1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 972 // 973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 974 // visibility: [8, 10). 975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 976 uint64_t Version) { 977 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 978 // like getDecodedLinkage() above. Any future change to the linkage enum and 979 // to getDecodedLinkage() will need to be taken into account here as above. 980 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 981 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 982 RawFlags = RawFlags >> 4; 983 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 984 // The Live flag wasn't introduced until version 3. For dead stripping 985 // to work correctly on earlier versions, we must conservatively treat all 986 // values as live. 987 bool Live = (RawFlags & 0x2) || Version < 3; 988 bool Local = (RawFlags & 0x4); 989 bool AutoHide = (RawFlags & 0x8); 990 991 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 992 Live, Local, AutoHide); 993 } 994 995 // Decode the flags for GlobalVariable in the summary 996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 997 return GlobalVarSummary::GVarFlags( 998 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 999 (RawFlags & 0x4) ? true : false, 1000 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1001 } 1002 1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1004 switch (Val) { 1005 default: // Map unknown visibilities to default. 1006 case 0: return GlobalValue::DefaultVisibility; 1007 case 1: return GlobalValue::HiddenVisibility; 1008 case 2: return GlobalValue::ProtectedVisibility; 1009 } 1010 } 1011 1012 static GlobalValue::DLLStorageClassTypes 1013 getDecodedDLLStorageClass(unsigned Val) { 1014 switch (Val) { 1015 default: // Map unknown values to default. 1016 case 0: return GlobalValue::DefaultStorageClass; 1017 case 1: return GlobalValue::DLLImportStorageClass; 1018 case 2: return GlobalValue::DLLExportStorageClass; 1019 } 1020 } 1021 1022 static bool getDecodedDSOLocal(unsigned Val) { 1023 switch(Val) { 1024 default: // Map unknown values to preemptable. 1025 case 0: return false; 1026 case 1: return true; 1027 } 1028 } 1029 1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1031 switch (Val) { 1032 case 0: return GlobalVariable::NotThreadLocal; 1033 default: // Map unknown non-zero value to general dynamic. 1034 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1035 case 2: return GlobalVariable::LocalDynamicTLSModel; 1036 case 3: return GlobalVariable::InitialExecTLSModel; 1037 case 4: return GlobalVariable::LocalExecTLSModel; 1038 } 1039 } 1040 1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1042 switch (Val) { 1043 default: // Map unknown to UnnamedAddr::None. 1044 case 0: return GlobalVariable::UnnamedAddr::None; 1045 case 1: return GlobalVariable::UnnamedAddr::Global; 1046 case 2: return GlobalVariable::UnnamedAddr::Local; 1047 } 1048 } 1049 1050 static int getDecodedCastOpcode(unsigned Val) { 1051 switch (Val) { 1052 default: return -1; 1053 case bitc::CAST_TRUNC : return Instruction::Trunc; 1054 case bitc::CAST_ZEXT : return Instruction::ZExt; 1055 case bitc::CAST_SEXT : return Instruction::SExt; 1056 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1057 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1058 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1059 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1060 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1061 case bitc::CAST_FPEXT : return Instruction::FPExt; 1062 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1063 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1064 case bitc::CAST_BITCAST : return Instruction::BitCast; 1065 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1066 } 1067 } 1068 1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1070 bool IsFP = Ty->isFPOrFPVectorTy(); 1071 // UnOps are only valid for int/fp or vector of int/fp types 1072 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1073 return -1; 1074 1075 switch (Val) { 1076 default: 1077 return -1; 1078 case bitc::UNOP_FNEG: 1079 return IsFP ? Instruction::FNeg : -1; 1080 } 1081 } 1082 1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1084 bool IsFP = Ty->isFPOrFPVectorTy(); 1085 // BinOps are only valid for int/fp or vector of int/fp types 1086 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1087 return -1; 1088 1089 switch (Val) { 1090 default: 1091 return -1; 1092 case bitc::BINOP_ADD: 1093 return IsFP ? Instruction::FAdd : Instruction::Add; 1094 case bitc::BINOP_SUB: 1095 return IsFP ? Instruction::FSub : Instruction::Sub; 1096 case bitc::BINOP_MUL: 1097 return IsFP ? Instruction::FMul : Instruction::Mul; 1098 case bitc::BINOP_UDIV: 1099 return IsFP ? -1 : Instruction::UDiv; 1100 case bitc::BINOP_SDIV: 1101 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1102 case bitc::BINOP_UREM: 1103 return IsFP ? -1 : Instruction::URem; 1104 case bitc::BINOP_SREM: 1105 return IsFP ? Instruction::FRem : Instruction::SRem; 1106 case bitc::BINOP_SHL: 1107 return IsFP ? -1 : Instruction::Shl; 1108 case bitc::BINOP_LSHR: 1109 return IsFP ? -1 : Instruction::LShr; 1110 case bitc::BINOP_ASHR: 1111 return IsFP ? -1 : Instruction::AShr; 1112 case bitc::BINOP_AND: 1113 return IsFP ? -1 : Instruction::And; 1114 case bitc::BINOP_OR: 1115 return IsFP ? -1 : Instruction::Or; 1116 case bitc::BINOP_XOR: 1117 return IsFP ? -1 : Instruction::Xor; 1118 } 1119 } 1120 1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1122 switch (Val) { 1123 default: return AtomicRMWInst::BAD_BINOP; 1124 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1125 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1126 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1127 case bitc::RMW_AND: return AtomicRMWInst::And; 1128 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1129 case bitc::RMW_OR: return AtomicRMWInst::Or; 1130 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1131 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1132 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1133 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1134 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1135 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1136 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1137 } 1138 } 1139 1140 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1141 switch (Val) { 1142 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1143 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1144 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1145 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1146 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1147 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1148 default: // Map unknown orderings to sequentially-consistent. 1149 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1150 } 1151 } 1152 1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1154 switch (Val) { 1155 default: // Map unknown selection kinds to any. 1156 case bitc::COMDAT_SELECTION_KIND_ANY: 1157 return Comdat::Any; 1158 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1159 return Comdat::ExactMatch; 1160 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1161 return Comdat::Largest; 1162 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1163 return Comdat::NoDuplicates; 1164 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1165 return Comdat::SameSize; 1166 } 1167 } 1168 1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1170 FastMathFlags FMF; 1171 if (0 != (Val & bitc::UnsafeAlgebra)) 1172 FMF.setFast(); 1173 if (0 != (Val & bitc::AllowReassoc)) 1174 FMF.setAllowReassoc(); 1175 if (0 != (Val & bitc::NoNaNs)) 1176 FMF.setNoNaNs(); 1177 if (0 != (Val & bitc::NoInfs)) 1178 FMF.setNoInfs(); 1179 if (0 != (Val & bitc::NoSignedZeros)) 1180 FMF.setNoSignedZeros(); 1181 if (0 != (Val & bitc::AllowReciprocal)) 1182 FMF.setAllowReciprocal(); 1183 if (0 != (Val & bitc::AllowContract)) 1184 FMF.setAllowContract(true); 1185 if (0 != (Val & bitc::ApproxFunc)) 1186 FMF.setApproxFunc(); 1187 return FMF; 1188 } 1189 1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1191 switch (Val) { 1192 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1193 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1194 } 1195 } 1196 1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1198 // The type table size is always specified correctly. 1199 if (ID >= TypeList.size()) 1200 return nullptr; 1201 1202 if (Type *Ty = TypeList[ID]) 1203 return Ty; 1204 1205 // If we have a forward reference, the only possible case is when it is to a 1206 // named struct. Just create a placeholder for now. 1207 return TypeList[ID] = createIdentifiedStructType(Context); 1208 } 1209 1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1211 StringRef Name) { 1212 auto *Ret = StructType::create(Context, Name); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1218 auto *Ret = StructType::create(Context); 1219 IdentifiedStructTypes.push_back(Ret); 1220 return Ret; 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // Functions for parsing blocks from the bitcode file 1225 //===----------------------------------------------------------------------===// 1226 1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1228 switch (Val) { 1229 case Attribute::EndAttrKinds: 1230 case Attribute::EmptyKey: 1231 case Attribute::TombstoneKey: 1232 llvm_unreachable("Synthetic enumerators which should never get here"); 1233 1234 case Attribute::None: return 0; 1235 case Attribute::ZExt: return 1 << 0; 1236 case Attribute::SExt: return 1 << 1; 1237 case Attribute::NoReturn: return 1 << 2; 1238 case Attribute::InReg: return 1 << 3; 1239 case Attribute::StructRet: return 1 << 4; 1240 case Attribute::NoUnwind: return 1 << 5; 1241 case Attribute::NoAlias: return 1 << 6; 1242 case Attribute::ByVal: return 1 << 7; 1243 case Attribute::Nest: return 1 << 8; 1244 case Attribute::ReadNone: return 1 << 9; 1245 case Attribute::ReadOnly: return 1 << 10; 1246 case Attribute::NoInline: return 1 << 11; 1247 case Attribute::AlwaysInline: return 1 << 12; 1248 case Attribute::OptimizeForSize: return 1 << 13; 1249 case Attribute::StackProtect: return 1 << 14; 1250 case Attribute::StackProtectReq: return 1 << 15; 1251 case Attribute::Alignment: return 31 << 16; 1252 case Attribute::NoCapture: return 1 << 21; 1253 case Attribute::NoRedZone: return 1 << 22; 1254 case Attribute::NoImplicitFloat: return 1 << 23; 1255 case Attribute::Naked: return 1 << 24; 1256 case Attribute::InlineHint: return 1 << 25; 1257 case Attribute::StackAlignment: return 7 << 26; 1258 case Attribute::ReturnsTwice: return 1 << 29; 1259 case Attribute::UWTable: return 1 << 30; 1260 case Attribute::NonLazyBind: return 1U << 31; 1261 case Attribute::SanitizeAddress: return 1ULL << 32; 1262 case Attribute::MinSize: return 1ULL << 33; 1263 case Attribute::NoDuplicate: return 1ULL << 34; 1264 case Attribute::StackProtectStrong: return 1ULL << 35; 1265 case Attribute::SanitizeThread: return 1ULL << 36; 1266 case Attribute::SanitizeMemory: return 1ULL << 37; 1267 case Attribute::NoBuiltin: return 1ULL << 38; 1268 case Attribute::Returned: return 1ULL << 39; 1269 case Attribute::Cold: return 1ULL << 40; 1270 case Attribute::Builtin: return 1ULL << 41; 1271 case Attribute::OptimizeNone: return 1ULL << 42; 1272 case Attribute::InAlloca: return 1ULL << 43; 1273 case Attribute::NonNull: return 1ULL << 44; 1274 case Attribute::JumpTable: return 1ULL << 45; 1275 case Attribute::Convergent: return 1ULL << 46; 1276 case Attribute::SafeStack: return 1ULL << 47; 1277 case Attribute::NoRecurse: return 1ULL << 48; 1278 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1279 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1280 case Attribute::SwiftSelf: return 1ULL << 51; 1281 case Attribute::SwiftError: return 1ULL << 52; 1282 case Attribute::WriteOnly: return 1ULL << 53; 1283 case Attribute::Speculatable: return 1ULL << 54; 1284 case Attribute::StrictFP: return 1ULL << 55; 1285 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1286 case Attribute::NoCfCheck: return 1ULL << 57; 1287 case Attribute::OptForFuzzing: return 1ULL << 58; 1288 case Attribute::ShadowCallStack: return 1ULL << 59; 1289 case Attribute::SpeculativeLoadHardening: 1290 return 1ULL << 60; 1291 case Attribute::ImmArg: 1292 return 1ULL << 61; 1293 case Attribute::WillReturn: 1294 return 1ULL << 62; 1295 case Attribute::NoFree: 1296 return 1ULL << 63; 1297 default: 1298 // Other attributes are not supported in the raw format, 1299 // as we ran out of space. 1300 return 0; 1301 } 1302 llvm_unreachable("Unsupported attribute type"); 1303 } 1304 1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1306 if (!Val) return; 1307 1308 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1309 I = Attribute::AttrKind(I + 1)) { 1310 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1311 if (I == Attribute::Alignment) 1312 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1313 else if (I == Attribute::StackAlignment) 1314 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1315 else 1316 B.addAttribute(I); 1317 } 1318 } 1319 } 1320 1321 /// This fills an AttrBuilder object with the LLVM attributes that have 1322 /// been decoded from the given integer. This function must stay in sync with 1323 /// 'encodeLLVMAttributesForBitcode'. 1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1325 uint64_t EncodedAttrs) { 1326 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1327 // the bits above 31 down by 11 bits. 1328 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1329 assert((!Alignment || isPowerOf2_32(Alignment)) && 1330 "Alignment must be a power of two."); 1331 1332 if (Alignment) 1333 B.addAlignmentAttr(Alignment); 1334 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1335 (EncodedAttrs & 0xffff)); 1336 } 1337 1338 Error BitcodeReader::parseAttributeBlock() { 1339 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1340 return Err; 1341 1342 if (!MAttributes.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 SmallVector<AttributeList, 8> Attrs; 1348 1349 // Read all the records. 1350 while (true) { 1351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1352 if (!MaybeEntry) 1353 return MaybeEntry.takeError(); 1354 BitstreamEntry Entry = MaybeEntry.get(); 1355 1356 switch (Entry.Kind) { 1357 case BitstreamEntry::SubBlock: // Handled for us already. 1358 case BitstreamEntry::Error: 1359 return error("Malformed block"); 1360 case BitstreamEntry::EndBlock: 1361 return Error::success(); 1362 case BitstreamEntry::Record: 1363 // The interesting case. 1364 break; 1365 } 1366 1367 // Read a record. 1368 Record.clear(); 1369 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1370 if (!MaybeRecord) 1371 return MaybeRecord.takeError(); 1372 switch (MaybeRecord.get()) { 1373 default: // Default behavior: ignore. 1374 break; 1375 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1376 // Deprecated, but still needed to read old bitcode files. 1377 if (Record.size() & 1) 1378 return error("Invalid record"); 1379 1380 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1381 AttrBuilder B; 1382 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1383 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1384 } 1385 1386 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1387 Attrs.clear(); 1388 break; 1389 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1390 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1391 Attrs.push_back(MAttributeGroups[Record[i]]); 1392 1393 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1394 Attrs.clear(); 1395 break; 1396 } 1397 } 1398 } 1399 1400 // Returns Attribute::None on unrecognized codes. 1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1402 switch (Code) { 1403 default: 1404 return Attribute::None; 1405 case bitc::ATTR_KIND_ALIGNMENT: 1406 return Attribute::Alignment; 1407 case bitc::ATTR_KIND_ALWAYS_INLINE: 1408 return Attribute::AlwaysInline; 1409 case bitc::ATTR_KIND_ARGMEMONLY: 1410 return Attribute::ArgMemOnly; 1411 case bitc::ATTR_KIND_BUILTIN: 1412 return Attribute::Builtin; 1413 case bitc::ATTR_KIND_BY_VAL: 1414 return Attribute::ByVal; 1415 case bitc::ATTR_KIND_IN_ALLOCA: 1416 return Attribute::InAlloca; 1417 case bitc::ATTR_KIND_COLD: 1418 return Attribute::Cold; 1419 case bitc::ATTR_KIND_CONVERGENT: 1420 return Attribute::Convergent; 1421 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1422 return Attribute::InaccessibleMemOnly; 1423 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1424 return Attribute::InaccessibleMemOrArgMemOnly; 1425 case bitc::ATTR_KIND_INLINE_HINT: 1426 return Attribute::InlineHint; 1427 case bitc::ATTR_KIND_IN_REG: 1428 return Attribute::InReg; 1429 case bitc::ATTR_KIND_JUMP_TABLE: 1430 return Attribute::JumpTable; 1431 case bitc::ATTR_KIND_MIN_SIZE: 1432 return Attribute::MinSize; 1433 case bitc::ATTR_KIND_NAKED: 1434 return Attribute::Naked; 1435 case bitc::ATTR_KIND_NEST: 1436 return Attribute::Nest; 1437 case bitc::ATTR_KIND_NO_ALIAS: 1438 return Attribute::NoAlias; 1439 case bitc::ATTR_KIND_NO_BUILTIN: 1440 return Attribute::NoBuiltin; 1441 case bitc::ATTR_KIND_NO_CALLBACK: 1442 return Attribute::NoCallback; 1443 case bitc::ATTR_KIND_NO_CAPTURE: 1444 return Attribute::NoCapture; 1445 case bitc::ATTR_KIND_NO_DUPLICATE: 1446 return Attribute::NoDuplicate; 1447 case bitc::ATTR_KIND_NOFREE: 1448 return Attribute::NoFree; 1449 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1450 return Attribute::NoImplicitFloat; 1451 case bitc::ATTR_KIND_NO_INLINE: 1452 return Attribute::NoInline; 1453 case bitc::ATTR_KIND_NO_RECURSE: 1454 return Attribute::NoRecurse; 1455 case bitc::ATTR_KIND_NO_MERGE: 1456 return Attribute::NoMerge; 1457 case bitc::ATTR_KIND_NON_LAZY_BIND: 1458 return Attribute::NonLazyBind; 1459 case bitc::ATTR_KIND_NON_NULL: 1460 return Attribute::NonNull; 1461 case bitc::ATTR_KIND_DEREFERENCEABLE: 1462 return Attribute::Dereferenceable; 1463 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1464 return Attribute::DereferenceableOrNull; 1465 case bitc::ATTR_KIND_ALLOC_SIZE: 1466 return Attribute::AllocSize; 1467 case bitc::ATTR_KIND_NO_RED_ZONE: 1468 return Attribute::NoRedZone; 1469 case bitc::ATTR_KIND_NO_RETURN: 1470 return Attribute::NoReturn; 1471 case bitc::ATTR_KIND_NOSYNC: 1472 return Attribute::NoSync; 1473 case bitc::ATTR_KIND_NOCF_CHECK: 1474 return Attribute::NoCfCheck; 1475 case bitc::ATTR_KIND_NO_UNWIND: 1476 return Attribute::NoUnwind; 1477 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1478 return Attribute::NoSanitizeCoverage; 1479 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1480 return Attribute::NullPointerIsValid; 1481 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1482 return Attribute::OptForFuzzing; 1483 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1484 return Attribute::OptimizeForSize; 1485 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1486 return Attribute::OptimizeNone; 1487 case bitc::ATTR_KIND_READ_NONE: 1488 return Attribute::ReadNone; 1489 case bitc::ATTR_KIND_READ_ONLY: 1490 return Attribute::ReadOnly; 1491 case bitc::ATTR_KIND_RETURNED: 1492 return Attribute::Returned; 1493 case bitc::ATTR_KIND_RETURNS_TWICE: 1494 return Attribute::ReturnsTwice; 1495 case bitc::ATTR_KIND_S_EXT: 1496 return Attribute::SExt; 1497 case bitc::ATTR_KIND_SPECULATABLE: 1498 return Attribute::Speculatable; 1499 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1500 return Attribute::StackAlignment; 1501 case bitc::ATTR_KIND_STACK_PROTECT: 1502 return Attribute::StackProtect; 1503 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1504 return Attribute::StackProtectReq; 1505 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1506 return Attribute::StackProtectStrong; 1507 case bitc::ATTR_KIND_SAFESTACK: 1508 return Attribute::SafeStack; 1509 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1510 return Attribute::ShadowCallStack; 1511 case bitc::ATTR_KIND_STRICT_FP: 1512 return Attribute::StrictFP; 1513 case bitc::ATTR_KIND_STRUCT_RET: 1514 return Attribute::StructRet; 1515 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1516 return Attribute::SanitizeAddress; 1517 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1518 return Attribute::SanitizeHWAddress; 1519 case bitc::ATTR_KIND_SANITIZE_THREAD: 1520 return Attribute::SanitizeThread; 1521 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1522 return Attribute::SanitizeMemory; 1523 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1524 return Attribute::SpeculativeLoadHardening; 1525 case bitc::ATTR_KIND_SWIFT_ERROR: 1526 return Attribute::SwiftError; 1527 case bitc::ATTR_KIND_SWIFT_SELF: 1528 return Attribute::SwiftSelf; 1529 case bitc::ATTR_KIND_SWIFT_ASYNC: 1530 return Attribute::SwiftAsync; 1531 case bitc::ATTR_KIND_UW_TABLE: 1532 return Attribute::UWTable; 1533 case bitc::ATTR_KIND_VSCALE_RANGE: 1534 return Attribute::VScaleRange; 1535 case bitc::ATTR_KIND_WILLRETURN: 1536 return Attribute::WillReturn; 1537 case bitc::ATTR_KIND_WRITEONLY: 1538 return Attribute::WriteOnly; 1539 case bitc::ATTR_KIND_Z_EXT: 1540 return Attribute::ZExt; 1541 case bitc::ATTR_KIND_IMMARG: 1542 return Attribute::ImmArg; 1543 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1544 return Attribute::SanitizeMemTag; 1545 case bitc::ATTR_KIND_PREALLOCATED: 1546 return Attribute::Preallocated; 1547 case bitc::ATTR_KIND_NOUNDEF: 1548 return Attribute::NoUndef; 1549 case bitc::ATTR_KIND_BYREF: 1550 return Attribute::ByRef; 1551 case bitc::ATTR_KIND_MUSTPROGRESS: 1552 return Attribute::MustProgress; 1553 case bitc::ATTR_KIND_HOT: 1554 return Attribute::Hot; 1555 } 1556 } 1557 1558 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1559 MaybeAlign &Alignment) { 1560 // Note: Alignment in bitcode files is incremented by 1, so that zero 1561 // can be used for default alignment. 1562 if (Exponent > Value::MaxAlignmentExponent + 1) 1563 return error("Invalid alignment value"); 1564 Alignment = decodeMaybeAlign(Exponent); 1565 return Error::success(); 1566 } 1567 1568 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1569 *Kind = getAttrFromCode(Code); 1570 if (*Kind == Attribute::None) 1571 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1572 return Error::success(); 1573 } 1574 1575 Error BitcodeReader::parseAttributeGroupBlock() { 1576 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1577 return Err; 1578 1579 if (!MAttributeGroups.empty()) 1580 return error("Invalid multiple blocks"); 1581 1582 SmallVector<uint64_t, 64> Record; 1583 1584 // Read all the records. 1585 while (true) { 1586 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1587 if (!MaybeEntry) 1588 return MaybeEntry.takeError(); 1589 BitstreamEntry Entry = MaybeEntry.get(); 1590 1591 switch (Entry.Kind) { 1592 case BitstreamEntry::SubBlock: // Handled for us already. 1593 case BitstreamEntry::Error: 1594 return error("Malformed block"); 1595 case BitstreamEntry::EndBlock: 1596 return Error::success(); 1597 case BitstreamEntry::Record: 1598 // The interesting case. 1599 break; 1600 } 1601 1602 // Read a record. 1603 Record.clear(); 1604 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1605 if (!MaybeRecord) 1606 return MaybeRecord.takeError(); 1607 switch (MaybeRecord.get()) { 1608 default: // Default behavior: ignore. 1609 break; 1610 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1611 if (Record.size() < 3) 1612 return error("Invalid record"); 1613 1614 uint64_t GrpID = Record[0]; 1615 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1616 1617 AttrBuilder B; 1618 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1619 if (Record[i] == 0) { // Enum attribute 1620 Attribute::AttrKind Kind; 1621 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1622 return Err; 1623 1624 // Upgrade old-style byval attribute to one with a type, even if it's 1625 // nullptr. We will have to insert the real type when we associate 1626 // this AttributeList with a function. 1627 if (Kind == Attribute::ByVal) 1628 B.addByValAttr(nullptr); 1629 else if (Kind == Attribute::StructRet) 1630 B.addStructRetAttr(nullptr); 1631 else if (Kind == Attribute::InAlloca) 1632 B.addInAllocaAttr(nullptr); 1633 1634 B.addAttribute(Kind); 1635 } else if (Record[i] == 1) { // Integer attribute 1636 Attribute::AttrKind Kind; 1637 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1638 return Err; 1639 if (Kind == Attribute::Alignment) 1640 B.addAlignmentAttr(Record[++i]); 1641 else if (Kind == Attribute::StackAlignment) 1642 B.addStackAlignmentAttr(Record[++i]); 1643 else if (Kind == Attribute::Dereferenceable) 1644 B.addDereferenceableAttr(Record[++i]); 1645 else if (Kind == Attribute::DereferenceableOrNull) 1646 B.addDereferenceableOrNullAttr(Record[++i]); 1647 else if (Kind == Attribute::AllocSize) 1648 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1649 else if (Kind == Attribute::VScaleRange) 1650 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1651 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1652 bool HasValue = (Record[i++] == 4); 1653 SmallString<64> KindStr; 1654 SmallString<64> ValStr; 1655 1656 while (Record[i] != 0 && i != e) 1657 KindStr += Record[i++]; 1658 assert(Record[i] == 0 && "Kind string not null terminated"); 1659 1660 if (HasValue) { 1661 // Has a value associated with it. 1662 ++i; // Skip the '0' that terminates the "kind" string. 1663 while (Record[i] != 0 && i != e) 1664 ValStr += Record[i++]; 1665 assert(Record[i] == 0 && "Value string not null terminated"); 1666 } 1667 1668 B.addAttribute(KindStr.str(), ValStr.str()); 1669 } else { 1670 assert((Record[i] == 5 || Record[i] == 6) && 1671 "Invalid attribute group entry"); 1672 bool HasType = Record[i] == 6; 1673 Attribute::AttrKind Kind; 1674 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1675 return Err; 1676 if (Kind == Attribute::ByVal) { 1677 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1678 } else if (Kind == Attribute::StructRet) { 1679 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1680 } else if (Kind == Attribute::ByRef) { 1681 B.addByRefAttr(getTypeByID(Record[++i])); 1682 } else if (Kind == Attribute::Preallocated) { 1683 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1684 } else if (Kind == Attribute::InAlloca) { 1685 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1686 } 1687 } 1688 } 1689 1690 UpgradeAttributes(B); 1691 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1692 break; 1693 } 1694 } 1695 } 1696 } 1697 1698 Error BitcodeReader::parseTypeTable() { 1699 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1700 return Err; 1701 1702 return parseTypeTableBody(); 1703 } 1704 1705 Error BitcodeReader::parseTypeTableBody() { 1706 if (!TypeList.empty()) 1707 return error("Invalid multiple blocks"); 1708 1709 SmallVector<uint64_t, 64> Record; 1710 unsigned NumRecords = 0; 1711 1712 SmallString<64> TypeName; 1713 1714 // Read all the records for this type table. 