1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_STRING: { 1494 std::string String(Record.begin(), Record.end()); 1495 llvm::UpgradeMDStringConstant(String); 1496 Metadata *MD = MDString::get(Context, String); 1497 MDValueList.AssignValue(MD, NextMDValueNo++); 1498 break; 1499 } 1500 case bitc::METADATA_KIND: { 1501 if (Record.size() < 2) 1502 return Error("Invalid record"); 1503 1504 unsigned Kind = Record[0]; 1505 SmallString<8> Name(Record.begin()+1, Record.end()); 1506 1507 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1508 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1509 return Error("Conflicting METADATA_KIND records"); 1510 break; 1511 } 1512 } 1513 } 1514 #undef GET_OR_DISTINCT 1515 } 1516 1517 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1518 /// the LSB for dense VBR encoding. 1519 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1520 if ((V & 1) == 0) 1521 return V >> 1; 1522 if (V != 1) 1523 return -(V >> 1); 1524 // There is no such thing as -0 with integers. "-0" really means MININT. 1525 return 1ULL << 63; 1526 } 1527 1528 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1529 /// values and aliases that we can. 1530 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1531 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1532 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1533 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1534 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1535 1536 GlobalInitWorklist.swap(GlobalInits); 1537 AliasInitWorklist.swap(AliasInits); 1538 FunctionPrefixWorklist.swap(FunctionPrefixes); 1539 FunctionPrologueWorklist.swap(FunctionPrologues); 1540 1541 while (!GlobalInitWorklist.empty()) { 1542 unsigned ValID = GlobalInitWorklist.back().second; 1543 if (ValID >= ValueList.size()) { 1544 // Not ready to resolve this yet, it requires something later in the file. 1545 GlobalInits.push_back(GlobalInitWorklist.back()); 1546 } else { 1547 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1548 GlobalInitWorklist.back().first->setInitializer(C); 1549 else 1550 return Error("Expected a constant"); 1551 } 1552 GlobalInitWorklist.pop_back(); 1553 } 1554 1555 while (!AliasInitWorklist.empty()) { 1556 unsigned ValID = AliasInitWorklist.back().second; 1557 if (ValID >= ValueList.size()) { 1558 AliasInits.push_back(AliasInitWorklist.back()); 1559 } else { 1560 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1561 AliasInitWorklist.back().first->setAliasee(C); 1562 else 1563 return Error("Expected a constant"); 1564 } 1565 AliasInitWorklist.pop_back(); 1566 } 1567 1568 while (!FunctionPrefixWorklist.empty()) { 1569 unsigned ValID = FunctionPrefixWorklist.back().second; 1570 if (ValID >= ValueList.size()) { 1571 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1572 } else { 1573 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1574 FunctionPrefixWorklist.back().first->setPrefixData(C); 1575 else 1576 return Error("Expected a constant"); 1577 } 1578 FunctionPrefixWorklist.pop_back(); 1579 } 1580 1581 while (!FunctionPrologueWorklist.empty()) { 1582 unsigned ValID = FunctionPrologueWorklist.back().second; 1583 if (ValID >= ValueList.size()) { 1584 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1585 } else { 1586 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1587 FunctionPrologueWorklist.back().first->setPrologueData(C); 1588 else 1589 return Error("Expected a constant"); 1590 } 1591 FunctionPrologueWorklist.pop_back(); 1592 } 1593 1594 return std::error_code(); 1595 } 1596 1597 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1598 SmallVector<uint64_t, 8> Words(Vals.size()); 1599 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1600 BitcodeReader::decodeSignRotatedValue); 1601 1602 return APInt(TypeBits, Words); 1603 } 1604 1605 std::error_code BitcodeReader::ParseConstants() { 1606 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1607 return Error("Invalid record"); 1608 1609 SmallVector<uint64_t, 64> Record; 1610 1611 // Read all the records for this value table. 1612 Type *CurTy = Type::getInt32Ty(Context); 1613 unsigned NextCstNo = ValueList.size(); 1614 while (1) { 1615 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1616 1617 switch (Entry.Kind) { 1618 case BitstreamEntry::SubBlock: // Handled for us already. 1619 case BitstreamEntry::Error: 1620 return Error("Malformed block"); 1621 case BitstreamEntry::EndBlock: 1622 if (NextCstNo != ValueList.size()) 1623 return Error("Invalid ronstant reference"); 1624 1625 // Once all the constants have been read, go through and resolve forward 1626 // references. 1627 ValueList.ResolveConstantForwardRefs(); 1628 return std::error_code(); 1629 case BitstreamEntry::Record: 1630 // The interesting case. 1631 break; 1632 } 1633 1634 // Read a record. 1635 Record.clear(); 1636 Value *V = nullptr; 1637 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1638 switch (BitCode) { 1639 default: // Default behavior: unknown constant 1640 case bitc::CST_CODE_UNDEF: // UNDEF 1641 V = UndefValue::get(CurTy); 1642 break; 1643 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1644 if (Record.empty()) 1645 return Error("Invalid record"); 1646 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1647 return Error("Invalid record"); 1648 CurTy = TypeList[Record[0]]; 1649 continue; // Skip the ValueList manipulation. 1650 case bitc::CST_CODE_NULL: // NULL 1651 V = Constant::getNullValue(CurTy); 1652 break; 1653 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1654 if (!CurTy->isIntegerTy() || Record.empty()) 1655 return Error("Invalid record"); 1656 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1657 break; 1658 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1659 if (!CurTy->isIntegerTy() || Record.empty()) 1660 return Error("Invalid record"); 1661 1662 APInt VInt = ReadWideAPInt(Record, 1663 cast<IntegerType>(CurTy)->getBitWidth()); 1664 V = ConstantInt::get(Context, VInt); 1665 1666 break; 1667 } 1668 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1669 if (Record.empty()) 1670 return Error("Invalid record"); 1671 if (CurTy->isHalfTy()) 1672 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1673 APInt(16, (uint16_t)Record[0]))); 1674 else if (CurTy->isFloatTy()) 1675 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1676 APInt(32, (uint32_t)Record[0]))); 1677 else if (CurTy->isDoubleTy()) 1678 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1679 APInt(64, Record[0]))); 1680 else if (CurTy->isX86_FP80Ty()) { 1681 // Bits are not stored the same way as a normal i80 APInt, compensate. 1682 uint64_t Rearrange[2]; 1683 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1684 Rearrange[1] = Record[0] >> 48; 1685 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1686 APInt(80, Rearrange))); 1687 } else if (CurTy->isFP128Ty()) 1688 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1689 APInt(128, Record))); 1690 else if (CurTy->isPPC_FP128Ty()) 1691 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1692 APInt(128, Record))); 1693 else 1694 V = UndefValue::get(CurTy); 1695 break; 1696 } 1697 1698 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1699 if (Record.empty()) 1700 return Error("Invalid record"); 1701 1702 unsigned Size = Record.size(); 1703 SmallVector<Constant*, 16> Elts; 1704 1705 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1706 for (unsigned i = 0; i != Size; ++i) 1707 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1708 STy->getElementType(i))); 1709 V = ConstantStruct::get(STy, Elts); 1710 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1711 Type *EltTy = ATy->getElementType(); 1712 for (unsigned i = 0; i != Size; ++i) 1713 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1714 V = ConstantArray::get(ATy, Elts); 1715 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1716 Type *EltTy = VTy->getElementType(); 1717 for (unsigned i = 0; i != Size; ++i) 1718 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1719 V = ConstantVector::get(Elts); 1720 } else { 1721 V = UndefValue::get(CurTy); 1722 } 1723 break; 1724 } 1725 case bitc::CST_CODE_STRING: // STRING: [values] 1726 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1727 if (Record.empty()) 1728 return Error("Invalid record"); 1729 1730 SmallString<16> Elts(Record.begin(), Record.end()); 1731 V = ConstantDataArray::getString(Context, Elts, 1732 BitCode == bitc::CST_CODE_CSTRING); 1733 break; 1734 } 1735 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1736 if (Record.empty()) 1737 return Error("Invalid record"); 1738 1739 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1740 unsigned Size = Record.size(); 1741 1742 if (EltTy->isIntegerTy(8)) { 1743 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1744 if (isa<VectorType>(CurTy)) 1745 V = ConstantDataVector::get(Context, Elts); 1746 else 1747 V = ConstantDataArray::get(Context, Elts); 1748 } else if (EltTy->isIntegerTy(16)) { 1749 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1750 if (isa<VectorType>(CurTy)) 1751 V = ConstantDataVector::get(Context, Elts); 1752 else 1753 V = ConstantDataArray::get(Context, Elts); 1754 } else if (EltTy->isIntegerTy(32)) { 1755 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1756 if (isa<VectorType>(CurTy)) 1757 V = ConstantDataVector::get(Context, Elts); 1758 else 1759 V = ConstantDataArray::get(Context, Elts); 1760 } else if (EltTy->isIntegerTy(64)) { 1761 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1762 if (isa<VectorType>(CurTy)) 1763 V = ConstantDataVector::get(Context, Elts); 1764 else 1765 V = ConstantDataArray::get(Context, Elts); 1766 } else if (EltTy->isFloatTy()) { 1767 SmallVector<float, 16> Elts(Size); 1768 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1769 if (isa<VectorType>(CurTy)) 1770 V = ConstantDataVector::get(Context, Elts); 1771 else 1772 V = ConstantDataArray::get(Context, Elts); 1773 } else if (EltTy->isDoubleTy()) { 1774 SmallVector<double, 16> Elts(Size); 1775 std::transform(Record.begin(), Record.end(), Elts.begin(), 1776 BitsToDouble); 1777 if (isa<VectorType>(CurTy)) 1778 V = ConstantDataVector::get(Context, Elts); 1779 else 1780 V = ConstantDataArray::get(Context, Elts); 1781 } else { 1782 return Error("Invalid type for value"); 1783 } 1784 break; 1785 } 1786 1787 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1788 if (Record.size() < 3) 1789 return Error("Invalid record"); 1790 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1791 if (Opc < 0) { 1792 V = UndefValue::get(CurTy); // Unknown binop. 