xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 0198ce06fc571de7b6dc4c416a316781a2344a6c)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140   public:
141     // allocate space for exactly one operand
142     void *operator new(size_t s) {
143       return User::operator new(s, 1);
144     }
145     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148     }
149 
150     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152     static bool classof(const Value *V) {
153       return isa<ConstantExpr>(V) &&
154              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155     }
156 
157 
158     /// Provide fast operand accessors
159     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160   };
161 }
162 
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
166 };
167 }
168 
169 
170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
171   if (Idx == size()) {
172     push_back(V);
173     return;
174   }
175 
176   if (Idx >= size())
177     resize(Idx+1);
178 
179   WeakVH &OldV = ValuePtrs[Idx];
180   if (OldV == 0) {
181     OldV = V;
182     return;
183   }
184 
185   // Handle constants and non-constants (e.g. instrs) differently for
186   // efficiency.
187   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
188     ResolveConstants.push_back(std::make_pair(PHC, Idx));
189     OldV = V;
190   } else {
191     // If there was a forward reference to this value, replace it.
192     Value *PrevVal = OldV;
193     OldV->replaceAllUsesWith(V);
194     delete PrevVal;
195   }
196 }
197 
198 
199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
200                                                     const Type *Ty) {
201   if (Idx >= size())
202     resize(Idx + 1);
203 
204   if (Value *V = ValuePtrs[Idx]) {
205     assert(Ty == V->getType() && "Type mismatch in constant table!");
206     return cast<Constant>(V);
207   }
208 
209   // Create and return a placeholder, which will later be RAUW'd.
210   Constant *C = new ConstantPlaceHolder(Ty, Context);
211   ValuePtrs[Idx] = C;
212   return C;
213 }
214 
215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
216   if (Idx >= size())
217     resize(Idx + 1);
218 
219   if (Value *V = ValuePtrs[Idx]) {
220     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
221     return V;
222   }
223 
224   // No type specified, must be invalid reference.
225   if (Ty == 0) return 0;
226 
227   // Create and return a placeholder, which will later be RAUW'd.
228   Value *V = new Argument(Ty);
229   ValuePtrs[Idx] = V;
230   return V;
231 }
232 
233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
234 /// resolves any forward references.  The idea behind this is that we sometimes
235 /// get constants (such as large arrays) which reference *many* forward ref
236 /// constants.  Replacing each of these causes a lot of thrashing when
237 /// building/reuniquing the constant.  Instead of doing this, we look at all the
238 /// uses and rewrite all the place holders at once for any constant that uses
239 /// a placeholder.
240 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
241   // Sort the values by-pointer so that they are efficient to look up with a
242   // binary search.
243   std::sort(ResolveConstants.begin(), ResolveConstants.end());
244 
245   SmallVector<Constant*, 64> NewOps;
246 
247   while (!ResolveConstants.empty()) {
248     Value *RealVal = operator[](ResolveConstants.back().second);
249     Constant *Placeholder = ResolveConstants.back().first;
250     ResolveConstants.pop_back();
251 
252     // Loop over all users of the placeholder, updating them to reference the
253     // new value.  If they reference more than one placeholder, update them all
254     // at once.
255     while (!Placeholder->use_empty()) {
256       Value::use_iterator UI = Placeholder->use_begin();
257       User *U = *UI;
258 
259       // If the using object isn't uniqued, just update the operands.  This
260       // handles instructions and initializers for global variables.
261       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
262         UI.getUse().set(RealVal);
263         continue;
264       }
265 
266       // Otherwise, we have a constant that uses the placeholder.  Replace that
267       // constant with a new constant that has *all* placeholder uses updated.
268       Constant *UserC = cast<Constant>(U);
269       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
270            I != E; ++I) {
271         Value *NewOp;
272         if (!isa<ConstantPlaceHolder>(*I)) {
273           // Not a placeholder reference.
274           NewOp = *I;
275         } else if (*I == Placeholder) {
276           // Common case is that it just references this one placeholder.
277           NewOp = RealVal;
278         } else {
279           // Otherwise, look up the placeholder in ResolveConstants.
280           ResolveConstantsTy::iterator It =
281             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
282                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
283                                                             0));
284           assert(It != ResolveConstants.end() && It->first == *I);
285           NewOp = operator[](It->second);
286         }
287 
288         NewOps.push_back(cast<Constant>(NewOp));
289       }
290 
291       // Make the new constant.
292       Constant *NewC;
293       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
294         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
295                                         NewOps.size());
296       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
298                                          UserCS->getType()->isPacked());
299       } else if (isa<ConstantVector>(UserC)) {
300         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
301       } else {
302         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
303         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
304                                                           NewOps.size());
305       }
306 
307       UserC->replaceAllUsesWith(NewC);
308       UserC->destroyConstant();
309       NewOps.clear();
310     }
311 
312     // Update all ValueHandles, they should be the only users at this point.
313     Placeholder->replaceAllUsesWith(RealVal);
314     delete Placeholder;
315   }
316 }
317 
318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319   if (Idx == size()) {
320     push_back(V);
321     return;
322   }
323 
324   if (Idx >= size())
325     resize(Idx+1);
326 
327   WeakVH &OldV = MDValuePtrs[Idx];
328   if (OldV == 0) {
329     OldV = V;
330     return;
331   }
332 
333   // If there was a forward reference to this value, replace it.
334   MDNode *PrevVal = cast<MDNode>(OldV);
335   OldV->replaceAllUsesWith(V);
336   MDNode::deleteTemporary(PrevVal);
337   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338   // value for Idx.
339   MDValuePtrs[Idx] = V;
340 }
341 
342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343   if (Idx >= size())
344     resize(Idx + 1);
345 
346   if (Value *V = MDValuePtrs[Idx]) {
347     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348     return V;
349   }
350 
351   // Create and return a placeholder, which will later be RAUW'd.
352   Value *V = MDNode::getTemporary(Context, 0, 0);
353   MDValuePtrs[Idx] = V;
354   return V;
355 }
356 
357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358   // If the TypeID is in range, return it.
359   if (ID < TypeList.size())
360     return TypeList[ID].get();
361   if (!isTypeTable) return 0;
362 
363   // The type table allows forward references.  Push as many Opaque types as
364   // needed to get up to ID.
365   while (TypeList.size() <= ID)
366     TypeList.push_back(OpaqueType::get(Context));
367   return TypeList.back().get();
368 }
369 
370 //===----------------------------------------------------------------------===//
371 //  Functions for parsing blocks from the bitcode file
372 //===----------------------------------------------------------------------===//
373 
374 bool BitcodeReader::ParseAttributeBlock() {
375   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376     return Error("Malformed block record");
377 
378   if (!MAttributes.empty())
379     return Error("Multiple PARAMATTR blocks found!");
380 
381   SmallVector<uint64_t, 64> Record;
382 
383   SmallVector<AttributeWithIndex, 8> Attrs;
384 
385   // Read all the records.
386   while (1) {
387     unsigned Code = Stream.ReadCode();
388     if (Code == bitc::END_BLOCK) {
389       if (Stream.ReadBlockEnd())
390         return Error("Error at end of PARAMATTR block");
391       return false;
392     }
393 
394     if (Code == bitc::ENTER_SUBBLOCK) {
395       // No known subblocks, always skip them.
396       Stream.ReadSubBlockID();
397       if (Stream.SkipBlock())
398         return Error("Malformed block record");
399       continue;
400     }
401 
402     if (Code == bitc::DEFINE_ABBREV) {
403       Stream.ReadAbbrevRecord();
404       continue;
405     }
406 
407     // Read a record.
408     Record.clear();
409     switch (Stream.ReadRecord(Code, Record)) {
410     default:  // Default behavior: ignore.
411       break;
412     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413       if (Record.size() & 1)
414         return Error("Invalid ENTRY record");
415 
416       // FIXME : Remove this autoupgrade code in LLVM 3.0.
417       // If Function attributes are using index 0 then transfer them
418       // to index ~0. Index 0 is used for return value attributes but used to be
419       // used for function attributes.
420       Attributes RetAttribute = Attribute::None;
421       Attributes FnAttribute = Attribute::None;
422       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423         // FIXME: remove in LLVM 3.0
424         // The alignment is stored as a 16-bit raw value from bits 31--16.
425         // We shift the bits above 31 down by 11 bits.
426 
427         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428         if (Alignment && !isPowerOf2_32(Alignment))
429           return Error("Alignment is not a power of two.");
430 
431         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432         if (Alignment)
433           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435         Record[i+1] = ReconstitutedAttr;
436 
437         if (Record[i] == 0)
438           RetAttribute = Record[i+1];
439         else if (Record[i] == ~0U)
440           FnAttribute = Record[i+1];
441       }
442 
443       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                               Attribute::ReadOnly|Attribute::ReadNone);
445 
446       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447           (RetAttribute & OldRetAttrs) != 0) {
448         if (FnAttribute == Attribute::None) { // add a slot so they get added.
449           Record.push_back(~0U);
450           Record.push_back(0);
451         }
452 
453         FnAttribute  |= RetAttribute & OldRetAttrs;
454         RetAttribute &= ~OldRetAttrs;
455       }
456 
457       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458         if (Record[i] == 0) {
459           if (RetAttribute != Attribute::None)
460             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461         } else if (Record[i] == ~0U) {
462           if (FnAttribute != Attribute::None)
463             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464         } else if (Record[i+1] != Attribute::None)
465           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466       }
467 
468       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469       Attrs.clear();
470       break;
471     }
472     }
473   }
474 }
475 
476 
477 bool BitcodeReader::ParseTypeTable() {
478   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479     return Error("Malformed block record");
480 
481   if (!TypeList.empty())
482     return Error("Multiple TYPE_BLOCKs found!");
483 
484   SmallVector<uint64_t, 64> Record;
485   unsigned NumRecords = 0;
486 
487   // Read all the records for this type table.
