1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMetadataList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MetadataPtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMetadataList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MetadataPtrs.size(); } 111 void resize(unsigned N) { MetadataPtrs.resize(N); } 112 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 113 void clear() { MetadataPtrs.clear(); } 114 Metadata *back() const { return MetadataPtrs.back(); } 115 void pop_back() { MetadataPtrs.pop_back(); } 116 bool empty() const { return MetadataPtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MetadataPtrs.size()); 120 return MetadataPtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MetadataPtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMetadataList MetadataList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// True if any Metadata block has been materialized. 223 bool IsMetadataMaterialized = false; 224 225 bool StripDebugInfo = false; 226 227 /// Functions that need to be matched with subprograms when upgrading old 228 /// metadata. 229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 230 231 std::vector<std::string> BundleTags; 232 233 public: 234 std::error_code error(BitcodeError E, const Twine &Message); 235 std::error_code error(BitcodeError E); 236 std::error_code error(const Twine &Message); 237 238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 239 BitcodeReader(LLVMContext &Context); 240 ~BitcodeReader() override { freeState(); } 241 242 std::error_code materializeForwardReferencedFunctions(); 243 244 void freeState(); 245 246 void releaseBuffer(); 247 248 std::error_code materialize(GlobalValue *GV) override; 249 std::error_code materializeModule() override; 250 std::vector<StructType *> getIdentifiedStructTypes() const override; 251 252 /// \brief Main interface to parsing a bitcode buffer. 253 /// \returns true if an error occurred. 254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 255 Module *M, 256 bool ShouldLazyLoadMetadata = false); 257 258 /// \brief Cheap mechanism to just extract module triple 259 /// \returns true if an error occurred. 260 ErrorOr<std::string> parseTriple(); 261 262 /// Cheap mechanism to just extract the identification block out of bitcode. 263 ErrorOr<std::string> parseIdentificationBlock(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 /// Save the mapping between the metadata values and the corresponding 273 /// value id that were recorded in the MetadataList during parsing. If 274 /// OnlyTempMD is true, then only record those entries that are still 275 /// temporary metadata. This interface is used when metadata linking is 276 /// performed as a postpass, such as during function importing. 277 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 278 bool OnlyTempMD) override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MetadataList.getValueFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndAliasInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataKinds(); 401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 402 std::error_code parseMetadataAttachment(Function &F); 403 ErrorOr<std::string> parseModuleTriple(); 404 std::error_code parseUseLists(); 405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 406 std::error_code initStreamFromBuffer(); 407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code findFunctionInStream( 409 Function *F, 410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 411 }; 412 413 /// Class to manage reading and parsing function summary index bitcode 414 /// files/sections. 415 class FunctionIndexBitcodeReader { 416 DiagnosticHandlerFunction DiagnosticHandler; 417 418 /// Eventually points to the function index built during parsing. 419 FunctionInfoIndex *TheIndex = nullptr; 420 421 std::unique_ptr<MemoryBuffer> Buffer; 422 std::unique_ptr<BitstreamReader> StreamFile; 423 BitstreamCursor Stream; 424 425 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 426 /// 427 /// If false, the summary section is fully parsed into the index during 428 /// the initial parse. Otherwise, if true, the caller is expected to 429 /// invoke \a readFunctionSummary for each summary needed, and the summary 430 /// section is thus parsed lazily. 431 bool IsLazy = false; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the function summary bitcode section. All blocks are skipped, 435 /// but the SeenFuncSummary boolean is set. 436 bool CheckFuncSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a function summary section 439 /// yet during parsing, used when checking if file contains function 440 /// summary section. 441 bool SeenFuncSummary = false; 442 443 /// \brief Map populated during function summary section parsing, and 444 /// consumed during ValueSymbolTable parsing. 445 /// 446 /// Used to correlate summary records with VST entries. For the per-module 447 /// index this maps the ValueID to the parsed function summary, and 448 /// for the combined index this maps the summary record's bitcode 449 /// offset to the function summary (since in the combined index the 450 /// VST records do not hold value IDs but rather hold the function 451 /// summary record offset). 452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 453 454 /// Map populated during module path string table parsing, from the 455 /// module ID to a string reference owned by the index's module 456 /// path string table, used to correlate with combined index function 457 /// summary records. 458 DenseMap<uint64_t, StringRef> ModuleIdMap; 459 460 public: 461 std::error_code error(BitcodeError E, const Twine &Message); 462 std::error_code error(BitcodeError E); 463 std::error_code error(const Twine &Message); 464 465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 466 DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(LLVMContext &Context, std::error_code EC, 522 const Twine &Message) { 523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 524 Message); 525 } 526 527 static std::error_code error(LLVMContext &Context, std::error_code EC) { 528 return error(Context, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, const Twine &Message) { 532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 533 Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(Context, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(Context, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(Context, make_error_code(E)); 557 } 558 559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 560 : Context(Context), Buffer(Buffer), ValueList(Context), 561 MetadataList(Context) {} 562 563 BitcodeReader::BitcodeReader(LLVMContext &Context) 564 : Context(Context), Buffer(nullptr), ValueList(Context), 565 MetadataList(Context) {} 566 567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 568 if (WillMaterializeAllForwardRefs) 569 return std::error_code(); 570 571 // Prevent recursion. 572 WillMaterializeAllForwardRefs = true; 573 574 while (!BasicBlockFwdRefQueue.empty()) { 575 Function *F = BasicBlockFwdRefQueue.front(); 576 BasicBlockFwdRefQueue.pop_front(); 577 assert(F && "Expected valid function"); 578 if (!BasicBlockFwdRefs.count(F)) 579 // Already materialized. 580 continue; 581 582 // Check for a function that isn't materializable to prevent an infinite 583 // loop. When parsing a blockaddress stored in a global variable, there 584 // isn't a trivial way to check if a function will have a body without a 585 // linear search through FunctionsWithBodies, so just check it here. 586 if (!F->isMaterializable()) 587 return error("Never resolved function from blockaddress"); 588 589 // Try to materialize F. 590 if (std::error_code EC = materialize(F)) 591 return EC; 592 } 593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 594 595 // Reset state. 596 WillMaterializeAllForwardRefs = false; 597 return std::error_code(); 598 } 599 600 void BitcodeReader::freeState() { 601 Buffer = nullptr; 602 std::vector<Type*>().swap(TypeList); 603 ValueList.clear(); 604 MetadataList.clear(); 605 std::vector<Comdat *>().swap(ComdatList); 606 607 std::vector<AttributeSet>().swap(MAttributes); 608 std::vector<BasicBlock*>().swap(FunctionBBs); 609 std::vector<Function*>().swap(FunctionsWithBodies); 610 DeferredFunctionInfo.clear(); 611 DeferredMetadataInfo.clear(); 612 MDKindMap.clear(); 613 614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 615 BasicBlockFwdRefQueue.clear(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // Helper functions to implement forward reference resolution, etc. 620 //===----------------------------------------------------------------------===// 621 622 /// Convert a string from a record into an std::string, return true on failure. 623 template <typename StrTy> 624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 625 StrTy &Result) { 626 if (Idx > Record.size()) 627 return true; 628 629 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 630 Result += (char)Record[i]; 631 return false; 632 } 633 634 static bool hasImplicitComdat(size_t Val) { 635 switch (Val) { 636 default: 637 return false; 638 case 1: // Old WeakAnyLinkage 639 case 4: // Old LinkOnceAnyLinkage 640 case 10: // Old WeakODRLinkage 641 case 11: // Old LinkOnceODRLinkage 642 return true; 643 } 644 } 645 646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 647 switch (Val) { 648 default: // Map unknown/new linkages to external 649 case 0: 650 return GlobalValue::ExternalLinkage; 651 case 2: 652 return GlobalValue::AppendingLinkage; 653 case 3: 654 return GlobalValue::InternalLinkage; 655 case 5: 656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 657 case 6: 658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 659 case 7: 660 return GlobalValue::ExternalWeakLinkage; 661 case 8: 662 return GlobalValue::CommonLinkage; 663 case 9: 664 return GlobalValue::PrivateLinkage; 665 case 12: 666 return GlobalValue::AvailableExternallyLinkage; 667 case 13: 668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 669 case 14: 670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 671 case 15: 672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 673 case 1: // Old value with implicit comdat. 674 case 16: 675 return GlobalValue::WeakAnyLinkage; 676 case 10: // Old value with implicit comdat. 677 case 17: 678 return GlobalValue::WeakODRLinkage; 679 case 4: // Old value with implicit comdat. 680 case 18: 681 return GlobalValue::LinkOnceAnyLinkage; 682 case 11: // Old value with implicit comdat. 683 case 19: 684 return GlobalValue::LinkOnceODRLinkage; 685 } 686 } 687 688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown visibilities to default. 691 case 0: return GlobalValue::DefaultVisibility; 692 case 1: return GlobalValue::HiddenVisibility; 693 case 2: return GlobalValue::ProtectedVisibility; 694 } 695 } 696 697 static GlobalValue::DLLStorageClassTypes 698 getDecodedDLLStorageClass(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown values to default. 701 case 0: return GlobalValue::DefaultStorageClass; 702 case 1: return GlobalValue::DLLImportStorageClass; 703 case 2: return GlobalValue::DLLExportStorageClass; 704 } 705 } 706 707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 708 switch (Val) { 709 case 0: return GlobalVariable::NotThreadLocal; 710 default: // Map unknown non-zero value to general dynamic. 711 case 1: return GlobalVariable::GeneralDynamicTLSModel; 712 case 2: return GlobalVariable::LocalDynamicTLSModel; 713 case 3: return GlobalVariable::InitialExecTLSModel; 714 case 4: return GlobalVariable::LocalExecTLSModel; 715 } 716 } 717 718 static int getDecodedCastOpcode(unsigned Val) { 719 switch (Val) { 720 default: return -1; 721 case bitc::CAST_TRUNC : return Instruction::Trunc; 722 case bitc::CAST_ZEXT : return Instruction::ZExt; 723 case bitc::CAST_SEXT : return Instruction::SExt; 724 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 725 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 726 case bitc::CAST_UITOFP : return Instruction::UIToFP; 727 case bitc::CAST_SITOFP : return Instruction::SIToFP; 728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 729 case bitc::CAST_FPEXT : return Instruction::FPExt; 730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 732 case bitc::CAST_BITCAST : return Instruction::BitCast; 733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 734 } 735 } 736 737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 738 bool IsFP = Ty->isFPOrFPVectorTy(); 739 // BinOps are only valid for int/fp or vector of int/fp types 740 if (!IsFP && !Ty->isIntOrIntVectorTy()) 741 return -1; 742 743 switch (Val) { 744 default: 745 return -1; 746 case bitc::BINOP_ADD: 747 return IsFP ? Instruction::FAdd : Instruction::Add; 748 case bitc::BINOP_SUB: 749 return IsFP ? Instruction::FSub : Instruction::Sub; 750 case bitc::BINOP_MUL: 751 return IsFP ? Instruction::FMul : Instruction::Mul; 752 case bitc::BINOP_UDIV: 753 return IsFP ? -1 : Instruction::UDiv; 754 case bitc::BINOP_SDIV: 755 return IsFP ? Instruction::FDiv : Instruction::SDiv; 756 case bitc::BINOP_UREM: 757 return IsFP ? -1 : Instruction::URem; 758 case bitc::BINOP_SREM: 759 return IsFP ? Instruction::FRem : Instruction::SRem; 760 case bitc::BINOP_SHL: 761 return IsFP ? -1 : Instruction::Shl; 762 case bitc::BINOP_LSHR: 763 return IsFP ? -1 : Instruction::LShr; 764 case bitc::BINOP_ASHR: 765 return IsFP ? -1 : Instruction::AShr; 766 case bitc::BINOP_AND: 767 return IsFP ? -1 : Instruction::And; 768 case bitc::BINOP_OR: 769 return IsFP ? -1 : Instruction::Or; 770 case bitc::BINOP_XOR: 771 return IsFP ? -1 : Instruction::Xor; 772 } 773 } 774 775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 776 switch (Val) { 777 default: return AtomicRMWInst::BAD_BINOP; 778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 779 case bitc::RMW_ADD: return AtomicRMWInst::Add; 780 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 781 case bitc::RMW_AND: return AtomicRMWInst::And; 782 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 783 case bitc::RMW_OR: return AtomicRMWInst::Or; 784 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 785 case bitc::RMW_MAX: return AtomicRMWInst::Max; 786 case bitc::RMW_MIN: return AtomicRMWInst::Min; 787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 789 } 790 } 791 792 static AtomicOrdering getDecodedOrdering(unsigned Val) { 793 switch (Val) { 794 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 795 case bitc::ORDERING_UNORDERED: return Unordered; 796 case bitc::ORDERING_MONOTONIC: return Monotonic; 797 case bitc::ORDERING_ACQUIRE: return Acquire; 798 case bitc::ORDERING_RELEASE: return Release; 799 case bitc::ORDERING_ACQREL: return AcquireRelease; 800 default: // Map unknown orderings to sequentially-consistent. 801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 802 } 803 } 804 805 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 806 switch (Val) { 807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 808 default: // Map unknown scopes to cross-thread. 809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 810 } 811 } 812 813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown selection kinds to any. 816 case bitc::COMDAT_SELECTION_KIND_ANY: 817 return Comdat::Any; 818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 819 return Comdat::ExactMatch; 820 case bitc::COMDAT_SELECTION_KIND_LARGEST: 821 return Comdat::Largest; 822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 823 return Comdat::NoDuplicates; 824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 825 return Comdat::SameSize; 826 } 827 } 828 829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 830 FastMathFlags FMF; 831 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 832 FMF.setUnsafeAlgebra(); 833 if (0 != (Val & FastMathFlags::NoNaNs)) 834 FMF.setNoNaNs(); 835 if (0 != (Val & FastMathFlags::NoInfs)) 836 FMF.setNoInfs(); 837 if (0 != (Val & FastMathFlags::NoSignedZeros)) 838 FMF.setNoSignedZeros(); 839 if (0 != (Val & FastMathFlags::AllowReciprocal)) 840 FMF.setAllowReciprocal(); 841 return FMF; 842 } 843 844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 845 switch (Val) { 846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 848 } 849 } 850 851 namespace llvm { 852 namespace { 853 /// \brief A class for maintaining the slot number definition 854 /// as a placeholder for the actual definition for forward constants defs. 855 class ConstantPlaceHolder : public ConstantExpr { 856 void operator=(const ConstantPlaceHolder &) = delete; 857 858 public: 859 // allocate space for exactly one operand 860 void *operator new(size_t s) { return User::operator new(s, 1); } 861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 864 } 865 866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 867 static bool classof(const Value *V) { 868 return isa<ConstantExpr>(V) && 869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 870 } 871 872 /// Provide fast operand accessors 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 }; 875 } 876 877 // FIXME: can we inherit this from ConstantExpr? 878 template <> 879 struct OperandTraits<ConstantPlaceHolder> : 880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 881 }; 882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 883 } 884 885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 886 if (Idx == size()) { 887 push_back(V); 888 return; 889 } 890 891 if (Idx >= size()) 892 resize(Idx+1); 893 894 WeakVH &OldV = ValuePtrs[Idx]; 895 if (!OldV) { 896 OldV = V; 897 return; 898 } 899 900 // Handle constants and non-constants (e.g. instrs) differently for 901 // efficiency. 902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 903 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 904 OldV = V; 905 } else { 906 // If there was a forward reference to this value, replace it. 907 Value *PrevVal = OldV; 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 934 // Bail out for a clearly invalid value. This would make us call resize(0) 935 if (Idx == UINT_MAX) 936 return nullptr; 937 938 if (Idx >= size()) 939 resize(Idx + 1); 940 941 if (Value *V = ValuePtrs[Idx]) { 942 // If the types don't match, it's invalid. 943 if (Ty && Ty != V->getType()) 944 return nullptr; 945 return V; 946 } 947 948 // No type specified, must be invalid reference. 949 if (!Ty) return nullptr; 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Value *V = new Argument(Ty); 953 ValuePtrs[Idx] = V; 954 return V; 955 } 956 957 /// Once all constants are read, this method bulk resolves any forward 958 /// references. The idea behind this is that we sometimes get constants (such 959 /// as large arrays) which reference *many* forward ref constants. Replacing 960 /// each of these causes a lot of thrashing when building/reuniquing the 961 /// constant. Instead of doing this, we look at all the uses and rewrite all 962 /// the place holders at once for any constant that uses a placeholder. 963 void BitcodeReaderValueList::resolveConstantForwardRefs() { 964 // Sort the values by-pointer so that they are efficient to look up with a 965 // binary search. 966 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 967 968 SmallVector<Constant*, 64> NewOps; 969 970 while (!ResolveConstants.empty()) { 971 Value *RealVal = operator[](ResolveConstants.back().second); 972 Constant *Placeholder = ResolveConstants.back().first; 973 ResolveConstants.pop_back(); 974 975 // Loop over all users of the placeholder, updating them to reference the 976 // new value. If they reference more than one placeholder, update them all 977 // at once. 978 while (!Placeholder->use_empty()) { 979 auto UI = Placeholder->user_begin(); 980 User *U = *UI; 981 982 // If the using object isn't uniqued, just update the operands. This 983 // handles instructions and initializers for global variables. 984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 985 UI.getUse().set(RealVal); 986 continue; 987 } 988 989 // Otherwise, we have a constant that uses the placeholder. Replace that 990 // constant with a new constant that has *all* placeholder uses updated. 991 Constant *UserC = cast<Constant>(U); 992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 993 I != E; ++I) { 994 Value *NewOp; 995 if (!isa<ConstantPlaceHolder>(*I)) { 996 // Not a placeholder reference. 997 NewOp = *I; 998 } else if (*I == Placeholder) { 999 // Common case is that it just references this one placeholder. 