1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 583 return None; 584 }); 585 586 static uint64_t decodeSignRotatedValue(uint64_t V); 587 588 /// Materialize any deferred Metadata block. 589 Error materializeMetadata() override; 590 591 void setStripDebugInfo() override; 592 593 private: 594 std::vector<StructType *> IdentifiedStructTypes; 595 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 596 StructType *createIdentifiedStructType(LLVMContext &Context); 597 598 /// Map all pointer types within \param Ty to the opaque pointer 599 /// type in the same address space if opaque pointers are being 600 /// used, otherwise nop. This converts a bitcode-reader internal 601 /// type into one suitable for use in a Value. 602 Type *flattenPointerTypes(Type *Ty) { 603 return Ty; 604 } 605 606 /// Given a fully structured pointer type (i.e. not opaque), return 607 /// the flattened form of its element, suitable for use in a Value. 608 Type *getPointerElementFlatType(Type *Ty) { 609 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 610 } 611 612 /// Given a fully structured pointer type, get its element type in 613 /// both fully structured form, and flattened form suitable for use 614 /// in a Value. 615 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 616 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 617 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 618 } 619 620 /// Return the flattened type (suitable for use in a Value) 621 /// specified by the given \param ID . 622 Type *getTypeByID(unsigned ID) { 623 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 624 } 625 626 /// Return the fully structured (bitcode-reader internal) type 627 /// corresponding to the given \param ID . 628 Type *getFullyStructuredTypeByID(unsigned ID); 629 630 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 631 if (Ty && Ty->isMetadataTy()) 632 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 633 return ValueList.getValueFwdRef(ID, Ty, FullTy); 634 } 635 636 Metadata *getFnMetadataByID(unsigned ID) { 637 return MDLoader->getMetadataFwdRefOrLoad(ID); 638 } 639 640 BasicBlock *getBasicBlock(unsigned ID) const { 641 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 642 return FunctionBBs[ID]; 643 } 644 645 AttributeList getAttributes(unsigned i) const { 646 if (i-1 < MAttributes.size()) 647 return MAttributes[i-1]; 648 return AttributeList(); 649 } 650 651 /// Read a value/type pair out of the specified record from slot 'Slot'. 652 /// Increment Slot past the number of slots used in the record. Return true on 653 /// failure. 654 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 655 unsigned InstNum, Value *&ResVal, 656 Type **FullTy = nullptr) { 657 if (Slot == Record.size()) return true; 658 unsigned ValNo = (unsigned)Record[Slot++]; 659 // Adjust the ValNo, if it was encoded relative to the InstNum. 660 if (UseRelativeIDs) 661 ValNo = InstNum - ValNo; 662 if (ValNo < InstNum) { 663 // If this is not a forward reference, just return the value we already 664 // have. 665 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 666 return ResVal == nullptr; 667 } 668 if (Slot == Record.size()) 669 return true; 670 671 unsigned TypeNo = (unsigned)Record[Slot++]; 672 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 673 if (FullTy) 674 *FullTy = getFullyStructuredTypeByID(TypeNo); 675 return ResVal == nullptr; 676 } 677 678 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 679 /// past the number of slots used by the value in the record. Return true if 680 /// there is an error. 681 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 682 unsigned InstNum, Type *Ty, Value *&ResVal) { 683 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 684 return true; 685 // All values currently take a single record slot. 686 ++Slot; 687 return false; 688 } 689 690 /// Like popValue, but does not increment the Slot number. 691 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 692 unsigned InstNum, Type *Ty, Value *&ResVal) { 693 ResVal = getValue(Record, Slot, InstNum, Ty); 694 return ResVal == nullptr; 695 } 696 697 /// Version of getValue that returns ResVal directly, or 0 if there is an 698 /// error. 699 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 700 unsigned InstNum, Type *Ty) { 701 if (Slot == Record.size()) return nullptr; 702 unsigned ValNo = (unsigned)Record[Slot]; 703 // Adjust the ValNo, if it was encoded relative to the InstNum. 704 if (UseRelativeIDs) 705 ValNo = InstNum - ValNo; 706 return getFnValueByID(ValNo, Ty); 707 } 708 709 /// Like getValue, but decodes signed VBRs. 710 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 711 unsigned InstNum, Type *Ty) { 712 if (Slot == Record.size()) return nullptr; 713 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 714 // Adjust the ValNo, if it was encoded relative to the InstNum. 715 if (UseRelativeIDs) 716 ValNo = InstNum - ValNo; 717 return getFnValueByID(ValNo, Ty); 718 } 719 720 /// Upgrades old-style typeless byval attributes by adding the corresponding 721 /// argument's pointee type. 722 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 723 724 /// Converts alignment exponent (i.e. power of two (or zero)) to the 725 /// corresponding alignment to use. If alignment is too large, returns 726 /// a corresponding error code. 727 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 728 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 729 Error parseModule( 730 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 731 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 732 733 Error parseComdatRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 735 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 736 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 737 ArrayRef<uint64_t> Record); 738 739 Error parseAttributeBlock(); 740 Error parseAttributeGroupBlock(); 741 Error parseTypeTable(); 742 Error parseTypeTableBody(); 743 Error parseOperandBundleTags(); 744 Error parseSyncScopeNames(); 745 746 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 747 unsigned NameIndex, Triple &TT); 748 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 749 ArrayRef<uint64_t> Record); 750 Error parseValueSymbolTable(uint64_t Offset = 0); 751 Error parseGlobalValueSymbolTable(); 752 Error parseConstants(); 753 Error rememberAndSkipFunctionBodies(); 754 Error rememberAndSkipFunctionBody(); 755 /// Save the positions of the Metadata blocks and skip parsing the blocks. 756 Error rememberAndSkipMetadata(); 757 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 758 Error parseFunctionBody(Function *F); 759 Error globalCleanup(); 760 Error resolveGlobalAndIndirectSymbolInits(); 761 Error parseUseLists(); 762 Error findFunctionInStream( 763 Function *F, 764 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 765 766 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 767 }; 768 769 /// Class to manage reading and parsing function summary index bitcode 770 /// files/sections. 771 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 772 /// The module index built during parsing. 773 ModuleSummaryIndex &TheIndex; 774 775 /// Indicates whether we have encountered a global value summary section 776 /// yet during parsing. 777 bool SeenGlobalValSummary = false; 778 779 /// Indicates whether we have already parsed the VST, used for error checking. 780 bool SeenValueSymbolTable = false; 781 782 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 783 /// Used to enable on-demand parsing of the VST. 784 uint64_t VSTOffset = 0; 785 786 // Map to save ValueId to ValueInfo association that was recorded in the 787 // ValueSymbolTable. It is used after the VST is parsed to convert 788 // call graph edges read from the function summary from referencing 789 // callees by their ValueId to using the ValueInfo instead, which is how 790 // they are recorded in the summary index being built. 791 // We save a GUID which refers to the same global as the ValueInfo, but 792 // ignoring the linkage, i.e. for values other than local linkage they are 793 // identical. 794 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 795 ValueIdToValueInfoMap; 796 797 /// Map populated during module path string table parsing, from the 798 /// module ID to a string reference owned by the index's module 799 /// path string table, used to correlate with combined index 800 /// summary records. 801 DenseMap<uint64_t, StringRef> ModuleIdMap; 802 803 /// Original source file name recorded in a bitcode record. 804 std::string SourceFileName; 805 806 /// The string identifier given to this module by the client, normally the 807 /// path to the bitcode file. 808 StringRef ModulePath; 809 810 /// For per-module summary indexes, the unique numerical identifier given to 811 /// this module by the client. 812 unsigned ModuleId; 813 814 public: 815 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 816 ModuleSummaryIndex &TheIndex, 817 StringRef ModulePath, unsigned ModuleId); 818 819 Error parseModule(); 820 821 private: 822 void setValueGUID(uint64_t ValueID, StringRef ValueName, 823 GlobalValue::LinkageTypes Linkage, 824 StringRef SourceFileName); 825 Error parseValueSymbolTable( 826 uint64_t Offset, 827 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 828 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 829 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 830 bool IsOldProfileFormat, 831 bool HasProfile, 832 bool HasRelBF); 833 Error parseEntireSummary(unsigned ID); 834 Error parseModuleStringTable(); 835 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 836 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 837 TypeIdCompatibleVtableInfo &TypeId); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // FIXME: Remove in 4.0. 1322 1323 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1324 // the bits above 31 down by 11 bits. 1325 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1326 assert((!Alignment || isPowerOf2_32(Alignment)) && 1327 "Alignment must be a power of two."); 1328 1329 if (Alignment) 1330 B.addAlignmentAttr(Alignment); 1331 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1332 (EncodedAttrs & 0xffff)); 1333 } 1334 1335 Error BitcodeReader::parseAttributeBlock() { 1336 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1337 return Err; 1338 1339 if (!MAttributes.empty()) 1340 return error("Invalid multiple blocks"); 1341 1342 SmallVector<uint64_t, 64> Record; 1343 1344 SmallVector<AttributeList, 8> Attrs; 1345 1346 // Read all the records. 1347 while (true) { 1348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1349 if (!MaybeEntry) 1350 return MaybeEntry.takeError(); 1351 BitstreamEntry Entry = MaybeEntry.get(); 1352 1353 switch (Entry.Kind) { 1354 case BitstreamEntry::SubBlock: // Handled for us already. 1355 case BitstreamEntry::Error: 1356 return error("Malformed block"); 1357 case BitstreamEntry::EndBlock: 1358 return Error::success(); 1359 case BitstreamEntry::Record: 1360 // The interesting case. 1361 break; 1362 } 1363 1364 // Read a record. 1365 Record.clear(); 1366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1367 if (!MaybeRecord) 1368 return MaybeRecord.takeError(); 1369 switch (MaybeRecord.get()) { 1370 default: // Default behavior: ignore. 1371 break; 1372 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1373 // FIXME: Remove in 4.0. 1374 if (Record.size() & 1) 1375 return error("Invalid record"); 1376 1377 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1378 AttrBuilder B; 1379 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1380 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1381 } 1382 1383 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1384 Attrs.clear(); 1385 break; 1386 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1387 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1388 Attrs.push_back(MAttributeGroups[Record[i]]); 1389 1390 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1391 Attrs.clear(); 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Returns Attribute::None on unrecognized codes. 1398 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1399 switch (Code) { 1400 default: 1401 return Attribute::None; 1402 case bitc::ATTR_KIND_ALIGNMENT: 1403 return Attribute::Alignment; 1404 case bitc::ATTR_KIND_ALWAYS_INLINE: 1405 return Attribute::AlwaysInline; 1406 case bitc::ATTR_KIND_ARGMEMONLY: 1407 return Attribute::ArgMemOnly; 1408 case bitc::ATTR_KIND_BUILTIN: 1409 return Attribute::Builtin; 1410 case bitc::ATTR_KIND_BY_VAL: 1411 return Attribute::ByVal; 1412 case bitc::ATTR_KIND_IN_ALLOCA: 1413 return Attribute::InAlloca; 1414 case bitc::ATTR_KIND_COLD: 1415 return Attribute::Cold; 1416 case bitc::ATTR_KIND_CONVERGENT: 1417 return Attribute::Convergent; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1419 return Attribute::InaccessibleMemOnly; 1420 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1421 return Attribute::InaccessibleMemOrArgMemOnly; 1422 case bitc::ATTR_KIND_INLINE_HINT: 1423 return Attribute::InlineHint; 1424 case bitc::ATTR_KIND_IN_REG: 1425 return Attribute::InReg; 1426 case bitc::ATTR_KIND_JUMP_TABLE: 1427 return Attribute::JumpTable; 1428 case bitc::ATTR_KIND_MIN_SIZE: 1429 return Attribute::MinSize; 1430 case bitc::ATTR_KIND_NAKED: 1431 return Attribute::Naked; 1432 case bitc::ATTR_KIND_NEST: 1433 return Attribute::Nest; 1434 case bitc::ATTR_KIND_NO_ALIAS: 1435 return Attribute::NoAlias; 1436 case bitc::ATTR_KIND_NO_BUILTIN: 1437 return Attribute::NoBuiltin; 1438 case bitc::ATTR_KIND_NO_CAPTURE: 1439 return Attribute::NoCapture; 1440 case bitc::ATTR_KIND_NO_DUPLICATE: 1441 return Attribute::NoDuplicate; 1442 case bitc::ATTR_KIND_NOFREE: 1443 return Attribute::NoFree; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NO_MERGE: 1451 return Attribute::NoMerge; 1452 case bitc::ATTR_KIND_NON_LAZY_BIND: 1453 return Attribute::NonLazyBind; 1454 case bitc::ATTR_KIND_NON_NULL: 1455 return Attribute::NonNull; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE: 1457 return Attribute::Dereferenceable; 1458 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1459 return Attribute::DereferenceableOrNull; 1460 case bitc::ATTR_KIND_ALLOC_SIZE: 1461 return Attribute::AllocSize; 1462 case bitc::ATTR_KIND_NO_RED_ZONE: 1463 return Attribute::NoRedZone; 1464 case bitc::ATTR_KIND_NO_RETURN: 1465 return Attribute::NoReturn; 1466 case bitc::ATTR_KIND_NOSYNC: 1467 return Attribute::NoSync; 1468 case bitc::ATTR_KIND_NOCF_CHECK: 1469 return Attribute::NoCfCheck; 1470 case bitc::ATTR_KIND_NO_UNWIND: 1471 return Attribute::NoUnwind; 1472 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1473 return Attribute::NullPointerIsValid; 1474 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1475 return Attribute::OptForFuzzing; 1476 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1477 return Attribute::OptimizeForSize; 1478 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1479 return Attribute::OptimizeNone; 1480 case bitc::ATTR_KIND_READ_NONE: 1481 return Attribute::ReadNone; 1482 case bitc::ATTR_KIND_READ_ONLY: 1483 return Attribute::ReadOnly; 1484 case bitc::ATTR_KIND_RETURNED: 1485 return Attribute::Returned; 1486 case bitc::ATTR_KIND_RETURNS_TWICE: 1487 return Attribute::ReturnsTwice; 1488 case bitc::ATTR_KIND_S_EXT: 1489 return Attribute::SExt; 1490 case bitc::ATTR_KIND_SPECULATABLE: 1491 return Attribute::Speculatable; 1492 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1493 return Attribute::StackAlignment; 1494 case bitc::ATTR_KIND_STACK_PROTECT: 1495 return Attribute::StackProtect; 1496 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1497 return Attribute::StackProtectReq; 1498 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1499 return Attribute::StackProtectStrong; 1500 case bitc::ATTR_KIND_SAFESTACK: 1501 return Attribute::SafeStack; 1502 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1503 return Attribute::ShadowCallStack; 1504 case bitc::ATTR_KIND_STRICT_FP: 1505 return Attribute::StrictFP; 1506 case bitc::ATTR_KIND_STRUCT_RET: 1507 return Attribute::StructRet; 1508 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1509 return Attribute::SanitizeAddress; 1510 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1511 return Attribute::SanitizeHWAddress; 1512 case bitc::ATTR_KIND_SANITIZE_THREAD: 1513 return Attribute::SanitizeThread; 1514 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1515 return Attribute::SanitizeMemory; 1516 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1517 return Attribute::SpeculativeLoadHardening; 1518 case bitc::ATTR_KIND_SWIFT_ERROR: 1519 return Attribute::SwiftError; 1520 case bitc::ATTR_KIND_SWIFT_SELF: 1521 return Attribute::SwiftSelf; 1522 case bitc::ATTR_KIND_UW_TABLE: 1523 return Attribute::UWTable; 1524 case bitc::ATTR_KIND_WILLRETURN: 1525 return Attribute::WillReturn; 1526 case bitc::ATTR_KIND_WRITEONLY: 1527 return Attribute::WriteOnly; 1528 case bitc::ATTR_KIND_Z_EXT: 1529 return Attribute::ZExt; 1530 case bitc::ATTR_KIND_IMMARG: 1531 return Attribute::ImmArg; 1532 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1533 return Attribute::SanitizeMemTag; 1534 case bitc::ATTR_KIND_PREALLOCATED: 1535 return Attribute::Preallocated; 1536 } 1537 } 1538 1539 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1540 MaybeAlign &Alignment) { 1541 // Note: Alignment in bitcode files is incremented by 1, so that zero 1542 // can be used for default alignment. 1543 if (Exponent > Value::MaxAlignmentExponent + 1) 1544 return error("Invalid alignment value"); 1545 Alignment = decodeMaybeAlign(Exponent); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1550 *Kind = getAttrFromCode(Code); 1551 if (*Kind == Attribute::None) 1552 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1553 return Error::success(); 1554 } 1555 1556 Error BitcodeReader::parseAttributeGroupBlock() { 1557 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1558 return Err; 1559 1560 if (!MAttributeGroups.empty()) 1561 return error("Invalid multiple blocks"); 1562 1563 SmallVector<uint64_t, 64> Record; 1564 1565 // Read all the records. 1566 while (true) { 1567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1568 if (!MaybeEntry) 1569 return MaybeEntry.takeError(); 1570 BitstreamEntry Entry = MaybeEntry.get(); 1571 1572 switch (Entry.Kind) { 1573 case BitstreamEntry::SubBlock: // Handled for us already. 1574 case BitstreamEntry::Error: 1575 return error("Malformed block"); 1576 case BitstreamEntry::EndBlock: 1577 return Error::success(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1586 if (!MaybeRecord) 1587 return MaybeRecord.takeError(); 1588 switch (MaybeRecord.get()) { 1589 default: // Default behavior: ignore. 1590 break; 1591 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1592 if (Record.size() < 3) 1593 return error("Invalid record"); 1594 1595 uint64_t GrpID = Record[0]; 1596 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1597 1598 AttrBuilder B; 1599 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1600 if (Record[i] == 0) { // Enum attribute 1601 Attribute::AttrKind Kind; 1602 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1603 return Err; 1604 1605 // Upgrade old-style byval attribute to one with a type, even if it's 1606 // nullptr. We will have to insert the real type when we associate 1607 // this AttributeList with a function. 1608 if (Kind == Attribute::ByVal) 1609 B.addByValAttr(nullptr); 1610 1611 B.addAttribute(Kind); 1612 } else if (Record[i] == 1) { // Integer attribute 1613 Attribute::AttrKind Kind; 1614 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1615 return Err; 1616 if (Kind == Attribute::Alignment) 1617 B.addAlignmentAttr(Record[++i]); 1618 else if (Kind == Attribute::StackAlignment) 1619 B.addStackAlignmentAttr(Record[++i]); 1620 else if (Kind == Attribute::Dereferenceable) 1621 B.addDereferenceableAttr(Record[++i]); 1622 else if (Kind == Attribute::DereferenceableOrNull) 1623 B.addDereferenceableOrNullAttr(Record[++i]); 1624 else if (Kind == Attribute::AllocSize) 1625 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1626 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1627 bool HasValue = (Record[i++] == 4); 1628 SmallString<64> KindStr; 1629 SmallString<64> ValStr; 1630 1631 while (Record[i] != 0 && i != e) 1632 KindStr += Record[i++]; 1633 assert(Record[i] == 0 && "Kind string not null terminated"); 1634 1635 if (HasValue) { 1636 // Has a value associated with it. 1637 ++i; // Skip the '0' that terminates the "kind" string. 1638 while (Record[i] != 0 && i != e) 1639 ValStr += Record[i++]; 1640 assert(Record[i] == 0 && "Value string not null terminated"); 1641 } 1642 1643 B.addAttribute(KindStr.str(), ValStr.str()); 1644 } else { 1645 assert((Record[i] == 5 || Record[i] == 6) && 1646 "Invalid attribute group entry"); 1647 bool HasType = Record[i] == 6; 1648 Attribute::AttrKind Kind; 1649 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1650 return Err; 1651 if (Kind == Attribute::ByVal) { 1652 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1653 } else if (Kind == Attribute::Preallocated) { 1654 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1655 } 1656 } 1657 } 1658 1659 UpgradeAttributes(B); 1660 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1661 break; 1662 } 1663 } 1664 } 1665 } 1666 1667 Error BitcodeReader::parseTypeTable() { 1668 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1669 return Err; 1670 1671 return parseTypeTableBody(); 1672 } 1673 1674 Error BitcodeReader::parseTypeTableBody() { 1675 if (!TypeList.empty()) 1676 return error("Invalid multiple blocks"); 1677 1678 SmallVector<uint64_t, 64> Record; 1679 unsigned NumRecords = 0; 1680 1681 SmallString<64> TypeName; 1682 1683 // Read all the records for this type table. 1684 while (true) { 1685 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1686 if (!MaybeEntry) 1687 return MaybeEntry.takeError(); 1688 BitstreamEntry Entry = MaybeEntry.get(); 1689 1690 switch (Entry.Kind) { 1691 case BitstreamEntry::SubBlock: // Handled for us already. 1692 case BitstreamEntry::Error: 1693 return error("Malformed block"); 1694 case BitstreamEntry::EndBlock: 1695 if (NumRecords != TypeList.size()) 1696 return error("Malformed block"); 1697 return Error::success(); 1698 case BitstreamEntry::Record: 1699 // The interesting case. 1700 break; 1701 } 1702 1703 // Read a record. 1704 Record.clear(); 1705 Type *ResultTy = nullptr; 1706 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1707 if (!MaybeRecord) 1708 return MaybeRecord.takeError(); 1709 switch (MaybeRecord.get()) { 1710 default: 1711 return error("Invalid value"); 1712 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1713 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1714 // type list. This allows us to reserve space. 