xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 0b0271ef976cec3ee6a1ab2d654e42cf111a68bd)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110   std::vector<TrackingMDRef> MetadataPtrs;
111 
112   LLVMContext &Context;
113 public:
114   BitcodeReaderMetadataList(LLVMContext &C)
115       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
116 
117   // vector compatibility methods
118   unsigned size() const { return MetadataPtrs.size(); }
119   void resize(unsigned N) { MetadataPtrs.resize(N); }
120   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
121   void clear() { MetadataPtrs.clear(); }
122   Metadata *back() const { return MetadataPtrs.back(); }
123   void pop_back() { MetadataPtrs.pop_back(); }
124   bool empty() const { return MetadataPtrs.empty(); }
125 
126   Metadata *operator[](unsigned i) const {
127     assert(i < MetadataPtrs.size());
128     return MetadataPtrs[i];
129   }
130 
131   void shrinkTo(unsigned N) {
132     assert(N <= size() && "Invalid shrinkTo request!");
133     assert(!AnyFwdRefs && "Unexpected forward refs");
134     MetadataPtrs.resize(N);
135   }
136 
137   Metadata *getMetadataFwdRef(unsigned Idx);
138   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
139   void assignValue(Metadata *MD, unsigned Idx);
140   void tryToResolveCycles();
141   bool hasFwdRefs() const { return AnyFwdRefs; }
142 };
143 
144 class BitcodeReader : public GVMaterializer {
145   LLVMContext &Context;
146   Module *TheModule = nullptr;
147   std::unique_ptr<MemoryBuffer> Buffer;
148   std::unique_ptr<BitstreamReader> StreamFile;
149   BitstreamCursor Stream;
150   // Next offset to start scanning for lazy parsing of function bodies.
151   uint64_t NextUnreadBit = 0;
152   // Last function offset found in the VST.
153   uint64_t LastFunctionBlockBit = 0;
154   bool SeenValueSymbolTable = false;
155   uint64_t VSTOffset = 0;
156   // Contains an arbitrary and optional string identifying the bitcode producer
157   std::string ProducerIdentification;
158 
159   std::vector<Type*> TypeList;
160   BitcodeReaderValueList ValueList;
161   BitcodeReaderMetadataList MetadataList;
162   std::vector<Comdat *> ComdatList;
163   SmallVector<Instruction *, 64> InstructionList;
164 
165   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
166   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
167   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
168   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
169   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
170 
171   SmallVector<Instruction*, 64> InstsWithTBAATag;
172 
173   bool HasSeenOldLoopTags = false;
174 
175   /// The set of attributes by index.  Index zero in the file is for null, and
176   /// is thus not represented here.  As such all indices are off by one.
177   std::vector<AttributeSet> MAttributes;
178 
179   /// The set of attribute groups.
180   std::map<unsigned, AttributeSet> MAttributeGroups;
181 
182   /// While parsing a function body, this is a list of the basic blocks for the
183   /// function.
184   std::vector<BasicBlock*> FunctionBBs;
185 
186   // When reading the module header, this list is populated with functions that
187   // have bodies later in the file.
188   std::vector<Function*> FunctionsWithBodies;
189 
190   // When intrinsic functions are encountered which require upgrading they are
191   // stored here with their replacement function.
192   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
193   UpgradedIntrinsicMap UpgradedIntrinsics;
194 
195   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
196   DenseMap<unsigned, unsigned> MDKindMap;
197 
198   // Several operations happen after the module header has been read, but
199   // before function bodies are processed. This keeps track of whether
200   // we've done this yet.
201   bool SeenFirstFunctionBody = false;
202 
203   /// When function bodies are initially scanned, this map contains info about
204   /// where to find deferred function body in the stream.
205   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
206 
207   /// When Metadata block is initially scanned when parsing the module, we may
208   /// choose to defer parsing of the metadata. This vector contains info about
209   /// which Metadata blocks are deferred.
210   std::vector<uint64_t> DeferredMetadataInfo;
211 
212   /// These are basic blocks forward-referenced by block addresses.  They are
213   /// inserted lazily into functions when they're loaded.  The basic block ID is
214   /// its index into the vector.
215   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
216   std::deque<Function *> BasicBlockFwdRefQueue;
217 
218   /// Indicates that we are using a new encoding for instruction operands where
219   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
220   /// instruction number, for a more compact encoding.  Some instruction
221   /// operands are not relative to the instruction ID: basic block numbers, and
222   /// types. Once the old style function blocks have been phased out, we would
223   /// not need this flag.
224   bool UseRelativeIDs = false;
225 
226   /// True if all functions will be materialized, negating the need to process
227   /// (e.g.) blockaddress forward references.
228   bool WillMaterializeAllForwardRefs = false;
229 
230   /// True if any Metadata block has been materialized.
231   bool IsMetadataMaterialized = false;
232 
233   bool StripDebugInfo = false;
234 
235   /// Functions that need to be matched with subprograms when upgrading old
236   /// metadata.
237   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
238 
239   std::vector<std::string> BundleTags;
240 
241 public:
242   std::error_code error(BitcodeError E, const Twine &Message);
243   std::error_code error(BitcodeError E);
244   std::error_code error(const Twine &Message);
245 
246   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
247   BitcodeReader(LLVMContext &Context);
248   ~BitcodeReader() override { freeState(); }
249 
250   std::error_code materializeForwardReferencedFunctions();
251 
252   void freeState();
253 
254   void releaseBuffer();
255 
256   std::error_code materialize(GlobalValue *GV) override;
257   std::error_code materializeModule() override;
258   std::vector<StructType *> getIdentifiedStructTypes() const override;
259 
260   /// \brief Main interface to parsing a bitcode buffer.
261   /// \returns true if an error occurred.
262   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
263                                    Module *M,
264                                    bool ShouldLazyLoadMetadata = false);
265 
266   /// \brief Cheap mechanism to just extract module triple
267   /// \returns true if an error occurred.
268   ErrorOr<std::string> parseTriple();
269 
270   /// Cheap mechanism to just extract the identification block out of bitcode.
271   ErrorOr<std::string> parseIdentificationBlock();
272 
273   static uint64_t decodeSignRotatedValue(uint64_t V);
274 
275   /// Materialize any deferred Metadata block.
276   std::error_code materializeMetadata() override;
277 
278   void setStripDebugInfo() override;
279 
280 private:
281   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282   // ProducerIdentification data member, and do some basic enforcement on the
283   // "epoch" encoded in the bitcode.
284   std::error_code parseBitcodeVersion();
285 
286   std::vector<StructType *> IdentifiedStructTypes;
287   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288   StructType *createIdentifiedStructType(LLVMContext &Context);
289 
290   Type *getTypeByID(unsigned ID);
291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MetadataList.getMetadataFwdRef(ID);
298   }
299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// Read a value/type pair out of the specified record from slot 'Slot'.
310   /// Increment Slot past the number of slots used in the record. Return true on
311   /// failure.
312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     // Adjust the ValNo, if it was encoded relative to the InstNum.
317     if (UseRelativeIDs)
318       ValNo = InstNum - ValNo;
319     if (ValNo < InstNum) {
320       // If this is not a forward reference, just return the value we already
321       // have.
322       ResVal = getFnValueByID(ValNo, nullptr);
323       return ResVal == nullptr;
324     }
325     if (Slot == Record.size())
326       return true;
327 
328     unsigned TypeNo = (unsigned)Record[Slot++];
329     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330     return ResVal == nullptr;
331   }
332 
333   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334   /// past the number of slots used by the value in the record. Return true if
335   /// there is an error.
336   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337                 unsigned InstNum, Type *Ty, Value *&ResVal) {
338     if (getValue(Record, Slot, InstNum, Ty, ResVal))
339       return true;
340     // All values currently take a single record slot.
341     ++Slot;
342     return false;
343   }
344 
345   /// Like popValue, but does not increment the Slot number.
346   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347                 unsigned InstNum, Type *Ty, Value *&ResVal) {
348     ResVal = getValue(Record, Slot, InstNum, Ty);
349     return ResVal == nullptr;
350   }
351 
352   /// Version of getValue that returns ResVal directly, or 0 if there is an
353   /// error.
354   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355                   unsigned InstNum, Type *Ty) {
356     if (Slot == Record.size()) return nullptr;
357     unsigned ValNo = (unsigned)Record[Slot];
358     // Adjust the ValNo, if it was encoded relative to the InstNum.
359     if (UseRelativeIDs)
360       ValNo = InstNum - ValNo;
361     return getFnValueByID(ValNo, Ty);
362   }
363 
364   /// Like getValue, but decodes signed VBRs.
365   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366                         unsigned InstNum, Type *Ty) {
367     if (Slot == Record.size()) return nullptr;
368     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369     // Adjust the ValNo, if it was encoded relative to the InstNum.
370     if (UseRelativeIDs)
371       ValNo = InstNum - ValNo;
372     return getFnValueByID(ValNo, Ty);
373   }
374 
375   /// Converts alignment exponent (i.e. power of two (or zero)) to the
376   /// corresponding alignment to use. If alignment is too large, returns
377   /// a corresponding error code.
378   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380   std::error_code parseModule(uint64_t ResumeBit,
381                               bool ShouldLazyLoadMetadata = false);
382   std::error_code parseAttributeBlock();
383   std::error_code parseAttributeGroupBlock();
384   std::error_code parseTypeTable();
385   std::error_code parseTypeTableBody();
386   std::error_code parseOperandBundleTags();
387 
388   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389                                unsigned NameIndex, Triple &TT);
390   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391   std::error_code parseConstants();
392   std::error_code rememberAndSkipFunctionBodies();
393   std::error_code rememberAndSkipFunctionBody();
394   /// Save the positions of the Metadata blocks and skip parsing the blocks.
395   std::error_code rememberAndSkipMetadata();
396   std::error_code parseFunctionBody(Function *F);
397   std::error_code globalCleanup();
398   std::error_code resolveGlobalAndIndirectSymbolInits();
399   std::error_code parseMetadata(bool ModuleLevel = false);
400   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
401                                        StringRef Blob,
402                                        unsigned &NextMetadataNo);
403   std::error_code parseMetadataKinds();
404   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
405   std::error_code parseMetadataAttachment(Function &F);
406   ErrorOr<std::string> parseModuleTriple();
407   std::error_code parseUseLists();
408   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
409   std::error_code initStreamFromBuffer();
410   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
411   std::error_code findFunctionInStream(
412       Function *F,
413       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
414 };
415 
416 /// Class to manage reading and parsing function summary index bitcode
417 /// files/sections.
418 class ModuleSummaryIndexBitcodeReader {
419   DiagnosticHandlerFunction DiagnosticHandler;
420 
421   /// Eventually points to the module index built during parsing.
422   ModuleSummaryIndex *TheIndex = nullptr;
423 
424   std::unique_ptr<MemoryBuffer> Buffer;
425   std::unique_ptr<BitstreamReader> StreamFile;
426   BitstreamCursor Stream;
427 
428   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
429   ///
430   /// If false, the summary section is fully parsed into the index during
431   /// the initial parse. Otherwise, if true, the caller is expected to
432   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
433   /// section is thus parsed lazily.
434   bool IsLazy = false;
435 
436   /// Used to indicate whether caller only wants to check for the presence
437   /// of the global value summary bitcode section. All blocks are skipped,
438   /// but the SeenGlobalValSummary boolean is set.
439   bool CheckGlobalValSummaryPresenceOnly = false;
440 
441   /// Indicates whether we have encountered a global value summary section
442   /// yet during parsing, used when checking if file contains global value
443   /// summary section.
444   bool SeenGlobalValSummary = false;
445 
446   /// Indicates whether we have already parsed the VST, used for error checking.
447   bool SeenValueSymbolTable = false;
448 
449   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
450   /// Used to enable on-demand parsing of the VST.
451   uint64_t VSTOffset = 0;
452 
453   // Map to save ValueId to GUID association that was recorded in the
454   // ValueSymbolTable. It is used after the VST is parsed to convert
455   // call graph edges read from the function summary from referencing
456   // callees by their ValueId to using the GUID instead, which is how
457   // they are recorded in the summary index being built.
458   DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap;
459 
460   /// Map to save the association between summary offset in the VST to the
461   /// GlobalValueInfo object created when parsing it. Used to access the
462   /// info object when parsing the summary section.
463   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
464 
465   /// Map populated during module path string table parsing, from the
466   /// module ID to a string reference owned by the index's module
467   /// path string table, used to correlate with combined index
468   /// summary records.
469   DenseMap<uint64_t, StringRef> ModuleIdMap;
470 
471   /// Original source file name recorded in a bitcode record.
472   std::string SourceFileName;
473 
474 public:
475   std::error_code error(BitcodeError E, const Twine &Message);
476   std::error_code error(BitcodeError E);
477   std::error_code error(const Twine &Message);
478 
479   ModuleSummaryIndexBitcodeReader(
480       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
481       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
482   ModuleSummaryIndexBitcodeReader(
483       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
484       bool CheckGlobalValSummaryPresenceOnly = false);
485   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
486 
487   void freeState();
488 
489   void releaseBuffer();
490 
491   /// Check if the parser has encountered a summary section.
492   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
493 
494   /// \brief Main interface to parsing a bitcode buffer.
495   /// \returns true if an error occurred.
496   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
497                                         ModuleSummaryIndex *I);
498 
499   /// \brief Interface for parsing a summary lazily.
500   std::error_code
501   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
502                           ModuleSummaryIndex *I, size_t SummaryOffset);
503 
504 private:
505   std::error_code parseModule();
506   std::error_code parseValueSymbolTable(
507       uint64_t Offset,
508       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
509   std::error_code parseEntireSummary();
510   std::error_code parseModuleStringTable();
511   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
512   std::error_code initStreamFromBuffer();
513   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
514   GlobalValue::GUID getGUIDFromValueId(unsigned ValueId);
515   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
516 };
517 } // end anonymous namespace
518 
519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
520                                              DiagnosticSeverity Severity,
521                                              const Twine &Msg)
522     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
523 
524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
525 
526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
527                              std::error_code EC, const Twine &Message) {
528   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
529   DiagnosticHandler(DI);
530   return EC;
531 }
532 
533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
534                              std::error_code EC) {
535   return error(DiagnosticHandler, EC, EC.message());
536 }
537 
538 static std::error_code error(LLVMContext &Context, std::error_code EC,
539                              const Twine &Message) {
540   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
541                Message);
542 }
543 
544 static std::error_code error(LLVMContext &Context, std::error_code EC) {
545   return error(Context, EC, EC.message());
546 }
547 
548 static std::error_code error(LLVMContext &Context, const Twine &Message) {
549   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
550                Message);
551 }
552 
553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
554   if (!ProducerIdentification.empty()) {
555     return ::error(Context, make_error_code(E),
556                    Message + " (Producer: '" + ProducerIdentification +
557                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
558   }
559   return ::error(Context, make_error_code(E), Message);
560 }
561 
562 std::error_code BitcodeReader::error(const Twine &Message) {
563   if (!ProducerIdentification.empty()) {
564     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
565                    Message + " (Producer: '" + ProducerIdentification +
566                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
567   }
568   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
569                  Message);
570 }
571 
572 std::error_code BitcodeReader::error(BitcodeError E) {
573   return ::error(Context, make_error_code(E));
574 }
575 
576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
577     : Context(Context), Buffer(Buffer), ValueList(Context),
578       MetadataList(Context) {}
579 
580 BitcodeReader::BitcodeReader(LLVMContext &Context)
581     : Context(Context), Buffer(nullptr), ValueList(Context),
582       MetadataList(Context) {}
583 
584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
585   if (WillMaterializeAllForwardRefs)
586     return std::error_code();
587 
588   // Prevent recursion.
589   WillMaterializeAllForwardRefs = true;
590 
591   while (!BasicBlockFwdRefQueue.empty()) {
592     Function *F = BasicBlockFwdRefQueue.front();
593     BasicBlockFwdRefQueue.pop_front();
594     assert(F && "Expected valid function");
595     if (!BasicBlockFwdRefs.count(F))
596       // Already materialized.
597       continue;
598 
599     // Check for a function that isn't materializable to prevent an infinite
600     // loop.  When parsing a blockaddress stored in a global variable, there
601     // isn't a trivial way to check if a function will have a body without a
602     // linear search through FunctionsWithBodies, so just check it here.
603     if (!F->isMaterializable())
604       return error("Never resolved function from blockaddress");
605 
606     // Try to materialize F.
607     if (std::error_code EC = materialize(F))
608       return EC;
609   }
610   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
611 
612   // Reset state.
613   WillMaterializeAllForwardRefs = false;
614   return std::error_code();
615 }
616 
617 void BitcodeReader::freeState() {
618   Buffer = nullptr;
619   std::vector<Type*>().swap(TypeList);
620   ValueList.clear();
621   MetadataList.clear();
622   std::vector<Comdat *>().swap(ComdatList);
623 
624   std::vector<AttributeSet>().swap(MAttributes);
625   std::vector<BasicBlock*>().swap(FunctionBBs);
626   std::vector<Function*>().swap(FunctionsWithBodies);
627   DeferredFunctionInfo.clear();
628   DeferredMetadataInfo.clear();
629   MDKindMap.clear();
630 
631   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
632   BasicBlockFwdRefQueue.clear();
633 }
634 
635 //===----------------------------------------------------------------------===//
636 //  Helper functions to implement forward reference resolution, etc.
637 //===----------------------------------------------------------------------===//
638 
639 /// Convert a string from a record into an std::string, return true on failure.
640 template <typename StrTy>
641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
642                             StrTy &Result) {
643   if (Idx > Record.size())
644     return true;
645 
646   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
647     Result += (char)Record[i];
648   return false;
649 }
650 
651 static bool hasImplicitComdat(size_t Val) {
652   switch (Val) {
653   default:
654     return false;
655   case 1:  // Old WeakAnyLinkage
656   case 4:  // Old LinkOnceAnyLinkage
657   case 10: // Old WeakODRLinkage
658   case 11: // Old LinkOnceODRLinkage
659     return true;
660   }
661 }
662 
663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
664   switch (Val) {
665   default: // Map unknown/new linkages to external
666   case 0:
667     return GlobalValue::ExternalLinkage;
668   case 2:
669     return GlobalValue::AppendingLinkage;
670   case 3:
671     return GlobalValue::InternalLinkage;
672   case 5:
673     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
674   case 6:
675     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
676   case 7:
677     return GlobalValue::ExternalWeakLinkage;
678   case 8:
679     return GlobalValue::CommonLinkage;
680   case 9:
681     return GlobalValue::PrivateLinkage;
682   case 12:
683     return GlobalValue::AvailableExternallyLinkage;
684   case 13:
685     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
686   case 14:
687     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
688   case 15:
689     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
690   case 1: // Old value with implicit comdat.
691   case 16:
692     return GlobalValue::WeakAnyLinkage;
693   case 10: // Old value with implicit comdat.
694   case 17:
695     return GlobalValue::WeakODRLinkage;
696   case 4: // Old value with implicit comdat.
697   case 18:
698     return GlobalValue::LinkOnceAnyLinkage;
699   case 11: // Old value with implicit comdat.
700   case 19:
701     return GlobalValue::LinkOnceODRLinkage;
702   }
703 }
704 
705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
706   switch (Val) {
707   default: // Map unknown visibilities to default.
708   case 0: return GlobalValue::DefaultVisibility;
709   case 1: return GlobalValue::HiddenVisibility;
710   case 2: return GlobalValue::ProtectedVisibility;
711   }
712 }
713 
714 static GlobalValue::DLLStorageClassTypes
715 getDecodedDLLStorageClass(unsigned Val) {
716   switch (Val) {
717   default: // Map unknown values to default.
718   case 0: return GlobalValue::DefaultStorageClass;
719   case 1: return GlobalValue::DLLImportStorageClass;
720   case 2: return GlobalValue::DLLExportStorageClass;
721   }
722 }
723 
724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
725   switch (Val) {
726     case 0: return GlobalVariable::NotThreadLocal;
727     default: // Map unknown non-zero value to general dynamic.
728     case 1: return GlobalVariable::GeneralDynamicTLSModel;
729     case 2: return GlobalVariable::LocalDynamicTLSModel;
730     case 3: return GlobalVariable::InitialExecTLSModel;
731     case 4: return GlobalVariable::LocalExecTLSModel;
732   }
733 }
734 
735 static int getDecodedCastOpcode(unsigned Val) {
736   switch (Val) {
737   default: return -1;
738   case bitc::CAST_TRUNC   : return Instruction::Trunc;
739   case bitc::CAST_ZEXT    : return Instruction::ZExt;
740   case bitc::CAST_SEXT    : return Instruction::SExt;
741   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
742   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
743   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
744   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
745   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
746   case bitc::CAST_FPEXT   : return Instruction::FPExt;
747   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
748   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
749   case bitc::CAST_BITCAST : return Instruction::BitCast;
750   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
751   }
752 }
753 
754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
755   bool IsFP = Ty->isFPOrFPVectorTy();
756   // BinOps are only valid for int/fp or vector of int/fp types
757   if (!IsFP && !Ty->isIntOrIntVectorTy())
758     return -1;
759 
760   switch (Val) {
761   default:
762     return -1;
763   case bitc::BINOP_ADD:
764     return IsFP ? Instruction::FAdd : Instruction::Add;
765   case bitc::BINOP_SUB:
766     return IsFP ? Instruction::FSub : Instruction::Sub;
767   case bitc::BINOP_MUL:
768     return IsFP ? Instruction::FMul : Instruction::Mul;
769   case bitc::BINOP_UDIV:
770     return IsFP ? -1 : Instruction::UDiv;
771   case bitc::BINOP_SDIV:
772     return IsFP ? Instruction::FDiv : Instruction::SDiv;
773   case bitc::BINOP_UREM:
774     return IsFP ? -1 : Instruction::URem;
775   case bitc::BINOP_SREM:
776     return IsFP ? Instruction::FRem : Instruction::SRem;
777   case bitc::BINOP_SHL:
778     return IsFP ? -1 : Instruction::Shl;
779   case bitc::BINOP_LSHR:
780     return IsFP ? -1 : Instruction::LShr;
781   case bitc::BINOP_ASHR:
782     return IsFP ? -1 : Instruction::AShr;
783   case bitc::BINOP_AND:
784     return IsFP ? -1 : Instruction::And;
785   case bitc::BINOP_OR:
786     return IsFP ? -1 : Instruction::Or;
787   case bitc::BINOP_XOR:
788     return IsFP ? -1 : Instruction::Xor;
789   }
790 }
791 
792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
793   switch (Val) {
794   default: return AtomicRMWInst::BAD_BINOP;
795   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
796   case bitc::RMW_ADD: return AtomicRMWInst::Add;
797   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
798   case bitc::RMW_AND: return AtomicRMWInst::And;
799   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
800   case bitc::RMW_OR: return AtomicRMWInst::Or;
801   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
802   case bitc::RMW_MAX: return AtomicRMWInst::Max;
803   case bitc::RMW_MIN: return AtomicRMWInst::Min;
804   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
805   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
806   }
807 }
808 
809 static AtomicOrdering getDecodedOrdering(unsigned Val) {
810   switch (Val) {
811   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
812   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
813   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
814   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
815   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
816   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
817   default: // Map unknown orderings to sequentially-consistent.
818   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
819   }
820 }
821 
822 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
823   switch (Val) {
824   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
825   default: // Map unknown scopes to cross-thread.
826   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
827   }
828 }
829 
830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown selection kinds to any.
833   case bitc::COMDAT_SELECTION_KIND_ANY:
834     return Comdat::Any;
835   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
836     return Comdat::ExactMatch;
837   case bitc::COMDAT_SELECTION_KIND_LARGEST:
838     return Comdat::Largest;
839   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
840     return Comdat::NoDuplicates;
841   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
842     return Comdat::SameSize;
843   }
844 }
845 
846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
847   FastMathFlags FMF;
848   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
849     FMF.setUnsafeAlgebra();
850   if (0 != (Val & FastMathFlags::NoNaNs))
851     FMF.setNoNaNs();
852   if (0 != (Val & FastMathFlags::NoInfs))
853     FMF.setNoInfs();
854   if (0 != (Val & FastMathFlags::NoSignedZeros))
855     FMF.setNoSignedZeros();
856   if (0 != (Val & FastMathFlags::AllowReciprocal))
857     FMF.setAllowReciprocal();
858   return FMF;
859 }
860 
861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
862   switch (Val) {
863   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
864   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
865   }
866 }
867 
868 namespace llvm {
869 namespace {
870 /// \brief A class for maintaining the slot number definition
871 /// as a placeholder for the actual definition for forward constants defs.
872 class ConstantPlaceHolder : public ConstantExpr {
873   void operator=(const ConstantPlaceHolder &) = delete;
874 
875 public:
876   // allocate space for exactly one operand
877   void *operator new(size_t s) { return User::operator new(s, 1); }
878   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
879       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
880     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
881   }
882 
883   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
884   static bool classof(const Value *V) {
885     return isa<ConstantExpr>(V) &&
886            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
887   }
888 
889   /// Provide fast operand accessors
890   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
891 };
892 } // end anonymous namespace
893 
894 // FIXME: can we inherit this from ConstantExpr?