1000 NewOp = RealVal; 1001 } else { 1002 // Otherwise, look up the placeholder in ResolveConstants. 1003 ResolveConstantsTy::iterator It = 1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1005 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1006 0)); 1007 assert(It != ResolveConstants.end() && It->first == *I); 1008 NewOp = operator[](It->second); 1009 } 1010 1011 NewOps.push_back(cast<Constant>(NewOp)); 1012 } 1013 1014 // Make the new constant. 1015 Constant *NewC; 1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1017 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1020 } else if (isa<ConstantVector>(UserC)) { 1021 NewC = ConstantVector::get(NewOps); 1022 } else { 1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1025 } 1026 1027 UserC->replaceAllUsesWith(NewC); 1028 UserC->destroyConstant(); 1029 NewOps.clear(); 1030 } 1031 1032 // Update all ValueHandles, they should be the only users at this point. 1033 Placeholder->replaceAllUsesWith(RealVal); 1034 delete Placeholder; 1035 } 1036 } 1037 1038 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1039 if (Idx == size()) { 1040 push_back(MD); 1041 return; 1042 } 1043 1044 if (Idx >= size()) 1045 resize(Idx+1); 1046 1047 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1048 if (!OldMD) { 1049 OldMD.reset(MD); 1050 return; 1051 } 1052 1053 // If there was a forward reference to this value, replace it. 1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1055 PrevMD->replaceAllUsesWith(MD); 1056 --NumFwdRefs; 1057 } 1058 1059 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Metadata *MD = MetadataPtrs[Idx]) 1064 return MD; 1065 1066 // Track forward refs to be resolved later. 1067 if (AnyFwdRefs) { 1068 MinFwdRef = std::min(MinFwdRef, Idx); 1069 MaxFwdRef = std::max(MaxFwdRef, Idx); 1070 } else { 1071 AnyFwdRefs = true; 1072 MinFwdRef = MaxFwdRef = Idx; 1073 } 1074 ++NumFwdRefs; 1075 1076 // Create and return a placeholder, which will later be RAUW'd. 1077 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1078 MetadataPtrs[Idx].reset(MD); 1079 return MD; 1080 } 1081 1082 void BitcodeReaderMetadataList::tryToResolveCycles() { 1083 if (!AnyFwdRefs) 1084 // Nothing to do. 1085 return; 1086 1087 if (NumFwdRefs) 1088 // Still forward references... can't resolve cycles. 1089 return; 1090 1091 // Resolve any cycles. 1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1093 auto &MD = MetadataPtrs[I]; 1094 auto *N = dyn_cast_or_null<MDNode>(MD); 1095 if (!N) 1096 continue; 1097 1098 assert(!N->isTemporary() && "Unexpected forward reference"); 1099 N->resolveCycles(); 1100 } 1101 1102 // Make sure we return early again until there's another forward ref. 1103 AnyFwdRefs = false; 1104 } 1105 1106 Type *BitcodeReader::getTypeByID(unsigned ID) { 1107 // The type table size is always specified correctly. 1108 if (ID >= TypeList.size()) 1109 return nullptr; 1110 1111 if (Type *Ty = TypeList[ID]) 1112 return Ty; 1113 1114 // If we have a forward reference, the only possible case is when it is to a 1115 // named struct. Just create a placeholder for now. 1116 return TypeList[ID] = createIdentifiedStructType(Context); 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1120 StringRef Name) { 1121 auto *Ret = StructType::create(Context, Name); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1127 auto *Ret = StructType::create(Context); 1128 IdentifiedStructTypes.push_back(Ret); 1129 return Ret; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMetadataNo = MetadataList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MetadataList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MetadataList in with the parsed module 1878 // The function-level metadata parsing should have reset the MetadataList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MetadataList.size() && 1882 "Expected MetadataList to only contain module level values"); 1883 NextMetadataNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = [&](unsigned ID) -> Metadata * { 1892 return MetadataList.getValueFwdRef(ID); 1893 }; 1894 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1895 if (ID) 1896 return getMD(ID - 1); 1897 return nullptr; 1898 }; 1899 auto getMDString = [&](unsigned ID) -> MDString *{ 1900 // This requires that the ID is not really a forward reference. In 1901 // particular, the MDString must already have been resolved. 1902 return cast_or_null<MDString>(getMDOrNull(ID)); 1903 }; 1904 1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1906 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1907 1908 // Read all the records. 1909 while (1) { 1910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1911 1912 switch (Entry.Kind) { 1913 case BitstreamEntry::SubBlock: // Handled for us already. 1914 case BitstreamEntry::Error: 1915 return error("Malformed block"); 1916 case BitstreamEntry::EndBlock: 1917 MetadataList.tryToResolveCycles(); 1918 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1919 NumModuleMDs == MetadataList.size()) && 1920 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1921 return std::error_code(); 1922 case BitstreamEntry::Record: 1923 // The interesting case. 1924 break; 1925 } 1926 1927 // Read a record. 1928 Record.clear(); 1929 unsigned Code = Stream.readRecord(Entry.ID, Record); 1930 bool IsDistinct = false; 1931 switch (Code) { 1932 default: // Default behavior: ignore. 1933 break; 1934 case bitc::METADATA_NAME: { 1935 // Read name of the named metadata. 1936 SmallString<8> Name(Record.begin(), Record.end()); 1937 Record.clear(); 1938 Code = Stream.ReadCode(); 1939 1940 unsigned NextBitCode = Stream.readRecord(Code, Record); 1941 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1943 1944 // Read named metadata elements. 1945 unsigned Size = Record.size(); 1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1947 for (unsigned i = 0; i != Size; ++i) { 1948 MDNode *MD = 1949 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1950 if (!MD) 1951 return error("Invalid record"); 1952 NMD->addOperand(MD); 1953 } 1954 break; 1955 } 1956 case bitc::METADATA_OLD_FN_NODE: { 1957 // FIXME: Remove in 4.0. 1958 // This is a LocalAsMetadata record, the only type of function-local 1959 // metadata. 1960 if (Record.size() % 2 == 1) 1961 return error("Invalid record"); 1962 1963 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1964 // to be legal, but there's no upgrade path. 1965 auto dropRecord = [&] { 1966 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1967 }; 1968 if (Record.size() != 2) { 1969 dropRecord(); 1970 break; 1971 } 1972 1973 Type *Ty = getTypeByID(Record[0]); 1974 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1975 dropRecord(); 1976 break; 1977 } 1978 1979 MetadataList.assignValue( 1980 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1981 NextMetadataNo++); 1982 break; 1983 } 1984 case bitc::METADATA_OLD_NODE: { 1985 // FIXME: Remove in 4.0. 1986 if (Record.size() % 2 == 1) 1987 return error("Invalid record"); 1988 1989 unsigned Size = Record.size(); 1990 SmallVector<Metadata *, 8> Elts; 1991 for (unsigned i = 0; i != Size; i += 2) { 1992 Type *Ty = getTypeByID(Record[i]); 1993 if (!Ty) 1994 return error("Invalid record"); 1995 if (Ty->isMetadataTy()) 1996 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 1997 else if (!Ty->isVoidTy()) { 1998 auto *MD = 1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2000 assert(isa<ConstantAsMetadata>(MD) && 2001 "Expected non-function-local metadata"); 2002 Elts.push_back(MD); 2003 } else 2004 Elts.push_back(nullptr); 2005 } 2006 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2007 break; 2008 } 2009 case bitc::METADATA_VALUE: { 2010 if (Record.size() != 2) 2011 return error("Invalid record"); 2012 2013 Type *Ty = getTypeByID(Record[0]); 2014 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2015 return error("Invalid record"); 2016 2017 MetadataList.assignValue( 2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2019 NextMetadataNo++); 2020 break; 2021 } 2022 case bitc::METADATA_DISTINCT_NODE: 2023 IsDistinct = true; 2024 // fallthrough... 2025 case bitc::METADATA_NODE: { 2026 SmallVector<Metadata *, 8> Elts; 2027 Elts.reserve(Record.size()); 2028 for (unsigned ID : Record) 2029 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2030 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2031 : MDNode::get(Context, Elts), 2032 NextMetadataNo++); 2033 break; 2034 } 2035 case bitc::METADATA_LOCATION: { 2036 if (Record.size() != 5) 2037 return error("Invalid record"); 2038 2039 unsigned Line = Record[1]; 2040 unsigned Column = Record[2]; 2041 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2042 Metadata *InlinedAt = 2043 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2044 MetadataList.assignValue( 2045 GET_OR_DISTINCT(DILocation, Record[0], 2046 (Context, Line, Column, Scope, InlinedAt)), 2047 NextMetadataNo++); 2048 break; 2049 } 2050 case bitc::METADATA_GENERIC_DEBUG: { 2051 if (Record.size() < 4) 2052 return error("Invalid record"); 2053 2054 unsigned Tag = Record[1]; 2055 unsigned Version = Record[2]; 2056 2057 if (Tag >= 1u << 16 || Version != 0) 2058 return error("Invalid record"); 2059 2060 auto *Header = getMDString(Record[3]); 2061 SmallVector<Metadata *, 8> DwarfOps; 2062 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2063 DwarfOps.push_back( 2064 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2065 MetadataList.assignValue( 2066 GET_OR_DISTINCT(GenericDINode, Record[0], 2067 (Context, Tag, Header, DwarfOps)), 2068 NextMetadataNo++); 2069 break; 2070 } 2071 case bitc::METADATA_SUBRANGE: { 2072 if (Record.size() != 3) 2073 return error("Invalid record"); 2074 2075 MetadataList.assignValue( 2076 GET_OR_DISTINCT(DISubrange, Record[0], 2077 (Context, Record[1], unrotateSign(Record[2]))), 2078 NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_ENUMERATOR: { 2082 if (Record.size() != 3) 2083 return error("Invalid record"); 2084 2085 MetadataList.assignValue( 2086 GET_OR_DISTINCT( 2087 DIEnumerator, Record[0], 2088 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2089 NextMetadataNo++); 2090 break; 2091 } 2092 case bitc::METADATA_BASIC_TYPE: { 2093 if (Record.size() != 6) 2094 return error("Invalid record"); 2095 2096 MetadataList.assignValue( 2097 GET_OR_DISTINCT(DIBasicType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 Record[3], Record[4], Record[5])), 2100 NextMetadataNo++); 2101 break; 2102 } 2103 case bitc::METADATA_DERIVED_TYPE: { 2104 if (Record.size() != 12) 2105 return error("Invalid record"); 2106 2107 MetadataList.assignValue( 2108 GET_OR_DISTINCT(DIDerivedType, Record[0], 2109 (Context, Record[1], getMDString(Record[2]), 2110 getMDOrNull(Record[3]), Record[4], 2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2112 Record[7], Record[8], Record[9], Record[10], 2113 getMDOrNull(Record[11]))), 2114 NextMetadataNo++); 2115 break; 2116 } 2117 case bitc::METADATA_COMPOSITE_TYPE: { 2118 if (Record.size() != 16) 2119 return error("Invalid record"); 2120 2121 MetadataList.assignValue( 2122 GET_OR_DISTINCT(DICompositeType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 getMDOrNull(Record[3]), Record[4], 2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2126 Record[7], Record[8], Record[9], Record[10], 2127 getMDOrNull(Record[11]), Record[12], 2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2129 getMDString(Record[15]))), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBROUTINE_TYPE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubroutineType, Record[0], 2139 (Context, Record[1], getMDOrNull(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 2144 case bitc::METADATA_MODULE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DIModule, Record[0], 2150 (Context, getMDOrNull(Record[1]), 2151 getMDString(Record[2]), getMDString(Record[3]), 2152 getMDString(Record[4]), getMDString(Record[5]))), 2153 NextMetadataNo++); 2154 break; 2155 } 2156 2157 case bitc::METADATA_FILE: { 2158 if (Record.size() != 3) 2159 return error("Invalid record"); 2160 2161 MetadataList.assignValue( 2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2163 getMDString(Record[2]))), 2164 NextMetadataNo++); 2165 break; 2166 } 2167 case bitc::METADATA_COMPILE_UNIT: { 2168 if (Record.size() < 14 || Record.size() > 16) 2169 return error("Invalid record"); 2170 2171 // Ignore Record[0], which indicates whether this compile unit is 2172 // distinct. It's always distinct. 2173 MetadataList.assignValue( 2174 DICompileUnit::getDistinct( 2175 Context, Record[1], getMDOrNull(Record[2]), 2176 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2177 Record[6], getMDString(Record[7]), Record[8], 2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2180 getMDOrNull(Record[13]), 2181 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2182 Record.size() <= 14 ? 0 : Record[14]), 2183 NextMetadataNo++); 2184 break; 2185 } 2186 case bitc::METADATA_SUBPROGRAM: { 2187 if (Record.size() != 18 && Record.size() != 19) 2188 return error("Invalid record"); 2189 2190 bool HasFn = Record.size() == 19; 2191 DISubprogram *SP = GET_OR_DISTINCT( 2192 DISubprogram, 2193 Record[0] || Record[8], // All definitions should be distinct. 2194 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2195 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2196 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2197 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2198 Record[14], getMDOrNull(Record[15 + HasFn]), 2199 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2200 MetadataList.assignValue(SP, NextMetadataNo++); 2201 2202 // Upgrade sp->function mapping to function->sp mapping. 2203 if (HasFn && Record[15]) { 2204 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2205 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2206 if (F->isMaterializable()) 2207 // Defer until materialized; unmaterialized functions may not have 2208 // metadata. 2209 FunctionsWithSPs[F] = SP; 2210 else if (!F->empty()) 2211 F->setSubprogram(SP); 2212 } 2213 } 2214 break; 2215 } 2216 case bitc::METADATA_LEXICAL_BLOCK: { 2217 if (Record.size() != 5) 2218 return error("Invalid record"); 2219 2220 MetadataList.assignValue( 2221 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2222 (Context, getMDOrNull(Record[1]), 2223 getMDOrNull(Record[2]), Record[3], Record[4])), 2224 NextMetadataNo++); 2225 break; 2226 } 2227 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2228 if (Record.size() != 4) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDOrNull(Record[2]), Record[3])), 2235 NextMetadataNo++); 2236 break; 2237 } 2238 case bitc::METADATA_NAMESPACE: { 2239 if (Record.size() != 5) 2240 return error("Invalid record"); 2241 2242 MetadataList.assignValue( 2243 GET_OR_DISTINCT(DINamespace, Record[0], 2244 (Context, getMDOrNull(Record[1]), 2245 getMDOrNull(Record[2]), getMDString(Record[3]), 2246 Record[4])), 2247 NextMetadataNo++); 2248 break; 2249 } 2250 case bitc::METADATA_MACRO: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MetadataList.assignValue( 2255 GET_OR_DISTINCT(DIMacro, Record[0], 2256 (Context, Record[1], Record[2], 2257 getMDString(Record[3]), getMDString(Record[4]))), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_MACRO_FILE: { 2262 if (Record.size() != 5) 2263 return error("Invalid record"); 2264 2265 MetadataList.assignValue( 2266 GET_OR_DISTINCT(DIMacroFile, Record[0], 2267 (Context, Record[1], Record[2], 2268 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2269 NextMetadataNo++); 2270 break; 2271 } 2272 case bitc::METADATA_TEMPLATE_TYPE: { 2273 if (Record.size() != 3) 2274 return error("Invalid record"); 2275 2276 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2277 Record[0], 2278 (Context, getMDString(Record[1]), 2279 getMDOrNull(Record[2]))), 2280 NextMetadataNo++); 2281 break; 2282 } 2283 case bitc::METADATA_TEMPLATE_VALUE: { 2284 if (Record.size() != 5) 2285 return error("Invalid record"); 2286 2287 MetadataList.assignValue( 2288 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2289 (Context, Record[1], getMDString(Record[2]), 2290 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_GLOBAL_VAR: { 2295 if (Record.size() != 11) 2296 return error("Invalid record"); 2297 2298 MetadataList.assignValue( 2299 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2300 (Context, getMDOrNull(Record[1]), 2301 getMDString(Record[2]), getMDString(Record[3]), 2302 getMDOrNull(Record[4]), Record[5], 2303 getMDOrNull(Record[6]), Record[7], Record[8], 2304 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2305 NextMetadataNo++); 2306 break; 2307 } 2308 case bitc::METADATA_LOCAL_VAR: { 2309 // 10th field is for the obseleted 'inlinedAt:' field. 2310 if (Record.size() < 8 || Record.size() > 10) 2311 return error("Invalid record"); 2312 2313 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2314 // DW_TAG_arg_variable. 2315 bool HasTag = Record.size() > 8; 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DILocalVariable, Record[0], 2318 (Context, getMDOrNull(Record[1 + HasTag]), 2319 getMDString(Record[2 + HasTag]), 2320 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2321 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2322 Record[7 + HasTag])), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_EXPRESSION: { 2327 if (Record.size() < 1) 2328 return error("Invalid record"); 2329 2330 MetadataList.assignValue( 2331 GET_OR_DISTINCT(DIExpression, Record[0], 2332 (Context, makeArrayRef(Record).slice(1))), 2333 NextMetadataNo++); 2334 break; 2335 } 2336 case bitc::METADATA_OBJC_PROPERTY: { 2337 if (Record.size() != 8) 2338 return error("Invalid record"); 2339 2340 MetadataList.assignValue( 2341 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2342 (Context, getMDString(Record[1]), 2343 getMDOrNull(Record[2]), Record[3], 2344 getMDString(Record[4]), getMDString(Record[5]), 2345 Record[6], getMDOrNull(Record[7]))), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_IMPORTED_ENTITY: { 2350 if (Record.size() != 6) 2351 return error("Invalid record"); 2352 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2355 (Context, Record[1], getMDOrNull(Record[2]), 2356 getMDOrNull(Record[3]), Record[4], 2357 getMDString(Record[5]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_STRING: { 2362 std::string String(Record.begin(), Record.end()); 2363 llvm::UpgradeMDStringConstant(String); 2364 Metadata *MD = MDString::get(Context, String); 2365 MetadataList.assignValue(MD, NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_KIND: { 2369 // Support older bitcode files that had METADATA_KIND records in a 2370 // block with METADATA_BLOCK_ID. 2371 if (std::error_code EC = parseMetadataKindRecord(Record)) 2372 return EC; 2373 break; 2374 } 2375 } 2376 } 2377 #undef GET_OR_DISTINCT 2378 } 2379 2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2381 std::error_code BitcodeReader::parseMetadataKinds() { 2382 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2383 return error("Invalid record"); 2384 2385 SmallVector<uint64_t, 64> Record; 2386 2387 // Read all the records. 2388 while (1) { 2389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2390 2391 switch (Entry.Kind) { 2392 case BitstreamEntry::SubBlock: // Handled for us already. 2393 case BitstreamEntry::Error: 2394 return error("Malformed block"); 2395 case BitstreamEntry::EndBlock: 2396 return std::error_code(); 2397 case BitstreamEntry::Record: 2398 // The interesting case. 2399 break; 2400 } 2401 2402 // Read a record. 2403 Record.clear(); 2404 unsigned Code = Stream.readRecord(Entry.ID, Record); 2405 switch (Code) { 2406 default: // Default behavior: ignore. 2407 break; 2408 case bitc::METADATA_KIND: { 2409 if (std::error_code EC = parseMetadataKindRecord(Record)) 2410 return EC; 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2418 /// encoding. 2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2420 if ((V & 1) == 0) 2421 return V >> 1; 2422 if (V != 1) 2423 return -(V >> 1); 2424 // There is no such thing as -0 with integers. "-0" really means MININT. 