1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (isa<ConstantVector>(UserC)) { 300 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 301 } else { 302 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 303 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 304 NewOps.size()); 305 } 306 307 UserC->replaceAllUsesWith(NewC); 308 UserC->destroyConstant(); 309 NewOps.clear(); 310 } 311 312 // Update all ValueHandles, they should be the only users at this point. 313 Placeholder->replaceAllUsesWith(RealVal); 314 delete Placeholder; 315 } 316 } 317 318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 319 if (Idx == size()) { 320 push_back(V); 321 return; 322 } 323 324 if (Idx >= size()) 325 resize(Idx+1); 326 327 WeakVH &OldV = MDValuePtrs[Idx]; 328 if (OldV == 0) { 329 OldV = V; 330 return; 331 } 332 333 // If there was a forward reference to this value, replace it. 334 MDNode *PrevVal = cast<MDNode>(OldV); 335 OldV->replaceAllUsesWith(V); 336 MDNode::deleteTemporary(PrevVal); 337 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 338 // value for Idx. 339 MDValuePtrs[Idx] = V; 340 } 341 342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 343 if (Idx >= size()) 344 resize(Idx + 1); 345 346 if (Value *V = MDValuePtrs[Idx]) { 347 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 348 return V; 349 } 350 351 // Create and return a placeholder, which will later be RAUW'd. 352 Value *V = MDNode::getTemporary(Context, 0, 0); 353 MDValuePtrs[Idx] = V; 354 return V; 355 } 356 357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 358 // If the TypeID is in range, return it. 359 if (ID < TypeList.size()) 360 return TypeList[ID].get(); 361 if (!isTypeTable) return 0; 362 363 // The type table allows forward references. Push as many Opaque types as 364 // needed to get up to ID. 365 while (TypeList.size() <= ID) 366 TypeList.push_back(OpaqueType::get(Context)); 367 return TypeList.back().get(); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Functions for parsing blocks from the bitcode file 372 //===----------------------------------------------------------------------===// 373 374 bool BitcodeReader::ParseAttributeBlock() { 375 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 376 return Error("Malformed block record"); 377 378 if (!MAttributes.empty()) 379 return Error("Multiple PARAMATTR blocks found!"); 380 381 SmallVector<uint64_t, 64> Record; 382 383 SmallVector<AttributeWithIndex, 8> Attrs; 384 385 // Read all the records. 386 while (1) { 387 unsigned Code = Stream.ReadCode(); 388 if (Code == bitc::END_BLOCK) { 389 if (Stream.ReadBlockEnd()) 390 return Error("Error at end of PARAMATTR block"); 391 return false; 392 } 393 394 if (Code == bitc::ENTER_SUBBLOCK) { 395 // No known subblocks, always skip them. 396 Stream.ReadSubBlockID(); 397 if (Stream.SkipBlock()) 398 return Error("Malformed block record"); 399 continue; 400 } 401 402 if (Code == bitc::DEFINE_ABBREV) { 403 Stream.ReadAbbrevRecord(); 404 continue; 405 } 406 407 // Read a record. 408 Record.clear(); 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: ignore. 411 break; 412 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 413 if (Record.size() & 1) 414 return Error("Invalid ENTRY record"); 415 416 // FIXME : Remove this autoupgrade code in LLVM 3.0. 417 // If Function attributes are using index 0 then transfer them 418 // to index ~0. Index 0 is used for return value attributes but used to be 419 // used for function attributes. 420 Attributes RetAttribute = Attribute::None; 421 Attributes FnAttribute = Attribute::None; 422 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 423 // FIXME: remove in LLVM 3.0 424 // The alignment is stored as a 16-bit raw value from bits 31--16. 425 // We shift the bits above 31 down by 11 bits. 426 427 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 428 if (Alignment && !isPowerOf2_32(Alignment)) 429 return Error("Alignment is not a power of two."); 430 431 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 432 if (Alignment) 433 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 434 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 435 Record[i+1] = ReconstitutedAttr; 436 437 if (Record[i] == 0) 438 RetAttribute = Record[i+1]; 439 else if (Record[i] == ~0U) 440 FnAttribute = Record[i+1]; 441 } 442 443 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 444 Attribute::ReadOnly|Attribute::ReadNone); 445 446 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 447 (RetAttribute & OldRetAttrs) != 0) { 448 if (FnAttribute == Attribute::None) { // add a slot so they get added. 449 Record.push_back(~0U); 450 Record.push_back(0); 451 } 452 453 FnAttribute |= RetAttribute & OldRetAttrs; 454 RetAttribute &= ~OldRetAttrs; 455 } 456 457 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 458 if (Record[i] == 0) { 459 if (RetAttribute != Attribute::None) 460 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 461 } else if (Record[i] == ~0U) { 462 if (FnAttribute != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 464 } else if (Record[i+1] != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 466 } 467 468 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 469 Attrs.clear(); 470 break; 471 } 472 } 473 } 474 } 475 476 477 bool BitcodeReader::ParseTypeTable() { 478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 479 return Error("Malformed block record"); 480 481 if (!TypeList.empty()) 482 return Error("Multiple TYPE_BLOCKs found!"); 483 484 SmallVector<uint64_t, 64> Record; 485 unsigned NumRecords = 0; 486 487 // Read all the records for this type table. 488 while (1) { 489 unsigned Code = Stream.ReadCode(); 490 if (Code == bitc::END_BLOCK) { 491 if (NumRecords != TypeList.size()) 492 return Error("Invalid type forward reference in TYPE_BLOCK"); 493 if (Stream.ReadBlockEnd()) 494 return Error("Error at end of type table block"); 495 return false; 496 } 497 498 if (Code == bitc::ENTER_SUBBLOCK) { 499 // No known subblocks, always skip them. 500 Stream.ReadSubBlockID(); 501 if (Stream.SkipBlock()) 502 return Error("Malformed block record"); 503 continue; 504 } 505 506 if (Code == bitc::DEFINE_ABBREV) { 507 Stream.ReadAbbrevRecord(); 508 continue; 509 } 510 511 // Read a record. 512 Record.clear(); 513 const Type *ResultTy = 0; 514 switch (Stream.ReadRecord(Code, Record)) { 515 default: // Default behavior: unknown type. 516 ResultTy = 0; 517 break; 518 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 519 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 520 // type list. This allows us to reserve space. 521 if (Record.size() < 1) 522 return Error("Invalid TYPE_CODE_NUMENTRY record"); 523 TypeList.reserve(Record[0]); 524 continue; 525 case bitc::TYPE_CODE_VOID: // VOID 526 ResultTy = Type::getVoidTy(Context); 527 break; 528 case bitc::TYPE_CODE_FLOAT: // FLOAT 529 ResultTy = Type::getFloatTy(Context); 530 break; 531 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 532 ResultTy = Type::getDoubleTy(Context); 533 break; 534 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 535 ResultTy = Type::getX86_FP80Ty(Context); 536 break; 537 case bitc::TYPE_CODE_FP128: // FP128 538 ResultTy = Type::getFP128Ty(Context); 539 break; 540 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 541 ResultTy = Type::getPPC_FP128Ty(Context); 542 break; 543 case bitc::TYPE_CODE_LABEL: // LABEL 544 ResultTy = Type::getLabelTy(Context); 545 break; 546 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 547 ResultTy = 0; 548 break; 549 case bitc::TYPE_CODE_METADATA: // METADATA 550 ResultTy = Type::getMetadataTy(Context); 551 break; 552 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 553 ResultTy = Type::getX86_MMXTy(Context); 554 break; 555 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 556 if (Record.size() < 1) 557 return Error("Invalid Integer type record"); 558 559 ResultTy = IntegerType::get(Context, Record[0]); 560 break; 561 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 562 // [pointee type, address space] 563 if (Record.size() < 1) 564 return Error("Invalid POINTER type record"); 565 unsigned AddressSpace = 0; 566 if (Record.size() == 2) 567 AddressSpace = Record[1]; 568 ResultTy = PointerType::get(getTypeByID(Record[0], true), 569 AddressSpace); 570 break; 571 } 572 case bitc::TYPE_CODE_FUNCTION: { 573 // FIXME: attrid is dead, remove it in LLVM 3.0 574 // FUNCTION: [vararg, attrid, retty, paramty x N] 575 if (Record.size() < 3) 576 return Error("Invalid FUNCTION type record"); 577 std::vector<const Type*> ArgTys; 578 for (unsigned i = 3, e = Record.size(); i != e; ++i) 579 ArgTys.push_back(getTypeByID(Record[i], true)); 580 581 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 582 Record[0]); 583 break; 584 } 585 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 586 if (Record.size() < 1) 587 return Error("Invalid STRUCT type record"); 588 std::vector<const Type*> EltTys; 589 for (unsigned i = 1, e = Record.size(); i != e; ++i) 590 EltTys.push_back(getTypeByID(Record[i], true)); 591 ResultTy = StructType::get(Context, EltTys, Record[0]); 592 break; 593 } 594 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid ARRAY type record"); 597 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 600 if (Record.size() < 2) 601 return Error("Invalid VECTOR type record"); 602 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 603 break; 604 } 605 606 if (NumRecords == TypeList.size()) { 607 // If this is a new type slot, just append it. 608 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 609 ++NumRecords; 610 } else if (ResultTy == 0) { 611 // Otherwise, this was forward referenced, so an opaque type was created, 612 // but the result type is actually just an opaque. Leave the one we 613 // created previously. 614 ++NumRecords; 615 } else { 616 // Otherwise, this was forward referenced, so an opaque type was created. 