1715 while (true) { 1716 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1717 if (!MaybeEntry) 1718 return MaybeEntry.takeError(); 1719 BitstreamEntry Entry = MaybeEntry.get(); 1720 1721 switch (Entry.Kind) { 1722 case BitstreamEntry::SubBlock: // Handled for us already. 1723 case BitstreamEntry::Error: 1724 return error("Malformed block"); 1725 case BitstreamEntry::EndBlock: 1726 if (NumRecords != TypeList.size()) 1727 return error("Malformed block"); 1728 return Error::success(); 1729 case BitstreamEntry::Record: 1730 // The interesting case. 1731 break; 1732 } 1733 1734 // Read a record. 1735 Record.clear(); 1736 Type *ResultTy = nullptr; 1737 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1738 if (!MaybeRecord) 1739 return MaybeRecord.takeError(); 1740 switch (MaybeRecord.get()) { 1741 default: 1742 return error("Invalid value"); 1743 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1744 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1745 // type list. This allows us to reserve space. 1746 if (Record.empty()) 1747 return error("Invalid record"); 1748 TypeList.resize(Record[0]); 1749 continue; 1750 case bitc::TYPE_CODE_VOID: // VOID 1751 ResultTy = Type::getVoidTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_HALF: // HALF 1754 ResultTy = Type::getHalfTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1757 ResultTy = Type::getBFloatTy(Context); 1758 break; 1759 case bitc::TYPE_CODE_FLOAT: // FLOAT 1760 ResultTy = Type::getFloatTy(Context); 1761 break; 1762 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1763 ResultTy = Type::getDoubleTy(Context); 1764 break; 1765 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1766 ResultTy = Type::getX86_FP80Ty(Context); 1767 break; 1768 case bitc::TYPE_CODE_FP128: // FP128 1769 ResultTy = Type::getFP128Ty(Context); 1770 break; 1771 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1772 ResultTy = Type::getPPC_FP128Ty(Context); 1773 break; 1774 case bitc::TYPE_CODE_LABEL: // LABEL 1775 ResultTy = Type::getLabelTy(Context); 1776 break; 1777 case bitc::TYPE_CODE_METADATA: // METADATA 1778 ResultTy = Type::getMetadataTy(Context); 1779 break; 1780 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1781 ResultTy = Type::getX86_MMXTy(Context); 1782 break; 1783 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1784 ResultTy = Type::getX86_AMXTy(Context); 1785 break; 1786 case bitc::TYPE_CODE_TOKEN: // TOKEN 1787 ResultTy = Type::getTokenTy(Context); 1788 break; 1789 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1790 if (Record.empty()) 1791 return error("Invalid record"); 1792 1793 uint64_t NumBits = Record[0]; 1794 if (NumBits < IntegerType::MIN_INT_BITS || 1795 NumBits > IntegerType::MAX_INT_BITS) 1796 return error("Bitwidth for integer type out of range"); 1797 ResultTy = IntegerType::get(Context, NumBits); 1798 break; 1799 } 1800 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1801 // [pointee type, address space] 1802 if (Record.empty()) 1803 return error("Invalid record"); 1804 unsigned AddressSpace = 0; 1805 if (Record.size() == 2) 1806 AddressSpace = Record[1]; 1807 ResultTy = getTypeByID(Record[0]); 1808 if (!ResultTy || 1809 !PointerType::isValidElementType(ResultTy)) 1810 return error("Invalid type"); 1811 ResultTy = PointerType::get(ResultTy, AddressSpace); 1812 break; 1813 } 1814 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1815 if (Record.size() != 1) 1816 return error("Invalid record"); 1817 unsigned AddressSpace = Record[0]; 1818 ResultTy = PointerType::get(Context, AddressSpace); 1819 break; 1820 } 1821 case bitc::TYPE_CODE_FUNCTION_OLD: { 1822 // Deprecated, but still needed to read old bitcode files. 1823 // FUNCTION: [vararg, attrid, retty, paramty x N] 1824 if (Record.size() < 3) 1825 return error("Invalid record"); 1826 SmallVector<Type*, 8> ArgTys; 1827 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1828 if (Type *T = getTypeByID(Record[i])) 1829 ArgTys.push_back(T); 1830 else 1831 break; 1832 } 1833 1834 ResultTy = getTypeByID(Record[2]); 1835 if (!ResultTy || ArgTys.size() < Record.size()-3) 1836 return error("Invalid type"); 1837 1838 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1839 break; 1840 } 1841 case bitc::TYPE_CODE_FUNCTION: { 1842 // FUNCTION: [vararg, retty, paramty x N] 1843 if (Record.size() < 2) 1844 return error("Invalid record"); 1845 SmallVector<Type*, 8> ArgTys; 1846 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1847 if (Type *T = getTypeByID(Record[i])) { 1848 if (!FunctionType::isValidArgumentType(T)) 1849 return error("Invalid function argument type"); 1850 ArgTys.push_back(T); 1851 } 1852 else 1853 break; 1854 } 1855 1856 ResultTy = getTypeByID(Record[1]); 1857 if (!ResultTy || ArgTys.size() < Record.size()-2) 1858 return error("Invalid type"); 1859 1860 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1861 break; 1862 } 1863 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1864 if (Record.empty()) 1865 return error("Invalid record"); 1866 SmallVector<Type*, 8> EltTys; 1867 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1868 if (Type *T = getTypeByID(Record[i])) 1869 EltTys.push_back(T); 1870 else 1871 break; 1872 } 1873 if (EltTys.size() != Record.size()-1) 1874 return error("Invalid type"); 1875 ResultTy = StructType::get(Context, EltTys, Record[0]); 1876 break; 1877 } 1878 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1879 if (convertToString(Record, 0, TypeName)) 1880 return error("Invalid record"); 1881 continue; 1882 1883 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1884 if (Record.empty()) 1885 return error("Invalid record"); 1886 1887 if (NumRecords >= TypeList.size()) 1888 return error("Invalid TYPE table"); 1889 1890 // Check to see if this was forward referenced, if so fill in the temp. 1891 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1892 if (Res) { 1893 Res->setName(TypeName); 1894 TypeList[NumRecords] = nullptr; 1895 } else // Otherwise, create a new struct. 1896 Res = createIdentifiedStructType(Context, TypeName); 1897 TypeName.clear(); 1898 1899 SmallVector<Type*, 8> EltTys; 1900 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1901 if (Type *T = getTypeByID(Record[i])) 1902 EltTys.push_back(T); 1903 else 1904 break; 1905 } 1906 if (EltTys.size() != Record.size()-1) 1907 return error("Invalid record"); 1908 Res->setBody(EltTys, Record[0]); 1909 ResultTy = Res; 1910 break; 1911 } 1912 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1913 if (Record.size() != 1) 1914 return error("Invalid record"); 1915 1916 if (NumRecords >= TypeList.size()) 1917 return error("Invalid TYPE table"); 1918 1919 // Check to see if this was forward referenced, if so fill in the temp. 1920 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1921 if (Res) { 1922 Res->setName(TypeName); 1923 TypeList[NumRecords] = nullptr; 1924 } else // Otherwise, create a new struct with no body. 1925 Res = createIdentifiedStructType(Context, TypeName); 1926 TypeName.clear(); 1927 ResultTy = Res; 1928 break; 1929 } 1930 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1931 if (Record.size() < 2) 1932 return error("Invalid record"); 1933 ResultTy = getTypeByID(Record[1]); 1934 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1935 return error("Invalid type"); 1936 ResultTy = ArrayType::get(ResultTy, Record[0]); 1937 break; 1938 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1939 // [numelts, eltty, scalable] 1940 if (Record.size() < 2) 1941 return error("Invalid record"); 1942 if (Record[0] == 0) 1943 return error("Invalid vector length"); 1944 ResultTy = getTypeByID(Record[1]); 1945 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1946 return error("Invalid type"); 1947 bool Scalable = Record.size() > 2 ? Record[2] : false; 1948 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1949 break; 1950 } 1951 1952 if (NumRecords >= TypeList.size()) 1953 return error("Invalid TYPE table"); 1954 if (TypeList[NumRecords]) 1955 return error( 1956 "Invalid TYPE table: Only named structs can be forward referenced"); 1957 assert(ResultTy && "Didn't read a type?"); 1958 TypeList[NumRecords++] = ResultTy; 1959 } 1960 } 1961 1962 Error BitcodeReader::parseOperandBundleTags() { 1963 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1964 return Err; 1965 1966 if (!BundleTags.empty()) 1967 return error("Invalid multiple blocks"); 1968 1969 SmallVector<uint64_t, 64> Record; 1970 1971 while (true) { 1972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1973 if (!MaybeEntry) 1974 return MaybeEntry.takeError(); 1975 BitstreamEntry Entry = MaybeEntry.get(); 1976 1977 switch (Entry.Kind) { 1978 case BitstreamEntry::SubBlock: // Handled for us already. 1979 case BitstreamEntry::Error: 1980 return error("Malformed block"); 1981 case BitstreamEntry::EndBlock: 1982 return Error::success(); 1983 case BitstreamEntry::Record: 1984 // The interesting case. 1985 break; 1986 } 1987 1988 // Tags are implicitly mapped to integers by their order. 1989 1990 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1991 if (!MaybeRecord) 1992 return MaybeRecord.takeError(); 1993 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1994 return error("Invalid record"); 1995 1996 // OPERAND_BUNDLE_TAG: [strchr x N] 1997 BundleTags.emplace_back(); 1998 if (convertToString(Record, 0, BundleTags.back())) 1999 return error("Invalid record"); 2000 Record.clear(); 2001 } 2002 } 2003 2004 Error BitcodeReader::parseSyncScopeNames() { 2005 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2006 return Err; 2007 2008 if (!SSIDs.empty()) 2009 return error("Invalid multiple synchronization scope names blocks"); 2010 2011 SmallVector<uint64_t, 64> Record; 2012 while (true) { 2013 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2014 if (!MaybeEntry) 2015 return MaybeEntry.takeError(); 2016 BitstreamEntry Entry = MaybeEntry.get(); 2017 2018 switch (Entry.Kind) { 2019 case BitstreamEntry::SubBlock: // Handled for us already. 2020 case BitstreamEntry::Error: 2021 return error("Malformed block"); 2022 case BitstreamEntry::EndBlock: 2023 if (SSIDs.empty()) 2024 return error("Invalid empty synchronization scope names block"); 2025 return Error::success(); 2026 case BitstreamEntry::Record: 2027 // The interesting case. 2028 break; 2029 } 2030 2031 // Synchronization scope names are implicitly mapped to synchronization 2032 // scope IDs by their order. 2033 2034 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2035 if (!MaybeRecord) 2036 return MaybeRecord.takeError(); 2037 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2038 return error("Invalid record"); 2039 2040 SmallString<16> SSN; 2041 if (convertToString(Record, 0, SSN)) 2042 return error("Invalid record"); 2043 2044 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2045 Record.clear(); 2046 } 2047 } 2048 2049 /// Associate a value with its name from the given index in the provided record. 2050 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2051 unsigned NameIndex, Triple &TT) { 2052 SmallString<128> ValueName; 2053 if (convertToString(Record, NameIndex, ValueName)) 2054 return error("Invalid record"); 2055 unsigned ValueID = Record[0]; 2056 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2057 return error("Invalid record"); 2058 Value *V = ValueList[ValueID]; 2059 2060 StringRef NameStr(ValueName.data(), ValueName.size()); 2061 if (NameStr.find_first_of(0) != StringRef::npos) 2062 return error("Invalid value name"); 2063 V->setName(NameStr); 2064 auto *GO = dyn_cast<GlobalObject>(V); 2065 if (GO) { 2066 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2067 if (TT.supportsCOMDAT()) 2068 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2069 else 2070 GO->setComdat(nullptr); 2071 } 2072 } 2073 return V; 2074 } 2075 2076 /// Helper to note and return the current location, and jump to the given 2077 /// offset. 2078 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2079 BitstreamCursor &Stream) { 2080 // Save the current parsing location so we can jump back at the end 2081 // of the VST read. 2082 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2083 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2084 return std::move(JumpFailed); 2085 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2086 if (!MaybeEntry) 2087 return MaybeEntry.takeError(); 2088 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2089 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2090 return CurrentBit; 2091 } 2092 2093 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2094 Function *F, 2095 ArrayRef<uint64_t> Record) { 2096 // Note that we subtract 1 here because the offset is relative to one word 2097 // before the start of the identification or module block, which was 2098 // historically always the start of the regular bitcode header. 2099 uint64_t FuncWordOffset = Record[1] - 1; 2100 uint64_t FuncBitOffset = FuncWordOffset * 32; 2101 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2102 // Set the LastFunctionBlockBit to point to the last function block. 2103 // Later when parsing is resumed after function materialization, 2104 // we can simply skip that last function block. 2105 if (FuncBitOffset > LastFunctionBlockBit) 2106 LastFunctionBlockBit = FuncBitOffset; 2107 } 2108 2109 /// Read a new-style GlobalValue symbol table. 2110 Error BitcodeReader::parseGlobalValueSymbolTable() { 2111 unsigned FuncBitcodeOffsetDelta = 2112 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2113 2114 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2115 return Err; 2116 2117 SmallVector<uint64_t, 64> Record; 2118 while (true) { 2119 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2120 if (!MaybeEntry) 2121 return MaybeEntry.takeError(); 2122 BitstreamEntry Entry = MaybeEntry.get(); 2123 2124 switch (Entry.Kind) { 2125 case BitstreamEntry::SubBlock: 2126 case BitstreamEntry::Error: 2127 return error("Malformed block"); 2128 case BitstreamEntry::EndBlock: 2129 return Error::success(); 2130 case BitstreamEntry::Record: 2131 break; 2132 } 2133 2134 Record.clear(); 2135 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2136 if (!MaybeRecord) 2137 return MaybeRecord.takeError(); 2138 switch (MaybeRecord.get()) { 2139 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2140 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2141 cast<Function>(ValueList[Record[0]]), Record); 2142 break; 2143 } 2144 } 2145 } 2146 2147 /// Parse the value symbol table at either the current parsing location or 2148 /// at the given bit offset if provided. 2149 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2150 uint64_t CurrentBit; 2151 // Pass in the Offset to distinguish between calling for the module-level 2152 // VST (where we want to jump to the VST offset) and the function-level 2153 // VST (where we don't). 2154 if (Offset > 0) { 2155 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2156 if (!MaybeCurrentBit) 2157 return MaybeCurrentBit.takeError(); 2158 CurrentBit = MaybeCurrentBit.get(); 2159 // If this module uses a string table, read this as a module-level VST. 2160 if (UseStrtab) { 2161 if (Error Err = parseGlobalValueSymbolTable()) 2162 return Err; 2163 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2164 return JumpFailed; 2165 return Error::success(); 2166 } 2167 // Otherwise, the VST will be in a similar format to a function-level VST, 2168 // and will contain symbol names. 2169 } 2170 2171 // Compute the delta between the bitcode indices in the VST (the word offset 2172 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2173 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2174 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2175 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2176 // just before entering the VST subblock because: 1) the EnterSubBlock 2177 // changes the AbbrevID width; 2) the VST block is nested within the same 2178 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2179 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2180 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2181 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2182 unsigned FuncBitcodeOffsetDelta = 2183 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2184 2185 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2186 return Err; 2187 2188 SmallVector<uint64_t, 64> Record; 2189 2190 Triple TT(TheModule->getTargetTriple()); 2191 2192 // Read all the records for this value table. 2193 SmallString<128> ValueName; 2194 2195 while (true) { 2196 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2197 if (!MaybeEntry) 2198 return MaybeEntry.takeError(); 2199 BitstreamEntry Entry = MaybeEntry.get(); 2200 2201 switch (Entry.Kind) { 2202 case BitstreamEntry::SubBlock: // Handled for us already. 2203 case BitstreamEntry::Error: 2204 return error("Malformed block"); 2205 case BitstreamEntry::EndBlock: 2206 if (Offset > 0) 2207 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2208 return JumpFailed; 2209 return Error::success(); 2210 case BitstreamEntry::Record: 2211 // The interesting case. 2212 break; 2213 } 2214 2215 // Read a record. 2216 Record.clear(); 2217 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2218 if (!MaybeRecord) 2219 return MaybeRecord.takeError(); 2220 switch (MaybeRecord.get()) { 2221 default: // Default behavior: unknown type. 2222 break; 2223 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2224 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2225 if (Error Err = ValOrErr.takeError()) 2226 return Err; 2227 ValOrErr.get(); 2228 break; 2229 } 2230 case bitc::VST_CODE_FNENTRY: { 2231 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2232 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2233 if (Error Err = ValOrErr.takeError()) 2234 return Err; 2235 Value *V = ValOrErr.get(); 2236 2237 // Ignore function offsets emitted for aliases of functions in older 2238 // versions of LLVM. 2239 if (auto *F = dyn_cast<Function>(V)) 2240 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2241 break; 2242 } 2243 case bitc::VST_CODE_BBENTRY: { 2244 if (convertToString(Record, 1, ValueName)) 2245 return error("Invalid record"); 2246 BasicBlock *BB = getBasicBlock(Record[0]); 2247 if (!BB) 2248 return error("Invalid record"); 2249 2250 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2251 ValueName.clear(); 2252 break; 2253 } 2254 } 2255 } 2256 } 2257 2258 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2259 /// encoding. 2260 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2261 if ((V & 1) == 0) 2262 return V >> 1; 2263 if (V != 1) 2264 return -(V >> 1); 2265 // There is no such thing as -0 with integers. "-0" really means MININT. 2266 return 1ULL << 63; 2267 } 2268 2269 /// Resolve all of the initializers for global values and aliases that we can. 2270 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2271 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2272 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2273 IndirectSymbolInitWorklist; 2274 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2275 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2276 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2277 2278 GlobalInitWorklist.swap(GlobalInits); 2279 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2280 FunctionPrefixWorklist.swap(FunctionPrefixes); 2281 FunctionPrologueWorklist.swap(FunctionPrologues); 2282 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2283 2284 while (!GlobalInitWorklist.empty()) { 2285 unsigned ValID = GlobalInitWorklist.back().second; 2286 if (ValID >= ValueList.size()) { 2287 // Not ready to resolve this yet, it requires something later in the file. 2288 GlobalInits.push_back(GlobalInitWorklist.back()); 2289 } else { 2290 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2291 GlobalInitWorklist.back().first->setInitializer(C); 2292 else 2293 return error("Expected a constant"); 2294 } 2295 GlobalInitWorklist.pop_back(); 2296 } 2297 2298 while (!IndirectSymbolInitWorklist.empty()) { 2299 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2300 if (ValID >= ValueList.size()) { 2301 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2302 } else { 2303 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2304 if (!C) 2305 return error("Expected a constant"); 2306 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2307 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2308 return error("Alias and aliasee types don't match"); 2309 GIS->setIndirectSymbol(C); 2310 } 2311 IndirectSymbolInitWorklist.pop_back(); 2312 } 2313 2314 while (!FunctionPrefixWorklist.empty()) { 2315 unsigned ValID = FunctionPrefixWorklist.back().second; 2316 if (ValID >= ValueList.size()) { 2317 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2318 } else { 2319 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2320 FunctionPrefixWorklist.back().first->setPrefixData(C); 2321 else 2322 return error("Expected a constant"); 2323 } 2324 FunctionPrefixWorklist.pop_back(); 2325 } 2326 2327 while (!FunctionPrologueWorklist.empty()) { 2328 unsigned ValID = FunctionPrologueWorklist.back().second; 2329 if (ValID >= ValueList.size()) { 2330 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2331 } else { 2332 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2333 FunctionPrologueWorklist.back().first->setPrologueData(C); 2334 else 2335 return error("Expected a constant"); 2336 } 2337 FunctionPrologueWorklist.pop_back(); 2338 } 2339 2340 while (!FunctionPersonalityFnWorklist.empty()) { 2341 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2342 if (ValID >= ValueList.size()) { 2343 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2344 } else { 2345 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2346 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2347 else 2348 return error("Expected a constant"); 2349 } 2350 FunctionPersonalityFnWorklist.pop_back(); 2351 } 2352 2353 return Error::success(); 2354 } 2355 2356 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2357 SmallVector<uint64_t, 8> Words(Vals.size()); 2358 transform(Vals, Words.begin(), 2359 BitcodeReader::decodeSignRotatedValue); 2360 2361 return APInt(TypeBits, Words); 2362 } 2363 2364 Error BitcodeReader::parseConstants() { 2365 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2366 return Err; 2367 2368 SmallVector<uint64_t, 64> Record; 2369 2370 // Read all the records for this value table. 2371 Type *CurTy = Type::getInt32Ty(Context); 2372 Type *CurFullTy = Type::getInt32Ty(Context); 2373 unsigned NextCstNo = ValueList.size(); 2374 2375 struct DelayedShufTy { 2376 VectorType *OpTy; 2377 VectorType *RTy; 2378 Type *CurFullTy; 2379 uint64_t Op0Idx; 2380 uint64_t Op1Idx; 2381 uint64_t Op2Idx; 2382 unsigned CstNo; 2383 }; 2384 std::vector<DelayedShufTy> DelayedShuffles; 2385 while (true) { 2386 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2387 if (!MaybeEntry) 2388 return MaybeEntry.takeError(); 2389 BitstreamEntry Entry = MaybeEntry.get(); 2390 2391 switch (Entry.Kind) { 2392 case BitstreamEntry::SubBlock: // Handled for us already. 2393 case BitstreamEntry::Error: 2394 return error("Malformed block"); 2395 case BitstreamEntry::EndBlock: 2396 // Once all the constants have been read, go through and resolve forward 2397 // references. 2398 // 2399 // We have to treat shuffles specially because they don't have three 2400 // operands anymore. We need to convert the shuffle mask into an array, 2401 // and we can't convert a forward reference. 2402 for (auto &DelayedShuffle : DelayedShuffles) { 2403 VectorType *OpTy = DelayedShuffle.OpTy; 2404 VectorType *RTy = DelayedShuffle.RTy; 2405 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2406 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2407 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2408 uint64_t CstNo = DelayedShuffle.CstNo; 2409 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2410 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2411 Type *ShufTy = 2412 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2413 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2414 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2415 return error("Invalid shufflevector operands"); 2416 SmallVector<int, 16> Mask; 2417 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2418 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2419 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2420 } 2421 2422 if (NextCstNo != ValueList.size()) 2423 return error("Invalid constant reference"); 2424 2425 ValueList.resolveConstantForwardRefs(); 2426 return Error::success(); 2427 case BitstreamEntry::Record: 2428 // The interesting case. 2429 break; 2430 } 2431 2432 // Read a record. 2433 Record.clear(); 2434 Type *VoidType = Type::getVoidTy(Context); 2435 Value *V = nullptr; 2436 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2437 if (!MaybeBitCode) 2438 return MaybeBitCode.takeError(); 2439 switch (unsigned BitCode = MaybeBitCode.get()) { 2440 default: // Default behavior: unknown constant 2441 case bitc::CST_CODE_UNDEF: // UNDEF 2442 V = UndefValue::get(CurTy); 2443 break; 2444 case bitc::CST_CODE_POISON: // POISON 2445 V = PoisonValue::get(CurTy); 2446 break; 2447 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2448 if (Record.empty()) 2449 return error("Invalid record"); 2450 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2451 return error("Invalid record"); 2452 if (TypeList[Record[0]] == VoidType) 2453 return error("Invalid constant type"); 2454 CurFullTy = TypeList[Record[0]]; 2455 CurTy = flattenPointerTypes(CurFullTy); 2456 continue; // Skip the ValueList manipulation. 2457 case bitc::CST_CODE_NULL: // NULL 2458 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2459 return error("Invalid type for a constant null value"); 2460 V = Constant::getNullValue(CurTy); 2461 break; 2462 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2463 if (!CurTy->isIntegerTy() || Record.empty()) 2464 return error("Invalid record"); 2465 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2466 break; 2467 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2468 if (!CurTy->isIntegerTy() || Record.empty()) 2469 return error("Invalid record"); 2470 2471 APInt VInt = 2472 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2473 V = ConstantInt::get(Context, VInt); 2474 2475 break; 2476 } 2477 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2478 if (Record.empty()) 2479 return error("Invalid record"); 2480 if (CurTy->isHalfTy()) 2481 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2482 APInt(16, (uint16_t)Record[0]))); 2483 else if (CurTy->isBFloatTy()) 2484 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2485 APInt(16, (uint32_t)Record[0]))); 2486 else if (CurTy->isFloatTy()) 2487 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2488 APInt(32, (uint32_t)Record[0]))); 2489 else if (CurTy->isDoubleTy()) 2490 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2491 APInt(64, Record[0]))); 2492 else if (CurTy->isX86_FP80Ty()) { 2493 // Bits are not stored the same way as a normal i80 APInt, compensate. 