2425 return 1ULL << 63; 2426 } 2427 2428 /// Resolve all of the initializers for global values and aliases that we can. 2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2430 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2431 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2432 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2433 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2435 2436 GlobalInitWorklist.swap(GlobalInits); 2437 AliasInitWorklist.swap(AliasInits); 2438 FunctionPrefixWorklist.swap(FunctionPrefixes); 2439 FunctionPrologueWorklist.swap(FunctionPrologues); 2440 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2441 2442 while (!GlobalInitWorklist.empty()) { 2443 unsigned ValID = GlobalInitWorklist.back().second; 2444 if (ValID >= ValueList.size()) { 2445 // Not ready to resolve this yet, it requires something later in the file. 2446 GlobalInits.push_back(GlobalInitWorklist.back()); 2447 } else { 2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2449 GlobalInitWorklist.back().first->setInitializer(C); 2450 else 2451 return error("Expected a constant"); 2452 } 2453 GlobalInitWorklist.pop_back(); 2454 } 2455 2456 while (!AliasInitWorklist.empty()) { 2457 unsigned ValID = AliasInitWorklist.back().second; 2458 if (ValID >= ValueList.size()) { 2459 AliasInits.push_back(AliasInitWorklist.back()); 2460 } else { 2461 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2462 if (!C) 2463 return error("Expected a constant"); 2464 GlobalAlias *Alias = AliasInitWorklist.back().first; 2465 if (C->getType() != Alias->getType()) 2466 return error("Alias and aliasee types don't match"); 2467 Alias->setAliasee(C); 2468 } 2469 AliasInitWorklist.pop_back(); 2470 } 2471 2472 while (!FunctionPrefixWorklist.empty()) { 2473 unsigned ValID = FunctionPrefixWorklist.back().second; 2474 if (ValID >= ValueList.size()) { 2475 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2476 } else { 2477 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2478 FunctionPrefixWorklist.back().first->setPrefixData(C); 2479 else 2480 return error("Expected a constant"); 2481 } 2482 FunctionPrefixWorklist.pop_back(); 2483 } 2484 2485 while (!FunctionPrologueWorklist.empty()) { 2486 unsigned ValID = FunctionPrologueWorklist.back().second; 2487 if (ValID >= ValueList.size()) { 2488 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2489 } else { 2490 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2491 FunctionPrologueWorklist.back().first->setPrologueData(C); 2492 else 2493 return error("Expected a constant"); 2494 } 2495 FunctionPrologueWorklist.pop_back(); 2496 } 2497 2498 while (!FunctionPersonalityFnWorklist.empty()) { 2499 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2500 if (ValID >= ValueList.size()) { 2501 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2502 } else { 2503 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2504 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2505 else 2506 return error("Expected a constant"); 2507 } 2508 FunctionPersonalityFnWorklist.pop_back(); 2509 } 2510 2511 return std::error_code(); 2512 } 2513 2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2515 SmallVector<uint64_t, 8> Words(Vals.size()); 2516 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2517 BitcodeReader::decodeSignRotatedValue); 2518 2519 return APInt(TypeBits, Words); 2520 } 2521 2522 std::error_code BitcodeReader::parseConstants() { 2523 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2524 return error("Invalid record"); 2525 2526 SmallVector<uint64_t, 64> Record; 2527 2528 // Read all the records for this value table. 2529 Type *CurTy = Type::getInt32Ty(Context); 2530 unsigned NextCstNo = ValueList.size(); 2531 while (1) { 2532 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2533 2534 switch (Entry.Kind) { 2535 case BitstreamEntry::SubBlock: // Handled for us already. 2536 case BitstreamEntry::Error: 2537 return error("Malformed block"); 2538 case BitstreamEntry::EndBlock: 2539 if (NextCstNo != ValueList.size()) 2540 return error("Invalid constant reference"); 2541 2542 // Once all the constants have been read, go through and resolve forward 2543 // references. 2544 ValueList.resolveConstantForwardRefs(); 2545 return std::error_code(); 2546 case BitstreamEntry::Record: 2547 // The interesting case. 2548 break; 2549 } 2550 2551 // Read a record. 2552 Record.clear(); 2553 Value *V = nullptr; 2554 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2555 switch (BitCode) { 2556 default: // Default behavior: unknown constant 2557 case bitc::CST_CODE_UNDEF: // UNDEF 2558 V = UndefValue::get(CurTy); 2559 break; 2560 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2561 if (Record.empty()) 2562 return error("Invalid record"); 2563 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2564 return error("Invalid record"); 2565 CurTy = TypeList[Record[0]]; 2566 continue; // Skip the ValueList manipulation. 2567 case bitc::CST_CODE_NULL: // NULL 2568 V = Constant::getNullValue(CurTy); 2569 break; 2570 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2571 if (!CurTy->isIntegerTy() || Record.empty()) 2572 return error("Invalid record"); 2573 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2574 break; 2575 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2576 if (!CurTy->isIntegerTy() || Record.empty()) 2577 return error("Invalid record"); 2578 2579 APInt VInt = 2580 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2581 V = ConstantInt::get(Context, VInt); 2582 2583 break; 2584 } 2585 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 if (CurTy->isHalfTy()) 2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2590 APInt(16, (uint16_t)Record[0]))); 2591 else if (CurTy->isFloatTy()) 2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2593 APInt(32, (uint32_t)Record[0]))); 2594 else if (CurTy->isDoubleTy()) 2595 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2596 APInt(64, Record[0]))); 2597 else if (CurTy->isX86_FP80Ty()) { 2598 // Bits are not stored the same way as a normal i80 APInt, compensate. 2599 uint64_t Rearrange[2]; 2600 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2601 Rearrange[1] = Record[0] >> 48; 2602 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2603 APInt(80, Rearrange))); 2604 } else if (CurTy->isFP128Ty()) 2605 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2606 APInt(128, Record))); 2607 else if (CurTy->isPPC_FP128Ty()) 2608 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2609 APInt(128, Record))); 2610 else 2611 V = UndefValue::get(CurTy); 2612 break; 2613 } 2614 2615 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 2619 unsigned Size = Record.size(); 2620 SmallVector<Constant*, 16> Elts; 2621 2622 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2623 for (unsigned i = 0; i != Size; ++i) 2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2625 STy->getElementType(i))); 2626 V = ConstantStruct::get(STy, Elts); 2627 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2628 Type *EltTy = ATy->getElementType(); 2629 for (unsigned i = 0; i != Size; ++i) 2630 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2631 V = ConstantArray::get(ATy, Elts); 2632 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2633 Type *EltTy = VTy->getElementType(); 2634 for (unsigned i = 0; i != Size; ++i) 2635 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2636 V = ConstantVector::get(Elts); 2637 } else { 2638 V = UndefValue::get(CurTy); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_STRING: // STRING: [values] 2643 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2644 if (Record.empty()) 2645 return error("Invalid record"); 2646 2647 SmallString<16> Elts(Record.begin(), Record.end()); 2648 V = ConstantDataArray::getString(Context, Elts, 2649 BitCode == bitc::CST_CODE_CSTRING); 2650 break; 2651 } 2652 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2653 if (Record.empty()) 2654 return error("Invalid record"); 2655 2656 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2657 if (EltTy->isIntegerTy(8)) { 2658 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2659 if (isa<VectorType>(CurTy)) 2660 V = ConstantDataVector::get(Context, Elts); 2661 else 2662 V = ConstantDataArray::get(Context, Elts); 2663 } else if (EltTy->isIntegerTy(16)) { 2664 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2665 if (isa<VectorType>(CurTy)) 2666 V = ConstantDataVector::get(Context, Elts); 2667 else 2668 V = ConstantDataArray::get(Context, Elts); 2669 } else if (EltTy->isIntegerTy(32)) { 2670 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2671 if (isa<VectorType>(CurTy)) 2672 V = ConstantDataVector::get(Context, Elts); 2673 else 2674 V = ConstantDataArray::get(Context, Elts); 2675 } else if (EltTy->isIntegerTy(64)) { 2676 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2677 if (isa<VectorType>(CurTy)) 2678 V = ConstantDataVector::get(Context, Elts); 2679 else 2680 V = ConstantDataArray::get(Context, Elts); 2681 } else if (EltTy->isHalfTy()) { 2682 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2683 if (isa<VectorType>(CurTy)) 2684 V = ConstantDataVector::getFP(Context, Elts); 2685 else 2686 V = ConstantDataArray::getFP(Context, Elts); 2687 } else if (EltTy->isFloatTy()) { 2688 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::getFP(Context, Elts); 2691 else 2692 V = ConstantDataArray::getFP(Context, Elts); 2693 } else if (EltTy->isDoubleTy()) { 2694 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::getFP(Context, Elts); 2697 else 2698 V = ConstantDataArray::getFP(Context, Elts); 2699 } else { 2700 return error("Invalid type for value"); 2701 } 2702 break; 2703 } 2704 2705 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2706 if (Record.size() < 3) 2707 return error("Invalid record"); 2708 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2709 if (Opc < 0) { 2710 V = UndefValue::get(CurTy); // Unknown binop. 2711 } else { 2712 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2713 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2714 unsigned Flags = 0; 2715 if (Record.size() >= 4) { 2716 if (Opc == Instruction::Add || 2717 Opc == Instruction::Sub || 2718 Opc == Instruction::Mul || 2719 Opc == Instruction::Shl) { 2720 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2721 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2722 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2723 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2724 } else if (Opc == Instruction::SDiv || 2725 Opc == Instruction::UDiv || 2726 Opc == Instruction::LShr || 2727 Opc == Instruction::AShr) { 2728 if (Record[3] & (1 << bitc::PEO_EXACT)) 2729 Flags |= SDivOperator::IsExact; 2730 } 2731 } 2732 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2733 } 2734 break; 2735 } 2736 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2737 if (Record.size() < 3) 2738 return error("Invalid record"); 2739 int Opc = getDecodedCastOpcode(Record[0]); 2740 if (Opc < 0) { 2741 V = UndefValue::get(CurTy); // Unknown cast. 2742 } else { 2743 Type *OpTy = getTypeByID(Record[1]); 2744 if (!OpTy) 2745 return error("Invalid record"); 2746 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2747 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2748 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2749 } 2750 break; 2751 } 2752 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2753 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2754 unsigned OpNum = 0; 2755 Type *PointeeType = nullptr; 2756 if (Record.size() % 2) 2757 PointeeType = getTypeByID(Record[OpNum++]); 2758 SmallVector<Constant*, 16> Elts; 2759 while (OpNum != Record.size()) { 2760 Type *ElTy = getTypeByID(Record[OpNum++]); 2761 if (!ElTy) 2762 return error("Invalid record"); 2763 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2764 } 2765 2766 if (PointeeType && 2767 PointeeType != 2768 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2769 ->getElementType()) 2770 return error("Explicit gep operator type does not match pointee type " 2771 "of pointer operand"); 2772 2773 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2774 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2775 BitCode == 2776 bitc::CST_CODE_CE_INBOUNDS_GEP); 2777 break; 2778 } 2779 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2780 if (Record.size() < 3) 2781 return error("Invalid record"); 2782 2783 Type *SelectorTy = Type::getInt1Ty(Context); 2784 2785 // The selector might be an i1 or an <n x i1> 2786 // Get the type from the ValueList before getting a forward ref. 2787 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2788 if (Value *V = ValueList[Record[0]]) 2789 if (SelectorTy != V->getType()) 2790 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2791 2792 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2793 SelectorTy), 2794 ValueList.getConstantFwdRef(Record[1],CurTy), 2795 ValueList.getConstantFwdRef(Record[2],CurTy)); 2796 break; 2797 } 2798 case bitc::CST_CODE_CE_EXTRACTELT 2799 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2800 if (Record.size() < 3) 2801 return error("Invalid record"); 2802 VectorType *OpTy = 2803 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2804 if (!OpTy) 2805 return error("Invalid record"); 2806 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2807 Constant *Op1 = nullptr; 2808 if (Record.size() == 4) { 2809 Type *IdxTy = getTypeByID(Record[2]); 2810 if (!IdxTy) 2811 return error("Invalid record"); 2812 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2813 } else // TODO: Remove with llvm 4.0 2814 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2815 if (!Op1) 2816 return error("Invalid record"); 2817 V = ConstantExpr::getExtractElement(Op0, Op1); 2818 break; 2819 } 2820 case bitc::CST_CODE_CE_INSERTELT 2821 : { // CE_INSERTELT: [opval, opval, opty, opval] 2822 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2823 if (Record.size() < 3 || !OpTy) 2824 return error("Invalid record"); 2825 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2826 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2827 OpTy->getElementType()); 2828 Constant *Op2 = nullptr; 2829 if (Record.size() == 4) { 2830 Type *IdxTy = getTypeByID(Record[2]); 2831 if (!IdxTy) 2832 return error("Invalid record"); 2833 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2834 } else // TODO: Remove with llvm 4.0 2835 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2836 if (!Op2) 2837 return error("Invalid record"); 2838 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2839 break; 2840 } 2841 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2842 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2843 if (Record.size() < 3 || !OpTy) 2844 return error("Invalid record"); 2845 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2846 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2847 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2848 OpTy->getNumElements()); 2849 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2850 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2851 break; 2852 } 2853 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2854 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2855 VectorType *OpTy = 2856 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2857 if (Record.size() < 4 || !RTy || !OpTy) 2858 return error("Invalid record"); 2859 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2860 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2861 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2862 RTy->getNumElements()); 2863 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2864 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2865 break; 2866 } 2867 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2868 if (Record.size() < 4) 2869 return error("Invalid record"); 2870 Type *OpTy = getTypeByID(Record[0]); 2871 if (!OpTy) 2872 return error("Invalid record"); 2873 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2874 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2875 2876 if (OpTy->isFPOrFPVectorTy()) 2877 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2878 else 2879 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2880 break; 2881 } 2882 // This maintains backward compatibility, pre-asm dialect keywords. 2883 // FIXME: Remove with the 4.0 release. 2884 case bitc::CST_CODE_INLINEASM_OLD: { 2885 if (Record.size() < 2) 2886 return error("Invalid record"); 2887 std::string AsmStr, ConstrStr; 2888 bool HasSideEffects = Record[0] & 1; 2889 bool IsAlignStack = Record[0] >> 1; 2890 unsigned AsmStrSize = Record[1]; 2891 if (2+AsmStrSize >= Record.size()) 2892 return error("Invalid record"); 2893 unsigned ConstStrSize = Record[2+AsmStrSize]; 2894 if (3+AsmStrSize+ConstStrSize > Record.size()) 2895 return error("Invalid record"); 2896 2897 for (unsigned i = 0; i != AsmStrSize; ++i) 2898 AsmStr += (char)Record[2+i]; 2899 for (unsigned i = 0; i != ConstStrSize; ++i) 2900 ConstrStr += (char)Record[3+AsmStrSize+i]; 2901 PointerType *PTy = cast<PointerType>(CurTy); 2902 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2903 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2904 break; 2905 } 2906 // This version adds support for the asm dialect keywords (e.g., 2907 // inteldialect). 2908 case bitc::CST_CODE_INLINEASM: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 std::string AsmStr, ConstrStr; 2912 bool HasSideEffects = Record[0] & 1; 2913 bool IsAlignStack = (Record[0] >> 1) & 1; 2914 unsigned AsmDialect = Record[0] >> 2; 2915 unsigned AsmStrSize = Record[1]; 2916 if (2+AsmStrSize >= Record.size()) 2917 return error("Invalid record"); 2918 unsigned ConstStrSize = Record[2+AsmStrSize]; 2919 if (3+AsmStrSize+ConstStrSize > Record.size()) 2920 return error("Invalid record"); 2921 2922 for (unsigned i = 0; i != AsmStrSize; ++i) 2923 AsmStr += (char)Record[2+i]; 2924 for (unsigned i = 0; i != ConstStrSize; ++i) 2925 ConstrStr += (char)Record[3+AsmStrSize+i]; 2926 PointerType *PTy = cast<PointerType>(CurTy); 2927 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2928 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2929 InlineAsm::AsmDialect(AsmDialect)); 2930 break; 2931 } 2932 case bitc::CST_CODE_BLOCKADDRESS:{ 2933 if (Record.size() < 3) 2934 return error("Invalid record"); 2935 Type *FnTy = getTypeByID(Record[0]); 2936 if (!FnTy) 2937 return error("Invalid record"); 2938 Function *Fn = 2939 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2940 if (!Fn) 2941 return error("Invalid record"); 2942 2943 // If the function is already parsed we can insert the block address right 2944 // away. 2945 BasicBlock *BB; 2946 unsigned BBID = Record[2]; 2947 if (!BBID) 2948 // Invalid reference to entry block. 2949 return error("Invalid ID"); 2950 if (!Fn->empty()) { 2951 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2952 for (size_t I = 0, E = BBID; I != E; ++I) { 2953 if (BBI == BBE) 2954 return error("Invalid ID"); 2955 ++BBI; 2956 } 2957 BB = &*BBI; 2958 } else { 2959 // Otherwise insert a placeholder and remember it so it can be inserted 2960 // when the function is parsed. 2961 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2962 if (FwdBBs.empty()) 2963 BasicBlockFwdRefQueue.push_back(Fn); 2964 if (FwdBBs.size() < BBID + 1) 2965 FwdBBs.resize(BBID + 1); 2966 if (!FwdBBs[BBID]) 2967 FwdBBs[BBID] = BasicBlock::Create(Context); 2968 BB = FwdBBs[BBID]; 2969 } 2970 V = BlockAddress::get(Fn, BB); 2971 break; 2972 } 2973 } 2974 2975 ValueList.assignValue(V, NextCstNo); 2976 ++NextCstNo; 2977 } 2978 } 2979 2980 std::error_code BitcodeReader::parseUseLists() { 2981 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2982 return error("Invalid record"); 2983 2984 // Read all the records. 2985 SmallVector<uint64_t, 64> Record; 2986 while (1) { 2987 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2988 2989 switch (Entry.Kind) { 2990 case BitstreamEntry::SubBlock: // Handled for us already. 2991 case BitstreamEntry::Error: 2992 return error("Malformed block"); 2993 case BitstreamEntry::EndBlock: 2994 return std::error_code(); 2995 case BitstreamEntry::Record: 2996 // The interesting case. 2997 break; 2998 } 2999 3000 // Read a use list record. 3001 Record.clear(); 3002 bool IsBB = false; 3003 switch (Stream.readRecord(Entry.ID, Record)) { 3004 default: // Default behavior: unknown type. 3005 break; 3006 case bitc::USELIST_CODE_BB: 3007 IsBB = true; 3008 // fallthrough 3009 case bitc::USELIST_CODE_DEFAULT: { 3010 unsigned RecordLength = Record.size(); 3011 if (RecordLength < 3) 3012 // Records should have at least an ID and two indexes. 