617 // Resolve the opaque type to the real type now. 618 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 619 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 620 621 // Don't directly push the new type on the Tab. Instead we want to replace 622 // the opaque type we previously inserted with the new concrete value. The 623 // refinement from the abstract (opaque) type to the new type causes all 624 // uses of the abstract type to use the concrete type (NewTy). This will 625 // also cause the opaque type to be deleted. 626 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 627 628 // This should have replaced the old opaque type with the new type in the 629 // value table... or with a preexisting type that was already in the 630 // system. Let's just make sure it did. 631 assert(TypeList[NumRecords-1].get() != OldTy && 632 "refineAbstractType didn't work!"); 633 } 634 } 635 } 636 637 638 bool BitcodeReader::ParseTypeSymbolTable() { 639 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 640 return Error("Malformed block record"); 641 642 SmallVector<uint64_t, 64> Record; 643 644 // Read all the records for this type table. 645 std::string TypeName; 646 while (1) { 647 unsigned Code = Stream.ReadCode(); 648 if (Code == bitc::END_BLOCK) { 649 if (Stream.ReadBlockEnd()) 650 return Error("Error at end of type symbol table block"); 651 return false; 652 } 653 654 if (Code == bitc::ENTER_SUBBLOCK) { 655 // No known subblocks, always skip them. 656 Stream.ReadSubBlockID(); 657 if (Stream.SkipBlock()) 658 return Error("Malformed block record"); 659 continue; 660 } 661 662 if (Code == bitc::DEFINE_ABBREV) { 663 Stream.ReadAbbrevRecord(); 664 continue; 665 } 666 667 // Read a record. 668 Record.clear(); 669 switch (Stream.ReadRecord(Code, Record)) { 670 default: // Default behavior: unknown type. 671 break; 672 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 673 if (ConvertToString(Record, 1, TypeName)) 674 return Error("Invalid TST_ENTRY record"); 675 unsigned TypeID = Record[0]; 676 if (TypeID >= TypeList.size()) 677 return Error("Invalid Type ID in TST_ENTRY record"); 678 679 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 680 TypeName.clear(); 681 break; 682 } 683 } 684 } 685 686 bool BitcodeReader::ParseValueSymbolTable() { 687 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 688 return Error("Malformed block record"); 689 690 SmallVector<uint64_t, 64> Record; 691 692 // Read all the records for this value table. 693 SmallString<128> ValueName; 694 while (1) { 695 unsigned Code = Stream.ReadCode(); 696 if (Code == bitc::END_BLOCK) { 697 if (Stream.ReadBlockEnd()) 698 return Error("Error at end of value symbol table block"); 699 return false; 700 } 701 if (Code == bitc::ENTER_SUBBLOCK) { 702 // No known subblocks, always skip them. 703 Stream.ReadSubBlockID(); 704 if (Stream.SkipBlock()) 705 return Error("Malformed block record"); 706 continue; 707 } 708 709 if (Code == bitc::DEFINE_ABBREV) { 710 Stream.ReadAbbrevRecord(); 711 continue; 712 } 713 714 // Read a record. 715 Record.clear(); 716 switch (Stream.ReadRecord(Code, Record)) { 717 default: // Default behavior: unknown type. 718 break; 719 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 720 if (ConvertToString(Record, 1, ValueName)) 721 return Error("Invalid VST_ENTRY record"); 722 unsigned ValueID = Record[0]; 723 if (ValueID >= ValueList.size()) 724 return Error("Invalid Value ID in VST_ENTRY record"); 725 Value *V = ValueList[ValueID]; 726 727 V->setName(StringRef(ValueName.data(), ValueName.size())); 728 ValueName.clear(); 729 break; 730 } 731 case bitc::VST_CODE_BBENTRY: { 732 if (ConvertToString(Record, 1, ValueName)) 733 return Error("Invalid VST_BBENTRY record"); 734 BasicBlock *BB = getBasicBlock(Record[0]); 735 if (BB == 0) 736 return Error("Invalid BB ID in VST_BBENTRY record"); 737 738 BB->setName(StringRef(ValueName.data(), ValueName.size())); 739 ValueName.clear(); 740 break; 741 } 742 } 743 } 744 } 745 746 bool BitcodeReader::ParseMetadata() { 747 unsigned NextMDValueNo = MDValueList.size(); 748 749 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 750 return Error("Malformed block record"); 751 752 SmallVector<uint64_t, 64> Record; 753 754 // Read all the records. 755 while (1) { 756 unsigned Code = Stream.ReadCode(); 757 if (Code == bitc::END_BLOCK) { 758 if (Stream.ReadBlockEnd()) 759 return Error("Error at end of PARAMATTR block"); 760 return false; 761 } 762 763 if (Code == bitc::ENTER_SUBBLOCK) { 764 // No known subblocks, always skip them. 765 Stream.ReadSubBlockID(); 766 if (Stream.SkipBlock()) 767 return Error("Malformed block record"); 768 continue; 769 } 770 771 if (Code == bitc::DEFINE_ABBREV) { 772 Stream.ReadAbbrevRecord(); 773 continue; 774 } 775 776 bool IsFunctionLocal = false; 777 // Read a record. 778 Record.clear(); 779 Code = Stream.ReadRecord(Code, Record); 780 switch (Code) { 781 default: // Default behavior: ignore. 782 break; 783 case bitc::METADATA_NAME: { 784 // Read named of the named metadata. 785 unsigned NameLength = Record.size(); 786 SmallString<8> Name; 787 Name.resize(NameLength); 788 for (unsigned i = 0; i != NameLength; ++i) 789 Name[i] = Record[i]; 790 Record.clear(); 791 Code = Stream.ReadCode(); 792 793 // METADATA_NAME is always followed by METADATA_NAMED_NODE2. 794 // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0. 795 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 796 if (NextBitCode == bitc::METADATA_NAMED_NODE) { 797 LLVM2_7MetadataDetected = true; 798 } else if (NextBitCode != bitc::METADATA_NAMED_NODE2) 799 assert ( 0 && "Invalid Named Metadata record"); 800 801 // Read named metadata elements. 802 unsigned Size = Record.size(); 803 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 804 for (unsigned i = 0; i != Size; ++i) { 805 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 806 if (MD == 0) 807 return Error("Malformed metadata record"); 808 NMD->addOperand(MD); 809 } 810 // Backwards compatibility hack: NamedMDValues used to be Values, 811 // and they got their own slots in the value numbering. They are no 812 // longer Values, however we still need to account for them in the 813 // numbering in order to be able to read old bitcode files. 814 // FIXME: Remove this in LLVM 3.0. 815 if (LLVM2_7MetadataDetected) 816 MDValueList.AssignValue(0, NextMDValueNo++); 817 break; 818 } 819 case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0. 820 case bitc::METADATA_FN_NODE2: 821 IsFunctionLocal = true; 822 // fall-through 823 case bitc::METADATA_NODE: // FIXME: Remove in LLVM 3.0. 824 case bitc::METADATA_NODE2: { 825 826 // Detect 2.7-era metadata. 827 // FIXME: Remove in LLVM 3.0. 828 if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE) 829 LLVM2_7MetadataDetected = true; 830 831 if (Record.size() % 2 == 1) 832 return Error("Invalid METADATA_NODE2 record"); 833 834 unsigned Size = Record.size(); 835 SmallVector<Value*, 8> Elts; 836 for (unsigned i = 0; i != Size; i += 2) { 837 const Type *Ty = getTypeByID(Record[i], false); 838 if (Ty->isMetadataTy()) 839 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 840 else if (!Ty->isVoidTy()) 841 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 842 else 843 Elts.push_back(NULL); 844 } 845 Value *V = MDNode::getWhenValsUnresolved(Context, 846 Elts.data(), Elts.size(), 847 IsFunctionLocal); 848 IsFunctionLocal = false; 849 MDValueList.AssignValue(V, NextMDValueNo++); 850 break; 851 } 852 case bitc::METADATA_STRING: { 853 unsigned MDStringLength = Record.size(); 854 SmallString<8> String; 855 String.resize(MDStringLength); 856 for (unsigned i = 0; i != MDStringLength; ++i) 857 String[i] = Record[i]; 858 Value *V = MDString::get(Context, 859 StringRef(String.data(), String.size())); 860 MDValueList.AssignValue(V, NextMDValueNo++); 861 break; 862 } 863 case bitc::METADATA_KIND: { 864 unsigned RecordLength = Record.size(); 865 if (Record.empty() || RecordLength < 2) 866 return Error("Invalid METADATA_KIND record"); 867 SmallString<8> Name; 868 Name.resize(RecordLength-1); 869 unsigned Kind = Record[0]; 870 for (unsigned i = 1; i != RecordLength; ++i) 871 Name[i-1] = Record[i]; 872 873 unsigned NewKind = TheModule->getMDKindID(Name.str()); 874 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 875 return Error("Conflicting METADATA_KIND records"); 876 break; 877 } 878 } 879 } 880 } 881 882 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 883 /// the LSB for dense VBR encoding. 884 static uint64_t DecodeSignRotatedValue(uint64_t V) { 885 if ((V & 1) == 0) 886 return V >> 1; 887 if (V != 1) 888 return -(V >> 1); 889 // There is no such thing as -0 with integers. "-0" really means MININT. 890 return 1ULL << 63; 891 } 892 893 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 894 /// values and aliases that we can. 895 bool BitcodeReader::ResolveGlobalAndAliasInits() { 896 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 897 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 898 899 GlobalInitWorklist.swap(GlobalInits); 900 AliasInitWorklist.swap(AliasInits); 901 902 while (!GlobalInitWorklist.empty()) { 903 unsigned ValID = GlobalInitWorklist.back().second; 904 if (ValID >= ValueList.size()) { 905 // Not ready to resolve this yet, it requires something later in the file. 906 GlobalInits.push_back(GlobalInitWorklist.back()); 907 } else { 908 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 909 GlobalInitWorklist.back().first->setInitializer(C); 910 else 911 return Error("Global variable initializer is not a constant!"); 912 } 913 GlobalInitWorklist.pop_back(); 914 } 915 916 while (!AliasInitWorklist.empty()) { 917 unsigned ValID = AliasInitWorklist.back().second; 918 if (ValID >= ValueList.size()) { 919 AliasInits.push_back(AliasInitWorklist.back()); 920 } else { 921 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 922 AliasInitWorklist.back().first->setAliasee(C); 923 else 924 return Error("Alias initializer is not a constant!"); 925 } 926 AliasInitWorklist.pop_back(); 927 } 928 return false; 929 } 930 931 bool BitcodeReader::ParseConstants() { 932 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 933 return Error("Malformed block record"); 934 935 SmallVector<uint64_t, 64> Record; 936 937 // Read all the records for this value table. 