895 template <>
896 struct OperandTraits<ConstantPlaceHolder> :
897   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
898 };
899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
900 } // end namespace llvm
901 
902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
903   if (Idx == size()) {
904     push_back(V);
905     return;
906   }
907 
908   if (Idx >= size())
909     resize(Idx+1);
910 
911   WeakVH &OldV = ValuePtrs[Idx];
912   if (!OldV) {
913     OldV = V;
914     return;
915   }
916 
917   // Handle constants and non-constants (e.g. instrs) differently for
918   // efficiency.
919   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
920     ResolveConstants.push_back(std::make_pair(PHC, Idx));
921     OldV = V;
922   } else {
923     // If there was a forward reference to this value, replace it.
924     Value *PrevVal = OldV;
925     OldV->replaceAllUsesWith(V);
926     delete PrevVal;
927   }
928 }
929 
930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
931                                                     Type *Ty) {
932   if (Idx >= size())
933     resize(Idx + 1);
934 
935   if (Value *V = ValuePtrs[Idx]) {
936     if (Ty != V->getType())
937       report_fatal_error("Type mismatch in constant table!");
938     return cast<Constant>(V);
939   }
940 
941   // Create and return a placeholder, which will later be RAUW'd.
942   Constant *C = new ConstantPlaceHolder(Ty, Context);
943   ValuePtrs[Idx] = C;
944   return C;
945 }
946 
947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
948   // Bail out for a clearly invalid value. This would make us call resize(0)
949   if (Idx == UINT_MAX)
950     return nullptr;
951 
952   if (Idx >= size())
953     resize(Idx + 1);
954 
955   if (Value *V = ValuePtrs[Idx]) {
956     // If the types don't match, it's invalid.
957     if (Ty && Ty != V->getType())
958       return nullptr;
959     return V;
960   }
961 
962   // No type specified, must be invalid reference.
963   if (!Ty) return nullptr;
964 
965   // Create and return a placeholder, which will later be RAUW'd.
966   Value *V = new Argument(Ty);
967   ValuePtrs[Idx] = V;
968   return V;
969 }
970 
971 /// Once all constants are read, this method bulk resolves any forward
972 /// references.  The idea behind this is that we sometimes get constants (such
973 /// as large arrays) which reference *many* forward ref constants.  Replacing
974 /// each of these causes a lot of thrashing when building/reuniquing the
975 /// constant.  Instead of doing this, we look at all the uses and rewrite all
976 /// the place holders at once for any constant that uses a placeholder.
977 void BitcodeReaderValueList::resolveConstantForwardRefs() {
978   // Sort the values by-pointer so that they are efficient to look up with a
979   // binary search.
980   std::sort(ResolveConstants.begin(), ResolveConstants.end());
981 
982   SmallVector<Constant*, 64> NewOps;
983 
984   while (!ResolveConstants.empty()) {
985     Value *RealVal = operator[](ResolveConstants.back().second);
986     Constant *Placeholder = ResolveConstants.back().first;
987     ResolveConstants.pop_back();
988 
989     // Loop over all users of the placeholder, updating them to reference the
990     // new value.  If they reference more than one placeholder, update them all
991     // at once.
992     while (!Placeholder->use_empty()) {
993       auto UI = Placeholder->user_begin();
994       User *U = *UI;
995 
996       // If the using object isn't uniqued, just update the operands.  This
997       // handles instructions and initializers for global variables.
998       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
999         UI.getUse().set(RealVal);
1000         continue;
1001       }
1002 
1003       // Otherwise, we have a constant that uses the placeholder.  Replace that
1004       // constant with a new constant that has *all* placeholder uses updated.
1005       Constant *UserC = cast<Constant>(U);
1006       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1007            I != E; ++I) {
1008         Value *NewOp;
1009         if (!isa<ConstantPlaceHolder>(*I)) {
1010           // Not a placeholder reference.
1011           NewOp = *I;
1012         } else if (*I == Placeholder) {
1013           // Common case is that it just references this one placeholder.
1014           NewOp = RealVal;
1015         } else {
1016           // Otherwise, look up the placeholder in ResolveConstants.
1017           ResolveConstantsTy::iterator It =
1018             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1019                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1020                                                             0));
1021           assert(It != ResolveConstants.end() && It->first == *I);
1022           NewOp = operator[](It->second);
1023         }
1024 
1025         NewOps.push_back(cast<Constant>(NewOp));
1026       }
1027 
1028       // Make the new constant.
1029       Constant *NewC;
1030       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1031         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1032       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1033         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1034       } else if (isa<ConstantVector>(UserC)) {
1035         NewC = ConstantVector::get(NewOps);
1036       } else {
1037         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1038         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1039       }
1040 
1041       UserC->replaceAllUsesWith(NewC);
1042       UserC->destroyConstant();
1043       NewOps.clear();
1044     }
1045 
1046     // Update all ValueHandles, they should be the only users at this point.
1047     Placeholder->replaceAllUsesWith(RealVal);
1048     delete Placeholder;
1049   }
1050 }
1051 
1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1053   if (Idx == size()) {
1054     push_back(MD);
1055     return;
1056   }
1057 
1058   if (Idx >= size())
1059     resize(Idx+1);
1060 
1061   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1062   if (!OldMD) {
1063     OldMD.reset(MD);
1064     return;
1065   }
1066 
1067   // If there was a forward reference to this value, replace it.
1068   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1069   PrevMD->replaceAllUsesWith(MD);
1070   --NumFwdRefs;
1071 }
1072 
1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1074   if (Idx >= size())
1075     resize(Idx + 1);
1076 
1077   if (Metadata *MD = MetadataPtrs[Idx])
1078     return MD;
1079 
1080   // Track forward refs to be resolved later.
1081   if (AnyFwdRefs) {
1082     MinFwdRef = std::min(MinFwdRef, Idx);
1083     MaxFwdRef = std::max(MaxFwdRef, Idx);
1084   } else {
1085     AnyFwdRefs = true;
1086     MinFwdRef = MaxFwdRef = Idx;
1087   }
1088   ++NumFwdRefs;
1089 
1090   // Create and return a placeholder, which will later be RAUW'd.
1091   Metadata *MD = MDNode::getTemporary(Context, None).release();
1092   MetadataPtrs[Idx].reset(MD);
1093   return MD;
1094 }
1095 
1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1097   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1098 }
1099 
1100 void BitcodeReaderMetadataList::tryToResolveCycles() {
1101   if (!AnyFwdRefs)
1102     // Nothing to do.
1103     return;
1104 
1105   if (NumFwdRefs)
1106     // Still forward references... can't resolve cycles.
1107     return;
1108 
1109   // Resolve any cycles.
1110   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1111     auto &MD = MetadataPtrs[I];
1112     auto *N = dyn_cast_or_null<MDNode>(MD);
1113     if (!N)
1114       continue;
1115 
1116     assert(!N->isTemporary() && "Unexpected forward reference");
1117     N->resolveCycles();
1118   }
1119 
1120   // Make sure we return early again until there's another forward ref.
1121   AnyFwdRefs = false;
1122 }
1123 
1124 Type *BitcodeReader::getTypeByID(unsigned ID) {
1125   // The type table size is always specified correctly.
1126   if (ID >= TypeList.size())
1127     return nullptr;
1128 
1129   if (Type *Ty = TypeList[ID])
1130     return Ty;
1131 
1132   // If we have a forward reference, the only possible case is when it is to a
1133   // named struct.  Just create a placeholder for now.
1134   return TypeList[ID] = createIdentifiedStructType(Context);
1135 }
1136 
1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1138                                                       StringRef Name) {
1139   auto *Ret = StructType::create(Context, Name);
1140   IdentifiedStructTypes.push_back(Ret);
1141   return Ret;
1142 }
1143 
1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1145   auto *Ret = StructType::create(Context);
1146   IdentifiedStructTypes.push_back(Ret);
1147   return Ret;
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 //  Functions for parsing blocks from the bitcode file
1152 //===----------------------------------------------------------------------===//
1153 
1154 
1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1156 /// been decoded from the given integer. This function must stay in sync with
1157 /// 'encodeLLVMAttributesForBitcode'.
1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1159                                            uint64_t EncodedAttrs) {
1160   // FIXME: Remove in 4.0.
1161 
1162   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1163   // the bits above 31 down by 11 bits.
1164   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1165   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1166          "Alignment must be a power of two.");
1167 
1168   if (Alignment)
1169     B.addAlignmentAttr(Alignment);
1170   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1171                 (EncodedAttrs & 0xffff));
1172 }
1173 
1174 std::error_code BitcodeReader::parseAttributeBlock() {
1175   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1176     return error("Invalid record");
1177 
1178   if (!MAttributes.empty())
1179     return error("Invalid multiple blocks");
1180 
1181   SmallVector<uint64_t, 64> Record;
1182 
1183   SmallVector<AttributeSet, 8> Attrs;
1184 
1185   // Read all the records.
1186   while (1) {
1187     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1188 
1189     switch (Entry.Kind) {
1190     case BitstreamEntry::SubBlock: // Handled for us already.
1191     case BitstreamEntry::Error:
1192       return error("Malformed block");
1193     case BitstreamEntry::EndBlock:
1194       return std::error_code();
1195     case BitstreamEntry::Record:
1196       // The interesting case.
1197       break;
1198     }
1199 
1200     // Read a record.
1201     Record.clear();
1202     switch (Stream.readRecord(Entry.ID, Record)) {
1203     default:  // Default behavior: ignore.
1204       break;
1205     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1206       // FIXME: Remove in 4.0.
1207       if (Record.size() & 1)
1208         return error("Invalid record");
1209 
1210       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1211         AttrBuilder B;
1212         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1213         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1214       }
1215 
1216       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1217       Attrs.clear();
1218       break;
1219     }
1220     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1221       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1222         Attrs.push_back(MAttributeGroups[Record[i]]);
1223 
1224       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1225       Attrs.clear();
1226       break;
1227     }
1228     }
1229   }
1230 }
1231 
1232 // Returns Attribute::None on unrecognized codes.
1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1234   switch (Code) {
1235   default:
1236     return Attribute::None;
1237   case bitc::ATTR_KIND_ALIGNMENT:
1238     return Attribute::Alignment;
1239   case bitc::ATTR_KIND_ALWAYS_INLINE:
1240     return Attribute::AlwaysInline;
1241   case bitc::ATTR_KIND_ARGMEMONLY:
1242     return Attribute::ArgMemOnly;
1243   case bitc::ATTR_KIND_BUILTIN:
1244     return Attribute::Builtin;
1245   case bitc::ATTR_KIND_BY_VAL:
1246     return Attribute::ByVal;
1247   case bitc::ATTR_KIND_IN_ALLOCA:
1248     return Attribute::InAlloca;
1249   case bitc::ATTR_KIND_COLD:
1250     return Attribute::Cold;
1251   case bitc::ATTR_KIND_CONVERGENT:
1252     return Attribute::Convergent;
1253   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1254     return Attribute::InaccessibleMemOnly;
1255   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1256     return Attribute::InaccessibleMemOrArgMemOnly;
1257   case bitc::ATTR_KIND_INLINE_HINT:
1258     return Attribute::InlineHint;
1259   case bitc::ATTR_KIND_IN_REG:
1260     return Attribute::InReg;
1261   case bitc::ATTR_KIND_JUMP_TABLE:
1262     return Attribute::JumpTable;
1263   case bitc::ATTR_KIND_MIN_SIZE:
1264     return Attribute::MinSize;
1265   case bitc::ATTR_KIND_NAKED:
1266     return Attribute::Naked;
1267   case bitc::ATTR_KIND_NEST:
1268     return Attribute::Nest;
1269   case bitc::ATTR_KIND_NO_ALIAS:
1270     return Attribute::NoAlias;
1271   case bitc::ATTR_KIND_NO_BUILTIN:
1272     return Attribute::NoBuiltin;
1273   case bitc::ATTR_KIND_NO_CAPTURE:
1274     return Attribute::NoCapture;
1275   case bitc::ATTR_KIND_NO_DUPLICATE:
1276     return Attribute::NoDuplicate;
1277   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1278     return Attribute::NoImplicitFloat;
1279   case bitc::ATTR_KIND_NO_INLINE:
1280     return Attribute::NoInline;
1281   case bitc::ATTR_KIND_NO_RECURSE:
1282     return Attribute::NoRecurse;
1283   case bitc::ATTR_KIND_NON_LAZY_BIND:
1284     return Attribute::NonLazyBind;
1285   case bitc::ATTR_KIND_NON_NULL:
1286     return Attribute::NonNull;
1287   case bitc::ATTR_KIND_DEREFERENCEABLE:
1288     return Attribute::Dereferenceable;
1289   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1290     return Attribute::DereferenceableOrNull;
1291   case bitc::ATTR_KIND_ALLOC_SIZE:
1292     return Attribute::AllocSize;
1293   case bitc::ATTR_KIND_NO_RED_ZONE:
1294     return Attribute::NoRedZone;
1295   case bitc::ATTR_KIND_NO_RETURN:
1296     return Attribute::NoReturn;
1297   case bitc::ATTR_KIND_NO_UNWIND:
1298     return Attribute::NoUnwind;
1299   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1300     return Attribute::OptimizeForSize;
1301   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1302     return Attribute::OptimizeNone;
1303   case bitc::ATTR_KIND_READ_NONE:
1304     return Attribute::ReadNone;
1305   case bitc::ATTR_KIND_READ_ONLY:
1306     return Attribute::ReadOnly;
1307   case bitc::ATTR_KIND_RETURNED:
1308     return Attribute::Returned;
1309   case bitc::ATTR_KIND_RETURNS_TWICE:
1310     return Attribute::ReturnsTwice;
1311   case bitc::ATTR_KIND_S_EXT:
1312     return Attribute::SExt;
1313   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1314     return Attribute::StackAlignment;
1315   case bitc::ATTR_KIND_STACK_PROTECT:
1316     return Attribute::StackProtect;
1317   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1318     return Attribute::StackProtectReq;
1319   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1320     return Attribute::StackProtectStrong;
1321   case bitc::ATTR_KIND_SAFESTACK:
1322     return Attribute::SafeStack;
1323   case bitc::ATTR_KIND_STRUCT_RET:
1324     return Attribute::StructRet;
1325   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1326     return Attribute::SanitizeAddress;
1327   case bitc::ATTR_KIND_SANITIZE_THREAD:
1328     return Attribute::SanitizeThread;
1329   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1330     return Attribute::SanitizeMemory;
1331   case bitc::ATTR_KIND_SWIFT_ERROR:
1332     return Attribute::SwiftError;
1333   case bitc::ATTR_KIND_SWIFT_SELF:
1334     return Attribute::SwiftSelf;
1335   case bitc::ATTR_KIND_UW_TABLE:
1336     return Attribute::UWTable;
1337   case bitc::ATTR_KIND_Z_EXT:
1338     return Attribute::ZExt;
1339   }
1340 }
1341 
1342 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1343                                                    unsigned &Alignment) {
1344   // Note: Alignment in bitcode files is incremented by 1, so that zero
1345   // can be used for default alignment.
1346   if (Exponent > Value::MaxAlignmentExponent + 1)
1347     return error("Invalid alignment value");
1348   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1349   return std::error_code();
1350 }
1351 
1352 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1353                                              Attribute::AttrKind *Kind) {
1354   *Kind = getAttrFromCode(Code);
1355   if (*Kind == Attribute::None)
1356     return error(BitcodeError::CorruptedBitcode,
1357                  "Unknown attribute kind (" + Twine(Code) + ")");
1358   return std::error_code();
1359 }
1360 
1361 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1362   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1363     return error("Invalid record");
1364 
1365   if (!MAttributeGroups.empty())
1366     return error("Invalid multiple blocks");
1367 
1368   SmallVector<uint64_t, 64> Record;
1369 
1370   // Read all the records.
1371   while (1) {
1372     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1373 
1374     switch (Entry.Kind) {
1375     case BitstreamEntry::SubBlock: // Handled for us already.
1376     case BitstreamEntry::Error:
1377       return error("Malformed block");
1378     case BitstreamEntry::EndBlock:
1379       return std::error_code();
1380     case BitstreamEntry::Record:
1381       // The interesting case.
1382       break;
1383     }
1384 
1385     // Read a record.
1386     Record.clear();
1387     switch (Stream.readRecord(Entry.ID, Record)) {
1388     default:  // Default behavior: ignore.
1389       break;
1390     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1391       if (Record.size() < 3)
1392         return error("Invalid record");
1393 
1394       uint64_t GrpID = Record[0];
1395       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1396 
1397       AttrBuilder B;
1398       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1399         if (Record[i] == 0) {        // Enum attribute
1400           Attribute::AttrKind Kind;
1401           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1402             return EC;
1403 
1404           B.addAttribute(Kind);
1405         } else if (Record[i] == 1) { // Integer attribute
1406           Attribute::AttrKind Kind;
1407           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1408             return EC;
1409           if (Kind == Attribute::Alignment)
1410             B.addAlignmentAttr(Record[++i]);
1411           else if (Kind == Attribute::StackAlignment)
1412             B.addStackAlignmentAttr(Record[++i]);
1413           else if (Kind == Attribute::Dereferenceable)
1414             B.addDereferenceableAttr(Record[++i]);
1415           else if (Kind == Attribute::DereferenceableOrNull)
1416             B.addDereferenceableOrNullAttr(Record[++i]);
1417           else if (Kind == Attribute::AllocSize)
1418             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1419         } else {                     // String attribute
1420           assert((Record[i] == 3 || Record[i] == 4) &&
1421                  "Invalid attribute group entry");
1422           bool HasValue = (Record[i++] == 4);
1423           SmallString<64> KindStr;
1424           SmallString<64> ValStr;
1425 
1426           while (Record[i] != 0 && i != e)
1427             KindStr += Record[i++];
1428           assert(Record[i] == 0 && "Kind string not null terminated");
1429 
1430           if (HasValue) {
1431             // Has a value associated with it.
1432             ++i; // Skip the '0' that terminates the "kind" string.
1433             while (Record[i] != 0 && i != e)
1434               ValStr += Record[i++];
1435             assert(Record[i] == 0 && "Value string not null terminated");
1436           }
1437 
1438           B.addAttribute(KindStr.str(), ValStr.str());
1439         }
1440       }
1441 
1442       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1443       break;
1444     }
1445     }
1446   }
1447 }
1448 
1449 std::error_code BitcodeReader::parseTypeTable() {
1450   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1451     return error("Invalid record");
1452 
1453   return parseTypeTableBody();
1454 }
1455 
1456 std::error_code BitcodeReader::parseTypeTableBody() {
1457   if (!TypeList.empty())
1458     return error("Invalid multiple blocks");
1459 
1460   SmallVector<uint64_t, 64> Record;
1461   unsigned NumRecords = 0;
1462 
1463   SmallString<64> TypeName;
1464 
1465   // Read all the records for this type table.
1466   while (1) {
1467     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1468 
1469     switch (Entry.Kind) {
1470     case BitstreamEntry::SubBlock: // Handled for us already.
1471     case BitstreamEntry::Error:
1472       return error("Malformed block");
1473     case BitstreamEntry::EndBlock:
1474       if (NumRecords != TypeList.size())
1475         return error("Malformed block");
1476       return std::error_code();
1477     case BitstreamEntry::Record:
1478       // The interesting case.
1479       break;
1480     }
1481 
1482     // Read a record.
1483     Record.clear();
1484     Type *ResultTy = nullptr;
1485     switch (Stream.readRecord(Entry.ID, Record)) {
1486     default:
1487       return error("Invalid value");
1488     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1489       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1490       // type list.  This allows us to reserve space.
1491       if (Record.size() < 1)
1492         return error("Invalid record");
1493       TypeList.resize(Record[0]);
1494       continue;
1495     case bitc::TYPE_CODE_VOID:      // VOID
1496       ResultTy = Type::getVoidTy(Context);
1497       break;
1498     case bitc::TYPE_CODE_HALF:     // HALF
1499       ResultTy = Type::getHalfTy(Context);
1500       break;
1501     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1502       ResultTy = Type::getFloatTy(Context);
1503       break;
1504     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1505       ResultTy = Type::getDoubleTy(Context);
1506       break;
1507     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1508       ResultTy = Type::getX86_FP80Ty(Context);
1509       break;
1510     case bitc::TYPE_CODE_FP128:     // FP128
1511       ResultTy = Type::getFP128Ty(Context);
1512       break;
1513     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1514       ResultTy = Type::getPPC_FP128Ty(Context);
1515       break;
1516     case bitc::TYPE_CODE_LABEL:     // LABEL
1517       ResultTy = Type::getLabelTy(Context);
1518       break;
1519     case bitc::TYPE_CODE_METADATA:  // METADATA
1520       ResultTy = Type::getMetadataTy(Context);
1521       break;
1522     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1523       ResultTy = Type::getX86_MMXTy(Context);
1524       break;
1525     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1526       ResultTy = Type::getTokenTy(Context);
1527       break;
1528     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1529       if (Record.size() < 1)
1530         return error("Invalid record");
1531 
1532       uint64_t NumBits = Record[0];
1533       if (NumBits < IntegerType::MIN_INT_BITS ||
1534           NumBits > IntegerType::MAX_INT_BITS)
1535         return error("Bitwidth for integer type out of range");
1536       ResultTy = IntegerType::get(Context, NumBits);
1537       break;
1538     }
1539     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1540                                     //          [pointee type, address space]
1541       if (Record.size() < 1)
1542         return error("Invalid record");
1543       unsigned AddressSpace = 0;
1544       if (Record.size() == 2)
1545         AddressSpace = Record[1];
1546       ResultTy = getTypeByID(Record[0]);
1547       if (!ResultTy ||
1548           !PointerType::isValidElementType(ResultTy))
1549         return error("Invalid type");
1550       ResultTy = PointerType::get(ResultTy, AddressSpace);
1551       break;
1552     }
1553     case bitc::TYPE_CODE_FUNCTION_OLD: {
1554       // FIXME: attrid is dead, remove it in LLVM 4.0
1555       // FUNCTION: [vararg, attrid, retty, paramty x N]
1556       if (Record.size() < 3)
1557         return error("Invalid record");
1558       SmallVector<Type*, 8> ArgTys;
1559       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1560         if (Type *T = getTypeByID(Record[i]))
1561           ArgTys.push_back(T);
1562         else
1563           break;
1564       }
1565 
1566       ResultTy = getTypeByID(Record[2]);
1567       if (!ResultTy || ArgTys.size() < Record.size()-3)
1568         return error("Invalid type");
1569 
1570       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1571       break;
1572     }
1573     case bitc::TYPE_CODE_FUNCTION: {
1574       // FUNCTION: [vararg, retty, paramty x N]
1575       if (Record.size() < 2)
1576         return error("Invalid record");
1577       SmallVector<Type*, 8> ArgTys;
1578       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1579         if (Type *T = getTypeByID(Record[i])) {
1580           if (!FunctionType::isValidArgumentType(T))
1581             return error("Invalid function argument type");
1582           ArgTys.push_back(T);
1583         }
1584         else
1585           break;
1586       }
1587 
1588       ResultTy = getTypeByID(Record[1]);
1589       if (!ResultTy || ArgTys.size() < Record.size()-2)
1590         return error("Invalid type");
1591 
1592       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1593       break;
1594     }
1595     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1596       if (Record.size() < 1)
1597         return error("Invalid record");
1598       SmallVector<Type*, 8> EltTys;
1599       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1600         if (Type *T = getTypeByID(Record[i]))
1601           EltTys.push_back(T);
1602         else
1603           break;
1604       }
1605       if (EltTys.size() != Record.size()-1)
1606         return error("Invalid type");
1607       ResultTy = StructType::get(Context, EltTys, Record[0]);
1608       break;
1609     }
1610     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1611       if (convertToString(Record, 0, TypeName))
1612         return error("Invalid record");
1613       continue;
1614 
1615     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1616       if (Record.size() < 1)
1617         return error("Invalid record");
1618 
1619       if (NumRecords >= TypeList.size())
1620         return error("Invalid TYPE table");
1621 
1622       // Check to see if this was forward referenced, if so fill in the temp.
1623       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1624       if (Res) {
1625         Res->setName(TypeName);
1626         TypeList[NumRecords] = nullptr;
1627       } else  // Otherwise, create a new struct.
1628         Res = createIdentifiedStructType(Context, TypeName);
1629       TypeName.clear();
1630 
1631       SmallVector<Type*, 8> EltTys;
1632       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1633         if (Type *T = getTypeByID(Record[i]))
1634           EltTys.push_back(T);
1635         else
1636           break;
1637       }
1638       if (EltTys.size() != Record.size()-1)
1639         return error("Invalid record");
1640       Res->setBody(EltTys, Record[0]);
1641       ResultTy = Res;
1642       break;
1643     }
1644     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1645       if (Record.size() != 1)
1646         return error("Invalid record");
1647 
1648       if (NumRecords >= TypeList.size())
1649         return error("Invalid TYPE table");
1650 
1651       // Check to see if this was forward referenced, if so fill in the temp.
1652       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1653       if (Res) {
1654         Res->setName(TypeName);
1655         TypeList[NumRecords] = nullptr;
1656       } else  // Otherwise, create a new struct with no body.