3013 return error("Invalid record"); 3014 unsigned ID = Record.back(); 3015 Record.pop_back(); 3016 3017 Value *V; 3018 if (IsBB) { 3019 assert(ID < FunctionBBs.size() && "Basic block not found"); 3020 V = FunctionBBs[ID]; 3021 } else 3022 V = ValueList[ID]; 3023 unsigned NumUses = 0; 3024 SmallDenseMap<const Use *, unsigned, 16> Order; 3025 for (const Use &U : V->materialized_uses()) { 3026 if (++NumUses > Record.size()) 3027 break; 3028 Order[&U] = Record[NumUses - 1]; 3029 } 3030 if (Order.size() != Record.size() || NumUses > Record.size()) 3031 // Mismatches can happen if the functions are being materialized lazily 3032 // (out-of-order), or a value has been upgraded. 3033 break; 3034 3035 V->sortUseList([&](const Use &L, const Use &R) { 3036 return Order.lookup(&L) < Order.lookup(&R); 3037 }); 3038 break; 3039 } 3040 } 3041 } 3042 } 3043 3044 /// When we see the block for metadata, remember where it is and then skip it. 3045 /// This lets us lazily deserialize the metadata. 3046 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3047 // Save the current stream state. 3048 uint64_t CurBit = Stream.GetCurrentBitNo(); 3049 DeferredMetadataInfo.push_back(CurBit); 3050 3051 // Skip over the block for now. 3052 if (Stream.SkipBlock()) 3053 return error("Invalid record"); 3054 return std::error_code(); 3055 } 3056 3057 std::error_code BitcodeReader::materializeMetadata() { 3058 for (uint64_t BitPos : DeferredMetadataInfo) { 3059 // Move the bit stream to the saved position. 3060 Stream.JumpToBit(BitPos); 3061 if (std::error_code EC = parseMetadata(true)) 3062 return EC; 3063 } 3064 DeferredMetadataInfo.clear(); 3065 return std::error_code(); 3066 } 3067 3068 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3069 3070 void BitcodeReader::saveMetadataList( 3071 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3072 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3073 Metadata *MD = MetadataList[ID]; 3074 auto *N = dyn_cast_or_null<MDNode>(MD); 3075 assert((!N || (N->isResolved() || N->isTemporary())) && 3076 "Found non-resolved non-temp MDNode while saving metadata"); 3077 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3078 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3079 // just MDNode, as we may have references to other types of module-level 3080 // metadata (e.g. ValueAsMetadata) from instructions. 3081 if (!OnlyTempMD || (N && N->isTemporary())) { 3082 // Will call this after materializing each function, in order to 3083 // handle remapping of the function's instructions/metadata. 3084 // See if we already have an entry in that case. 3085 if (OnlyTempMD && MetadataToIDs.count(MD)) { 3086 assert(MetadataToIDs[MD] == ID && "Inconsistent metadata value id"); 3087 continue; 3088 } 3089 if (N && N->isTemporary()) 3090 // Ensure that we assert if someone tries to RAUW this temporary 3091 // metadata while it is the key of a map. The flag will be set back 3092 // to true when the saved metadata list is destroyed. 3093 N->setCanReplace(false); 3094 MetadataToIDs[MD] = ID; 3095 } 3096 } 3097 } 3098 3099 /// When we see the block for a function body, remember where it is and then 3100 /// skip it. This lets us lazily deserialize the functions. 3101 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3102 // Get the function we are talking about. 3103 if (FunctionsWithBodies.empty()) 3104 return error("Insufficient function protos"); 3105 3106 Function *Fn = FunctionsWithBodies.back(); 3107 FunctionsWithBodies.pop_back(); 3108 3109 // Save the current stream state. 3110 uint64_t CurBit = Stream.GetCurrentBitNo(); 3111 assert( 3112 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3113 "Mismatch between VST and scanned function offsets"); 3114 DeferredFunctionInfo[Fn] = CurBit; 3115 3116 // Skip over the function block for now. 3117 if (Stream.SkipBlock()) 3118 return error("Invalid record"); 3119 return std::error_code(); 3120 } 3121 3122 std::error_code BitcodeReader::globalCleanup() { 3123 // Patch the initializers for globals and aliases up. 3124 resolveGlobalAndAliasInits(); 3125 if (!GlobalInits.empty() || !AliasInits.empty()) 3126 return error("Malformed global initializer set"); 3127 3128 // Look for intrinsic functions which need to be upgraded at some point 3129 for (Function &F : *TheModule) { 3130 Function *NewFn; 3131 if (UpgradeIntrinsicFunction(&F, NewFn)) 3132 UpgradedIntrinsics[&F] = NewFn; 3133 } 3134 3135 // Look for global variables which need to be renamed. 3136 for (GlobalVariable &GV : TheModule->globals()) 3137 UpgradeGlobalVariable(&GV); 3138 3139 // Force deallocation of memory for these vectors to favor the client that 3140 // want lazy deserialization. 3141 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3142 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3143 return std::error_code(); 3144 } 3145 3146 /// Support for lazy parsing of function bodies. This is required if we 3147 /// either have an old bitcode file without a VST forward declaration record, 3148 /// or if we have an anonymous function being materialized, since anonymous 3149 /// functions do not have a name and are therefore not in the VST. 3150 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3151 Stream.JumpToBit(NextUnreadBit); 3152 3153 if (Stream.AtEndOfStream()) 3154 return error("Could not find function in stream"); 3155 3156 if (!SeenFirstFunctionBody) 3157 return error("Trying to materialize functions before seeing function blocks"); 3158 3159 // An old bitcode file with the symbol table at the end would have 3160 // finished the parse greedily. 3161 assert(SeenValueSymbolTable); 3162 3163 SmallVector<uint64_t, 64> Record; 3164 3165 while (1) { 3166 BitstreamEntry Entry = Stream.advance(); 3167 switch (Entry.Kind) { 3168 default: 3169 return error("Expect SubBlock"); 3170 case BitstreamEntry::SubBlock: 3171 switch (Entry.ID) { 3172 default: 3173 return error("Expect function block"); 3174 case bitc::FUNCTION_BLOCK_ID: 3175 if (std::error_code EC = rememberAndSkipFunctionBody()) 3176 return EC; 3177 NextUnreadBit = Stream.GetCurrentBitNo(); 3178 return std::error_code(); 3179 } 3180 } 3181 } 3182 } 3183 3184 std::error_code BitcodeReader::parseBitcodeVersion() { 3185 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3186 return error("Invalid record"); 3187 3188 // Read all the records. 3189 SmallVector<uint64_t, 64> Record; 3190 while (1) { 3191 BitstreamEntry Entry = Stream.advance(); 3192 3193 switch (Entry.Kind) { 3194 default: 3195 case BitstreamEntry::Error: 3196 return error("Malformed block"); 3197 case BitstreamEntry::EndBlock: 3198 return std::error_code(); 3199 case BitstreamEntry::Record: 3200 // The interesting case. 3201 break; 3202 } 3203 3204 // Read a record. 3205 Record.clear(); 3206 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3207 switch (BitCode) { 3208 default: // Default behavior: reject 3209 return error("Invalid value"); 3210 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3211 // N] 3212 convertToString(Record, 0, ProducerIdentification); 3213 break; 3214 } 3215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3216 unsigned epoch = (unsigned)Record[0]; 3217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3218 return error( 3219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3221 } 3222 } 3223 } 3224 } 3225 } 3226 3227 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3228 bool ShouldLazyLoadMetadata) { 3229 if (ResumeBit) 3230 Stream.JumpToBit(ResumeBit); 3231 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3232 return error("Invalid record"); 3233 3234 SmallVector<uint64_t, 64> Record; 3235 std::vector<std::string> SectionTable; 3236 std::vector<std::string> GCTable; 3237 3238 // Read all the records for this module. 3239 while (1) { 3240 BitstreamEntry Entry = Stream.advance(); 3241 3242 switch (Entry.Kind) { 3243 case BitstreamEntry::Error: 3244 return error("Malformed block"); 3245 case BitstreamEntry::EndBlock: 3246 return globalCleanup(); 3247 3248 case BitstreamEntry::SubBlock: 3249 switch (Entry.ID) { 3250 default: // Skip unknown content. 3251 if (Stream.SkipBlock()) 3252 return error("Invalid record"); 3253 break; 3254 case bitc::BLOCKINFO_BLOCK_ID: 3255 if (Stream.ReadBlockInfoBlock()) 3256 return error("Malformed block"); 3257 break; 3258 case bitc::PARAMATTR_BLOCK_ID: 3259 if (std::error_code EC = parseAttributeBlock()) 3260 return EC; 3261 break; 3262 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3263 if (std::error_code EC = parseAttributeGroupBlock()) 3264 return EC; 3265 break; 3266 case bitc::TYPE_BLOCK_ID_NEW: 3267 if (std::error_code EC = parseTypeTable()) 3268 return EC; 3269 break; 3270 case bitc::VALUE_SYMTAB_BLOCK_ID: 3271 if (!SeenValueSymbolTable) { 3272 // Either this is an old form VST without function index and an 3273 // associated VST forward declaration record (which would have caused 3274 // the VST to be jumped to and parsed before it was encountered 3275 // normally in the stream), or there were no function blocks to 3276 // trigger an earlier parsing of the VST. 3277 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3278 if (std::error_code EC = parseValueSymbolTable()) 3279 return EC; 3280 SeenValueSymbolTable = true; 3281 } else { 3282 // We must have had a VST forward declaration record, which caused 3283 // the parser to jump to and parse the VST earlier. 3284 assert(VSTOffset > 0); 3285 if (Stream.SkipBlock()) 3286 return error("Invalid record"); 3287 } 3288 break; 3289 case bitc::CONSTANTS_BLOCK_ID: 3290 if (std::error_code EC = parseConstants()) 3291 return EC; 3292 if (std::error_code EC = resolveGlobalAndAliasInits()) 3293 return EC; 3294 break; 3295 case bitc::METADATA_BLOCK_ID: 3296 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3297 if (std::error_code EC = rememberAndSkipMetadata()) 3298 return EC; 3299 break; 3300 } 3301 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3302 if (std::error_code EC = parseMetadata(true)) 3303 return EC; 3304 break; 3305 case bitc::METADATA_KIND_BLOCK_ID: 3306 if (std::error_code EC = parseMetadataKinds()) 3307 return EC; 3308 break; 3309 case bitc::FUNCTION_BLOCK_ID: 3310 // If this is the first function body we've seen, reverse the 3311 // FunctionsWithBodies list. 3312 if (!SeenFirstFunctionBody) { 3313 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3314 if (std::error_code EC = globalCleanup()) 3315 return EC; 3316 SeenFirstFunctionBody = true; 3317 } 3318 3319 if (VSTOffset > 0) { 3320 // If we have a VST forward declaration record, make sure we 3321 // parse the VST now if we haven't already. It is needed to 3322 // set up the DeferredFunctionInfo vector for lazy reading. 3323 if (!SeenValueSymbolTable) { 3324 if (std::error_code EC = 3325 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3326 return EC; 3327 SeenValueSymbolTable = true; 3328 // Fall through so that we record the NextUnreadBit below. 3329 // This is necessary in case we have an anonymous function that 3330 // is later materialized. Since it will not have a VST entry we 3331 // need to fall back to the lazy parse to find its offset. 3332 } else { 3333 // If we have a VST forward declaration record, but have already 3334 // parsed the VST (just above, when the first function body was 3335 // encountered here), then we are resuming the parse after 3336 // materializing functions. The ResumeBit points to the 3337 // start of the last function block recorded in the 3338 // DeferredFunctionInfo map. Skip it. 3339 if (Stream.SkipBlock()) 3340 return error("Invalid record"); 3341 continue; 3342 } 3343 } 3344 3345 // Support older bitcode files that did not have the function 3346 // index in the VST, nor a VST forward declaration record, as 3347 // well as anonymous functions that do not have VST entries. 3348 // Build the DeferredFunctionInfo vector on the fly. 3349 if (std::error_code EC = rememberAndSkipFunctionBody()) 3350 return EC; 3351 3352 // Suspend parsing when we reach the function bodies. Subsequent 3353 // materialization calls will resume it when necessary. If the bitcode 3354 // file is old, the symbol table will be at the end instead and will not 3355 // have been seen yet. In this case, just finish the parse now. 3356 if (SeenValueSymbolTable) { 3357 NextUnreadBit = Stream.GetCurrentBitNo(); 3358 return std::error_code(); 3359 } 3360 break; 3361 case bitc::USELIST_BLOCK_ID: 3362 if (std::error_code EC = parseUseLists()) 3363 return EC; 3364 break; 3365 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3366 if (std::error_code EC = parseOperandBundleTags()) 3367 return EC; 3368 break; 3369 } 3370 continue; 3371 3372 case BitstreamEntry::Record: 3373 // The interesting case. 3374 break; 3375 } 3376 3377 3378 // Read a record. 3379 auto BitCode = Stream.readRecord(Entry.ID, Record); 3380 switch (BitCode) { 3381 default: break; // Default behavior, ignore unknown content. 3382 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3383 if (Record.size() < 1) 3384 return error("Invalid record"); 3385 // Only version #0 and #1 are supported so far. 3386 unsigned module_version = Record[0]; 3387 switch (module_version) { 3388 default: 3389 return error("Invalid value"); 3390 case 0: 3391 UseRelativeIDs = false; 3392 break; 3393 case 1: 3394 UseRelativeIDs = true; 3395 break; 3396 } 3397 break; 3398 } 3399 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3400 std::string S; 3401 if (convertToString(Record, 0, S)) 3402 return error("Invalid record"); 3403 TheModule->setTargetTriple(S); 3404 break; 3405 } 3406 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3407 std::string S; 3408 if (convertToString(Record, 0, S)) 3409 return error("Invalid record"); 3410 TheModule->setDataLayout(S); 3411 break; 3412 } 3413 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3414 std::string S; 3415 if (convertToString(Record, 0, S)) 3416 return error("Invalid record"); 3417 TheModule->setModuleInlineAsm(S); 3418 break; 3419 } 3420 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3421 // FIXME: Remove in 4.0. 3422 std::string S; 3423 if (convertToString(Record, 0, S)) 3424 return error("Invalid record"); 3425 // Ignore value. 3426 break; 3427 } 3428 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3429 std::string S; 3430 if (convertToString(Record, 0, S)) 3431 return error("Invalid record"); 3432 SectionTable.push_back(S); 3433 break; 3434 } 3435 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3436 std::string S; 3437 if (convertToString(Record, 0, S)) 3438 return error("Invalid record"); 3439 GCTable.push_back(S); 3440 break; 3441 } 3442 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3443 if (Record.size() < 2) 3444 return error("Invalid record"); 3445 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3446 unsigned ComdatNameSize = Record[1]; 3447 std::string ComdatName; 3448 ComdatName.reserve(ComdatNameSize); 3449 for (unsigned i = 0; i != ComdatNameSize; ++i) 3450 ComdatName += (char)Record[2 + i]; 3451 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3452 C->setSelectionKind(SK); 3453 ComdatList.push_back(C); 3454 break; 3455 } 3456 // GLOBALVAR: [pointer type, isconst, initid, 3457 // linkage, alignment, section, visibility, threadlocal, 3458 // unnamed_addr, externally_initialized, dllstorageclass, 3459 // comdat] 3460 case bitc::MODULE_CODE_GLOBALVAR: { 3461 if (Record.size() < 6) 3462 return error("Invalid record"); 3463 Type *Ty = getTypeByID(Record[0]); 3464 if (!Ty) 3465 return error("Invalid record"); 3466 bool isConstant = Record[1] & 1; 3467 bool explicitType = Record[1] & 2; 3468 unsigned AddressSpace; 3469 if (explicitType) { 3470 AddressSpace = Record[1] >> 2; 3471 } else { 3472 if (!Ty->isPointerTy()) 3473 return error("Invalid type for value"); 3474 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3475 Ty = cast<PointerType>(Ty)->getElementType(); 3476 } 3477 3478 uint64_t RawLinkage = Record[3]; 3479 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3480 unsigned Alignment; 3481 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3482 return EC; 3483 std::string Section; 3484 if (Record[5]) { 3485 if (Record[5]-1 >= SectionTable.size()) 3486 return error("Invalid ID"); 3487 Section = SectionTable[Record[5]-1]; 3488 } 3489 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3490 // Local linkage must have default visibility. 3491 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3492 // FIXME: Change to an error if non-default in 4.0. 3493 Visibility = getDecodedVisibility(Record[6]); 3494 3495 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3496 if (Record.size() > 7) 3497 TLM = getDecodedThreadLocalMode(Record[7]); 3498 3499 bool UnnamedAddr = false; 3500 if (Record.size() > 8) 3501 UnnamedAddr = Record[8]; 3502 3503 bool ExternallyInitialized = false; 3504 if (Record.size() > 9) 3505 ExternallyInitialized = Record[9]; 3506 3507 GlobalVariable *NewGV = 3508 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3509 TLM, AddressSpace, ExternallyInitialized); 3510 NewGV->setAlignment(Alignment); 3511 if (!Section.empty()) 3512 NewGV->setSection(Section); 3513 NewGV->setVisibility(Visibility); 3514 NewGV->setUnnamedAddr(UnnamedAddr); 3515 3516 if (Record.size() > 10) 3517 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3518 else 3519 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3520 3521 ValueList.push_back(NewGV); 3522 3523 // Remember which value to use for the global initializer. 3524 if (unsigned InitID = Record[2]) 3525 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3526 3527 if (Record.size() > 11) { 3528 if (unsigned ComdatID = Record[11]) { 3529 if (ComdatID > ComdatList.size()) 3530 return error("Invalid global variable comdat ID"); 3531 NewGV->setComdat(ComdatList[ComdatID - 1]); 3532 } 3533 } else if (hasImplicitComdat(RawLinkage)) { 3534 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3535 } 3536 break; 3537 } 3538 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3539 // alignment, section, visibility, gc, unnamed_addr, 3540 // prologuedata, dllstorageclass, comdat, prefixdata] 3541 case bitc::MODULE_CODE_FUNCTION: { 3542 if (Record.size() < 8) 3543 return error("Invalid record"); 3544 Type *Ty = getTypeByID(Record[0]); 3545 if (!Ty) 3546 return error("Invalid record"); 3547 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3548 Ty = PTy->getElementType(); 3549 auto *FTy = dyn_cast<FunctionType>(Ty); 3550 if (!FTy) 3551 return error("Invalid type for value"); 3552 auto CC = static_cast<CallingConv::ID>(Record[1]); 3553 if (CC & ~CallingConv::MaxID) 3554 return error("Invalid calling convention ID"); 3555 3556 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3557 "", TheModule); 3558 3559 Func->setCallingConv(CC); 3560 bool isProto = Record[2]; 3561 uint64_t RawLinkage = Record[3]; 3562 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3563 Func->setAttributes(getAttributes(Record[4])); 3564 3565 unsigned Alignment; 3566 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3567 return EC; 3568 Func->setAlignment(Alignment); 3569 if (Record[6]) { 3570 if (Record[6]-1 >= SectionTable.size()) 3571 return error("Invalid ID"); 3572 Func->setSection(SectionTable[Record[6]-1]); 3573 } 3574 // Local linkage must have default visibility. 3575 if (!Func->hasLocalLinkage()) 3576 // FIXME: Change to an error if non-default in 4.0. 3577 Func->setVisibility(getDecodedVisibility(Record[7])); 3578 if (Record.size() > 8 && Record[8]) { 3579 if (Record[8]-1 >= GCTable.size()) 3580 return error("Invalid ID"); 3581 Func->setGC(GCTable[Record[8]-1].c_str()); 3582 } 3583 bool UnnamedAddr = false; 3584 if (Record.size() > 9) 3585 UnnamedAddr = Record[9]; 3586 Func->setUnnamedAddr(UnnamedAddr); 3587 if (Record.size() > 10 && Record[10] != 0) 3588 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3589 3590 if (Record.size() > 11) 3591 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3592 else 3593 upgradeDLLImportExportLinkage(Func, RawLinkage); 3594 3595 if (Record.size() > 12) { 3596 if (unsigned ComdatID = Record[12]) { 3597 if (ComdatID > ComdatList.size()) 3598 return error("Invalid function comdat ID"); 3599 Func->setComdat(ComdatList[ComdatID - 1]); 3600 } 3601 } else if (hasImplicitComdat(RawLinkage)) { 3602 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3603 } 3604 3605 if (Record.size() > 13 && Record[13] != 0) 3606 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3607 3608 if (Record.size() > 14 && Record[14] != 0) 3609 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3610 3611 ValueList.push_back(Func); 3612 3613 // If this is a function with a body, remember the prototype we are 3614 // creating now, so that we can match up the body with them later. 