488   while (1) {
489     unsigned Code = Stream.ReadCode();
490     if (Code == bitc::END_BLOCK) {
491       if (NumRecords != TypeList.size())
492         return Error("Invalid type forward reference in TYPE_BLOCK");
493       if (Stream.ReadBlockEnd())
494         return Error("Error at end of type table block");
495       return false;
496     }
497 
498     if (Code == bitc::ENTER_SUBBLOCK) {
499       // No known subblocks, always skip them.
500       Stream.ReadSubBlockID();
501       if (Stream.SkipBlock())
502         return Error("Malformed block record");
503       continue;
504     }
505 
506     if (Code == bitc::DEFINE_ABBREV) {
507       Stream.ReadAbbrevRecord();
508       continue;
509     }
510 
511     // Read a record.
512     Record.clear();
513     const Type *ResultTy = 0;
514     switch (Stream.ReadRecord(Code, Record)) {
515     default:  // Default behavior: unknown type.
516       ResultTy = 0;
517       break;
518     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520       // type list.  This allows us to reserve space.
521       if (Record.size() < 1)
522         return Error("Invalid TYPE_CODE_NUMENTRY record");
523       TypeList.reserve(Record[0]);
524       continue;
525     case bitc::TYPE_CODE_VOID:      // VOID
526       ResultTy = Type::getVoidTy(Context);
527       break;
528     case bitc::TYPE_CODE_FLOAT:     // FLOAT
529       ResultTy = Type::getFloatTy(Context);
530       break;
531     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532       ResultTy = Type::getDoubleTy(Context);
533       break;
534     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535       ResultTy = Type::getX86_FP80Ty(Context);
536       break;
537     case bitc::TYPE_CODE_FP128:     // FP128
538       ResultTy = Type::getFP128Ty(Context);
539       break;
540     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541       ResultTy = Type::getPPC_FP128Ty(Context);
542       break;
543     case bitc::TYPE_CODE_LABEL:     // LABEL
544       ResultTy = Type::getLabelTy(Context);
545       break;
546     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547       ResultTy = 0;
548       break;
549     case bitc::TYPE_CODE_METADATA:  // METADATA
550       ResultTy = Type::getMetadataTy(Context);
551       break;
552     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553       ResultTy = Type::getX86_MMXTy(Context);
554       break;
555     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556       if (Record.size() < 1)
557         return Error("Invalid Integer type record");
558 
559       ResultTy = IntegerType::get(Context, Record[0]);
560       break;
561     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                     //          [pointee type, address space]
563       if (Record.size() < 1)
564         return Error("Invalid POINTER type record");
565       unsigned AddressSpace = 0;
566       if (Record.size() == 2)
567         AddressSpace = Record[1];
568       ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                         AddressSpace);
570       break;
571     }
572     case bitc::TYPE_CODE_FUNCTION: {
573       // FIXME: attrid is dead, remove it in LLVM 3.0
574       // FUNCTION: [vararg, attrid, retty, paramty x N]
575       if (Record.size() < 3)
576         return Error("Invalid FUNCTION type record");
577       std::vector<const Type*> ArgTys;
578       for (unsigned i = 3, e = Record.size(); i != e; ++i)
579         ArgTys.push_back(getTypeByID(Record[i], true));
580 
581       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                    Record[0]);
583       break;
584     }
585     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586       if (Record.size() < 1)
587         return Error("Invalid STRUCT type record");
588       std::vector<const Type*> EltTys;
589       for (unsigned i = 1, e = Record.size(); i != e; ++i)
590         EltTys.push_back(getTypeByID(Record[i], true));
591       ResultTy = StructType::get(Context, EltTys, Record[0]);
592       break;
593     }
594     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595       if (Record.size() < 2)
596         return Error("Invalid ARRAY type record");
597       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598       break;
599     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600       if (Record.size() < 2)
601         return Error("Invalid VECTOR type record");
602       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603       break;
604     }
605 
606     if (NumRecords == TypeList.size()) {
607       // If this is a new type slot, just append it.
608       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609       ++NumRecords;
610     } else if (ResultTy == 0) {
611       // Otherwise, this was forward referenced, so an opaque type was created,
612       // but the result type is actually just an opaque.  Leave the one we
613       // created previously.
614       ++NumRecords;
615     } else {
616       // Otherwise, this was forward referenced, so an opaque type was created.
617       // Resolve the opaque type to the real type now.
618       assert(NumRecords < TypeList.size() && "Typelist imbalance");
619       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620 
621       // Don't directly push the new type on the Tab. Instead we want to replace
622       // the opaque type we previously inserted with the new concrete value. The
623       // refinement from the abstract (opaque) type to the new type causes all
624       // uses of the abstract type to use the concrete type (NewTy). This will
625       // also cause the opaque type to be deleted.
626       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627 
628       // This should have replaced the old opaque type with the new type in the
629       // value table... or with a preexisting type that was already in the
630       // system.  Let's just make sure it did.
631       assert(TypeList[NumRecords-1].get() != OldTy &&
632              "refineAbstractType didn't work!");
633     }
634   }
635 }
636 
637 
638 bool BitcodeReader::ParseTypeSymbolTable() {
639   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640     return Error("Malformed block record");
641 
642   SmallVector<uint64_t, 64> Record;
643 
644   // Read all the records for this type table.
645   std::string TypeName;
646   while (1) {
647     unsigned Code = Stream.ReadCode();
648     if (Code == bitc::END_BLOCK) {
649       if (Stream.ReadBlockEnd())
650         return Error("Error at end of type symbol table block");
651       return false;
652     }
653 
654     if (Code == bitc::ENTER_SUBBLOCK) {
655       // No known subblocks, always skip them.
656       Stream.ReadSubBlockID();
657       if (Stream.SkipBlock())
658         return Error("Malformed block record");
659       continue;
660     }
661 
662     if (Code == bitc::DEFINE_ABBREV) {
663       Stream.ReadAbbrevRecord();
664       continue;
665     }
666 
667     // Read a record.
668     Record.clear();
669     switch (Stream.ReadRecord(Code, Record)) {
670     default:  // Default behavior: unknown type.
671       break;
672     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673       if (ConvertToString(Record, 1, TypeName))
674         return Error("Invalid TST_ENTRY record");
675       unsigned TypeID = Record[0];
676       if (TypeID >= TypeList.size())
677         return Error("Invalid Type ID in TST_ENTRY record");
678 
679       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680       TypeName.clear();
681       break;
682     }
683   }
684 }
685 
686 bool BitcodeReader::ParseValueSymbolTable() {
687   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688     return Error("Malformed block record");
689 
690   SmallVector<uint64_t, 64> Record;
691 
692   // Read all the records for this value table.
693   SmallString<128> ValueName;
694   while (1) {
695     unsigned Code = Stream.ReadCode();
696     if (Code == bitc::END_BLOCK) {
697       if (Stream.ReadBlockEnd())
698         return Error("Error at end of value symbol table block");
699       return false;
700     }
701     if (Code == bitc::ENTER_SUBBLOCK) {
702       // No known subblocks, always skip them.
703       Stream.ReadSubBlockID();
704       if (Stream.SkipBlock())
705         return Error("Malformed block record");
706       continue;
707     }
708 
709     if (Code == bitc::DEFINE_ABBREV) {
710       Stream.ReadAbbrevRecord();
711       continue;
712     }
713 
714     // Read a record.
715     Record.clear();
716     switch (Stream.ReadRecord(Code, Record)) {
717     default:  // Default behavior: unknown type.
718       break;
719     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720       if (ConvertToString(Record, 1, ValueName))
721         return Error("Invalid VST_ENTRY record");
722       unsigned ValueID = Record[0];
723       if (ValueID >= ValueList.size())
724         return Error("Invalid Value ID in VST_ENTRY record");
725       Value *V = ValueList[ValueID];
726 
727       V->setName(StringRef(ValueName.data(), ValueName.size()));
728       ValueName.clear();
729       break;
730     }
731     case bitc::VST_CODE_BBENTRY: {
732       if (ConvertToString(Record, 1, ValueName))
733         return Error("Invalid VST_BBENTRY record");
734       BasicBlock *BB = getBasicBlock(Record[0]);
735       if (BB == 0)
736         return Error("Invalid BB ID in VST_BBENTRY record");
737 
738       BB->setName(StringRef(ValueName.data(), ValueName.size()));
739       ValueName.clear();
740       break;
741     }
742     }
743   }
744 }
745 
746 bool BitcodeReader::ParseMetadata() {
747   unsigned NextMDValueNo = MDValueList.size();
748 
749   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750     return Error("Malformed block record");
751 
752   SmallVector<uint64_t, 64> Record;
753 
754   // Read all the records.
755   while (1) {
756     unsigned Code = Stream.ReadCode();
757     if (Code == bitc::END_BLOCK) {
758       if (Stream.ReadBlockEnd())
759         return Error("Error at end of PARAMATTR block");
760       return false;
761     }
762 
763     if (Code == bitc::ENTER_SUBBLOCK) {
764       // No known subblocks, always skip them.
765       Stream.ReadSubBlockID();
766       if (Stream.SkipBlock())
767         return Error("Malformed block record");
768       continue;
769     }
770 
771     if (Code == bitc::DEFINE_ABBREV) {
772       Stream.ReadAbbrevRecord();
773       continue;
774     }
775 
776     bool IsFunctionLocal = false;
777     // Read a record.
778     Record.clear();
779     Code = Stream.ReadRecord(Code, Record);
780     switch (Code) {
781     default:  // Default behavior: ignore.
782       break;
783     case bitc::METADATA_NAME: {
784       // Read named of the named metadata.
785       unsigned NameLength = Record.size();
786       SmallString<8> Name;
787       Name.resize(NameLength);
788       for (unsigned i = 0; i != NameLength; ++i)
789         Name[i] = Record[i];
790       Record.clear();
791       Code = Stream.ReadCode();
792 
793       // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
794       // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
795       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
796       if (NextBitCode == bitc::METADATA_NAMED_NODE) {
797         LLVM2_7MetadataDetected = true;
798       } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
799         assert ( 0 && "Invalid Named Metadata record");
800 
801       // Read named metadata elements.
