1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 30 using namespace llvm; 31 32 enum { 33 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 34 }; 35 36 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 37 if (WillMaterializeAllForwardRefs) 38 return std::error_code(); 39 40 // Prevent recursion. 41 WillMaterializeAllForwardRefs = true; 42 43 while (!BasicBlockFwdRefQueue.empty()) { 44 Function *F = BasicBlockFwdRefQueue.front(); 45 BasicBlockFwdRefQueue.pop_front(); 46 assert(F && "Expected valid function"); 47 if (!BasicBlockFwdRefs.count(F)) 48 // Already materialized. 49 continue; 50 51 // Check for a function that isn't materializable to prevent an infinite 52 // loop. When parsing a blockaddress stored in a global variable, there 53 // isn't a trivial way to check if a function will have a body without a 54 // linear search through FunctionsWithBodies, so just check it here. 55 if (!F->isMaterializable()) 56 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 57 58 // Try to materialize F. 59 if (std::error_code EC = materialize(F)) 60 return EC; 61 } 62 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 63 64 // Reset state. 65 WillMaterializeAllForwardRefs = false; 66 return std::error_code(); 67 } 68 69 void BitcodeReader::FreeState() { 70 Buffer = nullptr; 71 std::vector<Type*>().swap(TypeList); 72 ValueList.clear(); 73 MDValueList.clear(); 74 std::vector<Comdat *>().swap(ComdatList); 75 76 std::vector<AttributeSet>().swap(MAttributes); 77 std::vector<BasicBlock*>().swap(FunctionBBs); 78 std::vector<Function*>().swap(FunctionsWithBodies); 79 DeferredFunctionInfo.clear(); 80 MDKindMap.clear(); 81 82 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 83 BasicBlockFwdRefQueue.clear(); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Helper functions to implement forward reference resolution, etc. 88 //===----------------------------------------------------------------------===// 89 90 /// ConvertToString - Convert a string from a record into an std::string, return 91 /// true on failure. 92 template<typename StrTy> 93 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 94 StrTy &Result) { 95 if (Idx > Record.size()) 96 return true; 97 98 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 99 Result += (char)Record[i]; 100 return false; 101 } 102 103 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 104 switch (Val) { 105 default: // Map unknown/new linkages to external 106 case 0: 107 return GlobalValue::ExternalLinkage; 108 case 1: 109 return GlobalValue::WeakAnyLinkage; 110 case 2: 111 return GlobalValue::AppendingLinkage; 112 case 3: 113 return GlobalValue::InternalLinkage; 114 case 4: 115 return GlobalValue::LinkOnceAnyLinkage; 116 case 5: 117 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 118 case 6: 119 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 120 case 7: 121 return GlobalValue::ExternalWeakLinkage; 122 case 8: 123 return GlobalValue::CommonLinkage; 124 case 9: 125 return GlobalValue::PrivateLinkage; 126 case 10: 127 return GlobalValue::WeakODRLinkage; 128 case 11: 129 return GlobalValue::LinkOnceODRLinkage; 130 case 12: 131 return GlobalValue::AvailableExternallyLinkage; 132 case 13: 133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 134 case 14: 135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 136 case 15: 137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 138 } 139 } 140 141 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 142 switch (Val) { 143 default: // Map unknown visibilities to default. 144 case 0: return GlobalValue::DefaultVisibility; 145 case 1: return GlobalValue::HiddenVisibility; 146 case 2: return GlobalValue::ProtectedVisibility; 147 } 148 } 149 150 static GlobalValue::DLLStorageClassTypes 151 GetDecodedDLLStorageClass(unsigned Val) { 152 switch (Val) { 153 default: // Map unknown values to default. 154 case 0: return GlobalValue::DefaultStorageClass; 155 case 1: return GlobalValue::DLLImportStorageClass; 156 case 2: return GlobalValue::DLLExportStorageClass; 157 } 158 } 159 160 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 161 switch (Val) { 162 case 0: return GlobalVariable::NotThreadLocal; 163 default: // Map unknown non-zero value to general dynamic. 164 case 1: return GlobalVariable::GeneralDynamicTLSModel; 165 case 2: return GlobalVariable::LocalDynamicTLSModel; 166 case 3: return GlobalVariable::InitialExecTLSModel; 167 case 4: return GlobalVariable::LocalExecTLSModel; 168 } 169 } 170 171 static int GetDecodedCastOpcode(unsigned Val) { 172 switch (Val) { 173 default: return -1; 174 case bitc::CAST_TRUNC : return Instruction::Trunc; 175 case bitc::CAST_ZEXT : return Instruction::ZExt; 176 case bitc::CAST_SEXT : return Instruction::SExt; 177 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 178 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 179 case bitc::CAST_UITOFP : return Instruction::UIToFP; 180 case bitc::CAST_SITOFP : return Instruction::SIToFP; 181 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 182 case bitc::CAST_FPEXT : return Instruction::FPExt; 183 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 184 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 185 case bitc::CAST_BITCAST : return Instruction::BitCast; 186 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 187 } 188 } 189 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 190 switch (Val) { 191 default: return -1; 192 case bitc::BINOP_ADD: 193 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 194 case bitc::BINOP_SUB: 195 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 196 case bitc::BINOP_MUL: 197 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 198 case bitc::BINOP_UDIV: return Instruction::UDiv; 199 case bitc::BINOP_SDIV: 200 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 201 case bitc::BINOP_UREM: return Instruction::URem; 202 case bitc::BINOP_SREM: 203 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 204 case bitc::BINOP_SHL: return Instruction::Shl; 205 case bitc::BINOP_LSHR: return Instruction::LShr; 206 case bitc::BINOP_ASHR: return Instruction::AShr; 207 case bitc::BINOP_AND: return Instruction::And; 208 case bitc::BINOP_OR: return Instruction::Or; 209 case bitc::BINOP_XOR: return Instruction::Xor; 210 } 211 } 212 213 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 214 switch (Val) { 215 default: return AtomicRMWInst::BAD_BINOP; 216 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 217 case bitc::RMW_ADD: return AtomicRMWInst::Add; 218 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 219 case bitc::RMW_AND: return AtomicRMWInst::And; 220 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 221 case bitc::RMW_OR: return AtomicRMWInst::Or; 222 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 223 case bitc::RMW_MAX: return AtomicRMWInst::Max; 224 case bitc::RMW_MIN: return AtomicRMWInst::Min; 225 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 226 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 227 } 228 } 229 230 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 231 switch (Val) { 232 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 233 case bitc::ORDERING_UNORDERED: return Unordered; 234 case bitc::ORDERING_MONOTONIC: return Monotonic; 235 case bitc::ORDERING_ACQUIRE: return Acquire; 236 case bitc::ORDERING_RELEASE: return Release; 237 case bitc::ORDERING_ACQREL: return AcquireRelease; 238 default: // Map unknown orderings to sequentially-consistent. 239 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 240 } 241 } 242 243 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 244 switch (Val) { 245 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 246 default: // Map unknown scopes to cross-thread. 247 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 248 } 249 } 250 251 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 252 switch (Val) { 253 default: // Map unknown selection kinds to any. 254 case bitc::COMDAT_SELECTION_KIND_ANY: 255 return Comdat::Any; 256 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 257 return Comdat::ExactMatch; 258 case bitc::COMDAT_SELECTION_KIND_LARGEST: 259 return Comdat::Largest; 260 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 261 return Comdat::NoDuplicates; 262 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 263 return Comdat::SameSize; 264 } 265 } 266 267 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 268 switch (Val) { 269 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 270 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 271 } 272 } 273 274 namespace llvm { 275 namespace { 276 /// @brief A class for maintaining the slot number definition 277 /// as a placeholder for the actual definition for forward constants defs. 278 class ConstantPlaceHolder : public ConstantExpr { 279 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 280 public: 281 // allocate space for exactly one operand 282 void *operator new(size_t s) { 283 return User::operator new(s, 1); 284 } 285 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 286 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 287 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 288 } 289 290 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 291 static bool classof(const Value *V) { 292 return isa<ConstantExpr>(V) && 293 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 294 } 295 296 297 /// Provide fast operand accessors 298 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 299 }; 300 } 301 302 // FIXME: can we inherit this from ConstantExpr? 303 template <> 304 struct OperandTraits<ConstantPlaceHolder> : 305 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 306 }; 307 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 308 } 309 310 311 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 312 if (Idx == size()) { 313 push_back(V); 314 return; 315 } 316 317 if (Idx >= size()) 318 resize(Idx+1); 319 320 WeakVH &OldV = ValuePtrs[Idx]; 321 if (!OldV) { 322 OldV = V; 323 return; 324 } 325 326 // Handle constants and non-constants (e.g. instrs) differently for 327 // efficiency. 328 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 329 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 330 OldV = V; 331 } else { 332 // If there was a forward reference to this value, replace it. 333 Value *PrevVal = OldV; 334 OldV->replaceAllUsesWith(V); 335 delete PrevVal; 336 } 337 } 338 339 340 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 341 Type *Ty) { 342 if (Idx >= size()) 343 resize(Idx + 1); 344 345 if (Value *V = ValuePtrs[Idx]) { 346 assert(Ty == V->getType() && "Type mismatch in constant table!"); 347 return cast<Constant>(V); 348 } 349 350 // Create and return a placeholder, which will later be RAUW'd. 351 Constant *C = new ConstantPlaceHolder(Ty, Context); 352 ValuePtrs[Idx] = C; 353 return C; 354 } 355 356 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 357 if (Idx >= size()) 358 resize(Idx + 1); 359 360 if (Value *V = ValuePtrs[Idx]) { 361 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 362 return V; 363 } 364 365 // No type specified, must be invalid reference. 366 if (!Ty) return nullptr; 367 368 // Create and return a placeholder, which will later be RAUW'd. 369 Value *V = new Argument(Ty); 370 ValuePtrs[Idx] = V; 371 return V; 372 } 373 374 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 375 /// resolves any forward references. The idea behind this is that we sometimes 376 /// get constants (such as large arrays) which reference *many* forward ref 377 /// constants. Replacing each of these causes a lot of thrashing when 378 /// building/reuniquing the constant. Instead of doing this, we look at all the 379 /// uses and rewrite all the place holders at once for any constant that uses 380 /// a placeholder. 381 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 382 // Sort the values by-pointer so that they are efficient to look up with a 383 // binary search. 384 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 385 386 SmallVector<Constant*, 64> NewOps; 387 388 while (!ResolveConstants.empty()) { 389 Value *RealVal = operator[](ResolveConstants.back().second); 390 Constant *Placeholder = ResolveConstants.back().first; 391 ResolveConstants.pop_back(); 392 393 // Loop over all users of the placeholder, updating them to reference the 394 // new value. If they reference more than one placeholder, update them all 395 // at once. 396 while (!Placeholder->use_empty()) { 397 auto UI = Placeholder->user_begin(); 398 User *U = *UI; 399 400 // If the using object isn't uniqued, just update the operands. This 401 // handles instructions and initializers for global variables. 402 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 403 UI.getUse().set(RealVal); 404 continue; 405 } 406 407 // Otherwise, we have a constant that uses the placeholder. Replace that 408 // constant with a new constant that has *all* placeholder uses updated. 409 Constant *UserC = cast<Constant>(U); 410 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 411 I != E; ++I) { 412 Value *NewOp; 413 if (!isa<ConstantPlaceHolder>(*I)) { 414 // Not a placeholder reference. 415 NewOp = *I; 416 } else if (*I == Placeholder) { 417 // Common case is that it just references this one placeholder. 418 NewOp = RealVal; 419 } else { 420 // Otherwise, look up the placeholder in ResolveConstants. 421 ResolveConstantsTy::iterator It = 422 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 423 std::pair<Constant*, unsigned>(cast<Constant>(*I), 424 0)); 425 assert(It != ResolveConstants.end() && It->first == *I); 426 NewOp = operator[](It->second); 427 } 428 429 NewOps.push_back(cast<Constant>(NewOp)); 430 } 431 432 // Make the new constant. 433 Constant *NewC; 434 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 435 NewC = ConstantArray::get(UserCA->getType(), NewOps); 436 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 437 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 438 } else if (isa<ConstantVector>(UserC)) { 439 NewC = ConstantVector::get(NewOps); 440 } else { 441 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 442 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 443 } 444 445 UserC->replaceAllUsesWith(NewC); 446 UserC->destroyConstant(); 447 NewOps.clear(); 448 } 449 450 // Update all ValueHandles, they should be the only users at this point. 451 Placeholder->replaceAllUsesWith(RealVal); 452 delete Placeholder; 453 } 454 } 455 456 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 457 if (Idx == size()) { 458 push_back(MD); 459 return; 460 } 461 462 if (Idx >= size()) 463 resize(Idx+1); 464 465 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 466 if (!OldMD) { 467 OldMD.reset(MD); 468 return; 469 } 470 471 // If there was a forward reference to this value, replace it. 472 MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get()); 473 PrevMD->replaceAllUsesWith(MD); 474 MDNode::deleteTemporary(PrevMD); 475 --NumFwdRefs; 476 } 477 478 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 479 if (Idx >= size()) 480 resize(Idx + 1); 481 482 if (Metadata *MD = MDValuePtrs[Idx]) 483 return MD; 484 485 // Create and return a placeholder, which will later be RAUW'd. 486 AnyFwdRefs = true; 487 ++NumFwdRefs; 488 Metadata *MD = MDNode::getTemporary(Context, None); 489 MDValuePtrs[Idx].reset(MD); 490 return MD; 491 } 492 493 void BitcodeReaderMDValueList::tryToResolveCycles() { 494 if (!AnyFwdRefs) 495 // Nothing to do. 496 return; 497 498 if (NumFwdRefs) 499 // Still forward references... can't resolve cycles. 500 return; 501 502 // Resolve any cycles. 