1715 if (Record.size() < 1) 1716 return error("Invalid record"); 1717 TypeList.resize(Record[0]); 1718 continue; 1719 case bitc::TYPE_CODE_VOID: // VOID 1720 ResultTy = Type::getVoidTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_HALF: // HALF 1723 ResultTy = Type::getHalfTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1726 ResultTy = Type::getBFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_FLOAT: // FLOAT 1729 ResultTy = Type::getFloatTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1732 ResultTy = Type::getDoubleTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1735 ResultTy = Type::getX86_FP80Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_FP128: // FP128 1738 ResultTy = Type::getFP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1741 ResultTy = Type::getPPC_FP128Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_LABEL: // LABEL 1744 ResultTy = Type::getLabelTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_METADATA: // METADATA 1747 ResultTy = Type::getMetadataTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1750 ResultTy = Type::getX86_MMXTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_TOKEN: // TOKEN 1753 ResultTy = Type::getTokenTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1756 if (Record.size() < 1) 1757 return error("Invalid record"); 1758 1759 uint64_t NumBits = Record[0]; 1760 if (NumBits < IntegerType::MIN_INT_BITS || 1761 NumBits > IntegerType::MAX_INT_BITS) 1762 return error("Bitwidth for integer type out of range"); 1763 ResultTy = IntegerType::get(Context, NumBits); 1764 break; 1765 } 1766 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1767 // [pointee type, address space] 1768 if (Record.size() < 1) 1769 return error("Invalid record"); 1770 unsigned AddressSpace = 0; 1771 if (Record.size() == 2) 1772 AddressSpace = Record[1]; 1773 ResultTy = getTypeByID(Record[0]); 1774 if (!ResultTy || 1775 !PointerType::isValidElementType(ResultTy)) 1776 return error("Invalid type"); 1777 ResultTy = PointerType::get(ResultTy, AddressSpace); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_FUNCTION_OLD: { 1781 // FIXME: attrid is dead, remove it in LLVM 4.0 1782 // FUNCTION: [vararg, attrid, retty, paramty x N] 1783 if (Record.size() < 3) 1784 return error("Invalid record"); 1785 SmallVector<Type*, 8> ArgTys; 1786 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1787 if (Type *T = getTypeByID(Record[i])) 1788 ArgTys.push_back(T); 1789 else 1790 break; 1791 } 1792 1793 ResultTy = getTypeByID(Record[2]); 1794 if (!ResultTy || ArgTys.size() < Record.size()-3) 1795 return error("Invalid type"); 1796 1797 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1798 break; 1799 } 1800 case bitc::TYPE_CODE_FUNCTION: { 1801 // FUNCTION: [vararg, retty, paramty x N] 1802 if (Record.size() < 2) 1803 return error("Invalid record"); 1804 SmallVector<Type*, 8> ArgTys; 1805 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1806 if (Type *T = getTypeByID(Record[i])) { 1807 if (!FunctionType::isValidArgumentType(T)) 1808 return error("Invalid function argument type"); 1809 ArgTys.push_back(T); 1810 } 1811 else 1812 break; 1813 } 1814 1815 ResultTy = getTypeByID(Record[1]); 1816 if (!ResultTy || ArgTys.size() < Record.size()-2) 1817 return error("Invalid type"); 1818 1819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1823 if (Record.size() < 1) 1824 return error("Invalid record"); 1825 SmallVector<Type*, 8> EltTys; 1826 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1827 if (Type *T = getTypeByID(Record[i])) 1828 EltTys.push_back(T); 1829 else 1830 break; 1831 } 1832 if (EltTys.size() != Record.size()-1) 1833 return error("Invalid type"); 1834 ResultTy = StructType::get(Context, EltTys, Record[0]); 1835 break; 1836 } 1837 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1838 if (convertToString(Record, 0, TypeName)) 1839 return error("Invalid record"); 1840 continue; 1841 1842 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1843 if (Record.size() < 1) 1844 return error("Invalid record"); 1845 1846 if (NumRecords >= TypeList.size()) 1847 return error("Invalid TYPE table"); 1848 1849 // Check to see if this was forward referenced, if so fill in the temp. 1850 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1851 if (Res) { 1852 Res->setName(TypeName); 1853 TypeList[NumRecords] = nullptr; 1854 } else // Otherwise, create a new struct. 1855 Res = createIdentifiedStructType(Context, TypeName); 1856 TypeName.clear(); 1857 1858 SmallVector<Type*, 8> EltTys; 1859 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1860 if (Type *T = getTypeByID(Record[i])) 1861 EltTys.push_back(T); 1862 else 1863 break; 1864 } 1865 if (EltTys.size() != Record.size()-1) 1866 return error("Invalid record"); 1867 Res->setBody(EltTys, Record[0]); 1868 ResultTy = Res; 1869 break; 1870 } 1871 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1872 if (Record.size() != 1) 1873 return error("Invalid record"); 1874 1875 if (NumRecords >= TypeList.size()) 1876 return error("Invalid TYPE table"); 1877 1878 // Check to see if this was forward referenced, if so fill in the temp. 1879 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1880 if (Res) { 1881 Res->setName(TypeName); 1882 TypeList[NumRecords] = nullptr; 1883 } else // Otherwise, create a new struct with no body. 1884 Res = createIdentifiedStructType(Context, TypeName); 1885 TypeName.clear(); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1890 if (Record.size() < 2) 1891 return error("Invalid record"); 1892 ResultTy = getTypeByID(Record[1]); 1893 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1894 return error("Invalid type"); 1895 ResultTy = ArrayType::get(ResultTy, Record[0]); 1896 break; 1897 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1898 // [numelts, eltty, scalable] 1899 if (Record.size() < 2) 1900 return error("Invalid record"); 1901 if (Record[0] == 0) 1902 return error("Invalid vector length"); 1903 ResultTy = getTypeByID(Record[1]); 1904 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1905 return error("Invalid type"); 1906 bool Scalable = Record.size() > 2 ? Record[2] : false; 1907 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1908 break; 1909 } 1910 1911 if (NumRecords >= TypeList.size()) 1912 return error("Invalid TYPE table"); 1913 if (TypeList[NumRecords]) 1914 return error( 1915 "Invalid TYPE table: Only named structs can be forward referenced"); 1916 assert(ResultTy && "Didn't read a type?"); 1917 TypeList[NumRecords++] = ResultTy; 1918 } 1919 } 1920 1921 Error BitcodeReader::parseOperandBundleTags() { 1922 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1923 return Err; 1924 1925 if (!BundleTags.empty()) 1926 return error("Invalid multiple blocks"); 1927 1928 SmallVector<uint64_t, 64> Record; 1929 1930 while (true) { 1931 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1932 if (!MaybeEntry) 1933 return MaybeEntry.takeError(); 1934 BitstreamEntry Entry = MaybeEntry.get(); 1935 1936 switch (Entry.Kind) { 1937 case BitstreamEntry::SubBlock: // Handled for us already. 1938 case BitstreamEntry::Error: 1939 return error("Malformed block"); 1940 case BitstreamEntry::EndBlock: 1941 return Error::success(); 1942 case BitstreamEntry::Record: 1943 // The interesting case. 1944 break; 1945 } 1946 1947 // Tags are implicitly mapped to integers by their order. 1948 1949 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1950 if (!MaybeRecord) 1951 return MaybeRecord.takeError(); 1952 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1953 return error("Invalid record"); 1954 1955 // OPERAND_BUNDLE_TAG: [strchr x N] 1956 BundleTags.emplace_back(); 1957 if (convertToString(Record, 0, BundleTags.back())) 1958 return error("Invalid record"); 1959 Record.clear(); 1960 } 1961 } 1962 1963 Error BitcodeReader::parseSyncScopeNames() { 1964 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1965 return Err; 1966 1967 if (!SSIDs.empty()) 1968 return error("Invalid multiple synchronization scope names blocks"); 1969 1970 SmallVector<uint64_t, 64> Record; 1971 while (true) { 1972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1973 if (!MaybeEntry) 1974 return MaybeEntry.takeError(); 1975 BitstreamEntry Entry = MaybeEntry.get(); 1976 1977 switch (Entry.Kind) { 1978 case BitstreamEntry::SubBlock: // Handled for us already. 1979 case BitstreamEntry::Error: 1980 return error("Malformed block"); 1981 case BitstreamEntry::EndBlock: 1982 if (SSIDs.empty()) 1983 return error("Invalid empty synchronization scope names block"); 1984 return Error::success(); 1985 case BitstreamEntry::Record: 1986 // The interesting case. 1987 break; 1988 } 1989 1990 // Synchronization scope names are implicitly mapped to synchronization 1991 // scope IDs by their order. 1992 1993 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1994 if (!MaybeRecord) 1995 return MaybeRecord.takeError(); 1996 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1997 return error("Invalid record"); 1998 1999 SmallString<16> SSN; 2000 if (convertToString(Record, 0, SSN)) 2001 return error("Invalid record"); 2002 2003 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2004 Record.clear(); 2005 } 2006 } 2007 2008 /// Associate a value with its name from the given index in the provided record. 2009 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2010 unsigned NameIndex, Triple &TT) { 2011 SmallString<128> ValueName; 2012 if (convertToString(Record, NameIndex, ValueName)) 2013 return error("Invalid record"); 2014 unsigned ValueID = Record[0]; 2015 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2016 return error("Invalid record"); 2017 Value *V = ValueList[ValueID]; 2018 2019 StringRef NameStr(ValueName.data(), ValueName.size()); 2020 if (NameStr.find_first_of(0) != StringRef::npos) 2021 return error("Invalid value name"); 2022 V->setName(NameStr); 2023 auto *GO = dyn_cast<GlobalObject>(V); 2024 if (GO) { 2025 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2026 if (TT.supportsCOMDAT()) 2027 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2028 else 2029 GO->setComdat(nullptr); 2030 } 2031 } 2032 return V; 2033 } 2034 2035 /// Helper to note and return the current location, and jump to the given 2036 /// offset. 2037 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2038 BitstreamCursor &Stream) { 2039 // Save the current parsing location so we can jump back at the end 2040 // of the VST read. 2041 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2042 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2043 return std::move(JumpFailed); 2044 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2045 if (!MaybeEntry) 2046 return MaybeEntry.takeError(); 2047 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2048 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2049 return CurrentBit; 2050 } 2051 2052 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2053 Function *F, 2054 ArrayRef<uint64_t> Record) { 2055 // Note that we subtract 1 here because the offset is relative to one word 2056 // before the start of the identification or module block, which was 2057 // historically always the start of the regular bitcode header. 2058 uint64_t FuncWordOffset = Record[1] - 1; 2059 uint64_t FuncBitOffset = FuncWordOffset * 32; 2060 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2061 // Set the LastFunctionBlockBit to point to the last function block. 2062 // Later when parsing is resumed after function materialization, 2063 // we can simply skip that last function block. 2064 if (FuncBitOffset > LastFunctionBlockBit) 2065 LastFunctionBlockBit = FuncBitOffset; 2066 } 2067 2068 /// Read a new-style GlobalValue symbol table. 2069 Error BitcodeReader::parseGlobalValueSymbolTable() { 2070 unsigned FuncBitcodeOffsetDelta = 2071 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2072 2073 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2074 return Err; 2075 2076 SmallVector<uint64_t, 64> Record; 2077 while (true) { 2078 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2079 if (!MaybeEntry) 2080 return MaybeEntry.takeError(); 2081 BitstreamEntry Entry = MaybeEntry.get(); 2082 2083 switch (Entry.Kind) { 2084 case BitstreamEntry::SubBlock: 2085 case BitstreamEntry::Error: 2086 return error("Malformed block"); 2087 case BitstreamEntry::EndBlock: 2088 return Error::success(); 2089 case BitstreamEntry::Record: 2090 break; 2091 } 2092 2093 Record.clear(); 2094 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2095 if (!MaybeRecord) 2096 return MaybeRecord.takeError(); 2097 switch (MaybeRecord.get()) { 2098 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2099 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2100 cast<Function>(ValueList[Record[0]]), Record); 2101 break; 2102 } 2103 } 2104 } 2105 2106 /// Parse the value symbol table at either the current parsing location or 2107 /// at the given bit offset if provided. 2108 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2109 uint64_t CurrentBit; 2110 // Pass in the Offset to distinguish between calling for the module-level 2111 // VST (where we want to jump to the VST offset) and the function-level 2112 // VST (where we don't). 2113 if (Offset > 0) { 2114 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2115 if (!MaybeCurrentBit) 2116 return MaybeCurrentBit.takeError(); 2117 CurrentBit = MaybeCurrentBit.get(); 2118 // If this module uses a string table, read this as a module-level VST. 2119 if (UseStrtab) { 2120 if (Error Err = parseGlobalValueSymbolTable()) 2121 return Err; 2122 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2123 return JumpFailed; 2124 return Error::success(); 2125 } 2126 // Otherwise, the VST will be in a similar format to a function-level VST, 2127 // and will contain symbol names. 2128 } 2129 2130 // Compute the delta between the bitcode indices in the VST (the word offset 2131 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2132 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2133 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2134 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2135 // just before entering the VST subblock because: 1) the EnterSubBlock 2136 // changes the AbbrevID width; 2) the VST block is nested within the same 2137 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2138 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2139 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2140 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2141 unsigned FuncBitcodeOffsetDelta = 2142 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2143 2144 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2145 return Err; 2146 2147 SmallVector<uint64_t, 64> Record; 2148 2149 Triple TT(TheModule->getTargetTriple()); 2150 2151 // Read all the records for this value table. 2152 SmallString<128> ValueName; 2153 2154 while (true) { 2155 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2156 if (!MaybeEntry) 2157 return MaybeEntry.takeError(); 2158 BitstreamEntry Entry = MaybeEntry.get(); 2159 2160 switch (Entry.Kind) { 2161 case BitstreamEntry::SubBlock: // Handled for us already. 2162 case BitstreamEntry::Error: 2163 return error("Malformed block"); 2164 case BitstreamEntry::EndBlock: 2165 if (Offset > 0) 2166 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2167 return JumpFailed; 2168 return Error::success(); 2169 case BitstreamEntry::Record: 2170 // The interesting case. 2171 break; 2172 } 2173 2174 // Read a record. 2175 Record.clear(); 2176 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2177 if (!MaybeRecord) 2178 return MaybeRecord.takeError(); 2179 switch (MaybeRecord.get()) { 2180 default: // Default behavior: unknown type. 2181 break; 2182 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2183 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2184 if (Error Err = ValOrErr.takeError()) 2185 return Err; 2186 ValOrErr.get(); 2187 break; 2188 } 2189 case bitc::VST_CODE_FNENTRY: { 2190 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2191 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2192 if (Error Err = ValOrErr.takeError()) 2193 return Err; 2194 Value *V = ValOrErr.get(); 2195 2196 // Ignore function offsets emitted for aliases of functions in older 2197 // versions of LLVM. 2198 if (auto *F = dyn_cast<Function>(V)) 2199 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2200 break; 2201 } 2202 case bitc::VST_CODE_BBENTRY: { 2203 if (convertToString(Record, 1, ValueName)) 2204 return error("Invalid record"); 2205 BasicBlock *BB = getBasicBlock(Record[0]); 2206 if (!BB) 2207 return error("Invalid record"); 2208 2209 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2210 ValueName.clear(); 2211 break; 2212 } 2213 } 2214 } 2215 } 2216 2217 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2218 /// encoding. 2219 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2220 if ((V & 1) == 0) 2221 return V >> 1; 2222 if (V != 1) 2223 return -(V >> 1); 2224 // There is no such thing as -0 with integers. "-0" really means MININT. 2225 return 1ULL << 63; 2226 } 2227 2228 /// Resolve all of the initializers for global values and aliases that we can. 2229 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2230 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2231 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2232 IndirectSymbolInitWorklist; 2233 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2234 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2235 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2236 2237 GlobalInitWorklist.swap(GlobalInits); 2238 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2239 FunctionPrefixWorklist.swap(FunctionPrefixes); 2240 FunctionPrologueWorklist.swap(FunctionPrologues); 2241 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2242 2243 while (!GlobalInitWorklist.empty()) { 2244 unsigned ValID = GlobalInitWorklist.back().second; 2245 if (ValID >= ValueList.size()) { 2246 // Not ready to resolve this yet, it requires something later in the file. 2247 GlobalInits.push_back(GlobalInitWorklist.back()); 2248 } else { 2249 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2250 GlobalInitWorklist.back().first->setInitializer(C); 2251 else 2252 return error("Expected a constant"); 2253 } 2254 GlobalInitWorklist.pop_back(); 2255 } 2256 2257 while (!IndirectSymbolInitWorklist.empty()) { 2258 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2259 if (ValID >= ValueList.size()) { 2260 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2261 } else { 2262 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2263 if (!C) 2264 return error("Expected a constant"); 2265 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2266 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2267 return error("Alias and aliasee types don't match"); 2268 GIS->setIndirectSymbol(C); 2269 } 2270 IndirectSymbolInitWorklist.pop_back(); 2271 } 2272 2273 while (!FunctionPrefixWorklist.empty()) { 2274 unsigned ValID = FunctionPrefixWorklist.back().second; 2275 if (ValID >= ValueList.size()) { 2276 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2277 } else { 2278 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2279 FunctionPrefixWorklist.back().first->setPrefixData(C); 2280 else 2281 return error("Expected a constant"); 2282 } 2283 FunctionPrefixWorklist.pop_back(); 2284 } 2285 2286 while (!FunctionPrologueWorklist.empty()) { 2287 unsigned ValID = FunctionPrologueWorklist.back().second; 2288 if (ValID >= ValueList.size()) { 2289 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2290 } else { 2291 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2292 FunctionPrologueWorklist.back().first->setPrologueData(C); 2293 else 2294 return error("Expected a constant"); 2295 } 2296 FunctionPrologueWorklist.pop_back(); 2297 } 2298 2299 while (!FunctionPersonalityFnWorklist.empty()) { 2300 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2301 if (ValID >= ValueList.size()) { 2302 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2303 } else { 2304 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2305 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2306 else 2307 return error("Expected a constant"); 2308 } 2309 FunctionPersonalityFnWorklist.pop_back(); 2310 } 2311 2312 return Error::success(); 2313 } 2314 2315 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2316 SmallVector<uint64_t, 8> Words(Vals.size()); 2317 transform(Vals, Words.begin(), 2318 BitcodeReader::decodeSignRotatedValue); 2319 2320 return APInt(TypeBits, Words); 2321 } 2322 2323 Error BitcodeReader::parseConstants() { 2324 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2325 return Err; 2326 2327 SmallVector<uint64_t, 64> Record; 2328 2329 // Read all the records for this value table. 2330 Type *CurTy = Type::getInt32Ty(Context); 2331 Type *CurFullTy = Type::getInt32Ty(Context); 2332 unsigned NextCstNo = ValueList.size(); 2333 2334 struct DelayedShufTy { 2335 VectorType *OpTy; 2336 VectorType *RTy; 2337 Type *CurFullTy; 2338 uint64_t Op0Idx; 2339 uint64_t Op1Idx; 2340 uint64_t Op2Idx; 2341 }; 2342 std::vector<DelayedShufTy> DelayedShuffles; 2343 while (true) { 2344 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2345 if (!MaybeEntry) 2346 return MaybeEntry.takeError(); 2347 BitstreamEntry Entry = MaybeEntry.get(); 2348 2349 switch (Entry.Kind) { 2350 case BitstreamEntry::SubBlock: // Handled for us already. 2351 case BitstreamEntry::Error: 2352 return error("Malformed block"); 2353 case BitstreamEntry::EndBlock: 2354 if (NextCstNo != ValueList.size()) 2355 return error("Invalid constant reference"); 2356 2357 // Once all the constants have been read, go through and resolve forward 2358 // references. 2359 // 2360 // We have to treat shuffles specially because they don't have three 2361 // operands anymore. We need to convert the shuffle mask into an array, 2362 // and we can't convert a forward reference. 2363 for (auto &DelayedShuffle : DelayedShuffles) { 2364 VectorType *OpTy = DelayedShuffle.OpTy; 2365 VectorType *RTy = DelayedShuffle.RTy; 2366 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2367 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2368 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2369 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2370 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2371 Type *ShufTy = 2372 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2373 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2374 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2375 return error("Invalid shufflevector operands"); 2376 SmallVector<int, 16> Mask; 2377 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2378 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2379 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2380 ++NextCstNo; 2381 } 2382 ValueList.resolveConstantForwardRefs(); 2383 return Error::success(); 2384 case BitstreamEntry::Record: 2385 // The interesting case. 2386 break; 2387 } 2388 2389 // Read a record. 2390 Record.clear(); 2391 Type *VoidType = Type::getVoidTy(Context); 2392 Value *V = nullptr; 2393 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2394 if (!MaybeBitCode) 2395 return MaybeBitCode.takeError(); 2396 switch (unsigned BitCode = MaybeBitCode.get()) { 2397 default: // Default behavior: unknown constant 2398 case bitc::CST_CODE_UNDEF: // UNDEF 2399 V = UndefValue::get(CurTy); 2400 break; 2401 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2402 if (Record.empty()) 2403 return error("Invalid record"); 2404 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2405 return error("Invalid record"); 2406 if (TypeList[Record[0]] == VoidType) 2407 return error("Invalid constant type"); 2408 CurFullTy = TypeList[Record[0]]; 2409 CurTy = flattenPointerTypes(CurFullTy); 2410 continue; // Skip the ValueList manipulation. 2411 case bitc::CST_CODE_NULL: // NULL 2412 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2413 return error("Invalid type for a constant null value"); 2414 V = Constant::getNullValue(CurTy); 2415 break; 2416 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2417 if (!CurTy->isIntegerTy() || Record.empty()) 2418 return error("Invalid record"); 2419 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2420 break; 2421 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2422 if (!CurTy->isIntegerTy() || Record.empty()) 2423 return error("Invalid record"); 2424 2425 APInt VInt = 2426 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2427 V = ConstantInt::get(Context, VInt); 2428 2429 break; 2430 } 2431 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2432 if (Record.empty()) 2433 return error("Invalid record"); 2434 if (CurTy->isHalfTy()) 2435 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2436 APInt(16, (uint16_t)Record[0]))); 2437 else if (CurTy->isBFloatTy()) 2438 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2439 APInt(16, (uint32_t)Record[0]))); 2440 else if (CurTy->isFloatTy()) 2441 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2442 APInt(32, (uint32_t)Record[0]))); 2443 else if (CurTy->isDoubleTy()) 2444 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2445 APInt(64, Record[0]))); 2446 else if (CurTy->isX86_FP80Ty()) { 2447 // Bits are not stored the same way as a normal i80 APInt, compensate. 