3615 if (!isProto) { 3616 Func->setIsMaterializable(true); 3617 FunctionsWithBodies.push_back(Func); 3618 DeferredFunctionInfo[Func] = 0; 3619 } 3620 break; 3621 } 3622 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3623 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3624 case bitc::MODULE_CODE_ALIAS: 3625 case bitc::MODULE_CODE_ALIAS_OLD: { 3626 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3627 if (Record.size() < (3 + (unsigned)NewRecord)) 3628 return error("Invalid record"); 3629 unsigned OpNum = 0; 3630 Type *Ty = getTypeByID(Record[OpNum++]); 3631 if (!Ty) 3632 return error("Invalid record"); 3633 3634 unsigned AddrSpace; 3635 if (!NewRecord) { 3636 auto *PTy = dyn_cast<PointerType>(Ty); 3637 if (!PTy) 3638 return error("Invalid type for value"); 3639 Ty = PTy->getElementType(); 3640 AddrSpace = PTy->getAddressSpace(); 3641 } else { 3642 AddrSpace = Record[OpNum++]; 3643 } 3644 3645 auto Val = Record[OpNum++]; 3646 auto Linkage = Record[OpNum++]; 3647 auto *NewGA = GlobalAlias::create( 3648 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3649 // Old bitcode files didn't have visibility field. 3650 // Local linkage must have default visibility. 3651 if (OpNum != Record.size()) { 3652 auto VisInd = OpNum++; 3653 if (!NewGA->hasLocalLinkage()) 3654 // FIXME: Change to an error if non-default in 4.0. 3655 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3656 } 3657 if (OpNum != Record.size()) 3658 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3659 else 3660 upgradeDLLImportExportLinkage(NewGA, Linkage); 3661 if (OpNum != Record.size()) 3662 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3663 if (OpNum != Record.size()) 3664 NewGA->setUnnamedAddr(Record[OpNum++]); 3665 ValueList.push_back(NewGA); 3666 AliasInits.push_back(std::make_pair(NewGA, Val)); 3667 break; 3668 } 3669 /// MODULE_CODE_PURGEVALS: [numvals] 3670 case bitc::MODULE_CODE_PURGEVALS: 3671 // Trim down the value list to the specified size. 3672 if (Record.size() < 1 || Record[0] > ValueList.size()) 3673 return error("Invalid record"); 3674 ValueList.shrinkTo(Record[0]); 3675 break; 3676 /// MODULE_CODE_VSTOFFSET: [offset] 3677 case bitc::MODULE_CODE_VSTOFFSET: 3678 if (Record.size() < 1) 3679 return error("Invalid record"); 3680 VSTOffset = Record[0]; 3681 break; 3682 /// MODULE_CODE_METADATA_VALUES: [numvals] 3683 case bitc::MODULE_CODE_METADATA_VALUES: 3684 if (Record.size() < 1) 3685 return error("Invalid record"); 3686 assert(!IsMetadataMaterialized); 3687 // This record contains the number of metadata values in the module-level 3688 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3689 // a postpass, where we will parse function-level metadata first. 3690 // This is needed because the ids of metadata are assigned implicitly 3691 // based on their ordering in the bitcode, with the function-level 3692 // metadata ids starting after the module-level metadata ids. Otherwise, 3693 // we would have to parse the module-level metadata block to prime the 3694 // MetadataList when we are lazy loading metadata during function 3695 // importing. Initialize the MetadataList size here based on the 3696 // record value, regardless of whether we are doing lazy metadata 3697 // loading, so that we have consistent handling and assertion 3698 // checking in parseMetadata for module-level metadata. 3699 NumModuleMDs = Record[0]; 3700 SeenModuleValuesRecord = true; 3701 assert(MetadataList.size() == 0); 3702 MetadataList.resize(NumModuleMDs); 3703 break; 3704 } 3705 Record.clear(); 3706 } 3707 } 3708 3709 /// Helper to read the header common to all bitcode files. 3710 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3711 // Sniff for the signature. 3712 if (Stream.Read(8) != 'B' || 3713 Stream.Read(8) != 'C' || 3714 Stream.Read(4) != 0x0 || 3715 Stream.Read(4) != 0xC || 3716 Stream.Read(4) != 0xE || 3717 Stream.Read(4) != 0xD) 3718 return false; 3719 return true; 3720 } 3721 3722 std::error_code 3723 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3724 Module *M, bool ShouldLazyLoadMetadata) { 3725 TheModule = M; 3726 3727 if (std::error_code EC = initStream(std::move(Streamer))) 3728 return EC; 3729 3730 // Sniff for the signature. 3731 if (!hasValidBitcodeHeader(Stream)) 3732 return error("Invalid bitcode signature"); 3733 3734 // We expect a number of well-defined blocks, though we don't necessarily 3735 // need to understand them all. 3736 while (1) { 3737 if (Stream.AtEndOfStream()) { 3738 // We didn't really read a proper Module. 3739 return error("Malformed IR file"); 3740 } 3741 3742 BitstreamEntry Entry = 3743 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3744 3745 if (Entry.Kind != BitstreamEntry::SubBlock) 3746 return error("Malformed block"); 3747 3748 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3749 parseBitcodeVersion(); 3750 continue; 3751 } 3752 3753 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3754 return parseModule(0, ShouldLazyLoadMetadata); 3755 3756 if (Stream.SkipBlock()) 3757 return error("Invalid record"); 3758 } 3759 } 3760 3761 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3762 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3763 return error("Invalid record"); 3764 3765 SmallVector<uint64_t, 64> Record; 3766 3767 std::string Triple; 3768 // Read all the records for this module. 3769 while (1) { 3770 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3771 3772 switch (Entry.Kind) { 3773 case BitstreamEntry::SubBlock: // Handled for us already. 3774 case BitstreamEntry::Error: 3775 return error("Malformed block"); 3776 case BitstreamEntry::EndBlock: 3777 return Triple; 3778 case BitstreamEntry::Record: 3779 // The interesting case. 3780 break; 3781 } 3782 3783 // Read a record. 3784 switch (Stream.readRecord(Entry.ID, Record)) { 3785 default: break; // Default behavior, ignore unknown content. 3786 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3787 std::string S; 3788 if (convertToString(Record, 0, S)) 3789 return error("Invalid record"); 3790 Triple = S; 3791 break; 3792 } 3793 } 3794 Record.clear(); 3795 } 3796 llvm_unreachable("Exit infinite loop"); 3797 } 3798 3799 ErrorOr<std::string> BitcodeReader::parseTriple() { 3800 if (std::error_code EC = initStream(nullptr)) 3801 return EC; 3802 3803 // Sniff for the signature. 3804 if (!hasValidBitcodeHeader(Stream)) 3805 return error("Invalid bitcode signature"); 3806 3807 // We expect a number of well-defined blocks, though we don't necessarily 3808 // need to understand them all. 3809 while (1) { 3810 BitstreamEntry Entry = Stream.advance(); 3811 3812 switch (Entry.Kind) { 3813 case BitstreamEntry::Error: 3814 return error("Malformed block"); 3815 case BitstreamEntry::EndBlock: 3816 return std::error_code(); 3817 3818 case BitstreamEntry::SubBlock: 3819 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3820 return parseModuleTriple(); 3821 3822 // Ignore other sub-blocks. 3823 if (Stream.SkipBlock()) 3824 return error("Malformed block"); 3825 continue; 3826 3827 case BitstreamEntry::Record: 3828 Stream.skipRecord(Entry.ID); 3829 continue; 3830 } 3831 } 3832 } 3833 3834 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3835 if (std::error_code EC = initStream(nullptr)) 3836 return EC; 3837 3838 // Sniff for the signature. 3839 if (!hasValidBitcodeHeader(Stream)) 3840 return error("Invalid bitcode signature"); 3841 3842 // We expect a number of well-defined blocks, though we don't necessarily 3843 // need to understand them all. 3844 while (1) { 3845 BitstreamEntry Entry = Stream.advance(); 3846 switch (Entry.Kind) { 3847 case BitstreamEntry::Error: 3848 return error("Malformed block"); 3849 case BitstreamEntry::EndBlock: 3850 return std::error_code(); 3851 3852 case BitstreamEntry::SubBlock: 3853 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3854 if (std::error_code EC = parseBitcodeVersion()) 3855 return EC; 3856 return ProducerIdentification; 3857 } 3858 // Ignore other sub-blocks. 3859 if (Stream.SkipBlock()) 3860 return error("Malformed block"); 3861 continue; 3862 case BitstreamEntry::Record: 3863 Stream.skipRecord(Entry.ID); 3864 continue; 3865 } 3866 } 3867 } 3868 3869 /// Parse metadata attachments. 3870 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3871 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3872 return error("Invalid record"); 3873 3874 SmallVector<uint64_t, 64> Record; 3875 while (1) { 3876 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3877 3878 switch (Entry.Kind) { 3879 case BitstreamEntry::SubBlock: // Handled for us already. 3880 case BitstreamEntry::Error: 3881 return error("Malformed block"); 3882 case BitstreamEntry::EndBlock: 3883 return std::error_code(); 3884 case BitstreamEntry::Record: 3885 // The interesting case. 3886 break; 3887 } 3888 3889 // Read a metadata attachment record. 3890 Record.clear(); 3891 switch (Stream.readRecord(Entry.ID, Record)) { 3892 default: // Default behavior: ignore. 3893 break; 3894 case bitc::METADATA_ATTACHMENT: { 3895 unsigned RecordLength = Record.size(); 3896 if (Record.empty()) 3897 return error("Invalid record"); 3898 if (RecordLength % 2 == 0) { 3899 // A function attachment. 3900 for (unsigned I = 0; I != RecordLength; I += 2) { 3901 auto K = MDKindMap.find(Record[I]); 3902 if (K == MDKindMap.end()) 3903 return error("Invalid ID"); 3904 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3905 F.setMetadata(K->second, cast<MDNode>(MD)); 3906 } 3907 continue; 3908 } 3909 3910 // An instruction attachment. 3911 Instruction *Inst = InstructionList[Record[0]]; 3912 for (unsigned i = 1; i != RecordLength; i = i+2) { 3913 unsigned Kind = Record[i]; 3914 DenseMap<unsigned, unsigned>::iterator I = 3915 MDKindMap.find(Kind); 3916 if (I == MDKindMap.end()) 3917 return error("Invalid ID"); 3918 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3919 if (isa<LocalAsMetadata>(Node)) 3920 // Drop the attachment. This used to be legal, but there's no 3921 // upgrade path. 3922 break; 3923 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3924 if (I->second == LLVMContext::MD_tbaa) 3925 InstsWithTBAATag.push_back(Inst); 3926 } 3927 break; 3928 } 3929 } 3930 } 3931 } 3932 3933 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3934 LLVMContext &Context = PtrType->getContext(); 3935 if (!isa<PointerType>(PtrType)) 3936 return error(Context, "Load/Store operand is not a pointer type"); 3937 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3938 3939 if (ValType && ValType != ElemType) 3940 return error(Context, "Explicit load/store type does not match pointee " 3941 "type of pointer operand"); 3942 if (!PointerType::isLoadableOrStorableType(ElemType)) 3943 return error(Context, "Cannot load/store from pointer"); 3944 return std::error_code(); 3945 } 3946 3947 /// Lazily parse the specified function body block. 3948 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3949 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3950 return error("Invalid record"); 3951 3952 InstructionList.clear(); 3953 unsigned ModuleValueListSize = ValueList.size(); 3954 unsigned ModuleMetadataListSize = MetadataList.size(); 3955 3956 // Add all the function arguments to the value table. 3957 for (Argument &I : F->args()) 3958 ValueList.push_back(&I); 3959 3960 unsigned NextValueNo = ValueList.size(); 3961 BasicBlock *CurBB = nullptr; 3962 unsigned CurBBNo = 0; 3963 3964 DebugLoc LastLoc; 3965 auto getLastInstruction = [&]() -> Instruction * { 3966 if (CurBB && !CurBB->empty()) 3967 return &CurBB->back(); 3968 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3969 !FunctionBBs[CurBBNo - 1]->empty()) 3970 return &FunctionBBs[CurBBNo - 1]->back(); 3971 return nullptr; 3972 }; 3973 3974 std::vector<OperandBundleDef> OperandBundles; 3975 3976 // Read all the records. 3977 SmallVector<uint64_t, 64> Record; 3978 while (1) { 3979 BitstreamEntry Entry = Stream.advance(); 3980 3981 switch (Entry.Kind) { 3982 case BitstreamEntry::Error: 3983 return error("Malformed block"); 3984 case BitstreamEntry::EndBlock: 3985 goto OutOfRecordLoop; 3986 3987 case BitstreamEntry::SubBlock: 3988 switch (Entry.ID) { 3989 default: // Skip unknown content. 3990 if (Stream.SkipBlock()) 3991 return error("Invalid record"); 3992 break; 3993 case bitc::CONSTANTS_BLOCK_ID: 3994 if (std::error_code EC = parseConstants()) 3995 return EC; 3996 NextValueNo = ValueList.size(); 3997 break; 3998 case bitc::VALUE_SYMTAB_BLOCK_ID: 3999 if (std::error_code EC = parseValueSymbolTable()) 4000 return EC; 4001 break; 4002 case bitc::METADATA_ATTACHMENT_ID: 4003 if (std::error_code EC = parseMetadataAttachment(*F)) 4004 return EC; 4005 break; 4006 case bitc::METADATA_BLOCK_ID: 4007 if (std::error_code EC = parseMetadata()) 4008 return EC; 4009 break; 4010 case bitc::USELIST_BLOCK_ID: 4011 if (std::error_code EC = parseUseLists()) 4012 return EC; 4013 break; 4014 } 4015 continue; 4016 4017 case BitstreamEntry::Record: 4018 // The interesting case. 4019 break; 4020 } 4021 4022 // Read a record. 4023 Record.clear(); 4024 Instruction *I = nullptr; 4025 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4026 switch (BitCode) { 4027 default: // Default behavior: reject 4028 return error("Invalid value"); 4029 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4030 if (Record.size() < 1 || Record[0] == 0) 4031 return error("Invalid record"); 4032 // Create all the basic blocks for the function. 4033 FunctionBBs.resize(Record[0]); 4034 4035 // See if anything took the address of blocks in this function. 4036 auto BBFRI = BasicBlockFwdRefs.find(F); 4037 if (BBFRI == BasicBlockFwdRefs.end()) { 4038 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4039 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4040 } else { 4041 auto &BBRefs = BBFRI->second; 4042 // Check for invalid basic block references. 4043 if (BBRefs.size() > FunctionBBs.size()) 4044 return error("Invalid ID"); 4045 assert(!BBRefs.empty() && "Unexpected empty array"); 4046 assert(!BBRefs.front() && "Invalid reference to entry block"); 4047 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4048 ++I) 4049 if (I < RE && BBRefs[I]) { 4050 BBRefs[I]->insertInto(F); 4051 FunctionBBs[I] = BBRefs[I]; 4052 } else { 4053 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4054 } 4055 4056 // Erase from the table. 4057 BasicBlockFwdRefs.erase(BBFRI); 4058 } 4059 4060 CurBB = FunctionBBs[0]; 4061 continue; 4062 } 4063 4064 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4065 // This record indicates that the last instruction is at the same 4066 // location as the previous instruction with a location. 4067 I = getLastInstruction(); 4068 4069 if (!I) 4070 return error("Invalid record"); 4071 I->setDebugLoc(LastLoc); 4072 I = nullptr; 4073 continue; 4074 4075 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4076 I = getLastInstruction(); 4077 if (!I || Record.size() < 4) 4078 return error("Invalid record"); 4079 4080 unsigned Line = Record[0], Col = Record[1]; 4081 unsigned ScopeID = Record[2], IAID = Record[3]; 4082 4083 MDNode *Scope = nullptr, *IA = nullptr; 4084 if (ScopeID) 4085 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4086 if (IAID) 4087 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4088 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4089 I->setDebugLoc(LastLoc); 4090 I = nullptr; 4091 continue; 4092 } 4093 4094 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4095 unsigned OpNum = 0; 4096 Value *LHS, *RHS; 4097 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4098 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4099 OpNum+1 > Record.size()) 4100 return error("Invalid record"); 4101 4102 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4103 if (Opc == -1) 4104 return error("Invalid record"); 4105 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4106 InstructionList.push_back(I); 4107 if (OpNum < Record.size()) { 4108 if (Opc == Instruction::Add || 4109 Opc == Instruction::Sub || 4110 Opc == Instruction::Mul || 4111 Opc == Instruction::Shl) { 4112 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4113 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4114 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4115 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4116 } else if (Opc == Instruction::SDiv || 4117 Opc == Instruction::UDiv || 4118 Opc == Instruction::LShr || 4119 Opc == Instruction::AShr) { 4120 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4121 cast<BinaryOperator>(I)->setIsExact(true); 4122 } else if (isa<FPMathOperator>(I)) { 4123 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4124 if (FMF.any()) 4125 I->setFastMathFlags(FMF); 4126 } 4127 4128 } 4129 break; 4130 } 4131 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4132 unsigned OpNum = 0; 4133 Value *Op; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4135 OpNum+2 != Record.size()) 4136 return error("Invalid record"); 4137 4138 Type *ResTy = getTypeByID(Record[OpNum]); 4139 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4140 if (Opc == -1 || !ResTy) 4141 return error("Invalid record"); 4142 Instruction *Temp = nullptr; 4143 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4144 if (Temp) { 4145 InstructionList.push_back(Temp); 4146 CurBB->getInstList().push_back(Temp); 4147 } 4148 } else { 4149 auto CastOp = (Instruction::CastOps)Opc; 4150 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4151 return error("Invalid cast"); 4152 I = CastInst::Create(CastOp, Op, ResTy); 4153 } 4154 InstructionList.push_back(I); 4155 break; 4156 } 4157 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4158 case bitc::FUNC_CODE_INST_GEP_OLD: 4159 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4160 unsigned OpNum = 0; 4161 4162 Type *Ty; 4163 bool InBounds; 4164 4165 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4166 InBounds = Record[OpNum++]; 4167 Ty = getTypeByID(Record[OpNum++]); 4168 } else { 4169 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4170 Ty = nullptr; 4171 } 4172 4173 Value *BasePtr; 4174 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4175 return error("Invalid record"); 4176 4177 if (!Ty) 4178 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4179 ->getElementType(); 4180 else if (Ty != 4181 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4182 ->getElementType()) 4183 return error( 4184 "Explicit gep type does not match pointee type of pointer operand"); 4185 4186 SmallVector<Value*, 16> GEPIdx; 4187 while (OpNum != Record.size()) { 4188 Value *Op; 4189 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4190 return error("Invalid record"); 4191 GEPIdx.push_back(Op); 4192 } 4193 4194 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4195 4196 InstructionList.push_back(I); 4197 if (InBounds) 4198 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4199 break; 4200 } 4201 4202 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4203 // EXTRACTVAL: [opty, opval, n x indices] 4204 unsigned OpNum = 0; 4205 Value *Agg; 4206 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4207 return error("Invalid record"); 4208 4209 unsigned RecSize = Record.size(); 4210 if (OpNum == RecSize) 4211 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4212 4213 SmallVector<unsigned, 4> EXTRACTVALIdx; 4214 Type *CurTy = Agg->getType(); 4215 for (; OpNum != RecSize; ++OpNum) { 4216 bool IsArray = CurTy->isArrayTy(); 4217 bool IsStruct = CurTy->isStructTy(); 4218 uint64_t Index = Record[OpNum]; 4219 4220 if (!IsStruct && !IsArray) 4221 return error("EXTRACTVAL: Invalid type"); 4222 if ((unsigned)Index != Index) 4223 return error("Invalid value"); 4224 if (IsStruct && Index >= CurTy->subtypes().size()) 4225 return error("EXTRACTVAL: Invalid struct index"); 4226 if (IsArray && Index >= CurTy->getArrayNumElements()) 4227 return error("EXTRACTVAL: Invalid array index"); 4228 EXTRACTVALIdx.push_back((unsigned)Index); 4229 4230 if (IsStruct) 4231 CurTy = CurTy->subtypes()[Index]; 4232 else 4233 CurTy = CurTy->subtypes()[0]; 4234 } 4235 4236 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4237 InstructionList.push_back(I); 4238 break; 4239 } 4240 4241 case bitc::FUNC_CODE_INST_INSERTVAL: { 4242 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4243 unsigned OpNum = 0; 4244 Value *Agg; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4246 return error("Invalid record"); 4247 Value *Val; 4248 