802       unsigned Size = Record.size();
803       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
804       for (unsigned i = 0; i != Size; ++i) {
805         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
806         if (MD == 0)
807           return Error("Malformed metadata record");
808         NMD->addOperand(MD);
809       }
810       // Backwards compatibility hack: NamedMDValues used to be Values,
811       // and they got their own slots in the value numbering. They are no
812       // longer Values, however we still need to account for them in the
813       // numbering in order to be able to read old bitcode files.
814       // FIXME: Remove this in LLVM 3.0.
815       if (LLVM2_7MetadataDetected)
816         MDValueList.AssignValue(0, NextMDValueNo++);
817       break;
818     }
819     case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
820     case bitc::METADATA_FN_NODE2:
821       IsFunctionLocal = true;
822       // fall-through
823     case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
824     case bitc::METADATA_NODE2: {
825 
826       // Detect 2.7-era metadata.
827       // FIXME: Remove in LLVM 3.0.
828       if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
829         LLVM2_7MetadataDetected = true;
830 
831       if (Record.size() % 2 == 1)
832         return Error("Invalid METADATA_NODE2 record");
833 
834       unsigned Size = Record.size();
835       SmallVector<Value*, 8> Elts;
836       for (unsigned i = 0; i != Size; i += 2) {
837         const Type *Ty = getTypeByID(Record[i], false);
838         if (Ty->isMetadataTy())
839           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
840         else if (!Ty->isVoidTy())
841           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
842         else
843           Elts.push_back(NULL);
844       }
845       Value *V = MDNode::getWhenValsUnresolved(Context,
846                                                Elts.data(), Elts.size(),
847                                                IsFunctionLocal);
848       IsFunctionLocal = false;
849       MDValueList.AssignValue(V, NextMDValueNo++);
850       break;
851     }
852     case bitc::METADATA_STRING: {
853       unsigned MDStringLength = Record.size();
854       SmallString<8> String;
855       String.resize(MDStringLength);
856       for (unsigned i = 0; i != MDStringLength; ++i)
857         String[i] = Record[i];
858       Value *V = MDString::get(Context,
859                                StringRef(String.data(), String.size()));
860       MDValueList.AssignValue(V, NextMDValueNo++);
861       break;
862     }
863     case bitc::METADATA_KIND: {
864       unsigned RecordLength = Record.size();
865       if (Record.empty() || RecordLength < 2)
866         return Error("Invalid METADATA_KIND record");
867       SmallString<8> Name;
868       Name.resize(RecordLength-1);
869       unsigned Kind = Record[0];
870       for (unsigned i = 1; i != RecordLength; ++i)
871         Name[i-1] = Record[i];
872 
873       unsigned NewKind = TheModule->getMDKindID(Name.str());
874       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
875         return Error("Conflicting METADATA_KIND records");
876       break;
877     }
878     }
879   }
880 }
881 
882 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
883 /// the LSB for dense VBR encoding.
884 static uint64_t DecodeSignRotatedValue(uint64_t V) {
885   if ((V & 1) == 0)
886     return V >> 1;
887   if (V != 1)
888     return -(V >> 1);
889   // There is no such thing as -0 with integers.  "-0" really means MININT.
890   return 1ULL << 63;
891 }
892 
893 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
894 /// values and aliases that we can.
895 bool BitcodeReader::ResolveGlobalAndAliasInits() {
896   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
897   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
898 
899   GlobalInitWorklist.swap(GlobalInits);
900   AliasInitWorklist.swap(AliasInits);
901 
902   while (!GlobalInitWorklist.empty()) {
903     unsigned ValID = GlobalInitWorklist.back().second;
904     if (ValID >= ValueList.size()) {
905       // Not ready to resolve this yet, it requires something later in the file.
906       GlobalInits.push_back(GlobalInitWorklist.back());
907     } else {
908       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
909         GlobalInitWorklist.back().first->setInitializer(C);
910       else
911         return Error("Global variable initializer is not a constant!");
912     }
913     GlobalInitWorklist.pop_back();
914   }
915 
916   while (!AliasInitWorklist.empty()) {
917     unsigned ValID = AliasInitWorklist.back().second;
918     if (ValID >= ValueList.size()) {
919       AliasInits.push_back(AliasInitWorklist.back());
920     } else {
921       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
922         AliasInitWorklist.back().first->setAliasee(C);
923       else
924         return Error("Alias initializer is not a constant!");
925     }
926     AliasInitWorklist.pop_back();
927   }
928   return false;
929 }
930 
931 bool BitcodeReader::ParseConstants() {
932   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
933     return Error("Malformed block record");
934 
935   SmallVector<uint64_t, 64> Record;
936 
937   // Read all the records for this value table.
938   const Type *CurTy = Type::getInt32Ty(Context);
939   unsigned NextCstNo = ValueList.size();
940   while (1) {
941     unsigned Code = Stream.ReadCode();
942     if (Code == bitc::END_BLOCK)
943       break;
944 
945     if (Code == bitc::ENTER_SUBBLOCK) {
946       // No known subblocks, always skip them.
947       Stream.ReadSubBlockID();
948       if (Stream.SkipBlock())
949         return Error("Malformed block record");
950       continue;
951     }
952 
953     if (Code == bitc::DEFINE_ABBREV) {
954       Stream.ReadAbbrevRecord();
955       continue;
956     }
957 
958     // Read a record.
959     Record.clear();
960     Value *V = 0;
961     unsigned BitCode = Stream.ReadRecord(Code, Record);
962     switch (BitCode) {
963     default:  // Default behavior: unknown constant
964     case bitc::CST_CODE_UNDEF:     // UNDEF
965       V = UndefValue::get(CurTy);
966       break;
967     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
968       if (Record.empty())
969         return Error("Malformed CST_SETTYPE record");
970       if (Record[0] >= TypeList.size())
971         return Error("Invalid Type ID in CST_SETTYPE record");
972       CurTy = TypeList[Record[0]];
973       continue;  // Skip the ValueList manipulation.
974     case bitc::CST_CODE_NULL:      // NULL
975       V = Constant::getNullValue(CurTy);
976       break;
977     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
978       if (!CurTy->isIntegerTy() || Record.empty())
979         return Error("Invalid CST_INTEGER record");
980       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
981       break;
982     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
983       if (!CurTy->isIntegerTy() || Record.empty())
984         return Error("Invalid WIDE_INTEGER record");
985 
986       unsigned NumWords = Record.size();
987       SmallVector<uint64_t, 8> Words;
988       Words.resize(NumWords);
989       for (unsigned i = 0; i != NumWords; ++i)
990         Words[i] = DecodeSignRotatedValue(Record[i]);
991       V = ConstantInt::get(Context,
992                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
993                            NumWords, &Words[0]));
994       break;
995     }
996     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
997       if (Record.empty())
998         return Error("Invalid FLOAT record");
999       if (CurTy->isFloatTy())
1000         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1001       else if (CurTy->isDoubleTy())
1002         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1003       else if (CurTy->isX86_FP80Ty()) {
1004         // Bits are not stored the same way as a normal i80 APInt, compensate.
1005         uint64_t Rearrange[2];
1006         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1007         Rearrange[1] = Record[0] >> 48;
1008         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1009       } else if (CurTy->isFP128Ty())
1010         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1011       else if (CurTy->isPPC_FP128Ty())
1012         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1013       else
1014         V = UndefValue::get(CurTy);
1015       break;
1016     }
1017 
1018     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1019       if (Record.empty())
1020         return Error("Invalid CST_AGGREGATE record");
1021 
1022       unsigned Size = Record.size();
1023       std::vector<Constant*> Elts;
1024 
1025       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1026         for (unsigned i = 0; i != Size; ++i)
1027           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1028                                                      STy->getElementType(i)));
1029         V = ConstantStruct::get(STy, Elts);
1030       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1031         const Type *EltTy = ATy->getElementType();
1032         for (unsigned i = 0; i != Size; ++i)
1033           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1034         V = ConstantArray::get(ATy, Elts);
1035       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1036         const Type *EltTy = VTy->getElementType();
1037         for (unsigned i = 0; i != Size; ++i)
1038           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1039         V = ConstantVector::get(Elts);
1040       } else {
1041         V = UndefValue::get(CurTy);
1042       }
1043       break;
1044     }
1045     case bitc::CST_CODE_STRING: { // STRING: [values]
1046       if (Record.empty())
1047         return Error("Invalid CST_AGGREGATE record");
1048 
1049       const ArrayType *ATy = cast<ArrayType>(CurTy);
1050       const Type *EltTy = ATy->getElementType();
1051 
1052       unsigned Size = Record.size();
1053       std::vector<Constant*> Elts;
1054       for (unsigned i = 0; i != Size; ++i)
1055         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1056       V = ConstantArray::get(ATy, Elts);
1057       break;
1058     }
1059     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1060       if (Record.empty())
1061         return Error("Invalid CST_AGGREGATE record");
1062 
1063       const ArrayType *ATy = cast<ArrayType>(CurTy);
1064       const Type *EltTy = ATy->getElementType();
1065 
1066       unsigned Size = Record.size();
1067       std::vector<Constant*> Elts;
1068       for (unsigned i = 0; i != Size; ++i)
1069         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1070       Elts.push_back(Constant::getNullValue(EltTy));
1071       V = ConstantArray::get(ATy, Elts);
1072       break;
1073     }
1074     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1075       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1076       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1077       if (Opc < 0) {
1078         V = UndefValue::get(CurTy);  // Unknown binop.
1079       } else {
1080         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1081         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1082         unsigned Flags = 0;
1083         if (Record.size() >= 4) {
1084           if (Opc == Instruction::Add ||
1085               Opc == Instruction::Sub ||
1086               Opc == Instruction::Mul) {
1087             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1088               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1089             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1090               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1091           } else if (Opc == Instruction::SDiv) {
1092             if (Record[3] & (1 << bitc::SDIV_EXACT))
1093               Flags |= SDivOperator::IsExact;
1094           }
1095         }
1096         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1097       }
1098       break;
1099     }
1100     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1101       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1102       int Opc = GetDecodedCastOpcode(Record[0]);
