1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 LLVMContext &Context; 118 public: 119 BitcodeReaderMetadataList(LLVMContext &C) 120 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 121 122 // vector compatibility methods 123 unsigned size() const { return MetadataPtrs.size(); } 124 void resize(unsigned N) { MetadataPtrs.resize(N); } 125 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 126 void clear() { MetadataPtrs.clear(); } 127 Metadata *back() const { return MetadataPtrs.back(); } 128 void pop_back() { MetadataPtrs.pop_back(); } 129 bool empty() const { return MetadataPtrs.empty(); } 130 131 Metadata *operator[](unsigned i) const { 132 assert(i < MetadataPtrs.size()); 133 return MetadataPtrs[i]; 134 } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 assert(!AnyFwdRefs && "Unexpected forward refs"); 139 MetadataPtrs.resize(N); 140 } 141 142 Metadata *getMetadataFwdRef(unsigned Idx); 143 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 144 void assignValue(Metadata *MD, unsigned Idx); 145 void tryToResolveCycles(); 146 bool hasFwdRefs() const { return AnyFwdRefs; } 147 }; 148 149 class BitcodeReader : public GVMaterializer { 150 LLVMContext &Context; 151 Module *TheModule = nullptr; 152 std::unique_ptr<MemoryBuffer> Buffer; 153 std::unique_ptr<BitstreamReader> StreamFile; 154 BitstreamCursor Stream; 155 // Next offset to start scanning for lazy parsing of function bodies. 156 uint64_t NextUnreadBit = 0; 157 // Last function offset found in the VST. 158 uint64_t LastFunctionBlockBit = 0; 159 bool SeenValueSymbolTable = false; 160 uint64_t VSTOffset = 0; 161 // Contains an arbitrary and optional string identifying the bitcode producer 162 std::string ProducerIdentification; 163 164 std::vector<Type*> TypeList; 165 BitcodeReaderValueList ValueList; 166 BitcodeReaderMetadataList MetadataList; 167 std::vector<Comdat *> ComdatList; 168 SmallVector<Instruction *, 64> InstructionList; 169 170 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 171 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 172 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 173 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 174 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 175 176 SmallVector<Instruction*, 64> InstsWithTBAATag; 177 178 bool HasSeenOldLoopTags = false; 179 180 /// The set of attributes by index. Index zero in the file is for null, and 181 /// is thus not represented here. As such all indices are off by one. 182 std::vector<AttributeSet> MAttributes; 183 184 /// The set of attribute groups. 185 std::map<unsigned, AttributeSet> MAttributeGroups; 186 187 /// While parsing a function body, this is a list of the basic blocks for the 188 /// function. 189 std::vector<BasicBlock*> FunctionBBs; 190 191 // When reading the module header, this list is populated with functions that 192 // have bodies later in the file. 193 std::vector<Function*> FunctionsWithBodies; 194 195 // When intrinsic functions are encountered which require upgrading they are 196 // stored here with their replacement function. 197 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 198 UpgradedIntrinsicMap UpgradedIntrinsics; 199 200 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 201 DenseMap<unsigned, unsigned> MDKindMap; 202 203 // Several operations happen after the module header has been read, but 204 // before function bodies are processed. This keeps track of whether 205 // we've done this yet. 206 bool SeenFirstFunctionBody = false; 207 208 /// When function bodies are initially scanned, this map contains info about 209 /// where to find deferred function body in the stream. 210 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 211 212 /// When Metadata block is initially scanned when parsing the module, we may 213 /// choose to defer parsing of the metadata. This vector contains info about 214 /// which Metadata blocks are deferred. 215 std::vector<uint64_t> DeferredMetadataInfo; 216 217 /// These are basic blocks forward-referenced by block addresses. They are 218 /// inserted lazily into functions when they're loaded. The basic block ID is 219 /// its index into the vector. 220 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 221 std::deque<Function *> BasicBlockFwdRefQueue; 222 223 /// Indicates that we are using a new encoding for instruction operands where 224 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 225 /// instruction number, for a more compact encoding. Some instruction 226 /// operands are not relative to the instruction ID: basic block numbers, and 227 /// types. Once the old style function blocks have been phased out, we would 228 /// not need this flag. 229 bool UseRelativeIDs = false; 230 231 /// True if all functions will be materialized, negating the need to process 232 /// (e.g.) blockaddress forward references. 233 bool WillMaterializeAllForwardRefs = false; 234 235 /// True if any Metadata block has been materialized. 236 bool IsMetadataMaterialized = false; 237 238 bool StripDebugInfo = false; 239 240 /// Functions that need to be matched with subprograms when upgrading old 241 /// metadata. 242 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 243 244 std::vector<std::string> BundleTags; 245 246 public: 247 std::error_code error(BitcodeError E, const Twine &Message); 248 std::error_code error(BitcodeError E); 249 std::error_code error(const Twine &Message); 250 251 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 252 BitcodeReader(LLVMContext &Context); 253 ~BitcodeReader() override { freeState(); } 254 255 std::error_code materializeForwardReferencedFunctions(); 256 257 void freeState(); 258 259 void releaseBuffer(); 260 261 std::error_code materialize(GlobalValue *GV) override; 262 std::error_code materializeModule() override; 263 std::vector<StructType *> getIdentifiedStructTypes() const override; 264 265 /// \brief Main interface to parsing a bitcode buffer. 266 /// \returns true if an error occurred. 267 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 268 Module *M, 269 bool ShouldLazyLoadMetadata = false); 270 271 /// \brief Cheap mechanism to just extract module triple 272 /// \returns true if an error occurred. 273 ErrorOr<std::string> parseTriple(); 274 275 /// Cheap mechanism to just extract the identification block out of bitcode. 276 ErrorOr<std::string> parseIdentificationBlock(); 277 278 static uint64_t decodeSignRotatedValue(uint64_t V); 279 280 /// Materialize any deferred Metadata block. 281 std::error_code materializeMetadata() override; 282 283 void setStripDebugInfo() override; 284 285 private: 286 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 287 // ProducerIdentification data member, and do some basic enforcement on the 288 // "epoch" encoded in the bitcode. 289 std::error_code parseBitcodeVersion(); 290 291 std::vector<StructType *> IdentifiedStructTypes; 292 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 293 StructType *createIdentifiedStructType(LLVMContext &Context); 294 295 Type *getTypeByID(unsigned ID); 296 Value *getFnValueByID(unsigned ID, Type *Ty) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MetadataList.getMetadataFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal) { 343 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 344 return true; 345 // All values currently take a single record slot. 346 ++Slot; 347 return false; 348 } 349 350 /// Like popValue, but does not increment the Slot number. 