1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 /// Decode the flags for GlobalValue in the summary. 972 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 973 uint64_t Version) { 974 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 975 // like getDecodedLinkage() above. Any future change to the linkage enum and 976 // to getDecodedLinkage() will need to be taken into account here as above. 977 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 978 RawFlags = RawFlags >> 4; 979 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 980 // The Live flag wasn't introduced until version 3. For dead stripping 981 // to work correctly on earlier versions, we must conservatively treat all 982 // values as live. 983 bool Live = (RawFlags & 0x2) || Version < 3; 984 bool Local = (RawFlags & 0x4); 985 bool AutoHide = (RawFlags & 0x8); 986 987 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 988 } 989 990 // Decode the flags for GlobalVariable in the summary 991 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 992 return GlobalVarSummary::GVarFlags( 993 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 994 (RawFlags & 0x4) ? true : false, 995 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 996 } 997 998 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 999 switch (Val) { 1000 default: // Map unknown visibilities to default. 1001 case 0: return GlobalValue::DefaultVisibility; 1002 case 1: return GlobalValue::HiddenVisibility; 1003 case 2: return GlobalValue::ProtectedVisibility; 1004 } 1005 } 1006 1007 static GlobalValue::DLLStorageClassTypes 1008 getDecodedDLLStorageClass(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown values to default. 1011 case 0: return GlobalValue::DefaultStorageClass; 1012 case 1: return GlobalValue::DLLImportStorageClass; 1013 case 2: return GlobalValue::DLLExportStorageClass; 1014 } 1015 } 1016 1017 static bool getDecodedDSOLocal(unsigned Val) { 1018 switch(Val) { 1019 default: // Map unknown values to preemptable. 1020 case 0: return false; 1021 case 1: return true; 1022 } 1023 } 1024 1025 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1026 switch (Val) { 1027 case 0: return GlobalVariable::NotThreadLocal; 1028 default: // Map unknown non-zero value to general dynamic. 1029 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1030 case 2: return GlobalVariable::LocalDynamicTLSModel; 1031 case 3: return GlobalVariable::InitialExecTLSModel; 1032 case 4: return GlobalVariable::LocalExecTLSModel; 1033 } 1034 } 1035 1036 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1037 switch (Val) { 1038 default: // Map unknown to UnnamedAddr::None. 1039 case 0: return GlobalVariable::UnnamedAddr::None; 1040 case 1: return GlobalVariable::UnnamedAddr::Global; 1041 case 2: return GlobalVariable::UnnamedAddr::Local; 1042 } 1043 } 1044 1045 static int getDecodedCastOpcode(unsigned Val) { 1046 switch (Val) { 1047 default: return -1; 1048 case bitc::CAST_TRUNC : return Instruction::Trunc; 1049 case bitc::CAST_ZEXT : return Instruction::ZExt; 1050 case bitc::CAST_SEXT : return Instruction::SExt; 1051 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1052 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1053 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1054 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1055 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1056 case bitc::CAST_FPEXT : return Instruction::FPExt; 1057 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1058 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1059 case bitc::CAST_BITCAST : return Instruction::BitCast; 1060 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1061 } 1062 } 1063 1064 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1065 bool IsFP = Ty->isFPOrFPVectorTy(); 1066 // UnOps are only valid for int/fp or vector of int/fp types 1067 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1068 return -1; 1069 1070 switch (Val) { 1071 default: 1072 return -1; 1073 case bitc::UNOP_FNEG: 1074 return IsFP ? Instruction::FNeg : -1; 1075 } 1076 } 1077 1078 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1079 bool IsFP = Ty->isFPOrFPVectorTy(); 1080 // BinOps are only valid for int/fp or vector of int/fp types 1081 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1082 return -1; 1083 1084 switch (Val) { 1085 default: 1086 return -1; 1087 case bitc::BINOP_ADD: 1088 return IsFP ? Instruction::FAdd : Instruction::Add; 1089 case bitc::BINOP_SUB: 1090 return IsFP ? Instruction::FSub : Instruction::Sub; 1091 case bitc::BINOP_MUL: 1092 return IsFP ? Instruction::FMul : Instruction::Mul; 1093 case bitc::BINOP_UDIV: 1094 return IsFP ? -1 : Instruction::UDiv; 1095 case bitc::BINOP_SDIV: 1096 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1097 case bitc::BINOP_UREM: 1098 return IsFP ? -1 : Instruction::URem; 1099 case bitc::BINOP_SREM: 1100 return IsFP ? Instruction::FRem : Instruction::SRem; 1101 case bitc::BINOP_SHL: 1102 return IsFP ? -1 : Instruction::Shl; 1103 case bitc::BINOP_LSHR: 1104 return IsFP ? -1 : Instruction::LShr; 1105 case bitc::BINOP_ASHR: 1106 return IsFP ? -1 : Instruction::AShr; 1107 case bitc::BINOP_AND: 1108 return IsFP ? -1 : Instruction::And; 1109 case bitc::BINOP_OR: 1110 return IsFP ? -1 : Instruction::Or; 1111 case bitc::BINOP_XOR: 1112 return IsFP ? -1 : Instruction::Xor; 1113 } 1114 } 1115 1116 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1117 switch (Val) { 1118 default: return AtomicRMWInst::BAD_BINOP; 1119 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1120 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1121 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1122 case bitc::RMW_AND: return AtomicRMWInst::And; 1123 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1124 case bitc::RMW_OR: return AtomicRMWInst::Or; 1125 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1126 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1127 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1128 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1129 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1130 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1131 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1132 } 1133 } 1134 1135 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1136 switch (Val) { 1137 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1138 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1139 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1140 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1141 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1142 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1143 default: // Map unknown orderings to sequentially-consistent. 1144 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1145 } 1146 } 1147 1148 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1149 switch (Val) { 1150 default: // Map unknown selection kinds to any. 1151 case bitc::COMDAT_SELECTION_KIND_ANY: 1152 return Comdat::Any; 1153 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1154 return Comdat::ExactMatch; 1155 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1156 return Comdat::Largest; 1157 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1158 return Comdat::NoDuplicates; 1159 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1160 return Comdat::SameSize; 1161 } 1162 } 1163 1164 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1165 FastMathFlags FMF; 1166 if (0 != (Val & bitc::UnsafeAlgebra)) 1167 FMF.setFast(); 1168 if (0 != (Val & bitc::AllowReassoc)) 1169 FMF.setAllowReassoc(); 1170 if (0 != (Val & bitc::NoNaNs)) 1171 FMF.setNoNaNs(); 1172 if (0 != (Val & bitc::NoInfs)) 1173 FMF.setNoInfs(); 1174 if (0 != (Val & bitc::NoSignedZeros)) 1175 FMF.setNoSignedZeros(); 1176 if (0 != (Val & bitc::AllowReciprocal)) 1177 FMF.setAllowReciprocal(); 1178 if (0 != (Val & bitc::AllowContract)) 1179 FMF.setAllowContract(true); 1180 if (0 != (Val & bitc::ApproxFunc)) 1181 FMF.setApproxFunc(); 1182 return FMF; 1183 } 1184 1185 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1186 switch (Val) { 1187 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1188 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1189 } 1190 } 1191 1192 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1193 // The type table size is always specified correctly. 1194 if (ID >= TypeList.size()) 1195 return nullptr; 1196 1197 if (Type *Ty = TypeList[ID]) 1198 return Ty; 1199 1200 // If we have a forward reference, the only possible case is when it is to a 1201 // named struct. Just create a placeholder for now. 1202 return TypeList[ID] = createIdentifiedStructType(Context); 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1206 StringRef Name) { 1207 auto *Ret = StructType::create(Context, Name); 1208 IdentifiedStructTypes.push_back(Ret); 1209 return Ret; 1210 } 1211 1212 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1213 auto *Ret = StructType::create(Context); 1214 IdentifiedStructTypes.push_back(Ret); 1215 return Ret; 1216 } 1217 1218 //===----------------------------------------------------------------------===// 1219 // Functions for parsing blocks from the bitcode file 1220 //===----------------------------------------------------------------------===// 1221 1222 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1223 switch (Val) { 1224 case Attribute::EndAttrKinds: 1225 case Attribute::EmptyKey: 1226 case Attribute::TombstoneKey: 1227 llvm_unreachable("Synthetic enumerators which should never get here"); 1228 1229 case Attribute::None: return 0; 1230 case Attribute::ZExt: return 1 << 0; 1231 case Attribute::SExt: return 1 << 1; 1232 case Attribute::NoReturn: return 1 << 2; 1233 case Attribute::InReg: return 1 << 3; 1234 case Attribute::StructRet: return 1 << 4; 1235 case Attribute::NoUnwind: return 1 << 5; 1236 case Attribute::NoAlias: return 1 << 6; 1237 case Attribute::ByVal: return 1 << 7; 1238 case Attribute::Nest: return 1 << 8; 1239 case Attribute::ReadNone: return 1 << 9; 1240 case Attribute::ReadOnly: return 1 << 10; 1241 case Attribute::NoInline: return 1 << 11; 1242 case Attribute::AlwaysInline: return 1 << 12; 1243 case Attribute::OptimizeForSize: return 1 << 13; 1244 case Attribute::StackProtect: return 1 << 14; 1245 case Attribute::StackProtectReq: return 1 << 15; 1246 case Attribute::Alignment: return 31 << 16; 1247 case Attribute::NoCapture: return 1 << 21; 1248 case Attribute::NoRedZone: return 1 << 22; 1249 case Attribute::NoImplicitFloat: return 1 << 23; 1250 case Attribute::Naked: return 1 << 24; 1251 case Attribute::InlineHint: return 1 << 25; 1252 case Attribute::StackAlignment: return 7 << 26; 1253 case Attribute::ReturnsTwice: return 1 << 29; 1254 case Attribute::UWTable: return 1 << 30; 1255 case Attribute::NonLazyBind: return 1U << 31; 1256 case Attribute::SanitizeAddress: return 1ULL << 32; 1257 case Attribute::MinSize: return 1ULL << 33; 1258 case Attribute::NoDuplicate: return 1ULL << 34; 1259 case Attribute::StackProtectStrong: return 1ULL << 35; 1260 case Attribute::SanitizeThread: return 1ULL << 36; 1261 case Attribute::SanitizeMemory: return 1ULL << 37; 1262 case Attribute::NoBuiltin: return 1ULL << 38; 1263 case Attribute::Returned: return 1ULL << 39; 1264 case Attribute::Cold: return 1ULL << 40; 1265 case Attribute::Builtin: return 1ULL << 41; 1266 case Attribute::OptimizeNone: return 1ULL << 42; 1267 case Attribute::InAlloca: return 1ULL << 43; 1268 case Attribute::NonNull: return 1ULL << 44; 1269 case Attribute::JumpTable: return 1ULL << 45; 1270 case Attribute::Convergent: return 1ULL << 46; 1271 case Attribute::SafeStack: return 1ULL << 47; 1272 case Attribute::NoRecurse: return 1ULL << 48; 1273 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1274 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1275 case Attribute::SwiftSelf: return 1ULL << 51; 1276 case Attribute::SwiftError: return 1ULL << 52; 1277 case Attribute::WriteOnly: return 1ULL << 53; 1278 case Attribute::Speculatable: return 1ULL << 54; 1279 case Attribute::StrictFP: return 1ULL << 55; 1280 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1281 case Attribute::NoCfCheck: return 1ULL << 57; 1282 case Attribute::OptForFuzzing: return 1ULL << 58; 1283 case Attribute::ShadowCallStack: return 1ULL << 59; 1284 case Attribute::SpeculativeLoadHardening: 1285 return 1ULL << 60; 1286 case Attribute::ImmArg: 1287 return 1ULL << 61; 1288 case Attribute::WillReturn: 1289 return 1ULL << 62; 1290 case Attribute::NoFree: 1291 return 1ULL << 63; 1292 default: 1293 // Other attributes are not supported in the raw format, 1294 // as we ran out of space. 1295 return 0; 1296 } 1297 llvm_unreachable("Unsupported attribute type"); 1298 } 1299 1300 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1301 if (!Val) return; 1302 1303 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1304 I = Attribute::AttrKind(I + 1)) { 1305 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1306 if (I == Attribute::Alignment) 1307 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1308 else if (I == Attribute::StackAlignment) 1309 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1310 else 1311 B.addAttribute(I); 1312 } 1313 } 1314 } 1315 1316 /// This fills an AttrBuilder object with the LLVM attributes that have 1317 /// been decoded from the given integer. This function must stay in sync with 1318 /// 'encodeLLVMAttributesForBitcode'. 1319 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1320 uint64_t EncodedAttrs) { 1321 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1322 // the bits above 31 down by 11 bits. 1323 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1324 assert((!Alignment || isPowerOf2_32(Alignment)) && 1325 "Alignment must be a power of two."); 1326 1327 if (Alignment) 1328 B.addAlignmentAttr(Alignment); 1329 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1330 (EncodedAttrs & 0xffff)); 1331 } 1332 1333 Error BitcodeReader::parseAttributeBlock() { 1334 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1335 return Err; 1336 1337 if (!MAttributes.empty()) 1338 return error("Invalid multiple blocks"); 1339 1340 SmallVector<uint64_t, 64> Record; 1341 1342 SmallVector<AttributeList, 8> Attrs; 1343 1344 // Read all the records. 1345 while (true) { 1346 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1347 if (!MaybeEntry) 1348 return MaybeEntry.takeError(); 1349 BitstreamEntry Entry = MaybeEntry.get(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return Error::success(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1365 if (!MaybeRecord) 1366 return MaybeRecord.takeError(); 1367 switch (MaybeRecord.get()) { 1368 default: // Default behavior: ignore. 1369 break; 1370 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1371 // Deprecated, but still needed to read old bitcode files. 1372 if (Record.size() & 1) 1373 return error("Invalid record"); 1374 1375 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1376 AttrBuilder B; 1377 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1378 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1379 } 1380 1381 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1382 Attrs.clear(); 1383 break; 1384 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1385 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1386 Attrs.push_back(MAttributeGroups[Record[i]]); 1387 1388 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1389 Attrs.clear(); 1390 break; 1391 } 1392 } 1393 } 1394 1395 // Returns Attribute::None on unrecognized codes. 1396 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1397 switch (Code) { 1398 default: 1399 return Attribute::None; 1400 case bitc::ATTR_KIND_ALIGNMENT: 1401 return Attribute::Alignment; 1402 case bitc::ATTR_KIND_ALWAYS_INLINE: 1403 return Attribute::AlwaysInline; 1404 case bitc::ATTR_KIND_ARGMEMONLY: 1405 return Attribute::ArgMemOnly; 1406 case bitc::ATTR_KIND_BUILTIN: 1407 return Attribute::Builtin; 1408 case bitc::ATTR_KIND_BY_VAL: 1409 return Attribute::ByVal; 1410 case bitc::ATTR_KIND_IN_ALLOCA: 1411 return Attribute::InAlloca; 1412 case bitc::ATTR_KIND_COLD: 1413 return Attribute::Cold; 1414 case bitc::ATTR_KIND_CONVERGENT: 1415 return Attribute::Convergent; 1416 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1417 return Attribute::InaccessibleMemOnly; 1418 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1419 return Attribute::InaccessibleMemOrArgMemOnly; 1420 case bitc::ATTR_KIND_INLINE_HINT: 1421 return Attribute::InlineHint; 1422 case bitc::ATTR_KIND_IN_REG: 1423 return Attribute::InReg; 1424 case bitc::ATTR_KIND_JUMP_TABLE: 1425 return Attribute::JumpTable; 1426 case bitc::ATTR_KIND_MIN_SIZE: 1427 return Attribute::MinSize; 1428 case bitc::ATTR_KIND_NAKED: 1429 return Attribute::Naked; 1430 case bitc::ATTR_KIND_NEST: 1431 return Attribute::Nest; 1432 case bitc::ATTR_KIND_NO_ALIAS: 1433 return Attribute::NoAlias; 1434 case bitc::ATTR_KIND_NO_BUILTIN: 1435 return Attribute::NoBuiltin; 1436 case bitc::ATTR_KIND_NO_CAPTURE: 1437 return Attribute::NoCapture; 1438 case bitc::ATTR_KIND_NO_DUPLICATE: 1439 return Attribute::NoDuplicate; 1440 case bitc::ATTR_KIND_NOFREE: 1441 return Attribute::NoFree; 1442 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1443 return Attribute::NoImplicitFloat; 1444 case bitc::ATTR_KIND_NO_INLINE: 1445 return Attribute::NoInline; 1446 case bitc::ATTR_KIND_NO_RECURSE: 1447 return Attribute::NoRecurse; 1448 case bitc::ATTR_KIND_NO_MERGE: 1449 return Attribute::NoMerge; 1450 case bitc::ATTR_KIND_NON_LAZY_BIND: 1451 return Attribute::NonLazyBind; 1452 case bitc::ATTR_KIND_NON_NULL: 1453 return Attribute::NonNull; 1454 case bitc::ATTR_KIND_DEREFERENCEABLE: 1455 return Attribute::Dereferenceable; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1457 return Attribute::DereferenceableOrNull; 1458 case bitc::ATTR_KIND_ALLOC_SIZE: 1459 return Attribute::AllocSize; 1460 case bitc::ATTR_KIND_NO_RED_ZONE: 1461 return Attribute::NoRedZone; 1462 case bitc::ATTR_KIND_NO_RETURN: 1463 return Attribute::NoReturn; 1464 case bitc::ATTR_KIND_NOSYNC: 1465 return Attribute::NoSync; 1466 case bitc::ATTR_KIND_NOCF_CHECK: 1467 return Attribute::NoCfCheck; 1468 case bitc::ATTR_KIND_NO_UNWIND: 1469 return Attribute::NoUnwind; 1470 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1471 return Attribute::NullPointerIsValid; 1472 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1473 return Attribute::OptForFuzzing; 1474 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1475 return Attribute::OptimizeForSize; 1476 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1477 return Attribute::OptimizeNone; 1478 case bitc::ATTR_KIND_READ_NONE: 1479 return Attribute::ReadNone; 1480 case bitc::ATTR_KIND_READ_ONLY: 1481 return Attribute::ReadOnly; 1482 case bitc::ATTR_KIND_RETURNED: 1483 return Attribute::Returned; 1484 case bitc::ATTR_KIND_RETURNS_TWICE: 1485 return Attribute::ReturnsTwice; 1486 case bitc::ATTR_KIND_S_EXT: 1487 return Attribute::SExt; 1488 case bitc::ATTR_KIND_SPECULATABLE: 1489 return Attribute::Speculatable; 1490 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1491 return Attribute::StackAlignment; 1492 case bitc::ATTR_KIND_STACK_PROTECT: 1493 return Attribute::StackProtect; 1494 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1495 return Attribute::StackProtectReq; 1496 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1497 return Attribute::StackProtectStrong; 1498 case bitc::ATTR_KIND_SAFESTACK: 1499 return Attribute::SafeStack; 1500 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1501 return Attribute::ShadowCallStack; 1502 case bitc::ATTR_KIND_STRICT_FP: 1503 return Attribute::StrictFP; 1504 case bitc::ATTR_KIND_STRUCT_RET: 1505 return Attribute::StructRet; 1506 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1507 return Attribute::SanitizeAddress; 1508 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1509 return Attribute::SanitizeHWAddress; 1510 case bitc::ATTR_KIND_SANITIZE_THREAD: 1511 return Attribute::SanitizeThread; 1512 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1513 return Attribute::SanitizeMemory; 1514 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1515 return Attribute::SpeculativeLoadHardening; 1516 case bitc::ATTR_KIND_SWIFT_ERROR: 1517 return Attribute::SwiftError; 1518 case bitc::ATTR_KIND_SWIFT_SELF: 1519 return Attribute::SwiftSelf; 1520 case bitc::ATTR_KIND_UW_TABLE: 1521 return Attribute::UWTable; 1522 case bitc::ATTR_KIND_WILLRETURN: 1523 return Attribute::WillReturn; 1524 case bitc::ATTR_KIND_WRITEONLY: 1525 return Attribute::WriteOnly; 1526 case bitc::ATTR_KIND_Z_EXT: 1527 return Attribute::ZExt; 1528 case bitc::ATTR_KIND_IMMARG: 1529 return Attribute::ImmArg; 1530 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1531 return Attribute::SanitizeMemTag; 1532 case bitc::ATTR_KIND_PREALLOCATED: 1533 return Attribute::Preallocated; 1534 case bitc::ATTR_KIND_NOUNDEF: 1535 return Attribute::NoUndef; 1536 case bitc::ATTR_KIND_BYREF: 1537 return Attribute::ByRef; 1538 } 1539 } 1540 1541 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1542 MaybeAlign &Alignment) { 1543 // Note: Alignment in bitcode files is incremented by 1, so that zero 1544 // can be used for default alignment. 1545 if (Exponent > Value::MaxAlignmentExponent + 1) 1546 return error("Invalid alignment value"); 1547 Alignment = decodeMaybeAlign(Exponent); 1548 return Error::success(); 1549 } 1550 1551 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1552 *Kind = getAttrFromCode(Code); 1553 if (*Kind == Attribute::None) 1554 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1555 return Error::success(); 1556 } 1557 1558 Error BitcodeReader::parseAttributeGroupBlock() { 1559 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1560 return Err; 1561 1562 if (!MAttributeGroups.empty()) 1563 return error("Invalid multiple blocks"); 1564 1565 SmallVector<uint64_t, 64> Record; 1566 1567 // Read all the records. 1568 while (true) { 1569 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1570 if (!MaybeEntry) 1571 return MaybeEntry.takeError(); 1572 BitstreamEntry Entry = MaybeEntry.get(); 1573 1574 switch (Entry.Kind) { 1575 case BitstreamEntry::SubBlock: // Handled for us already. 1576 case BitstreamEntry::Error: 1577 return error("Malformed block"); 1578 case BitstreamEntry::EndBlock: 1579 return Error::success(); 1580 case BitstreamEntry::Record: 1581 // The interesting case. 1582 break; 1583 } 1584 1585 // Read a record. 1586 Record.clear(); 1587 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1588 if (!MaybeRecord) 1589 return MaybeRecord.takeError(); 1590 switch (MaybeRecord.get()) { 1591 default: // Default behavior: ignore. 1592 break; 1593 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1594 if (Record.size() < 3) 1595 return error("Invalid record"); 1596 1597 uint64_t GrpID = Record[0]; 1598 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1599 1600 AttrBuilder B; 1601 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1602 if (Record[i] == 0) { // Enum attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 1607 // Upgrade old-style byval attribute to one with a type, even if it's 1608 // nullptr. We will have to insert the real type when we associate 1609 // this AttributeList with a function. 1610 if (Kind == Attribute::ByVal) 1611 B.addByValAttr(nullptr); 1612 else if (Kind == Attribute::StructRet) 1613 B.addStructRetAttr(nullptr); 1614 1615 B.addAttribute(Kind); 1616 } else if (Record[i] == 1) { // Integer attribute 1617 Attribute::AttrKind Kind; 1618 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1619 return Err; 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1631 bool HasValue = (Record[i++] == 4); 1632 SmallString<64> KindStr; 1633 SmallString<64> ValStr; 1634 1635 while (Record[i] != 0 && i != e) 1636 KindStr += Record[i++]; 1637 assert(Record[i] == 0 && "Kind string not null terminated"); 1638 1639 if (HasValue) { 1640 // Has a value associated with it. 1641 ++i; // Skip the '0' that terminates the "kind" string. 1642 while (Record[i] != 0 && i != e) 1643 ValStr += Record[i++]; 1644 assert(Record[i] == 0 && "Value string not null terminated"); 1645 } 1646 1647 B.addAttribute(KindStr.str(), ValStr.str()); 1648 } else { 1649 assert((Record[i] == 5 || Record[i] == 6) && 1650 "Invalid attribute group entry"); 1651 bool HasType = Record[i] == 6; 1652 Attribute::AttrKind Kind; 1653 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1654 return Err; 1655 if (Kind == Attribute::ByVal) { 1656 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1657 } else if (Kind == Attribute::StructRet) { 1658 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1659 } else if (Kind == Attribute::ByRef) { 1660 B.addByRefAttr(getTypeByID(Record[++i])); 1661 } else if (Kind == Attribute::Preallocated) { 1662 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1663 } 1664 } 1665 } 1666 1667 UpgradeAttributes(B); 1668 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1669 break; 1670 } 1671 } 1672 } 1673 } 1674 1675 Error BitcodeReader::parseTypeTable() { 1676 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1677 return Err; 1678 1679 return parseTypeTableBody(); 1680 } 1681 1682 Error BitcodeReader::parseTypeTableBody() { 1683 if (!TypeList.empty()) 1684 return error("Invalid multiple blocks"); 1685 1686 SmallVector<uint64_t, 64> Record; 1687 unsigned NumRecords = 0; 1688 1689 SmallString<64> TypeName; 1690 1691 // Read all the records for this type table. 1692 while (true) { 1693 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1694 if (!MaybeEntry) 1695 return MaybeEntry.takeError(); 1696 BitstreamEntry Entry = MaybeEntry.get(); 1697 1698 switch (Entry.Kind) { 1699 case BitstreamEntry::SubBlock: // Handled for us already. 1700 case BitstreamEntry::Error: 1701 return error("Malformed block"); 1702 case BitstreamEntry::EndBlock: 1703 if (NumRecords != TypeList.size()) 1704 return error("Malformed block"); 1705 return Error::success(); 1706 case BitstreamEntry::Record: 1707 // The interesting case. 1708 break; 1709 } 1710 1711 // Read a record. 