1103       if (Opc < 0) {
1104         V = UndefValue::get(CurTy);  // Unknown cast.
1105       } else {
1106         const Type *OpTy = getTypeByID(Record[1]);
1107         if (!OpTy) return Error("Invalid CE_CAST record");
1108         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1109         V = ConstantExpr::getCast(Opc, Op, CurTy);
1110       }
1111       break;
1112     }
1113     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1114     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1115       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1116       SmallVector<Constant*, 16> Elts;
1117       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1118         const Type *ElTy = getTypeByID(Record[i]);
1119         if (!ElTy) return Error("Invalid CE_GEP record");
1120         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1121       }
1122       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1123         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1124                                                    Elts.size()-1);
1125       else
1126         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1127                                            Elts.size()-1);
1128       break;
1129     }
1130     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1131       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1132       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1133                                                               Type::getInt1Ty(Context)),
1134                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1135                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1136       break;
1137     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1138       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1139       const VectorType *OpTy =
1140         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1141       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1142       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1143       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1144       V = ConstantExpr::getExtractElement(Op0, Op1);
1145       break;
1146     }
1147     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1148       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1149       if (Record.size() < 3 || OpTy == 0)
1150         return Error("Invalid CE_INSERTELT record");
1151       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1152       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1153                                                   OpTy->getElementType());
1154       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1155       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1156       break;
1157     }
1158     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1159       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1160       if (Record.size() < 3 || OpTy == 0)
1161         return Error("Invalid CE_SHUFFLEVEC record");
1162       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1163       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1164       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1165                                                  OpTy->getNumElements());
1166       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1167       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1168       break;
1169     }
1170     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1171       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1172       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1173       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1174         return Error("Invalid CE_SHUFVEC_EX record");
1175       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1176       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1177       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1178                                                  RTy->getNumElements());
1179       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1180       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1181       break;
1182     }
1183     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1184       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1185       const Type *OpTy = getTypeByID(Record[0]);
1186       if (OpTy == 0) return Error("Invalid CE_CMP record");
1187       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1188       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1189 
1190       if (OpTy->isFPOrFPVectorTy())
1191         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1192       else
1193         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1194       break;
1195     }
1196     case bitc::CST_CODE_INLINEASM: {
1197       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1198       std::string AsmStr, ConstrStr;
1199       bool HasSideEffects = Record[0] & 1;
1200       bool IsAlignStack = Record[0] >> 1;
1201       unsigned AsmStrSize = Record[1];
1202       if (2+AsmStrSize >= Record.size())
1203         return Error("Invalid INLINEASM record");
1204       unsigned ConstStrSize = Record[2+AsmStrSize];
1205       if (3+AsmStrSize+ConstStrSize > Record.size())
1206         return Error("Invalid INLINEASM record");
1207 
1208       for (unsigned i = 0; i != AsmStrSize; ++i)
1209         AsmStr += (char)Record[2+i];
1210       for (unsigned i = 0; i != ConstStrSize; ++i)
1211         ConstrStr += (char)Record[3+AsmStrSize+i];
1212       const PointerType *PTy = cast<PointerType>(CurTy);
1213       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1214                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1215       break;
1216     }
1217     case bitc::CST_CODE_BLOCKADDRESS:{
1218       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1219       const Type *FnTy = getTypeByID(Record[0]);
1220       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1221       Function *Fn =
1222         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1223       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1224 
1225       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1226                                                   Type::getInt8Ty(Context),
1227                                             false, GlobalValue::InternalLinkage,
1228                                                   0, "");
1229       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1230       V = FwdRef;
1231       break;
1232     }
1233     }
1234 
1235     ValueList.AssignValue(V, NextCstNo);
1236     ++NextCstNo;
1237   }
1238 
1239   if (NextCstNo != ValueList.size())
1240     return Error("Invalid constant reference!");
1241 
1242   if (Stream.ReadBlockEnd())
1243     return Error("Error at end of constants block");
1244 
1245   // Once all the constants have been read, go through and resolve forward
1246   // references.
1247   ValueList.ResolveConstantForwardRefs();
1248   return false;
1249 }
1250 
1251 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1252 /// remember where it is and then skip it.  This lets us lazily deserialize the
1253 /// functions.
1254 bool BitcodeReader::RememberAndSkipFunctionBody() {
1255   // Get the function we are talking about.
1256   if (FunctionsWithBodies.empty())
1257     return Error("Insufficient function protos");
1258 
1259   Function *Fn = FunctionsWithBodies.back();
1260   FunctionsWithBodies.pop_back();
1261 
1262   // Save the current stream state.
1263   uint64_t CurBit = Stream.GetCurrentBitNo();
1264   DeferredFunctionInfo[Fn] = CurBit;
1265 
1266   // Skip over the function block for now.
1267   if (Stream.SkipBlock())
1268     return Error("Malformed block record");
1269   return false;
1270 }
1271 
1272 bool BitcodeReader::ParseModule() {
1273   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1274     return Error("Malformed block record");
1275 
1276   SmallVector<uint64_t, 64> Record;
1277   std::vector<std::string> SectionTable;
1278   std::vector<std::string> GCTable;
1279 
1280   // Read all the records for this module.
1281   while (!Stream.AtEndOfStream()) {
1282     unsigned Code = Stream.ReadCode();
1283     if (Code == bitc::END_BLOCK) {
1284       if (Stream.ReadBlockEnd())
1285         return Error("Error at end of module block");
1286 
1287       // Patch the initializers for globals and aliases up.
1288       ResolveGlobalAndAliasInits();
1289       if (!GlobalInits.empty() || !AliasInits.empty())
1290         return Error("Malformed global initializer set");
1291       if (!FunctionsWithBodies.empty())
1292         return Error("Too few function bodies found");
1293 
1294       // Look for intrinsic functions which need to be upgraded at some point
1295       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1296            FI != FE; ++FI) {
1297         Function* NewFn;
1298         if (UpgradeIntrinsicFunction(FI, NewFn))
1299           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1300       }
1301 
1302       // Look for global variables which need to be renamed.
1303       for (Module::global_iterator
1304              GI = TheModule->global_begin(), GE = TheModule->global_end();
1305            GI != GE; ++GI)
1306         UpgradeGlobalVariable(GI);
1307 
1308       // Force deallocation of memory for these vectors to favor the client that
1309       // want lazy deserialization.
1310       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1311       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1312       std::vector<Function*>().swap(FunctionsWithBodies);
1313       return false;
1314     }
1315 
1316     if (Code == bitc::ENTER_SUBBLOCK) {
1317       switch (Stream.ReadSubBlockID()) {
1318       default:  // Skip unknown content.
1319         if (Stream.SkipBlock())
1320           return Error("Malformed block record");
1321         break;
1322       case bitc::BLOCKINFO_BLOCK_ID:
1323         if (Stream.ReadBlockInfoBlock())
1324           return Error("Malformed BlockInfoBlock");
1325         break;
1326       case bitc::PARAMATTR_BLOCK_ID:
1327         if (ParseAttributeBlock())
1328           return true;
1329         break;
1330       case bitc::TYPE_BLOCK_ID:
1331         if (ParseTypeTable())
1332           return true;
1333         break;
1334       case bitc::TYPE_SYMTAB_BLOCK_ID:
1335         if (ParseTypeSymbolTable())
1336           return true;
1337         break;
1338       case bitc::VALUE_SYMTAB_BLOCK_ID:
1339         if (ParseValueSymbolTable())
1340           return true;
1341         break;
1342       case bitc::CONSTANTS_BLOCK_ID:
1343         if (ParseConstants() || ResolveGlobalAndAliasInits())
1344           return true;
1345         break;
1346       case bitc::METADATA_BLOCK_ID:
1347         if (ParseMetadata())
1348           return true;
1349         break;
1350       case bitc::FUNCTION_BLOCK_ID:
1351         // If this is the first function body we've seen, reverse the
1352         // FunctionsWithBodies list.
1353         if (!HasReversedFunctionsWithBodies) {
1354           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1355           HasReversedFunctionsWithBodies = true;
1356         }
1357 
1358         if (RememberAndSkipFunctionBody())
1359           return true;
1360         break;
1361       }
1362       continue;
1363     }
1364 
1365     if (Code == bitc::DEFINE_ABBREV) {
1366       Stream.ReadAbbrevRecord();
1367       continue;
1368     }
1369 
1370     // Read a record.
1371     switch (Stream.ReadRecord(Code, Record)) {
1372     default: break;  // Default behavior, ignore unknown content.
1373     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1374       if (Record.size() < 1)
1375         return Error("Malformed MODULE_CODE_VERSION");
1376       // Only version #0 is supported so far.