1793 } else { 1794 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1795 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1796 unsigned Flags = 0; 1797 if (Record.size() >= 4) { 1798 if (Opc == Instruction::Add || 1799 Opc == Instruction::Sub || 1800 Opc == Instruction::Mul || 1801 Opc == Instruction::Shl) { 1802 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1803 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1804 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1805 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1806 } else if (Opc == Instruction::SDiv || 1807 Opc == Instruction::UDiv || 1808 Opc == Instruction::LShr || 1809 Opc == Instruction::AShr) { 1810 if (Record[3] & (1 << bitc::PEO_EXACT)) 1811 Flags |= SDivOperator::IsExact; 1812 } 1813 } 1814 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1815 } 1816 break; 1817 } 1818 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1819 if (Record.size() < 3) 1820 return Error("Invalid record"); 1821 int Opc = GetDecodedCastOpcode(Record[0]); 1822 if (Opc < 0) { 1823 V = UndefValue::get(CurTy); // Unknown cast. 1824 } else { 1825 Type *OpTy = getTypeByID(Record[1]); 1826 if (!OpTy) 1827 return Error("Invalid record"); 1828 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1829 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1830 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1831 } 1832 break; 1833 } 1834 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1835 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1836 if (Record.size() & 1) 1837 return Error("Invalid record"); 1838 SmallVector<Constant*, 16> Elts; 1839 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1840 Type *ElTy = getTypeByID(Record[i]); 1841 if (!ElTy) 1842 return Error("Invalid record"); 1843 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1844 } 1845 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1846 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1847 BitCode == 1848 bitc::CST_CODE_CE_INBOUNDS_GEP); 1849 break; 1850 } 1851 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1852 if (Record.size() < 3) 1853 return Error("Invalid record"); 1854 1855 Type *SelectorTy = Type::getInt1Ty(Context); 1856 1857 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1858 // vector. Otherwise, it must be a single bit. 1859 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1860 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1861 VTy->getNumElements()); 1862 1863 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1864 SelectorTy), 1865 ValueList.getConstantFwdRef(Record[1],CurTy), 1866 ValueList.getConstantFwdRef(Record[2],CurTy)); 1867 break; 1868 } 1869 case bitc::CST_CODE_CE_EXTRACTELT 1870 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1871 if (Record.size() < 3) 1872 return Error("Invalid record"); 1873 VectorType *OpTy = 1874 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1875 if (!OpTy) 1876 return Error("Invalid record"); 1877 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1878 Constant *Op1 = nullptr; 1879 if (Record.size() == 4) { 1880 Type *IdxTy = getTypeByID(Record[2]); 1881 if (!IdxTy) 1882 return Error("Invalid record"); 1883 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1884 } else // TODO: Remove with llvm 4.0 1885 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1886 if (!Op1) 1887 return Error("Invalid record"); 1888 V = ConstantExpr::getExtractElement(Op0, Op1); 1889 break; 1890 } 1891 case bitc::CST_CODE_CE_INSERTELT 1892 : { // CE_INSERTELT: [opval, opval, opty, opval] 1893 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1894 if (Record.size() < 3 || !OpTy) 1895 return Error("Invalid record"); 1896 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1897 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1898 OpTy->getElementType()); 1899 Constant *Op2 = nullptr; 1900 if (Record.size() == 4) { 1901 Type *IdxTy = getTypeByID(Record[2]); 1902 if (!IdxTy) 1903 return Error("Invalid record"); 1904 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1905 } else // TODO: Remove with llvm 4.0 1906 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1907 if (!Op2) 1908 return Error("Invalid record"); 1909 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1910 break; 1911 } 1912 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1913 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1914 if (Record.size() < 3 || !OpTy) 1915 return Error("Invalid record"); 1916 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1917 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1918 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1919 OpTy->getNumElements()); 1920 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1921 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1922 break; 1923 } 1924 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1925 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1926 VectorType *OpTy = 1927 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1928 if (Record.size() < 4 || !RTy || !OpTy) 1929 return Error("Invalid record"); 1930 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1931 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1932 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1933 RTy->getNumElements()); 1934 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1935 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1936 break; 1937 } 1938 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1939 if (Record.size() < 4) 1940 return Error("Invalid record"); 1941 Type *OpTy = getTypeByID(Record[0]); 1942 if (!OpTy) 1943 return Error("Invalid record"); 1944 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1945 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1946 1947 if (OpTy->isFPOrFPVectorTy()) 1948 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1949 else 1950 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1951 break; 1952 } 1953 // This maintains backward compatibility, pre-asm dialect keywords. 1954 // FIXME: Remove with the 4.0 release. 1955 case bitc::CST_CODE_INLINEASM_OLD: { 1956 if (Record.size() < 2) 1957 return Error("Invalid record"); 1958 std::string AsmStr, ConstrStr; 1959 bool HasSideEffects = Record[0] & 1; 1960 bool IsAlignStack = Record[0] >> 1; 1961 unsigned AsmStrSize = Record[1]; 1962 if (2+AsmStrSize >= Record.size()) 1963 return Error("Invalid record"); 1964 unsigned ConstStrSize = Record[2+AsmStrSize]; 1965 if (3+AsmStrSize+ConstStrSize > Record.size()) 1966 return Error("Invalid record"); 1967 1968 for (unsigned i = 0; i != AsmStrSize; ++i) 1969 AsmStr += (char)Record[2+i]; 1970 for (unsigned i = 0; i != ConstStrSize; ++i) 1971 ConstrStr += (char)Record[3+AsmStrSize+i]; 1972 PointerType *PTy = cast<PointerType>(CurTy); 1973 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1974 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1975 break; 1976 } 1977 // This version adds support for the asm dialect keywords (e.g., 1978 // inteldialect). 1979 case bitc::CST_CODE_INLINEASM: { 1980 if (Record.size() < 2) 1981 return Error("Invalid record"); 1982 std::string AsmStr, ConstrStr; 1983 bool HasSideEffects = Record[0] & 1; 1984 bool IsAlignStack = (Record[0] >> 1) & 1; 1985 unsigned AsmDialect = Record[0] >> 2; 1986 unsigned AsmStrSize = Record[1]; 1987 if (2+AsmStrSize >= Record.size()) 1988 return Error("Invalid record"); 1989 unsigned ConstStrSize = Record[2+AsmStrSize]; 1990 if (3+AsmStrSize+ConstStrSize > Record.size()) 1991 return Error("Invalid record"); 1992 1993 for (unsigned i = 0; i != AsmStrSize; ++i) 1994 AsmStr += (char)Record[2+i]; 1995 for (unsigned i = 0; i != ConstStrSize; ++i) 1996 ConstrStr += (char)Record[3+AsmStrSize+i]; 1997 PointerType *PTy = cast<PointerType>(CurTy); 1998 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1999 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2000 InlineAsm::AsmDialect(AsmDialect)); 2001 break; 2002 } 2003 case bitc::CST_CODE_BLOCKADDRESS:{ 2004 if (Record.size() < 3) 2005 return Error("Invalid record"); 2006 Type *FnTy = getTypeByID(Record[0]); 2007 if (!FnTy) 2008 return Error("Invalid record"); 2009 Function *Fn = 2010 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2011 if (!Fn) 2012 return Error("Invalid record"); 2013 2014 // Don't let Fn get dematerialized. 2015 BlockAddressesTaken.insert(Fn); 2016 2017 // If the function is already parsed we can insert the block address right 2018 // away. 2019 BasicBlock *BB; 2020 unsigned BBID = Record[2]; 2021 if (!BBID) 2022 // Invalid reference to entry block. 2023 return Error("Invalid ID"); 2024 if (!Fn->empty()) { 2025 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2026 for (size_t I = 0, E = BBID; I != E; ++I) { 2027 if (BBI == BBE) 2028 return Error("Invalid ID"); 2029 ++BBI; 2030 } 2031 BB = BBI; 2032 } else { 2033 // Otherwise insert a placeholder and remember it so it can be inserted 2034 // when the function is parsed. 2035 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2036 if (FwdBBs.empty()) 2037 BasicBlockFwdRefQueue.push_back(Fn); 2038 if (FwdBBs.size() < BBID + 1) 2039 FwdBBs.resize(BBID + 1); 2040 if (!FwdBBs[BBID]) 2041 FwdBBs[BBID] = BasicBlock::Create(Context); 2042 BB = FwdBBs[BBID]; 2043 } 2044 V = BlockAddress::get(Fn, BB); 2045 break; 2046 } 2047 } 2048 2049 ValueList.AssignValue(V, NextCstNo); 2050 ++NextCstNo; 2051 } 2052 } 2053 2054 std::error_code BitcodeReader::ParseUseLists() { 2055 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2056 return Error("Invalid record"); 2057 2058 // Read all the records. 2059 SmallVector<uint64_t, 64> Record; 2060 while (1) { 2061 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2062 2063 switch (Entry.Kind) { 2064 case BitstreamEntry::SubBlock: // Handled for us already. 2065 case BitstreamEntry::Error: 2066 return Error("Malformed block"); 2067 case BitstreamEntry::EndBlock: 2068 return std::error_code(); 2069 case BitstreamEntry::Record: 2070 // The interesting case. 2071 break; 2072 } 2073 2074 // Read a use list record. 2075 Record.clear(); 2076 bool IsBB = false; 2077 switch (Stream.readRecord(Entry.ID, Record)) { 2078 default: // Default behavior: unknown type. 2079 break; 2080 case bitc::USELIST_CODE_BB: 2081 IsBB = true; 2082 // fallthrough 2083 case bitc::USELIST_CODE_DEFAULT: { 2084 unsigned RecordLength = Record.size(); 2085 if (RecordLength < 3) 2086 // Records should have at least an ID and two indexes. 