1712 Record.clear(); 1713 Type *ResultTy = nullptr; 1714 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1715 if (!MaybeRecord) 1716 return MaybeRecord.takeError(); 1717 switch (MaybeRecord.get()) { 1718 default: 1719 return error("Invalid value"); 1720 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1721 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1722 // type list. This allows us to reserve space. 1723 if (Record.empty()) 1724 return error("Invalid record"); 1725 TypeList.resize(Record[0]); 1726 continue; 1727 case bitc::TYPE_CODE_VOID: // VOID 1728 ResultTy = Type::getVoidTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_HALF: // HALF 1731 ResultTy = Type::getHalfTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1734 ResultTy = Type::getBFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_FLOAT: // FLOAT 1737 ResultTy = Type::getFloatTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1740 ResultTy = Type::getDoubleTy(Context); 1741 break; 1742 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1743 ResultTy = Type::getX86_FP80Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_FP128: // FP128 1746 ResultTy = Type::getFP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1749 ResultTy = Type::getPPC_FP128Ty(Context); 1750 break; 1751 case bitc::TYPE_CODE_LABEL: // LABEL 1752 ResultTy = Type::getLabelTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_METADATA: // METADATA 1755 ResultTy = Type::getMetadataTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1758 ResultTy = Type::getX86_MMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_FUNCTION_OLD: { 1789 // Deprecated, but still needed to read old bitcode files. 1790 // FUNCTION: [vararg, attrid, retty, paramty x N] 1791 if (Record.size() < 3) 1792 return error("Invalid record"); 1793 SmallVector<Type*, 8> ArgTys; 1794 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1795 if (Type *T = getTypeByID(Record[i])) 1796 ArgTys.push_back(T); 1797 else 1798 break; 1799 } 1800 1801 ResultTy = getTypeByID(Record[2]); 1802 if (!ResultTy || ArgTys.size() < Record.size()-3) 1803 return error("Invalid type"); 1804 1805 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1806 break; 1807 } 1808 case bitc::TYPE_CODE_FUNCTION: { 1809 // FUNCTION: [vararg, retty, paramty x N] 1810 if (Record.size() < 2) 1811 return error("Invalid record"); 1812 SmallVector<Type*, 8> ArgTys; 1813 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1814 if (Type *T = getTypeByID(Record[i])) { 1815 if (!FunctionType::isValidArgumentType(T)) 1816 return error("Invalid function argument type"); 1817 ArgTys.push_back(T); 1818 } 1819 else 1820 break; 1821 } 1822 1823 ResultTy = getTypeByID(Record[1]); 1824 if (!ResultTy || ArgTys.size() < Record.size()-2) 1825 return error("Invalid type"); 1826 1827 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1828 break; 1829 } 1830 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1831 if (Record.empty()) 1832 return error("Invalid record"); 1833 SmallVector<Type*, 8> EltTys; 1834 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1835 if (Type *T = getTypeByID(Record[i])) 1836 EltTys.push_back(T); 1837 else 1838 break; 1839 } 1840 if (EltTys.size() != Record.size()-1) 1841 return error("Invalid type"); 1842 ResultTy = StructType::get(Context, EltTys, Record[0]); 1843 break; 1844 } 1845 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1846 if (convertToString(Record, 0, TypeName)) 1847 return error("Invalid record"); 1848 continue; 1849 1850 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1851 if (Record.empty()) 1852 return error("Invalid record"); 1853 1854 if (NumRecords >= TypeList.size()) 1855 return error("Invalid TYPE table"); 1856 1857 // Check to see if this was forward referenced, if so fill in the temp. 1858 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1859 if (Res) { 1860 Res->setName(TypeName); 1861 TypeList[NumRecords] = nullptr; 1862 } else // Otherwise, create a new struct. 1863 Res = createIdentifiedStructType(Context, TypeName); 1864 TypeName.clear(); 1865 1866 SmallVector<Type*, 8> EltTys; 1867 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1868 if (Type *T = getTypeByID(Record[i])) 1869 EltTys.push_back(T); 1870 else 1871 break; 1872 } 1873 if (EltTys.size() != Record.size()-1) 1874 return error("Invalid record"); 1875 Res->setBody(EltTys, Record[0]); 1876 ResultTy = Res; 1877 break; 1878 } 1879 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1880 if (Record.size() != 1) 1881 return error("Invalid record"); 1882 1883 if (NumRecords >= TypeList.size()) 1884 return error("Invalid TYPE table"); 1885 1886 // Check to see if this was forward referenced, if so fill in the temp. 1887 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1888 if (Res) { 1889 Res->setName(TypeName); 1890 TypeList[NumRecords] = nullptr; 1891 } else // Otherwise, create a new struct with no body. 1892 Res = createIdentifiedStructType(Context, TypeName); 1893 TypeName.clear(); 1894 ResultTy = Res; 1895 break; 1896 } 1897 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1898 if (Record.size() < 2) 1899 return error("Invalid record"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 ResultTy = ArrayType::get(ResultTy, Record[0]); 1904 break; 1905 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1906 // [numelts, eltty, scalable] 1907 if (Record.size() < 2) 1908 return error("Invalid record"); 1909 if (Record[0] == 0) 1910 return error("Invalid vector length"); 1911 ResultTy = getTypeByID(Record[1]); 1912 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1913 return error("Invalid type"); 1914 bool Scalable = Record.size() > 2 ? Record[2] : false; 1915 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1916 break; 1917 } 1918 1919 if (NumRecords >= TypeList.size()) 1920 return error("Invalid TYPE table"); 1921 if (TypeList[NumRecords]) 1922 return error( 1923 "Invalid TYPE table: Only named structs can be forward referenced"); 1924 assert(ResultTy && "Didn't read a type?"); 1925 TypeList[NumRecords++] = ResultTy; 1926 } 1927 } 1928 1929 Error BitcodeReader::parseOperandBundleTags() { 1930 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1931 return Err; 1932 1933 if (!BundleTags.empty()) 1934 return error("Invalid multiple blocks"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 while (true) { 1939 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1940 if (!MaybeEntry) 1941 return MaybeEntry.takeError(); 1942 BitstreamEntry Entry = MaybeEntry.get(); 1943 1944 switch (Entry.Kind) { 1945 case BitstreamEntry::SubBlock: // Handled for us already. 1946 case BitstreamEntry::Error: 1947 return error("Malformed block"); 1948 case BitstreamEntry::EndBlock: 1949 return Error::success(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Tags are implicitly mapped to integers by their order. 1956 1957 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1958 if (!MaybeRecord) 1959 return MaybeRecord.takeError(); 1960 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1961 return error("Invalid record"); 1962 1963 // OPERAND_BUNDLE_TAG: [strchr x N] 1964 BundleTags.emplace_back(); 1965 if (convertToString(Record, 0, BundleTags.back())) 1966 return error("Invalid record"); 1967 Record.clear(); 1968 } 1969 } 1970 1971 Error BitcodeReader::parseSyncScopeNames() { 1972 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1973 return Err; 1974 1975 if (!SSIDs.empty()) 1976 return error("Invalid multiple synchronization scope names blocks"); 1977 1978 SmallVector<uint64_t, 64> Record; 1979 while (true) { 1980 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1981 if (!MaybeEntry) 1982 return MaybeEntry.takeError(); 1983 BitstreamEntry Entry = MaybeEntry.get(); 1984 1985 switch (Entry.Kind) { 1986 case BitstreamEntry::SubBlock: // Handled for us already. 1987 case BitstreamEntry::Error: 1988 return error("Malformed block"); 1989 case BitstreamEntry::EndBlock: 1990 if (SSIDs.empty()) 1991 return error("Invalid empty synchronization scope names block"); 1992 return Error::success(); 1993 case BitstreamEntry::Record: 1994 // The interesting case. 1995 break; 1996 } 1997 1998 // Synchronization scope names are implicitly mapped to synchronization 1999 // scope IDs by their order. 2000 2001 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2002 if (!MaybeRecord) 2003 return MaybeRecord.takeError(); 2004 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2005 return error("Invalid record"); 2006 2007 SmallString<16> SSN; 2008 if (convertToString(Record, 0, SSN)) 2009 return error("Invalid record"); 2010 2011 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2012 Record.clear(); 2013 } 2014 } 2015 2016 /// Associate a value with its name from the given index in the provided record. 2017 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2018 unsigned NameIndex, Triple &TT) { 2019 SmallString<128> ValueName; 2020 if (convertToString(Record, NameIndex, ValueName)) 2021 return error("Invalid record"); 2022 unsigned ValueID = Record[0]; 2023 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2024 return error("Invalid record"); 2025 Value *V = ValueList[ValueID]; 2026 2027 StringRef NameStr(ValueName.data(), ValueName.size()); 2028 if (NameStr.find_first_of(0) != StringRef::npos) 2029 return error("Invalid value name"); 2030 V->setName(NameStr); 2031 auto *GO = dyn_cast<GlobalObject>(V); 2032 if (GO) { 2033 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2034 if (TT.supportsCOMDAT()) 2035 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2036 else 2037 GO->setComdat(nullptr); 2038 } 2039 } 2040 return V; 2041 } 2042 2043 /// Helper to note and return the current location, and jump to the given 2044 /// offset. 2045 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2046 BitstreamCursor &Stream) { 2047 // Save the current parsing location so we can jump back at the end 2048 // of the VST read. 2049 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2050 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2051 return std::move(JumpFailed); 2052 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2053 if (!MaybeEntry) 2054 return MaybeEntry.takeError(); 2055 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2056 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2057 return CurrentBit; 2058 } 2059 2060 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2061 Function *F, 2062 ArrayRef<uint64_t> Record) { 2063 // Note that we subtract 1 here because the offset is relative to one word 2064 // before the start of the identification or module block, which was 2065 // historically always the start of the regular bitcode header. 2066 uint64_t FuncWordOffset = Record[1] - 1; 2067 uint64_t FuncBitOffset = FuncWordOffset * 32; 2068 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2069 // Set the LastFunctionBlockBit to point to the last function block. 2070 // Later when parsing is resumed after function materialization, 2071 // we can simply skip that last function block. 2072 if (FuncBitOffset > LastFunctionBlockBit) 2073 LastFunctionBlockBit = FuncBitOffset; 2074 } 2075 2076 /// Read a new-style GlobalValue symbol table. 2077 Error BitcodeReader::parseGlobalValueSymbolTable() { 2078 unsigned FuncBitcodeOffsetDelta = 2079 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2080 2081 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2082 return Err; 2083 2084 SmallVector<uint64_t, 64> Record; 2085 while (true) { 2086 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2087 if (!MaybeEntry) 2088 return MaybeEntry.takeError(); 2089 BitstreamEntry Entry = MaybeEntry.get(); 2090 2091 switch (Entry.Kind) { 2092 case BitstreamEntry::SubBlock: 2093 case BitstreamEntry::Error: 2094 return error("Malformed block"); 2095 case BitstreamEntry::EndBlock: 2096 return Error::success(); 2097 case BitstreamEntry::Record: 2098 break; 2099 } 2100 2101 Record.clear(); 2102 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2103 if (!MaybeRecord) 2104 return MaybeRecord.takeError(); 2105 switch (MaybeRecord.get()) { 2106 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2107 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2108 cast<Function>(ValueList[Record[0]]), Record); 2109 break; 2110 } 2111 } 2112 } 2113 2114 /// Parse the value symbol table at either the current parsing location or 2115 /// at the given bit offset if provided. 2116 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2117 uint64_t CurrentBit; 2118 // Pass in the Offset to distinguish between calling for the module-level 2119 // VST (where we want to jump to the VST offset) and the function-level 2120 // VST (where we don't). 2121 if (Offset > 0) { 2122 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2123 if (!MaybeCurrentBit) 2124 return MaybeCurrentBit.takeError(); 2125 CurrentBit = MaybeCurrentBit.get(); 2126 // If this module uses a string table, read this as a module-level VST. 2127 if (UseStrtab) { 2128 if (Error Err = parseGlobalValueSymbolTable()) 2129 return Err; 2130 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2131 return JumpFailed; 2132 return Error::success(); 2133 } 2134 // Otherwise, the VST will be in a similar format to a function-level VST, 2135 // and will contain symbol names. 2136 } 2137 2138 // Compute the delta between the bitcode indices in the VST (the word offset 2139 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2140 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2141 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2142 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2143 // just before entering the VST subblock because: 1) the EnterSubBlock 2144 // changes the AbbrevID width; 2) the VST block is nested within the same 2145 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2146 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2147 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2148 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2149 unsigned FuncBitcodeOffsetDelta = 2150 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2151 2152 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2153 return Err; 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 Triple TT(TheModule->getTargetTriple()); 2158 2159 // Read all the records for this value table. 2160 SmallString<128> ValueName; 2161 2162 while (true) { 2163 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2164 if (!MaybeEntry) 2165 return MaybeEntry.takeError(); 2166 BitstreamEntry Entry = MaybeEntry.get(); 2167 2168 switch (Entry.Kind) { 2169 case BitstreamEntry::SubBlock: // Handled for us already. 2170 case BitstreamEntry::Error: 2171 return error("Malformed block"); 2172 case BitstreamEntry::EndBlock: 2173 if (Offset > 0) 2174 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2175 return JumpFailed; 2176 return Error::success(); 2177 case BitstreamEntry::Record: 2178 // The interesting case. 2179 break; 2180 } 2181 2182 // Read a record. 2183 Record.clear(); 2184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2185 if (!MaybeRecord) 2186 return MaybeRecord.takeError(); 2187 switch (MaybeRecord.get()) { 2188 default: // Default behavior: unknown type. 2189 break; 2190 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2191 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2192 if (Error Err = ValOrErr.takeError()) 2193 return Err; 2194 ValOrErr.get(); 2195 break; 2196 } 2197 case bitc::VST_CODE_FNENTRY: { 2198 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2199 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2200 if (Error Err = ValOrErr.takeError()) 2201 return Err; 2202 Value *V = ValOrErr.get(); 2203 2204 // Ignore function offsets emitted for aliases of functions in older 2205 // versions of LLVM. 2206 if (auto *F = dyn_cast<Function>(V)) 2207 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2208 break; 2209 } 2210 case bitc::VST_CODE_BBENTRY: { 2211 if (convertToString(Record, 1, ValueName)) 2212 return error("Invalid record"); 2213 BasicBlock *BB = getBasicBlock(Record[0]); 2214 if (!BB) 2215 return error("Invalid record"); 2216 2217 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2218 ValueName.clear(); 2219 break; 2220 } 2221 } 2222 } 2223 } 2224 2225 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2226 /// encoding. 2227 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2228 if ((V & 1) == 0) 2229 return V >> 1; 2230 if (V != 1) 2231 return -(V >> 1); 2232 // There is no such thing as -0 with integers. "-0" really means MININT. 2233 return 1ULL << 63; 2234 } 2235 2236 /// Resolve all of the initializers for global values and aliases that we can. 2237 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2238 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2239 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2240 IndirectSymbolInitWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2242 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2243 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2244 2245 GlobalInitWorklist.swap(GlobalInits); 2246 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2247 FunctionPrefixWorklist.swap(FunctionPrefixes); 2248 FunctionPrologueWorklist.swap(FunctionPrologues); 2249 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2250 2251 while (!GlobalInitWorklist.empty()) { 2252 unsigned ValID = GlobalInitWorklist.back().second; 2253 if (ValID >= ValueList.size()) { 2254 // Not ready to resolve this yet, it requires something later in the file. 2255 GlobalInits.push_back(GlobalInitWorklist.back()); 2256 } else { 2257 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2258 GlobalInitWorklist.back().first->setInitializer(C); 2259 else 2260 return error("Expected a constant"); 2261 } 2262 GlobalInitWorklist.pop_back(); 2263 } 2264 2265 while (!IndirectSymbolInitWorklist.empty()) { 2266 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2267 if (ValID >= ValueList.size()) { 2268 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2269 } else { 2270 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2271 if (!C) 2272 return error("Expected a constant"); 2273 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2274 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GIS->setIndirectSymbol(C); 2277 } 2278 IndirectSymbolInitWorklist.pop_back(); 2279 } 2280 2281 while (!FunctionPrefixWorklist.empty()) { 2282 unsigned ValID = FunctionPrefixWorklist.back().second; 2283 if (ValID >= ValueList.size()) { 2284 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2285 } else { 2286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2287 FunctionPrefixWorklist.back().first->setPrefixData(C); 2288 else 2289 return error("Expected a constant"); 2290 } 2291 FunctionPrefixWorklist.pop_back(); 2292 } 2293 2294 while (!FunctionPrologueWorklist.empty()) { 2295 unsigned ValID = FunctionPrologueWorklist.back().second; 2296 if (ValID >= ValueList.size()) { 2297 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2298 } else { 2299 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2300 FunctionPrologueWorklist.back().first->setPrologueData(C); 2301 else 2302 return error("Expected a constant"); 2303 } 2304 FunctionPrologueWorklist.pop_back(); 2305 } 2306 2307 while (!FunctionPersonalityFnWorklist.empty()) { 2308 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2309 if (ValID >= ValueList.size()) { 2310 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2311 } else { 2312 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2313 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2314 else 2315 return error("Expected a constant"); 2316 } 2317 FunctionPersonalityFnWorklist.pop_back(); 2318 } 2319 2320 return Error::success(); 2321 } 2322 2323 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2324 SmallVector<uint64_t, 8> Words(Vals.size()); 2325 transform(Vals, Words.begin(), 2326 BitcodeReader::decodeSignRotatedValue); 2327 2328 return APInt(TypeBits, Words); 2329 } 2330 2331 Error BitcodeReader::parseConstants() { 2332 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2333 return Err; 2334 2335 SmallVector<uint64_t, 64> Record; 2336 2337 // Read all the records for this value table. 2338 Type *CurTy = Type::getInt32Ty(Context); 2339 Type *CurFullTy = Type::getInt32Ty(Context); 2340 unsigned NextCstNo = ValueList.size(); 2341 2342 struct DelayedShufTy { 2343 VectorType *OpTy; 2344 VectorType *RTy; 2345 Type *CurFullTy; 2346 uint64_t Op0Idx; 2347 uint64_t Op1Idx; 2348 uint64_t Op2Idx; 2349 unsigned CstNo; 2350 }; 2351 std::vector<DelayedShufTy> DelayedShuffles; 2352 while (true) { 2353 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2354 if (!MaybeEntry) 2355 return MaybeEntry.takeError(); 2356 BitstreamEntry Entry = MaybeEntry.get(); 2357 2358 switch (Entry.Kind) { 2359 case BitstreamEntry::SubBlock: // Handled for us already. 2360 case BitstreamEntry::Error: 2361 return error("Malformed block"); 2362 case BitstreamEntry::EndBlock: 2363 // Once all the constants have been read, go through and resolve forward 2364 // references. 2365 // 2366 // We have to treat shuffles specially because they don't have three 2367 // operands anymore. We need to convert the shuffle mask into an array, 2368 // and we can't convert a forward reference. 2369 for (auto &DelayedShuffle : DelayedShuffles) { 2370 VectorType *OpTy = DelayedShuffle.OpTy; 2371 VectorType *RTy = DelayedShuffle.RTy; 2372 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2373 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2374 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2375 uint64_t CstNo = DelayedShuffle.CstNo; 2376 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2377 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2378 Type *ShufTy = 2379 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2380 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2381 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2382 return error("Invalid shufflevector operands"); 2383 SmallVector<int, 16> Mask; 2384 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2385 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2386 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2387 } 2388 2389 if (NextCstNo != ValueList.size()) 2390 return error("Invalid constant reference"); 2391 2392 ValueList.resolveConstantForwardRefs(); 2393 return Error::success(); 2394 case BitstreamEntry::Record: 2395 // The interesting case. 2396 break; 2397 } 2398 2399 // Read a record. 2400 Record.clear(); 2401 Type *VoidType = Type::getVoidTy(Context); 2402 Value *V = nullptr; 2403 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2404 if (!MaybeBitCode) 2405 return MaybeBitCode.takeError(); 2406 switch (unsigned BitCode = MaybeBitCode.get()) { 2407 default: // Default behavior: unknown constant 2408 case bitc::CST_CODE_UNDEF: // UNDEF 2409 V = UndefValue::get(CurTy); 2410 break; 2411 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2412 if (Record.empty()) 2413 return error("Invalid record"); 2414 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2415 return error("Invalid record"); 2416 if (TypeList[Record[0]] == VoidType) 2417 return error("Invalid constant type"); 2418 CurFullTy = TypeList[Record[0]]; 2419 CurTy = flattenPointerTypes(CurFullTy); 2420 continue; // Skip the ValueList manipulation. 2421 case bitc::CST_CODE_NULL: // NULL 2422 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2423 return error("Invalid type for a constant null value"); 2424 V = Constant::getNullValue(CurTy); 2425 break; 2426 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2427 if (!CurTy->isIntegerTy() || Record.empty()) 2428 return error("Invalid record"); 2429 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2430 break; 2431 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2432 if (!CurTy->isIntegerTy() || Record.empty()) 2433 return error("Invalid record"); 2434 2435 APInt VInt = 2436 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2437 V = ConstantInt::get(Context, VInt); 2438 2439 break; 2440 } 2441 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2442 if (Record.empty()) 2443 return error("Invalid record"); 2444 if (CurTy->isHalfTy()) 2445 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2446 APInt(16, (uint16_t)Record[0]))); 2447 else if (CurTy->isBFloatTy()) 2448 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2449 APInt(16, (uint32_t)Record[0]))); 2450 else if (CurTy->isFloatTy()) 2451 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2452 APInt(32, (uint32_t)Record[0]))); 2453 else if (CurTy->isDoubleTy()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2455 APInt(64, Record[0]))); 2456 else if (CurTy->isX86_FP80Ty()) { 2457 // Bits are not stored the same way as a normal i80 APInt, compensate. 