2494 uint64_t Rearrange[2]; 2495 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2496 Rearrange[1] = Record[0] >> 48; 2497 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2498 APInt(80, Rearrange))); 2499 } else if (CurTy->isFP128Ty()) 2500 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2501 APInt(128, Record))); 2502 else if (CurTy->isPPC_FP128Ty()) 2503 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2504 APInt(128, Record))); 2505 else 2506 V = UndefValue::get(CurTy); 2507 break; 2508 } 2509 2510 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2511 if (Record.empty()) 2512 return error("Invalid record"); 2513 2514 unsigned Size = Record.size(); 2515 SmallVector<Constant*, 16> Elts; 2516 2517 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2518 for (unsigned i = 0; i != Size; ++i) 2519 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2520 STy->getElementType(i))); 2521 V = ConstantStruct::get(STy, Elts); 2522 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2523 Type *EltTy = ATy->getElementType(); 2524 for (unsigned i = 0; i != Size; ++i) 2525 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2526 V = ConstantArray::get(ATy, Elts); 2527 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2528 Type *EltTy = VTy->getElementType(); 2529 for (unsigned i = 0; i != Size; ++i) 2530 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2531 V = ConstantVector::get(Elts); 2532 } else { 2533 V = UndefValue::get(CurTy); 2534 } 2535 break; 2536 } 2537 case bitc::CST_CODE_STRING: // STRING: [values] 2538 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2539 if (Record.empty()) 2540 return error("Invalid record"); 2541 2542 SmallString<16> Elts(Record.begin(), Record.end()); 2543 V = ConstantDataArray::getString(Context, Elts, 2544 BitCode == bitc::CST_CODE_CSTRING); 2545 break; 2546 } 2547 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2548 if (Record.empty()) 2549 return error("Invalid record"); 2550 2551 Type *EltTy; 2552 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2553 EltTy = Array->getElementType(); 2554 else 2555 EltTy = cast<VectorType>(CurTy)->getElementType(); 2556 if (EltTy->isIntegerTy(8)) { 2557 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2558 if (isa<VectorType>(CurTy)) 2559 V = ConstantDataVector::get(Context, Elts); 2560 else 2561 V = ConstantDataArray::get(Context, Elts); 2562 } else if (EltTy->isIntegerTy(16)) { 2563 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2564 if (isa<VectorType>(CurTy)) 2565 V = ConstantDataVector::get(Context, Elts); 2566 else 2567 V = ConstantDataArray::get(Context, Elts); 2568 } else if (EltTy->isIntegerTy(32)) { 2569 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2570 if (isa<VectorType>(CurTy)) 2571 V = ConstantDataVector::get(Context, Elts); 2572 else 2573 V = ConstantDataArray::get(Context, Elts); 2574 } else if (EltTy->isIntegerTy(64)) { 2575 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2576 if (isa<VectorType>(CurTy)) 2577 V = ConstantDataVector::get(Context, Elts); 2578 else 2579 V = ConstantDataArray::get(Context, Elts); 2580 } else if (EltTy->isHalfTy()) { 2581 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2582 if (isa<VectorType>(CurTy)) 2583 V = ConstantDataVector::getFP(EltTy, Elts); 2584 else 2585 V = ConstantDataArray::getFP(EltTy, Elts); 2586 } else if (EltTy->isBFloatTy()) { 2587 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2588 if (isa<VectorType>(CurTy)) 2589 V = ConstantDataVector::getFP(EltTy, Elts); 2590 else 2591 V = ConstantDataArray::getFP(EltTy, Elts); 2592 } else if (EltTy->isFloatTy()) { 2593 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2594 if (isa<VectorType>(CurTy)) 2595 V = ConstantDataVector::getFP(EltTy, Elts); 2596 else 2597 V = ConstantDataArray::getFP(EltTy, Elts); 2598 } else if (EltTy->isDoubleTy()) { 2599 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2600 if (isa<VectorType>(CurTy)) 2601 V = ConstantDataVector::getFP(EltTy, Elts); 2602 else 2603 V = ConstantDataArray::getFP(EltTy, Elts); 2604 } else { 2605 return error("Invalid type for value"); 2606 } 2607 break; 2608 } 2609 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2610 if (Record.size() < 2) 2611 return error("Invalid record"); 2612 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2613 if (Opc < 0) { 2614 V = UndefValue::get(CurTy); // Unknown unop. 2615 } else { 2616 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2617 unsigned Flags = 0; 2618 V = ConstantExpr::get(Opc, LHS, Flags); 2619 } 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2623 if (Record.size() < 3) 2624 return error("Invalid record"); 2625 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2626 if (Opc < 0) { 2627 V = UndefValue::get(CurTy); // Unknown binop. 2628 } else { 2629 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2630 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2631 unsigned Flags = 0; 2632 if (Record.size() >= 4) { 2633 if (Opc == Instruction::Add || 2634 Opc == Instruction::Sub || 2635 Opc == Instruction::Mul || 2636 Opc == Instruction::Shl) { 2637 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2638 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2639 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2640 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2641 } else if (Opc == Instruction::SDiv || 2642 Opc == Instruction::UDiv || 2643 Opc == Instruction::LShr || 2644 Opc == Instruction::AShr) { 2645 if (Record[3] & (1 << bitc::PEO_EXACT)) 2646 Flags |= SDivOperator::IsExact; 2647 } 2648 } 2649 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2650 } 2651 break; 2652 } 2653 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2654 if (Record.size() < 3) 2655 return error("Invalid record"); 2656 int Opc = getDecodedCastOpcode(Record[0]); 2657 if (Opc < 0) { 2658 V = UndefValue::get(CurTy); // Unknown cast. 2659 } else { 2660 Type *OpTy = getTypeByID(Record[1]); 2661 if (!OpTy) 2662 return error("Invalid record"); 2663 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2664 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2665 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2666 } 2667 break; 2668 } 2669 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2670 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2671 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2672 // operands] 2673 unsigned OpNum = 0; 2674 Type *PointeeType = nullptr; 2675 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2676 Record.size() % 2) 2677 PointeeType = getTypeByID(Record[OpNum++]); 2678 2679 bool InBounds = false; 2680 Optional<unsigned> InRangeIndex; 2681 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2682 uint64_t Op = Record[OpNum++]; 2683 InBounds = Op & 1; 2684 InRangeIndex = Op >> 1; 2685 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2686 InBounds = true; 2687 2688 SmallVector<Constant*, 16> Elts; 2689 Type *Elt0FullTy = nullptr; 2690 while (OpNum != Record.size()) { 2691 if (!Elt0FullTy) 2692 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2693 Type *ElTy = getTypeByID(Record[OpNum++]); 2694 if (!ElTy) 2695 return error("Invalid record"); 2696 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2697 } 2698 2699 if (Elts.size() < 1) 2700 return error("Invalid gep with no operands"); 2701 2702 Type *ImplicitPointeeType = 2703 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2704 if (!PointeeType) 2705 PointeeType = ImplicitPointeeType; 2706 else if (PointeeType != ImplicitPointeeType) 2707 return error("Explicit gep operator type does not match pointee type " 2708 "of pointer operand"); 2709 2710 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2711 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2712 InBounds, InRangeIndex); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2716 if (Record.size() < 3) 2717 return error("Invalid record"); 2718 2719 Type *SelectorTy = Type::getInt1Ty(Context); 2720 2721 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2722 // Get the type from the ValueList before getting a forward ref. 2723 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2724 if (Value *V = ValueList[Record[0]]) 2725 if (SelectorTy != V->getType()) 2726 SelectorTy = VectorType::get(SelectorTy, 2727 VTy->getElementCount()); 2728 2729 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2730 SelectorTy), 2731 ValueList.getConstantFwdRef(Record[1],CurTy), 2732 ValueList.getConstantFwdRef(Record[2],CurTy)); 2733 break; 2734 } 2735 case bitc::CST_CODE_CE_EXTRACTELT 2736 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2737 if (Record.size() < 3) 2738 return error("Invalid record"); 2739 VectorType *OpTy = 2740 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2741 if (!OpTy) 2742 return error("Invalid record"); 2743 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2744 Constant *Op1 = nullptr; 2745 if (Record.size() == 4) { 2746 Type *IdxTy = getTypeByID(Record[2]); 2747 if (!IdxTy) 2748 return error("Invalid record"); 2749 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2750 } else { 2751 // Deprecated, but still needed to read old bitcode files. 2752 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2753 } 2754 if (!Op1) 2755 return error("Invalid record"); 2756 V = ConstantExpr::getExtractElement(Op0, Op1); 2757 break; 2758 } 2759 case bitc::CST_CODE_CE_INSERTELT 2760 : { // CE_INSERTELT: [opval, opval, opty, opval] 2761 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2762 if (Record.size() < 3 || !OpTy) 2763 return error("Invalid record"); 2764 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2765 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2766 OpTy->getElementType()); 2767 Constant *Op2 = nullptr; 2768 if (Record.size() == 4) { 2769 Type *IdxTy = getTypeByID(Record[2]); 2770 if (!IdxTy) 2771 return error("Invalid record"); 2772 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2773 } else { 2774 // Deprecated, but still needed to read old bitcode files. 2775 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2776 } 2777 if (!Op2) 2778 return error("Invalid record"); 2779 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2780 break; 2781 } 2782 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2783 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2784 if (Record.size() < 3 || !OpTy) 2785 return error("Invalid record"); 2786 DelayedShuffles.push_back( 2787 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2788 ++NextCstNo; 2789 continue; 2790 } 2791 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2792 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2793 VectorType *OpTy = 2794 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2795 if (Record.size() < 4 || !RTy || !OpTy) 2796 return error("Invalid record"); 2797 DelayedShuffles.push_back( 2798 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2799 ++NextCstNo; 2800 continue; 2801 } 2802 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2803 if (Record.size() < 4) 2804 return error("Invalid record"); 2805 Type *OpTy = getTypeByID(Record[0]); 2806 if (!OpTy) 2807 return error("Invalid record"); 2808 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2809 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2810 2811 if (OpTy->isFPOrFPVectorTy()) 2812 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2813 else 2814 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2815 break; 2816 } 2817 // This maintains backward compatibility, pre-asm dialect keywords. 2818 // Deprecated, but still needed to read old bitcode files. 2819 case bitc::CST_CODE_INLINEASM_OLD: { 2820 if (Record.size() < 2) 2821 return error("Invalid record"); 2822 std::string AsmStr, ConstrStr; 2823 bool HasSideEffects = Record[0] & 1; 2824 bool IsAlignStack = Record[0] >> 1; 2825 unsigned AsmStrSize = Record[1]; 2826 if (2+AsmStrSize >= Record.size()) 2827 return error("Invalid record"); 2828 unsigned ConstStrSize = Record[2+AsmStrSize]; 2829 if (3+AsmStrSize+ConstStrSize > Record.size()) 2830 return error("Invalid record"); 2831 2832 for (unsigned i = 0; i != AsmStrSize; ++i) 2833 AsmStr += (char)Record[2+i]; 2834 for (unsigned i = 0; i != ConstStrSize; ++i) 2835 ConstrStr += (char)Record[3+AsmStrSize+i]; 2836 UpgradeInlineAsmString(&AsmStr); 2837 V = InlineAsm::get( 2838 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2839 ConstrStr, HasSideEffects, IsAlignStack); 2840 break; 2841 } 2842 // This version adds support for the asm dialect keywords (e.g., 2843 // inteldialect). 2844 case bitc::CST_CODE_INLINEASM_OLD2: { 2845 if (Record.size() < 2) 2846 return error("Invalid record"); 2847 std::string AsmStr, ConstrStr; 2848 bool HasSideEffects = Record[0] & 1; 2849 bool IsAlignStack = (Record[0] >> 1) & 1; 2850 unsigned AsmDialect = Record[0] >> 2; 2851 unsigned AsmStrSize = Record[1]; 2852 if (2+AsmStrSize >= Record.size()) 2853 return error("Invalid record"); 2854 unsigned ConstStrSize = Record[2+AsmStrSize]; 2855 if (3+AsmStrSize+ConstStrSize > Record.size()) 2856 return error("Invalid record"); 2857 2858 for (unsigned i = 0; i != AsmStrSize; ++i) 2859 AsmStr += (char)Record[2+i]; 2860 for (unsigned i = 0; i != ConstStrSize; ++i) 2861 ConstrStr += (char)Record[3+AsmStrSize+i]; 2862 UpgradeInlineAsmString(&AsmStr); 2863 V = InlineAsm::get( 2864 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2865 ConstrStr, HasSideEffects, IsAlignStack, 2866 InlineAsm::AsmDialect(AsmDialect)); 2867 break; 2868 } 2869 // This version adds support for the unwind keyword. 2870 case bitc::CST_CODE_INLINEASM: { 2871 if (Record.size() < 2) 2872 return error("Invalid record"); 2873 std::string AsmStr, ConstrStr; 2874 bool HasSideEffects = Record[0] & 1; 2875 bool IsAlignStack = (Record[0] >> 1) & 1; 2876 unsigned AsmDialect = (Record[0] >> 2) & 1; 2877 bool CanThrow = (Record[0] >> 3) & 1; 2878 unsigned AsmStrSize = Record[1]; 2879 if (2 + AsmStrSize >= Record.size()) 2880 return error("Invalid record"); 2881 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2882 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2883 return error("Invalid record"); 2884 2885 for (unsigned i = 0; i != AsmStrSize; ++i) 2886 AsmStr += (char)Record[2 + i]; 2887 for (unsigned i = 0; i != ConstStrSize; ++i) 2888 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2889 UpgradeInlineAsmString(&AsmStr); 2890 V = InlineAsm::get( 2891 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2892 ConstrStr, HasSideEffects, IsAlignStack, 2893 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2894 break; 2895 } 2896 case bitc::CST_CODE_BLOCKADDRESS:{ 2897 if (Record.size() < 3) 2898 return error("Invalid record"); 2899 Type *FnTy = getTypeByID(Record[0]); 2900 if (!FnTy) 2901 return error("Invalid record"); 2902 Function *Fn = 2903 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2904 if (!Fn) 2905 return error("Invalid record"); 2906 2907 // If the function is already parsed we can insert the block address right 2908 // away. 2909 BasicBlock *BB; 2910 unsigned BBID = Record[2]; 2911 if (!BBID) 2912 // Invalid reference to entry block. 2913 return error("Invalid ID"); 2914 if (!Fn->empty()) { 2915 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2916 for (size_t I = 0, E = BBID; I != E; ++I) { 2917 if (BBI == BBE) 2918 return error("Invalid ID"); 2919 ++BBI; 2920 } 2921 BB = &*BBI; 2922 } else { 2923 // Otherwise insert a placeholder and remember it so it can be inserted 2924 // when the function is parsed. 2925 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2926 if (FwdBBs.empty()) 2927 BasicBlockFwdRefQueue.push_back(Fn); 2928 if (FwdBBs.size() < BBID + 1) 2929 FwdBBs.resize(BBID + 1); 2930 if (!FwdBBs[BBID]) 2931 FwdBBs[BBID] = BasicBlock::Create(Context); 2932 BB = FwdBBs[BBID]; 2933 } 2934 V = BlockAddress::get(Fn, BB); 2935 break; 2936 } 2937 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2938 if (Record.size() < 2) 2939 return error("Invalid record"); 2940 Type *GVTy = getTypeByID(Record[0]); 2941 if (!GVTy) 2942 return error("Invalid record"); 2943 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2944 ValueList.getConstantFwdRef(Record[1], GVTy)); 2945 if (!GV) 2946 return error("Invalid record"); 2947 2948 V = DSOLocalEquivalent::get(GV); 2949 break; 2950 } 2951 } 2952 2953 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2954 "Incorrect fully structured type provided for Constant"); 2955 ValueList.assignValue(V, NextCstNo, CurFullTy); 2956 ++NextCstNo; 2957 } 2958 } 2959 2960 Error BitcodeReader::parseUseLists() { 2961 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2962 return Err; 2963 2964 // Read all the records. 2965 SmallVector<uint64_t, 64> Record; 2966 2967 while (true) { 2968 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2969 if (!MaybeEntry) 2970 return MaybeEntry.takeError(); 2971 BitstreamEntry Entry = MaybeEntry.get(); 2972 2973 switch (Entry.Kind) { 2974 case BitstreamEntry::SubBlock: // Handled for us already. 2975 case BitstreamEntry::Error: 2976 return error("Malformed block"); 2977 case BitstreamEntry::EndBlock: 2978 return Error::success(); 2979 case BitstreamEntry::Record: 2980 // The interesting case. 2981 break; 2982 } 2983 2984 // Read a use list record. 2985 Record.clear(); 2986 bool IsBB = false; 2987 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2988 if (!MaybeRecord) 2989 return MaybeRecord.takeError(); 2990 switch (MaybeRecord.get()) { 2991 default: // Default behavior: unknown type. 2992 break; 2993 case bitc::USELIST_CODE_BB: 2994 IsBB = true; 2995 LLVM_FALLTHROUGH; 2996 case bitc::USELIST_CODE_DEFAULT: { 2997 unsigned RecordLength = Record.size(); 2998 if (RecordLength < 3) 2999 // Records should have at least an ID and two indexes. 3000 return error("Invalid record"); 3001 unsigned ID = Record.pop_back_val(); 3002 3003 Value *V; 3004 if (IsBB) { 3005 assert(ID < FunctionBBs.size() && "Basic block not found"); 3006 V = FunctionBBs[ID]; 3007 } else 3008 V = ValueList[ID]; 3009 unsigned NumUses = 0; 3010 SmallDenseMap<const Use *, unsigned, 16> Order; 3011 for (const Use &U : V->materialized_uses()) { 3012 if (++NumUses > Record.size()) 3013 break; 3014 Order[&U] = Record[NumUses - 1]; 3015 } 3016 if (Order.size() != Record.size() || NumUses > Record.size()) 3017 // Mismatches can happen if the functions are being materialized lazily 3018 // (out-of-order), or a value has been upgraded. 3019 break; 3020 3021 V->sortUseList([&](const Use &L, const Use &R) { 3022 return Order.lookup(&L) < Order.lookup(&R); 3023 }); 3024 break; 3025 } 3026 } 3027 } 3028 } 3029 3030 /// When we see the block for metadata, remember where it is and then skip it. 3031 /// This lets us lazily deserialize the metadata. 3032 Error BitcodeReader::rememberAndSkipMetadata() { 3033 // Save the current stream state. 3034 uint64_t CurBit = Stream.GetCurrentBitNo(); 3035 DeferredMetadataInfo.push_back(CurBit); 3036 3037 // Skip over the block for now. 3038 if (Error Err = Stream.SkipBlock()) 3039 return Err; 3040 return Error::success(); 3041 } 3042 3043 Error BitcodeReader::materializeMetadata() { 3044 for (uint64_t BitPos : DeferredMetadataInfo) { 3045 // Move the bit stream to the saved position. 3046 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3047 return JumpFailed; 3048 if (Error Err = MDLoader->parseModuleMetadata()) 3049 return Err; 3050 } 3051 3052 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3053 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3054 // multiple times. 3055 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3056 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3057 NamedMDNode *LinkerOpts = 3058 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3059 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3060 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3061 } 3062 } 3063 3064 DeferredMetadataInfo.clear(); 3065 return Error::success(); 3066 } 3067 3068 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3069 3070 /// When we see the block for a function body, remember where it is and then 3071 /// skip it. This lets us lazily deserialize the functions. 3072 Error BitcodeReader::rememberAndSkipFunctionBody() { 3073 // Get the function we are talking about. 3074 if (FunctionsWithBodies.empty()) 3075 return error("Insufficient function protos"); 3076 3077 Function *Fn = FunctionsWithBodies.back(); 3078 FunctionsWithBodies.pop_back(); 3079 3080 // Save the current stream state. 3081 uint64_t CurBit = Stream.GetCurrentBitNo(); 3082 assert( 3083 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3084 "Mismatch between VST and scanned function offsets"); 3085 DeferredFunctionInfo[Fn] = CurBit; 3086 3087 // Skip over the function block for now. 3088 if (Error Err = Stream.SkipBlock()) 3089 return Err; 3090 return Error::success(); 3091 } 3092 3093 Error BitcodeReader::globalCleanup() { 3094 // Patch the initializers for globals and aliases up. 3095 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3096 return Err; 3097 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3098 return error("Malformed global initializer set"); 3099 3100 // Look for intrinsic functions which need to be upgraded at some point 3101 // and functions that need to have their function attributes upgraded. 3102 for (Function &F : *TheModule) { 3103 MDLoader->upgradeDebugIntrinsics(F); 3104 Function *NewFn; 3105 if (UpgradeIntrinsicFunction(&F, NewFn)) 3106 UpgradedIntrinsics[&F] = NewFn; 3107 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3108 // Some types could be renamed during loading if several modules are 3109 // loaded in the same LLVMContext (LTO scenario). In this case we should 3110 // remangle intrinsics names as well. 3111 RemangledIntrinsics[&F] = Remangled.getValue(); 3112 // Look for functions that rely on old function attribute behavior. 3113 UpgradeFunctionAttributes(F); 3114 } 3115 3116 // Look for global variables which need to be renamed. 3117 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3118 for (GlobalVariable &GV : TheModule->globals()) 3119 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3120 UpgradedVariables.emplace_back(&GV, Upgraded); 3121 for (auto &Pair : UpgradedVariables) { 3122 Pair.first->eraseFromParent(); 3123 TheModule->getGlobalList().push_back(Pair.second); 3124 } 3125 3126 // Force deallocation of memory for these vectors to favor the client that 3127 // want lazy deserialization. 3128 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3129 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3130 IndirectSymbolInits); 3131 return Error::success(); 3132 } 3133 3134 /// Support for lazy parsing of function bodies. This is required if we 3135 /// either have an old bitcode file without a VST forward declaration record, 3136 /// or if we have an anonymous function being materialized, since anonymous 3137 /// functions do not have a name and are therefore not in the VST. 3138 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3139 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3140 return JumpFailed; 3141 3142 if (Stream.AtEndOfStream()) 3143 return error("Could not find function in stream"); 3144 3145 if (!SeenFirstFunctionBody) 3146 return error("Trying to materialize functions before seeing function blocks"); 3147 3148 // An old bitcode file with the symbol table at the end would have 3149 // finished the parse greedily. 3150 assert(SeenValueSymbolTable); 3151 3152 SmallVector<uint64_t, 64> Record; 3153 3154 while (true) { 3155 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3156 if (!MaybeEntry) 3157 return MaybeEntry.takeError(); 3158 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3159 3160 switch (Entry.Kind) { 3161 default: 3162 return error("Expect SubBlock"); 3163 case BitstreamEntry::SubBlock: 3164 switch (Entry.ID) { 3165 default: 3166 return error("Expect function block"); 3167 case bitc::FUNCTION_BLOCK_ID: 3168 if (Error Err = rememberAndSkipFunctionBody()) 3169 return Err; 3170 NextUnreadBit = Stream.GetCurrentBitNo(); 3171 return Error::success(); 3172 } 3173 } 3174 } 3175 } 3176 3177 bool BitcodeReaderBase::readBlockInfo() { 3178 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3179 Stream.ReadBlockInfoBlock(); 3180 if (!MaybeNewBlockInfo) 3181 return true; // FIXME Handle the error. 3182 Optional<BitstreamBlockInfo> NewBlockInfo = 3183 std::move(MaybeNewBlockInfo.get()); 3184 if (!NewBlockInfo) 3185 return true; 3186 BlockInfo = std::move(*NewBlockInfo); 3187 return false; 3188 } 3189 3190 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3191 // v1: [selection_kind, name] 3192 // v2: [strtab_offset, strtab_size, selection_kind] 3193 StringRef Name; 3194 std::tie(Name, Record) = readNameFromStrtab(Record); 3195 3196 if (Record.empty()) 3197 return error("Invalid record"); 3198 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3199 std::string OldFormatName; 3200 if (!UseStrtab) { 3201 if (Record.size() < 2) 3202 return error("Invalid record"); 3203 unsigned ComdatNameSize = Record[1]; 3204 OldFormatName.reserve(ComdatNameSize); 3205 for (unsigned i = 0; i != ComdatNameSize; ++i) 3206 OldFormatName += (char)Record[2 + i]; 3207 Name = OldFormatName; 3208 } 3209 Comdat *C = TheModule->getOrInsertComdat(Name); 3210 C->setSelectionKind(SK); 3211 ComdatList.push_back(C); 3212 return Error::success(); 3213 } 3214 3215 static void inferDSOLocal(GlobalValue *GV) { 3216 // infer dso_local from linkage and visibility if it is not encoded. 3217 if (GV->hasLocalLinkage() || 3218 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3219 GV->setDSOLocal(true); 3220 } 3221 3222 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3223 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3224 // visibility, threadlocal, unnamed_addr, externally_initialized, 3225 // dllstorageclass, comdat, attributes, preemption specifier, 3226 // partition strtab offset, partition strtab size] (name in VST) 3227 // v2: [strtab_offset, strtab_size, v1] 3228 StringRef Name; 3229 std::tie(Name, Record) = readNameFromStrtab(Record); 3230 3231 if (Record.size() < 6) 3232 return error("Invalid record"); 3233 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3234 Type *Ty = flattenPointerTypes(FullTy); 3235 if (!Ty) 3236 return error("Invalid record"); 3237 bool isConstant = Record[1] & 1; 3238 bool explicitType = Record[1] & 2; 3239 unsigned AddressSpace; 3240 if (explicitType) { 3241 AddressSpace = Record[1] >> 2; 3242 } else { 3243 if (!Ty->isPointerTy()) 3244 return error("Invalid type for value"); 3245 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3246 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3247 } 3248 3249 uint64_t RawLinkage = Record[3]; 3250 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3251 MaybeAlign Alignment; 3252 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3253 return Err; 3254 std::string Section; 3255 if (Record[5]) { 3256 if (Record[5] - 1 >= SectionTable.size()) 3257 return error("Invalid ID"); 3258 Section = SectionTable[Record[5] - 1]; 3259 } 3260 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3261 // Local linkage must have default visibility. 