351 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 352 unsigned InstNum, Type *Ty, Value *&ResVal) { 353 ResVal = getValue(Record, Slot, InstNum, Ty); 354 return ResVal == nullptr; 355 } 356 357 /// Version of getValue that returns ResVal directly, or 0 if there is an 358 /// error. 359 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 360 unsigned InstNum, Type *Ty) { 361 if (Slot == Record.size()) return nullptr; 362 unsigned ValNo = (unsigned)Record[Slot]; 363 // Adjust the ValNo, if it was encoded relative to the InstNum. 364 if (UseRelativeIDs) 365 ValNo = InstNum - ValNo; 366 return getFnValueByID(ValNo, Ty); 367 } 368 369 /// Like getValue, but decodes signed VBRs. 370 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 371 unsigned InstNum, Type *Ty) { 372 if (Slot == Record.size()) return nullptr; 373 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 374 // Adjust the ValNo, if it was encoded relative to the InstNum. 375 if (UseRelativeIDs) 376 ValNo = InstNum - ValNo; 377 return getFnValueByID(ValNo, Ty); 378 } 379 380 /// Converts alignment exponent (i.e. power of two (or zero)) to the 381 /// corresponding alignment to use. If alignment is too large, returns 382 /// a corresponding error code. 383 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 384 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 385 std::error_code parseModule(uint64_t ResumeBit, 386 bool ShouldLazyLoadMetadata = false); 387 std::error_code parseAttributeBlock(); 388 std::error_code parseAttributeGroupBlock(); 389 std::error_code parseTypeTable(); 390 std::error_code parseTypeTableBody(); 391 std::error_code parseOperandBundleTags(); 392 393 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 394 unsigned NameIndex, Triple &TT); 395 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 396 std::error_code parseConstants(); 397 std::error_code rememberAndSkipFunctionBodies(); 398 std::error_code rememberAndSkipFunctionBody(); 399 /// Save the positions of the Metadata blocks and skip parsing the blocks. 400 std::error_code rememberAndSkipMetadata(); 401 std::error_code parseFunctionBody(Function *F); 402 std::error_code globalCleanup(); 403 std::error_code resolveGlobalAndIndirectSymbolInits(); 404 std::error_code parseMetadata(bool ModuleLevel = false); 405 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 406 StringRef Blob, 407 unsigned &NextMetadataNo); 408 std::error_code parseMetadataKinds(); 409 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 410 std::error_code parseMetadataAttachment(Function &F); 411 ErrorOr<std::string> parseModuleTriple(); 412 std::error_code parseUseLists(); 413 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code initStreamFromBuffer(); 415 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 416 std::error_code findFunctionInStream( 417 Function *F, 418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 419 }; 420 421 /// Class to manage reading and parsing function summary index bitcode 422 /// files/sections. 423 class ModuleSummaryIndexBitcodeReader { 424 DiagnosticHandlerFunction DiagnosticHandler; 425 426 /// Eventually points to the module index built during parsing. 427 ModuleSummaryIndex *TheIndex = nullptr; 428 429 std::unique_ptr<MemoryBuffer> Buffer; 430 std::unique_ptr<BitstreamReader> StreamFile; 431 BitstreamCursor Stream; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the global value summary bitcode section. All blocks are skipped, 435 /// but the SeenGlobalValSummary boolean is set. 436 bool CheckGlobalValSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a global value summary section 439 /// yet during parsing, used when checking if file contains global value 440 /// summary section. 441 bool SeenGlobalValSummary = false; 442 443 /// Indicates whether we have already parsed the VST, used for error checking. 444 bool SeenValueSymbolTable = false; 445 446 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 447 /// Used to enable on-demand parsing of the VST. 448 uint64_t VSTOffset = 0; 449 450 // Map to save ValueId to GUID association that was recorded in the 451 // ValueSymbolTable. It is used after the VST is parsed to convert 452 // call graph edges read from the function summary from referencing 453 // callees by their ValueId to using the GUID instead, which is how 454 // they are recorded in the summary index being built. 455 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 456 457 /// Map to save the association between summary offset in the VST to the 458 /// GlobalValueInfo object created when parsing it. Used to access the 459 /// info object when parsing the summary section. 460 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 461 462 /// Map populated during module path string table parsing, from the 463 /// module ID to a string reference owned by the index's module 464 /// path string table, used to correlate with combined index 465 /// summary records. 466 DenseMap<uint64_t, StringRef> ModuleIdMap; 467 468 /// Original source file name recorded in a bitcode record. 469 std::string SourceFileName; 470 471 public: 472 std::error_code error(BitcodeError E, const Twine &Message); 473 std::error_code error(BitcodeError E); 474 std::error_code error(const Twine &Message); 475 476 ModuleSummaryIndexBitcodeReader( 477 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 478 bool CheckGlobalValSummaryPresenceOnly = false); 479 ModuleSummaryIndexBitcodeReader( 480 DiagnosticHandlerFunction DiagnosticHandler, 481 bool CheckGlobalValSummaryPresenceOnly = false); 482 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 483 484 void freeState(); 485 486 void releaseBuffer(); 487 488 /// Check if the parser has encountered a summary section. 489 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 490 491 /// \brief Main interface to parsing a bitcode buffer. 492 /// \returns true if an error occurred. 493 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 494 ModuleSummaryIndex *I); 495 496 /// \brief Interface for parsing a summary lazily. 497 std::error_code 498 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 499 ModuleSummaryIndex *I, size_t SummaryOffset); 500 501 private: 502 std::error_code parseModule(); 503 std::error_code parseValueSymbolTable( 504 uint64_t Offset, 505 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 506 std::error_code parseEntireSummary(); 507 std::error_code parseModuleStringTable(); 508 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 509 std::error_code initStreamFromBuffer(); 510 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 511 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 512 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 513 }; 514 } // end anonymous namespace 515 516 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 517 DiagnosticSeverity Severity, 518 const Twine &Msg) 519 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 520 521 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 522 523 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 524 std::error_code EC, const Twine &Message) { 525 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 526 DiagnosticHandler(DI); 527 return EC; 528 } 529 530 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 531 std::error_code EC) { 532 return error(DiagnosticHandler, EC, EC.message()); 