3662       case bitc::FUNCTION_BLOCK_ID:
3663         ResolveDataLayout();
3664 
3665         // If this is the first function body we've seen, reverse the
3666         // FunctionsWithBodies list.
3667         if (!SeenFirstFunctionBody) {
3668           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3669           if (Error Err = globalCleanup())
3670             return Err;
3671           SeenFirstFunctionBody = true;
3672         }
3673 
3674         if (VSTOffset > 0) {
3675           // If we have a VST forward declaration record, make sure we
3676           // parse the VST now if we haven't already. It is needed to
3677           // set up the DeferredFunctionInfo vector for lazy reading.
3678           if (!SeenValueSymbolTable) {
3679             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3680               return Err;
3681             SeenValueSymbolTable = true;
3682             // Fall through so that we record the NextUnreadBit below.
3683             // This is necessary in case we have an anonymous function that
3684             // is later materialized. Since it will not have a VST entry we
3685             // need to fall back to the lazy parse to find its offset.
3686           } else {
3687             // If we have a VST forward declaration record, but have already
3688             // parsed the VST (just above, when the first function body was
3689             // encountered here), then we are resuming the parse after
3690             // materializing functions. The ResumeBit points to the
3691             // start of the last function block recorded in the
3692             // DeferredFunctionInfo map. Skip it.
3693             if (Error Err = Stream.SkipBlock())
3694               return Err;
3695             continue;
3696           }
3697         }
3698 
3699         // Support older bitcode files that did not have the function
3700         // index in the VST, nor a VST forward declaration record, as
3701         // well as anonymous functions that do not have VST entries.
3702         // Build the DeferredFunctionInfo vector on the fly.
3703         if (Error Err = rememberAndSkipFunctionBody())
3704           return Err;
3705 
3706         // Suspend parsing when we reach the function bodies. Subsequent
3707         // materialization calls will resume it when necessary. If the bitcode
3708         // file is old, the symbol table will be at the end instead and will not
3709         // have been seen yet. In this case, just finish the parse now.
3710         if (SeenValueSymbolTable) {
3711           NextUnreadBit = Stream.GetCurrentBitNo();
3712           // After the VST has been parsed, we need to make sure intrinsic name
3713           // are auto-upgraded.
3714           return globalCleanup();
3715         }
3716         break;
3717       case bitc::USELIST_BLOCK_ID:
3718         if (Error Err = parseUseLists())
3719           return Err;
3720         break;
3721       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3722         if (Error Err = parseOperandBundleTags())
3723           return Err;
3724         break;
3725       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3726         if (Error Err = parseSyncScopeNames())
3727           return Err;
3728         break;
3729       }
3730       continue;
3731 
3732     case BitstreamEntry::Record:
3733       // The interesting case.
3734       break;
3735     }
3736 
3737     // Read a record.
3738     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3739     if (!MaybeBitCode)
3740       return MaybeBitCode.takeError();
3741     switch (unsigned BitCode = MaybeBitCode.get()) {
3742     default: break;  // Default behavior, ignore unknown content.
3743     case bitc::MODULE_CODE_VERSION: {
3744       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3745       if (!VersionOrErr)
3746         return VersionOrErr.takeError();
3747       UseRelativeIDs = *VersionOrErr >= 1;
3748       break;
3749     }
3750     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3751       if (ResolvedDataLayout)
3752         return error("target triple too late in module");
3753       std::string S;
3754       if (convertToString(Record, 0, S))
3755         return error("Invalid record");
3756       TheModule->setTargetTriple(S);
3757       break;
3758     }
3759     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3760       if (ResolvedDataLayout)
3761         return error("datalayout too late in module");
3762       std::string S;
3763       if (convertToString(Record, 0, S))
3764         return error("Invalid record");
3765       TheModule->setDataLayout(S);
3766       break;
3767     }
3768     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3769       std::string S;
3770       if (convertToString(Record, 0, S))
3771         return error("Invalid record");
3772       TheModule->setModuleInlineAsm(S);
3773       break;
3774     }
3775     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3776       // Deprecated, but still needed to read old bitcode files.
3777       std::string S;
3778       if (convertToString(Record, 0, S))
3779         return error("Invalid record");
3780       // Ignore value.
3781       break;
3782     }
3783     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3784       std::string S;
3785       if (convertToString(Record, 0, S))
3786         return error("Invalid record");
3787       SectionTable.push_back(S);
3788       break;
3789     }
3790     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3791       std::string S;
3792       if (convertToString(Record, 0, S))
3793         return error("Invalid record");
3794       GCTable.push_back(S);
3795       break;
3796     }
3797     case bitc::MODULE_CODE_COMDAT:
3798       if (Error Err = parseComdatRecord(Record))
3799         return Err;
3800       break;
3801     case bitc::MODULE_CODE_GLOBALVAR:
3802       if (Error Err = parseGlobalVarRecord(Record))
3803         return Err;
3804       break;
3805     case bitc::MODULE_CODE_FUNCTION:
3806       ResolveDataLayout();
3807       if (Error Err = parseFunctionRecord(Record))
3808         return Err;
3809       break;
3810     case bitc::MODULE_CODE_IFUNC:
3811     case bitc::MODULE_CODE_ALIAS:
3812     case bitc::MODULE_CODE_ALIAS_OLD:
3813       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3814         return Err;
3815       break;
3816     /// MODULE_CODE_VSTOFFSET: [offset]
3817     case bitc::MODULE_CODE_VSTOFFSET:
3818       if (Record.empty())
3819         return error("Invalid record");
3820       // Note that we subtract 1 here because the offset is relative to one word
3821       // before the start of the identification or module block, which was
3822       // historically always the start of the regular bitcode header.
3823       VSTOffset = Record[0] - 1;
3824       break;
3825     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3826     case bitc::MODULE_CODE_SOURCE_FILENAME:
3827       SmallString<128> ValueName;
3828       if (convertToString(Record, 0, ValueName))
3829         return error("Invalid record");
3830       TheModule->setSourceFileName(ValueName);
3831       break;
3832     }
3833     Record.clear();
3834   }
3835 }
3836 
3837 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3838                                       bool IsImporting,
3839                                       DataLayoutCallbackTy DataLayoutCallback) {
3840   TheModule = M;
3841   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3842                             [&](unsigned ID) { return getTypeByID(ID); });
3843   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3844 }
3845 
3846 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3847   if (!isa<PointerType>(PtrType))
3848     return error("Load/Store operand is not a pointer type");
3849 
3850   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3851     return error("Explicit load/store type does not match pointee "
3852                  "type of pointer operand");
3853   if (!PointerType::isLoadableOrStorableType(ValType))
3854     return error("Cannot load/store from pointer");
3855   return Error::success();
3856 }
3857 
3858 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3859                                             ArrayRef<Type *> ArgsFullTys) {
3860   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3861     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3862                                      Attribute::InAlloca}) {
3863       if (!CB->paramHasAttr(i, Kind))
3864         continue;
3865 
3866       CB->removeParamAttr(i, Kind);
3867 
3868       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3869       Attribute NewAttr;
3870       switch (Kind) {
3871       case Attribute::ByVal:
3872         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3873         break;
3874       case Attribute::StructRet:
3875         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3876         break;
3877       case Attribute::InAlloca:
3878         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3879         break;
3880       default:
3881         llvm_unreachable("not an upgraded type attribute");
3882       }
3883 
3884       CB->addParamAttr(i, NewAttr);
3885     }
3886   }
3887 }
3888 
3889 /// Lazily parse the specified function body block.
3890 Error BitcodeReader::parseFunctionBody(Function *F) {
3891   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3892     return Err;
3893 
3894   // Unexpected unresolved metadata when parsing function.
3895   if (MDLoader->hasFwdRefs())
3896     return error("Invalid function metadata: incoming forward references");
3897 
3898   InstructionList.clear();
3899   unsigned ModuleValueListSize = ValueList.size();
3900   unsigned ModuleMDLoaderSize = MDLoader->size();
3901 
3902   // Add all the function arguments to the value table.
3903   unsigned ArgNo = 0;
3904   FunctionType *FullFTy = FunctionTypes[F];
3905   for (Argument &I : F->args()) {
3906     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3907            "Incorrect fully specified type for Function Argument");
3908     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3909   }
3910   unsigned NextValueNo = ValueList.size();
3911   BasicBlock *CurBB = nullptr;
3912   unsigned CurBBNo = 0;
3913 
3914   DebugLoc LastLoc;
3915   auto getLastInstruction = [&]() -> Instruction * {
3916     if (CurBB && !CurBB->empty())
3917       return &CurBB->back();
3918     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3919              !FunctionBBs[CurBBNo - 1]->empty())
3920       return &FunctionBBs[CurBBNo - 1]->back();
3921     return nullptr;
3922   };
3923 
3924   std::vector<OperandBundleDef> OperandBundles;
3925 
3926   // Read all the records.
3927   SmallVector<uint64_t, 64> Record;
3928 
3929   while (true) {
3930     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3931     if (!MaybeEntry)
3932       return MaybeEntry.takeError();
3933     llvm::BitstreamEntry Entry = MaybeEntry.get();
3934 
3935     switch (Entry.Kind) {
3936     case BitstreamEntry::Error:
3937       return error("Malformed block");
3938     case BitstreamEntry::EndBlock:
3939       goto OutOfRecordLoop;
3940 
3941     case BitstreamEntry::SubBlock:
3942       switch (Entry.ID) {
3943       default:  // Skip unknown content.
3944         if (Error Err = Stream.SkipBlock())
3945           return Err;
3946         break;
3947       case bitc::CONSTANTS_BLOCK_ID:
3948         if (Error Err = parseConstants())
3949           return Err;
3950         NextValueNo = ValueList.size();
3951         break;
3952       case bitc::VALUE_SYMTAB_BLOCK_ID:
3953         if (Error Err = parseValueSymbolTable())
3954           return Err;
3955         break;
3956       case bitc::METADATA_ATTACHMENT_ID:
3957         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3958           return Err;
3959         break;
3960       case bitc::METADATA_BLOCK_ID:
3961         assert(DeferredMetadataInfo.empty() &&
3962                "Must read all module-level metadata before function-level");
3963         if (Error Err = MDLoader->parseFunctionMetadata())
3964           return Err;
3965         break;
3966       case bitc::USELIST_BLOCK_ID:
3967         if (Error Err = parseUseLists())
3968           return Err;
3969         break;
3970       }
3971       continue;
3972 
3973     case BitstreamEntry::Record:
3974       // The interesting case.
3975       break;
3976     }
3977 
3978     // Read a record.
3979     Record.clear();
3980     Instruction *I = nullptr;
3981     Type *FullTy = nullptr;
3982     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3983     if (!MaybeBitCode)
3984       return MaybeBitCode.takeError();
3985     switch (unsigned BitCode = MaybeBitCode.get()) {
3986     default: // Default behavior: reject
3987       return error("Invalid value");
3988     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3989       if (Record.empty() || Record[0] == 0)
3990         return error("Invalid record");
3991       // Create all the basic blocks for the function.
3992       FunctionBBs.resize(Record[0]);
3993 
3994       // See if anything took the address of blocks in this function.
3995       auto BBFRI = BasicBlockFwdRefs.find(F);
3996       if (BBFRI == BasicBlockFwdRefs.end()) {
3997         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3998           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3999       } else {
4000         auto &BBRefs = BBFRI->second;
4001         // Check for invalid basic block references.
4002         if (BBRefs.size() > FunctionBBs.size())
4003           return error("Invalid ID");
4004         assert(!BBRefs.empty() && "Unexpected empty array");
4005         assert(!BBRefs.front() && "Invalid reference to entry block");
4006         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4007              ++I)
4008           if (I < RE && BBRefs[I]) {
4009             BBRefs[I]->insertInto(F);
4010             FunctionBBs[I] = BBRefs[I];
4011           } else {
4012             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4013           }
4014 
4015         // Erase from the table.
4016         BasicBlockFwdRefs.erase(BBFRI);
4017       }
4018 
4019       CurBB = FunctionBBs[0];
4020       continue;
4021     }
4022 
4023     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4024       // This record indicates that the last instruction is at the same
4025       // location as the previous instruction with a location.