2448 uint64_t Rearrange[2]; 2449 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2450 Rearrange[1] = Record[0] >> 48; 2451 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2452 APInt(80, Rearrange))); 2453 } else if (CurTy->isFP128Ty()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2455 APInt(128, Record))); 2456 else if (CurTy->isPPC_FP128Ty()) 2457 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2458 APInt(128, Record))); 2459 else 2460 V = UndefValue::get(CurTy); 2461 break; 2462 } 2463 2464 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2465 if (Record.empty()) 2466 return error("Invalid record"); 2467 2468 unsigned Size = Record.size(); 2469 SmallVector<Constant*, 16> Elts; 2470 2471 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2472 for (unsigned i = 0; i != Size; ++i) 2473 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2474 STy->getElementType(i))); 2475 V = ConstantStruct::get(STy, Elts); 2476 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2477 Type *EltTy = ATy->getElementType(); 2478 for (unsigned i = 0; i != Size; ++i) 2479 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2480 V = ConstantArray::get(ATy, Elts); 2481 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2482 Type *EltTy = VTy->getElementType(); 2483 for (unsigned i = 0; i != Size; ++i) 2484 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2485 V = ConstantVector::get(Elts); 2486 } else { 2487 V = UndefValue::get(CurTy); 2488 } 2489 break; 2490 } 2491 case bitc::CST_CODE_STRING: // STRING: [values] 2492 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2493 if (Record.empty()) 2494 return error("Invalid record"); 2495 2496 SmallString<16> Elts(Record.begin(), Record.end()); 2497 V = ConstantDataArray::getString(Context, Elts, 2498 BitCode == bitc::CST_CODE_CSTRING); 2499 break; 2500 } 2501 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2502 if (Record.empty()) 2503 return error("Invalid record"); 2504 2505 Type *EltTy; 2506 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2507 EltTy = Array->getElementType(); 2508 else 2509 EltTy = cast<VectorType>(CurTy)->getElementType(); 2510 if (EltTy->isIntegerTy(8)) { 2511 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2512 if (isa<VectorType>(CurTy)) 2513 V = ConstantDataVector::get(Context, Elts); 2514 else 2515 V = ConstantDataArray::get(Context, Elts); 2516 } else if (EltTy->isIntegerTy(16)) { 2517 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2518 if (isa<VectorType>(CurTy)) 2519 V = ConstantDataVector::get(Context, Elts); 2520 else 2521 V = ConstantDataArray::get(Context, Elts); 2522 } else if (EltTy->isIntegerTy(32)) { 2523 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2524 if (isa<VectorType>(CurTy)) 2525 V = ConstantDataVector::get(Context, Elts); 2526 else 2527 V = ConstantDataArray::get(Context, Elts); 2528 } else if (EltTy->isIntegerTy(64)) { 2529 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2530 if (isa<VectorType>(CurTy)) 2531 V = ConstantDataVector::get(Context, Elts); 2532 else 2533 V = ConstantDataArray::get(Context, Elts); 2534 } else if (EltTy->isHalfTy()) { 2535 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2536 if (isa<VectorType>(CurTy)) 2537 V = ConstantDataVector::getFP(EltTy, Elts); 2538 else 2539 V = ConstantDataArray::getFP(EltTy, Elts); 2540 } else if (EltTy->isBFloatTy()) { 2541 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2542 if (isa<VectorType>(CurTy)) 2543 V = ConstantDataVector::getFP(EltTy, Elts); 2544 else 2545 V = ConstantDataArray::getFP(EltTy, Elts); 2546 } else if (EltTy->isFloatTy()) { 2547 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2548 if (isa<VectorType>(CurTy)) 2549 V = ConstantDataVector::getFP(EltTy, Elts); 2550 else 2551 V = ConstantDataArray::getFP(EltTy, Elts); 2552 } else if (EltTy->isDoubleTy()) { 2553 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2554 if (isa<VectorType>(CurTy)) 2555 V = ConstantDataVector::getFP(EltTy, Elts); 2556 else 2557 V = ConstantDataArray::getFP(EltTy, Elts); 2558 } else { 2559 return error("Invalid type for value"); 2560 } 2561 break; 2562 } 2563 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2564 if (Record.size() < 2) 2565 return error("Invalid record"); 2566 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2567 if (Opc < 0) { 2568 V = UndefValue::get(CurTy); // Unknown unop. 2569 } else { 2570 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2571 unsigned Flags = 0; 2572 V = ConstantExpr::get(Opc, LHS, Flags); 2573 } 2574 break; 2575 } 2576 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2577 if (Record.size() < 3) 2578 return error("Invalid record"); 2579 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2580 if (Opc < 0) { 2581 V = UndefValue::get(CurTy); // Unknown binop. 2582 } else { 2583 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2584 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2585 unsigned Flags = 0; 2586 if (Record.size() >= 4) { 2587 if (Opc == Instruction::Add || 2588 Opc == Instruction::Sub || 2589 Opc == Instruction::Mul || 2590 Opc == Instruction::Shl) { 2591 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2592 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2593 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2594 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2595 } else if (Opc == Instruction::SDiv || 2596 Opc == Instruction::UDiv || 2597 Opc == Instruction::LShr || 2598 Opc == Instruction::AShr) { 2599 if (Record[3] & (1 << bitc::PEO_EXACT)) 2600 Flags |= SDivOperator::IsExact; 2601 } 2602 } 2603 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2604 } 2605 break; 2606 } 2607 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2608 if (Record.size() < 3) 2609 return error("Invalid record"); 2610 int Opc = getDecodedCastOpcode(Record[0]); 2611 if (Opc < 0) { 2612 V = UndefValue::get(CurTy); // Unknown cast. 2613 } else { 2614 Type *OpTy = getTypeByID(Record[1]); 2615 if (!OpTy) 2616 return error("Invalid record"); 2617 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2618 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2619 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2620 } 2621 break; 2622 } 2623 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2624 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2625 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2626 // operands] 2627 unsigned OpNum = 0; 2628 Type *PointeeType = nullptr; 2629 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2630 Record.size() % 2) 2631 PointeeType = getTypeByID(Record[OpNum++]); 2632 2633 bool InBounds = false; 2634 Optional<unsigned> InRangeIndex; 2635 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2636 uint64_t Op = Record[OpNum++]; 2637 InBounds = Op & 1; 2638 InRangeIndex = Op >> 1; 2639 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2640 InBounds = true; 2641 2642 SmallVector<Constant*, 16> Elts; 2643 Type *Elt0FullTy = nullptr; 2644 while (OpNum != Record.size()) { 2645 if (!Elt0FullTy) 2646 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2647 Type *ElTy = getTypeByID(Record[OpNum++]); 2648 if (!ElTy) 2649 return error("Invalid record"); 2650 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2651 } 2652 2653 if (Elts.size() < 1) 2654 return error("Invalid gep with no operands"); 2655 2656 Type *ImplicitPointeeType = 2657 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2658 if (!PointeeType) 2659 PointeeType = ImplicitPointeeType; 2660 else if (PointeeType != ImplicitPointeeType) 2661 return error("Explicit gep operator type does not match pointee type " 2662 "of pointer operand"); 2663 2664 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2665 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2666 InBounds, InRangeIndex); 2667 break; 2668 } 2669 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2670 if (Record.size() < 3) 2671 return error("Invalid record"); 2672 2673 Type *SelectorTy = Type::getInt1Ty(Context); 2674 2675 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2676 // Get the type from the ValueList before getting a forward ref. 2677 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2678 if (Value *V = ValueList[Record[0]]) 2679 if (SelectorTy != V->getType()) 2680 SelectorTy = VectorType::get(SelectorTy, 2681 VTy->getElementCount()); 2682 2683 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2684 SelectorTy), 2685 ValueList.getConstantFwdRef(Record[1],CurTy), 2686 ValueList.getConstantFwdRef(Record[2],CurTy)); 2687 break; 2688 } 2689 case bitc::CST_CODE_CE_EXTRACTELT 2690 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2691 if (Record.size() < 3) 2692 return error("Invalid record"); 2693 VectorType *OpTy = 2694 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2695 if (!OpTy) 2696 return error("Invalid record"); 2697 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2698 Constant *Op1 = nullptr; 2699 if (Record.size() == 4) { 2700 Type *IdxTy = getTypeByID(Record[2]); 2701 if (!IdxTy) 2702 return error("Invalid record"); 2703 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2704 } else // TODO: Remove with llvm 4.0 2705 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2706 if (!Op1) 2707 return error("Invalid record"); 2708 V = ConstantExpr::getExtractElement(Op0, Op1); 2709 break; 2710 } 2711 case bitc::CST_CODE_CE_INSERTELT 2712 : { // CE_INSERTELT: [opval, opval, opty, opval] 2713 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2714 if (Record.size() < 3 || !OpTy) 2715 return error("Invalid record"); 2716 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2717 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2718 OpTy->getElementType()); 2719 Constant *Op2 = nullptr; 2720 if (Record.size() == 4) { 2721 Type *IdxTy = getTypeByID(Record[2]); 2722 if (!IdxTy) 2723 return error("Invalid record"); 2724 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2725 } else // TODO: Remove with llvm 4.0 2726 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2727 if (!Op2) 2728 return error("Invalid record"); 2729 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2730 break; 2731 } 2732 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2733 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2734 if (Record.size() < 3 || !OpTy) 2735 return error("Invalid record"); 2736 DelayedShuffles.push_back( 2737 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2738 continue; 2739 } 2740 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2741 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2742 VectorType *OpTy = 2743 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2744 if (Record.size() < 4 || !RTy || !OpTy) 2745 return error("Invalid record"); 2746 DelayedShuffles.push_back( 2747 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2748 continue; 2749 } 2750 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2751 if (Record.size() < 4) 2752 return error("Invalid record"); 2753 Type *OpTy = getTypeByID(Record[0]); 2754 if (!OpTy) 2755 return error("Invalid record"); 2756 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2757 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2758 2759 if (OpTy->isFPOrFPVectorTy()) 2760 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2761 else 2762 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2763 break; 2764 } 2765 // This maintains backward compatibility, pre-asm dialect keywords. 2766 // FIXME: Remove with the 4.0 release. 2767 case bitc::CST_CODE_INLINEASM_OLD: { 2768 if (Record.size() < 2) 2769 return error("Invalid record"); 2770 std::string AsmStr, ConstrStr; 2771 bool HasSideEffects = Record[0] & 1; 2772 bool IsAlignStack = Record[0] >> 1; 2773 unsigned AsmStrSize = Record[1]; 2774 if (2+AsmStrSize >= Record.size()) 2775 return error("Invalid record"); 2776 unsigned ConstStrSize = Record[2+AsmStrSize]; 2777 if (3+AsmStrSize+ConstStrSize > Record.size()) 2778 return error("Invalid record"); 2779 2780 for (unsigned i = 0; i != AsmStrSize; ++i) 2781 AsmStr += (char)Record[2+i]; 2782 for (unsigned i = 0; i != ConstStrSize; ++i) 2783 ConstrStr += (char)Record[3+AsmStrSize+i]; 2784 UpgradeInlineAsmString(&AsmStr); 2785 V = InlineAsm::get( 2786 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2787 ConstrStr, HasSideEffects, IsAlignStack); 2788 break; 2789 } 2790 // This version adds support for the asm dialect keywords (e.g., 2791 // inteldialect). 2792 case bitc::CST_CODE_INLINEASM: { 2793 if (Record.size() < 2) 2794 return error("Invalid record"); 2795 std::string AsmStr, ConstrStr; 2796 bool HasSideEffects = Record[0] & 1; 2797 bool IsAlignStack = (Record[0] >> 1) & 1; 2798 unsigned AsmDialect = Record[0] >> 2; 2799 unsigned AsmStrSize = Record[1]; 2800 if (2+AsmStrSize >= Record.size()) 2801 return error("Invalid record"); 2802 unsigned ConstStrSize = Record[2+AsmStrSize]; 2803 if (3+AsmStrSize+ConstStrSize > Record.size()) 2804 return error("Invalid record"); 2805 2806 for (unsigned i = 0; i != AsmStrSize; ++i) 2807 AsmStr += (char)Record[2+i]; 2808 for (unsigned i = 0; i != ConstStrSize; ++i) 2809 ConstrStr += (char)Record[3+AsmStrSize+i]; 2810 UpgradeInlineAsmString(&AsmStr); 2811 V = InlineAsm::get( 2812 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2813 ConstrStr, HasSideEffects, IsAlignStack, 2814 InlineAsm::AsmDialect(AsmDialect)); 2815 break; 2816 } 2817 case bitc::CST_CODE_BLOCKADDRESS:{ 2818 if (Record.size() < 3) 2819 return error("Invalid record"); 2820 Type *FnTy = getTypeByID(Record[0]); 2821 if (!FnTy) 2822 return error("Invalid record"); 2823 Function *Fn = 2824 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2825 if (!Fn) 2826 return error("Invalid record"); 2827 2828 // If the function is already parsed we can insert the block address right 2829 // away. 2830 BasicBlock *BB; 2831 unsigned BBID = Record[2]; 2832 if (!BBID) 2833 // Invalid reference to entry block. 2834 return error("Invalid ID"); 2835 if (!Fn->empty()) { 2836 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2837 for (size_t I = 0, E = BBID; I != E; ++I) { 2838 if (BBI == BBE) 2839 return error("Invalid ID"); 2840 ++BBI; 2841 } 2842 BB = &*BBI; 2843 } else { 2844 // Otherwise insert a placeholder and remember it so it can be inserted 2845 // when the function is parsed. 2846 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2847 if (FwdBBs.empty()) 2848 BasicBlockFwdRefQueue.push_back(Fn); 2849 if (FwdBBs.size() < BBID + 1) 2850 FwdBBs.resize(BBID + 1); 2851 if (!FwdBBs[BBID]) 2852 FwdBBs[BBID] = BasicBlock::Create(Context); 2853 BB = FwdBBs[BBID]; 2854 } 2855 V = BlockAddress::get(Fn, BB); 2856 break; 2857 } 2858 } 2859 2860 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2861 "Incorrect fully structured type provided for Constant"); 2862 ValueList.assignValue(V, NextCstNo, CurFullTy); 2863 ++NextCstNo; 2864 } 2865 } 2866 2867 Error BitcodeReader::parseUseLists() { 2868 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2869 return Err; 2870 2871 // Read all the records. 2872 SmallVector<uint64_t, 64> Record; 2873 2874 while (true) { 2875 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2876 if (!MaybeEntry) 2877 return MaybeEntry.takeError(); 2878 BitstreamEntry Entry = MaybeEntry.get(); 2879 2880 switch (Entry.Kind) { 2881 case BitstreamEntry::SubBlock: // Handled for us already. 2882 case BitstreamEntry::Error: 2883 return error("Malformed block"); 2884 case BitstreamEntry::EndBlock: 2885 return Error::success(); 2886 case BitstreamEntry::Record: 2887 // The interesting case. 2888 break; 2889 } 2890 2891 // Read a use list record. 2892 Record.clear(); 2893 bool IsBB = false; 2894 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2895 if (!MaybeRecord) 2896 return MaybeRecord.takeError(); 2897 switch (MaybeRecord.get()) { 2898 default: // Default behavior: unknown type. 2899 break; 2900 case bitc::USELIST_CODE_BB: 2901 IsBB = true; 2902 LLVM_FALLTHROUGH; 2903 case bitc::USELIST_CODE_DEFAULT: { 2904 unsigned RecordLength = Record.size(); 2905 if (RecordLength < 3) 2906 // Records should have at least an ID and two indexes. 2907 return error("Invalid record"); 2908 unsigned ID = Record.back(); 2909 Record.pop_back(); 2910 2911 Value *V; 2912 if (IsBB) { 2913 assert(ID < FunctionBBs.size() && "Basic block not found"); 2914 V = FunctionBBs[ID]; 2915 } else 2916 V = ValueList[ID]; 2917 unsigned NumUses = 0; 2918 SmallDenseMap<const Use *, unsigned, 16> Order; 2919 for (const Use &U : V->materialized_uses()) { 2920 if (++NumUses > Record.size()) 2921 break; 2922 Order[&U] = Record[NumUses - 1]; 2923 } 2924 if (Order.size() != Record.size() || NumUses > Record.size()) 2925 // Mismatches can happen if the functions are being materialized lazily 2926 // (out-of-order), or a value has been upgraded. 2927 break; 2928 2929 V->sortUseList([&](const Use &L, const Use &R) { 2930 return Order.lookup(&L) < Order.lookup(&R); 2931 }); 2932 break; 2933 } 2934 } 2935 } 2936 } 2937 2938 /// When we see the block for metadata, remember where it is and then skip it. 2939 /// This lets us lazily deserialize the metadata. 2940 Error BitcodeReader::rememberAndSkipMetadata() { 2941 // Save the current stream state. 2942 uint64_t CurBit = Stream.GetCurrentBitNo(); 2943 DeferredMetadataInfo.push_back(CurBit); 2944 2945 // Skip over the block for now. 2946 if (Error Err = Stream.SkipBlock()) 2947 return Err; 2948 return Error::success(); 2949 } 2950 2951 Error BitcodeReader::materializeMetadata() { 2952 for (uint64_t BitPos : DeferredMetadataInfo) { 2953 // Move the bit stream to the saved position. 2954 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2955 return JumpFailed; 2956 if (Error Err = MDLoader->parseModuleMetadata()) 2957 return Err; 2958 } 2959 2960 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2961 // metadata. 2962 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2963 NamedMDNode *LinkerOpts = 2964 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2965 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2966 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2967 } 2968 2969 DeferredMetadataInfo.clear(); 2970 return Error::success(); 2971 } 2972 2973 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2974 2975 /// When we see the block for a function body, remember where it is and then 2976 /// skip it. This lets us lazily deserialize the functions. 2977 Error BitcodeReader::rememberAndSkipFunctionBody() { 2978 // Get the function we are talking about. 2979 if (FunctionsWithBodies.empty()) 2980 return error("Insufficient function protos"); 2981 2982 Function *Fn = FunctionsWithBodies.back(); 2983 FunctionsWithBodies.pop_back(); 2984 2985 // Save the current stream state. 2986 uint64_t CurBit = Stream.GetCurrentBitNo(); 2987 assert( 2988 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2989 "Mismatch between VST and scanned function offsets"); 2990 DeferredFunctionInfo[Fn] = CurBit; 2991 2992 // Skip over the function block for now. 2993 if (Error Err = Stream.SkipBlock()) 2994 return Err; 2995 return Error::success(); 2996 } 2997 2998 Error BitcodeReader::globalCleanup() { 2999 // Patch the initializers for globals and aliases up. 3000 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3001 return Err; 3002 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3003 return error("Malformed global initializer set"); 3004 3005 // Look for intrinsic functions which need to be upgraded at some point 3006 for (Function &F : *TheModule) { 3007 MDLoader->upgradeDebugIntrinsics(F); 3008 Function *NewFn; 3009 if (UpgradeIntrinsicFunction(&F, NewFn)) 3010 UpgradedIntrinsics[&F] = NewFn; 3011 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3012 // Some types could be renamed during loading if several modules are 3013 // loaded in the same LLVMContext (LTO scenario). In this case we should 3014 // remangle intrinsics names as well. 3015 RemangledIntrinsics[&F] = Remangled.getValue(); 3016 } 3017 3018 // Look for global variables which need to be renamed. 3019 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3020 for (GlobalVariable &GV : TheModule->globals()) 3021 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3022 UpgradedVariables.emplace_back(&GV, Upgraded); 3023 for (auto &Pair : UpgradedVariables) { 3024 Pair.first->eraseFromParent(); 3025 TheModule->getGlobalList().push_back(Pair.second); 3026 } 3027 3028 // Force deallocation of memory for these vectors to favor the client that 3029 // want lazy deserialization. 3030 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3031 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3032 IndirectSymbolInits); 3033 return Error::success(); 3034 } 3035 3036 /// Support for lazy parsing of function bodies. This is required if we 3037 /// either have an old bitcode file without a VST forward declaration record, 3038 /// or if we have an anonymous function being materialized, since anonymous 3039 /// functions do not have a name and are therefore not in the VST. 3040 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3041 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3042 return JumpFailed; 3043 3044 if (Stream.AtEndOfStream()) 3045 return error("Could not find function in stream"); 3046 3047 if (!SeenFirstFunctionBody) 3048 return error("Trying to materialize functions before seeing function blocks"); 3049 3050 // An old bitcode file with the symbol table at the end would have 3051 // finished the parse greedily. 3052 assert(SeenValueSymbolTable); 3053 3054 SmallVector<uint64_t, 64> Record; 3055 3056 while (true) { 3057 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3058 if (!MaybeEntry) 3059 return MaybeEntry.takeError(); 3060 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3061 3062 switch (Entry.Kind) { 3063 default: 3064 return error("Expect SubBlock"); 3065 case BitstreamEntry::SubBlock: 3066 switch (Entry.ID) { 3067 default: 3068 return error("Expect function block"); 3069 case bitc::FUNCTION_BLOCK_ID: 3070 if (Error Err = rememberAndSkipFunctionBody()) 3071 return Err; 3072 NextUnreadBit = Stream.GetCurrentBitNo(); 3073 return Error::success(); 3074 } 3075 } 3076 } 3077 } 3078 3079 bool BitcodeReaderBase::readBlockInfo() { 3080 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3081 Stream.ReadBlockInfoBlock(); 3082 if (!MaybeNewBlockInfo) 3083 return true; // FIXME Handle the error. 3084 Optional<BitstreamBlockInfo> NewBlockInfo = 3085 std::move(MaybeNewBlockInfo.get()); 3086 if (!NewBlockInfo) 3087 return true; 3088 BlockInfo = std::move(*NewBlockInfo); 3089 return false; 3090 } 3091 3092 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3093 // v1: [selection_kind, name] 3094 // v2: [strtab_offset, strtab_size, selection_kind] 3095 StringRef Name; 3096 std::tie(Name, Record) = readNameFromStrtab(Record); 3097 3098 if (Record.empty()) 3099 return error("Invalid record"); 3100 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3101 std::string OldFormatName; 3102 if (!UseStrtab) { 3103 if (Record.size() < 2) 3104 return error("Invalid record"); 3105 unsigned ComdatNameSize = Record[1]; 3106 OldFormatName.reserve(ComdatNameSize); 3107 for (unsigned i = 0; i != ComdatNameSize; ++i) 3108 OldFormatName += (char)Record[2 + i]; 3109 Name = OldFormatName; 3110 } 3111 Comdat *C = TheModule->getOrInsertComdat(Name); 3112 C->setSelectionKind(SK); 3113 ComdatList.push_back(C); 3114 return Error::success(); 3115 } 3116 3117 static void inferDSOLocal(GlobalValue *GV) { 3118 // infer dso_local from linkage and visibility if it is not encoded. 3119 if (GV->hasLocalLinkage() || 3120 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3121 GV->setDSOLocal(true); 3122 } 3123 3124 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3125 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3126 // visibility, threadlocal, unnamed_addr, externally_initialized, 3127 // dllstorageclass, comdat, attributes, preemption specifier, 3128 // partition strtab offset, partition strtab size] (name in VST) 3129 // v2: [strtab_offset, strtab_size, v1] 3130 StringRef Name; 3131 std::tie(Name, Record) = readNameFromStrtab(Record); 3132 3133 if (Record.size() < 6) 3134 return error("Invalid record"); 3135 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3136 Type *Ty = flattenPointerTypes(FullTy); 3137 if (!Ty) 3138 return error("Invalid record"); 3139 bool isConstant = Record[1] & 1; 3140 bool explicitType = Record[1] & 2; 3141 unsigned AddressSpace; 3142 if (explicitType) { 3143 AddressSpace = Record[1] >> 2; 3144 } else { 3145 if (!Ty->isPointerTy()) 3146 return error("Invalid type for value"); 3147 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3148 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3149 } 3150 3151 uint64_t RawLinkage = Record[3]; 3152 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3153 MaybeAlign Alignment; 3154 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3155 return Err; 3156 std::string Section; 3157 if (Record[5]) { 3158 if (Record[5] - 1 >= SectionTable.size()) 3159 return error("Invalid ID"); 3160 Section = SectionTable[Record[5] - 1]; 3161 } 3162 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3163 // Local linkage must have default visibility. 3164 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3165 // FIXME: Change to an error if non-default in 4.0. 3166 Visibility = getDecodedVisibility(Record[6]); 3167 3168 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3169 if (Record.size() > 7) 3170 TLM = getDecodedThreadLocalMode(Record[7]); 3171 3172 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3173 if (Record.size() > 8) 3174 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3175 3176 bool ExternallyInitialized = false; 3177 if (Record.size() > 9) 3178 ExternallyInitialized = Record[9]; 3179 3180 GlobalVariable *NewGV = 3181 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3182 nullptr, TLM, AddressSpace, ExternallyInitialized); 3183 NewGV->setAlignment(Alignment); 3184 if (!Section.empty()) 3185 NewGV->setSection(Section); 3186 NewGV->setVisibility(Visibility); 3187 NewGV->setUnnamedAddr(UnnamedAddr); 3188 3189 if (Record.size() > 10) 3190 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3191 else 3192 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3193 3194 FullTy = PointerType::get(FullTy, AddressSpace); 3195 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3196 "Incorrect fully specified type for GlobalVariable"); 3197 ValueList.push_back(NewGV, FullTy); 3198 3199 // Remember which value to use for the global initializer. 