3262 // auto-upgrade `hidden` and `protected` for old bitcode. 3263 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3264 Visibility = getDecodedVisibility(Record[6]); 3265 3266 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3267 if (Record.size() > 7) 3268 TLM = getDecodedThreadLocalMode(Record[7]); 3269 3270 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3271 if (Record.size() > 8) 3272 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3273 3274 bool ExternallyInitialized = false; 3275 if (Record.size() > 9) 3276 ExternallyInitialized = Record[9]; 3277 3278 GlobalVariable *NewGV = 3279 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3280 nullptr, TLM, AddressSpace, ExternallyInitialized); 3281 NewGV->setAlignment(Alignment); 3282 if (!Section.empty()) 3283 NewGV->setSection(Section); 3284 NewGV->setVisibility(Visibility); 3285 NewGV->setUnnamedAddr(UnnamedAddr); 3286 3287 if (Record.size() > 10) 3288 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3289 else 3290 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3291 3292 FullTy = PointerType::get(FullTy, AddressSpace); 3293 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3294 "Incorrect fully specified type for GlobalVariable"); 3295 ValueList.push_back(NewGV, FullTy); 3296 3297 // Remember which value to use for the global initializer. 3298 if (unsigned InitID = Record[2]) 3299 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3300 3301 if (Record.size() > 11) { 3302 if (unsigned ComdatID = Record[11]) { 3303 if (ComdatID > ComdatList.size()) 3304 return error("Invalid global variable comdat ID"); 3305 NewGV->setComdat(ComdatList[ComdatID - 1]); 3306 } 3307 } else if (hasImplicitComdat(RawLinkage)) { 3308 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3309 } 3310 3311 if (Record.size() > 12) { 3312 auto AS = getAttributes(Record[12]).getFnAttributes(); 3313 NewGV->setAttributes(AS); 3314 } 3315 3316 if (Record.size() > 13) { 3317 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3318 } 3319 inferDSOLocal(NewGV); 3320 3321 // Check whether we have enough values to read a partition name. 3322 if (Record.size() > 15) 3323 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3324 3325 return Error::success(); 3326 } 3327 3328 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3329 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3330 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3331 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3332 // v2: [strtab_offset, strtab_size, v1] 3333 StringRef Name; 3334 std::tie(Name, Record) = readNameFromStrtab(Record); 3335 3336 if (Record.size() < 8) 3337 return error("Invalid record"); 3338 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3339 Type *FTy = flattenPointerTypes(FullFTy); 3340 if (!FTy) 3341 return error("Invalid record"); 3342 if (isa<PointerType>(FTy)) 3343 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3344 3345 if (!isa<FunctionType>(FTy)) 3346 return error("Invalid type for value"); 3347 auto CC = static_cast<CallingConv::ID>(Record[1]); 3348 if (CC & ~CallingConv::MaxID) 3349 return error("Invalid calling convention ID"); 3350 3351 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3352 if (Record.size() > 16) 3353 AddrSpace = Record[16]; 3354 3355 Function *Func = 3356 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3357 AddrSpace, Name, TheModule); 3358 3359 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3360 "Incorrect fully specified type provided for function"); 3361 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3362 3363 Func->setCallingConv(CC); 3364 bool isProto = Record[2]; 3365 uint64_t RawLinkage = Record[3]; 3366 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3367 Func->setAttributes(getAttributes(Record[4])); 3368 3369 // Upgrade any old-style byval or sret without a type by propagating the 3370 // argument's pointee type. There should be no opaque pointers where the byval 3371 // type is implicit. 3372 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3373 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3374 Attribute::InAlloca}) { 3375 if (!Func->hasParamAttribute(i, Kind)) 3376 continue; 3377 3378 Func->removeParamAttr(i, Kind); 3379 3380 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3381 Type *PtrEltTy = getPointerElementFlatType(PTy); 3382 Attribute NewAttr; 3383 switch (Kind) { 3384 case Attribute::ByVal: 3385 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3386 break; 3387 case Attribute::StructRet: 3388 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3389 break; 3390 case Attribute::InAlloca: 3391 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3392 break; 3393 default: 3394 llvm_unreachable("not an upgraded type attribute"); 3395 } 3396 3397 Func->addParamAttr(i, NewAttr); 3398 } 3399 } 3400 3401 MaybeAlign Alignment; 3402 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3403 return Err; 3404 Func->setAlignment(Alignment); 3405 if (Record[6]) { 3406 if (Record[6] - 1 >= SectionTable.size()) 3407 return error("Invalid ID"); 3408 Func->setSection(SectionTable[Record[6] - 1]); 3409 } 3410 // Local linkage must have default visibility. 3411 // auto-upgrade `hidden` and `protected` for old bitcode. 3412 if (!Func->hasLocalLinkage()) 3413 Func->setVisibility(getDecodedVisibility(Record[7])); 3414 if (Record.size() > 8 && Record[8]) { 3415 if (Record[8] - 1 >= GCTable.size()) 3416 return error("Invalid ID"); 3417 Func->setGC(GCTable[Record[8] - 1]); 3418 } 3419 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3420 if (Record.size() > 9) 3421 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3422 Func->setUnnamedAddr(UnnamedAddr); 3423 if (Record.size() > 10 && Record[10] != 0) 3424 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3425 3426 if (Record.size() > 11) 3427 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3428 else 3429 upgradeDLLImportExportLinkage(Func, RawLinkage); 3430 3431 if (Record.size() > 12) { 3432 if (unsigned ComdatID = Record[12]) { 3433 if (ComdatID > ComdatList.size()) 3434 return error("Invalid function comdat ID"); 3435 Func->setComdat(ComdatList[ComdatID - 1]); 3436 } 3437 } else if (hasImplicitComdat(RawLinkage)) { 3438 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3439 } 3440 3441 if (Record.size() > 13 && Record[13] != 0) 3442 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3443 3444 if (Record.size() > 14 && Record[14] != 0) 3445 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3446 3447 if (Record.size() > 15) { 3448 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3449 } 3450 inferDSOLocal(Func); 3451 3452 // Record[16] is the address space number. 3453 3454 // Check whether we have enough values to read a partition name. 3455 if (Record.size() > 18) 3456 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3457 3458 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3459 assert(Func->getType() == flattenPointerTypes(FullTy) && 3460 "Incorrect fully specified type provided for Function"); 3461 ValueList.push_back(Func, FullTy); 3462 3463 // If this is a function with a body, remember the prototype we are 3464 // creating now, so that we can match up the body with them later. 3465 if (!isProto) { 3466 Func->setIsMaterializable(true); 3467 FunctionsWithBodies.push_back(Func); 3468 DeferredFunctionInfo[Func] = 0; 3469 } 3470 return Error::success(); 3471 } 3472 3473 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3474 unsigned BitCode, ArrayRef<uint64_t> Record) { 3475 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3476 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3477 // dllstorageclass, threadlocal, unnamed_addr, 3478 // preemption specifier] (name in VST) 3479 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3480 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3481 // preemption specifier] (name in VST) 3482 // v2: [strtab_offset, strtab_size, v1] 3483 StringRef Name; 3484 std::tie(Name, Record) = readNameFromStrtab(Record); 3485 3486 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3487 if (Record.size() < (3 + (unsigned)NewRecord)) 3488 return error("Invalid record"); 3489 unsigned OpNum = 0; 3490 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3491 Type *Ty = flattenPointerTypes(FullTy); 3492 if (!Ty) 3493 return error("Invalid record"); 3494 3495 unsigned AddrSpace; 3496 if (!NewRecord) { 3497 auto *PTy = dyn_cast<PointerType>(Ty); 3498 if (!PTy) 3499 return error("Invalid type for value"); 3500 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3501 AddrSpace = PTy->getAddressSpace(); 3502 } else { 3503 AddrSpace = Record[OpNum++]; 3504 } 3505 3506 auto Val = Record[OpNum++]; 3507 auto Linkage = Record[OpNum++]; 3508 GlobalIndirectSymbol *NewGA; 3509 if (BitCode == bitc::MODULE_CODE_ALIAS || 3510 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3511 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3512 TheModule); 3513 else 3514 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3515 nullptr, TheModule); 3516 3517 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3518 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3519 // Local linkage must have default visibility. 3520 // auto-upgrade `hidden` and `protected` for old bitcode. 3521 if (OpNum != Record.size()) { 3522 auto VisInd = OpNum++; 3523 if (!NewGA->hasLocalLinkage()) 3524 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3525 } 3526 if (BitCode == bitc::MODULE_CODE_ALIAS || 3527 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3528 if (OpNum != Record.size()) 3529 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3530 else 3531 upgradeDLLImportExportLinkage(NewGA, Linkage); 3532 if (OpNum != Record.size()) 3533 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3534 if (OpNum != Record.size()) 3535 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3536 } 3537 if (OpNum != Record.size()) 3538 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3539 inferDSOLocal(NewGA); 3540 3541 // Check whether we have enough values to read a partition name. 3542 if (OpNum + 1 < Record.size()) { 3543 NewGA->setPartition( 3544 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3545 OpNum += 2; 3546 } 3547 3548 FullTy = PointerType::get(FullTy, AddrSpace); 3549 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3550 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3551 ValueList.push_back(NewGA, FullTy); 3552 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3553 return Error::success(); 3554 } 3555 3556 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3557 bool ShouldLazyLoadMetadata, 3558 DataLayoutCallbackTy DataLayoutCallback) { 3559 if (ResumeBit) { 3560 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3561 return JumpFailed; 3562 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3563 return Err; 3564 3565 SmallVector<uint64_t, 64> Record; 3566 3567 // Parts of bitcode parsing depend on the datalayout. Make sure we 3568 // finalize the datalayout before we run any of that code. 3569 bool ResolvedDataLayout = false; 3570 auto ResolveDataLayout = [&] { 3571 if (ResolvedDataLayout) 3572 return; 3573 3574 // datalayout and triple can't be parsed after this point. 3575 ResolvedDataLayout = true; 3576 3577 // Upgrade data layout string. 3578 std::string DL = llvm::UpgradeDataLayoutString( 3579 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3580 TheModule->setDataLayout(DL); 3581 3582 if (auto LayoutOverride = 3583 DataLayoutCallback(TheModule->getTargetTriple())) 3584 TheModule->setDataLayout(*LayoutOverride); 3585 }; 3586 3587 // Read all the records for this module. 3588 while (true) { 3589 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3590 if (!MaybeEntry) 3591 return MaybeEntry.takeError(); 3592 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3593 3594 switch (Entry.Kind) { 3595 case BitstreamEntry::Error: 3596 return error("Malformed block"); 3597 case BitstreamEntry::EndBlock: 3598 ResolveDataLayout(); 3599 return globalCleanup(); 3600 3601 case BitstreamEntry::SubBlock: 3602 switch (Entry.ID) { 3603 default: // Skip unknown content. 3604 if (Error Err = Stream.SkipBlock()) 3605 return Err; 3606 break; 3607 case bitc::BLOCKINFO_BLOCK_ID: 3608 if (readBlockInfo()) 3609 return error("Malformed block"); 3610 break; 3611 case bitc::PARAMATTR_BLOCK_ID: 3612 if (Error Err = parseAttributeBlock()) 3613 return Err; 3614 break; 3615 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3616 if (Error Err = parseAttributeGroupBlock()) 3617 return Err; 3618 break; 3619 case bitc::TYPE_BLOCK_ID_NEW: 3620 if (Error Err = parseTypeTable()) 3621 return Err; 3622 break; 3623 case bitc::VALUE_SYMTAB_BLOCK_ID: 3624 if (!SeenValueSymbolTable) { 3625 // Either this is an old form VST without function index and an 3626 // associated VST forward declaration record (which would have caused 3627 // the VST to be jumped to and parsed before it was encountered 3628 // normally in the stream), or there were no function blocks to 3629 // trigger an earlier parsing of the VST. 3630 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3631 if (Error Err = parseValueSymbolTable()) 3632 return Err; 3633 SeenValueSymbolTable = true; 3634 } else { 3635 // We must have had a VST forward declaration record, which caused 3636 // the parser to jump to and parse the VST earlier. 3637 assert(VSTOffset > 0); 3638 if (Error Err = Stream.SkipBlock()) 3639 return Err; 3640 } 3641 break; 3642 case bitc::CONSTANTS_BLOCK_ID: 3643 if (Error Err = parseConstants()) 3644 return Err; 3645 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3646 return Err; 3647 break; 3648 case bitc::METADATA_BLOCK_ID: 3649 if (ShouldLazyLoadMetadata) { 3650 if (Error Err = rememberAndSkipMetadata()) 3651 return Err; 3652 break; 3653 } 3654 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3655 if (Error Err = MDLoader->parseModuleMetadata()) 3656 return Err; 3657 break; 3658 case bitc::METADATA_KIND_BLOCK_ID: 3659 if (Error Err = MDLoader->parseMetadataKinds()) 3660 return Err; 3661 break; 3662 case bitc::FUNCTION_BLOCK_ID: 3663 ResolveDataLayout(); 3664 3665 // If this is the first function body we've seen, reverse the 3666 // FunctionsWithBodies list. 3667 if (!SeenFirstFunctionBody) { 3668 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3669 if (Error Err = globalCleanup()) 3670 return Err; 3671 SeenFirstFunctionBody = true; 3672 } 3673 3674 if (VSTOffset > 0) { 3675 // If we have a VST forward declaration record, make sure we 3676 // parse the VST now if we haven't already. It is needed to 3677 // set up the DeferredFunctionInfo vector for lazy reading. 3678 if (!SeenValueSymbolTable) { 3679 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3680 return Err; 3681 SeenValueSymbolTable = true; 3682 // Fall through so that we record the NextUnreadBit below. 3683 // This is necessary in case we have an anonymous function that 3684 // is later materialized. Since it will not have a VST entry we 3685 // need to fall back to the lazy parse to find its offset. 3686 } else { 3687 // If we have a VST forward declaration record, but have already 3688 // parsed the VST (just above, when the first function body was 3689 // encountered here), then we are resuming the parse after 3690 // materializing functions. The ResumeBit points to the 3691 // start of the last function block recorded in the 3692 // DeferredFunctionInfo map. Skip it. 3693 if (Error Err = Stream.SkipBlock()) 3694 return Err; 3695 continue; 3696 } 3697 } 3698 3699 // Support older bitcode files that did not have the function 3700 // index in the VST, nor a VST forward declaration record, as 3701 // well as anonymous functions that do not have VST entries. 3702 // Build the DeferredFunctionInfo vector on the fly. 3703 if (Error Err = rememberAndSkipFunctionBody()) 3704 return Err; 3705 3706 // Suspend parsing when we reach the function bodies. Subsequent 3707 // materialization calls will resume it when necessary. If the bitcode 3708 // file is old, the symbol table will be at the end instead and will not 3709 // have been seen yet. In this case, just finish the parse now. 3710 if (SeenValueSymbolTable) { 3711 NextUnreadBit = Stream.GetCurrentBitNo(); 3712 // After the VST has been parsed, we need to make sure intrinsic name 3713 // are auto-upgraded. 3714 return globalCleanup(); 3715 } 3716 break; 3717 case bitc::USELIST_BLOCK_ID: 3718 if (Error Err = parseUseLists()) 3719 return Err; 3720 break; 3721 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3722 if (Error Err = parseOperandBundleTags()) 3723 return Err; 3724 break; 3725 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3726 if (Error Err = parseSyncScopeNames()) 3727 return Err; 3728 break; 3729 } 3730 continue; 3731 3732 case BitstreamEntry::Record: 3733 // The interesting case. 3734 break; 3735 } 3736 3737 // Read a record. 3738 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3739 if (!MaybeBitCode) 3740 return MaybeBitCode.takeError(); 3741 switch (unsigned BitCode = MaybeBitCode.get()) { 3742 default: break; // Default behavior, ignore unknown content. 3743 case bitc::MODULE_CODE_VERSION: { 3744 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3745 if (!VersionOrErr) 3746 return VersionOrErr.takeError(); 3747 UseRelativeIDs = *VersionOrErr >= 1; 3748 break; 3749 } 3750 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3751 if (ResolvedDataLayout) 3752 return error("target triple too late in module"); 3753 std::string S; 3754 if (convertToString(Record, 0, S)) 3755 return error("Invalid record"); 3756 TheModule->setTargetTriple(S); 3757 break; 3758 } 3759 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3760 if (ResolvedDataLayout) 3761 return error("datalayout too late in module"); 3762 std::string S; 3763 if (convertToString(Record, 0, S)) 3764 return error("Invalid record"); 3765 TheModule->setDataLayout(S); 3766 break; 3767 } 3768 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3769 std::string S; 3770 if (convertToString(Record, 0, S)) 3771 return error("Invalid record"); 3772 TheModule->setModuleInlineAsm(S); 3773 break; 3774 } 3775 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3776 // Deprecated, but still needed to read old bitcode files. 3777 std::string S; 3778 if (convertToString(Record, 0, S)) 3779 return error("Invalid record"); 3780 // Ignore value. 3781 break; 3782 } 3783 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3784 std::string S; 3785 if (convertToString(Record, 0, S)) 3786 return error("Invalid record"); 3787 SectionTable.push_back(S); 3788 break; 3789 } 3790 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3791 std::string S; 3792 if (convertToString(Record, 0, S)) 3793 return error("Invalid record"); 3794 GCTable.push_back(S); 3795 break; 3796 } 3797 case bitc::MODULE_CODE_COMDAT: 3798 if (Error Err = parseComdatRecord(Record)) 3799 return Err; 3800 break; 3801 case bitc::MODULE_CODE_GLOBALVAR: 3802 if (Error Err = parseGlobalVarRecord(Record)) 3803 return Err; 3804 break; 3805 case bitc::MODULE_CODE_FUNCTION: 3806 ResolveDataLayout(); 3807 if (Error Err = parseFunctionRecord(Record)) 3808 return Err; 3809 break; 3810 case bitc::MODULE_CODE_IFUNC: 3811 case bitc::MODULE_CODE_ALIAS: 3812 case bitc::MODULE_CODE_ALIAS_OLD: 3813 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3814 return Err; 3815 break; 3816 /// MODULE_CODE_VSTOFFSET: [offset] 3817 case bitc::MODULE_CODE_VSTOFFSET: 3818 if (Record.empty()) 3819 return error("Invalid record"); 3820 // Note that we subtract 1 here because the offset is relative to one word 3821 // before the start of the identification or module block, which was 3822 // historically always the start of the regular bitcode header. 3823 VSTOffset = Record[0] - 1; 3824 break; 3825 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3826 case bitc::MODULE_CODE_SOURCE_FILENAME: 3827 SmallString<128> ValueName; 3828 if (convertToString(Record, 0, ValueName)) 3829 return error("Invalid record"); 3830 TheModule->setSourceFileName(ValueName); 3831 break; 3832 } 3833 Record.clear(); 3834 } 3835 } 3836 3837 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3838 bool IsImporting, 3839 DataLayoutCallbackTy DataLayoutCallback) { 3840 TheModule = M; 3841 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3842 [&](unsigned ID) { return getTypeByID(ID); }); 3843 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3844 } 3845 3846 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3847 if (!isa<PointerType>(PtrType)) 3848 return error("Load/Store operand is not a pointer type"); 3849 3850 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3851 return error("Explicit load/store type does not match pointee " 3852 "type of pointer operand"); 3853 if (!PointerType::isLoadableOrStorableType(ValType)) 3854 return error("Cannot load/store from pointer"); 3855 return Error::success(); 3856 } 3857 3858 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3859 ArrayRef<Type *> ArgsFullTys) { 3860 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3861 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3862 Attribute::InAlloca}) { 3863 if (!CB->paramHasAttr(i, Kind)) 3864 continue; 3865 3866 CB->removeParamAttr(i, Kind); 3867 3868 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3869 Attribute NewAttr; 3870 switch (Kind) { 3871 case Attribute::ByVal: 3872 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3873 break; 3874 case Attribute::StructRet: 3875 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3876 break; 3877 case Attribute::InAlloca: 3878 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3879 break; 3880 default: 3881 llvm_unreachable("not an upgraded type attribute"); 3882 } 3883 3884 CB->addParamAttr(i, NewAttr); 3885 } 3886 } 3887 } 3888 3889 /// Lazily parse the specified function body block. 3890 Error BitcodeReader::parseFunctionBody(Function *F) { 3891 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3892 return Err; 3893 3894 // Unexpected unresolved metadata when parsing function. 3895 if (MDLoader->hasFwdRefs()) 3896 return error("Invalid function metadata: incoming forward references"); 3897 3898 InstructionList.clear(); 3899 unsigned ModuleValueListSize = ValueList.size(); 3900 unsigned ModuleMDLoaderSize = MDLoader->size(); 3901 3902 // Add all the function arguments to the value table. 3903 unsigned ArgNo = 0; 3904 FunctionType *FullFTy = FunctionTypes[F]; 3905 for (Argument &I : F->args()) { 3906 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3907 "Incorrect fully specified type for Function Argument"); 3908 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3909 } 3910 unsigned NextValueNo = ValueList.size(); 3911 BasicBlock *CurBB = nullptr; 3912 unsigned CurBBNo = 0; 3913 3914 DebugLoc LastLoc; 3915 auto getLastInstruction = [&]() -> Instruction * { 3916 if (CurBB && !CurBB->empty()) 3917 return &CurBB->back(); 3918 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3919 !FunctionBBs[CurBBNo - 1]->empty()) 3920 return &FunctionBBs[CurBBNo - 1]->back(); 3921 return nullptr; 3922 }; 3923 3924 std::vector<OperandBundleDef> OperandBundles; 3925 3926 // Read all the records. 3927 SmallVector<uint64_t, 64> Record; 3928 3929 while (true) { 3930 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3931 if (!MaybeEntry) 3932 return MaybeEntry.takeError(); 3933 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3934 3935 switch (Entry.Kind) { 3936 case BitstreamEntry::Error: 3937 return error("Malformed block"); 3938 case BitstreamEntry::EndBlock: 3939 goto OutOfRecordLoop; 3940 3941 case BitstreamEntry::SubBlock: 3942 switch (Entry.ID) { 3943 default: // Skip unknown content. 3944 if (Error Err = Stream.SkipBlock()) 3945 return Err; 3946 break; 3947 case bitc::CONSTANTS_BLOCK_ID: 3948 if (Error Err = parseConstants()) 3949 return Err; 3950 NextValueNo = ValueList.size(); 3951 break; 3952 case bitc::VALUE_SYMTAB_BLOCK_ID: 3953 if (Error Err = parseValueSymbolTable()) 3954 return Err; 3955 break; 3956 case bitc::METADATA_ATTACHMENT_ID: 3957 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3958 return Err; 3959 break; 3960 case bitc::METADATA_BLOCK_ID: 3961 assert(DeferredMetadataInfo.empty() && 3962 "Must read all module-level metadata before function-level"); 3963 if (Error Err = MDLoader->parseFunctionMetadata()) 3964 return Err; 3965 break; 3966 case bitc::USELIST_BLOCK_ID: 3967 if (Error Err = parseUseLists()) 3968 return Err; 3969 break; 3970 } 3971 continue; 3972 3973 case BitstreamEntry::Record: 3974 // The interesting case. 3975 break; 3976 } 3977 3978 // Read a record. 3979 Record.clear(); 3980 Instruction *I = nullptr; 3981 Type *FullTy = nullptr; 3982 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3983 if (!MaybeBitCode) 3984 return MaybeBitCode.takeError(); 3985 switch (unsigned BitCode = MaybeBitCode.get()) { 3986 default: // Default behavior: reject 3987 return error("Invalid value"); 3988 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3989 if (Record.empty() || Record[0] == 0) 3990 return error("Invalid record"); 3991 // Create all the basic blocks for the function. 3992 FunctionBBs.resize(Record[0]); 3993 3994 // See if anything took the address of blocks in this function. 3995 auto BBFRI = BasicBlockFwdRefs.find(F); 3996 if (BBFRI == BasicBlockFwdRefs.end()) { 3997 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3998 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3999 } else { 4000 auto &BBRefs = BBFRI->second; 4001 // Check for invalid basic block references. 4002 if (BBRefs.size() > FunctionBBs.size()) 4003 return error("Invalid ID"); 4004 assert(!BBRefs.empty() && "Unexpected empty array"); 4005 assert(!BBRefs.front() && "Invalid reference to entry block"); 4006 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4007 ++I) 4008 if (I < RE && BBRefs[I]) { 4009 BBRefs[I]->insertInto(F); 4010 FunctionBBs[I] = BBRefs[I]; 4011 } else { 4012 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4013 } 4014 4015 // Erase from the table. 4016 BasicBlockFwdRefs.erase(BBFRI); 4017 } 4018 4019 CurBB = FunctionBBs[0]; 4020 continue; 4021 } 4022 4023 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4024 // This record indicates that the last instruction is at the same 4025 // location as the previous instruction with a location. 