1657         Res = createIdentifiedStructType(Context, TypeName);
1658       TypeName.clear();
1659       ResultTy = Res;
1660       break;
1661     }
1662     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1663       if (Record.size() < 2)
1664         return error("Invalid record");
1665       ResultTy = getTypeByID(Record[1]);
1666       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1667         return error("Invalid type");
1668       ResultTy = ArrayType::get(ResultTy, Record[0]);
1669       break;
1670     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1671       if (Record.size() < 2)
1672         return error("Invalid record");
1673       if (Record[0] == 0)
1674         return error("Invalid vector length");
1675       ResultTy = getTypeByID(Record[1]);
1676       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1677         return error("Invalid type");
1678       ResultTy = VectorType::get(ResultTy, Record[0]);
1679       break;
1680     }
1681 
1682     if (NumRecords >= TypeList.size())
1683       return error("Invalid TYPE table");
1684     if (TypeList[NumRecords])
1685       return error(
1686           "Invalid TYPE table: Only named structs can be forward referenced");
1687     assert(ResultTy && "Didn't read a type?");
1688     TypeList[NumRecords++] = ResultTy;
1689   }
1690 }
1691 
1692 std::error_code BitcodeReader::parseOperandBundleTags() {
1693   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1694     return error("Invalid record");
1695 
1696   if (!BundleTags.empty())
1697     return error("Invalid multiple blocks");
1698 
1699   SmallVector<uint64_t, 64> Record;
1700 
1701   while (1) {
1702     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1703 
1704     switch (Entry.Kind) {
1705     case BitstreamEntry::SubBlock: // Handled for us already.
1706     case BitstreamEntry::Error:
1707       return error("Malformed block");
1708     case BitstreamEntry::EndBlock:
1709       return std::error_code();
1710     case BitstreamEntry::Record:
1711       // The interesting case.
1712       break;
1713     }
1714 
1715     // Tags are implicitly mapped to integers by their order.
1716 
1717     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1718       return error("Invalid record");
1719 
1720     // OPERAND_BUNDLE_TAG: [strchr x N]
1721     BundleTags.emplace_back();
1722     if (convertToString(Record, 0, BundleTags.back()))
1723       return error("Invalid record");
1724     Record.clear();
1725   }
1726 }
1727 
1728 /// Associate a value with its name from the given index in the provided record.
1729 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1730                                             unsigned NameIndex, Triple &TT) {
1731   SmallString<128> ValueName;
1732   if (convertToString(Record, NameIndex, ValueName))
1733     return error("Invalid record");
1734   unsigned ValueID = Record[0];
1735   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1736     return error("Invalid record");
1737   Value *V = ValueList[ValueID];
1738 
1739   StringRef NameStr(ValueName.data(), ValueName.size());
1740   if (NameStr.find_first_of(0) != StringRef::npos)
1741     return error("Invalid value name");
1742   V->setName(NameStr);
1743   auto *GO = dyn_cast<GlobalObject>(V);
1744   if (GO) {
1745     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1746       if (TT.isOSBinFormatMachO())
1747         GO->setComdat(nullptr);
1748       else
1749         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1750     }
1751   }
1752   return V;
1753 }
1754 
1755 /// Helper to note and return the current location, and jump to the given
1756 /// offset.
1757 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1758                                        BitstreamCursor &Stream) {
1759   // Save the current parsing location so we can jump back at the end
1760   // of the VST read.
1761   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1762   Stream.JumpToBit(Offset * 32);
1763 #ifndef NDEBUG
1764   // Do some checking if we are in debug mode.
1765   BitstreamEntry Entry = Stream.advance();
1766   assert(Entry.Kind == BitstreamEntry::SubBlock);
1767   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1768 #else
1769   // In NDEBUG mode ignore the output so we don't get an unused variable
1770   // warning.
1771   Stream.advance();
1772 #endif
1773   return CurrentBit;
1774 }
1775 
1776 /// Parse the value symbol table at either the current parsing location or
1777 /// at the given bit offset if provided.
1778 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1779   uint64_t CurrentBit;
1780   // Pass in the Offset to distinguish between calling for the module-level
1781   // VST (where we want to jump to the VST offset) and the function-level
1782   // VST (where we don't).
1783   if (Offset > 0)
1784     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1785 
1786   // Compute the delta between the bitcode indices in the VST (the word offset
1787   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1788   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1789   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1790   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1791   // just before entering the VST subblock because: 1) the EnterSubBlock
1792   // changes the AbbrevID width; 2) the VST block is nested within the same
1793   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1794   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1795   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1796   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1797   unsigned FuncBitcodeOffsetDelta =
1798       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1799 
1800   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1801     return error("Invalid record");
1802 
1803   SmallVector<uint64_t, 64> Record;
1804 
1805   Triple TT(TheModule->getTargetTriple());
1806 
1807   // Read all the records for this value table.
1808   SmallString<128> ValueName;
1809   while (1) {
1810     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1811 
1812     switch (Entry.Kind) {
1813     case BitstreamEntry::SubBlock: // Handled for us already.
1814     case BitstreamEntry::Error:
1815       return error("Malformed block");
1816     case BitstreamEntry::EndBlock:
1817       if (Offset > 0)
1818         Stream.JumpToBit(CurrentBit);
1819       return std::error_code();
1820     case BitstreamEntry::Record:
1821       // The interesting case.
1822       break;
1823     }
1824 
1825     // Read a record.
1826     Record.clear();
1827     switch (Stream.readRecord(Entry.ID, Record)) {
1828     default:  // Default behavior: unknown type.
1829       break;
1830     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1831       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1832       if (std::error_code EC = ValOrErr.getError())
1833         return EC;
1834       ValOrErr.get();
1835       break;
1836     }
1837     case bitc::VST_CODE_FNENTRY: {
1838       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1839       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1840       if (std::error_code EC = ValOrErr.getError())
1841         return EC;
1842       Value *V = ValOrErr.get();
1843 
1844       auto *GO = dyn_cast<GlobalObject>(V);
1845       if (!GO) {
1846         // If this is an alias, need to get the actual Function object
1847         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1848         auto *GA = dyn_cast<GlobalAlias>(V);
1849         if (GA)
1850           GO = GA->getBaseObject();
1851         assert(GO);
1852       }
1853 
1854       uint64_t FuncWordOffset = Record[1];
1855       Function *F = dyn_cast<Function>(GO);
1856       assert(F);
1857       uint64_t FuncBitOffset = FuncWordOffset * 32;
1858       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1859       // Set the LastFunctionBlockBit to point to the last function block.
1860       // Later when parsing is resumed after function materialization,
1861       // we can simply skip that last function block.
1862       if (FuncBitOffset > LastFunctionBlockBit)
1863         LastFunctionBlockBit = FuncBitOffset;
1864       break;
1865     }
1866     case bitc::VST_CODE_BBENTRY: {
1867       if (convertToString(Record, 1, ValueName))
1868         return error("Invalid record");
1869       BasicBlock *BB = getBasicBlock(Record[0]);
1870       if (!BB)
1871         return error("Invalid record");
1872 
1873       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1874       ValueName.clear();
1875       break;
1876     }
1877     }
1878   }
1879 }
1880 
1881 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1882 std::error_code
1883 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1884   if (Record.size() < 2)
1885     return error("Invalid record");
1886 
1887   unsigned Kind = Record[0];
1888   SmallString<8> Name(Record.begin() + 1, Record.end());
1889 
1890   unsigned NewKind = TheModule->getMDKindID(Name.str());
1891   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1892     return error("Conflicting METADATA_KIND records");
1893   return std::error_code();
1894 }
1895 
1896 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1897 
1898 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1899                                                     StringRef Blob,
1900                                                     unsigned &NextMetadataNo) {
1901   // All the MDStrings in the block are emitted together in a single
1902   // record.  The strings are concatenated and stored in a blob along with
1903   // their sizes.
1904   if (Record.size() != 2)
1905     return error("Invalid record: metadata strings layout");
1906 
1907   unsigned NumStrings = Record[0];
1908   unsigned StringsOffset = Record[1];
1909   if (!NumStrings)
1910     return error("Invalid record: metadata strings with no strings");
1911   if (StringsOffset > Blob.size())
1912     return error("Invalid record: metadata strings corrupt offset");
1913 
1914   StringRef Lengths = Blob.slice(0, StringsOffset);
1915   SimpleBitstreamCursor R(*StreamFile);
1916   R.jumpToPointer(Lengths.begin());
1917 
1918   // Ensure that Blob doesn't get invalidated, even if this is reading from
1919   // a StreamingMemoryObject with corrupt data.
1920   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1921 
1922   StringRef Strings = Blob.drop_front(StringsOffset);
1923   do {
1924     if (R.AtEndOfStream())
1925       return error("Invalid record: metadata strings bad length");
1926 
1927     unsigned Size = R.ReadVBR(6);
1928     if (Strings.size() < Size)
1929       return error("Invalid record: metadata strings truncated chars");
1930 
1931     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1932                              NextMetadataNo++);
1933     Strings = Strings.drop_front(Size);
1934   } while (--NumStrings);
1935 
1936   return std::error_code();
1937 }
1938 
1939 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1940 /// module level metadata.
1941 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1942   IsMetadataMaterialized = true;
1943   unsigned NextMetadataNo = MetadataList.size();
1944 
1945   if (!ModuleLevel && MetadataList.hasFwdRefs())
1946     return error("Invalid metadata: fwd refs into function blocks");
1947 
1948   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1949     return error("Invalid record");
1950 
1951   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
1952   SmallVector<uint64_t, 64> Record;
1953 
1954   auto getMD = [&](unsigned ID) -> Metadata * {
1955     return MetadataList.getMetadataFwdRef(ID);
1956   };
1957   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1958     if (ID)
1959       return getMD(ID - 1);
1960     return nullptr;
1961   };
1962   auto getMDString = [&](unsigned ID) -> MDString *{
1963     // This requires that the ID is not really a forward reference.  In
1964     // particular, the MDString must already have been resolved.
1965     return cast_or_null<MDString>(getMDOrNull(ID));
1966   };
1967 
1968 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1969   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1970 
1971   // Read all the records.
1972   while (1) {
1973     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1974 
1975     switch (Entry.Kind) {
1976     case BitstreamEntry::SubBlock: // Handled for us already.
1977     case BitstreamEntry::Error:
1978       return error("Malformed block");
1979     case BitstreamEntry::EndBlock:
1980       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
1981       for (auto CU_SP : CUSubprograms)
1982         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
1983           for (auto &Op : SPs->operands())
1984             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
1985               SP->replaceOperandWith(7, CU_SP.first);
1986 
1987       MetadataList.tryToResolveCycles();
1988       return std::error_code();
1989     case BitstreamEntry::Record:
1990       // The interesting case.
1991       break;
1992     }
1993 
1994     // Read a record.
1995     Record.clear();
1996     StringRef Blob;
1997     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
1998     bool IsDistinct = false;
1999     switch (Code) {
2000     default:  // Default behavior: ignore.
2001       break;
2002     case bitc::METADATA_NAME: {
2003       // Read name of the named metadata.
2004       SmallString<8> Name(Record.begin(), Record.end());
2005       Record.clear();
2006       Code = Stream.ReadCode();
2007 
2008       unsigned NextBitCode = Stream.readRecord(Code, Record);
2009       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2010         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2011 
2012       // Read named metadata elements.
2013       unsigned Size = Record.size();
2014       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2015       for (unsigned i = 0; i != Size; ++i) {
2016         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2017         if (!MD)
2018           return error("Invalid record");
2019         NMD->addOperand(MD);
2020       }
2021       break;
2022     }
2023     case bitc::METADATA_OLD_FN_NODE: {
2024       // FIXME: Remove in 4.0.
2025       // This is a LocalAsMetadata record, the only type of function-local
2026       // metadata.
2027       if (Record.size() % 2 == 1)
2028         return error("Invalid record");
2029 
2030       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2031       // to be legal, but there's no upgrade path.
2032       auto dropRecord = [&] {
2033         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2034       };
2035       if (Record.size() != 2) {
2036         dropRecord();
2037         break;
2038       }
2039 
2040       Type *Ty = getTypeByID(Record[0]);
2041       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2042         dropRecord();
2043         break;
2044       }
2045 
2046       MetadataList.assignValue(
2047           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2048           NextMetadataNo++);
2049       break;
2050     }
2051     case bitc::METADATA_OLD_NODE: {
2052       // FIXME: Remove in 4.0.
2053       if (Record.size() % 2 == 1)
2054         return error("Invalid record");
2055 
2056       unsigned Size = Record.size();
2057       SmallVector<Metadata *, 8> Elts;
2058       for (unsigned i = 0; i != Size; i += 2) {
2059         Type *Ty = getTypeByID(Record[i]);
2060         if (!Ty)
2061           return error("Invalid record");
2062         if (Ty->isMetadataTy())
2063           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
2064         else if (!Ty->isVoidTy()) {
2065           auto *MD =
2066               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2067           assert(isa<ConstantAsMetadata>(MD) &&
2068                  "Expected non-function-local metadata");
2069           Elts.push_back(MD);
2070         } else
2071           Elts.push_back(nullptr);
2072       }
2073       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2074       break;
2075     }
2076     case bitc::METADATA_VALUE: {
2077       if (Record.size() != 2)
2078         return error("Invalid record");
2079 
2080       Type *Ty = getTypeByID(Record[0]);
2081       if (Ty->isMetadataTy() || Ty->isVoidTy())
2082         return error("Invalid record");
2083 
2084       MetadataList.assignValue(
2085           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2086           NextMetadataNo++);
2087       break;
2088     }
2089     case bitc::METADATA_DISTINCT_NODE:
2090       IsDistinct = true;
2091       // fallthrough...
2092     case bitc::METADATA_NODE: {
2093       SmallVector<Metadata *, 8> Elts;
2094       Elts.reserve(Record.size());
2095       for (unsigned ID : Record)
2096         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2097       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2098                                           : MDNode::get(Context, Elts),
2099                                NextMetadataNo++);
2100       break;
2101     }
2102     case bitc::METADATA_LOCATION: {
2103       if (Record.size() != 5)
2104         return error("Invalid record");
2105 
2106       unsigned Line = Record[1];
2107       unsigned Column = Record[2];
2108       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2109       if (!Scope)
2110         return error("Invalid record");
2111       Metadata *InlinedAt =
2112           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2113       MetadataList.assignValue(
2114           GET_OR_DISTINCT(DILocation, Record[0],
2115                           (Context, Line, Column, Scope, InlinedAt)),
2116           NextMetadataNo++);
2117       break;
2118     }
2119     case bitc::METADATA_GENERIC_DEBUG: {
2120       if (Record.size() < 4)
2121         return error("Invalid record");
2122 
2123       unsigned Tag = Record[1];
2124       unsigned Version = Record[2];
2125 
2126       if (Tag >= 1u << 16 || Version != 0)
2127         return error("Invalid record");
2128 
2129       auto *Header = getMDString(Record[3]);
2130       SmallVector<Metadata *, 8> DwarfOps;
2131       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2132         DwarfOps.push_back(Record[I]
2133                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2134                                : nullptr);
2135       MetadataList.assignValue(
2136           GET_OR_DISTINCT(GenericDINode, Record[0],
2137                           (Context, Tag, Header, DwarfOps)),
2138           NextMetadataNo++);
2139       break;
2140     }
2141     case bitc::METADATA_SUBRANGE: {
2142       if (Record.size() != 3)
2143         return error("Invalid record");
2144 
2145       MetadataList.assignValue(
2146           GET_OR_DISTINCT(DISubrange, Record[0],
2147                           (Context, Record[1], unrotateSign(Record[2]))),
2148           NextMetadataNo++);
2149       break;
2150     }
2151     case bitc::METADATA_ENUMERATOR: {
2152       if (Record.size() != 3)
2153         return error("Invalid record");
2154 
2155       MetadataList.assignValue(
2156           GET_OR_DISTINCT(
2157               DIEnumerator, Record[0],
2158               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2159           NextMetadataNo++);
2160       break;
2161     }
2162     case bitc::METADATA_BASIC_TYPE: {
2163       if (Record.size() != 6)
2164         return error("Invalid record");
2165 
2166       MetadataList.assignValue(
2167           GET_OR_DISTINCT(DIBasicType, Record[0],
2168                           (Context, Record[1], getMDString(Record[2]),
2169                            Record[3], Record[4], Record[5])),
2170           NextMetadataNo++);
2171       break;
2172     }
2173     case bitc::METADATA_DERIVED_TYPE: {
2174       if (Record.size() != 12)
2175         return error("Invalid record");
2176 
2177       MetadataList.assignValue(
2178           GET_OR_DISTINCT(DIDerivedType, Record[0],
2179                           (Context, Record[1], getMDString(Record[2]),
2180                            getMDOrNull(Record[3]), Record[4],
2181                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2182                            Record[7], Record[8], Record[9], Record[10],
2183                            getMDOrNull(Record[11]))),
2184           NextMetadataNo++);
2185       break;
2186     }
2187     case bitc::METADATA_COMPOSITE_TYPE: {
2188       if (Record.size() != 16)
2189         return error("Invalid record");
2190 
2191       // If we have a UUID and this is not a forward declaration, lookup the
2192       // mapping.
2193       bool IsDistinct = Record[0];
2194       unsigned Tag = Record[1];
2195       MDString *Name = getMDString(Record[2]);
2196       Metadata *File = getMDOrNull(Record[3]);
2197       unsigned Line = Record[4];
2198       Metadata *Scope = getMDOrNull(Record[5]);
2199       Metadata *BaseType = getMDOrNull(Record[6]);
2200       uint64_t SizeInBits = Record[7];
2201       uint64_t AlignInBits = Record[8];
2202       uint64_t OffsetInBits = Record[9];
2203       unsigned Flags = Record[10];
2204       Metadata *Elements = getMDOrNull(Record[11]);
2205       unsigned RuntimeLang = Record[12];
2206       Metadata *VTableHolder = getMDOrNull(Record[13]);
2207       Metadata *TemplateParams = getMDOrNull(Record[14]);
2208       auto *Identifier = getMDString(Record[15]);
2209       DICompositeType *CT = nullptr;
2210       if (!(Flags & DINode::FlagFwdDecl) && Identifier)
2211         CT = DICompositeType::getODRType(
2212             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2213             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2214             VTableHolder, TemplateParams);
2215 
2216       // Create a node if we didn't get a lazy ODR type.
2217       if (!CT)
2218         CT = GET_OR_DISTINCT(DICompositeType, IsDistinct,
2219                              (Context, Tag, Name, File, Line, Scope, BaseType,
2220                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2221                               Elements, RuntimeLang, VTableHolder,
2222                               TemplateParams, Identifier));
2223 
2224       MetadataList.assignValue(CT, NextMetadataNo++);
2225       break;
2226     }
2227     case bitc::METADATA_SUBROUTINE_TYPE: {
2228       if (Record.size() != 3)
2229         return error("Invalid record");
2230 
2231       MetadataList.assignValue(
2232           GET_OR_DISTINCT(DISubroutineType, Record[0],
2233                           (Context, Record[1], getMDOrNull(Record[2]))),
2234           NextMetadataNo++);
2235       break;
2236     }
2237 
2238     case bitc::METADATA_MODULE: {
2239       if (Record.size() != 6)
2240         return error("Invalid record");
2241 
2242       MetadataList.assignValue(
2243           GET_OR_DISTINCT(DIModule, Record[0],
2244                           (Context, getMDOrNull(Record[1]),
2245                            getMDString(Record[2]), getMDString(Record[3]),
2246                            getMDString(Record[4]), getMDString(Record[5]))),
2247           NextMetadataNo++);
2248       break;
2249     }
2250 
2251     case bitc::METADATA_FILE: {
2252       if (Record.size() != 3)
2253         return error("Invalid record");
2254 
2255       MetadataList.assignValue(
2256           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2257                                               getMDString(Record[2]))),
2258           NextMetadataNo++);
2259       break;
2260     }
2261     case bitc::METADATA_COMPILE_UNIT: {
2262       if (Record.size() < 14 || Record.size() > 16)
2263         return error("Invalid record");
2264 
2265       // Ignore Record[0], which indicates whether this compile unit is
2266       // distinct.  It's always distinct.
2267       auto *CU = DICompileUnit::getDistinct(
2268           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2269           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2270           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2271           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2272           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2273           Record.size() <= 14 ? 0 : Record[14]);
2274 
2275       MetadataList.assignValue(CU, NextMetadataNo++);
2276 
2277       // Move the Upgrade the list of subprograms.
2278       if (Metadata *SPs = getMDOrNull(Record[11]))
2279         CUSubprograms.push_back({CU, SPs});
2280       break;
2281     }
2282     case bitc::METADATA_SUBPROGRAM: {
2283       if (Record.size() != 18 && Record.size() != 19)
2284         return error("Invalid record");
2285 
2286       // Version 1 has a Function as Record[15].
2287       // Version 2 has removed Record[15].
2288       // Version 3 has the Unit as Record[15].
2289       Metadata *CUorFn = getMDOrNull(Record[15]);
2290       unsigned Offset = Record.size() == 19 ? 1 : 0;
2291       bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn);
2292       bool HasCU = Offset && !HasFn;
2293       DISubprogram *SP = GET_OR_DISTINCT(
2294           DISubprogram,
2295           Record[0] || Record[8], // All definitions should be distinct.
2296           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2297            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2298            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2299            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2300            Record[14], HasCU ? CUorFn : nullptr,
2301            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2302            getMDOrNull(Record[17 + Offset])));
2303       MetadataList.assignValue(SP, NextMetadataNo++);
2304 
2305       // Upgrade sp->function mapping to function->sp mapping.
2306       if (HasFn) {
2307         if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn))
2308           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2309             if (F->isMaterializable())
2310               // Defer until materialized; unmaterialized functions may not have
2311               // metadata.
2312               FunctionsWithSPs[F] = SP;
2313             else if (!F->empty())
2314               F->setSubprogram(SP);
2315           }
2316       }
2317       break;
2318     }
2319     case bitc::METADATA_LEXICAL_BLOCK: {
2320       if (Record.size() != 5)
2321         return error("Invalid record");
2322 
2323       MetadataList.assignValue(
2324           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2325                           (Context, getMDOrNull(Record[1]),
2326                            getMDOrNull(Record[2]), Record[3], Record[4])),
2327           NextMetadataNo++);
2328       break;
2329     }
2330     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2331       if (Record.size() != 4)
2332         return error("Invalid record");
2333 
2334       MetadataList.assignValue(
2335           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2336                           (Context, getMDOrNull(Record[1]),
2337                            getMDOrNull(Record[2]), Record[3])),
2338           NextMetadataNo++);
2339       break;
2340     }
2341     case bitc::METADATA_NAMESPACE: {
2342       if (Record.size() != 5)
2343         return error("Invalid record");
2344 
2345       MetadataList.assignValue(
2346           GET_OR_DISTINCT(DINamespace, Record[0],
2347                           (Context, getMDOrNull(Record[1]),
2348                            getMDOrNull(Record[2]), getMDString(Record[3]),
2349                            Record[4])),
2350           NextMetadataNo++);
2351       break;
2352     }
2353     case bitc::METADATA_MACRO: {
2354       if (Record.size() != 5)
2355         return error("Invalid record");
2356 
2357       MetadataList.assignValue(
2358           GET_OR_DISTINCT(DIMacro, Record[0],
2359                           (Context, Record[1], Record[2],
2360                            getMDString(Record[3]), getMDString(Record[4]))),
2361           NextMetadataNo++);
2362       break;
2363     }
2364     case bitc::METADATA_MACRO_FILE: {
2365       if (Record.size() != 5)
2366         return error("Invalid record");
2367 
2368       MetadataList.assignValue(
2369           GET_OR_DISTINCT(DIMacroFile, Record[0],
2370                           (Context, Record[1], Record[2],
2371                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2372           NextMetadataNo++);
2373       break;
2374     }
2375     case bitc::METADATA_TEMPLATE_TYPE: {
2376       if (Record.size() != 3)
2377         return error("Invalid record");
2378 
2379       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2380                                                Record[0],
2381                                                (Context, getMDString(Record[1]),
2382                                                 getMDOrNull(Record[2]))),
2383                                NextMetadataNo++);
2384       break;
2385     }
2386     case bitc::METADATA_TEMPLATE_VALUE: {
2387       if (Record.size() != 5)
2388         return error("Invalid record");
2389 
2390       MetadataList.assignValue(
2391           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2392                           (Context, Record[1], getMDString(Record[2]),
2393                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2394           NextMetadataNo++);
2395       break;
2396     }
2397     case bitc::METADATA_GLOBAL_VAR: {
2398       if (Record.size() != 11)
2399         return error("Invalid record");
2400 
2401       MetadataList.assignValue(
2402           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2403                           (Context, getMDOrNull(Record[1]),
2404                            getMDString(Record[2]), getMDString(Record[3]),
2405                            getMDOrNull(Record[4]), Record[5],
2406                            getMDOrNull(Record[6]), Record[7], Record[8],
2407                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2408           NextMetadataNo++);
2409       break;
2410     }
2411     case bitc::METADATA_LOCAL_VAR: {
2412       // 10th field is for the obseleted 'inlinedAt:' field.
2413       if (Record.size() < 8 || Record.size() > 10)
2414         return error("Invalid record");
2415 
2416       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2417       // DW_TAG_arg_variable.