2087 return Error("Invalid record"); 2088 unsigned ID = Record.back(); 2089 Record.pop_back(); 2090 2091 Value *V; 2092 if (IsBB) { 2093 assert(ID < FunctionBBs.size() && "Basic block not found"); 2094 V = FunctionBBs[ID]; 2095 } else 2096 V = ValueList[ID]; 2097 unsigned NumUses = 0; 2098 SmallDenseMap<const Use *, unsigned, 16> Order; 2099 for (const Use &U : V->uses()) { 2100 if (++NumUses > Record.size()) 2101 break; 2102 Order[&U] = Record[NumUses - 1]; 2103 } 2104 if (Order.size() != Record.size() || NumUses > Record.size()) 2105 // Mismatches can happen if the functions are being materialized lazily 2106 // (out-of-order), or a value has been upgraded. 2107 break; 2108 2109 V->sortUseList([&](const Use &L, const Use &R) { 2110 return Order.lookup(&L) < Order.lookup(&R); 2111 }); 2112 break; 2113 } 2114 } 2115 } 2116 } 2117 2118 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2119 /// remember where it is and then skip it. This lets us lazily deserialize the 2120 /// functions. 2121 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2122 // Get the function we are talking about. 2123 if (FunctionsWithBodies.empty()) 2124 return Error("Insufficient function protos"); 2125 2126 Function *Fn = FunctionsWithBodies.back(); 2127 FunctionsWithBodies.pop_back(); 2128 2129 // Save the current stream state. 2130 uint64_t CurBit = Stream.GetCurrentBitNo(); 2131 DeferredFunctionInfo[Fn] = CurBit; 2132 2133 // Skip over the function block for now. 2134 if (Stream.SkipBlock()) 2135 return Error("Invalid record"); 2136 return std::error_code(); 2137 } 2138 2139 std::error_code BitcodeReader::GlobalCleanup() { 2140 // Patch the initializers for globals and aliases up. 2141 ResolveGlobalAndAliasInits(); 2142 if (!GlobalInits.empty() || !AliasInits.empty()) 2143 return Error("Malformed global initializer set"); 2144 2145 // Look for intrinsic functions which need to be upgraded at some point 2146 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2147 FI != FE; ++FI) { 2148 Function *NewFn; 2149 if (UpgradeIntrinsicFunction(FI, NewFn)) 2150 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2151 } 2152 2153 // Look for global variables which need to be renamed. 2154 for (Module::global_iterator 2155 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2156 GI != GE;) { 2157 GlobalVariable *GV = GI++; 2158 UpgradeGlobalVariable(GV); 2159 } 2160 2161 // Force deallocation of memory for these vectors to favor the client that 2162 // want lazy deserialization. 2163 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2164 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2165 return std::error_code(); 2166 } 2167 2168 std::error_code BitcodeReader::ParseModule(bool Resume) { 2169 if (Resume) 2170 Stream.JumpToBit(NextUnreadBit); 2171 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2172 return Error("Invalid record"); 2173 2174 SmallVector<uint64_t, 64> Record; 2175 std::vector<std::string> SectionTable; 2176 std::vector<std::string> GCTable; 2177 2178 // Read all the records for this module. 2179 while (1) { 2180 BitstreamEntry Entry = Stream.advance(); 2181 2182 switch (Entry.Kind) { 2183 case BitstreamEntry::Error: 2184 return Error("Malformed block"); 2185 case BitstreamEntry::EndBlock: 2186 return GlobalCleanup(); 2187 2188 case BitstreamEntry::SubBlock: 2189 switch (Entry.ID) { 2190 default: // Skip unknown content. 2191 if (Stream.SkipBlock()) 2192 return Error("Invalid record"); 2193 break; 2194 case bitc::BLOCKINFO_BLOCK_ID: 2195 if (Stream.ReadBlockInfoBlock()) 2196 return Error("Malformed block"); 2197 break; 2198 case bitc::PARAMATTR_BLOCK_ID: 2199 if (std::error_code EC = ParseAttributeBlock()) 2200 return EC; 2201 break; 2202 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2203 if (std::error_code EC = ParseAttributeGroupBlock()) 2204 return EC; 2205 break; 2206 case bitc::TYPE_BLOCK_ID_NEW: 2207 if (std::error_code EC = ParseTypeTable()) 2208 return EC; 2209 break; 2210 case bitc::VALUE_SYMTAB_BLOCK_ID: 2211 if (std::error_code EC = ParseValueSymbolTable()) 2212 return EC; 2213 SeenValueSymbolTable = true; 2214 break; 2215 case bitc::CONSTANTS_BLOCK_ID: 2216 if (std::error_code EC = ParseConstants()) 2217 return EC; 2218 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2219 return EC; 2220 break; 2221 case bitc::METADATA_BLOCK_ID: 2222 if (std::error_code EC = ParseMetadata()) 2223 return EC; 2224 break; 2225 case bitc::FUNCTION_BLOCK_ID: 2226 // If this is the first function body we've seen, reverse the 2227 // FunctionsWithBodies list. 2228 if (!SeenFirstFunctionBody) { 2229 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2230 if (std::error_code EC = GlobalCleanup()) 2231 return EC; 2232 SeenFirstFunctionBody = true; 2233 } 2234 2235 if (std::error_code EC = RememberAndSkipFunctionBody()) 2236 return EC; 2237 // For streaming bitcode, suspend parsing when we reach the function 2238 // bodies. Subsequent materialization calls will resume it when 2239 // necessary. For streaming, the function bodies must be at the end of 2240 // the bitcode. If the bitcode file is old, the symbol table will be 2241 // at the end instead and will not have been seen yet. In this case, 2242 // just finish the parse now. 2243 if (LazyStreamer && SeenValueSymbolTable) { 2244 NextUnreadBit = Stream.GetCurrentBitNo(); 2245 return std::error_code(); 2246 } 2247 break; 2248 case bitc::USELIST_BLOCK_ID: 2249 if (std::error_code EC = ParseUseLists()) 2250 return EC; 2251 break; 2252 } 2253 continue; 2254 2255 case BitstreamEntry::Record: 2256 // The interesting case. 2257 break; 2258 } 2259 2260 2261 // Read a record. 2262 switch (Stream.readRecord(Entry.ID, Record)) { 2263 default: break; // Default behavior, ignore unknown content. 2264 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2265 if (Record.size() < 1) 2266 return Error("Invalid record"); 2267 // Only version #0 and #1 are supported so far. 2268 unsigned module_version = Record[0]; 2269 switch (module_version) { 2270 default: 2271 return Error("Invalid value"); 2272 case 0: 2273 UseRelativeIDs = false; 2274 break; 2275 case 1: 2276 UseRelativeIDs = true; 2277 break; 2278 } 2279 break; 2280 } 2281 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2282 std::string S; 2283 if (ConvertToString(Record, 0, S)) 2284 return Error("Invalid record"); 2285 TheModule->setTargetTriple(S); 2286 break; 2287 } 2288 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2289 std::string S; 2290 if (ConvertToString(Record, 0, S)) 2291 return Error("Invalid record"); 2292 TheModule->setDataLayout(S); 2293 break; 2294 } 2295 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2296 std::string S; 2297 if (ConvertToString(Record, 0, S)) 2298 return Error("Invalid record"); 2299 TheModule->setModuleInlineAsm(S); 2300 break; 2301 } 2302 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2303 // FIXME: Remove in 4.0. 2304 std::string S; 2305 if (ConvertToString(Record, 0, S)) 2306 return Error("Invalid record"); 2307 // Ignore value. 2308 break; 2309 } 2310 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2311 std::string S; 2312 if (ConvertToString(Record, 0, S)) 2313 return Error("Invalid record"); 2314 SectionTable.push_back(S); 2315 break; 2316 } 2317 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2318 std::string S; 2319 if (ConvertToString(Record, 0, S)) 2320 return Error("Invalid record"); 2321 GCTable.push_back(S); 2322 break; 2323 } 2324 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2325 if (Record.size() < 2) 2326 return Error("Invalid record"); 2327 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2328 unsigned ComdatNameSize = Record[1]; 2329 std::string ComdatName; 2330 ComdatName.reserve(ComdatNameSize); 2331 for (unsigned i = 0; i != ComdatNameSize; ++i) 2332 ComdatName += (char)Record[2 + i]; 2333 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2334 C->setSelectionKind(SK); 2335 ComdatList.push_back(C); 2336 break; 2337 } 2338 // GLOBALVAR: [pointer type, isconst, initid, 2339 // linkage, alignment, section, visibility, threadlocal, 2340 // unnamed_addr, externally_initialized, dllstorageclass, 2341 // comdat] 2342 case bitc::MODULE_CODE_GLOBALVAR: { 2343 if (Record.size() < 6) 2344 return Error("Invalid record"); 2345 Type *Ty = getTypeByID(Record[0]); 2346 if (!Ty) 2347 return Error("Invalid record"); 2348 if (!Ty->isPointerTy()) 2349 return Error("Invalid type for value"); 2350 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2351 Ty = cast<PointerType>(Ty)->getElementType(); 2352 2353 bool isConstant = Record[1]; 2354 uint64_t RawLinkage = Record[3]; 2355 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2356 unsigned Alignment = (1 << Record[4]) >> 1; 2357 std::string Section; 2358 if (Record[5]) { 2359 if (Record[5]-1 >= SectionTable.size()) 2360 return Error("Invalid ID"); 2361 Section = SectionTable[Record[5]-1]; 2362 } 2363 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2364 // Local linkage must have default visibility. 2365 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2366 // FIXME: Change to an error if non-default in 4.0. 2367 Visibility = GetDecodedVisibility(Record[6]); 2368 2369 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2370 if (Record.size() > 7) 2371 TLM = GetDecodedThreadLocalMode(Record[7]); 2372 2373 bool UnnamedAddr = false; 2374 if (Record.size() > 8) 2375 UnnamedAddr = Record[8]; 2376 2377 bool ExternallyInitialized = false; 2378 if (Record.size() > 9) 2379 ExternallyInitialized = Record[9]; 2380 2381 GlobalVariable *NewGV = 2382 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2383 TLM, AddressSpace, ExternallyInitialized); 2384 NewGV->setAlignment(Alignment); 2385 if (!Section.empty()) 2386 NewGV->setSection(Section); 2387 NewGV->setVisibility(Visibility); 2388 NewGV->setUnnamedAddr(UnnamedAddr); 2389 2390 if (Record.size() > 10) 2391 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2392 else 2393 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2394 2395 ValueList.push_back(NewGV); 2396 2397 // Remember which value to use for the global initializer. 