503 for (auto &MD : MDValuePtrs) { 504 assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference"); 505 if (auto *G = dyn_cast_or_null<GenericMDNode>(MD)) 506 G->resolveCycles(); 507 } 508 } 509 510 Type *BitcodeReader::getTypeByID(unsigned ID) { 511 // The type table size is always specified correctly. 512 if (ID >= TypeList.size()) 513 return nullptr; 514 515 if (Type *Ty = TypeList[ID]) 516 return Ty; 517 518 // If we have a forward reference, the only possible case is when it is to a 519 // named struct. Just create a placeholder for now. 520 return TypeList[ID] = createIdentifiedStructType(Context); 521 } 522 523 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 524 StringRef Name) { 525 auto *Ret = StructType::create(Context, Name); 526 IdentifiedStructTypes.push_back(Ret); 527 return Ret; 528 } 529 530 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 531 auto *Ret = StructType::create(Context); 532 IdentifiedStructTypes.push_back(Ret); 533 return Ret; 534 } 535 536 537 //===----------------------------------------------------------------------===// 538 // Functions for parsing blocks from the bitcode file 539 //===----------------------------------------------------------------------===// 540 541 542 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 543 /// been decoded from the given integer. This function must stay in sync with 544 /// 'encodeLLVMAttributesForBitcode'. 545 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 546 uint64_t EncodedAttrs) { 547 // FIXME: Remove in 4.0. 548 549 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 550 // the bits above 31 down by 11 bits. 551 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 552 assert((!Alignment || isPowerOf2_32(Alignment)) && 553 "Alignment must be a power of two."); 554 555 if (Alignment) 556 B.addAlignmentAttr(Alignment); 557 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 558 (EncodedAttrs & 0xffff)); 559 } 560 561 std::error_code BitcodeReader::ParseAttributeBlock() { 562 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 563 return Error(BitcodeError::InvalidRecord); 564 565 if (!MAttributes.empty()) 566 return Error(BitcodeError::InvalidMultipleBlocks); 567 568 SmallVector<uint64_t, 64> Record; 569 570 SmallVector<AttributeSet, 8> Attrs; 571 572 // Read all the records. 573 while (1) { 574 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 575 576 switch (Entry.Kind) { 577 case BitstreamEntry::SubBlock: // Handled for us already. 578 case BitstreamEntry::Error: 579 return Error(BitcodeError::MalformedBlock); 580 case BitstreamEntry::EndBlock: 581 return std::error_code(); 582 case BitstreamEntry::Record: 583 // The interesting case. 584 break; 585 } 586 587 // Read a record. 588 Record.clear(); 589 switch (Stream.readRecord(Entry.ID, Record)) { 590 default: // Default behavior: ignore. 591 break; 592 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 593 // FIXME: Remove in 4.0. 594 if (Record.size() & 1) 595 return Error(BitcodeError::InvalidRecord); 596 597 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 598 AttrBuilder B; 599 decodeLLVMAttributesForBitcode(B, Record[i+1]); 600 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 601 } 602 603 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 604 Attrs.clear(); 605 break; 606 } 607 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 608 for (unsigned i = 0, e = Record.size(); i != e; ++i) 609 Attrs.push_back(MAttributeGroups[Record[i]]); 610 611 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 612 Attrs.clear(); 613 break; 614 } 615 } 616 } 617 } 618 619 // Returns Attribute::None on unrecognized codes. 620 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 621 switch (Code) { 622 default: 623 return Attribute::None; 624 case bitc::ATTR_KIND_ALIGNMENT: 625 return Attribute::Alignment; 626 case bitc::ATTR_KIND_ALWAYS_INLINE: 627 return Attribute::AlwaysInline; 628 case bitc::ATTR_KIND_BUILTIN: 629 return Attribute::Builtin; 630 case bitc::ATTR_KIND_BY_VAL: 631 return Attribute::ByVal; 632 case bitc::ATTR_KIND_IN_ALLOCA: 633 return Attribute::InAlloca; 634 case bitc::ATTR_KIND_COLD: 635 return Attribute::Cold; 636 case bitc::ATTR_KIND_INLINE_HINT: 637 return Attribute::InlineHint; 638 case bitc::ATTR_KIND_IN_REG: 639 return Attribute::InReg; 640 case bitc::ATTR_KIND_JUMP_TABLE: 641 return Attribute::JumpTable; 642 case bitc::ATTR_KIND_MIN_SIZE: 643 return Attribute::MinSize; 644 case bitc::ATTR_KIND_NAKED: 645 return Attribute::Naked; 646 case bitc::ATTR_KIND_NEST: 647 return Attribute::Nest; 648 case bitc::ATTR_KIND_NO_ALIAS: 649 return Attribute::NoAlias; 650 case bitc::ATTR_KIND_NO_BUILTIN: 651 return Attribute::NoBuiltin; 652 case bitc::ATTR_KIND_NO_CAPTURE: 653 return Attribute::NoCapture; 654 case bitc::ATTR_KIND_NO_DUPLICATE: 655 return Attribute::NoDuplicate; 656 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 657 return Attribute::NoImplicitFloat; 658 case bitc::ATTR_KIND_NO_INLINE: 659 return Attribute::NoInline; 660 case bitc::ATTR_KIND_NON_LAZY_BIND: 661 return Attribute::NonLazyBind; 662 case bitc::ATTR_KIND_NON_NULL: 663 return Attribute::NonNull; 664 case bitc::ATTR_KIND_DEREFERENCEABLE: 665 return Attribute::Dereferenceable; 666 case bitc::ATTR_KIND_NO_RED_ZONE: 667 return Attribute::NoRedZone; 668 case bitc::ATTR_KIND_NO_RETURN: 669 return Attribute::NoReturn; 670 case bitc::ATTR_KIND_NO_UNWIND: 671 return Attribute::NoUnwind; 672 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 673 return Attribute::OptimizeForSize; 674 case bitc::ATTR_KIND_OPTIMIZE_NONE: 675 return Attribute::OptimizeNone; 676 case bitc::ATTR_KIND_READ_NONE: 677 return Attribute::ReadNone; 678 case bitc::ATTR_KIND_READ_ONLY: 679 return Attribute::ReadOnly; 680 case bitc::ATTR_KIND_RETURNED: 681 return Attribute::Returned; 682 case bitc::ATTR_KIND_RETURNS_TWICE: 683 return Attribute::ReturnsTwice; 684 case bitc::ATTR_KIND_S_EXT: 685 return Attribute::SExt; 686 case bitc::ATTR_KIND_STACK_ALIGNMENT: 687 return Attribute::StackAlignment; 688 case bitc::ATTR_KIND_STACK_PROTECT: 689 return Attribute::StackProtect; 690 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 691 return Attribute::StackProtectReq; 692 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 693 return Attribute::StackProtectStrong; 694 case bitc::ATTR_KIND_STRUCT_RET: 695 return Attribute::StructRet; 696 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 697 return Attribute::SanitizeAddress; 698 case bitc::ATTR_KIND_SANITIZE_THREAD: 699 return Attribute::SanitizeThread; 700 case bitc::ATTR_KIND_SANITIZE_MEMORY: 701 return Attribute::SanitizeMemory; 702 case bitc::ATTR_KIND_UW_TABLE: 703 return Attribute::UWTable; 704 case bitc::ATTR_KIND_Z_EXT: 705 return Attribute::ZExt; 706 } 707 } 708 709 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 710 Attribute::AttrKind *Kind) { 711 *Kind = GetAttrFromCode(Code); 712 if (*Kind == Attribute::None) 713 return Error(BitcodeError::InvalidValue); 714 return std::error_code(); 715 } 716 717 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 718 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 719 return Error(BitcodeError::InvalidRecord); 720 721 if (!MAttributeGroups.empty()) 722 return Error(BitcodeError::InvalidMultipleBlocks); 723 724 SmallVector<uint64_t, 64> Record; 725 726 // Read all the records. 727 while (1) { 728 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 729 730 switch (Entry.Kind) { 731 case BitstreamEntry::SubBlock: // Handled for us already. 732 case BitstreamEntry::Error: 733 return Error(BitcodeError::MalformedBlock); 734 case BitstreamEntry::EndBlock: 735 return std::error_code(); 736 case BitstreamEntry::Record: 737 // The interesting case. 738 break; 739 } 740 741 // Read a record. 742 Record.clear(); 743 switch (Stream.readRecord(Entry.ID, Record)) { 744 default: // Default behavior: ignore. 745 break; 746 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 747 if (Record.size() < 3) 748 return Error(BitcodeError::InvalidRecord); 749 750 uint64_t GrpID = Record[0]; 751 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 752 753 AttrBuilder B; 754 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 755 if (Record[i] == 0) { // Enum attribute 756 Attribute::AttrKind Kind; 757 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 758 return EC; 759 760 B.addAttribute(Kind); 761 } else if (Record[i] == 1) { // Integer attribute 762 Attribute::AttrKind Kind; 763 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 764 return EC; 765 if (Kind == Attribute::Alignment) 766 B.addAlignmentAttr(Record[++i]); 767 else if (Kind == Attribute::StackAlignment) 768 B.addStackAlignmentAttr(Record[++i]); 769 else if (Kind == Attribute::Dereferenceable) 770 B.addDereferenceableAttr(Record[++i]); 771 } else { // String attribute 772 assert((Record[i] == 3 || Record[i] == 4) && 773 "Invalid attribute group entry"); 774 bool HasValue = (Record[i++] == 4); 775 SmallString<64> KindStr; 776 SmallString<64> ValStr; 777 778 while (Record[i] != 0 && i != e) 779 KindStr += Record[i++]; 780 assert(Record[i] == 0 && "Kind string not null terminated"); 781 782 if (HasValue) { 783 // Has a value associated with it. 784 ++i; // Skip the '0' that terminates the "kind" string. 785 while (Record[i] != 0 && i != e) 786 ValStr += Record[i++]; 787 assert(Record[i] == 0 && "Value string not null terminated"); 788 } 789 790 B.addAttribute(KindStr.str(), ValStr.str()); 791 } 792 } 793 794 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 795 break; 796 } 797 } 798 } 799 } 800 801 std::error_code BitcodeReader::ParseTypeTable() { 802 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 803 return Error(BitcodeError::InvalidRecord); 804 805 return ParseTypeTableBody(); 806 } 807 808 std::error_code BitcodeReader::ParseTypeTableBody() { 809 if (!TypeList.empty()) 810 return Error(BitcodeError::InvalidMultipleBlocks); 811 812 SmallVector<uint64_t, 64> Record; 813 unsigned NumRecords = 0; 814 815 SmallString<64> TypeName; 816 817 // Read all the records for this type table. 818 while (1) { 819 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 820 821 switch (Entry.Kind) { 822 case BitstreamEntry::SubBlock: // Handled for us already. 823 case BitstreamEntry::Error: 824 return Error(BitcodeError::MalformedBlock); 825 case BitstreamEntry::EndBlock: 826 if (NumRecords != TypeList.size()) 827 return Error(BitcodeError::MalformedBlock); 828 return std::error_code(); 829 case BitstreamEntry::Record: 830 // The interesting case. 831 break; 832 } 833 834 // Read a record. 835 Record.clear(); 836 Type *ResultTy = nullptr; 837 switch (Stream.readRecord(Entry.ID, Record)) { 838 default: 839 return Error(BitcodeError::InvalidValue); 840 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 841 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 842 // type list. This allows us to reserve space. 843 if (Record.size() < 1) 844 return Error(BitcodeError::InvalidRecord); 845 TypeList.resize(Record[0]); 846 continue; 847 case bitc::TYPE_CODE_VOID: // VOID 848 ResultTy = Type::getVoidTy(Context); 849 break; 850 case bitc::TYPE_CODE_HALF: // HALF 851 ResultTy = Type::getHalfTy(Context); 852 break; 853 case bitc::TYPE_CODE_FLOAT: // FLOAT 854 ResultTy = Type::getFloatTy(Context); 855 break; 856 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 857 ResultTy = Type::getDoubleTy(Context); 858 break; 859 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 860 ResultTy = Type::getX86_FP80Ty(Context); 861 break; 862 case bitc::TYPE_CODE_FP128: // FP128 863 ResultTy = Type::getFP128Ty(Context); 864 break; 865 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 866 ResultTy = Type::getPPC_FP128Ty(Context); 867 break; 868 case bitc::TYPE_CODE_LABEL: // LABEL 869 ResultTy = Type::getLabelTy(Context); 870 break; 871 case bitc::TYPE_CODE_METADATA: // METADATA 872 ResultTy = Type::getMetadataTy(Context); 873 break; 874 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 875 ResultTy = Type::getX86_MMXTy(Context); 876 break; 877 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 878 if (Record.size() < 1) 879 return Error(BitcodeError::InvalidRecord); 880 881 ResultTy = IntegerType::get(Context, Record[0]); 882 break; 883 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 884 // [pointee type, address space] 885 if (Record.size() < 1) 886 return Error(BitcodeError::InvalidRecord); 887 unsigned AddressSpace = 0; 888 if (Record.size() == 2) 889 AddressSpace = Record[1]; 890 ResultTy = getTypeByID(Record[0]); 891 if (!ResultTy) 892 return Error(BitcodeError::InvalidType); 893 ResultTy = PointerType::get(ResultTy, AddressSpace); 894 break; 895 } 896 case bitc::TYPE_CODE_FUNCTION_OLD: { 897 // FIXME: attrid is dead, remove it in LLVM 4.0 898 // FUNCTION: [vararg, attrid, retty, paramty x N] 899 if (Record.size() < 3) 900 return Error(BitcodeError::InvalidRecord); 901 SmallVector<Type*, 8> ArgTys; 902 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 903 if (Type *T = getTypeByID(Record[i])) 904 ArgTys.push_back(T); 905 else 906 break; 907 } 908 909 ResultTy = getTypeByID(Record[2]); 910 if (!ResultTy || ArgTys.size() < Record.size()-3) 911 return Error(BitcodeError::InvalidType); 912 913 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 914 break; 915 } 916 case bitc::TYPE_CODE_FUNCTION: { 917 // FUNCTION: [vararg, retty, paramty x N] 918 if (Record.size() < 2) 919 return Error(BitcodeError::InvalidRecord); 920 SmallVector<Type*, 8> ArgTys; 921 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 922 if (Type *T = getTypeByID(Record[i])) 923 ArgTys.push_back(T); 924 else 925 break; 926 } 927 928 ResultTy = getTypeByID(Record[1]); 929 if (!ResultTy || ArgTys.size() < Record.size()-2) 930 return Error(BitcodeError::InvalidType); 931 932 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 933 break; 934 } 935 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 936 if (Record.size() < 1) 937 return Error(BitcodeError::InvalidRecord); 938 SmallVector<Type*, 8> EltTys; 939 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 940 if (Type *T = getTypeByID(Record[i])) 941 EltTys.push_back(T); 942 else 943 break; 944 } 945 if (EltTys.size() != Record.size()-1) 946 return Error(BitcodeError::InvalidType); 947 ResultTy = StructType::get(Context, EltTys, Record[0]); 948 break; 949 } 950 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 951 if (ConvertToString(Record, 0, TypeName)) 952 return Error(BitcodeError::InvalidRecord); 953 continue; 954 955 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 956 if (Record.size() < 1) 957 return Error(BitcodeError::InvalidRecord); 958 959 if (NumRecords >= TypeList.size()) 960 return Error(BitcodeError::InvalidTYPETable); 961 962 // Check to see if this was forward referenced, if so fill in the temp. 963 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 964 if (Res) { 965 Res->setName(TypeName); 966 TypeList[NumRecords] = nullptr; 967 } else // Otherwise, create a new struct. 