533 } 534 535 static std::error_code error(LLVMContext &Context, std::error_code EC, 536 const Twine &Message) { 537 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 538 Message); 539 } 540 541 static std::error_code error(LLVMContext &Context, std::error_code EC) { 542 return error(Context, EC, EC.message()); 543 } 544 545 static std::error_code error(LLVMContext &Context, const Twine &Message) { 546 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 547 Message); 548 } 549 550 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 551 if (!ProducerIdentification.empty()) { 552 return ::error(Context, make_error_code(E), 553 Message + " (Producer: '" + ProducerIdentification + 554 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 555 } 556 return ::error(Context, make_error_code(E), Message); 557 } 558 559 std::error_code BitcodeReader::error(const Twine &Message) { 560 if (!ProducerIdentification.empty()) { 561 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 562 Message + " (Producer: '" + ProducerIdentification + 563 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 564 } 565 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 566 Message); 567 } 568 569 std::error_code BitcodeReader::error(BitcodeError E) { 570 return ::error(Context, make_error_code(E)); 571 } 572 573 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 574 : Context(Context), Buffer(Buffer), ValueList(Context), 575 MetadataList(Context) {} 576 577 BitcodeReader::BitcodeReader(LLVMContext &Context) 578 : Context(Context), Buffer(nullptr), ValueList(Context), 579 MetadataList(Context) {} 580 581 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 582 if (WillMaterializeAllForwardRefs) 583 return std::error_code(); 584 585 // Prevent recursion. 586 WillMaterializeAllForwardRefs = true; 587 588 while (!BasicBlockFwdRefQueue.empty()) { 589 Function *F = BasicBlockFwdRefQueue.front(); 590 BasicBlockFwdRefQueue.pop_front(); 591 assert(F && "Expected valid function"); 592 if (!BasicBlockFwdRefs.count(F)) 593 // Already materialized. 594 continue; 595 596 // Check for a function that isn't materializable to prevent an infinite 597 // loop. When parsing a blockaddress stored in a global variable, there 598 // isn't a trivial way to check if a function will have a body without a 599 // linear search through FunctionsWithBodies, so just check it here. 600 if (!F->isMaterializable()) 601 return error("Never resolved function from blockaddress"); 602 603 // Try to materialize F. 604 if (std::error_code EC = materialize(F)) 605 return EC; 606 } 607 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 608 609 // Reset state. 610 WillMaterializeAllForwardRefs = false; 611 return std::error_code(); 612 } 613 614 void BitcodeReader::freeState() { 615 Buffer = nullptr; 616 std::vector<Type*>().swap(TypeList); 617 ValueList.clear(); 618 MetadataList.clear(); 619 std::vector<Comdat *>().swap(ComdatList); 620 621 std::vector<AttributeSet>().swap(MAttributes); 622 std::vector<BasicBlock*>().swap(FunctionBBs); 623 std::vector<Function*>().swap(FunctionsWithBodies); 624 DeferredFunctionInfo.clear(); 625 DeferredMetadataInfo.clear(); 626 MDKindMap.clear(); 627 628 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 629 BasicBlockFwdRefQueue.clear(); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // Helper functions to implement forward reference resolution, etc. 634 //===----------------------------------------------------------------------===// 635 636 /// Convert a string from a record into an std::string, return true on failure. 637 template <typename StrTy> 638 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 639 StrTy &Result) { 640 if (Idx > Record.size()) 641 return true; 642 643 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 644 Result += (char)Record[i]; 645 return false; 646 } 647 648 static bool hasImplicitComdat(size_t Val) { 649 switch (Val) { 650 default: 651 return false; 652 case 1: // Old WeakAnyLinkage 653 case 4: // Old LinkOnceAnyLinkage 654 case 10: // Old WeakODRLinkage 655 case 11: // Old LinkOnceODRLinkage 656 return true; 657 } 658 } 659 660 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 661 switch (Val) { 662 default: // Map unknown/new linkages to external 663 case 0: 664 return GlobalValue::ExternalLinkage; 665 case 2: 666 return GlobalValue::AppendingLinkage; 667 case 3: 668 return GlobalValue::InternalLinkage; 669 case 5: 670 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 671 case 6: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 673 case 7: 674 return GlobalValue::ExternalWeakLinkage; 675 case 8: 676 return GlobalValue::CommonLinkage; 677 case 9: 678 return GlobalValue::PrivateLinkage; 679 case 12: 680 return GlobalValue::AvailableExternallyLinkage; 681 case 13: 682 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 683 case 14: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 685 case 15: 686 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 687 case 1: // Old value with implicit comdat. 688 case 16: 689 return GlobalValue::WeakAnyLinkage; 690 case 10: // Old value with implicit comdat. 691 case 17: 692 return GlobalValue::WeakODRLinkage; 693 case 4: // Old value with implicit comdat. 694 case 18: 695 return GlobalValue::LinkOnceAnyLinkage; 696 case 11: // Old value with implicit comdat. 697 case 19: 698 return GlobalValue::LinkOnceODRLinkage; 699 } 700 } 701 702 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 703 switch (Val) { 704 default: // Map unknown visibilities to default. 705 case 0: return GlobalValue::DefaultVisibility; 706 case 1: return GlobalValue::HiddenVisibility; 707 case 2: return GlobalValue::ProtectedVisibility; 708 } 709 } 710 711 static GlobalValue::DLLStorageClassTypes 712 getDecodedDLLStorageClass(unsigned Val) { 713 switch (Val) { 714 default: // Map unknown values to default. 715 case 0: return GlobalValue::DefaultStorageClass; 716 case 1: return GlobalValue::DLLImportStorageClass; 717 case 2: return GlobalValue::DLLExportStorageClass; 718 } 719 } 720 721 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 722 switch (Val) { 723 case 0: return GlobalVariable::NotThreadLocal; 724 default: // Map unknown non-zero value to general dynamic. 725 case 1: return GlobalVariable::GeneralDynamicTLSModel; 726 case 2: return GlobalVariable::LocalDynamicTLSModel; 727 case 3: return GlobalVariable::InitialExecTLSModel; 728 case 4: return GlobalVariable::LocalExecTLSModel; 729 } 730 } 731 732 static int getDecodedCastOpcode(unsigned Val) { 733 switch (Val) { 734 default: return -1; 735 case bitc::CAST_TRUNC : return Instruction::Trunc; 736 case bitc::CAST_ZEXT : return Instruction::ZExt; 737 case bitc::CAST_SEXT : return Instruction::SExt; 738 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 739 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 740 case bitc::CAST_UITOFP : return Instruction::UIToFP; 741 case bitc::CAST_SITOFP : return Instruction::SIToFP; 742 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 743 case bitc::CAST_FPEXT : return Instruction::FPExt; 744 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 745 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 746 case bitc::CAST_BITCAST : return Instruction::BitCast; 747 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 748 } 749 } 750 751 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 752 bool IsFP = Ty->isFPOrFPVectorTy(); 753 // BinOps are only valid for int/fp or vector of int/fp types 754 if (!IsFP && !Ty->isIntOrIntVectorTy()) 755 return -1; 756 757 switch (Val) { 758 default: 759 return -1; 760 case bitc::BINOP_ADD: 761 return IsFP ? Instruction::FAdd : Instruction::Add; 762 case bitc::BINOP_SUB: 763 return IsFP ? Instruction::FSub : Instruction::Sub; 764 case bitc::BINOP_MUL: 765 return IsFP ? Instruction::FMul : Instruction::Mul; 766 case bitc::BINOP_UDIV: 767 return IsFP ? -1 : Instruction::UDiv; 768 case bitc::BINOP_SDIV: 769 return IsFP ? Instruction::FDiv : Instruction::SDiv; 770 case bitc::BINOP_UREM: 771 return IsFP ? -1 : Instruction::URem; 772 case bitc::BINOP_SREM: 773 return IsFP ? Instruction::FRem : Instruction::SRem; 774 case bitc::BINOP_SHL: 775 return IsFP ? -1 : Instruction::Shl; 776 case bitc::BINOP_LSHR: 777 return IsFP ? -1 : Instruction::LShr; 778 case bitc::BINOP_ASHR: 779 return IsFP ? -1 : Instruction::AShr; 780 case bitc::BINOP_AND: 781 return IsFP ? -1 : Instruction::And; 782 case bitc::BINOP_OR: 783 return IsFP ? -1 : Instruction::Or; 784 case bitc::BINOP_XOR: 785 return IsFP ? -1 : Instruction::Xor; 786 } 787 } 788 789 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 790 switch (Val) { 791 default: return AtomicRMWInst::BAD_BINOP; 792 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 793 case bitc::RMW_ADD: return AtomicRMWInst::Add; 794 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 795 case bitc::RMW_AND: return AtomicRMWInst::And; 796 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 797 case bitc::RMW_OR: return AtomicRMWInst::Or; 798 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 799 case bitc::RMW_MAX: return AtomicRMWInst::Max; 800 case bitc::RMW_MIN: return AtomicRMWInst::Min; 801 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 802 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 803 } 804 } 805 806 static AtomicOrdering getDecodedOrdering(unsigned Val) { 807 switch (Val) { 808 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 809 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 810 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 811 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 812 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 813 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 814 default: // Map unknown orderings to sequentially-consistent. 815 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 816 } 817 } 818 819 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 820 switch (Val) { 821 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 822 default: // Map unknown scopes to cross-thread. 823 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 824 } 825 } 826 827 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 828 switch (Val) { 829 default: // Map unknown selection kinds to any. 830 case bitc::COMDAT_SELECTION_KIND_ANY: 831 return Comdat::Any; 832 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 833 return Comdat::ExactMatch; 834 case bitc::COMDAT_SELECTION_KIND_LARGEST: 835 return Comdat::Largest; 836 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 837 return Comdat::NoDuplicates; 838 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 839 return Comdat::SameSize; 840 } 841 } 842 843 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 844 FastMathFlags FMF; 845 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 846 FMF.setUnsafeAlgebra(); 847 if (0 != (Val & FastMathFlags::NoNaNs)) 848 FMF.setNoNaNs(); 849 if (0 != (Val & FastMathFlags::NoInfs)) 850 FMF.setNoInfs(); 851 if (0 != (Val & FastMathFlags::NoSignedZeros)) 852 FMF.setNoSignedZeros(); 853 if (0 != (Val & FastMathFlags::AllowReciprocal)) 854 FMF.setAllowReciprocal(); 855 return FMF; 856 } 857 858 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 859 switch (Val) { 860 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 861 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 862 } 863 } 864 865 namespace llvm { 866 namespace { 867 /// \brief A class for maintaining the slot number definition 868 /// as a placeholder for the actual definition for forward constants defs. 869 class ConstantPlaceHolder : public ConstantExpr { 870 void operator=(const ConstantPlaceHolder &) = delete; 871 872 public: 873 // allocate space for exactly one operand 874 void *operator new(size_t s) { return User::operator new(s, 1); } 875 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 876 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 877 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 878 } 879 880 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 881 static bool classof(const Value *V) { 882 return isa<ConstantExpr>(V) && 883 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 884 } 885 886 /// Provide fast operand accessors 887 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 888 }; 889 } // end anonymous namespace 890 891 // FIXME: can we inherit this from ConstantExpr? 892 template <> 893 struct OperandTraits<ConstantPlaceHolder> : 894 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 895 }; 896 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 897 } // end namespace llvm 898 899 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 900 if (Idx == size()) { 901 push_back(V); 902 return; 903 } 904 905 if (Idx >= size()) 906 resize(Idx+1); 907 908 WeakVH &OldV = ValuePtrs[Idx]; 909 if (!OldV) { 910 OldV = V; 911 return; 912 } 913 914 // Handle constants and non-constants (e.g. instrs) differently for 915 // efficiency. 916 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 917 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 918 OldV = V; 919 } else { 920 // If there was a forward reference to this value, replace it. 921 Value *PrevVal = OldV; 922 OldV->replaceAllUsesWith(V); 923 delete PrevVal; 924 } 925 } 926 927 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 928 Type *Ty) { 929 if (Idx >= size()) 930 resize(Idx + 1); 931 932 if (Value *V = ValuePtrs[Idx]) { 933 if (Ty != V->getType()) 934 report_fatal_error("Type mismatch in constant table!"); 935 return cast<Constant>(V); 936 } 937 938 // Create and return a placeholder, which will later be RAUW'd. 939 Constant *C = new ConstantPlaceHolder(Ty, Context); 940 ValuePtrs[Idx] = C; 941 return C; 942 } 943 944 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 945 // Bail out for a clearly invalid value. This would make us call resize(0) 946 if (Idx == UINT_MAX) 947 return nullptr; 948 949 if (Idx >= size()) 950 resize(Idx + 1); 951 952 if (Value *V = ValuePtrs[Idx]) { 953 // If the types don't match, it's invalid. 954 if (Ty && Ty != V->getType()) 955 return nullptr; 956 return V; 957 } 958 959 // No type specified, must be invalid reference. 960 if (!Ty) return nullptr; 961 962 // Create and return a placeholder, which will later be RAUW'd. 963 Value *V = new Argument(Ty); 964 ValuePtrs[Idx] = V; 965 return V; 966 } 967 968 /// Once all constants are read, this method bulk resolves any forward 969 /// references. The idea behind this is that we sometimes get constants (such 970 /// as large arrays) which reference *many* forward ref constants. Replacing 971 /// each of these causes a lot of thrashing when building/reuniquing the 972 /// constant. Instead of doing this, we look at all the uses and rewrite all 973 /// the place holders at once for any constant that uses a placeholder. 