2458 uint64_t Rearrange[2]; 2459 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2460 Rearrange[1] = Record[0] >> 48; 2461 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2462 APInt(80, Rearrange))); 2463 } else if (CurTy->isFP128Ty()) 2464 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2465 APInt(128, Record))); 2466 else if (CurTy->isPPC_FP128Ty()) 2467 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2468 APInt(128, Record))); 2469 else 2470 V = UndefValue::get(CurTy); 2471 break; 2472 } 2473 2474 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2475 if (Record.empty()) 2476 return error("Invalid record"); 2477 2478 unsigned Size = Record.size(); 2479 SmallVector<Constant*, 16> Elts; 2480 2481 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2482 for (unsigned i = 0; i != Size; ++i) 2483 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2484 STy->getElementType(i))); 2485 V = ConstantStruct::get(STy, Elts); 2486 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2487 Type *EltTy = ATy->getElementType(); 2488 for (unsigned i = 0; i != Size; ++i) 2489 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2490 V = ConstantArray::get(ATy, Elts); 2491 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2492 Type *EltTy = VTy->getElementType(); 2493 for (unsigned i = 0; i != Size; ++i) 2494 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2495 V = ConstantVector::get(Elts); 2496 } else { 2497 V = UndefValue::get(CurTy); 2498 } 2499 break; 2500 } 2501 case bitc::CST_CODE_STRING: // STRING: [values] 2502 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2503 if (Record.empty()) 2504 return error("Invalid record"); 2505 2506 SmallString<16> Elts(Record.begin(), Record.end()); 2507 V = ConstantDataArray::getString(Context, Elts, 2508 BitCode == bitc::CST_CODE_CSTRING); 2509 break; 2510 } 2511 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 Type *EltTy; 2516 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2517 EltTy = Array->getElementType(); 2518 else 2519 EltTy = cast<VectorType>(CurTy)->getElementType(); 2520 if (EltTy->isIntegerTy(8)) { 2521 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2522 if (isa<VectorType>(CurTy)) 2523 V = ConstantDataVector::get(Context, Elts); 2524 else 2525 V = ConstantDataArray::get(Context, Elts); 2526 } else if (EltTy->isIntegerTy(16)) { 2527 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2528 if (isa<VectorType>(CurTy)) 2529 V = ConstantDataVector::get(Context, Elts); 2530 else 2531 V = ConstantDataArray::get(Context, Elts); 2532 } else if (EltTy->isIntegerTy(32)) { 2533 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2534 if (isa<VectorType>(CurTy)) 2535 V = ConstantDataVector::get(Context, Elts); 2536 else 2537 V = ConstantDataArray::get(Context, Elts); 2538 } else if (EltTy->isIntegerTy(64)) { 2539 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2540 if (isa<VectorType>(CurTy)) 2541 V = ConstantDataVector::get(Context, Elts); 2542 else 2543 V = ConstantDataArray::get(Context, Elts); 2544 } else if (EltTy->isHalfTy()) { 2545 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2546 if (isa<VectorType>(CurTy)) 2547 V = ConstantDataVector::getFP(EltTy, Elts); 2548 else 2549 V = ConstantDataArray::getFP(EltTy, Elts); 2550 } else if (EltTy->isBFloatTy()) { 2551 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2552 if (isa<VectorType>(CurTy)) 2553 V = ConstantDataVector::getFP(EltTy, Elts); 2554 else 2555 V = ConstantDataArray::getFP(EltTy, Elts); 2556 } else if (EltTy->isFloatTy()) { 2557 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2558 if (isa<VectorType>(CurTy)) 2559 V = ConstantDataVector::getFP(EltTy, Elts); 2560 else 2561 V = ConstantDataArray::getFP(EltTy, Elts); 2562 } else if (EltTy->isDoubleTy()) { 2563 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2564 if (isa<VectorType>(CurTy)) 2565 V = ConstantDataVector::getFP(EltTy, Elts); 2566 else 2567 V = ConstantDataArray::getFP(EltTy, Elts); 2568 } else { 2569 return error("Invalid type for value"); 2570 } 2571 break; 2572 } 2573 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2574 if (Record.size() < 2) 2575 return error("Invalid record"); 2576 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2577 if (Opc < 0) { 2578 V = UndefValue::get(CurTy); // Unknown unop. 2579 } else { 2580 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2581 unsigned Flags = 0; 2582 V = ConstantExpr::get(Opc, LHS, Flags); 2583 } 2584 break; 2585 } 2586 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2587 if (Record.size() < 3) 2588 return error("Invalid record"); 2589 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2590 if (Opc < 0) { 2591 V = UndefValue::get(CurTy); // Unknown binop. 2592 } else { 2593 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2594 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2595 unsigned Flags = 0; 2596 if (Record.size() >= 4) { 2597 if (Opc == Instruction::Add || 2598 Opc == Instruction::Sub || 2599 Opc == Instruction::Mul || 2600 Opc == Instruction::Shl) { 2601 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2602 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2603 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2604 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2605 } else if (Opc == Instruction::SDiv || 2606 Opc == Instruction::UDiv || 2607 Opc == Instruction::LShr || 2608 Opc == Instruction::AShr) { 2609 if (Record[3] & (1 << bitc::PEO_EXACT)) 2610 Flags |= SDivOperator::IsExact; 2611 } 2612 } 2613 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2614 } 2615 break; 2616 } 2617 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2618 if (Record.size() < 3) 2619 return error("Invalid record"); 2620 int Opc = getDecodedCastOpcode(Record[0]); 2621 if (Opc < 0) { 2622 V = UndefValue::get(CurTy); // Unknown cast. 2623 } else { 2624 Type *OpTy = getTypeByID(Record[1]); 2625 if (!OpTy) 2626 return error("Invalid record"); 2627 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2628 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2629 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2630 } 2631 break; 2632 } 2633 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2634 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2635 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2636 // operands] 2637 unsigned OpNum = 0; 2638 Type *PointeeType = nullptr; 2639 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2640 Record.size() % 2) 2641 PointeeType = getTypeByID(Record[OpNum++]); 2642 2643 bool InBounds = false; 2644 Optional<unsigned> InRangeIndex; 2645 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2646 uint64_t Op = Record[OpNum++]; 2647 InBounds = Op & 1; 2648 InRangeIndex = Op >> 1; 2649 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2650 InBounds = true; 2651 2652 SmallVector<Constant*, 16> Elts; 2653 Type *Elt0FullTy = nullptr; 2654 while (OpNum != Record.size()) { 2655 if (!Elt0FullTy) 2656 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2657 Type *ElTy = getTypeByID(Record[OpNum++]); 2658 if (!ElTy) 2659 return error("Invalid record"); 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2661 } 2662 2663 if (Elts.size() < 1) 2664 return error("Invalid gep with no operands"); 2665 2666 Type *ImplicitPointeeType = 2667 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2668 if (!PointeeType) 2669 PointeeType = ImplicitPointeeType; 2670 else if (PointeeType != ImplicitPointeeType) 2671 return error("Explicit gep operator type does not match pointee type " 2672 "of pointer operand"); 2673 2674 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2675 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2676 InBounds, InRangeIndex); 2677 break; 2678 } 2679 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2680 if (Record.size() < 3) 2681 return error("Invalid record"); 2682 2683 Type *SelectorTy = Type::getInt1Ty(Context); 2684 2685 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2686 // Get the type from the ValueList before getting a forward ref. 2687 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2688 if (Value *V = ValueList[Record[0]]) 2689 if (SelectorTy != V->getType()) 2690 SelectorTy = VectorType::get(SelectorTy, 2691 VTy->getElementCount()); 2692 2693 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2694 SelectorTy), 2695 ValueList.getConstantFwdRef(Record[1],CurTy), 2696 ValueList.getConstantFwdRef(Record[2],CurTy)); 2697 break; 2698 } 2699 case bitc::CST_CODE_CE_EXTRACTELT 2700 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2701 if (Record.size() < 3) 2702 return error("Invalid record"); 2703 VectorType *OpTy = 2704 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2705 if (!OpTy) 2706 return error("Invalid record"); 2707 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2708 Constant *Op1 = nullptr; 2709 if (Record.size() == 4) { 2710 Type *IdxTy = getTypeByID(Record[2]); 2711 if (!IdxTy) 2712 return error("Invalid record"); 2713 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2714 } else { 2715 // Deprecated, but still needed to read old bitcode files. 2716 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2717 } 2718 if (!Op1) 2719 return error("Invalid record"); 2720 V = ConstantExpr::getExtractElement(Op0, Op1); 2721 break; 2722 } 2723 case bitc::CST_CODE_CE_INSERTELT 2724 : { // CE_INSERTELT: [opval, opval, opty, opval] 2725 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2726 if (Record.size() < 3 || !OpTy) 2727 return error("Invalid record"); 2728 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2729 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2730 OpTy->getElementType()); 2731 Constant *Op2 = nullptr; 2732 if (Record.size() == 4) { 2733 Type *IdxTy = getTypeByID(Record[2]); 2734 if (!IdxTy) 2735 return error("Invalid record"); 2736 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2737 } else { 2738 // Deprecated, but still needed to read old bitcode files. 2739 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2740 } 2741 if (!Op2) 2742 return error("Invalid record"); 2743 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2744 break; 2745 } 2746 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2747 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2748 if (Record.size() < 3 || !OpTy) 2749 return error("Invalid record"); 2750 DelayedShuffles.push_back( 2751 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2752 ++NextCstNo; 2753 continue; 2754 } 2755 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2756 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2757 VectorType *OpTy = 2758 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2759 if (Record.size() < 4 || !RTy || !OpTy) 2760 return error("Invalid record"); 2761 DelayedShuffles.push_back( 2762 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2763 ++NextCstNo; 2764 continue; 2765 } 2766 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2767 if (Record.size() < 4) 2768 return error("Invalid record"); 2769 Type *OpTy = getTypeByID(Record[0]); 2770 if (!OpTy) 2771 return error("Invalid record"); 2772 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2773 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2774 2775 if (OpTy->isFPOrFPVectorTy()) 2776 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2777 else 2778 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2779 break; 2780 } 2781 // This maintains backward compatibility, pre-asm dialect keywords. 2782 // Deprecated, but still needed to read old bitcode files. 2783 case bitc::CST_CODE_INLINEASM_OLD: { 2784 if (Record.size() < 2) 2785 return error("Invalid record"); 2786 std::string AsmStr, ConstrStr; 2787 bool HasSideEffects = Record[0] & 1; 2788 bool IsAlignStack = Record[0] >> 1; 2789 unsigned AsmStrSize = Record[1]; 2790 if (2+AsmStrSize >= Record.size()) 2791 return error("Invalid record"); 2792 unsigned ConstStrSize = Record[2+AsmStrSize]; 2793 if (3+AsmStrSize+ConstStrSize > Record.size()) 2794 return error("Invalid record"); 2795 2796 for (unsigned i = 0; i != AsmStrSize; ++i) 2797 AsmStr += (char)Record[2+i]; 2798 for (unsigned i = 0; i != ConstStrSize; ++i) 2799 ConstrStr += (char)Record[3+AsmStrSize+i]; 2800 UpgradeInlineAsmString(&AsmStr); 2801 V = InlineAsm::get( 2802 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2803 ConstrStr, HasSideEffects, IsAlignStack); 2804 break; 2805 } 2806 // This version adds support for the asm dialect keywords (e.g., 2807 // inteldialect). 2808 case bitc::CST_CODE_INLINEASM: { 2809 if (Record.size() < 2) 2810 return error("Invalid record"); 2811 std::string AsmStr, ConstrStr; 2812 bool HasSideEffects = Record[0] & 1; 2813 bool IsAlignStack = (Record[0] >> 1) & 1; 2814 unsigned AsmDialect = Record[0] >> 2; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 V = InlineAsm::get( 2828 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2829 ConstrStr, HasSideEffects, IsAlignStack, 2830 InlineAsm::AsmDialect(AsmDialect)); 2831 break; 2832 } 2833 case bitc::CST_CODE_BLOCKADDRESS:{ 2834 if (Record.size() < 3) 2835 return error("Invalid record"); 2836 Type *FnTy = getTypeByID(Record[0]); 2837 if (!FnTy) 2838 return error("Invalid record"); 2839 Function *Fn = 2840 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2841 if (!Fn) 2842 return error("Invalid record"); 2843 2844 // If the function is already parsed we can insert the block address right 2845 // away. 2846 BasicBlock *BB; 2847 unsigned BBID = Record[2]; 2848 if (!BBID) 2849 // Invalid reference to entry block. 2850 return error("Invalid ID"); 2851 if (!Fn->empty()) { 2852 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2853 for (size_t I = 0, E = BBID; I != E; ++I) { 2854 if (BBI == BBE) 2855 return error("Invalid ID"); 2856 ++BBI; 2857 } 2858 BB = &*BBI; 2859 } else { 2860 // Otherwise insert a placeholder and remember it so it can be inserted 2861 // when the function is parsed. 2862 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2863 if (FwdBBs.empty()) 2864 BasicBlockFwdRefQueue.push_back(Fn); 2865 if (FwdBBs.size() < BBID + 1) 2866 FwdBBs.resize(BBID + 1); 2867 if (!FwdBBs[BBID]) 2868 FwdBBs[BBID] = BasicBlock::Create(Context); 2869 BB = FwdBBs[BBID]; 2870 } 2871 V = BlockAddress::get(Fn, BB); 2872 break; 2873 } 2874 } 2875 2876 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2877 "Incorrect fully structured type provided for Constant"); 2878 ValueList.assignValue(V, NextCstNo, CurFullTy); 2879 ++NextCstNo; 2880 } 2881 } 2882 2883 Error BitcodeReader::parseUseLists() { 2884 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2885 return Err; 2886 2887 // Read all the records. 2888 SmallVector<uint64_t, 64> Record; 2889 2890 while (true) { 2891 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2892 if (!MaybeEntry) 2893 return MaybeEntry.takeError(); 2894 BitstreamEntry Entry = MaybeEntry.get(); 2895 2896 switch (Entry.Kind) { 2897 case BitstreamEntry::SubBlock: // Handled for us already. 2898 case BitstreamEntry::Error: 2899 return error("Malformed block"); 2900 case BitstreamEntry::EndBlock: 2901 return Error::success(); 2902 case BitstreamEntry::Record: 2903 // The interesting case. 2904 break; 2905 } 2906 2907 // Read a use list record. 2908 Record.clear(); 2909 bool IsBB = false; 2910 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2911 if (!MaybeRecord) 2912 return MaybeRecord.takeError(); 2913 switch (MaybeRecord.get()) { 2914 default: // Default behavior: unknown type. 2915 break; 2916 case bitc::USELIST_CODE_BB: 2917 IsBB = true; 2918 LLVM_FALLTHROUGH; 2919 case bitc::USELIST_CODE_DEFAULT: { 2920 unsigned RecordLength = Record.size(); 2921 if (RecordLength < 3) 2922 // Records should have at least an ID and two indexes. 2923 return error("Invalid record"); 2924 unsigned ID = Record.back(); 2925 Record.pop_back(); 2926 2927 Value *V; 2928 if (IsBB) { 2929 assert(ID < FunctionBBs.size() && "Basic block not found"); 2930 V = FunctionBBs[ID]; 2931 } else 2932 V = ValueList[ID]; 2933 unsigned NumUses = 0; 2934 SmallDenseMap<const Use *, unsigned, 16> Order; 2935 for (const Use &U : V->materialized_uses()) { 2936 if (++NumUses > Record.size()) 2937 break; 2938 Order[&U] = Record[NumUses - 1]; 2939 } 2940 if (Order.size() != Record.size() || NumUses > Record.size()) 2941 // Mismatches can happen if the functions are being materialized lazily 2942 // (out-of-order), or a value has been upgraded. 2943 break; 2944 2945 V->sortUseList([&](const Use &L, const Use &R) { 2946 return Order.lookup(&L) < Order.lookup(&R); 2947 }); 2948 break; 2949 } 2950 } 2951 } 2952 } 2953 2954 /// When we see the block for metadata, remember where it is and then skip it. 2955 /// This lets us lazily deserialize the metadata. 2956 Error BitcodeReader::rememberAndSkipMetadata() { 2957 // Save the current stream state. 2958 uint64_t CurBit = Stream.GetCurrentBitNo(); 2959 DeferredMetadataInfo.push_back(CurBit); 2960 2961 // Skip over the block for now. 2962 if (Error Err = Stream.SkipBlock()) 2963 return Err; 2964 return Error::success(); 2965 } 2966 2967 Error BitcodeReader::materializeMetadata() { 2968 for (uint64_t BitPos : DeferredMetadataInfo) { 2969 // Move the bit stream to the saved position. 2970 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2971 return JumpFailed; 2972 if (Error Err = MDLoader->parseModuleMetadata()) 2973 return Err; 2974 } 2975 2976 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2977 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 2978 // multiple times. 2979 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 2980 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2981 NamedMDNode *LinkerOpts = 2982 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2983 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2984 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2985 } 2986 } 2987 2988 DeferredMetadataInfo.clear(); 2989 return Error::success(); 2990 } 2991 2992 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2993 2994 /// When we see the block for a function body, remember where it is and then 2995 /// skip it. This lets us lazily deserialize the functions. 2996 Error BitcodeReader::rememberAndSkipFunctionBody() { 2997 // Get the function we are talking about. 2998 if (FunctionsWithBodies.empty()) 2999 return error("Insufficient function protos"); 3000 3001 Function *Fn = FunctionsWithBodies.back(); 3002 FunctionsWithBodies.pop_back(); 3003 3004 // Save the current stream state. 3005 uint64_t CurBit = Stream.GetCurrentBitNo(); 3006 assert( 3007 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3008 "Mismatch between VST and scanned function offsets"); 3009 DeferredFunctionInfo[Fn] = CurBit; 3010 3011 // Skip over the function block for now. 3012 if (Error Err = Stream.SkipBlock()) 3013 return Err; 3014 return Error::success(); 3015 } 3016 3017 Error BitcodeReader::globalCleanup() { 3018 // Patch the initializers for globals and aliases up. 3019 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3020 return Err; 3021 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3022 return error("Malformed global initializer set"); 3023 3024 // Look for intrinsic functions which need to be upgraded at some point 3025 // and functions that need to have their function attributes upgraded. 3026 for (Function &F : *TheModule) { 3027 MDLoader->upgradeDebugIntrinsics(F); 3028 Function *NewFn; 3029 if (UpgradeIntrinsicFunction(&F, NewFn)) 3030 UpgradedIntrinsics[&F] = NewFn; 3031 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3032 // Some types could be renamed during loading if several modules are 3033 // loaded in the same LLVMContext (LTO scenario). In this case we should 3034 // remangle intrinsics names as well. 3035 RemangledIntrinsics[&F] = Remangled.getValue(); 3036 // Look for functions that rely on old function attribute behavior. 3037 UpgradeFunctionAttributes(F); 3038 } 3039 3040 // Look for global variables which need to be renamed. 3041 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3042 for (GlobalVariable &GV : TheModule->globals()) 3043 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3044 UpgradedVariables.emplace_back(&GV, Upgraded); 3045 for (auto &Pair : UpgradedVariables) { 3046 Pair.first->eraseFromParent(); 3047 TheModule->getGlobalList().push_back(Pair.second); 3048 } 3049 3050 // Force deallocation of memory for these vectors to favor the client that 3051 // want lazy deserialization. 3052 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3053 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3054 IndirectSymbolInits); 3055 return Error::success(); 3056 } 3057 3058 /// Support for lazy parsing of function bodies. This is required if we 3059 /// either have an old bitcode file without a VST forward declaration record, 3060 /// or if we have an anonymous function being materialized, since anonymous 3061 /// functions do not have a name and are therefore not in the VST. 3062 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3063 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3064 return JumpFailed; 3065 3066 if (Stream.AtEndOfStream()) 3067 return error("Could not find function in stream"); 3068 3069 if (!SeenFirstFunctionBody) 3070 return error("Trying to materialize functions before seeing function blocks"); 3071 3072 // An old bitcode file with the symbol table at the end would have 3073 // finished the parse greedily. 3074 assert(SeenValueSymbolTable); 3075 3076 SmallVector<uint64_t, 64> Record; 3077 3078 while (true) { 3079 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3080 if (!MaybeEntry) 3081 return MaybeEntry.takeError(); 3082 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3083 3084 switch (Entry.Kind) { 3085 default: 3086 return error("Expect SubBlock"); 3087 case BitstreamEntry::SubBlock: 3088 switch (Entry.ID) { 3089 default: 3090 return error("Expect function block"); 3091 case bitc::FUNCTION_BLOCK_ID: 3092 if (Error Err = rememberAndSkipFunctionBody()) 3093 return Err; 3094 NextUnreadBit = Stream.GetCurrentBitNo(); 3095 return Error::success(); 3096 } 3097 } 3098 } 3099 } 3100 3101 bool BitcodeReaderBase::readBlockInfo() { 3102 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3103 Stream.ReadBlockInfoBlock(); 3104 if (!MaybeNewBlockInfo) 3105 return true; // FIXME Handle the error. 3106 Optional<BitstreamBlockInfo> NewBlockInfo = 3107 std::move(MaybeNewBlockInfo.get()); 3108 if (!NewBlockInfo) 3109 return true; 3110 BlockInfo = std::move(*NewBlockInfo); 3111 return false; 3112 } 3113 3114 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3115 // v1: [selection_kind, name] 3116 // v2: [strtab_offset, strtab_size, selection_kind] 3117 StringRef Name; 3118 std::tie(Name, Record) = readNameFromStrtab(Record); 3119 3120 if (Record.empty()) 3121 return error("Invalid record"); 3122 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3123 std::string OldFormatName; 3124 if (!UseStrtab) { 3125 if (Record.size() < 2) 3126 return error("Invalid record"); 3127 unsigned ComdatNameSize = Record[1]; 3128 OldFormatName.reserve(ComdatNameSize); 3129 for (unsigned i = 0; i != ComdatNameSize; ++i) 3130 OldFormatName += (char)Record[2 + i]; 3131 Name = OldFormatName; 3132 } 3133 Comdat *C = TheModule->getOrInsertComdat(Name); 3134 C->setSelectionKind(SK); 3135 ComdatList.push_back(C); 3136 return Error::success(); 3137 } 3138 3139 static void inferDSOLocal(GlobalValue *GV) { 3140 // infer dso_local from linkage and visibility if it is not encoded. 3141 if (GV->hasLocalLinkage() || 3142 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3143 GV->setDSOLocal(true); 3144 } 3145 3146 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3147 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3148 // visibility, threadlocal, unnamed_addr, externally_initialized, 3149 // dllstorageclass, comdat, attributes, preemption specifier, 3150 // partition strtab offset, partition strtab size] (name in VST) 3151 // v2: [strtab_offset, strtab_size, v1] 3152 StringRef Name; 3153 std::tie(Name, Record) = readNameFromStrtab(Record); 3154 3155 if (Record.size() < 6) 3156 return error("Invalid record"); 3157 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3158 Type *Ty = flattenPointerTypes(FullTy); 3159 if (!Ty) 3160 return error("Invalid record"); 3161 bool isConstant = Record[1] & 1; 3162 bool explicitType = Record[1] & 2; 3163 unsigned AddressSpace; 3164 if (explicitType) { 3165 AddressSpace = Record[1] >> 2; 3166 } else { 3167 if (!Ty->isPointerTy()) 3168 return error("Invalid type for value"); 3169 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3170 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3171 } 3172 3173 uint64_t RawLinkage = Record[3]; 3174 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3175 MaybeAlign Alignment; 3176 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3177 return Err; 3178 std::string Section; 3179 if (Record[5]) { 3180 if (Record[5] - 1 >= SectionTable.size()) 3181 return error("Invalid ID"); 3182 Section = SectionTable[Record[5] - 1]; 3183 } 3184 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3185 // Local linkage must have default visibility. 3186 // auto-upgrade `hidden` and `protected` for old bitcode. 3187 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3188 Visibility = getDecodedVisibility(Record[6]); 3189 3190 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3191 if (Record.size() > 7) 3192 TLM = getDecodedThreadLocalMode(Record[7]); 3193 3194 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3195 if (Record.size() > 8) 3196 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3197 3198 bool ExternallyInitialized = false; 3199 if (Record.size() > 9) 3200 ExternallyInitialized = Record[9]; 3201 3202 GlobalVariable *NewGV = 3203 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3204 nullptr, TLM, AddressSpace, ExternallyInitialized); 3205 NewGV->setAlignment(Alignment); 3206 if (!Section.empty()) 3207 NewGV->setSection(Section); 3208 NewGV->setVisibility(Visibility); 3209 NewGV->setUnnamedAddr(UnnamedAddr); 3210 3211 if (Record.size() > 10) 3212 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3213 else 3214 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3215 3216 FullTy = PointerType::get(FullTy, AddressSpace); 3217 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3218 "Incorrect fully specified type for GlobalVariable"); 3219 ValueList.push_back(NewGV, FullTy); 3220 3221 // Remember which value to use for the global initializer. 