2418       bool HasTag = Record.size() > 8;
2419       MetadataList.assignValue(
2420           GET_OR_DISTINCT(DILocalVariable, Record[0],
2421                           (Context, getMDOrNull(Record[1 + HasTag]),
2422                            getMDString(Record[2 + HasTag]),
2423                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2424                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2425                            Record[7 + HasTag])),
2426           NextMetadataNo++);
2427       break;
2428     }
2429     case bitc::METADATA_EXPRESSION: {
2430       if (Record.size() < 1)
2431         return error("Invalid record");
2432 
2433       MetadataList.assignValue(
2434           GET_OR_DISTINCT(DIExpression, Record[0],
2435                           (Context, makeArrayRef(Record).slice(1))),
2436           NextMetadataNo++);
2437       break;
2438     }
2439     case bitc::METADATA_OBJC_PROPERTY: {
2440       if (Record.size() != 8)
2441         return error("Invalid record");
2442 
2443       MetadataList.assignValue(
2444           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2445                           (Context, getMDString(Record[1]),
2446                            getMDOrNull(Record[2]), Record[3],
2447                            getMDString(Record[4]), getMDString(Record[5]),
2448                            Record[6], getMDOrNull(Record[7]))),
2449           NextMetadataNo++);
2450       break;
2451     }
2452     case bitc::METADATA_IMPORTED_ENTITY: {
2453       if (Record.size() != 6)
2454         return error("Invalid record");
2455 
2456       MetadataList.assignValue(
2457           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2458                           (Context, Record[1], getMDOrNull(Record[2]),
2459                            getMDOrNull(Record[3]), Record[4],
2460                            getMDString(Record[5]))),
2461           NextMetadataNo++);
2462       break;
2463     }
2464     case bitc::METADATA_STRING_OLD: {
2465       std::string String(Record.begin(), Record.end());
2466 
2467       // Test for upgrading !llvm.loop.
2468       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2469 
2470       Metadata *MD = MDString::get(Context, String);
2471       MetadataList.assignValue(MD, NextMetadataNo++);
2472       break;
2473     }
2474     case bitc::METADATA_STRINGS:
2475       if (std::error_code EC =
2476               parseMetadataStrings(Record, Blob, NextMetadataNo))
2477         return EC;
2478       break;
2479     case bitc::METADATA_KIND: {
2480       // Support older bitcode files that had METADATA_KIND records in a
2481       // block with METADATA_BLOCK_ID.
2482       if (std::error_code EC = parseMetadataKindRecord(Record))
2483         return EC;
2484       break;
2485     }
2486     }
2487   }
2488 #undef GET_OR_DISTINCT
2489 }
2490 
2491 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2492 std::error_code BitcodeReader::parseMetadataKinds() {
2493   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2494     return error("Invalid record");
2495 
2496   SmallVector<uint64_t, 64> Record;
2497 
2498   // Read all the records.
2499   while (1) {
2500     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2501 
2502     switch (Entry.Kind) {
2503     case BitstreamEntry::SubBlock: // Handled for us already.
2504     case BitstreamEntry::Error:
2505       return error("Malformed block");
2506     case BitstreamEntry::EndBlock:
2507       return std::error_code();
2508     case BitstreamEntry::Record:
2509       // The interesting case.
2510       break;
2511     }
2512 
2513     // Read a record.
2514     Record.clear();
2515     unsigned Code = Stream.readRecord(Entry.ID, Record);
2516     switch (Code) {
2517     default: // Default behavior: ignore.
2518       break;
2519     case bitc::METADATA_KIND: {
2520       if (std::error_code EC = parseMetadataKindRecord(Record))
2521         return EC;
2522       break;
2523     }
2524     }
2525   }
2526 }
2527 
2528 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2529 /// encoding.
2530 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2531   if ((V & 1) == 0)
2532     return V >> 1;
2533   if (V != 1)
2534     return -(V >> 1);
2535   // There is no such thing as -0 with integers.  "-0" really means MININT.
2536   return 1ULL << 63;
2537 }
2538 
2539 /// Resolve all of the initializers for global values and aliases that we can.
2540 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2541   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2542   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2543       IndirectSymbolInitWorklist;
2544   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2545   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2546   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2547 
2548   GlobalInitWorklist.swap(GlobalInits);
2549   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2550   FunctionPrefixWorklist.swap(FunctionPrefixes);
2551   FunctionPrologueWorklist.swap(FunctionPrologues);
2552   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2553 
2554   while (!GlobalInitWorklist.empty()) {
2555     unsigned ValID = GlobalInitWorklist.back().second;
2556     if (ValID >= ValueList.size()) {
2557       // Not ready to resolve this yet, it requires something later in the file.
2558       GlobalInits.push_back(GlobalInitWorklist.back());
2559     } else {
2560       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2561         GlobalInitWorklist.back().first->setInitializer(C);
2562       else
2563         return error("Expected a constant");
2564     }
2565     GlobalInitWorklist.pop_back();
2566   }
2567 
2568   while (!IndirectSymbolInitWorklist.empty()) {
2569     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2570     if (ValID >= ValueList.size()) {
2571       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2572     } else {
2573       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2574       if (!C)
2575         return error("Expected a constant");
2576       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2577       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2578         return error("Alias and aliasee types don't match");
2579       GIS->setIndirectSymbol(C);
2580     }
2581     IndirectSymbolInitWorklist.pop_back();
2582   }
2583 
2584   while (!FunctionPrefixWorklist.empty()) {
2585     unsigned ValID = FunctionPrefixWorklist.back().second;
2586     if (ValID >= ValueList.size()) {
2587       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2588     } else {
2589       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2590         FunctionPrefixWorklist.back().first->setPrefixData(C);
2591       else
2592         return error("Expected a constant");
2593     }
2594     FunctionPrefixWorklist.pop_back();
2595   }
2596 
2597   while (!FunctionPrologueWorklist.empty()) {
2598     unsigned ValID = FunctionPrologueWorklist.back().second;
2599     if (ValID >= ValueList.size()) {
2600       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2601     } else {
2602       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2603         FunctionPrologueWorklist.back().first->setPrologueData(C);
2604       else
2605         return error("Expected a constant");
2606     }
2607     FunctionPrologueWorklist.pop_back();
2608   }
2609 
2610   while (!FunctionPersonalityFnWorklist.empty()) {
2611     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2612     if (ValID >= ValueList.size()) {
2613       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2614     } else {
2615       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2616         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2617       else
2618         return error("Expected a constant");
2619     }
2620     FunctionPersonalityFnWorklist.pop_back();
2621   }
2622 
2623   return std::error_code();
2624 }
2625 
2626 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2627   SmallVector<uint64_t, 8> Words(Vals.size());
2628   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2629                  BitcodeReader::decodeSignRotatedValue);
2630 
2631   return APInt(TypeBits, Words);
2632 }
2633 
2634 std::error_code BitcodeReader::parseConstants() {
2635   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2636     return error("Invalid record");
2637 
2638   SmallVector<uint64_t, 64> Record;
2639 
2640   // Read all the records for this value table.
2641   Type *CurTy = Type::getInt32Ty(Context);
2642   unsigned NextCstNo = ValueList.size();
2643   while (1) {
2644     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2645 
2646     switch (Entry.Kind) {
2647     case BitstreamEntry::SubBlock: // Handled for us already.
2648     case BitstreamEntry::Error:
2649       return error("Malformed block");
2650     case BitstreamEntry::EndBlock:
2651       if (NextCstNo != ValueList.size())
2652         return error("Invalid constant reference");
2653 
2654       // Once all the constants have been read, go through and resolve forward
2655       // references.
2656       ValueList.resolveConstantForwardRefs();
2657       return std::error_code();
2658     case BitstreamEntry::Record:
2659       // The interesting case.
2660       break;
2661     }
2662 
2663     // Read a record.
2664     Record.clear();
2665     Value *V = nullptr;
2666     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2667     switch (BitCode) {
2668     default:  // Default behavior: unknown constant
2669     case bitc::CST_CODE_UNDEF:     // UNDEF
2670       V = UndefValue::get(CurTy);
2671       break;
2672     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2673       if (Record.empty())
2674         return error("Invalid record");
2675       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2676         return error("Invalid record");
2677       CurTy = TypeList[Record[0]];
2678       continue;  // Skip the ValueList manipulation.
2679     case bitc::CST_CODE_NULL:      // NULL
2680       V = Constant::getNullValue(CurTy);
2681       break;
2682     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2683       if (!CurTy->isIntegerTy() || Record.empty())
2684         return error("Invalid record");
2685       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2686       break;
2687     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2688       if (!CurTy->isIntegerTy() || Record.empty())
2689         return error("Invalid record");
2690 
2691       APInt VInt =
2692           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2693       V = ConstantInt::get(Context, VInt);
2694 
2695       break;
2696     }
2697     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2698       if (Record.empty())
2699         return error("Invalid record");
2700       if (CurTy->isHalfTy())
2701         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2702                                              APInt(16, (uint16_t)Record[0])));
2703       else if (CurTy->isFloatTy())
2704         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2705                                              APInt(32, (uint32_t)Record[0])));
2706       else if (CurTy->isDoubleTy())
2707         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2708                                              APInt(64, Record[0])));
2709       else if (CurTy->isX86_FP80Ty()) {
2710         // Bits are not stored the same way as a normal i80 APInt, compensate.
2711         uint64_t Rearrange[2];
2712         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2713         Rearrange[1] = Record[0] >> 48;
2714         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2715                                              APInt(80, Rearrange)));
2716       } else if (CurTy->isFP128Ty())
2717         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2718                                              APInt(128, Record)));
2719       else if (CurTy->isPPC_FP128Ty())
2720         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2721                                              APInt(128, Record)));
2722       else
2723         V = UndefValue::get(CurTy);
2724       break;
2725     }
2726 
2727     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2728       if (Record.empty())
2729         return error("Invalid record");
2730 
2731       unsigned Size = Record.size();
2732       SmallVector<Constant*, 16> Elts;
2733 
2734       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2735         for (unsigned i = 0; i != Size; ++i)
2736           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2737                                                      STy->getElementType(i)));
2738         V = ConstantStruct::get(STy, Elts);
2739       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2740         Type *EltTy = ATy->getElementType();
2741         for (unsigned i = 0; i != Size; ++i)
2742           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2743         V = ConstantArray::get(ATy, Elts);
2744       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2745         Type *EltTy = VTy->getElementType();
2746         for (unsigned i = 0; i != Size; ++i)
2747           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2748         V = ConstantVector::get(Elts);
2749       } else {
2750         V = UndefValue::get(CurTy);
2751       }
2752       break;
2753     }
2754     case bitc::CST_CODE_STRING:    // STRING: [values]
2755     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2756       if (Record.empty())
2757         return error("Invalid record");
2758 
2759       SmallString<16> Elts(Record.begin(), Record.end());
2760       V = ConstantDataArray::getString(Context, Elts,
2761                                        BitCode == bitc::CST_CODE_CSTRING);
2762       break;
2763     }
2764     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2765       if (Record.empty())
2766         return error("Invalid record");
2767 
2768       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2769       if (EltTy->isIntegerTy(8)) {
2770         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2771         if (isa<VectorType>(CurTy))
2772           V = ConstantDataVector::get(Context, Elts);
2773         else
2774           V = ConstantDataArray::get(Context, Elts);
2775       } else if (EltTy->isIntegerTy(16)) {
2776         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2777         if (isa<VectorType>(CurTy))
2778           V = ConstantDataVector::get(Context, Elts);
2779         else
2780           V = ConstantDataArray::get(Context, Elts);
2781       } else if (EltTy->isIntegerTy(32)) {
2782         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2783         if (isa<VectorType>(CurTy))
2784           V = ConstantDataVector::get(Context, Elts);
2785         else
2786           V = ConstantDataArray::get(Context, Elts);
2787       } else if (EltTy->isIntegerTy(64)) {
2788         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2789         if (isa<VectorType>(CurTy))
2790           V = ConstantDataVector::get(Context, Elts);
2791         else
2792           V = ConstantDataArray::get(Context, Elts);
2793       } else if (EltTy->isHalfTy()) {
2794         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2795         if (isa<VectorType>(CurTy))
2796           V = ConstantDataVector::getFP(Context, Elts);
2797         else
2798           V = ConstantDataArray::getFP(Context, Elts);
2799       } else if (EltTy->isFloatTy()) {
2800         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2801         if (isa<VectorType>(CurTy))
2802           V = ConstantDataVector::getFP(Context, Elts);
2803         else
2804           V = ConstantDataArray::getFP(Context, Elts);
2805       } else if (EltTy->isDoubleTy()) {
2806         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2807         if (isa<VectorType>(CurTy))
2808           V = ConstantDataVector::getFP(Context, Elts);
2809         else
2810           V = ConstantDataArray::getFP(Context, Elts);
2811       } else {
2812         return error("Invalid type for value");
2813       }
2814       break;
2815     }
2816     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2817       if (Record.size() < 3)
2818         return error("Invalid record");
2819       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2820       if (Opc < 0) {
2821         V = UndefValue::get(CurTy);  // Unknown binop.
2822       } else {
2823         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2824         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2825         unsigned Flags = 0;
2826         if (Record.size() >= 4) {
2827           if (Opc == Instruction::Add ||
2828               Opc == Instruction::Sub ||
2829               Opc == Instruction::Mul ||
2830               Opc == Instruction::Shl) {
2831             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2832               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2833             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2834               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2835           } else if (Opc == Instruction::SDiv ||
2836                      Opc == Instruction::UDiv ||
2837                      Opc == Instruction::LShr ||
2838                      Opc == Instruction::AShr) {
2839             if (Record[3] & (1 << bitc::PEO_EXACT))
2840               Flags |= SDivOperator::IsExact;
2841           }
2842         }
2843         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2844       }
2845       break;
2846     }
2847     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2848       if (Record.size() < 3)
2849         return error("Invalid record");
2850       int Opc = getDecodedCastOpcode(Record[0]);
2851       if (Opc < 0) {
2852         V = UndefValue::get(CurTy);  // Unknown cast.
2853       } else {
2854         Type *OpTy = getTypeByID(Record[1]);
2855         if (!OpTy)
2856           return error("Invalid record");
2857         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2858         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2859         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2860       }
2861       break;
2862     }
2863     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2864     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2865       unsigned OpNum = 0;
2866       Type *PointeeType = nullptr;
2867       if (Record.size() % 2)
2868         PointeeType = getTypeByID(Record[OpNum++]);
2869       SmallVector<Constant*, 16> Elts;
2870       while (OpNum != Record.size()) {
2871         Type *ElTy = getTypeByID(Record[OpNum++]);
2872         if (!ElTy)
2873           return error("Invalid record");
2874         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2875       }
2876 
2877       if (PointeeType &&
2878           PointeeType !=
2879               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2880                   ->getElementType())
2881         return error("Explicit gep operator type does not match pointee type "
2882                      "of pointer operand");
2883 
2884       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2885       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2886                                          BitCode ==
2887                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2888       break;
2889     }
2890     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2891       if (Record.size() < 3)
2892         return error("Invalid record");
2893 
2894       Type *SelectorTy = Type::getInt1Ty(Context);
2895 
2896       // The selector might be an i1 or an <n x i1>
2897       // Get the type from the ValueList before getting a forward ref.
2898       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2899         if (Value *V = ValueList[Record[0]])
2900           if (SelectorTy != V->getType())
2901             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2902 
2903       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2904                                                               SelectorTy),
2905                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2906                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2907       break;
2908     }
2909     case bitc::CST_CODE_CE_EXTRACTELT
2910         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2911       if (Record.size() < 3)
2912         return error("Invalid record");
2913       VectorType *OpTy =
2914         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2915       if (!OpTy)
2916         return error("Invalid record");
2917       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2918       Constant *Op1 = nullptr;
2919       if (Record.size() == 4) {
2920         Type *IdxTy = getTypeByID(Record[2]);
2921         if (!IdxTy)
2922           return error("Invalid record");
2923         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2924       } else // TODO: Remove with llvm 4.0
2925         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2926       if (!Op1)
2927         return error("Invalid record");
2928       V = ConstantExpr::getExtractElement(Op0, Op1);
2929       break;
2930     }
2931     case bitc::CST_CODE_CE_INSERTELT
2932         : { // CE_INSERTELT: [opval, opval, opty, opval]
2933       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2934       if (Record.size() < 3 || !OpTy)
2935         return error("Invalid record");
2936       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2937       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2938                                                   OpTy->getElementType());
2939       Constant *Op2 = nullptr;
2940       if (Record.size() == 4) {
2941         Type *IdxTy = getTypeByID(Record[2]);
2942         if (!IdxTy)
2943           return error("Invalid record");
2944         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2945       } else // TODO: Remove with llvm 4.0
2946         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2947       if (!Op2)
2948         return error("Invalid record");
2949       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2950       break;
2951     }
2952     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2953       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2954       if (Record.size() < 3 || !OpTy)
2955         return error("Invalid record");
2956       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2957       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2958       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2959                                                  OpTy->getNumElements());
2960       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2961       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2962       break;
2963     }
2964     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2965       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2966       VectorType *OpTy =
2967         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2968       if (Record.size() < 4 || !RTy || !OpTy)
2969         return error("Invalid record");
2970       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2971       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2972       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2973                                                  RTy->getNumElements());
2974       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2975       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2976       break;
2977     }
2978     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2979       if (Record.size() < 4)
2980         return error("Invalid record");
2981       Type *OpTy = getTypeByID(Record[0]);
2982       if (!OpTy)
2983         return error("Invalid record");
2984       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2985       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2986 
2987       if (OpTy->isFPOrFPVectorTy())
2988         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2989       else
2990         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2991       break;
2992     }
2993     // This maintains backward compatibility, pre-asm dialect keywords.
2994     // FIXME: Remove with the 4.0 release.
2995     case bitc::CST_CODE_INLINEASM_OLD: {
2996       if (Record.size() < 2)
2997         return error("Invalid record");
2998       std::string AsmStr, ConstrStr;
2999       bool HasSideEffects = Record[0] & 1;
3000       bool IsAlignStack = Record[0] >> 1;
3001       unsigned AsmStrSize = Record[1];
3002       if (2+AsmStrSize >= Record.size())
3003         return error("Invalid record");
3004       unsigned ConstStrSize = Record[2+AsmStrSize];
3005       if (3+AsmStrSize+ConstStrSize > Record.size())
3006         return error("Invalid record");
3007 
3008       for (unsigned i = 0; i != AsmStrSize; ++i)
3009         AsmStr += (char)Record[2+i];
3010       for (unsigned i = 0; i != ConstStrSize; ++i)
3011         ConstrStr += (char)Record[3+AsmStrSize+i];
3012       PointerType *PTy = cast<PointerType>(CurTy);
3013       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3014                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3015       break;
3016     }
3017     // This version adds support for the asm dialect keywords (e.g.,
3018     // inteldialect).
3019     case bitc::CST_CODE_INLINEASM: {
3020       if (Record.size() < 2)
3021         return error("Invalid record");
3022       std::string AsmStr, ConstrStr;
3023       bool HasSideEffects = Record[0] & 1;
3024       bool IsAlignStack = (Record[0] >> 1) & 1;
3025       unsigned AsmDialect = Record[0] >> 2;
3026       unsigned AsmStrSize = Record[1];
3027       if (2+AsmStrSize >= Record.size())
3028         return error("Invalid record");
3029       unsigned ConstStrSize = Record[2+AsmStrSize];
3030       if (3+AsmStrSize+ConstStrSize > Record.size())
3031         return error("Invalid record");
3032 
3033       for (unsigned i = 0; i != AsmStrSize; ++i)
3034         AsmStr += (char)Record[2+i];
3035       for (unsigned i = 0; i != ConstStrSize; ++i)
3036         ConstrStr += (char)Record[3+AsmStrSize+i];
3037       PointerType *PTy = cast<PointerType>(CurTy);
3038       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3039                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3040                          InlineAsm::AsmDialect(AsmDialect));
3041       break;
3042     }
3043     case bitc::CST_CODE_BLOCKADDRESS:{
3044       if (Record.size() < 3)
3045         return error("Invalid record");
3046       Type *FnTy = getTypeByID(Record[0]);
3047       if (!FnTy)
3048         return error("Invalid record");
3049       Function *Fn =
3050         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3051       if (!Fn)
3052         return error("Invalid record");
3053 
3054       // If the function is already parsed we can insert the block address right
3055       // away.
3056       BasicBlock *BB;
3057       unsigned BBID = Record[2];
3058       if (!BBID)
3059         // Invalid reference to entry block.
3060         return error("Invalid ID");
3061       if (!Fn->empty()) {
3062         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3063         for (size_t I = 0, E = BBID; I != E; ++I) {
3064           if (BBI == BBE)
3065             return error("Invalid ID");
3066           ++BBI;
3067         }
3068         BB = &*BBI;
3069       } else {
3070         // Otherwise insert a placeholder and remember it so it can be inserted
3071         // when the function is parsed.
3072         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3073         if (FwdBBs.empty())
3074           BasicBlockFwdRefQueue.push_back(Fn);
3075         if (FwdBBs.size() < BBID + 1)
3076           FwdBBs.resize(BBID + 1);
3077         if (!FwdBBs[BBID])
3078           FwdBBs[BBID] = BasicBlock::Create(Context);
3079         BB = FwdBBs[BBID];
3080       }
3081       V = BlockAddress::get(Fn, BB);
3082       break;
3083     }
3084     }
3085 
3086     ValueList.assignValue(V, NextCstNo);
3087     ++NextCstNo;
3088   }
3089 }
3090 
3091 std::error_code BitcodeReader::parseUseLists() {
3092   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3093     return error("Invalid record");
3094 
3095   // Read all the records.
3096   SmallVector<uint64_t, 64> Record;
3097   while (1) {
3098     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3099 
3100     switch (Entry.Kind) {
3101     case BitstreamEntry::SubBlock: // Handled for us already.
3102     case BitstreamEntry::Error:
3103       return error("Malformed block");
3104     case BitstreamEntry::EndBlock:
3105       return std::error_code();
3106     case BitstreamEntry::Record:
3107       // The interesting case.
3108       break;
3109     }
3110 
3111     // Read a use list record.
3112     Record.clear();
3113     bool IsBB = false;
3114     switch (Stream.readRecord(Entry.ID, Record)) {
3115     default:  // Default behavior: unknown type.
3116       break;
3117     case bitc::USELIST_CODE_BB:
3118       IsBB = true;
3119       // fallthrough
3120     case bitc::USELIST_CODE_DEFAULT: {
3121       unsigned RecordLength = Record.size();
3122       if (RecordLength < 3)
3123         // Records should have at least an ID and two indexes.
3124         return error("Invalid record");
3125       unsigned ID = Record.back();
3126       Record.pop_back();
3127 
3128       Value *V;
3129       if (IsBB) {
3130         assert(ID < FunctionBBs.size() && "Basic block not found");
3131         V = FunctionBBs[ID];
3132       } else
3133         V = ValueList[ID];
3134       unsigned NumUses = 0;
3135       SmallDenseMap<const Use *, unsigned, 16> Order;
3136       for (const Use &U : V->materialized_uses()) {
3137         if (++NumUses > Record.size())
3138           break;
3139         Order[&U] = Record[NumUses - 1];
3140       }
3141       if (Order.size() != Record.size() || NumUses > Record.size())
3142         // Mismatches can happen if the functions are being materialized lazily
3143         // (out-of-order), or a value has been upgraded.
3144         break;
3145 
3146       V->sortUseList([&](const Use &L, const Use &R) {
3147         return Order.lookup(&L) < Order.lookup(&R);
3148       });
3149       break;
3150     }
3151     }
3152   }
3153 }
3154 
3155 /// When we see the block for metadata, remember where it is and then skip it.
3156 /// This lets us lazily deserialize the metadata.
3157 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3158   // Save the current stream state.
3159   uint64_t CurBit = Stream.GetCurrentBitNo();
3160   DeferredMetadataInfo.push_back(CurBit);
3161 
3162   // Skip over the block for now.
3163   if (Stream.SkipBlock())
3164     return error("Invalid record");
3165   return std::error_code();
3166 }
3167 
3168 std::error_code BitcodeReader::materializeMetadata() {
3169   for (uint64_t BitPos : DeferredMetadataInfo) {
3170     // Move the bit stream to the saved position.
3171     Stream.JumpToBit(BitPos);
3172     if (std::error_code EC = parseMetadata(true))
3173       return EC;
3174   }
3175   DeferredMetadataInfo.clear();
3176   return std::error_code();
3177 }
3178 
3179 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3180 
3181 /// When we see the block for a function body, remember where it is and then
3182 /// skip it.  This lets us lazily deserialize the functions.
3183 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3184   // Get the function we are talking about.
3185   if (FunctionsWithBodies.empty())
3186     return error("Insufficient function protos");
3187 
3188   Function *Fn = FunctionsWithBodies.back();
3189   FunctionsWithBodies.pop_back();
3190 
3191   // Save the current stream state.
3192   uint64_t CurBit = Stream.GetCurrentBitNo();
3193   assert(
3194       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3195       "Mismatch between VST and scanned function offsets");
3196   DeferredFunctionInfo[Fn] = CurBit;
3197 
3198   // Skip over the function block for now.
3199   if (Stream.SkipBlock())
3200     return error("Invalid record");
3201   return std::error_code();
3202 }
3203 
3204 std::error_code BitcodeReader::globalCleanup() {
3205   // Patch the initializers for globals and aliases up.