4026 I = getLastInstruction(); 4027 4028 if (!I) 4029 return error("Invalid record"); 4030 I->setDebugLoc(LastLoc); 4031 I = nullptr; 4032 continue; 4033 4034 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4035 I = getLastInstruction(); 4036 if (!I || Record.size() < 4) 4037 return error("Invalid record"); 4038 4039 unsigned Line = Record[0], Col = Record[1]; 4040 unsigned ScopeID = Record[2], IAID = Record[3]; 4041 bool isImplicitCode = Record.size() == 5 && Record[4]; 4042 4043 MDNode *Scope = nullptr, *IA = nullptr; 4044 if (ScopeID) { 4045 Scope = dyn_cast_or_null<MDNode>( 4046 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4047 if (!Scope) 4048 return error("Invalid record"); 4049 } 4050 if (IAID) { 4051 IA = dyn_cast_or_null<MDNode>( 4052 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4053 if (!IA) 4054 return error("Invalid record"); 4055 } 4056 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4057 isImplicitCode); 4058 I->setDebugLoc(LastLoc); 4059 I = nullptr; 4060 continue; 4061 } 4062 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4063 unsigned OpNum = 0; 4064 Value *LHS; 4065 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4066 OpNum+1 > Record.size()) 4067 return error("Invalid record"); 4068 4069 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4070 if (Opc == -1) 4071 return error("Invalid record"); 4072 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4073 InstructionList.push_back(I); 4074 if (OpNum < Record.size()) { 4075 if (isa<FPMathOperator>(I)) { 4076 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4077 if (FMF.any()) 4078 I->setFastMathFlags(FMF); 4079 } 4080 } 4081 break; 4082 } 4083 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4084 unsigned OpNum = 0; 4085 Value *LHS, *RHS; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4087 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4088 OpNum+1 > Record.size()) 4089 return error("Invalid record"); 4090 4091 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4092 if (Opc == -1) 4093 return error("Invalid record"); 4094 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4095 InstructionList.push_back(I); 4096 if (OpNum < Record.size()) { 4097 if (Opc == Instruction::Add || 4098 Opc == Instruction::Sub || 4099 Opc == Instruction::Mul || 4100 Opc == Instruction::Shl) { 4101 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4102 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4103 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4104 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4105 } else if (Opc == Instruction::SDiv || 4106 Opc == Instruction::UDiv || 4107 Opc == Instruction::LShr || 4108 Opc == Instruction::AShr) { 4109 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4110 cast<BinaryOperator>(I)->setIsExact(true); 4111 } else if (isa<FPMathOperator>(I)) { 4112 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4113 if (FMF.any()) 4114 I->setFastMathFlags(FMF); 4115 } 4116 4117 } 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4121 unsigned OpNum = 0; 4122 Value *Op; 4123 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4124 OpNum+2 != Record.size()) 4125 return error("Invalid record"); 4126 4127 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4128 Type *ResTy = flattenPointerTypes(FullTy); 4129 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4130 if (Opc == -1 || !ResTy) 4131 return error("Invalid record"); 4132 Instruction *Temp = nullptr; 4133 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4134 if (Temp) { 4135 InstructionList.push_back(Temp); 4136 assert(CurBB && "No current BB?"); 4137 CurBB->getInstList().push_back(Temp); 4138 } 4139 } else { 4140 auto CastOp = (Instruction::CastOps)Opc; 4141 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4142 return error("Invalid cast"); 4143 I = CastInst::Create(CastOp, Op, ResTy); 4144 } 4145 InstructionList.push_back(I); 4146 break; 4147 } 4148 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4149 case bitc::FUNC_CODE_INST_GEP_OLD: 4150 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4151 unsigned OpNum = 0; 4152 4153 Type *Ty; 4154 bool InBounds; 4155 4156 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4157 InBounds = Record[OpNum++]; 4158 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4159 Ty = flattenPointerTypes(FullTy); 4160 } else { 4161 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4162 Ty = nullptr; 4163 } 4164 4165 Value *BasePtr; 4166 Type *FullBaseTy = nullptr; 4167 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4168 return error("Invalid record"); 4169 4170 if (!Ty) { 4171 std::tie(FullTy, Ty) = 4172 getPointerElementTypes(FullBaseTy->getScalarType()); 4173 } else if (!cast<PointerType>(FullBaseTy->getScalarType()) 4174 ->isOpaqueOrPointeeTypeMatches(Ty)) 4175 return error( 4176 "Explicit gep type does not match pointee type of pointer operand"); 4177 4178 SmallVector<Value*, 16> GEPIdx; 4179 while (OpNum != Record.size()) { 4180 Value *Op; 4181 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4182 return error("Invalid record"); 4183 GEPIdx.push_back(Op); 4184 } 4185 4186 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4187 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4188 4189 InstructionList.push_back(I); 4190 if (InBounds) 4191 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4192 break; 4193 } 4194 4195 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4196 // EXTRACTVAL: [opty, opval, n x indices] 4197 unsigned OpNum = 0; 4198 Value *Agg; 4199 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4200 return error("Invalid record"); 4201 4202 unsigned RecSize = Record.size(); 4203 if (OpNum == RecSize) 4204 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4205 4206 SmallVector<unsigned, 4> EXTRACTVALIdx; 4207 for (; OpNum != RecSize; ++OpNum) { 4208 bool IsArray = FullTy->isArrayTy(); 4209 bool IsStruct = FullTy->isStructTy(); 4210 uint64_t Index = Record[OpNum]; 4211 4212 if (!IsStruct && !IsArray) 4213 return error("EXTRACTVAL: Invalid type"); 4214 if ((unsigned)Index != Index) 4215 return error("Invalid value"); 4216 if (IsStruct && Index >= FullTy->getStructNumElements()) 4217 return error("EXTRACTVAL: Invalid struct index"); 4218 if (IsArray && Index >= FullTy->getArrayNumElements()) 4219 return error("EXTRACTVAL: Invalid array index"); 4220 EXTRACTVALIdx.push_back((unsigned)Index); 4221 4222 if (IsStruct) 4223 FullTy = FullTy->getStructElementType(Index); 4224 else 4225 FullTy = FullTy->getArrayElementType(); 4226 } 4227 4228 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4229 InstructionList.push_back(I); 4230 break; 4231 } 4232 4233 case bitc::FUNC_CODE_INST_INSERTVAL: { 4234 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4235 unsigned OpNum = 0; 4236 Value *Agg; 4237 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4238 return error("Invalid record"); 4239 Value *Val; 4240 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4241 return error("Invalid record"); 4242 4243 unsigned RecSize = Record.size(); 4244 if (OpNum == RecSize) 4245 return error("INSERTVAL: Invalid instruction with 0 indices"); 4246 4247 SmallVector<unsigned, 4> INSERTVALIdx; 4248 Type *CurTy = Agg->getType(); 4249 for (; OpNum != RecSize; ++OpNum) { 4250 bool IsArray = CurTy->isArrayTy(); 4251 bool IsStruct = CurTy->isStructTy(); 4252 uint64_t Index = Record[OpNum]; 4253 4254 if (!IsStruct && !IsArray) 4255 return error("INSERTVAL: Invalid type"); 4256 if ((unsigned)Index != Index) 4257 return error("Invalid value"); 4258 if (IsStruct && Index >= CurTy->getStructNumElements()) 4259 return error("INSERTVAL: Invalid struct index"); 4260 if (IsArray && Index >= CurTy->getArrayNumElements()) 4261 return error("INSERTVAL: Invalid array index"); 4262 4263 INSERTVALIdx.push_back((unsigned)Index); 4264 if (IsStruct) 4265 CurTy = CurTy->getStructElementType(Index); 4266 else 4267 CurTy = CurTy->getArrayElementType(); 4268 } 4269 4270 if (CurTy != Val->getType()) 4271 return error("Inserted value type doesn't match aggregate type"); 4272 4273 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4274 InstructionList.push_back(I); 4275 break; 4276 } 4277 4278 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4279 // obsolete form of select 4280 // handles select i1 ... in old bitcode 4281 unsigned OpNum = 0; 4282 Value *TrueVal, *FalseVal, *Cond; 4283 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4284 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4285 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4286 return error("Invalid record"); 4287 4288 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 4293 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4294 // new form of select 4295 // handles select i1 or select [N x i1] 4296 unsigned OpNum = 0; 4297 Value *TrueVal, *FalseVal, *Cond; 4298 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4299 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4300 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4301 return error("Invalid record"); 4302 4303 // select condition can be either i1 or [N x i1] 4304 if (VectorType* vector_type = 4305 dyn_cast<VectorType>(Cond->getType())) { 4306 // expect <n x i1> 4307 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4308 return error("Invalid type for value"); 4309 } else { 4310 // expect i1 4311 if (Cond->getType() != Type::getInt1Ty(Context)) 4312 return error("Invalid type for value"); 4313 } 4314 4315 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4316 InstructionList.push_back(I); 4317 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4318 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4319 if (FMF.any()) 4320 I->setFastMathFlags(FMF); 4321 } 4322 break; 4323 } 4324 4325 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4326 unsigned OpNum = 0; 4327 Value *Vec, *Idx; 4328 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4329 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4330 return error("Invalid record"); 4331 if (!Vec->getType()->isVectorTy()) 4332 return error("Invalid type for value"); 4333 I = ExtractElementInst::Create(Vec, Idx); 4334 FullTy = cast<VectorType>(FullTy)->getElementType(); 4335 InstructionList.push_back(I); 4336 break; 4337 } 4338 4339 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4340 unsigned OpNum = 0; 4341 Value *Vec, *Elt, *Idx; 4342 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4343 return error("Invalid record"); 4344 if (!Vec->getType()->isVectorTy()) 4345 return error("Invalid type for value"); 4346 if (popValue(Record, OpNum, NextValueNo, 4347 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4348 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4349 return error("Invalid record"); 4350 I = InsertElementInst::Create(Vec, Elt, Idx); 4351 InstructionList.push_back(I); 4352 break; 4353 } 4354 4355 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4356 unsigned OpNum = 0; 4357 Value *Vec1, *Vec2, *Mask; 4358 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4359 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4360 return error("Invalid record"); 4361 4362 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4363 return error("Invalid record"); 4364 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4365 return error("Invalid type for value"); 4366 4367 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4368 FullTy = 4369 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4370 cast<VectorType>(Mask->getType())->getElementCount()); 4371 InstructionList.push_back(I); 4372 break; 4373 } 4374 4375 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4376 // Old form of ICmp/FCmp returning bool 4377 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4378 // both legal on vectors but had different behaviour. 4379 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4380 // FCmp/ICmp returning bool or vector of bool 4381 4382 unsigned OpNum = 0; 4383 Value *LHS, *RHS; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4385 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4386 return error("Invalid record"); 4387 4388 if (OpNum >= Record.size()) 4389 return error( 4390 "Invalid record: operand number exceeded available operands"); 4391 4392 unsigned PredVal = Record[OpNum]; 4393 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4394 FastMathFlags FMF; 4395 if (IsFP && Record.size() > OpNum+1) 4396 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4397 4398 if (OpNum+1 != Record.size()) 4399 return error("Invalid record"); 4400 4401 if (LHS->getType()->isFPOrFPVectorTy()) 4402 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4403 else 4404 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4405 4406 if (FMF.any()) 4407 I->setFastMathFlags(FMF); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4413 { 4414 unsigned Size = Record.size(); 4415 if (Size == 0) { 4416 I = ReturnInst::Create(Context); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 4421 unsigned OpNum = 0; 4422 Value *Op = nullptr; 4423 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4424 return error("Invalid record"); 4425 if (OpNum != Record.size()) 4426 return error("Invalid record"); 4427 4428 I = ReturnInst::Create(Context, Op); 4429 InstructionList.push_back(I); 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4433 if (Record.size() != 1 && Record.size() != 3) 4434 return error("Invalid record"); 4435 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4436 if (!TrueDest) 4437 return error("Invalid record"); 4438 4439 if (Record.size() == 1) { 4440 I = BranchInst::Create(TrueDest); 4441 InstructionList.push_back(I); 4442 } 4443 else { 4444 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4445 Value *Cond = getValue(Record, 2, NextValueNo, 4446 Type::getInt1Ty(Context)); 4447 if (!FalseDest || !Cond) 4448 return error("Invalid record"); 4449 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4450 InstructionList.push_back(I); 4451 } 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4455 if (Record.size() != 1 && Record.size() != 2) 4456 return error("Invalid record"); 4457 unsigned Idx = 0; 4458 Value *CleanupPad = 4459 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4460 if (!CleanupPad) 4461 return error("Invalid record"); 4462 BasicBlock *UnwindDest = nullptr; 4463 if (Record.size() == 2) { 4464 UnwindDest = getBasicBlock(Record[Idx++]); 4465 if (!UnwindDest) 4466 return error("Invalid record"); 4467 } 4468 4469 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4470 InstructionList.push_back(I); 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4474 if (Record.size() != 2) 4475 return error("Invalid record"); 4476 unsigned Idx = 0; 4477 Value *CatchPad = 4478 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4479 if (!CatchPad) 4480 return error("Invalid record"); 4481 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4482 if (!BB) 4483 return error("Invalid record"); 4484 4485 I = CatchReturnInst::Create(CatchPad, BB); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4490 // We must have, at minimum, the outer scope and the number of arguments. 4491 if (Record.size() < 2) 4492 return error("Invalid record"); 4493 4494 unsigned Idx = 0; 4495 4496 Value *ParentPad = 4497 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4498 4499 unsigned NumHandlers = Record[Idx++]; 4500 4501 SmallVector<BasicBlock *, 2> Handlers; 4502 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4503 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4504 if (!BB) 4505 return error("Invalid record"); 4506 Handlers.push_back(BB); 4507 } 4508 4509 BasicBlock *UnwindDest = nullptr; 4510 if (Idx + 1 == Record.size()) { 4511 UnwindDest = getBasicBlock(Record[Idx++]); 4512 if (!UnwindDest) 4513 return error("Invalid record"); 4514 } 4515 4516 if (Record.size() != Idx) 4517 return error("Invalid record"); 4518 4519 auto *CatchSwitch = 4520 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4521 for (BasicBlock *Handler : Handlers) 4522 CatchSwitch->addHandler(Handler); 4523 I = CatchSwitch; 4524 InstructionList.push_back(I); 4525 break; 4526 } 4527 case bitc::FUNC_CODE_INST_CATCHPAD: 4528 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4529 // We must have, at minimum, the outer scope and the number of arguments. 4530 if (Record.size() < 2) 4531 return error("Invalid record"); 4532 4533 unsigned Idx = 0; 4534 4535 Value *ParentPad = 4536 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4537 4538 unsigned NumArgOperands = Record[Idx++]; 4539 4540 SmallVector<Value *, 2> Args; 4541 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4542 Value *Val; 4543 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4544 return error("Invalid record"); 4545 Args.push_back(Val); 4546 } 4547 4548 if (Record.size() != Idx) 4549 return error("Invalid record"); 4550 4551 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4552 I = CleanupPadInst::Create(ParentPad, Args); 4553 else 4554 I = CatchPadInst::Create(ParentPad, Args); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4559 // Check magic 4560 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4561 // "New" SwitchInst format with case ranges. The changes to write this 4562 // format were reverted but we still recognize bitcode that uses it. 4563 // Hopefully someday we will have support for case ranges and can use 4564 // this format again. 4565 4566 Type *OpTy = getTypeByID(Record[1]); 4567 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4568 4569 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4570 BasicBlock *Default = getBasicBlock(Record[3]); 4571 if (!OpTy || !Cond || !Default) 4572 return error("Invalid record"); 4573 4574 unsigned NumCases = Record[4]; 4575 4576 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4577 InstructionList.push_back(SI); 4578 4579 unsigned CurIdx = 5; 4580 for (unsigned i = 0; i != NumCases; ++i) { 4581 SmallVector<ConstantInt*, 1> CaseVals; 4582 unsigned NumItems = Record[CurIdx++]; 4583 for (unsigned ci = 0; ci != NumItems; ++ci) { 4584 bool isSingleNumber = Record[CurIdx++]; 4585 4586 APInt Low; 4587 unsigned ActiveWords = 1; 4588 if (ValueBitWidth > 64) 4589 ActiveWords = Record[CurIdx++]; 4590 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4591 ValueBitWidth); 4592 CurIdx += ActiveWords; 4593 4594 if (!isSingleNumber) { 4595 ActiveWords = 1; 4596 if (ValueBitWidth > 64) 4597 ActiveWords = Record[CurIdx++]; 4598 APInt High = readWideAPInt( 4599 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4600 CurIdx += ActiveWords; 4601 4602 // FIXME: It is not clear whether values in the range should be 4603 // compared as signed or unsigned values. The partially 4604 // implemented changes that used this format in the past used 4605 // unsigned comparisons. 4606 for ( ; Low.ule(High); ++Low) 4607 CaseVals.push_back(ConstantInt::get(Context, Low)); 4608 } else 4609 CaseVals.push_back(ConstantInt::get(Context, Low)); 4610 } 4611 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4612 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4613 cve = CaseVals.end(); cvi != cve; ++cvi) 4614 SI->addCase(*cvi, DestBB); 4615 } 4616 I = SI; 4617 break; 4618 } 4619 4620 // Old SwitchInst format without case ranges. 4621 4622 if (Record.size() < 3 || (Record.size() & 1) == 0) 4623 return error("Invalid record"); 4624 Type *OpTy = getTypeByID(Record[0]); 4625 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4626 BasicBlock *Default = getBasicBlock(Record[2]); 4627 if (!OpTy || !Cond || !Default) 4628 return error("Invalid record"); 4629 unsigned NumCases = (Record.size()-3)/2; 4630 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4631 InstructionList.push_back(SI); 4632 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4633 ConstantInt *CaseVal = 4634 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4635 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4636 if (!CaseVal || !DestBB) { 4637 delete SI; 4638 return error("Invalid record"); 4639 } 4640 SI->addCase(CaseVal, DestBB); 4641 } 4642 I = SI; 4643 break; 4644 } 4645 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4646 if (Record.size() < 2) 4647 return error("Invalid record"); 4648 Type *OpTy = getTypeByID(Record[0]); 4649 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4650 if (!OpTy || !Address) 4651 return error("Invalid record"); 4652 unsigned NumDests = Record.size()-2; 4653 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4654 InstructionList.push_back(IBI); 4655 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4656 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4657 IBI->addDestination(DestBB); 4658 } else { 4659 delete IBI; 4660 return error("Invalid record"); 4661 } 4662 } 4663 I = IBI; 4664 break; 4665 } 4666 4667 case bitc::FUNC_CODE_INST_INVOKE: { 4668 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4669 if (Record.size() < 4) 4670 return error("Invalid record"); 4671 unsigned OpNum = 0; 4672 AttributeList PAL = getAttributes(Record[OpNum++]); 4673 unsigned CCInfo = Record[OpNum++]; 4674 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4675 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4676 4677 FunctionType *FTy = nullptr; 4678 FunctionType *FullFTy = nullptr; 4679 if ((CCInfo >> 13) & 1) { 4680 FullFTy = 4681 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4682 if (!FullFTy) 4683 return error("Explicit invoke type is not a function type"); 4684 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4685 } 4686 4687 Value *Callee; 4688 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4689 return error("Invalid record"); 4690 4691 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4692 if (!CalleeTy) 4693 return error("Callee is not a pointer"); 4694 if (!FTy) { 4695 FullFTy = 4696 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4697 if (!FullFTy) 4698 return error("Callee is not of pointer to function type"); 4699 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4700 } else if (getPointerElementFlatType(FullTy) != FTy) 4701 return error("Explicit invoke type does not match pointee type of " 4702 "callee operand"); 4703 if (Record.size() < FTy->getNumParams() + OpNum) 4704 return error("Insufficient operands to call"); 4705 4706 SmallVector<Value*, 16> Ops; 4707 SmallVector<Type *, 16> ArgsFullTys; 4708 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4709 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4710 FTy->getParamType(i))); 4711 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4712 if (!Ops.back()) 4713 return error("Invalid record"); 4714 } 4715 4716 if (!FTy->isVarArg()) { 4717 if (Record.size() != OpNum) 4718 return error("Invalid record"); 4719 } else { 4720 // Read type/value pairs for varargs params. 4721 while (OpNum != Record.size()) { 4722 Value *Op; 4723 Type *FullTy; 4724 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4725 return error("Invalid record"); 4726 Ops.push_back(Op); 4727 ArgsFullTys.push_back(FullTy); 4728 } 4729 } 4730 4731 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4732 OperandBundles); 4733 FullTy = FullFTy->getReturnType(); 4734 OperandBundles.clear(); 4735 InstructionList.push_back(I); 4736 cast<InvokeInst>(I)->setCallingConv( 4737 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4738 cast<InvokeInst>(I)->setAttributes(PAL); 4739 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4740 4741 break; 4742 } 4743 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4744 unsigned Idx = 0; 4745 Value *Val = nullptr; 4746 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4747 return error("Invalid record"); 4748 I = ResumeInst::Create(Val); 4749 InstructionList.push_back(I); 4750 break; 4751 } 4752 case bitc::FUNC_CODE_INST_CALLBR: { 4753 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4754 unsigned OpNum = 0; 4755 AttributeList PAL = getAttributes(Record[OpNum++]); 4756 unsigned CCInfo = Record[OpNum++]; 4757 4758 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4759 unsigned NumIndirectDests = Record[OpNum++]; 4760 SmallVector<BasicBlock *, 16> IndirectDests; 4761 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4762 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4763 4764 FunctionType *FTy = nullptr; 4765 FunctionType *FullFTy = nullptr; 4766 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4767 FullFTy = 4768 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4769 if (!FullFTy) 4770 return error("Explicit call type is not a function type"); 4771 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4772 } 4773 4774 Value *Callee; 4775 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4776 return error("Invalid record"); 4777 4778 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4779 if (!OpTy) 4780 return error("Callee is not a pointer type"); 4781 if (!FTy) { 4782 FullFTy = 4783 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4784 if (!FullFTy) 4785 return error("Callee is not of pointer to function type"); 4786 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4787 } else if (getPointerElementFlatType(FullTy) != FTy) 4788 return error("Explicit call type does not match pointee type of " 4789 "callee operand"); 4790 if (Record.size() < FTy->getNumParams() + OpNum) 4791 return error("Insufficient operands to call"); 4792 4793 SmallVector<Value*, 16> Args; 4794 // Read the fixed params. 4795 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4796 if (FTy->getParamType(i)->isLabelTy()) 4797 Args.push_back(getBasicBlock(Record[OpNum])); 4798 else 4799 Args.push_back(getValue(Record, OpNum, NextValueNo, 4800 FTy->getParamType(i))); 4801 if (!Args.back()) 4802 return error("Invalid record"); 4803 } 4804 4805 // Read type/value pairs for varargs params. 4806 if (!FTy->isVarArg()) { 4807 if (OpNum != Record.size()) 4808 return error("Invalid record"); 4809 } else { 4810 while (OpNum != Record.size()) { 4811 Value *Op; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4813 return error("Invalid record"); 4814 Args.push_back(Op); 4815 } 4816 } 4817 4818 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4819 OperandBundles); 4820 FullTy = FullFTy->getReturnType(); 4821 OperandBundles.clear(); 4822 InstructionList.push_back(I); 4823 cast<CallBrInst>(I)->setCallingConv( 4824 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4825 cast<CallBrInst>(I)->setAttributes(PAL); 4826 break; 4827 } 4828 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4829 I = new UnreachableInst(Context); 4830 InstructionList.push_back(I); 4831 break; 4832 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4833 if (Record.empty()) 4834 return error("Invalid record"); 4835 // The first record specifies the type. 4836 FullTy = getFullyStructuredTypeByID(Record[0]); 4837 Type *Ty = flattenPointerTypes(FullTy); 4838 if (!Ty) 4839 return error("Invalid record"); 4840 4841 // Phi arguments are pairs of records of [value, basic block]. 