2398 if (unsigned InitID = Record[2]) 2399 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2400 2401 if (Record.size() > 11) { 2402 if (unsigned ComdatID = Record[11]) { 2403 assert(ComdatID <= ComdatList.size()); 2404 NewGV->setComdat(ComdatList[ComdatID - 1]); 2405 } 2406 } else if (hasImplicitComdat(RawLinkage)) { 2407 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2408 } 2409 break; 2410 } 2411 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2412 // alignment, section, visibility, gc, unnamed_addr, 2413 // prologuedata, dllstorageclass, comdat, prefixdata] 2414 case bitc::MODULE_CODE_FUNCTION: { 2415 if (Record.size() < 8) 2416 return Error("Invalid record"); 2417 Type *Ty = getTypeByID(Record[0]); 2418 if (!Ty) 2419 return Error("Invalid record"); 2420 if (!Ty->isPointerTy()) 2421 return Error("Invalid type for value"); 2422 FunctionType *FTy = 2423 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2424 if (!FTy) 2425 return Error("Invalid type for value"); 2426 2427 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2428 "", TheModule); 2429 2430 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2431 bool isProto = Record[2]; 2432 uint64_t RawLinkage = Record[3]; 2433 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2434 Func->setAttributes(getAttributes(Record[4])); 2435 2436 Func->setAlignment((1 << Record[5]) >> 1); 2437 if (Record[6]) { 2438 if (Record[6]-1 >= SectionTable.size()) 2439 return Error("Invalid ID"); 2440 Func->setSection(SectionTable[Record[6]-1]); 2441 } 2442 // Local linkage must have default visibility. 2443 if (!Func->hasLocalLinkage()) 2444 // FIXME: Change to an error if non-default in 4.0. 2445 Func->setVisibility(GetDecodedVisibility(Record[7])); 2446 if (Record.size() > 8 && Record[8]) { 2447 if (Record[8]-1 > GCTable.size()) 2448 return Error("Invalid ID"); 2449 Func->setGC(GCTable[Record[8]-1].c_str()); 2450 } 2451 bool UnnamedAddr = false; 2452 if (Record.size() > 9) 2453 UnnamedAddr = Record[9]; 2454 Func->setUnnamedAddr(UnnamedAddr); 2455 if (Record.size() > 10 && Record[10] != 0) 2456 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2457 2458 if (Record.size() > 11) 2459 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2460 else 2461 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2462 2463 if (Record.size() > 12) { 2464 if (unsigned ComdatID = Record[12]) { 2465 assert(ComdatID <= ComdatList.size()); 2466 Func->setComdat(ComdatList[ComdatID - 1]); 2467 } 2468 } else if (hasImplicitComdat(RawLinkage)) { 2469 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2470 } 2471 2472 if (Record.size() > 13 && Record[13] != 0) 2473 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2474 2475 ValueList.push_back(Func); 2476 2477 // If this is a function with a body, remember the prototype we are 2478 // creating now, so that we can match up the body with them later. 2479 if (!isProto) { 2480 Func->setIsMaterializable(true); 2481 FunctionsWithBodies.push_back(Func); 2482 if (LazyStreamer) 2483 DeferredFunctionInfo[Func] = 0; 2484 } 2485 break; 2486 } 2487 // ALIAS: [alias type, aliasee val#, linkage] 2488 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2489 case bitc::MODULE_CODE_ALIAS: { 2490 if (Record.size() < 3) 2491 return Error("Invalid record"); 2492 Type *Ty = getTypeByID(Record[0]); 2493 if (!Ty) 2494 return Error("Invalid record"); 2495 auto *PTy = dyn_cast<PointerType>(Ty); 2496 if (!PTy) 2497 return Error("Invalid type for value"); 2498 2499 auto *NewGA = 2500 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2501 getDecodedLinkage(Record[2]), "", TheModule); 2502 // Old bitcode files didn't have visibility field. 2503 // Local linkage must have default visibility. 2504 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2505 // FIXME: Change to an error if non-default in 4.0. 2506 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2507 if (Record.size() > 4) 2508 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2509 else 2510 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2511 if (Record.size() > 5) 2512 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2513 if (Record.size() > 6) 2514 NewGA->setUnnamedAddr(Record[6]); 2515 ValueList.push_back(NewGA); 2516 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2517 break; 2518 } 2519 /// MODULE_CODE_PURGEVALS: [numvals] 2520 case bitc::MODULE_CODE_PURGEVALS: 2521 // Trim down the value list to the specified size. 2522 if (Record.size() < 1 || Record[0] > ValueList.size()) 2523 return Error("Invalid record"); 2524 ValueList.shrinkTo(Record[0]); 2525 break; 2526 } 2527 Record.clear(); 2528 } 2529 } 2530 2531 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2532 TheModule = nullptr; 2533 2534 if (std::error_code EC = InitStream()) 2535 return EC; 2536 2537 // Sniff for the signature. 2538 if (Stream.Read(8) != 'B' || 2539 Stream.Read(8) != 'C' || 2540 Stream.Read(4) != 0x0 || 2541 Stream.Read(4) != 0xC || 2542 Stream.Read(4) != 0xE || 2543 Stream.Read(4) != 0xD) 2544 return Error("Invalid bitcode signature"); 2545 2546 // We expect a number of well-defined blocks, though we don't necessarily 2547 // need to understand them all. 2548 while (1) { 2549 if (Stream.AtEndOfStream()) 2550 return std::error_code(); 2551 2552 BitstreamEntry Entry = 2553 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2554 2555 switch (Entry.Kind) { 2556 case BitstreamEntry::Error: 2557 return Error("Malformed block"); 2558 case BitstreamEntry::EndBlock: 2559 return std::error_code(); 2560 2561 case BitstreamEntry::SubBlock: 2562 switch (Entry.ID) { 2563 case bitc::BLOCKINFO_BLOCK_ID: 2564 if (Stream.ReadBlockInfoBlock()) 2565 return Error("Malformed block"); 2566 break; 2567 case bitc::MODULE_BLOCK_ID: 2568 // Reject multiple MODULE_BLOCK's in a single bitstream. 2569 if (TheModule) 2570 return Error("Invalid multiple blocks"); 2571 TheModule = M; 2572 if (std::error_code EC = ParseModule(false)) 2573 return EC; 2574 if (LazyStreamer) 2575 return std::error_code(); 2576 break; 2577 default: 2578 if (Stream.SkipBlock()) 2579 return Error("Invalid record"); 2580 break; 2581 } 2582 continue; 2583 case BitstreamEntry::Record: 2584 // There should be no records in the top-level of blocks. 2585 2586 // The ranlib in Xcode 4 will align archive members by appending newlines 2587 // to the end of them. If this file size is a multiple of 4 but not 8, we 2588 // have to read and ignore these final 4 bytes :-( 2589 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2590 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2591 Stream.AtEndOfStream()) 2592 return std::error_code(); 2593 2594 return Error("Invalid record"); 2595 } 2596 } 2597 } 2598 2599 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2600 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2601 return Error("Invalid record"); 2602 2603 SmallVector<uint64_t, 64> Record; 2604 2605 std::string Triple; 2606 // Read all the records for this module. 2607 while (1) { 2608 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2609 2610 switch (Entry.Kind) { 2611 case BitstreamEntry::SubBlock: // Handled for us already. 2612 case BitstreamEntry::Error: 2613 return Error("Malformed block"); 2614 case BitstreamEntry::EndBlock: 2615 return Triple; 2616 case BitstreamEntry::Record: 2617 // The interesting case. 2618 break; 2619 } 2620 2621 // Read a record. 2622 switch (Stream.readRecord(Entry.ID, Record)) { 2623 default: break; // Default behavior, ignore unknown content. 2624 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2625 std::string S; 2626 if (ConvertToString(Record, 0, S)) 2627 return Error("Invalid record"); 2628 Triple = S; 2629 break; 2630 } 2631 } 2632 Record.clear(); 2633 } 2634 llvm_unreachable("Exit infinite loop"); 2635 } 2636 2637 ErrorOr<std::string> BitcodeReader::parseTriple() { 2638 if (std::error_code EC = InitStream()) 2639 return EC; 2640 2641 // Sniff for the signature. 2642 if (Stream.Read(8) != 'B' || 2643 Stream.Read(8) != 'C' || 2644 Stream.Read(4) != 0x0 || 2645 Stream.Read(4) != 0xC || 2646 Stream.Read(4) != 0xE || 2647 Stream.Read(4) != 0xD) 2648 return Error("Invalid bitcode signature"); 2649 2650 // We expect a number of well-defined blocks, though we don't necessarily 2651 // need to understand them all. 2652 while (1) { 2653 BitstreamEntry Entry = Stream.advance(); 2654 2655 switch (Entry.Kind) { 2656 case BitstreamEntry::Error: 2657 return Error("Malformed block"); 2658 case BitstreamEntry::EndBlock: 2659 return std::error_code(); 2660 2661 case BitstreamEntry::SubBlock: 2662 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2663 return parseModuleTriple(); 2664 2665 // Ignore other sub-blocks. 2666 if (Stream.SkipBlock()) 2667 return Error("Malformed block"); 2668 continue; 2669 2670 case BitstreamEntry::Record: 2671 Stream.skipRecord(Entry.ID); 2672 continue; 2673 } 2674 } 2675 } 2676 2677 /// ParseMetadataAttachment - Parse metadata attachments. 2678 std::error_code BitcodeReader::ParseMetadataAttachment() { 2679 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2680 return Error("Invalid record"); 2681 2682 SmallVector<uint64_t, 64> Record; 2683 while (1) { 2684 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2685 2686 switch (Entry.Kind) { 2687 case BitstreamEntry::SubBlock: // Handled for us already. 2688 case BitstreamEntry::Error: 2689 return Error("Malformed block"); 2690 case BitstreamEntry::EndBlock: 2691 return std::error_code(); 2692 case BitstreamEntry::Record: 2693 // The interesting case. 2694 break; 2695 } 2696 2697 // Read a metadata attachment record. 2698 Record.clear(); 2699 switch (Stream.readRecord(Entry.ID, Record)) { 2700 default: // Default behavior: ignore. 2701 break; 2702 case bitc::METADATA_ATTACHMENT: { 2703 unsigned RecordLength = Record.size(); 2704 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2705 return Error("Invalid record"); 2706 Instruction *Inst = InstructionList[Record[0]]; 2707 for (unsigned i = 1; i != RecordLength; i = i+2) { 2708 unsigned Kind = Record[i]; 2709 DenseMap<unsigned, unsigned>::iterator I = 2710 MDKindMap.find(Kind); 2711 if (I == MDKindMap.end()) 2712 return Error("Invalid ID"); 2713 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2714 if (isa<LocalAsMetadata>(Node)) 2715 // Drop the attachment. This used to be legal, but there's no 2716 // upgrade path. 2717 break; 2718 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2719 if (I->second == LLVMContext::MD_tbaa) 2720 InstsWithTBAATag.push_back(Inst); 2721 } 2722 break; 2723 } 2724 } 2725 } 2726 } 2727 2728 /// ParseFunctionBody - Lazily parse the specified function body block. 2729 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2730 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2731 return Error("Invalid record"); 2732 2733 InstructionList.clear(); 2734 unsigned ModuleValueListSize = ValueList.size(); 2735 unsigned ModuleMDValueListSize = MDValueList.size(); 2736 2737 // Add all the function arguments to the value table. 