3206   resolveGlobalAndIndirectSymbolInits();
3207   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3208     return error("Malformed global initializer set");
3209 
3210   // Look for intrinsic functions which need to be upgraded at some point
3211   for (Function &F : *TheModule) {
3212     Function *NewFn;
3213     if (UpgradeIntrinsicFunction(&F, NewFn))
3214       UpgradedIntrinsics[&F] = NewFn;
3215   }
3216 
3217   // Look for global variables which need to be renamed.
3218   for (GlobalVariable &GV : TheModule->globals())
3219     UpgradeGlobalVariable(&GV);
3220 
3221   // Force deallocation of memory for these vectors to favor the client that
3222   // want lazy deserialization.
3223   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3224   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3225       IndirectSymbolInits);
3226   return std::error_code();
3227 }
3228 
3229 /// Support for lazy parsing of function bodies. This is required if we
3230 /// either have an old bitcode file without a VST forward declaration record,
3231 /// or if we have an anonymous function being materialized, since anonymous
3232 /// functions do not have a name and are therefore not in the VST.
3233 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3234   Stream.JumpToBit(NextUnreadBit);
3235 
3236   if (Stream.AtEndOfStream())
3237     return error("Could not find function in stream");
3238 
3239   if (!SeenFirstFunctionBody)
3240     return error("Trying to materialize functions before seeing function blocks");
3241 
3242   // An old bitcode file with the symbol table at the end would have
3243   // finished the parse greedily.
3244   assert(SeenValueSymbolTable);
3245 
3246   SmallVector<uint64_t, 64> Record;
3247 
3248   while (1) {
3249     BitstreamEntry Entry = Stream.advance();
3250     switch (Entry.Kind) {
3251     default:
3252       return error("Expect SubBlock");
3253     case BitstreamEntry::SubBlock:
3254       switch (Entry.ID) {
3255       default:
3256         return error("Expect function block");
3257       case bitc::FUNCTION_BLOCK_ID:
3258         if (std::error_code EC = rememberAndSkipFunctionBody())
3259           return EC;
3260         NextUnreadBit = Stream.GetCurrentBitNo();
3261         return std::error_code();
3262       }
3263     }
3264   }
3265 }
3266 
3267 std::error_code BitcodeReader::parseBitcodeVersion() {
3268   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3269     return error("Invalid record");
3270 
3271   // Read all the records.
3272   SmallVector<uint64_t, 64> Record;
3273   while (1) {
3274     BitstreamEntry Entry = Stream.advance();
3275 
3276     switch (Entry.Kind) {
3277     default:
3278     case BitstreamEntry::Error:
3279       return error("Malformed block");
3280     case BitstreamEntry::EndBlock:
3281       return std::error_code();
3282     case BitstreamEntry::Record:
3283       // The interesting case.
3284       break;
3285     }
3286 
3287     // Read a record.
3288     Record.clear();
3289     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3290     switch (BitCode) {
3291     default: // Default behavior: reject
3292       return error("Invalid value");
3293     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3294                                              // N]
3295       convertToString(Record, 0, ProducerIdentification);
3296       break;
3297     }
3298     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3299       unsigned epoch = (unsigned)Record[0];
3300       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3301         return error(
3302           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3303           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3304       }
3305     }
3306     }
3307   }
3308 }
3309 
3310 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3311                                            bool ShouldLazyLoadMetadata) {
3312   if (ResumeBit)
3313     Stream.JumpToBit(ResumeBit);
3314   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3315     return error("Invalid record");
3316 
3317   SmallVector<uint64_t, 64> Record;
3318   std::vector<std::string> SectionTable;
3319   std::vector<std::string> GCTable;
3320 
3321   // Read all the records for this module.
3322   while (1) {
3323     BitstreamEntry Entry = Stream.advance();
3324 
3325     switch (Entry.Kind) {
3326     case BitstreamEntry::Error:
3327       return error("Malformed block");
3328     case BitstreamEntry::EndBlock:
3329       return globalCleanup();
3330 
3331     case BitstreamEntry::SubBlock:
3332       switch (Entry.ID) {
3333       default:  // Skip unknown content.
3334         if (Stream.SkipBlock())
3335           return error("Invalid record");
3336         break;
3337       case bitc::BLOCKINFO_BLOCK_ID:
3338         if (Stream.ReadBlockInfoBlock())
3339           return error("Malformed block");
3340         break;
3341       case bitc::PARAMATTR_BLOCK_ID:
3342         if (std::error_code EC = parseAttributeBlock())
3343           return EC;
3344         break;
3345       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3346         if (std::error_code EC = parseAttributeGroupBlock())
3347           return EC;
3348         break;
3349       case bitc::TYPE_BLOCK_ID_NEW:
3350         if (std::error_code EC = parseTypeTable())
3351           return EC;
3352         break;
3353       case bitc::VALUE_SYMTAB_BLOCK_ID:
3354         if (!SeenValueSymbolTable) {
3355           // Either this is an old form VST without function index and an
3356           // associated VST forward declaration record (which would have caused
3357           // the VST to be jumped to and parsed before it was encountered
3358           // normally in the stream), or there were no function blocks to
3359           // trigger an earlier parsing of the VST.
3360           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3361           if (std::error_code EC = parseValueSymbolTable())
3362             return EC;
3363           SeenValueSymbolTable = true;
3364         } else {
3365           // We must have had a VST forward declaration record, which caused
3366           // the parser to jump to and parse the VST earlier.
3367           assert(VSTOffset > 0);
3368           if (Stream.SkipBlock())
3369             return error("Invalid record");
3370         }
3371         break;
3372       case bitc::CONSTANTS_BLOCK_ID:
3373         if (std::error_code EC = parseConstants())
3374           return EC;
3375         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3376           return EC;
3377         break;
3378       case bitc::METADATA_BLOCK_ID:
3379         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3380           if (std::error_code EC = rememberAndSkipMetadata())
3381             return EC;
3382           break;
3383         }
3384         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3385         if (std::error_code EC = parseMetadata(true))
3386           return EC;
3387         break;
3388       case bitc::METADATA_KIND_BLOCK_ID:
3389         if (std::error_code EC = parseMetadataKinds())
3390           return EC;
3391         break;
3392       case bitc::FUNCTION_BLOCK_ID:
3393         // If this is the first function body we've seen, reverse the
3394         // FunctionsWithBodies list.
3395         if (!SeenFirstFunctionBody) {
3396           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3397           if (std::error_code EC = globalCleanup())
3398             return EC;
3399           SeenFirstFunctionBody = true;
3400         }
3401 
3402         if (VSTOffset > 0) {
3403           // If we have a VST forward declaration record, make sure we
3404           // parse the VST now if we haven't already. It is needed to
3405           // set up the DeferredFunctionInfo vector for lazy reading.
3406           if (!SeenValueSymbolTable) {
3407             if (std::error_code EC =
3408                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3409               return EC;
3410             SeenValueSymbolTable = true;
3411             // Fall through so that we record the NextUnreadBit below.
3412             // This is necessary in case we have an anonymous function that
3413             // is later materialized. Since it will not have a VST entry we
3414             // need to fall back to the lazy parse to find its offset.
3415           } else {
3416             // If we have a VST forward declaration record, but have already
3417             // parsed the VST (just above, when the first function body was
3418             // encountered here), then we are resuming the parse after
3419             // materializing functions. The ResumeBit points to the
3420             // start of the last function block recorded in the
3421             // DeferredFunctionInfo map. Skip it.
3422             if (Stream.SkipBlock())
3423               return error("Invalid record");
3424             continue;
3425           }
3426         }
3427 
3428         // Support older bitcode files that did not have the function
3429         // index in the VST, nor a VST forward declaration record, as
3430         // well as anonymous functions that do not have VST entries.
3431         // Build the DeferredFunctionInfo vector on the fly.
3432         if (std::error_code EC = rememberAndSkipFunctionBody())
3433           return EC;
3434 
3435         // Suspend parsing when we reach the function bodies. Subsequent
3436         // materialization calls will resume it when necessary. If the bitcode
3437         // file is old, the symbol table will be at the end instead and will not
3438         // have been seen yet. In this case, just finish the parse now.
3439         if (SeenValueSymbolTable) {
3440           NextUnreadBit = Stream.GetCurrentBitNo();
3441           return std::error_code();
3442         }
3443         break;
3444       case bitc::USELIST_BLOCK_ID:
3445         if (std::error_code EC = parseUseLists())
3446           return EC;
3447         break;
3448       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3449         if (std::error_code EC = parseOperandBundleTags())
3450           return EC;
3451         break;
3452       }
3453       continue;
3454 
3455     case BitstreamEntry::Record:
3456       // The interesting case.
3457       break;
3458     }
3459 
3460     // Read a record.
3461     auto BitCode = Stream.readRecord(Entry.ID, Record);
3462     switch (BitCode) {
3463     default: break;  // Default behavior, ignore unknown content.
3464     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3465       if (Record.size() < 1)
3466         return error("Invalid record");
3467       // Only version #0 and #1 are supported so far.
3468       unsigned module_version = Record[0];
3469       switch (module_version) {
3470         default:
3471           return error("Invalid value");
3472         case 0:
3473           UseRelativeIDs = false;
3474           break;
3475         case 1:
3476           UseRelativeIDs = true;
3477           break;
3478       }
3479       break;
3480     }
3481     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3482       std::string S;
3483       if (convertToString(Record, 0, S))
3484         return error("Invalid record");
3485       TheModule->setTargetTriple(S);
3486       break;
3487     }
3488     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3489       std::string S;
3490       if (convertToString(Record, 0, S))
3491         return error("Invalid record");
3492       TheModule->setDataLayout(S);
3493       break;
3494     }
3495     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3496       std::string S;
3497       if (convertToString(Record, 0, S))
3498         return error("Invalid record");
3499       TheModule->setModuleInlineAsm(S);
3500       break;
3501     }
3502     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3503       // FIXME: Remove in 4.0.
3504       std::string S;
3505       if (convertToString(Record, 0, S))
3506         return error("Invalid record");
3507       // Ignore value.
3508       break;
3509     }
3510     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3511       std::string S;
3512       if (convertToString(Record, 0, S))
3513         return error("Invalid record");
3514       SectionTable.push_back(S);
3515       break;
3516     }
3517     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3518       std::string S;
3519       if (convertToString(Record, 0, S))
3520         return error("Invalid record");
3521       GCTable.push_back(S);
3522       break;
3523     }
3524     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3525       if (Record.size() < 2)
3526         return error("Invalid record");
3527       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3528       unsigned ComdatNameSize = Record[1];
3529       std::string ComdatName;
3530       ComdatName.reserve(ComdatNameSize);
3531       for (unsigned i = 0; i != ComdatNameSize; ++i)
3532         ComdatName += (char)Record[2 + i];
3533       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3534       C->setSelectionKind(SK);
3535       ComdatList.push_back(C);
3536       break;
3537     }
3538     // GLOBALVAR: [pointer type, isconst, initid,
3539     //             linkage, alignment, section, visibility, threadlocal,
3540     //             unnamed_addr, externally_initialized, dllstorageclass,
3541     //             comdat]
3542     case bitc::MODULE_CODE_GLOBALVAR: {
3543       if (Record.size() < 6)
3544         return error("Invalid record");
3545       Type *Ty = getTypeByID(Record[0]);
3546       if (!Ty)
3547         return error("Invalid record");
3548       bool isConstant = Record[1] & 1;
3549       bool explicitType = Record[1] & 2;
3550       unsigned AddressSpace;
3551       if (explicitType) {
3552         AddressSpace = Record[1] >> 2;
3553       } else {
3554         if (!Ty->isPointerTy())
3555           return error("Invalid type for value");
3556         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3557         Ty = cast<PointerType>(Ty)->getElementType();
3558       }
3559 
3560       uint64_t RawLinkage = Record[3];
3561       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3562       unsigned Alignment;
3563       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3564         return EC;
3565       std::string Section;
3566       if (Record[5]) {
3567         if (Record[5]-1 >= SectionTable.size())
3568           return error("Invalid ID");
3569         Section = SectionTable[Record[5]-1];
3570       }
3571       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3572       // Local linkage must have default visibility.
3573       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3574         // FIXME: Change to an error if non-default in 4.0.
3575         Visibility = getDecodedVisibility(Record[6]);
3576 
3577       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3578       if (Record.size() > 7)
3579         TLM = getDecodedThreadLocalMode(Record[7]);
3580 
3581       bool UnnamedAddr = false;
3582       if (Record.size() > 8)
3583         UnnamedAddr = Record[8];
3584 
3585       bool ExternallyInitialized = false;
3586       if (Record.size() > 9)
3587         ExternallyInitialized = Record[9];
3588 
3589       GlobalVariable *NewGV =
3590         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3591                            TLM, AddressSpace, ExternallyInitialized);
3592       NewGV->setAlignment(Alignment);
3593       if (!Section.empty())
3594         NewGV->setSection(Section);
3595       NewGV->setVisibility(Visibility);
3596       NewGV->setUnnamedAddr(UnnamedAddr);
3597 
3598       if (Record.size() > 10)
3599         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3600       else
3601         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3602 
3603       ValueList.push_back(NewGV);
3604 
3605       // Remember which value to use for the global initializer.
3606       if (unsigned InitID = Record[2])
3607         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3608 
3609       if (Record.size() > 11) {
3610         if (unsigned ComdatID = Record[11]) {
3611           if (ComdatID > ComdatList.size())
3612             return error("Invalid global variable comdat ID");
3613           NewGV->setComdat(ComdatList[ComdatID - 1]);
3614         }
3615       } else if (hasImplicitComdat(RawLinkage)) {
3616         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3617       }
3618       break;
3619     }
3620     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3621     //             alignment, section, visibility, gc, unnamed_addr,
3622     //             prologuedata, dllstorageclass, comdat, prefixdata]
3623     case bitc::MODULE_CODE_FUNCTION: {
3624       if (Record.size() < 8)
3625         return error("Invalid record");
3626       Type *Ty = getTypeByID(Record[0]);
3627       if (!Ty)
3628         return error("Invalid record");
3629       if (auto *PTy = dyn_cast<PointerType>(Ty))
3630         Ty = PTy->getElementType();
3631       auto *FTy = dyn_cast<FunctionType>(Ty);
3632       if (!FTy)
3633         return error("Invalid type for value");
3634       auto CC = static_cast<CallingConv::ID>(Record[1]);
3635       if (CC & ~CallingConv::MaxID)
3636         return error("Invalid calling convention ID");
3637 
3638       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3639                                         "", TheModule);
3640 
3641       Func->setCallingConv(CC);
3642       bool isProto = Record[2];
3643       uint64_t RawLinkage = Record[3];
3644       Func->setLinkage(getDecodedLinkage(RawLinkage));
3645       Func->setAttributes(getAttributes(Record[4]));
3646 
3647       unsigned Alignment;
3648       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3649         return EC;
3650       Func->setAlignment(Alignment);
3651       if (Record[6]) {
3652         if (Record[6]-1 >= SectionTable.size())
3653           return error("Invalid ID");
3654         Func->setSection(SectionTable[Record[6]-1]);
3655       }
3656       // Local linkage must have default visibility.
3657       if (!Func->hasLocalLinkage())
3658         // FIXME: Change to an error if non-default in 4.0.
3659         Func->setVisibility(getDecodedVisibility(Record[7]));
3660       if (Record.size() > 8 && Record[8]) {
3661         if (Record[8]-1 >= GCTable.size())
3662           return error("Invalid ID");
3663         Func->setGC(GCTable[Record[8]-1].c_str());
3664       }
3665       bool UnnamedAddr = false;
3666       if (Record.size() > 9)
3667         UnnamedAddr = Record[9];
3668       Func->setUnnamedAddr(UnnamedAddr);
3669       if (Record.size() > 10 && Record[10] != 0)
3670         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3671 
3672       if (Record.size() > 11)
3673         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3674       else
3675         upgradeDLLImportExportLinkage(Func, RawLinkage);
3676 
3677       if (Record.size() > 12) {
3678         if (unsigned ComdatID = Record[12]) {
3679           if (ComdatID > ComdatList.size())
3680             return error("Invalid function comdat ID");
3681           Func->setComdat(ComdatList[ComdatID - 1]);
3682         }
3683       } else if (hasImplicitComdat(RawLinkage)) {
3684         Func->setComdat(reinterpret_cast<Comdat *>(1));
3685       }
3686 
3687       if (Record.size() > 13 && Record[13] != 0)
3688         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3689 
3690       if (Record.size() > 14 && Record[14] != 0)
3691         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3692 
3693       ValueList.push_back(Func);
3694 
3695       // If this is a function with a body, remember the prototype we are
3696       // creating now, so that we can match up the body with them later.
3697       if (!isProto) {
3698         Func->setIsMaterializable(true);
3699         FunctionsWithBodies.push_back(Func);
3700         DeferredFunctionInfo[Func] = 0;
3701       }
3702       break;
3703     }
3704     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3705     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3706     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3707     case bitc::MODULE_CODE_IFUNC:
3708     case bitc::MODULE_CODE_ALIAS:
3709     case bitc::MODULE_CODE_ALIAS_OLD: {
3710       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3711       if (Record.size() < (3 + (unsigned)NewRecord))
3712         return error("Invalid record");
3713       unsigned OpNum = 0;
3714       Type *Ty = getTypeByID(Record[OpNum++]);
3715       if (!Ty)
3716         return error("Invalid record");
3717 
3718       unsigned AddrSpace;
3719       if (!NewRecord) {
3720         auto *PTy = dyn_cast<PointerType>(Ty);
3721         if (!PTy)
3722           return error("Invalid type for value");
3723         Ty = PTy->getElementType();
3724         AddrSpace = PTy->getAddressSpace();
3725       } else {
3726         AddrSpace = Record[OpNum++];
3727       }
3728 
3729       auto Val = Record[OpNum++];
3730       auto Linkage = Record[OpNum++];
3731       GlobalIndirectSymbol *NewGA;
3732       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3733           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3734         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3735                                     "", TheModule);
3736       else
3737         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3738                                     "", nullptr, TheModule);
3739       // Old bitcode files didn't have visibility field.
3740       // Local linkage must have default visibility.
3741       if (OpNum != Record.size()) {
3742         auto VisInd = OpNum++;
3743         if (!NewGA->hasLocalLinkage())
3744           // FIXME: Change to an error if non-default in 4.0.
3745           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3746       }
3747       if (OpNum != Record.size())
3748         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3749       else
3750         upgradeDLLImportExportLinkage(NewGA, Linkage);
3751       if (OpNum != Record.size())
3752         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3753       if (OpNum != Record.size())
3754         NewGA->setUnnamedAddr(Record[OpNum++]);
3755       ValueList.push_back(NewGA);
3756       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3757       break;
3758     }
3759     /// MODULE_CODE_PURGEVALS: [numvals]
3760     case bitc::MODULE_CODE_PURGEVALS:
3761       // Trim down the value list to the specified size.
3762       if (Record.size() < 1 || Record[0] > ValueList.size())
3763         return error("Invalid record");
3764       ValueList.shrinkTo(Record[0]);
3765       break;
3766     /// MODULE_CODE_VSTOFFSET: [offset]
3767     case bitc::MODULE_CODE_VSTOFFSET:
3768       if (Record.size() < 1)
3769         return error("Invalid record");
3770       VSTOffset = Record[0];
3771       break;
3772     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3773     case bitc::MODULE_CODE_SOURCE_FILENAME:
3774       SmallString<128> ValueName;
3775       if (convertToString(Record, 0, ValueName))
3776         return error("Invalid record");
3777       TheModule->setSourceFileName(ValueName);
3778       break;
3779     }
3780     Record.clear();
3781   }
3782 }
3783 
3784 /// Helper to read the header common to all bitcode files.
3785 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3786   // Sniff for the signature.
3787   if (Stream.Read(8) != 'B' ||
3788       Stream.Read(8) != 'C' ||
3789       Stream.Read(4) != 0x0 ||
3790       Stream.Read(4) != 0xC ||
3791       Stream.Read(4) != 0xE ||
3792       Stream.Read(4) != 0xD)
3793     return false;
3794   return true;
3795 }
3796 
3797 std::error_code
3798 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3799                                 Module *M, bool ShouldLazyLoadMetadata) {
3800   TheModule = M;
3801 
3802   if (std::error_code EC = initStream(std::move(Streamer)))
3803     return EC;
3804 
3805   // Sniff for the signature.
3806   if (!hasValidBitcodeHeader(Stream))
3807     return error("Invalid bitcode signature");
3808 
3809   // We expect a number of well-defined blocks, though we don't necessarily
3810   // need to understand them all.
3811   while (1) {
3812     if (Stream.AtEndOfStream()) {
3813       // We didn't really read a proper Module.
3814       return error("Malformed IR file");
3815     }
3816 
3817     BitstreamEntry Entry =
3818       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3819 
3820     if (Entry.Kind != BitstreamEntry::SubBlock)
3821       return error("Malformed block");
3822 
3823     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3824       parseBitcodeVersion();
3825       continue;
3826     }
3827 
3828     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3829       return parseModule(0, ShouldLazyLoadMetadata);
3830 
3831     if (Stream.SkipBlock())
3832       return error("Invalid record");
3833   }
3834 }
3835 
3836 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3837   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3838     return error("Invalid record");
3839 
3840   SmallVector<uint64_t, 64> Record;
3841 
3842   std::string Triple;
3843   // Read all the records for this module.
3844   while (1) {
3845     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3846 
3847     switch (Entry.Kind) {
3848     case BitstreamEntry::SubBlock: // Handled for us already.
3849     case BitstreamEntry::Error:
3850       return error("Malformed block");
3851     case BitstreamEntry::EndBlock:
3852       return Triple;
3853     case BitstreamEntry::Record:
3854       // The interesting case.
3855       break;
3856     }
3857 
3858     // Read a record.
3859     switch (Stream.readRecord(Entry.ID, Record)) {
3860     default: break;  // Default behavior, ignore unknown content.
3861     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3862       std::string S;
3863       if (convertToString(Record, 0, S))
3864         return error("Invalid record");
3865       Triple = S;
3866       break;
3867     }
3868     }
3869     Record.clear();
3870   }
3871   llvm_unreachable("Exit infinite loop");
3872 }
3873 
3874 ErrorOr<std::string> BitcodeReader::parseTriple() {
3875   if (std::error_code EC = initStream(nullptr))
3876     return EC;
3877 
3878   // Sniff for the signature.
3879   if (!hasValidBitcodeHeader(Stream))
3880     return error("Invalid bitcode signature");
3881 
3882   // We expect a number of well-defined blocks, though we don't necessarily
3883   // need to understand them all.
3884   while (1) {
3885     BitstreamEntry Entry = Stream.advance();
3886 
3887     switch (Entry.Kind) {
3888     case BitstreamEntry::Error:
3889       return error("Malformed block");
3890     case BitstreamEntry::EndBlock:
3891       return std::error_code();
3892 
3893     case BitstreamEntry::SubBlock:
3894       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3895         return parseModuleTriple();
3896 
3897       // Ignore other sub-blocks.
3898       if (Stream.SkipBlock())
3899         return error("Malformed block");
3900       continue;
3901 
3902     case BitstreamEntry::Record:
3903       Stream.skipRecord(Entry.ID);
3904       continue;
3905     }
3906   }
3907 }
3908 
3909 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3910   if (std::error_code EC = initStream(nullptr))
3911     return EC;
3912 
3913   // Sniff for the signature.
3914   if (!hasValidBitcodeHeader(Stream))
3915     return error("Invalid bitcode signature");
3916 
3917   // We expect a number of well-defined blocks, though we don't necessarily
3918   // need to understand them all.
3919   while (1) {
3920     BitstreamEntry Entry = Stream.advance();
3921     switch (Entry.Kind) {
3922     case BitstreamEntry::Error:
3923       return error("Malformed block");
3924     case BitstreamEntry::EndBlock:
3925       return std::error_code();
3926 
3927     case BitstreamEntry::SubBlock:
3928       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3929         if (std::error_code EC = parseBitcodeVersion())
3930           return EC;
3931         return ProducerIdentification;
3932       }
3933       // Ignore other sub-blocks.
3934       if (Stream.SkipBlock())
3935         return error("Malformed block");
3936       continue;
3937     case BitstreamEntry::Record:
3938       Stream.skipRecord(Entry.ID);
3939       continue;
3940     }
3941   }
3942 }
3943 
3944 /// Parse metadata attachments.
3945 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3946   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3947     return error("Invalid record");
3948 
3949   SmallVector<uint64_t, 64> Record;
3950   while (1) {
3951     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3952 
3953     switch (Entry.Kind) {
3954     case BitstreamEntry::SubBlock: // Handled for us already.
3955     case BitstreamEntry::Error:
3956       return error("Malformed block");
3957     case BitstreamEntry::EndBlock:
3958       return std::error_code();
3959     case BitstreamEntry::Record:
3960       // The interesting case.
3961       break;
3962     }
3963 
3964     // Read a metadata attachment record.
3965     Record.clear();
3966     switch (Stream.readRecord(Entry.ID, Record)) {
3967     default:  // Default behavior: ignore.