3222 if (unsigned InitID = Record[2]) 3223 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3224 3225 if (Record.size() > 11) { 3226 if (unsigned ComdatID = Record[11]) { 3227 if (ComdatID > ComdatList.size()) 3228 return error("Invalid global variable comdat ID"); 3229 NewGV->setComdat(ComdatList[ComdatID - 1]); 3230 } 3231 } else if (hasImplicitComdat(RawLinkage)) { 3232 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3233 } 3234 3235 if (Record.size() > 12) { 3236 auto AS = getAttributes(Record[12]).getFnAttributes(); 3237 NewGV->setAttributes(AS); 3238 } 3239 3240 if (Record.size() > 13) { 3241 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3242 } 3243 inferDSOLocal(NewGV); 3244 3245 // Check whether we have enough values to read a partition name. 3246 if (Record.size() > 15) 3247 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3248 3249 return Error::success(); 3250 } 3251 3252 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3253 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3254 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3255 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3256 // v2: [strtab_offset, strtab_size, v1] 3257 StringRef Name; 3258 std::tie(Name, Record) = readNameFromStrtab(Record); 3259 3260 if (Record.size() < 8) 3261 return error("Invalid record"); 3262 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3263 Type *FTy = flattenPointerTypes(FullFTy); 3264 if (!FTy) 3265 return error("Invalid record"); 3266 if (isa<PointerType>(FTy)) 3267 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3268 3269 if (!isa<FunctionType>(FTy)) 3270 return error("Invalid type for value"); 3271 auto CC = static_cast<CallingConv::ID>(Record[1]); 3272 if (CC & ~CallingConv::MaxID) 3273 return error("Invalid calling convention ID"); 3274 3275 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3276 if (Record.size() > 16) 3277 AddrSpace = Record[16]; 3278 3279 Function *Func = 3280 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3281 AddrSpace, Name, TheModule); 3282 3283 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3284 "Incorrect fully specified type provided for function"); 3285 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3286 3287 Func->setCallingConv(CC); 3288 bool isProto = Record[2]; 3289 uint64_t RawLinkage = Record[3]; 3290 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3291 Func->setAttributes(getAttributes(Record[4])); 3292 3293 // Upgrade any old-style byval or sret without a type by propagating the 3294 // argument's pointee type. There should be no opaque pointers where the byval 3295 // type is implicit. 3296 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3297 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3298 if (!Func->hasParamAttribute(i, Kind)) 3299 continue; 3300 3301 Func->removeParamAttr(i, Kind); 3302 3303 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3304 Type *PtrEltTy = getPointerElementFlatType(PTy); 3305 Attribute NewAttr = 3306 Kind == Attribute::ByVal 3307 ? Attribute::getWithByValType(Context, PtrEltTy) 3308 : Attribute::getWithStructRetType(Context, PtrEltTy); 3309 Func->addParamAttr(i, NewAttr); 3310 } 3311 } 3312 3313 MaybeAlign Alignment; 3314 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3315 return Err; 3316 Func->setAlignment(Alignment); 3317 if (Record[6]) { 3318 if (Record[6] - 1 >= SectionTable.size()) 3319 return error("Invalid ID"); 3320 Func->setSection(SectionTable[Record[6] - 1]); 3321 } 3322 // Local linkage must have default visibility. 3323 // auto-upgrade `hidden` and `protected` for old bitcode. 3324 if (!Func->hasLocalLinkage()) 3325 Func->setVisibility(getDecodedVisibility(Record[7])); 3326 if (Record.size() > 8 && Record[8]) { 3327 if (Record[8] - 1 >= GCTable.size()) 3328 return error("Invalid ID"); 3329 Func->setGC(GCTable[Record[8] - 1]); 3330 } 3331 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3332 if (Record.size() > 9) 3333 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3334 Func->setUnnamedAddr(UnnamedAddr); 3335 if (Record.size() > 10 && Record[10] != 0) 3336 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3337 3338 if (Record.size() > 11) 3339 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3340 else 3341 upgradeDLLImportExportLinkage(Func, RawLinkage); 3342 3343 if (Record.size() > 12) { 3344 if (unsigned ComdatID = Record[12]) { 3345 if (ComdatID > ComdatList.size()) 3346 return error("Invalid function comdat ID"); 3347 Func->setComdat(ComdatList[ComdatID - 1]); 3348 } 3349 } else if (hasImplicitComdat(RawLinkage)) { 3350 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3351 } 3352 3353 if (Record.size() > 13 && Record[13] != 0) 3354 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3355 3356 if (Record.size() > 14 && Record[14] != 0) 3357 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3358 3359 if (Record.size() > 15) { 3360 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3361 } 3362 inferDSOLocal(Func); 3363 3364 // Record[16] is the address space number. 3365 3366 // Check whether we have enough values to read a partition name. 3367 if (Record.size() > 18) 3368 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3369 3370 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3371 assert(Func->getType() == flattenPointerTypes(FullTy) && 3372 "Incorrect fully specified type provided for Function"); 3373 ValueList.push_back(Func, FullTy); 3374 3375 // If this is a function with a body, remember the prototype we are 3376 // creating now, so that we can match up the body with them later. 3377 if (!isProto) { 3378 Func->setIsMaterializable(true); 3379 FunctionsWithBodies.push_back(Func); 3380 DeferredFunctionInfo[Func] = 0; 3381 } 3382 return Error::success(); 3383 } 3384 3385 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3386 unsigned BitCode, ArrayRef<uint64_t> Record) { 3387 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3388 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3389 // dllstorageclass, threadlocal, unnamed_addr, 3390 // preemption specifier] (name in VST) 3391 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3392 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3393 // preemption specifier] (name in VST) 3394 // v2: [strtab_offset, strtab_size, v1] 3395 StringRef Name; 3396 std::tie(Name, Record) = readNameFromStrtab(Record); 3397 3398 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3399 if (Record.size() < (3 + (unsigned)NewRecord)) 3400 return error("Invalid record"); 3401 unsigned OpNum = 0; 3402 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3403 Type *Ty = flattenPointerTypes(FullTy); 3404 if (!Ty) 3405 return error("Invalid record"); 3406 3407 unsigned AddrSpace; 3408 if (!NewRecord) { 3409 auto *PTy = dyn_cast<PointerType>(Ty); 3410 if (!PTy) 3411 return error("Invalid type for value"); 3412 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3413 AddrSpace = PTy->getAddressSpace(); 3414 } else { 3415 AddrSpace = Record[OpNum++]; 3416 } 3417 3418 auto Val = Record[OpNum++]; 3419 auto Linkage = Record[OpNum++]; 3420 GlobalIndirectSymbol *NewGA; 3421 if (BitCode == bitc::MODULE_CODE_ALIAS || 3422 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3423 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3424 TheModule); 3425 else 3426 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3427 nullptr, TheModule); 3428 3429 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3430 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3431 // Local linkage must have default visibility. 3432 // auto-upgrade `hidden` and `protected` for old bitcode. 3433 if (OpNum != Record.size()) { 3434 auto VisInd = OpNum++; 3435 if (!NewGA->hasLocalLinkage()) 3436 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3437 } 3438 if (BitCode == bitc::MODULE_CODE_ALIAS || 3439 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3440 if (OpNum != Record.size()) 3441 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3442 else 3443 upgradeDLLImportExportLinkage(NewGA, Linkage); 3444 if (OpNum != Record.size()) 3445 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3446 if (OpNum != Record.size()) 3447 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3448 } 3449 if (OpNum != Record.size()) 3450 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3451 inferDSOLocal(NewGA); 3452 3453 // Check whether we have enough values to read a partition name. 3454 if (OpNum + 1 < Record.size()) { 3455 NewGA->setPartition( 3456 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3457 OpNum += 2; 3458 } 3459 3460 FullTy = PointerType::get(FullTy, AddrSpace); 3461 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3462 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3463 ValueList.push_back(NewGA, FullTy); 3464 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3465 return Error::success(); 3466 } 3467 3468 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3469 bool ShouldLazyLoadMetadata, 3470 DataLayoutCallbackTy DataLayoutCallback) { 3471 if (ResumeBit) { 3472 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3473 return JumpFailed; 3474 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3475 return Err; 3476 3477 SmallVector<uint64_t, 64> Record; 3478 3479 // Parts of bitcode parsing depend on the datalayout. Make sure we 3480 // finalize the datalayout before we run any of that code. 3481 bool ResolvedDataLayout = false; 3482 auto ResolveDataLayout = [&] { 3483 if (ResolvedDataLayout) 3484 return; 3485 3486 // datalayout and triple can't be parsed after this point. 3487 ResolvedDataLayout = true; 3488 3489 // Upgrade data layout string. 3490 std::string DL = llvm::UpgradeDataLayoutString( 3491 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3492 TheModule->setDataLayout(DL); 3493 3494 if (auto LayoutOverride = 3495 DataLayoutCallback(TheModule->getTargetTriple())) 3496 TheModule->setDataLayout(*LayoutOverride); 3497 }; 3498 3499 // Read all the records for this module. 3500 while (true) { 3501 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3502 if (!MaybeEntry) 3503 return MaybeEntry.takeError(); 3504 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3505 3506 switch (Entry.Kind) { 3507 case BitstreamEntry::Error: 3508 return error("Malformed block"); 3509 case BitstreamEntry::EndBlock: 3510 ResolveDataLayout(); 3511 return globalCleanup(); 3512 3513 case BitstreamEntry::SubBlock: 3514 switch (Entry.ID) { 3515 default: // Skip unknown content. 3516 if (Error Err = Stream.SkipBlock()) 3517 return Err; 3518 break; 3519 case bitc::BLOCKINFO_BLOCK_ID: 3520 if (readBlockInfo()) 3521 return error("Malformed block"); 3522 break; 3523 case bitc::PARAMATTR_BLOCK_ID: 3524 if (Error Err = parseAttributeBlock()) 3525 return Err; 3526 break; 3527 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3528 if (Error Err = parseAttributeGroupBlock()) 3529 return Err; 3530 break; 3531 case bitc::TYPE_BLOCK_ID_NEW: 3532 if (Error Err = parseTypeTable()) 3533 return Err; 3534 break; 3535 case bitc::VALUE_SYMTAB_BLOCK_ID: 3536 if (!SeenValueSymbolTable) { 3537 // Either this is an old form VST without function index and an 3538 // associated VST forward declaration record (which would have caused 3539 // the VST to be jumped to and parsed before it was encountered 3540 // normally in the stream), or there were no function blocks to 3541 // trigger an earlier parsing of the VST. 3542 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3543 if (Error Err = parseValueSymbolTable()) 3544 return Err; 3545 SeenValueSymbolTable = true; 3546 } else { 3547 // We must have had a VST forward declaration record, which caused 3548 // the parser to jump to and parse the VST earlier. 3549 assert(VSTOffset > 0); 3550 if (Error Err = Stream.SkipBlock()) 3551 return Err; 3552 } 3553 break; 3554 case bitc::CONSTANTS_BLOCK_ID: 3555 if (Error Err = parseConstants()) 3556 return Err; 3557 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3558 return Err; 3559 break; 3560 case bitc::METADATA_BLOCK_ID: 3561 if (ShouldLazyLoadMetadata) { 3562 if (Error Err = rememberAndSkipMetadata()) 3563 return Err; 3564 break; 3565 } 3566 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3567 if (Error Err = MDLoader->parseModuleMetadata()) 3568 return Err; 3569 break; 3570 case bitc::METADATA_KIND_BLOCK_ID: 3571 if (Error Err = MDLoader->parseMetadataKinds()) 3572 return Err; 3573 break; 3574 case bitc::FUNCTION_BLOCK_ID: 3575 ResolveDataLayout(); 3576 3577 // If this is the first function body we've seen, reverse the 3578 // FunctionsWithBodies list. 3579 if (!SeenFirstFunctionBody) { 3580 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3581 if (Error Err = globalCleanup()) 3582 return Err; 3583 SeenFirstFunctionBody = true; 3584 } 3585 3586 if (VSTOffset > 0) { 3587 // If we have a VST forward declaration record, make sure we 3588 // parse the VST now if we haven't already. It is needed to 3589 // set up the DeferredFunctionInfo vector for lazy reading. 3590 if (!SeenValueSymbolTable) { 3591 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3592 return Err; 3593 SeenValueSymbolTable = true; 3594 // Fall through so that we record the NextUnreadBit below. 3595 // This is necessary in case we have an anonymous function that 3596 // is later materialized. Since it will not have a VST entry we 3597 // need to fall back to the lazy parse to find its offset. 3598 } else { 3599 // If we have a VST forward declaration record, but have already 3600 // parsed the VST (just above, when the first function body was 3601 // encountered here), then we are resuming the parse after 3602 // materializing functions. The ResumeBit points to the 3603 // start of the last function block recorded in the 3604 // DeferredFunctionInfo map. Skip it. 3605 if (Error Err = Stream.SkipBlock()) 3606 return Err; 3607 continue; 3608 } 3609 } 3610 3611 // Support older bitcode files that did not have the function 3612 // index in the VST, nor a VST forward declaration record, as 3613 // well as anonymous functions that do not have VST entries. 3614 // Build the DeferredFunctionInfo vector on the fly. 3615 if (Error Err = rememberAndSkipFunctionBody()) 3616 return Err; 3617 3618 // Suspend parsing when we reach the function bodies. Subsequent 3619 // materialization calls will resume it when necessary. If the bitcode 3620 // file is old, the symbol table will be at the end instead and will not 3621 // have been seen yet. In this case, just finish the parse now. 3622 if (SeenValueSymbolTable) { 3623 NextUnreadBit = Stream.GetCurrentBitNo(); 3624 // After the VST has been parsed, we need to make sure intrinsic name 3625 // are auto-upgraded. 3626 return globalCleanup(); 3627 } 3628 break; 3629 case bitc::USELIST_BLOCK_ID: 3630 if (Error Err = parseUseLists()) 3631 return Err; 3632 break; 3633 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3634 if (Error Err = parseOperandBundleTags()) 3635 return Err; 3636 break; 3637 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3638 if (Error Err = parseSyncScopeNames()) 3639 return Err; 3640 break; 3641 } 3642 continue; 3643 3644 case BitstreamEntry::Record: 3645 // The interesting case. 3646 break; 3647 } 3648 3649 // Read a record. 3650 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3651 if (!MaybeBitCode) 3652 return MaybeBitCode.takeError(); 3653 switch (unsigned BitCode = MaybeBitCode.get()) { 3654 default: break; // Default behavior, ignore unknown content. 3655 case bitc::MODULE_CODE_VERSION: { 3656 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3657 if (!VersionOrErr) 3658 return VersionOrErr.takeError(); 3659 UseRelativeIDs = *VersionOrErr >= 1; 3660 break; 3661 } 3662 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3663 if (ResolvedDataLayout) 3664 return error("target triple too late in module"); 3665 std::string S; 3666 if (convertToString(Record, 0, S)) 3667 return error("Invalid record"); 3668 TheModule->setTargetTriple(S); 3669 break; 3670 } 3671 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3672 if (ResolvedDataLayout) 3673 return error("datalayout too late in module"); 3674 std::string S; 3675 if (convertToString(Record, 0, S)) 3676 return error("Invalid record"); 3677 TheModule->setDataLayout(S); 3678 break; 3679 } 3680 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3681 std::string S; 3682 if (convertToString(Record, 0, S)) 3683 return error("Invalid record"); 3684 TheModule->setModuleInlineAsm(S); 3685 break; 3686 } 3687 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3688 // Deprecated, but still needed to read old bitcode files. 3689 std::string S; 3690 if (convertToString(Record, 0, S)) 3691 return error("Invalid record"); 3692 // Ignore value. 3693 break; 3694 } 3695 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3696 std::string S; 3697 if (convertToString(Record, 0, S)) 3698 return error("Invalid record"); 3699 SectionTable.push_back(S); 3700 break; 3701 } 3702 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3703 std::string S; 3704 if (convertToString(Record, 0, S)) 3705 return error("Invalid record"); 3706 GCTable.push_back(S); 3707 break; 3708 } 3709 case bitc::MODULE_CODE_COMDAT: 3710 if (Error Err = parseComdatRecord(Record)) 3711 return Err; 3712 break; 3713 case bitc::MODULE_CODE_GLOBALVAR: 3714 if (Error Err = parseGlobalVarRecord(Record)) 3715 return Err; 3716 break; 3717 case bitc::MODULE_CODE_FUNCTION: 3718 ResolveDataLayout(); 3719 if (Error Err = parseFunctionRecord(Record)) 3720 return Err; 3721 break; 3722 case bitc::MODULE_CODE_IFUNC: 3723 case bitc::MODULE_CODE_ALIAS: 3724 case bitc::MODULE_CODE_ALIAS_OLD: 3725 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3726 return Err; 3727 break; 3728 /// MODULE_CODE_VSTOFFSET: [offset] 3729 case bitc::MODULE_CODE_VSTOFFSET: 3730 if (Record.empty()) 3731 return error("Invalid record"); 3732 // Note that we subtract 1 here because the offset is relative to one word 3733 // before the start of the identification or module block, which was 3734 // historically always the start of the regular bitcode header. 3735 VSTOffset = Record[0] - 1; 3736 break; 3737 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3738 case bitc::MODULE_CODE_SOURCE_FILENAME: 3739 SmallString<128> ValueName; 3740 if (convertToString(Record, 0, ValueName)) 3741 return error("Invalid record"); 3742 TheModule->setSourceFileName(ValueName); 3743 break; 3744 } 3745 Record.clear(); 3746 } 3747 } 3748 3749 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3750 bool IsImporting, 3751 DataLayoutCallbackTy DataLayoutCallback) { 3752 TheModule = M; 3753 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3754 [&](unsigned ID) { return getTypeByID(ID); }); 3755 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3756 } 3757 3758 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3759 if (!isa<PointerType>(PtrType)) 3760 return error("Load/Store operand is not a pointer type"); 3761 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3762 3763 if (ValType && ValType != ElemType) 3764 return error("Explicit load/store type does not match pointee " 3765 "type of pointer operand"); 3766 if (!PointerType::isLoadableOrStorableType(ElemType)) 3767 return error("Cannot load/store from pointer"); 3768 return Error::success(); 3769 } 3770 3771 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3772 ArrayRef<Type *> ArgsFullTys) { 3773 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3774 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) { 3775 if (!CB->paramHasAttr(i, Kind)) 3776 continue; 3777 3778 CB->removeParamAttr(i, Kind); 3779 3780 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3781 Attribute NewAttr = 3782 Kind == Attribute::ByVal 3783 ? Attribute::getWithByValType(Context, PtrEltTy) 3784 : Attribute::getWithStructRetType(Context, PtrEltTy); 3785 CB->addParamAttr(i, NewAttr); 3786 } 3787 } 3788 } 3789 3790 /// Lazily parse the specified function body block. 3791 Error BitcodeReader::parseFunctionBody(Function *F) { 3792 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3793 return Err; 3794 3795 // Unexpected unresolved metadata when parsing function. 3796 if (MDLoader->hasFwdRefs()) 3797 return error("Invalid function metadata: incoming forward references"); 3798 3799 InstructionList.clear(); 3800 unsigned ModuleValueListSize = ValueList.size(); 3801 unsigned ModuleMDLoaderSize = MDLoader->size(); 3802 3803 // Add all the function arguments to the value table. 3804 unsigned ArgNo = 0; 3805 FunctionType *FullFTy = FunctionTypes[F]; 3806 for (Argument &I : F->args()) { 3807 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3808 "Incorrect fully specified type for Function Argument"); 3809 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3810 } 3811 unsigned NextValueNo = ValueList.size(); 3812 BasicBlock *CurBB = nullptr; 3813 unsigned CurBBNo = 0; 3814 3815 DebugLoc LastLoc; 3816 auto getLastInstruction = [&]() -> Instruction * { 3817 if (CurBB && !CurBB->empty()) 3818 return &CurBB->back(); 3819 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3820 !FunctionBBs[CurBBNo - 1]->empty()) 3821 return &FunctionBBs[CurBBNo - 1]->back(); 3822 return nullptr; 3823 }; 3824 3825 std::vector<OperandBundleDef> OperandBundles; 3826 3827 // Read all the records. 3828 SmallVector<uint64_t, 64> Record; 3829 3830 while (true) { 3831 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3832 if (!MaybeEntry) 3833 return MaybeEntry.takeError(); 3834 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3835 3836 switch (Entry.Kind) { 3837 case BitstreamEntry::Error: 3838 return error("Malformed block"); 3839 case BitstreamEntry::EndBlock: 3840 goto OutOfRecordLoop; 3841 3842 case BitstreamEntry::SubBlock: 3843 switch (Entry.ID) { 3844 default: // Skip unknown content. 3845 if (Error Err = Stream.SkipBlock()) 3846 return Err; 3847 break; 3848 case bitc::CONSTANTS_BLOCK_ID: 3849 if (Error Err = parseConstants()) 3850 return Err; 3851 NextValueNo = ValueList.size(); 3852 break; 3853 case bitc::VALUE_SYMTAB_BLOCK_ID: 3854 if (Error Err = parseValueSymbolTable()) 3855 return Err; 3856 break; 3857 case bitc::METADATA_ATTACHMENT_ID: 3858 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3859 return Err; 3860 break; 3861 case bitc::METADATA_BLOCK_ID: 3862 assert(DeferredMetadataInfo.empty() && 3863 "Must read all module-level metadata before function-level"); 3864 if (Error Err = MDLoader->parseFunctionMetadata()) 3865 return Err; 3866 break; 3867 case bitc::USELIST_BLOCK_ID: 3868 if (Error Err = parseUseLists()) 3869 return Err; 3870 break; 3871 } 3872 continue; 3873 3874 case BitstreamEntry::Record: 3875 // The interesting case. 3876 break; 3877 } 3878 3879 // Read a record. 3880 Record.clear(); 3881 Instruction *I = nullptr; 3882 Type *FullTy = nullptr; 3883 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3884 if (!MaybeBitCode) 3885 return MaybeBitCode.takeError(); 3886 switch (unsigned BitCode = MaybeBitCode.get()) { 3887 default: // Default behavior: reject 3888 return error("Invalid value"); 3889 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3890 if (Record.empty() || Record[0] == 0) 3891 return error("Invalid record"); 3892 // Create all the basic blocks for the function. 3893 FunctionBBs.resize(Record[0]); 3894 3895 // See if anything took the address of blocks in this function. 3896 auto BBFRI = BasicBlockFwdRefs.find(F); 3897 if (BBFRI == BasicBlockFwdRefs.end()) { 3898 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3899 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3900 } else { 3901 auto &BBRefs = BBFRI->second; 3902 // Check for invalid basic block references. 3903 if (BBRefs.size() > FunctionBBs.size()) 3904 return error("Invalid ID"); 3905 assert(!BBRefs.empty() && "Unexpected empty array"); 3906 assert(!BBRefs.front() && "Invalid reference to entry block"); 3907 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3908 ++I) 3909 if (I < RE && BBRefs[I]) { 3910 BBRefs[I]->insertInto(F); 3911 FunctionBBs[I] = BBRefs[I]; 3912 } else { 3913 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3914 } 3915 3916 // Erase from the table. 3917 BasicBlockFwdRefs.erase(BBFRI); 3918 } 3919 3920 CurBB = FunctionBBs[0]; 3921 continue; 3922 } 3923 3924 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3925 // This record indicates that the last instruction is at the same 3926 // location as the previous instruction with a location. 