974 void BitcodeReaderValueList::resolveConstantForwardRefs() { 975 // Sort the values by-pointer so that they are efficient to look up with a 976 // binary search. 977 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 978 979 SmallVector<Constant*, 64> NewOps; 980 981 while (!ResolveConstants.empty()) { 982 Value *RealVal = operator[](ResolveConstants.back().second); 983 Constant *Placeholder = ResolveConstants.back().first; 984 ResolveConstants.pop_back(); 985 986 // Loop over all users of the placeholder, updating them to reference the 987 // new value. If they reference more than one placeholder, update them all 988 // at once. 989 while (!Placeholder->use_empty()) { 990 auto UI = Placeholder->user_begin(); 991 User *U = *UI; 992 993 // If the using object isn't uniqued, just update the operands. This 994 // handles instructions and initializers for global variables. 995 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 996 UI.getUse().set(RealVal); 997 continue; 998 } 999 1000 // Otherwise, we have a constant that uses the placeholder. Replace that 1001 // constant with a new constant that has *all* placeholder uses updated. 1002 Constant *UserC = cast<Constant>(U); 1003 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1004 I != E; ++I) { 1005 Value *NewOp; 1006 if (!isa<ConstantPlaceHolder>(*I)) { 1007 // Not a placeholder reference. 1008 NewOp = *I; 1009 } else if (*I == Placeholder) { 1010 // Common case is that it just references this one placeholder. 1011 NewOp = RealVal; 1012 } else { 1013 // Otherwise, look up the placeholder in ResolveConstants. 1014 ResolveConstantsTy::iterator It = 1015 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1016 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1017 0)); 1018 assert(It != ResolveConstants.end() && It->first == *I); 1019 NewOp = operator[](It->second); 1020 } 1021 1022 NewOps.push_back(cast<Constant>(NewOp)); 1023 } 1024 1025 // Make the new constant. 1026 Constant *NewC; 1027 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1028 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1029 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1030 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1031 } else if (isa<ConstantVector>(UserC)) { 1032 NewC = ConstantVector::get(NewOps); 1033 } else { 1034 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1035 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1036 } 1037 1038 UserC->replaceAllUsesWith(NewC); 1039 UserC->destroyConstant(); 1040 NewOps.clear(); 1041 } 1042 1043 // Update all ValueHandles, they should be the only users at this point. 1044 Placeholder->replaceAllUsesWith(RealVal); 1045 delete Placeholder; 1046 } 1047 } 1048 1049 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1050 if (Idx == size()) { 1051 push_back(MD); 1052 return; 1053 } 1054 1055 if (Idx >= size()) 1056 resize(Idx+1); 1057 1058 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1059 if (!OldMD) { 1060 OldMD.reset(MD); 1061 return; 1062 } 1063 1064 // If there was a forward reference to this value, replace it. 1065 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1066 PrevMD->replaceAllUsesWith(MD); 1067 --NumFwdRefs; 1068 } 1069 1070 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1071 if (Idx >= size()) 1072 resize(Idx + 1); 1073 1074 if (Metadata *MD = MetadataPtrs[Idx]) 1075 return MD; 1076 1077 // Track forward refs to be resolved later. 1078 if (AnyFwdRefs) { 1079 MinFwdRef = std::min(MinFwdRef, Idx); 1080 MaxFwdRef = std::max(MaxFwdRef, Idx); 1081 } else { 1082 AnyFwdRefs = true; 1083 MinFwdRef = MaxFwdRef = Idx; 1084 } 1085 ++NumFwdRefs; 1086 1087 // Create and return a placeholder, which will later be RAUW'd. 1088 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1089 MetadataPtrs[Idx].reset(MD); 1090 return MD; 1091 } 1092 1093 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1094 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1095 } 1096 1097 void BitcodeReaderMetadataList::tryToResolveCycles() { 1098 if (!AnyFwdRefs) 1099 // Nothing to do. 1100 return; 1101 1102 if (NumFwdRefs) 1103 // Still forward references... can't resolve cycles. 1104 return; 1105 1106 // Resolve any cycles. 1107 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1108 auto &MD = MetadataPtrs[I]; 1109 auto *N = dyn_cast_or_null<MDNode>(MD); 1110 if (!N) 1111 continue; 1112 1113 assert(!N->isTemporary() && "Unexpected forward reference"); 1114 N->resolveCycles(); 1115 } 1116 1117 // Make sure we return early again until there's another forward ref. 1118 AnyFwdRefs = false; 1119 } 1120 1121 Type *BitcodeReader::getTypeByID(unsigned ID) { 1122 // The type table size is always specified correctly. 1123 if (ID >= TypeList.size()) 1124 return nullptr; 1125 1126 if (Type *Ty = TypeList[ID]) 1127 return Ty; 1128 1129 // If we have a forward reference, the only possible case is when it is to a 1130 // named struct. Just create a placeholder for now. 1131 return TypeList[ID] = createIdentifiedStructType(Context); 1132 } 1133 1134 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1135 StringRef Name) { 1136 auto *Ret = StructType::create(Context, Name); 1137 IdentifiedStructTypes.push_back(Ret); 1138 return Ret; 1139 } 1140 1141 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1142 auto *Ret = StructType::create(Context); 1143 IdentifiedStructTypes.push_back(Ret); 1144 return Ret; 1145 } 1146 1147 //===----------------------------------------------------------------------===// 1148 // Functions for parsing blocks from the bitcode file 1149 //===----------------------------------------------------------------------===// 1150 1151 1152 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1153 /// been decoded from the given integer. This function must stay in sync with 1154 /// 'encodeLLVMAttributesForBitcode'. 1155 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1156 uint64_t EncodedAttrs) { 1157 // FIXME: Remove in 4.0. 1158 1159 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1160 // the bits above 31 down by 11 bits. 1161 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1162 assert((!Alignment || isPowerOf2_32(Alignment)) && 1163 "Alignment must be a power of two."); 1164 1165 if (Alignment) 1166 B.addAlignmentAttr(Alignment); 1167 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1168 (EncodedAttrs & 0xffff)); 1169 } 1170 1171 std::error_code BitcodeReader::parseAttributeBlock() { 1172 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1173 return error("Invalid record"); 1174 1175 if (!MAttributes.empty()) 1176 return error("Invalid multiple blocks"); 1177 1178 SmallVector<uint64_t, 64> Record; 1179 1180 SmallVector<AttributeSet, 8> Attrs; 1181 1182 // Read all the records. 1183 while (1) { 1184 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1185 1186 switch (Entry.Kind) { 1187 case BitstreamEntry::SubBlock: // Handled for us already. 1188 case BitstreamEntry::Error: 1189 return error("Malformed block"); 1190 case BitstreamEntry::EndBlock: 1191 return std::error_code(); 1192 case BitstreamEntry::Record: 1193 // The interesting case. 1194 break; 1195 } 1196 1197 // Read a record. 1198 Record.clear(); 1199 switch (Stream.readRecord(Entry.ID, Record)) { 1200 default: // Default behavior: ignore. 1201 break; 1202 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1203 // FIXME: Remove in 4.0. 