968 Res = createIdentifiedStructType(Context, TypeName); 969 TypeName.clear(); 970 971 SmallVector<Type*, 8> EltTys; 972 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 973 if (Type *T = getTypeByID(Record[i])) 974 EltTys.push_back(T); 975 else 976 break; 977 } 978 if (EltTys.size() != Record.size()-1) 979 return Error(BitcodeError::InvalidRecord); 980 Res->setBody(EltTys, Record[0]); 981 ResultTy = Res; 982 break; 983 } 984 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 985 if (Record.size() != 1) 986 return Error(BitcodeError::InvalidRecord); 987 988 if (NumRecords >= TypeList.size()) 989 return Error(BitcodeError::InvalidTYPETable); 990 991 // Check to see if this was forward referenced, if so fill in the temp. 992 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 993 if (Res) { 994 Res->setName(TypeName); 995 TypeList[NumRecords] = nullptr; 996 } else // Otherwise, create a new struct with no body. 997 Res = createIdentifiedStructType(Context, TypeName); 998 TypeName.clear(); 999 ResultTy = Res; 1000 break; 1001 } 1002 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1003 if (Record.size() < 2) 1004 return Error(BitcodeError::InvalidRecord); 1005 if ((ResultTy = getTypeByID(Record[1]))) 1006 ResultTy = ArrayType::get(ResultTy, Record[0]); 1007 else 1008 return Error(BitcodeError::InvalidType); 1009 break; 1010 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1011 if (Record.size() < 2) 1012 return Error(BitcodeError::InvalidRecord); 1013 if ((ResultTy = getTypeByID(Record[1]))) 1014 ResultTy = VectorType::get(ResultTy, Record[0]); 1015 else 1016 return Error(BitcodeError::InvalidType); 1017 break; 1018 } 1019 1020 if (NumRecords >= TypeList.size()) 1021 return Error(BitcodeError::InvalidTYPETable); 1022 assert(ResultTy && "Didn't read a type?"); 1023 assert(!TypeList[NumRecords] && "Already read type?"); 1024 TypeList[NumRecords++] = ResultTy; 1025 } 1026 } 1027 1028 std::error_code BitcodeReader::ParseValueSymbolTable() { 1029 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1030 return Error(BitcodeError::InvalidRecord); 1031 1032 SmallVector<uint64_t, 64> Record; 1033 1034 // Read all the records for this value table. 1035 SmallString<128> ValueName; 1036 while (1) { 1037 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1038 1039 switch (Entry.Kind) { 1040 case BitstreamEntry::SubBlock: // Handled for us already. 1041 case BitstreamEntry::Error: 1042 return Error(BitcodeError::MalformedBlock); 1043 case BitstreamEntry::EndBlock: 1044 return std::error_code(); 1045 case BitstreamEntry::Record: 1046 // The interesting case. 1047 break; 1048 } 1049 1050 // Read a record. 1051 Record.clear(); 1052 switch (Stream.readRecord(Entry.ID, Record)) { 1053 default: // Default behavior: unknown type. 1054 break; 1055 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1056 if (ConvertToString(Record, 1, ValueName)) 1057 return Error(BitcodeError::InvalidRecord); 1058 unsigned ValueID = Record[0]; 1059 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1060 return Error(BitcodeError::InvalidRecord); 1061 Value *V = ValueList[ValueID]; 1062 1063 V->setName(StringRef(ValueName.data(), ValueName.size())); 1064 ValueName.clear(); 1065 break; 1066 } 1067 case bitc::VST_CODE_BBENTRY: { 1068 if (ConvertToString(Record, 1, ValueName)) 1069 return Error(BitcodeError::InvalidRecord); 1070 BasicBlock *BB = getBasicBlock(Record[0]); 1071 if (!BB) 1072 return Error(BitcodeError::InvalidRecord); 1073 1074 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1075 ValueName.clear(); 1076 break; 1077 } 1078 } 1079 } 1080 } 1081 1082 std::error_code BitcodeReader::ParseMetadata() { 1083 unsigned NextMDValueNo = MDValueList.size(); 1084 1085 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1086 return Error(BitcodeError::InvalidRecord); 1087 1088 SmallVector<uint64_t, 64> Record; 1089 1090 // Read all the records. 1091 while (1) { 1092 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1093 1094 switch (Entry.Kind) { 1095 case BitstreamEntry::SubBlock: // Handled for us already. 1096 case BitstreamEntry::Error: 1097 return Error(BitcodeError::MalformedBlock); 1098 case BitstreamEntry::EndBlock: 1099 MDValueList.tryToResolveCycles(); 1100 return std::error_code(); 1101 case BitstreamEntry::Record: 1102 // The interesting case. 1103 break; 1104 } 1105 1106 // Read a record. 1107 Record.clear(); 1108 unsigned Code = Stream.readRecord(Entry.ID, Record); 1109 bool IsDistinct = false; 1110 switch (Code) { 1111 default: // Default behavior: ignore. 1112 break; 1113 case bitc::METADATA_NAME: { 1114 // Read name of the named metadata. 1115 SmallString<8> Name(Record.begin(), Record.end()); 1116 Record.clear(); 1117 Code = Stream.ReadCode(); 1118 1119 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1120 unsigned NextBitCode = Stream.readRecord(Code, Record); 1121 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1122 1123 // Read named metadata elements. 1124 unsigned Size = Record.size(); 1125 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1126 for (unsigned i = 0; i != Size; ++i) { 1127 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1128 if (!MD) 1129 return Error(BitcodeError::InvalidRecord); 1130 NMD->addOperand(MD); 1131 } 1132 break; 1133 } 1134 case bitc::METADATA_OLD_FN_NODE: { 1135 // FIXME: Remove in 4.0. 1136 // This is a LocalAsMetadata record, the only type of function-local 1137 // metadata. 1138 if (Record.size() % 2 == 1) 1139 return Error(BitcodeError::InvalidRecord); 1140 1141 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1142 // to be legal, but there's no upgrade path. 1143 auto dropRecord = [&] { 1144 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1145 }; 1146 if (Record.size() != 2) { 1147 dropRecord(); 1148 break; 1149 } 1150 1151 Type *Ty = getTypeByID(Record[0]); 1152 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1153 dropRecord(); 1154 break; 1155 } 1156 1157 MDValueList.AssignValue( 1158 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1159 NextMDValueNo++); 1160 break; 1161 } 1162 case bitc::METADATA_OLD_NODE: { 1163 // FIXME: Remove in 4.0. 1164 if (Record.size() % 2 == 1) 1165 return Error(BitcodeError::InvalidRecord); 1166 1167 unsigned Size = Record.size(); 1168 SmallVector<Metadata *, 8> Elts; 1169 for (unsigned i = 0; i != Size; i += 2) { 1170 Type *Ty = getTypeByID(Record[i]); 1171 if (!Ty) 1172 return Error(BitcodeError::InvalidRecord); 1173 if (Ty->isMetadataTy()) 1174 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1175 else if (!Ty->isVoidTy()) { 1176 auto *MD = 1177 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1178 assert(isa<ConstantAsMetadata>(MD) && 1179 "Expected non-function-local metadata"); 1180 Elts.push_back(MD); 1181 } else 1182 Elts.push_back(nullptr); 1183 } 1184 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1185 break; 1186 } 1187 case bitc::METADATA_VALUE: { 1188 if (Record.size() != 2) 1189 return Error(BitcodeError::InvalidRecord); 1190 1191 Type *Ty = getTypeByID(Record[0]); 1192 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1193 return Error(BitcodeError::InvalidRecord); 1194 1195 MDValueList.AssignValue( 1196 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1197 NextMDValueNo++); 1198 break; 1199 } 1200 case bitc::METADATA_DISTINCT_NODE: 1201 IsDistinct = true; 1202 // fallthrough... 1203 case bitc::METADATA_NODE: { 1204 SmallVector<Metadata *, 8> Elts; 1205 Elts.reserve(Record.size()); 1206 for (unsigned ID : Record) 1207 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1208 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1209 : MDNode::get(Context, Elts), 1210 NextMDValueNo++); 1211 break; 1212 } 1213 case bitc::METADATA_STRING: { 1214 std::string String(Record.begin(), Record.end()); 1215 llvm::UpgradeMDStringConstant(String); 1216 Metadata *MD = MDString::get(Context, String); 1217 MDValueList.AssignValue(MD, NextMDValueNo++); 1218 break; 1219 } 1220 case bitc::METADATA_KIND: { 1221 if (Record.size() < 2) 1222 return Error(BitcodeError::InvalidRecord); 1223 1224 unsigned Kind = Record[0]; 1225 SmallString<8> Name(Record.begin()+1, Record.end()); 1226 1227 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1228 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1229 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1230 break; 1231 } 1232 } 1233 } 1234 } 1235 1236 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1237 /// the LSB for dense VBR encoding. 1238 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1239 if ((V & 1) == 0) 1240 return V >> 1; 1241 if (V != 1) 1242 return -(V >> 1); 1243 // There is no such thing as -0 with integers. "-0" really means MININT. 1244 return 1ULL << 63; 1245 } 1246 1247 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1248 /// values and aliases that we can. 1249 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1250 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1251 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1252 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1253 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1254 1255 GlobalInitWorklist.swap(GlobalInits); 1256 AliasInitWorklist.swap(AliasInits); 1257 FunctionPrefixWorklist.swap(FunctionPrefixes); 1258 FunctionPrologueWorklist.swap(FunctionPrologues); 1259 1260 while (!GlobalInitWorklist.empty()) { 1261 unsigned ValID = GlobalInitWorklist.back().second; 1262 if (ValID >= ValueList.size()) { 1263 // Not ready to resolve this yet, it requires something later in the file. 1264 GlobalInits.push_back(GlobalInitWorklist.back()); 1265 } else { 1266 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1267 GlobalInitWorklist.back().first->setInitializer(C); 1268 else 1269 return Error(BitcodeError::ExpectedConstant); 1270 } 1271 GlobalInitWorklist.pop_back(); 1272 } 1273 1274 while (!AliasInitWorklist.empty()) { 1275 unsigned ValID = AliasInitWorklist.back().second; 1276 if (ValID >= ValueList.size()) { 1277 AliasInits.push_back(AliasInitWorklist.back()); 1278 } else { 1279 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1280 AliasInitWorklist.back().first->setAliasee(C); 1281 else 1282 return Error(BitcodeError::ExpectedConstant); 1283 } 1284 AliasInitWorklist.pop_back(); 1285 } 1286 1287 while (!FunctionPrefixWorklist.empty()) { 1288 unsigned ValID = FunctionPrefixWorklist.back().second; 1289 if (ValID >= ValueList.size()) { 1290 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1291 } else { 1292 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1293 FunctionPrefixWorklist.back().first->setPrefixData(C); 1294 else 1295 return Error(BitcodeError::ExpectedConstant); 1296 } 1297 FunctionPrefixWorklist.pop_back(); 1298 } 1299 1300 while (!FunctionPrologueWorklist.empty()) { 1301 unsigned ValID = FunctionPrologueWorklist.back().second; 1302 if (ValID >= ValueList.size()) { 1303 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1304 } else { 1305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1306 FunctionPrologueWorklist.back().first->setPrologueData(C); 1307 else 1308 return Error(BitcodeError::ExpectedConstant); 1309 } 1310 FunctionPrologueWorklist.pop_back(); 1311 } 1312 1313 return std::error_code(); 1314 } 1315 1316 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1317 SmallVector<uint64_t, 8> Words(Vals.size()); 1318 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1319 BitcodeReader::decodeSignRotatedValue); 1320 1321 return APInt(TypeBits, Words); 1322 } 1323 1324 std::error_code BitcodeReader::ParseConstants() { 1325 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1326 return Error(BitcodeError::InvalidRecord); 1327 1328 SmallVector<uint64_t, 64> Record; 1329 1330 // Read all the records for this value table. 1331 Type *CurTy = Type::getInt32Ty(Context); 1332 unsigned NextCstNo = ValueList.size(); 1333 while (1) { 1334 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1335 1336 switch (Entry.Kind) { 1337 case BitstreamEntry::SubBlock: // Handled for us already. 1338 case BitstreamEntry::Error: 1339 return Error(BitcodeError::MalformedBlock); 1340 case BitstreamEntry::EndBlock: 1341 if (NextCstNo != ValueList.size()) 1342 return Error(BitcodeError::InvalidConstantReference); 1343 1344 // Once all the constants have been read, go through and resolve forward 1345 // references. 1346 ValueList.ResolveConstantForwardRefs(); 1347 return std::error_code(); 1348 case BitstreamEntry::Record: 1349 // The interesting case. 1350 break; 1351 } 1352 1353 // Read a record. 1354 Record.clear(); 1355 Value *V = nullptr; 1356 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1357 switch (BitCode) { 1358 default: // Default behavior: unknown constant 1359 case bitc::CST_CODE_UNDEF: // UNDEF 1360 V = UndefValue::get(CurTy); 1361 break; 1362 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1363 if (Record.empty()) 1364 return Error(BitcodeError::InvalidRecord); 1365 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1366 return Error(BitcodeError::InvalidRecord); 1367 CurTy = TypeList[Record[0]]; 1368 continue; // Skip the ValueList manipulation. 1369 case bitc::CST_CODE_NULL: // NULL 1370 V = Constant::getNullValue(CurTy); 1371 break; 1372 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1373 if (!CurTy->isIntegerTy() || Record.empty()) 1374 return Error(BitcodeError::InvalidRecord); 1375 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1376 break; 1377 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1378 if (!CurTy->isIntegerTy() || Record.empty()) 1379 return Error(BitcodeError::InvalidRecord); 1380 1381 APInt VInt = ReadWideAPInt(Record, 1382 cast<IntegerType>(CurTy)->getBitWidth()); 1383 V = ConstantInt::get(Context, VInt); 1384 1385 break; 1386 } 1387 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1388 if (Record.empty()) 1389 return Error(BitcodeError::InvalidRecord); 1390 if (CurTy->isHalfTy()) 1391 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1392 APInt(16, (uint16_t)Record[0]))); 1393 else if (CurTy->isFloatTy()) 1394 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1395 APInt(32, (uint32_t)Record[0]))); 1396 else if (CurTy->isDoubleTy()) 1397 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1398 APInt(64, Record[0]))); 1399 else if (CurTy->isX86_FP80Ty()) { 1400 // Bits are not stored the same way as a normal i80 APInt, compensate. 1401 uint64_t Rearrange[2]; 1402 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1403 Rearrange[1] = Record[0] >> 48; 1404 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1405 APInt(80, Rearrange))); 1406 } else if (CurTy->isFP128Ty()) 1407 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1408 APInt(128, Record))); 1409 else if (CurTy->isPPC_FP128Ty()) 1410 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1411 APInt(128, Record))); 1412 else 1413 V = UndefValue::get(CurTy); 1414 break; 1415 } 1416 1417 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1418 if (Record.empty()) 1419 return Error(BitcodeError::InvalidRecord); 1420 1421 unsigned Size = Record.size(); 1422 SmallVector<Constant*, 16> Elts; 1423 1424 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1425 for (unsigned i = 0; i != Size; ++i) 1426 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1427 STy->getElementType(i))); 1428 V = ConstantStruct::get(STy, Elts); 1429 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1430 Type *EltTy = ATy->getElementType(); 1431 for (unsigned i = 0; i != Size; ++i) 1432 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1433 V = ConstantArray::get(ATy, Elts); 1434 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1435 Type *EltTy = VTy->getElementType(); 1436 for (unsigned i = 0; i != Size; ++i) 1437 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1438 V = ConstantVector::get(Elts); 1439 } else { 1440 V = UndefValue::get(CurTy); 1441 } 1442 break; 1443 } 1444 case bitc::CST_CODE_STRING: // STRING: [values] 1445 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1446 if (Record.empty()) 1447 return Error(BitcodeError::InvalidRecord); 1448 1449 SmallString<16> Elts(Record.begin(), Record.end()); 1450 V = ConstantDataArray::getString(Context, Elts, 1451 BitCode == bitc::CST_CODE_CSTRING); 1452 break; 1453 } 1454 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1455 if (Record.empty()) 1456 return Error(BitcodeError::InvalidRecord); 1457 1458 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1459 unsigned Size = Record.size(); 1460 1461 if (EltTy->isIntegerTy(8)) { 1462 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1463 if (isa<VectorType>(CurTy)) 1464 V = ConstantDataVector::get(Context, Elts); 1465 else 1466 V = ConstantDataArray::get(Context, Elts); 1467 } else if (EltTy->isIntegerTy(16)) { 1468 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1469 if (isa<VectorType>(CurTy)) 1470 V = ConstantDataVector::get(Context, Elts); 1471 else 1472 V = ConstantDataArray::get(Context, Elts); 1473 } else if (EltTy->isIntegerTy(32)) { 1474 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1475 if (isa<VectorType>(CurTy)) 1476 V = ConstantDataVector::get(Context, Elts); 1477 else 1478 V = ConstantDataArray::get(Context, Elts); 1479 } else if (EltTy->isIntegerTy(64)) { 1480 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1481 if (isa<VectorType>(CurTy)) 1482 V = ConstantDataVector::get(Context, Elts); 1483 else 1484 V = ConstantDataArray::get(Context, Elts); 1485 } else if (EltTy->isFloatTy()) { 1486 SmallVector<float, 16> Elts(Size); 1487 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1488 if (isa<VectorType>(CurTy)) 1489 V = ConstantDataVector::get(Context, Elts); 1490 else 1491 V = ConstantDataArray::get(Context, Elts); 1492 } else if (EltTy->isDoubleTy()) { 1493 SmallVector<double, 16> Elts(Size); 1494 std::transform(Record.begin(), Record.end(), Elts.begin(), 1495 BitsToDouble); 1496 if (isa<VectorType>(CurTy)) 1497 V = ConstantDataVector::get(Context, Elts); 1498 else 1499 V = ConstantDataArray::get(Context, Elts); 1500 } else { 1501 return Error(BitcodeError::InvalidTypeForValue); 1502 } 1503 break; 1504 } 1505 1506 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1507 if (Record.size() < 3) 1508 return Error(BitcodeError::InvalidRecord); 1509 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1510 if (Opc < 0) { 1511 V = UndefValue::get(CurTy); // Unknown binop. 