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4249 return error("Invalid record"); 4250 4251 unsigned RecSize = Record.size(); 4252 if (OpNum == RecSize) 4253 return error("INSERTVAL: Invalid instruction with 0 indices"); 4254 4255 SmallVector<unsigned, 4> INSERTVALIdx; 4256 Type *CurTy = Agg->getType(); 4257 for (; OpNum != RecSize; ++OpNum) { 4258 bool IsArray = CurTy->isArrayTy(); 4259 bool IsStruct = CurTy->isStructTy(); 4260 uint64_t Index = Record[OpNum]; 4261 4262 if (!IsStruct && !IsArray) 4263 return error("INSERTVAL: Invalid type"); 4264 if ((unsigned)Index != Index) 4265 return error("Invalid value"); 4266 if (IsStruct && Index >= CurTy->subtypes().size()) 4267 return error("INSERTVAL: Invalid struct index"); 4268 if (IsArray && Index >= CurTy->getArrayNumElements()) 4269 return error("INSERTVAL: Invalid array index"); 4270 4271 INSERTVALIdx.push_back((unsigned)Index); 4272 if (IsStruct) 4273 CurTy = CurTy->subtypes()[Index]; 4274 else 4275 CurTy = CurTy->subtypes()[0]; 4276 } 4277 4278 if (CurTy != Val->getType()) 4279 return error("Inserted value type doesn't match aggregate type"); 4280 4281 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 4286 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4287 // obsolete form of select 4288 // handles select i1 ... in old bitcode 4289 unsigned OpNum = 0; 4290 Value *TrueVal, *FalseVal, *Cond; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4292 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4293 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4294 return error("Invalid record"); 4295 4296 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 4301 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4302 // new form of select 4303 // handles select i1 or select [N x i1] 4304 unsigned OpNum = 0; 4305 Value *TrueVal, *FalseVal, *Cond; 4306 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4307 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4308 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4309 return error("Invalid record"); 4310 4311 // select condition can be either i1 or [N x i1] 4312 if (VectorType* vector_type = 4313 dyn_cast<VectorType>(Cond->getType())) { 4314 // expect <n x i1> 4315 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4316 return error("Invalid type for value"); 4317 } else { 4318 // expect i1 4319 if (Cond->getType() != Type::getInt1Ty(Context)) 4320 return error("Invalid type for value"); 4321 } 4322 4323 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4324 InstructionList.push_back(I); 4325 break; 4326 } 4327 4328 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4329 unsigned OpNum = 0; 4330 Value *Vec, *Idx; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4332 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4333 return error("Invalid record"); 4334 if (!Vec->getType()->isVectorTy()) 4335 return error("Invalid type for value"); 4336 I = ExtractElementInst::Create(Vec, Idx); 4337 InstructionList.push_back(I); 4338 break; 4339 } 4340 4341 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4342 unsigned OpNum = 0; 4343 Value *Vec, *Elt, *Idx; 4344 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4345 return error("Invalid record"); 4346 if (!Vec->getType()->isVectorTy()) 4347 return error("Invalid type for value"); 4348 if (popValue(Record, OpNum, NextValueNo, 4349 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4350 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4351 return error("Invalid record"); 4352 I = InsertElementInst::Create(Vec, Elt, Idx); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 4357 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4358 unsigned OpNum = 0; 4359 Value *Vec1, *Vec2, *Mask; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4361 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4362 return error("Invalid record"); 4363 4364 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4365 return error("Invalid record"); 4366 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4367 return error("Invalid type for value"); 4368 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4369 InstructionList.push_back(I); 4370 break; 4371 } 4372 4373 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4374 // Old form of ICmp/FCmp returning bool 4375 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4376 // both legal on vectors but had different behaviour. 4377 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4378 // FCmp/ICmp returning bool or vector of bool 4379 4380 unsigned OpNum = 0; 4381 Value *LHS, *RHS; 4382 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4383 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4384 return error("Invalid record"); 4385 4386 unsigned PredVal = Record[OpNum]; 4387 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4388 FastMathFlags FMF; 4389 if (IsFP && Record.size() > OpNum+1) 4390 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4391 4392 if (OpNum+1 != Record.size()) 4393 return error("Invalid record"); 4394 4395 if (LHS->getType()->isFPOrFPVectorTy()) 4396 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4397 else 4398 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4399 4400 if (FMF.any()) 4401 I->setFastMathFlags(FMF); 4402 InstructionList.push_back(I); 4403 break; 4404 } 4405 4406 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4407 { 4408 unsigned Size = Record.size(); 4409 if (Size == 0) { 4410 I = ReturnInst::Create(Context); 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 4415 unsigned OpNum = 0; 4416 Value *Op = nullptr; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4418 return error("Invalid record"); 4419 if (OpNum != Record.size()) 4420 return error("Invalid record"); 4421 4422 I = ReturnInst::Create(Context, Op); 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4427 if (Record.size() != 1 && Record.size() != 3) 4428 return error("Invalid record"); 4429 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4430 if (!TrueDest) 4431 return error("Invalid record"); 4432 4433 if (Record.size() == 1) { 4434 I = BranchInst::Create(TrueDest); 4435 InstructionList.push_back(I); 4436 } 4437 else { 4438 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4439 Value *Cond = getValue(Record, 2, NextValueNo, 4440 Type::getInt1Ty(Context)); 4441 if (!FalseDest || !Cond) 4442 return error("Invalid record"); 4443 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4444 InstructionList.push_back(I); 4445 } 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4449 if (Record.size() != 1 && Record.size() != 2) 4450 return error("Invalid record"); 4451 unsigned Idx = 0; 4452 Value *CleanupPad = 4453 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4454 if (!CleanupPad) 4455 return error("Invalid record"); 4456 BasicBlock *UnwindDest = nullptr; 4457 if (Record.size() == 2) { 4458 UnwindDest = getBasicBlock(Record[Idx++]); 4459 if (!UnwindDest) 4460 return error("Invalid record"); 4461 } 4462 4463 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4468 if (Record.size() != 2) 4469 return error("Invalid record"); 4470 unsigned Idx = 0; 4471 Value *CatchPad = 4472 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4473 if (!CatchPad) 4474 return error("Invalid record"); 4475 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4476 if (!BB) 4477 return error("Invalid record"); 4478 4479 I = CatchReturnInst::Create(CatchPad, BB); 4480 InstructionList.push_back(I); 4481 break; 4482 } 4483 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4484 // We must have, at minimum, the outer scope and the number of arguments. 4485 if (Record.size() < 2) 4486 return error("Invalid record"); 4487 4488 unsigned Idx = 0; 4489 4490 Value *ParentPad = 4491 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4492 4493 unsigned NumHandlers = Record[Idx++]; 4494 4495 SmallVector<BasicBlock *, 2> Handlers; 4496 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4497 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4498 if (!BB) 4499 return error("Invalid record"); 4500 Handlers.push_back(BB); 4501 } 4502 4503 BasicBlock *UnwindDest = nullptr; 4504 if (Idx + 1 == Record.size()) { 4505 UnwindDest = getBasicBlock(Record[Idx++]); 4506 if (!UnwindDest) 4507 return error("Invalid record"); 4508 } 4509 4510 if (Record.size() != Idx) 4511 return error("Invalid record"); 4512 4513 auto *CatchSwitch = 4514 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4515 for (BasicBlock *Handler : Handlers) 4516 CatchSwitch->addHandler(Handler); 4517 I = CatchSwitch; 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_CATCHPAD: 4522 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4523 // We must have, at minimum, the outer scope and the number of arguments. 4524 if (Record.size() < 2) 4525 return error("Invalid record"); 4526 4527 unsigned Idx = 0; 4528 4529 Value *ParentPad = 4530 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4531 4532 unsigned NumArgOperands = Record[Idx++]; 4533 4534 SmallVector<Value *, 2> Args; 4535 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4536 Value *Val; 4537 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4538 return error("Invalid record"); 4539 Args.push_back(Val); 4540 } 4541 4542 if (Record.size() != Idx) 4543 return error("Invalid record"); 4544 4545 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4546 I = CleanupPadInst::Create(ParentPad, Args); 4547 else 4548 I = CatchPadInst::Create(ParentPad, Args); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4553 // Check magic 4554 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4555 // "New" SwitchInst format with case ranges. The changes to write this 4556 // format were reverted but we still recognize bitcode that uses it. 4557 // Hopefully someday we will have support for case ranges and can use 4558 // this format again. 4559 4560 Type *OpTy = getTypeByID(Record[1]); 4561 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4562 4563 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4564 BasicBlock *Default = getBasicBlock(Record[3]); 4565 if (!OpTy || !Cond || !Default) 4566 return error("Invalid record"); 4567 4568 unsigned NumCases = Record[4]; 4569 4570 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4571 InstructionList.push_back(SI); 4572 4573 unsigned CurIdx = 5; 4574 for (unsigned i = 0; i != NumCases; ++i) { 4575 SmallVector<ConstantInt*, 1> CaseVals; 4576 unsigned NumItems = Record[CurIdx++]; 4577 for (unsigned ci = 0; ci != NumItems; ++ci) { 4578 bool isSingleNumber = Record[CurIdx++]; 4579 4580 APInt Low; 4581 unsigned ActiveWords = 1; 4582 if (ValueBitWidth > 64) 4583 ActiveWords = Record[CurIdx++]; 4584 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4585 ValueBitWidth); 4586 CurIdx += ActiveWords; 4587 4588 if (!isSingleNumber) { 4589 ActiveWords = 1; 4590 if (ValueBitWidth > 64) 4591 ActiveWords = Record[CurIdx++]; 4592 APInt High = readWideAPInt( 4593 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4594 CurIdx += ActiveWords; 4595 4596 // FIXME: It is not clear whether values in the range should be 4597 // compared as signed or unsigned values. The partially 4598 // implemented changes that used this format in the past used 4599 // unsigned comparisons. 4600 for ( ; Low.ule(High); ++Low) 4601 CaseVals.push_back(ConstantInt::get(Context, Low)); 4602 } else 4603 CaseVals.push_back(ConstantInt::get(Context, Low)); 4604 } 4605 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4606 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4607 cve = CaseVals.end(); cvi != cve; ++cvi) 4608 SI->addCase(*cvi, DestBB); 4609 } 4610 I = SI; 4611 break; 4612 } 4613 4614 // Old SwitchInst format without case ranges. 4615 4616 if (Record.size() < 3 || (Record.size() & 1) == 0) 4617 return error("Invalid record"); 4618 Type *OpTy = getTypeByID(Record[0]); 4619 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4620 BasicBlock *Default = getBasicBlock(Record[2]); 4621 if (!OpTy || !Cond || !Default) 4622 return error("Invalid record"); 4623 unsigned NumCases = (Record.size()-3)/2; 4624 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4625 InstructionList.push_back(SI); 4626 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4627 ConstantInt *CaseVal = 4628 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4629 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4630 if (!CaseVal || !DestBB) { 4631 delete SI; 4632 return error("Invalid record"); 4633 } 4634 SI->addCase(CaseVal, DestBB); 4635 } 4636 I = SI; 4637 break; 4638 } 4639 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4640 if (Record.size() < 2) 4641 return error("Invalid record"); 4642 Type *OpTy = getTypeByID(Record[0]); 4643 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4644 if (!OpTy || !Address) 4645 return error("Invalid record"); 4646 unsigned NumDests = Record.size()-2; 4647 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4648 InstructionList.push_back(IBI); 4649 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4650 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4651 IBI->addDestination(DestBB); 4652 } else { 4653 delete IBI; 4654 return error("Invalid record"); 4655 } 4656 } 4657 I = IBI; 4658 break; 4659 } 4660 4661 case bitc::FUNC_CODE_INST_INVOKE: { 4662 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4663 if (Record.size() < 4) 4664 return error("Invalid record"); 4665 unsigned OpNum = 0; 4666 AttributeSet PAL = getAttributes(Record[OpNum++]); 4667 unsigned CCInfo = Record[OpNum++]; 4668 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4669 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4670 4671 FunctionType *FTy = nullptr; 4672 if (CCInfo >> 13 & 1 && 4673 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4674 return error("Explicit invoke type is not a function type"); 4675 4676 Value *Callee; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4678 return error("Invalid record"); 4679 4680 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4681 if (!CalleeTy) 4682 return error("Callee is not a pointer"); 4683 if (!FTy) { 4684 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4685 if (!FTy) 4686 return error("Callee is not of pointer to function type"); 4687 } else if (CalleeTy->getElementType() != FTy) 4688 return error("Explicit invoke type does not match pointee type of " 4689 "callee operand"); 4690 if (Record.size() < FTy->getNumParams() + OpNum) 4691 return error("Insufficient operands to call"); 4692 4693 SmallVector<Value*, 16> Ops; 4694 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4695 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4696 FTy->getParamType(i))); 4697 if (!Ops.back()) 4698 return error("Invalid record"); 4699 } 4700 4701 if (!FTy->isVarArg()) { 4702 if (Record.size() != OpNum) 4703 return error("Invalid record"); 4704 } else { 4705 // Read type/value pairs for varargs params. 4706 while (OpNum != Record.size()) { 4707 Value *Op; 4708 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4709 return error("Invalid record"); 4710 Ops.push_back(Op); 4711 } 4712 } 4713 4714 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4715 OperandBundles.clear(); 4716 InstructionList.push_back(I); 4717 cast<InvokeInst>(I)->setCallingConv( 4718 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4719 cast<InvokeInst>(I)->setAttributes(PAL); 4720 break; 4721 } 4722 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4723 unsigned Idx = 0; 4724 Value *Val = nullptr; 4725 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4726 return error("Invalid record"); 4727 I = ResumeInst::Create(Val); 4728 InstructionList.push_back(I); 4729 break; 4730 } 4731 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4732 I = new UnreachableInst(Context); 4733 InstructionList.push_back(I); 4734 break; 4735 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4736 if (Record.size() < 1 || ((Record.size()-1)&1)) 4737 return error("Invalid record"); 4738 Type *Ty = getTypeByID(Record[0]); 4739 if (!Ty) 4740 return error("Invalid record"); 4741 4742 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4743 InstructionList.push_back(PN); 4744 4745 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4746 Value *V; 4747 // With the new function encoding, it is possible that operands have 4748 // negative IDs (for forward references). Use a signed VBR 4749 // representation to keep the encoding small. 4750 if (UseRelativeIDs) 4751 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4752 else 4753 V = getValue(Record, 1+i, NextValueNo, Ty); 4754 BasicBlock *BB = getBasicBlock(Record[2+i]); 4755 if (!V || !BB) 4756 return error("Invalid record"); 4757 PN->addIncoming(V, BB); 4758 } 4759 I = PN; 4760 break; 4761 } 4762 4763 case bitc::FUNC_CODE_INST_LANDINGPAD: 4764 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4765 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4766 unsigned Idx = 0; 4767 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4768 if (Record.size() < 3) 4769 return error("Invalid record"); 4770 } else { 4771 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4772 if (Record.size() < 4) 4773 return error("Invalid record"); 4774 } 4775 Type *Ty = getTypeByID(Record[Idx++]); 4776 if (!Ty) 4777 return error("Invalid record"); 4778 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4779 Value *PersFn = nullptr; 4780 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4781 return error("Invalid record"); 4782 4783 if (!F->hasPersonalityFn()) 4784 F->setPersonalityFn(cast<Constant>(PersFn)); 4785 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4786 return error("Personality function mismatch"); 4787 } 4788 4789 bool IsCleanup = !!Record[Idx++]; 4790 unsigned NumClauses = Record[Idx++]; 4791 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4792 LP->setCleanup(IsCleanup); 4793 for (unsigned J = 0; J != NumClauses; ++J) { 4794 LandingPadInst::ClauseType CT = 4795 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4796 Value *Val; 4797 4798 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4799 delete LP; 4800 return error("Invalid record"); 4801 } 4802 4803 assert((CT != LandingPadInst::Catch || 4804 !isa<ArrayType>(Val->getType())) && 4805 "Catch clause has a invalid type!"); 4806 assert((CT != LandingPadInst::Filter || 4807 isa<ArrayType>(Val->getType())) && 4808 "Filter clause has invalid type!"); 4809 LP->addClause(cast<Constant>(Val)); 4810 } 4811 4812 I = LP; 4813 InstructionList.push_back(I); 4814 break; 4815 } 4816 4817 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4818 if (Record.size() != 4) 4819 return error("Invalid record"); 4820 uint64_t AlignRecord = Record[3]; 4821 const uint64_t InAllocaMask = uint64_t(1) << 5; 4822 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4823 // Reserve bit 7 for SwiftError flag. 4824 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4825 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4826 bool InAlloca = AlignRecord & InAllocaMask; 4827 Type *Ty = getTypeByID(Record[0]); 4828 if ((AlignRecord & ExplicitTypeMask) == 0) { 4829 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4830 if (!PTy) 4831 return error("Old-style alloca with a non-pointer type"); 4832 Ty = PTy->getElementType(); 4833 } 4834 Type *OpTy = getTypeByID(Record[1]); 4835 Value *Size = getFnValueByID(Record[2], OpTy); 4836 unsigned Align; 4837 if (std::error_code EC = 4838 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4839 return EC; 4840 } 4841 if (!Ty || !Size) 4842 return error("Invalid record"); 4843 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4844 AI->setUsedWithInAlloca(InAlloca); 4845 I = AI; 4846 InstructionList.push_back(I); 4847 break; 4848 } 4849 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4850 unsigned OpNum = 0; 4851 Value *Op; 4852 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4853 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4854 return error("Invalid record"); 4855 4856 Type *Ty = nullptr; 4857 if (OpNum + 3 == Record.size()) 4858 Ty = getTypeByID(Record[OpNum++]); 4859 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4860 return EC; 4861 if (!Ty) 4862 Ty = cast<PointerType>(Op->getType())->getElementType(); 4863 4864 unsigned Align; 4865 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4866 return EC; 4867 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4868 4869 InstructionList.push_back(I); 4870 break; 4871 } 4872 