4026       I = getLastInstruction();
4027 
4028       if (!I)
4029         return error("Invalid record");
4030       I->setDebugLoc(LastLoc);
4031       I = nullptr;
4032       continue;
4033 
4034     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4035       I = getLastInstruction();
4036       if (!I || Record.size() < 4)
4037         return error("Invalid record");
4038 
4039       unsigned Line = Record[0], Col = Record[1];
4040       unsigned ScopeID = Record[2], IAID = Record[3];
4041       bool isImplicitCode = Record.size() == 5 && Record[4];
4042 
4043       MDNode *Scope = nullptr, *IA = nullptr;
4044       if (ScopeID) {
4045         Scope = dyn_cast_or_null<MDNode>(
4046             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4047         if (!Scope)
4048           return error("Invalid record");
4049       }
4050       if (IAID) {
4051         IA = dyn_cast_or_null<MDNode>(
4052             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4053         if (!IA)
4054           return error("Invalid record");
4055       }
4056       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4057                                 isImplicitCode);
4058       I->setDebugLoc(LastLoc);
4059       I = nullptr;
4060       continue;
4061     }
4062     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4063       unsigned OpNum = 0;
4064       Value *LHS;
4065       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4066           OpNum+1 > Record.size())
4067         return error("Invalid record");
4068 
4069       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4070       if (Opc == -1)
4071         return error("Invalid record");
4072       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4073       InstructionList.push_back(I);
4074       if (OpNum < Record.size()) {
4075         if (isa<FPMathOperator>(I)) {
4076           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4077           if (FMF.any())
4078             I->setFastMathFlags(FMF);
4079         }
4080       }
4081       break;
4082     }
4083     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4084       unsigned OpNum = 0;
4085       Value *LHS, *RHS;
4086       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4087           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4088           OpNum+1 > Record.size())
4089         return error("Invalid record");
4090 
4091       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4092       if (Opc == -1)
4093         return error("Invalid record");
4094       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4095       InstructionList.push_back(I);
4096       if (OpNum < Record.size()) {
4097         if (Opc == Instruction::Add ||
4098             Opc == Instruction::Sub ||
4099             Opc == Instruction::Mul ||
4100             Opc == Instruction::Shl) {
4101           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4102             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4103           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4104             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4105         } else if (Opc == Instruction::SDiv ||
4106                    Opc == Instruction::UDiv ||
4107                    Opc == Instruction::LShr ||
4108                    Opc == Instruction::AShr) {
4109           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4110             cast<BinaryOperator>(I)->setIsExact(true);
4111         } else if (isa<FPMathOperator>(I)) {
4112           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4113           if (FMF.any())
4114             I->setFastMathFlags(FMF);
4115         }
4116 
4117       }
4118       break;
4119     }
4120     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4121       unsigned OpNum = 0;
4122       Value *Op;
4123       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4124           OpNum+2 != Record.size())
4125         return error("Invalid record");
4126 
4127       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4128       Type *ResTy = flattenPointerTypes(FullTy);
4129       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4130       if (Opc == -1 || !ResTy)
4131         return error("Invalid record");
4132       Instruction *Temp = nullptr;
4133       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4134         if (Temp) {
4135           InstructionList.push_back(Temp);
4136           assert(CurBB && "No current BB?");
4137           CurBB->getInstList().push_back(Temp);
4138         }
4139       } else {
4140         auto CastOp = (Instruction::CastOps)Opc;
4141         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4142           return error("Invalid cast");
4143         I = CastInst::Create(CastOp, Op, ResTy);
4144       }
4145       InstructionList.push_back(I);
4146       break;
4147     }
4148     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4149     case bitc::FUNC_CODE_INST_GEP_OLD:
4150     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4151       unsigned OpNum = 0;
4152 
4153       Type *Ty;
4154       bool InBounds;
4155 
4156       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4157         InBounds = Record[OpNum++];
4158         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4159         Ty = flattenPointerTypes(FullTy);
4160       } else {
4161         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4162         Ty = nullptr;
4163       }
4164 
4165       Value *BasePtr;
4166       Type *FullBaseTy = nullptr;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4168         return error("Invalid record");
4169 
4170       if (!Ty) {
4171         std::tie(FullTy, Ty) =
4172             getPointerElementTypes(FullBaseTy->getScalarType());
4173       } else if (!cast<PointerType>(FullBaseTy->getScalarType())
4174                       ->isOpaqueOrPointeeTypeMatches(Ty))
4175         return error(
4176             "Explicit gep type does not match pointee type of pointer operand");
4177 
4178       SmallVector<Value*, 16> GEPIdx;
4179       while (OpNum != Record.size()) {
4180         Value *Op;
4181         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4182           return error("Invalid record");
4183         GEPIdx.push_back(Op);
4184       }
4185 
4186       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4187       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4188 
4189       InstructionList.push_back(I);
4190       if (InBounds)
4191         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4192       break;
4193     }
4194 
4195     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4196                                        // EXTRACTVAL: [opty, opval, n x indices]
4197       unsigned OpNum = 0;
4198       Value *Agg;
4199       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4200         return error("Invalid record");
4201 
4202       unsigned RecSize = Record.size();
4203       if (OpNum == RecSize)
4204         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4205 
4206       SmallVector<unsigned, 4> EXTRACTVALIdx;
4207       for (; OpNum != RecSize; ++OpNum) {
4208         bool IsArray = FullTy->isArrayTy();
4209         bool IsStruct = FullTy->isStructTy();
4210         uint64_t Index = Record[OpNum];
4211 
4212         if (!IsStruct && !IsArray)
4213           return error("EXTRACTVAL: Invalid type");
4214         if ((unsigned)Index != Index)
4215           return error("Invalid value");
4216         if (IsStruct && Index >= FullTy->getStructNumElements())
4217           return error("EXTRACTVAL: Invalid struct index");
4218         if (IsArray && Index >= FullTy->getArrayNumElements())
4219           return error("EXTRACTVAL: Invalid array index");
4220         EXTRACTVALIdx.push_back((unsigned)Index);
4221 
4222         if (IsStruct)
4223           FullTy = FullTy->getStructElementType(Index);
4224         else
4225           FullTy = FullTy->getArrayElementType();
4226       }
4227 
4228       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4229       InstructionList.push_back(I);
4230       break;
4231     }
4232 
4233     case bitc::FUNC_CODE_INST_INSERTVAL: {
4234                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4235       unsigned OpNum = 0;
4236       Value *Agg;
4237       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4238         return error("Invalid record");
4239       Value *Val;
4240       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4241         return error("Invalid record");
4242 
4243       unsigned RecSize = Record.size();
4244       if (OpNum == RecSize)
4245         return error("INSERTVAL: Invalid instruction with 0 indices");
4246 
4247       SmallVector<unsigned, 4> INSERTVALIdx;
4248       Type *CurTy = Agg->getType();
4249       for (; OpNum != RecSize; ++OpNum) {
4250         bool IsArray = CurTy->isArrayTy();
4251         bool IsStruct = CurTy->isStructTy();
4252         uint64_t Index = Record[OpNum];
4253 
4254         if (!IsStruct && !IsArray)
4255           return error("INSERTVAL: Invalid type");
4256         if ((unsigned)Index != Index)
4257           return error("Invalid value");
4258         if (IsStruct && Index >= CurTy->getStructNumElements())
4259           return error("INSERTVAL: Invalid struct index");
4260         if (IsArray && Index >= CurTy->getArrayNumElements())
4261           return error("INSERTVAL: Invalid array index");
4262 
4263         INSERTVALIdx.push_back((unsigned)Index);
4264         if (IsStruct)
4265           CurTy = CurTy->getStructElementType(Index);
4266         else
4267           CurTy = CurTy->getArrayElementType();
4268       }
4269 
4270       if (CurTy != Val->getType())
4271         return error("Inserted value type doesn't match aggregate type");
4272 
4273       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4274       InstructionList.push_back(I);
4275       break;
4276     }
4277 
4278     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4279       // obsolete form of select
4280       // handles select i1 ... in old bitcode
4281       unsigned OpNum = 0;
4282       Value *TrueVal, *FalseVal, *Cond;
4283       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4284           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4285           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4286         return error("Invalid record");
4287 
4288       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4289       InstructionList.push_back(I);
4290       break;
4291     }
4292 
4293     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4294       // new form of select
4295       // handles select i1 or select [N x i1]
4296       unsigned OpNum = 0;
4297       Value *TrueVal, *FalseVal, *Cond;
4298       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4299           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4300           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4301         return error("Invalid record");
4302 
4303       // select condition can be either i1 or [N x i1]
4304       if (VectorType* vector_type =
4305           dyn_cast<VectorType>(Cond->getType())) {
4306         // expect <n x i1>
4307         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4308           return error("Invalid type for value");
4309       } else {
4310         // expect i1
4311         if (Cond->getType() != Type::getInt1Ty(Context))
4312           return error("Invalid type for value");
4313       }
4314 
4315       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4316       InstructionList.push_back(I);
4317       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4318         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4319         if (FMF.any())
4320           I->setFastMathFlags(FMF);
4321       }
4322       break;
4323     }
4324 
4325     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4326       unsigned OpNum = 0;
4327       Value *Vec, *Idx;
4328       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4329           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4330         return error("Invalid record");
4331       if (!Vec->getType()->isVectorTy())
4332         return error("Invalid type for value");
4333       I = ExtractElementInst::Create(Vec, Idx);
4334       FullTy = cast<VectorType>(FullTy)->getElementType();
4335       InstructionList.push_back(I);
4336       break;
4337     }
4338 
4339     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4340       unsigned OpNum = 0;
4341       Value *Vec, *Elt, *Idx;
4342       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4343         return error("Invalid record");
4344       if (!Vec->getType()->isVectorTy())
4345         return error("Invalid type for value");
4346       if (popValue(Record, OpNum, NextValueNo,
4347                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4348           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4349         return error("Invalid record");
4350       I = InsertElementInst::Create(Vec, Elt, Idx);
4351       InstructionList.push_back(I);
4352       break;
4353     }
4354 
4355     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4356       unsigned OpNum = 0;
4357       Value *Vec1, *Vec2, *Mask;
4358       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4359           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4360         return error("Invalid record");
4361 
4362       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4363         return error("Invalid record");
4364       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4365         return error("Invalid type for value");
4366 
4367       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4368       FullTy =
4369           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4370                           cast<VectorType>(Mask->getType())->getElementCount());
4371       InstructionList.push_back(I);
4372       break;
4373     }
4374 
4375     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4376       // Old form of ICmp/FCmp returning bool
4377       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4378       // both legal on vectors but had different behaviour.
4379     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4380       // FCmp/ICmp returning bool or vector of bool
4381 
4382       unsigned OpNum = 0;
4383       Value *LHS, *RHS;
4384       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4385           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4386         return error("Invalid record");
4387 
4388       if (OpNum >= Record.size())
4389         return error(
4390             "Invalid record: operand number exceeded available operands");
4391 
4392       unsigned PredVal = Record[OpNum];
4393       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4394       FastMathFlags FMF;
4395       if (IsFP && Record.size() > OpNum+1)
4396         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4397 
4398       if (OpNum+1 != Record.size())
4399         return error("Invalid record");
4400 
4401       if (LHS->getType()->isFPOrFPVectorTy())
4402         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4403       else
4404         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4405 
4406       if (FMF.any())
4407         I->setFastMathFlags(FMF);
4408       InstructionList.push_back(I);
4409       break;
4410     }
4411 
4412     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4413       {
4414         unsigned Size = Record.size();
4415         if (Size == 0) {
4416           I = ReturnInst::Create(Context);
4417           InstructionList.push_back(I);
4418           break;
4419         }
4420 
4421         unsigned OpNum = 0;
4422         Value *Op = nullptr;
4423         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4424           return error("Invalid record");
4425         if (OpNum != Record.size())
4426           return error("Invalid record");
4427 
4428         I = ReturnInst::Create(Context, Op);
4429         InstructionList.push_back(I);
4430         break;
4431       }
4432     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4433       if (Record.size() != 1 && Record.size() != 3)
4434         return error("Invalid record");
4435       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4436       if (!TrueDest)
4437         return error("Invalid record");
4438 
4439       if (Record.size() == 1) {
4440         I = BranchInst::Create(TrueDest);
4441         InstructionList.push_back(I);
4442       }
4443       else {
4444         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4445         Value *Cond = getValue(Record, 2, NextValueNo,
4446                                Type::getInt1Ty(Context));
4447         if (!FalseDest || !Cond)
4448           return error("Invalid record");
4449         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4450         InstructionList.push_back(I);
4451       }
4452       break;
4453     }
4454     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4455       if (Record.size() != 1 && Record.size() != 2)
4456         return error("Invalid record");
4457       unsigned Idx = 0;
4458       Value *CleanupPad =
4459           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4460       if (!CleanupPad)
4461         return error("Invalid record");
4462       BasicBlock *UnwindDest = nullptr;
4463       if (Record.size() == 2) {
4464         UnwindDest = getBasicBlock(Record[Idx++]);
4465         if (!UnwindDest)
4466           return error("Invalid record");
4467       }
4468 
4469       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4470       InstructionList.push_back(I);
4471       break;
4472     }
4473     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4474       if (Record.size() != 2)
4475         return error("Invalid record");
4476       unsigned Idx = 0;
4477       Value *CatchPad =
4478           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4479       if (!CatchPad)
4480         return error("Invalid record");
4481       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4482       if (!BB)
4483         return error("Invalid record");
4484 
4485       I = CatchReturnInst::Create(CatchPad, BB);
4486       InstructionList.push_back(I);
4487       break;
4488     }
4489     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4490       // We must have, at minimum, the outer scope and the number of arguments.
4491       if (Record.size() < 2)
4492         return error("Invalid record");
4493 
4494       unsigned Idx = 0;
4495 
4496       Value *ParentPad =
4497           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4498 
4499       unsigned NumHandlers = Record[Idx++];
4500 
4501       SmallVector<BasicBlock *, 2> Handlers;
4502       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4503         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4504         if (!BB)
4505           return error("Invalid record");
4506         Handlers.push_back(BB);
4507       }
4508 
4509       BasicBlock *UnwindDest = nullptr;
4510       if (Idx + 1 == Record.size()) {
4511         UnwindDest = getBasicBlock(Record[Idx++]);
4512         if (!UnwindDest)
4513           return error("Invalid record");
4514       }
4515 
4516       if (Record.size() != Idx)
4517         return error("Invalid record");
4518 
4519       auto *CatchSwitch =
4520           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4521       for (BasicBlock *Handler : Handlers)
4522         CatchSwitch->addHandler(Handler);
4523       I = CatchSwitch;
4524       InstructionList.push_back(I);
4525       break;
4526     }
4527     case bitc::FUNC_CODE_INST_CATCHPAD:
4528     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4529       // We must have, at minimum, the outer scope and the number of arguments.