1512 } else { 1513 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1514 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1515 unsigned Flags = 0; 1516 if (Record.size() >= 4) { 1517 if (Opc == Instruction::Add || 1518 Opc == Instruction::Sub || 1519 Opc == Instruction::Mul || 1520 Opc == Instruction::Shl) { 1521 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1522 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1523 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1524 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1525 } else if (Opc == Instruction::SDiv || 1526 Opc == Instruction::UDiv || 1527 Opc == Instruction::LShr || 1528 Opc == Instruction::AShr) { 1529 if (Record[3] & (1 << bitc::PEO_EXACT)) 1530 Flags |= SDivOperator::IsExact; 1531 } 1532 } 1533 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1534 } 1535 break; 1536 } 1537 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1538 if (Record.size() < 3) 1539 return Error(BitcodeError::InvalidRecord); 1540 int Opc = GetDecodedCastOpcode(Record[0]); 1541 if (Opc < 0) { 1542 V = UndefValue::get(CurTy); // Unknown cast. 1543 } else { 1544 Type *OpTy = getTypeByID(Record[1]); 1545 if (!OpTy) 1546 return Error(BitcodeError::InvalidRecord); 1547 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1548 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1549 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1550 } 1551 break; 1552 } 1553 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1554 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1555 if (Record.size() & 1) 1556 return Error(BitcodeError::InvalidRecord); 1557 SmallVector<Constant*, 16> Elts; 1558 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1559 Type *ElTy = getTypeByID(Record[i]); 1560 if (!ElTy) 1561 return Error(BitcodeError::InvalidRecord); 1562 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1563 } 1564 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1565 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1566 BitCode == 1567 bitc::CST_CODE_CE_INBOUNDS_GEP); 1568 break; 1569 } 1570 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1571 if (Record.size() < 3) 1572 return Error(BitcodeError::InvalidRecord); 1573 1574 Type *SelectorTy = Type::getInt1Ty(Context); 1575 1576 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1577 // vector. Otherwise, it must be a single bit. 1578 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1579 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1580 VTy->getNumElements()); 1581 1582 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1583 SelectorTy), 1584 ValueList.getConstantFwdRef(Record[1],CurTy), 1585 ValueList.getConstantFwdRef(Record[2],CurTy)); 1586 break; 1587 } 1588 case bitc::CST_CODE_CE_EXTRACTELT 1589 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1590 if (Record.size() < 3) 1591 return Error(BitcodeError::InvalidRecord); 1592 VectorType *OpTy = 1593 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1594 if (!OpTy) 1595 return Error(BitcodeError::InvalidRecord); 1596 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1597 Constant *Op1 = nullptr; 1598 if (Record.size() == 4) { 1599 Type *IdxTy = getTypeByID(Record[2]); 1600 if (!IdxTy) 1601 return Error(BitcodeError::InvalidRecord); 1602 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1603 } else // TODO: Remove with llvm 4.0 1604 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1605 if (!Op1) 1606 return Error(BitcodeError::InvalidRecord); 1607 V = ConstantExpr::getExtractElement(Op0, Op1); 1608 break; 1609 } 1610 case bitc::CST_CODE_CE_INSERTELT 1611 : { // CE_INSERTELT: [opval, opval, opty, opval] 1612 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1613 if (Record.size() < 3 || !OpTy) 1614 return Error(BitcodeError::InvalidRecord); 1615 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1616 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1617 OpTy->getElementType()); 1618 Constant *Op2 = nullptr; 1619 if (Record.size() == 4) { 1620 Type *IdxTy = getTypeByID(Record[2]); 1621 if (!IdxTy) 1622 return Error(BitcodeError::InvalidRecord); 1623 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1624 } else // TODO: Remove with llvm 4.0 1625 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1626 if (!Op2) 1627 return Error(BitcodeError::InvalidRecord); 1628 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1629 break; 1630 } 1631 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1632 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1633 if (Record.size() < 3 || !OpTy) 1634 return Error(BitcodeError::InvalidRecord); 1635 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1636 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1637 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1638 OpTy->getNumElements()); 1639 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1640 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1641 break; 1642 } 1643 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1644 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1645 VectorType *OpTy = 1646 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1647 if (Record.size() < 4 || !RTy || !OpTy) 1648 return Error(BitcodeError::InvalidRecord); 1649 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1650 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1651 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1652 RTy->getNumElements()); 1653 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1654 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1655 break; 1656 } 1657 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1658 if (Record.size() < 4) 1659 return Error(BitcodeError::InvalidRecord); 1660 Type *OpTy = getTypeByID(Record[0]); 1661 if (!OpTy) 1662 return Error(BitcodeError::InvalidRecord); 1663 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1664 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1665 1666 if (OpTy->isFPOrFPVectorTy()) 1667 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1668 else 1669 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1670 break; 1671 } 1672 // This maintains backward compatibility, pre-asm dialect keywords. 1673 // FIXME: Remove with the 4.0 release. 1674 case bitc::CST_CODE_INLINEASM_OLD: { 1675 if (Record.size() < 2) 1676 return Error(BitcodeError::InvalidRecord); 1677 std::string AsmStr, ConstrStr; 1678 bool HasSideEffects = Record[0] & 1; 1679 bool IsAlignStack = Record[0] >> 1; 1680 unsigned AsmStrSize = Record[1]; 1681 if (2+AsmStrSize >= Record.size()) 1682 return Error(BitcodeError::InvalidRecord); 1683 unsigned ConstStrSize = Record[2+AsmStrSize]; 1684 if (3+AsmStrSize+ConstStrSize > Record.size()) 1685 return Error(BitcodeError::InvalidRecord); 1686 1687 for (unsigned i = 0; i != AsmStrSize; ++i) 1688 AsmStr += (char)Record[2+i]; 1689 for (unsigned i = 0; i != ConstStrSize; ++i) 1690 ConstrStr += (char)Record[3+AsmStrSize+i]; 1691 PointerType *PTy = cast<PointerType>(CurTy); 1692 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1693 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1694 break; 1695 } 1696 // This version adds support for the asm dialect keywords (e.g., 1697 // inteldialect). 1698 case bitc::CST_CODE_INLINEASM: { 1699 if (Record.size() < 2) 1700 return Error(BitcodeError::InvalidRecord); 1701 std::string AsmStr, ConstrStr; 1702 bool HasSideEffects = Record[0] & 1; 1703 bool IsAlignStack = (Record[0] >> 1) & 1; 1704 unsigned AsmDialect = Record[0] >> 2; 1705 unsigned AsmStrSize = Record[1]; 1706 if (2+AsmStrSize >= Record.size()) 1707 return Error(BitcodeError::InvalidRecord); 1708 unsigned ConstStrSize = Record[2+AsmStrSize]; 1709 if (3+AsmStrSize+ConstStrSize > Record.size()) 1710 return Error(BitcodeError::InvalidRecord); 1711 1712 for (unsigned i = 0; i != AsmStrSize; ++i) 1713 AsmStr += (char)Record[2+i]; 1714 for (unsigned i = 0; i != ConstStrSize; ++i) 1715 ConstrStr += (char)Record[3+AsmStrSize+i]; 1716 PointerType *PTy = cast<PointerType>(CurTy); 1717 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1718 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1719 InlineAsm::AsmDialect(AsmDialect)); 1720 break; 1721 } 1722 case bitc::CST_CODE_BLOCKADDRESS:{ 1723 if (Record.size() < 3) 1724 return Error(BitcodeError::InvalidRecord); 1725 Type *FnTy = getTypeByID(Record[0]); 1726 if (!FnTy) 1727 return Error(BitcodeError::InvalidRecord); 1728 Function *Fn = 1729 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1730 if (!Fn) 1731 return Error(BitcodeError::InvalidRecord); 1732 1733 // Don't let Fn get dematerialized. 1734 BlockAddressesTaken.insert(Fn); 1735 1736 // If the function is already parsed we can insert the block address right 1737 // away. 1738 BasicBlock *BB; 1739 unsigned BBID = Record[2]; 1740 if (!BBID) 1741 // Invalid reference to entry block. 1742 return Error(BitcodeError::InvalidID); 1743 if (!Fn->empty()) { 1744 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1745 for (size_t I = 0, E = BBID; I != E; ++I) { 1746 if (BBI == BBE) 1747 return Error(BitcodeError::InvalidID); 1748 ++BBI; 1749 } 1750 BB = BBI; 1751 } else { 1752 // Otherwise insert a placeholder and remember it so it can be inserted 1753 // when the function is parsed. 1754 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1755 if (FwdBBs.empty()) 1756 BasicBlockFwdRefQueue.push_back(Fn); 1757 if (FwdBBs.size() < BBID + 1) 1758 FwdBBs.resize(BBID + 1); 1759 if (!FwdBBs[BBID]) 1760 FwdBBs[BBID] = BasicBlock::Create(Context); 1761 BB = FwdBBs[BBID]; 1762 } 1763 V = BlockAddress::get(Fn, BB); 1764 break; 1765 } 1766 } 1767 1768 ValueList.AssignValue(V, NextCstNo); 1769 ++NextCstNo; 1770 } 1771 } 1772 1773 std::error_code BitcodeReader::ParseUseLists() { 1774 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1775 return Error(BitcodeError::InvalidRecord); 1776 1777 // Read all the records. 1778 SmallVector<uint64_t, 64> Record; 1779 while (1) { 1780 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1781 1782 switch (Entry.Kind) { 1783 case BitstreamEntry::SubBlock: // Handled for us already. 1784 case BitstreamEntry::Error: 1785 return Error(BitcodeError::MalformedBlock); 1786 case BitstreamEntry::EndBlock: 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a use list record. 1794 Record.clear(); 1795 bool IsBB = false; 1796 switch (Stream.readRecord(Entry.ID, Record)) { 1797 default: // Default behavior: unknown type. 1798 break; 1799 case bitc::USELIST_CODE_BB: 1800 IsBB = true; 1801 // fallthrough 1802 case bitc::USELIST_CODE_DEFAULT: { 1803 unsigned RecordLength = Record.size(); 1804 if (RecordLength < 3) 1805 // Records should have at least an ID and two indexes. 1806 return Error(BitcodeError::InvalidRecord); 1807 unsigned ID = Record.back(); 1808 Record.pop_back(); 1809 1810 Value *V; 1811 if (IsBB) { 1812 assert(ID < FunctionBBs.size() && "Basic block not found"); 1813 V = FunctionBBs[ID]; 1814 } else 1815 V = ValueList[ID]; 1816 unsigned NumUses = 0; 1817 SmallDenseMap<const Use *, unsigned, 16> Order; 1818 for (const Use &U : V->uses()) { 1819 if (++NumUses > Record.size()) 1820 break; 1821 Order[&U] = Record[NumUses - 1]; 1822 } 1823 if (Order.size() != Record.size() || NumUses > Record.size()) 1824 // Mismatches can happen if the functions are being materialized lazily 1825 // (out-of-order), or a value has been upgraded. 1826 break; 1827 1828 V->sortUseList([&](const Use &L, const Use &R) { 1829 return Order.lookup(&L) < Order.lookup(&R); 1830 }); 1831 break; 1832 } 1833 } 1834 } 1835 } 1836 1837 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1838 /// remember where it is and then skip it. This lets us lazily deserialize the 1839 /// functions. 1840 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1841 // Get the function we are talking about. 1842 if (FunctionsWithBodies.empty()) 1843 return Error(BitcodeError::InsufficientFunctionProtos); 1844 1845 Function *Fn = FunctionsWithBodies.back(); 1846 FunctionsWithBodies.pop_back(); 1847 1848 // Save the current stream state. 1849 uint64_t CurBit = Stream.GetCurrentBitNo(); 1850 DeferredFunctionInfo[Fn] = CurBit; 1851 1852 // Skip over the function block for now. 1853 if (Stream.SkipBlock()) 1854 return Error(BitcodeError::InvalidRecord); 1855 return std::error_code(); 1856 } 1857 1858 std::error_code BitcodeReader::GlobalCleanup() { 1859 // Patch the initializers for globals and aliases up. 1860 ResolveGlobalAndAliasInits(); 1861 if (!GlobalInits.empty() || !AliasInits.empty()) 1862 return Error(BitcodeError::MalformedGlobalInitializerSet); 1863 1864 // Look for intrinsic functions which need to be upgraded at some point 1865 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1866 FI != FE; ++FI) { 1867 Function *NewFn; 1868 if (UpgradeIntrinsicFunction(FI, NewFn)) 1869 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1870 } 1871 1872 // Look for global variables which need to be renamed. 1873 for (Module::global_iterator 1874 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1875 GI != GE;) { 1876 GlobalVariable *GV = GI++; 1877 UpgradeGlobalVariable(GV); 1878 } 1879 1880 // Force deallocation of memory for these vectors to favor the client that 1881 // want lazy deserialization. 1882 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1883 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1884 return std::error_code(); 1885 } 1886 1887 std::error_code BitcodeReader::ParseModule(bool Resume) { 1888 if (Resume) 1889 Stream.JumpToBit(NextUnreadBit); 1890 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1891 return Error(BitcodeError::InvalidRecord); 1892 1893 SmallVector<uint64_t, 64> Record; 1894 std::vector<std::string> SectionTable; 1895 std::vector<std::string> GCTable; 1896 1897 // Read all the records for this module. 