1204 if (Record.size() & 1) 1205 return error("Invalid record"); 1206 1207 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1208 AttrBuilder B; 1209 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1210 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1211 } 1212 1213 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1214 Attrs.clear(); 1215 break; 1216 } 1217 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1218 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1219 Attrs.push_back(MAttributeGroups[Record[i]]); 1220 1221 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1222 Attrs.clear(); 1223 break; 1224 } 1225 } 1226 } 1227 } 1228 1229 // Returns Attribute::None on unrecognized codes. 1230 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1231 switch (Code) { 1232 default: 1233 return Attribute::None; 1234 case bitc::ATTR_KIND_ALIGNMENT: 1235 return Attribute::Alignment; 1236 case bitc::ATTR_KIND_ALWAYS_INLINE: 1237 return Attribute::AlwaysInline; 1238 case bitc::ATTR_KIND_ARGMEMONLY: 1239 return Attribute::ArgMemOnly; 1240 case bitc::ATTR_KIND_BUILTIN: 1241 return Attribute::Builtin; 1242 case bitc::ATTR_KIND_BY_VAL: 1243 return Attribute::ByVal; 1244 case bitc::ATTR_KIND_IN_ALLOCA: 1245 return Attribute::InAlloca; 1246 case bitc::ATTR_KIND_COLD: 1247 return Attribute::Cold; 1248 case bitc::ATTR_KIND_CONVERGENT: 1249 return Attribute::Convergent; 1250 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1251 return Attribute::InaccessibleMemOnly; 1252 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1253 return Attribute::InaccessibleMemOrArgMemOnly; 1254 case bitc::ATTR_KIND_INLINE_HINT: 1255 return Attribute::InlineHint; 1256 case bitc::ATTR_KIND_IN_REG: 1257 return Attribute::InReg; 1258 case bitc::ATTR_KIND_JUMP_TABLE: 1259 return Attribute::JumpTable; 1260 case bitc::ATTR_KIND_MIN_SIZE: 1261 return Attribute::MinSize; 1262 case bitc::ATTR_KIND_NAKED: 1263 return Attribute::Naked; 1264 case bitc::ATTR_KIND_NEST: 1265 return Attribute::Nest; 1266 case bitc::ATTR_KIND_NO_ALIAS: 1267 return Attribute::NoAlias; 1268 case bitc::ATTR_KIND_NO_BUILTIN: 1269 return Attribute::NoBuiltin; 1270 case bitc::ATTR_KIND_NO_CAPTURE: 1271 return Attribute::NoCapture; 1272 case bitc::ATTR_KIND_NO_DUPLICATE: 1273 return Attribute::NoDuplicate; 1274 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1275 return Attribute::NoImplicitFloat; 1276 case bitc::ATTR_KIND_NO_INLINE: 1277 return Attribute::NoInline; 1278 case bitc::ATTR_KIND_NO_RECURSE: 1279 return Attribute::NoRecurse; 1280 case bitc::ATTR_KIND_NON_LAZY_BIND: 1281 return Attribute::NonLazyBind; 1282 case bitc::ATTR_KIND_NON_NULL: 1283 return Attribute::NonNull; 1284 case bitc::ATTR_KIND_DEREFERENCEABLE: 1285 return Attribute::Dereferenceable; 1286 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1287 return Attribute::DereferenceableOrNull; 1288 case bitc::ATTR_KIND_ALLOC_SIZE: 1289 return Attribute::AllocSize; 1290 case bitc::ATTR_KIND_NO_RED_ZONE: 1291 return Attribute::NoRedZone; 1292 case bitc::ATTR_KIND_NO_RETURN: 1293 return Attribute::NoReturn; 1294 case bitc::ATTR_KIND_NO_UNWIND: 1295 return Attribute::NoUnwind; 1296 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1297 return Attribute::OptimizeForSize; 1298 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1299 return Attribute::OptimizeNone; 1300 case bitc::ATTR_KIND_READ_NONE: 1301 return Attribute::ReadNone; 1302 case bitc::ATTR_KIND_READ_ONLY: 1303 return Attribute::ReadOnly; 1304 case bitc::ATTR_KIND_RETURNED: 1305 return Attribute::Returned; 1306 case bitc::ATTR_KIND_RETURNS_TWICE: 1307 return Attribute::ReturnsTwice; 1308 case bitc::ATTR_KIND_S_EXT: 1309 return Attribute::SExt; 1310 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1311 return Attribute::StackAlignment; 1312 case bitc::ATTR_KIND_STACK_PROTECT: 1313 return Attribute::StackProtect; 1314 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1315 return Attribute::StackProtectReq; 1316 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1317 return Attribute::StackProtectStrong; 1318 case bitc::ATTR_KIND_SAFESTACK: 1319 return Attribute::SafeStack; 1320 case bitc::ATTR_KIND_STRUCT_RET: 1321 return Attribute::StructRet; 1322 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1323 return Attribute::SanitizeAddress; 1324 case bitc::ATTR_KIND_SANITIZE_THREAD: 1325 return Attribute::SanitizeThread; 1326 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1327 return Attribute::SanitizeMemory; 1328 case bitc::ATTR_KIND_SWIFT_ERROR: 1329 return Attribute::SwiftError; 1330 case bitc::ATTR_KIND_SWIFT_SELF: 1331 return Attribute::SwiftSelf; 1332 case bitc::ATTR_KIND_UW_TABLE: 1333 return Attribute::UWTable; 1334 case bitc::ATTR_KIND_Z_EXT: 1335 return Attribute::ZExt; 1336 } 1337 } 1338 1339 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1340 unsigned &Alignment) { 1341 // Note: Alignment in bitcode files is incremented by 1, so that zero 1342 // can be used for default alignment. 1343 if (Exponent > Value::MaxAlignmentExponent + 1) 1344 return error("Invalid alignment value"); 1345 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1346 return std::error_code(); 1347 } 1348 1349 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1350 Attribute::AttrKind *Kind) { 1351 *Kind = getAttrFromCode(Code); 1352 if (*Kind == Attribute::None) 1353 return error(BitcodeError::CorruptedBitcode, 1354 "Unknown attribute kind (" + Twine(Code) + ")"); 1355 return std::error_code(); 1356 } 1357 1358 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1359 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1360 return error("Invalid record"); 1361 1362 if (!MAttributeGroups.empty()) 1363 return error("Invalid multiple blocks"); 1364 1365 SmallVector<uint64_t, 64> Record; 1366 1367 // Read all the records. 1368 while (1) { 1369 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1370 1371 switch (Entry.Kind) { 1372 case BitstreamEntry::SubBlock: // Handled for us already. 1373 case BitstreamEntry::Error: 1374 return error("Malformed block"); 1375 case BitstreamEntry::EndBlock: 1376 return std::error_code(); 1377 case BitstreamEntry::Record: 1378 // The interesting case. 1379 break; 1380 } 1381 1382 // Read a record. 1383 Record.clear(); 1384 switch (Stream.readRecord(Entry.ID, Record)) { 1385 default: // Default behavior: ignore. 1386 break; 1387 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1388 if (Record.size() < 3) 1389 return error("Invalid record"); 1390 1391 uint64_t GrpID = Record[0]; 1392 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1393 1394 AttrBuilder B; 1395 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1396 if (Record[i] == 0) { // Enum attribute 1397 Attribute::AttrKind Kind; 1398 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1399 return EC; 1400 1401 B.addAttribute(Kind); 1402 } else if (Record[i] == 1) { // Integer attribute 1403 Attribute::AttrKind Kind; 1404 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1405 return EC; 1406 if (Kind == Attribute::Alignment) 1407 B.addAlignmentAttr(Record[++i]); 1408 else if (Kind == Attribute::StackAlignment) 1409 B.addStackAlignmentAttr(Record[++i]); 1410 else if (Kind == Attribute::Dereferenceable) 1411 B.addDereferenceableAttr(Record[++i]); 1412 else if (Kind == Attribute::DereferenceableOrNull) 1413 B.addDereferenceableOrNullAttr(Record[++i]); 1414 else if (Kind == Attribute::AllocSize) 1415 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1416 } else { // String attribute 1417 assert((Record[i] == 3 || Record[i] == 4) && 1418 "Invalid attribute group entry"); 1419 bool HasValue = (Record[i++] == 4); 1420 SmallString<64> KindStr; 1421 SmallString<64> ValStr; 1422 1423 while (Record[i] != 0 && i != e) 1424 KindStr += Record[i++]; 1425 assert(Record[i] == 0 && "Kind string not null terminated"); 1426 1427 if (HasValue) { 1428 // Has a value associated with it. 1429 ++i; // Skip the '0' that terminates the "kind" string. 