3927 I = getLastInstruction(); 3928 3929 if (!I) 3930 return error("Invalid record"); 3931 I->setDebugLoc(LastLoc); 3932 I = nullptr; 3933 continue; 3934 3935 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3936 I = getLastInstruction(); 3937 if (!I || Record.size() < 4) 3938 return error("Invalid record"); 3939 3940 unsigned Line = Record[0], Col = Record[1]; 3941 unsigned ScopeID = Record[2], IAID = Record[3]; 3942 bool isImplicitCode = Record.size() == 5 && Record[4]; 3943 3944 MDNode *Scope = nullptr, *IA = nullptr; 3945 if (ScopeID) { 3946 Scope = dyn_cast_or_null<MDNode>( 3947 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3948 if (!Scope) 3949 return error("Invalid record"); 3950 } 3951 if (IAID) { 3952 IA = dyn_cast_or_null<MDNode>( 3953 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3954 if (!IA) 3955 return error("Invalid record"); 3956 } 3957 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3958 I->setDebugLoc(LastLoc); 3959 I = nullptr; 3960 continue; 3961 } 3962 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3963 unsigned OpNum = 0; 3964 Value *LHS; 3965 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3966 OpNum+1 > Record.size()) 3967 return error("Invalid record"); 3968 3969 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3970 if (Opc == -1) 3971 return error("Invalid record"); 3972 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3973 InstructionList.push_back(I); 3974 if (OpNum < Record.size()) { 3975 if (isa<FPMathOperator>(I)) { 3976 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3977 if (FMF.any()) 3978 I->setFastMathFlags(FMF); 3979 } 3980 } 3981 break; 3982 } 3983 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3984 unsigned OpNum = 0; 3985 Value *LHS, *RHS; 3986 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3987 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3988 OpNum+1 > Record.size()) 3989 return error("Invalid record"); 3990 3991 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3992 if (Opc == -1) 3993 return error("Invalid record"); 3994 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3995 InstructionList.push_back(I); 3996 if (OpNum < Record.size()) { 3997 if (Opc == Instruction::Add || 3998 Opc == Instruction::Sub || 3999 Opc == Instruction::Mul || 4000 Opc == Instruction::Shl) { 4001 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4002 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4003 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4004 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4005 } else if (Opc == Instruction::SDiv || 4006 Opc == Instruction::UDiv || 4007 Opc == Instruction::LShr || 4008 Opc == Instruction::AShr) { 4009 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4010 cast<BinaryOperator>(I)->setIsExact(true); 4011 } else if (isa<FPMathOperator>(I)) { 4012 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4013 if (FMF.any()) 4014 I->setFastMathFlags(FMF); 4015 } 4016 4017 } 4018 break; 4019 } 4020 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4021 unsigned OpNum = 0; 4022 Value *Op; 4023 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4024 OpNum+2 != Record.size()) 4025 return error("Invalid record"); 4026 4027 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4028 Type *ResTy = flattenPointerTypes(FullTy); 4029 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4030 if (Opc == -1 || !ResTy) 4031 return error("Invalid record"); 4032 Instruction *Temp = nullptr; 4033 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4034 if (Temp) { 4035 InstructionList.push_back(Temp); 4036 assert(CurBB && "No current BB?"); 4037 CurBB->getInstList().push_back(Temp); 4038 } 4039 } else { 4040 auto CastOp = (Instruction::CastOps)Opc; 4041 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4042 return error("Invalid cast"); 4043 I = CastInst::Create(CastOp, Op, ResTy); 4044 } 4045 InstructionList.push_back(I); 4046 break; 4047 } 4048 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4049 case bitc::FUNC_CODE_INST_GEP_OLD: 4050 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4051 unsigned OpNum = 0; 4052 4053 Type *Ty; 4054 bool InBounds; 4055 4056 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4057 InBounds = Record[OpNum++]; 4058 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4059 Ty = flattenPointerTypes(FullTy); 4060 } else { 4061 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4062 Ty = nullptr; 4063 } 4064 4065 Value *BasePtr; 4066 Type *FullBaseTy = nullptr; 4067 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4068 return error("Invalid record"); 4069 4070 if (!Ty) { 4071 std::tie(FullTy, Ty) = 4072 getPointerElementTypes(FullBaseTy->getScalarType()); 4073 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4074 return error( 4075 "Explicit gep type does not match pointee type of pointer operand"); 4076 4077 SmallVector<Value*, 16> GEPIdx; 4078 while (OpNum != Record.size()) { 4079 Value *Op; 4080 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4081 return error("Invalid record"); 4082 GEPIdx.push_back(Op); 4083 } 4084 4085 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4086 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4087 4088 InstructionList.push_back(I); 4089 if (InBounds) 4090 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4091 break; 4092 } 4093 4094 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4095 // EXTRACTVAL: [opty, opval, n x indices] 4096 unsigned OpNum = 0; 4097 Value *Agg; 4098 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4099 return error("Invalid record"); 4100 4101 unsigned RecSize = Record.size(); 4102 if (OpNum == RecSize) 4103 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4104 4105 SmallVector<unsigned, 4> EXTRACTVALIdx; 4106 for (; OpNum != RecSize; ++OpNum) { 4107 bool IsArray = FullTy->isArrayTy(); 4108 bool IsStruct = FullTy->isStructTy(); 4109 uint64_t Index = Record[OpNum]; 4110 4111 if (!IsStruct && !IsArray) 4112 return error("EXTRACTVAL: Invalid type"); 4113 if ((unsigned)Index != Index) 4114 return error("Invalid value"); 4115 if (IsStruct && Index >= FullTy->getStructNumElements()) 4116 return error("EXTRACTVAL: Invalid struct index"); 4117 if (IsArray && Index >= FullTy->getArrayNumElements()) 4118 return error("EXTRACTVAL: Invalid array index"); 4119 EXTRACTVALIdx.push_back((unsigned)Index); 4120 4121 if (IsStruct) 4122 FullTy = FullTy->getStructElementType(Index); 4123 else 4124 FullTy = FullTy->getArrayElementType(); 4125 } 4126 4127 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4128 InstructionList.push_back(I); 4129 break; 4130 } 4131 4132 case bitc::FUNC_CODE_INST_INSERTVAL: { 4133 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4134 unsigned OpNum = 0; 4135 Value *Agg; 4136 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4137 return error("Invalid record"); 4138 Value *Val; 4139 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4140 return error("Invalid record"); 4141 4142 unsigned RecSize = Record.size(); 4143 if (OpNum == RecSize) 4144 return error("INSERTVAL: Invalid instruction with 0 indices"); 4145 4146 SmallVector<unsigned, 4> INSERTVALIdx; 4147 Type *CurTy = Agg->getType(); 4148 for (; OpNum != RecSize; ++OpNum) { 4149 bool IsArray = CurTy->isArrayTy(); 4150 bool IsStruct = CurTy->isStructTy(); 4151 uint64_t Index = Record[OpNum]; 4152 4153 if (!IsStruct && !IsArray) 4154 return error("INSERTVAL: Invalid type"); 4155 if ((unsigned)Index != Index) 4156 return error("Invalid value"); 4157 if (IsStruct && Index >= CurTy->getStructNumElements()) 4158 return error("INSERTVAL: Invalid struct index"); 4159 if (IsArray && Index >= CurTy->getArrayNumElements()) 4160 return error("INSERTVAL: Invalid array index"); 4161 4162 INSERTVALIdx.push_back((unsigned)Index); 4163 if (IsStruct) 4164 CurTy = CurTy->getStructElementType(Index); 4165 else 4166 CurTy = CurTy->getArrayElementType(); 4167 } 4168 4169 if (CurTy != Val->getType()) 4170 return error("Inserted value type doesn't match aggregate type"); 4171 4172 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4173 InstructionList.push_back(I); 4174 break; 4175 } 4176 4177 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4178 // obsolete form of select 4179 // handles select i1 ... in old bitcode 4180 unsigned OpNum = 0; 4181 Value *TrueVal, *FalseVal, *Cond; 4182 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4183 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4184 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4185 return error("Invalid record"); 4186 4187 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4188 InstructionList.push_back(I); 4189 break; 4190 } 4191 4192 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4193 // new form of select 4194 // handles select i1 or select [N x i1] 4195 unsigned OpNum = 0; 4196 Value *TrueVal, *FalseVal, *Cond; 4197 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4198 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4199 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4200 return error("Invalid record"); 4201 4202 // select condition can be either i1 or [N x i1] 4203 if (VectorType* vector_type = 4204 dyn_cast<VectorType>(Cond->getType())) { 4205 // expect <n x i1> 4206 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4207 return error("Invalid type for value"); 4208 } else { 4209 // expect i1 4210 if (Cond->getType() != Type::getInt1Ty(Context)) 4211 return error("Invalid type for value"); 4212 } 4213 4214 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4215 InstructionList.push_back(I); 4216 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4217 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4218 if (FMF.any()) 4219 I->setFastMathFlags(FMF); 4220 } 4221 break; 4222 } 4223 4224 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4225 unsigned OpNum = 0; 4226 Value *Vec, *Idx; 4227 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4228 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4229 return error("Invalid record"); 4230 if (!Vec->getType()->isVectorTy()) 4231 return error("Invalid type for value"); 4232 I = ExtractElementInst::Create(Vec, Idx); 4233 FullTy = cast<VectorType>(FullTy)->getElementType(); 4234 InstructionList.push_back(I); 4235 break; 4236 } 4237 4238 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4239 unsigned OpNum = 0; 4240 Value *Vec, *Elt, *Idx; 4241 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4242 return error("Invalid record"); 4243 if (!Vec->getType()->isVectorTy()) 4244 return error("Invalid type for value"); 4245 if (popValue(Record, OpNum, NextValueNo, 4246 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4247 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4248 return error("Invalid record"); 4249 I = InsertElementInst::Create(Vec, Elt, Idx); 4250 InstructionList.push_back(I); 4251 break; 4252 } 4253 4254 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4255 unsigned OpNum = 0; 4256 Value *Vec1, *Vec2, *Mask; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4258 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4259 return error("Invalid record"); 4260 4261 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4262 return error("Invalid record"); 4263 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4264 return error("Invalid type for value"); 4265 4266 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4267 FullTy = 4268 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4269 cast<VectorType>(Mask->getType())->getElementCount()); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 4274 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4275 // Old form of ICmp/FCmp returning bool 4276 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4277 // both legal on vectors but had different behaviour. 4278 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4279 // FCmp/ICmp returning bool or vector of bool 4280 4281 unsigned OpNum = 0; 4282 Value *LHS, *RHS; 4283 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4284 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4285 return error("Invalid record"); 4286 4287 if (OpNum >= Record.size()) 4288 return error( 4289 "Invalid record: operand number exceeded available operands"); 4290 4291 unsigned PredVal = Record[OpNum]; 4292 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4293 FastMathFlags FMF; 4294 if (IsFP && Record.size() > OpNum+1) 4295 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4296 4297 if (OpNum+1 != Record.size()) 4298 return error("Invalid record"); 4299 4300 if (LHS->getType()->isFPOrFPVectorTy()) 4301 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4302 else 4303 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4304 4305 if (FMF.any()) 4306 I->setFastMathFlags(FMF); 4307 InstructionList.push_back(I); 4308 break; 4309 } 4310 4311 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4312 { 4313 unsigned Size = Record.size(); 4314 if (Size == 0) { 4315 I = ReturnInst::Create(Context); 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 4320 unsigned OpNum = 0; 4321 Value *Op = nullptr; 4322 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4323 return error("Invalid record"); 4324 if (OpNum != Record.size()) 4325 return error("Invalid record"); 4326 4327 I = ReturnInst::Create(Context, Op); 4328 InstructionList.push_back(I); 4329 break; 4330 } 4331 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4332 if (Record.size() != 1 && Record.size() != 3) 4333 return error("Invalid record"); 4334 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4335 if (!TrueDest) 4336 return error("Invalid record"); 4337 4338 if (Record.size() == 1) { 4339 I = BranchInst::Create(TrueDest); 4340 InstructionList.push_back(I); 4341 } 4342 else { 4343 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4344 Value *Cond = getValue(Record, 2, NextValueNo, 4345 Type::getInt1Ty(Context)); 4346 if (!FalseDest || !Cond) 4347 return error("Invalid record"); 4348 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4349 InstructionList.push_back(I); 4350 } 4351 break; 4352 } 4353 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4354 if (Record.size() != 1 && Record.size() != 2) 4355 return error("Invalid record"); 4356 unsigned Idx = 0; 4357 Value *CleanupPad = 4358 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4359 if (!CleanupPad) 4360 return error("Invalid record"); 4361 BasicBlock *UnwindDest = nullptr; 4362 if (Record.size() == 2) { 4363 UnwindDest = getBasicBlock(Record[Idx++]); 4364 if (!UnwindDest) 4365 return error("Invalid record"); 4366 } 4367 4368 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4369 InstructionList.push_back(I); 4370 break; 4371 } 4372 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4373 if (Record.size() != 2) 4374 return error("Invalid record"); 4375 unsigned Idx = 0; 4376 Value *CatchPad = 4377 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4378 if (!CatchPad) 4379 return error("Invalid record"); 4380 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4381 if (!BB) 4382 return error("Invalid record"); 4383 4384 I = CatchReturnInst::Create(CatchPad, BB); 4385 InstructionList.push_back(I); 4386 break; 4387 } 4388 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4389 // We must have, at minimum, the outer scope and the number of arguments. 4390 if (Record.size() < 2) 4391 return error("Invalid record"); 4392 4393 unsigned Idx = 0; 4394 4395 Value *ParentPad = 4396 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4397 4398 unsigned NumHandlers = Record[Idx++]; 4399 4400 SmallVector<BasicBlock *, 2> Handlers; 4401 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4402 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4403 if (!BB) 4404 return error("Invalid record"); 4405 Handlers.push_back(BB); 4406 } 4407 4408 BasicBlock *UnwindDest = nullptr; 4409 if (Idx + 1 == Record.size()) { 4410 UnwindDest = getBasicBlock(Record[Idx++]); 4411 if (!UnwindDest) 4412 return error("Invalid record"); 4413 } 4414 4415 if (Record.size() != Idx) 4416 return error("Invalid record"); 4417 4418 auto *CatchSwitch = 4419 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4420 for (BasicBlock *Handler : Handlers) 4421 CatchSwitch->addHandler(Handler); 4422 I = CatchSwitch; 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 case bitc::FUNC_CODE_INST_CATCHPAD: 4427 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4428 // We must have, at minimum, the outer scope and the number of arguments. 4429 if (Record.size() < 2) 4430 return error("Invalid record"); 4431 4432 unsigned Idx = 0; 4433 4434 Value *ParentPad = 4435 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4436 4437 unsigned NumArgOperands = Record[Idx++]; 4438 4439 SmallVector<Value *, 2> Args; 4440 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4441 Value *Val; 4442 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4443 return error("Invalid record"); 4444 Args.push_back(Val); 4445 } 4446 4447 if (Record.size() != Idx) 4448 return error("Invalid record"); 4449 4450 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4451 I = CleanupPadInst::Create(ParentPad, Args); 4452 else 4453 I = CatchPadInst::Create(ParentPad, Args); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4458 // Check magic 4459 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4460 // "New" SwitchInst format with case ranges. The changes to write this 4461 // format were reverted but we still recognize bitcode that uses it. 4462 // Hopefully someday we will have support for case ranges and can use 4463 // this format again. 4464 4465 Type *OpTy = getTypeByID(Record[1]); 4466 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4467 4468 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4469 BasicBlock *Default = getBasicBlock(Record[3]); 4470 if (!OpTy || !Cond || !Default) 4471 return error("Invalid record"); 4472 4473 unsigned NumCases = Record[4]; 4474 4475 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4476 InstructionList.push_back(SI); 4477 4478 unsigned CurIdx = 5; 4479 for (unsigned i = 0; i != NumCases; ++i) { 4480 SmallVector<ConstantInt*, 1> CaseVals; 4481 unsigned NumItems = Record[CurIdx++]; 4482 for (unsigned ci = 0; ci != NumItems; ++ci) { 4483 bool isSingleNumber = Record[CurIdx++]; 4484 4485 APInt Low; 4486 unsigned ActiveWords = 1; 4487 if (ValueBitWidth > 64) 4488 ActiveWords = Record[CurIdx++]; 4489 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4490 ValueBitWidth); 4491 CurIdx += ActiveWords; 4492 4493 if (!isSingleNumber) { 4494 ActiveWords = 1; 4495 if (ValueBitWidth > 64) 4496 ActiveWords = Record[CurIdx++]; 4497 APInt High = readWideAPInt( 4498 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4499 CurIdx += ActiveWords; 4500 4501 // FIXME: It is not clear whether values in the range should be 4502 // compared as signed or unsigned values. The partially 4503 // implemented changes that used this format in the past used 4504 // unsigned comparisons. 4505 for ( ; Low.ule(High); ++Low) 4506 CaseVals.push_back(ConstantInt::get(Context, Low)); 4507 } else 4508 CaseVals.push_back(ConstantInt::get(Context, Low)); 4509 } 4510 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4511 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4512 cve = CaseVals.end(); cvi != cve; ++cvi) 4513 SI->addCase(*cvi, DestBB); 4514 } 4515 I = SI; 4516 break; 4517 } 4518 4519 // Old SwitchInst format without case ranges. 4520 4521 if (Record.size() < 3 || (Record.size() & 1) == 0) 4522 return error("Invalid record"); 4523 Type *OpTy = getTypeByID(Record[0]); 4524 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4525 BasicBlock *Default = getBasicBlock(Record[2]); 4526 if (!OpTy || !Cond || !Default) 4527 return error("Invalid record"); 4528 unsigned NumCases = (Record.size()-3)/2; 4529 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4530 InstructionList.push_back(SI); 4531 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4532 ConstantInt *CaseVal = 4533 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4534 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4535 if (!CaseVal || !DestBB) { 4536 delete SI; 4537 return error("Invalid record"); 4538 } 4539 SI->addCase(CaseVal, DestBB); 4540 } 4541 I = SI; 4542 break; 4543 } 4544 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4545 if (Record.size() < 2) 4546 return error("Invalid record"); 4547 Type *OpTy = getTypeByID(Record[0]); 4548 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4549 if (!OpTy || !Address) 4550 return error("Invalid record"); 4551 unsigned NumDests = Record.size()-2; 4552 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4553 InstructionList.push_back(IBI); 4554 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4555 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4556 IBI->addDestination(DestBB); 4557 } else { 4558 delete IBI; 4559 return error("Invalid record"); 4560 } 4561 } 4562 I = IBI; 4563 break; 4564 } 4565 4566 case bitc::FUNC_CODE_INST_INVOKE: { 4567 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4568 if (Record.size() < 4) 4569 return error("Invalid record"); 4570 unsigned OpNum = 0; 4571 AttributeList PAL = getAttributes(Record[OpNum++]); 4572 unsigned CCInfo = Record[OpNum++]; 4573 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4574 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4575 4576 FunctionType *FTy = nullptr; 4577 FunctionType *FullFTy = nullptr; 4578 if ((CCInfo >> 13) & 1) { 4579 FullFTy = 4580 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4581 if (!FullFTy) 4582 return error("Explicit invoke type is not a function type"); 4583 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4584 } 4585 4586 Value *Callee; 4587 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4588 return error("Invalid record"); 4589 4590 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4591 if (!CalleeTy) 4592 return error("Callee is not a pointer"); 4593 if (!FTy) { 4594 FullFTy = 4595 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4596 if (!FullFTy) 4597 return error("Callee is not of pointer to function type"); 4598 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4599 } else if (getPointerElementFlatType(FullTy) != FTy) 4600 return error("Explicit invoke type does not match pointee type of " 4601 "callee operand"); 4602 if (Record.size() < FTy->getNumParams() + OpNum) 4603 return error("Insufficient operands to call"); 4604 4605 SmallVector<Value*, 16> Ops; 4606 SmallVector<Type *, 16> ArgsFullTys; 4607 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4608 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4609 FTy->getParamType(i))); 4610 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4611 if (!Ops.back()) 4612 return error("Invalid record"); 4613 } 4614 4615 if (!FTy->isVarArg()) { 4616 if (Record.size() != OpNum) 4617 return error("Invalid record"); 4618 } else { 4619 // Read type/value pairs for varargs params. 4620 while (OpNum != Record.size()) { 4621 Value *Op; 4622 Type *FullTy; 4623 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4624 return error("Invalid record"); 4625 Ops.push_back(Op); 4626 ArgsFullTys.push_back(FullTy); 4627 } 4628 } 4629 4630 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4631 OperandBundles); 4632 FullTy = FullFTy->getReturnType(); 4633 OperandBundles.clear(); 4634 InstructionList.push_back(I); 4635 cast<InvokeInst>(I)->setCallingConv( 4636 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4637 cast<InvokeInst>(I)->setAttributes(PAL); 4638 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4639 4640 break; 4641 } 4642 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4643 unsigned Idx = 0; 4644 Value *Val = nullptr; 4645 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4646 return error("Invalid record"); 4647 I = ResumeInst::Create(Val); 4648 InstructionList.push_back(I); 4649 break; 4650 } 4651 case bitc::FUNC_CODE_INST_CALLBR: { 4652 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4653 unsigned OpNum = 0; 4654 AttributeList PAL = getAttributes(Record[OpNum++]); 4655 unsigned CCInfo = Record[OpNum++]; 4656 4657 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4658 unsigned NumIndirectDests = Record[OpNum++]; 4659 SmallVector<BasicBlock *, 16> IndirectDests; 4660 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4661 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4662 4663 FunctionType *FTy = nullptr; 4664 FunctionType *FullFTy = nullptr; 4665 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4666 FullFTy = 4667 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4668 if (!FullFTy) 4669 return error("Explicit call type is not a function type"); 4670 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4671 } 4672 4673 Value *Callee; 4674 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4675 return error("Invalid record"); 4676 4677 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4678 if (!OpTy) 4679 return error("Callee is not a pointer type"); 4680 if (!FTy) { 4681 FullFTy = 4682 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4683 if (!FullFTy) 4684 return error("Callee is not of pointer to function type"); 4685 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4686 } else if (getPointerElementFlatType(FullTy) != FTy) 4687 return error("Explicit call type does not match pointee type of " 4688 "callee operand"); 4689 if (Record.size() < FTy->getNumParams() + OpNum) 4690 return error("Insufficient operands to call"); 4691 4692 SmallVector<Value*, 16> Args; 4693 // Read the fixed params. 4694 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4695 if (FTy->getParamType(i)->isLabelTy()) 4696 Args.push_back(getBasicBlock(Record[OpNum])); 4697 else 4698 Args.push_back(getValue(Record, OpNum, NextValueNo, 4699 FTy->getParamType(i))); 4700 if (!Args.back()) 4701 return error("Invalid record"); 4702 } 4703 4704 // Read type/value pairs for varargs params. 4705 if (!FTy->isVarArg()) { 4706 if (OpNum != Record.size()) 4707 return error("Invalid record"); 4708 } else { 4709 while (OpNum != Record.size()) { 4710 Value *Op; 4711 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4712 return error("Invalid record"); 4713 Args.push_back(Op); 4714 } 4715 } 4716 4717 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4718 OperandBundles); 4719 FullTy = FullFTy->getReturnType(); 4720 OperandBundles.clear(); 4721 InstructionList.push_back(I); 4722 cast<CallBrInst>(I)->setCallingConv( 4723 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4724 cast<CallBrInst>(I)->setAttributes(PAL); 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4728 I = new UnreachableInst(Context); 4729 InstructionList.push_back(I); 4730 break; 4731 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4732 if (Record.empty()) 4733 return error("Invalid record"); 4734 // The first record specifies the type. 4735 FullTy = getFullyStructuredTypeByID(Record[0]); 4736 Type *Ty = flattenPointerTypes(FullTy); 4737 if (!Ty) 4738 return error("Invalid record"); 4739 4740 // Phi arguments are pairs of records of [value, basic block]. 4741 // There is an optional final record for fast-math-flags if this phi has a 4742 // floating-point type. 4743 size_t NumArgs = (Record.size() - 1) / 2; 4744 PHINode *PN = PHINode::Create(Ty, NumArgs); 4745 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4746 return error("Invalid record"); 4747 InstructionList.push_back(PN); 4748 4749 for (unsigned i = 0; i != NumArgs; i++) { 4750 Value *V; 4751 // With the new function encoding, it is possible that operands have 4752 // negative IDs (for forward references). Use a signed VBR 4753 // representation to keep the encoding small. 