4530       if (Record.size() < 2)
4531         return error("Invalid record");
4532 
4533       unsigned Idx = 0;
4534 
4535       Value *ParentPad =
4536           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4537 
4538       unsigned NumArgOperands = Record[Idx++];
4539 
4540       SmallVector<Value *, 2> Args;
4541       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4542         Value *Val;
4543         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4544           return error("Invalid record");
4545         Args.push_back(Val);
4546       }
4547 
4548       if (Record.size() != Idx)
4549         return error("Invalid record");
4550 
4551       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4552         I = CleanupPadInst::Create(ParentPad, Args);
4553       else
4554         I = CatchPadInst::Create(ParentPad, Args);
4555       InstructionList.push_back(I);
4556       break;
4557     }
4558     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4559       // Check magic
4560       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4561         // "New" SwitchInst format with case ranges. The changes to write this
4562         // format were reverted but we still recognize bitcode that uses it.
4563         // Hopefully someday we will have support for case ranges and can use
4564         // this format again.
4565 
4566         Type *OpTy = getTypeByID(Record[1]);
4567         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4568 
4569         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4570         BasicBlock *Default = getBasicBlock(Record[3]);
4571         if (!OpTy || !Cond || !Default)
4572           return error("Invalid record");
4573 
4574         unsigned NumCases = Record[4];
4575 
4576         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4577         InstructionList.push_back(SI);
4578 
4579         unsigned CurIdx = 5;
4580         for (unsigned i = 0; i != NumCases; ++i) {
4581           SmallVector<ConstantInt*, 1> CaseVals;
4582           unsigned NumItems = Record[CurIdx++];
4583           for (unsigned ci = 0; ci != NumItems; ++ci) {
4584             bool isSingleNumber = Record[CurIdx++];
4585 
4586             APInt Low;
4587             unsigned ActiveWords = 1;
4588             if (ValueBitWidth > 64)
4589               ActiveWords = Record[CurIdx++];
4590             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4591                                 ValueBitWidth);
4592             CurIdx += ActiveWords;
4593 
4594             if (!isSingleNumber) {
4595               ActiveWords = 1;
4596               if (ValueBitWidth > 64)
4597                 ActiveWords = Record[CurIdx++];
4598               APInt High = readWideAPInt(
4599                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4600               CurIdx += ActiveWords;
4601 
4602               // FIXME: It is not clear whether values in the range should be
4603               // compared as signed or unsigned values. The partially
4604               // implemented changes that used this format in the past used
4605               // unsigned comparisons.
4606               for ( ; Low.ule(High); ++Low)
4607                 CaseVals.push_back(ConstantInt::get(Context, Low));
4608             } else
4609               CaseVals.push_back(ConstantInt::get(Context, Low));
4610           }
4611           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4612           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4613                  cve = CaseVals.end(); cvi != cve; ++cvi)
4614             SI->addCase(*cvi, DestBB);
4615         }
4616         I = SI;
4617         break;
4618       }
4619 
4620       // Old SwitchInst format without case ranges.
4621 
4622       if (Record.size() < 3 || (Record.size() & 1) == 0)
4623         return error("Invalid record");
4624       Type *OpTy = getTypeByID(Record[0]);
4625       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4626       BasicBlock *Default = getBasicBlock(Record[2]);
4627       if (!OpTy || !Cond || !Default)
4628         return error("Invalid record");
4629       unsigned NumCases = (Record.size()-3)/2;
4630       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4631       InstructionList.push_back(SI);
4632       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4633         ConstantInt *CaseVal =
4634           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4635         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4636         if (!CaseVal || !DestBB) {
4637           delete SI;
4638           return error("Invalid record");
4639         }
4640         SI->addCase(CaseVal, DestBB);
4641       }
4642       I = SI;
4643       break;
4644     }
4645     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4646       if (Record.size() < 2)
4647         return error("Invalid record");
4648       Type *OpTy = getTypeByID(Record[0]);
4649       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4650       if (!OpTy || !Address)
4651         return error("Invalid record");
4652       unsigned NumDests = Record.size()-2;
4653       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4654       InstructionList.push_back(IBI);
4655       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4656         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4657           IBI->addDestination(DestBB);
4658         } else {
4659           delete IBI;
4660           return error("Invalid record");
4661         }
4662       }
4663       I = IBI;
4664       break;
4665     }
4666 
4667     case bitc::FUNC_CODE_INST_INVOKE: {
4668       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4669       if (Record.size() < 4)
4670         return error("Invalid record");
4671       unsigned OpNum = 0;
4672       AttributeList PAL = getAttributes(Record[OpNum++]);
4673       unsigned CCInfo = Record[OpNum++];
4674       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4675       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4676 
4677       FunctionType *FTy = nullptr;
4678       FunctionType *FullFTy = nullptr;
4679       if ((CCInfo >> 13) & 1) {
4680         FullFTy =
4681             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4682         if (!FullFTy)
4683           return error("Explicit invoke type is not a function type");
4684         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4685       }
4686 
4687       Value *Callee;
4688       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4689         return error("Invalid record");
4690 
4691       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4692       if (!CalleeTy)
4693         return error("Callee is not a pointer");
4694       if (!FTy) {
4695         FullFTy =
4696             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4697         if (!FullFTy)
4698           return error("Callee is not of pointer to function type");
4699         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4700       } else if (getPointerElementFlatType(FullTy) != FTy)
4701         return error("Explicit invoke type does not match pointee type of "
4702                      "callee operand");
4703       if (Record.size() < FTy->getNumParams() + OpNum)
4704         return error("Insufficient operands to call");
4705 
4706       SmallVector<Value*, 16> Ops;
4707       SmallVector<Type *, 16> ArgsFullTys;
4708       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4709         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4710                                FTy->getParamType(i)));
4711         ArgsFullTys.push_back(FullFTy->getParamType(i));
4712         if (!Ops.back())
4713           return error("Invalid record");
4714       }
4715 
4716       if (!FTy->isVarArg()) {
4717         if (Record.size() != OpNum)
4718           return error("Invalid record");
4719       } else {
4720         // Read type/value pairs for varargs params.
4721         while (OpNum != Record.size()) {
4722           Value *Op;
4723           Type *FullTy;
4724           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4725             return error("Invalid record");
4726           Ops.push_back(Op);
4727           ArgsFullTys.push_back(FullTy);
4728         }
4729       }
4730 
4731       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4732                              OperandBundles);
4733       FullTy = FullFTy->getReturnType();
4734       OperandBundles.clear();
4735       InstructionList.push_back(I);
4736       cast<InvokeInst>(I)->setCallingConv(
4737           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4738       cast<InvokeInst>(I)->setAttributes(PAL);
4739       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4740 
4741       break;
4742     }
4743     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4744       unsigned Idx = 0;
4745       Value *Val = nullptr;
4746       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4747         return error("Invalid record");
4748       I = ResumeInst::Create(Val);
4749       InstructionList.push_back(I);
4750       break;
4751     }
4752     case bitc::FUNC_CODE_INST_CALLBR: {
4753       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4754       unsigned OpNum = 0;
4755       AttributeList PAL = getAttributes(Record[OpNum++]);
4756       unsigned CCInfo = Record[OpNum++];
4757 
4758       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4759       unsigned NumIndirectDests = Record[OpNum++];
4760       SmallVector<BasicBlock *, 16> IndirectDests;
4761       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4762         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4763 
4764       FunctionType *FTy = nullptr;
4765       FunctionType *FullFTy = nullptr;
4766       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4767         FullFTy =
4768             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4769         if (!FullFTy)
4770           return error("Explicit call type is not a function type");
4771         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4772       }
4773 
4774       Value *Callee;
4775       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4776         return error("Invalid record");
4777 
4778       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4779       if (!OpTy)
4780         return error("Callee is not a pointer type");
4781       if (!FTy) {
4782         FullFTy =
4783             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4784         if (!FullFTy)
4785           return error("Callee is not of pointer to function type");
4786         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4787       } else if (getPointerElementFlatType(FullTy) != FTy)
4788         return error("Explicit call type does not match pointee type of "
4789                      "callee operand");
4790       if (Record.size() < FTy->getNumParams() + OpNum)
4791         return error("Insufficient operands to call");
4792 
4793       SmallVector<Value*, 16> Args;
4794       // Read the fixed params.
4795       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4796         if (FTy->getParamType(i)->isLabelTy())
4797           Args.push_back(getBasicBlock(Record[OpNum]));
4798         else
4799           Args.push_back(getValue(Record, OpNum, NextValueNo,
4800                                   FTy->getParamType(i)));
4801         if (!Args.back())
4802           return error("Invalid record");
4803       }
4804 
4805       // Read type/value pairs for varargs params.
4806       if (!FTy->isVarArg()) {
4807         if (OpNum != Record.size())
4808           return error("Invalid record");
4809       } else {
4810         while (OpNum != Record.size()) {
4811           Value *Op;
4812           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4813             return error("Invalid record");
4814           Args.push_back(Op);
4815         }
4816       }
4817 
4818       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4819                              OperandBundles);
4820       FullTy = FullFTy->getReturnType();
4821       OperandBundles.clear();
4822       InstructionList.push_back(I);
4823       cast<CallBrInst>(I)->setCallingConv(
4824           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4825       cast<CallBrInst>(I)->setAttributes(PAL);
4826       break;
4827     }
4828     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4829       I = new UnreachableInst(Context);
4830       InstructionList.push_back(I);
4831       break;
4832     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4833       if (Record.empty())
4834         return error("Invalid record");
4835       // The first record specifies the type.
4836       FullTy = getFullyStructuredTypeByID(Record[0]);
4837       Type *Ty = flattenPointerTypes(FullTy);
4838       if (!Ty)
4839         return error("Invalid record");
4840 
4841       // Phi arguments are pairs of records of [value, basic block].
4842       // There is an optional final record for fast-math-flags if this phi has a
4843       // floating-point type.
4844       size_t NumArgs = (Record.size() - 1) / 2;
4845       PHINode *PN = PHINode::Create(Ty, NumArgs);
4846       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4847         return error("Invalid record");
4848       InstructionList.push_back(PN);
4849 
4850       for (unsigned i = 0; i != NumArgs; i++) {
4851         Value *V;
4852         // With the new function encoding, it is possible that operands have
4853         // negative IDs (for forward references).  Use a signed VBR
4854         // representation to keep the encoding small.
4855         if (UseRelativeIDs)
4856           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4857         else
4858           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4859         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4860         if (!V || !BB)
4861           return error("Invalid record");
4862         PN->addIncoming(V, BB);
4863       }
4864       I = PN;
4865 
4866       // If there are an even number of records, the final record must be FMF.
4867       if (Record.size() % 2 == 0) {
4868         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4869         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4870         if (FMF.any())
4871           I->setFastMathFlags(FMF);
4872       }
4873 
4874       break;
4875     }
4876 
4877     case bitc::FUNC_CODE_INST_LANDINGPAD:
4878     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4879       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4880       unsigned Idx = 0;
4881       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4882         if (Record.size() < 3)
4883           return error("Invalid record");
4884       } else {
4885         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4886         if (Record.size() < 4)
4887           return error("Invalid record");
4888       }
4889       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4890       Type *Ty = flattenPointerTypes(FullTy);
4891       if (!Ty)
4892         return error("Invalid record");
4893       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4894         Value *PersFn = nullptr;
4895         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4896           return error("Invalid record");
4897 
4898         if (!F->hasPersonalityFn())
4899           F->setPersonalityFn(cast<Constant>(PersFn));
4900         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4901           return error("Personality function mismatch");
4902       }
4903 
4904       bool IsCleanup = !!Record[Idx++];
4905       unsigned NumClauses = Record[Idx++];
4906       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4907       LP->setCleanup(IsCleanup);
4908       for (unsigned J = 0; J != NumClauses; ++J) {
4909         LandingPadInst::ClauseType CT =
4910           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4911         Value *Val;
4912 
4913         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4914           delete LP;
4915           return error("Invalid record");
4916         }
4917 
4918         assert((CT != LandingPadInst::Catch ||
4919                 !isa<ArrayType>(Val->getType())) &&
4920                "Catch clause has a invalid type!");
4921         assert((CT != LandingPadInst::Filter ||
4922                 isa<ArrayType>(Val->getType())) &&
4923                "Filter clause has invalid type!");
4924         LP->addClause(cast<Constant>(Val));
4925       }
4926 
4927       I = LP;
4928       InstructionList.push_back(I);
4929       break;
4930     }
4931 
4932     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4933       if (Record.size() != 4)
4934         return error("Invalid record");
4935       using APV = AllocaPackedValues;
4936       const uint64_t Rec = Record[3];
4937       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4938       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4939       FullTy = getFullyStructuredTypeByID(Record[0]);
4940       Type *Ty = flattenPointerTypes(FullTy);
4941       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4942         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4943         if (!PTy)
4944           return error("Old-style alloca with a non-pointer type");
4945         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4946       }
4947       Type *OpTy = getTypeByID(Record[1]);
4948       Value *Size = getFnValueByID(Record[2], OpTy);
4949       MaybeAlign Align;
4950       if (Error Err =
4951               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4952         return Err;
4953       }
4954       if (!Ty || !Size)
4955         return error("Invalid record");
4956 
4957       // FIXME: Make this an optional field.