938 const Type *CurTy = Type::getInt32Ty(Context); 939 unsigned NextCstNo = ValueList.size(); 940 while (1) { 941 unsigned Code = Stream.ReadCode(); 942 if (Code == bitc::END_BLOCK) 943 break; 944 945 if (Code == bitc::ENTER_SUBBLOCK) { 946 // No known subblocks, always skip them. 947 Stream.ReadSubBlockID(); 948 if (Stream.SkipBlock()) 949 return Error("Malformed block record"); 950 continue; 951 } 952 953 if (Code == bitc::DEFINE_ABBREV) { 954 Stream.ReadAbbrevRecord(); 955 continue; 956 } 957 958 // Read a record. 959 Record.clear(); 960 Value *V = 0; 961 unsigned BitCode = Stream.ReadRecord(Code, Record); 962 switch (BitCode) { 963 default: // Default behavior: unknown constant 964 case bitc::CST_CODE_UNDEF: // UNDEF 965 V = UndefValue::get(CurTy); 966 break; 967 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 968 if (Record.empty()) 969 return Error("Malformed CST_SETTYPE record"); 970 if (Record[0] >= TypeList.size()) 971 return Error("Invalid Type ID in CST_SETTYPE record"); 972 CurTy = TypeList[Record[0]]; 973 continue; // Skip the ValueList manipulation. 974 case bitc::CST_CODE_NULL: // NULL 975 V = Constant::getNullValue(CurTy); 976 break; 977 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 978 if (!CurTy->isIntegerTy() || Record.empty()) 979 return Error("Invalid CST_INTEGER record"); 980 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 981 break; 982 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 983 if (!CurTy->isIntegerTy() || Record.empty()) 984 return Error("Invalid WIDE_INTEGER record"); 985 986 unsigned NumWords = Record.size(); 987 SmallVector<uint64_t, 8> Words; 988 Words.resize(NumWords); 989 for (unsigned i = 0; i != NumWords; ++i) 990 Words[i] = DecodeSignRotatedValue(Record[i]); 991 V = ConstantInt::get(Context, 992 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 993 NumWords, &Words[0])); 994 break; 995 } 996 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 997 if (Record.empty()) 998 return Error("Invalid FLOAT record"); 999 if (CurTy->isFloatTy()) 1000 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 1001 else if (CurTy->isDoubleTy()) 1002 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 1003 else if (CurTy->isX86_FP80Ty()) { 1004 // Bits are not stored the same way as a normal i80 APInt, compensate. 1005 uint64_t Rearrange[2]; 1006 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1007 Rearrange[1] = Record[0] >> 48; 1008 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 1009 } else if (CurTy->isFP128Ty()) 1010 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1011 else if (CurTy->isPPC_FP128Ty()) 1012 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1013 else 1014 V = UndefValue::get(CurTy); 1015 break; 1016 } 1017 1018 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1019 if (Record.empty()) 1020 return Error("Invalid CST_AGGREGATE record"); 1021 1022 unsigned Size = Record.size(); 1023 std::vector<Constant*> Elts; 1024 1025 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1026 for (unsigned i = 0; i != Size; ++i) 1027 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1028 STy->getElementType(i))); 1029 V = ConstantStruct::get(STy, Elts); 1030 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1031 const Type *EltTy = ATy->getElementType(); 1032 for (unsigned i = 0; i != Size; ++i) 1033 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1034 V = ConstantArray::get(ATy, Elts); 1035 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1036 const Type *EltTy = VTy->getElementType(); 1037 for (unsigned i = 0; i != Size; ++i) 1038 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1039 V = ConstantVector::get(Elts); 1040 } else { 1041 V = UndefValue::get(CurTy); 1042 } 1043 break; 1044 } 1045 case bitc::CST_CODE_STRING: { // STRING: [values] 1046 if (Record.empty()) 1047 return Error("Invalid CST_AGGREGATE record"); 1048 1049 const ArrayType *ATy = cast<ArrayType>(CurTy); 1050 const Type *EltTy = ATy->getElementType(); 1051 1052 unsigned Size = Record.size(); 1053 std::vector<Constant*> Elts; 1054 for (unsigned i = 0; i != Size; ++i) 1055 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1056 V = ConstantArray::get(ATy, Elts); 1057 break; 1058 } 1059 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1060 if (Record.empty()) 1061 return Error("Invalid CST_AGGREGATE record"); 1062 1063 const ArrayType *ATy = cast<ArrayType>(CurTy); 1064 const Type *EltTy = ATy->getElementType(); 1065 1066 unsigned Size = Record.size(); 1067 std::vector<Constant*> Elts; 1068 for (unsigned i = 0; i != Size; ++i) 1069 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1070 Elts.push_back(Constant::getNullValue(EltTy)); 1071 V = ConstantArray::get(ATy, Elts); 1072 break; 1073 } 1074 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1075 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1076 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1077 if (Opc < 0) { 1078 V = UndefValue::get(CurTy); // Unknown binop. 1079 } else { 1080 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1081 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1082 unsigned Flags = 0; 1083 if (Record.size() >= 4) { 1084 if (Opc == Instruction::Add || 1085 Opc == Instruction::Sub || 1086 Opc == Instruction::Mul) { 1087 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1088 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1089 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1090 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1091 } else if (Opc == Instruction::SDiv) { 1092 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1093 Flags |= SDivOperator::IsExact; 1094 } 1095 } 1096 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1097 } 1098 break; 1099 } 1100 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1101 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1102 int Opc = GetDecodedCastOpcode(Record[0]); 1103 if (Opc < 0) { 1104 V = UndefValue::get(CurTy); // Unknown cast. 1105 } else { 1106 const Type *OpTy = getTypeByID(Record[1]); 1107 if (!OpTy) return Error("Invalid CE_CAST record"); 1108 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1109 V = ConstantExpr::getCast(Opc, Op, CurTy); 1110 } 1111 break; 1112 } 1113 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1114 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1115 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1116 SmallVector<Constant*, 16> Elts; 1117 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1118 const Type *ElTy = getTypeByID(Record[i]); 1119 if (!ElTy) return Error("Invalid CE_GEP record"); 1120 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1121 } 1122 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1123 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1124 Elts.size()-1); 1125 else 1126 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1127 Elts.size()-1); 1128 break; 1129 } 1130 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1131 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1132 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1133 Type::getInt1Ty(Context)), 1134 ValueList.getConstantFwdRef(Record[1],CurTy), 1135 ValueList.getConstantFwdRef(Record[2],CurTy)); 1136 break; 1137 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1138 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1139 const VectorType *OpTy = 1140 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1141 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1142 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1143 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1144 V = ConstantExpr::getExtractElement(Op0, Op1); 1145 break; 1146 } 1147 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1148 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1149 if (Record.size() < 3 || OpTy == 0) 1150 return Error("Invalid CE_INSERTELT record"); 1151 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1152 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1153 OpTy->getElementType()); 1154 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1155 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1156 break; 1157 } 1158 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1159 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1160 if (Record.size() < 3 || OpTy == 0) 1161 return Error("Invalid CE_SHUFFLEVEC record"); 1162 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1163 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1164 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1165 OpTy->getNumElements()); 1166 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1167 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1168 break; 1169 } 1170 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1171 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1172 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1173 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1174 return Error("Invalid CE_SHUFVEC_EX record"); 1175 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1176 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1177 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1178 RTy->getNumElements()); 1179 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1180 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1181 break; 1182 } 1183 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1184 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1185 const Type *OpTy = getTypeByID(Record[0]); 1186 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1187 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1188 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1189 1190 if (OpTy->isFPOrFPVectorTy()) 1191 