4842 // There is an optional final record for fast-math-flags if this phi has a 4843 // floating-point type. 4844 size_t NumArgs = (Record.size() - 1) / 2; 4845 PHINode *PN = PHINode::Create(Ty, NumArgs); 4846 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4847 return error("Invalid record"); 4848 InstructionList.push_back(PN); 4849 4850 for (unsigned i = 0; i != NumArgs; i++) { 4851 Value *V; 4852 // With the new function encoding, it is possible that operands have 4853 // negative IDs (for forward references). Use a signed VBR 4854 // representation to keep the encoding small. 4855 if (UseRelativeIDs) 4856 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4857 else 4858 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4859 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4860 if (!V || !BB) 4861 return error("Invalid record"); 4862 PN->addIncoming(V, BB); 4863 } 4864 I = PN; 4865 4866 // If there are an even number of records, the final record must be FMF. 4867 if (Record.size() % 2 == 0) { 4868 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4869 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4870 if (FMF.any()) 4871 I->setFastMathFlags(FMF); 4872 } 4873 4874 break; 4875 } 4876 4877 case bitc::FUNC_CODE_INST_LANDINGPAD: 4878 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4879 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4880 unsigned Idx = 0; 4881 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4882 if (Record.size() < 3) 4883 return error("Invalid record"); 4884 } else { 4885 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4886 if (Record.size() < 4) 4887 return error("Invalid record"); 4888 } 4889 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4890 Type *Ty = flattenPointerTypes(FullTy); 4891 if (!Ty) 4892 return error("Invalid record"); 4893 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4894 Value *PersFn = nullptr; 4895 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4896 return error("Invalid record"); 4897 4898 if (!F->hasPersonalityFn()) 4899 F->setPersonalityFn(cast<Constant>(PersFn)); 4900 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4901 return error("Personality function mismatch"); 4902 } 4903 4904 bool IsCleanup = !!Record[Idx++]; 4905 unsigned NumClauses = Record[Idx++]; 4906 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4907 LP->setCleanup(IsCleanup); 4908 for (unsigned J = 0; J != NumClauses; ++J) { 4909 LandingPadInst::ClauseType CT = 4910 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4911 Value *Val; 4912 4913 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4914 delete LP; 4915 return error("Invalid record"); 4916 } 4917 4918 assert((CT != LandingPadInst::Catch || 4919 !isa<ArrayType>(Val->getType())) && 4920 "Catch clause has a invalid type!"); 4921 assert((CT != LandingPadInst::Filter || 4922 isa<ArrayType>(Val->getType())) && 4923 "Filter clause has invalid type!"); 4924 LP->addClause(cast<Constant>(Val)); 4925 } 4926 4927 I = LP; 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 4932 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4933 if (Record.size() != 4) 4934 return error("Invalid record"); 4935 using APV = AllocaPackedValues; 4936 const uint64_t Rec = Record[3]; 4937 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4938 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4939 FullTy = getFullyStructuredTypeByID(Record[0]); 4940 Type *Ty = flattenPointerTypes(FullTy); 4941 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4942 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4943 if (!PTy) 4944 return error("Old-style alloca with a non-pointer type"); 4945 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4946 } 4947 Type *OpTy = getTypeByID(Record[1]); 4948 Value *Size = getFnValueByID(Record[2], OpTy); 4949 MaybeAlign Align; 4950 if (Error Err = 4951 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4952 return Err; 4953 } 4954 if (!Ty || !Size) 4955 return error("Invalid record"); 4956 4957 // FIXME: Make this an optional field. 4958 const DataLayout &DL = TheModule->getDataLayout(); 4959 unsigned AS = DL.getAllocaAddrSpace(); 4960 4961 SmallPtrSet<Type *, 4> Visited; 4962 if (!Align && !Ty->isSized(&Visited)) 4963 return error("alloca of unsized type"); 4964 if (!Align) 4965 Align = DL.getPrefTypeAlign(Ty); 4966 4967 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4968 AI->setUsedWithInAlloca(InAlloca); 4969 AI->setSwiftError(SwiftError); 4970 I = AI; 4971 FullTy = PointerType::get(FullTy, AS); 4972 InstructionList.push_back(I); 4973 break; 4974 } 4975 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4976 unsigned OpNum = 0; 4977 Value *Op; 4978 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4979 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4980 return error("Invalid record"); 4981 4982 if (!isa<PointerType>(Op->getType())) 4983 return error("Load operand is not a pointer type"); 4984 4985 Type *Ty = nullptr; 4986 if (OpNum + 3 == Record.size()) { 4987 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4988 Ty = flattenPointerTypes(FullTy); 4989 } else 4990 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4991 4992 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4993 return Err; 4994 4995 MaybeAlign Align; 4996 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4997 return Err; 4998 SmallPtrSet<Type *, 4> Visited; 4999 if (!Align && !Ty->isSized(&Visited)) 5000 return error("load of unsized type"); 5001 if (!Align) 5002 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5003 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5008 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5009 unsigned OpNum = 0; 5010 Value *Op; 5011 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 5012 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5013 return error("Invalid record"); 5014 5015 if (!isa<PointerType>(Op->getType())) 5016 return error("Load operand is not a pointer type"); 5017 5018 Type *Ty = nullptr; 5019 if (OpNum + 5 == Record.size()) { 5020 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 5021 Ty = flattenPointerTypes(FullTy); 5022 } else 5023 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 5024 5025 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5026 return Err; 5027 5028 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5029 if (Ordering == AtomicOrdering::NotAtomic || 5030 Ordering == AtomicOrdering::Release || 5031 Ordering == AtomicOrdering::AcquireRelease) 5032 return error("Invalid record"); 5033 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5034 return error("Invalid record"); 5035 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5036 5037 MaybeAlign Align; 5038 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5039 return Err; 5040 if (!Align) 5041 return error("Alignment missing from atomic load"); 5042 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5043 InstructionList.push_back(I); 5044 break; 5045 } 5046 case bitc::FUNC_CODE_INST_STORE: 5047 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5048 unsigned OpNum = 0; 5049 Value *Val, *Ptr; 5050 Type *FullTy; 5051 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5052 (BitCode == bitc::FUNC_CODE_INST_STORE 5053 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5054 : popValue(Record, OpNum, NextValueNo, 5055 getPointerElementFlatType(FullTy), Val)) || 5056 OpNum + 2 != Record.size()) 5057 return error("Invalid record"); 5058 5059 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5060 return Err; 5061 MaybeAlign Align; 5062 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5063 return Err; 5064 SmallPtrSet<Type *, 4> Visited; 5065 if (!Align && !Val->getType()->isSized(&Visited)) 5066 return error("store of unsized type"); 5067 if (!Align) 5068 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5069 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5070 InstructionList.push_back(I); 5071 break; 5072 } 5073 case bitc::FUNC_CODE_INST_STOREATOMIC: 5074 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5075 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5076 unsigned OpNum = 0; 5077 Value *Val, *Ptr; 5078 Type *FullTy; 5079 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5080 !isa<PointerType>(Ptr->getType()) || 5081 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5082 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5083 : popValue(Record, OpNum, NextValueNo, 5084 getPointerElementFlatType(FullTy), Val)) || 5085 OpNum + 4 != Record.size()) 5086 return error("Invalid record"); 5087 5088 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5089 return Err; 5090 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5091 if (Ordering == AtomicOrdering::NotAtomic || 5092 Ordering == AtomicOrdering::Acquire || 5093 Ordering == AtomicOrdering::AcquireRelease) 5094 return error("Invalid record"); 5095 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5096 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5097 return error("Invalid record"); 5098 5099 MaybeAlign Align; 5100 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5101 return Err; 5102 if (!Align) 5103 return error("Alignment missing from atomic store"); 5104 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5105 InstructionList.push_back(I); 5106 break; 5107 } 5108 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5109 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5110 // failure_ordering?, weak?] 5111 const size_t NumRecords = Record.size(); 5112 unsigned OpNum = 0; 5113 Value *Ptr = nullptr; 5114 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5115 return error("Invalid record"); 5116 5117 if (!isa<PointerType>(Ptr->getType())) 5118 return error("Cmpxchg operand is not a pointer type"); 5119 5120 Value *Cmp = nullptr; 5121 if (popValue(Record, OpNum, NextValueNo, 5122 getPointerElementFlatType(FullTy), Cmp)) 5123 return error("Invalid record"); 5124 5125 FullTy = cast<PointerType>(FullTy)->getElementType(); 5126 5127 Value *New = nullptr; 5128 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5129 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5130 return error("Invalid record"); 5131 5132 const AtomicOrdering SuccessOrdering = 5133 getDecodedOrdering(Record[OpNum + 1]); 5134 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5135 SuccessOrdering == AtomicOrdering::Unordered) 5136 return error("Invalid record"); 5137 5138 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5139 5140 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5141 return Err; 5142 5143 const AtomicOrdering FailureOrdering = 5144 NumRecords < 7 5145 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5146 : getDecodedOrdering(Record[OpNum + 3]); 5147 5148 if (FailureOrdering == AtomicOrdering::NotAtomic || 5149 FailureOrdering == AtomicOrdering::Unordered) 5150 return error("Invalid record"); 5151 5152 const Align Alignment( 5153 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5154 5155 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5156 FailureOrdering, SSID); 5157 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5158 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5159 5160 if (NumRecords < 8) { 5161 // Before weak cmpxchgs existed, the instruction simply returned the 5162 // value loaded from memory, so bitcode files from that era will be 5163 // expecting the first component of a modern cmpxchg. 5164 CurBB->getInstList().push_back(I); 5165 I = ExtractValueInst::Create(I, 0); 5166 FullTy = cast<StructType>(FullTy)->getElementType(0); 5167 } else { 5168 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5169 } 5170 5171 InstructionList.push_back(I); 5172 break; 5173 } 5174 case bitc::FUNC_CODE_INST_CMPXCHG: { 5175 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5176 // failure_ordering, weak, align?] 5177 const size_t NumRecords = Record.size(); 5178 unsigned OpNum = 0; 5179 Value *Ptr = nullptr; 5180 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5181 return error("Invalid record"); 5182 5183 if (!isa<PointerType>(Ptr->getType())) 5184 return error("Cmpxchg operand is not a pointer type"); 5185 5186 Value *Cmp = nullptr; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5188 return error("Invalid record"); 5189 5190 Value *Val = nullptr; 5191 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5192 return error("Invalid record"); 5193 5194 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5195 return error("Invalid record"); 5196 5197 const bool IsVol = Record[OpNum]; 5198 5199 const AtomicOrdering SuccessOrdering = 5200 getDecodedOrdering(Record[OpNum + 1]); 5201 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5202 return error("Invalid cmpxchg success ordering"); 5203 5204 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5205 5206 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5207 return Err; 5208 5209 const AtomicOrdering FailureOrdering = 5210 getDecodedOrdering(Record[OpNum + 3]); 5211 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5212 return error("Invalid cmpxchg failure ordering"); 5213 5214 const bool IsWeak = Record[OpNum + 4]; 5215 5216 MaybeAlign Alignment; 5217 5218 if (NumRecords == (OpNum + 6)) { 5219 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5220 return Err; 5221 } 5222 if (!Alignment) 5223 Alignment = 5224 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5225 5226 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5227 FailureOrdering, SSID); 5228 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5229 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5230 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5231 5232 InstructionList.push_back(I); 5233 break; 5234 } 5235 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5236 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5237 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5238 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5239 const size_t NumRecords = Record.size(); 5240 unsigned OpNum = 0; 5241 5242 Value *Ptr = nullptr; 5243 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5244 return error("Invalid record"); 5245 5246 if (!isa<PointerType>(Ptr->getType())) 5247 return error("Invalid record"); 5248 5249 Value *Val = nullptr; 5250 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5251 if (popValue(Record, OpNum, NextValueNo, 5252 getPointerElementFlatType(FullTy), Val)) 5253 return error("Invalid record"); 5254 FullTy = getPointerElementFlatType(FullTy); 5255 } else { 5256 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5257 return error("Invalid record"); 5258 FullTy = Val->getType(); 5259 } 5260 5261 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5262 return error("Invalid record"); 5263 5264 const AtomicRMWInst::BinOp Operation = 5265 getDecodedRMWOperation(Record[OpNum]); 5266 if (Operation < AtomicRMWInst::FIRST_BINOP || 5267 Operation > AtomicRMWInst::LAST_BINOP) 5268 return error("Invalid record"); 5269 5270 const bool IsVol = Record[OpNum + 1]; 5271 5272 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5273 if (Ordering == AtomicOrdering::NotAtomic || 5274 Ordering == AtomicOrdering::Unordered) 5275 return error("Invalid record"); 5276 5277 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5278 5279 MaybeAlign Alignment; 5280 5281 if (NumRecords == (OpNum + 5)) { 5282 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5283 return Err; 5284 } 5285 5286 if (!Alignment) 5287 Alignment = 5288 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5289 5290 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5291 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5292 5293 InstructionList.push_back(I); 5294 break; 5295 } 5296 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5297 if (2 != Record.size()) 5298 return error("Invalid record"); 5299 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5300 if (Ordering == AtomicOrdering::NotAtomic || 5301 Ordering == AtomicOrdering::Unordered || 5302 Ordering == AtomicOrdering::Monotonic) 5303 return error("Invalid record"); 5304 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5305 I = new FenceInst(Context, Ordering, SSID); 5306 InstructionList.push_back(I); 5307 break; 5308 } 5309 case bitc::FUNC_CODE_INST_CALL: { 5310 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5311 if (Record.size() < 3) 5312 return error("Invalid record"); 5313 5314 unsigned OpNum = 0; 5315 AttributeList PAL = getAttributes(Record[OpNum++]); 5316 unsigned CCInfo = Record[OpNum++]; 5317 5318 FastMathFlags FMF; 5319 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5320 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5321 if (!FMF.any()) 5322 return error("Fast math flags indicator set for call with no FMF"); 5323 } 5324 5325 FunctionType *FTy = nullptr; 5326 FunctionType *FullFTy = nullptr; 5327 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5328 FullFTy = 5329 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5330 if (!FullFTy) 5331 return error("Explicit call type is not a function type"); 5332 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5333 } 5334 5335 Value *Callee; 5336 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5337 return error("Invalid record"); 5338 5339 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5340 if (!OpTy) 5341 return error("Callee is not a pointer type"); 5342 if (!FTy) { 5343 FullFTy = 5344 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5345 if (!FullFTy) 5346 return error("Callee is not of pointer to function type"); 5347 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5348 } else if (getPointerElementFlatType(FullTy) != FTy) 5349 return error("Explicit call type does not match pointee type of " 5350 "callee operand"); 5351 if (Record.size() < FTy->getNumParams() + OpNum) 5352 return error("Insufficient operands to call"); 5353 5354 SmallVector<Value*, 16> Args; 5355 SmallVector<Type*, 16> ArgsFullTys; 5356 // Read the fixed params. 5357 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5358 if (FTy->getParamType(i)->isLabelTy()) 5359 Args.push_back(getBasicBlock(Record[OpNum])); 5360 else 5361 Args.push_back(getValue(Record, OpNum, NextValueNo, 5362 FTy->getParamType(i))); 5363 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5364 if (!Args.back()) 5365 return error("Invalid record"); 5366 } 5367 5368 // Read type/value pairs for varargs params. 5369 if (!FTy->isVarArg()) { 5370 if (OpNum != Record.size()) 5371 return error("Invalid record"); 5372 } else { 5373 while (OpNum != Record.size()) { 5374 Value *Op; 5375 Type *FullTy; 5376 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5377 return error("Invalid record"); 5378 Args.push_back(Op); 5379 ArgsFullTys.push_back(FullTy); 5380 } 5381 } 5382 5383 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5384 FullTy = FullFTy->getReturnType(); 5385 OperandBundles.clear(); 5386 InstructionList.push_back(I); 5387 cast<CallInst>(I)->setCallingConv( 5388 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5389 CallInst::TailCallKind TCK = CallInst::TCK_None; 5390 if (CCInfo & 1 << bitc::CALL_TAIL) 5391 TCK = CallInst::TCK_Tail; 5392 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5393 TCK = CallInst::TCK_MustTail; 5394 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5395 TCK = CallInst::TCK_NoTail; 5396 cast<CallInst>(I)->setTailCallKind(TCK); 5397 cast<CallInst>(I)->setAttributes(PAL); 5398 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5399 if (FMF.any()) { 5400 if (!isa<FPMathOperator>(I)) 5401 return error("Fast-math-flags specified for call without " 5402 "floating-point scalar or vector return type"); 5403 I->setFastMathFlags(FMF); 5404 } 5405 break; 5406 } 5407 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5408 if (Record.size() < 3) 5409 return error("Invalid record"); 5410 Type *OpTy = getTypeByID(Record[0]); 5411 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5412 FullTy = getFullyStructuredTypeByID(Record[2]); 5413 Type *ResTy = flattenPointerTypes(FullTy); 5414 if (!OpTy || !Op || !ResTy) 5415 return error("Invalid record"); 5416 I = new VAArgInst(Op, ResTy); 5417 InstructionList.push_back(I); 5418 break; 5419 } 5420 5421 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5422 // A call or an invoke can be optionally prefixed with some variable 5423 // number of operand bundle blocks. These blocks are read into 5424 // OperandBundles and consumed at the next call or invoke instruction. 5425 5426 if (Record.empty() || Record[0] >= BundleTags.size()) 5427 return error("Invalid record"); 5428 5429 std::vector<Value *> Inputs; 5430 5431 unsigned OpNum = 1; 5432 while (OpNum != Record.size()) { 5433 Value *Op; 5434 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5435 return error("Invalid record"); 5436 Inputs.push_back(Op); 5437 } 5438 5439 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5440 continue; 5441 } 5442 5443 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5444 unsigned OpNum = 0; 5445 Value *Op = nullptr; 5446 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5447 return error("Invalid record"); 5448 if (OpNum != Record.size()) 5449 return error("Invalid record"); 5450 5451 I = new FreezeInst(Op); 5452 InstructionList.push_back(I); 5453 break; 5454 } 5455 } 5456 5457 // Add instruction to end of current BB. If there is no current BB, reject 5458 // this file. 5459 if (!CurBB) { 5460 I->deleteValue(); 5461 return error("Invalid instruction with no BB"); 5462 } 5463 if (!OperandBundles.empty()) { 5464 I->deleteValue(); 5465 return error("Operand bundles found with no consumer"); 5466 } 5467 CurBB->getInstList().push_back(I); 5468 5469 // If this was a terminator instruction, move to the next block. 5470 if (I->isTerminator()) { 5471 ++CurBBNo; 5472 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5473 } 5474 5475 // Non-void values get registered in the value table for future use. 5476 if (!I->getType()->isVoidTy()) { 5477 if (!FullTy) { 5478 FullTy = I->getType(); 5479 assert( 5480 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5481 !isa<ArrayType>(FullTy) && 5482 (!isa<VectorType>(FullTy) || 5483 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5484 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5485 "Structured types must be assigned with corresponding non-opaque " 5486 "pointer type"); 5487 } 5488 5489 assert(I->getType() == flattenPointerTypes(FullTy) && 5490 "Incorrect fully structured type provided for Instruction"); 5491 ValueList.assignValue(I, NextValueNo++, FullTy); 5492 } 5493 } 5494 5495 OutOfRecordLoop: 5496 5497 if (!OperandBundles.empty()) 5498 return error("Operand bundles found with no consumer"); 5499 5500 // Check the function list for unresolved values. 5501 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5502 if (!A->getParent()) { 5503 // We found at least one unresolved value. Nuke them all to avoid leaks. 5504 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5505 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5506 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5507 delete A; 5508 } 5509 } 5510 return error("Never resolved value found in function"); 5511 } 5512 } 5513 5514 // Unexpected unresolved metadata about to be dropped. 5515 if (MDLoader->hasFwdRefs()) 5516 return error("Invalid function metadata: outgoing forward refs"); 5517 5518 // Trim the value list down to the size it was before we parsed this function. 5519 ValueList.shrinkTo(ModuleValueListSize); 5520 MDLoader->shrinkTo(ModuleMDLoaderSize); 5521 std::vector<BasicBlock*>().swap(FunctionBBs); 5522 return Error::success(); 5523 } 5524 5525 /// Find the function body in the bitcode stream 5526 Error BitcodeReader::findFunctionInStream( 5527 Function *F, 5528 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5529 while (DeferredFunctionInfoIterator->second == 0) { 5530 // This is the fallback handling for the old format bitcode that 5531 // didn't contain the function index in the VST, or when we have 5532 // an anonymous function which would not have a VST entry. 5533 // Assert that we have one of those two cases. 5534 assert(VSTOffset == 0 || !F->hasName()); 5535 // Parse the next body in the stream and set its position in the 5536 // DeferredFunctionInfo map. 5537 if (Error Err = rememberAndSkipFunctionBodies()) 5538 return Err; 5539 } 5540 return Error::success(); 5541 } 5542 5543 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5544 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5545 return SyncScope::ID(Val); 5546 if (Val >= SSIDs.size()) 5547 return SyncScope::System; // Map unknown synchronization scopes to system. 5548 return SSIDs[Val]; 5549 } 5550 5551 //===----------------------------------------------------------------------===// 5552 // GVMaterializer implementation 5553 //===----------------------------------------------------------------------===// 5554 5555 Error BitcodeReader::materialize(GlobalValue *GV) { 5556 Function *F = dyn_cast<Function>(GV); 5557 // If it's not a function or is already material, ignore the request. 5558 if (!F || !F->isMaterializable()) 5559 return Error::success(); 5560 5561 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5562 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5563 // If its position is recorded as 0, its body is somewhere in the stream 5564 // but we haven't seen it yet. 5565 if (DFII->second == 0) 5566 if (Error Err = findFunctionInStream(F, DFII)) 5567 return Err; 5568 5569 // Materialize metadata before parsing any function bodies. 5570 if (Error Err = materializeMetadata()) 5571 return Err; 5572 5573 // Move the bit stream to the saved position of the deferred function body. 5574 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5575 return JumpFailed; 5576 if (Error Err = parseFunctionBody(F)) 5577 return Err; 5578 F->setIsMaterializable(false); 5579 5580 if (StripDebugInfo) 5581 stripDebugInfo(*F); 5582 5583 // Upgrade any old intrinsic calls in the function. 5584 for (auto &I : UpgradedIntrinsics) { 5585 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5586 UI != UE;) { 5587 User *U = *UI; 5588 ++UI; 5589 if (CallInst *CI = dyn_cast<CallInst>(U)) 5590 UpgradeIntrinsicCall(CI, I.second); 5591 } 5592 } 5593 5594 // Update calls to the remangled intrinsics 5595 for (auto &I : RemangledIntrinsics) 5596 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5597 UI != UE;) 5598 // Don't expect any other users than call sites 5599 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5600 5601 // Finish fn->subprogram upgrade for materialized functions. 