4958       const DataLayout &DL = TheModule->getDataLayout();
4959       unsigned AS = DL.getAllocaAddrSpace();
4960 
4961       SmallPtrSet<Type *, 4> Visited;
4962       if (!Align && !Ty->isSized(&Visited))
4963         return error("alloca of unsized type");
4964       if (!Align)
4965         Align = DL.getPrefTypeAlign(Ty);
4966 
4967       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4968       AI->setUsedWithInAlloca(InAlloca);
4969       AI->setSwiftError(SwiftError);
4970       I = AI;
4971       FullTy = PointerType::get(FullTy, AS);
4972       InstructionList.push_back(I);
4973       break;
4974     }
4975     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4976       unsigned OpNum = 0;
4977       Value *Op;
4978       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4979           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4980         return error("Invalid record");
4981 
4982       if (!isa<PointerType>(Op->getType()))
4983         return error("Load operand is not a pointer type");
4984 
4985       Type *Ty = nullptr;
4986       if (OpNum + 3 == Record.size()) {
4987         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4988         Ty = flattenPointerTypes(FullTy);
4989       } else
4990         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4991 
4992       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4993         return Err;
4994 
4995       MaybeAlign Align;
4996       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4997         return Err;
4998       SmallPtrSet<Type *, 4> Visited;
4999       if (!Align && !Ty->isSized(&Visited))
5000         return error("load of unsized type");
5001       if (!Align)
5002         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5003       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5004       InstructionList.push_back(I);
5005       break;
5006     }
5007     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5008        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5009       unsigned OpNum = 0;
5010       Value *Op;
5011       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
5012           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5013         return error("Invalid record");
5014 
5015       if (!isa<PointerType>(Op->getType()))
5016         return error("Load operand is not a pointer type");
5017 
5018       Type *Ty = nullptr;
5019       if (OpNum + 5 == Record.size()) {
5020         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
5021         Ty = flattenPointerTypes(FullTy);
5022       } else
5023         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
5024 
5025       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5026         return Err;
5027 
5028       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5029       if (Ordering == AtomicOrdering::NotAtomic ||
5030           Ordering == AtomicOrdering::Release ||
5031           Ordering == AtomicOrdering::AcquireRelease)
5032         return error("Invalid record");
5033       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5034         return error("Invalid record");
5035       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5036 
5037       MaybeAlign Align;
5038       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5039         return Err;
5040       if (!Align)
5041         return error("Alignment missing from atomic load");
5042       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5043       InstructionList.push_back(I);
5044       break;
5045     }
5046     case bitc::FUNC_CODE_INST_STORE:
5047     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5048       unsigned OpNum = 0;
5049       Value *Val, *Ptr;
5050       Type *FullTy;
5051       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5052           (BitCode == bitc::FUNC_CODE_INST_STORE
5053                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5054                : popValue(Record, OpNum, NextValueNo,
5055                           getPointerElementFlatType(FullTy), Val)) ||
5056           OpNum + 2 != Record.size())
5057         return error("Invalid record");
5058 
5059       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5060         return Err;
5061       MaybeAlign Align;
5062       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5063         return Err;
5064       SmallPtrSet<Type *, 4> Visited;
5065       if (!Align && !Val->getType()->isSized(&Visited))
5066         return error("store of unsized type");
5067       if (!Align)
5068         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5069       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5070       InstructionList.push_back(I);
5071       break;
5072     }
5073     case bitc::FUNC_CODE_INST_STOREATOMIC:
5074     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5075       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5076       unsigned OpNum = 0;
5077       Value *Val, *Ptr;
5078       Type *FullTy;
5079       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5080           !isa<PointerType>(Ptr->getType()) ||
5081           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5082                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5083                : popValue(Record, OpNum, NextValueNo,
5084                           getPointerElementFlatType(FullTy), Val)) ||
5085           OpNum + 4 != Record.size())
5086         return error("Invalid record");
5087 
5088       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5089         return Err;
5090       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5091       if (Ordering == AtomicOrdering::NotAtomic ||
5092           Ordering == AtomicOrdering::Acquire ||
5093           Ordering == AtomicOrdering::AcquireRelease)
5094         return error("Invalid record");
5095       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5096       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5097         return error("Invalid record");
5098 
5099       MaybeAlign Align;
5100       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5101         return Err;
5102       if (!Align)
5103         return error("Alignment missing from atomic store");
5104       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5105       InstructionList.push_back(I);
5106       break;
5107     }
5108     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5109       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5110       // failure_ordering?, weak?]
5111       const size_t NumRecords = Record.size();
5112       unsigned OpNum = 0;
5113       Value *Ptr = nullptr;
5114       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5115         return error("Invalid record");
5116 
5117       if (!isa<PointerType>(Ptr->getType()))
5118         return error("Cmpxchg operand is not a pointer type");
5119 
5120       Value *Cmp = nullptr;
5121       if (popValue(Record, OpNum, NextValueNo,
5122                    getPointerElementFlatType(FullTy), Cmp))
5123         return error("Invalid record");
5124 
5125       FullTy = cast<PointerType>(FullTy)->getElementType();
5126 
5127       Value *New = nullptr;
5128       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5129           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5130         return error("Invalid record");
5131 
5132       const AtomicOrdering SuccessOrdering =
5133           getDecodedOrdering(Record[OpNum + 1]);
5134       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5135           SuccessOrdering == AtomicOrdering::Unordered)
5136         return error("Invalid record");
5137 
5138       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5139 
5140       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5141         return Err;
5142 
5143       const AtomicOrdering FailureOrdering =
5144           NumRecords < 7
5145               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5146               : getDecodedOrdering(Record[OpNum + 3]);
5147 
5148       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5149           FailureOrdering == AtomicOrdering::Unordered)
5150         return error("Invalid record");
5151 
5152       const Align Alignment(
5153           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5154 
5155       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5156                                 FailureOrdering, SSID);
5157       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5158       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5159 
5160       if (NumRecords < 8) {
5161         // Before weak cmpxchgs existed, the instruction simply returned the
5162         // value loaded from memory, so bitcode files from that era will be
5163         // expecting the first component of a modern cmpxchg.
5164         CurBB->getInstList().push_back(I);
5165         I = ExtractValueInst::Create(I, 0);
5166         FullTy = cast<StructType>(FullTy)->getElementType(0);
5167       } else {
5168         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5169       }
5170 
5171       InstructionList.push_back(I);
5172       break;
5173     }
5174     case bitc::FUNC_CODE_INST_CMPXCHG: {
5175       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5176       // failure_ordering, weak, align?]
5177       const size_t NumRecords = Record.size();
5178       unsigned OpNum = 0;
5179       Value *Ptr = nullptr;
5180       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5181         return error("Invalid record");
5182 
5183       if (!isa<PointerType>(Ptr->getType()))
5184         return error("Cmpxchg operand is not a pointer type");
5185 
5186       Value *Cmp = nullptr;
5187       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5188         return error("Invalid record");
5189 
5190       Value *Val = nullptr;
5191       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5192         return error("Invalid record");
5193 
5194       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5195         return error("Invalid record");
5196 
5197       const bool IsVol = Record[OpNum];
5198 
5199       const AtomicOrdering SuccessOrdering =
5200           getDecodedOrdering(Record[OpNum + 1]);
5201       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5202         return error("Invalid cmpxchg success ordering");
5203 
5204       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5205 
5206       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5207         return Err;
5208 
5209       const AtomicOrdering FailureOrdering =
5210           getDecodedOrdering(Record[OpNum + 3]);
5211       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5212         return error("Invalid cmpxchg failure ordering");
5213 
5214       const bool IsWeak = Record[OpNum + 4];
5215 
5216       MaybeAlign Alignment;
5217 
5218       if (NumRecords == (OpNum + 6)) {
5219         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5220           return Err;
5221       }
5222       if (!Alignment)
5223         Alignment =
5224             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5225 
5226       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5227                                 FailureOrdering, SSID);
5228       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5229       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5230       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5231 
5232       InstructionList.push_back(I);
5233       break;
5234     }
5235     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5236     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5237       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5238       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5239       const size_t NumRecords = Record.size();
5240       unsigned OpNum = 0;
5241 
5242       Value *Ptr = nullptr;
5243       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5244         return error("Invalid record");
5245 
5246       if (!isa<PointerType>(Ptr->getType()))
5247         return error("Invalid record");
5248 
5249       Value *Val = nullptr;
5250       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5251         if (popValue(Record, OpNum, NextValueNo,
5252                      getPointerElementFlatType(FullTy), Val))
5253           return error("Invalid record");
5254         FullTy = getPointerElementFlatType(FullTy);
5255       } else {
5256         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5257           return error("Invalid record");
5258         FullTy = Val->getType();
5259       }
5260 
5261       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5262         return error("Invalid record");
5263 
5264       const AtomicRMWInst::BinOp Operation =
5265           getDecodedRMWOperation(Record[OpNum]);
5266       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5267           Operation > AtomicRMWInst::LAST_BINOP)
5268         return error("Invalid record");
5269 
5270       const bool IsVol = Record[OpNum + 1];
5271 
5272       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5273       if (Ordering == AtomicOrdering::NotAtomic ||
5274           Ordering == AtomicOrdering::Unordered)
5275         return error("Invalid record");
5276 
5277       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5278 
5279       MaybeAlign Alignment;
5280 
5281       if (NumRecords == (OpNum + 5)) {
5282         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5283           return Err;
5284       }
5285 
5286       if (!Alignment)
5287         Alignment =
5288             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5289 
5290       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5291       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5292 
5293       InstructionList.push_back(I);
5294       break;
5295     }
5296     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5297       if (2 != Record.size())
5298         return error("Invalid record");
5299       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5300       if (Ordering == AtomicOrdering::NotAtomic ||
5301           Ordering == AtomicOrdering::Unordered ||
5302           Ordering == AtomicOrdering::Monotonic)
5303         return error("Invalid record");
5304       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5305       I = new FenceInst(Context, Ordering, SSID);
5306       InstructionList.push_back(I);
5307       break;
5308     }
5309     case bitc::FUNC_CODE_INST_CALL: {
5310       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5311       if (Record.size() < 3)
5312         return error("Invalid record");
5313 
5314       unsigned OpNum = 0;
5315       AttributeList PAL = getAttributes(Record[OpNum++]);
5316       unsigned CCInfo = Record[OpNum++];
5317 
5318       FastMathFlags FMF;
5319       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5320         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5321         if (!FMF.any())
5322           return error("Fast math flags indicator set for call with no FMF");
5323       }
5324 
5325       FunctionType *FTy = nullptr;
5326       FunctionType *FullFTy = nullptr;
5327       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5328         FullFTy =
5329             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5330         if (!FullFTy)
5331           return error("Explicit call type is not a function type");
5332         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5333       }
5334 
5335       Value *Callee;
5336       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5337         return error("Invalid record");
5338 
5339       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5340       if (!OpTy)
5341         return error("Callee is not a pointer type");
5342       if (!FTy) {
5343         FullFTy =
5344             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5345         if (!FullFTy)
5346           return error("Callee is not of pointer to function type");
5347         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5348       } else if (getPointerElementFlatType(FullTy) != FTy)
5349         return error("Explicit call type does not match pointee type of "
5350                      "callee operand");
5351       if (Record.size() < FTy->getNumParams() + OpNum)
5352         return error("Insufficient operands to call");
5353 
5354       SmallVector<Value*, 16> Args;
5355       SmallVector<Type*, 16> ArgsFullTys;
5356       // Read the fixed params.
5357       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5358         if (FTy->getParamType(i)->isLabelTy())
5359           Args.push_back(getBasicBlock(Record[OpNum]));
5360         else
5361           Args.push_back(getValue(Record, OpNum, NextValueNo,
5362                                   FTy->getParamType(i)));
5363         ArgsFullTys.push_back(FullFTy->getParamType(i));
5364         if (!Args.back())
5365           return error("Invalid record");
5366       }
5367 
5368       // Read type/value pairs for varargs params.
5369       if (!FTy->isVarArg()) {
5370         if (OpNum != Record.size())
5371           return error("Invalid record");
5372       } else {
5373         while (OpNum != Record.size()) {
5374           Value *Op;
5375           Type *FullTy;
5376           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5377             return error("Invalid record");
5378           Args.push_back(Op);
5379           ArgsFullTys.push_back(FullTy);
5380         }
5381       }
5382 
5383       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5384       FullTy = FullFTy->getReturnType();
5385       OperandBundles.clear();
5386       InstructionList.push_back(I);
5387       cast<CallInst>(I)->setCallingConv(
5388           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5389       CallInst::TailCallKind TCK = CallInst::TCK_None;
5390       if (CCInfo & 1 << bitc::CALL_TAIL)
5391         TCK = CallInst::TCK_Tail;
5392       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5393         TCK = CallInst::TCK_MustTail;
5394       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5395         TCK = CallInst::TCK_NoTail;
5396       cast<CallInst>(I)->setTailCallKind(TCK);
5397       cast<CallInst>(I)->setAttributes(PAL);
5398       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5399       if (FMF.any()) {
5400         if (!isa<FPMathOperator>(I))
5401           return error("Fast-math-flags specified for call without "
5402                        "floating-point scalar or vector return type");
5403         I->setFastMathFlags(FMF);
5404       }
5405       break;
5406     }
5407     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5408       if (Record.size() < 3)
5409         return error("Invalid record");
5410       Type *OpTy = getTypeByID(Record[0]);
5411       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5412       FullTy = getFullyStructuredTypeByID(Record[2]);
5413       Type *ResTy = flattenPointerTypes(FullTy);
5414       if (!OpTy || !Op || !ResTy)
5415         return error("Invalid record");
5416       I = new VAArgInst(Op, ResTy);
5417       InstructionList.push_back(I);
5418       break;
5419     }
5420 
5421     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5422       // A call or an invoke can be optionally prefixed with some variable
5423       // number of operand bundle blocks.  These blocks are read into
5424       // OperandBundles and consumed at the next call or invoke instruction.