1377       if (Record[0] != 0)
1378         return Error("Unknown bitstream version!");
1379       break;
1380     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1381       std::string S;
1382       if (ConvertToString(Record, 0, S))
1383         return Error("Invalid MODULE_CODE_TRIPLE record");
1384       TheModule->setTargetTriple(S);
1385       break;
1386     }
1387     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1388       std::string S;
1389       if (ConvertToString(Record, 0, S))
1390         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1391       TheModule->setDataLayout(S);
1392       break;
1393     }
1394     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1395       std::string S;
1396       if (ConvertToString(Record, 0, S))
1397         return Error("Invalid MODULE_CODE_ASM record");
1398       TheModule->setModuleInlineAsm(S);
1399       break;
1400     }
1401     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1402       std::string S;
1403       if (ConvertToString(Record, 0, S))
1404         return Error("Invalid MODULE_CODE_DEPLIB record");
1405       TheModule->addLibrary(S);
1406       break;
1407     }
1408     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1409       std::string S;
1410       if (ConvertToString(Record, 0, S))
1411         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1412       SectionTable.push_back(S);
1413       break;
1414     }
1415     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1416       std::string S;
1417       if (ConvertToString(Record, 0, S))
1418         return Error("Invalid MODULE_CODE_GCNAME record");
1419       GCTable.push_back(S);
1420       break;
1421     }
1422     // GLOBALVAR: [pointer type, isconst, initid,
1423     //             linkage, alignment, section, visibility, threadlocal]
1424     case bitc::MODULE_CODE_GLOBALVAR: {
1425       if (Record.size() < 6)
1426         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1427       const Type *Ty = getTypeByID(Record[0]);
1428       if (!Ty->isPointerTy())
1429         return Error("Global not a pointer type!");
1430       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1431       Ty = cast<PointerType>(Ty)->getElementType();
1432 
1433       bool isConstant = Record[1];
1434       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1435       unsigned Alignment = (1 << Record[4]) >> 1;
1436       std::string Section;
1437       if (Record[5]) {
1438         if (Record[5]-1 >= SectionTable.size())
1439           return Error("Invalid section ID");
1440         Section = SectionTable[Record[5]-1];
1441       }
1442       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1443       if (Record.size() > 6)
1444         Visibility = GetDecodedVisibility(Record[6]);
1445       bool isThreadLocal = false;
1446       if (Record.size() > 7)
1447         isThreadLocal = Record[7];
1448 
1449       GlobalVariable *NewGV =
1450         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1451                            isThreadLocal, AddressSpace);
1452       NewGV->setAlignment(Alignment);
1453       if (!Section.empty())
1454         NewGV->setSection(Section);
1455       NewGV->setVisibility(Visibility);
1456       NewGV->setThreadLocal(isThreadLocal);
1457 
1458       ValueList.push_back(NewGV);
1459 
1460       // Remember which value to use for the global initializer.
1461       if (unsigned InitID = Record[2])
1462         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1463       break;
1464     }
1465     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1466     //             alignment, section, visibility, gc]
1467     case bitc::MODULE_CODE_FUNCTION: {
1468       if (Record.size() < 8)
1469         return Error("Invalid MODULE_CODE_FUNCTION record");
1470       const Type *Ty = getTypeByID(Record[0]);
1471       if (!Ty->isPointerTy())
1472         return Error("Function not a pointer type!");
1473       const FunctionType *FTy =
1474         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1475       if (!FTy)
1476         return Error("Function not a pointer to function type!");
1477 
1478       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1479                                         "", TheModule);
1480 
1481       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1482       bool isProto = Record[2];
1483       Func->setLinkage(GetDecodedLinkage(Record[3]));
1484       Func->setAttributes(getAttributes(Record[4]));
1485 
1486       Func->setAlignment((1 << Record[5]) >> 1);
1487       if (Record[6]) {
1488         if (Record[6]-1 >= SectionTable.size())
1489           return Error("Invalid section ID");
1490         Func->setSection(SectionTable[Record[6]-1]);
1491       }
1492       Func->setVisibility(GetDecodedVisibility(Record[7]));
1493       if (Record.size() > 8 && Record[8]) {
1494         if (Record[8]-1 > GCTable.size())
1495           return Error("Invalid GC ID");
1496         Func->setGC(GCTable[Record[8]-1].c_str());
1497       }
1498       ValueList.push_back(Func);
1499 
1500       // If this is a function with a body, remember the prototype we are
1501       // creating now, so that we can match up the body with them later.
1502       if (!isProto)
1503         FunctionsWithBodies.push_back(Func);
1504       break;
1505     }
1506     // ALIAS: [alias type, aliasee val#, linkage]
1507     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1508     case bitc::MODULE_CODE_ALIAS: {
1509       if (Record.size() < 3)
1510         return Error("Invalid MODULE_ALIAS record");
1511       const Type *Ty = getTypeByID(Record[0]);
1512       if (!Ty->isPointerTy())
1513         return Error("Function not a pointer type!");
1514 
1515       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1516                                            "", 0, TheModule);
1517       // Old bitcode files didn't have visibility field.
1518       if (Record.size() > 3)
1519         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1520       ValueList.push_back(NewGA);
1521       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1522       break;
1523     }
1524     /// MODULE_CODE_PURGEVALS: [numvals]
1525     case bitc::MODULE_CODE_PURGEVALS:
1526       // Trim down the value list to the specified size.
1527       if (Record.size() < 1 || Record[0] > ValueList.size())
1528         return Error("Invalid MODULE_PURGEVALS record");
1529       ValueList.shrinkTo(Record[0]);
1530       break;
1531     }
1532     Record.clear();
1533   }
1534 
1535   return Error("Premature end of bitstream");
1536 }
1537 
1538 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1539   TheModule = 0;
1540 
1541   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1542   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1543 
1544   if (Buffer->getBufferSize() & 3) {
1545     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1546       return Error("Invalid bitcode signature");
1547     else
1548       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1549   }
1550 
1551   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1552   // The magic number is 0x0B17C0DE stored in little endian.
1553   if (isBitcodeWrapper(BufPtr, BufEnd))
1554     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1555       return Error("Invalid bitcode wrapper header");
1556 
1557   StreamFile.init(BufPtr, BufEnd);
1558   Stream.init(StreamFile);
1559 
1560   // Sniff for the signature.
1561   if (Stream.Read(8) != 'B' ||
1562       Stream.Read(8) != 'C' ||
1563       Stream.Read(4) != 0x0 ||
1564       Stream.Read(4) != 0xC ||
1565       Stream.Read(4) != 0xE ||
1566       Stream.Read(4) != 0xD)
1567     return Error("Invalid bitcode signature");
1568 
1569   // We expect a number of well-defined blocks, though we don't necessarily
1570   // need to understand them all.
1571   while (!Stream.AtEndOfStream()) {
1572     unsigned Code = Stream.ReadCode();
1573 
1574     if (Code != bitc::ENTER_SUBBLOCK)
1575       return Error("Invalid record at top-level");
1576 
1577     unsigned BlockID = Stream.ReadSubBlockID();
1578 
1579     // We only know the MODULE subblock ID.
1580     switch (BlockID) {
1581     case bitc::BLOCKINFO_BLOCK_ID:
1582       if (Stream.ReadBlockInfoBlock())
1583         return Error("Malformed BlockInfoBlock");
1584       break;
1585     case bitc::MODULE_BLOCK_ID:
1586       // Reject multiple MODULE_BLOCK's in a single bitstream.
1587       if (TheModule)
1588         return Error("Multiple MODULE_BLOCKs in same stream");
1589       TheModule = M;
1590       if (ParseModule())
1591         return true;
1592       break;
1593     default:
1594       if (Stream.SkipBlock())
1595         return Error("Malformed block record");
1596       break;
1597     }
1598   }
1599 
1600   return false;
1601 }
1602 
1603 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1604   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1605     return Error("Malformed block record");
1606 
1607   SmallVector<uint64_t, 64> Record;
1608 
1609   // Read all the records for this module.
1610   while (!Stream.AtEndOfStream()) {
1611     unsigned Code = Stream.ReadCode();
1612     if (Code == bitc::END_BLOCK) {
1613       if (Stream.ReadBlockEnd())
1614         return Error("Error at end of module block");
1615 
1616       return false;
1617     }
1618 
1619     if (Code == bitc::ENTER_SUBBLOCK) {
1620       switch (Stream.ReadSubBlockID()) {
1621       default:  // Skip unknown content.
1622         if (Stream.SkipBlock())
1623           return Error("Malformed block record");
1624         break;
1625       }
1626       continue;
1627     }
1628 
1629     if (Code == bitc::DEFINE_ABBREV) {
1630       Stream.ReadAbbrevRecord();
1631       continue;
1632     }
1633 
1634     // Read a record.
1635     switch (Stream.ReadRecord(Code, Record)) {
1636     default: break;  // Default behavior, ignore unknown content.
1637     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1638       if (Record.size() < 1)
1639         return Error("Malformed MODULE_CODE_VERSION");
1640       // Only version #0 is supported so far.
1641       if (Record[0] != 0)
1642         return Error("Unknown bitstream version!");
1643       break;
1644     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1645       std::string S;
1646       if (ConvertToString(Record, 0, S))
1647         return Error("Invalid MODULE_CODE_TRIPLE record");
1648       Triple = S;
1649       break;
1650     }
1651     }
1652     Record.clear();
1653   }
1654 
1655   return Error("Premature end of bitstream");
1656 }
1657 
1658 bool BitcodeReader::ParseTriple(std::string &Triple) {
1659   if (Buffer->getBufferSize() & 3)
1660     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1661 
1662   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1663   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1664 
1665   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1666   // The magic number is 0x0B17C0DE stored in little endian.
1667   if (isBitcodeWrapper(BufPtr, BufEnd))
1668     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1669       return Error("Invalid bitcode wrapper header");
1670 
1671   StreamFile.init(BufPtr, BufEnd);
1672   Stream.init(StreamFile);
1673 
1674   // Sniff for the signature.
1675   if (Stream.Read(8) != 'B' ||
1676       Stream.Read(8) != 'C' ||
1677       Stream.Read(4) != 0x0 ||
1678       Stream.Read(4) != 0xC ||
1679       Stream.Read(4) != 0xE ||
1680       Stream.Read(4) != 0xD)
1681     return Error("Invalid bitcode signature");
1682 
1683   // We expect a number of well-defined blocks, though we don't necessarily
1684   // need to understand them all.
1685   while (!Stream.AtEndOfStream()) {
1686     unsigned Code = Stream.ReadCode();
1687 
1688     if (Code != bitc::ENTER_SUBBLOCK)
1689       return Error("Invalid record at top-level");
1690 
1691     unsigned BlockID = Stream.ReadSubBlockID();
1692 
1693     // We only know the MODULE subblock ID.
1694     switch (BlockID) {
1695     case bitc::MODULE_BLOCK_ID:
1696       if (ParseModuleTriple(Triple))
1697         return true;
1698       break;
1699     default:
1700       if (Stream.SkipBlock())
1701         return Error("Malformed block record");
1702       break;
1703     }
1704   }
1705 
1706   return false;
1707 }
1708 
1709 /// ParseMetadataAttachment - Parse metadata attachments.