5602 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5603 F->setSubprogram(SP); 5604 5605 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5606 if (!MDLoader->isStrippingTBAA()) { 5607 for (auto &I : instructions(F)) { 5608 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5609 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5610 continue; 5611 MDLoader->setStripTBAA(true); 5612 stripTBAA(F->getParent()); 5613 } 5614 } 5615 5616 for (auto &I : instructions(F)) { 5617 // "Upgrade" older incorrect branch weights by dropping them. 5618 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5619 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5620 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5621 StringRef ProfName = MDS->getString(); 5622 // Check consistency of !prof branch_weights metadata. 5623 if (!ProfName.equals("branch_weights")) 5624 continue; 5625 unsigned ExpectedNumOperands = 0; 5626 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5627 ExpectedNumOperands = BI->getNumSuccessors(); 5628 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5629 ExpectedNumOperands = SI->getNumSuccessors(); 5630 else if (isa<CallInst>(&I)) 5631 ExpectedNumOperands = 1; 5632 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5633 ExpectedNumOperands = IBI->getNumDestinations(); 5634 else if (isa<SelectInst>(&I)) 5635 ExpectedNumOperands = 2; 5636 else 5637 continue; // ignore and continue. 5638 5639 // If branch weight doesn't match, just strip branch weight. 5640 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5641 I.setMetadata(LLVMContext::MD_prof, nullptr); 5642 } 5643 } 5644 5645 // Remove incompatible attributes on function calls. 5646 if (auto *CI = dyn_cast<CallBase>(&I)) { 5647 CI->removeAttributes(AttributeList::ReturnIndex, 5648 AttributeFuncs::typeIncompatible( 5649 CI->getFunctionType()->getReturnType())); 5650 5651 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5652 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5653 CI->getArgOperand(ArgNo)->getType())); 5654 } 5655 } 5656 5657 // Look for functions that rely on old function attribute behavior. 5658 UpgradeFunctionAttributes(*F); 5659 5660 // Bring in any functions that this function forward-referenced via 5661 // blockaddresses. 5662 return materializeForwardReferencedFunctions(); 5663 } 5664 5665 Error BitcodeReader::materializeModule() { 5666 if (Error Err = materializeMetadata()) 5667 return Err; 5668 5669 // Promise to materialize all forward references. 5670 WillMaterializeAllForwardRefs = true; 5671 5672 // Iterate over the module, deserializing any functions that are still on 5673 // disk. 5674 for (Function &F : *TheModule) { 5675 if (Error Err = materialize(&F)) 5676 return Err; 5677 } 5678 // At this point, if there are any function bodies, parse the rest of 5679 // the bits in the module past the last function block we have recorded 5680 // through either lazy scanning or the VST. 5681 if (LastFunctionBlockBit || NextUnreadBit) 5682 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5683 ? LastFunctionBlockBit 5684 : NextUnreadBit)) 5685 return Err; 5686 5687 // Check that all block address forward references got resolved (as we 5688 // promised above). 5689 if (!BasicBlockFwdRefs.empty()) 5690 return error("Never resolved function from blockaddress"); 5691 5692 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5693 // delete the old functions to clean up. We can't do this unless the entire 5694 // module is materialized because there could always be another function body 5695 // with calls to the old function. 5696 for (auto &I : UpgradedIntrinsics) { 5697 for (auto *U : I.first->users()) { 5698 if (CallInst *CI = dyn_cast<CallInst>(U)) 5699 UpgradeIntrinsicCall(CI, I.second); 5700 } 5701 if (!I.first->use_empty()) 5702 I.first->replaceAllUsesWith(I.second); 5703 I.first->eraseFromParent(); 5704 } 5705 UpgradedIntrinsics.clear(); 5706 // Do the same for remangled intrinsics 5707 for (auto &I : RemangledIntrinsics) { 5708 I.first->replaceAllUsesWith(I.second); 5709 I.first->eraseFromParent(); 5710 } 5711 RemangledIntrinsics.clear(); 5712 5713 UpgradeDebugInfo(*TheModule); 5714 5715 UpgradeModuleFlags(*TheModule); 5716 5717 UpgradeARCRuntime(*TheModule); 5718 5719 return Error::success(); 5720 } 5721 5722 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5723 return IdentifiedStructTypes; 5724 } 5725 5726 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5727 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5728 StringRef ModulePath, unsigned ModuleId) 5729 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5730 ModulePath(ModulePath), ModuleId(ModuleId) {} 5731 5732 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5733 TheIndex.addModule(ModulePath, ModuleId); 5734 } 5735 5736 ModuleSummaryIndex::ModuleInfo * 5737 ModuleSummaryIndexBitcodeReader::getThisModule() { 5738 return TheIndex.getModule(ModulePath); 5739 } 5740 5741 std::pair<ValueInfo, GlobalValue::GUID> 5742 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5743 auto VGI = ValueIdToValueInfoMap[ValueId]; 5744 assert(VGI.first); 5745 return VGI; 5746 } 5747 5748 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5749 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5750 StringRef SourceFileName) { 5751 std::string GlobalId = 5752 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5753 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5754 auto OriginalNameID = ValueGUID; 5755 if (GlobalValue::isLocalLinkage(Linkage)) 5756 OriginalNameID = GlobalValue::getGUID(ValueName); 5757 if (PrintSummaryGUIDs) 5758 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5759 << ValueName << "\n"; 5760 5761 // UseStrtab is false for legacy summary formats and value names are 5762 // created on stack. In that case we save the name in a string saver in 5763 // the index so that the value name can be recorded. 5764 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5765 TheIndex.getOrInsertValueInfo( 5766 ValueGUID, 5767 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5768 OriginalNameID); 5769 } 5770 5771 // Specialized value symbol table parser used when reading module index 5772 // blocks where we don't actually create global values. The parsed information 5773 // is saved in the bitcode reader for use when later parsing summaries. 5774 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5775 uint64_t Offset, 5776 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5777 // With a strtab the VST is not required to parse the summary. 5778 if (UseStrtab) 5779 return Error::success(); 5780 5781 assert(Offset > 0 && "Expected non-zero VST offset"); 5782 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5783 if (!MaybeCurrentBit) 5784 return MaybeCurrentBit.takeError(); 5785 uint64_t CurrentBit = MaybeCurrentBit.get(); 5786 5787 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5788 return Err; 5789 5790 SmallVector<uint64_t, 64> Record; 5791 5792 // Read all the records for this value table. 5793 SmallString<128> ValueName; 5794 5795 while (true) { 5796 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5797 if (!MaybeEntry) 5798 return MaybeEntry.takeError(); 5799 BitstreamEntry Entry = MaybeEntry.get(); 5800 5801 switch (Entry.Kind) { 5802 case BitstreamEntry::SubBlock: // Handled for us already. 5803 case BitstreamEntry::Error: 5804 return error("Malformed block"); 5805 case BitstreamEntry::EndBlock: 5806 // Done parsing VST, jump back to wherever we came from. 5807 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5808 return JumpFailed; 5809 return Error::success(); 5810 case BitstreamEntry::Record: 5811 // The interesting case. 5812 break; 5813 } 5814 5815 // Read a record. 5816 Record.clear(); 5817 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5818 if (!MaybeRecord) 5819 return MaybeRecord.takeError(); 5820 switch (MaybeRecord.get()) { 5821 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5822 break; 5823 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5824 if (convertToString(Record, 1, ValueName)) 5825 return error("Invalid record"); 5826 unsigned ValueID = Record[0]; 5827 assert(!SourceFileName.empty()); 5828 auto VLI = ValueIdToLinkageMap.find(ValueID); 5829 assert(VLI != ValueIdToLinkageMap.end() && 5830 "No linkage found for VST entry?"); 5831 auto Linkage = VLI->second; 5832 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5833 ValueName.clear(); 5834 break; 5835 } 5836 case bitc::VST_CODE_FNENTRY: { 5837 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5838 if (convertToString(Record, 2, ValueName)) 5839 return error("Invalid record"); 5840 unsigned ValueID = Record[0]; 5841 assert(!SourceFileName.empty()); 5842 auto VLI = ValueIdToLinkageMap.find(ValueID); 5843 assert(VLI != ValueIdToLinkageMap.end() && 5844 "No linkage found for VST entry?"); 5845 auto Linkage = VLI->second; 5846 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5847 ValueName.clear(); 5848 break; 5849 } 5850 case bitc::VST_CODE_COMBINED_ENTRY: { 5851 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5852 unsigned ValueID = Record[0]; 5853 GlobalValue::GUID RefGUID = Record[1]; 5854 // The "original name", which is the second value of the pair will be 5855 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5856 ValueIdToValueInfoMap[ValueID] = 5857 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5858 break; 5859 } 5860 } 5861 } 5862 } 5863 5864 // Parse just the blocks needed for building the index out of the module. 5865 // At the end of this routine the module Index is populated with a map 5866 // from global value id to GlobalValueSummary objects. 5867 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5868 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5869 return Err; 5870 5871 SmallVector<uint64_t, 64> Record; 5872 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5873 unsigned ValueId = 0; 5874 5875 // Read the index for this module. 5876 while (true) { 5877 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5878 if (!MaybeEntry) 5879 return MaybeEntry.takeError(); 5880 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5881 5882 switch (Entry.Kind) { 5883 case BitstreamEntry::Error: 5884 return error("Malformed block"); 5885 case BitstreamEntry::EndBlock: 5886 return Error::success(); 5887 5888 case BitstreamEntry::SubBlock: 5889 switch (Entry.ID) { 5890 default: // Skip unknown content. 5891 if (Error Err = Stream.SkipBlock()) 5892 return Err; 5893 break; 5894 case bitc::BLOCKINFO_BLOCK_ID: 5895 // Need to parse these to get abbrev ids (e.g. for VST) 5896 if (readBlockInfo()) 5897 return error("Malformed block"); 5898 break; 5899 case bitc::VALUE_SYMTAB_BLOCK_ID: 5900 // Should have been parsed earlier via VSTOffset, unless there 5901 // is no summary section. 5902 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5903 !SeenGlobalValSummary) && 5904 "Expected early VST parse via VSTOffset record"); 5905 if (Error Err = Stream.SkipBlock()) 5906 return Err; 5907 break; 5908 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5909 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5910 // Add the module if it is a per-module index (has a source file name). 5911 if (!SourceFileName.empty()) 5912 addThisModule(); 5913 assert(!SeenValueSymbolTable && 5914 "Already read VST when parsing summary block?"); 5915 // We might not have a VST if there were no values in the 5916 // summary. An empty summary block generated when we are 5917 // performing ThinLTO compiles so we don't later invoke 5918 // the regular LTO process on them. 5919 if (VSTOffset > 0) { 5920 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5921 return Err; 5922 SeenValueSymbolTable = true; 5923 } 5924 SeenGlobalValSummary = true; 5925 if (Error Err = parseEntireSummary(Entry.ID)) 5926 return Err; 5927 break; 5928 case bitc::MODULE_STRTAB_BLOCK_ID: 5929 if (Error Err = parseModuleStringTable()) 5930 return Err; 5931 break; 5932 } 5933 continue; 5934 5935 case BitstreamEntry::Record: { 5936 Record.clear(); 5937 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5938 if (!MaybeBitCode) 5939 return MaybeBitCode.takeError(); 5940 switch (MaybeBitCode.get()) { 5941 default: 5942 break; // Default behavior, ignore unknown content. 5943 case bitc::MODULE_CODE_VERSION: { 5944 if (Error Err = parseVersionRecord(Record).takeError()) 5945 return Err; 5946 break; 5947 } 5948 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5949 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5950 SmallString<128> ValueName; 5951 if (convertToString(Record, 0, ValueName)) 5952 return error("Invalid record"); 5953 SourceFileName = ValueName.c_str(); 5954 break; 5955 } 5956 /// MODULE_CODE_HASH: [5*i32] 5957 case bitc::MODULE_CODE_HASH: { 5958 if (Record.size() != 5) 5959 return error("Invalid hash length " + Twine(Record.size()).str()); 5960 auto &Hash = getThisModule()->second.second; 5961 int Pos = 0; 5962 for (auto &Val : Record) { 5963 assert(!(Val >> 32) && "Unexpected high bits set"); 5964 Hash[Pos++] = Val; 5965 } 5966 break; 5967 } 5968 /// MODULE_CODE_VSTOFFSET: [offset] 5969 case bitc::MODULE_CODE_VSTOFFSET: 5970 if (Record.empty()) 5971 return error("Invalid record"); 5972 // Note that we subtract 1 here because the offset is relative to one 5973 // word before the start of the identification or module block, which 5974 // was historically always the start of the regular bitcode header. 5975 VSTOffset = Record[0] - 1; 5976 break; 5977 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5978 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5979 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5980 // v2: [strtab offset, strtab size, v1] 5981 case bitc::MODULE_CODE_GLOBALVAR: 5982 case bitc::MODULE_CODE_FUNCTION: 5983 case bitc::MODULE_CODE_ALIAS: { 5984 StringRef Name; 5985 ArrayRef<uint64_t> GVRecord; 5986 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5987 if (GVRecord.size() <= 3) 5988 return error("Invalid record"); 5989 uint64_t RawLinkage = GVRecord[3]; 5990 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5991 if (!UseStrtab) { 5992 ValueIdToLinkageMap[ValueId++] = Linkage; 5993 break; 5994 } 5995 5996 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5997 break; 5998 } 5999 } 6000 } 6001 continue; 6002 } 6003 } 6004 } 6005 6006 std::vector<ValueInfo> 6007 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6008 std::vector<ValueInfo> Ret; 6009 Ret.reserve(Record.size()); 6010 for (uint64_t RefValueId : Record) 6011 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6012 return Ret; 6013 } 6014 6015 std::vector<FunctionSummary::EdgeTy> 6016 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6017 bool IsOldProfileFormat, 6018 bool HasProfile, bool HasRelBF) { 6019 std::vector<FunctionSummary::EdgeTy> Ret; 6020 Ret.reserve(Record.size()); 6021 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6022 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6023 uint64_t RelBF = 0; 6024 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6025 if (IsOldProfileFormat) { 6026 I += 1; // Skip old callsitecount field 6027 if (HasProfile) 6028 I += 1; // Skip old profilecount field 6029 } else if (HasProfile) 6030 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6031 else if (HasRelBF) 6032 RelBF = Record[++I]; 6033 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6034 } 6035 return Ret; 6036 } 6037 6038 static void 6039 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6040 WholeProgramDevirtResolution &Wpd) { 6041 uint64_t ArgNum = Record[Slot++]; 6042 WholeProgramDevirtResolution::ByArg &B = 6043 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6044 Slot += ArgNum; 6045 6046 B.TheKind = 6047 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6048 B.Info = Record[Slot++]; 6049 B.Byte = Record[Slot++]; 6050 B.Bit = Record[Slot++]; 6051 } 6052 6053 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6054 StringRef Strtab, size_t &Slot, 6055 TypeIdSummary &TypeId) { 6056 uint64_t Id = Record[Slot++]; 6057 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6058 6059 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6060 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6061 static_cast<size_t>(Record[Slot + 1])}; 6062 Slot += 2; 6063 6064 uint64_t ResByArgNum = Record[Slot++]; 6065 for (uint64_t I = 0; I != ResByArgNum; ++I) 6066 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6067 } 6068 6069 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6070 StringRef Strtab, 6071 ModuleSummaryIndex &TheIndex) { 6072 size_t Slot = 0; 6073 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6074 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6075 Slot += 2; 6076 6077 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6078 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6079 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6080 TypeId.TTRes.SizeM1 = Record[Slot++]; 6081 TypeId.TTRes.BitMask = Record[Slot++]; 6082 TypeId.TTRes.InlineBits = Record[Slot++]; 6083 6084 while (Slot < Record.size()) 6085 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6086 } 6087 6088 std::vector<FunctionSummary::ParamAccess> 6089 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6090 auto ReadRange = [&]() { 6091 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6092 BitcodeReader::decodeSignRotatedValue(Record.front())); 6093 Record = Record.drop_front(); 6094 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6095 BitcodeReader::decodeSignRotatedValue(Record.front())); 6096 Record = Record.drop_front(); 6097 ConstantRange Range{Lower, Upper}; 6098 assert(!Range.isFullSet()); 6099 assert(!Range.isUpperSignWrapped()); 6100 return Range; 6101 }; 6102 6103 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6104 while (!Record.empty()) { 6105 PendingParamAccesses.emplace_back(); 6106 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6107 ParamAccess.ParamNo = Record.front(); 6108 Record = Record.drop_front(); 6109 ParamAccess.Use = ReadRange(); 6110 ParamAccess.Calls.resize(Record.front()); 6111 Record = Record.drop_front(); 6112 for (auto &Call : ParamAccess.Calls) { 6113 Call.ParamNo = Record.front(); 6114 Record = Record.drop_front(); 6115 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6116 Record = Record.drop_front(); 6117 Call.Offsets = ReadRange(); 6118 } 6119 } 6120 return PendingParamAccesses; 6121 } 6122 6123 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6124 ArrayRef<uint64_t> Record, size_t &Slot, 6125 TypeIdCompatibleVtableInfo &TypeId) { 6126 uint64_t Offset = Record[Slot++]; 6127 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6128 TypeId.push_back({Offset, Callee}); 6129 } 6130 6131 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6132 ArrayRef<uint64_t> Record) { 6133 size_t Slot = 0; 6134 TypeIdCompatibleVtableInfo &TypeId = 6135 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6136 {Strtab.data() + Record[Slot], 6137 static_cast<size_t>(Record[Slot + 1])}); 6138 Slot += 2; 6139 6140 while (Slot < Record.size()) 6141 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6142 } 6143 6144 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6145 unsigned WOCnt) { 6146 // Readonly and writeonly refs are in the end of the refs list. 6147 assert(ROCnt + WOCnt <= Refs.size()); 6148 unsigned FirstWORef = Refs.size() - WOCnt; 6149 unsigned RefNo = FirstWORef - ROCnt; 6150 for (; RefNo < FirstWORef; ++RefNo) 6151 Refs[RefNo].setReadOnly(); 6152 for (; RefNo < Refs.size(); ++RefNo) 6153 Refs[RefNo].setWriteOnly(); 6154 } 6155 6156 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6157 // objects in the index. 6158 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6159 if (Error Err = Stream.EnterSubBlock(ID)) 6160 return Err; 6161 SmallVector<uint64_t, 64> Record; 6162 6163 // Parse version 6164 { 6165 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6166 if (!MaybeEntry) 6167 return MaybeEntry.takeError(); 6168 BitstreamEntry Entry = MaybeEntry.get(); 6169 6170 if (Entry.Kind != BitstreamEntry::Record) 6171 return error("Invalid Summary Block: record for version expected"); 6172 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6173 if (!MaybeRecord) 6174 return MaybeRecord.takeError(); 6175 if (MaybeRecord.get() != bitc::FS_VERSION) 6176 return error("Invalid Summary Block: version expected"); 6177 } 6178 const uint64_t Version = Record[0]; 6179 const bool IsOldProfileFormat = Version == 1; 6180 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6181 return error("Invalid summary version " + Twine(Version) + 6182 ". Version should be in the range [1-" + 6183 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6184 "]."); 6185 Record.clear(); 6186 6187 // Keep around the last seen summary to be used when we see an optional 6188 // "OriginalName" attachement. 6189 GlobalValueSummary *LastSeenSummary = nullptr; 6190 GlobalValue::GUID LastSeenGUID = 0; 6191 6192 // We can expect to see any number of type ID information records before 6193 // each function summary records; these variables store the information 6194 // collected so far so that it can be used to create the summary object. 6195 std::vector<GlobalValue::GUID> PendingTypeTests; 6196 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6197 PendingTypeCheckedLoadVCalls; 6198 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6199 PendingTypeCheckedLoadConstVCalls; 6200 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6201 6202 while (true) { 6203 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6204 if (!MaybeEntry) 6205 return MaybeEntry.takeError(); 6206 BitstreamEntry Entry = MaybeEntry.get(); 6207 6208 switch (Entry.Kind) { 6209 case BitstreamEntry::SubBlock: // Handled for us already. 6210 case BitstreamEntry::Error: 6211 return error("Malformed block"); 6212 case BitstreamEntry::EndBlock: 6213 return Error::success(); 6214 case BitstreamEntry::Record: 6215 // The interesting case. 6216 break; 6217 } 6218 6219 // Read a record. The record format depends on whether this 6220 // is a per-module index or a combined index file. In the per-module 6221 // case the records contain the associated value's ID for correlation 6222 // with VST entries. In the combined index the correlation is done 6223 // via the bitcode offset of the summary records (which were saved 6224 // in the combined index VST entries). The records also contain 6225 // information used for ThinLTO renaming and importing. 6226 Record.clear(); 6227 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6228 if (!MaybeBitCode) 6229 return MaybeBitCode.takeError(); 6230 switch (unsigned BitCode = MaybeBitCode.get()) { 6231 default: // Default behavior: ignore. 6232 break; 6233 case bitc::FS_FLAGS: { // [flags] 6234 TheIndex.setFlags(Record[0]); 6235 break; 6236 } 6237 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6238 uint64_t ValueID = Record[0]; 6239 GlobalValue::GUID RefGUID = Record[1]; 6240 ValueIdToValueInfoMap[ValueID] = 6241 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6242 break; 6243 } 6244 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6245 // numrefs x valueid, n x (valueid)] 6246 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6247 // numrefs x valueid, 6248 // n x (valueid, hotness)] 6249 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6250 // numrefs x valueid, 6251 // n x (valueid, relblockfreq)] 6252 case bitc::FS_PERMODULE: 6253 case bitc::FS_PERMODULE_RELBF: 6254 case bitc::FS_PERMODULE_PROFILE: { 6255 unsigned ValueID = Record[0]; 6256 uint64_t RawFlags = Record[1]; 6257 unsigned InstCount = Record[2]; 6258 uint64_t RawFunFlags = 0; 6259 unsigned NumRefs = Record[3]; 6260 unsigned NumRORefs = 0, NumWORefs = 0; 6261 int RefListStartIndex = 4; 6262 if (Version >= 4) { 6263 RawFunFlags = Record[3]; 6264 NumRefs = Record[4]; 6265 RefListStartIndex = 5; 6266 if (Version >= 5) { 6267 NumRORefs = Record[5]; 6268 RefListStartIndex = 6; 6269 if (Version >= 7) { 6270 NumWORefs = Record[6]; 6271 RefListStartIndex = 7; 6272 } 6273 } 6274 } 6275 6276 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6277 // The module path string ref set in the summary must be owned by the 6278 // index's module string table. Since we don't have a module path 6279 // string table section in the per-module index, we create a single 6280 // module path string table entry with an empty (0) ID to take 6281 // ownership. 6282 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6283 assert(Record.size() >= RefListStartIndex + NumRefs && 6284 "Record size inconsistent with number of references"); 6285 std::vector<ValueInfo> Refs = makeRefList( 6286 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6287 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6288 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6289 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6290 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6291 IsOldProfileFormat, HasProfile, HasRelBF); 6292 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6293 auto FS = std::make_unique<FunctionSummary>( 6294 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6295 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6296 std::move(PendingTypeTestAssumeVCalls), 6297 std::move(PendingTypeCheckedLoadVCalls), 6298 std::move(PendingTypeTestAssumeConstVCalls), 6299 std::move(PendingTypeCheckedLoadConstVCalls), 6300 std::move(PendingParamAccesses)); 6301 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6302 FS->setModulePath(getThisModule()->first()); 6303 FS->setOriginalName(VIAndOriginalGUID.second); 6304 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6305 break; 6306 } 6307 // FS_ALIAS: [valueid, flags, valueid] 6308 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6309 // they expect all aliasee summaries to be available. 6310 case bitc::FS_ALIAS: { 6311 unsigned ValueID = Record[0]; 6312 uint64_t RawFlags = Record[1]; 6313 unsigned AliaseeID = Record[2]; 6314 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6315 auto AS = std::make_unique<AliasSummary>(Flags); 6316 // The module path string ref set in the summary must be owned by the 6317 // index's module string table. Since we don't have a module path 6318 // string table section in the per-module index, we create a single 6319 // module path string table entry with an empty (0) ID to take 6320 // ownership. 