5425 
5426       if (Record.empty() || Record[0] >= BundleTags.size())
5427         return error("Invalid record");
5428 
5429       std::vector<Value *> Inputs;
5430 
5431       unsigned OpNum = 1;
5432       while (OpNum != Record.size()) {
5433         Value *Op;
5434         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5435           return error("Invalid record");
5436         Inputs.push_back(Op);
5437       }
5438 
5439       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5440       continue;
5441     }
5442 
5443     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5444       unsigned OpNum = 0;
5445       Value *Op = nullptr;
5446       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5447         return error("Invalid record");
5448       if (OpNum != Record.size())
5449         return error("Invalid record");
5450 
5451       I = new FreezeInst(Op);
5452       InstructionList.push_back(I);
5453       break;
5454     }
5455     }
5456 
5457     // Add instruction to end of current BB.  If there is no current BB, reject
5458     // this file.
5459     if (!CurBB) {
5460       I->deleteValue();
5461       return error("Invalid instruction with no BB");
5462     }
5463     if (!OperandBundles.empty()) {
5464       I->deleteValue();
5465       return error("Operand bundles found with no consumer");
5466     }
5467     CurBB->getInstList().push_back(I);
5468 
5469     // If this was a terminator instruction, move to the next block.
5470     if (I->isTerminator()) {
5471       ++CurBBNo;
5472       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5473     }
5474 
5475     // Non-void values get registered in the value table for future use.
5476     if (!I->getType()->isVoidTy()) {
5477       if (!FullTy) {
5478         FullTy = I->getType();
5479         assert(
5480             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5481             !isa<ArrayType>(FullTy) &&
5482             (!isa<VectorType>(FullTy) ||
5483              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5484              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5485             "Structured types must be assigned with corresponding non-opaque "
5486             "pointer type");
5487       }
5488 
5489       assert(I->getType() == flattenPointerTypes(FullTy) &&
5490              "Incorrect fully structured type provided for Instruction");
5491       ValueList.assignValue(I, NextValueNo++, FullTy);
5492     }
5493   }
5494 
5495 OutOfRecordLoop:
5496 
5497   if (!OperandBundles.empty())
5498     return error("Operand bundles found with no consumer");
5499 
5500   // Check the function list for unresolved values.
5501   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5502     if (!A->getParent()) {
5503       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5504       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5505         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5506           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5507           delete A;
5508         }
5509       }
5510       return error("Never resolved value found in function");
5511     }
5512   }
5513 
5514   // Unexpected unresolved metadata about to be dropped.
5515   if (MDLoader->hasFwdRefs())
5516     return error("Invalid function metadata: outgoing forward refs");
5517 
5518   // Trim the value list down to the size it was before we parsed this function.
5519   ValueList.shrinkTo(ModuleValueListSize);
5520   MDLoader->shrinkTo(ModuleMDLoaderSize);
5521   std::vector<BasicBlock*>().swap(FunctionBBs);
5522   return Error::success();
5523 }
5524 
5525 /// Find the function body in the bitcode stream
5526 Error BitcodeReader::findFunctionInStream(
5527     Function *F,
5528     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5529   while (DeferredFunctionInfoIterator->second == 0) {
5530     // This is the fallback handling for the old format bitcode that
5531     // didn't contain the function index in the VST, or when we have
5532     // an anonymous function which would not have a VST entry.
5533     // Assert that we have one of those two cases.
5534     assert(VSTOffset == 0 || !F->hasName());
5535     // Parse the next body in the stream and set its position in the
5536     // DeferredFunctionInfo map.
5537     if (Error Err = rememberAndSkipFunctionBodies())
5538       return Err;
5539   }
5540   return Error::success();
5541 }
5542 
5543 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5544   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5545     return SyncScope::ID(Val);
5546   if (Val >= SSIDs.size())
5547     return SyncScope::System; // Map unknown synchronization scopes to system.
5548   return SSIDs[Val];
5549 }
5550 
5551 //===----------------------------------------------------------------------===//
5552 // GVMaterializer implementation
5553 //===----------------------------------------------------------------------===//
5554 
5555 Error BitcodeReader::materialize(GlobalValue *GV) {
5556   Function *F = dyn_cast<Function>(GV);
5557   // If it's not a function or is already material, ignore the request.
5558   if (!F || !F->isMaterializable())
5559     return Error::success();
5560 
5561   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5562   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5563   // If its position is recorded as 0, its body is somewhere in the stream
5564   // but we haven't seen it yet.
5565   if (DFII->second == 0)
5566     if (Error Err = findFunctionInStream(F, DFII))
5567       return Err;
5568 
5569   // Materialize metadata before parsing any function bodies.
5570   if (Error Err = materializeMetadata())
5571     return Err;
5572 
5573   // Move the bit stream to the saved position of the deferred function body.
5574   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5575     return JumpFailed;
5576   if (Error Err = parseFunctionBody(F))
5577     return Err;
5578   F->setIsMaterializable(false);
5579 
5580   if (StripDebugInfo)
5581     stripDebugInfo(*F);
5582 
5583   // Upgrade any old intrinsic calls in the function.
5584   for (auto &I : UpgradedIntrinsics) {
5585     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5586          UI != UE;) {
5587       User *U = *UI;
5588       ++UI;
5589       if (CallInst *CI = dyn_cast<CallInst>(U))
5590         UpgradeIntrinsicCall(CI, I.second);
5591     }
5592   }
5593 
5594   // Update calls to the remangled intrinsics
5595   for (auto &I : RemangledIntrinsics)
5596     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5597          UI != UE;)
5598       // Don't expect any other users than call sites
5599       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5600 
5601   // Finish fn->subprogram upgrade for materialized functions.
5602   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5603     F->setSubprogram(SP);
5604 
5605   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5606   if (!MDLoader->isStrippingTBAA()) {
5607     for (auto &I : instructions(F)) {
5608       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5609       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5610         continue;
5611       MDLoader->setStripTBAA(true);
5612       stripTBAA(F->getParent());
5613     }
5614   }
5615 
5616   for (auto &I : instructions(F)) {
5617     // "Upgrade" older incorrect branch weights by dropping them.
5618     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5619       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5620         MDString *MDS = cast<MDString>(MD->getOperand(0));
5621         StringRef ProfName = MDS->getString();
5622         // Check consistency of !prof branch_weights metadata.
5623         if (!ProfName.equals("branch_weights"))
5624           continue;
5625         unsigned ExpectedNumOperands = 0;
5626         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5627           ExpectedNumOperands = BI->getNumSuccessors();
5628         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5629           ExpectedNumOperands = SI->getNumSuccessors();
5630         else if (isa<CallInst>(&I))
5631           ExpectedNumOperands = 1;
5632         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5633           ExpectedNumOperands = IBI->getNumDestinations();
5634         else if (isa<SelectInst>(&I))
5635           ExpectedNumOperands = 2;
5636         else
5637           continue; // ignore and continue.
5638 
5639         // If branch weight doesn't match, just strip branch weight.
5640         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5641           I.setMetadata(LLVMContext::MD_prof, nullptr);
5642       }
5643     }
5644 
5645     // Remove incompatible attributes on function calls.
5646     if (auto *CI = dyn_cast<CallBase>(&I)) {
5647       CI->removeAttributes(AttributeList::ReturnIndex,
5648                            AttributeFuncs::typeIncompatible(
5649                                CI->getFunctionType()->getReturnType()));
5650 
5651       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5652         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5653                                         CI->getArgOperand(ArgNo)->getType()));
5654     }
5655   }
5656 
5657   // Look for functions that rely on old function attribute behavior.
5658   UpgradeFunctionAttributes(*F);
5659 
5660   // Bring in any functions that this function forward-referenced via
5661   // blockaddresses.
5662   return materializeForwardReferencedFunctions();
5663 }
5664 
5665 Error BitcodeReader::materializeModule() {
5666   if (Error Err = materializeMetadata())
5667     return Err;
5668 
5669   // Promise to materialize all forward references.
5670   WillMaterializeAllForwardRefs = true;
5671 
5672   // Iterate over the module, deserializing any functions that are still on
5673   // disk.
5674   for (Function &F : *TheModule) {
5675     if (Error Err = materialize(&F))
5676       return Err;
5677   }
5678   // At this point, if there are any function bodies, parse the rest of
5679   // the bits in the module past the last function block we have recorded
5680   // through either lazy scanning or the VST.
5681   if (LastFunctionBlockBit || NextUnreadBit)
5682     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5683                                     ? LastFunctionBlockBit
5684                                     : NextUnreadBit))
5685       return Err;
5686 
5687   // Check that all block address forward references got resolved (as we
5688   // promised above).
5689   if (!BasicBlockFwdRefs.empty())
5690     return error("Never resolved function from blockaddress");
5691 
5692   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5693   // delete the old functions to clean up. We can't do this unless the entire
5694   // module is materialized because there could always be another function body
5695   // with calls to the old function.
5696   for (auto &I : UpgradedIntrinsics) {
5697     for (auto *U : I.first->users()) {
5698       if (CallInst *CI = dyn_cast<CallInst>(U))
5699         UpgradeIntrinsicCall(CI, I.second);
5700     }
5701     if (!I.first->use_empty())
5702       I.first->replaceAllUsesWith(I.second);
5703     I.first->eraseFromParent();
5704   }
5705   UpgradedIntrinsics.clear();
5706   // Do the same for remangled intrinsics
5707   for (auto &I : RemangledIntrinsics) {
5708     I.first->replaceAllUsesWith(I.second);
5709     I.first->eraseFromParent();
5710   }
5711   RemangledIntrinsics.clear();
5712 
5713   UpgradeDebugInfo(*TheModule);
5714 
5715   UpgradeModuleFlags(*TheModule);
5716 
5717   UpgradeARCRuntime(*TheModule);
5718 
5719   return Error::success();
5720 }
5721 
5722 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5723   return IdentifiedStructTypes;
5724 }
5725 
5726 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5727     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5728     StringRef ModulePath, unsigned ModuleId)
5729     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5730       ModulePath(ModulePath), ModuleId(ModuleId) {}
5731 
5732 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5733   TheIndex.addModule(ModulePath, ModuleId);
5734 }
5735 
5736 ModuleSummaryIndex::ModuleInfo *
5737 ModuleSummaryIndexBitcodeReader::getThisModule() {
5738   return TheIndex.getModule(ModulePath);
5739 }
5740 
5741 std::pair<ValueInfo, GlobalValue::GUID>
5742 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5743   auto VGI = ValueIdToValueInfoMap[ValueId];
5744   assert(VGI.first);
5745   return VGI;
5746 }
5747 
5748 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5749     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5750     StringRef SourceFileName) {
5751   std::string GlobalId =
5752       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5753   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5754   auto OriginalNameID = ValueGUID;
5755   if (GlobalValue::isLocalLinkage(Linkage))
5756     OriginalNameID = GlobalValue::getGUID(ValueName);
5757   if (PrintSummaryGUIDs)
5758     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5759            << ValueName << "\n";
5760 
5761   // UseStrtab is false for legacy summary formats and value names are
5762   // created on stack. In that case we save the name in a string saver in
5763   // the index so that the value name can be recorded.
5764   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5765       TheIndex.getOrInsertValueInfo(
5766           ValueGUID,
5767           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5768       OriginalNameID);
5769 }
5770 
5771 // Specialized value symbol table parser used when reading module index
5772 // blocks where we don't actually create global values. The parsed information
5773 // is saved in the bitcode reader for use when later parsing summaries.
5774 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5775     uint64_t Offset,
5776     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5777   // With a strtab the VST is not required to parse the summary.
5778   if (UseStrtab)
5779     return Error::success();
5780 
5781   assert(Offset > 0 && "Expected non-zero VST offset");
5782   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5783   if (!MaybeCurrentBit)
5784     return MaybeCurrentBit.takeError();
5785   uint64_t CurrentBit = MaybeCurrentBit.get();
5786 
5787   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5788     return Err;
5789 
5790   SmallVector<uint64_t, 64> Record;
5791 
5792   // Read all the records for this value table.
5793   SmallString<128> ValueName;
5794 
5795   while (true) {
5796     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5797     if (!MaybeEntry)
5798       return MaybeEntry.takeError();
5799     BitstreamEntry Entry = MaybeEntry.get();
5800 
5801     switch (Entry.Kind) {
5802     case BitstreamEntry::SubBlock: // Handled for us already.
5803     case BitstreamEntry::Error:
5804       return error("Malformed block");
5805     case BitstreamEntry::EndBlock:
5806       // Done parsing VST, jump back to wherever we came from.
5807       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5808         return JumpFailed;
5809       return Error::success();
5810     case BitstreamEntry::Record:
5811       // The interesting case.
5812       break;
5813     }
5814 
5815     // Read a record.
5816     Record.clear();
5817     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5818     if (!MaybeRecord)
5819       return MaybeRecord.takeError();
5820     switch (MaybeRecord.get()) {
5821     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5822       break;
5823     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5824       if (convertToString(Record, 1, ValueName))
5825         return error("Invalid record");
5826       unsigned ValueID = Record[0];
5827       assert(!SourceFileName.empty());
5828       auto VLI = ValueIdToLinkageMap.find(ValueID);
5829       assert(VLI != ValueIdToLinkageMap.end() &&
5830              "No linkage found for VST entry?");
5831       auto Linkage = VLI->second;
5832       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5833       ValueName.clear();
5834       break;
5835     }
5836     case bitc::VST_CODE_FNENTRY: {
5837       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5838       if (convertToString(Record, 2, ValueName))
5839         return error("Invalid record");
5840       unsigned ValueID = Record[0];
5841       assert(!SourceFileName.empty());
5842       auto VLI = ValueIdToLinkageMap.find(ValueID);
5843       assert(VLI != ValueIdToLinkageMap.end() &&
5844              "No linkage found for VST entry?");
5845       auto Linkage = VLI->second;
5846       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5847       ValueName.clear();
5848       break;
5849     }
5850     case bitc::VST_CODE_COMBINED_ENTRY: {
5851       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5852       unsigned ValueID = Record[0];
5853       GlobalValue::GUID RefGUID = Record[1];
5854       // The "original name", which is the second value of the pair will be
5855       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5856       ValueIdToValueInfoMap[ValueID] =
5857           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5858       break;
5859     }
5860     }
5861   }
5862 }
5863 
5864 // Parse just the blocks needed for building the index out of the module.