2738 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2739 ValueList.push_back(I); 2740 2741 unsigned NextValueNo = ValueList.size(); 2742 BasicBlock *CurBB = nullptr; 2743 unsigned CurBBNo = 0; 2744 2745 DebugLoc LastLoc; 2746 auto getLastInstruction = [&]() -> Instruction * { 2747 if (CurBB && !CurBB->empty()) 2748 return &CurBB->back(); 2749 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2750 !FunctionBBs[CurBBNo - 1]->empty()) 2751 return &FunctionBBs[CurBBNo - 1]->back(); 2752 return nullptr; 2753 }; 2754 2755 // Read all the records. 2756 SmallVector<uint64_t, 64> Record; 2757 while (1) { 2758 BitstreamEntry Entry = Stream.advance(); 2759 2760 switch (Entry.Kind) { 2761 case BitstreamEntry::Error: 2762 return Error("Malformed block"); 2763 case BitstreamEntry::EndBlock: 2764 goto OutOfRecordLoop; 2765 2766 case BitstreamEntry::SubBlock: 2767 switch (Entry.ID) { 2768 default: // Skip unknown content. 2769 if (Stream.SkipBlock()) 2770 return Error("Invalid record"); 2771 break; 2772 case bitc::CONSTANTS_BLOCK_ID: 2773 if (std::error_code EC = ParseConstants()) 2774 return EC; 2775 NextValueNo = ValueList.size(); 2776 break; 2777 case bitc::VALUE_SYMTAB_BLOCK_ID: 2778 if (std::error_code EC = ParseValueSymbolTable()) 2779 return EC; 2780 break; 2781 case bitc::METADATA_ATTACHMENT_ID: 2782 if (std::error_code EC = ParseMetadataAttachment()) 2783 return EC; 2784 break; 2785 case bitc::METADATA_BLOCK_ID: 2786 if (std::error_code EC = ParseMetadata()) 2787 return EC; 2788 break; 2789 case bitc::USELIST_BLOCK_ID: 2790 if (std::error_code EC = ParseUseLists()) 2791 return EC; 2792 break; 2793 } 2794 continue; 2795 2796 case BitstreamEntry::Record: 2797 // The interesting case. 2798 break; 2799 } 2800 2801 // Read a record. 2802 Record.clear(); 2803 Instruction *I = nullptr; 2804 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2805 switch (BitCode) { 2806 default: // Default behavior: reject 2807 return Error("Invalid value"); 2808 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2809 if (Record.size() < 1 || Record[0] == 0) 2810 return Error("Invalid record"); 2811 // Create all the basic blocks for the function. 2812 FunctionBBs.resize(Record[0]); 2813 2814 // See if anything took the address of blocks in this function. 2815 auto BBFRI = BasicBlockFwdRefs.find(F); 2816 if (BBFRI == BasicBlockFwdRefs.end()) { 2817 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2818 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2819 } else { 2820 auto &BBRefs = BBFRI->second; 2821 // Check for invalid basic block references. 2822 if (BBRefs.size() > FunctionBBs.size()) 2823 return Error("Invalid ID"); 2824 assert(!BBRefs.empty() && "Unexpected empty array"); 2825 assert(!BBRefs.front() && "Invalid reference to entry block"); 2826 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2827 ++I) 2828 if (I < RE && BBRefs[I]) { 2829 BBRefs[I]->insertInto(F); 2830 FunctionBBs[I] = BBRefs[I]; 2831 } else { 2832 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2833 } 2834 2835 // Erase from the table. 2836 BasicBlockFwdRefs.erase(BBFRI); 2837 } 2838 2839 CurBB = FunctionBBs[0]; 2840 continue; 2841 } 2842 2843 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2844 // This record indicates that the last instruction is at the same 2845 // location as the previous instruction with a location. 2846 I = getLastInstruction(); 2847 2848 if (!I) 2849 return Error("Invalid record"); 2850 I->setDebugLoc(LastLoc); 2851 I = nullptr; 2852 continue; 2853 2854 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2855 I = getLastInstruction(); 2856 if (!I || Record.size() < 4) 2857 return Error("Invalid record"); 2858 2859 unsigned Line = Record[0], Col = Record[1]; 2860 unsigned ScopeID = Record[2], IAID = Record[3]; 2861 2862 MDNode *Scope = nullptr, *IA = nullptr; 2863 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2864 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2865 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2866 I->setDebugLoc(LastLoc); 2867 I = nullptr; 2868 continue; 2869 } 2870 2871 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2872 unsigned OpNum = 0; 2873 Value *LHS, *RHS; 2874 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2875 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2876 OpNum+1 > Record.size()) 2877 return Error("Invalid record"); 2878 2879 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2880 if (Opc == -1) 2881 return Error("Invalid record"); 2882 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2883 InstructionList.push_back(I); 2884 if (OpNum < Record.size()) { 2885 if (Opc == Instruction::Add || 2886 Opc == Instruction::Sub || 2887 Opc == Instruction::Mul || 2888 Opc == Instruction::Shl) { 2889 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2890 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2891 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2892 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2893 } else if (Opc == Instruction::SDiv || 2894 Opc == Instruction::UDiv || 2895 Opc == Instruction::LShr || 2896 Opc == Instruction::AShr) { 2897 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2898 cast<BinaryOperator>(I)->setIsExact(true); 2899 } else if (isa<FPMathOperator>(I)) { 2900 FastMathFlags FMF; 2901 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2902 FMF.setUnsafeAlgebra(); 2903 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2904 FMF.setNoNaNs(); 2905 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2906 FMF.setNoInfs(); 2907 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2908 FMF.setNoSignedZeros(); 2909 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2910 FMF.setAllowReciprocal(); 2911 if (FMF.any()) 2912 I->setFastMathFlags(FMF); 2913 } 2914 2915 } 2916 break; 2917 } 2918 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2919 unsigned OpNum = 0; 2920 Value *Op; 2921 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2922 OpNum+2 != Record.size()) 2923 return Error("Invalid record"); 2924 2925 Type *ResTy = getTypeByID(Record[OpNum]); 2926 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2927 if (Opc == -1 || !ResTy) 2928 return Error("Invalid record"); 2929 Instruction *Temp = nullptr; 2930 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2931 if (Temp) { 2932 InstructionList.push_back(Temp); 2933 CurBB->getInstList().push_back(Temp); 2934 } 2935 } else { 2936 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2937 } 2938 InstructionList.push_back(I); 2939 break; 2940 } 2941 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2942 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2943 unsigned OpNum = 0; 2944 Value *BasePtr; 2945 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2946 return Error("Invalid record"); 2947 2948 SmallVector<Value*, 16> GEPIdx; 2949 while (OpNum != Record.size()) { 2950 Value *Op; 2951 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2952 return Error("Invalid record"); 2953 GEPIdx.push_back(Op); 2954 } 2955 2956 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2957 InstructionList.push_back(I); 2958 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2959 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2960 break; 2961 } 2962 2963 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2964 // EXTRACTVAL: [opty, opval, n x indices] 2965 unsigned OpNum = 0; 2966 Value *Agg; 2967 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2968 return Error("Invalid record"); 2969 2970 SmallVector<unsigned, 4> EXTRACTVALIdx; 2971 for (unsigned RecSize = Record.size(); 2972 OpNum != RecSize; ++OpNum) { 2973 uint64_t Index = Record[OpNum]; 2974 if ((unsigned)Index != Index) 2975 return Error("Invalid value"); 2976 EXTRACTVALIdx.push_back((unsigned)Index); 2977 } 2978 2979 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2980 InstructionList.push_back(I); 2981 break; 2982 } 2983 2984 case bitc::FUNC_CODE_INST_INSERTVAL: { 2985 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2986 unsigned OpNum = 0; 2987 Value *Agg; 2988 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2989 return Error("Invalid record"); 2990 Value *Val; 2991 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2992 return Error("Invalid record"); 2993 2994 SmallVector<unsigned, 4> INSERTVALIdx; 2995 for (unsigned RecSize = Record.size(); 2996 OpNum != RecSize; ++OpNum) { 2997 uint64_t Index = Record[OpNum]; 2998 if ((unsigned)Index != Index) 2999 return Error("Invalid value"); 3000 INSERTVALIdx.push_back((unsigned)Index); 3001 } 3002 3003 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3004 InstructionList.push_back(I); 3005 break; 3006 } 3007 3008 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3009 // obsolete form of select 3010 // handles select i1 ... in old bitcode 3011 unsigned OpNum = 0; 3012 Value *TrueVal, *FalseVal, *Cond; 3013 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3014 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3015 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3016 return Error("Invalid record"); 3017 3018 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3019 InstructionList.push_back(I); 3020 break; 3021 } 3022 3023 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3024 // new form of select 3025 // handles select i1 or select [N x i1] 3026 unsigned OpNum = 0; 3027 Value *TrueVal, *FalseVal, *Cond; 3028 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3029 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3030 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3031 return Error("Invalid record"); 3032 3033 // select condition can be either i1 or [N x i1] 3034 if (VectorType* vector_type = 3035 dyn_cast<VectorType>(Cond->getType())) { 3036 // expect <n x i1> 3037 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3038 return Error("Invalid type for value"); 3039 } else { 3040 // expect i1 3041 if (Cond->getType() != Type::getInt1Ty(Context)) 3042 return Error("Invalid type for value"); 3043 } 3044 3045 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3046 InstructionList.push_back(I); 3047 break; 3048 } 3049 3050 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3051 unsigned OpNum = 0; 3052 Value *Vec, *Idx; 3053 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3054 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3055 return Error("Invalid record"); 3056 I = ExtractElementInst::Create(Vec, Idx); 3057 InstructionList.push_back(I); 3058 break; 3059 } 3060 3061 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3062 unsigned OpNum = 0; 3063 Value *Vec, *Elt, *Idx; 3064 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3065 popValue(Record, OpNum, NextValueNo, 3066 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3067 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3068 return Error("Invalid record"); 3069 I = InsertElementInst::Create(Vec, Elt, Idx); 3070 InstructionList.push_back(I); 3071 break; 3072 } 3073 3074 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3075 unsigned OpNum = 0; 3076 Value *Vec1, *Vec2, *Mask; 3077 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3078 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3079 return Error("Invalid record"); 3080 3081 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3082 return Error("Invalid record"); 3083 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3084 InstructionList.push_back(I); 3085 break; 3086 } 3087 3088 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3089 // Old form of ICmp/FCmp returning bool 3090 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3091 // both legal on vectors but had different behaviour. 