4754 if (UseRelativeIDs) 4755 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4756 else 4757 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4758 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4759 if (!V || !BB) 4760 return error("Invalid record"); 4761 PN->addIncoming(V, BB); 4762 } 4763 I = PN; 4764 4765 // If there are an even number of records, the final record must be FMF. 4766 if (Record.size() % 2 == 0) { 4767 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4768 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4769 if (FMF.any()) 4770 I->setFastMathFlags(FMF); 4771 } 4772 4773 break; 4774 } 4775 4776 case bitc::FUNC_CODE_INST_LANDINGPAD: 4777 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4778 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4779 unsigned Idx = 0; 4780 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4781 if (Record.size() < 3) 4782 return error("Invalid record"); 4783 } else { 4784 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4785 if (Record.size() < 4) 4786 return error("Invalid record"); 4787 } 4788 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4789 Type *Ty = flattenPointerTypes(FullTy); 4790 if (!Ty) 4791 return error("Invalid record"); 4792 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4793 Value *PersFn = nullptr; 4794 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4795 return error("Invalid record"); 4796 4797 if (!F->hasPersonalityFn()) 4798 F->setPersonalityFn(cast<Constant>(PersFn)); 4799 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4800 return error("Personality function mismatch"); 4801 } 4802 4803 bool IsCleanup = !!Record[Idx++]; 4804 unsigned NumClauses = Record[Idx++]; 4805 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4806 LP->setCleanup(IsCleanup); 4807 for (unsigned J = 0; J != NumClauses; ++J) { 4808 LandingPadInst::ClauseType CT = 4809 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4810 Value *Val; 4811 4812 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4813 delete LP; 4814 return error("Invalid record"); 4815 } 4816 4817 assert((CT != LandingPadInst::Catch || 4818 !isa<ArrayType>(Val->getType())) && 4819 "Catch clause has a invalid type!"); 4820 assert((CT != LandingPadInst::Filter || 4821 isa<ArrayType>(Val->getType())) && 4822 "Filter clause has invalid type!"); 4823 LP->addClause(cast<Constant>(Val)); 4824 } 4825 4826 I = LP; 4827 InstructionList.push_back(I); 4828 break; 4829 } 4830 4831 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4832 if (Record.size() != 4) 4833 return error("Invalid record"); 4834 using APV = AllocaPackedValues; 4835 const uint64_t Rec = Record[3]; 4836 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4837 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4838 FullTy = getFullyStructuredTypeByID(Record[0]); 4839 Type *Ty = flattenPointerTypes(FullTy); 4840 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4841 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4842 if (!PTy) 4843 return error("Old-style alloca with a non-pointer type"); 4844 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4845 } 4846 Type *OpTy = getTypeByID(Record[1]); 4847 Value *Size = getFnValueByID(Record[2], OpTy); 4848 MaybeAlign Align; 4849 if (Error Err = 4850 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4851 return Err; 4852 } 4853 if (!Ty || !Size) 4854 return error("Invalid record"); 4855 4856 // FIXME: Make this an optional field. 4857 const DataLayout &DL = TheModule->getDataLayout(); 4858 unsigned AS = DL.getAllocaAddrSpace(); 4859 4860 SmallPtrSet<Type *, 4> Visited; 4861 if (!Align && !Ty->isSized(&Visited)) 4862 return error("alloca of unsized type"); 4863 if (!Align) 4864 Align = DL.getPrefTypeAlign(Ty); 4865 4866 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4867 AI->setUsedWithInAlloca(InAlloca); 4868 AI->setSwiftError(SwiftError); 4869 I = AI; 4870 FullTy = PointerType::get(FullTy, AS); 4871 InstructionList.push_back(I); 4872 break; 4873 } 4874 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4875 unsigned OpNum = 0; 4876 Value *Op; 4877 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4878 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4879 return error("Invalid record"); 4880 4881 if (!isa<PointerType>(Op->getType())) 4882 return error("Load operand is not a pointer type"); 4883 4884 Type *Ty = nullptr; 4885 if (OpNum + 3 == Record.size()) { 4886 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4887 Ty = flattenPointerTypes(FullTy); 4888 } else 4889 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4890 4891 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4892 return Err; 4893 4894 MaybeAlign Align; 4895 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4896 return Err; 4897 SmallPtrSet<Type *, 4> Visited; 4898 if (!Align && !Ty->isSized(&Visited)) 4899 return error("load of unsized type"); 4900 if (!Align) 4901 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4902 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4903 InstructionList.push_back(I); 4904 break; 4905 } 4906 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4907 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4908 unsigned OpNum = 0; 4909 Value *Op; 4910 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4911 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4912 return error("Invalid record"); 4913 4914 if (!isa<PointerType>(Op->getType())) 4915 return error("Load operand is not a pointer type"); 4916 4917 Type *Ty = nullptr; 4918 if (OpNum + 5 == Record.size()) { 4919 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4920 Ty = flattenPointerTypes(FullTy); 4921 } else 4922 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4923 4924 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4925 return Err; 4926 4927 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4928 if (Ordering == AtomicOrdering::NotAtomic || 4929 Ordering == AtomicOrdering::Release || 4930 Ordering == AtomicOrdering::AcquireRelease) 4931 return error("Invalid record"); 4932 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4933 return error("Invalid record"); 4934 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4935 4936 MaybeAlign Align; 4937 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4938 return Err; 4939 if (!Align) 4940 return error("Alignment missing from atomic load"); 4941 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4942 InstructionList.push_back(I); 4943 break; 4944 } 4945 case bitc::FUNC_CODE_INST_STORE: 4946 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4947 unsigned OpNum = 0; 4948 Value *Val, *Ptr; 4949 Type *FullTy; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4951 (BitCode == bitc::FUNC_CODE_INST_STORE 4952 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4953 : popValue(Record, OpNum, NextValueNo, 4954 getPointerElementFlatType(FullTy), Val)) || 4955 OpNum + 2 != Record.size()) 4956 return error("Invalid record"); 4957 4958 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4959 return Err; 4960 MaybeAlign Align; 4961 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4962 return Err; 4963 SmallPtrSet<Type *, 4> Visited; 4964 if (!Align && !Val->getType()->isSized(&Visited)) 4965 return error("store of unsized type"); 4966 if (!Align) 4967 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4968 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4969 InstructionList.push_back(I); 4970 break; 4971 } 4972 case bitc::FUNC_CODE_INST_STOREATOMIC: 4973 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4974 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4975 unsigned OpNum = 0; 4976 Value *Val, *Ptr; 4977 Type *FullTy; 4978 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4979 !isa<PointerType>(Ptr->getType()) || 4980 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4981 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4982 : popValue(Record, OpNum, NextValueNo, 4983 getPointerElementFlatType(FullTy), Val)) || 4984 OpNum + 4 != Record.size()) 4985 return error("Invalid record"); 4986 4987 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4988 return Err; 4989 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4990 if (Ordering == AtomicOrdering::NotAtomic || 4991 Ordering == AtomicOrdering::Acquire || 4992 Ordering == AtomicOrdering::AcquireRelease) 4993 return error("Invalid record"); 4994 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4995 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4996 return error("Invalid record"); 4997 4998 MaybeAlign Align; 4999 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5000 return Err; 5001 if (!Align) 5002 return error("Alignment missing from atomic store"); 5003 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5008 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5009 // failure_ordering?, weak?] 5010 const size_t NumRecords = Record.size(); 5011 unsigned OpNum = 0; 5012 Value *Ptr = nullptr; 5013 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5014 return error("Invalid record"); 5015 5016 if (!isa<PointerType>(Ptr->getType())) 5017 return error("Cmpxchg operand is not a pointer type"); 5018 5019 Value *Cmp = nullptr; 5020 if (popValue(Record, OpNum, NextValueNo, 5021 getPointerElementFlatType(FullTy), Cmp)) 5022 return error("Invalid record"); 5023 5024 FullTy = cast<PointerType>(FullTy)->getElementType(); 5025 5026 Value *New = nullptr; 5027 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5028 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5029 return error("Invalid record"); 5030 5031 const AtomicOrdering SuccessOrdering = 5032 getDecodedOrdering(Record[OpNum + 1]); 5033 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5034 SuccessOrdering == AtomicOrdering::Unordered) 5035 return error("Invalid record"); 5036 5037 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5038 5039 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5040 return Err; 5041 5042 const AtomicOrdering FailureOrdering = 5043 NumRecords < 7 5044 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5045 : getDecodedOrdering(Record[OpNum + 3]); 5046 5047 const Align Alignment( 5048 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5049 5050 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5051 FailureOrdering, SSID); 5052 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5053 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5054 5055 if (NumRecords < 8) { 5056 // Before weak cmpxchgs existed, the instruction simply returned the 5057 // value loaded from memory, so bitcode files from that era will be 5058 // expecting the first component of a modern cmpxchg. 5059 CurBB->getInstList().push_back(I); 5060 I = ExtractValueInst::Create(I, 0); 5061 FullTy = cast<StructType>(FullTy)->getElementType(0); 5062 } else { 5063 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5064 } 5065 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 case bitc::FUNC_CODE_INST_CMPXCHG: { 5070 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5071 // failure_ordering, weak] 5072 const size_t NumRecords = Record.size(); 5073 unsigned OpNum = 0; 5074 Value *Ptr = nullptr; 5075 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5076 return error("Invalid record"); 5077 5078 if (!isa<PointerType>(Ptr->getType())) 5079 return error("Cmpxchg operand is not a pointer type"); 5080 5081 Value *Cmp = nullptr; 5082 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5083 return error("Invalid record"); 5084 5085 Value *Val = nullptr; 5086 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val) || 5087 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5088 return error("Invalid record"); 5089 5090 const AtomicOrdering SuccessOrdering = 5091 getDecodedOrdering(Record[OpNum + 1]); 5092 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5093 SuccessOrdering == AtomicOrdering::Unordered) 5094 return error("Invalid record"); 5095 5096 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5097 5098 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5099 return Err; 5100 5101 const AtomicOrdering FailureOrdering = 5102 getDecodedOrdering(Record[OpNum + 3]); 5103 5104 const Align Alignment( 5105 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5106 5107 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, Alignment, SuccessOrdering, 5108 FailureOrdering, SSID); 5109 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5110 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5111 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5112 5113 InstructionList.push_back(I); 5114 break; 5115 } 5116 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5117 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5118 unsigned OpNum = 0; 5119 Value *Ptr, *Val; 5120 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5121 !isa<PointerType>(Ptr->getType()) || 5122 popValue(Record, OpNum, NextValueNo, 5123 getPointerElementFlatType(FullTy), Val) || 5124 OpNum + 4 != Record.size()) 5125 return error("Invalid record"); 5126 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5127 if (Operation < AtomicRMWInst::FIRST_BINOP || 5128 Operation > AtomicRMWInst::LAST_BINOP) 5129 return error("Invalid record"); 5130 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5131 if (Ordering == AtomicOrdering::NotAtomic || 5132 Ordering == AtomicOrdering::Unordered) 5133 return error("Invalid record"); 5134 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5135 Align Alignment( 5136 TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5137 I = new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 5138 FullTy = getPointerElementFlatType(FullTy); 5139 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5140 InstructionList.push_back(I); 5141 break; 5142 } 5143 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5144 if (2 != Record.size()) 5145 return error("Invalid record"); 5146 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5147 if (Ordering == AtomicOrdering::NotAtomic || 5148 Ordering == AtomicOrdering::Unordered || 5149 Ordering == AtomicOrdering::Monotonic) 5150 return error("Invalid record"); 5151 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5152 I = new FenceInst(Context, Ordering, SSID); 5153 InstructionList.push_back(I); 5154 break; 5155 } 5156 case bitc::FUNC_CODE_INST_CALL: { 5157 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5158 if (Record.size() < 3) 5159 return error("Invalid record"); 5160 5161 unsigned OpNum = 0; 5162 AttributeList PAL = getAttributes(Record[OpNum++]); 5163 unsigned CCInfo = Record[OpNum++]; 5164 5165 FastMathFlags FMF; 5166 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5167 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5168 if (!FMF.any()) 5169 return error("Fast math flags indicator set for call with no FMF"); 5170 } 5171 5172 FunctionType *FTy = nullptr; 5173 FunctionType *FullFTy = nullptr; 5174 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5175 FullFTy = 5176 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5177 if (!FullFTy) 5178 return error("Explicit call type is not a function type"); 5179 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5180 } 5181 5182 Value *Callee; 5183 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5184 return error("Invalid record"); 5185 5186 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5187 if (!OpTy) 5188 return error("Callee is not a pointer type"); 5189 if (!FTy) { 5190 FullFTy = 5191 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5192 if (!FullFTy) 5193 return error("Callee is not of pointer to function type"); 5194 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5195 } else if (getPointerElementFlatType(FullTy) != FTy) 5196 return error("Explicit call type does not match pointee type of " 5197 "callee operand"); 5198 if (Record.size() < FTy->getNumParams() + OpNum) 5199 return error("Insufficient operands to call"); 5200 5201 SmallVector<Value*, 16> Args; 5202 SmallVector<Type*, 16> ArgsFullTys; 5203 // Read the fixed params. 5204 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5205 if (FTy->getParamType(i)->isLabelTy()) 5206 Args.push_back(getBasicBlock(Record[OpNum])); 5207 else 5208 Args.push_back(getValue(Record, OpNum, NextValueNo, 5209 FTy->getParamType(i))); 5210 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5211 if (!Args.back()) 5212 return error("Invalid record"); 5213 } 5214 5215 // Read type/value pairs for varargs params. 5216 if (!FTy->isVarArg()) { 5217 if (OpNum != Record.size()) 5218 return error("Invalid record"); 5219 } else { 5220 while (OpNum != Record.size()) { 5221 Value *Op; 5222 Type *FullTy; 5223 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5224 return error("Invalid record"); 5225 Args.push_back(Op); 5226 ArgsFullTys.push_back(FullTy); 5227 } 5228 } 5229 5230 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5231 FullTy = FullFTy->getReturnType(); 5232 OperandBundles.clear(); 5233 InstructionList.push_back(I); 5234 cast<CallInst>(I)->setCallingConv( 5235 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5236 CallInst::TailCallKind TCK = CallInst::TCK_None; 5237 if (CCInfo & 1 << bitc::CALL_TAIL) 5238 TCK = CallInst::TCK_Tail; 5239 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5240 TCK = CallInst::TCK_MustTail; 5241 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5242 TCK = CallInst::TCK_NoTail; 5243 cast<CallInst>(I)->setTailCallKind(TCK); 5244 cast<CallInst>(I)->setAttributes(PAL); 5245 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5246 if (FMF.any()) { 5247 if (!isa<FPMathOperator>(I)) 5248 return error("Fast-math-flags specified for call without " 5249 "floating-point scalar or vector return type"); 5250 I->setFastMathFlags(FMF); 5251 } 5252 break; 5253 } 5254 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5255 if (Record.size() < 3) 5256 return error("Invalid record"); 5257 Type *OpTy = getTypeByID(Record[0]); 5258 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5259 FullTy = getFullyStructuredTypeByID(Record[2]); 5260 Type *ResTy = flattenPointerTypes(FullTy); 5261 if (!OpTy || !Op || !ResTy) 5262 return error("Invalid record"); 5263 I = new VAArgInst(Op, ResTy); 5264 InstructionList.push_back(I); 5265 break; 5266 } 5267 5268 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5269 // A call or an invoke can be optionally prefixed with some variable 5270 // number of operand bundle blocks. These blocks are read into 5271 // OperandBundles and consumed at the next call or invoke instruction. 5272 5273 if (Record.empty() || Record[0] >= BundleTags.size()) 5274 return error("Invalid record"); 5275 5276 std::vector<Value *> Inputs; 5277 5278 unsigned OpNum = 1; 5279 while (OpNum != Record.size()) { 5280 Value *Op; 5281 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5282 return error("Invalid record"); 5283 Inputs.push_back(Op); 5284 } 5285 5286 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5287 continue; 5288 } 5289 5290 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5291 unsigned OpNum = 0; 5292 Value *Op = nullptr; 5293 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5294 return error("Invalid record"); 5295 if (OpNum != Record.size()) 5296 return error("Invalid record"); 5297 5298 I = new FreezeInst(Op); 5299 InstructionList.push_back(I); 5300 break; 5301 } 5302 } 5303 5304 // Add instruction to end of current BB. If there is no current BB, reject 5305 // this file. 5306 if (!CurBB) { 5307 I->deleteValue(); 5308 return error("Invalid instruction with no BB"); 5309 } 5310 if (!OperandBundles.empty()) { 5311 I->deleteValue(); 5312 return error("Operand bundles found with no consumer"); 5313 } 5314 CurBB->getInstList().push_back(I); 5315 5316 // If this was a terminator instruction, move to the next block. 5317 if (I->isTerminator()) { 5318 ++CurBBNo; 5319 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5320 } 5321 5322 // Non-void values get registered in the value table for future use. 5323 if (!I->getType()->isVoidTy()) { 5324 if (!FullTy) { 5325 FullTy = I->getType(); 5326 assert( 5327 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5328 !isa<ArrayType>(FullTy) && 5329 (!isa<VectorType>(FullTy) || 5330 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5331 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5332 "Structured types must be assigned with corresponding non-opaque " 5333 "pointer type"); 5334 } 5335 5336 assert(I->getType() == flattenPointerTypes(FullTy) && 5337 "Incorrect fully structured type provided for Instruction"); 5338 ValueList.assignValue(I, NextValueNo++, FullTy); 5339 } 5340 } 5341 5342 OutOfRecordLoop: 5343 5344 if (!OperandBundles.empty()) 5345 return error("Operand bundles found with no consumer"); 5346 5347 // Check the function list for unresolved values. 5348 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5349 if (!A->getParent()) { 5350 // We found at least one unresolved value. Nuke them all to avoid leaks. 5351 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5352 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5353 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5354 delete A; 5355 } 5356 } 5357 return error("Never resolved value found in function"); 5358 } 5359 } 5360 5361 // Unexpected unresolved metadata about to be dropped. 5362 if (MDLoader->hasFwdRefs()) 5363 return error("Invalid function metadata: outgoing forward refs"); 5364 5365 // Trim the value list down to the size it was before we parsed this function. 5366 ValueList.shrinkTo(ModuleValueListSize); 5367 MDLoader->shrinkTo(ModuleMDLoaderSize); 5368 std::vector<BasicBlock*>().swap(FunctionBBs); 5369 return Error::success(); 5370 } 5371 5372 /// Find the function body in the bitcode stream 5373 Error BitcodeReader::findFunctionInStream( 5374 Function *F, 5375 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5376 while (DeferredFunctionInfoIterator->second == 0) { 5377 // This is the fallback handling for the old format bitcode that 5378 // didn't contain the function index in the VST, or when we have 5379 // an anonymous function which would not have a VST entry. 5380 // Assert that we have one of those two cases. 5381 assert(VSTOffset == 0 || !F->hasName()); 5382 // Parse the next body in the stream and set its position in the 5383 // DeferredFunctionInfo map. 5384 if (Error Err = rememberAndSkipFunctionBodies()) 5385 return Err; 5386 } 5387 return Error::success(); 5388 } 5389 5390 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5391 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5392 return SyncScope::ID(Val); 5393 if (Val >= SSIDs.size()) 5394 return SyncScope::System; // Map unknown synchronization scopes to system. 5395 return SSIDs[Val]; 5396 } 5397 5398 //===----------------------------------------------------------------------===// 5399 // GVMaterializer implementation 5400 //===----------------------------------------------------------------------===// 5401 5402 Error BitcodeReader::materialize(GlobalValue *GV) { 5403 Function *F = dyn_cast<Function>(GV); 5404 // If it's not a function or is already material, ignore the request. 5405 if (!F || !F->isMaterializable()) 5406 return Error::success(); 5407 5408 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5409 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5410 // If its position is recorded as 0, its body is somewhere in the stream 5411 // but we haven't seen it yet. 5412 if (DFII->second == 0) 5413 if (Error Err = findFunctionInStream(F, DFII)) 5414 return Err; 5415 5416 // Materialize metadata before parsing any function bodies. 5417 if (Error Err = materializeMetadata()) 5418 return Err; 5419 5420 // Move the bit stream to the saved position of the deferred function body. 5421 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5422 return JumpFailed; 5423 if (Error Err = parseFunctionBody(F)) 5424 return Err; 5425 F->setIsMaterializable(false); 5426 5427 if (StripDebugInfo) 5428 stripDebugInfo(*F); 5429 5430 // Upgrade any old intrinsic calls in the function. 5431 for (auto &I : UpgradedIntrinsics) { 5432 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5433 UI != UE;) { 5434 User *U = *UI; 5435 ++UI; 5436 if (CallInst *CI = dyn_cast<CallInst>(U)) 5437 UpgradeIntrinsicCall(CI, I.second); 5438 } 5439 } 5440 5441 // Update calls to the remangled intrinsics 5442 for (auto &I : RemangledIntrinsics) 5443 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5444 UI != UE;) 5445 // Don't expect any other users than call sites 5446 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5447 5448 // Finish fn->subprogram upgrade for materialized functions. 5449 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5450 F->setSubprogram(SP); 5451 5452 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5453 if (!MDLoader->isStrippingTBAA()) { 5454 for (auto &I : instructions(F)) { 5455 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5456 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5457 continue; 5458 MDLoader->setStripTBAA(true); 5459 stripTBAA(F->getParent()); 5460 } 5461 } 5462 5463 // "Upgrade" older incorrect branch weights by dropping them. 5464 for (auto &I : instructions(F)) { 5465 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5466 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5467 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5468 StringRef ProfName = MDS->getString(); 5469 // Check consistency of !prof branch_weights metadata. 5470 if (!ProfName.equals("branch_weights")) 5471 continue; 5472 unsigned ExpectedNumOperands = 0; 5473 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5474 ExpectedNumOperands = BI->getNumSuccessors(); 5475 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5476 ExpectedNumOperands = SI->getNumSuccessors(); 5477 else if (isa<CallInst>(&I)) 5478 ExpectedNumOperands = 1; 5479 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5480 ExpectedNumOperands = IBI->getNumDestinations(); 5481 else if (isa<SelectInst>(&I)) 5482 ExpectedNumOperands = 2; 5483 else 5484 continue; // ignore and continue. 5485 5486 // If branch weight doesn't match, just strip branch weight. 5487 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5488 I.setMetadata(LLVMContext::MD_prof, nullptr); 5489 } 5490 } 5491 } 5492 5493 // Look for functions that rely on old function attribute behavior. 