5865 // At the end of this routine the module Index is populated with a map
5866 // from global value id to GlobalValueSummary objects.
5867 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5868   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5869     return Err;
5870 
5871   SmallVector<uint64_t, 64> Record;
5872   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5873   unsigned ValueId = 0;
5874 
5875   // Read the index for this module.
5876   while (true) {
5877     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5878     if (!MaybeEntry)
5879       return MaybeEntry.takeError();
5880     llvm::BitstreamEntry Entry = MaybeEntry.get();
5881 
5882     switch (Entry.Kind) {
5883     case BitstreamEntry::Error:
5884       return error("Malformed block");
5885     case BitstreamEntry::EndBlock:
5886       return Error::success();
5887 
5888     case BitstreamEntry::SubBlock:
5889       switch (Entry.ID) {
5890       default: // Skip unknown content.
5891         if (Error Err = Stream.SkipBlock())
5892           return Err;
5893         break;
5894       case bitc::BLOCKINFO_BLOCK_ID:
5895         // Need to parse these to get abbrev ids (e.g. for VST)
5896         if (readBlockInfo())
5897           return error("Malformed block");
5898         break;
5899       case bitc::VALUE_SYMTAB_BLOCK_ID:
5900         // Should have been parsed earlier via VSTOffset, unless there
5901         // is no summary section.
5902         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5903                 !SeenGlobalValSummary) &&
5904                "Expected early VST parse via VSTOffset record");
5905         if (Error Err = Stream.SkipBlock())
5906           return Err;
5907         break;
5908       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5909       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5910         // Add the module if it is a per-module index (has a source file name).
5911         if (!SourceFileName.empty())
5912           addThisModule();
5913         assert(!SeenValueSymbolTable &&
5914                "Already read VST when parsing summary block?");
5915         // We might not have a VST if there were no values in the
5916         // summary. An empty summary block generated when we are
5917         // performing ThinLTO compiles so we don't later invoke
5918         // the regular LTO process on them.
5919         if (VSTOffset > 0) {
5920           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5921             return Err;
5922           SeenValueSymbolTable = true;
5923         }
5924         SeenGlobalValSummary = true;
5925         if (Error Err = parseEntireSummary(Entry.ID))
5926           return Err;
5927         break;
5928       case bitc::MODULE_STRTAB_BLOCK_ID:
5929         if (Error Err = parseModuleStringTable())
5930           return Err;
5931         break;
5932       }
5933       continue;
5934 
5935     case BitstreamEntry::Record: {
5936         Record.clear();
5937         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5938         if (!MaybeBitCode)
5939           return MaybeBitCode.takeError();
5940         switch (MaybeBitCode.get()) {
5941         default:
5942           break; // Default behavior, ignore unknown content.
5943         case bitc::MODULE_CODE_VERSION: {
5944           if (Error Err = parseVersionRecord(Record).takeError())
5945             return Err;
5946           break;
5947         }
5948         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5949         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5950           SmallString<128> ValueName;
5951           if (convertToString(Record, 0, ValueName))
5952             return error("Invalid record");
5953           SourceFileName = ValueName.c_str();
5954           break;
5955         }
5956         /// MODULE_CODE_HASH: [5*i32]
5957         case bitc::MODULE_CODE_HASH: {
5958           if (Record.size() != 5)
5959             return error("Invalid hash length " + Twine(Record.size()).str());
5960           auto &Hash = getThisModule()->second.second;
5961           int Pos = 0;
5962           for (auto &Val : Record) {
5963             assert(!(Val >> 32) && "Unexpected high bits set");
5964             Hash[Pos++] = Val;
5965           }
5966           break;
5967         }
5968         /// MODULE_CODE_VSTOFFSET: [offset]
5969         case bitc::MODULE_CODE_VSTOFFSET:
5970           if (Record.empty())
5971             return error("Invalid record");
5972           // Note that we subtract 1 here because the offset is relative to one
5973           // word before the start of the identification or module block, which
5974           // was historically always the start of the regular bitcode header.
5975           VSTOffset = Record[0] - 1;
5976           break;
5977         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5978         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5979         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5980         // v2: [strtab offset, strtab size, v1]
5981         case bitc::MODULE_CODE_GLOBALVAR:
5982         case bitc::MODULE_CODE_FUNCTION:
5983         case bitc::MODULE_CODE_ALIAS: {
5984           StringRef Name;
5985           ArrayRef<uint64_t> GVRecord;
5986           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5987           if (GVRecord.size() <= 3)
5988             return error("Invalid record");
5989           uint64_t RawLinkage = GVRecord[3];
5990           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5991           if (!UseStrtab) {
5992             ValueIdToLinkageMap[ValueId++] = Linkage;
5993             break;
5994           }
5995 
5996           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5997           break;
5998         }
5999         }
6000       }
6001       continue;
6002     }
6003   }
6004 }
6005 
6006 std::vector<ValueInfo>
6007 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6008   std::vector<ValueInfo> Ret;
6009   Ret.reserve(Record.size());
6010   for (uint64_t RefValueId : Record)
6011     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6012   return Ret;
6013 }
6014 
6015 std::vector<FunctionSummary::EdgeTy>
6016 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6017                                               bool IsOldProfileFormat,
6018                                               bool HasProfile, bool HasRelBF) {
6019   std::vector<FunctionSummary::EdgeTy> Ret;
6020   Ret.reserve(Record.size());
6021   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6022     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6023     uint64_t RelBF = 0;
6024     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6025     if (IsOldProfileFormat) {
6026       I += 1; // Skip old callsitecount field
6027       if (HasProfile)
6028         I += 1; // Skip old profilecount field
6029     } else if (HasProfile)
6030       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6031     else if (HasRelBF)
6032       RelBF = Record[++I];
6033     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6034   }
6035   return Ret;
6036 }
6037 
6038 static void
6039 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6040                                        WholeProgramDevirtResolution &Wpd) {
6041   uint64_t ArgNum = Record[Slot++];
6042   WholeProgramDevirtResolution::ByArg &B =
6043       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6044   Slot += ArgNum;
6045 
6046   B.TheKind =
6047       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6048   B.Info = Record[Slot++];
6049   B.Byte = Record[Slot++];
6050   B.Bit = Record[Slot++];
6051 }
6052 
6053 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6054                                               StringRef Strtab, size_t &Slot,
6055                                               TypeIdSummary &TypeId) {
6056   uint64_t Id = Record[Slot++];
6057   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6058 
6059   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6060   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6061                         static_cast<size_t>(Record[Slot + 1])};
6062   Slot += 2;
6063 
6064   uint64_t ResByArgNum = Record[Slot++];
6065   for (uint64_t I = 0; I != ResByArgNum; ++I)
6066     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6067 }
6068 
6069 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6070                                      StringRef Strtab,
6071                                      ModuleSummaryIndex &TheIndex) {
6072   size_t Slot = 0;
6073   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6074       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6075   Slot += 2;
6076 
6077   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6078   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6079   TypeId.TTRes.AlignLog2 = Record[Slot++];
6080   TypeId.TTRes.SizeM1 = Record[Slot++];
6081   TypeId.TTRes.BitMask = Record[Slot++];
6082   TypeId.TTRes.InlineBits = Record[Slot++];
6083 
6084   while (Slot < Record.size())
6085     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6086 }
6087 
6088 std::vector<FunctionSummary::ParamAccess>
6089 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6090   auto ReadRange = [&]() {
6091     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6092                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6093     Record = Record.drop_front();
6094     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6095                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6096     Record = Record.drop_front();
6097     ConstantRange Range{Lower, Upper};
6098     assert(!Range.isFullSet());
6099     assert(!Range.isUpperSignWrapped());
6100     return Range;
6101   };
6102 
6103   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6104   while (!Record.empty()) {
6105     PendingParamAccesses.emplace_back();
6106     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6107     ParamAccess.ParamNo = Record.front();
6108     Record = Record.drop_front();
6109     ParamAccess.Use = ReadRange();
6110     ParamAccess.Calls.resize(Record.front());
6111     Record = Record.drop_front();
6112     for (auto &Call : ParamAccess.Calls) {
6113       Call.ParamNo = Record.front();
6114       Record = Record.drop_front();
6115       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6116       Record = Record.drop_front();
6117       Call.Offsets = ReadRange();
6118     }
6119   }
6120   return PendingParamAccesses;
6121 }
6122 
6123 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6124     ArrayRef<uint64_t> Record, size_t &Slot,
6125     TypeIdCompatibleVtableInfo &TypeId) {
6126   uint64_t Offset = Record[Slot++];
6127   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6128   TypeId.push_back({Offset, Callee});
6129 }
6130 
6131 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6132     ArrayRef<uint64_t> Record) {
6133   size_t Slot = 0;
6134   TypeIdCompatibleVtableInfo &TypeId =
6135       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6136           {Strtab.data() + Record[Slot],
6137            static_cast<size_t>(Record[Slot + 1])});
6138   Slot += 2;
6139 
6140   while (Slot < Record.size())
6141     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6142 }
6143 
6144 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6145                            unsigned WOCnt) {
6146   // Readonly and writeonly refs are in the end of the refs list.
6147   assert(ROCnt + WOCnt <= Refs.size());
6148   unsigned FirstWORef = Refs.size() - WOCnt;
6149   unsigned RefNo = FirstWORef - ROCnt;
6150   for (; RefNo < FirstWORef; ++RefNo)
6151     Refs[RefNo].setReadOnly();
6152   for (; RefNo < Refs.size(); ++RefNo)
6153     Refs[RefNo].setWriteOnly();
6154 }
6155 
6156 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6157 // objects in the index.
6158 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6159   if (Error Err = Stream.EnterSubBlock(ID))
6160     return Err;
6161   SmallVector<uint64_t, 64> Record;
6162 
6163   // Parse version
6164   {
6165     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6166     if (!MaybeEntry)
6167       return MaybeEntry.takeError();
6168     BitstreamEntry Entry = MaybeEntry.get();
6169 
6170     if (Entry.Kind != BitstreamEntry::Record)
6171       return error("Invalid Summary Block: record for version expected");
6172     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6173     if (!MaybeRecord)
6174       return MaybeRecord.takeError();
6175     if (MaybeRecord.get() != bitc::FS_VERSION)
6176       return error("Invalid Summary Block: version expected");
6177   }
6178   const uint64_t Version = Record[0];
6179   const bool IsOldProfileFormat = Version == 1;
6180   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6181     return error("Invalid summary version " + Twine(Version) +
6182                  ". Version should be in the range [1-" +
6183                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6184                  "].");
6185   Record.clear();
6186 
6187   // Keep around the last seen summary to be used when we see an optional
6188   // "OriginalName" attachement.
6189   GlobalValueSummary *LastSeenSummary = nullptr;
6190   GlobalValue::GUID LastSeenGUID = 0;
6191 
6192   // We can expect to see any number of type ID information records before
6193   // each function summary records; these variables store the information
6194   // collected so far so that it can be used to create the summary object.
6195   std::vector<GlobalValue::GUID> PendingTypeTests;
6196   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6197       PendingTypeCheckedLoadVCalls;
6198   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6199       PendingTypeCheckedLoadConstVCalls;
6200   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6201 
6202   while (true) {
6203     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6204     if (!MaybeEntry)
6205       return MaybeEntry.takeError();
6206     BitstreamEntry Entry = MaybeEntry.get();
6207 
6208     switch (Entry.Kind) {
6209     case BitstreamEntry::SubBlock: // Handled for us already.
6210     case BitstreamEntry::Error:
6211       return error("Malformed block");
6212     case BitstreamEntry::EndBlock:
6213       return Error::success();
6214     case BitstreamEntry::Record:
6215       // The interesting case.
6216       break;
6217     }
6218 
6219     // Read a record. The record format depends on whether this
6220     // is a per-module index or a combined index file. In the per-module
6221     // case the records contain the associated value's ID for correlation
6222     // with VST entries. In the combined index the correlation is done
6223     // via the bitcode offset of the summary records (which were saved
6224     // in the combined index VST entries). The records also contain
6225     // information used for ThinLTO renaming and importing.
6226     Record.clear();
6227     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6228     if (!MaybeBitCode)
6229       return MaybeBitCode.takeError();
6230     switch (unsigned BitCode = MaybeBitCode.get()) {
6231     default: // Default behavior: ignore.
6232       break;
6233     case bitc::FS_FLAGS: {  // [flags]
6234       TheIndex.setFlags(Record[0]);
6235       break;
6236     }
6237     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6238       uint64_t ValueID = Record[0];
6239       GlobalValue::GUID RefGUID = Record[1];
6240       ValueIdToValueInfoMap[ValueID] =
6241           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6242       break;
6243     }
6244     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6245     //                numrefs x valueid, n x (valueid)]
6246     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6247     //                        numrefs x valueid,
6248     //                        n x (valueid, hotness)]
6249     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6250     //                      numrefs x valueid,
6251     //                      n x (valueid, relblockfreq)]
6252     case bitc::FS_PERMODULE:
6253     case bitc::FS_PERMODULE_RELBF:
6254     case bitc::FS_PERMODULE_PROFILE: {
6255       unsigned ValueID = Record[0];
6256       uint64_t RawFlags = Record[1];
6257       unsigned InstCount = Record[2];
6258       uint64_t RawFunFlags = 0;
6259       unsigned NumRefs = Record[3];
6260       unsigned NumRORefs = 0, NumWORefs = 0;
6261       int RefListStartIndex = 4;
6262       if (Version >= 4) {
6263         RawFunFlags = Record[3];
6264         NumRefs = Record[4];
6265         RefListStartIndex = 5;
6266         if (Version >= 5) {
6267           NumRORefs = Record[5];
6268           RefListStartIndex = 6;
6269           if (Version >= 7) {
6270             NumWORefs = Record[6];
6271             RefListStartIndex = 7;
6272           }
6273         }
6274       }
6275 
6276       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6277       // The module path string ref set in the summary must be owned by the
6278       // index's module string table. Since we don't have a module path
6279       // string table section in the per-module index, we create a single
6280       // module path string table entry with an empty (0) ID to take
6281       // ownership.