1898 while (1) { 1899 BitstreamEntry Entry = Stream.advance(); 1900 1901 switch (Entry.Kind) { 1902 case BitstreamEntry::Error: 1903 return Error(BitcodeError::MalformedBlock); 1904 case BitstreamEntry::EndBlock: 1905 return GlobalCleanup(); 1906 1907 case BitstreamEntry::SubBlock: 1908 switch (Entry.ID) { 1909 default: // Skip unknown content. 1910 if (Stream.SkipBlock()) 1911 return Error(BitcodeError::InvalidRecord); 1912 break; 1913 case bitc::BLOCKINFO_BLOCK_ID: 1914 if (Stream.ReadBlockInfoBlock()) 1915 return Error(BitcodeError::MalformedBlock); 1916 break; 1917 case bitc::PARAMATTR_BLOCK_ID: 1918 if (std::error_code EC = ParseAttributeBlock()) 1919 return EC; 1920 break; 1921 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1922 if (std::error_code EC = ParseAttributeGroupBlock()) 1923 return EC; 1924 break; 1925 case bitc::TYPE_BLOCK_ID_NEW: 1926 if (std::error_code EC = ParseTypeTable()) 1927 return EC; 1928 break; 1929 case bitc::VALUE_SYMTAB_BLOCK_ID: 1930 if (std::error_code EC = ParseValueSymbolTable()) 1931 return EC; 1932 SeenValueSymbolTable = true; 1933 break; 1934 case bitc::CONSTANTS_BLOCK_ID: 1935 if (std::error_code EC = ParseConstants()) 1936 return EC; 1937 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1938 return EC; 1939 break; 1940 case bitc::METADATA_BLOCK_ID: 1941 if (std::error_code EC = ParseMetadata()) 1942 return EC; 1943 break; 1944 case bitc::FUNCTION_BLOCK_ID: 1945 // If this is the first function body we've seen, reverse the 1946 // FunctionsWithBodies list. 1947 if (!SeenFirstFunctionBody) { 1948 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1949 if (std::error_code EC = GlobalCleanup()) 1950 return EC; 1951 SeenFirstFunctionBody = true; 1952 } 1953 1954 if (std::error_code EC = RememberAndSkipFunctionBody()) 1955 return EC; 1956 // For streaming bitcode, suspend parsing when we reach the function 1957 // bodies. Subsequent materialization calls will resume it when 1958 // necessary. For streaming, the function bodies must be at the end of 1959 // the bitcode. If the bitcode file is old, the symbol table will be 1960 // at the end instead and will not have been seen yet. In this case, 1961 // just finish the parse now. 1962 if (LazyStreamer && SeenValueSymbolTable) { 1963 NextUnreadBit = Stream.GetCurrentBitNo(); 1964 return std::error_code(); 1965 } 1966 break; 1967 case bitc::USELIST_BLOCK_ID: 1968 if (std::error_code EC = ParseUseLists()) 1969 return EC; 1970 break; 1971 } 1972 continue; 1973 1974 case BitstreamEntry::Record: 1975 // The interesting case. 1976 break; 1977 } 1978 1979 1980 // Read a record. 1981 switch (Stream.readRecord(Entry.ID, Record)) { 1982 default: break; // Default behavior, ignore unknown content. 1983 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1984 if (Record.size() < 1) 1985 return Error(BitcodeError::InvalidRecord); 1986 // Only version #0 and #1 are supported so far. 1987 unsigned module_version = Record[0]; 1988 switch (module_version) { 1989 default: 1990 return Error(BitcodeError::InvalidValue); 1991 case 0: 1992 UseRelativeIDs = false; 1993 break; 1994 case 1: 1995 UseRelativeIDs = true; 1996 break; 1997 } 1998 break; 1999 } 2000 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2001 std::string S; 2002 if (ConvertToString(Record, 0, S)) 2003 return Error(BitcodeError::InvalidRecord); 2004 TheModule->setTargetTriple(S); 2005 break; 2006 } 2007 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2008 std::string S; 2009 if (ConvertToString(Record, 0, S)) 2010 return Error(BitcodeError::InvalidRecord); 2011 TheModule->setDataLayout(S); 2012 break; 2013 } 2014 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2015 std::string S; 2016 if (ConvertToString(Record, 0, S)) 2017 return Error(BitcodeError::InvalidRecord); 2018 TheModule->setModuleInlineAsm(S); 2019 break; 2020 } 2021 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2022 // FIXME: Remove in 4.0. 2023 std::string S; 2024 if (ConvertToString(Record, 0, S)) 2025 return Error(BitcodeError::InvalidRecord); 2026 // Ignore value. 2027 break; 2028 } 2029 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2030 std::string S; 2031 if (ConvertToString(Record, 0, S)) 2032 return Error(BitcodeError::InvalidRecord); 2033 SectionTable.push_back(S); 2034 break; 2035 } 2036 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2037 std::string S; 2038 if (ConvertToString(Record, 0, S)) 2039 return Error(BitcodeError::InvalidRecord); 2040 GCTable.push_back(S); 2041 break; 2042 } 2043 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2044 if (Record.size() < 2) 2045 return Error(BitcodeError::InvalidRecord); 2046 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2047 unsigned ComdatNameSize = Record[1]; 2048 std::string ComdatName; 2049 ComdatName.reserve(ComdatNameSize); 2050 for (unsigned i = 0; i != ComdatNameSize; ++i) 2051 ComdatName += (char)Record[2 + i]; 2052 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2053 C->setSelectionKind(SK); 2054 ComdatList.push_back(C); 2055 break; 2056 } 2057 // GLOBALVAR: [pointer type, isconst, initid, 2058 // linkage, alignment, section, visibility, threadlocal, 2059 // unnamed_addr, dllstorageclass] 2060 case bitc::MODULE_CODE_GLOBALVAR: { 2061 if (Record.size() < 6) 2062 return Error(BitcodeError::InvalidRecord); 2063 Type *Ty = getTypeByID(Record[0]); 2064 if (!Ty) 2065 return Error(BitcodeError::InvalidRecord); 2066 if (!Ty->isPointerTy()) 2067 return Error(BitcodeError::InvalidTypeForValue); 2068 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2069 Ty = cast<PointerType>(Ty)->getElementType(); 2070 2071 bool isConstant = Record[1]; 2072 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Record[3]); 2073 unsigned Alignment = (1 << Record[4]) >> 1; 2074 std::string Section; 2075 if (Record[5]) { 2076 if (Record[5]-1 >= SectionTable.size()) 2077 return Error(BitcodeError::InvalidID); 2078 Section = SectionTable[Record[5]-1]; 2079 } 2080 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2081 // Local linkage must have default visibility. 2082 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2083 // FIXME: Change to an error if non-default in 4.0. 2084 Visibility = GetDecodedVisibility(Record[6]); 2085 2086 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2087 if (Record.size() > 7) 2088 TLM = GetDecodedThreadLocalMode(Record[7]); 2089 2090 bool UnnamedAddr = false; 2091 if (Record.size() > 8) 2092 UnnamedAddr = Record[8]; 2093 2094 bool ExternallyInitialized = false; 2095 if (Record.size() > 9) 2096 ExternallyInitialized = Record[9]; 2097 2098 GlobalVariable *NewGV = 2099 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2100 TLM, AddressSpace, ExternallyInitialized); 2101 NewGV->setAlignment(Alignment); 2102 if (!Section.empty()) 2103 NewGV->setSection(Section); 2104 NewGV->setVisibility(Visibility); 2105 NewGV->setUnnamedAddr(UnnamedAddr); 2106 2107 if (Record.size() > 10) 2108 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2109 else 2110 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 2111 2112 ValueList.push_back(NewGV); 2113 2114 // Remember which value to use for the global initializer. 2115 if (unsigned InitID = Record[2]) 2116 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2117 2118 if (Record.size() > 11) 2119 if (unsigned ComdatID = Record[11]) { 2120 assert(ComdatID <= ComdatList.size()); 2121 NewGV->setComdat(ComdatList[ComdatID - 1]); 2122 } 2123 break; 2124 } 2125 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2126 // alignment, section, visibility, gc, unnamed_addr, 2127 // prologuedata, dllstorageclass, comdat, prefixdata] 2128 case bitc::MODULE_CODE_FUNCTION: { 2129 if (Record.size() < 8) 2130 return Error(BitcodeError::InvalidRecord); 2131 Type *Ty = getTypeByID(Record[0]); 2132 if (!Ty) 2133 return Error(BitcodeError::InvalidRecord); 2134 if (!Ty->isPointerTy()) 2135 return Error(BitcodeError::InvalidTypeForValue); 2136 FunctionType *FTy = 2137 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2138 if (!FTy) 2139 return Error(BitcodeError::InvalidTypeForValue); 2140 2141 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2142 "", TheModule); 2143 2144 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2145 bool isProto = Record[2]; 2146 Func->setLinkage(getDecodedLinkage(Record[3])); 2147 Func->setAttributes(getAttributes(Record[4])); 2148 2149 Func->setAlignment((1 << Record[5]) >> 1); 2150 if (Record[6]) { 2151 if (Record[6]-1 >= SectionTable.size()) 2152 return Error(BitcodeError::InvalidID); 2153 Func->setSection(SectionTable[Record[6]-1]); 2154 } 2155 // Local linkage must have default visibility. 2156 if (!Func->hasLocalLinkage()) 2157 // FIXME: Change to an error if non-default in 4.0. 2158 Func->setVisibility(GetDecodedVisibility(Record[7])); 2159 if (Record.size() > 8 && Record[8]) { 2160 if (Record[8]-1 > GCTable.size()) 2161 return Error(BitcodeError::InvalidID); 2162 Func->setGC(GCTable[Record[8]-1].c_str()); 2163 } 2164 bool UnnamedAddr = false; 2165 if (Record.size() > 9) 2166 UnnamedAddr = Record[9]; 2167 Func->setUnnamedAddr(UnnamedAddr); 2168 if (Record.size() > 10 && Record[10] != 0) 2169 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2170 2171 if (Record.size() > 11) 2172 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2173 else 2174 UpgradeDLLImportExportLinkage(Func, Record[3]); 2175 2176 if (Record.size() > 12) 2177 if (unsigned ComdatID = Record[12]) { 2178 assert(ComdatID <= ComdatList.size()); 2179 Func->setComdat(ComdatList[ComdatID - 1]); 2180 } 2181 2182 if (Record.size() > 13 && Record[13] != 0) 2183 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2184 2185 ValueList.push_back(Func); 2186 2187 // If this is a function with a body, remember the prototype we are 2188 // creating now, so that we can match up the body with them later. 2189 if (!isProto) { 2190 Func->setIsMaterializable(true); 2191 FunctionsWithBodies.push_back(Func); 2192 if (LazyStreamer) 2193 DeferredFunctionInfo[Func] = 0; 2194 } 2195 break; 2196 } 2197 // ALIAS: [alias type, aliasee val#, linkage] 2198 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2199 case bitc::MODULE_CODE_ALIAS: { 2200 if (Record.size() < 3) 2201 return Error(BitcodeError::InvalidRecord); 2202 Type *Ty = getTypeByID(Record[0]); 2203 if (!Ty) 2204 return Error(BitcodeError::InvalidRecord); 2205 auto *PTy = dyn_cast<PointerType>(Ty); 2206 if (!PTy) 2207 return Error(BitcodeError::InvalidTypeForValue); 2208 2209 auto *NewGA = 2210 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2211 getDecodedLinkage(Record[2]), "", TheModule); 2212 // Old bitcode files didn't have visibility field. 2213 // Local linkage must have default visibility. 2214 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2215 // FIXME: Change to an error if non-default in 4.0. 2216 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2217 if (Record.size() > 4) 2218 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2219 else 2220 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2221 if (Record.size() > 5) 2222 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2223 if (Record.size() > 6) 2224 NewGA->setUnnamedAddr(Record[6]); 2225 ValueList.push_back(NewGA); 2226 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2227 break; 2228 } 2229 /// MODULE_CODE_PURGEVALS: [numvals] 2230 case bitc::MODULE_CODE_PURGEVALS: 2231 // Trim down the value list to the specified size. 2232 if (Record.size() < 1 || Record[0] > ValueList.size()) 2233 return Error(BitcodeError::InvalidRecord); 2234 ValueList.shrinkTo(Record[0]); 2235 break; 2236 } 2237 Record.clear(); 2238 } 2239 } 2240 2241 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2242 TheModule = nullptr; 2243 2244 if (std::error_code EC = InitStream()) 2245 return EC; 2246 2247 // Sniff for the signature. 2248 if (Stream.Read(8) != 'B' || 2249 Stream.Read(8) != 'C' || 2250 Stream.Read(4) != 0x0 || 2251 Stream.Read(4) != 0xC || 2252 Stream.Read(4) != 0xE || 2253 Stream.Read(4) != 0xD) 2254 return Error(BitcodeError::InvalidBitcodeSignature); 2255 2256 // We expect a number of well-defined blocks, though we don't necessarily 2257 // need to understand them all. 2258 while (1) { 2259 if (Stream.AtEndOfStream()) 2260 return std::error_code(); 2261 2262 BitstreamEntry Entry = 2263 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2264 2265 switch (Entry.Kind) { 2266 case BitstreamEntry::Error: 2267 return Error(BitcodeError::MalformedBlock); 2268 case BitstreamEntry::EndBlock: 2269 return std::error_code(); 2270 2271 case BitstreamEntry::SubBlock: 2272 switch (Entry.ID) { 2273 case bitc::BLOCKINFO_BLOCK_ID: 2274 if (Stream.ReadBlockInfoBlock()) 2275 return Error(BitcodeError::MalformedBlock); 2276 break; 2277 case bitc::MODULE_BLOCK_ID: 2278 // Reject multiple MODULE_BLOCK's in a single bitstream. 2279 if (TheModule) 2280 return Error(BitcodeError::InvalidMultipleBlocks); 2281 TheModule = M; 2282 if (std::error_code EC = ParseModule(false)) 2283 return EC; 2284 if (LazyStreamer) 2285 return std::error_code(); 2286 break; 2287 default: 2288 if (Stream.SkipBlock()) 2289 return Error(BitcodeError::InvalidRecord); 2290 break; 2291 } 2292 continue; 2293 case BitstreamEntry::Record: 2294 // There should be no records in the top-level of blocks. 2295 2296 // The ranlib in Xcode 4 will align archive members by appending newlines 2297 // to the end of them. If this file size is a multiple of 4 but not 8, we 2298 // have to read and ignore these final 4 bytes :-( 2299 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2300 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2301 Stream.AtEndOfStream()) 2302 return std::error_code(); 2303 2304 return Error(BitcodeError::InvalidRecord); 2305 } 2306 } 2307 } 2308 2309 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2310 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2311 return Error(BitcodeError::InvalidRecord); 2312 2313 SmallVector<uint64_t, 64> Record; 2314 2315 std::string Triple; 2316 // Read all the records for this module. 2317 while (1) { 2318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2319 2320 switch (Entry.Kind) { 2321 case BitstreamEntry::SubBlock: // Handled for us already. 2322 case BitstreamEntry::Error: 2323 return Error(BitcodeError::MalformedBlock); 2324 case BitstreamEntry::EndBlock: 2325 return Triple; 2326 case BitstreamEntry::Record: 2327 // The interesting case. 2328 break; 2329 } 2330 2331 // Read a record. 2332 switch (Stream.readRecord(Entry.ID, Record)) { 2333 default: break; // Default behavior, ignore unknown content. 2334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2335 std::string S; 2336 if (ConvertToString(Record, 0, S)) 2337 return Error(BitcodeError::InvalidRecord); 2338 Triple = S; 2339 break; 2340 } 2341 } 2342 Record.clear(); 2343 } 2344 llvm_unreachable("Exit infinite loop"); 2345 } 2346 2347 ErrorOr<std::string> BitcodeReader::parseTriple() { 2348 if (std::error_code EC = InitStream()) 2349 return EC; 2350 2351 // Sniff for the signature. 2352 if (Stream.Read(8) != 'B' || 2353 Stream.Read(8) != 'C' || 2354 Stream.Read(4) != 0x0 || 2355 Stream.Read(4) != 0xC || 2356 Stream.Read(4) != 0xE || 2357 Stream.Read(4) != 0xD) 2358 return Error(BitcodeError::InvalidBitcodeSignature); 2359 2360 // We expect a number of well-defined blocks, though we don't necessarily 2361 // need to understand them all. 2362 while (1) { 2363 BitstreamEntry Entry = Stream.advance(); 2364 2365 switch (Entry.Kind) { 2366 case BitstreamEntry::Error: 2367 return Error(BitcodeError::MalformedBlock); 2368 case BitstreamEntry::EndBlock: 2369 return std::error_code(); 2370 2371 case BitstreamEntry::SubBlock: 2372 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2373 return parseModuleTriple(); 2374 2375 // Ignore other sub-blocks. 