1710 bool BitcodeReader::ParseMetadataAttachment() {
1711   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1712     return Error("Malformed block record");
1713 
1714   SmallVector<uint64_t, 64> Record;
1715   while(1) {
1716     unsigned Code = Stream.ReadCode();
1717     if (Code == bitc::END_BLOCK) {
1718       if (Stream.ReadBlockEnd())
1719         return Error("Error at end of PARAMATTR block");
1720       break;
1721     }
1722     if (Code == bitc::DEFINE_ABBREV) {
1723       Stream.ReadAbbrevRecord();
1724       continue;
1725     }
1726     // Read a metadata attachment record.
1727     Record.clear();
1728     switch (Stream.ReadRecord(Code, Record)) {
1729     default:  // Default behavior: ignore.
1730       break;
1731     // FIXME: Remove in LLVM 3.0.
1732     case bitc::METADATA_ATTACHMENT:
1733       LLVM2_7MetadataDetected = true;
1734     case bitc::METADATA_ATTACHMENT2: {
1735       unsigned RecordLength = Record.size();
1736       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1737         return Error ("Invalid METADATA_ATTACHMENT reader!");
1738       Instruction *Inst = InstructionList[Record[0]];
1739       for (unsigned i = 1; i != RecordLength; i = i+2) {
1740         unsigned Kind = Record[i];
1741         DenseMap<unsigned, unsigned>::iterator I =
1742           MDKindMap.find(Kind);
1743         if (I == MDKindMap.end())
1744           return Error("Invalid metadata kind ID");
1745         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1746         Inst->setMetadata(I->second, cast<MDNode>(Node));
1747       }
1748       break;
1749     }
1750     }
1751   }
1752   return false;
1753 }
1754 
1755 /// ParseFunctionBody - Lazily parse the specified function body block.
1756 bool BitcodeReader::ParseFunctionBody(Function *F) {
1757   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1758     return Error("Malformed block record");
1759 
1760   InstructionList.clear();
1761   unsigned ModuleValueListSize = ValueList.size();
1762   unsigned ModuleMDValueListSize = MDValueList.size();
1763 
1764   // Add all the function arguments to the value table.
1765   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1766     ValueList.push_back(I);
1767 
1768   unsigned NextValueNo = ValueList.size();
1769   BasicBlock *CurBB = 0;
1770   unsigned CurBBNo = 0;
1771 
1772   DebugLoc LastLoc;
1773 
1774   // Read all the records.
1775   SmallVector<uint64_t, 64> Record;
1776   while (1) {
1777     unsigned Code = Stream.ReadCode();
1778     if (Code == bitc::END_BLOCK) {
1779       if (Stream.ReadBlockEnd())
1780         return Error("Error at end of function block");
1781       break;
1782     }
1783 
1784     if (Code == bitc::ENTER_SUBBLOCK) {
1785       switch (Stream.ReadSubBlockID()) {
1786       default:  // Skip unknown content.
1787         if (Stream.SkipBlock())
1788           return Error("Malformed block record");
1789         break;
1790       case bitc::CONSTANTS_BLOCK_ID:
1791         if (ParseConstants()) return true;
1792         NextValueNo = ValueList.size();
1793         break;
1794       case bitc::VALUE_SYMTAB_BLOCK_ID:
1795         if (ParseValueSymbolTable()) return true;
1796         break;
1797       case bitc::METADATA_ATTACHMENT_ID:
1798         if (ParseMetadataAttachment()) return true;
1799         break;
1800       case bitc::METADATA_BLOCK_ID:
1801         if (ParseMetadata()) return true;
1802         break;
1803       }
1804       continue;
1805     }
1806 
1807     if (Code == bitc::DEFINE_ABBREV) {
1808       Stream.ReadAbbrevRecord();
1809       continue;
1810     }
1811 
1812     // Read a record.
1813     Record.clear();
1814     Instruction *I = 0;
1815     unsigned BitCode = Stream.ReadRecord(Code, Record);
1816     switch (BitCode) {
1817     default: // Default behavior: reject
1818       return Error("Unknown instruction");
1819     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1820       if (Record.size() < 1 || Record[0] == 0)
1821         return Error("Invalid DECLAREBLOCKS record");
1822       // Create all the basic blocks for the function.
1823       FunctionBBs.resize(Record[0]);
1824       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1825         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1826       CurBB = FunctionBBs[0];
1827       continue;
1828 
1829 
1830     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1831       // This record indicates that the last instruction is at the same
1832       // location as the previous instruction with a location.
1833       I = 0;
1834 
1835       // Get the last instruction emitted.
1836       if (CurBB && !CurBB->empty())
1837         I = &CurBB->back();
1838       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1839                !FunctionBBs[CurBBNo-1]->empty())
1840         I = &FunctionBBs[CurBBNo-1]->back();
1841 
1842       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1843       I->setDebugLoc(LastLoc);
1844       I = 0;
1845       continue;
1846 
1847     // FIXME: Remove this in LLVM 3.0.
1848     case bitc::FUNC_CODE_DEBUG_LOC:
1849       LLVM2_7MetadataDetected = true;
1850     case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1851       I = 0;     // Get the last instruction emitted.
1852       if (CurBB && !CurBB->empty())
1853         I = &CurBB->back();
1854       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1855                !FunctionBBs[CurBBNo-1]->empty())
1856         I = &FunctionBBs[CurBBNo-1]->back();
1857       if (I == 0 || Record.size() < 4)
1858         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1859 
1860       unsigned Line = Record[0], Col = Record[1];
1861       unsigned ScopeID = Record[2], IAID = Record[3];
1862 
1863       MDNode *Scope = 0, *IA = 0;
1864       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1865       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1866       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1867       I->setDebugLoc(LastLoc);
1868       I = 0;
1869       continue;
1870     }
1871 
1872     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1873       unsigned OpNum = 0;
1874       Value *LHS, *RHS;
1875       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1876           getValue(Record, OpNum, LHS->getType(), RHS) ||
1877           OpNum+1 > Record.size())
1878         return Error("Invalid BINOP record");
1879 
1880       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1881       if (Opc == -1) return Error("Invalid BINOP record");
1882       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1883       InstructionList.push_back(I);
1884       if (OpNum < Record.size()) {
1885         if (Opc == Instruction::Add ||
1886             Opc == Instruction::Sub ||
1887             Opc == Instruction::Mul) {
1888           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1889             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1890           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1891             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1892         } else if (Opc == Instruction::SDiv) {
1893           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1894             cast<BinaryOperator>(I)->setIsExact(true);
1895         }
1896       }
1897       break;
1898     }
1899     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1900       unsigned OpNum = 0;
1901       Value *Op;
1902       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1903           OpNum+2 != Record.size())
1904         return Error("Invalid CAST record");
1905 
1906       const Type *ResTy = getTypeByID(Record[OpNum]);
1907       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1908       if (Opc == -1 || ResTy == 0)
1909         return Error("Invalid CAST record");
1910       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1911       InstructionList.push_back(I);
1912       break;
1913     }
1914     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1915     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1916       unsigned OpNum = 0;
1917       Value *BasePtr;
1918       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1919         return Error("Invalid GEP record");
1920 
1921       SmallVector<Value*, 16> GEPIdx;
1922       while (OpNum != Record.size()) {
1923         Value *Op;
1924         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1925           return Error("Invalid GEP record");
1926         GEPIdx.push_back(Op);
1927       }
1928 
1929       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1930       InstructionList.push_back(I);
1931       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1932         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1933       break;
1934     }
1935 
1936     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1937                                        // EXTRACTVAL: [opty, opval, n x indices]
1938       unsigned OpNum = 0;
1939       Value *Agg;
1940       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1941         return Error("Invalid EXTRACTVAL record");
1942 
1943       SmallVector<unsigned, 4> EXTRACTVALIdx;
1944       for (unsigned RecSize = Record.size();
1945            OpNum != RecSize; ++OpNum) {
1946         uint64_t Index = Record[OpNum];
1947         if ((unsigned)Index != Index)
1948           return Error("Invalid EXTRACTVAL index");
1949         EXTRACTVALIdx.push_back((unsigned)Index);
1950       }
1951 
1952       I = ExtractValueInst::Create(Agg,
1953                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1954       InstructionList.push_back(I);
1955       break;
1956     }
1957 
1958     case bitc::FUNC_CODE_INST_INSERTVAL: {
1959                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1960       unsigned OpNum = 0;
1961       Value *Agg;
1962       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1963         return Error("Invalid INSERTVAL record");
1964       Value *Val;
1965       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1966         return Error("Invalid INSERTVAL record");
1967 
1968       SmallVector<unsigned, 4> INSERTVALIdx;
1969       for (unsigned RecSize = Record.size();
1970            OpNum != RecSize; ++OpNum) {
1971         uint64_t Index = Record[OpNum];
1972         if ((unsigned)Index != Index)
1973           return Error("Invalid INSERTVAL index");
1974         INSERTVALIdx.push_back((unsigned)Index);
1975       }
1976 
1977       I = InsertValueInst::Create(Agg, Val,
1978                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1979       InstructionList.push_back(I);
1980       break;
1981     }
1982 
1983     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1984       // obsolete form of select
1985       // handles select i1 ... in old bitcode
1986       unsigned OpNum = 0;
1987       Value *TrueVal, *FalseVal, *Cond;
1988       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1989           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1990           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1991         return Error("Invalid SELECT record");
1992 
1993       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1994       InstructionList.push_back(I);
1995       break;
1996     }
1997 
1998     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1999       // new form of select
2000       // handles select i1 or select [N x i1]
2001       unsigned OpNum = 0;
2002       Value *TrueVal, *FalseVal, *Cond;
2003       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2004           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2005           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2006         return Error("Invalid SELECT record");
2007 
2008       // select condition can be either i1 or [N x i1]
2009       if (const VectorType* vector_type =
2010           dyn_cast<const VectorType>(Cond->getType())) {
2011         // expect <n x i1>
2012         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2013           return Error("Invalid SELECT condition type");
2014       } else {
2015         // expect i1
2016         if (Cond->getType() != Type::getInt1Ty(Context))
2017           return Error("Invalid SELECT condition type");
2018       }
2019 
2020       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2021       InstructionList.push_back(I);
2022       break;
2023     }
2024 
2025     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2026       unsigned OpNum = 0;
2027       Value *Vec, *Idx;
2028       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2029           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2030         return Error("Invalid EXTRACTELT record");
2031       I = ExtractElementInst::Create(Vec, Idx);
2032       InstructionList.push_back(I);
2033       break;
2034     }
2035 
2036     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2037       unsigned OpNum = 0;
2038       Value *Vec, *Elt, *Idx;
2039       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2040           getValue(Record, OpNum,
2041                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2042           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2043         return Error("Invalid INSERTELT record");
2044       I = InsertElementInst::Create(Vec, Elt, Idx);
2045       InstructionList.push_back(I);
2046       break;
2047     }
2048 
2049     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2050       unsigned OpNum = 0;
2051       Value *Vec1, *Vec2, *Mask;
2052       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2053           getValue(Record, OpNum, Vec1->getType(), Vec2))
2054         return Error("Invalid SHUFFLEVEC record");
2055 
2056       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2057         return Error("Invalid SHUFFLEVEC record");
2058       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2059       InstructionList.push_back(I);
2060       break;
2061     }
2062 
2063     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2064       // Old form of ICmp/FCmp returning bool
2065       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2066       // both legal on vectors but had different behaviour.