3092 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3093 // FCmp/ICmp returning bool or vector of bool 3094 3095 unsigned OpNum = 0; 3096 Value *LHS, *RHS; 3097 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3098 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3099 OpNum+1 != Record.size()) 3100 return Error("Invalid record"); 3101 3102 if (LHS->getType()->isFPOrFPVectorTy()) 3103 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3104 else 3105 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3106 InstructionList.push_back(I); 3107 break; 3108 } 3109 3110 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3111 { 3112 unsigned Size = Record.size(); 3113 if (Size == 0) { 3114 I = ReturnInst::Create(Context); 3115 InstructionList.push_back(I); 3116 break; 3117 } 3118 3119 unsigned OpNum = 0; 3120 Value *Op = nullptr; 3121 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3122 return Error("Invalid record"); 3123 if (OpNum != Record.size()) 3124 return Error("Invalid record"); 3125 3126 I = ReturnInst::Create(Context, Op); 3127 InstructionList.push_back(I); 3128 break; 3129 } 3130 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3131 if (Record.size() != 1 && Record.size() != 3) 3132 return Error("Invalid record"); 3133 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3134 if (!TrueDest) 3135 return Error("Invalid record"); 3136 3137 if (Record.size() == 1) { 3138 I = BranchInst::Create(TrueDest); 3139 InstructionList.push_back(I); 3140 } 3141 else { 3142 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3143 Value *Cond = getValue(Record, 2, NextValueNo, 3144 Type::getInt1Ty(Context)); 3145 if (!FalseDest || !Cond) 3146 return Error("Invalid record"); 3147 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3148 InstructionList.push_back(I); 3149 } 3150 break; 3151 } 3152 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3153 // Check magic 3154 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3155 // "New" SwitchInst format with case ranges. The changes to write this 3156 // format were reverted but we still recognize bitcode that uses it. 3157 // Hopefully someday we will have support for case ranges and can use 3158 // this format again. 3159 3160 Type *OpTy = getTypeByID(Record[1]); 3161 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3162 3163 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3164 BasicBlock *Default = getBasicBlock(Record[3]); 3165 if (!OpTy || !Cond || !Default) 3166 return Error("Invalid record"); 3167 3168 unsigned NumCases = Record[4]; 3169 3170 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3171 InstructionList.push_back(SI); 3172 3173 unsigned CurIdx = 5; 3174 for (unsigned i = 0; i != NumCases; ++i) { 3175 SmallVector<ConstantInt*, 1> CaseVals; 3176 unsigned NumItems = Record[CurIdx++]; 3177 for (unsigned ci = 0; ci != NumItems; ++ci) { 3178 bool isSingleNumber = Record[CurIdx++]; 3179 3180 APInt Low; 3181 unsigned ActiveWords = 1; 3182 if (ValueBitWidth > 64) 3183 ActiveWords = Record[CurIdx++]; 3184 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3185 ValueBitWidth); 3186 CurIdx += ActiveWords; 3187 3188 if (!isSingleNumber) { 3189 ActiveWords = 1; 3190 if (ValueBitWidth > 64) 3191 ActiveWords = Record[CurIdx++]; 3192 APInt High = 3193 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3194 ValueBitWidth); 3195 CurIdx += ActiveWords; 3196 3197 // FIXME: It is not clear whether values in the range should be 3198 // compared as signed or unsigned values. The partially 3199 // implemented changes that used this format in the past used 3200 // unsigned comparisons. 3201 for ( ; Low.ule(High); ++Low) 3202 CaseVals.push_back(ConstantInt::get(Context, Low)); 3203 } else 3204 CaseVals.push_back(ConstantInt::get(Context, Low)); 3205 } 3206 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3207 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3208 cve = CaseVals.end(); cvi != cve; ++cvi) 3209 SI->addCase(*cvi, DestBB); 3210 } 3211 I = SI; 3212 break; 3213 } 3214 3215 // Old SwitchInst format without case ranges. 3216 3217 if (Record.size() < 3 || (Record.size() & 1) == 0) 3218 return Error("Invalid record"); 3219 Type *OpTy = getTypeByID(Record[0]); 3220 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3221 BasicBlock *Default = getBasicBlock(Record[2]); 3222 if (!OpTy || !Cond || !Default) 3223 return Error("Invalid record"); 3224 unsigned NumCases = (Record.size()-3)/2; 3225 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3226 InstructionList.push_back(SI); 3227 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3228 ConstantInt *CaseVal = 3229 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3230 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3231 if (!CaseVal || !DestBB) { 3232 delete SI; 3233 return Error("Invalid record"); 3234 } 3235 SI->addCase(CaseVal, DestBB); 3236 } 3237 I = SI; 3238 break; 3239 } 3240 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3241 if (Record.size() < 2) 3242 return Error("Invalid record"); 3243 Type *OpTy = getTypeByID(Record[0]); 3244 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3245 if (!OpTy || !Address) 3246 return Error("Invalid record"); 3247 unsigned NumDests = Record.size()-2; 3248 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3249 InstructionList.push_back(IBI); 3250 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3251 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3252 IBI->addDestination(DestBB); 3253 } else { 3254 delete IBI; 3255 return Error("Invalid record"); 3256 } 3257 } 3258 I = IBI; 3259 break; 3260 } 3261 3262 case bitc::FUNC_CODE_INST_INVOKE: { 3263 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3264 if (Record.size() < 4) 3265 return Error("Invalid record"); 3266 AttributeSet PAL = getAttributes(Record[0]); 3267 unsigned CCInfo = Record[1]; 3268 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3269 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3270 3271 unsigned OpNum = 4; 3272 Value *Callee; 3273 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3274 return Error("Invalid record"); 3275 3276 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3277 FunctionType *FTy = !CalleeTy ? nullptr : 3278 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3279 3280 // Check that the right number of fixed parameters are here. 3281 if (!FTy || !NormalBB || !UnwindBB || 3282 Record.size() < OpNum+FTy->getNumParams()) 3283 return Error("Invalid record"); 3284 3285 SmallVector<Value*, 16> Ops; 3286 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3287 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3288 FTy->getParamType(i))); 3289 if (!Ops.back()) 3290 return Error("Invalid record"); 3291 } 3292 3293 if (!FTy->isVarArg()) { 3294 if (Record.size() != OpNum) 3295 return Error("Invalid record"); 3296 } else { 3297 // Read type/value pairs for varargs params. 3298 while (OpNum != Record.size()) { 3299 Value *Op; 3300 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3301 return Error("Invalid record"); 3302 Ops.push_back(Op); 3303 } 3304 } 3305 3306 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3307 InstructionList.push_back(I); 3308 cast<InvokeInst>(I)->setCallingConv( 3309 static_cast<CallingConv::ID>(CCInfo)); 3310 cast<InvokeInst>(I)->setAttributes(PAL); 3311 break; 3312 } 3313 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3314 unsigned Idx = 0; 3315 Value *Val = nullptr; 3316 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3317 return Error("Invalid record"); 3318 I = ResumeInst::Create(Val); 3319 InstructionList.push_back(I); 3320 break; 3321 } 3322 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3323 I = new UnreachableInst(Context); 3324 InstructionList.push_back(I); 3325 break; 3326 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3327 if (Record.size() < 1 || ((Record.size()-1)&1)) 3328 return Error("Invalid record"); 3329 Type *Ty = getTypeByID(Record[0]); 3330 if (!Ty) 3331 return Error("Invalid record"); 3332 3333 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3334 InstructionList.push_back(PN); 3335 3336 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3337 Value *V; 3338 // With the new function encoding, it is possible that operands have 3339 // negative IDs (for forward references). Use a signed VBR 3340 // representation to keep the encoding small. 