5494 UpgradeFunctionAttributes(*F); 5495 5496 // Bring in any functions that this function forward-referenced via 5497 // blockaddresses. 5498 return materializeForwardReferencedFunctions(); 5499 } 5500 5501 Error BitcodeReader::materializeModule() { 5502 if (Error Err = materializeMetadata()) 5503 return Err; 5504 5505 // Promise to materialize all forward references. 5506 WillMaterializeAllForwardRefs = true; 5507 5508 // Iterate over the module, deserializing any functions that are still on 5509 // disk. 5510 for (Function &F : *TheModule) { 5511 if (Error Err = materialize(&F)) 5512 return Err; 5513 } 5514 // At this point, if there are any function bodies, parse the rest of 5515 // the bits in the module past the last function block we have recorded 5516 // through either lazy scanning or the VST. 5517 if (LastFunctionBlockBit || NextUnreadBit) 5518 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5519 ? LastFunctionBlockBit 5520 : NextUnreadBit)) 5521 return Err; 5522 5523 // Check that all block address forward references got resolved (as we 5524 // promised above). 5525 if (!BasicBlockFwdRefs.empty()) 5526 return error("Never resolved function from blockaddress"); 5527 5528 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5529 // delete the old functions to clean up. We can't do this unless the entire 5530 // module is materialized because there could always be another function body 5531 // with calls to the old function. 5532 for (auto &I : UpgradedIntrinsics) { 5533 for (auto *U : I.first->users()) { 5534 if (CallInst *CI = dyn_cast<CallInst>(U)) 5535 UpgradeIntrinsicCall(CI, I.second); 5536 } 5537 if (!I.first->use_empty()) 5538 I.first->replaceAllUsesWith(I.second); 5539 I.first->eraseFromParent(); 5540 } 5541 UpgradedIntrinsics.clear(); 5542 // Do the same for remangled intrinsics 5543 for (auto &I : RemangledIntrinsics) { 5544 I.first->replaceAllUsesWith(I.second); 5545 I.first->eraseFromParent(); 5546 } 5547 RemangledIntrinsics.clear(); 5548 5549 UpgradeDebugInfo(*TheModule); 5550 5551 UpgradeModuleFlags(*TheModule); 5552 5553 UpgradeARCRuntime(*TheModule); 5554 5555 return Error::success(); 5556 } 5557 5558 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5559 return IdentifiedStructTypes; 5560 } 5561 5562 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5563 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5564 StringRef ModulePath, unsigned ModuleId) 5565 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5566 ModulePath(ModulePath), ModuleId(ModuleId) {} 5567 5568 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5569 TheIndex.addModule(ModulePath, ModuleId); 5570 } 5571 5572 ModuleSummaryIndex::ModuleInfo * 5573 ModuleSummaryIndexBitcodeReader::getThisModule() { 5574 return TheIndex.getModule(ModulePath); 5575 } 5576 5577 std::pair<ValueInfo, GlobalValue::GUID> 5578 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5579 auto VGI = ValueIdToValueInfoMap[ValueId]; 5580 assert(VGI.first); 5581 return VGI; 5582 } 5583 5584 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5585 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5586 StringRef SourceFileName) { 5587 std::string GlobalId = 5588 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5589 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5590 auto OriginalNameID = ValueGUID; 5591 if (GlobalValue::isLocalLinkage(Linkage)) 5592 OriginalNameID = GlobalValue::getGUID(ValueName); 5593 if (PrintSummaryGUIDs) 5594 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5595 << ValueName << "\n"; 5596 5597 // UseStrtab is false for legacy summary formats and value names are 5598 // created on stack. In that case we save the name in a string saver in 5599 // the index so that the value name can be recorded. 5600 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5601 TheIndex.getOrInsertValueInfo( 5602 ValueGUID, 5603 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5604 OriginalNameID); 5605 } 5606 5607 // Specialized value symbol table parser used when reading module index 5608 // blocks where we don't actually create global values. The parsed information 5609 // is saved in the bitcode reader for use when later parsing summaries. 5610 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5611 uint64_t Offset, 5612 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5613 // With a strtab the VST is not required to parse the summary. 5614 if (UseStrtab) 5615 return Error::success(); 5616 5617 assert(Offset > 0 && "Expected non-zero VST offset"); 5618 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5619 if (!MaybeCurrentBit) 5620 return MaybeCurrentBit.takeError(); 5621 uint64_t CurrentBit = MaybeCurrentBit.get(); 5622 5623 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5624 return Err; 5625 5626 SmallVector<uint64_t, 64> Record; 5627 5628 // Read all the records for this value table. 5629 SmallString<128> ValueName; 5630 5631 while (true) { 5632 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5633 if (!MaybeEntry) 5634 return MaybeEntry.takeError(); 5635 BitstreamEntry Entry = MaybeEntry.get(); 5636 5637 switch (Entry.Kind) { 5638 case BitstreamEntry::SubBlock: // Handled for us already. 5639 case BitstreamEntry::Error: 5640 return error("Malformed block"); 5641 case BitstreamEntry::EndBlock: 5642 // Done parsing VST, jump back to wherever we came from. 5643 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5644 return JumpFailed; 5645 return Error::success(); 5646 case BitstreamEntry::Record: 5647 // The interesting case. 5648 break; 5649 } 5650 5651 // Read a record. 5652 Record.clear(); 5653 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5654 if (!MaybeRecord) 5655 return MaybeRecord.takeError(); 5656 switch (MaybeRecord.get()) { 5657 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5658 break; 5659 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5660 if (convertToString(Record, 1, ValueName)) 5661 return error("Invalid record"); 5662 unsigned ValueID = Record[0]; 5663 assert(!SourceFileName.empty()); 5664 auto VLI = ValueIdToLinkageMap.find(ValueID); 5665 assert(VLI != ValueIdToLinkageMap.end() && 5666 "No linkage found for VST entry?"); 5667 auto Linkage = VLI->second; 5668 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5669 ValueName.clear(); 5670 break; 5671 } 5672 case bitc::VST_CODE_FNENTRY: { 5673 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5674 if (convertToString(Record, 2, ValueName)) 5675 return error("Invalid record"); 5676 unsigned ValueID = Record[0]; 5677 assert(!SourceFileName.empty()); 5678 auto VLI = ValueIdToLinkageMap.find(ValueID); 5679 assert(VLI != ValueIdToLinkageMap.end() && 5680 "No linkage found for VST entry?"); 5681 auto Linkage = VLI->second; 5682 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5683 ValueName.clear(); 5684 break; 5685 } 5686 case bitc::VST_CODE_COMBINED_ENTRY: { 5687 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5688 unsigned ValueID = Record[0]; 5689 GlobalValue::GUID RefGUID = Record[1]; 5690 // The "original name", which is the second value of the pair will be 5691 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5692 ValueIdToValueInfoMap[ValueID] = 5693 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5694 break; 5695 } 5696 } 5697 } 5698 } 5699 5700 // Parse just the blocks needed for building the index out of the module. 5701 // At the end of this routine the module Index is populated with a map 5702 // from global value id to GlobalValueSummary objects. 5703 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5704 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5705 return Err; 5706 5707 SmallVector<uint64_t, 64> Record; 5708 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5709 unsigned ValueId = 0; 5710 5711 // Read the index for this module. 5712 while (true) { 5713 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5714 if (!MaybeEntry) 5715 return MaybeEntry.takeError(); 5716 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5717 5718 switch (Entry.Kind) { 5719 case BitstreamEntry::Error: 5720 return error("Malformed block"); 5721 case BitstreamEntry::EndBlock: 5722 return Error::success(); 5723 5724 case BitstreamEntry::SubBlock: 5725 switch (Entry.ID) { 5726 default: // Skip unknown content. 5727 if (Error Err = Stream.SkipBlock()) 5728 return Err; 5729 break; 5730 case bitc::BLOCKINFO_BLOCK_ID: 5731 // Need to parse these to get abbrev ids (e.g. for VST) 5732 if (readBlockInfo()) 5733 return error("Malformed block"); 5734 break; 5735 case bitc::VALUE_SYMTAB_BLOCK_ID: 5736 // Should have been parsed earlier via VSTOffset, unless there 5737 // is no summary section. 5738 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5739 !SeenGlobalValSummary) && 5740 "Expected early VST parse via VSTOffset record"); 5741 if (Error Err = Stream.SkipBlock()) 5742 return Err; 5743 break; 5744 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5745 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5746 // Add the module if it is a per-module index (has a source file name). 5747 if (!SourceFileName.empty()) 5748 addThisModule(); 5749 assert(!SeenValueSymbolTable && 5750 "Already read VST when parsing summary block?"); 5751 // We might not have a VST if there were no values in the 5752 // summary. An empty summary block generated when we are 5753 // performing ThinLTO compiles so we don't later invoke 5754 // the regular LTO process on them. 5755 if (VSTOffset > 0) { 5756 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5757 return Err; 5758 SeenValueSymbolTable = true; 5759 } 5760 SeenGlobalValSummary = true; 5761 if (Error Err = parseEntireSummary(Entry.ID)) 5762 return Err; 5763 break; 5764 case bitc::MODULE_STRTAB_BLOCK_ID: 5765 if (Error Err = parseModuleStringTable()) 5766 return Err; 5767 break; 5768 } 5769 continue; 5770 5771 case BitstreamEntry::Record: { 5772 Record.clear(); 5773 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5774 if (!MaybeBitCode) 5775 return MaybeBitCode.takeError(); 5776 switch (MaybeBitCode.get()) { 5777 default: 5778 break; // Default behavior, ignore unknown content. 5779 case bitc::MODULE_CODE_VERSION: { 5780 if (Error Err = parseVersionRecord(Record).takeError()) 5781 return Err; 5782 break; 5783 } 5784 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5785 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5786 SmallString<128> ValueName; 5787 if (convertToString(Record, 0, ValueName)) 5788 return error("Invalid record"); 5789 SourceFileName = ValueName.c_str(); 5790 break; 5791 } 5792 /// MODULE_CODE_HASH: [5*i32] 5793 case bitc::MODULE_CODE_HASH: { 5794 if (Record.size() != 5) 5795 return error("Invalid hash length " + Twine(Record.size()).str()); 5796 auto &Hash = getThisModule()->second.second; 5797 int Pos = 0; 5798 for (auto &Val : Record) { 5799 assert(!(Val >> 32) && "Unexpected high bits set"); 5800 Hash[Pos++] = Val; 5801 } 5802 break; 5803 } 5804 /// MODULE_CODE_VSTOFFSET: [offset] 5805 case bitc::MODULE_CODE_VSTOFFSET: 5806 if (Record.empty()) 5807 return error("Invalid record"); 5808 // Note that we subtract 1 here because the offset is relative to one 5809 // word before the start of the identification or module block, which 5810 // was historically always the start of the regular bitcode header. 5811 VSTOffset = Record[0] - 1; 5812 break; 5813 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5814 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5815 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5816 // v2: [strtab offset, strtab size, v1] 5817 case bitc::MODULE_CODE_GLOBALVAR: 5818 case bitc::MODULE_CODE_FUNCTION: 5819 case bitc::MODULE_CODE_ALIAS: { 5820 StringRef Name; 5821 ArrayRef<uint64_t> GVRecord; 5822 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5823 if (GVRecord.size() <= 3) 5824 return error("Invalid record"); 5825 uint64_t RawLinkage = GVRecord[3]; 5826 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5827 if (!UseStrtab) { 5828 ValueIdToLinkageMap[ValueId++] = Linkage; 5829 break; 5830 } 5831 5832 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5833 break; 5834 } 5835 } 5836 } 5837 continue; 5838 } 5839 } 5840 } 5841 5842 std::vector<ValueInfo> 5843 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5844 std::vector<ValueInfo> Ret; 5845 Ret.reserve(Record.size()); 5846 for (uint64_t RefValueId : Record) 5847 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5848 return Ret; 5849 } 5850 5851 std::vector<FunctionSummary::EdgeTy> 5852 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5853 bool IsOldProfileFormat, 5854 bool HasProfile, bool HasRelBF) { 5855 std::vector<FunctionSummary::EdgeTy> Ret; 5856 Ret.reserve(Record.size()); 5857 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5858 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5859 uint64_t RelBF = 0; 5860 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5861 if (IsOldProfileFormat) { 5862 I += 1; // Skip old callsitecount field 5863 if (HasProfile) 5864 I += 1; // Skip old profilecount field 5865 } else if (HasProfile) 5866 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5867 else if (HasRelBF) 5868 RelBF = Record[++I]; 5869 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5870 } 5871 return Ret; 5872 } 5873 5874 static void 5875 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5876 WholeProgramDevirtResolution &Wpd) { 5877 uint64_t ArgNum = Record[Slot++]; 5878 WholeProgramDevirtResolution::ByArg &B = 5879 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5880 Slot += ArgNum; 5881 5882 B.TheKind = 5883 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5884 B.Info = Record[Slot++]; 5885 B.Byte = Record[Slot++]; 5886 B.Bit = Record[Slot++]; 5887 } 5888 5889 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5890 StringRef Strtab, size_t &Slot, 5891 TypeIdSummary &TypeId) { 5892 uint64_t Id = Record[Slot++]; 5893 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5894 5895 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5896 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5897 static_cast<size_t>(Record[Slot + 1])}; 5898 Slot += 2; 5899 5900 uint64_t ResByArgNum = Record[Slot++]; 5901 for (uint64_t I = 0; I != ResByArgNum; ++I) 5902 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5903 } 5904 5905 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5906 StringRef Strtab, 5907 ModuleSummaryIndex &TheIndex) { 5908 size_t Slot = 0; 5909 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5910 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5911 Slot += 2; 5912 5913 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5914 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5915 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5916 TypeId.TTRes.SizeM1 = Record[Slot++]; 5917 TypeId.TTRes.BitMask = Record[Slot++]; 5918 TypeId.TTRes.InlineBits = Record[Slot++]; 5919 5920 while (Slot < Record.size()) 5921 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5922 } 5923 5924 std::vector<FunctionSummary::ParamAccess> 5925 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5926 auto ReadRange = [&]() { 5927 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5928 BitcodeReader::decodeSignRotatedValue(Record.front())); 5929 Record = Record.drop_front(); 5930 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5931 BitcodeReader::decodeSignRotatedValue(Record.front())); 5932 Record = Record.drop_front(); 5933 ConstantRange Range{Lower, Upper}; 5934 assert(!Range.isFullSet()); 5935 assert(!Range.isUpperSignWrapped()); 5936 return Range; 5937 }; 5938 5939 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5940 while (!Record.empty()) { 5941 PendingParamAccesses.emplace_back(); 5942 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5943 ParamAccess.ParamNo = Record.front(); 5944 Record = Record.drop_front(); 5945 ParamAccess.Use = ReadRange(); 5946 ParamAccess.Calls.resize(Record.front()); 5947 Record = Record.drop_front(); 5948 for (auto &Call : ParamAccess.Calls) { 5949 Call.ParamNo = Record.front(); 5950 Record = Record.drop_front(); 5951 Call.Callee = getValueInfoFromValueId(Record.front()).first; 5952 Record = Record.drop_front(); 5953 Call.Offsets = ReadRange(); 5954 } 5955 } 5956 return PendingParamAccesses; 5957 } 5958 5959 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5960 ArrayRef<uint64_t> Record, size_t &Slot, 5961 TypeIdCompatibleVtableInfo &TypeId) { 5962 uint64_t Offset = Record[Slot++]; 5963 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5964 TypeId.push_back({Offset, Callee}); 5965 } 5966 5967 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5968 ArrayRef<uint64_t> Record) { 5969 size_t Slot = 0; 5970 TypeIdCompatibleVtableInfo &TypeId = 5971 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5972 {Strtab.data() + Record[Slot], 5973 static_cast<size_t>(Record[Slot + 1])}); 5974 Slot += 2; 5975 5976 while (Slot < Record.size()) 5977 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5978 } 5979 5980 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5981 unsigned WOCnt) { 5982 // Readonly and writeonly refs are in the end of the refs list. 5983 assert(ROCnt + WOCnt <= Refs.size()); 5984 unsigned FirstWORef = Refs.size() - WOCnt; 5985 unsigned RefNo = FirstWORef - ROCnt; 5986 for (; RefNo < FirstWORef; ++RefNo) 5987 Refs[RefNo].setReadOnly(); 5988 for (; RefNo < Refs.size(); ++RefNo) 5989 Refs[RefNo].setWriteOnly(); 5990 } 5991 5992 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5993 // objects in the index. 5994 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5995 if (Error Err = Stream.EnterSubBlock(ID)) 5996 return Err; 5997 SmallVector<uint64_t, 64> Record; 5998 5999 // Parse version 6000 { 6001 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6002 if (!MaybeEntry) 6003 return MaybeEntry.takeError(); 6004 BitstreamEntry Entry = MaybeEntry.get(); 6005 6006 if (Entry.Kind != BitstreamEntry::Record) 6007 return error("Invalid Summary Block: record for version expected"); 6008 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6009 if (!MaybeRecord) 6010 return MaybeRecord.takeError(); 6011 if (MaybeRecord.get() != bitc::FS_VERSION) 6012 return error("Invalid Summary Block: version expected"); 6013 } 6014 const uint64_t Version = Record[0]; 6015 const bool IsOldProfileFormat = Version == 1; 6016 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6017 return error("Invalid summary version " + Twine(Version) + 6018 ". Version should be in the range [1-" + 6019 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6020 "]."); 6021 Record.clear(); 6022 6023 // Keep around the last seen summary to be used when we see an optional 6024 // "OriginalName" attachement. 6025 GlobalValueSummary *LastSeenSummary = nullptr; 6026 GlobalValue::GUID LastSeenGUID = 0; 6027 6028 // We can expect to see any number of type ID information records before 6029 // each function summary records; these variables store the information 6030 // collected so far so that it can be used to create the summary object. 6031 std::vector<GlobalValue::GUID> PendingTypeTests; 6032 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6033 PendingTypeCheckedLoadVCalls; 6034 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6035 PendingTypeCheckedLoadConstVCalls; 6036 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6037 6038 while (true) { 6039 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6040 if (!MaybeEntry) 6041 return MaybeEntry.takeError(); 6042 BitstreamEntry Entry = MaybeEntry.get(); 6043 6044 switch (Entry.Kind) { 6045 case BitstreamEntry::SubBlock: // Handled for us already. 6046 case BitstreamEntry::Error: 6047 return error("Malformed block"); 6048 case BitstreamEntry::EndBlock: 6049 return Error::success(); 6050 case BitstreamEntry::Record: 6051 // The interesting case. 6052 break; 6053 } 6054 6055 // Read a record. The record format depends on whether this 6056 // is a per-module index or a combined index file. In the per-module 6057 // case the records contain the associated value's ID for correlation 6058 // with VST entries. In the combined index the correlation is done 6059 // via the bitcode offset of the summary records (which were saved 6060 // in the combined index VST entries). The records also contain 6061 // information used for ThinLTO renaming and importing. 6062 Record.clear(); 6063 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6064 if (!MaybeBitCode) 6065 return MaybeBitCode.takeError(); 6066 switch (unsigned BitCode = MaybeBitCode.get()) { 6067 default: // Default behavior: ignore. 6068 break; 6069 case bitc::FS_FLAGS: { // [flags] 6070 TheIndex.setFlags(Record[0]); 6071 break; 6072 } 6073 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6074 uint64_t ValueID = Record[0]; 6075 GlobalValue::GUID RefGUID = Record[1]; 6076 ValueIdToValueInfoMap[ValueID] = 6077 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6078 break; 6079 } 6080 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6081 // numrefs x valueid, n x (valueid)] 6082 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6083 // numrefs x valueid, 6084 // n x (valueid, hotness)] 6085 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6086 // numrefs x valueid, 6087 // n x (valueid, relblockfreq)] 6088 case bitc::FS_PERMODULE: 6089 case bitc::FS_PERMODULE_RELBF: 6090 case bitc::FS_PERMODULE_PROFILE: { 6091 unsigned ValueID = Record[0]; 6092 uint64_t RawFlags = Record[1]; 6093 unsigned InstCount = Record[2]; 6094 uint64_t RawFunFlags = 0; 6095 unsigned NumRefs = Record[3]; 6096 unsigned NumRORefs = 0, NumWORefs = 0; 6097 int RefListStartIndex = 4; 6098 if (Version >= 4) { 6099 RawFunFlags = Record[3]; 6100 NumRefs = Record[4]; 6101 RefListStartIndex = 5; 6102 if (Version >= 5) { 6103 NumRORefs = Record[5]; 6104 RefListStartIndex = 6; 6105 if (Version >= 7) { 6106 NumWORefs = Record[6]; 6107 RefListStartIndex = 7; 6108 } 6109 } 6110 } 6111 6112 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6113 // The module path string ref set in the summary must be owned by the 6114 // index's module string table. Since we don't have a module path 6115 // string table section in the per-module index, we create a single 6116 // module path string table entry with an empty (0) ID to take 6117 // ownership. 6118 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6119 assert(Record.size() >= RefListStartIndex + NumRefs && 6120 "Record size inconsistent with number of references"); 6121 std::vector<ValueInfo> Refs = makeRefList( 6122 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6123 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6124 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6125 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6126 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6127 IsOldProfileFormat, HasProfile, HasRelBF); 6128 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6129 auto FS = std::make_unique<FunctionSummary>( 6130 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6131 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6132 std::move(PendingTypeTestAssumeVCalls), 6133 std::move(PendingTypeCheckedLoadVCalls), 6134 std::move(PendingTypeTestAssumeConstVCalls), 6135 std::move(PendingTypeCheckedLoadConstVCalls), 6136 std::move(PendingParamAccesses)); 6137 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6138 FS->setModulePath(getThisModule()->first()); 6139 FS->setOriginalName(VIAndOriginalGUID.second); 6140 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6141 break; 6142 } 6143 // FS_ALIAS: [valueid, flags, valueid] 6144 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6145 // they expect all aliasee summaries to be available. 6146 case bitc::FS_ALIAS: { 6147 unsigned ValueID = Record[0]; 6148 uint64_t RawFlags = Record[1]; 6149 unsigned AliaseeID = Record[2]; 6150 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6151 auto AS = std::make_unique<AliasSummary>(Flags); 6152 // The module path string ref set in the summary must be owned by the 6153 // index's module string table. Since we don't have a module path 6154 // string table section in the per-module index, we create a single 6155 // module path string table entry with an empty (0) ID to take 6156 // ownership. 