2067     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2068       // FCmp/ICmp returning bool or vector of bool
2069 
2070       unsigned OpNum = 0;
2071       Value *LHS, *RHS;
2072       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2073           getValue(Record, OpNum, LHS->getType(), RHS) ||
2074           OpNum+1 != Record.size())
2075         return Error("Invalid CMP record");
2076 
2077       if (LHS->getType()->isFPOrFPVectorTy())
2078         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2079       else
2080         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2081       InstructionList.push_back(I);
2082       break;
2083     }
2084 
2085     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2086       if (Record.size() != 2)
2087         return Error("Invalid GETRESULT record");
2088       unsigned OpNum = 0;
2089       Value *Op;
2090       getValueTypePair(Record, OpNum, NextValueNo, Op);
2091       unsigned Index = Record[1];
2092       I = ExtractValueInst::Create(Op, Index);
2093       InstructionList.push_back(I);
2094       break;
2095     }
2096 
2097     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2098       {
2099         unsigned Size = Record.size();
2100         if (Size == 0) {
2101           I = ReturnInst::Create(Context);
2102           InstructionList.push_back(I);
2103           break;
2104         }
2105 
2106         unsigned OpNum = 0;
2107         SmallVector<Value *,4> Vs;
2108         do {
2109           Value *Op = NULL;
2110           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2111             return Error("Invalid RET record");
2112           Vs.push_back(Op);
2113         } while(OpNum != Record.size());
2114 
2115         const Type *ReturnType = F->getReturnType();
2116         // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2117         if (Vs.size() > 1 ||
2118             (ReturnType->isStructTy() &&
2119              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2120           Value *RV = UndefValue::get(ReturnType);
2121           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2122             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2123             InstructionList.push_back(I);
2124             CurBB->getInstList().push_back(I);
2125             ValueList.AssignValue(I, NextValueNo++);
2126             RV = I;
2127           }
2128           I = ReturnInst::Create(Context, RV);
2129           InstructionList.push_back(I);
2130           break;
2131         }
2132 
2133         I = ReturnInst::Create(Context, Vs[0]);
2134         InstructionList.push_back(I);
2135         break;
2136       }
2137     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2138       if (Record.size() != 1 && Record.size() != 3)
2139         return Error("Invalid BR record");
2140       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2141       if (TrueDest == 0)
2142         return Error("Invalid BR record");
2143 
2144       if (Record.size() == 1) {
2145         I = BranchInst::Create(TrueDest);
2146         InstructionList.push_back(I);
2147       }
2148       else {
2149         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2150         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2151         if (FalseDest == 0 || Cond == 0)
2152           return Error("Invalid BR record");
2153         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2154         InstructionList.push_back(I);
2155       }
2156       break;
2157     }
2158     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2159       if (Record.size() < 3 || (Record.size() & 1) == 0)
2160         return Error("Invalid SWITCH record");
2161       const Type *OpTy = getTypeByID(Record[0]);
2162       Value *Cond = getFnValueByID(Record[1], OpTy);
2163       BasicBlock *Default = getBasicBlock(Record[2]);
2164       if (OpTy == 0 || Cond == 0 || Default == 0)
2165         return Error("Invalid SWITCH record");
2166       unsigned NumCases = (Record.size()-3)/2;
2167       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2168       InstructionList.push_back(SI);
2169       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2170         ConstantInt *CaseVal =
2171           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2172         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2173         if (CaseVal == 0 || DestBB == 0) {
2174           delete SI;
2175           return Error("Invalid SWITCH record!");
2176         }
2177         SI->addCase(CaseVal, DestBB);
2178       }
2179       I = SI;
2180       break;
2181     }
2182     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2183       if (Record.size() < 2)
2184         return Error("Invalid INDIRECTBR record");
2185       const Type *OpTy = getTypeByID(Record[0]);
2186       Value *Address = getFnValueByID(Record[1], OpTy);
2187       if (OpTy == 0 || Address == 0)
2188         return Error("Invalid INDIRECTBR record");
2189       unsigned NumDests = Record.size()-2;
2190       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2191       InstructionList.push_back(IBI);
2192       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2193         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2194           IBI->addDestination(DestBB);
2195         } else {
2196           delete IBI;
2197           return Error("Invalid INDIRECTBR record!");
2198         }
2199       }
2200       I = IBI;
2201       break;
2202     }
2203 
2204     case bitc::FUNC_CODE_INST_INVOKE: {
2205       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2206       if (Record.size() < 4) return Error("Invalid INVOKE record");
2207       AttrListPtr PAL = getAttributes(Record[0]);
2208       unsigned CCInfo = Record[1];
2209       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2210       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2211 
2212       unsigned OpNum = 4;
2213       Value *Callee;
2214       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2215         return Error("Invalid INVOKE record");
2216 
2217       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2218       const FunctionType *FTy = !CalleeTy ? 0 :
2219         dyn_cast<FunctionType>(CalleeTy->getElementType());
2220 
2221       // Check that the right number of fixed parameters are here.
2222       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2223           Record.size() < OpNum+FTy->getNumParams())
2224         return Error("Invalid INVOKE record");
2225 
2226       SmallVector<Value*, 16> Ops;
2227       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2228         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2229         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2230       }
2231 
2232       if (!FTy->isVarArg()) {
2233         if (Record.size() != OpNum)
2234           return Error("Invalid INVOKE record");
2235       } else {
2236         // Read type/value pairs for varargs params.
2237         while (OpNum != Record.size()) {
2238           Value *Op;
2239           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2240             return Error("Invalid INVOKE record");
2241           Ops.push_back(Op);
2242         }
2243       }
2244 
2245       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2246                              Ops.begin(), Ops.end());
2247       InstructionList.push_back(I);
2248       cast<InvokeInst>(I)->setCallingConv(
2249         static_cast<CallingConv::ID>(CCInfo));
2250       cast<InvokeInst>(I)->setAttributes(PAL);
2251       break;
2252     }
2253     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2254       I = new UnwindInst(Context);
2255       InstructionList.push_back(I);
2256       break;
2257     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2258       I = new UnreachableInst(Context);
2259       InstructionList.push_back(I);
2260       break;
2261     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2262       if (Record.size() < 1 || ((Record.size()-1)&1))
2263         return Error("Invalid PHI record");
2264       const Type *Ty = getTypeByID(Record[0]);
2265       if (!Ty) return Error("Invalid PHI record");
2266 
2267       PHINode *PN = PHINode::Create(Ty);
2268       InstructionList.push_back(PN);
2269       PN->reserveOperandSpace((Record.size()-1)/2);
2270 
2271       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2272         Value *V = getFnValueByID(Record[1+i], Ty);
2273         BasicBlock *BB = getBasicBlock(Record[2+i]);
2274         if (!V || !BB) return Error("Invalid PHI record");
2275         PN->addIncoming(V, BB);
2276       }
2277       I = PN;
2278       break;
2279     }
2280 
2281     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2282       // Autoupgrade malloc instruction to malloc call.
2283       // FIXME: Remove in LLVM 3.0.
2284       if (Record.size() < 3)
2285         return Error("Invalid MALLOC record");
2286       const PointerType *Ty =
2287         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2288       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2289       if (!Ty || !Size) return Error("Invalid MALLOC record");
2290       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2291       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2292       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2293       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2294       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2295                                  AllocSize, Size, NULL);
2296       InstructionList.push_back(I);
2297       break;
2298     }
2299     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2300       unsigned OpNum = 0;
2301       Value *Op;
2302       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2303           OpNum != Record.size())
2304         return Error("Invalid FREE record");
2305       if (!CurBB) return Error("Invalid free instruction with no BB");
2306       I = CallInst::CreateFree(Op, CurBB);
2307       InstructionList.push_back(I);
2308       break;
2309     }
2310     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2311       // For backward compatibility, tolerate a lack of an opty, and use i32.
2312       // Remove this in LLVM 3.0.