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1192 else 1193 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1194 break; 1195 } 1196 case bitc::CST_CODE_INLINEASM: { 1197 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1198 std::string AsmStr, ConstrStr; 1199 bool HasSideEffects = Record[0] & 1; 1200 bool IsAlignStack = Record[0] >> 1; 1201 unsigned AsmStrSize = Record[1]; 1202 if (2+AsmStrSize >= Record.size()) 1203 return Error("Invalid INLINEASM record"); 1204 unsigned ConstStrSize = Record[2+AsmStrSize]; 1205 if (3+AsmStrSize+ConstStrSize > Record.size()) 1206 return Error("Invalid INLINEASM record"); 1207 1208 for (unsigned i = 0; i != AsmStrSize; ++i) 1209 AsmStr += (char)Record[2+i]; 1210 for (unsigned i = 0; i != ConstStrSize; ++i) 1211 ConstrStr += (char)Record[3+AsmStrSize+i]; 1212 const PointerType *PTy = cast<PointerType>(CurTy); 1213 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1214 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1215 break; 1216 } 1217 case bitc::CST_CODE_BLOCKADDRESS:{ 1218 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1219 const Type *FnTy = getTypeByID(Record[0]); 1220 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1221 Function *Fn = 1222 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1223 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1224 1225 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1226 Type::getInt8Ty(Context), 1227 false, GlobalValue::InternalLinkage, 1228 0, ""); 1229 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1230 V = FwdRef; 1231 break; 1232 } 1233 } 1234 1235 ValueList.AssignValue(V, NextCstNo); 1236 ++NextCstNo; 1237 } 1238 1239 if (NextCstNo != ValueList.size()) 1240 return Error("Invalid constant reference!"); 1241 1242 if (Stream.ReadBlockEnd()) 1243 return Error("Error at end of constants block"); 1244 1245 // Once all the constants have been read, go through and resolve forward 1246 // references. 1247 ValueList.ResolveConstantForwardRefs(); 1248 return false; 1249 } 1250 1251 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1252 /// remember where it is and then skip it. This lets us lazily deserialize the 1253 /// functions. 1254 bool BitcodeReader::RememberAndSkipFunctionBody() { 1255 // Get the function we are talking about. 1256 if (FunctionsWithBodies.empty()) 1257 return Error("Insufficient function protos"); 1258 1259 Function *Fn = FunctionsWithBodies.back(); 1260 FunctionsWithBodies.pop_back(); 1261 1262 // Save the current stream state. 1263 uint64_t CurBit = Stream.GetCurrentBitNo(); 1264 DeferredFunctionInfo[Fn] = CurBit; 1265 1266 // Skip over the function block for now. 1267 if (Stream.SkipBlock()) 1268 return Error("Malformed block record"); 1269 return false; 1270 } 1271 1272 bool BitcodeReader::ParseModule() { 1273 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1274 return Error("Malformed block record"); 1275 1276 SmallVector<uint64_t, 64> Record; 1277 std::vector<std::string> SectionTable; 1278 std::vector<std::string> GCTable; 1279 1280 // Read all the records for this module. 1281 while (!Stream.AtEndOfStream()) { 1282 unsigned Code = Stream.ReadCode(); 1283 if (Code == bitc::END_BLOCK) { 1284 if (Stream.ReadBlockEnd()) 1285 return Error("Error at end of module block"); 1286 1287 // Patch the initializers for globals and aliases up. 1288 ResolveGlobalAndAliasInits(); 1289 if (!GlobalInits.empty() || !AliasInits.empty()) 1290 return Error("Malformed global initializer set"); 1291 if (!FunctionsWithBodies.empty()) 1292 return Error("Too few function bodies found"); 1293 1294 // Look for intrinsic functions which need to be upgraded at some point 1295 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1296 FI != FE; ++FI) { 1297 Function* NewFn; 1298 if (UpgradeIntrinsicFunction(FI, NewFn)) 1299 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1300 } 1301 1302 // Look for global variables which need to be renamed. 1303 for (Module::global_iterator 1304 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1305 GI != GE; ++GI) 1306 UpgradeGlobalVariable(GI); 1307 1308 // Force deallocation of memory for these vectors to favor the client that 1309 // want lazy deserialization. 1310 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1311 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1312 std::vector<Function*>().swap(FunctionsWithBodies); 1313 return false; 1314 } 1315 1316 if (Code == bitc::ENTER_SUBBLOCK) { 1317 switch (Stream.ReadSubBlockID()) { 1318 default: // Skip unknown content. 1319 if (Stream.SkipBlock()) 1320 return Error("Malformed block record"); 1321 break; 1322 case bitc::BLOCKINFO_BLOCK_ID: 1323 if (Stream.ReadBlockInfoBlock()) 1324 return Error("Malformed BlockInfoBlock"); 1325 break; 1326 case bitc::PARAMATTR_BLOCK_ID: 1327 if (ParseAttributeBlock()) 1328 return true; 1329 break; 1330 case bitc::TYPE_BLOCK_ID: 1331 if (ParseTypeTable()) 1332 return true; 1333 break; 1334 case bitc::TYPE_SYMTAB_BLOCK_ID: 1335 if (ParseTypeSymbolTable()) 1336 return true; 1337 break; 1338 case bitc::VALUE_SYMTAB_BLOCK_ID: 1339 if (ParseValueSymbolTable()) 1340 return true; 1341 break; 1342 case bitc::CONSTANTS_BLOCK_ID: 1343 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1344 return true; 1345 break; 1346 case bitc::METADATA_BLOCK_ID: 1347 if (ParseMetadata()) 1348 return true; 1349 break; 1350 case bitc::FUNCTION_BLOCK_ID: 1351 // If this is the first function body we've seen, reverse the 1352 // FunctionsWithBodies list. 1353 if (!HasReversedFunctionsWithBodies) { 1354 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1355 HasReversedFunctionsWithBodies = true; 1356 } 1357 1358 if (RememberAndSkipFunctionBody()) 1359 return true; 1360 break; 1361 } 1362 continue; 1363 } 1364 1365 if (Code == bitc::DEFINE_ABBREV) { 1366 Stream.ReadAbbrevRecord(); 1367 continue; 1368 } 1369 1370 // Read a record. 1371 switch (Stream.ReadRecord(Code, Record)) { 1372 default: break; // Default behavior, ignore unknown content. 1373 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1374 if (Record.size() < 1) 1375 return Error("Malformed MODULE_CODE_VERSION"); 1376 // Only version #0 is supported so far. 1377 if (Record[0] != 0) 1378 return Error("Unknown bitstream version!"); 1379 break; 1380 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1381 std::string S; 1382 if (ConvertToString(Record, 0, S)) 1383 return Error("Invalid MODULE_CODE_TRIPLE record"); 1384 TheModule->setTargetTriple(S); 1385 break; 1386 } 1387 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1388 std::string S; 1389 if (ConvertToString(Record, 0, S)) 1390 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1391 TheModule->setDataLayout(S); 1392 break; 1393 } 1394 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1395 std::string S; 1396 if (ConvertToString(Record, 0, S)) 1397 return Error("Invalid MODULE_CODE_ASM record"); 1398 TheModule->setModuleInlineAsm(S); 1399 break; 1400 } 1401 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1402 std::string S; 1403 if (ConvertToString(Record, 0, S)) 1404 return Error("Invalid MODULE_CODE_DEPLIB record"); 1405 TheModule->addLibrary(S); 1406 break; 1407 } 1408 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1409 std::string S; 1410 if (ConvertToString(Record, 0, S)) 1411 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1412 SectionTable.push_back(S); 1413 break; 1414 } 1415 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1416 std::string S; 1417 if (ConvertToString(Record, 0, S)) 1418 return Error("Invalid MODULE_CODE_GCNAME record"); 1419 GCTable.push_back(S); 1420 break; 1421 } 1422 // GLOBALVAR: [pointer type, isconst, initid, 1423 // linkage, alignment, section, visibility, threadlocal] 1424 case bitc::MODULE_CODE_GLOBALVAR: { 1425 if (Record.size() < 6) 1426 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1427 const Type *Ty = getTypeByID(Record[0]); 1428 if (!Ty->isPointerTy()) 1429 return Error("Global not a pointer type!"); 1430 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1431 Ty = cast<PointerType>(Ty)->getElementType(); 1432 1433 bool isConstant = Record[1]; 1434 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1435 unsigned Alignment = (1 << Record[4]) >> 1; 1436 std::string Section; 1437 if (Record[5]) { 1438 if (Record[5]-1 >= SectionTable.size()) 1439 return Error("Invalid section ID"); 1440 Section = SectionTable[Record[5]-1]; 1441 } 1442 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1443 if (Record.size() > 6) 1444 Visibility = GetDecodedVisibility(Record[6]); 1445 bool isThreadLocal = false; 1446 if (Record.size() > 7) 1447 isThreadLocal = Record[7]; 1448 1449 GlobalVariable *NewGV = 1450 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1451 isThreadLocal, AddressSpace); 1452 NewGV->setAlignment(Alignment); 1453 if (!Section.empty()) 1454 NewGV->setSection(Section); 1455 NewGV->setVisibility(Visibility); 1456 NewGV->setThreadLocal(isThreadLocal); 1457 1458 ValueList.push_back(NewGV); 1459 1460 // Remember which value to use for the global initializer. 1461 if (unsigned InitID = Record[2]) 1462 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1463 break; 1464 } 1465 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1466 // alignment, section, visibility, gc] 1467 case bitc::MODULE_CODE_FUNCTION: { 1468 if (Record.size() < 8) 1469 return Error("Invalid MODULE_CODE_FUNCTION record"); 1470 const Type *Ty = getTypeByID(Record[0]); 1471 if (!Ty->isPointerTy()) 1472 return Error("Function not a pointer type!"); 1473 const FunctionType *FTy = 1474 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1475 if (!FTy) 1476 return Error("Function not a pointer to function type!"); 1477 1478 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1479 "", TheModule); 1480 1481 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1482 bool isProto = Record[2]; 1483 Func->setLinkage(GetDecodedLinkage(Record[3])); 1484 Func->setAttributes(getAttributes(Record[4])); 1485 1486 Func->setAlignment((1 << Record[5]) >> 1); 1487 if (Record[6]) { 1488 if (Record[6]-1 >= SectionTable.size()) 1489 return Error("Invalid section ID"); 1490 Func->setSection(SectionTable[Record[6]-1]); 1491 } 1492 Func->setVisibility(GetDecodedVisibility(Record[7])); 1493 if (Record.size() > 8 && Record[8]) { 1494 if (Record[8]-1 > GCTable.size()) 1495 return Error("Invalid GC ID"); 1496 Func->setGC(GCTable[Record[8]-1].c_str()); 1497 } 1498 ValueList.push_back(Func); 1499 1500 // If this is a function with a body, remember the prototype we are 1501 // creating now, so that we can match up the body with them later. 