3341 if (UseRelativeIDs) 3342 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3343 else 3344 V = getValue(Record, 1+i, NextValueNo, Ty); 3345 BasicBlock *BB = getBasicBlock(Record[2+i]); 3346 if (!V || !BB) 3347 return Error("Invalid record"); 3348 PN->addIncoming(V, BB); 3349 } 3350 I = PN; 3351 break; 3352 } 3353 3354 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3355 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3356 unsigned Idx = 0; 3357 if (Record.size() < 4) 3358 return Error("Invalid record"); 3359 Type *Ty = getTypeByID(Record[Idx++]); 3360 if (!Ty) 3361 return Error("Invalid record"); 3362 Value *PersFn = nullptr; 3363 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3364 return Error("Invalid record"); 3365 3366 bool IsCleanup = !!Record[Idx++]; 3367 unsigned NumClauses = Record[Idx++]; 3368 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3369 LP->setCleanup(IsCleanup); 3370 for (unsigned J = 0; J != NumClauses; ++J) { 3371 LandingPadInst::ClauseType CT = 3372 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3373 Value *Val; 3374 3375 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3376 delete LP; 3377 return Error("Invalid record"); 3378 } 3379 3380 assert((CT != LandingPadInst::Catch || 3381 !isa<ArrayType>(Val->getType())) && 3382 "Catch clause has a invalid type!"); 3383 assert((CT != LandingPadInst::Filter || 3384 isa<ArrayType>(Val->getType())) && 3385 "Filter clause has invalid type!"); 3386 LP->addClause(cast<Constant>(Val)); 3387 } 3388 3389 I = LP; 3390 InstructionList.push_back(I); 3391 break; 3392 } 3393 3394 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3395 if (Record.size() != 4) 3396 return Error("Invalid record"); 3397 PointerType *Ty = 3398 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3399 Type *OpTy = getTypeByID(Record[1]); 3400 Value *Size = getFnValueByID(Record[2], OpTy); 3401 unsigned AlignRecord = Record[3]; 3402 bool InAlloca = AlignRecord & (1 << 5); 3403 unsigned Align = AlignRecord & ((1 << 5) - 1); 3404 if (!Ty || !Size) 3405 return Error("Invalid record"); 3406 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3407 AI->setUsedWithInAlloca(InAlloca); 3408 I = AI; 3409 InstructionList.push_back(I); 3410 break; 3411 } 3412 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3413 unsigned OpNum = 0; 3414 Value *Op; 3415 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3416 OpNum+2 != Record.size()) 3417 return Error("Invalid record"); 3418 3419 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3420 InstructionList.push_back(I); 3421 break; 3422 } 3423 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3424 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3425 unsigned OpNum = 0; 3426 Value *Op; 3427 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3428 OpNum+4 != Record.size()) 3429 return Error("Invalid record"); 3430 3431 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3432 if (Ordering == NotAtomic || Ordering == Release || 3433 Ordering == AcquireRelease) 3434 return Error("Invalid record"); 3435 if (Ordering != NotAtomic && Record[OpNum] == 0) 3436 return Error("Invalid record"); 3437 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3438 3439 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3440 Ordering, SynchScope); 3441 InstructionList.push_back(I); 3442 break; 3443 } 3444 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3445 unsigned OpNum = 0; 3446 Value *Val, *Ptr; 3447 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3448 popValue(Record, OpNum, NextValueNo, 3449 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3450 OpNum+2 != Record.size()) 3451 return Error("Invalid record"); 3452 3453 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3454 InstructionList.push_back(I); 3455 break; 3456 } 3457 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3458 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3459 unsigned OpNum = 0; 3460 Value *Val, *Ptr; 3461 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3462 popValue(Record, OpNum, NextValueNo, 3463 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3464 OpNum+4 != Record.size()) 3465 return Error("Invalid record"); 3466 3467 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3468 if (Ordering == NotAtomic || Ordering == Acquire || 3469 Ordering == AcquireRelease) 3470 return Error("Invalid record"); 3471 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3472 if (Ordering != NotAtomic && Record[OpNum] == 0) 3473 return Error("Invalid record"); 3474 3475 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3476 Ordering, SynchScope); 3477 InstructionList.push_back(I); 3478 break; 3479 } 3480 case bitc::FUNC_CODE_INST_CMPXCHG: { 3481 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3482 // failureordering?, isweak?] 3483 unsigned OpNum = 0; 3484 Value *Ptr, *Cmp, *New; 3485 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3486 popValue(Record, OpNum, NextValueNo, 3487 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3488 popValue(Record, OpNum, NextValueNo, 3489 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3490 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3491 return Error("Invalid record"); 3492 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3493 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3494 return Error("Invalid record"); 3495 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3496 3497 AtomicOrdering FailureOrdering; 3498 if (Record.size() < 7) 3499 FailureOrdering = 3500 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3501 else 3502 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3503 3504 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3505 SynchScope); 3506 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3507 3508 if (Record.size() < 8) { 3509 // Before weak cmpxchgs existed, the instruction simply returned the 3510 // value loaded from memory, so bitcode files from that era will be 3511 // expecting the first component of a modern cmpxchg. 3512 CurBB->getInstList().push_back(I); 3513 I = ExtractValueInst::Create(I, 0); 3514 } else { 3515 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3516 } 3517 3518 InstructionList.push_back(I); 3519 break; 3520 } 3521 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3522 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3523 unsigned OpNum = 0; 3524 Value *Ptr, *Val; 3525 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3526 popValue(Record, OpNum, NextValueNo, 3527 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3528 OpNum+4 != Record.size()) 3529 return Error("Invalid record"); 3530 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3531 if (Operation < AtomicRMWInst::FIRST_BINOP || 3532 Operation > AtomicRMWInst::LAST_BINOP) 3533 return Error("Invalid record"); 3534 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3535 if (Ordering == NotAtomic || Ordering == Unordered) 3536 return Error("Invalid record"); 3537 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3538 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3539 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3540 InstructionList.push_back(I); 3541 break; 3542 } 3543 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3544 if (2 != Record.size()) 3545 return Error("Invalid record"); 3546 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3547 if (Ordering == NotAtomic || Ordering == Unordered || 3548 Ordering == Monotonic) 3549 return Error("Invalid record"); 3550 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3551 I = new FenceInst(Context, Ordering, SynchScope); 3552 InstructionList.push_back(I); 3553 break; 3554 } 3555 case bitc::FUNC_CODE_INST_CALL: { 3556 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3557 if (Record.size() < 3) 3558 return Error("Invalid record"); 3559 3560 AttributeSet PAL = getAttributes(Record[0]); 3561 unsigned CCInfo = Record[1]; 3562 3563 unsigned OpNum = 2; 3564 Value *Callee; 3565 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3566 return Error("Invalid record"); 3567 3568 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3569 FunctionType *FTy = nullptr; 3570 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3571 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3572 return Error("Invalid record"); 3573 3574 SmallVector<Value*, 16> Args; 3575 // Read the fixed params. 3576 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3577 if (FTy->getParamType(i)->isLabelTy()) 3578 Args.push_back(getBasicBlock(Record[OpNum])); 3579 else 3580 Args.push_back(getValue(Record, OpNum, NextValueNo, 3581 FTy->getParamType(i))); 3582 if (!Args.back()) 3583 return Error("Invalid record"); 3584 } 3585 3586 // Read type/value pairs for varargs params. 3587 if (!FTy->isVarArg()) { 3588 if (OpNum != Record.size()) 3589 return Error("Invalid record"); 3590 } else { 3591 while (OpNum != Record.size()) { 3592 Value *Op; 3593 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3594 return Error("Invalid record"); 3595 Args.push_back(Op); 3596 } 3597 } 3598 3599 I = CallInst::Create(Callee, Args); 3600 InstructionList.push_back(I); 3601 cast<CallInst>(I)->setCallingConv( 3602 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3603 CallInst::TailCallKind TCK = CallInst::TCK_None; 3604 if (CCInfo & 1) 3605 TCK = CallInst::TCK_Tail; 3606 if (CCInfo & (1 << 14)) 3607 TCK = CallInst::TCK_MustTail; 3608 cast<CallInst>(I)->setTailCallKind(TCK); 3609 cast<CallInst>(I)->setAttributes(PAL); 3610 break; 3611 } 3612 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3613 if (Record.size() < 3) 3614 return Error("Invalid record"); 3615 Type *OpTy = getTypeByID(Record[0]); 3616 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3617 Type *ResTy = getTypeByID(Record[2]); 3618 if (!OpTy || !Op || !ResTy) 3619 return Error("Invalid record"); 3620 I = new VAArgInst(Op, ResTy); 3621 InstructionList.push_back(I); 3622 break; 3623 } 3624 } 3625 3626 // Add instruction to end of current BB. If there is no current BB, reject 3627 // this file. 3628 if (!CurBB) { 3629 delete I; 3630 return Error("Invalid instruction with no BB"); 3631 } 3632 CurBB->getInstList().push_back(I); 3633 3634 // If this was a terminator instruction, move to the next block. 3635 if (isa<TerminatorInst>(I)) { 3636 ++CurBBNo; 3637 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3638 } 3639 3640 // Non-void values get registered in the value table for future use. 3641 if (I && !I->getType()->isVoidTy()) 3642 ValueList.AssignValue(I, NextValueNo++); 3643 } 3644 3645 OutOfRecordLoop: 3646 3647 // Check the function list for unresolved values. 3648 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3649 if (!A->getParent()) { 3650 // We found at least one unresolved value. Nuke them all to avoid leaks. 3651 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3652 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3653 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3654 delete A; 3655 } 3656 } 3657 return Error("Never resolved value found in function"); 3658 } 3659 } 3660 3661 // FIXME: Check for unresolved forward-declared metadata references 3662 // and clean up leaks. 3663 3664 // Trim the value list down to the size it was before we parsed this function. 