1430 while (Record[i] != 0 && i != e) 1431 ValStr += Record[i++]; 1432 assert(Record[i] == 0 && "Value string not null terminated"); 1433 } 1434 1435 B.addAttribute(KindStr.str(), ValStr.str()); 1436 } 1437 } 1438 1439 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1440 break; 1441 } 1442 } 1443 } 1444 } 1445 1446 std::error_code BitcodeReader::parseTypeTable() { 1447 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1448 return error("Invalid record"); 1449 1450 return parseTypeTableBody(); 1451 } 1452 1453 std::error_code BitcodeReader::parseTypeTableBody() { 1454 if (!TypeList.empty()) 1455 return error("Invalid multiple blocks"); 1456 1457 SmallVector<uint64_t, 64> Record; 1458 unsigned NumRecords = 0; 1459 1460 SmallString<64> TypeName; 1461 1462 // Read all the records for this type table. 1463 while (1) { 1464 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1465 1466 switch (Entry.Kind) { 1467 case BitstreamEntry::SubBlock: // Handled for us already. 1468 case BitstreamEntry::Error: 1469 return error("Malformed block"); 1470 case BitstreamEntry::EndBlock: 1471 if (NumRecords != TypeList.size()) 1472 return error("Malformed block"); 1473 return std::error_code(); 1474 case BitstreamEntry::Record: 1475 // The interesting case. 1476 break; 1477 } 1478 1479 // Read a record. 1480 Record.clear(); 1481 Type *ResultTy = nullptr; 1482 switch (Stream.readRecord(Entry.ID, Record)) { 1483 default: 1484 return error("Invalid value"); 1485 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1486 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1487 // type list. This allows us to reserve space. 1488 if (Record.size() < 1) 1489 return error("Invalid record"); 1490 TypeList.resize(Record[0]); 1491 continue; 1492 case bitc::TYPE_CODE_VOID: // VOID 1493 ResultTy = Type::getVoidTy(Context); 1494 break; 1495 case bitc::TYPE_CODE_HALF: // HALF 1496 ResultTy = Type::getHalfTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_FLOAT: // FLOAT 1499 ResultTy = Type::getFloatTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1502 ResultTy = Type::getDoubleTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1505 ResultTy = Type::getX86_FP80Ty(Context); 1506 break; 1507 case bitc::TYPE_CODE_FP128: // FP128 1508 ResultTy = Type::getFP128Ty(Context); 1509 break; 1510 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1511 ResultTy = Type::getPPC_FP128Ty(Context); 1512 break; 1513 case bitc::TYPE_CODE_LABEL: // LABEL 1514 ResultTy = Type::getLabelTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_METADATA: // METADATA 1517 ResultTy = Type::getMetadataTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1520 ResultTy = Type::getX86_MMXTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_TOKEN: // TOKEN 1523 ResultTy = Type::getTokenTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1526 if (Record.size() < 1) 1527 return error("Invalid record"); 1528 1529 uint64_t NumBits = Record[0]; 1530 if (NumBits < IntegerType::MIN_INT_BITS || 1531 NumBits > IntegerType::MAX_INT_BITS) 1532 return error("Bitwidth for integer type out of range"); 1533 ResultTy = IntegerType::get(Context, NumBits); 1534 break; 1535 } 1536 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1537 // [pointee type, address space] 1538 if (Record.size() < 1) 1539 return error("Invalid record"); 1540 unsigned AddressSpace = 0; 1541 if (Record.size() == 2) 1542 AddressSpace = Record[1]; 1543 ResultTy = getTypeByID(Record[0]); 1544 if (!ResultTy || 1545 !PointerType::isValidElementType(ResultTy)) 1546 return error("Invalid type"); 1547 ResultTy = PointerType::get(ResultTy, AddressSpace); 1548 break; 1549 } 1550 case bitc::TYPE_CODE_FUNCTION_OLD: { 1551 // FIXME: attrid is dead, remove it in LLVM 4.0 1552 // FUNCTION: [vararg, attrid, retty, paramty x N] 1553 if (Record.size() < 3) 1554 return error("Invalid record"); 1555 SmallVector<Type*, 8> ArgTys; 1556 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1557 if (Type *T = getTypeByID(Record[i])) 1558 ArgTys.push_back(T); 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[2]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-3) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_FUNCTION: { 1571 // FUNCTION: [vararg, retty, paramty x N] 1572 if (Record.size() < 2) 1573 return error("Invalid record"); 1574 SmallVector<Type*, 8> ArgTys; 1575 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1576 if (Type *T = getTypeByID(Record[i])) { 1577 if (!FunctionType::isValidArgumentType(T)) 1578 return error("Invalid function argument type"); 1579 ArgTys.push_back(T); 1580 } 1581 else 1582 break; 1583 } 1584 1585 ResultTy = getTypeByID(Record[1]); 1586 if (!ResultTy || ArgTys.size() < Record.size()-2) 1587 return error("Invalid type"); 1588 1589 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1590 break; 1591 } 1592 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1593 if (Record.size() < 1) 1594 return error("Invalid record"); 1595 SmallVector<Type*, 8> EltTys; 1596 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1597 if (Type *T = getTypeByID(Record[i])) 1598 EltTys.push_back(T); 1599 else 1600 break; 1601 } 1602 if (EltTys.size() != Record.size()-1) 1603 return error("Invalid type"); 1604 ResultTy = StructType::get(Context, EltTys, Record[0]); 1605 break; 1606 } 1607 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1608 if (convertToString(Record, 0, TypeName)) 1609 return error("Invalid record"); 1610 continue; 1611 1612 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1613 if (Record.size() < 1) 1614 return error("Invalid record"); 1615 1616 if (NumRecords >= TypeList.size()) 1617 return error("Invalid TYPE table"); 1618 1619 // Check to see if this was forward referenced, if so fill in the temp. 1620 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1621 if (Res) { 1622 Res->setName(TypeName); 1623 TypeList[NumRecords] = nullptr; 1624 } else // Otherwise, create a new struct. 