1502 if (!isProto) 1503 FunctionsWithBodies.push_back(Func); 1504 break; 1505 } 1506 // ALIAS: [alias type, aliasee val#, linkage] 1507 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1508 case bitc::MODULE_CODE_ALIAS: { 1509 if (Record.size() < 3) 1510 return Error("Invalid MODULE_ALIAS record"); 1511 const Type *Ty = getTypeByID(Record[0]); 1512 if (!Ty->isPointerTy()) 1513 return Error("Function not a pointer type!"); 1514 1515 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1516 "", 0, TheModule); 1517 // Old bitcode files didn't have visibility field. 1518 if (Record.size() > 3) 1519 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1520 ValueList.push_back(NewGA); 1521 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1522 break; 1523 } 1524 /// MODULE_CODE_PURGEVALS: [numvals] 1525 case bitc::MODULE_CODE_PURGEVALS: 1526 // Trim down the value list to the specified size. 1527 if (Record.size() < 1 || Record[0] > ValueList.size()) 1528 return Error("Invalid MODULE_PURGEVALS record"); 1529 ValueList.shrinkTo(Record[0]); 1530 break; 1531 } 1532 Record.clear(); 1533 } 1534 1535 return Error("Premature end of bitstream"); 1536 } 1537 1538 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1539 TheModule = 0; 1540 1541 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1542 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1543 1544 if (Buffer->getBufferSize() & 3) { 1545 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1546 return Error("Invalid bitcode signature"); 1547 else 1548 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1549 } 1550 1551 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1552 // The magic number is 0x0B17C0DE stored in little endian. 1553 if (isBitcodeWrapper(BufPtr, BufEnd)) 1554 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1555 return Error("Invalid bitcode wrapper header"); 1556 1557 StreamFile.init(BufPtr, BufEnd); 1558 Stream.init(StreamFile); 1559 1560 // Sniff for the signature. 1561 if (Stream.Read(8) != 'B' || 1562 Stream.Read(8) != 'C' || 1563 Stream.Read(4) != 0x0 || 1564 Stream.Read(4) != 0xC || 1565 Stream.Read(4) != 0xE || 1566 Stream.Read(4) != 0xD) 1567 return Error("Invalid bitcode signature"); 1568 1569 // We expect a number of well-defined blocks, though we don't necessarily 1570 // need to understand them all. 1571 while (!Stream.AtEndOfStream()) { 1572 unsigned Code = Stream.ReadCode(); 1573 1574 if (Code != bitc::ENTER_SUBBLOCK) 1575 return Error("Invalid record at top-level"); 1576 1577 unsigned BlockID = Stream.ReadSubBlockID(); 1578 1579 // We only know the MODULE subblock ID. 1580 switch (BlockID) { 1581 case bitc::BLOCKINFO_BLOCK_ID: 1582 if (Stream.ReadBlockInfoBlock()) 1583 return Error("Malformed BlockInfoBlock"); 1584 break; 1585 case bitc::MODULE_BLOCK_ID: 1586 // Reject multiple MODULE_BLOCK's in a single bitstream. 1587 if (TheModule) 1588 return Error("Multiple MODULE_BLOCKs in same stream"); 1589 TheModule = M; 1590 if (ParseModule()) 1591 return true; 1592 break; 1593 default: 1594 if (Stream.SkipBlock()) 1595 return Error("Malformed block record"); 1596 break; 1597 } 1598 } 1599 1600 return false; 1601 } 1602 1603 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1604 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1605 return Error("Malformed block record"); 1606 1607 SmallVector<uint64_t, 64> Record; 1608 1609 // Read all the records for this module. 1610 while (!Stream.AtEndOfStream()) { 1611 unsigned Code = Stream.ReadCode(); 1612 if (Code == bitc::END_BLOCK) { 1613 if (Stream.ReadBlockEnd()) 1614 return Error("Error at end of module block"); 1615 1616 return false; 1617 } 1618 1619 if (Code == bitc::ENTER_SUBBLOCK) { 1620 switch (Stream.ReadSubBlockID()) { 1621 default: // Skip unknown content. 1622 if (Stream.SkipBlock()) 1623 return Error("Malformed block record"); 1624 break; 1625 } 1626 continue; 1627 } 1628 1629 if (Code == bitc::DEFINE_ABBREV) { 1630 Stream.ReadAbbrevRecord(); 1631 continue; 1632 } 1633 1634 // Read a record. 1635 switch (Stream.ReadRecord(Code, Record)) { 1636 default: break; // Default behavior, ignore unknown content. 1637 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1638 if (Record.size() < 1) 1639 return Error("Malformed MODULE_CODE_VERSION"); 1640 // Only version #0 is supported so far. 1641 if (Record[0] != 0) 1642 return Error("Unknown bitstream version!"); 1643 break; 1644 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1645 std::string S; 1646 if (ConvertToString(Record, 0, S)) 1647 return Error("Invalid MODULE_CODE_TRIPLE record"); 1648 Triple = S; 1649 break; 1650 } 1651 } 1652 Record.clear(); 1653 } 1654 1655 return Error("Premature end of bitstream"); 1656 } 1657 1658 bool BitcodeReader::ParseTriple(std::string &Triple) { 1659 if (Buffer->getBufferSize() & 3) 1660 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1661 1662 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1663 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1664 1665 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1666 // The magic number is 0x0B17C0DE stored in little endian. 1667 if (isBitcodeWrapper(BufPtr, BufEnd)) 1668 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1669 return Error("Invalid bitcode wrapper header"); 1670 1671 StreamFile.init(BufPtr, BufEnd); 1672 Stream.init(StreamFile); 1673 1674 // Sniff for the signature. 1675 if (Stream.Read(8) != 'B' || 1676 Stream.Read(8) != 'C' || 1677 Stream.Read(4) != 0x0 || 1678 Stream.Read(4) != 0xC || 1679 Stream.Read(4) != 0xE || 1680 Stream.Read(4) != 0xD) 1681 return Error("Invalid bitcode signature"); 1682 1683 // We expect a number of well-defined blocks, though we don't necessarily 1684 // need to understand them all. 1685 while (!Stream.AtEndOfStream()) { 1686 unsigned Code = Stream.ReadCode(); 1687 1688 if (Code != bitc::ENTER_SUBBLOCK) 1689 return Error("Invalid record at top-level"); 1690 1691 unsigned BlockID = Stream.ReadSubBlockID(); 1692 1693 // We only know the MODULE subblock ID. 1694 switch (BlockID) { 1695 case bitc::MODULE_BLOCK_ID: 1696 if (ParseModuleTriple(Triple)) 1697 return true; 1698 break; 1699 default: 1700 if (Stream.SkipBlock()) 1701 return Error("Malformed block record"); 1702 break; 1703 } 1704 } 1705 1706 return false; 1707 } 1708 1709 /// ParseMetadataAttachment - Parse metadata attachments. 1710 bool BitcodeReader::ParseMetadataAttachment() { 1711 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1712 return Error("Malformed block record"); 1713 1714 SmallVector<uint64_t, 64> Record; 1715 while(1) { 1716 unsigned Code = Stream.ReadCode(); 1717 if (Code == bitc::END_BLOCK) { 1718 if (Stream.ReadBlockEnd()) 1719 return Error("Error at end of PARAMATTR block"); 1720 break; 1721 } 1722 if (Code == bitc::DEFINE_ABBREV) { 1723 Stream.ReadAbbrevRecord(); 1724 continue; 1725 } 1726 // Read a metadata attachment record. 1727 Record.clear(); 1728 switch (Stream.ReadRecord(Code, Record)) { 1729 default: // Default behavior: ignore. 1730 break; 1731 // FIXME: Remove in LLVM 3.0. 1732 case bitc::METADATA_ATTACHMENT: 1733 LLVM2_7MetadataDetected = true; 1734 case bitc::METADATA_ATTACHMENT2: { 1735 unsigned RecordLength = Record.size(); 1736 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1737 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1738 Instruction *Inst = InstructionList[Record[0]]; 1739 for (unsigned i = 1; i != RecordLength; i = i+2) { 1740 unsigned Kind = Record[i]; 1741 DenseMap<unsigned, unsigned>::iterator I = 1742 MDKindMap.find(Kind); 1743 if (I == MDKindMap.end()) 1744 return Error("Invalid metadata kind ID"); 1745 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1746 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1747 } 1748 break; 1749 } 1750 } 1751 } 1752 return false; 1753 } 1754 1755 /// ParseFunctionBody - Lazily parse the specified function body block. 1756 bool BitcodeReader::ParseFunctionBody(Function *F) { 1757 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1758 return Error("Malformed block record"); 1759 1760 InstructionList.clear(); 1761 unsigned ModuleValueListSize = ValueList.size(); 1762 unsigned ModuleMDValueListSize = MDValueList.size(); 1763 1764 // Add all the function arguments to the value table. 1765 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1766 ValueList.push_back(I); 1767 1768 unsigned NextValueNo = ValueList.size(); 1769 BasicBlock *CurBB = 0; 1770 unsigned CurBBNo = 0; 1771 1772 DebugLoc LastLoc; 1773 1774 // Read all the records. 1775 SmallVector<uint64_t, 64> Record; 1776 while (1) { 1777 unsigned Code = Stream.ReadCode(); 1778 if (Code == bitc::END_BLOCK) { 1779 if (Stream.ReadBlockEnd()) 1780 return Error("Error at end of function block"); 1781 break; 1782 } 1783 1784 if (Code == bitc::ENTER_SUBBLOCK) { 1785 switch (Stream.ReadSubBlockID()) { 1786 default: // Skip unknown content. 1787 if (Stream.SkipBlock()) 1788 return Error("Malformed block record"); 1789 break; 1790 case bitc::CONSTANTS_BLOCK_ID: 1791 if (ParseConstants()) return true; 1792 NextValueNo = ValueList.size(); 1793 break; 1794 case bitc::VALUE_SYMTAB_BLOCK_ID: 1795 if (ParseValueSymbolTable()) return true; 1796 break; 1797 case bitc::METADATA_ATTACHMENT_ID: 1798 if (ParseMetadataAttachment()) return true; 1799 break; 1800 case bitc::METADATA_BLOCK_ID: 1801 if (ParseMetadata()) return true; 1802 break; 1803 } 1804 continue; 1805 } 1806 1807 if (Code == bitc::DEFINE_ABBREV) { 1808 Stream.ReadAbbrevRecord(); 1809 continue; 1810 } 1811 1812 // Read a record. 