3200 if (unsigned InitID = Record[2]) 3201 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3202 3203 if (Record.size() > 11) { 3204 if (unsigned ComdatID = Record[11]) { 3205 if (ComdatID > ComdatList.size()) 3206 return error("Invalid global variable comdat ID"); 3207 NewGV->setComdat(ComdatList[ComdatID - 1]); 3208 } 3209 } else if (hasImplicitComdat(RawLinkage)) { 3210 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3211 } 3212 3213 if (Record.size() > 12) { 3214 auto AS = getAttributes(Record[12]).getFnAttributes(); 3215 NewGV->setAttributes(AS); 3216 } 3217 3218 if (Record.size() > 13) { 3219 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3220 } 3221 inferDSOLocal(NewGV); 3222 3223 // Check whether we have enough values to read a partition name. 3224 if (Record.size() > 15) 3225 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3226 3227 return Error::success(); 3228 } 3229 3230 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3231 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3232 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3233 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3234 // v2: [strtab_offset, strtab_size, v1] 3235 StringRef Name; 3236 std::tie(Name, Record) = readNameFromStrtab(Record); 3237 3238 if (Record.size() < 8) 3239 return error("Invalid record"); 3240 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3241 Type *FTy = flattenPointerTypes(FullFTy); 3242 if (!FTy) 3243 return error("Invalid record"); 3244 if (isa<PointerType>(FTy)) 3245 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3246 3247 if (!isa<FunctionType>(FTy)) 3248 return error("Invalid type for value"); 3249 auto CC = static_cast<CallingConv::ID>(Record[1]); 3250 if (CC & ~CallingConv::MaxID) 3251 return error("Invalid calling convention ID"); 3252 3253 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3254 if (Record.size() > 16) 3255 AddrSpace = Record[16]; 3256 3257 Function *Func = 3258 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3259 AddrSpace, Name, TheModule); 3260 3261 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3262 "Incorrect fully specified type provided for function"); 3263 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3264 3265 Func->setCallingConv(CC); 3266 bool isProto = Record[2]; 3267 uint64_t RawLinkage = Record[3]; 3268 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3269 Func->setAttributes(getAttributes(Record[4])); 3270 3271 // Upgrade any old-style byval without a type by propagating the argument's 3272 // pointee type. There should be no opaque pointers where the byval type is 3273 // implicit. 3274 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3275 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3276 continue; 3277 3278 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3279 Func->removeParamAttr(i, Attribute::ByVal); 3280 Func->addParamAttr(i, Attribute::getWithByValType( 3281 Context, getPointerElementFlatType(PTy))); 3282 } 3283 3284 MaybeAlign Alignment; 3285 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3286 return Err; 3287 Func->setAlignment(Alignment); 3288 if (Record[6]) { 3289 if (Record[6] - 1 >= SectionTable.size()) 3290 return error("Invalid ID"); 3291 Func->setSection(SectionTable[Record[6] - 1]); 3292 } 3293 // Local linkage must have default visibility. 3294 if (!Func->hasLocalLinkage()) 3295 // FIXME: Change to an error if non-default in 4.0. 3296 Func->setVisibility(getDecodedVisibility(Record[7])); 3297 if (Record.size() > 8 && Record[8]) { 3298 if (Record[8] - 1 >= GCTable.size()) 3299 return error("Invalid ID"); 3300 Func->setGC(GCTable[Record[8] - 1]); 3301 } 3302 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3303 if (Record.size() > 9) 3304 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3305 Func->setUnnamedAddr(UnnamedAddr); 3306 if (Record.size() > 10 && Record[10] != 0) 3307 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3308 3309 if (Record.size() > 11) 3310 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3311 else 3312 upgradeDLLImportExportLinkage(Func, RawLinkage); 3313 3314 if (Record.size() > 12) { 3315 if (unsigned ComdatID = Record[12]) { 3316 if (ComdatID > ComdatList.size()) 3317 return error("Invalid function comdat ID"); 3318 Func->setComdat(ComdatList[ComdatID - 1]); 3319 } 3320 } else if (hasImplicitComdat(RawLinkage)) { 3321 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3322 } 3323 3324 if (Record.size() > 13 && Record[13] != 0) 3325 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3326 3327 if (Record.size() > 14 && Record[14] != 0) 3328 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3329 3330 if (Record.size() > 15) { 3331 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3332 } 3333 inferDSOLocal(Func); 3334 3335 // Record[16] is the address space number. 3336 3337 // Check whether we have enough values to read a partition name. 3338 if (Record.size() > 18) 3339 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3340 3341 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3342 assert(Func->getType() == flattenPointerTypes(FullTy) && 3343 "Incorrect fully specified type provided for Function"); 3344 ValueList.push_back(Func, FullTy); 3345 3346 // If this is a function with a body, remember the prototype we are 3347 // creating now, so that we can match up the body with them later. 3348 if (!isProto) { 3349 Func->setIsMaterializable(true); 3350 FunctionsWithBodies.push_back(Func); 3351 DeferredFunctionInfo[Func] = 0; 3352 } 3353 return Error::success(); 3354 } 3355 3356 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3357 unsigned BitCode, ArrayRef<uint64_t> Record) { 3358 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3359 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3360 // dllstorageclass, threadlocal, unnamed_addr, 3361 // preemption specifier] (name in VST) 3362 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3363 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3364 // preemption specifier] (name in VST) 3365 // v2: [strtab_offset, strtab_size, v1] 3366 StringRef Name; 3367 std::tie(Name, Record) = readNameFromStrtab(Record); 3368 3369 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3370 if (Record.size() < (3 + (unsigned)NewRecord)) 3371 return error("Invalid record"); 3372 unsigned OpNum = 0; 3373 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3374 Type *Ty = flattenPointerTypes(FullTy); 3375 if (!Ty) 3376 return error("Invalid record"); 3377 3378 unsigned AddrSpace; 3379 if (!NewRecord) { 3380 auto *PTy = dyn_cast<PointerType>(Ty); 3381 if (!PTy) 3382 return error("Invalid type for value"); 3383 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3384 AddrSpace = PTy->getAddressSpace(); 3385 } else { 3386 AddrSpace = Record[OpNum++]; 3387 } 3388 3389 auto Val = Record[OpNum++]; 3390 auto Linkage = Record[OpNum++]; 3391 GlobalIndirectSymbol *NewGA; 3392 if (BitCode == bitc::MODULE_CODE_ALIAS || 3393 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3394 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3395 TheModule); 3396 else 3397 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3398 nullptr, TheModule); 3399 3400 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3401 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3402 // Old bitcode files didn't have visibility field. 3403 // Local linkage must have default visibility. 3404 if (OpNum != Record.size()) { 3405 auto VisInd = OpNum++; 3406 if (!NewGA->hasLocalLinkage()) 3407 // FIXME: Change to an error if non-default in 4.0. 3408 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3409 } 3410 if (BitCode == bitc::MODULE_CODE_ALIAS || 3411 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3412 if (OpNum != Record.size()) 3413 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3414 else 3415 upgradeDLLImportExportLinkage(NewGA, Linkage); 3416 if (OpNum != Record.size()) 3417 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3418 if (OpNum != Record.size()) 3419 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3420 } 3421 if (OpNum != Record.size()) 3422 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3423 inferDSOLocal(NewGA); 3424 3425 // Check whether we have enough values to read a partition name. 3426 if (OpNum + 1 < Record.size()) { 3427 NewGA->setPartition( 3428 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3429 OpNum += 2; 3430 } 3431 3432 FullTy = PointerType::get(FullTy, AddrSpace); 3433 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3434 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3435 ValueList.push_back(NewGA, FullTy); 3436 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3437 return Error::success(); 3438 } 3439 3440 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3441 bool ShouldLazyLoadMetadata, 3442 DataLayoutCallbackTy DataLayoutCallback) { 3443 if (ResumeBit) { 3444 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3445 return JumpFailed; 3446 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3447 return Err; 3448 3449 SmallVector<uint64_t, 64> Record; 3450 3451 // Parts of bitcode parsing depend on the datalayout. Make sure we 3452 // finalize the datalayout before we run any of that code. 3453 bool ResolvedDataLayout = false; 3454 auto ResolveDataLayout = [&] { 3455 if (ResolvedDataLayout) 3456 return; 3457 3458 // datalayout and triple can't be parsed after this point. 3459 ResolvedDataLayout = true; 3460 3461 // Upgrade data layout string. 3462 std::string DL = llvm::UpgradeDataLayoutString( 3463 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3464 TheModule->setDataLayout(DL); 3465 3466 if (auto LayoutOverride = 3467 DataLayoutCallback(TheModule->getTargetTriple())) 3468 TheModule->setDataLayout(*LayoutOverride); 3469 }; 3470 3471 // Read all the records for this module. 3472 while (true) { 3473 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3474 if (!MaybeEntry) 3475 return MaybeEntry.takeError(); 3476 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3477 3478 switch (Entry.Kind) { 3479 case BitstreamEntry::Error: 3480 return error("Malformed block"); 3481 case BitstreamEntry::EndBlock: 3482 ResolveDataLayout(); 3483 return globalCleanup(); 3484 3485 case BitstreamEntry::SubBlock: 3486 switch (Entry.ID) { 3487 default: // Skip unknown content. 3488 if (Error Err = Stream.SkipBlock()) 3489 return Err; 3490 break; 3491 case bitc::BLOCKINFO_BLOCK_ID: 3492 if (readBlockInfo()) 3493 return error("Malformed block"); 3494 break; 3495 case bitc::PARAMATTR_BLOCK_ID: 3496 if (Error Err = parseAttributeBlock()) 3497 return Err; 3498 break; 3499 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3500 if (Error Err = parseAttributeGroupBlock()) 3501 return Err; 3502 break; 3503 case bitc::TYPE_BLOCK_ID_NEW: 3504 if (Error Err = parseTypeTable()) 3505 return Err; 3506 break; 3507 case bitc::VALUE_SYMTAB_BLOCK_ID: 3508 if (!SeenValueSymbolTable) { 3509 // Either this is an old form VST without function index and an 3510 // associated VST forward declaration record (which would have caused 3511 // the VST to be jumped to and parsed before it was encountered 3512 // normally in the stream), or there were no function blocks to 3513 // trigger an earlier parsing of the VST. 3514 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3515 if (Error Err = parseValueSymbolTable()) 3516 return Err; 3517 SeenValueSymbolTable = true; 3518 } else { 3519 // We must have had a VST forward declaration record, which caused 3520 // the parser to jump to and parse the VST earlier. 3521 assert(VSTOffset > 0); 3522 if (Error Err = Stream.SkipBlock()) 3523 return Err; 3524 } 3525 break; 3526 case bitc::CONSTANTS_BLOCK_ID: 3527 if (Error Err = parseConstants()) 3528 return Err; 3529 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3530 return Err; 3531 break; 3532 case bitc::METADATA_BLOCK_ID: 3533 if (ShouldLazyLoadMetadata) { 3534 if (Error Err = rememberAndSkipMetadata()) 3535 return Err; 3536 break; 3537 } 3538 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3539 if (Error Err = MDLoader->parseModuleMetadata()) 3540 return Err; 3541 break; 3542 case bitc::METADATA_KIND_BLOCK_ID: 3543 if (Error Err = MDLoader->parseMetadataKinds()) 3544 return Err; 3545 break; 3546 case bitc::FUNCTION_BLOCK_ID: 3547 ResolveDataLayout(); 3548 3549 // If this is the first function body we've seen, reverse the 3550 // FunctionsWithBodies list. 3551 if (!SeenFirstFunctionBody) { 3552 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3553 if (Error Err = globalCleanup()) 3554 return Err; 3555 SeenFirstFunctionBody = true; 3556 } 3557 3558 if (VSTOffset > 0) { 3559 // If we have a VST forward declaration record, make sure we 3560 // parse the VST now if we haven't already. It is needed to 3561 // set up the DeferredFunctionInfo vector for lazy reading. 3562 if (!SeenValueSymbolTable) { 3563 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3564 return Err; 3565 SeenValueSymbolTable = true; 3566 // Fall through so that we record the NextUnreadBit below. 3567 // This is necessary in case we have an anonymous function that 3568 // is later materialized. Since it will not have a VST entry we 3569 // need to fall back to the lazy parse to find its offset. 3570 } else { 3571 // If we have a VST forward declaration record, but have already 3572 // parsed the VST (just above, when the first function body was 3573 // encountered here), then we are resuming the parse after 3574 // materializing functions. The ResumeBit points to the 3575 // start of the last function block recorded in the 3576 // DeferredFunctionInfo map. Skip it. 3577 if (Error Err = Stream.SkipBlock()) 3578 return Err; 3579 continue; 3580 } 3581 } 3582 3583 // Support older bitcode files that did not have the function 3584 // index in the VST, nor a VST forward declaration record, as 3585 // well as anonymous functions that do not have VST entries. 3586 // Build the DeferredFunctionInfo vector on the fly. 3587 if (Error Err = rememberAndSkipFunctionBody()) 3588 return Err; 3589 3590 // Suspend parsing when we reach the function bodies. Subsequent 3591 // materialization calls will resume it when necessary. If the bitcode 3592 // file is old, the symbol table will be at the end instead and will not 3593 // have been seen yet. In this case, just finish the parse now. 3594 if (SeenValueSymbolTable) { 3595 NextUnreadBit = Stream.GetCurrentBitNo(); 3596 // After the VST has been parsed, we need to make sure intrinsic name 3597 // are auto-upgraded. 3598 return globalCleanup(); 3599 } 3600 break; 3601 case bitc::USELIST_BLOCK_ID: 3602 if (Error Err = parseUseLists()) 3603 return Err; 3604 break; 3605 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3606 if (Error Err = parseOperandBundleTags()) 3607 return Err; 3608 break; 3609 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3610 if (Error Err = parseSyncScopeNames()) 3611 return Err; 3612 break; 3613 } 3614 continue; 3615 3616 case BitstreamEntry::Record: 3617 // The interesting case. 3618 break; 3619 } 3620 3621 // Read a record. 3622 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3623 if (!MaybeBitCode) 3624 return MaybeBitCode.takeError(); 3625 switch (unsigned BitCode = MaybeBitCode.get()) { 3626 default: break; // Default behavior, ignore unknown content. 3627 case bitc::MODULE_CODE_VERSION: { 3628 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3629 if (!VersionOrErr) 3630 return VersionOrErr.takeError(); 3631 UseRelativeIDs = *VersionOrErr >= 1; 3632 break; 3633 } 3634 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3635 if (ResolvedDataLayout) 3636 return error("target triple too late in module"); 3637 std::string S; 3638 if (convertToString(Record, 0, S)) 3639 return error("Invalid record"); 3640 TheModule->setTargetTriple(S); 3641 break; 3642 } 3643 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3644 if (ResolvedDataLayout) 3645 return error("datalayout too late in module"); 3646 std::string S; 3647 if (convertToString(Record, 0, S)) 3648 return error("Invalid record"); 3649 TheModule->setDataLayout(S); 3650 break; 3651 } 3652 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3653 std::string S; 3654 if (convertToString(Record, 0, S)) 3655 return error("Invalid record"); 3656 TheModule->setModuleInlineAsm(S); 3657 break; 3658 } 3659 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3660 // FIXME: Remove in 4.0. 3661 std::string S; 3662 if (convertToString(Record, 0, S)) 3663 return error("Invalid record"); 3664 // Ignore value. 3665 break; 3666 } 3667 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3668 std::string S; 3669 if (convertToString(Record, 0, S)) 3670 return error("Invalid record"); 3671 SectionTable.push_back(S); 3672 break; 3673 } 3674 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3675 std::string S; 3676 if (convertToString(Record, 0, S)) 3677 return error("Invalid record"); 3678 GCTable.push_back(S); 3679 break; 3680 } 3681 case bitc::MODULE_CODE_COMDAT: 3682 if (Error Err = parseComdatRecord(Record)) 3683 return Err; 3684 break; 3685 case bitc::MODULE_CODE_GLOBALVAR: 3686 if (Error Err = parseGlobalVarRecord(Record)) 3687 return Err; 3688 break; 3689 case bitc::MODULE_CODE_FUNCTION: 3690 ResolveDataLayout(); 3691 if (Error Err = parseFunctionRecord(Record)) 3692 return Err; 3693 break; 3694 case bitc::MODULE_CODE_IFUNC: 3695 case bitc::MODULE_CODE_ALIAS: 3696 case bitc::MODULE_CODE_ALIAS_OLD: 3697 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3698 return Err; 3699 break; 3700 /// MODULE_CODE_VSTOFFSET: [offset] 3701 case bitc::MODULE_CODE_VSTOFFSET: 3702 if (Record.size() < 1) 3703 return error("Invalid record"); 3704 // Note that we subtract 1 here because the offset is relative to one word 3705 // before the start of the identification or module block, which was 3706 // historically always the start of the regular bitcode header. 3707 VSTOffset = Record[0] - 1; 3708 break; 3709 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3710 case bitc::MODULE_CODE_SOURCE_FILENAME: 3711 SmallString<128> ValueName; 3712 if (convertToString(Record, 0, ValueName)) 3713 return error("Invalid record"); 3714 TheModule->setSourceFileName(ValueName); 3715 break; 3716 } 3717 Record.clear(); 3718 } 3719 } 3720 3721 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3722 bool IsImporting, 3723 DataLayoutCallbackTy DataLayoutCallback) { 3724 TheModule = M; 3725 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3726 [&](unsigned ID) { return getTypeByID(ID); }); 3727 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3728 } 3729 3730 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3731 if (!isa<PointerType>(PtrType)) 3732 return error("Load/Store operand is not a pointer type"); 3733 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3734 3735 if (ValType && ValType != ElemType) 3736 return error("Explicit load/store type does not match pointee " 3737 "type of pointer operand"); 3738 if (!PointerType::isLoadableOrStorableType(ElemType)) 3739 return error("Cannot load/store from pointer"); 3740 return Error::success(); 3741 } 3742 3743 void BitcodeReader::propagateByValTypes(CallBase *CB, 3744 ArrayRef<Type *> ArgsFullTys) { 3745 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3746 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3747 continue; 3748 3749 CB->removeParamAttr(i, Attribute::ByVal); 3750 CB->addParamAttr( 3751 i, Attribute::getWithByValType( 3752 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3753 } 3754 } 3755 3756 /// Lazily parse the specified function body block. 3757 Error BitcodeReader::parseFunctionBody(Function *F) { 3758 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3759 return Err; 3760 3761 // Unexpected unresolved metadata when parsing function. 3762 if (MDLoader->hasFwdRefs()) 3763 return error("Invalid function metadata: incoming forward references"); 3764 3765 InstructionList.clear(); 3766 unsigned ModuleValueListSize = ValueList.size(); 3767 unsigned ModuleMDLoaderSize = MDLoader->size(); 3768 3769 // Add all the function arguments to the value table. 3770 unsigned ArgNo = 0; 3771 FunctionType *FullFTy = FunctionTypes[F]; 3772 for (Argument &I : F->args()) { 3773 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3774 "Incorrect fully specified type for Function Argument"); 3775 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3776 } 3777 unsigned NextValueNo = ValueList.size(); 3778 BasicBlock *CurBB = nullptr; 3779 unsigned CurBBNo = 0; 3780 3781 DebugLoc LastLoc; 3782 auto getLastInstruction = [&]() -> Instruction * { 3783 if (CurBB && !CurBB->empty()) 3784 return &CurBB->back(); 3785 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3786 !FunctionBBs[CurBBNo - 1]->empty()) 3787 return &FunctionBBs[CurBBNo - 1]->back(); 3788 return nullptr; 3789 }; 3790 3791 std::vector<OperandBundleDef> OperandBundles; 3792 3793 // Read all the records. 3794 SmallVector<uint64_t, 64> Record; 3795 3796 while (true) { 3797 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3798 if (!MaybeEntry) 3799 return MaybeEntry.takeError(); 3800 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3801 3802 switch (Entry.Kind) { 3803 case BitstreamEntry::Error: 3804 return error("Malformed block"); 3805 case BitstreamEntry::EndBlock: 3806 goto OutOfRecordLoop; 3807 3808 case BitstreamEntry::SubBlock: 3809 switch (Entry.ID) { 3810 default: // Skip unknown content. 3811 if (Error Err = Stream.SkipBlock()) 3812 return Err; 3813 break; 3814 case bitc::CONSTANTS_BLOCK_ID: 3815 if (Error Err = parseConstants()) 3816 return Err; 3817 NextValueNo = ValueList.size(); 3818 break; 3819 case bitc::VALUE_SYMTAB_BLOCK_ID: 3820 if (Error Err = parseValueSymbolTable()) 3821 return Err; 3822 break; 3823 case bitc::METADATA_ATTACHMENT_ID: 3824 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3825 return Err; 3826 break; 3827 case bitc::METADATA_BLOCK_ID: 3828 assert(DeferredMetadataInfo.empty() && 3829 "Must read all module-level metadata before function-level"); 3830 if (Error Err = MDLoader->parseFunctionMetadata()) 3831 return Err; 3832 break; 3833 case bitc::USELIST_BLOCK_ID: 3834 if (Error Err = parseUseLists()) 3835 return Err; 3836 break; 3837 } 3838 continue; 3839 3840 case BitstreamEntry::Record: 3841 // The interesting case. 3842 break; 3843 } 3844 3845 // Read a record. 3846 Record.clear(); 3847 Instruction *I = nullptr; 3848 Type *FullTy = nullptr; 3849 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3850 if (!MaybeBitCode) 3851 return MaybeBitCode.takeError(); 3852 switch (unsigned BitCode = MaybeBitCode.get()) { 3853 default: // Default behavior: reject 3854 return error("Invalid value"); 3855 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3856 if (Record.size() < 1 || Record[0] == 0) 3857 return error("Invalid record"); 3858 // Create all the basic blocks for the function. 3859 FunctionBBs.resize(Record[0]); 3860 3861 // See if anything took the address of blocks in this function. 3862 auto BBFRI = BasicBlockFwdRefs.find(F); 3863 if (BBFRI == BasicBlockFwdRefs.end()) { 3864 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3865 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3866 } else { 3867 auto &BBRefs = BBFRI->second; 3868 // Check for invalid basic block references. 3869 if (BBRefs.size() > FunctionBBs.size()) 3870 return error("Invalid ID"); 3871 assert(!BBRefs.empty() && "Unexpected empty array"); 3872 assert(!BBRefs.front() && "Invalid reference to entry block"); 3873 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3874 ++I) 3875 if (I < RE && BBRefs[I]) { 3876 BBRefs[I]->insertInto(F); 3877 FunctionBBs[I] = BBRefs[I]; 3878 } else { 3879 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3880 } 3881 3882 // Erase from the table. 3883 BasicBlockFwdRefs.erase(BBFRI); 3884 } 3885 3886 CurBB = FunctionBBs[0]; 3887 continue; 3888 } 3889 3890 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3891 // This record indicates that the last instruction is at the same 3892 // location as the previous instruction with a location. 