2313       if (Record.size() < 3 || Record.size() > 4)
2314         return Error("Invalid ALLOCA record");
2315       unsigned OpNum = 0;
2316       const PointerType *Ty =
2317         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2318       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2319                                               Type::getInt32Ty(Context);
2320       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2321       unsigned Align = Record[OpNum++];
2322       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2323       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2324       InstructionList.push_back(I);
2325       break;
2326     }
2327     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2328       unsigned OpNum = 0;
2329       Value *Op;
2330       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2331           OpNum+2 != Record.size())
2332         return Error("Invalid LOAD record");
2333 
2334       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2335       InstructionList.push_back(I);
2336       break;
2337     }
2338     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2339       unsigned OpNum = 0;
2340       Value *Val, *Ptr;
2341       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2342           getValue(Record, OpNum,
2343                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2344           OpNum+2 != Record.size())
2345         return Error("Invalid STORE record");
2346 
2347       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2348       InstructionList.push_back(I);
2349       break;
2350     }
2351     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2352       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2353       unsigned OpNum = 0;
2354       Value *Val, *Ptr;
2355       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2356           getValue(Record, OpNum,
2357                    PointerType::getUnqual(Val->getType()), Ptr)||
2358           OpNum+2 != Record.size())
2359         return Error("Invalid STORE record");
2360 
2361       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2362       InstructionList.push_back(I);
2363       break;
2364     }
2365     // FIXME: Remove this in LLVM 3.0.
2366     case bitc::FUNC_CODE_INST_CALL:
2367       LLVM2_7MetadataDetected = true;
2368     case bitc::FUNC_CODE_INST_CALL2: {
2369       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2370       if (Record.size() < 3)
2371         return Error("Invalid CALL record");
2372 
2373       AttrListPtr PAL = getAttributes(Record[0]);
2374       unsigned CCInfo = Record[1];
2375 
2376       unsigned OpNum = 2;
2377       Value *Callee;
2378       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2379         return Error("Invalid CALL record");
2380 
2381       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2382       const FunctionType *FTy = 0;
2383       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2384       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2385         return Error("Invalid CALL record");
2386 
2387       SmallVector<Value*, 16> Args;
2388       // Read the fixed params.
2389       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2390         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2391           Args.push_back(getBasicBlock(Record[OpNum]));
2392         else
2393           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2394         if (Args.back() == 0) return Error("Invalid CALL record");
2395       }
2396 
2397       // Read type/value pairs for varargs params.
2398       if (!FTy->isVarArg()) {
2399         if (OpNum != Record.size())
2400           return Error("Invalid CALL record");
2401       } else {
2402         while (OpNum != Record.size()) {
2403           Value *Op;
2404           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2405             return Error("Invalid CALL record");
2406           Args.push_back(Op);
2407         }
2408       }
2409 
2410       I = CallInst::Create(Callee, Args.begin(), Args.end());
2411       InstructionList.push_back(I);
2412       cast<CallInst>(I)->setCallingConv(
2413         static_cast<CallingConv::ID>(CCInfo>>1));
2414       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2415       cast<CallInst>(I)->setAttributes(PAL);
2416       break;
2417     }
2418     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2419       if (Record.size() < 3)
2420         return Error("Invalid VAARG record");
2421       const Type *OpTy = getTypeByID(Record[0]);
2422       Value *Op = getFnValueByID(Record[1], OpTy);
2423       const Type *ResTy = getTypeByID(Record[2]);
2424       if (!OpTy || !Op || !ResTy)
2425         return Error("Invalid VAARG record");
2426       I = new VAArgInst(Op, ResTy);
2427       InstructionList.push_back(I);
2428       break;
2429     }
2430     }
2431 
2432     // Add instruction to end of current BB.  If there is no current BB, reject
2433     // this file.
2434     if (CurBB == 0) {
2435       delete I;
2436       return Error("Invalid instruction with no BB");
2437     }
2438     CurBB->getInstList().push_back(I);
2439 
2440     // If this was a terminator instruction, move to the next block.
2441     if (isa<TerminatorInst>(I)) {
2442       ++CurBBNo;
2443       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2444     }
2445 
2446     // Non-void values get registered in the value table for future use.
2447     if (I && !I->getType()->isVoidTy())
2448       ValueList.AssignValue(I, NextValueNo++);
2449   }
2450 
2451   // Check the function list for unresolved values.
2452   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2453     if (A->getParent() == 0) {
2454       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2455       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2456         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2457           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2458           delete A;
2459         }
2460       }
2461       return Error("Never resolved value found in function!");
2462     }
2463   }
2464 
2465   // FIXME: Check for unresolved forward-declared metadata references
2466   // and clean up leaks.
2467 
2468   // See if anything took the address of blocks in this function.  If so,
2469   // resolve them now.
2470   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2471     BlockAddrFwdRefs.find(F);
2472   if (BAFRI != BlockAddrFwdRefs.end()) {
2473     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2474     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2475       unsigned BlockIdx = RefList[i].first;
2476       if (BlockIdx >= FunctionBBs.size())
2477         return Error("Invalid blockaddress block #");
2478 
2479       GlobalVariable *FwdRef = RefList[i].second;
2480       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2481       FwdRef->eraseFromParent();
2482     }
2483 
2484     BlockAddrFwdRefs.erase(BAFRI);
2485   }
2486 
2487   // FIXME: Remove this in LLVM 3.0.
2488   unsigned NewMDValueListSize = MDValueList.size();
2489 
2490   // Trim the value list down to the size it was before we parsed this function.
2491   ValueList.shrinkTo(ModuleValueListSize);
2492   MDValueList.shrinkTo(ModuleMDValueListSize);
2493 
2494   // Backwards compatibility hack: Function-local metadata numbers
2495   // were previously not reset between functions. This is now fixed,
2496   // however we still need to understand the old numbering in order
2497   // to be able to read old bitcode files.
2498   // FIXME: Remove this in LLVM 3.0.
2499   if (LLVM2_7MetadataDetected)
2500     MDValueList.resize(NewMDValueListSize);
2501 
2502   std::vector<BasicBlock*>().swap(FunctionBBs);
2503 
2504   return false;
2505 }
2506 
2507 //===----------------------------------------------------------------------===//
2508 // GVMaterializer implementation
2509 //===----------------------------------------------------------------------===//
2510 
2511 
2512 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2513   if (const Function *F = dyn_cast<Function>(GV)) {
2514     return F->isDeclaration() &&
2515       DeferredFunctionInfo.count(const_cast<Function*>(F));
2516   }
2517   return false;
2518 }
2519 
2520 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2521   Function *F = dyn_cast<Function>(GV);
2522   // If it's not a function or is already material, ignore the request.
2523   if (!F || !F->isMaterializable()) return false;
2524 
2525   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2526   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2527 
2528   // Move the bit stream to the saved position of the deferred function body.
2529   Stream.JumpToBit(DFII->second);
2530 
2531   if (ParseFunctionBody(F)) {
2532     if (ErrInfo) *ErrInfo = ErrorString;
2533     return true;
2534   }
2535 
2536   // Upgrade any old intrinsic calls in the function.
2537   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2538        E = UpgradedIntrinsics.end(); I != E; ++I) {
2539     if (I->first != I->second) {
2540       for (Value::use_iterator UI = I->first->use_begin(),
2541            UE = I->first->use_end(); UI != UE; ) {
2542         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2543           UpgradeIntrinsicCall(CI, I->second);
2544       }
2545     }
2546   }
2547 
2548   return false;
2549 }
2550 
2551 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2552   const Function *F = dyn_cast<Function>(GV);
2553   if (!F || F->isDeclaration())
2554     return false;
2555   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2556 }
2557 
2558 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2559   Function *F = dyn_cast<Function>(GV);
2560   // If this function isn't dematerializable, this is a noop.
2561   if (!F || !isDematerializable(F))
2562     return;
2563 
2564   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2565 
2566   // Just forget the function body, we can remat it later.
2567   F->deleteBody();
2568 }
2569 
2570 
2571 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2572   assert(M == TheModule &&
2573          "Can only Materialize the Module this BitcodeReader is attached to.");
2574   // Iterate over the module, deserializing any functions that are still on
2575   // disk.
2576   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2577        F != E; ++F)
2578     if (F->isMaterializable() &&
2579         Materialize(F, ErrInfo))
2580       return true;
2581 
2582   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2583   // delete the old functions to clean up. We can't do this unless the entire
2584   // module is materialized because there could always be another function body
2585   // with calls to the old function.
2586   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2587        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2588     if (I->first != I->second) {
2589       for (Value::use_iterator UI = I->first->use_begin(),
2590            UE = I->first->use_end(); UI != UE; ) {
2591         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2592           UpgradeIntrinsicCall(CI, I->second);
2593       }
2594       if (!I->first->use_empty())
2595         I->first->replaceAllUsesWith(I->second);
2596       I->first->eraseFromParent();
2597     }
2598   }
2599   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2600 
2601   // Check debug info intrinsics.
2602   CheckDebugInfoIntrinsics(TheModule);
2603 
2604   return false;
2605 }
2606 
2607 
2608 //===----------------------------------------------------------------------===//
2609 // External interface
2610 //===----------------------------------------------------------------------===//
2611 
2612 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2613 ///
2614 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2615                                    LLVMContext& Context,
2616                                    std::string *ErrMsg) {
2617   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2618   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2619   M->setMaterializer(R);
2620   if (R->ParseBitcodeInto(M)) {
2621     if (ErrMsg)
2622       *ErrMsg = R->getErrorString();
2623 
2624     delete M;  // Also deletes R.
2625     return 0;
2626   }
2627   // Have the BitcodeReader dtor delete 'Buffer'.
2628   R->setBufferOwned(true);
2629   return M;
2630 }
2631 
2632 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2633 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2634 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2635                                std::string *ErrMsg){
2636   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2637   if (!M) return 0;
2638 
2639   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2640   // there was an error.
2641   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2642 
2643   // Read in the entire module, and destroy the BitcodeReader.
2644   if (M->MaterializeAllPermanently(ErrMsg)) {
2645     delete M;
2646     return 0;
2647   }
2648 
2649   return M;
2650 }
2651 
2652 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2653                                          LLVMContext& Context,
2654                                          std::string *ErrMsg) {
2655   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2656   // Don't let the BitcodeReader dtor delete 'Buffer'.
2657   R->setBufferOwned(false);
2658 
2659   std::string Triple("");
2660   if (R->ParseTriple(Triple))
2661     if (ErrMsg)
2662       *ErrMsg = R->getErrorString();
2663 
2664   delete R;
2665   return Triple;
2666 }
2667