3968       break;
3969     case bitc::METADATA_ATTACHMENT: {
3970       unsigned RecordLength = Record.size();
3971       if (Record.empty())
3972         return error("Invalid record");
3973       if (RecordLength % 2 == 0) {
3974         // A function attachment.
3975         for (unsigned I = 0; I != RecordLength; I += 2) {
3976           auto K = MDKindMap.find(Record[I]);
3977           if (K == MDKindMap.end())
3978             return error("Invalid ID");
3979           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3980           if (!MD)
3981             return error("Invalid metadata attachment");
3982           F.setMetadata(K->second, MD);
3983         }
3984         continue;
3985       }
3986 
3987       // An instruction attachment.
3988       Instruction *Inst = InstructionList[Record[0]];
3989       for (unsigned i = 1; i != RecordLength; i = i+2) {
3990         unsigned Kind = Record[i];
3991         DenseMap<unsigned, unsigned>::iterator I =
3992           MDKindMap.find(Kind);
3993         if (I == MDKindMap.end())
3994           return error("Invalid ID");
3995         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3996         if (isa<LocalAsMetadata>(Node))
3997           // Drop the attachment.  This used to be legal, but there's no
3998           // upgrade path.
3999           break;
4000         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4001         if (!MD)
4002           return error("Invalid metadata attachment");
4003 
4004         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4005           MD = upgradeInstructionLoopAttachment(*MD);
4006 
4007         Inst->setMetadata(I->second, MD);
4008         if (I->second == LLVMContext::MD_tbaa) {
4009           InstsWithTBAATag.push_back(Inst);
4010           continue;
4011         }
4012       }
4013       break;
4014     }
4015     }
4016   }
4017 }
4018 
4019 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4020   LLVMContext &Context = PtrType->getContext();
4021   if (!isa<PointerType>(PtrType))
4022     return error(Context, "Load/Store operand is not a pointer type");
4023   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4024 
4025   if (ValType && ValType != ElemType)
4026     return error(Context, "Explicit load/store type does not match pointee "
4027                           "type of pointer operand");
4028   if (!PointerType::isLoadableOrStorableType(ElemType))
4029     return error(Context, "Cannot load/store from pointer");
4030   return std::error_code();
4031 }
4032 
4033 /// Lazily parse the specified function body block.
4034 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4035   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4036     return error("Invalid record");
4037 
4038   // Unexpected unresolved metadata when parsing function.
4039   if (MetadataList.hasFwdRefs())
4040     return error("Invalid function metadata: incoming forward references");
4041 
4042   InstructionList.clear();
4043   unsigned ModuleValueListSize = ValueList.size();
4044   unsigned ModuleMetadataListSize = MetadataList.size();
4045 
4046   // Add all the function arguments to the value table.
4047   for (Argument &I : F->args())
4048     ValueList.push_back(&I);
4049 
4050   unsigned NextValueNo = ValueList.size();
4051   BasicBlock *CurBB = nullptr;
4052   unsigned CurBBNo = 0;
4053 
4054   DebugLoc LastLoc;
4055   auto getLastInstruction = [&]() -> Instruction * {
4056     if (CurBB && !CurBB->empty())
4057       return &CurBB->back();
4058     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4059              !FunctionBBs[CurBBNo - 1]->empty())
4060       return &FunctionBBs[CurBBNo - 1]->back();
4061     return nullptr;
4062   };
4063 
4064   std::vector<OperandBundleDef> OperandBundles;
4065 
4066   // Read all the records.
4067   SmallVector<uint64_t, 64> Record;
4068   while (1) {
4069     BitstreamEntry Entry = Stream.advance();
4070 
4071     switch (Entry.Kind) {
4072     case BitstreamEntry::Error:
4073       return error("Malformed block");
4074     case BitstreamEntry::EndBlock:
4075       goto OutOfRecordLoop;
4076 
4077     case BitstreamEntry::SubBlock:
4078       switch (Entry.ID) {
4079       default:  // Skip unknown content.
4080         if (Stream.SkipBlock())
4081           return error("Invalid record");
4082         break;
4083       case bitc::CONSTANTS_BLOCK_ID:
4084         if (std::error_code EC = parseConstants())
4085           return EC;
4086         NextValueNo = ValueList.size();
4087         break;
4088       case bitc::VALUE_SYMTAB_BLOCK_ID:
4089         if (std::error_code EC = parseValueSymbolTable())
4090           return EC;
4091         break;
4092       case bitc::METADATA_ATTACHMENT_ID:
4093         if (std::error_code EC = parseMetadataAttachment(*F))
4094           return EC;
4095         break;
4096       case bitc::METADATA_BLOCK_ID:
4097         if (std::error_code EC = parseMetadata())
4098           return EC;
4099         break;
4100       case bitc::USELIST_BLOCK_ID:
4101         if (std::error_code EC = parseUseLists())
4102           return EC;
4103         break;
4104       }
4105       continue;
4106 
4107     case BitstreamEntry::Record:
4108       // The interesting case.
4109       break;
4110     }
4111 
4112     // Read a record.
4113     Record.clear();
4114     Instruction *I = nullptr;
4115     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4116     switch (BitCode) {
4117     default: // Default behavior: reject
4118       return error("Invalid value");
4119     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4120       if (Record.size() < 1 || Record[0] == 0)
4121         return error("Invalid record");
4122       // Create all the basic blocks for the function.
4123       FunctionBBs.resize(Record[0]);
4124 
4125       // See if anything took the address of blocks in this function.
4126       auto BBFRI = BasicBlockFwdRefs.find(F);
4127       if (BBFRI == BasicBlockFwdRefs.end()) {
4128         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4129           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4130       } else {
4131         auto &BBRefs = BBFRI->second;
4132         // Check for invalid basic block references.
4133         if (BBRefs.size() > FunctionBBs.size())
4134           return error("Invalid ID");
4135         assert(!BBRefs.empty() && "Unexpected empty array");
4136         assert(!BBRefs.front() && "Invalid reference to entry block");
4137         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4138              ++I)
4139           if (I < RE && BBRefs[I]) {
4140             BBRefs[I]->insertInto(F);
4141             FunctionBBs[I] = BBRefs[I];
4142           } else {
4143             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4144           }
4145 
4146         // Erase from the table.
4147         BasicBlockFwdRefs.erase(BBFRI);
4148       }
4149 
4150       CurBB = FunctionBBs[0];
4151       continue;
4152     }
4153 
4154     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4155       // This record indicates that the last instruction is at the same
4156       // location as the previous instruction with a location.
4157       I = getLastInstruction();
4158 
4159       if (!I)
4160         return error("Invalid record");
4161       I->setDebugLoc(LastLoc);
4162       I = nullptr;
4163       continue;
4164 
4165     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4166       I = getLastInstruction();
4167       if (!I || Record.size() < 4)
4168         return error("Invalid record");
4169 
4170       unsigned Line = Record[0], Col = Record[1];
4171       unsigned ScopeID = Record[2], IAID = Record[3];
4172 
4173       MDNode *Scope = nullptr, *IA = nullptr;
4174       if (ScopeID) {
4175         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4176         if (!Scope)
4177           return error("Invalid record");
4178       }
4179       if (IAID) {
4180         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4181         if (!IA)
4182           return error("Invalid record");
4183       }
4184       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4185       I->setDebugLoc(LastLoc);
4186       I = nullptr;
4187       continue;
4188     }
4189 
4190     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4191       unsigned OpNum = 0;
4192       Value *LHS, *RHS;
4193       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4194           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4195           OpNum+1 > Record.size())
4196         return error("Invalid record");
4197 
4198       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4199       if (Opc == -1)
4200         return error("Invalid record");
4201       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4202       InstructionList.push_back(I);
4203       if (OpNum < Record.size()) {
4204         if (Opc == Instruction::Add ||
4205             Opc == Instruction::Sub ||
4206             Opc == Instruction::Mul ||
4207             Opc == Instruction::Shl) {
4208           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4209             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4210           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4211             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4212         } else if (Opc == Instruction::SDiv ||
4213                    Opc == Instruction::UDiv ||
4214                    Opc == Instruction::LShr ||
4215                    Opc == Instruction::AShr) {
4216           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4217             cast<BinaryOperator>(I)->setIsExact(true);
4218         } else if (isa<FPMathOperator>(I)) {
4219           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4220           if (FMF.any())
4221             I->setFastMathFlags(FMF);
4222         }
4223 
4224       }
4225       break;
4226     }
4227     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4228       unsigned OpNum = 0;
4229       Value *Op;
4230       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4231           OpNum+2 != Record.size())
4232         return error("Invalid record");
4233 
4234       Type *ResTy = getTypeByID(Record[OpNum]);
4235       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4236       if (Opc == -1 || !ResTy)
4237         return error("Invalid record");
4238       Instruction *Temp = nullptr;
4239       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4240         if (Temp) {
4241           InstructionList.push_back(Temp);
4242           CurBB->getInstList().push_back(Temp);
4243         }
4244       } else {
4245         auto CastOp = (Instruction::CastOps)Opc;
4246         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4247           return error("Invalid cast");
4248         I = CastInst::Create(CastOp, Op, ResTy);
4249       }
4250       InstructionList.push_back(I);
4251       break;
4252     }
4253     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4254     case bitc::FUNC_CODE_INST_GEP_OLD:
4255     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4256       unsigned OpNum = 0;
4257 
4258       Type *Ty;
4259       bool InBounds;
4260 
4261       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4262         InBounds = Record[OpNum++];
4263         Ty = getTypeByID(Record[OpNum++]);
4264       } else {
4265         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4266         Ty = nullptr;
4267       }
4268 
4269       Value *BasePtr;
4270       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4271         return error("Invalid record");
4272 
4273       if (!Ty)
4274         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4275                  ->getElementType();
4276       else if (Ty !=
4277                cast<SequentialType>(BasePtr->getType()->getScalarType())
4278                    ->getElementType())
4279         return error(
4280             "Explicit gep type does not match pointee type of pointer operand");
4281 
4282       SmallVector<Value*, 16> GEPIdx;
4283       while (OpNum != Record.size()) {
4284         Value *Op;
4285         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4286           return error("Invalid record");
4287         GEPIdx.push_back(Op);
4288       }
4289 
4290       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4291 
4292       InstructionList.push_back(I);
4293       if (InBounds)
4294         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4295       break;
4296     }
4297 
4298     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4299                                        // EXTRACTVAL: [opty, opval, n x indices]
4300       unsigned OpNum = 0;
4301       Value *Agg;
4302       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4303         return error("Invalid record");
4304 
4305       unsigned RecSize = Record.size();
4306       if (OpNum == RecSize)
4307         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4308 
4309       SmallVector<unsigned, 4> EXTRACTVALIdx;
4310       Type *CurTy = Agg->getType();
4311       for (; OpNum != RecSize; ++OpNum) {
4312         bool IsArray = CurTy->isArrayTy();
4313         bool IsStruct = CurTy->isStructTy();
4314         uint64_t Index = Record[OpNum];
4315 
4316         if (!IsStruct && !IsArray)
4317           return error("EXTRACTVAL: Invalid type");
4318         if ((unsigned)Index != Index)
4319           return error("Invalid value");
4320         if (IsStruct && Index >= CurTy->subtypes().size())
4321           return error("EXTRACTVAL: Invalid struct index");
4322         if (IsArray && Index >= CurTy->getArrayNumElements())
4323           return error("EXTRACTVAL: Invalid array index");
4324         EXTRACTVALIdx.push_back((unsigned)Index);
4325 
4326         if (IsStruct)
4327           CurTy = CurTy->subtypes()[Index];
4328         else
4329           CurTy = CurTy->subtypes()[0];
4330       }
4331 
4332       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4333       InstructionList.push_back(I);
4334       break;
4335     }
4336 
4337     case bitc::FUNC_CODE_INST_INSERTVAL: {
4338                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4339       unsigned OpNum = 0;
4340       Value *Agg;
4341       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4342         return error("Invalid record");
4343       Value *Val;
4344       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4345         return error("Invalid record");
4346 
4347       unsigned RecSize = Record.size();
4348       if (OpNum == RecSize)
4349         return error("INSERTVAL: Invalid instruction with 0 indices");
4350 
4351       SmallVector<unsigned, 4> INSERTVALIdx;
4352       Type *CurTy = Agg->getType();
4353       for (; OpNum != RecSize; ++OpNum) {
4354         bool IsArray = CurTy->isArrayTy();
4355         bool IsStruct = CurTy->isStructTy();
4356         uint64_t Index = Record[OpNum];
4357 
4358         if (!IsStruct && !IsArray)
4359           return error("INSERTVAL: Invalid type");
4360         if ((unsigned)Index != Index)
4361           return error("Invalid value");
4362         if (IsStruct && Index >= CurTy->subtypes().size())
4363           return error("INSERTVAL: Invalid struct index");
4364         if (IsArray && Index >= CurTy->getArrayNumElements())
4365           return error("INSERTVAL: Invalid array index");
4366 
4367         INSERTVALIdx.push_back((unsigned)Index);
4368         if (IsStruct)
4369           CurTy = CurTy->subtypes()[Index];
4370         else
4371           CurTy = CurTy->subtypes()[0];
4372       }
4373 
4374       if (CurTy != Val->getType())
4375         return error("Inserted value type doesn't match aggregate type");
4376 
4377       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4378       InstructionList.push_back(I);
4379       break;
4380     }
4381 
4382     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4383       // obsolete form of select
4384       // handles select i1 ... in old bitcode
4385       unsigned OpNum = 0;
4386       Value *TrueVal, *FalseVal, *Cond;
4387       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4388           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4389           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4390         return error("Invalid record");
4391 
4392       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4393       InstructionList.push_back(I);
4394       break;
4395     }
4396 
4397     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4398       // new form of select
4399       // handles select i1 or select [N x i1]
4400       unsigned OpNum = 0;
4401       Value *TrueVal, *FalseVal, *Cond;
4402       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4403           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4404           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4405         return error("Invalid record");
4406 
4407       // select condition can be either i1 or [N x i1]
4408       if (VectorType* vector_type =
4409           dyn_cast<VectorType>(Cond->getType())) {
4410         // expect <n x i1>
4411         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4412           return error("Invalid type for value");
4413       } else {
4414         // expect i1
4415         if (Cond->getType() != Type::getInt1Ty(Context))
4416           return error("Invalid type for value");
4417       }
4418 
4419       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4420       InstructionList.push_back(I);
4421       break;
4422     }
4423 
4424     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4425       unsigned OpNum = 0;
4426       Value *Vec, *Idx;
4427       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4428           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4429         return error("Invalid record");
4430       if (!Vec->getType()->isVectorTy())
4431         return error("Invalid type for value");
4432       I = ExtractElementInst::Create(Vec, Idx);
4433       InstructionList.push_back(I);
4434       break;
4435     }
4436 
4437     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4438       unsigned OpNum = 0;
4439       Value *Vec, *Elt, *Idx;
4440       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4441         return error("Invalid record");
4442       if (!Vec->getType()->isVectorTy())
4443         return error("Invalid type for value");
4444       if (popValue(Record, OpNum, NextValueNo,
4445                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4446           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4447         return error("Invalid record");
4448       I = InsertElementInst::Create(Vec, Elt, Idx);
4449       InstructionList.push_back(I);
4450       break;
4451     }
4452 
4453     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4454       unsigned OpNum = 0;
4455       Value *Vec1, *Vec2, *Mask;
4456       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4457           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4458         return error("Invalid record");
4459 
4460       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4461         return error("Invalid record");
4462       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4463         return error("Invalid type for value");
4464       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4465       InstructionList.push_back(I);
4466       break;
4467     }
4468 
4469     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4470       // Old form of ICmp/FCmp returning bool
4471       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4472       // both legal on vectors but had different behaviour.
4473     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4474       // FCmp/ICmp returning bool or vector of bool
4475 
4476       unsigned OpNum = 0;
4477       Value *LHS, *RHS;
4478       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4479           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4480         return error("Invalid record");
4481 
4482       unsigned PredVal = Record[OpNum];
4483       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4484       FastMathFlags FMF;
4485       if (IsFP && Record.size() > OpNum+1)
4486         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4487 
4488       if (OpNum+1 != Record.size())
4489         return error("Invalid record");
4490 
4491       if (LHS->getType()->isFPOrFPVectorTy())
4492         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4493       else
4494         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4495 
4496       if (FMF.any())
4497         I->setFastMathFlags(FMF);
4498       InstructionList.push_back(I);
4499       break;
4500     }
4501 
4502     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4503       {
4504         unsigned Size = Record.size();
4505         if (Size == 0) {
4506           I = ReturnInst::Create(Context);
4507           InstructionList.push_back(I);
4508           break;
4509         }
4510 
4511         unsigned OpNum = 0;
4512         Value *Op = nullptr;
4513         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4514           return error("Invalid record");
4515         if (OpNum != Record.size())
4516           return error("Invalid record");
4517 
4518         I = ReturnInst::Create(Context, Op);
4519         InstructionList.push_back(I);
4520         break;
4521       }
4522     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4523       if (Record.size() != 1 && Record.size() != 3)
4524         return error("Invalid record");
4525       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4526       if (!TrueDest)
4527         return error("Invalid record");
4528 
4529       if (Record.size() == 1) {
4530         I = BranchInst::Create(TrueDest);
4531         InstructionList.push_back(I);
4532       }
4533       else {
4534         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4535         Value *Cond = getValue(Record, 2, NextValueNo,
4536                                Type::getInt1Ty(Context));
4537         if (!FalseDest || !Cond)
4538           return error("Invalid record");
4539         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4540         InstructionList.push_back(I);
4541       }
4542       break;
4543     }
4544     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4545       if (Record.size() != 1 && Record.size() != 2)
4546         return error("Invalid record");
4547       unsigned Idx = 0;
4548       Value *CleanupPad =
4549           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4550       if (!CleanupPad)
4551         return error("Invalid record");
4552       BasicBlock *UnwindDest = nullptr;
4553       if (Record.size() == 2) {
4554         UnwindDest = getBasicBlock(Record[Idx++]);
4555         if (!UnwindDest)
4556           return error("Invalid record");
4557       }
4558 
4559       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4560       InstructionList.push_back(I);
4561       break;
4562     }
4563     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4564       if (Record.size() != 2)
4565         return error("Invalid record");
4566       unsigned Idx = 0;
4567       Value *CatchPad =
4568           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4569       if (!CatchPad)
4570         return error("Invalid record");
4571       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4572       if (!BB)
4573         return error("Invalid record");
4574 
4575       I = CatchReturnInst::Create(CatchPad, BB);
4576       InstructionList.push_back(I);
4577       break;
4578     }
4579     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4580       // We must have, at minimum, the outer scope and the number of arguments.
4581       if (Record.size() < 2)
4582         return error("Invalid record");
4583 
4584       unsigned Idx = 0;
4585 
4586       Value *ParentPad =
4587           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4588 
4589       unsigned NumHandlers = Record[Idx++];
4590 
4591       SmallVector<BasicBlock *, 2> Handlers;
4592       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4593         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4594         if (!BB)
4595           return error("Invalid record");
4596         Handlers.push_back(BB);
4597       }
4598 
4599       BasicBlock *UnwindDest = nullptr;
4600       if (Idx + 1 == Record.size()) {
4601         UnwindDest = getBasicBlock(Record[Idx++]);
4602         if (!UnwindDest)
4603           return error("Invalid record");
4604       }
4605 
4606       if (Record.size() != Idx)
4607         return error("Invalid record");
4608 
4609       auto *CatchSwitch =
4610           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4611       for (BasicBlock *Handler : Handlers)
4612         CatchSwitch->addHandler(Handler);
4613       I = CatchSwitch;
4614       InstructionList.push_back(I);
4615       break;
4616     }
4617     case bitc::FUNC_CODE_INST_CATCHPAD:
4618     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4619       // We must have, at minimum, the outer scope and the number of arguments.
4620       if (Record.size() < 2)
4621         return error("Invalid record");
4622 
4623       unsigned Idx = 0;
4624 
4625       Value *ParentPad =
4626           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4627 
4628       unsigned NumArgOperands = Record[Idx++];
4629 
4630       SmallVector<Value *, 2> Args;
4631       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4632         Value *Val;
4633         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4634           return error("Invalid record");
4635         Args.push_back(Val);
4636       }
4637 
4638       if (Record.size() != Idx)
4639         return error("Invalid record");
4640 
4641       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4642         I = CleanupPadInst::Create(ParentPad, Args);
4643       else
4644         I = CatchPadInst::Create(ParentPad, Args);
4645       InstructionList.push_back(I);
4646       break;
4647     }
4648     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4649       // Check magic
4650       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4651         // "New" SwitchInst format with case ranges. The changes to write this
4652         // format were reverted but we still recognize bitcode that uses it.
4653         // Hopefully someday we will have support for case ranges and can use
4654         // this format again.
4655 
4656         Type *OpTy = getTypeByID(Record[1]);
4657         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4658 
4659         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4660         BasicBlock *Default = getBasicBlock(Record[3]);
4661         if (!OpTy || !Cond || !Default)
4662           return error("Invalid record");
4663 
4664         unsigned NumCases = Record[4];
4665 
4666         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4667         InstructionList.push_back(SI);
4668 
4669         unsigned CurIdx = 5;
4670         for (unsigned i = 0; i != NumCases; ++i) {
4671           SmallVector<ConstantInt*, 1> CaseVals;
4672           unsigned NumItems = Record[CurIdx++];
4673           for (unsigned ci = 0; ci != NumItems; ++ci) {
4674             bool isSingleNumber = Record[CurIdx++];
4675 
4676             APInt Low;
4677             unsigned ActiveWords = 1;
4678             if (ValueBitWidth > 64)
4679               ActiveWords = Record[CurIdx++];
4680             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4681                                 ValueBitWidth);
4682             CurIdx += ActiveWords;
4683 
4684             if (!isSingleNumber) {
4685               ActiveWords = 1;
4686               if (ValueBitWidth > 64)
4687                 ActiveWords = Record[CurIdx++];
4688               APInt High = readWideAPInt(
4689                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4690               CurIdx += ActiveWords;
4691 
4692               // FIXME: It is not clear whether values in the range should be
4693               // compared as signed or unsigned values. The partially
4694               // implemented changes that used this format in the past used
4695               // unsigned comparisons.
4696               for ( ; Low.ule(High); ++Low)
4697                 CaseVals.push_back(ConstantInt::get(Context, Low));
4698             } else
4699               CaseVals.push_back(ConstantInt::get(Context, Low));
4700           }
4701           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4702           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4703                  cve = CaseVals.end(); cvi != cve; ++cvi)
4704             SI->addCase(*cvi, DestBB);
4705         }
4706         I = SI;
4707         break;
4708       }
4709 
4710       // Old SwitchInst format without case ranges.
4711 
4712       if (Record.size() < 3 || (Record.size() & 1) == 0)
4713         return error("Invalid record");
4714       Type *OpTy = getTypeByID(Record[0]);
4715       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4716       BasicBlock *Default = getBasicBlock(Record[2]);
4717       if (!OpTy || !Cond || !Default)
4718         return error("Invalid record");
4719       unsigned NumCases = (Record.size()-3)/2;
4720       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4721       InstructionList.push_back(SI);
4722       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4723         ConstantInt *CaseVal =
4724           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4725         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4726         if (!CaseVal || !DestBB) {
4727           delete SI;
4728           return error("Invalid record");
4729         }
4730         SI->addCase(CaseVal, DestBB);
4731       }
4732       I = SI;
4733       break;
4734     }
4735     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4736       if (Record.size() < 2)
4737         return error("Invalid record");
4738       Type *OpTy = getTypeByID(Record[0]);
4739       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4740       if (!OpTy || !Address)
4741         return error("Invalid record");
4742       unsigned NumDests = Record.size()-2;
4743       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4744       InstructionList.push_back(IBI);
4745       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4746         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4747           IBI->addDestination(DestBB);
4748         } else {
4749           delete IBI;
4750           return error("Invalid record");
4751         }
4752       }
4753       I = IBI;
4754       break;
4755     }
4756 
4757     case bitc::FUNC_CODE_INST_INVOKE: {
4758       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4759       if (Record.size() < 4)
4760         return error("Invalid record");
4761       unsigned OpNum = 0;
4762       AttributeSet PAL = getAttributes(Record[OpNum++]);
4763       unsigned CCInfo = Record[OpNum++];
4764       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4765       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4766 
4767       FunctionType *FTy = nullptr;
4768       if (CCInfo >> 13 & 1 &&
4769           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4770         return error("Explicit invoke type is not a function type");
4771 
4772       Value *Callee;
4773       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4774         return error("Invalid record");
4775 
4776       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4777       if (!CalleeTy)
4778         return error("Callee is not a pointer");
4779       if (!FTy) {
4780         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4781         if (!FTy)
4782           return error("Callee is not of pointer to function type");
4783       } else if (CalleeTy->getElementType() != FTy)
4784         return error("Explicit invoke type does not match pointee type of "
4785                      "callee operand");
4786       if (Record.size() < FTy->getNumParams() + OpNum)
4787         return error("Insufficient operands to call");
4788 
4789       SmallVector<Value*, 16> Ops;
4790       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4791         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4792                                FTy->getParamType(i)));
4793         if (!Ops.back())
4794           return error("Invalid record");
4795       }
4796 
4797       if (!FTy->isVarArg()) {
4798         if (Record.size() != OpNum)
4799           return error("Invalid record");
4800       } else {
4801         // Read type/value pairs for varargs params.