3893 I = getLastInstruction(); 3894 3895 if (!I) 3896 return error("Invalid record"); 3897 I->setDebugLoc(LastLoc); 3898 I = nullptr; 3899 continue; 3900 3901 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3902 I = getLastInstruction(); 3903 if (!I || Record.size() < 4) 3904 return error("Invalid record"); 3905 3906 unsigned Line = Record[0], Col = Record[1]; 3907 unsigned ScopeID = Record[2], IAID = Record[3]; 3908 bool isImplicitCode = Record.size() == 5 && Record[4]; 3909 3910 MDNode *Scope = nullptr, *IA = nullptr; 3911 if (ScopeID) { 3912 Scope = dyn_cast_or_null<MDNode>( 3913 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3914 if (!Scope) 3915 return error("Invalid record"); 3916 } 3917 if (IAID) { 3918 IA = dyn_cast_or_null<MDNode>( 3919 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3920 if (!IA) 3921 return error("Invalid record"); 3922 } 3923 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3924 I->setDebugLoc(LastLoc); 3925 I = nullptr; 3926 continue; 3927 } 3928 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3929 unsigned OpNum = 0; 3930 Value *LHS; 3931 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3932 OpNum+1 > Record.size()) 3933 return error("Invalid record"); 3934 3935 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3936 if (Opc == -1) 3937 return error("Invalid record"); 3938 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3939 InstructionList.push_back(I); 3940 if (OpNum < Record.size()) { 3941 if (isa<FPMathOperator>(I)) { 3942 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3943 if (FMF.any()) 3944 I->setFastMathFlags(FMF); 3945 } 3946 } 3947 break; 3948 } 3949 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3950 unsigned OpNum = 0; 3951 Value *LHS, *RHS; 3952 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3953 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3954 OpNum+1 > Record.size()) 3955 return error("Invalid record"); 3956 3957 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3958 if (Opc == -1) 3959 return error("Invalid record"); 3960 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3961 InstructionList.push_back(I); 3962 if (OpNum < Record.size()) { 3963 if (Opc == Instruction::Add || 3964 Opc == Instruction::Sub || 3965 Opc == Instruction::Mul || 3966 Opc == Instruction::Shl) { 3967 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3968 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3969 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3970 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3971 } else if (Opc == Instruction::SDiv || 3972 Opc == Instruction::UDiv || 3973 Opc == Instruction::LShr || 3974 Opc == Instruction::AShr) { 3975 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3976 cast<BinaryOperator>(I)->setIsExact(true); 3977 } else if (isa<FPMathOperator>(I)) { 3978 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3979 if (FMF.any()) 3980 I->setFastMathFlags(FMF); 3981 } 3982 3983 } 3984 break; 3985 } 3986 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3987 unsigned OpNum = 0; 3988 Value *Op; 3989 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3990 OpNum+2 != Record.size()) 3991 return error("Invalid record"); 3992 3993 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3994 Type *ResTy = flattenPointerTypes(FullTy); 3995 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3996 if (Opc == -1 || !ResTy) 3997 return error("Invalid record"); 3998 Instruction *Temp = nullptr; 3999 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4000 if (Temp) { 4001 InstructionList.push_back(Temp); 4002 assert(CurBB && "No current BB?"); 4003 CurBB->getInstList().push_back(Temp); 4004 } 4005 } else { 4006 auto CastOp = (Instruction::CastOps)Opc; 4007 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4008 return error("Invalid cast"); 4009 I = CastInst::Create(CastOp, Op, ResTy); 4010 } 4011 InstructionList.push_back(I); 4012 break; 4013 } 4014 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4015 case bitc::FUNC_CODE_INST_GEP_OLD: 4016 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4017 unsigned OpNum = 0; 4018 4019 Type *Ty; 4020 bool InBounds; 4021 4022 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4023 InBounds = Record[OpNum++]; 4024 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4025 Ty = flattenPointerTypes(FullTy); 4026 } else { 4027 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4028 Ty = nullptr; 4029 } 4030 4031 Value *BasePtr; 4032 Type *FullBaseTy = nullptr; 4033 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4034 return error("Invalid record"); 4035 4036 if (!Ty) { 4037 std::tie(FullTy, Ty) = 4038 getPointerElementTypes(FullBaseTy->getScalarType()); 4039 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4040 return error( 4041 "Explicit gep type does not match pointee type of pointer operand"); 4042 4043 SmallVector<Value*, 16> GEPIdx; 4044 while (OpNum != Record.size()) { 4045 Value *Op; 4046 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4047 return error("Invalid record"); 4048 GEPIdx.push_back(Op); 4049 } 4050 4051 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4052 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4053 4054 InstructionList.push_back(I); 4055 if (InBounds) 4056 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4057 break; 4058 } 4059 4060 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4061 // EXTRACTVAL: [opty, opval, n x indices] 4062 unsigned OpNum = 0; 4063 Value *Agg; 4064 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4065 return error("Invalid record"); 4066 4067 unsigned RecSize = Record.size(); 4068 if (OpNum == RecSize) 4069 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4070 4071 SmallVector<unsigned, 4> EXTRACTVALIdx; 4072 for (; OpNum != RecSize; ++OpNum) { 4073 bool IsArray = FullTy->isArrayTy(); 4074 bool IsStruct = FullTy->isStructTy(); 4075 uint64_t Index = Record[OpNum]; 4076 4077 if (!IsStruct && !IsArray) 4078 return error("EXTRACTVAL: Invalid type"); 4079 if ((unsigned)Index != Index) 4080 return error("Invalid value"); 4081 if (IsStruct && Index >= FullTy->getStructNumElements()) 4082 return error("EXTRACTVAL: Invalid struct index"); 4083 if (IsArray && Index >= FullTy->getArrayNumElements()) 4084 return error("EXTRACTVAL: Invalid array index"); 4085 EXTRACTVALIdx.push_back((unsigned)Index); 4086 4087 if (IsStruct) 4088 FullTy = FullTy->getStructElementType(Index); 4089 else 4090 FullTy = FullTy->getArrayElementType(); 4091 } 4092 4093 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4094 InstructionList.push_back(I); 4095 break; 4096 } 4097 4098 case bitc::FUNC_CODE_INST_INSERTVAL: { 4099 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4100 unsigned OpNum = 0; 4101 Value *Agg; 4102 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4103 return error("Invalid record"); 4104 Value *Val; 4105 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4106 return error("Invalid record"); 4107 4108 unsigned RecSize = Record.size(); 4109 if (OpNum == RecSize) 4110 return error("INSERTVAL: Invalid instruction with 0 indices"); 4111 4112 SmallVector<unsigned, 4> INSERTVALIdx; 4113 Type *CurTy = Agg->getType(); 4114 for (; OpNum != RecSize; ++OpNum) { 4115 bool IsArray = CurTy->isArrayTy(); 4116 bool IsStruct = CurTy->isStructTy(); 4117 uint64_t Index = Record[OpNum]; 4118 4119 if (!IsStruct && !IsArray) 4120 return error("INSERTVAL: Invalid type"); 4121 if ((unsigned)Index != Index) 4122 return error("Invalid value"); 4123 if (IsStruct && Index >= CurTy->getStructNumElements()) 4124 return error("INSERTVAL: Invalid struct index"); 4125 if (IsArray && Index >= CurTy->getArrayNumElements()) 4126 return error("INSERTVAL: Invalid array index"); 4127 4128 INSERTVALIdx.push_back((unsigned)Index); 4129 if (IsStruct) 4130 CurTy = CurTy->getStructElementType(Index); 4131 else 4132 CurTy = CurTy->getArrayElementType(); 4133 } 4134 4135 if (CurTy != Val->getType()) 4136 return error("Inserted value type doesn't match aggregate type"); 4137 4138 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 4143 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4144 // obsolete form of select 4145 // handles select i1 ... in old bitcode 4146 unsigned OpNum = 0; 4147 Value *TrueVal, *FalseVal, *Cond; 4148 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4149 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4150 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4151 return error("Invalid record"); 4152 4153 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4154 InstructionList.push_back(I); 4155 break; 4156 } 4157 4158 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4159 // new form of select 4160 // handles select i1 or select [N x i1] 4161 unsigned OpNum = 0; 4162 Value *TrueVal, *FalseVal, *Cond; 4163 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4164 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4165 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4166 return error("Invalid record"); 4167 4168 // select condition can be either i1 or [N x i1] 4169 if (VectorType* vector_type = 4170 dyn_cast<VectorType>(Cond->getType())) { 4171 // expect <n x i1> 4172 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4173 return error("Invalid type for value"); 4174 } else { 4175 // expect i1 4176 if (Cond->getType() != Type::getInt1Ty(Context)) 4177 return error("Invalid type for value"); 4178 } 4179 4180 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4181 InstructionList.push_back(I); 4182 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4183 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4184 if (FMF.any()) 4185 I->setFastMathFlags(FMF); 4186 } 4187 break; 4188 } 4189 4190 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4191 unsigned OpNum = 0; 4192 Value *Vec, *Idx; 4193 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4194 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4195 return error("Invalid record"); 4196 if (!Vec->getType()->isVectorTy()) 4197 return error("Invalid type for value"); 4198 I = ExtractElementInst::Create(Vec, Idx); 4199 FullTy = cast<VectorType>(FullTy)->getElementType(); 4200 InstructionList.push_back(I); 4201 break; 4202 } 4203 4204 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4205 unsigned OpNum = 0; 4206 Value *Vec, *Elt, *Idx; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4208 return error("Invalid record"); 4209 if (!Vec->getType()->isVectorTy()) 4210 return error("Invalid type for value"); 4211 if (popValue(Record, OpNum, NextValueNo, 4212 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4213 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4214 return error("Invalid record"); 4215 I = InsertElementInst::Create(Vec, Elt, Idx); 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 4220 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4221 unsigned OpNum = 0; 4222 Value *Vec1, *Vec2, *Mask; 4223 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4224 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4225 return error("Invalid record"); 4226 4227 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4228 return error("Invalid record"); 4229 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4230 return error("Invalid type for value"); 4231 4232 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4233 FullTy = 4234 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4235 cast<VectorType>(Mask->getType())->getElementCount()); 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 4240 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4241 // Old form of ICmp/FCmp returning bool 4242 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4243 // both legal on vectors but had different behaviour. 4244 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4245 // FCmp/ICmp returning bool or vector of bool 4246 4247 unsigned OpNum = 0; 4248 Value *LHS, *RHS; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4250 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4251 return error("Invalid record"); 4252 4253 if (OpNum >= Record.size()) 4254 return error( 4255 "Invalid record: operand number exceeded available operands"); 4256 4257 unsigned PredVal = Record[OpNum]; 4258 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4259 FastMathFlags FMF; 4260 if (IsFP && Record.size() > OpNum+1) 4261 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4262 4263 if (OpNum+1 != Record.size()) 4264 return error("Invalid record"); 4265 4266 if (LHS->getType()->isFPOrFPVectorTy()) 4267 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4268 else 4269 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4270 4271 if (FMF.any()) 4272 I->setFastMathFlags(FMF); 4273 InstructionList.push_back(I); 4274 break; 4275 } 4276 4277 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4278 { 4279 unsigned Size = Record.size(); 4280 if (Size == 0) { 4281 I = ReturnInst::Create(Context); 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 4286 unsigned OpNum = 0; 4287 Value *Op = nullptr; 4288 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4289 return error("Invalid record"); 4290 if (OpNum != Record.size()) 4291 return error("Invalid record"); 4292 4293 I = ReturnInst::Create(Context, Op); 4294 InstructionList.push_back(I); 4295 break; 4296 } 4297 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4298 if (Record.size() != 1 && Record.size() != 3) 4299 return error("Invalid record"); 4300 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4301 if (!TrueDest) 4302 return error("Invalid record"); 4303 4304 if (Record.size() == 1) { 4305 I = BranchInst::Create(TrueDest); 4306 InstructionList.push_back(I); 4307 } 4308 else { 4309 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4310 Value *Cond = getValue(Record, 2, NextValueNo, 4311 Type::getInt1Ty(Context)); 4312 if (!FalseDest || !Cond) 4313 return error("Invalid record"); 4314 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4315 InstructionList.push_back(I); 4316 } 4317 break; 4318 } 4319 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4320 if (Record.size() != 1 && Record.size() != 2) 4321 return error("Invalid record"); 4322 unsigned Idx = 0; 4323 Value *CleanupPad = 4324 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4325 if (!CleanupPad) 4326 return error("Invalid record"); 4327 BasicBlock *UnwindDest = nullptr; 4328 if (Record.size() == 2) { 4329 UnwindDest = getBasicBlock(Record[Idx++]); 4330 if (!UnwindDest) 4331 return error("Invalid record"); 4332 } 4333 4334 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4335 InstructionList.push_back(I); 4336 break; 4337 } 4338 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4339 if (Record.size() != 2) 4340 return error("Invalid record"); 4341 unsigned Idx = 0; 4342 Value *CatchPad = 4343 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4344 if (!CatchPad) 4345 return error("Invalid record"); 4346 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4347 if (!BB) 4348 return error("Invalid record"); 4349 4350 I = CatchReturnInst::Create(CatchPad, BB); 4351 InstructionList.push_back(I); 4352 break; 4353 } 4354 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4355 // We must have, at minimum, the outer scope and the number of arguments. 4356 if (Record.size() < 2) 4357 return error("Invalid record"); 4358 4359 unsigned Idx = 0; 4360 4361 Value *ParentPad = 4362 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4363 4364 unsigned NumHandlers = Record[Idx++]; 4365 4366 SmallVector<BasicBlock *, 2> Handlers; 4367 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4368 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4369 if (!BB) 4370 return error("Invalid record"); 4371 Handlers.push_back(BB); 4372 } 4373 4374 BasicBlock *UnwindDest = nullptr; 4375 if (Idx + 1 == Record.size()) { 4376 UnwindDest = getBasicBlock(Record[Idx++]); 4377 if (!UnwindDest) 4378 return error("Invalid record"); 4379 } 4380 4381 if (Record.size() != Idx) 4382 return error("Invalid record"); 4383 4384 auto *CatchSwitch = 4385 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4386 for (BasicBlock *Handler : Handlers) 4387 CatchSwitch->addHandler(Handler); 4388 I = CatchSwitch; 4389 InstructionList.push_back(I); 4390 break; 4391 } 4392 case bitc::FUNC_CODE_INST_CATCHPAD: 4393 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4394 // We must have, at minimum, the outer scope and the number of arguments. 4395 if (Record.size() < 2) 4396 return error("Invalid record"); 4397 4398 unsigned Idx = 0; 4399 4400 Value *ParentPad = 4401 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4402 4403 unsigned NumArgOperands = Record[Idx++]; 4404 4405 SmallVector<Value *, 2> Args; 4406 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4407 Value *Val; 4408 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4409 return error("Invalid record"); 4410 Args.push_back(Val); 4411 } 4412 4413 if (Record.size() != Idx) 4414 return error("Invalid record"); 4415 4416 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4417 I = CleanupPadInst::Create(ParentPad, Args); 4418 else 4419 I = CatchPadInst::Create(ParentPad, Args); 4420 InstructionList.push_back(I); 4421 break; 4422 } 4423 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4424 // Check magic 4425 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4426 // "New" SwitchInst format with case ranges. The changes to write this 4427 // format were reverted but we still recognize bitcode that uses it. 4428 // Hopefully someday we will have support for case ranges and can use 4429 // this format again. 4430 4431 Type *OpTy = getTypeByID(Record[1]); 4432 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4433 4434 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4435 BasicBlock *Default = getBasicBlock(Record[3]); 4436 if (!OpTy || !Cond || !Default) 4437 return error("Invalid record"); 4438 4439 unsigned NumCases = Record[4]; 4440 4441 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4442 InstructionList.push_back(SI); 4443 4444 unsigned CurIdx = 5; 4445 for (unsigned i = 0; i != NumCases; ++i) { 4446 SmallVector<ConstantInt*, 1> CaseVals; 4447 unsigned NumItems = Record[CurIdx++]; 4448 for (unsigned ci = 0; ci != NumItems; ++ci) { 4449 bool isSingleNumber = Record[CurIdx++]; 4450 4451 APInt Low; 4452 unsigned ActiveWords = 1; 4453 if (ValueBitWidth > 64) 4454 ActiveWords = Record[CurIdx++]; 4455 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4456 ValueBitWidth); 4457 CurIdx += ActiveWords; 4458 4459 if (!isSingleNumber) { 4460 ActiveWords = 1; 4461 if (ValueBitWidth > 64) 4462 ActiveWords = Record[CurIdx++]; 4463 APInt High = readWideAPInt( 4464 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4465 CurIdx += ActiveWords; 4466 4467 // FIXME: It is not clear whether values in the range should be 4468 // compared as signed or unsigned values. The partially 4469 // implemented changes that used this format in the past used 4470 // unsigned comparisons. 4471 for ( ; Low.ule(High); ++Low) 4472 CaseVals.push_back(ConstantInt::get(Context, Low)); 4473 } else 4474 CaseVals.push_back(ConstantInt::get(Context, Low)); 4475 } 4476 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4477 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4478 cve = CaseVals.end(); cvi != cve; ++cvi) 4479 SI->addCase(*cvi, DestBB); 4480 } 4481 I = SI; 4482 break; 4483 } 4484 4485 // Old SwitchInst format without case ranges. 4486 4487 if (Record.size() < 3 || (Record.size() & 1) == 0) 4488 return error("Invalid record"); 4489 Type *OpTy = getTypeByID(Record[0]); 4490 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4491 BasicBlock *Default = getBasicBlock(Record[2]); 4492 if (!OpTy || !Cond || !Default) 4493 return error("Invalid record"); 4494 unsigned NumCases = (Record.size()-3)/2; 4495 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4496 InstructionList.push_back(SI); 4497 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4498 ConstantInt *CaseVal = 4499 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4500 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4501 if (!CaseVal || !DestBB) { 4502 delete SI; 4503 return error("Invalid record"); 4504 } 4505 SI->addCase(CaseVal, DestBB); 4506 } 4507 I = SI; 4508 break; 4509 } 4510 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4511 if (Record.size() < 2) 4512 return error("Invalid record"); 4513 Type *OpTy = getTypeByID(Record[0]); 4514 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4515 if (!OpTy || !Address) 4516 return error("Invalid record"); 4517 unsigned NumDests = Record.size()-2; 4518 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4519 InstructionList.push_back(IBI); 4520 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4521 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4522 IBI->addDestination(DestBB); 4523 } else { 4524 delete IBI; 4525 return error("Invalid record"); 4526 } 4527 } 4528 I = IBI; 4529 break; 4530 } 4531 4532 case bitc::FUNC_CODE_INST_INVOKE: { 4533 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4534 if (Record.size() < 4) 4535 return error("Invalid record"); 4536 unsigned OpNum = 0; 4537 AttributeList PAL = getAttributes(Record[OpNum++]); 4538 unsigned CCInfo = Record[OpNum++]; 4539 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4540 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4541 4542 FunctionType *FTy = nullptr; 4543 FunctionType *FullFTy = nullptr; 4544 if ((CCInfo >> 13) & 1) { 4545 FullFTy = 4546 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4547 if (!FullFTy) 4548 return error("Explicit invoke type is not a function type"); 4549 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4550 } 4551 4552 Value *Callee; 4553 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4554 return error("Invalid record"); 4555 4556 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4557 if (!CalleeTy) 4558 return error("Callee is not a pointer"); 4559 if (!FTy) { 4560 FullFTy = 4561 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4562 if (!FullFTy) 4563 return error("Callee is not of pointer to function type"); 4564 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4565 } else if (getPointerElementFlatType(FullTy) != FTy) 4566 return error("Explicit invoke type does not match pointee type of " 4567 "callee operand"); 4568 if (Record.size() < FTy->getNumParams() + OpNum) 4569 return error("Insufficient operands to call"); 4570 4571 SmallVector<Value*, 16> Ops; 4572 SmallVector<Type *, 16> ArgsFullTys; 4573 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4574 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4575 FTy->getParamType(i))); 4576 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4577 if (!Ops.back()) 4578 return error("Invalid record"); 4579 } 4580 4581 if (!FTy->isVarArg()) { 4582 if (Record.size() != OpNum) 4583 return error("Invalid record"); 4584 } else { 4585 // Read type/value pairs for varargs params. 4586 while (OpNum != Record.size()) { 4587 Value *Op; 4588 Type *FullTy; 4589 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4590 return error("Invalid record"); 4591 Ops.push_back(Op); 4592 ArgsFullTys.push_back(FullTy); 4593 } 4594 } 4595 4596 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4597 OperandBundles); 4598 FullTy = FullFTy->getReturnType(); 4599 OperandBundles.clear(); 4600 InstructionList.push_back(I); 4601 cast<InvokeInst>(I)->setCallingConv( 4602 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4603 cast<InvokeInst>(I)->setAttributes(PAL); 4604 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4605 4606 break; 4607 } 4608 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4609 unsigned Idx = 0; 4610 Value *Val = nullptr; 4611 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4612 return error("Invalid record"); 4613 I = ResumeInst::Create(Val); 4614 InstructionList.push_back(I); 4615 break; 4616 } 4617 case bitc::FUNC_CODE_INST_CALLBR: { 4618 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4619 unsigned OpNum = 0; 4620 AttributeList PAL = getAttributes(Record[OpNum++]); 4621 unsigned CCInfo = Record[OpNum++]; 4622 4623 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4624 unsigned NumIndirectDests = Record[OpNum++]; 4625 SmallVector<BasicBlock *, 16> IndirectDests; 4626 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4627 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4628 4629 FunctionType *FTy = nullptr; 4630 FunctionType *FullFTy = nullptr; 4631 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4632 FullFTy = 4633 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4634 if (!FullFTy) 4635 return error("Explicit call type is not a function type"); 4636 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4637 } 4638 4639 Value *Callee; 4640 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4641 return error("Invalid record"); 4642 4643 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4644 if (!OpTy) 4645 return error("Callee is not a pointer type"); 4646 if (!FTy) { 4647 FullFTy = 4648 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4649 if (!FullFTy) 4650 return error("Callee is not of pointer to function type"); 4651 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4652 } else if (getPointerElementFlatType(FullTy) != FTy) 4653 return error("Explicit call type does not match pointee type of " 4654 "callee operand"); 4655 if (Record.size() < FTy->getNumParams() + OpNum) 4656 return error("Insufficient operands to call"); 4657 4658 SmallVector<Value*, 16> Args; 4659 // Read the fixed params. 4660 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4661 if (FTy->getParamType(i)->isLabelTy()) 4662 Args.push_back(getBasicBlock(Record[OpNum])); 4663 else 4664 Args.push_back(getValue(Record, OpNum, NextValueNo, 4665 FTy->getParamType(i))); 4666 if (!Args.back()) 4667 return error("Invalid record"); 4668 } 4669 4670 // Read type/value pairs for varargs params. 