6157 AS->setModulePath(getThisModule()->first()); 6158 6159 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6160 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6161 if (!AliaseeInModule) 6162 return error("Alias expects aliasee summary to be parsed"); 6163 AS->setAliasee(AliaseeVI, AliaseeInModule); 6164 6165 auto GUID = getValueInfoFromValueId(ValueID); 6166 AS->setOriginalName(GUID.second); 6167 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6168 break; 6169 } 6170 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6171 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6172 unsigned ValueID = Record[0]; 6173 uint64_t RawFlags = Record[1]; 6174 unsigned RefArrayStart = 2; 6175 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6176 /* WriteOnly */ false, 6177 /* Constant */ false, 6178 GlobalObject::VCallVisibilityPublic); 6179 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6180 if (Version >= 5) { 6181 GVF = getDecodedGVarFlags(Record[2]); 6182 RefArrayStart = 3; 6183 } 6184 std::vector<ValueInfo> Refs = 6185 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6186 auto FS = 6187 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6188 FS->setModulePath(getThisModule()->first()); 6189 auto GUID = getValueInfoFromValueId(ValueID); 6190 FS->setOriginalName(GUID.second); 6191 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6192 break; 6193 } 6194 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6195 // numrefs, numrefs x valueid, 6196 // n x (valueid, offset)] 6197 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6198 unsigned ValueID = Record[0]; 6199 uint64_t RawFlags = Record[1]; 6200 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6201 unsigned NumRefs = Record[3]; 6202 unsigned RefListStartIndex = 4; 6203 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6204 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6205 std::vector<ValueInfo> Refs = makeRefList( 6206 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6207 VTableFuncList VTableFuncs; 6208 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6209 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6210 uint64_t Offset = Record[++I]; 6211 VTableFuncs.push_back({Callee, Offset}); 6212 } 6213 auto VS = 6214 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6215 VS->setModulePath(getThisModule()->first()); 6216 VS->setVTableFuncs(VTableFuncs); 6217 auto GUID = getValueInfoFromValueId(ValueID); 6218 VS->setOriginalName(GUID.second); 6219 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6220 break; 6221 } 6222 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6223 // numrefs x valueid, n x (valueid)] 6224 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6225 // numrefs x valueid, n x (valueid, hotness)] 6226 case bitc::FS_COMBINED: 6227 case bitc::FS_COMBINED_PROFILE: { 6228 unsigned ValueID = Record[0]; 6229 uint64_t ModuleId = Record[1]; 6230 uint64_t RawFlags = Record[2]; 6231 unsigned InstCount = Record[3]; 6232 uint64_t RawFunFlags = 0; 6233 uint64_t EntryCount = 0; 6234 unsigned NumRefs = Record[4]; 6235 unsigned NumRORefs = 0, NumWORefs = 0; 6236 int RefListStartIndex = 5; 6237 6238 if (Version >= 4) { 6239 RawFunFlags = Record[4]; 6240 RefListStartIndex = 6; 6241 size_t NumRefsIndex = 5; 6242 if (Version >= 5) { 6243 unsigned NumRORefsOffset = 1; 6244 RefListStartIndex = 7; 6245 if (Version >= 6) { 6246 NumRefsIndex = 6; 6247 EntryCount = Record[5]; 6248 RefListStartIndex = 8; 6249 if (Version >= 7) { 6250 RefListStartIndex = 9; 6251 NumWORefs = Record[8]; 6252 NumRORefsOffset = 2; 6253 } 6254 } 6255 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6256 } 6257 NumRefs = Record[NumRefsIndex]; 6258 } 6259 6260 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6261 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6262 assert(Record.size() >= RefListStartIndex + NumRefs && 6263 "Record size inconsistent with number of references"); 6264 std::vector<ValueInfo> Refs = makeRefList( 6265 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6266 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6267 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6268 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6269 IsOldProfileFormat, HasProfile, false); 6270 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6271 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6272 auto FS = std::make_unique<FunctionSummary>( 6273 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6274 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6275 std::move(PendingTypeTestAssumeVCalls), 6276 std::move(PendingTypeCheckedLoadVCalls), 6277 std::move(PendingTypeTestAssumeConstVCalls), 6278 std::move(PendingTypeCheckedLoadConstVCalls), 6279 std::move(PendingParamAccesses)); 6280 LastSeenSummary = FS.get(); 6281 LastSeenGUID = VI.getGUID(); 6282 FS->setModulePath(ModuleIdMap[ModuleId]); 6283 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6284 break; 6285 } 6286 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6287 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6288 // they expect all aliasee summaries to be available. 6289 case bitc::FS_COMBINED_ALIAS: { 6290 unsigned ValueID = Record[0]; 6291 uint64_t ModuleId = Record[1]; 6292 uint64_t RawFlags = Record[2]; 6293 unsigned AliaseeValueId = Record[3]; 6294 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6295 auto AS = std::make_unique<AliasSummary>(Flags); 6296 LastSeenSummary = AS.get(); 6297 AS->setModulePath(ModuleIdMap[ModuleId]); 6298 6299 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6300 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6301 AS->setAliasee(AliaseeVI, AliaseeInModule); 6302 6303 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6304 LastSeenGUID = VI.getGUID(); 6305 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6306 break; 6307 } 6308 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6309 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6310 unsigned ValueID = Record[0]; 6311 uint64_t ModuleId = Record[1]; 6312 uint64_t RawFlags = Record[2]; 6313 unsigned RefArrayStart = 3; 6314 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6315 /* WriteOnly */ false, 6316 /* Constant */ false, 6317 GlobalObject::VCallVisibilityPublic); 6318 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6319 if (Version >= 5) { 6320 GVF = getDecodedGVarFlags(Record[3]); 6321 RefArrayStart = 4; 6322 } 6323 std::vector<ValueInfo> Refs = 6324 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6325 auto FS = 6326 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6327 LastSeenSummary = FS.get(); 6328 FS->setModulePath(ModuleIdMap[ModuleId]); 6329 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6330 LastSeenGUID = VI.getGUID(); 6331 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6332 break; 6333 } 6334 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6335 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6336 uint64_t OriginalName = Record[0]; 6337 if (!LastSeenSummary) 6338 return error("Name attachment that does not follow a combined record"); 6339 LastSeenSummary->setOriginalName(OriginalName); 6340 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6341 // Reset the LastSeenSummary 6342 LastSeenSummary = nullptr; 6343 LastSeenGUID = 0; 6344 break; 6345 } 6346 case bitc::FS_TYPE_TESTS: 6347 assert(PendingTypeTests.empty()); 6348 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6349 Record.end()); 6350 break; 6351 6352 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6353 assert(PendingTypeTestAssumeVCalls.empty()); 6354 for (unsigned I = 0; I != Record.size(); I += 2) 6355 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6356 break; 6357 6358 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6359 assert(PendingTypeCheckedLoadVCalls.empty()); 6360 for (unsigned I = 0; I != Record.size(); I += 2) 6361 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6362 break; 6363 6364 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6365 PendingTypeTestAssumeConstVCalls.push_back( 6366 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6367 break; 6368 6369 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6370 PendingTypeCheckedLoadConstVCalls.push_back( 6371 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6372 break; 6373 6374 case bitc::FS_CFI_FUNCTION_DEFS: { 6375 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6376 for (unsigned I = 0; I != Record.size(); I += 2) 6377 CfiFunctionDefs.insert( 6378 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6379 break; 6380 } 6381 6382 case bitc::FS_CFI_FUNCTION_DECLS: { 6383 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6384 for (unsigned I = 0; I != Record.size(); I += 2) 6385 CfiFunctionDecls.insert( 6386 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6387 break; 6388 } 6389 6390 case bitc::FS_TYPE_ID: 6391 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6392 break; 6393 6394 case bitc::FS_TYPE_ID_METADATA: 6395 parseTypeIdCompatibleVtableSummaryRecord(Record); 6396 break; 6397 6398 case bitc::FS_BLOCK_COUNT: 6399 TheIndex.addBlockCount(Record[0]); 6400 break; 6401 6402 case bitc::FS_PARAM_ACCESS: { 6403 PendingParamAccesses = parseParamAccesses(Record); 6404 break; 6405 } 6406 } 6407 } 6408 llvm_unreachable("Exit infinite loop"); 6409 } 6410 6411 // Parse the module string table block into the Index. 6412 // This populates the ModulePathStringTable map in the index. 6413 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6414 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6415 return Err; 6416 6417 SmallVector<uint64_t, 64> Record; 6418 6419 SmallString<128> ModulePath; 6420 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6421 6422 while (true) { 6423 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6424 if (!MaybeEntry) 6425 return MaybeEntry.takeError(); 6426 BitstreamEntry Entry = MaybeEntry.get(); 6427 6428 switch (Entry.Kind) { 6429 case BitstreamEntry::SubBlock: // Handled for us already. 6430 case BitstreamEntry::Error: 6431 return error("Malformed block"); 6432 case BitstreamEntry::EndBlock: 6433 return Error::success(); 6434 case BitstreamEntry::Record: 6435 // The interesting case. 6436 break; 6437 } 6438 6439 Record.clear(); 6440 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6441 if (!MaybeRecord) 6442 return MaybeRecord.takeError(); 6443 switch (MaybeRecord.get()) { 6444 default: // Default behavior: ignore. 6445 break; 6446 case bitc::MST_CODE_ENTRY: { 6447 // MST_ENTRY: [modid, namechar x N] 6448 uint64_t ModuleId = Record[0]; 6449 6450 if (convertToString(Record, 1, ModulePath)) 6451 return error("Invalid record"); 6452 6453 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6454 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6455 6456 ModulePath.clear(); 6457 break; 6458 } 6459 /// MST_CODE_HASH: [5*i32] 6460 case bitc::MST_CODE_HASH: { 6461 if (Record.size() != 5) 6462 return error("Invalid hash length " + Twine(Record.size()).str()); 6463 if (!LastSeenModule) 6464 return error("Invalid hash that does not follow a module path"); 6465 int Pos = 0; 6466 for (auto &Val : Record) { 6467 assert(!(Val >> 32) && "Unexpected high bits set"); 6468 LastSeenModule->second.second[Pos++] = Val; 6469 } 6470 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6471 LastSeenModule = nullptr; 6472 break; 6473 } 6474 } 6475 } 6476 llvm_unreachable("Exit infinite loop"); 6477 } 6478 6479 namespace { 6480 6481 // FIXME: This class is only here to support the transition to llvm::Error. It 6482 // will be removed once this transition is complete. Clients should prefer to 6483 // deal with the Error value directly, rather than converting to error_code. 6484 class BitcodeErrorCategoryType : public std::error_category { 6485 const char *name() const noexcept override { 6486 return "llvm.bitcode"; 6487 } 6488 6489 std::string message(int IE) const override { 6490 BitcodeError E = static_cast<BitcodeError>(IE); 6491 switch (E) { 6492 case BitcodeError::CorruptedBitcode: 6493 return "Corrupted bitcode"; 6494 } 6495 llvm_unreachable("Unknown error type!"); 6496 } 6497 }; 6498 6499 } // end anonymous namespace 6500 6501 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6502 6503 const std::error_category &llvm::BitcodeErrorCategory() { 6504 return *ErrorCategory; 6505 } 6506 6507 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6508 unsigned Block, unsigned RecordID) { 6509 if (Error Err = Stream.EnterSubBlock(Block)) 6510 return std::move(Err); 6511 6512 StringRef Strtab; 6513 while (true) { 6514 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6515 if (!MaybeEntry) 6516 return MaybeEntry.takeError(); 6517 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6518 6519 switch (Entry.Kind) { 6520 case BitstreamEntry::EndBlock: 6521 return Strtab; 6522 6523 case BitstreamEntry::Error: 6524 return error("Malformed block"); 6525 6526 case BitstreamEntry::SubBlock: 6527 if (Error Err = Stream.SkipBlock()) 6528 return std::move(Err); 6529 break; 6530 6531 case BitstreamEntry::Record: 6532 StringRef Blob; 6533 SmallVector<uint64_t, 1> Record; 6534 Expected<unsigned> MaybeRecord = 6535 Stream.readRecord(Entry.ID, Record, &Blob); 6536 if (!MaybeRecord) 6537 return MaybeRecord.takeError(); 6538 if (MaybeRecord.get() == RecordID) 6539 Strtab = Blob; 6540 break; 6541 } 6542 } 6543 } 6544 6545 //===----------------------------------------------------------------------===// 6546 // External interface 6547 //===----------------------------------------------------------------------===// 6548 6549 Expected<std::vector<BitcodeModule>> 6550 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6551 auto FOrErr = getBitcodeFileContents(Buffer); 6552 if (!FOrErr) 6553 return FOrErr.takeError(); 6554 return std::move(FOrErr->Mods); 6555 } 6556 6557 Expected<BitcodeFileContents> 6558 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6559 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6560 if (!StreamOrErr) 6561 return StreamOrErr.takeError(); 6562 BitstreamCursor &Stream = *StreamOrErr; 6563 6564 BitcodeFileContents F; 6565 while (true) { 6566 uint64_t BCBegin = Stream.getCurrentByteNo(); 6567 6568 // We may be consuming bitcode from a client that leaves garbage at the end 6569 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6570 // the end that there cannot possibly be another module, stop looking. 6571 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6572 return F; 6573 6574 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6575 if (!MaybeEntry) 6576 return MaybeEntry.takeError(); 6577 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6578 6579 switch (Entry.Kind) { 6580 case BitstreamEntry::EndBlock: 6581 case BitstreamEntry::Error: 6582 return error("Malformed block"); 6583 6584 case BitstreamEntry::SubBlock: { 6585 uint64_t IdentificationBit = -1ull; 6586 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6587 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6588 if (Error Err = Stream.SkipBlock()) 6589 return std::move(Err); 6590 6591 { 6592 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6593 if (!MaybeEntry) 6594 return MaybeEntry.takeError(); 6595 Entry = MaybeEntry.get(); 6596 } 6597 6598 if (Entry.Kind != BitstreamEntry::SubBlock || 6599 Entry.ID != bitc::MODULE_BLOCK_ID) 6600 return error("Malformed block"); 6601 } 6602 6603 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6604 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6605 if (Error Err = Stream.SkipBlock()) 6606 return std::move(Err); 6607 6608 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6609 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6610 Buffer.getBufferIdentifier(), IdentificationBit, 6611 ModuleBit}); 6612 continue; 6613 } 6614 6615 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6616 Expected<StringRef> Strtab = 6617 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6618 if (!Strtab) 6619 return Strtab.takeError(); 6620 // This string table is used by every preceding bitcode module that does 6621 // not have its own string table. A bitcode file may have multiple 6622 // string tables if it was created by binary concatenation, for example 6623 // with "llvm-cat -b". 6624 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6625 if (!I->Strtab.empty()) 6626 break; 6627 I->Strtab = *Strtab; 6628 } 6629 // Similarly, the string table is used by every preceding symbol table; 6630 // normally there will be just one unless the bitcode file was created 6631 // by binary concatenation. 6632 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6633 F.StrtabForSymtab = *Strtab; 6634 continue; 6635 } 6636 6637 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6638 Expected<StringRef> SymtabOrErr = 6639 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6640 if (!SymtabOrErr) 6641 return SymtabOrErr.takeError(); 6642 6643 // We can expect the bitcode file to have multiple symbol tables if it 6644 // was created by binary concatenation. In that case we silently 6645 // ignore any subsequent symbol tables, which is fine because this is a 6646 // low level function. The client is expected to notice that the number 6647 // of modules in the symbol table does not match the number of modules 6648 // in the input file and regenerate the symbol table. 6649 if (F.Symtab.empty()) 6650 F.Symtab = *SymtabOrErr; 6651 continue; 6652 } 6653 6654 if (Error Err = Stream.SkipBlock()) 6655 return std::move(Err); 6656 continue; 6657 } 6658 case BitstreamEntry::Record: 6659 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6660 continue; 6661 else 6662 return StreamFailed.takeError(); 6663 } 6664 } 6665 } 6666 6667 /// Get a lazy one-at-time loading module from bitcode. 6668 /// 6669 /// This isn't always used in a lazy context. In particular, it's also used by 6670 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6671 /// in forward-referenced functions from block address references. 6672 /// 6673 /// \param[in] MaterializeAll Set to \c true if we should materialize 6674 /// everything. 6675 Expected<std::unique_ptr<Module>> 6676 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6677 bool ShouldLazyLoadMetadata, bool IsImporting, 6678 DataLayoutCallbackTy DataLayoutCallback) { 6679 BitstreamCursor Stream(Buffer); 6680 6681 std::string ProducerIdentification; 6682 if (IdentificationBit != -1ull) { 6683 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6684 return std::move(JumpFailed); 6685 Expected<std::string> ProducerIdentificationOrErr = 6686 readIdentificationBlock(Stream); 6687 if (!ProducerIdentificationOrErr) 6688 return ProducerIdentificationOrErr.takeError(); 6689 6690 ProducerIdentification = *ProducerIdentificationOrErr; 6691 } 6692 6693 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6694 return std::move(JumpFailed); 6695 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6696 Context); 6697 6698 std::unique_ptr<Module> M = 6699 std::make_unique<Module>(ModuleIdentifier, Context); 6700 M->setMaterializer(R); 6701 6702 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6703 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6704 IsImporting, DataLayoutCallback)) 6705 return std::move(Err); 6706 6707 if (MaterializeAll) { 6708 // Read in the entire module, and destroy the BitcodeReader. 6709 if (Error Err = M->materializeAll()) 6710 return std::move(Err); 6711 } else { 6712 // Resolve forward references from blockaddresses. 6713 if (Error Err = R->materializeForwardReferencedFunctions()) 6714 return std::move(Err); 6715 } 6716 return std::move(M); 6717 } 6718 6719 Expected<std::unique_ptr<Module>> 6720 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6721 bool IsImporting) { 6722 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6723 [](StringRef) { return None; }); 6724 } 6725 6726 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6727 // We don't use ModuleIdentifier here because the client may need to control the 6728 // module path used in the combined summary (e.g. when reading summaries for 6729 // regular LTO modules). 6730 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6731 StringRef ModulePath, uint64_t ModuleId) { 6732 BitstreamCursor Stream(Buffer); 6733 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6734 return JumpFailed; 6735 6736 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6737 ModulePath, ModuleId); 6738 return R.parseModule(); 6739 } 6740 6741 // Parse the specified bitcode buffer, returning the function info index. 6742 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6743 BitstreamCursor Stream(Buffer); 6744 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6745 return std::move(JumpFailed); 6746 6747 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6748 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6749 ModuleIdentifier, 0); 6750 6751 if (Error Err = R.parseModule()) 6752 return std::move(Err); 6753 6754 return std::move(Index); 6755 } 6756 6757 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6758 unsigned ID) { 6759 if (Error Err = Stream.EnterSubBlock(ID)) 6760 return std::move(Err); 6761 SmallVector<uint64_t, 64> Record; 6762 6763 while (true) { 6764 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6765 if (!MaybeEntry) 6766 return MaybeEntry.takeError(); 6767 BitstreamEntry Entry = MaybeEntry.get(); 6768 6769 switch (Entry.Kind) { 6770 case BitstreamEntry::SubBlock: // Handled for us already. 6771 case BitstreamEntry::Error: 6772 return error("Malformed block"); 6773 case BitstreamEntry::EndBlock: 6774 // If no flags record found, conservatively return true to mimic 6775 // behavior before this flag was added. 6776 return true; 6777 case BitstreamEntry::Record: 6778 // The interesting case. 6779 break; 6780 } 6781 6782 // Look for the FS_FLAGS record. 6783 Record.clear(); 6784 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6785 if (!MaybeBitCode) 6786 return MaybeBitCode.takeError(); 6787 switch (MaybeBitCode.get()) { 6788 default: // Default behavior: ignore. 6789 break; 6790 case bitc::FS_FLAGS: { // [flags] 6791 uint64_t Flags = Record[0]; 6792 // Scan flags. 6793 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6794 6795 return Flags & 0x8; 6796 } 6797 } 6798 } 6799 llvm_unreachable("Exit infinite loop"); 6800 } 6801 6802 // Check if the given bitcode buffer contains a global value summary block. 6803 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6804 BitstreamCursor Stream(Buffer); 6805 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6806 return std::move(JumpFailed); 6807 6808 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6809 return std::move(Err); 6810 6811 while (true) { 6812 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6813 if (!MaybeEntry) 6814 return MaybeEntry.takeError(); 6815 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6816 6817 switch (Entry.Kind) { 6818 case BitstreamEntry::Error: 6819 return error("Malformed block"); 6820 case BitstreamEntry::EndBlock: 6821 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6822 /*EnableSplitLTOUnit=*/false}; 6823 6824 case BitstreamEntry::SubBlock: 6825 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6826 Expected<bool> EnableSplitLTOUnit = 6827 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6828 if (!EnableSplitLTOUnit) 6829 return EnableSplitLTOUnit.takeError(); 6830 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6831 *EnableSplitLTOUnit}; 6832 } 6833 6834 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6835 Expected<bool> EnableSplitLTOUnit = 6836 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6837 if (!EnableSplitLTOUnit) 6838 return EnableSplitLTOUnit.takeError(); 6839 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6840 *EnableSplitLTOUnit}; 6841 } 6842 6843 // Ignore other sub-blocks. 6844 if (Error Err = Stream.SkipBlock()) 6845 return std::move(Err); 6846 continue; 6847 6848 case BitstreamEntry::Record: 6849 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6850 continue; 6851 else 6852 return StreamFailed.takeError(); 6853 } 6854 } 6855 } 6856 6857 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6858 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6859 if (!MsOrErr) 6860 return MsOrErr.takeError(); 6861 6862 if (MsOrErr->size() != 1) 6863 return error("Expected a single module"); 6864 6865 return (*MsOrErr)[0]; 6866 } 6867 6868 Expected<std::unique_ptr<Module>> 6869 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6870 bool ShouldLazyLoadMetadata, bool IsImporting) { 6871 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6872 if (!BM) 6873 return BM.takeError(); 6874 6875 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6876 } 6877 6878 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6879 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6880 bool ShouldLazyLoadMetadata, bool IsImporting) { 6881 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6882 IsImporting); 6883 if (MOrErr) 6884 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6885 return MOrErr; 6886 } 6887 6888 Expected<std::unique_ptr<Module>> 6889 BitcodeModule::parseModule(LLVMContext &Context, 6890 DataLayoutCallbackTy DataLayoutCallback) { 6891 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6892 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6893 // written. We must defer until the Module has been fully materialized. 6894 } 6895 6896 Expected<std::unique_ptr<Module>> 6897 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6898 DataLayoutCallbackTy DataLayoutCallback) { 6899 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6900 if (!BM) 6901 return BM.takeError(); 6902 6903 return BM->parseModule(Context, DataLayoutCallback); 6904 } 6905 6906 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6907 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6908 if (!StreamOrErr) 6909 return StreamOrErr.takeError(); 6910 6911 return readTriple(*StreamOrErr); 6912 } 6913 6914 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6915 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6916 if (!StreamOrErr) 6917 return StreamOrErr.takeError(); 6918 6919 return hasObjCCategory(*StreamOrErr); 6920 } 6921 6922 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6923 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6924 if (!StreamOrErr) 6925 return StreamOrErr.takeError(); 6926 6927 return readIdentificationCode(*StreamOrErr); 6928 } 6929 6930 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6931 ModuleSummaryIndex &CombinedIndex, 6932 uint64_t ModuleId) { 6933 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6934 if (!BM) 6935 return BM.takeError(); 6936 6937 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6938 } 6939 6940 Expected<std::unique_ptr<ModuleSummaryIndex>> 6941 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6942 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6943 if (!BM) 6944 return BM.takeError(); 6945 6946 return BM->getSummary(); 6947 } 6948 6949 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6950 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6951 if (!BM) 6952 return BM.takeError(); 6953 6954 return BM->getLTOInfo(); 6955 } 6956 6957 Expected<std::unique_ptr<ModuleSummaryIndex>> 6958 llvm::getModuleSummaryIndexForFile(StringRef Path, 6959 bool IgnoreEmptyThinLTOIndexFile) { 6960 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6961 MemoryBuffer::getFileOrSTDIN(Path); 6962 if (!FileOrErr) 6963 return errorCodeToError(FileOrErr.getError()); 6964 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6965 return nullptr; 6966 return getModuleSummaryIndex(**FileOrErr); 6967 } 6968