2376 if (Stream.SkipBlock()) 2377 return Error(BitcodeError::MalformedBlock); 2378 continue; 2379 2380 case BitstreamEntry::Record: 2381 Stream.skipRecord(Entry.ID); 2382 continue; 2383 } 2384 } 2385 } 2386 2387 /// ParseMetadataAttachment - Parse metadata attachments. 2388 std::error_code BitcodeReader::ParseMetadataAttachment() { 2389 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2390 return Error(BitcodeError::InvalidRecord); 2391 2392 SmallVector<uint64_t, 64> Record; 2393 while (1) { 2394 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2395 2396 switch (Entry.Kind) { 2397 case BitstreamEntry::SubBlock: // Handled for us already. 2398 case BitstreamEntry::Error: 2399 return Error(BitcodeError::MalformedBlock); 2400 case BitstreamEntry::EndBlock: 2401 return std::error_code(); 2402 case BitstreamEntry::Record: 2403 // The interesting case. 2404 break; 2405 } 2406 2407 // Read a metadata attachment record. 2408 Record.clear(); 2409 switch (Stream.readRecord(Entry.ID, Record)) { 2410 default: // Default behavior: ignore. 2411 break; 2412 case bitc::METADATA_ATTACHMENT: { 2413 unsigned RecordLength = Record.size(); 2414 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2415 return Error(BitcodeError::InvalidRecord); 2416 Instruction *Inst = InstructionList[Record[0]]; 2417 for (unsigned i = 1; i != RecordLength; i = i+2) { 2418 unsigned Kind = Record[i]; 2419 DenseMap<unsigned, unsigned>::iterator I = 2420 MDKindMap.find(Kind); 2421 if (I == MDKindMap.end()) 2422 return Error(BitcodeError::InvalidID); 2423 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2424 if (isa<LocalAsMetadata>(Node)) 2425 // Drop the attachment. This used to be legal, but there's no 2426 // upgrade path. 2427 break; 2428 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2429 if (I->second == LLVMContext::MD_tbaa) 2430 InstsWithTBAATag.push_back(Inst); 2431 } 2432 break; 2433 } 2434 } 2435 } 2436 } 2437 2438 /// ParseFunctionBody - Lazily parse the specified function body block. 2439 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2440 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2441 return Error(BitcodeError::InvalidRecord); 2442 2443 InstructionList.clear(); 2444 unsigned ModuleValueListSize = ValueList.size(); 2445 unsigned ModuleMDValueListSize = MDValueList.size(); 2446 2447 // Add all the function arguments to the value table. 2448 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2449 ValueList.push_back(I); 2450 2451 unsigned NextValueNo = ValueList.size(); 2452 BasicBlock *CurBB = nullptr; 2453 unsigned CurBBNo = 0; 2454 2455 DebugLoc LastLoc; 2456 2457 // Read all the records. 2458 SmallVector<uint64_t, 64> Record; 2459 while (1) { 2460 BitstreamEntry Entry = Stream.advance(); 2461 2462 switch (Entry.Kind) { 2463 case BitstreamEntry::Error: 2464 return Error(BitcodeError::MalformedBlock); 2465 case BitstreamEntry::EndBlock: 2466 goto OutOfRecordLoop; 2467 2468 case BitstreamEntry::SubBlock: 2469 switch (Entry.ID) { 2470 default: // Skip unknown content. 2471 if (Stream.SkipBlock()) 2472 return Error(BitcodeError::InvalidRecord); 2473 break; 2474 case bitc::CONSTANTS_BLOCK_ID: 2475 if (std::error_code EC = ParseConstants()) 2476 return EC; 2477 NextValueNo = ValueList.size(); 2478 break; 2479 case bitc::VALUE_SYMTAB_BLOCK_ID: 2480 if (std::error_code EC = ParseValueSymbolTable()) 2481 return EC; 2482 break; 2483 case bitc::METADATA_ATTACHMENT_ID: 2484 if (std::error_code EC = ParseMetadataAttachment()) 2485 return EC; 2486 break; 2487 case bitc::METADATA_BLOCK_ID: 2488 if (std::error_code EC = ParseMetadata()) 2489 return EC; 2490 break; 2491 case bitc::USELIST_BLOCK_ID: 2492 if (std::error_code EC = ParseUseLists()) 2493 return EC; 2494 break; 2495 } 2496 continue; 2497 2498 case BitstreamEntry::Record: 2499 // The interesting case. 2500 break; 2501 } 2502 2503 // Read a record. 2504 Record.clear(); 2505 Instruction *I = nullptr; 2506 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2507 switch (BitCode) { 2508 default: // Default behavior: reject 2509 return Error(BitcodeError::InvalidValue); 2510 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2511 if (Record.size() < 1 || Record[0] == 0) 2512 return Error(BitcodeError::InvalidRecord); 2513 // Create all the basic blocks for the function. 2514 FunctionBBs.resize(Record[0]); 2515 2516 // See if anything took the address of blocks in this function. 2517 auto BBFRI = BasicBlockFwdRefs.find(F); 2518 if (BBFRI == BasicBlockFwdRefs.end()) { 2519 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2520 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2521 } else { 2522 auto &BBRefs = BBFRI->second; 2523 // Check for invalid basic block references. 2524 if (BBRefs.size() > FunctionBBs.size()) 2525 return Error(BitcodeError::InvalidID); 2526 assert(!BBRefs.empty() && "Unexpected empty array"); 2527 assert(!BBRefs.front() && "Invalid reference to entry block"); 2528 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2529 ++I) 2530 if (I < RE && BBRefs[I]) { 2531 BBRefs[I]->insertInto(F); 2532 FunctionBBs[I] = BBRefs[I]; 2533 } else { 2534 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2535 } 2536 2537 // Erase from the table. 2538 BasicBlockFwdRefs.erase(BBFRI); 2539 } 2540 2541 CurBB = FunctionBBs[0]; 2542 continue; 2543 } 2544 2545 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2546 // This record indicates that the last instruction is at the same 2547 // location as the previous instruction with a location. 2548 I = nullptr; 2549 2550 // Get the last instruction emitted. 2551 if (CurBB && !CurBB->empty()) 2552 I = &CurBB->back(); 2553 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2554 !FunctionBBs[CurBBNo-1]->empty()) 2555 I = &FunctionBBs[CurBBNo-1]->back(); 2556 2557 if (!I) 2558 return Error(BitcodeError::InvalidRecord); 2559 I->setDebugLoc(LastLoc); 2560 I = nullptr; 2561 continue; 2562 2563 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2564 I = nullptr; // Get the last instruction emitted. 2565 if (CurBB && !CurBB->empty()) 2566 I = &CurBB->back(); 2567 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2568 !FunctionBBs[CurBBNo-1]->empty()) 2569 I = &FunctionBBs[CurBBNo-1]->back(); 2570 if (!I || Record.size() < 4) 2571 return Error(BitcodeError::InvalidRecord); 2572 2573 unsigned Line = Record[0], Col = Record[1]; 2574 unsigned ScopeID = Record[2], IAID = Record[3]; 2575 2576 MDNode *Scope = nullptr, *IA = nullptr; 2577 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2578 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2579 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2580 I->setDebugLoc(LastLoc); 2581 I = nullptr; 2582 continue; 2583 } 2584 2585 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2586 unsigned OpNum = 0; 2587 Value *LHS, *RHS; 2588 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2589 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2590 OpNum+1 > Record.size()) 2591 return Error(BitcodeError::InvalidRecord); 2592 2593 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2594 if (Opc == -1) 2595 return Error(BitcodeError::InvalidRecord); 2596 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2597 InstructionList.push_back(I); 2598 if (OpNum < Record.size()) { 2599 if (Opc == Instruction::Add || 2600 Opc == Instruction::Sub || 2601 Opc == Instruction::Mul || 2602 Opc == Instruction::Shl) { 2603 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2604 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2605 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2606 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2607 } else if (Opc == Instruction::SDiv || 2608 Opc == Instruction::UDiv || 2609 Opc == Instruction::LShr || 2610 Opc == Instruction::AShr) { 2611 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2612 cast<BinaryOperator>(I)->setIsExact(true); 2613 } else if (isa<FPMathOperator>(I)) { 2614 FastMathFlags FMF; 2615 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2616 FMF.setUnsafeAlgebra(); 2617 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2618 FMF.setNoNaNs(); 2619 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2620 FMF.setNoInfs(); 2621 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2622 FMF.setNoSignedZeros(); 2623 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2624 FMF.setAllowReciprocal(); 2625 if (FMF.any()) 2626 I->setFastMathFlags(FMF); 2627 } 2628 2629 } 2630 break; 2631 } 2632 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2633 unsigned OpNum = 0; 2634 Value *Op; 2635 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2636 OpNum+2 != Record.size()) 2637 return Error(BitcodeError::InvalidRecord); 2638 2639 Type *ResTy = getTypeByID(Record[OpNum]); 2640 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2641 if (Opc == -1 || !ResTy) 2642 return Error(BitcodeError::InvalidRecord); 2643 Instruction *Temp = nullptr; 2644 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2645 if (Temp) { 2646 InstructionList.push_back(Temp); 2647 CurBB->getInstList().push_back(Temp); 2648 } 2649 } else { 2650 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2651 } 2652 InstructionList.push_back(I); 2653 break; 2654 } 2655 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2656 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2657 unsigned OpNum = 0; 2658 Value *BasePtr; 2659 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2660 return Error(BitcodeError::InvalidRecord); 2661 2662 SmallVector<Value*, 16> GEPIdx; 2663 while (OpNum != Record.size()) { 2664 Value *Op; 2665 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2666 return Error(BitcodeError::InvalidRecord); 2667 GEPIdx.push_back(Op); 2668 } 2669 2670 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2671 InstructionList.push_back(I); 2672 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2673 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2674 break; 2675 } 2676 2677 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2678 // EXTRACTVAL: [opty, opval, n x indices] 2679 unsigned OpNum = 0; 2680 Value *Agg; 2681 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2682 return Error(BitcodeError::InvalidRecord); 2683 2684 SmallVector<unsigned, 4> EXTRACTVALIdx; 2685 for (unsigned RecSize = Record.size(); 2686 OpNum != RecSize; ++OpNum) { 2687 uint64_t Index = Record[OpNum]; 2688 if ((unsigned)Index != Index) 2689 return Error(BitcodeError::InvalidValue); 2690 EXTRACTVALIdx.push_back((unsigned)Index); 2691 } 2692 2693 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2694 InstructionList.push_back(I); 2695 break; 2696 } 2697 2698 case bitc::FUNC_CODE_INST_INSERTVAL: { 2699 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2700 unsigned OpNum = 0; 2701 Value *Agg; 2702 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2703 return Error(BitcodeError::InvalidRecord); 2704 Value *Val; 2705 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2706 return Error(BitcodeError::InvalidRecord); 2707 2708 SmallVector<unsigned, 4> INSERTVALIdx; 2709 for (unsigned RecSize = Record.size(); 2710 OpNum != RecSize; ++OpNum) { 2711 uint64_t Index = Record[OpNum]; 2712 if ((unsigned)Index != Index) 2713 return Error(BitcodeError::InvalidValue); 2714 INSERTVALIdx.push_back((unsigned)Index); 2715 } 2716 2717 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2718 InstructionList.push_back(I); 2719 break; 2720 } 2721 2722 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2723 // obsolete form of select 2724 // handles select i1 ... in old bitcode 2725 unsigned OpNum = 0; 2726 Value *TrueVal, *FalseVal, *Cond; 2727 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2728 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2729 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2730 return Error(BitcodeError::InvalidRecord); 2731 2732 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2733 InstructionList.push_back(I); 2734 break; 2735 } 2736 2737 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2738 // new form of select 2739 // handles select i1 or select [N x i1] 2740 unsigned OpNum = 0; 2741 Value *TrueVal, *FalseVal, *Cond; 2742 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2743 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2744 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2745 return Error(BitcodeError::InvalidRecord); 2746 2747 // select condition can be either i1 or [N x i1] 2748 if (VectorType* vector_type = 2749 dyn_cast<VectorType>(Cond->getType())) { 2750 // expect <n x i1> 2751 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2752 return Error(BitcodeError::InvalidTypeForValue); 2753 } else { 2754 // expect i1 2755 if (Cond->getType() != Type::getInt1Ty(Context)) 2756 return Error(BitcodeError::InvalidTypeForValue); 2757 } 2758 2759 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2760 InstructionList.push_back(I); 2761 break; 2762 } 2763 2764 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2765 unsigned OpNum = 0; 2766 Value *Vec, *Idx; 2767 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2768 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2769 return Error(BitcodeError::InvalidRecord); 2770 I = ExtractElementInst::Create(Vec, Idx); 2771 InstructionList.push_back(I); 2772 break; 2773 } 2774 2775 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2776 unsigned OpNum = 0; 2777 Value *Vec, *Elt, *Idx; 2778 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2779 popValue(Record, OpNum, NextValueNo, 2780 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2781 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2782 return Error(BitcodeError::InvalidRecord); 2783 I = InsertElementInst::Create(Vec, Elt, Idx); 2784 InstructionList.push_back(I); 2785 break; 2786 } 2787 2788 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2789 unsigned OpNum = 0; 2790 Value *Vec1, *Vec2, *Mask; 2791 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2792 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2793 return Error(BitcodeError::InvalidRecord); 2794 2795 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2796 return Error(BitcodeError::InvalidRecord); 2797 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2798 InstructionList.push_back(I); 2799 break; 2800 } 2801 2802 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2803 // Old form of ICmp/FCmp returning bool 2804 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2805 // both legal on vectors but had different behaviour. 2806 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2807 // FCmp/ICmp returning bool or vector of bool 2808 2809 unsigned OpNum = 0; 2810 Value *LHS, *RHS; 2811 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2812 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2813 OpNum+1 != Record.size()) 2814 return Error(BitcodeError::InvalidRecord); 2815 2816 if (LHS->getType()->isFPOrFPVectorTy()) 2817 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2818 else 2819 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2820 InstructionList.push_back(I); 2821 break; 2822 } 2823 2824 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2825 { 2826 unsigned Size = Record.size(); 2827 if (Size == 0) { 2828 I = ReturnInst::Create(Context); 2829 InstructionList.push_back(I); 2830 break; 2831 } 2832 2833 unsigned OpNum = 0; 2834 Value *Op = nullptr; 2835 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2836 return Error(BitcodeError::InvalidRecord); 2837 if (OpNum != Record.size()) 2838 return Error(BitcodeError::InvalidRecord); 2839 2840 I = ReturnInst::Create(Context, Op); 2841 InstructionList.push_back(I); 2842 break; 2843 } 2844 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2845 if (Record.size() != 1 && Record.size() != 3) 2846 return Error(BitcodeError::InvalidRecord); 2847 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2848 if (!TrueDest) 2849 return Error(BitcodeError::InvalidRecord); 2850 2851 if (Record.size() == 1) { 2852 I = BranchInst::Create(TrueDest); 2853 InstructionList.push_back(I); 2854 } 2855 else { 2856 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2857 Value *Cond = getValue(Record, 2, NextValueNo, 2858 Type::getInt1Ty(Context)); 2859 if (!FalseDest || !Cond) 2860 return Error(BitcodeError::InvalidRecord); 2861 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2862 InstructionList.push_back(I); 2863 } 2864 break; 2865 } 2866 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2867 // Check magic 2868 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2869 // "New" SwitchInst format with case ranges. The changes to write this 2870 // format were reverted but we still recognize bitcode that uses it. 2871 // Hopefully someday we will have support for case ranges and can use 2872 // this format again. 