4671 if (!FTy->isVarArg()) { 4672 if (OpNum != Record.size()) 4673 return error("Invalid record"); 4674 } else { 4675 while (OpNum != Record.size()) { 4676 Value *Op; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4678 return error("Invalid record"); 4679 Args.push_back(Op); 4680 } 4681 } 4682 4683 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4684 OperandBundles); 4685 FullTy = FullFTy->getReturnType(); 4686 OperandBundles.clear(); 4687 InstructionList.push_back(I); 4688 cast<CallBrInst>(I)->setCallingConv( 4689 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4690 cast<CallBrInst>(I)->setAttributes(PAL); 4691 break; 4692 } 4693 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4694 I = new UnreachableInst(Context); 4695 InstructionList.push_back(I); 4696 break; 4697 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4698 if (Record.size() < 1) 4699 return error("Invalid record"); 4700 // The first record specifies the type. 4701 FullTy = getFullyStructuredTypeByID(Record[0]); 4702 Type *Ty = flattenPointerTypes(FullTy); 4703 if (!Ty) 4704 return error("Invalid record"); 4705 4706 // Phi arguments are pairs of records of [value, basic block]. 4707 // There is an optional final record for fast-math-flags if this phi has a 4708 // floating-point type. 4709 size_t NumArgs = (Record.size() - 1) / 2; 4710 PHINode *PN = PHINode::Create(Ty, NumArgs); 4711 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4712 return error("Invalid record"); 4713 InstructionList.push_back(PN); 4714 4715 for (unsigned i = 0; i != NumArgs; i++) { 4716 Value *V; 4717 // With the new function encoding, it is possible that operands have 4718 // negative IDs (for forward references). Use a signed VBR 4719 // representation to keep the encoding small. 4720 if (UseRelativeIDs) 4721 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4722 else 4723 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4724 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4725 if (!V || !BB) 4726 return error("Invalid record"); 4727 PN->addIncoming(V, BB); 4728 } 4729 I = PN; 4730 4731 // If there are an even number of records, the final record must be FMF. 4732 if (Record.size() % 2 == 0) { 4733 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4734 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4735 if (FMF.any()) 4736 I->setFastMathFlags(FMF); 4737 } 4738 4739 break; 4740 } 4741 4742 case bitc::FUNC_CODE_INST_LANDINGPAD: 4743 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4744 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4745 unsigned Idx = 0; 4746 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4747 if (Record.size() < 3) 4748 return error("Invalid record"); 4749 } else { 4750 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4751 if (Record.size() < 4) 4752 return error("Invalid record"); 4753 } 4754 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4755 Type *Ty = flattenPointerTypes(FullTy); 4756 if (!Ty) 4757 return error("Invalid record"); 4758 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4759 Value *PersFn = nullptr; 4760 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4761 return error("Invalid record"); 4762 4763 if (!F->hasPersonalityFn()) 4764 F->setPersonalityFn(cast<Constant>(PersFn)); 4765 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4766 return error("Personality function mismatch"); 4767 } 4768 4769 bool IsCleanup = !!Record[Idx++]; 4770 unsigned NumClauses = Record[Idx++]; 4771 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4772 LP->setCleanup(IsCleanup); 4773 for (unsigned J = 0; J != NumClauses; ++J) { 4774 LandingPadInst::ClauseType CT = 4775 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4776 Value *Val; 4777 4778 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4779 delete LP; 4780 return error("Invalid record"); 4781 } 4782 4783 assert((CT != LandingPadInst::Catch || 4784 !isa<ArrayType>(Val->getType())) && 4785 "Catch clause has a invalid type!"); 4786 assert((CT != LandingPadInst::Filter || 4787 isa<ArrayType>(Val->getType())) && 4788 "Filter clause has invalid type!"); 4789 LP->addClause(cast<Constant>(Val)); 4790 } 4791 4792 I = LP; 4793 InstructionList.push_back(I); 4794 break; 4795 } 4796 4797 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4798 if (Record.size() != 4) 4799 return error("Invalid record"); 4800 uint64_t AlignRecord = Record[3]; 4801 const uint64_t InAllocaMask = uint64_t(1) << 5; 4802 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4803 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4804 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4805 SwiftErrorMask; 4806 bool InAlloca = AlignRecord & InAllocaMask; 4807 bool SwiftError = AlignRecord & SwiftErrorMask; 4808 FullTy = getFullyStructuredTypeByID(Record[0]); 4809 Type *Ty = flattenPointerTypes(FullTy); 4810 if ((AlignRecord & ExplicitTypeMask) == 0) { 4811 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4812 if (!PTy) 4813 return error("Old-style alloca with a non-pointer type"); 4814 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4815 } 4816 Type *OpTy = getTypeByID(Record[1]); 4817 Value *Size = getFnValueByID(Record[2], OpTy); 4818 MaybeAlign Align; 4819 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4820 return Err; 4821 } 4822 if (!Ty || !Size) 4823 return error("Invalid record"); 4824 4825 // FIXME: Make this an optional field. 4826 const DataLayout &DL = TheModule->getDataLayout(); 4827 unsigned AS = DL.getAllocaAddrSpace(); 4828 4829 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4830 AI->setUsedWithInAlloca(InAlloca); 4831 AI->setSwiftError(SwiftError); 4832 I = AI; 4833 FullTy = PointerType::get(FullTy, AS); 4834 InstructionList.push_back(I); 4835 break; 4836 } 4837 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4838 unsigned OpNum = 0; 4839 Value *Op; 4840 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4841 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4842 return error("Invalid record"); 4843 4844 if (!isa<PointerType>(Op->getType())) 4845 return error("Load operand is not a pointer type"); 4846 4847 Type *Ty = nullptr; 4848 if (OpNum + 3 == Record.size()) { 4849 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4850 Ty = flattenPointerTypes(FullTy); 4851 } else 4852 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4853 4854 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4855 return Err; 4856 4857 MaybeAlign Align; 4858 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4859 return Err; 4860 if (!Align && !Ty->isSized()) 4861 return error("load of unsized type"); 4862 if (!Align) 4863 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4864 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4865 InstructionList.push_back(I); 4866 break; 4867 } 4868 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4869 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4870 unsigned OpNum = 0; 4871 Value *Op; 4872 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4873 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4874 return error("Invalid record"); 4875 4876 if (!isa<PointerType>(Op->getType())) 4877 return error("Load operand is not a pointer type"); 4878 4879 Type *Ty = nullptr; 4880 if (OpNum + 5 == Record.size()) { 4881 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4882 Ty = flattenPointerTypes(FullTy); 4883 } else 4884 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4885 4886 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4887 return Err; 4888 4889 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4890 if (Ordering == AtomicOrdering::NotAtomic || 4891 Ordering == AtomicOrdering::Release || 4892 Ordering == AtomicOrdering::AcquireRelease) 4893 return error("Invalid record"); 4894 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4895 return error("Invalid record"); 4896 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4897 4898 MaybeAlign Align; 4899 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4900 return Err; 4901 if (!Align) 4902 return error("Alignment missing from atomic load"); 4903 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4904 InstructionList.push_back(I); 4905 break; 4906 } 4907 case bitc::FUNC_CODE_INST_STORE: 4908 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4909 unsigned OpNum = 0; 4910 Value *Val, *Ptr; 4911 Type *FullTy; 4912 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4913 (BitCode == bitc::FUNC_CODE_INST_STORE 4914 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4915 : popValue(Record, OpNum, NextValueNo, 4916 getPointerElementFlatType(FullTy), Val)) || 4917 OpNum + 2 != Record.size()) 4918 return error("Invalid record"); 4919 4920 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4921 return Err; 4922 MaybeAlign Align; 4923 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4924 return Err; 4925 if (!Align) 4926 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4927 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 case bitc::FUNC_CODE_INST_STOREATOMIC: 4932 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4933 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4934 unsigned OpNum = 0; 4935 Value *Val, *Ptr; 4936 Type *FullTy; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4938 !isa<PointerType>(Ptr->getType()) || 4939 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4940 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4941 : popValue(Record, OpNum, NextValueNo, 4942 getPointerElementFlatType(FullTy), Val)) || 4943 OpNum + 4 != Record.size()) 4944 return error("Invalid record"); 4945 4946 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4947 return Err; 4948 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4949 if (Ordering == AtomicOrdering::NotAtomic || 4950 Ordering == AtomicOrdering::Acquire || 4951 Ordering == AtomicOrdering::AcquireRelease) 4952 return error("Invalid record"); 4953 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4954 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4955 return error("Invalid record"); 4956 4957 MaybeAlign Align; 4958 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4959 return Err; 4960 if (!Align) 4961 return error("Alignment missing from atomic store"); 4962 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4967 case bitc::FUNC_CODE_INST_CMPXCHG: { 4968 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4969 // failureordering?, isweak?] 4970 unsigned OpNum = 0; 4971 Value *Ptr, *Cmp, *New; 4972 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4973 return error("Invalid record"); 4974 4975 if (!isa<PointerType>(Ptr->getType())) 4976 return error("Cmpxchg operand is not a pointer type"); 4977 4978 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4979 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4980 return error("Invalid record"); 4981 } else if (popValue(Record, OpNum, NextValueNo, 4982 getPointerElementFlatType(FullTy), Cmp)) 4983 return error("Invalid record"); 4984 else 4985 FullTy = cast<PointerType>(FullTy)->getElementType(); 4986 4987 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4988 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4989 return error("Invalid record"); 4990 4991 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4992 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4993 SuccessOrdering == AtomicOrdering::Unordered) 4994 return error("Invalid record"); 4995 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4996 4997 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4998 return Err; 4999 AtomicOrdering FailureOrdering; 5000 if (Record.size() < 7) 5001 FailureOrdering = 5002 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5003 else 5004 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5005 5006 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5007 SSID); 5008 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5009 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5010 5011 if (Record.size() < 8) { 5012 // Before weak cmpxchgs existed, the instruction simply returned the 5013 // value loaded from memory, so bitcode files from that era will be 5014 // expecting the first component of a modern cmpxchg. 5015 CurBB->getInstList().push_back(I); 5016 I = ExtractValueInst::Create(I, 0); 5017 FullTy = cast<StructType>(FullTy)->getElementType(0); 5018 } else { 5019 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5020 } 5021 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5026 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5027 unsigned OpNum = 0; 5028 Value *Ptr, *Val; 5029 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5030 !isa<PointerType>(Ptr->getType()) || 5031 popValue(Record, OpNum, NextValueNo, 5032 getPointerElementFlatType(FullTy), Val) || 5033 OpNum + 4 != Record.size()) 5034 return error("Invalid record"); 5035 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5036 if (Operation < AtomicRMWInst::FIRST_BINOP || 5037 Operation > AtomicRMWInst::LAST_BINOP) 5038 return error("Invalid record"); 5039 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5040 if (Ordering == AtomicOrdering::NotAtomic || 5041 Ordering == AtomicOrdering::Unordered) 5042 return error("Invalid record"); 5043 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5044 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5045 FullTy = getPointerElementFlatType(FullTy); 5046 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5047 InstructionList.push_back(I); 5048 break; 5049 } 5050 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5051 if (2 != Record.size()) 5052 return error("Invalid record"); 5053 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5054 if (Ordering == AtomicOrdering::NotAtomic || 5055 Ordering == AtomicOrdering::Unordered || 5056 Ordering == AtomicOrdering::Monotonic) 5057 return error("Invalid record"); 5058 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5059 I = new FenceInst(Context, Ordering, SSID); 5060 InstructionList.push_back(I); 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_CALL: { 5064 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5065 if (Record.size() < 3) 5066 return error("Invalid record"); 5067 5068 unsigned OpNum = 0; 5069 AttributeList PAL = getAttributes(Record[OpNum++]); 5070 unsigned CCInfo = Record[OpNum++]; 5071 5072 FastMathFlags FMF; 5073 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5074 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5075 if (!FMF.any()) 5076 return error("Fast math flags indicator set for call with no FMF"); 5077 } 5078 5079 FunctionType *FTy = nullptr; 5080 FunctionType *FullFTy = nullptr; 5081 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5082 FullFTy = 5083 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5084 if (!FullFTy) 5085 return error("Explicit call type is not a function type"); 5086 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5087 } 5088 5089 Value *Callee; 5090 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5091 return error("Invalid record"); 5092 5093 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5094 if (!OpTy) 5095 return error("Callee is not a pointer type"); 5096 if (!FTy) { 5097 FullFTy = 5098 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5099 if (!FullFTy) 5100 return error("Callee is not of pointer to function type"); 5101 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5102 } else if (getPointerElementFlatType(FullTy) != FTy) 5103 return error("Explicit call type does not match pointee type of " 5104 "callee operand"); 5105 if (Record.size() < FTy->getNumParams() + OpNum) 5106 return error("Insufficient operands to call"); 5107 5108 SmallVector<Value*, 16> Args; 5109 SmallVector<Type*, 16> ArgsFullTys; 5110 // Read the fixed params. 5111 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5112 if (FTy->getParamType(i)->isLabelTy()) 5113 Args.push_back(getBasicBlock(Record[OpNum])); 5114 else 5115 Args.push_back(getValue(Record, OpNum, NextValueNo, 5116 FTy->getParamType(i))); 5117 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5118 if (!Args.back()) 5119 return error("Invalid record"); 5120 } 5121 5122 // Read type/value pairs for varargs params. 5123 if (!FTy->isVarArg()) { 5124 if (OpNum != Record.size()) 5125 return error("Invalid record"); 5126 } else { 5127 while (OpNum != Record.size()) { 5128 Value *Op; 5129 Type *FullTy; 5130 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5131 return error("Invalid record"); 5132 Args.push_back(Op); 5133 ArgsFullTys.push_back(FullTy); 5134 } 5135 } 5136 5137 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5138 FullTy = FullFTy->getReturnType(); 5139 OperandBundles.clear(); 5140 InstructionList.push_back(I); 5141 cast<CallInst>(I)->setCallingConv( 5142 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5143 CallInst::TailCallKind TCK = CallInst::TCK_None; 5144 if (CCInfo & 1 << bitc::CALL_TAIL) 5145 TCK = CallInst::TCK_Tail; 5146 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5147 TCK = CallInst::TCK_MustTail; 5148 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5149 TCK = CallInst::TCK_NoTail; 5150 cast<CallInst>(I)->setTailCallKind(TCK); 5151 cast<CallInst>(I)->setAttributes(PAL); 5152 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5153 if (FMF.any()) { 5154 if (!isa<FPMathOperator>(I)) 5155 return error("Fast-math-flags specified for call without " 5156 "floating-point scalar or vector return type"); 5157 I->setFastMathFlags(FMF); 5158 } 5159 break; 5160 } 5161 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5162 if (Record.size() < 3) 5163 return error("Invalid record"); 5164 Type *OpTy = getTypeByID(Record[0]); 5165 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5166 FullTy = getFullyStructuredTypeByID(Record[2]); 5167 Type *ResTy = flattenPointerTypes(FullTy); 5168 if (!OpTy || !Op || !ResTy) 5169 return error("Invalid record"); 5170 I = new VAArgInst(Op, ResTy); 5171 InstructionList.push_back(I); 5172 break; 5173 } 5174 5175 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5176 // A call or an invoke can be optionally prefixed with some variable 5177 // number of operand bundle blocks. These blocks are read into 5178 // OperandBundles and consumed at the next call or invoke instruction. 5179 5180 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5181 return error("Invalid record"); 5182 5183 std::vector<Value *> Inputs; 5184 5185 unsigned OpNum = 1; 5186 while (OpNum != Record.size()) { 5187 Value *Op; 5188 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5189 return error("Invalid record"); 5190 Inputs.push_back(Op); 5191 } 5192 5193 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5194 continue; 5195 } 5196 5197 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5198 unsigned OpNum = 0; 5199 Value *Op = nullptr; 5200 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5201 return error("Invalid record"); 5202 if (OpNum != Record.size()) 5203 return error("Invalid record"); 5204 5205 I = new FreezeInst(Op); 5206 InstructionList.push_back(I); 5207 break; 5208 } 5209 } 5210 5211 // Add instruction to end of current BB. If there is no current BB, reject 5212 // this file. 5213 if (!CurBB) { 5214 I->deleteValue(); 5215 return error("Invalid instruction with no BB"); 5216 } 5217 if (!OperandBundles.empty()) { 5218 I->deleteValue(); 5219 return error("Operand bundles found with no consumer"); 5220 } 5221 CurBB->getInstList().push_back(I); 5222 5223 // If this was a terminator instruction, move to the next block. 5224 if (I->isTerminator()) { 5225 ++CurBBNo; 5226 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5227 } 5228 5229 // Non-void values get registered in the value table for future use. 5230 if (!I->getType()->isVoidTy()) { 5231 if (!FullTy) { 5232 FullTy = I->getType(); 5233 assert( 5234 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5235 !isa<ArrayType>(FullTy) && 5236 (!isa<VectorType>(FullTy) || 5237 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5238 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5239 "Structured types must be assigned with corresponding non-opaque " 5240 "pointer type"); 5241 } 5242 5243 assert(I->getType() == flattenPointerTypes(FullTy) && 5244 "Incorrect fully structured type provided for Instruction"); 5245 ValueList.assignValue(I, NextValueNo++, FullTy); 5246 } 5247 } 5248 5249 OutOfRecordLoop: 5250 5251 if (!OperandBundles.empty()) 5252 return error("Operand bundles found with no consumer"); 5253 5254 // Check the function list for unresolved values. 5255 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5256 if (!A->getParent()) { 5257 // We found at least one unresolved value. Nuke them all to avoid leaks. 5258 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5259 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5260 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5261 delete A; 5262 } 5263 } 5264 return error("Never resolved value found in function"); 5265 } 5266 } 5267 5268 // Unexpected unresolved metadata about to be dropped. 5269 if (MDLoader->hasFwdRefs()) 5270 return error("Invalid function metadata: outgoing forward refs"); 5271 5272 // Trim the value list down to the size it was before we parsed this function. 5273 ValueList.shrinkTo(ModuleValueListSize); 5274 MDLoader->shrinkTo(ModuleMDLoaderSize); 5275 std::vector<BasicBlock*>().swap(FunctionBBs); 5276 return Error::success(); 5277 } 5278 5279 /// Find the function body in the bitcode stream 5280 Error BitcodeReader::findFunctionInStream( 5281 Function *F, 5282 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5283 while (DeferredFunctionInfoIterator->second == 0) { 5284 // This is the fallback handling for the old format bitcode that 5285 // didn't contain the function index in the VST, or when we have 5286 // an anonymous function which would not have a VST entry. 5287 // Assert that we have one of those two cases. 5288 assert(VSTOffset == 0 || !F->hasName()); 5289 // Parse the next body in the stream and set its position in the 5290 // DeferredFunctionInfo map. 5291 if (Error Err = rememberAndSkipFunctionBodies()) 5292 return Err; 5293 } 5294 return Error::success(); 5295 } 5296 5297 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5298 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5299 return SyncScope::ID(Val); 5300 if (Val >= SSIDs.size()) 5301 return SyncScope::System; // Map unknown synchronization scopes to system. 5302 return SSIDs[Val]; 5303 } 5304 5305 //===----------------------------------------------------------------------===// 5306 // GVMaterializer implementation 5307 //===----------------------------------------------------------------------===// 5308 5309 Error BitcodeReader::materialize(GlobalValue *GV) { 5310 Function *F = dyn_cast<Function>(GV); 5311 // If it's not a function or is already material, ignore the request. 5312 if (!F || !F->isMaterializable()) 5313 return Error::success(); 5314 5315 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5316 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5317 // If its position is recorded as 0, its body is somewhere in the stream 5318 // but we haven't seen it yet. 5319 if (DFII->second == 0) 5320 if (Error Err = findFunctionInStream(F, DFII)) 5321 return Err; 5322 5323 // Materialize metadata before parsing any function bodies. 5324 if (Error Err = materializeMetadata()) 5325 return Err; 5326 5327 // Move the bit stream to the saved position of the deferred function body. 5328 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5329 return JumpFailed; 5330 if (Error Err = parseFunctionBody(F)) 5331 return Err; 5332 F->setIsMaterializable(false); 5333 5334 if (StripDebugInfo) 5335 stripDebugInfo(*F); 5336 5337 // Upgrade any old intrinsic calls in the function. 5338 for (auto &I : UpgradedIntrinsics) { 5339 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5340 UI != UE;) { 5341 User *U = *UI; 5342 ++UI; 5343 if (CallInst *CI = dyn_cast<CallInst>(U)) 5344 UpgradeIntrinsicCall(CI, I.second); 5345 } 5346 } 5347 5348 // Update calls to the remangled intrinsics 5349 for (auto &I : RemangledIntrinsics) 5350 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5351 UI != UE;) 5352 // Don't expect any other users than call sites 5353 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5354 5355 // Finish fn->subprogram upgrade for materialized functions. 5356 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5357 F->setSubprogram(SP); 5358 5359 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5360 if (!MDLoader->isStrippingTBAA()) { 5361 for (auto &I : instructions(F)) { 5362 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5363 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5364 continue; 5365 MDLoader->setStripTBAA(true); 5366 stripTBAA(F->getParent()); 5367 } 5368 } 5369 5370 // Bring in any functions that this function forward-referenced via 5371 // blockaddresses. 5372 return materializeForwardReferencedFunctions(); 5373 } 5374 5375 Error BitcodeReader::materializeModule() { 5376 if (Error Err = materializeMetadata()) 5377 return Err; 5378 5379 // Promise to materialize all forward references. 