1813 Record.clear(); 1814 Instruction *I = 0; 1815 unsigned BitCode = Stream.ReadRecord(Code, Record); 1816 switch (BitCode) { 1817 default: // Default behavior: reject 1818 return Error("Unknown instruction"); 1819 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1820 if (Record.size() < 1 || Record[0] == 0) 1821 return Error("Invalid DECLAREBLOCKS record"); 1822 // Create all the basic blocks for the function. 1823 FunctionBBs.resize(Record[0]); 1824 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1825 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1826 CurBB = FunctionBBs[0]; 1827 continue; 1828 1829 1830 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1831 // This record indicates that the last instruction is at the same 1832 // location as the previous instruction with a location. 1833 I = 0; 1834 1835 // Get the last instruction emitted. 1836 if (CurBB && !CurBB->empty()) 1837 I = &CurBB->back(); 1838 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1839 !FunctionBBs[CurBBNo-1]->empty()) 1840 I = &FunctionBBs[CurBBNo-1]->back(); 1841 1842 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1843 I->setDebugLoc(LastLoc); 1844 I = 0; 1845 continue; 1846 1847 // FIXME: Remove this in LLVM 3.0. 1848 case bitc::FUNC_CODE_DEBUG_LOC: 1849 LLVM2_7MetadataDetected = true; 1850 case bitc::FUNC_CODE_DEBUG_LOC2: { // DEBUG_LOC: [line, col, scope, ia] 1851 I = 0; // Get the last instruction emitted. 1852 if (CurBB && !CurBB->empty()) 1853 I = &CurBB->back(); 1854 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1855 !FunctionBBs[CurBBNo-1]->empty()) 1856 I = &FunctionBBs[CurBBNo-1]->back(); 1857 if (I == 0 || Record.size() < 4) 1858 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1859 1860 unsigned Line = Record[0], Col = Record[1]; 1861 unsigned ScopeID = Record[2], IAID = Record[3]; 1862 1863 MDNode *Scope = 0, *IA = 0; 1864 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1865 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1866 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1867 I->setDebugLoc(LastLoc); 1868 I = 0; 1869 continue; 1870 } 1871 1872 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1873 unsigned OpNum = 0; 1874 Value *LHS, *RHS; 1875 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1876 getValue(Record, OpNum, LHS->getType(), RHS) || 1877 OpNum+1 > Record.size()) 1878 return Error("Invalid BINOP record"); 1879 1880 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1881 if (Opc == -1) return Error("Invalid BINOP record"); 1882 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1883 InstructionList.push_back(I); 1884 if (OpNum < Record.size()) { 1885 if (Opc == Instruction::Add || 1886 Opc == Instruction::Sub || 1887 Opc == Instruction::Mul) { 1888 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1889 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1890 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1891 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1892 } else if (Opc == Instruction::SDiv) { 1893 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1894 cast<BinaryOperator>(I)->setIsExact(true); 1895 } 1896 } 1897 break; 1898 } 1899 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1900 unsigned OpNum = 0; 1901 Value *Op; 1902 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1903 OpNum+2 != Record.size()) 1904 return Error("Invalid CAST record"); 1905 1906 const Type *ResTy = getTypeByID(Record[OpNum]); 1907 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1908 if (Opc == -1 || ResTy == 0) 1909 return Error("Invalid CAST record"); 1910 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1911 InstructionList.push_back(I); 1912 break; 1913 } 1914 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1915 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1916 unsigned OpNum = 0; 1917 Value *BasePtr; 1918 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1919 return Error("Invalid GEP record"); 1920 1921 SmallVector<Value*, 16> GEPIdx; 1922 while (OpNum != Record.size()) { 1923 Value *Op; 1924 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1925 return Error("Invalid GEP record"); 1926 GEPIdx.push_back(Op); 1927 } 1928 1929 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1930 InstructionList.push_back(I); 1931 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1932 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1933 break; 1934 } 1935 1936 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1937 // EXTRACTVAL: [opty, opval, n x indices] 1938 unsigned OpNum = 0; 1939 Value *Agg; 1940 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1941 return Error("Invalid EXTRACTVAL record"); 1942 1943 SmallVector<unsigned, 4> EXTRACTVALIdx; 1944 for (unsigned RecSize = Record.size(); 1945 OpNum != RecSize; ++OpNum) { 1946 uint64_t Index = Record[OpNum]; 1947 if ((unsigned)Index != Index) 1948 return Error("Invalid EXTRACTVAL index"); 1949 EXTRACTVALIdx.push_back((unsigned)Index); 1950 } 1951 1952 I = ExtractValueInst::Create(Agg, 1953 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1954 InstructionList.push_back(I); 1955 break; 1956 } 1957 1958 case bitc::FUNC_CODE_INST_INSERTVAL: { 1959 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1960 unsigned OpNum = 0; 1961 Value *Agg; 1962 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1963 return Error("Invalid INSERTVAL record"); 1964 Value *Val; 1965 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1966 return Error("Invalid INSERTVAL record"); 1967 1968 SmallVector<unsigned, 4> INSERTVALIdx; 1969 for (unsigned RecSize = Record.size(); 1970 OpNum != RecSize; ++OpNum) { 1971 uint64_t Index = Record[OpNum]; 1972 if ((unsigned)Index != Index) 1973 return Error("Invalid INSERTVAL index"); 1974 INSERTVALIdx.push_back((unsigned)Index); 1975 } 1976 1977 I = InsertValueInst::Create(Agg, Val, 1978 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1979 InstructionList.push_back(I); 1980 break; 1981 } 1982 1983 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1984 // obsolete form of select 1985 // handles select i1 ... in old bitcode 1986 unsigned OpNum = 0; 1987 Value *TrueVal, *FalseVal, *Cond; 1988 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1989 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1990 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1991 return Error("Invalid SELECT record"); 1992 1993 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1994 InstructionList.push_back(I); 1995 break; 1996 } 1997 1998 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1999 // new form of select 2000 // handles select i1 or select [N x i1] 2001 unsigned OpNum = 0; 2002 Value *TrueVal, *FalseVal, *Cond; 2003 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2004 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2005 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2006 return Error("Invalid SELECT record"); 2007 2008 // select condition can be either i1 or [N x i1] 2009 if (const VectorType* vector_type = 2010 dyn_cast<const VectorType>(Cond->getType())) { 2011 // expect <n x i1> 2012 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2013 return Error("Invalid SELECT condition type"); 2014 } else { 2015 // expect i1 2016 if (Cond->getType() != Type::getInt1Ty(Context)) 2017 return Error("Invalid SELECT condition type"); 2018 } 2019 2020 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2021 InstructionList.push_back(I); 2022 break; 2023 } 2024 2025 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2026 unsigned OpNum = 0; 2027 Value *Vec, *Idx; 2028 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2029 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2030 return Error("Invalid EXTRACTELT record"); 2031 I = ExtractElementInst::Create(Vec, Idx); 2032 InstructionList.push_back(I); 2033 break; 2034 } 2035 2036 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2037 unsigned OpNum = 0; 2038 Value *Vec, *Elt, *Idx; 2039 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2040 getValue(Record, OpNum, 2041 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2042 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2043 return Error("Invalid INSERTELT record"); 2044 I = InsertElementInst::Create(Vec, Elt, Idx); 2045 InstructionList.push_back(I); 2046 break; 2047 } 2048 2049 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2050 unsigned OpNum = 0; 2051 Value *Vec1, *Vec2, *Mask; 2052 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2053 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2054 return Error("Invalid SHUFFLEVEC record"); 2055 2056 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2057 return Error("Invalid SHUFFLEVEC record"); 2058 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2059 InstructionList.push_back(I); 2060 break; 2061 } 2062 2063 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2064 // Old form of ICmp/FCmp returning bool 2065 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2066 // both legal on vectors but had different behaviour. 