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4873 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4874 unsigned OpNum = 0; 4875 Value *Op; 4876 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4877 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4878 return error("Invalid record"); 4879 4880 Type *Ty = nullptr; 4881 if (OpNum + 5 == Record.size()) 4882 Ty = getTypeByID(Record[OpNum++]); 4883 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4884 return EC; 4885 if (!Ty) 4886 Ty = cast<PointerType>(Op->getType())->getElementType(); 4887 4888 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4889 if (Ordering == NotAtomic || Ordering == Release || 4890 Ordering == AcquireRelease) 4891 return error("Invalid record"); 4892 if (Ordering != NotAtomic && Record[OpNum] == 0) 4893 return error("Invalid record"); 4894 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4895 4896 unsigned Align; 4897 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4898 return EC; 4899 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4900 4901 InstructionList.push_back(I); 4902 break; 4903 } 4904 case bitc::FUNC_CODE_INST_STORE: 4905 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4906 unsigned OpNum = 0; 4907 Value *Val, *Ptr; 4908 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4909 (BitCode == bitc::FUNC_CODE_INST_STORE 4910 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4911 : popValue(Record, OpNum, NextValueNo, 4912 cast<PointerType>(Ptr->getType())->getElementType(), 4913 Val)) || 4914 OpNum + 2 != Record.size()) 4915 return error("Invalid record"); 4916 4917 if (std::error_code EC = 4918 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4919 return EC; 4920 unsigned Align; 4921 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4922 return EC; 4923 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4924 InstructionList.push_back(I); 4925 break; 4926 } 4927 case bitc::FUNC_CODE_INST_STOREATOMIC: 4928 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4929 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4930 unsigned OpNum = 0; 4931 Value *Val, *Ptr; 4932 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4933 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4934 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4935 : popValue(Record, OpNum, NextValueNo, 4936 cast<PointerType>(Ptr->getType())->getElementType(), 4937 Val)) || 4938 OpNum + 4 != Record.size()) 4939 return error("Invalid record"); 4940 4941 if (std::error_code EC = 4942 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4943 return EC; 4944 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4945 if (Ordering == NotAtomic || Ordering == Acquire || 4946 Ordering == AcquireRelease) 4947 return error("Invalid record"); 4948 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4949 if (Ordering != NotAtomic && Record[OpNum] == 0) 4950 return error("Invalid record"); 4951 4952 unsigned Align; 4953 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4954 return EC; 4955 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4956 InstructionList.push_back(I); 4957 break; 4958 } 4959 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4960 case bitc::FUNC_CODE_INST_CMPXCHG: { 4961 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4962 // failureordering?, isweak?] 4963 unsigned OpNum = 0; 4964 Value *Ptr, *Cmp, *New; 4965 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4966 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4967 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4968 : popValue(Record, OpNum, NextValueNo, 4969 cast<PointerType>(Ptr->getType())->getElementType(), 4970 Cmp)) || 4971 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4972 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4973 return error("Invalid record"); 4974 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4975 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4976 return error("Invalid record"); 4977 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4978 4979 if (std::error_code EC = 4980 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4981 return EC; 4982 AtomicOrdering FailureOrdering; 4983 if (Record.size() < 7) 4984 FailureOrdering = 4985 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4986 else 4987 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4988 4989 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4990 SynchScope); 4991 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4992 4993 if (Record.size() < 8) { 4994 // Before weak cmpxchgs existed, the instruction simply returned the 4995 // value loaded from memory, so bitcode files from that era will be 4996 // expecting the first component of a modern cmpxchg. 4997 CurBB->getInstList().push_back(I); 4998 I = ExtractValueInst::Create(I, 0); 4999 } else { 5000 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5001 } 5002 5003 InstructionList.push_back(I); 5004 break; 5005 } 5006 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5007 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5008 unsigned OpNum = 0; 5009 Value *Ptr, *Val; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5011 popValue(Record, OpNum, NextValueNo, 5012 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5013 OpNum+4 != Record.size()) 5014 return error("Invalid record"); 5015 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5016 if (Operation < AtomicRMWInst::FIRST_BINOP || 5017 Operation > AtomicRMWInst::LAST_BINOP) 5018 return error("Invalid record"); 5019 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5020 if (Ordering == NotAtomic || Ordering == Unordered) 5021 return error("Invalid record"); 5022 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5023 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5024 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5025 InstructionList.push_back(I); 5026 break; 5027 } 5028 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5029 if (2 != Record.size()) 5030 return error("Invalid record"); 5031 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5032 if (Ordering == NotAtomic || Ordering == Unordered || 5033 Ordering == Monotonic) 5034 return error("Invalid record"); 5035 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5036 I = new FenceInst(Context, Ordering, SynchScope); 5037 InstructionList.push_back(I); 5038 break; 5039 } 5040 case bitc::FUNC_CODE_INST_CALL: { 5041 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5042 if (Record.size() < 3) 5043 return error("Invalid record"); 5044 5045 unsigned OpNum = 0; 5046 AttributeSet PAL = getAttributes(Record[OpNum++]); 5047 unsigned CCInfo = Record[OpNum++]; 5048 5049 FastMathFlags FMF; 5050 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5051 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5052 if (!FMF.any()) 5053 return error("Fast math flags indicator set for call with no FMF"); 5054 } 5055 5056 FunctionType *FTy = nullptr; 5057 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5058 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5059 return error("Explicit call type is not a function type"); 5060 5061 Value *Callee; 5062 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5063 return error("Invalid record"); 5064 5065 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5066 if (!OpTy) 5067 return error("Callee is not a pointer type"); 5068 if (!FTy) { 5069 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5070 if (!FTy) 5071 return error("Callee is not of pointer to function type"); 5072 } else if (OpTy->getElementType() != FTy) 5073 return error("Explicit call type does not match pointee type of " 5074 "callee operand"); 5075 if (Record.size() < FTy->getNumParams() + OpNum) 5076 return error("Insufficient operands to call"); 5077 5078 SmallVector<Value*, 16> Args; 5079 // Read the fixed params. 5080 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5081 if (FTy->getParamType(i)->isLabelTy()) 5082 Args.push_back(getBasicBlock(Record[OpNum])); 5083 else 5084 Args.push_back(getValue(Record, OpNum, NextValueNo, 5085 FTy->getParamType(i))); 5086 if (!Args.back()) 5087 return error("Invalid record"); 5088 } 5089 5090 // Read type/value pairs for varargs params. 5091 if (!FTy->isVarArg()) { 5092 if (OpNum != Record.size()) 5093 return error("Invalid record"); 5094 } else { 5095 while (OpNum != Record.size()) { 5096 Value *Op; 5097 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5098 return error("Invalid record"); 5099 Args.push_back(Op); 5100 } 5101 } 5102 5103 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5104 OperandBundles.clear(); 5105 InstructionList.push_back(I); 5106 cast<CallInst>(I)->setCallingConv( 5107 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5108 CallInst::TailCallKind TCK = CallInst::TCK_None; 5109 if (CCInfo & 1 << bitc::CALL_TAIL) 5110 TCK = CallInst::TCK_Tail; 5111 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5112 TCK = CallInst::TCK_MustTail; 5113 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5114 TCK = CallInst::TCK_NoTail; 5115 cast<CallInst>(I)->setTailCallKind(TCK); 5116 cast<CallInst>(I)->setAttributes(PAL); 5117 if (FMF.any()) { 5118 if (!isa<FPMathOperator>(I)) 5119 return error("Fast-math-flags specified for call without " 5120 "floating-point scalar or vector return type"); 5121 I->setFastMathFlags(FMF); 5122 } 5123 break; 5124 } 5125 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5126 if (Record.size() < 3) 5127 return error("Invalid record"); 5128 Type *OpTy = getTypeByID(Record[0]); 5129 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5130 Type *ResTy = getTypeByID(Record[2]); 5131 if (!OpTy || !Op || !ResTy) 5132 return error("Invalid record"); 5133 I = new VAArgInst(Op, ResTy); 5134 InstructionList.push_back(I); 5135 break; 5136 } 5137 5138 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5139 // A call or an invoke can be optionally prefixed with some variable 5140 // number of operand bundle blocks. These blocks are read into 5141 // OperandBundles and consumed at the next call or invoke instruction. 5142 5143 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5144 return error("Invalid record"); 5145 5146 std::vector<Value *> Inputs; 5147 5148 unsigned OpNum = 1; 5149 while (OpNum != Record.size()) { 5150 Value *Op; 5151 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5152 return error("Invalid record"); 5153 Inputs.push_back(Op); 5154 } 5155 5156 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5157 continue; 5158 } 5159 } 5160 5161 // Add instruction to end of current BB. If there is no current BB, reject 5162 // this file. 5163 if (!CurBB) { 5164 delete I; 5165 return error("Invalid instruction with no BB"); 5166 } 5167 if (!OperandBundles.empty()) { 5168 delete I; 5169 return error("Operand bundles found with no consumer"); 5170 } 5171 CurBB->getInstList().push_back(I); 5172 5173 // If this was a terminator instruction, move to the next block. 5174 if (isa<TerminatorInst>(I)) { 5175 ++CurBBNo; 5176 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5177 } 5178 5179 // Non-void values get registered in the value table for future use. 5180 if (I && !I->getType()->isVoidTy()) 5181 ValueList.assignValue(I, NextValueNo++); 5182 } 5183 5184 OutOfRecordLoop: 5185 5186 if (!OperandBundles.empty()) 5187 return error("Operand bundles found with no consumer"); 5188 5189 // Check the function list for unresolved values. 5190 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5191 if (!A->getParent()) { 5192 // We found at least one unresolved value. Nuke them all to avoid leaks. 5193 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5194 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5195 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5196 delete A; 5197 } 5198 } 5199 return error("Never resolved value found in function"); 5200 } 5201 } 5202 5203 // FIXME: Check for unresolved forward-declared metadata references 5204 // and clean up leaks. 5205 5206 // Trim the value list down to the size it was before we parsed this function. 5207 ValueList.shrinkTo(ModuleValueListSize); 5208 MetadataList.shrinkTo(ModuleMetadataListSize); 5209 std::vector<BasicBlock*>().swap(FunctionBBs); 5210 return std::error_code(); 5211 } 5212 5213 /// Find the function body in the bitcode stream 5214 std::error_code BitcodeReader::findFunctionInStream( 5215 Function *F, 5216 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5217 while (DeferredFunctionInfoIterator->second == 0) { 5218 // This is the fallback handling for the old format bitcode that 5219 // didn't contain the function index in the VST, or when we have 5220 // an anonymous function which would not have a VST entry. 5221 // Assert that we have one of those two cases. 5222 assert(VSTOffset == 0 || !F->hasName()); 5223 // Parse the next body in the stream and set its position in the 5224 // DeferredFunctionInfo map. 5225 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5226 return EC; 5227 } 5228 return std::error_code(); 5229 } 5230 5231 //===----------------------------------------------------------------------===// 5232 // GVMaterializer implementation 5233 //===----------------------------------------------------------------------===// 5234 5235 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5236 5237 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5238 // In older bitcode we must materialize the metadata before parsing 5239 // any functions, in order to set up the MetadataList properly. 5240 if (!SeenModuleValuesRecord) { 5241 if (std::error_code EC = materializeMetadata()) 5242 return EC; 5243 } 5244 5245 Function *F = dyn_cast<Function>(GV); 5246 // If it's not a function or is already material, ignore the request. 5247 if (!F || !F->isMaterializable()) 5248 return std::error_code(); 5249 5250 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5251 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5252 // If its position is recorded as 0, its body is somewhere in the stream 5253 // but we haven't seen it yet. 5254 if (DFII->second == 0) 5255 if (std::error_code EC = findFunctionInStream(F, DFII)) 5256 return EC; 5257 5258 // Move the bit stream to the saved position of the deferred function body. 5259 Stream.JumpToBit(DFII->second); 5260 5261 if (std::error_code EC = parseFunctionBody(F)) 5262 return EC; 5263 F->setIsMaterializable(false); 5264 5265 if (StripDebugInfo) 5266 stripDebugInfo(*F); 5267 5268 // Upgrade any old intrinsic calls in the function. 5269 for (auto &I : UpgradedIntrinsics) { 5270 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5271 UI != UE;) { 5272 User *U = *UI; 5273 ++UI; 5274 if (CallInst *CI = dyn_cast<CallInst>(U)) 5275 UpgradeIntrinsicCall(CI, I.second); 5276 } 5277 } 5278 5279 // Finish fn->subprogram upgrade for materialized functions. 5280 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5281 F->setSubprogram(SP); 5282 5283 // Bring in any functions that this function forward-referenced via 5284 // blockaddresses. 5285 return materializeForwardReferencedFunctions(); 5286 } 5287 5288 std::error_code BitcodeReader::materializeModule() { 5289 if (std::error_code EC = materializeMetadata()) 5290 return EC; 5291 5292 // Promise to materialize all forward references. 5293 WillMaterializeAllForwardRefs = true; 5294 5295 // Iterate over the module, deserializing any functions that are still on 5296 // disk. 5297 for (Function &F : *TheModule) { 5298 if (std::error_code EC = materialize(&F)) 5299 return EC; 5300 } 5301 // At this point, if there are any function bodies, parse the rest of 5302 // the bits in the module past the last function block we have recorded 5303 // through either lazy scanning or the VST. 5304 if (LastFunctionBlockBit || NextUnreadBit) 5305 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5306 : NextUnreadBit); 5307 5308 // Check that all block address forward references got resolved (as we 5309 // promised above). 5310 if (!BasicBlockFwdRefs.empty()) 5311 return error("Never resolved function from blockaddress"); 5312 5313 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5314 // delete the old functions to clean up. We can't do this unless the entire 5315 // module is materialized because there could always be another function body 5316 // with calls to the old function. 5317 for (auto &I : UpgradedIntrinsics) { 5318 for (auto *U : I.first->users()) { 5319 if (CallInst *CI = dyn_cast<CallInst>(U)) 5320 UpgradeIntrinsicCall(CI, I.second); 5321 } 5322 if (!I.first->use_empty()) 5323 I.first->replaceAllUsesWith(I.second); 5324 I.first->eraseFromParent(); 5325 } 5326 UpgradedIntrinsics.clear(); 5327 5328 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5329 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5330 5331 UpgradeDebugInfo(*TheModule); 5332 return std::error_code(); 5333 } 5334 5335 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5336 return IdentifiedStructTypes; 5337 } 5338 5339 std::error_code 5340 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5341 if (Streamer) 5342 return initLazyStream(std::move(Streamer)); 5343 return initStreamFromBuffer(); 5344 } 5345 5346 std::error_code BitcodeReader::initStreamFromBuffer() { 5347 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5348 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5349 5350 if (Buffer->getBufferSize() & 3) 5351 return error("Invalid bitcode signature"); 5352 5353 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5354 // The magic number is 0x0B17C0DE stored in little endian. 5355 if (isBitcodeWrapper(BufPtr, BufEnd)) 5356 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5357 return error("Invalid bitcode wrapper header"); 5358 5359 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5360 Stream.init(&*StreamFile); 5361 5362 return std::error_code(); 5363 } 5364 5365 std::error_code 5366 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5367 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5368 // see it. 5369 auto OwnedBytes = 5370 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5371 StreamingMemoryObject &Bytes = *OwnedBytes; 5372 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5373 Stream.init(&*StreamFile); 5374 5375 unsigned char buf[16]; 5376 if (Bytes.readBytes(buf, 16, 0) != 16) 5377 return error("Invalid bitcode signature"); 5378 5379 if (!isBitcode(buf, buf + 16)) 5380 return error("Invalid bitcode signature"); 5381 5382 if (isBitcodeWrapper(buf, buf + 4)) { 5383 const unsigned char *bitcodeStart = buf; 5384 const unsigned char *bitcodeEnd = buf + 16; 5385 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5386 Bytes.dropLeadingBytes(bitcodeStart - buf); 5387 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5388 } 5389 return std::error_code(); 5390 } 5391 5392 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5393 const Twine &Message) { 5394 return ::error(DiagnosticHandler, make_error_code(E), Message); 5395 } 5396 5397 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5398 return ::error(DiagnosticHandler, 5399 make_error_code(BitcodeError::CorruptedBitcode), Message); 5400 } 5401 5402 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5403 return ::error(DiagnosticHandler, make_error_code(E)); 5404 } 5405 5406 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5407 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5408 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5409 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5410 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5411 5412 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5413 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5414 bool CheckFuncSummaryPresenceOnly) 5415 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5416 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5417 5418 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5419 5420 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5421 5422 // Specialized value symbol table parser used when reading function index 5423 // blocks where we don't actually create global values. 5424 // At the end of this routine the function index is populated with a map 5425 // from function name to FunctionInfo. The function info contains 5426 // the function block's bitcode offset as well as the offset into the 5427 // function summary section. 