4802         while (OpNum != Record.size()) {
4803           Value *Op;
4804           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4805             return error("Invalid record");
4806           Ops.push_back(Op);
4807         }
4808       }
4809 
4810       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4811       OperandBundles.clear();
4812       InstructionList.push_back(I);
4813       cast<InvokeInst>(I)->setCallingConv(
4814           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4815       cast<InvokeInst>(I)->setAttributes(PAL);
4816       break;
4817     }
4818     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4819       unsigned Idx = 0;
4820       Value *Val = nullptr;
4821       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4822         return error("Invalid record");
4823       I = ResumeInst::Create(Val);
4824       InstructionList.push_back(I);
4825       break;
4826     }
4827     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4828       I = new UnreachableInst(Context);
4829       InstructionList.push_back(I);
4830       break;
4831     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4832       if (Record.size() < 1 || ((Record.size()-1)&1))
4833         return error("Invalid record");
4834       Type *Ty = getTypeByID(Record[0]);
4835       if (!Ty)
4836         return error("Invalid record");
4837 
4838       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4839       InstructionList.push_back(PN);
4840 
4841       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4842         Value *V;
4843         // With the new function encoding, it is possible that operands have
4844         // negative IDs (for forward references).  Use a signed VBR
4845         // representation to keep the encoding small.
4846         if (UseRelativeIDs)
4847           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4848         else
4849           V = getValue(Record, 1+i, NextValueNo, Ty);
4850         BasicBlock *BB = getBasicBlock(Record[2+i]);
4851         if (!V || !BB)
4852           return error("Invalid record");
4853         PN->addIncoming(V, BB);
4854       }
4855       I = PN;
4856       break;
4857     }
4858 
4859     case bitc::FUNC_CODE_INST_LANDINGPAD:
4860     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4861       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4862       unsigned Idx = 0;
4863       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4864         if (Record.size() < 3)
4865           return error("Invalid record");
4866       } else {
4867         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4868         if (Record.size() < 4)
4869           return error("Invalid record");
4870       }
4871       Type *Ty = getTypeByID(Record[Idx++]);
4872       if (!Ty)
4873         return error("Invalid record");
4874       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4875         Value *PersFn = nullptr;
4876         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4877           return error("Invalid record");
4878 
4879         if (!F->hasPersonalityFn())
4880           F->setPersonalityFn(cast<Constant>(PersFn));
4881         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4882           return error("Personality function mismatch");
4883       }
4884 
4885       bool IsCleanup = !!Record[Idx++];
4886       unsigned NumClauses = Record[Idx++];
4887       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4888       LP->setCleanup(IsCleanup);
4889       for (unsigned J = 0; J != NumClauses; ++J) {
4890         LandingPadInst::ClauseType CT =
4891           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4892         Value *Val;
4893 
4894         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4895           delete LP;
4896           return error("Invalid record");
4897         }
4898 
4899         assert((CT != LandingPadInst::Catch ||
4900                 !isa<ArrayType>(Val->getType())) &&
4901                "Catch clause has a invalid type!");
4902         assert((CT != LandingPadInst::Filter ||
4903                 isa<ArrayType>(Val->getType())) &&
4904                "Filter clause has invalid type!");
4905         LP->addClause(cast<Constant>(Val));
4906       }
4907 
4908       I = LP;
4909       InstructionList.push_back(I);
4910       break;
4911     }
4912 
4913     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4914       if (Record.size() != 4)
4915         return error("Invalid record");
4916       uint64_t AlignRecord = Record[3];
4917       const uint64_t InAllocaMask = uint64_t(1) << 5;
4918       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4919       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4920       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4921                                 SwiftErrorMask;
4922       bool InAlloca = AlignRecord & InAllocaMask;
4923       bool SwiftError = AlignRecord & SwiftErrorMask;
4924       Type *Ty = getTypeByID(Record[0]);
4925       if ((AlignRecord & ExplicitTypeMask) == 0) {
4926         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4927         if (!PTy)
4928           return error("Old-style alloca with a non-pointer type");
4929         Ty = PTy->getElementType();
4930       }
4931       Type *OpTy = getTypeByID(Record[1]);
4932       Value *Size = getFnValueByID(Record[2], OpTy);
4933       unsigned Align;
4934       if (std::error_code EC =
4935               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4936         return EC;
4937       }
4938       if (!Ty || !Size)
4939         return error("Invalid record");
4940       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4941       AI->setUsedWithInAlloca(InAlloca);
4942       AI->setSwiftError(SwiftError);
4943       I = AI;
4944       InstructionList.push_back(I);
4945       break;
4946     }
4947     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4948       unsigned OpNum = 0;
4949       Value *Op;
4950       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4951           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4952         return error("Invalid record");
4953 
4954       Type *Ty = nullptr;
4955       if (OpNum + 3 == Record.size())
4956         Ty = getTypeByID(Record[OpNum++]);
4957       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4958         return EC;
4959       if (!Ty)
4960         Ty = cast<PointerType>(Op->getType())->getElementType();
4961 
4962       unsigned Align;
4963       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4964         return EC;
4965       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4966 
4967       InstructionList.push_back(I);
4968       break;
4969     }
4970     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4971        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4972       unsigned OpNum = 0;
4973       Value *Op;
4974       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4975           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4976         return error("Invalid record");
4977 
4978       Type *Ty = nullptr;
4979       if (OpNum + 5 == Record.size())
4980         Ty = getTypeByID(Record[OpNum++]);
4981       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4982         return EC;
4983       if (!Ty)
4984         Ty = cast<PointerType>(Op->getType())->getElementType();
4985 
4986       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4987       if (Ordering == AtomicOrdering::NotAtomic ||
4988           Ordering == AtomicOrdering::Release ||
4989           Ordering == AtomicOrdering::AcquireRelease)
4990         return error("Invalid record");
4991       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4992         return error("Invalid record");
4993       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4994 
4995       unsigned Align;
4996       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4997         return EC;
4998       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4999 
5000       InstructionList.push_back(I);
5001       break;
5002     }
5003     case bitc::FUNC_CODE_INST_STORE:
5004     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5005       unsigned OpNum = 0;
5006       Value *Val, *Ptr;
5007       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5008           (BitCode == bitc::FUNC_CODE_INST_STORE
5009                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5010                : popValue(Record, OpNum, NextValueNo,
5011                           cast<PointerType>(Ptr->getType())->getElementType(),
5012                           Val)) ||
5013           OpNum + 2 != Record.size())
5014         return error("Invalid record");
5015 
5016       if (std::error_code EC =
5017               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5018         return EC;
5019       unsigned Align;
5020       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5021         return EC;
5022       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5023       InstructionList.push_back(I);
5024       break;
5025     }
5026     case bitc::FUNC_CODE_INST_STOREATOMIC:
5027     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5028       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5029       unsigned OpNum = 0;
5030       Value *Val, *Ptr;
5031       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5032           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5033                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5034                : popValue(Record, OpNum, NextValueNo,
5035                           cast<PointerType>(Ptr->getType())->getElementType(),
5036                           Val)) ||
5037           OpNum + 4 != Record.size())
5038         return error("Invalid record");
5039 
5040       if (std::error_code EC =
5041               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5042         return EC;
5043       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5044       if (Ordering == AtomicOrdering::NotAtomic ||
5045           Ordering == AtomicOrdering::Acquire ||
5046           Ordering == AtomicOrdering::AcquireRelease)
5047         return error("Invalid record");
5048       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5049       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5050         return error("Invalid record");
5051 
5052       unsigned Align;
5053       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5054         return EC;
5055       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5056       InstructionList.push_back(I);
5057       break;
5058     }
5059     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5060     case bitc::FUNC_CODE_INST_CMPXCHG: {
5061       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5062       //          failureordering?, isweak?]
5063       unsigned OpNum = 0;
5064       Value *Ptr, *Cmp, *New;
5065       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5066           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5067                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5068                : popValue(Record, OpNum, NextValueNo,
5069                           cast<PointerType>(Ptr->getType())->getElementType(),
5070                           Cmp)) ||
5071           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5072           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5073         return error("Invalid record");
5074       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5075       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5076           SuccessOrdering == AtomicOrdering::Unordered)
5077         return error("Invalid record");
5078       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5079 
5080       if (std::error_code EC =
5081               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5082         return EC;
5083       AtomicOrdering FailureOrdering;
5084       if (Record.size() < 7)
5085         FailureOrdering =
5086             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5087       else
5088         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5089 
5090       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5091                                 SynchScope);
5092       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5093 
5094       if (Record.size() < 8) {
5095         // Before weak cmpxchgs existed, the instruction simply returned the
5096         // value loaded from memory, so bitcode files from that era will be
5097         // expecting the first component of a modern cmpxchg.
5098         CurBB->getInstList().push_back(I);
5099         I = ExtractValueInst::Create(I, 0);
5100       } else {
5101         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5102       }
5103 
5104       InstructionList.push_back(I);
5105       break;
5106     }
5107     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5108       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5109       unsigned OpNum = 0;
5110       Value *Ptr, *Val;
5111       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5112           popValue(Record, OpNum, NextValueNo,
5113                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5114           OpNum+4 != Record.size())
5115         return error("Invalid record");
5116       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5117       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5118           Operation > AtomicRMWInst::LAST_BINOP)
5119         return error("Invalid record");
5120       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5121       if (Ordering == AtomicOrdering::NotAtomic ||
5122           Ordering == AtomicOrdering::Unordered)
5123         return error("Invalid record");
5124       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5125       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5126       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5127       InstructionList.push_back(I);
5128       break;
5129     }
5130     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5131       if (2 != Record.size())
5132         return error("Invalid record");
5133       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5134       if (Ordering == AtomicOrdering::NotAtomic ||
5135           Ordering == AtomicOrdering::Unordered ||
5136           Ordering == AtomicOrdering::Monotonic)
5137         return error("Invalid record");
5138       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5139       I = new FenceInst(Context, Ordering, SynchScope);
5140       InstructionList.push_back(I);
5141       break;
5142     }
5143     case bitc::FUNC_CODE_INST_CALL: {
5144       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5145       if (Record.size() < 3)
5146         return error("Invalid record");
5147 
5148       unsigned OpNum = 0;
5149       AttributeSet PAL = getAttributes(Record[OpNum++]);
5150       unsigned CCInfo = Record[OpNum++];
5151 
5152       FastMathFlags FMF;
5153       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5154         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5155         if (!FMF.any())
5156           return error("Fast math flags indicator set for call with no FMF");
5157       }
5158 
5159       FunctionType *FTy = nullptr;
5160       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5161           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5162         return error("Explicit call type is not a function type");
5163 
5164       Value *Callee;
5165       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5166         return error("Invalid record");
5167 
5168       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5169       if (!OpTy)
5170         return error("Callee is not a pointer type");
5171       if (!FTy) {
5172         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5173         if (!FTy)
5174           return error("Callee is not of pointer to function type");
5175       } else if (OpTy->getElementType() != FTy)
5176         return error("Explicit call type does not match pointee type of "
5177                      "callee operand");
5178       if (Record.size() < FTy->getNumParams() + OpNum)
5179         return error("Insufficient operands to call");
5180 
5181       SmallVector<Value*, 16> Args;
5182       // Read the fixed params.
5183       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5184         if (FTy->getParamType(i)->isLabelTy())
5185           Args.push_back(getBasicBlock(Record[OpNum]));
5186         else
5187           Args.push_back(getValue(Record, OpNum, NextValueNo,
5188                                   FTy->getParamType(i)));
5189         if (!Args.back())
5190           return error("Invalid record");
5191       }
5192 
5193       // Read type/value pairs for varargs params.
5194       if (!FTy->isVarArg()) {
5195         if (OpNum != Record.size())
5196           return error("Invalid record");
5197       } else {
5198         while (OpNum != Record.size()) {
5199           Value *Op;
5200           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5201             return error("Invalid record");
5202           Args.push_back(Op);
5203         }
5204       }
5205 
5206       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5207       OperandBundles.clear();
5208       InstructionList.push_back(I);
5209       cast<CallInst>(I)->setCallingConv(
5210           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5211       CallInst::TailCallKind TCK = CallInst::TCK_None;
5212       if (CCInfo & 1 << bitc::CALL_TAIL)
5213         TCK = CallInst::TCK_Tail;
5214       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5215         TCK = CallInst::TCK_MustTail;
5216       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5217         TCK = CallInst::TCK_NoTail;
5218       cast<CallInst>(I)->setTailCallKind(TCK);
5219       cast<CallInst>(I)->setAttributes(PAL);
5220       if (FMF.any()) {
5221         if (!isa<FPMathOperator>(I))
5222           return error("Fast-math-flags specified for call without "
5223                        "floating-point scalar or vector return type");
5224         I->setFastMathFlags(FMF);
5225       }
5226       break;
5227     }
5228     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5229       if (Record.size() < 3)
5230         return error("Invalid record");
5231       Type *OpTy = getTypeByID(Record[0]);
5232       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5233       Type *ResTy = getTypeByID(Record[2]);
5234       if (!OpTy || !Op || !ResTy)
5235         return error("Invalid record");
5236       I = new VAArgInst(Op, ResTy);
5237       InstructionList.push_back(I);
5238       break;
5239     }
5240 
5241     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5242       // A call or an invoke can be optionally prefixed with some variable
5243       // number of operand bundle blocks.  These blocks are read into
5244       // OperandBundles and consumed at the next call or invoke instruction.
5245 
5246       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5247         return error("Invalid record");
5248 
5249       std::vector<Value *> Inputs;
5250 
5251       unsigned OpNum = 1;
5252       while (OpNum != Record.size()) {
5253         Value *Op;
5254         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5255           return error("Invalid record");
5256         Inputs.push_back(Op);
5257       }
5258 
5259       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5260       continue;
5261     }
5262     }
5263 
5264     // Add instruction to end of current BB.  If there is no current BB, reject
5265     // this file.
5266     if (!CurBB) {
5267       delete I;
5268       return error("Invalid instruction with no BB");
5269     }
5270     if (!OperandBundles.empty()) {
5271       delete I;
5272       return error("Operand bundles found with no consumer");
5273     }
5274     CurBB->getInstList().push_back(I);
5275 
5276     // If this was a terminator instruction, move to the next block.
5277     if (isa<TerminatorInst>(I)) {
5278       ++CurBBNo;
5279       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5280     }
5281 
5282     // Non-void values get registered in the value table for future use.
5283     if (I && !I->getType()->isVoidTy())
5284       ValueList.assignValue(I, NextValueNo++);
5285   }
5286 
5287 OutOfRecordLoop:
5288 
5289   if (!OperandBundles.empty())
5290     return error("Operand bundles found with no consumer");
5291 
5292   // Check the function list for unresolved values.
5293   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5294     if (!A->getParent()) {
5295       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5296       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5297         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5298           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5299           delete A;
5300         }
5301       }
5302       return error("Never resolved value found in function");
5303     }
5304   }
5305 
5306   // Unexpected unresolved metadata about to be dropped.
5307   if (MetadataList.hasFwdRefs())
5308     return error("Invalid function metadata: outgoing forward refs");
5309 
5310   // Trim the value list down to the size it was before we parsed this function.
5311   ValueList.shrinkTo(ModuleValueListSize);
5312   MetadataList.shrinkTo(ModuleMetadataListSize);
5313   std::vector<BasicBlock*>().swap(FunctionBBs);
5314   return std::error_code();
5315 }
5316 
5317 /// Find the function body in the bitcode stream
5318 std::error_code BitcodeReader::findFunctionInStream(
5319     Function *F,
5320     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5321   while (DeferredFunctionInfoIterator->second == 0) {
5322     // This is the fallback handling for the old format bitcode that
5323     // didn't contain the function index in the VST, or when we have
5324     // an anonymous function which would not have a VST entry.
5325     // Assert that we have one of those two cases.
5326     assert(VSTOffset == 0 || !F->hasName());
5327     // Parse the next body in the stream and set its position in the
5328     // DeferredFunctionInfo map.
5329     if (std::error_code EC = rememberAndSkipFunctionBodies())
5330       return EC;
5331   }
5332   return std::error_code();
5333 }
5334 
5335 //===----------------------------------------------------------------------===//
5336 // GVMaterializer implementation
5337 //===----------------------------------------------------------------------===//
5338 
5339 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5340 
5341 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5342   if (std::error_code EC = materializeMetadata())
5343     return EC;
5344 
5345   Function *F = dyn_cast<Function>(GV);
5346   // If it's not a function or is already material, ignore the request.
5347   if (!F || !F->isMaterializable())
5348     return std::error_code();
5349 
5350   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5351   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5352   // If its position is recorded as 0, its body is somewhere in the stream
5353   // but we haven't seen it yet.
5354   if (DFII->second == 0)
5355     if (std::error_code EC = findFunctionInStream(F, DFII))
5356       return EC;
5357 
5358   // Move the bit stream to the saved position of the deferred function body.
5359   Stream.JumpToBit(DFII->second);
5360 
5361   if (std::error_code EC = parseFunctionBody(F))
5362     return EC;
5363   F->setIsMaterializable(false);
5364 
5365   if (StripDebugInfo)
5366     stripDebugInfo(*F);
5367 
5368   // Upgrade any old intrinsic calls in the function.
5369   for (auto &I : UpgradedIntrinsics) {
5370     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5371          UI != UE;) {
5372       User *U = *UI;
5373       ++UI;
5374       if (CallInst *CI = dyn_cast<CallInst>(U))
5375         UpgradeIntrinsicCall(CI, I.second);
5376     }
5377   }
5378 
5379   // Finish fn->subprogram upgrade for materialized functions.
5380   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5381     F->setSubprogram(SP);
5382 
5383   // Bring in any functions that this function forward-referenced via
5384   // blockaddresses.
5385   return materializeForwardReferencedFunctions();
5386 }
5387 
5388 std::error_code BitcodeReader::materializeModule() {
5389   if (std::error_code EC = materializeMetadata())
5390     return EC;
5391 
5392   // Promise to materialize all forward references.
5393   WillMaterializeAllForwardRefs = true;
5394 
5395   // Iterate over the module, deserializing any functions that are still on
5396   // disk.
5397   for (Function &F : *TheModule) {
5398     if (std::error_code EC = materialize(&F))
5399       return EC;
5400   }
5401   // At this point, if there are any function bodies, parse the rest of
5402   // the bits in the module past the last function block we have recorded
5403   // through either lazy scanning or the VST.
5404   if (LastFunctionBlockBit || NextUnreadBit)
5405     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5406                                                      : NextUnreadBit);
5407 
5408   // Check that all block address forward references got resolved (as we
5409   // promised above).
5410   if (!BasicBlockFwdRefs.empty())
5411     return error("Never resolved function from blockaddress");
5412 
5413   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5414   // to prevent this instructions with TBAA tags should be upgraded first.
5415   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5416     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5417 
5418   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5419   // delete the old functions to clean up. We can't do this unless the entire
5420   // module is materialized because there could always be another function body
5421   // with calls to the old function.
5422   for (auto &I : UpgradedIntrinsics) {
5423     for (auto *U : I.first->users()) {
5424       if (CallInst *CI = dyn_cast<CallInst>(U))
5425         UpgradeIntrinsicCall(CI, I.second);
5426     }
5427     if (!I.first->use_empty())
5428       I.first->replaceAllUsesWith(I.second);
5429     I.first->eraseFromParent();
5430   }
5431   UpgradedIntrinsics.clear();
5432 
5433   UpgradeDebugInfo(*TheModule);
5434   return std::error_code();
5435 }
5436 
5437 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5438   return IdentifiedStructTypes;
5439 }
5440 
5441 std::error_code
5442 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5443   if (Streamer)
5444     return initLazyStream(std::move(Streamer));
5445   return initStreamFromBuffer();
5446 }
5447 
5448 std::error_code BitcodeReader::initStreamFromBuffer() {
5449   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5450   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5451 
5452   if (Buffer->getBufferSize() & 3)
5453     return error("Invalid bitcode signature");
5454 
5455   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5456   // The magic number is 0x0B17C0DE stored in little endian.
5457   if (isBitcodeWrapper(BufPtr, BufEnd))
5458     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5459       return error("Invalid bitcode wrapper header");
5460 
5461   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5462   Stream.init(&*StreamFile);
5463 
5464   return std::error_code();
5465 }
5466 
5467 std::error_code
5468 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5469   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5470   // see it.
5471   auto OwnedBytes =
5472       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5473   StreamingMemoryObject &Bytes = *OwnedBytes;
5474   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5475   Stream.init(&*StreamFile);
5476 
5477   unsigned char buf[16];
5478   if (Bytes.readBytes(buf, 16, 0) != 16)
5479     return error("Invalid bitcode signature");
5480 
5481   if (!isBitcode(buf, buf + 16))
5482     return error("Invalid bitcode signature");
5483 
5484   if (isBitcodeWrapper(buf, buf + 4)) {
5485     const unsigned char *bitcodeStart = buf;
5486     const unsigned char *bitcodeEnd = buf + 16;
5487     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5488     Bytes.dropLeadingBytes(bitcodeStart - buf);
5489     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5490   }
5491   return std::error_code();
5492 }
5493 
5494 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5495                                                        const Twine &Message) {
5496   return ::error(DiagnosticHandler, make_error_code(E), Message);
5497 }
5498 
5499 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5500   return ::error(DiagnosticHandler,
5501                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5502 }
5503 
5504 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5505   return ::error(DiagnosticHandler, make_error_code(E));
5506 }
5507 
5508 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5509     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5510     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5511     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5512       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5513 
5514 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5515     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5516     bool CheckGlobalValSummaryPresenceOnly)
5517     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5518       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5519 
5520 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5521 
5522 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5523 
5524 GlobalValue::GUID
5525 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5526   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5527   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5528   return VGI->second;
5529 }
5530 
5531 GlobalValueInfo *
5532 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5533   auto I = SummaryOffsetToInfoMap.find(Offset);
5534   assert(I != SummaryOffsetToInfoMap.end());
5535   return I->second;
5536 }
5537 
5538 // Specialized value symbol table parser used when reading module index
5539 // blocks where we don't actually create global values.
5540 // At the end of this routine the module index is populated with a map
5541 // from global value name to GlobalValueInfo. The global value info contains
5542 // the function block's bitcode offset (if applicable), or the offset into the
5543 // summary section for the combined index.
5544 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5545     uint64_t Offset,
5546     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5547   assert(Offset > 0 && "Expected non-zero VST offset");
5548   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5549 
5550   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5551     return error("Invalid record");
5552 
5553   SmallVector<uint64_t, 64> Record;
5554 
5555   // Read all the records for this value table.
5556   SmallString<128> ValueName;
5557   while (1) {
5558     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5559 
5560     switch (Entry.Kind) {
5561     case BitstreamEntry::SubBlock: // Handled for us already.
5562     case BitstreamEntry::Error:
5563       return error("Malformed block");
5564     case BitstreamEntry::EndBlock:
5565       // Done parsing VST, jump back to wherever we came from.
5566       Stream.JumpToBit(CurrentBit);
5567       return std::error_code();
5568     case BitstreamEntry::Record:
5569       // The interesting case.
5570       break;
5571     }
5572 
5573     // Read a record.
5574     Record.clear();
5575     switch (Stream.readRecord(Entry.ID, Record)) {
5576     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5577       break;
5578     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5579       if (convertToString(Record, 1, ValueName))
5580         return error("Invalid record");
5581       unsigned ValueID = Record[0];
5582       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5583           llvm::make_unique<GlobalValueInfo>();
5584       assert(!SourceFileName.empty());
5585       auto VLI = ValueIdToLinkageMap.find(ValueID);
5586       assert(VLI != ValueIdToLinkageMap.end() &&
5587              "No linkage found for VST entry?");
5588       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5589           ValueName, VLI->second, SourceFileName);
5590       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5591       if (PrintSummaryGUIDs)
5592         dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n";
5593       TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo));
5594       ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID;
5595       ValueName.clear();
5596       break;
5597     }
5598     case bitc::VST_CODE_FNENTRY: {
5599       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5600       if (convertToString(Record, 2, ValueName))
5601         return error("Invalid record");
5602       unsigned ValueID = Record[0];
5603       uint64_t FuncOffset = Record[1];
5604       assert(!IsLazy && "Lazy summary read only supported for combined index");
5605       std::unique_ptr<GlobalValueInfo> FuncInfo =
5606           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5607       assert(!SourceFileName.empty());
5608       auto VLI = ValueIdToLinkageMap.find(ValueID);
5609       assert(VLI != ValueIdToLinkageMap.end() &&
5610              "No linkage found for VST entry?");
5611       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5612           ValueName, VLI->second, SourceFileName);
5613       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5614       if (PrintSummaryGUIDs)
5615         dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n";
5616       TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo));
5617       ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID;
5618 
5619       ValueName.clear();
5620       break;
5621     }
5622     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5623       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5624       unsigned ValueID = Record[0];
5625       uint64_t GlobalValSummaryOffset = Record[1];
5626       GlobalValue::GUID GlobalValGUID = Record[2];
5627       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5628           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5629       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5630       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5631       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5632       break;
5633     }
5634     case bitc::VST_CODE_COMBINED_ENTRY: {
5635       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5636       unsigned ValueID = Record[0];
5637       GlobalValue::GUID RefGUID = Record[1];
5638       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5639       break;
5640     }
5641     }
5642   }
5643 }
5644 
5645 // Parse just the blocks needed for building the index out of the module.