2067 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2068 // FCmp/ICmp returning bool or vector of bool 2069 2070 unsigned OpNum = 0; 2071 Value *LHS, *RHS; 2072 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2073 getValue(Record, OpNum, LHS->getType(), RHS) || 2074 OpNum+1 != Record.size()) 2075 return Error("Invalid CMP record"); 2076 2077 if (LHS->getType()->isFPOrFPVectorTy()) 2078 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2079 else 2080 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2081 InstructionList.push_back(I); 2082 break; 2083 } 2084 2085 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 2086 if (Record.size() != 2) 2087 return Error("Invalid GETRESULT record"); 2088 unsigned OpNum = 0; 2089 Value *Op; 2090 getValueTypePair(Record, OpNum, NextValueNo, Op); 2091 unsigned Index = Record[1]; 2092 I = ExtractValueInst::Create(Op, Index); 2093 InstructionList.push_back(I); 2094 break; 2095 } 2096 2097 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2098 { 2099 unsigned Size = Record.size(); 2100 if (Size == 0) { 2101 I = ReturnInst::Create(Context); 2102 InstructionList.push_back(I); 2103 break; 2104 } 2105 2106 unsigned OpNum = 0; 2107 SmallVector<Value *,4> Vs; 2108 do { 2109 Value *Op = NULL; 2110 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2111 return Error("Invalid RET record"); 2112 Vs.push_back(Op); 2113 } while(OpNum != Record.size()); 2114 2115 const Type *ReturnType = F->getReturnType(); 2116 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 2117 if (Vs.size() > 1 || 2118 (ReturnType->isStructTy() && 2119 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 2120 Value *RV = UndefValue::get(ReturnType); 2121 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2122 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2123 InstructionList.push_back(I); 2124 CurBB->getInstList().push_back(I); 2125 ValueList.AssignValue(I, NextValueNo++); 2126 RV = I; 2127 } 2128 I = ReturnInst::Create(Context, RV); 2129 InstructionList.push_back(I); 2130 break; 2131 } 2132 2133 I = ReturnInst::Create(Context, Vs[0]); 2134 InstructionList.push_back(I); 2135 break; 2136 } 2137 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2138 if (Record.size() != 1 && Record.size() != 3) 2139 return Error("Invalid BR record"); 2140 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2141 if (TrueDest == 0) 2142 return Error("Invalid BR record"); 2143 2144 if (Record.size() == 1) { 2145 I = BranchInst::Create(TrueDest); 2146 InstructionList.push_back(I); 2147 } 2148 else { 2149 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2150 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2151 if (FalseDest == 0 || Cond == 0) 2152 return Error("Invalid BR record"); 2153 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2154 InstructionList.push_back(I); 2155 } 2156 break; 2157 } 2158 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2159 if (Record.size() < 3 || (Record.size() & 1) == 0) 2160 return Error("Invalid SWITCH record"); 2161 const Type *OpTy = getTypeByID(Record[0]); 2162 Value *Cond = getFnValueByID(Record[1], OpTy); 2163 BasicBlock *Default = getBasicBlock(Record[2]); 2164 if (OpTy == 0 || Cond == 0 || Default == 0) 2165 return Error("Invalid SWITCH record"); 2166 unsigned NumCases = (Record.size()-3)/2; 2167 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2168 InstructionList.push_back(SI); 2169 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2170 ConstantInt *CaseVal = 2171 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2172 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2173 if (CaseVal == 0 || DestBB == 0) { 2174 delete SI; 2175 return Error("Invalid SWITCH record!"); 2176 } 2177 SI->addCase(CaseVal, DestBB); 2178 } 2179 I = SI; 2180 break; 2181 } 2182 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2183 if (Record.size() < 2) 2184 return Error("Invalid INDIRECTBR record"); 2185 const Type *OpTy = getTypeByID(Record[0]); 2186 Value *Address = getFnValueByID(Record[1], OpTy); 2187 if (OpTy == 0 || Address == 0) 2188 return Error("Invalid INDIRECTBR record"); 2189 unsigned NumDests = Record.size()-2; 2190 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2191 InstructionList.push_back(IBI); 2192 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2193 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2194 IBI->addDestination(DestBB); 2195 } else { 2196 delete IBI; 2197 return Error("Invalid INDIRECTBR record!"); 2198 } 2199 } 2200 I = IBI; 2201 break; 2202 } 2203 2204 case bitc::FUNC_CODE_INST_INVOKE: { 2205 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2206 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2207 AttrListPtr PAL = getAttributes(Record[0]); 2208 unsigned CCInfo = Record[1]; 2209 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2210 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2211 2212 unsigned OpNum = 4; 2213 Value *Callee; 2214 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2215 return Error("Invalid INVOKE record"); 2216 2217 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2218 const FunctionType *FTy = !CalleeTy ? 0 : 2219 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2220 2221 // Check that the right number of fixed parameters are here. 2222 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2223 Record.size() < OpNum+FTy->getNumParams()) 2224 return Error("Invalid INVOKE record"); 2225 2226 SmallVector<Value*, 16> Ops; 2227 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2228 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2229 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2230 } 2231 2232 if (!FTy->isVarArg()) { 2233 if (Record.size() != OpNum) 2234 return Error("Invalid INVOKE record"); 2235 } else { 2236 // Read type/value pairs for varargs params. 2237 while (OpNum != Record.size()) { 2238 Value *Op; 2239 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2240 return Error("Invalid INVOKE record"); 2241 Ops.push_back(Op); 2242 } 2243 } 2244 2245 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2246 Ops.begin(), Ops.end()); 2247 InstructionList.push_back(I); 2248 cast<InvokeInst>(I)->setCallingConv( 2249 static_cast<CallingConv::ID>(CCInfo)); 2250 cast<InvokeInst>(I)->setAttributes(PAL); 2251 break; 2252 } 2253 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2254 I = new UnwindInst(Context); 2255 InstructionList.push_back(I); 2256 break; 2257 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2258 I = new UnreachableInst(Context); 2259 InstructionList.push_back(I); 2260 break; 2261 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2262 if (Record.size() < 1 || ((Record.size()-1)&1)) 2263 return Error("Invalid PHI record"); 2264 const Type *Ty = getTypeByID(Record[0]); 2265 if (!Ty) return Error("Invalid PHI record"); 2266 2267 PHINode *PN = PHINode::Create(Ty); 2268 InstructionList.push_back(PN); 2269 PN->reserveOperandSpace((Record.size()-1)/2); 2270 2271 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2272 Value *V = getFnValueByID(Record[1+i], Ty); 2273 BasicBlock *BB = getBasicBlock(Record[2+i]); 2274 if (!V || !BB) return Error("Invalid PHI record"); 2275 PN->addIncoming(V, BB); 2276 } 2277 I = PN; 2278 break; 2279 } 2280 2281 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2282 // Autoupgrade malloc instruction to malloc call. 2283 // FIXME: Remove in LLVM 3.0. 2284 if (Record.size() < 3) 2285 return Error("Invalid MALLOC record"); 2286 const PointerType *Ty = 2287 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2288 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2289 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2290 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2291 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2292 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2293 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2294 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2295 AllocSize, Size, NULL); 2296 InstructionList.push_back(I); 2297 break; 2298 } 2299 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2300 unsigned OpNum = 0; 2301 Value *Op; 2302 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2303 OpNum != Record.size()) 2304 return Error("Invalid FREE record"); 2305 if (!CurBB) return Error("Invalid free instruction with no BB"); 2306 I = CallInst::CreateFree(Op, CurBB); 2307 InstructionList.push_back(I); 2308 break; 2309 } 2310 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2311 // For backward compatibility, tolerate a lack of an opty, and use i32. 2312 // Remove this in LLVM 3.0. 2313 if (Record.size() < 3 || Record.size() > 4) 2314 return Error("Invalid ALLOCA record"); 2315 unsigned OpNum = 0; 2316 const PointerType *Ty = 2317 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2318 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2319 Type::getInt32Ty(Context); 2320 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2321 unsigned Align = Record[OpNum++]; 2322 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2323 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2324 InstructionList.push_back(I); 2325 break; 2326 } 2327 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2328 unsigned OpNum = 0; 2329 Value *Op; 2330 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2331 OpNum+2 != Record.size()) 2332 return Error("Invalid LOAD record"); 2333 2334 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2335 InstructionList.push_back(I); 2336 break; 2337 } 2338 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2339 unsigned OpNum = 0; 2340 Value *Val, *Ptr; 2341 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2342 getValue(Record, OpNum, 2343 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2344 OpNum+2 != Record.size()) 2345 return Error("Invalid STORE record"); 2346 2347 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2348 InstructionList.push_back(I); 2349 break; 2350 } 2351 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2352 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2353 unsigned OpNum = 0; 2354 Value *Val, *Ptr; 2355 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2356 getValue(Record, OpNum, 2357 PointerType::getUnqual(Val->getType()), Ptr)|| 2358 OpNum+2 != Record.size()) 2359 return Error("Invalid STORE record"); 2360 2361 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2362 InstructionList.push_back(I); 2363 break; 2364 } 2365 // FIXME: Remove this in LLVM 3.0. 