2873 2874 Type *OpTy = getTypeByID(Record[1]); 2875 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2876 2877 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2878 BasicBlock *Default = getBasicBlock(Record[3]); 2879 if (!OpTy || !Cond || !Default) 2880 return Error(BitcodeError::InvalidRecord); 2881 2882 unsigned NumCases = Record[4]; 2883 2884 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2885 InstructionList.push_back(SI); 2886 2887 unsigned CurIdx = 5; 2888 for (unsigned i = 0; i != NumCases; ++i) { 2889 SmallVector<ConstantInt*, 1> CaseVals; 2890 unsigned NumItems = Record[CurIdx++]; 2891 for (unsigned ci = 0; ci != NumItems; ++ci) { 2892 bool isSingleNumber = Record[CurIdx++]; 2893 2894 APInt Low; 2895 unsigned ActiveWords = 1; 2896 if (ValueBitWidth > 64) 2897 ActiveWords = Record[CurIdx++]; 2898 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2899 ValueBitWidth); 2900 CurIdx += ActiveWords; 2901 2902 if (!isSingleNumber) { 2903 ActiveWords = 1; 2904 if (ValueBitWidth > 64) 2905 ActiveWords = Record[CurIdx++]; 2906 APInt High = 2907 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2908 ValueBitWidth); 2909 CurIdx += ActiveWords; 2910 2911 // FIXME: It is not clear whether values in the range should be 2912 // compared as signed or unsigned values. The partially 2913 // implemented changes that used this format in the past used 2914 // unsigned comparisons. 2915 for ( ; Low.ule(High); ++Low) 2916 CaseVals.push_back(ConstantInt::get(Context, Low)); 2917 } else 2918 CaseVals.push_back(ConstantInt::get(Context, Low)); 2919 } 2920 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2921 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2922 cve = CaseVals.end(); cvi != cve; ++cvi) 2923 SI->addCase(*cvi, DestBB); 2924 } 2925 I = SI; 2926 break; 2927 } 2928 2929 // Old SwitchInst format without case ranges. 2930 2931 if (Record.size() < 3 || (Record.size() & 1) == 0) 2932 return Error(BitcodeError::InvalidRecord); 2933 Type *OpTy = getTypeByID(Record[0]); 2934 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2935 BasicBlock *Default = getBasicBlock(Record[2]); 2936 if (!OpTy || !Cond || !Default) 2937 return Error(BitcodeError::InvalidRecord); 2938 unsigned NumCases = (Record.size()-3)/2; 2939 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2940 InstructionList.push_back(SI); 2941 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2942 ConstantInt *CaseVal = 2943 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2944 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2945 if (!CaseVal || !DestBB) { 2946 delete SI; 2947 return Error(BitcodeError::InvalidRecord); 2948 } 2949 SI->addCase(CaseVal, DestBB); 2950 } 2951 I = SI; 2952 break; 2953 } 2954 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2955 if (Record.size() < 2) 2956 return Error(BitcodeError::InvalidRecord); 2957 Type *OpTy = getTypeByID(Record[0]); 2958 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2959 if (!OpTy || !Address) 2960 return Error(BitcodeError::InvalidRecord); 2961 unsigned NumDests = Record.size()-2; 2962 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2963 InstructionList.push_back(IBI); 2964 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2965 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2966 IBI->addDestination(DestBB); 2967 } else { 2968 delete IBI; 2969 return Error(BitcodeError::InvalidRecord); 2970 } 2971 } 2972 I = IBI; 2973 break; 2974 } 2975 2976 case bitc::FUNC_CODE_INST_INVOKE: { 2977 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2978 if (Record.size() < 4) 2979 return Error(BitcodeError::InvalidRecord); 2980 AttributeSet PAL = getAttributes(Record[0]); 2981 unsigned CCInfo = Record[1]; 2982 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2983 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2984 2985 unsigned OpNum = 4; 2986 Value *Callee; 2987 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2988 return Error(BitcodeError::InvalidRecord); 2989 2990 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2991 FunctionType *FTy = !CalleeTy ? nullptr : 2992 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2993 2994 // Check that the right number of fixed parameters are here. 2995 if (!FTy || !NormalBB || !UnwindBB || 2996 Record.size() < OpNum+FTy->getNumParams()) 2997 return Error(BitcodeError::InvalidRecord); 2998 2999 SmallVector<Value*, 16> Ops; 3000 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3001 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3002 FTy->getParamType(i))); 3003 if (!Ops.back()) 3004 return Error(BitcodeError::InvalidRecord); 3005 } 3006 3007 if (!FTy->isVarArg()) { 3008 if (Record.size() != OpNum) 3009 return Error(BitcodeError::InvalidRecord); 3010 } else { 3011 // Read type/value pairs for varargs params. 3012 while (OpNum != Record.size()) { 3013 Value *Op; 3014 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3015 return Error(BitcodeError::InvalidRecord); 3016 Ops.push_back(Op); 3017 } 3018 } 3019 3020 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3021 InstructionList.push_back(I); 3022 cast<InvokeInst>(I)->setCallingConv( 3023 static_cast<CallingConv::ID>(CCInfo)); 3024 cast<InvokeInst>(I)->setAttributes(PAL); 3025 break; 3026 } 3027 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3028 unsigned Idx = 0; 3029 Value *Val = nullptr; 3030 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3031 return Error(BitcodeError::InvalidRecord); 3032 I = ResumeInst::Create(Val); 3033 InstructionList.push_back(I); 3034 break; 3035 } 3036 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3037 I = new UnreachableInst(Context); 3038 InstructionList.push_back(I); 3039 break; 3040 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3041 if (Record.size() < 1 || ((Record.size()-1)&1)) 3042 return Error(BitcodeError::InvalidRecord); 3043 Type *Ty = getTypeByID(Record[0]); 3044 if (!Ty) 3045 return Error(BitcodeError::InvalidRecord); 3046 3047 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3048 InstructionList.push_back(PN); 3049 3050 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3051 Value *V; 3052 // With the new function encoding, it is possible that operands have 3053 // negative IDs (for forward references). Use a signed VBR 3054 // representation to keep the encoding small. 3055 if (UseRelativeIDs) 3056 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3057 else 3058 V = getValue(Record, 1+i, NextValueNo, Ty); 3059 BasicBlock *BB = getBasicBlock(Record[2+i]); 3060 if (!V || !BB) 3061 return Error(BitcodeError::InvalidRecord); 3062 PN->addIncoming(V, BB); 3063 } 3064 I = PN; 3065 break; 3066 } 3067 3068 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3069 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3070 unsigned Idx = 0; 3071 if (Record.size() < 4) 3072 return Error(BitcodeError::InvalidRecord); 3073 Type *Ty = getTypeByID(Record[Idx++]); 3074 if (!Ty) 3075 return Error(BitcodeError::InvalidRecord); 3076 Value *PersFn = nullptr; 3077 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3078 return Error(BitcodeError::InvalidRecord); 3079 3080 bool IsCleanup = !!Record[Idx++]; 3081 unsigned NumClauses = Record[Idx++]; 3082 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3083 LP->setCleanup(IsCleanup); 3084 for (unsigned J = 0; J != NumClauses; ++J) { 3085 LandingPadInst::ClauseType CT = 3086 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3087 Value *Val; 3088 3089 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3090 delete LP; 3091 return Error(BitcodeError::InvalidRecord); 3092 } 3093 3094 assert((CT != LandingPadInst::Catch || 3095 !isa<ArrayType>(Val->getType())) && 3096 "Catch clause has a invalid type!"); 3097 assert((CT != LandingPadInst::Filter || 3098 isa<ArrayType>(Val->getType())) && 3099 "Filter clause has invalid type!"); 3100 LP->addClause(cast<Constant>(Val)); 3101 } 3102 3103 I = LP; 3104 InstructionList.push_back(I); 3105 break; 3106 } 3107 3108 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3109 if (Record.size() != 4) 3110 return Error(BitcodeError::InvalidRecord); 3111 PointerType *Ty = 3112 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3113 Type *OpTy = getTypeByID(Record[1]); 3114 Value *Size = getFnValueByID(Record[2], OpTy); 3115 unsigned AlignRecord = Record[3]; 3116 bool InAlloca = AlignRecord & (1 << 5); 3117 unsigned Align = AlignRecord & ((1 << 5) - 1); 3118 if (!Ty || !Size) 3119 return Error(BitcodeError::InvalidRecord); 3120 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3121 AI->setUsedWithInAlloca(InAlloca); 3122 I = AI; 3123 InstructionList.push_back(I); 3124 break; 3125 } 3126 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3127 unsigned OpNum = 0; 3128 Value *Op; 3129 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3130 OpNum+2 != Record.size()) 3131 return Error(BitcodeError::InvalidRecord); 3132 3133 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3134 InstructionList.push_back(I); 3135 break; 3136 } 3137 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3138 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3139 unsigned OpNum = 0; 3140 Value *Op; 3141 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3142 OpNum+4 != Record.size()) 3143 return Error(BitcodeError::InvalidRecord); 3144 3145 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3146 if (Ordering == NotAtomic || Ordering == Release || 3147 Ordering == AcquireRelease) 3148 return Error(BitcodeError::InvalidRecord); 3149 if (Ordering != NotAtomic && Record[OpNum] == 0) 3150 return Error(BitcodeError::InvalidRecord); 3151 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3152 3153 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3154 Ordering, SynchScope); 3155 InstructionList.push_back(I); 3156 break; 3157 } 3158 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3159 unsigned OpNum = 0; 3160 Value *Val, *Ptr; 3161 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3162 popValue(Record, OpNum, NextValueNo, 3163 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3164 OpNum+2 != Record.size()) 3165 return Error(BitcodeError::InvalidRecord); 3166 3167 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3168 InstructionList.push_back(I); 3169 break; 3170 } 3171 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3172 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3173 unsigned OpNum = 0; 3174 Value *Val, *Ptr; 3175 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3176 popValue(Record, OpNum, NextValueNo, 3177 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3178 OpNum+4 != Record.size()) 3179 return Error(BitcodeError::InvalidRecord); 3180 3181 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3182 if (Ordering == NotAtomic || Ordering == Acquire || 3183 Ordering == AcquireRelease) 3184 return Error(BitcodeError::InvalidRecord); 3185 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3186 if (Ordering != NotAtomic && Record[OpNum] == 0) 3187 return Error(BitcodeError::InvalidRecord); 3188 3189 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3190 Ordering, SynchScope); 3191 InstructionList.push_back(I); 3192 break; 3193 } 3194 case bitc::FUNC_CODE_INST_CMPXCHG: { 3195 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3196 // failureordering?, isweak?] 3197 unsigned OpNum = 0; 3198 Value *Ptr, *Cmp, *New; 3199 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3200 popValue(Record, OpNum, NextValueNo, 3201 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3202 popValue(Record, OpNum, NextValueNo, 3203 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3204 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3205 return Error(BitcodeError::InvalidRecord); 3206 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3207 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3208 return Error(BitcodeError::InvalidRecord); 3209 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3210 3211 AtomicOrdering FailureOrdering; 3212 if (Record.size() < 7) 3213 FailureOrdering = 3214 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3215 else 3216 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3217 3218 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3219 SynchScope); 3220 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3221 3222 if (Record.size() < 8) { 3223 // Before weak cmpxchgs existed, the instruction simply returned the 3224 // value loaded from memory, so bitcode files from that era will be 3225 // expecting the first component of a modern cmpxchg. 3226 CurBB->getInstList().push_back(I); 3227 I = ExtractValueInst::Create(I, 0); 3228 } else { 3229 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3230 } 3231 3232 InstructionList.push_back(I); 3233 break; 3234 } 3235 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3236 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3237 unsigned OpNum = 0; 3238 Value *Ptr, *Val; 3239 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3240 popValue(Record, OpNum, NextValueNo, 3241 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3242 OpNum+4 != Record.size()) 3243 return Error(BitcodeError::InvalidRecord); 3244 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3245 if (Operation < AtomicRMWInst::FIRST_BINOP || 3246 Operation > AtomicRMWInst::LAST_BINOP) 3247 return Error(BitcodeError::InvalidRecord); 3248 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3249 if (Ordering == NotAtomic || Ordering == Unordered) 3250 return Error(BitcodeError::InvalidRecord); 3251 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3252 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3253 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3254 InstructionList.push_back(I); 3255 break; 3256 } 3257 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3258 if (2 != Record.size()) 3259 return Error(BitcodeError::InvalidRecord); 3260 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3261 if (Ordering == NotAtomic || Ordering == Unordered || 3262 Ordering == Monotonic) 3263 return Error(BitcodeError::InvalidRecord); 3264 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3265 I = new FenceInst(Context, Ordering, SynchScope); 3266 InstructionList.push_back(I); 3267 break; 3268 } 3269 case bitc::FUNC_CODE_INST_CALL: { 3270 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3271 if (Record.size() < 3) 3272 return Error(BitcodeError::InvalidRecord); 3273 3274 AttributeSet PAL = getAttributes(Record[0]); 3275 unsigned CCInfo = Record[1]; 3276 3277 unsigned OpNum = 2; 3278 Value *Callee; 3279 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3280 return Error(BitcodeError::InvalidRecord); 3281 3282 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3283 FunctionType *FTy = nullptr; 3284 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3285 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3286 return Error(BitcodeError::InvalidRecord); 3287 3288 SmallVector<Value*, 16> Args; 3289 // Read the fixed params. 