5380 WillMaterializeAllForwardRefs = true; 5381 5382 // Iterate over the module, deserializing any functions that are still on 5383 // disk. 5384 for (Function &F : *TheModule) { 5385 if (Error Err = materialize(&F)) 5386 return Err; 5387 } 5388 // At this point, if there are any function bodies, parse the rest of 5389 // the bits in the module past the last function block we have recorded 5390 // through either lazy scanning or the VST. 5391 if (LastFunctionBlockBit || NextUnreadBit) 5392 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5393 ? LastFunctionBlockBit 5394 : NextUnreadBit)) 5395 return Err; 5396 5397 // Check that all block address forward references got resolved (as we 5398 // promised above). 5399 if (!BasicBlockFwdRefs.empty()) 5400 return error("Never resolved function from blockaddress"); 5401 5402 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5403 // delete the old functions to clean up. We can't do this unless the entire 5404 // module is materialized because there could always be another function body 5405 // with calls to the old function. 5406 for (auto &I : UpgradedIntrinsics) { 5407 for (auto *U : I.first->users()) { 5408 if (CallInst *CI = dyn_cast<CallInst>(U)) 5409 UpgradeIntrinsicCall(CI, I.second); 5410 } 5411 if (!I.first->use_empty()) 5412 I.first->replaceAllUsesWith(I.second); 5413 I.first->eraseFromParent(); 5414 } 5415 UpgradedIntrinsics.clear(); 5416 // Do the same for remangled intrinsics 5417 for (auto &I : RemangledIntrinsics) { 5418 I.first->replaceAllUsesWith(I.second); 5419 I.first->eraseFromParent(); 5420 } 5421 RemangledIntrinsics.clear(); 5422 5423 UpgradeDebugInfo(*TheModule); 5424 5425 UpgradeModuleFlags(*TheModule); 5426 5427 UpgradeARCRuntime(*TheModule); 5428 5429 return Error::success(); 5430 } 5431 5432 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5433 return IdentifiedStructTypes; 5434 } 5435 5436 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5437 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5438 StringRef ModulePath, unsigned ModuleId) 5439 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5440 ModulePath(ModulePath), ModuleId(ModuleId) {} 5441 5442 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5443 TheIndex.addModule(ModulePath, ModuleId); 5444 } 5445 5446 ModuleSummaryIndex::ModuleInfo * 5447 ModuleSummaryIndexBitcodeReader::getThisModule() { 5448 return TheIndex.getModule(ModulePath); 5449 } 5450 5451 std::pair<ValueInfo, GlobalValue::GUID> 5452 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5453 auto VGI = ValueIdToValueInfoMap[ValueId]; 5454 assert(VGI.first); 5455 return VGI; 5456 } 5457 5458 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5459 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5460 StringRef SourceFileName) { 5461 std::string GlobalId = 5462 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5463 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5464 auto OriginalNameID = ValueGUID; 5465 if (GlobalValue::isLocalLinkage(Linkage)) 5466 OriginalNameID = GlobalValue::getGUID(ValueName); 5467 if (PrintSummaryGUIDs) 5468 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5469 << ValueName << "\n"; 5470 5471 // UseStrtab is false for legacy summary formats and value names are 5472 // created on stack. In that case we save the name in a string saver in 5473 // the index so that the value name can be recorded. 5474 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5475 TheIndex.getOrInsertValueInfo( 5476 ValueGUID, 5477 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5478 OriginalNameID); 5479 } 5480 5481 // Specialized value symbol table parser used when reading module index 5482 // blocks where we don't actually create global values. The parsed information 5483 // is saved in the bitcode reader for use when later parsing summaries. 5484 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5485 uint64_t Offset, 5486 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5487 // With a strtab the VST is not required to parse the summary. 5488 if (UseStrtab) 5489 return Error::success(); 5490 5491 assert(Offset > 0 && "Expected non-zero VST offset"); 5492 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5493 if (!MaybeCurrentBit) 5494 return MaybeCurrentBit.takeError(); 5495 uint64_t CurrentBit = MaybeCurrentBit.get(); 5496 5497 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5498 return Err; 5499 5500 SmallVector<uint64_t, 64> Record; 5501 5502 // Read all the records for this value table. 5503 SmallString<128> ValueName; 5504 5505 while (true) { 5506 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5507 if (!MaybeEntry) 5508 return MaybeEntry.takeError(); 5509 BitstreamEntry Entry = MaybeEntry.get(); 5510 5511 switch (Entry.Kind) { 5512 case BitstreamEntry::SubBlock: // Handled for us already. 5513 case BitstreamEntry::Error: 5514 return error("Malformed block"); 5515 case BitstreamEntry::EndBlock: 5516 // Done parsing VST, jump back to wherever we came from. 5517 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5518 return JumpFailed; 5519 return Error::success(); 5520 case BitstreamEntry::Record: 5521 // The interesting case. 5522 break; 5523 } 5524 5525 // Read a record. 5526 Record.clear(); 5527 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5528 if (!MaybeRecord) 5529 return MaybeRecord.takeError(); 5530 switch (MaybeRecord.get()) { 5531 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5532 break; 5533 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5534 if (convertToString(Record, 1, ValueName)) 5535 return error("Invalid record"); 5536 unsigned ValueID = Record[0]; 5537 assert(!SourceFileName.empty()); 5538 auto VLI = ValueIdToLinkageMap.find(ValueID); 5539 assert(VLI != ValueIdToLinkageMap.end() && 5540 "No linkage found for VST entry?"); 5541 auto Linkage = VLI->second; 5542 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5543 ValueName.clear(); 5544 break; 5545 } 5546 case bitc::VST_CODE_FNENTRY: { 5547 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5548 if (convertToString(Record, 2, ValueName)) 5549 return error("Invalid record"); 5550 unsigned ValueID = Record[0]; 5551 assert(!SourceFileName.empty()); 5552 auto VLI = ValueIdToLinkageMap.find(ValueID); 5553 assert(VLI != ValueIdToLinkageMap.end() && 5554 "No linkage found for VST entry?"); 5555 auto Linkage = VLI->second; 5556 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5557 ValueName.clear(); 5558 break; 5559 } 5560 case bitc::VST_CODE_COMBINED_ENTRY: { 5561 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5562 unsigned ValueID = Record[0]; 5563 GlobalValue::GUID RefGUID = Record[1]; 5564 // The "original name", which is the second value of the pair will be 5565 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5566 ValueIdToValueInfoMap[ValueID] = 5567 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5568 break; 5569 } 5570 } 5571 } 5572 } 5573 5574 // Parse just the blocks needed for building the index out of the module. 5575 // At the end of this routine the module Index is populated with a map 5576 // from global value id to GlobalValueSummary objects. 5577 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5578 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5579 return Err; 5580 5581 SmallVector<uint64_t, 64> Record; 5582 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5583 unsigned ValueId = 0; 5584 5585 // Read the index for this module. 5586 while (true) { 5587 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5588 if (!MaybeEntry) 5589 return MaybeEntry.takeError(); 5590 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5591 5592 switch (Entry.Kind) { 5593 case BitstreamEntry::Error: 5594 return error("Malformed block"); 5595 case BitstreamEntry::EndBlock: 5596 return Error::success(); 5597 5598 case BitstreamEntry::SubBlock: 5599 switch (Entry.ID) { 5600 default: // Skip unknown content. 5601 if (Error Err = Stream.SkipBlock()) 5602 return Err; 5603 break; 5604 case bitc::BLOCKINFO_BLOCK_ID: 5605 // Need to parse these to get abbrev ids (e.g. for VST) 5606 if (readBlockInfo()) 5607 return error("Malformed block"); 5608 break; 5609 case bitc::VALUE_SYMTAB_BLOCK_ID: 5610 // Should have been parsed earlier via VSTOffset, unless there 5611 // is no summary section. 5612 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5613 !SeenGlobalValSummary) && 5614 "Expected early VST parse via VSTOffset record"); 5615 if (Error Err = Stream.SkipBlock()) 5616 return Err; 5617 break; 5618 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5619 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5620 // Add the module if it is a per-module index (has a source file name). 5621 if (!SourceFileName.empty()) 5622 addThisModule(); 5623 assert(!SeenValueSymbolTable && 5624 "Already read VST when parsing summary block?"); 5625 // We might not have a VST if there were no values in the 5626 // summary. An empty summary block generated when we are 5627 // performing ThinLTO compiles so we don't later invoke 5628 // the regular LTO process on them. 5629 if (VSTOffset > 0) { 5630 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5631 return Err; 5632 SeenValueSymbolTable = true; 5633 } 5634 SeenGlobalValSummary = true; 5635 if (Error Err = parseEntireSummary(Entry.ID)) 5636 return Err; 5637 break; 5638 case bitc::MODULE_STRTAB_BLOCK_ID: 5639 if (Error Err = parseModuleStringTable()) 5640 return Err; 5641 break; 5642 } 5643 continue; 5644 5645 case BitstreamEntry::Record: { 5646 Record.clear(); 5647 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5648 if (!MaybeBitCode) 5649 return MaybeBitCode.takeError(); 5650 switch (MaybeBitCode.get()) { 5651 default: 5652 break; // Default behavior, ignore unknown content. 5653 case bitc::MODULE_CODE_VERSION: { 5654 if (Error Err = parseVersionRecord(Record).takeError()) 5655 return Err; 5656 break; 5657 } 5658 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5659 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5660 SmallString<128> ValueName; 5661 if (convertToString(Record, 0, ValueName)) 5662 return error("Invalid record"); 5663 SourceFileName = ValueName.c_str(); 5664 break; 5665 } 5666 /// MODULE_CODE_HASH: [5*i32] 5667 case bitc::MODULE_CODE_HASH: { 5668 if (Record.size() != 5) 5669 return error("Invalid hash length " + Twine(Record.size()).str()); 5670 auto &Hash = getThisModule()->second.second; 5671 int Pos = 0; 5672 for (auto &Val : Record) { 5673 assert(!(Val >> 32) && "Unexpected high bits set"); 5674 Hash[Pos++] = Val; 5675 } 5676 break; 5677 } 5678 /// MODULE_CODE_VSTOFFSET: [offset] 5679 case bitc::MODULE_CODE_VSTOFFSET: 5680 if (Record.size() < 1) 5681 return error("Invalid record"); 5682 // Note that we subtract 1 here because the offset is relative to one 5683 // word before the start of the identification or module block, which 5684 // was historically always the start of the regular bitcode header. 5685 VSTOffset = Record[0] - 1; 5686 break; 5687 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5688 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5689 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5690 // v2: [strtab offset, strtab size, v1] 5691 case bitc::MODULE_CODE_GLOBALVAR: 5692 case bitc::MODULE_CODE_FUNCTION: 5693 case bitc::MODULE_CODE_ALIAS: { 5694 StringRef Name; 5695 ArrayRef<uint64_t> GVRecord; 5696 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5697 if (GVRecord.size() <= 3) 5698 return error("Invalid record"); 5699 uint64_t RawLinkage = GVRecord[3]; 5700 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5701 if (!UseStrtab) { 5702 ValueIdToLinkageMap[ValueId++] = Linkage; 5703 break; 5704 } 5705 5706 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5707 break; 5708 } 5709 } 5710 } 5711 continue; 5712 } 5713 } 5714 } 5715 5716 std::vector<ValueInfo> 5717 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5718 std::vector<ValueInfo> Ret; 5719 Ret.reserve(Record.size()); 5720 for (uint64_t RefValueId : Record) 5721 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5722 return Ret; 5723 } 5724 5725 std::vector<FunctionSummary::EdgeTy> 5726 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5727 bool IsOldProfileFormat, 5728 bool HasProfile, bool HasRelBF) { 5729 std::vector<FunctionSummary::EdgeTy> Ret; 5730 Ret.reserve(Record.size()); 5731 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5732 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5733 uint64_t RelBF = 0; 5734 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5735 if (IsOldProfileFormat) { 5736 I += 1; // Skip old callsitecount field 5737 if (HasProfile) 5738 I += 1; // Skip old profilecount field 5739 } else if (HasProfile) 5740 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5741 else if (HasRelBF) 5742 RelBF = Record[++I]; 5743 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5744 } 5745 return Ret; 5746 } 5747 5748 static void 5749 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5750 WholeProgramDevirtResolution &Wpd) { 5751 uint64_t ArgNum = Record[Slot++]; 5752 WholeProgramDevirtResolution::ByArg &B = 5753 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5754 Slot += ArgNum; 5755 5756 B.TheKind = 5757 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5758 B.Info = Record[Slot++]; 5759 B.Byte = Record[Slot++]; 5760 B.Bit = Record[Slot++]; 5761 } 5762 5763 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5764 StringRef Strtab, size_t &Slot, 5765 TypeIdSummary &TypeId) { 5766 uint64_t Id = Record[Slot++]; 5767 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5768 5769 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5770 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5771 static_cast<size_t>(Record[Slot + 1])}; 5772 Slot += 2; 5773 5774 uint64_t ResByArgNum = Record[Slot++]; 5775 for (uint64_t I = 0; I != ResByArgNum; ++I) 5776 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5777 } 5778 5779 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5780 StringRef Strtab, 5781 ModuleSummaryIndex &TheIndex) { 5782 size_t Slot = 0; 5783 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5784 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5785 Slot += 2; 5786 5787 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5788 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5789 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5790 TypeId.TTRes.SizeM1 = Record[Slot++]; 5791 TypeId.TTRes.BitMask = Record[Slot++]; 5792 TypeId.TTRes.InlineBits = Record[Slot++]; 5793 5794 while (Slot < Record.size()) 5795 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5796 } 5797 5798 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5799 ArrayRef<uint64_t> Record, size_t &Slot, 5800 TypeIdCompatibleVtableInfo &TypeId) { 5801 uint64_t Offset = Record[Slot++]; 5802 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5803 TypeId.push_back({Offset, Callee}); 5804 } 5805 5806 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5807 ArrayRef<uint64_t> Record) { 5808 size_t Slot = 0; 5809 TypeIdCompatibleVtableInfo &TypeId = 5810 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5811 {Strtab.data() + Record[Slot], 5812 static_cast<size_t>(Record[Slot + 1])}); 5813 Slot += 2; 5814 5815 while (Slot < Record.size()) 5816 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5817 } 5818 5819 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5820 unsigned WOCnt) { 5821 // Readonly and writeonly refs are in the end of the refs list. 5822 assert(ROCnt + WOCnt <= Refs.size()); 5823 unsigned FirstWORef = Refs.size() - WOCnt; 5824 unsigned RefNo = FirstWORef - ROCnt; 5825 for (; RefNo < FirstWORef; ++RefNo) 5826 Refs[RefNo].setReadOnly(); 5827 for (; RefNo < Refs.size(); ++RefNo) 5828 Refs[RefNo].setWriteOnly(); 5829 } 5830 5831 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5832 // objects in the index. 5833 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5834 if (Error Err = Stream.EnterSubBlock(ID)) 5835 return Err; 5836 SmallVector<uint64_t, 64> Record; 5837 5838 // Parse version 5839 { 5840 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5841 if (!MaybeEntry) 5842 return MaybeEntry.takeError(); 5843 BitstreamEntry Entry = MaybeEntry.get(); 5844 5845 if (Entry.Kind != BitstreamEntry::Record) 5846 return error("Invalid Summary Block: record for version expected"); 5847 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5848 if (!MaybeRecord) 5849 return MaybeRecord.takeError(); 5850 if (MaybeRecord.get() != bitc::FS_VERSION) 5851 return error("Invalid Summary Block: version expected"); 5852 } 5853 const uint64_t Version = Record[0]; 5854 const bool IsOldProfileFormat = Version == 1; 5855 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5856 return error("Invalid summary version " + Twine(Version) + 5857 ". Version should be in the range [1-" + 5858 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5859 "]."); 5860 Record.clear(); 5861 5862 // Keep around the last seen summary to be used when we see an optional 5863 // "OriginalName" attachement. 5864 GlobalValueSummary *LastSeenSummary = nullptr; 5865 GlobalValue::GUID LastSeenGUID = 0; 5866 5867 // We can expect to see any number of type ID information records before 5868 // each function summary records; these variables store the information 5869 // collected so far so that it can be used to create the summary object. 5870 std::vector<GlobalValue::GUID> PendingTypeTests; 5871 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5872 PendingTypeCheckedLoadVCalls; 5873 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5874 PendingTypeCheckedLoadConstVCalls; 5875 5876 while (true) { 5877 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5878 if (!MaybeEntry) 5879 return MaybeEntry.takeError(); 5880 BitstreamEntry Entry = MaybeEntry.get(); 5881 5882 switch (Entry.Kind) { 5883 case BitstreamEntry::SubBlock: // Handled for us already. 5884 case BitstreamEntry::Error: 5885 return error("Malformed block"); 5886 case BitstreamEntry::EndBlock: 5887 return Error::success(); 5888 case BitstreamEntry::Record: 5889 // The interesting case. 5890 break; 5891 } 5892 5893 // Read a record. The record format depends on whether this 5894 // is a per-module index or a combined index file. In the per-module 5895 // case the records contain the associated value's ID for correlation 5896 // with VST entries. In the combined index the correlation is done 5897 // via the bitcode offset of the summary records (which were saved 5898 // in the combined index VST entries). The records also contain 5899 // information used for ThinLTO renaming and importing. 5900 Record.clear(); 5901 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5902 if (!MaybeBitCode) 5903 return MaybeBitCode.takeError(); 5904 switch (unsigned BitCode = MaybeBitCode.get()) { 5905 default: // Default behavior: ignore. 5906 break; 5907 case bitc::FS_FLAGS: { // [flags] 5908 TheIndex.setFlags(Record[0]); 5909 break; 5910 } 5911 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5912 uint64_t ValueID = Record[0]; 5913 GlobalValue::GUID RefGUID = Record[1]; 5914 ValueIdToValueInfoMap[ValueID] = 5915 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5916 break; 5917 } 5918 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5919 // numrefs x valueid, n x (valueid)] 5920 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5921 // numrefs x valueid, 5922 // n x (valueid, hotness)] 5923 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5924 // numrefs x valueid, 5925 // n x (valueid, relblockfreq)] 5926 case bitc::FS_PERMODULE: 5927 case bitc::FS_PERMODULE_RELBF: 5928 case bitc::FS_PERMODULE_PROFILE: { 5929 unsigned ValueID = Record[0]; 5930 uint64_t RawFlags = Record[1]; 5931 unsigned InstCount = Record[2]; 5932 uint64_t RawFunFlags = 0; 5933 unsigned NumRefs = Record[3]; 5934 unsigned NumRORefs = 0, NumWORefs = 0; 5935 int RefListStartIndex = 4; 5936 if (Version >= 4) { 5937 RawFunFlags = Record[3]; 5938 NumRefs = Record[4]; 5939 RefListStartIndex = 5; 5940 if (Version >= 5) { 5941 NumRORefs = Record[5]; 5942 RefListStartIndex = 6; 5943 if (Version >= 7) { 5944 NumWORefs = Record[6]; 5945 RefListStartIndex = 7; 5946 } 5947 } 5948 } 5949 5950 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5951 // The module path string ref set in the summary must be owned by the 5952 // index's module string table. Since we don't have a module path 5953 // string table section in the per-module index, we create a single 5954 // module path string table entry with an empty (0) ID to take 5955 // ownership. 5956 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5957 assert(Record.size() >= RefListStartIndex + NumRefs && 5958 "Record size inconsistent with number of references"); 5959 std::vector<ValueInfo> Refs = makeRefList( 5960 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5961 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5962 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5963 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5964 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5965 IsOldProfileFormat, HasProfile, HasRelBF); 5966 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5967 auto FS = std::make_unique<FunctionSummary>( 5968 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5969 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5970 std::move(PendingTypeTestAssumeVCalls), 5971 std::move(PendingTypeCheckedLoadVCalls), 5972 std::move(PendingTypeTestAssumeConstVCalls), 5973 std::move(PendingTypeCheckedLoadConstVCalls)); 5974 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5975 FS->setModulePath(getThisModule()->first()); 5976 FS->setOriginalName(VIAndOriginalGUID.second); 5977 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5978 break; 5979 } 5980 // FS_ALIAS: [valueid, flags, valueid] 5981 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5982 // they expect all aliasee summaries to be available. 5983 case bitc::FS_ALIAS: { 5984 unsigned ValueID = Record[0]; 5985 uint64_t RawFlags = Record[1]; 5986 unsigned AliaseeID = Record[2]; 5987 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5988 auto AS = std::make_unique<AliasSummary>(Flags); 5989 // The module path string ref set in the summary must be owned by the 5990 // index's module string table. Since we don't have a module path 5991 // string table section in the per-module index, we create a single 5992 // module path string table entry with an empty (0) ID to take 5993 // ownership. 