6282       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6283       assert(Record.size() >= RefListStartIndex + NumRefs &&
6284              "Record size inconsistent with number of references");
6285       std::vector<ValueInfo> Refs = makeRefList(
6286           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6287       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6288       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6289       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6290           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6291           IsOldProfileFormat, HasProfile, HasRelBF);
6292       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6293       auto FS = std::make_unique<FunctionSummary>(
6294           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6295           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6296           std::move(PendingTypeTestAssumeVCalls),
6297           std::move(PendingTypeCheckedLoadVCalls),
6298           std::move(PendingTypeTestAssumeConstVCalls),
6299           std::move(PendingTypeCheckedLoadConstVCalls),
6300           std::move(PendingParamAccesses));
6301       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6302       FS->setModulePath(getThisModule()->first());
6303       FS->setOriginalName(VIAndOriginalGUID.second);
6304       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6305       break;
6306     }
6307     // FS_ALIAS: [valueid, flags, valueid]
6308     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6309     // they expect all aliasee summaries to be available.
6310     case bitc::FS_ALIAS: {
6311       unsigned ValueID = Record[0];
6312       uint64_t RawFlags = Record[1];
6313       unsigned AliaseeID = Record[2];
6314       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6315       auto AS = std::make_unique<AliasSummary>(Flags);
6316       // The module path string ref set in the summary must be owned by the
6317       // index's module string table. Since we don't have a module path
6318       // string table section in the per-module index, we create a single
6319       // module path string table entry with an empty (0) ID to take
6320       // ownership.
6321       AS->setModulePath(getThisModule()->first());
6322 
6323       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6324       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6325       if (!AliaseeInModule)
6326         return error("Alias expects aliasee summary to be parsed");
6327       AS->setAliasee(AliaseeVI, AliaseeInModule);
6328 
6329       auto GUID = getValueInfoFromValueId(ValueID);
6330       AS->setOriginalName(GUID.second);
6331       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6332       break;
6333     }
6334     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6335     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6336       unsigned ValueID = Record[0];
6337       uint64_t RawFlags = Record[1];
6338       unsigned RefArrayStart = 2;
6339       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6340                                       /* WriteOnly */ false,
6341                                       /* Constant */ false,
6342                                       GlobalObject::VCallVisibilityPublic);
6343       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6344       if (Version >= 5) {
6345         GVF = getDecodedGVarFlags(Record[2]);
6346         RefArrayStart = 3;
6347       }
6348       std::vector<ValueInfo> Refs =
6349           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6350       auto FS =
6351           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6352       FS->setModulePath(getThisModule()->first());
6353       auto GUID = getValueInfoFromValueId(ValueID);
6354       FS->setOriginalName(GUID.second);
6355       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6356       break;
6357     }
6358     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6359     //                        numrefs, numrefs x valueid,
6360     //                        n x (valueid, offset)]
6361     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6362       unsigned ValueID = Record[0];
6363       uint64_t RawFlags = Record[1];
6364       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6365       unsigned NumRefs = Record[3];
6366       unsigned RefListStartIndex = 4;
6367       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6368       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6369       std::vector<ValueInfo> Refs = makeRefList(
6370           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6371       VTableFuncList VTableFuncs;
6372       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6373         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6374         uint64_t Offset = Record[++I];
6375         VTableFuncs.push_back({Callee, Offset});
6376       }
6377       auto VS =
6378           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6379       VS->setModulePath(getThisModule()->first());
6380       VS->setVTableFuncs(VTableFuncs);
6381       auto GUID = getValueInfoFromValueId(ValueID);
6382       VS->setOriginalName(GUID.second);
6383       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6384       break;
6385     }
6386     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6387     //               numrefs x valueid, n x (valueid)]
6388     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6389     //                       numrefs x valueid, n x (valueid, hotness)]
6390     case bitc::FS_COMBINED:
6391     case bitc::FS_COMBINED_PROFILE: {
6392       unsigned ValueID = Record[0];
6393       uint64_t ModuleId = Record[1];
6394       uint64_t RawFlags = Record[2];
6395       unsigned InstCount = Record[3];
6396       uint64_t RawFunFlags = 0;
6397       uint64_t EntryCount = 0;
6398       unsigned NumRefs = Record[4];
6399       unsigned NumRORefs = 0, NumWORefs = 0;
6400       int RefListStartIndex = 5;
6401 
6402       if (Version >= 4) {
6403         RawFunFlags = Record[4];
6404         RefListStartIndex = 6;
6405         size_t NumRefsIndex = 5;
6406         if (Version >= 5) {
6407           unsigned NumRORefsOffset = 1;
6408           RefListStartIndex = 7;
6409           if (Version >= 6) {
6410             NumRefsIndex = 6;
6411             EntryCount = Record[5];
6412             RefListStartIndex = 8;
6413             if (Version >= 7) {
6414               RefListStartIndex = 9;
6415               NumWORefs = Record[8];
6416               NumRORefsOffset = 2;
6417             }
6418           }
6419           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6420         }
6421         NumRefs = Record[NumRefsIndex];
6422       }
6423 
6424       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6425       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6426       assert(Record.size() >= RefListStartIndex + NumRefs &&
6427              "Record size inconsistent with number of references");
6428       std::vector<ValueInfo> Refs = makeRefList(
6429           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6430       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6431       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6432           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6433           IsOldProfileFormat, HasProfile, false);
6434       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6435       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6436       auto FS = std::make_unique<FunctionSummary>(
6437           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6438           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6439           std::move(PendingTypeTestAssumeVCalls),
6440           std::move(PendingTypeCheckedLoadVCalls),
6441           std::move(PendingTypeTestAssumeConstVCalls),
6442           std::move(PendingTypeCheckedLoadConstVCalls),
6443           std::move(PendingParamAccesses));
6444       LastSeenSummary = FS.get();
6445       LastSeenGUID = VI.getGUID();
6446       FS->setModulePath(ModuleIdMap[ModuleId]);
6447       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6448       break;
6449     }
6450     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6451     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6452     // they expect all aliasee summaries to be available.
6453     case bitc::FS_COMBINED_ALIAS: {
6454       unsigned ValueID = Record[0];
6455       uint64_t ModuleId = Record[1];
6456       uint64_t RawFlags = Record[2];
6457       unsigned AliaseeValueId = Record[3];
6458       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6459       auto AS = std::make_unique<AliasSummary>(Flags);
6460       LastSeenSummary = AS.get();
6461       AS->setModulePath(ModuleIdMap[ModuleId]);
6462 
6463       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6464       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6465       AS->setAliasee(AliaseeVI, AliaseeInModule);
6466 
6467       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6468       LastSeenGUID = VI.getGUID();
6469       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6470       break;
6471     }
6472     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6473     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6474       unsigned ValueID = Record[0];
6475       uint64_t ModuleId = Record[1];
6476       uint64_t RawFlags = Record[2];
6477       unsigned RefArrayStart = 3;
6478       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6479                                       /* WriteOnly */ false,
6480                                       /* Constant */ false,
6481                                       GlobalObject::VCallVisibilityPublic);
6482       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6483       if (Version >= 5) {
6484         GVF = getDecodedGVarFlags(Record[3]);
6485         RefArrayStart = 4;
6486       }
6487       std::vector<ValueInfo> Refs =
6488           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6489       auto FS =
6490           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6491       LastSeenSummary = FS.get();
6492       FS->setModulePath(ModuleIdMap[ModuleId]);
6493       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6494       LastSeenGUID = VI.getGUID();
6495       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6496       break;
6497     }
6498     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6499     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6500       uint64_t OriginalName = Record[0];
6501       if (!LastSeenSummary)
6502         return error("Name attachment that does not follow a combined record");
6503       LastSeenSummary->setOriginalName(OriginalName);
6504       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6505       // Reset the LastSeenSummary
6506       LastSeenSummary = nullptr;
6507       LastSeenGUID = 0;
6508       break;
6509     }
6510     case bitc::FS_TYPE_TESTS:
6511       assert(PendingTypeTests.empty());
6512       llvm::append_range(PendingTypeTests, Record);
6513       break;
6514 
6515     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6516       assert(PendingTypeTestAssumeVCalls.empty());
6517       for (unsigned I = 0; I != Record.size(); I += 2)
6518         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6519       break;
6520 
6521     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6522       assert(PendingTypeCheckedLoadVCalls.empty());
6523       for (unsigned I = 0; I != Record.size(); I += 2)
6524         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6525       break;
6526 
6527     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6528       PendingTypeTestAssumeConstVCalls.push_back(
6529           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6530       break;
6531 
6532     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6533       PendingTypeCheckedLoadConstVCalls.push_back(
6534           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6535       break;
6536 
6537     case bitc::FS_CFI_FUNCTION_DEFS: {
6538       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6539       for (unsigned I = 0; I != Record.size(); I += 2)
6540         CfiFunctionDefs.insert(
6541             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6542       break;
6543     }
6544 
6545     case bitc::FS_CFI_FUNCTION_DECLS: {
6546       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6547       for (unsigned I = 0; I != Record.size(); I += 2)
6548         CfiFunctionDecls.insert(
6549             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6550       break;
6551     }
6552 
6553     case bitc::FS_TYPE_ID:
6554       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6555       break;
6556 
6557     case bitc::FS_TYPE_ID_METADATA:
6558       parseTypeIdCompatibleVtableSummaryRecord(Record);
6559       break;
6560 
6561     case bitc::FS_BLOCK_COUNT:
6562       TheIndex.addBlockCount(Record[0]);
6563       break;
6564 
6565     case bitc::FS_PARAM_ACCESS: {
6566       PendingParamAccesses = parseParamAccesses(Record);
6567       break;
6568     }
6569     }
6570   }
6571   llvm_unreachable("Exit infinite loop");
6572 }
6573 
6574 // Parse the  module string table block into the Index.
6575 // This populates the ModulePathStringTable map in the index.
6576 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6577   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6578     return Err;
6579 
6580   SmallVector<uint64_t, 64> Record;
6581 
6582   SmallString<128> ModulePath;
6583   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6584 
6585   while (true) {
6586     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6587     if (!MaybeEntry)
6588       return MaybeEntry.takeError();
6589     BitstreamEntry Entry = MaybeEntry.get();
6590 
6591     switch (Entry.Kind) {
6592     case BitstreamEntry::SubBlock: // Handled for us already.
6593     case BitstreamEntry::Error:
6594       return error("Malformed block");
6595     case BitstreamEntry::EndBlock:
6596       return Error::success();
6597     case BitstreamEntry::Record:
6598       // The interesting case.
6599       break;
6600     }
6601 
6602     Record.clear();
6603     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6604     if (!MaybeRecord)
6605       return MaybeRecord.takeError();
6606     switch (MaybeRecord.get()) {
6607     default: // Default behavior: ignore.
6608       break;
6609     case bitc::MST_CODE_ENTRY: {
6610       // MST_ENTRY: [modid, namechar x N]
6611       uint64_t ModuleId = Record[0];
6612 
6613       if (convertToString(Record, 1, ModulePath))
6614         return error("Invalid record");
6615 
6616       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6617       ModuleIdMap[ModuleId] = LastSeenModule->first();
6618 
6619       ModulePath.clear();
6620       break;
6621     }
6622     /// MST_CODE_HASH: [5*i32]
6623     case bitc::MST_CODE_HASH: {
6624       if (Record.size() != 5)
6625         return error("Invalid hash length " + Twine(Record.size()).str());
6626       if (!LastSeenModule)
6627         return error("Invalid hash that does not follow a module path");
6628       int Pos = 0;
6629       for (auto &Val : Record) {
6630         assert(!(Val >> 32) && "Unexpected high bits set");
6631         LastSeenModule->second.second[Pos++] = Val;
6632       }
6633       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6634       LastSeenModule = nullptr;
6635       break;
6636     }
6637     }
6638   }
6639   llvm_unreachable("Exit infinite loop");
6640 }
6641 
6642 namespace {
6643 
6644 // FIXME: This class is only here to support the transition to llvm::Error. It
6645 // will be removed once this transition is complete. Clients should prefer to
6646 // deal with the Error value directly, rather than converting to error_code.