2366 case bitc::FUNC_CODE_INST_CALL: 2367 LLVM2_7MetadataDetected = true; 2368 case bitc::FUNC_CODE_INST_CALL2: { 2369 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2370 if (Record.size() < 3) 2371 return Error("Invalid CALL record"); 2372 2373 AttrListPtr PAL = getAttributes(Record[0]); 2374 unsigned CCInfo = Record[1]; 2375 2376 unsigned OpNum = 2; 2377 Value *Callee; 2378 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2379 return Error("Invalid CALL record"); 2380 2381 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2382 const FunctionType *FTy = 0; 2383 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2384 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2385 return Error("Invalid CALL record"); 2386 2387 SmallVector<Value*, 16> Args; 2388 // Read the fixed params. 2389 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2390 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2391 Args.push_back(getBasicBlock(Record[OpNum])); 2392 else 2393 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2394 if (Args.back() == 0) return Error("Invalid CALL record"); 2395 } 2396 2397 // Read type/value pairs for varargs params. 2398 if (!FTy->isVarArg()) { 2399 if (OpNum != Record.size()) 2400 return Error("Invalid CALL record"); 2401 } else { 2402 while (OpNum != Record.size()) { 2403 Value *Op; 2404 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2405 return Error("Invalid CALL record"); 2406 Args.push_back(Op); 2407 } 2408 } 2409 2410 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2411 InstructionList.push_back(I); 2412 cast<CallInst>(I)->setCallingConv( 2413 static_cast<CallingConv::ID>(CCInfo>>1)); 2414 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2415 cast<CallInst>(I)->setAttributes(PAL); 2416 break; 2417 } 2418 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2419 if (Record.size() < 3) 2420 return Error("Invalid VAARG record"); 2421 const Type *OpTy = getTypeByID(Record[0]); 2422 Value *Op = getFnValueByID(Record[1], OpTy); 2423 const Type *ResTy = getTypeByID(Record[2]); 2424 if (!OpTy || !Op || !ResTy) 2425 return Error("Invalid VAARG record"); 2426 I = new VAArgInst(Op, ResTy); 2427 InstructionList.push_back(I); 2428 break; 2429 } 2430 } 2431 2432 // Add instruction to end of current BB. If there is no current BB, reject 2433 // this file. 2434 if (CurBB == 0) { 2435 delete I; 2436 return Error("Invalid instruction with no BB"); 2437 } 2438 CurBB->getInstList().push_back(I); 2439 2440 // If this was a terminator instruction, move to the next block. 2441 if (isa<TerminatorInst>(I)) { 2442 ++CurBBNo; 2443 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2444 } 2445 2446 // Non-void values get registered in the value table for future use. 2447 if (I && !I->getType()->isVoidTy()) 2448 ValueList.AssignValue(I, NextValueNo++); 2449 } 2450 2451 // Check the function list for unresolved values. 2452 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2453 if (A->getParent() == 0) { 2454 // We found at least one unresolved value. Nuke them all to avoid leaks. 2455 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2456 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2457 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2458 delete A; 2459 } 2460 } 2461 return Error("Never resolved value found in function!"); 2462 } 2463 } 2464 2465 // FIXME: Check for unresolved forward-declared metadata references 2466 // and clean up leaks. 2467 2468 // See if anything took the address of blocks in this function. If so, 2469 // resolve them now. 2470 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2471 BlockAddrFwdRefs.find(F); 2472 if (BAFRI != BlockAddrFwdRefs.end()) { 2473 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2474 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2475 unsigned BlockIdx = RefList[i].first; 2476 if (BlockIdx >= FunctionBBs.size()) 2477 return Error("Invalid blockaddress block #"); 2478 2479 GlobalVariable *FwdRef = RefList[i].second; 2480 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2481 FwdRef->eraseFromParent(); 2482 } 2483 2484 BlockAddrFwdRefs.erase(BAFRI); 2485 } 2486 2487 // FIXME: Remove this in LLVM 3.0. 2488 unsigned NewMDValueListSize = MDValueList.size(); 2489 2490 // Trim the value list down to the size it was before we parsed this function. 2491 ValueList.shrinkTo(ModuleValueListSize); 2492 MDValueList.shrinkTo(ModuleMDValueListSize); 2493 2494 // Backwards compatibility hack: Function-local metadata numbers 2495 // were previously not reset between functions. This is now fixed, 2496 // however we still need to understand the old numbering in order 2497 // to be able to read old bitcode files. 2498 // FIXME: Remove this in LLVM 3.0. 2499 if (LLVM2_7MetadataDetected) 2500 MDValueList.resize(NewMDValueListSize); 2501 2502 std::vector<BasicBlock*>().swap(FunctionBBs); 2503 2504 return false; 2505 } 2506 2507 //===----------------------------------------------------------------------===// 2508 // GVMaterializer implementation 2509 //===----------------------------------------------------------------------===// 2510 2511 2512 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2513 if (const Function *F = dyn_cast<Function>(GV)) { 2514 return F->isDeclaration() && 2515 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2516 } 2517 return false; 2518 } 2519 2520 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2521 Function *F = dyn_cast<Function>(GV); 2522 // If it's not a function or is already material, ignore the request. 2523 if (!F || !F->isMaterializable()) return false; 2524 2525 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2526 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2527 2528 // Move the bit stream to the saved position of the deferred function body. 2529 Stream.JumpToBit(DFII->second); 2530 2531 if (ParseFunctionBody(F)) { 2532 if (ErrInfo) *ErrInfo = ErrorString; 2533 return true; 2534 } 2535 2536 // Upgrade any old intrinsic calls in the function. 2537 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2538 E = UpgradedIntrinsics.end(); I != E; ++I) { 2539 if (I->first != I->second) { 2540 for (Value::use_iterator UI = I->first->use_begin(), 2541 UE = I->first->use_end(); UI != UE; ) { 2542 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2543 UpgradeIntrinsicCall(CI, I->second); 2544 } 2545 } 2546 } 2547 2548 return false; 2549 } 2550 2551 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2552 const Function *F = dyn_cast<Function>(GV); 2553 if (!F || F->isDeclaration()) 2554 return false; 2555 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2556 } 2557 2558 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2559 Function *F = dyn_cast<Function>(GV); 2560 // If this function isn't dematerializable, this is a noop. 2561 if (!F || !isDematerializable(F)) 2562 return; 2563 2564 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2565 2566 // Just forget the function body, we can remat it later. 2567 F->deleteBody(); 2568 } 2569 2570 2571 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2572 assert(M == TheModule && 2573 "Can only Materialize the Module this BitcodeReader is attached to."); 2574 // Iterate over the module, deserializing any functions that are still on 2575 // disk. 2576 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2577 F != E; ++F) 2578 if (F->isMaterializable() && 2579 Materialize(F, ErrInfo)) 2580 return true; 2581 2582 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2583 // delete the old functions to clean up. We can't do this unless the entire 2584 // module is materialized because there could always be another function body 2585 // with calls to the old function. 2586 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2587 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2588 if (I->first != I->second) { 2589 for (Value::use_iterator UI = I->first->use_begin(), 2590 UE = I->first->use_end(); UI != UE; ) { 2591 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2592 UpgradeIntrinsicCall(CI, I->second); 2593 } 2594 if (!I->first->use_empty()) 2595 I->first->replaceAllUsesWith(I->second); 2596 I->first->eraseFromParent(); 2597 } 2598 } 2599 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2600 2601 // Check debug info intrinsics. 2602 CheckDebugInfoIntrinsics(TheModule); 2603 2604 return false; 2605 } 2606 2607 2608 //===----------------------------------------------------------------------===// 2609 // External interface 2610 //===----------------------------------------------------------------------===// 2611 2612 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2613 /// 2614 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2615 LLVMContext& Context, 2616 std::string *ErrMsg) { 2617 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2618 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2619 M->setMaterializer(R); 2620 if (R->ParseBitcodeInto(M)) { 2621 if (ErrMsg) 2622 *ErrMsg = R->getErrorString(); 2623 2624 delete M; // Also deletes R. 2625 return 0; 2626 } 2627 // Have the BitcodeReader dtor delete 'Buffer'. 2628 R->setBufferOwned(true); 2629 return M; 2630 } 2631 2632 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2633 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2634 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2635 std::string *ErrMsg){ 2636 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2637 if (!M) return 0; 2638 2639 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2640 // there was an error. 2641 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2642 2643 // Read in the entire module, and destroy the BitcodeReader. 2644 if (M->MaterializeAllPermanently(ErrMsg)) { 2645 delete M; 2646 return 0; 2647 } 2648 2649 return M; 2650 } 2651 2652 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2653 LLVMContext& Context, 2654 std::string *ErrMsg) { 2655 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2656 // Don't let the BitcodeReader dtor delete 'Buffer'. 2657 R->setBufferOwned(false); 2658 2659 std::string Triple(""); 2660 if (R->ParseTriple(Triple)) 2661 if (ErrMsg) 2662 *ErrMsg = R->getErrorString(); 2663 2664 delete R; 2665 return Triple; 2666 } 2667