3665 ValueList.shrinkTo(ModuleValueListSize); 3666 MDValueList.shrinkTo(ModuleMDValueListSize); 3667 std::vector<BasicBlock*>().swap(FunctionBBs); 3668 return std::error_code(); 3669 } 3670 3671 /// Find the function body in the bitcode stream 3672 std::error_code BitcodeReader::FindFunctionInStream( 3673 Function *F, 3674 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3675 while (DeferredFunctionInfoIterator->second == 0) { 3676 if (Stream.AtEndOfStream()) 3677 return Error("Could not find function in stream"); 3678 // ParseModule will parse the next body in the stream and set its 3679 // position in the DeferredFunctionInfo map. 3680 if (std::error_code EC = ParseModule(true)) 3681 return EC; 3682 } 3683 return std::error_code(); 3684 } 3685 3686 //===----------------------------------------------------------------------===// 3687 // GVMaterializer implementation 3688 //===----------------------------------------------------------------------===// 3689 3690 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3691 3692 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3693 Function *F = dyn_cast<Function>(GV); 3694 // If it's not a function or is already material, ignore the request. 3695 if (!F || !F->isMaterializable()) 3696 return std::error_code(); 3697 3698 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3699 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3700 // If its position is recorded as 0, its body is somewhere in the stream 3701 // but we haven't seen it yet. 3702 if (DFII->second == 0 && LazyStreamer) 3703 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3704 return EC; 3705 3706 // Move the bit stream to the saved position of the deferred function body. 3707 Stream.JumpToBit(DFII->second); 3708 3709 if (std::error_code EC = ParseFunctionBody(F)) 3710 return EC; 3711 F->setIsMaterializable(false); 3712 3713 // Upgrade any old intrinsic calls in the function. 3714 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3715 E = UpgradedIntrinsics.end(); I != E; ++I) { 3716 if (I->first != I->second) { 3717 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3718 UI != UE;) { 3719 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3720 UpgradeIntrinsicCall(CI, I->second); 3721 } 3722 } 3723 } 3724 3725 // Bring in any functions that this function forward-referenced via 3726 // blockaddresses. 3727 return materializeForwardReferencedFunctions(); 3728 } 3729 3730 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3731 const Function *F = dyn_cast<Function>(GV); 3732 if (!F || F->isDeclaration()) 3733 return false; 3734 3735 // Dematerializing F would leave dangling references that wouldn't be 3736 // reconnected on re-materialization. 3737 if (BlockAddressesTaken.count(F)) 3738 return false; 3739 3740 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3741 } 3742 3743 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3744 Function *F = dyn_cast<Function>(GV); 3745 // If this function isn't dematerializable, this is a noop. 3746 if (!F || !isDematerializable(F)) 3747 return; 3748 3749 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3750 3751 // Just forget the function body, we can remat it later. 3752 F->dropAllReferences(); 3753 F->setIsMaterializable(true); 3754 } 3755 3756 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3757 assert(M == TheModule && 3758 "Can only Materialize the Module this BitcodeReader is attached to."); 3759 3760 // Promise to materialize all forward references. 3761 WillMaterializeAllForwardRefs = true; 3762 3763 // Iterate over the module, deserializing any functions that are still on 3764 // disk. 3765 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3766 F != E; ++F) { 3767 if (std::error_code EC = materialize(F)) 3768 return EC; 3769 } 3770 // At this point, if there are any function bodies, the current bit is 3771 // pointing to the END_BLOCK record after them. Now make sure the rest 3772 // of the bits in the module have been read. 3773 if (NextUnreadBit) 3774 ParseModule(true); 3775 3776 // Check that all block address forward references got resolved (as we 3777 // promised above). 3778 if (!BasicBlockFwdRefs.empty()) 3779 return Error("Never resolved function from blockaddress"); 3780 3781 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3782 // delete the old functions to clean up. We can't do this unless the entire 3783 // module is materialized because there could always be another function body 3784 // with calls to the old function. 3785 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3786 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3787 if (I->first != I->second) { 3788 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3789 UI != UE;) { 3790 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3791 UpgradeIntrinsicCall(CI, I->second); 3792 } 3793 if (!I->first->use_empty()) 3794 I->first->replaceAllUsesWith(I->second); 3795 I->first->eraseFromParent(); 3796 } 3797 } 3798 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3799 3800 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3801 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3802 3803 UpgradeDebugInfo(*M); 3804 return std::error_code(); 3805 } 3806 3807 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3808 return IdentifiedStructTypes; 3809 } 3810 3811 std::error_code BitcodeReader::InitStream() { 3812 if (LazyStreamer) 3813 return InitLazyStream(); 3814 return InitStreamFromBuffer(); 3815 } 3816 3817 std::error_code BitcodeReader::InitStreamFromBuffer() { 3818 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3819 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3820 3821 if (Buffer->getBufferSize() & 3) 3822 return Error("Invalid bitcode signature"); 3823 3824 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3825 // The magic number is 0x0B17C0DE stored in little endian. 3826 if (isBitcodeWrapper(BufPtr, BufEnd)) 3827 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3828 return Error("Invalid bitcode wrapper header"); 3829 3830 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3831 Stream.init(&*StreamFile); 3832 3833 return std::error_code(); 3834 } 3835 3836 std::error_code BitcodeReader::InitLazyStream() { 3837 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3838 // see it. 3839 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3840 StreamingMemoryObject &Bytes = *OwnedBytes; 3841 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3842 Stream.init(&*StreamFile); 3843 3844 unsigned char buf[16]; 3845 if (Bytes.readBytes(buf, 16, 0) != 16) 3846 return Error("Invalid bitcode signature"); 3847 3848 if (!isBitcode(buf, buf + 16)) 3849 return Error("Invalid bitcode signature"); 3850 3851 if (isBitcodeWrapper(buf, buf + 4)) { 3852 const unsigned char *bitcodeStart = buf; 3853 const unsigned char *bitcodeEnd = buf + 16; 3854 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3855 Bytes.dropLeadingBytes(bitcodeStart - buf); 3856 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3857 } 3858 return std::error_code(); 3859 } 3860 3861 namespace { 3862 class BitcodeErrorCategoryType : public std::error_category { 3863 const char *name() const LLVM_NOEXCEPT override { 3864 return "llvm.bitcode"; 3865 } 3866 std::string message(int IE) const override { 3867 BitcodeError E = static_cast<BitcodeError>(IE); 3868 switch (E) { 3869 case BitcodeError::InvalidBitcodeSignature: 3870 return "Invalid bitcode signature"; 3871 case BitcodeError::CorruptedBitcode: 3872 return "Corrupted bitcode"; 3873 } 3874 llvm_unreachable("Unknown error type!"); 3875 } 3876 }; 3877 } 3878 3879 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3880 3881 const std::error_category &llvm::BitcodeErrorCategory() { 3882 return *ErrorCategory; 3883 } 3884 3885 //===----------------------------------------------------------------------===// 3886 // External interface 3887 //===----------------------------------------------------------------------===// 3888 3889 /// \brief Get a lazy one-at-time loading module from bitcode. 3890 /// 3891 /// This isn't always used in a lazy context. In particular, it's also used by 3892 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3893 /// in forward-referenced functions from block address references. 3894 /// 3895 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3896 /// materialize everything -- in particular, if this isn't truly lazy. 3897 static ErrorOr<Module *> 3898 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3899 LLVMContext &Context, bool WillMaterializeAll, 3900 DiagnosticHandlerFunction DiagnosticHandler) { 3901 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3902 BitcodeReader *R = 3903 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3904 M->setMaterializer(R); 3905 3906 auto cleanupOnError = [&](std::error_code EC) { 3907 R->releaseBuffer(); // Never take ownership on error. 3908 delete M; // Also deletes R. 3909 return EC; 3910 }; 3911 3912 if (std::error_code EC = R->ParseBitcodeInto(M)) 3913 return cleanupOnError(EC); 3914 3915 if (!WillMaterializeAll) 3916 // Resolve forward references from blockaddresses. 3917 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3918 return cleanupOnError(EC); 3919 3920 Buffer.release(); // The BitcodeReader owns it now. 3921 return M; 3922 } 3923 3924 ErrorOr<Module *> 3925 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3926 LLVMContext &Context, 3927 DiagnosticHandlerFunction DiagnosticHandler) { 3928 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3929 DiagnosticHandler); 3930 } 3931 3932 ErrorOr<std::unique_ptr<Module>> 3933 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3934 LLVMContext &Context, 3935 DiagnosticHandlerFunction DiagnosticHandler) { 3936 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3937 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3938 M->setMaterializer(R); 3939 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3940 return EC; 3941 return std::move(M); 3942 } 3943 3944 ErrorOr<Module *> 3945 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3946 DiagnosticHandlerFunction DiagnosticHandler) { 3947 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3948 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3949 std::move(Buf), Context, true, DiagnosticHandler); 3950 if (!ModuleOrErr) 3951 return ModuleOrErr; 3952 Module *M = ModuleOrErr.get(); 3953 // Read in the entire module, and destroy the BitcodeReader. 3954 if (std::error_code EC = M->materializeAllPermanently()) { 3955 delete M; 3956 return EC; 3957 } 3958 3959 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3960 // written. We must defer until the Module has been fully materialized. 3961 3962 return M; 3963 } 3964 3965 std::string 3966 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3967 DiagnosticHandlerFunction DiagnosticHandler) { 3968 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3969 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3970 DiagnosticHandler); 3971 ErrorOr<std::string> Triple = R->parseTriple(); 3972 if (Triple.getError()) 3973 return ""; 3974 return Triple.get(); 3975 } 3976