5646 // At the end of this routine the module Index is populated with a map
5647 // from global value name to GlobalValueInfo. The global value info contains
5648 // either the parsed summary information (when parsing summaries
5649 // eagerly), or just to the summary record's offset
5650 // if parsing lazily (IsLazy).
5651 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5652   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5653     return error("Invalid record");
5654 
5655   SmallVector<uint64_t, 64> Record;
5656   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5657   unsigned ValueId = 0;
5658 
5659   // Read the index for this module.
5660   while (1) {
5661     BitstreamEntry Entry = Stream.advance();
5662 
5663     switch (Entry.Kind) {
5664     case BitstreamEntry::Error:
5665       return error("Malformed block");
5666     case BitstreamEntry::EndBlock:
5667       return std::error_code();
5668 
5669     case BitstreamEntry::SubBlock:
5670       if (CheckGlobalValSummaryPresenceOnly) {
5671         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5672           SeenGlobalValSummary = true;
5673           // No need to parse the rest since we found the summary.
5674           return std::error_code();
5675         }
5676         if (Stream.SkipBlock())
5677           return error("Invalid record");
5678         continue;
5679       }
5680       switch (Entry.ID) {
5681       default: // Skip unknown content.
5682         if (Stream.SkipBlock())
5683           return error("Invalid record");
5684         break;
5685       case bitc::BLOCKINFO_BLOCK_ID:
5686         // Need to parse these to get abbrev ids (e.g. for VST)
5687         if (Stream.ReadBlockInfoBlock())
5688           return error("Malformed block");
5689         break;
5690       case bitc::VALUE_SYMTAB_BLOCK_ID:
5691         // Should have been parsed earlier via VSTOffset, unless there
5692         // is no summary section.
5693         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5694                 !SeenGlobalValSummary) &&
5695                "Expected early VST parse via VSTOffset record");
5696         if (Stream.SkipBlock())
5697           return error("Invalid record");
5698         break;
5699       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5700         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5701         assert(!SeenValueSymbolTable &&
5702                "Already read VST when parsing summary block?");
5703         if (std::error_code EC =
5704                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5705           return EC;
5706         SeenValueSymbolTable = true;
5707         SeenGlobalValSummary = true;
5708         if (IsLazy) {
5709           // Lazy parsing of summary info, skip it.
5710           if (Stream.SkipBlock())
5711             return error("Invalid record");
5712         } else if (std::error_code EC = parseEntireSummary())
5713           return EC;
5714         break;
5715       case bitc::MODULE_STRTAB_BLOCK_ID:
5716         if (std::error_code EC = parseModuleStringTable())
5717           return EC;
5718         break;
5719       }
5720       continue;
5721 
5722     case BitstreamEntry::Record: {
5723         Record.clear();
5724         auto BitCode = Stream.readRecord(Entry.ID, Record);
5725         switch (BitCode) {
5726         default:
5727           break; // Default behavior, ignore unknown content.
5728         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5729         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5730           SmallString<128> ValueName;
5731           if (convertToString(Record, 0, ValueName))
5732             return error("Invalid record");
5733           SourceFileName = ValueName.c_str();
5734           break;
5735         }
5736         /// MODULE_CODE_HASH: [5*i32]
5737         case bitc::MODULE_CODE_HASH: {
5738           if (Record.size() != 5)
5739             return error("Invalid hash length " + Twine(Record.size()).str());
5740           if (!TheIndex)
5741             break;
5742           if (TheIndex->modulePaths().empty())
5743             // Does not have any summary emitted.
5744             break;
5745           if (TheIndex->modulePaths().size() != 1)
5746             return error("Don't expect multiple modules defined?");
5747           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5748           int Pos = 0;
5749           for (auto &Val : Record) {
5750             assert(!(Val >> 32) && "Unexpected high bits set");
5751             Hash[Pos++] = Val;
5752           }
5753           break;
5754         }
5755         /// MODULE_CODE_VSTOFFSET: [offset]
5756         case bitc::MODULE_CODE_VSTOFFSET:
5757           if (Record.size() < 1)
5758             return error("Invalid record");
5759           VSTOffset = Record[0];
5760           break;
5761         // GLOBALVAR: [pointer type, isconst, initid,
5762         //             linkage, alignment, section, visibility, threadlocal,
5763         //             unnamed_addr, externally_initialized, dllstorageclass,
5764         //             comdat]
5765         case bitc::MODULE_CODE_GLOBALVAR: {
5766           if (Record.size() < 6)
5767             return error("Invalid record");
5768           uint64_t RawLinkage = Record[3];
5769           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5770           ValueIdToLinkageMap[ValueId++] = Linkage;
5771           break;
5772         }
5773         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5774         //             alignment, section, visibility, gc, unnamed_addr,
5775         //             prologuedata, dllstorageclass, comdat, prefixdata]
5776         case bitc::MODULE_CODE_FUNCTION: {
5777           if (Record.size() < 8)
5778             return error("Invalid record");
5779           uint64_t RawLinkage = Record[3];
5780           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5781           ValueIdToLinkageMap[ValueId++] = Linkage;
5782           break;
5783         }
5784         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5785         // dllstorageclass]
5786         case bitc::MODULE_CODE_ALIAS: {
5787           if (Record.size() < 6)
5788             return error("Invalid record");
5789           uint64_t RawLinkage = Record[3];
5790           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5791           ValueIdToLinkageMap[ValueId++] = Linkage;
5792           break;
5793         }
5794         }
5795       }
5796       continue;
5797     }
5798   }
5799 }
5800 
5801 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5802 // objects in the index.
5803 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5804   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5805     return error("Invalid record");
5806 
5807   SmallVector<uint64_t, 64> Record;
5808 
5809   bool Combined = false;
5810   while (1) {
5811     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5812 
5813     switch (Entry.Kind) {
5814     case BitstreamEntry::SubBlock: // Handled for us already.
5815     case BitstreamEntry::Error:
5816       return error("Malformed block");
5817     case BitstreamEntry::EndBlock:
5818       // For a per-module index, remove any entries that still have empty
5819       // summaries. The VST parsing creates entries eagerly for all symbols,
5820       // but not all have associated summaries (e.g. it doesn't know how to
5821       // distinguish between VST_CODE_ENTRY for function declarations vs global
5822       // variables with initializers that end up with a summary). Remove those
5823       // entries now so that we don't need to rely on the combined index merger
5824       // to clean them up (especially since that may not run for the first
5825       // module's index if we merge into that).
5826       if (!Combined)
5827         TheIndex->removeEmptySummaryEntries();
5828       return std::error_code();
5829     case BitstreamEntry::Record:
5830       // The interesting case.
5831       break;
5832     }
5833 
5834     // Read a record. The record format depends on whether this
5835     // is a per-module index or a combined index file. In the per-module
5836     // case the records contain the associated value's ID for correlation
5837     // with VST entries. In the combined index the correlation is done
5838     // via the bitcode offset of the summary records (which were saved
5839     // in the combined index VST entries). The records also contain
5840     // information used for ThinLTO renaming and importing.
5841     Record.clear();
5842     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5843     auto BitCode = Stream.readRecord(Entry.ID, Record);
5844     switch (BitCode) {
5845     default: // Default behavior: ignore.
5846       break;
5847     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5848     //                n x (valueid, callsitecount)]
5849     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5850     //                        numrefs x valueid,
5851     //                        n x (valueid, callsitecount, profilecount)]
5852     case bitc::FS_PERMODULE:
5853     case bitc::FS_PERMODULE_PROFILE: {
5854       unsigned ValueID = Record[0];
5855       uint64_t RawLinkage = Record[1];
5856       unsigned InstCount = Record[2];
5857       unsigned NumRefs = Record[3];
5858       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5859           getDecodedLinkage(RawLinkage), InstCount);
5860       // The module path string ref set in the summary must be owned by the
5861       // index's module string table. Since we don't have a module path
5862       // string table section in the per-module index, we create a single
5863       // module path string table entry with an empty (0) ID to take
5864       // ownership.
5865       FS->setModulePath(
5866           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5867       static int RefListStartIndex = 4;
5868       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5869       assert(Record.size() >= RefListStartIndex + NumRefs &&
5870              "Record size inconsistent with number of references");
5871       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5872         unsigned RefValueId = Record[I];
5873         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5874         FS->addRefEdge(RefGUID);
5875       }
5876       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5877       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5878            ++I) {
5879         unsigned CalleeValueId = Record[I];
5880         unsigned CallsiteCount = Record[++I];
5881         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5882         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5883         FS->addCallGraphEdge(CalleeGUID,
5884                              CalleeInfo(CallsiteCount, ProfileCount));
5885       }
5886       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5887       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5888       assert(!Info->summary() && "Expected a single summary per VST entry");
5889       Info->setSummary(std::move(FS));
5890       break;
5891     }
5892     // FS_ALIAS: [valueid, linkage, valueid]
5893     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5894     // they expect all aliasee summaries to be available.
5895     case bitc::FS_ALIAS: {
5896       unsigned ValueID = Record[0];
5897       uint64_t RawLinkage = Record[1];
5898       unsigned AliaseeID = Record[2];
5899       std::unique_ptr<AliasSummary> AS =
5900           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
5901       // The module path string ref set in the summary must be owned by the
5902       // index's module string table. Since we don't have a module path
5903       // string table section in the per-module index, we create a single
5904       // module path string table entry with an empty (0) ID to take
5905       // ownership.
5906       AS->setModulePath(
5907           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5908 
5909       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID);
5910       auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID);
5911       if (!AliaseeInfo->summary())
5912         return error("Alias expects aliasee summary to be parsed");
5913       AS->setAliasee(AliaseeInfo->summary());
5914 
5915       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5916       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5917       assert(!Info->summary() && "Expected a single summary per VST entry");
5918       Info->setSummary(std::move(AS));
5919       break;
5920     }
5921     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5922     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5923       unsigned ValueID = Record[0];
5924       uint64_t RawLinkage = Record[1];
5925       std::unique_ptr<GlobalVarSummary> FS =
5926           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5927       FS->setModulePath(
5928           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5929       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5930         unsigned RefValueId = Record[I];
5931         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5932         FS->addRefEdge(RefGUID);
5933       }
5934       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5935       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5936       assert(!Info->summary() && "Expected a single summary per VST entry");
5937       Info->setSummary(std::move(FS));
5938       break;
5939     }
5940     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5941     //               n x (valueid, callsitecount)]
5942     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5943     //                       numrefs x valueid,
5944     //                       n x (valueid, callsitecount, profilecount)]
5945     case bitc::FS_COMBINED:
5946     case bitc::FS_COMBINED_PROFILE: {
5947       uint64_t ModuleId = Record[0];
5948       uint64_t RawLinkage = Record[1];
5949       unsigned InstCount = Record[2];
5950       unsigned NumRefs = Record[3];
5951       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5952           getDecodedLinkage(RawLinkage), InstCount);
5953       FS->setModulePath(ModuleIdMap[ModuleId]);
5954       static int RefListStartIndex = 4;
5955       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5956       assert(Record.size() >= RefListStartIndex + NumRefs &&
5957              "Record size inconsistent with number of references");
5958       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5959         unsigned RefValueId = Record[I];
5960         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5961         FS->addRefEdge(RefGUID);
5962       }
5963       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5964       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5965            ++I) {
5966         unsigned CalleeValueId = Record[I];
5967         unsigned CallsiteCount = Record[++I];
5968         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5969         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5970         FS->addCallGraphEdge(CalleeGUID,
5971                              CalleeInfo(CallsiteCount, ProfileCount));
5972       }
5973       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5974       assert(!Info->summary() && "Expected a single summary per VST entry");
5975       Info->setSummary(std::move(FS));
5976       Combined = true;
5977       break;
5978     }
5979     // FS_COMBINED_ALIAS: [modid, linkage, offset]
5980     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5981     // they expect all aliasee summaries to be available.
5982     case bitc::FS_COMBINED_ALIAS: {
5983       uint64_t ModuleId = Record[0];
5984       uint64_t RawLinkage = Record[1];
5985       uint64_t AliaseeSummaryOffset = Record[2];
5986       std::unique_ptr<AliasSummary> AS =
5987           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
5988       AS->setModulePath(ModuleIdMap[ModuleId]);
5989 
5990       auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset);
5991       if (!AliaseeInfo->summary())
5992         return error("Alias expects aliasee summary to be parsed");
5993       AS->setAliasee(AliaseeInfo->summary());
5994 
5995       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5996       assert(!Info->summary() && "Expected a single summary per VST entry");
5997       Info->setSummary(std::move(AS));
5998       Combined = true;
5999       break;
6000     }
6001     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
6002     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6003       uint64_t ModuleId = Record[0];
6004       uint64_t RawLinkage = Record[1];
6005       std::unique_ptr<GlobalVarSummary> FS =
6006           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
6007       FS->setModulePath(ModuleIdMap[ModuleId]);
6008       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6009         unsigned RefValueId = Record[I];
6010         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
6011         FS->addRefEdge(RefGUID);
6012       }
6013       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6014       assert(!Info->summary() && "Expected a single summary per VST entry");
6015       Info->setSummary(std::move(FS));
6016       Combined = true;
6017       break;
6018     }
6019     }
6020   }
6021   llvm_unreachable("Exit infinite loop");
6022 }
6023 
6024 // Parse the  module string table block into the Index.
6025 // This populates the ModulePathStringTable map in the index.
6026 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6027   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6028     return error("Invalid record");
6029 
6030   SmallVector<uint64_t, 64> Record;
6031 
6032   SmallString<128> ModulePath;
6033   ModulePathStringTableTy::iterator LastSeenModulePath;
6034   while (1) {
6035     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6036 
6037     switch (Entry.Kind) {
6038     case BitstreamEntry::SubBlock: // Handled for us already.
6039     case BitstreamEntry::Error:
6040       return error("Malformed block");
6041     case BitstreamEntry::EndBlock:
6042       return std::error_code();
6043     case BitstreamEntry::Record:
6044       // The interesting case.
6045       break;
6046     }
6047 
6048     Record.clear();
6049     switch (Stream.readRecord(Entry.ID, Record)) {
6050     default: // Default behavior: ignore.
6051       break;
6052     case bitc::MST_CODE_ENTRY: {
6053       // MST_ENTRY: [modid, namechar x N]
6054       uint64_t ModuleId = Record[0];
6055 
6056       if (convertToString(Record, 1, ModulePath))
6057         return error("Invalid record");
6058 
6059       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6060       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6061 
6062       ModulePath.clear();
6063       break;
6064     }
6065     /// MST_CODE_HASH: [5*i32]
6066     case bitc::MST_CODE_HASH: {
6067       if (Record.size() != 5)
6068         return error("Invalid hash length " + Twine(Record.size()).str());
6069       if (LastSeenModulePath == TheIndex->modulePaths().end())
6070         return error("Invalid hash that does not follow a module path");
6071       int Pos = 0;
6072       for (auto &Val : Record) {
6073         assert(!(Val >> 32) && "Unexpected high bits set");
6074         LastSeenModulePath->second.second[Pos++] = Val;
6075       }
6076       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6077       LastSeenModulePath = TheIndex->modulePaths().end();
6078       break;
6079     }
6080     }
6081   }
6082   llvm_unreachable("Exit infinite loop");
6083 }
6084 
6085 // Parse the function info index from the bitcode streamer into the given index.
6086 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6087     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6088   TheIndex = I;
6089 
6090   if (std::error_code EC = initStream(std::move(Streamer)))
6091     return EC;
6092 
6093   // Sniff for the signature.
6094   if (!hasValidBitcodeHeader(Stream))
6095     return error("Invalid bitcode signature");
6096 
6097   // We expect a number of well-defined blocks, though we don't necessarily
6098   // need to understand them all.
6099   while (1) {
6100     if (Stream.AtEndOfStream()) {
6101       // We didn't really read a proper Module block.
6102       return error("Malformed block");
6103     }
6104 
6105     BitstreamEntry Entry =
6106         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6107 
6108     if (Entry.Kind != BitstreamEntry::SubBlock)
6109       return error("Malformed block");
6110 
6111     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6112     // building the function summary index.
6113     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6114       return parseModule();
6115 
6116     if (Stream.SkipBlock())
6117       return error("Invalid record");
6118   }
6119 }
6120 
6121 // Parse the summary information at the given offset in the buffer into
6122 // the index. Used to support lazy parsing of summaries from the
6123 // combined index during importing.
6124 // TODO: This function is not yet complete as it won't have a consumer
6125 // until ThinLTO function importing is added.
6126 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6127     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6128     size_t SummaryOffset) {
6129   TheIndex = I;
6130 
6131   if (std::error_code EC = initStream(std::move(Streamer)))
6132     return EC;
6133 
6134   // Sniff for the signature.
6135   if (!hasValidBitcodeHeader(Stream))
6136     return error("Invalid bitcode signature");
6137 
6138   Stream.JumpToBit(SummaryOffset);
6139 
6140   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6141 
6142   switch (Entry.Kind) {
6143   default:
6144     return error("Malformed block");
6145   case BitstreamEntry::Record:
6146     // The expected case.
6147     break;
6148   }
6149 
6150   // TODO: Read a record. This interface will be completed when ThinLTO
6151   // importing is added so that it can be tested.
6152   SmallVector<uint64_t, 64> Record;
6153   switch (Stream.readRecord(Entry.ID, Record)) {
6154   case bitc::FS_COMBINED:
6155   case bitc::FS_COMBINED_PROFILE:
6156   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6157   default:
6158     return error("Invalid record");
6159   }
6160 
6161   return std::error_code();
6162 }
6163 
6164 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6165     std::unique_ptr<DataStreamer> Streamer) {
6166   if (Streamer)
6167     return initLazyStream(std::move(Streamer));
6168   return initStreamFromBuffer();
6169 }
6170 
6171 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6172   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6173   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6174 
6175   if (Buffer->getBufferSize() & 3)
6176     return error("Invalid bitcode signature");
6177 
6178   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6179   // The magic number is 0x0B17C0DE stored in little endian.
6180   if (isBitcodeWrapper(BufPtr, BufEnd))
6181     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6182       return error("Invalid bitcode wrapper header");
6183 
6184   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6185   Stream.init(&*StreamFile);
6186 
6187   return std::error_code();
6188 }
6189 
6190 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6191     std::unique_ptr<DataStreamer> Streamer) {
6192   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6193   // see it.
6194   auto OwnedBytes =
6195       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6196   StreamingMemoryObject &Bytes = *OwnedBytes;
6197   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6198   Stream.init(&*StreamFile);
6199 
6200   unsigned char buf[16];
6201   if (Bytes.readBytes(buf, 16, 0) != 16)
6202     return error("Invalid bitcode signature");
6203 
6204   if (!isBitcode(buf, buf + 16))
6205     return error("Invalid bitcode signature");
6206 
6207   if (isBitcodeWrapper(buf, buf + 4)) {
6208     const unsigned char *bitcodeStart = buf;
6209     const unsigned char *bitcodeEnd = buf + 16;
6210     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6211     Bytes.dropLeadingBytes(bitcodeStart - buf);
6212     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6213   }
6214   return std::error_code();
6215 }
6216 
6217 namespace {
6218 class BitcodeErrorCategoryType : public std::error_category {
6219   const char *name() const LLVM_NOEXCEPT override {
6220     return "llvm.bitcode";
6221   }
6222   std::string message(int IE) const override {
6223     BitcodeError E = static_cast<BitcodeError>(IE);
6224     switch (E) {
6225     case BitcodeError::InvalidBitcodeSignature:
6226       return "Invalid bitcode signature";
6227     case BitcodeError::CorruptedBitcode:
6228       return "Corrupted bitcode";
6229     }
6230     llvm_unreachable("Unknown error type!");
6231   }
6232 };
6233 } // end anonymous namespace
6234 
6235 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6236 
6237 const std::error_category &llvm::BitcodeErrorCategory() {
6238   return *ErrorCategory;
6239 }
6240 
6241 //===----------------------------------------------------------------------===//
6242 // External interface
6243 //===----------------------------------------------------------------------===//
6244 
6245 static ErrorOr<std::unique_ptr<Module>>
6246 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6247                      BitcodeReader *R, LLVMContext &Context,
6248                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6249   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6250   M->setMaterializer(R);
6251 
6252   auto cleanupOnError = [&](std::error_code EC) {
6253     R->releaseBuffer(); // Never take ownership on error.
6254     return EC;
6255   };
6256 
6257   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6258   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6259                                                ShouldLazyLoadMetadata))
6260     return cleanupOnError(EC);
6261 
6262   if (MaterializeAll) {
6263     // Read in the entire module, and destroy the BitcodeReader.
6264     if (std::error_code EC = M->materializeAll())
6265       return cleanupOnError(EC);
6266   } else {
6267     // Resolve forward references from blockaddresses.
6268     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6269       return cleanupOnError(EC);
6270   }
6271   return std::move(M);
6272 }
6273 
6274 /// \brief Get a lazy one-at-time loading module from bitcode.
6275 ///
6276 /// This isn't always used in a lazy context.  In particular, it's also used by
6277 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6278 /// in forward-referenced functions from block address references.
6279 ///
6280 /// \param[in] MaterializeAll Set to \c true if we should materialize
6281 /// everything.
6282 static ErrorOr<std::unique_ptr<Module>>
6283 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6284                          LLVMContext &Context, bool MaterializeAll,
6285                          bool ShouldLazyLoadMetadata = false) {
6286   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6287 
6288   ErrorOr<std::unique_ptr<Module>> Ret =
6289       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6290                            MaterializeAll, ShouldLazyLoadMetadata);
6291   if (!Ret)
6292     return Ret;
6293 
6294   Buffer.release(); // The BitcodeReader owns it now.
6295   return Ret;
6296 }
6297 
6298 ErrorOr<std::unique_ptr<Module>>
6299 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6300                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6301   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6302                                   ShouldLazyLoadMetadata);
6303 }
6304 
6305 ErrorOr<std::unique_ptr<Module>>
6306 llvm::getStreamedBitcodeModule(StringRef Name,
6307                                std::unique_ptr<DataStreamer> Streamer,
6308                                LLVMContext &Context) {
6309   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6310   BitcodeReader *R = new BitcodeReader(Context);
6311 
6312   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6313                               false);
6314 }
6315 
6316 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6317                                                         LLVMContext &Context) {
6318   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6319   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6320   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6321   // written.  We must defer until the Module has been fully materialized.
6322 }
6323 
6324 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6325                                          LLVMContext &Context) {
6326   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6327   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6328   ErrorOr<std::string> Triple = R->parseTriple();
6329   if (Triple.getError())
6330     return "";
6331   return Triple.get();
6332 }
6333 
6334 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6335                                            LLVMContext &Context) {
6336   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6337   BitcodeReader R(Buf.release(), Context);
6338   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6339   if (ProducerString.getError())
6340     return "";
6341   return ProducerString.get();
6342 }
6343 
6344 // Parse the specified bitcode buffer, returning the function info index.
6345 // If IsLazy is false, parse the entire function summary into
6346 // the index. Otherwise skip the function summary section, and only create
6347 // an index object with a map from function name to function summary offset.
6348 // The index is used to perform lazy function summary reading later.
6349 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6350 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6351                             DiagnosticHandlerFunction DiagnosticHandler,
6352                             bool IsLazy) {
6353   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6354   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6355 
6356   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6357 
6358   auto cleanupOnError = [&](std::error_code EC) {
6359     R.releaseBuffer(); // Never take ownership on error.
6360     return EC;
6361   };
6362 
6363   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6364     return cleanupOnError(EC);
6365 
6366   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6367   return std::move(Index);
6368 }
6369 
6370 // Check if the given bitcode buffer contains a global value summary block.
6371 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6372                                  DiagnosticHandlerFunction DiagnosticHandler) {
6373   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6374   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6375 
6376   auto cleanupOnError = [&](std::error_code EC) {
6377     R.releaseBuffer(); // Never take ownership on error.
6378     return false;
6379   };
6380 
6381   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6382     return cleanupOnError(EC);
6383 
6384   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6385   return R.foundGlobalValSummary();
6386 }
6387 
6388 // This method supports lazy reading of summary data from the combined
6389 // index during ThinLTO function importing. When reading the combined index
6390 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6391 // Then this method is called for each value considered for importing,
6392 // to parse the summary information for the given value name into
6393 // the index.
6394 std::error_code llvm::readGlobalValueSummary(
6395     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6396     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6397   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6398   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6399 
6400   auto cleanupOnError = [&](std::error_code EC) {
6401     R.releaseBuffer(); // Never take ownership on error.
6402     return EC;
6403   };
6404 
6405   // Lookup the given value name in the GlobalValueMap, which may
6406   // contain a list of global value infos in the case of a COMDAT. Walk through
6407   // and parse each summary info at the summary offset
6408   // recorded when parsing the value symbol table.
6409   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6410     size_t SummaryOffset = FI->bitcodeIndex();
6411     if (std::error_code EC =
6412             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6413       return cleanupOnError(EC);
6414   }
6415 
6416   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6417   return std::error_code();
6418 }
6419