3290 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3291 if (FTy->getParamType(i)->isLabelTy()) 3292 Args.push_back(getBasicBlock(Record[OpNum])); 3293 else 3294 Args.push_back(getValue(Record, OpNum, NextValueNo, 3295 FTy->getParamType(i))); 3296 if (!Args.back()) 3297 return Error(BitcodeError::InvalidRecord); 3298 } 3299 3300 // Read type/value pairs for varargs params. 3301 if (!FTy->isVarArg()) { 3302 if (OpNum != Record.size()) 3303 return Error(BitcodeError::InvalidRecord); 3304 } else { 3305 while (OpNum != Record.size()) { 3306 Value *Op; 3307 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3308 return Error(BitcodeError::InvalidRecord); 3309 Args.push_back(Op); 3310 } 3311 } 3312 3313 I = CallInst::Create(Callee, Args); 3314 InstructionList.push_back(I); 3315 cast<CallInst>(I)->setCallingConv( 3316 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3317 CallInst::TailCallKind TCK = CallInst::TCK_None; 3318 if (CCInfo & 1) 3319 TCK = CallInst::TCK_Tail; 3320 if (CCInfo & (1 << 14)) 3321 TCK = CallInst::TCK_MustTail; 3322 cast<CallInst>(I)->setTailCallKind(TCK); 3323 cast<CallInst>(I)->setAttributes(PAL); 3324 break; 3325 } 3326 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3327 if (Record.size() < 3) 3328 return Error(BitcodeError::InvalidRecord); 3329 Type *OpTy = getTypeByID(Record[0]); 3330 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3331 Type *ResTy = getTypeByID(Record[2]); 3332 if (!OpTy || !Op || !ResTy) 3333 return Error(BitcodeError::InvalidRecord); 3334 I = new VAArgInst(Op, ResTy); 3335 InstructionList.push_back(I); 3336 break; 3337 } 3338 } 3339 3340 // Add instruction to end of current BB. If there is no current BB, reject 3341 // this file. 3342 if (!CurBB) { 3343 delete I; 3344 return Error(BitcodeError::InvalidInstructionWithNoBB); 3345 } 3346 CurBB->getInstList().push_back(I); 3347 3348 // If this was a terminator instruction, move to the next block. 3349 if (isa<TerminatorInst>(I)) { 3350 ++CurBBNo; 3351 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3352 } 3353 3354 // Non-void values get registered in the value table for future use. 3355 if (I && !I->getType()->isVoidTy()) 3356 ValueList.AssignValue(I, NextValueNo++); 3357 } 3358 3359 OutOfRecordLoop: 3360 3361 // Check the function list for unresolved values. 3362 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3363 if (!A->getParent()) { 3364 // We found at least one unresolved value. Nuke them all to avoid leaks. 3365 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3366 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3367 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3368 delete A; 3369 } 3370 } 3371 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3372 } 3373 } 3374 3375 // FIXME: Check for unresolved forward-declared metadata references 3376 // and clean up leaks. 3377 3378 // Trim the value list down to the size it was before we parsed this function. 3379 ValueList.shrinkTo(ModuleValueListSize); 3380 MDValueList.shrinkTo(ModuleMDValueListSize); 3381 std::vector<BasicBlock*>().swap(FunctionBBs); 3382 return std::error_code(); 3383 } 3384 3385 /// Find the function body in the bitcode stream 3386 std::error_code BitcodeReader::FindFunctionInStream( 3387 Function *F, 3388 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3389 while (DeferredFunctionInfoIterator->second == 0) { 3390 if (Stream.AtEndOfStream()) 3391 return Error(BitcodeError::CouldNotFindFunctionInStream); 3392 // ParseModule will parse the next body in the stream and set its 3393 // position in the DeferredFunctionInfo map. 3394 if (std::error_code EC = ParseModule(true)) 3395 return EC; 3396 } 3397 return std::error_code(); 3398 } 3399 3400 //===----------------------------------------------------------------------===// 3401 // GVMaterializer implementation 3402 //===----------------------------------------------------------------------===// 3403 3404 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3405 3406 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3407 Function *F = dyn_cast<Function>(GV); 3408 // If it's not a function or is already material, ignore the request. 3409 if (!F || !F->isMaterializable()) 3410 return std::error_code(); 3411 3412 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3413 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3414 // If its position is recorded as 0, its body is somewhere in the stream 3415 // but we haven't seen it yet. 3416 if (DFII->second == 0 && LazyStreamer) 3417 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3418 return EC; 3419 3420 // Move the bit stream to the saved position of the deferred function body. 3421 Stream.JumpToBit(DFII->second); 3422 3423 if (std::error_code EC = ParseFunctionBody(F)) 3424 return EC; 3425 F->setIsMaterializable(false); 3426 3427 // Upgrade any old intrinsic calls in the function. 3428 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3429 E = UpgradedIntrinsics.end(); I != E; ++I) { 3430 if (I->first != I->second) { 3431 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3432 UI != UE;) { 3433 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3434 UpgradeIntrinsicCall(CI, I->second); 3435 } 3436 } 3437 } 3438 3439 // Bring in any functions that this function forward-referenced via 3440 // blockaddresses. 3441 return materializeForwardReferencedFunctions(); 3442 } 3443 3444 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3445 const Function *F = dyn_cast<Function>(GV); 3446 if (!F || F->isDeclaration()) 3447 return false; 3448 3449 // Dematerializing F would leave dangling references that wouldn't be 3450 // reconnected on re-materialization. 3451 if (BlockAddressesTaken.count(F)) 3452 return false; 3453 3454 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3455 } 3456 3457 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3458 Function *F = dyn_cast<Function>(GV); 3459 // If this function isn't dematerializable, this is a noop. 3460 if (!F || !isDematerializable(F)) 3461 return; 3462 3463 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3464 3465 // Just forget the function body, we can remat it later. 3466 F->dropAllReferences(); 3467 F->setIsMaterializable(true); 3468 } 3469 3470 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3471 assert(M == TheModule && 3472 "Can only Materialize the Module this BitcodeReader is attached to."); 3473 3474 // Promise to materialize all forward references. 3475 WillMaterializeAllForwardRefs = true; 3476 3477 // Iterate over the module, deserializing any functions that are still on 3478 // disk. 3479 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3480 F != E; ++F) { 3481 if (std::error_code EC = materialize(F)) 3482 return EC; 3483 } 3484 // At this point, if there are any function bodies, the current bit is 3485 // pointing to the END_BLOCK record after them. Now make sure the rest 3486 // of the bits in the module have been read. 3487 if (NextUnreadBit) 3488 ParseModule(true); 3489 3490 // Check that all block address forward references got resolved (as we 3491 // promised above). 3492 if (!BasicBlockFwdRefs.empty()) 3493 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3494 3495 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3496 // delete the old functions to clean up. We can't do this unless the entire 3497 // module is materialized because there could always be another function body 3498 // with calls to the old function. 3499 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3500 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3501 if (I->first != I->second) { 3502 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3503 UI != UE;) { 3504 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3505 UpgradeIntrinsicCall(CI, I->second); 3506 } 3507 if (!I->first->use_empty()) 3508 I->first->replaceAllUsesWith(I->second); 3509 I->first->eraseFromParent(); 3510 } 3511 } 3512 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3513 3514 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3515 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3516 3517 UpgradeDebugInfo(*M); 3518 return std::error_code(); 3519 } 3520 3521 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3522 return IdentifiedStructTypes; 3523 } 3524 3525 std::error_code BitcodeReader::InitStream() { 3526 if (LazyStreamer) 3527 return InitLazyStream(); 3528 return InitStreamFromBuffer(); 3529 } 3530 3531 std::error_code BitcodeReader::InitStreamFromBuffer() { 3532 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3533 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3534 3535 if (Buffer->getBufferSize() & 3) 3536 return Error(BitcodeError::InvalidBitcodeSignature); 3537 3538 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3539 // The magic number is 0x0B17C0DE stored in little endian. 3540 if (isBitcodeWrapper(BufPtr, BufEnd)) 3541 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3542 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3543 3544 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3545 Stream.init(&*StreamFile); 3546 3547 return std::error_code(); 3548 } 3549 3550 std::error_code BitcodeReader::InitLazyStream() { 3551 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3552 // see it. 3553 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3554 StreamingMemoryObject &Bytes = *OwnedBytes; 3555 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3556 Stream.init(&*StreamFile); 3557 3558 unsigned char buf[16]; 3559 if (Bytes.readBytes(buf, 16, 0) != 16) 3560 return Error(BitcodeError::InvalidBitcodeSignature); 3561 3562 if (!isBitcode(buf, buf + 16)) 3563 return Error(BitcodeError::InvalidBitcodeSignature); 3564 3565 if (isBitcodeWrapper(buf, buf + 4)) { 3566 const unsigned char *bitcodeStart = buf; 3567 const unsigned char *bitcodeEnd = buf + 16; 3568 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3569 Bytes.dropLeadingBytes(bitcodeStart - buf); 3570 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3571 } 3572 return std::error_code(); 3573 } 3574 3575 namespace { 3576 class BitcodeErrorCategoryType : public std::error_category { 3577 const char *name() const LLVM_NOEXCEPT override { 3578 return "llvm.bitcode"; 3579 } 3580 std::string message(int IE) const override { 3581 BitcodeError E = static_cast<BitcodeError>(IE); 3582 switch (E) { 3583 case BitcodeError::ConflictingMETADATA_KINDRecords: 3584 return "Conflicting METADATA_KIND records"; 3585 case BitcodeError::CouldNotFindFunctionInStream: 3586 return "Could not find function in stream"; 3587 case BitcodeError::ExpectedConstant: 3588 return "Expected a constant"; 3589 case BitcodeError::InsufficientFunctionProtos: 3590 return "Insufficient function protos"; 3591 case BitcodeError::InvalidBitcodeSignature: 3592 return "Invalid bitcode signature"; 3593 case BitcodeError::InvalidBitcodeWrapperHeader: 3594 return "Invalid bitcode wrapper header"; 3595 case BitcodeError::InvalidConstantReference: 3596 return "Invalid ronstant reference"; 3597 case BitcodeError::InvalidID: 3598 return "Invalid ID"; 3599 case BitcodeError::InvalidInstructionWithNoBB: 3600 return "Invalid instruction with no BB"; 3601 case BitcodeError::InvalidRecord: 3602 return "Invalid record"; 3603 case BitcodeError::InvalidTypeForValue: 3604 return "Invalid type for value"; 3605 case BitcodeError::InvalidTYPETable: 3606 return "Invalid TYPE table"; 3607 case BitcodeError::InvalidType: 3608 return "Invalid type"; 3609 case BitcodeError::MalformedBlock: 3610 return "Malformed block"; 3611 case BitcodeError::MalformedGlobalInitializerSet: 3612 return "Malformed global initializer set"; 3613 case BitcodeError::InvalidMultipleBlocks: 3614 return "Invalid multiple blocks"; 3615 case BitcodeError::NeverResolvedValueFoundInFunction: 3616 return "Never resolved value found in function"; 3617 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3618 return "Never resolved function from blockaddress"; 3619 case BitcodeError::InvalidValue: 3620 return "Invalid value"; 3621 } 3622 llvm_unreachable("Unknown error type!"); 3623 } 3624 }; 3625 } 3626 3627 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3628 3629 const std::error_category &llvm::BitcodeErrorCategory() { 3630 return *ErrorCategory; 3631 } 3632 3633 //===----------------------------------------------------------------------===// 3634 // External interface 3635 //===----------------------------------------------------------------------===// 3636 3637 /// \brief Get a lazy one-at-time loading module from bitcode. 3638 /// 3639 /// This isn't always used in a lazy context. In particular, it's also used by 3640 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3641 /// in forward-referenced functions from block address references. 3642 /// 3643 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3644 /// materialize everything -- in particular, if this isn't truly lazy. 3645 static ErrorOr<Module *> 3646 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3647 LLVMContext &Context, bool WillMaterializeAll) { 3648 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3649 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 3650 M->setMaterializer(R); 3651 3652 auto cleanupOnError = [&](std::error_code EC) { 3653 R->releaseBuffer(); // Never take ownership on error. 3654 delete M; // Also deletes R. 3655 return EC; 3656 }; 3657 3658 if (std::error_code EC = R->ParseBitcodeInto(M)) 3659 return cleanupOnError(EC); 3660 3661 if (!WillMaterializeAll) 3662 // Resolve forward references from blockaddresses. 3663 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3664 return cleanupOnError(EC); 3665 3666 Buffer.release(); // The BitcodeReader owns it now. 3667 return M; 3668 } 3669 3670 ErrorOr<Module *> 3671 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3672 LLVMContext &Context) { 3673 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false); 3674 } 3675 3676 ErrorOr<std::unique_ptr<Module>> 3677 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3678 LLVMContext &Context) { 3679 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3680 BitcodeReader *R = new BitcodeReader(Streamer, Context); 3681 M->setMaterializer(R); 3682 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3683 return EC; 3684 return std::move(M); 3685 } 3686 3687 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3688 LLVMContext &Context) { 3689 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3690 ErrorOr<Module *> ModuleOrErr = 3691 getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 3692 if (!ModuleOrErr) 3693 return ModuleOrErr; 3694 Module *M = ModuleOrErr.get(); 3695 // Read in the entire module, and destroy the BitcodeReader. 3696 if (std::error_code EC = M->materializeAllPermanently()) { 3697 delete M; 3698 return EC; 3699 } 3700 3701 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3702 // written. We must defer until the Module has been fully materialized. 3703 3704 return M; 3705 } 3706 3707 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3708 LLVMContext &Context) { 3709 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3710 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 3711 ErrorOr<std::string> Triple = R->parseTriple(); 3712 if (Triple.getError()) 3713 return ""; 3714 return Triple.get(); 3715 } 3716