5428 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5429 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5430 return error("Invalid record"); 5431 5432 SmallVector<uint64_t, 64> Record; 5433 5434 // Read all the records for this value table. 5435 SmallString<128> ValueName; 5436 while (1) { 5437 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5438 5439 switch (Entry.Kind) { 5440 case BitstreamEntry::SubBlock: // Handled for us already. 5441 case BitstreamEntry::Error: 5442 return error("Malformed block"); 5443 case BitstreamEntry::EndBlock: 5444 return std::error_code(); 5445 case BitstreamEntry::Record: 5446 // The interesting case. 5447 break; 5448 } 5449 5450 // Read a record. 5451 Record.clear(); 5452 switch (Stream.readRecord(Entry.ID, Record)) { 5453 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5454 break; 5455 case bitc::VST_CODE_FNENTRY: { 5456 // VST_FNENTRY: [valueid, offset, namechar x N] 5457 if (convertToString(Record, 2, ValueName)) 5458 return error("Invalid record"); 5459 unsigned ValueID = Record[0]; 5460 uint64_t FuncOffset = Record[1]; 5461 std::unique_ptr<FunctionInfo> FuncInfo = 5462 llvm::make_unique<FunctionInfo>(FuncOffset); 5463 if (foundFuncSummary() && !IsLazy) { 5464 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5465 SummaryMap.find(ValueID); 5466 assert(SMI != SummaryMap.end() && "Summary info not found"); 5467 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5468 } 5469 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5470 5471 ValueName.clear(); 5472 break; 5473 } 5474 case bitc::VST_CODE_COMBINED_FNENTRY: { 5475 // VST_FNENTRY: [offset, namechar x N] 5476 if (convertToString(Record, 1, ValueName)) 5477 return error("Invalid record"); 5478 uint64_t FuncSummaryOffset = Record[0]; 5479 std::unique_ptr<FunctionInfo> FuncInfo = 5480 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5481 if (foundFuncSummary() && !IsLazy) { 5482 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5483 SummaryMap.find(FuncSummaryOffset); 5484 assert(SMI != SummaryMap.end() && "Summary info not found"); 5485 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5486 } 5487 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5488 5489 ValueName.clear(); 5490 break; 5491 } 5492 } 5493 } 5494 } 5495 5496 // Parse just the blocks needed for function index building out of the module. 5497 // At the end of this routine the function Index is populated with a map 5498 // from function name to FunctionInfo. The function info contains 5499 // either the parsed function summary information (when parsing summaries 5500 // eagerly), or just to the function summary record's offset 5501 // if parsing lazily (IsLazy). 5502 std::error_code FunctionIndexBitcodeReader::parseModule() { 5503 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5504 return error("Invalid record"); 5505 5506 // Read the function index for this module. 5507 while (1) { 5508 BitstreamEntry Entry = Stream.advance(); 5509 5510 switch (Entry.Kind) { 5511 case BitstreamEntry::Error: 5512 return error("Malformed block"); 5513 case BitstreamEntry::EndBlock: 5514 return std::error_code(); 5515 5516 case BitstreamEntry::SubBlock: 5517 if (CheckFuncSummaryPresenceOnly) { 5518 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5519 SeenFuncSummary = true; 5520 // No need to parse the rest since we found the summary. 5521 return std::error_code(); 5522 } 5523 if (Stream.SkipBlock()) 5524 return error("Invalid record"); 5525 continue; 5526 } 5527 switch (Entry.ID) { 5528 default: // Skip unknown content. 5529 if (Stream.SkipBlock()) 5530 return error("Invalid record"); 5531 break; 5532 case bitc::BLOCKINFO_BLOCK_ID: 5533 // Need to parse these to get abbrev ids (e.g. for VST) 5534 if (Stream.ReadBlockInfoBlock()) 5535 return error("Malformed block"); 5536 break; 5537 case bitc::VALUE_SYMTAB_BLOCK_ID: 5538 if (std::error_code EC = parseValueSymbolTable()) 5539 return EC; 5540 break; 5541 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5542 SeenFuncSummary = true; 5543 if (IsLazy) { 5544 // Lazy parsing of summary info, skip it. 5545 if (Stream.SkipBlock()) 5546 return error("Invalid record"); 5547 } else if (std::error_code EC = parseEntireSummary()) 5548 return EC; 5549 break; 5550 case bitc::MODULE_STRTAB_BLOCK_ID: 5551 if (std::error_code EC = parseModuleStringTable()) 5552 return EC; 5553 break; 5554 } 5555 continue; 5556 5557 case BitstreamEntry::Record: 5558 Stream.skipRecord(Entry.ID); 5559 continue; 5560 } 5561 } 5562 } 5563 5564 // Eagerly parse the entire function summary block (i.e. for all functions 5565 // in the index). This populates the FunctionSummary objects in 5566 // the index. 5567 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5568 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5569 return error("Invalid record"); 5570 5571 SmallVector<uint64_t, 64> Record; 5572 5573 while (1) { 5574 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5575 5576 switch (Entry.Kind) { 5577 case BitstreamEntry::SubBlock: // Handled for us already. 5578 case BitstreamEntry::Error: 5579 return error("Malformed block"); 5580 case BitstreamEntry::EndBlock: 5581 return std::error_code(); 5582 case BitstreamEntry::Record: 5583 // The interesting case. 5584 break; 5585 } 5586 5587 // Read a record. The record format depends on whether this 5588 // is a per-module index or a combined index file. In the per-module 5589 // case the records contain the associated value's ID for correlation 5590 // with VST entries. In the combined index the correlation is done 5591 // via the bitcode offset of the summary records (which were saved 5592 // in the combined index VST entries). The records also contain 5593 // information used for ThinLTO renaming and importing. 5594 Record.clear(); 5595 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5596 switch (Stream.readRecord(Entry.ID, Record)) { 5597 default: // Default behavior: ignore. 5598 break; 5599 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5600 case bitc::FS_CODE_PERMODULE_ENTRY: { 5601 unsigned ValueID = Record[0]; 5602 bool IsLocal = Record[1]; 5603 unsigned InstCount = Record[2]; 5604 std::unique_ptr<FunctionSummary> FS = 5605 llvm::make_unique<FunctionSummary>(InstCount); 5606 FS->setLocalFunction(IsLocal); 5607 // The module path string ref set in the summary must be owned by the 5608 // index's module string table. Since we don't have a module path 5609 // string table section in the per-module index, we create a single 5610 // module path string table entry with an empty (0) ID to take 5611 // ownership. 5612 FS->setModulePath( 5613 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5614 SummaryMap[ValueID] = std::move(FS); 5615 } 5616 // FS_COMBINED_ENTRY: [modid, instcount] 5617 case bitc::FS_CODE_COMBINED_ENTRY: { 5618 uint64_t ModuleId = Record[0]; 5619 unsigned InstCount = Record[1]; 5620 std::unique_ptr<FunctionSummary> FS = 5621 llvm::make_unique<FunctionSummary>(InstCount); 5622 FS->setModulePath(ModuleIdMap[ModuleId]); 5623 SummaryMap[CurRecordBit] = std::move(FS); 5624 } 5625 } 5626 } 5627 llvm_unreachable("Exit infinite loop"); 5628 } 5629 5630 // Parse the module string table block into the Index. 5631 // This populates the ModulePathStringTable map in the index. 5632 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5633 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5634 return error("Invalid record"); 5635 5636 SmallVector<uint64_t, 64> Record; 5637 5638 SmallString<128> ModulePath; 5639 while (1) { 5640 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5641 5642 switch (Entry.Kind) { 5643 case BitstreamEntry::SubBlock: // Handled for us already. 5644 case BitstreamEntry::Error: 5645 return error("Malformed block"); 5646 case BitstreamEntry::EndBlock: 5647 return std::error_code(); 5648 case BitstreamEntry::Record: 5649 // The interesting case. 5650 break; 5651 } 5652 5653 Record.clear(); 5654 switch (Stream.readRecord(Entry.ID, Record)) { 5655 default: // Default behavior: ignore. 5656 break; 5657 case bitc::MST_CODE_ENTRY: { 5658 // MST_ENTRY: [modid, namechar x N] 5659 if (convertToString(Record, 1, ModulePath)) 5660 return error("Invalid record"); 5661 uint64_t ModuleId = Record[0]; 5662 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5663 ModuleIdMap[ModuleId] = ModulePathInMap; 5664 ModulePath.clear(); 5665 break; 5666 } 5667 } 5668 } 5669 llvm_unreachable("Exit infinite loop"); 5670 } 5671 5672 // Parse the function info index from the bitcode streamer into the given index. 5673 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5674 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5675 TheIndex = I; 5676 5677 if (std::error_code EC = initStream(std::move(Streamer))) 5678 return EC; 5679 5680 // Sniff for the signature. 5681 if (!hasValidBitcodeHeader(Stream)) 5682 return error("Invalid bitcode signature"); 5683 5684 // We expect a number of well-defined blocks, though we don't necessarily 5685 // need to understand them all. 5686 while (1) { 5687 if (Stream.AtEndOfStream()) { 5688 // We didn't really read a proper Module block. 5689 return error("Malformed block"); 5690 } 5691 5692 BitstreamEntry Entry = 5693 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5694 5695 if (Entry.Kind != BitstreamEntry::SubBlock) 5696 return error("Malformed block"); 5697 5698 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5699 // building the function summary index. 5700 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5701 return parseModule(); 5702 5703 if (Stream.SkipBlock()) 5704 return error("Invalid record"); 5705 } 5706 } 5707 5708 // Parse the function information at the given offset in the buffer into 5709 // the index. Used to support lazy parsing of function summaries from the 5710 // combined index during importing. 5711 // TODO: This function is not yet complete as it won't have a consumer 5712 // until ThinLTO function importing is added. 5713 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5714 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5715 size_t FunctionSummaryOffset) { 5716 TheIndex = I; 5717 5718 if (std::error_code EC = initStream(std::move(Streamer))) 5719 return EC; 5720 5721 // Sniff for the signature. 5722 if (!hasValidBitcodeHeader(Stream)) 5723 return error("Invalid bitcode signature"); 5724 5725 Stream.JumpToBit(FunctionSummaryOffset); 5726 5727 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5728 5729 switch (Entry.Kind) { 5730 default: 5731 return error("Malformed block"); 5732 case BitstreamEntry::Record: 5733 // The expected case. 5734 break; 5735 } 5736 5737 // TODO: Read a record. This interface will be completed when ThinLTO 5738 // importing is added so that it can be tested. 5739 SmallVector<uint64_t, 64> Record; 5740 switch (Stream.readRecord(Entry.ID, Record)) { 5741 case bitc::FS_CODE_COMBINED_ENTRY: 5742 default: 5743 return error("Invalid record"); 5744 } 5745 5746 return std::error_code(); 5747 } 5748 5749 std::error_code 5750 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5751 if (Streamer) 5752 return initLazyStream(std::move(Streamer)); 5753 return initStreamFromBuffer(); 5754 } 5755 5756 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5757 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5758 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5759 5760 if (Buffer->getBufferSize() & 3) 5761 return error("Invalid bitcode signature"); 5762 5763 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5764 // The magic number is 0x0B17C0DE stored in little endian. 5765 if (isBitcodeWrapper(BufPtr, BufEnd)) 5766 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5767 return error("Invalid bitcode wrapper header"); 5768 5769 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5770 Stream.init(&*StreamFile); 5771 5772 return std::error_code(); 5773 } 5774 5775 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5776 std::unique_ptr<DataStreamer> Streamer) { 5777 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5778 // see it. 5779 auto OwnedBytes = 5780 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5781 StreamingMemoryObject &Bytes = *OwnedBytes; 5782 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5783 Stream.init(&*StreamFile); 5784 5785 unsigned char buf[16]; 5786 if (Bytes.readBytes(buf, 16, 0) != 16) 5787 return error("Invalid bitcode signature"); 5788 5789 if (!isBitcode(buf, buf + 16)) 5790 return error("Invalid bitcode signature"); 5791 5792 if (isBitcodeWrapper(buf, buf + 4)) { 5793 const unsigned char *bitcodeStart = buf; 5794 const unsigned char *bitcodeEnd = buf + 16; 5795 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5796 Bytes.dropLeadingBytes(bitcodeStart - buf); 5797 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5798 } 5799 return std::error_code(); 5800 } 5801 5802 namespace { 5803 class BitcodeErrorCategoryType : public std::error_category { 5804 const char *name() const LLVM_NOEXCEPT override { 5805 return "llvm.bitcode"; 5806 } 5807 std::string message(int IE) const override { 5808 BitcodeError E = static_cast<BitcodeError>(IE); 5809 switch (E) { 5810 case BitcodeError::InvalidBitcodeSignature: 5811 return "Invalid bitcode signature"; 5812 case BitcodeError::CorruptedBitcode: 5813 return "Corrupted bitcode"; 5814 } 5815 llvm_unreachable("Unknown error type!"); 5816 } 5817 }; 5818 } 5819 5820 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5821 5822 const std::error_category &llvm::BitcodeErrorCategory() { 5823 return *ErrorCategory; 5824 } 5825 5826 //===----------------------------------------------------------------------===// 5827 // External interface 5828 //===----------------------------------------------------------------------===// 5829 5830 static ErrorOr<std::unique_ptr<Module>> 5831 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5832 BitcodeReader *R, LLVMContext &Context, 5833 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5834 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5835 M->setMaterializer(R); 5836 5837 auto cleanupOnError = [&](std::error_code EC) { 5838 R->releaseBuffer(); // Never take ownership on error. 5839 return EC; 5840 }; 5841 5842 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5843 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5844 ShouldLazyLoadMetadata)) 5845 return cleanupOnError(EC); 5846 5847 if (MaterializeAll) { 5848 // Read in the entire module, and destroy the BitcodeReader. 5849 if (std::error_code EC = M->materializeAll()) 5850 return cleanupOnError(EC); 5851 } else { 5852 // Resolve forward references from blockaddresses. 5853 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5854 return cleanupOnError(EC); 5855 } 5856 return std::move(M); 5857 } 5858 5859 /// \brief Get a lazy one-at-time loading module from bitcode. 5860 /// 5861 /// This isn't always used in a lazy context. In particular, it's also used by 5862 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5863 /// in forward-referenced functions from block address references. 5864 /// 5865 /// \param[in] MaterializeAll Set to \c true if we should materialize 5866 /// everything. 5867 static ErrorOr<std::unique_ptr<Module>> 5868 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5869 LLVMContext &Context, bool MaterializeAll, 5870 bool ShouldLazyLoadMetadata = false) { 5871 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5872 5873 ErrorOr<std::unique_ptr<Module>> Ret = 5874 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5875 MaterializeAll, ShouldLazyLoadMetadata); 5876 if (!Ret) 5877 return Ret; 5878 5879 Buffer.release(); // The BitcodeReader owns it now. 5880 return Ret; 5881 } 5882 5883 ErrorOr<std::unique_ptr<Module>> 5884 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5885 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5886 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5887 ShouldLazyLoadMetadata); 5888 } 5889 5890 ErrorOr<std::unique_ptr<Module>> 5891 llvm::getStreamedBitcodeModule(StringRef Name, 5892 std::unique_ptr<DataStreamer> Streamer, 5893 LLVMContext &Context) { 5894 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5895 BitcodeReader *R = new BitcodeReader(Context); 5896 5897 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5898 false); 5899 } 5900 5901 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5902 LLVMContext &Context) { 5903 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5904 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5905 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5906 // written. We must defer until the Module has been fully materialized. 5907 } 5908 5909 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5910 LLVMContext &Context) { 5911 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5912 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5913 ErrorOr<std::string> Triple = R->parseTriple(); 5914 if (Triple.getError()) 5915 return ""; 5916 return Triple.get(); 5917 } 5918 5919 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5920 LLVMContext &Context) { 5921 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5922 BitcodeReader R(Buf.release(), Context); 5923 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5924 if (ProducerString.getError()) 5925 return ""; 5926 return ProducerString.get(); 5927 } 5928 5929 // Parse the specified bitcode buffer, returning the function info index. 5930 // If IsLazy is false, parse the entire function summary into 5931 // the index. Otherwise skip the function summary section, and only create 5932 // an index object with a map from function name to function summary offset. 5933 // The index is used to perform lazy function summary reading later. 5934 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5935 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5936 DiagnosticHandlerFunction DiagnosticHandler, 5937 bool IsLazy) { 5938 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5939 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5940 5941 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5942 5943 auto cleanupOnError = [&](std::error_code EC) { 5944 R.releaseBuffer(); // Never take ownership on error. 5945 return EC; 5946 }; 5947 5948 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5949 return cleanupOnError(EC); 5950 5951 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5952 return std::move(Index); 5953 } 5954 5955 // Check if the given bitcode buffer contains a function summary block. 5956 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5957 DiagnosticHandlerFunction DiagnosticHandler) { 5958 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5959 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5960 5961 auto cleanupOnError = [&](std::error_code EC) { 5962 R.releaseBuffer(); // Never take ownership on error. 5963 return false; 5964 }; 5965 5966 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5967 return cleanupOnError(EC); 5968 5969 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5970 return R.foundFuncSummary(); 5971 } 5972 5973 // This method supports lazy reading of function summary data from the combined 5974 // index during ThinLTO function importing. When reading the combined index 5975 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5976 // Then this method is called for each function considered for importing, 5977 // to parse the summary information for the given function name into 5978 // the index. 5979 std::error_code llvm::readFunctionSummary( 5980 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5981 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5982 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5983 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5984 5985 auto cleanupOnError = [&](std::error_code EC) { 5986 R.releaseBuffer(); // Never take ownership on error. 5987 return EC; 5988 }; 5989 5990 // Lookup the given function name in the FunctionMap, which may 5991 // contain a list of function infos in the case of a COMDAT. Walk through 5992 // and parse each function summary info at the function summary offset 5993 // recorded when parsing the value symbol table. 5994 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5995 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5996 if (std::error_code EC = 5997 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5998 return cleanupOnError(EC); 5999 } 6000 6001 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6002 return std::error_code(); 6003 } 6004