6321 AS->setModulePath(getThisModule()->first()); 6322 6323 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6324 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6325 if (!AliaseeInModule) 6326 return error("Alias expects aliasee summary to be parsed"); 6327 AS->setAliasee(AliaseeVI, AliaseeInModule); 6328 6329 auto GUID = getValueInfoFromValueId(ValueID); 6330 AS->setOriginalName(GUID.second); 6331 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6332 break; 6333 } 6334 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6335 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6336 unsigned ValueID = Record[0]; 6337 uint64_t RawFlags = Record[1]; 6338 unsigned RefArrayStart = 2; 6339 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6340 /* WriteOnly */ false, 6341 /* Constant */ false, 6342 GlobalObject::VCallVisibilityPublic); 6343 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6344 if (Version >= 5) { 6345 GVF = getDecodedGVarFlags(Record[2]); 6346 RefArrayStart = 3; 6347 } 6348 std::vector<ValueInfo> Refs = 6349 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6350 auto FS = 6351 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6352 FS->setModulePath(getThisModule()->first()); 6353 auto GUID = getValueInfoFromValueId(ValueID); 6354 FS->setOriginalName(GUID.second); 6355 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6356 break; 6357 } 6358 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6359 // numrefs, numrefs x valueid, 6360 // n x (valueid, offset)] 6361 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6362 unsigned ValueID = Record[0]; 6363 uint64_t RawFlags = Record[1]; 6364 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6365 unsigned NumRefs = Record[3]; 6366 unsigned RefListStartIndex = 4; 6367 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6368 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6369 std::vector<ValueInfo> Refs = makeRefList( 6370 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6371 VTableFuncList VTableFuncs; 6372 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6373 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6374 uint64_t Offset = Record[++I]; 6375 VTableFuncs.push_back({Callee, Offset}); 6376 } 6377 auto VS = 6378 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6379 VS->setModulePath(getThisModule()->first()); 6380 VS->setVTableFuncs(VTableFuncs); 6381 auto GUID = getValueInfoFromValueId(ValueID); 6382 VS->setOriginalName(GUID.second); 6383 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6384 break; 6385 } 6386 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6387 // numrefs x valueid, n x (valueid)] 6388 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6389 // numrefs x valueid, n x (valueid, hotness)] 6390 case bitc::FS_COMBINED: 6391 case bitc::FS_COMBINED_PROFILE: { 6392 unsigned ValueID = Record[0]; 6393 uint64_t ModuleId = Record[1]; 6394 uint64_t RawFlags = Record[2]; 6395 unsigned InstCount = Record[3]; 6396 uint64_t RawFunFlags = 0; 6397 uint64_t EntryCount = 0; 6398 unsigned NumRefs = Record[4]; 6399 unsigned NumRORefs = 0, NumWORefs = 0; 6400 int RefListStartIndex = 5; 6401 6402 if (Version >= 4) { 6403 RawFunFlags = Record[4]; 6404 RefListStartIndex = 6; 6405 size_t NumRefsIndex = 5; 6406 if (Version >= 5) { 6407 unsigned NumRORefsOffset = 1; 6408 RefListStartIndex = 7; 6409 if (Version >= 6) { 6410 NumRefsIndex = 6; 6411 EntryCount = Record[5]; 6412 RefListStartIndex = 8; 6413 if (Version >= 7) { 6414 RefListStartIndex = 9; 6415 NumWORefs = Record[8]; 6416 NumRORefsOffset = 2; 6417 } 6418 } 6419 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6420 } 6421 NumRefs = Record[NumRefsIndex]; 6422 } 6423 6424 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6425 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6426 assert(Record.size() >= RefListStartIndex + NumRefs && 6427 "Record size inconsistent with number of references"); 6428 std::vector<ValueInfo> Refs = makeRefList( 6429 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6430 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6431 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6432 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6433 IsOldProfileFormat, HasProfile, false); 6434 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6435 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6436 auto FS = std::make_unique<FunctionSummary>( 6437 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6438 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6439 std::move(PendingTypeTestAssumeVCalls), 6440 std::move(PendingTypeCheckedLoadVCalls), 6441 std::move(PendingTypeTestAssumeConstVCalls), 6442 std::move(PendingTypeCheckedLoadConstVCalls), 6443 std::move(PendingParamAccesses)); 6444 LastSeenSummary = FS.get(); 6445 LastSeenGUID = VI.getGUID(); 6446 FS->setModulePath(ModuleIdMap[ModuleId]); 6447 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6448 break; 6449 } 6450 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6451 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6452 // they expect all aliasee summaries to be available. 6453 case bitc::FS_COMBINED_ALIAS: { 6454 unsigned ValueID = Record[0]; 6455 uint64_t ModuleId = Record[1]; 6456 uint64_t RawFlags = Record[2]; 6457 unsigned AliaseeValueId = Record[3]; 6458 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6459 auto AS = std::make_unique<AliasSummary>(Flags); 6460 LastSeenSummary = AS.get(); 6461 AS->setModulePath(ModuleIdMap[ModuleId]); 6462 6463 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6464 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6465 AS->setAliasee(AliaseeVI, AliaseeInModule); 6466 6467 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6468 LastSeenGUID = VI.getGUID(); 6469 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6470 break; 6471 } 6472 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6473 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6474 unsigned ValueID = Record[0]; 6475 uint64_t ModuleId = Record[1]; 6476 uint64_t RawFlags = Record[2]; 6477 unsigned RefArrayStart = 3; 6478 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6479 /* WriteOnly */ false, 6480 /* Constant */ false, 6481 GlobalObject::VCallVisibilityPublic); 6482 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6483 if (Version >= 5) { 6484 GVF = getDecodedGVarFlags(Record[3]); 6485 RefArrayStart = 4; 6486 } 6487 std::vector<ValueInfo> Refs = 6488 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6489 auto FS = 6490 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6491 LastSeenSummary = FS.get(); 6492 FS->setModulePath(ModuleIdMap[ModuleId]); 6493 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6494 LastSeenGUID = VI.getGUID(); 6495 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6496 break; 6497 } 6498 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6499 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6500 uint64_t OriginalName = Record[0]; 6501 if (!LastSeenSummary) 6502 return error("Name attachment that does not follow a combined record"); 6503 LastSeenSummary->setOriginalName(OriginalName); 6504 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6505 // Reset the LastSeenSummary 6506 LastSeenSummary = nullptr; 6507 LastSeenGUID = 0; 6508 break; 6509 } 6510 case bitc::FS_TYPE_TESTS: 6511 assert(PendingTypeTests.empty()); 6512 llvm::append_range(PendingTypeTests, Record); 6513 break; 6514 6515 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6516 assert(PendingTypeTestAssumeVCalls.empty()); 6517 for (unsigned I = 0; I != Record.size(); I += 2) 6518 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6519 break; 6520 6521 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6522 assert(PendingTypeCheckedLoadVCalls.empty()); 6523 for (unsigned I = 0; I != Record.size(); I += 2) 6524 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6525 break; 6526 6527 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6528 PendingTypeTestAssumeConstVCalls.push_back( 6529 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6530 break; 6531 6532 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6533 PendingTypeCheckedLoadConstVCalls.push_back( 6534 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6535 break; 6536 6537 case bitc::FS_CFI_FUNCTION_DEFS: { 6538 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6539 for (unsigned I = 0; I != Record.size(); I += 2) 6540 CfiFunctionDefs.insert( 6541 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6542 break; 6543 } 6544 6545 case bitc::FS_CFI_FUNCTION_DECLS: { 6546 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6547 for (unsigned I = 0; I != Record.size(); I += 2) 6548 CfiFunctionDecls.insert( 6549 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6550 break; 6551 } 6552 6553 case bitc::FS_TYPE_ID: 6554 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6555 break; 6556 6557 case bitc::FS_TYPE_ID_METADATA: 6558 parseTypeIdCompatibleVtableSummaryRecord(Record); 6559 break; 6560 6561 case bitc::FS_BLOCK_COUNT: 6562 TheIndex.addBlockCount(Record[0]); 6563 break; 6564 6565 case bitc::FS_PARAM_ACCESS: { 6566 PendingParamAccesses = parseParamAccesses(Record); 6567 break; 6568 } 6569 } 6570 } 6571 llvm_unreachable("Exit infinite loop"); 6572 } 6573 6574 // Parse the module string table block into the Index. 6575 // This populates the ModulePathStringTable map in the index. 6576 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6577 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6578 return Err; 6579 6580 SmallVector<uint64_t, 64> Record; 6581 6582 SmallString<128> ModulePath; 6583 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6584 6585 while (true) { 6586 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6587 if (!MaybeEntry) 6588 return MaybeEntry.takeError(); 6589 BitstreamEntry Entry = MaybeEntry.get(); 6590 6591 switch (Entry.Kind) { 6592 case BitstreamEntry::SubBlock: // Handled for us already. 6593 case BitstreamEntry::Error: 6594 return error("Malformed block"); 6595 case BitstreamEntry::EndBlock: 6596 return Error::success(); 6597 case BitstreamEntry::Record: 6598 // The interesting case. 6599 break; 6600 } 6601 6602 Record.clear(); 6603 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6604 if (!MaybeRecord) 6605 return MaybeRecord.takeError(); 6606 switch (MaybeRecord.get()) { 6607 default: // Default behavior: ignore. 6608 break; 6609 case bitc::MST_CODE_ENTRY: { 6610 // MST_ENTRY: [modid, namechar x N] 6611 uint64_t ModuleId = Record[0]; 6612 6613 if (convertToString(Record, 1, ModulePath)) 6614 return error("Invalid record"); 6615 6616 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6617 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6618 6619 ModulePath.clear(); 6620 break; 6621 } 6622 /// MST_CODE_HASH: [5*i32] 6623 case bitc::MST_CODE_HASH: { 6624 if (Record.size() != 5) 6625 return error("Invalid hash length " + Twine(Record.size()).str()); 6626 if (!LastSeenModule) 6627 return error("Invalid hash that does not follow a module path"); 6628 int Pos = 0; 6629 for (auto &Val : Record) { 6630 assert(!(Val >> 32) && "Unexpected high bits set"); 6631 LastSeenModule->second.second[Pos++] = Val; 6632 } 6633 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6634 LastSeenModule = nullptr; 6635 break; 6636 } 6637 } 6638 } 6639 llvm_unreachable("Exit infinite loop"); 6640 } 6641 6642 namespace { 6643 6644 // FIXME: This class is only here to support the transition to llvm::Error. It 6645 // will be removed once this transition is complete. Clients should prefer to 6646 // deal with the Error value directly, rather than converting to error_code. 6647 class BitcodeErrorCategoryType : public std::error_category { 6648 const char *name() const noexcept override { 6649 return "llvm.bitcode"; 6650 } 6651 6652 std::string message(int IE) const override { 6653 BitcodeError E = static_cast<BitcodeError>(IE); 6654 switch (E) { 6655 case BitcodeError::CorruptedBitcode: 6656 return "Corrupted bitcode"; 6657 } 6658 llvm_unreachable("Unknown error type!"); 6659 } 6660 }; 6661 6662 } // end anonymous namespace 6663 6664 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6665 6666 const std::error_category &llvm::BitcodeErrorCategory() { 6667 return *ErrorCategory; 6668 } 6669 6670 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6671 unsigned Block, unsigned RecordID) { 6672 if (Error Err = Stream.EnterSubBlock(Block)) 6673 return std::move(Err); 6674 6675 StringRef Strtab; 6676 while (true) { 6677 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6678 if (!MaybeEntry) 6679 return MaybeEntry.takeError(); 6680 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6681 6682 switch (Entry.Kind) { 6683 case BitstreamEntry::EndBlock: 6684 return Strtab; 6685 6686 case BitstreamEntry::Error: 6687 return error("Malformed block"); 6688 6689 case BitstreamEntry::SubBlock: 6690 if (Error Err = Stream.SkipBlock()) 6691 return std::move(Err); 6692 break; 6693 6694 case BitstreamEntry::Record: 6695 StringRef Blob; 6696 SmallVector<uint64_t, 1> Record; 6697 Expected<unsigned> MaybeRecord = 6698 Stream.readRecord(Entry.ID, Record, &Blob); 6699 if (!MaybeRecord) 6700 return MaybeRecord.takeError(); 6701 if (MaybeRecord.get() == RecordID) 6702 Strtab = Blob; 6703 break; 6704 } 6705 } 6706 } 6707 6708 //===----------------------------------------------------------------------===// 6709 // External interface 6710 //===----------------------------------------------------------------------===// 6711 6712 Expected<std::vector<BitcodeModule>> 6713 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6714 auto FOrErr = getBitcodeFileContents(Buffer); 6715 if (!FOrErr) 6716 return FOrErr.takeError(); 6717 return std::move(FOrErr->Mods); 6718 } 6719 6720 Expected<BitcodeFileContents> 6721 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6722 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6723 if (!StreamOrErr) 6724 return StreamOrErr.takeError(); 6725 BitstreamCursor &Stream = *StreamOrErr; 6726 6727 BitcodeFileContents F; 6728 while (true) { 6729 uint64_t BCBegin = Stream.getCurrentByteNo(); 6730 6731 // We may be consuming bitcode from a client that leaves garbage at the end 6732 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6733 // the end that there cannot possibly be another module, stop looking. 6734 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6735 return F; 6736 6737 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6738 if (!MaybeEntry) 6739 return MaybeEntry.takeError(); 6740 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6741 6742 switch (Entry.Kind) { 6743 case BitstreamEntry::EndBlock: 6744 case BitstreamEntry::Error: 6745 return error("Malformed block"); 6746 6747 case BitstreamEntry::SubBlock: { 6748 uint64_t IdentificationBit = -1ull; 6749 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6750 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6751 if (Error Err = Stream.SkipBlock()) 6752 return std::move(Err); 6753 6754 { 6755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6756 if (!MaybeEntry) 6757 return MaybeEntry.takeError(); 6758 Entry = MaybeEntry.get(); 6759 } 6760 6761 if (Entry.Kind != BitstreamEntry::SubBlock || 6762 Entry.ID != bitc::MODULE_BLOCK_ID) 6763 return error("Malformed block"); 6764 } 6765 6766 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6767 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6768 if (Error Err = Stream.SkipBlock()) 6769 return std::move(Err); 6770 6771 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6772 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6773 Buffer.getBufferIdentifier(), IdentificationBit, 6774 ModuleBit}); 6775 continue; 6776 } 6777 6778 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6779 Expected<StringRef> Strtab = 6780 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6781 if (!Strtab) 6782 return Strtab.takeError(); 6783 // This string table is used by every preceding bitcode module that does 6784 // not have its own string table. A bitcode file may have multiple 6785 // string tables if it was created by binary concatenation, for example 6786 // with "llvm-cat -b". 6787 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6788 if (!I->Strtab.empty()) 6789 break; 6790 I->Strtab = *Strtab; 6791 } 6792 // Similarly, the string table is used by every preceding symbol table; 6793 // normally there will be just one unless the bitcode file was created 6794 // by binary concatenation. 6795 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6796 F.StrtabForSymtab = *Strtab; 6797 continue; 6798 } 6799 6800 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6801 Expected<StringRef> SymtabOrErr = 6802 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6803 if (!SymtabOrErr) 6804 return SymtabOrErr.takeError(); 6805 6806 // We can expect the bitcode file to have multiple symbol tables if it 6807 // was created by binary concatenation. In that case we silently 6808 // ignore any subsequent symbol tables, which is fine because this is a 6809 // low level function. The client is expected to notice that the number 6810 // of modules in the symbol table does not match the number of modules 6811 // in the input file and regenerate the symbol table. 6812 if (F.Symtab.empty()) 6813 F.Symtab = *SymtabOrErr; 6814 continue; 6815 } 6816 6817 if (Error Err = Stream.SkipBlock()) 6818 return std::move(Err); 6819 continue; 6820 } 6821 case BitstreamEntry::Record: 6822 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6823 continue; 6824 else 6825 return StreamFailed.takeError(); 6826 } 6827 } 6828 } 6829 6830 /// Get a lazy one-at-time loading module from bitcode. 6831 /// 6832 /// This isn't always used in a lazy context. In particular, it's also used by 6833 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6834 /// in forward-referenced functions from block address references. 6835 /// 6836 /// \param[in] MaterializeAll Set to \c true if we should materialize 6837 /// everything. 6838 Expected<std::unique_ptr<Module>> 6839 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6840 bool ShouldLazyLoadMetadata, bool IsImporting, 6841 DataLayoutCallbackTy DataLayoutCallback) { 6842 BitstreamCursor Stream(Buffer); 6843 6844 std::string ProducerIdentification; 6845 if (IdentificationBit != -1ull) { 6846 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6847 return std::move(JumpFailed); 6848 Expected<std::string> ProducerIdentificationOrErr = 6849 readIdentificationBlock(Stream); 6850 if (!ProducerIdentificationOrErr) 6851 return ProducerIdentificationOrErr.takeError(); 6852 6853 ProducerIdentification = *ProducerIdentificationOrErr; 6854 } 6855 6856 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6857 return std::move(JumpFailed); 6858 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6859 Context); 6860 6861 std::unique_ptr<Module> M = 6862 std::make_unique<Module>(ModuleIdentifier, Context); 6863 M->setMaterializer(R); 6864 6865 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6866 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6867 IsImporting, DataLayoutCallback)) 6868 return std::move(Err); 6869 6870 if (MaterializeAll) { 6871 // Read in the entire module, and destroy the BitcodeReader. 6872 if (Error Err = M->materializeAll()) 6873 return std::move(Err); 6874 } else { 6875 // Resolve forward references from blockaddresses. 6876 if (Error Err = R->materializeForwardReferencedFunctions()) 6877 return std::move(Err); 6878 } 6879 return std::move(M); 6880 } 6881 6882 Expected<std::unique_ptr<Module>> 6883 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6884 bool IsImporting) { 6885 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6886 [](StringRef) { return None; }); 6887 } 6888 6889 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6890 // We don't use ModuleIdentifier here because the client may need to control the 6891 // module path used in the combined summary (e.g. when reading summaries for 6892 // regular LTO modules). 6893 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6894 StringRef ModulePath, uint64_t ModuleId) { 6895 BitstreamCursor Stream(Buffer); 6896 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6897 return JumpFailed; 6898 6899 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6900 ModulePath, ModuleId); 6901 return R.parseModule(); 6902 } 6903 6904 // Parse the specified bitcode buffer, returning the function info index. 6905 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6906 BitstreamCursor Stream(Buffer); 6907 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6908 return std::move(JumpFailed); 6909 6910 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6911 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6912 ModuleIdentifier, 0); 6913 6914 if (Error Err = R.parseModule()) 6915 return std::move(Err); 6916 6917 return std::move(Index); 6918 } 6919 6920 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6921 unsigned ID) { 6922 if (Error Err = Stream.EnterSubBlock(ID)) 6923 return std::move(Err); 6924 SmallVector<uint64_t, 64> Record; 6925 6926 while (true) { 6927 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6928 if (!MaybeEntry) 6929 return MaybeEntry.takeError(); 6930 BitstreamEntry Entry = MaybeEntry.get(); 6931 6932 switch (Entry.Kind) { 6933 case BitstreamEntry::SubBlock: // Handled for us already. 6934 case BitstreamEntry::Error: 6935 return error("Malformed block"); 6936 case BitstreamEntry::EndBlock: 6937 // If no flags record found, conservatively return true to mimic 6938 // behavior before this flag was added. 6939 return true; 6940 case BitstreamEntry::Record: 6941 // The interesting case. 6942 break; 6943 } 6944 6945 // Look for the FS_FLAGS record. 6946 Record.clear(); 6947 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6948 if (!MaybeBitCode) 6949 return MaybeBitCode.takeError(); 6950 switch (MaybeBitCode.get()) { 6951 default: // Default behavior: ignore. 6952 break; 6953 case bitc::FS_FLAGS: { // [flags] 6954 uint64_t Flags = Record[0]; 6955 // Scan flags. 6956 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6957 6958 return Flags & 0x8; 6959 } 6960 } 6961 } 6962 llvm_unreachable("Exit infinite loop"); 6963 } 6964 6965 // Check if the given bitcode buffer contains a global value summary block. 6966 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6967 BitstreamCursor Stream(Buffer); 6968 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6969 return std::move(JumpFailed); 6970 6971 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6972 return std::move(Err); 6973 6974 while (true) { 6975 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6976 if (!MaybeEntry) 6977 return MaybeEntry.takeError(); 6978 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6979 6980 switch (Entry.Kind) { 6981 case BitstreamEntry::Error: 6982 return error("Malformed block"); 6983 case BitstreamEntry::EndBlock: 6984 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6985 /*EnableSplitLTOUnit=*/false}; 6986 6987 case BitstreamEntry::SubBlock: 6988 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6989 Expected<bool> EnableSplitLTOUnit = 6990 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6991 if (!EnableSplitLTOUnit) 6992 return EnableSplitLTOUnit.takeError(); 6993 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6994 *EnableSplitLTOUnit}; 6995 } 6996 6997 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6998 Expected<bool> EnableSplitLTOUnit = 6999 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7000 if (!EnableSplitLTOUnit) 7001 return EnableSplitLTOUnit.takeError(); 7002 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7003 *EnableSplitLTOUnit}; 7004 } 7005 7006 // Ignore other sub-blocks. 7007 if (Error Err = Stream.SkipBlock()) 7008 return std::move(Err); 7009 continue; 7010 7011 case BitstreamEntry::Record: 7012 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7013 continue; 7014 else 7015 return StreamFailed.takeError(); 7016 } 7017 } 7018 } 7019 7020 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7021 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7022 if (!MsOrErr) 7023 return MsOrErr.takeError(); 7024 7025 if (MsOrErr->size() != 1) 7026 return error("Expected a single module"); 7027 7028 return (*MsOrErr)[0]; 7029 } 7030 7031 Expected<std::unique_ptr<Module>> 7032 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7033 bool ShouldLazyLoadMetadata, bool IsImporting) { 7034 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7035 if (!BM) 7036 return BM.takeError(); 7037 7038 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7039 } 7040 7041 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7042 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7043 bool ShouldLazyLoadMetadata, bool IsImporting) { 7044 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7045 IsImporting); 7046 if (MOrErr) 7047 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7048 return MOrErr; 7049 } 7050 7051 Expected<std::unique_ptr<Module>> 7052 BitcodeModule::parseModule(LLVMContext &Context, 7053 DataLayoutCallbackTy DataLayoutCallback) { 7054 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7055 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7056 // written. We must defer until the Module has been fully materialized. 7057 } 7058 7059 Expected<std::unique_ptr<Module>> 7060 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7061 DataLayoutCallbackTy DataLayoutCallback) { 7062 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7063 if (!BM) 7064 return BM.takeError(); 7065 7066 return BM->parseModule(Context, DataLayoutCallback); 7067 } 7068 7069 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7070 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7071 if (!StreamOrErr) 7072 return StreamOrErr.takeError(); 7073 7074 return readTriple(*StreamOrErr); 7075 } 7076 7077 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7078 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7079 if (!StreamOrErr) 7080 return StreamOrErr.takeError(); 7081 7082 return hasObjCCategory(*StreamOrErr); 7083 } 7084 7085 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7086 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7087 if (!StreamOrErr) 7088 return StreamOrErr.takeError(); 7089 7090 return readIdentificationCode(*StreamOrErr); 7091 } 7092 7093 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7094 ModuleSummaryIndex &CombinedIndex, 7095 uint64_t ModuleId) { 7096 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7097 if (!BM) 7098 return BM.takeError(); 7099 7100 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7101 } 7102 7103 Expected<std::unique_ptr<ModuleSummaryIndex>> 7104 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7105 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7106 if (!BM) 7107 return BM.takeError(); 7108 7109 return BM->getSummary(); 7110 } 7111 7112 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7113 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7114 if (!BM) 7115 return BM.takeError(); 7116 7117 return BM->getLTOInfo(); 7118 } 7119 7120 Expected<std::unique_ptr<ModuleSummaryIndex>> 7121 llvm::getModuleSummaryIndexForFile(StringRef Path, 7122 bool IgnoreEmptyThinLTOIndexFile) { 7123 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7124 MemoryBuffer::getFileOrSTDIN(Path); 7125 if (!FileOrErr) 7126 return errorCodeToError(FileOrErr.getError()); 7127 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7128 return nullptr; 7129 return getModuleSummaryIndex(**FileOrErr); 7130 } 7131