6647 class BitcodeErrorCategoryType : public std::error_category {
6648   const char *name() const noexcept override {
6649     return "llvm.bitcode";
6650   }
6651 
6652   std::string message(int IE) const override {
6653     BitcodeError E = static_cast<BitcodeError>(IE);
6654     switch (E) {
6655     case BitcodeError::CorruptedBitcode:
6656       return "Corrupted bitcode";
6657     }
6658     llvm_unreachable("Unknown error type!");
6659   }
6660 };
6661 
6662 } // end anonymous namespace
6663 
6664 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6665 
6666 const std::error_category &llvm::BitcodeErrorCategory() {
6667   return *ErrorCategory;
6668 }
6669 
6670 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6671                                             unsigned Block, unsigned RecordID) {
6672   if (Error Err = Stream.EnterSubBlock(Block))
6673     return std::move(Err);
6674 
6675   StringRef Strtab;
6676   while (true) {
6677     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6678     if (!MaybeEntry)
6679       return MaybeEntry.takeError();
6680     llvm::BitstreamEntry Entry = MaybeEntry.get();
6681 
6682     switch (Entry.Kind) {
6683     case BitstreamEntry::EndBlock:
6684       return Strtab;
6685 
6686     case BitstreamEntry::Error:
6687       return error("Malformed block");
6688 
6689     case BitstreamEntry::SubBlock:
6690       if (Error Err = Stream.SkipBlock())
6691         return std::move(Err);
6692       break;
6693 
6694     case BitstreamEntry::Record:
6695       StringRef Blob;
6696       SmallVector<uint64_t, 1> Record;
6697       Expected<unsigned> MaybeRecord =
6698           Stream.readRecord(Entry.ID, Record, &Blob);
6699       if (!MaybeRecord)
6700         return MaybeRecord.takeError();
6701       if (MaybeRecord.get() == RecordID)
6702         Strtab = Blob;
6703       break;
6704     }
6705   }
6706 }
6707 
6708 //===----------------------------------------------------------------------===//
6709 // External interface
6710 //===----------------------------------------------------------------------===//
6711 
6712 Expected<std::vector<BitcodeModule>>
6713 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6714   auto FOrErr = getBitcodeFileContents(Buffer);
6715   if (!FOrErr)
6716     return FOrErr.takeError();
6717   return std::move(FOrErr->Mods);
6718 }
6719 
6720 Expected<BitcodeFileContents>
6721 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6722   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6723   if (!StreamOrErr)
6724     return StreamOrErr.takeError();
6725   BitstreamCursor &Stream = *StreamOrErr;
6726 
6727   BitcodeFileContents F;
6728   while (true) {
6729     uint64_t BCBegin = Stream.getCurrentByteNo();
6730 
6731     // We may be consuming bitcode from a client that leaves garbage at the end
6732     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6733     // the end that there cannot possibly be another module, stop looking.
6734     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6735       return F;
6736 
6737     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6738     if (!MaybeEntry)
6739       return MaybeEntry.takeError();
6740     llvm::BitstreamEntry Entry = MaybeEntry.get();
6741 
6742     switch (Entry.Kind) {
6743     case BitstreamEntry::EndBlock:
6744     case BitstreamEntry::Error:
6745       return error("Malformed block");
6746 
6747     case BitstreamEntry::SubBlock: {
6748       uint64_t IdentificationBit = -1ull;
6749       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6750         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6751         if (Error Err = Stream.SkipBlock())
6752           return std::move(Err);
6753 
6754         {
6755           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6756           if (!MaybeEntry)
6757             return MaybeEntry.takeError();
6758           Entry = MaybeEntry.get();
6759         }
6760 
6761         if (Entry.Kind != BitstreamEntry::SubBlock ||
6762             Entry.ID != bitc::MODULE_BLOCK_ID)
6763           return error("Malformed block");
6764       }
6765 
6766       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6767         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6768         if (Error Err = Stream.SkipBlock())
6769           return std::move(Err);
6770 
6771         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6772                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6773                           Buffer.getBufferIdentifier(), IdentificationBit,
6774                           ModuleBit});
6775         continue;
6776       }
6777 
6778       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6779         Expected<StringRef> Strtab =
6780             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6781         if (!Strtab)
6782           return Strtab.takeError();
6783         // This string table is used by every preceding bitcode module that does
6784         // not have its own string table. A bitcode file may have multiple
6785         // string tables if it was created by binary concatenation, for example
6786         // with "llvm-cat -b".
6787         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6788           if (!I->Strtab.empty())
6789             break;
6790           I->Strtab = *Strtab;
6791         }
6792         // Similarly, the string table is used by every preceding symbol table;
6793         // normally there will be just one unless the bitcode file was created
6794         // by binary concatenation.
6795         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6796           F.StrtabForSymtab = *Strtab;
6797         continue;
6798       }
6799 
6800       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6801         Expected<StringRef> SymtabOrErr =
6802             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6803         if (!SymtabOrErr)
6804           return SymtabOrErr.takeError();
6805 
6806         // We can expect the bitcode file to have multiple symbol tables if it
6807         // was created by binary concatenation. In that case we silently
6808         // ignore any subsequent symbol tables, which is fine because this is a
6809         // low level function. The client is expected to notice that the number
6810         // of modules in the symbol table does not match the number of modules
6811         // in the input file and regenerate the symbol table.
6812         if (F.Symtab.empty())
6813           F.Symtab = *SymtabOrErr;
6814         continue;
6815       }
6816 
6817       if (Error Err = Stream.SkipBlock())
6818         return std::move(Err);
6819       continue;
6820     }
6821     case BitstreamEntry::Record:
6822       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6823         continue;
6824       else
6825         return StreamFailed.takeError();
6826     }
6827   }
6828 }
6829 
6830 /// Get a lazy one-at-time loading module from bitcode.
6831 ///
6832 /// This isn't always used in a lazy context.  In particular, it's also used by
6833 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6834 /// in forward-referenced functions from block address references.
6835 ///
6836 /// \param[in] MaterializeAll Set to \c true if we should materialize
6837 /// everything.
6838 Expected<std::unique_ptr<Module>>
6839 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6840                              bool ShouldLazyLoadMetadata, bool IsImporting,
6841                              DataLayoutCallbackTy DataLayoutCallback) {
6842   BitstreamCursor Stream(Buffer);
6843 
6844   std::string ProducerIdentification;
6845   if (IdentificationBit != -1ull) {
6846     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6847       return std::move(JumpFailed);
6848     Expected<std::string> ProducerIdentificationOrErr =
6849         readIdentificationBlock(Stream);
6850     if (!ProducerIdentificationOrErr)
6851       return ProducerIdentificationOrErr.takeError();
6852 
6853     ProducerIdentification = *ProducerIdentificationOrErr;
6854   }
6855 
6856   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6857     return std::move(JumpFailed);
6858   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6859                               Context);
6860 
6861   std::unique_ptr<Module> M =
6862       std::make_unique<Module>(ModuleIdentifier, Context);
6863   M->setMaterializer(R);
6864 
6865   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6866   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6867                                       IsImporting, DataLayoutCallback))
6868     return std::move(Err);
6869 
6870   if (MaterializeAll) {
6871     // Read in the entire module, and destroy the BitcodeReader.
6872     if (Error Err = M->materializeAll())
6873       return std::move(Err);
6874   } else {
6875     // Resolve forward references from blockaddresses.
6876     if (Error Err = R->materializeForwardReferencedFunctions())
6877       return std::move(Err);
6878   }
6879   return std::move(M);
6880 }
6881 
6882 Expected<std::unique_ptr<Module>>
6883 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6884                              bool IsImporting) {
6885   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6886                        [](StringRef) { return None; });
6887 }
6888 
6889 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6890 // We don't use ModuleIdentifier here because the client may need to control the
6891 // module path used in the combined summary (e.g. when reading summaries for
6892 // regular LTO modules).
6893 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6894                                  StringRef ModulePath, uint64_t ModuleId) {
6895   BitstreamCursor Stream(Buffer);
6896   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6897     return JumpFailed;
6898 
6899   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6900                                     ModulePath, ModuleId);
6901   return R.parseModule();
6902 }
6903 
6904 // Parse the specified bitcode buffer, returning the function info index.
6905 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6906   BitstreamCursor Stream(Buffer);
6907   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6908     return std::move(JumpFailed);
6909 
6910   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6911   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6912                                     ModuleIdentifier, 0);
6913 
6914   if (Error Err = R.parseModule())
6915     return std::move(Err);
6916 
6917   return std::move(Index);
6918 }
6919 
6920 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6921                                                 unsigned ID) {
6922   if (Error Err = Stream.EnterSubBlock(ID))
6923     return std::move(Err);
6924   SmallVector<uint64_t, 64> Record;
6925 
6926   while (true) {
6927     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6928     if (!MaybeEntry)
6929       return MaybeEntry.takeError();
6930     BitstreamEntry Entry = MaybeEntry.get();
6931 
6932     switch (Entry.Kind) {
6933     case BitstreamEntry::SubBlock: // Handled for us already.
6934     case BitstreamEntry::Error:
6935       return error("Malformed block");
6936     case BitstreamEntry::EndBlock:
6937       // If no flags record found, conservatively return true to mimic
6938       // behavior before this flag was added.
6939       return true;
6940     case BitstreamEntry::Record:
6941       // The interesting case.
6942       break;
6943     }
6944 
6945     // Look for the FS_FLAGS record.
6946     Record.clear();
6947     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6948     if (!MaybeBitCode)
6949       return MaybeBitCode.takeError();
6950     switch (MaybeBitCode.get()) {
6951     default: // Default behavior: ignore.
6952       break;
6953     case bitc::FS_FLAGS: { // [flags]
6954       uint64_t Flags = Record[0];
6955       // Scan flags.
6956       assert(Flags <= 0x7f && "Unexpected bits in flag");
6957 
6958       return Flags & 0x8;
6959     }
6960     }
6961   }
6962   llvm_unreachable("Exit infinite loop");
6963 }
6964 
6965 // Check if the given bitcode buffer contains a global value summary block.
6966 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6967   BitstreamCursor Stream(Buffer);
6968   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6969     return std::move(JumpFailed);
6970 
6971   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6972     return std::move(Err);
6973 
6974   while (true) {
6975     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6976     if (!MaybeEntry)
6977       return MaybeEntry.takeError();
6978     llvm::BitstreamEntry Entry = MaybeEntry.get();
6979 
6980     switch (Entry.Kind) {
6981     case BitstreamEntry::Error:
6982       return error("Malformed block");
6983     case BitstreamEntry::EndBlock:
6984       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6985                             /*EnableSplitLTOUnit=*/false};
6986 
6987     case BitstreamEntry::SubBlock:
6988       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6989         Expected<bool> EnableSplitLTOUnit =
6990             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6991         if (!EnableSplitLTOUnit)
6992           return EnableSplitLTOUnit.takeError();
6993         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6994                               *EnableSplitLTOUnit};
6995       }
6996 
6997       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6998         Expected<bool> EnableSplitLTOUnit =
6999             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7000         if (!EnableSplitLTOUnit)
7001           return EnableSplitLTOUnit.takeError();
7002         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7003                               *EnableSplitLTOUnit};
7004       }
7005 
7006       // Ignore other sub-blocks.
7007       if (Error Err = Stream.SkipBlock())
7008         return std::move(Err);
7009       continue;
7010 
7011     case BitstreamEntry::Record:
7012       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7013         continue;
7014       else
7015         return StreamFailed.takeError();
7016     }
7017   }
7018 }
7019 
7020 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7021   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7022   if (!MsOrErr)
7023     return MsOrErr.takeError();
7024 
7025   if (MsOrErr->size() != 1)
7026     return error("Expected a single module");
7027 
7028   return (*MsOrErr)[0];
7029 }
7030 
7031 Expected<std::unique_ptr<Module>>
7032 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7033                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7034   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7035   if (!BM)
7036     return BM.takeError();
7037 
7038   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7039 }
7040 
7041 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7042     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7043     bool ShouldLazyLoadMetadata, bool IsImporting) {
7044   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7045                                      IsImporting);
7046   if (MOrErr)
7047     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7048   return MOrErr;
7049 }
7050 
7051 Expected<std::unique_ptr<Module>>
7052 BitcodeModule::parseModule(LLVMContext &Context,
7053                            DataLayoutCallbackTy DataLayoutCallback) {
7054   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7055   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7056   // written.  We must defer until the Module has been fully materialized.
7057 }
7058 
7059 Expected<std::unique_ptr<Module>>
7060 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7061                        DataLayoutCallbackTy DataLayoutCallback) {
7062   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7063   if (!BM)
7064     return BM.takeError();
7065 
7066   return BM->parseModule(Context, DataLayoutCallback);
7067 }
7068 
7069 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7070   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7071   if (!StreamOrErr)
7072     return StreamOrErr.takeError();
7073 
7074   return readTriple(*StreamOrErr);
7075 }
7076 
7077 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7078   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7079   if (!StreamOrErr)
7080     return StreamOrErr.takeError();
7081 
7082   return hasObjCCategory(*StreamOrErr);
7083 }
7084 
7085 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7086   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7087   if (!StreamOrErr)
7088     return StreamOrErr.takeError();
7089 
7090   return readIdentificationCode(*StreamOrErr);
7091 }
7092 
7093 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7094                                    ModuleSummaryIndex &CombinedIndex,
7095                                    uint64_t ModuleId) {
7096   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7097   if (!BM)
7098     return BM.takeError();
7099 
7100   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7101 }
7102 
7103 Expected<std::unique_ptr<ModuleSummaryIndex>>
7104 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7105   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7106   if (!BM)
7107     return BM.takeError();
7108 
7109   return BM->getSummary();
7110 }
7111 
7112 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7113   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7114   if (!BM)
7115     return BM.takeError();
7116 
7117   return BM->getLTOInfo();
7118 }
7119 
7120 Expected<std::unique_ptr<ModuleSummaryIndex>>
7121 llvm::getModuleSummaryIndexForFile(StringRef Path,
7122                                    bool IgnoreEmptyThinLTOIndexFile) {
7123   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7124       MemoryBuffer::getFileOrSTDIN(Path);
7125   if (!FileOrErr)
7126     return errorCodeToError(FileOrErr.getError());
7127   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7128     return nullptr;
7129   return getModuleSummaryIndex(**FileOrErr);
7130 }
7131