5994 AS->setModulePath(getThisModule()->first()); 5995 5996 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5997 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5998 if (!AliaseeInModule) 5999 return error("Alias expects aliasee summary to be parsed"); 6000 AS->setAliasee(AliaseeVI, AliaseeInModule); 6001 6002 auto GUID = getValueInfoFromValueId(ValueID); 6003 AS->setOriginalName(GUID.second); 6004 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6005 break; 6006 } 6007 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6008 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6009 unsigned ValueID = Record[0]; 6010 uint64_t RawFlags = Record[1]; 6011 unsigned RefArrayStart = 2; 6012 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6013 /* WriteOnly */ false, 6014 /* Constant */ false, 6015 GlobalObject::VCallVisibilityPublic); 6016 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6017 if (Version >= 5) { 6018 GVF = getDecodedGVarFlags(Record[2]); 6019 RefArrayStart = 3; 6020 } 6021 std::vector<ValueInfo> Refs = 6022 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6023 auto FS = 6024 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6025 FS->setModulePath(getThisModule()->first()); 6026 auto GUID = getValueInfoFromValueId(ValueID); 6027 FS->setOriginalName(GUID.second); 6028 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6029 break; 6030 } 6031 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6032 // numrefs, numrefs x valueid, 6033 // n x (valueid, offset)] 6034 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6035 unsigned ValueID = Record[0]; 6036 uint64_t RawFlags = Record[1]; 6037 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6038 unsigned NumRefs = Record[3]; 6039 unsigned RefListStartIndex = 4; 6040 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6041 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6042 std::vector<ValueInfo> Refs = makeRefList( 6043 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6044 VTableFuncList VTableFuncs; 6045 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6046 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6047 uint64_t Offset = Record[++I]; 6048 VTableFuncs.push_back({Callee, Offset}); 6049 } 6050 auto VS = 6051 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6052 VS->setModulePath(getThisModule()->first()); 6053 VS->setVTableFuncs(VTableFuncs); 6054 auto GUID = getValueInfoFromValueId(ValueID); 6055 VS->setOriginalName(GUID.second); 6056 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6057 break; 6058 } 6059 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6060 // numrefs x valueid, n x (valueid)] 6061 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6062 // numrefs x valueid, n x (valueid, hotness)] 6063 case bitc::FS_COMBINED: 6064 case bitc::FS_COMBINED_PROFILE: { 6065 unsigned ValueID = Record[0]; 6066 uint64_t ModuleId = Record[1]; 6067 uint64_t RawFlags = Record[2]; 6068 unsigned InstCount = Record[3]; 6069 uint64_t RawFunFlags = 0; 6070 uint64_t EntryCount = 0; 6071 unsigned NumRefs = Record[4]; 6072 unsigned NumRORefs = 0, NumWORefs = 0; 6073 int RefListStartIndex = 5; 6074 6075 if (Version >= 4) { 6076 RawFunFlags = Record[4]; 6077 RefListStartIndex = 6; 6078 size_t NumRefsIndex = 5; 6079 if (Version >= 5) { 6080 unsigned NumRORefsOffset = 1; 6081 RefListStartIndex = 7; 6082 if (Version >= 6) { 6083 NumRefsIndex = 6; 6084 EntryCount = Record[5]; 6085 RefListStartIndex = 8; 6086 if (Version >= 7) { 6087 RefListStartIndex = 9; 6088 NumWORefs = Record[8]; 6089 NumRORefsOffset = 2; 6090 } 6091 } 6092 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6093 } 6094 NumRefs = Record[NumRefsIndex]; 6095 } 6096 6097 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6098 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6099 assert(Record.size() >= RefListStartIndex + NumRefs && 6100 "Record size inconsistent with number of references"); 6101 std::vector<ValueInfo> Refs = makeRefList( 6102 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6103 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6104 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6105 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6106 IsOldProfileFormat, HasProfile, false); 6107 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6108 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6109 auto FS = std::make_unique<FunctionSummary>( 6110 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6111 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6112 std::move(PendingTypeTestAssumeVCalls), 6113 std::move(PendingTypeCheckedLoadVCalls), 6114 std::move(PendingTypeTestAssumeConstVCalls), 6115 std::move(PendingTypeCheckedLoadConstVCalls)); 6116 LastSeenSummary = FS.get(); 6117 LastSeenGUID = VI.getGUID(); 6118 FS->setModulePath(ModuleIdMap[ModuleId]); 6119 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6120 break; 6121 } 6122 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6123 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6124 // they expect all aliasee summaries to be available. 6125 case bitc::FS_COMBINED_ALIAS: { 6126 unsigned ValueID = Record[0]; 6127 uint64_t ModuleId = Record[1]; 6128 uint64_t RawFlags = Record[2]; 6129 unsigned AliaseeValueId = Record[3]; 6130 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6131 auto AS = std::make_unique<AliasSummary>(Flags); 6132 LastSeenSummary = AS.get(); 6133 AS->setModulePath(ModuleIdMap[ModuleId]); 6134 6135 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6136 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6137 AS->setAliasee(AliaseeVI, AliaseeInModule); 6138 6139 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6140 LastSeenGUID = VI.getGUID(); 6141 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6142 break; 6143 } 6144 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6145 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6146 unsigned ValueID = Record[0]; 6147 uint64_t ModuleId = Record[1]; 6148 uint64_t RawFlags = Record[2]; 6149 unsigned RefArrayStart = 3; 6150 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6151 /* WriteOnly */ false, 6152 /* Constant */ false, 6153 GlobalObject::VCallVisibilityPublic); 6154 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6155 if (Version >= 5) { 6156 GVF = getDecodedGVarFlags(Record[3]); 6157 RefArrayStart = 4; 6158 } 6159 std::vector<ValueInfo> Refs = 6160 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6161 auto FS = 6162 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6163 LastSeenSummary = FS.get(); 6164 FS->setModulePath(ModuleIdMap[ModuleId]); 6165 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6166 LastSeenGUID = VI.getGUID(); 6167 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6168 break; 6169 } 6170 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6171 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6172 uint64_t OriginalName = Record[0]; 6173 if (!LastSeenSummary) 6174 return error("Name attachment that does not follow a combined record"); 6175 LastSeenSummary->setOriginalName(OriginalName); 6176 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6177 // Reset the LastSeenSummary 6178 LastSeenSummary = nullptr; 6179 LastSeenGUID = 0; 6180 break; 6181 } 6182 case bitc::FS_TYPE_TESTS: 6183 assert(PendingTypeTests.empty()); 6184 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6185 Record.end()); 6186 break; 6187 6188 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6189 assert(PendingTypeTestAssumeVCalls.empty()); 6190 for (unsigned I = 0; I != Record.size(); I += 2) 6191 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6192 break; 6193 6194 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6195 assert(PendingTypeCheckedLoadVCalls.empty()); 6196 for (unsigned I = 0; I != Record.size(); I += 2) 6197 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6198 break; 6199 6200 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6201 PendingTypeTestAssumeConstVCalls.push_back( 6202 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6203 break; 6204 6205 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6206 PendingTypeCheckedLoadConstVCalls.push_back( 6207 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6208 break; 6209 6210 case bitc::FS_CFI_FUNCTION_DEFS: { 6211 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6212 for (unsigned I = 0; I != Record.size(); I += 2) 6213 CfiFunctionDefs.insert( 6214 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6215 break; 6216 } 6217 6218 case bitc::FS_CFI_FUNCTION_DECLS: { 6219 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6220 for (unsigned I = 0; I != Record.size(); I += 2) 6221 CfiFunctionDecls.insert( 6222 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6223 break; 6224 } 6225 6226 case bitc::FS_TYPE_ID: 6227 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6228 break; 6229 6230 case bitc::FS_TYPE_ID_METADATA: 6231 parseTypeIdCompatibleVtableSummaryRecord(Record); 6232 break; 6233 } 6234 } 6235 llvm_unreachable("Exit infinite loop"); 6236 } 6237 6238 // Parse the module string table block into the Index. 6239 // This populates the ModulePathStringTable map in the index. 6240 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6241 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6242 return Err; 6243 6244 SmallVector<uint64_t, 64> Record; 6245 6246 SmallString<128> ModulePath; 6247 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6248 6249 while (true) { 6250 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6251 if (!MaybeEntry) 6252 return MaybeEntry.takeError(); 6253 BitstreamEntry Entry = MaybeEntry.get(); 6254 6255 switch (Entry.Kind) { 6256 case BitstreamEntry::SubBlock: // Handled for us already. 6257 case BitstreamEntry::Error: 6258 return error("Malformed block"); 6259 case BitstreamEntry::EndBlock: 6260 return Error::success(); 6261 case BitstreamEntry::Record: 6262 // The interesting case. 6263 break; 6264 } 6265 6266 Record.clear(); 6267 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6268 if (!MaybeRecord) 6269 return MaybeRecord.takeError(); 6270 switch (MaybeRecord.get()) { 6271 default: // Default behavior: ignore. 6272 break; 6273 case bitc::MST_CODE_ENTRY: { 6274 // MST_ENTRY: [modid, namechar x N] 6275 uint64_t ModuleId = Record[0]; 6276 6277 if (convertToString(Record, 1, ModulePath)) 6278 return error("Invalid record"); 6279 6280 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6281 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6282 6283 ModulePath.clear(); 6284 break; 6285 } 6286 /// MST_CODE_HASH: [5*i32] 6287 case bitc::MST_CODE_HASH: { 6288 if (Record.size() != 5) 6289 return error("Invalid hash length " + Twine(Record.size()).str()); 6290 if (!LastSeenModule) 6291 return error("Invalid hash that does not follow a module path"); 6292 int Pos = 0; 6293 for (auto &Val : Record) { 6294 assert(!(Val >> 32) && "Unexpected high bits set"); 6295 LastSeenModule->second.second[Pos++] = Val; 6296 } 6297 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6298 LastSeenModule = nullptr; 6299 break; 6300 } 6301 } 6302 } 6303 llvm_unreachable("Exit infinite loop"); 6304 } 6305 6306 namespace { 6307 6308 // FIXME: This class is only here to support the transition to llvm::Error. It 6309 // will be removed once this transition is complete. Clients should prefer to 6310 // deal with the Error value directly, rather than converting to error_code. 6311 class BitcodeErrorCategoryType : public std::error_category { 6312 const char *name() const noexcept override { 6313 return "llvm.bitcode"; 6314 } 6315 6316 std::string message(int IE) const override { 6317 BitcodeError E = static_cast<BitcodeError>(IE); 6318 switch (E) { 6319 case BitcodeError::CorruptedBitcode: 6320 return "Corrupted bitcode"; 6321 } 6322 llvm_unreachable("Unknown error type!"); 6323 } 6324 }; 6325 6326 } // end anonymous namespace 6327 6328 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6329 6330 const std::error_category &llvm::BitcodeErrorCategory() { 6331 return *ErrorCategory; 6332 } 6333 6334 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6335 unsigned Block, unsigned RecordID) { 6336 if (Error Err = Stream.EnterSubBlock(Block)) 6337 return std::move(Err); 6338 6339 StringRef Strtab; 6340 while (true) { 6341 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6342 if (!MaybeEntry) 6343 return MaybeEntry.takeError(); 6344 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6345 6346 switch (Entry.Kind) { 6347 case BitstreamEntry::EndBlock: 6348 return Strtab; 6349 6350 case BitstreamEntry::Error: 6351 return error("Malformed block"); 6352 6353 case BitstreamEntry::SubBlock: 6354 if (Error Err = Stream.SkipBlock()) 6355 return std::move(Err); 6356 break; 6357 6358 case BitstreamEntry::Record: 6359 StringRef Blob; 6360 SmallVector<uint64_t, 1> Record; 6361 Expected<unsigned> MaybeRecord = 6362 Stream.readRecord(Entry.ID, Record, &Blob); 6363 if (!MaybeRecord) 6364 return MaybeRecord.takeError(); 6365 if (MaybeRecord.get() == RecordID) 6366 Strtab = Blob; 6367 break; 6368 } 6369 } 6370 } 6371 6372 //===----------------------------------------------------------------------===// 6373 // External interface 6374 //===----------------------------------------------------------------------===// 6375 6376 Expected<std::vector<BitcodeModule>> 6377 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6378 auto FOrErr = getBitcodeFileContents(Buffer); 6379 if (!FOrErr) 6380 return FOrErr.takeError(); 6381 return std::move(FOrErr->Mods); 6382 } 6383 6384 Expected<BitcodeFileContents> 6385 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6386 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6387 if (!StreamOrErr) 6388 return StreamOrErr.takeError(); 6389 BitstreamCursor &Stream = *StreamOrErr; 6390 6391 BitcodeFileContents F; 6392 while (true) { 6393 uint64_t BCBegin = Stream.getCurrentByteNo(); 6394 6395 // We may be consuming bitcode from a client that leaves garbage at the end 6396 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6397 // the end that there cannot possibly be another module, stop looking. 6398 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6399 return F; 6400 6401 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6402 if (!MaybeEntry) 6403 return MaybeEntry.takeError(); 6404 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6405 6406 switch (Entry.Kind) { 6407 case BitstreamEntry::EndBlock: 6408 case BitstreamEntry::Error: 6409 return error("Malformed block"); 6410 6411 case BitstreamEntry::SubBlock: { 6412 uint64_t IdentificationBit = -1ull; 6413 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6414 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6415 if (Error Err = Stream.SkipBlock()) 6416 return std::move(Err); 6417 6418 { 6419 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6420 if (!MaybeEntry) 6421 return MaybeEntry.takeError(); 6422 Entry = MaybeEntry.get(); 6423 } 6424 6425 if (Entry.Kind != BitstreamEntry::SubBlock || 6426 Entry.ID != bitc::MODULE_BLOCK_ID) 6427 return error("Malformed block"); 6428 } 6429 6430 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6431 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6432 if (Error Err = Stream.SkipBlock()) 6433 return std::move(Err); 6434 6435 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6436 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6437 Buffer.getBufferIdentifier(), IdentificationBit, 6438 ModuleBit}); 6439 continue; 6440 } 6441 6442 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6443 Expected<StringRef> Strtab = 6444 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6445 if (!Strtab) 6446 return Strtab.takeError(); 6447 // This string table is used by every preceding bitcode module that does 6448 // not have its own string table. A bitcode file may have multiple 6449 // string tables if it was created by binary concatenation, for example 6450 // with "llvm-cat -b". 6451 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6452 if (!I->Strtab.empty()) 6453 break; 6454 I->Strtab = *Strtab; 6455 } 6456 // Similarly, the string table is used by every preceding symbol table; 6457 // normally there will be just one unless the bitcode file was created 6458 // by binary concatenation. 6459 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6460 F.StrtabForSymtab = *Strtab; 6461 continue; 6462 } 6463 6464 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6465 Expected<StringRef> SymtabOrErr = 6466 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6467 if (!SymtabOrErr) 6468 return SymtabOrErr.takeError(); 6469 6470 // We can expect the bitcode file to have multiple symbol tables if it 6471 // was created by binary concatenation. In that case we silently 6472 // ignore any subsequent symbol tables, which is fine because this is a 6473 // low level function. The client is expected to notice that the number 6474 // of modules in the symbol table does not match the number of modules 6475 // in the input file and regenerate the symbol table. 6476 if (F.Symtab.empty()) 6477 F.Symtab = *SymtabOrErr; 6478 continue; 6479 } 6480 6481 if (Error Err = Stream.SkipBlock()) 6482 return std::move(Err); 6483 continue; 6484 } 6485 case BitstreamEntry::Record: 6486 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6487 continue; 6488 else 6489 return StreamFailed.takeError(); 6490 } 6491 } 6492 } 6493 6494 /// Get a lazy one-at-time loading module from bitcode. 6495 /// 6496 /// This isn't always used in a lazy context. In particular, it's also used by 6497 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6498 /// in forward-referenced functions from block address references. 6499 /// 6500 /// \param[in] MaterializeAll Set to \c true if we should materialize 6501 /// everything. 6502 Expected<std::unique_ptr<Module>> 6503 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6504 bool ShouldLazyLoadMetadata, bool IsImporting, 6505 DataLayoutCallbackTy DataLayoutCallback) { 6506 BitstreamCursor Stream(Buffer); 6507 6508 std::string ProducerIdentification; 6509 if (IdentificationBit != -1ull) { 6510 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6511 return std::move(JumpFailed); 6512 Expected<std::string> ProducerIdentificationOrErr = 6513 readIdentificationBlock(Stream); 6514 if (!ProducerIdentificationOrErr) 6515 return ProducerIdentificationOrErr.takeError(); 6516 6517 ProducerIdentification = *ProducerIdentificationOrErr; 6518 } 6519 6520 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6521 return std::move(JumpFailed); 6522 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6523 Context); 6524 6525 std::unique_ptr<Module> M = 6526 std::make_unique<Module>(ModuleIdentifier, Context); 6527 M->setMaterializer(R); 6528 6529 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6530 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6531 IsImporting, DataLayoutCallback)) 6532 return std::move(Err); 6533 6534 if (MaterializeAll) { 6535 // Read in the entire module, and destroy the BitcodeReader. 6536 if (Error Err = M->materializeAll()) 6537 return std::move(Err); 6538 } else { 6539 // Resolve forward references from blockaddresses. 6540 if (Error Err = R->materializeForwardReferencedFunctions()) 6541 return std::move(Err); 6542 } 6543 return std::move(M); 6544 } 6545 6546 Expected<std::unique_ptr<Module>> 6547 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6548 bool IsImporting) { 6549 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6550 [](StringRef) { return None; }); 6551 } 6552 6553 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6554 // We don't use ModuleIdentifier here because the client may need to control the 6555 // module path used in the combined summary (e.g. when reading summaries for 6556 // regular LTO modules). 6557 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6558 StringRef ModulePath, uint64_t ModuleId) { 6559 BitstreamCursor Stream(Buffer); 6560 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6561 return JumpFailed; 6562 6563 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6564 ModulePath, ModuleId); 6565 return R.parseModule(); 6566 } 6567 6568 // Parse the specified bitcode buffer, returning the function info index. 6569 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6570 BitstreamCursor Stream(Buffer); 6571 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6572 return std::move(JumpFailed); 6573 6574 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6575 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6576 ModuleIdentifier, 0); 6577 6578 if (Error Err = R.parseModule()) 6579 return std::move(Err); 6580 6581 return std::move(Index); 6582 } 6583 6584 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6585 unsigned ID) { 6586 if (Error Err = Stream.EnterSubBlock(ID)) 6587 return std::move(Err); 6588 SmallVector<uint64_t, 64> Record; 6589 6590 while (true) { 6591 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6592 if (!MaybeEntry) 6593 return MaybeEntry.takeError(); 6594 BitstreamEntry Entry = MaybeEntry.get(); 6595 6596 switch (Entry.Kind) { 6597 case BitstreamEntry::SubBlock: // Handled for us already. 6598 case BitstreamEntry::Error: 6599 return error("Malformed block"); 6600 case BitstreamEntry::EndBlock: 6601 // If no flags record found, conservatively return true to mimic 6602 // behavior before this flag was added. 6603 return true; 6604 case BitstreamEntry::Record: 6605 // The interesting case. 6606 break; 6607 } 6608 6609 // Look for the FS_FLAGS record. 6610 Record.clear(); 6611 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6612 if (!MaybeBitCode) 6613 return MaybeBitCode.takeError(); 6614 switch (MaybeBitCode.get()) { 6615 default: // Default behavior: ignore. 6616 break; 6617 case bitc::FS_FLAGS: { // [flags] 6618 uint64_t Flags = Record[0]; 6619 // Scan flags. 6620 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6621 6622 return Flags & 0x8; 6623 } 6624 } 6625 } 6626 llvm_unreachable("Exit infinite loop"); 6627 } 6628 6629 // Check if the given bitcode buffer contains a global value summary block. 6630 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6631 BitstreamCursor Stream(Buffer); 6632 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6633 return std::move(JumpFailed); 6634 6635 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6636 return std::move(Err); 6637 6638 while (true) { 6639 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6640 if (!MaybeEntry) 6641 return MaybeEntry.takeError(); 6642 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6643 6644 switch (Entry.Kind) { 6645 case BitstreamEntry::Error: 6646 return error("Malformed block"); 6647 case BitstreamEntry::EndBlock: 6648 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6649 /*EnableSplitLTOUnit=*/false}; 6650 6651 case BitstreamEntry::SubBlock: 6652 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6653 Expected<bool> EnableSplitLTOUnit = 6654 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6655 if (!EnableSplitLTOUnit) 6656 return EnableSplitLTOUnit.takeError(); 6657 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6658 *EnableSplitLTOUnit}; 6659 } 6660 6661 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6662 Expected<bool> EnableSplitLTOUnit = 6663 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6664 if (!EnableSplitLTOUnit) 6665 return EnableSplitLTOUnit.takeError(); 6666 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6667 *EnableSplitLTOUnit}; 6668 } 6669 6670 // Ignore other sub-blocks. 6671 if (Error Err = Stream.SkipBlock()) 6672 return std::move(Err); 6673 continue; 6674 6675 case BitstreamEntry::Record: 6676 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6677 continue; 6678 else 6679 return StreamFailed.takeError(); 6680 } 6681 } 6682 } 6683 6684 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6685 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6686 if (!MsOrErr) 6687 return MsOrErr.takeError(); 6688 6689 if (MsOrErr->size() != 1) 6690 return error("Expected a single module"); 6691 6692 return (*MsOrErr)[0]; 6693 } 6694 6695 Expected<std::unique_ptr<Module>> 6696 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6697 bool ShouldLazyLoadMetadata, bool IsImporting) { 6698 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6699 if (!BM) 6700 return BM.takeError(); 6701 6702 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6703 } 6704 6705 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6706 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6707 bool ShouldLazyLoadMetadata, bool IsImporting) { 6708 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6709 IsImporting); 6710 if (MOrErr) 6711 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6712 return MOrErr; 6713 } 6714 6715 Expected<std::unique_ptr<Module>> 6716 BitcodeModule::parseModule(LLVMContext &Context, 6717 DataLayoutCallbackTy DataLayoutCallback) { 6718 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6719 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6720 // written. We must defer until the Module has been fully materialized. 6721 } 6722 6723 Expected<std::unique_ptr<Module>> 6724 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6725 DataLayoutCallbackTy DataLayoutCallback) { 6726 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6727 if (!BM) 6728 return BM.takeError(); 6729 6730 return BM->parseModule(Context, DataLayoutCallback); 6731 } 6732 6733 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6734 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6735 if (!StreamOrErr) 6736 return StreamOrErr.takeError(); 6737 6738 return readTriple(*StreamOrErr); 6739 } 6740 6741 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6742 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6743 if (!StreamOrErr) 6744 return StreamOrErr.takeError(); 6745 6746 return hasObjCCategory(*StreamOrErr); 6747 } 6748 6749 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6750 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6751 if (!StreamOrErr) 6752 return StreamOrErr.takeError(); 6753 6754 return readIdentificationCode(*StreamOrErr); 6755 } 6756 6757 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6758 ModuleSummaryIndex &CombinedIndex, 6759 uint64_t ModuleId) { 6760 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6761 if (!BM) 6762 return BM.takeError(); 6763 6764 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6765 } 6766 6767 Expected<std::unique_ptr<ModuleSummaryIndex>> 6768 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6769 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6770 if (!BM) 6771 return BM.takeError(); 6772 6773 return BM->getSummary(); 6774 } 6775 6776 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6777 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6778 if (!BM) 6779 return BM.takeError(); 6780 6781 return BM->getLTOInfo(); 6782 } 6783 6784 Expected<std::unique_ptr<ModuleSummaryIndex>> 6785 llvm::getModuleSummaryIndexForFile(StringRef Path, 6786 bool IgnoreEmptyThinLTOIndexFile) { 6787 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6788 MemoryBuffer::getFileOrSTDIN(Path); 6789 if (!FileOrErr) 6790 return errorCodeToError(FileOrErr.getError()); 6791 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6792 return nullptr; 6793 return getModuleSummaryIndex(**FileOrErr); 6794 } 6795