1625 Res = createIdentifiedStructType(Context, TypeName); 1626 TypeName.clear(); 1627 1628 SmallVector<Type*, 8> EltTys; 1629 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1630 if (Type *T = getTypeByID(Record[i])) 1631 EltTys.push_back(T); 1632 else 1633 break; 1634 } 1635 if (EltTys.size() != Record.size()-1) 1636 return error("Invalid record"); 1637 Res->setBody(EltTys, Record[0]); 1638 ResultTy = Res; 1639 break; 1640 } 1641 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1642 if (Record.size() != 1) 1643 return error("Invalid record"); 1644 1645 if (NumRecords >= TypeList.size()) 1646 return error("Invalid TYPE table"); 1647 1648 // Check to see if this was forward referenced, if so fill in the temp. 1649 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1650 if (Res) { 1651 Res->setName(TypeName); 1652 TypeList[NumRecords] = nullptr; 1653 } else // Otherwise, create a new struct with no body. 1654 Res = createIdentifiedStructType(Context, TypeName); 1655 TypeName.clear(); 1656 ResultTy = Res; 1657 break; 1658 } 1659 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1660 if (Record.size() < 2) 1661 return error("Invalid record"); 1662 ResultTy = getTypeByID(Record[1]); 1663 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1664 return error("Invalid type"); 1665 ResultTy = ArrayType::get(ResultTy, Record[0]); 1666 break; 1667 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1668 if (Record.size() < 2) 1669 return error("Invalid record"); 1670 if (Record[0] == 0) 1671 return error("Invalid vector length"); 1672 ResultTy = getTypeByID(Record[1]); 1673 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1674 return error("Invalid type"); 1675 ResultTy = VectorType::get(ResultTy, Record[0]); 1676 break; 1677 } 1678 1679 if (NumRecords >= TypeList.size()) 1680 return error("Invalid TYPE table"); 1681 if (TypeList[NumRecords]) 1682 return error( 1683 "Invalid TYPE table: Only named structs can be forward referenced"); 1684 assert(ResultTy && "Didn't read a type?"); 1685 TypeList[NumRecords++] = ResultTy; 1686 } 1687 } 1688 1689 std::error_code BitcodeReader::parseOperandBundleTags() { 1690 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1691 return error("Invalid record"); 1692 1693 if (!BundleTags.empty()) 1694 return error("Invalid multiple blocks"); 1695 1696 SmallVector<uint64_t, 64> Record; 1697 1698 while (1) { 1699 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1700 1701 switch (Entry.Kind) { 1702 case BitstreamEntry::SubBlock: // Handled for us already. 1703 case BitstreamEntry::Error: 1704 return error("Malformed block"); 1705 case BitstreamEntry::EndBlock: 1706 return std::error_code(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Tags are implicitly mapped to integers by their order. 1713 1714 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1715 return error("Invalid record"); 1716 1717 // OPERAND_BUNDLE_TAG: [strchr x N] 1718 BundleTags.emplace_back(); 1719 if (convertToString(Record, 0, BundleTags.back())) 1720 return error("Invalid record"); 1721 Record.clear(); 1722 } 1723 } 1724 1725 /// Associate a value with its name from the given index in the provided record. 1726 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1727 unsigned NameIndex, Triple &TT) { 1728 SmallString<128> ValueName; 1729 if (convertToString(Record, NameIndex, ValueName)) 1730 return error("Invalid record"); 1731 unsigned ValueID = Record[0]; 1732 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1733 return error("Invalid record"); 1734 Value *V = ValueList[ValueID]; 1735 1736 StringRef NameStr(ValueName.data(), ValueName.size()); 1737 if (NameStr.find_first_of(0) != StringRef::npos) 1738 return error("Invalid value name"); 1739 V->setName(NameStr); 1740 auto *GO = dyn_cast<GlobalObject>(V); 1741 if (GO) { 1742 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1743 if (TT.isOSBinFormatMachO()) 1744 GO->setComdat(nullptr); 1745 else 1746 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1747 } 1748 } 1749 return V; 1750 } 1751 1752 /// Helper to note and return the current location, and jump to the given 1753 /// offset. 1754 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1755 BitstreamCursor &Stream) { 1756 // Save the current parsing location so we can jump back at the end 1757 // of the VST read. 1758 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1759 Stream.JumpToBit(Offset * 32); 1760 #ifndef NDEBUG 1761 // Do some checking if we are in debug mode. 1762 BitstreamEntry Entry = Stream.advance(); 1763 assert(Entry.Kind == BitstreamEntry::SubBlock); 1764 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1765 #else 1766 // In NDEBUG mode ignore the output so we don't get an unused variable 1767 // warning. 1768 Stream.advance(); 1769 #endif 1770 return CurrentBit; 1771 } 1772 1773 /// Parse the value symbol table at either the current parsing location or 1774 /// at the given bit offset if provided. 1775 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1776 uint64_t CurrentBit; 1777 // Pass in the Offset to distinguish between calling for the module-level 1778 // VST (where we want to jump to the VST offset) and the function-level 1779 // VST (where we don't). 1780 if (Offset > 0) 1781 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1782 1783 // Compute the delta between the bitcode indices in the VST (the word offset 1784 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1785 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1786 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1787 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1788 // just before entering the VST subblock because: 1) the EnterSubBlock 1789 // changes the AbbrevID width; 2) the VST block is nested within the same 1790 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1791 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1792 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1793 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1794 unsigned FuncBitcodeOffsetDelta = 1795 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1796 1797 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1798 return error("Invalid record"); 1799 1800 SmallVector<uint64_t, 64> Record; 1801 1802 Triple TT(TheModule->getTargetTriple()); 1803 1804 // Read all the records for this value table. 1805 SmallString<128> ValueName; 1806 while (1) { 1807 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1808 1809 switch (Entry.Kind) { 1810 case BitstreamEntry::SubBlock: // Handled for us already. 1811 case BitstreamEntry::Error: 1812 return error("Malformed block"); 1813 case BitstreamEntry::EndBlock: 1814 if (Offset > 0) 1815 Stream.JumpToBit(CurrentBit); 1816 return std::error_code(); 1817 case BitstreamEntry::Record: 1818 // The interesting case. 1819 break; 1820 } 1821 1822 // Read a record. 1823 Record.clear(); 1824 switch (Stream.readRecord(Entry.ID, Record)) { 1825 default: // Default behavior: unknown type. 1826 break; 1827 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1828 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1829 if (std::error_code EC = ValOrErr.getError()) 1830 return EC; 1831 ValOrErr.get(); 1832 break; 1833 } 1834 case bitc::VST_CODE_FNENTRY: { 1835 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1836 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1837 if (std::error_code EC = ValOrErr.getError()) 1838 return EC; 1839 Value *V = ValOrErr.get(); 1840 1841 auto *GO = dyn_cast<GlobalObject>(V); 1842 if (!GO) { 1843 // If this is an alias, need to get the actual Function object 1844 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1845 auto *GA = dyn_cast<GlobalAlias>(V); 1846 if (GA) 1847 GO = GA->getBaseObject(); 1848 assert(GO); 1849 } 1850 1851 uint64_t FuncWordOffset = Record[1]; 1852 Function *F = dyn_cast<Function>(GO); 1853 assert(F); 1854 uint64_t FuncBitOffset = FuncWordOffset * 32; 1855 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1856 // Set the LastFunctionBlockBit to point to the last function block. 1857 // Later when parsing is resumed after function materialization, 1858 // we can simply skip that last function block. 1859 if (FuncBitOffset > LastFunctionBlockBit) 1860 LastFunctionBlockBit = FuncBitOffset; 1861 break; 1862 } 1863 case bitc::VST_CODE_BBENTRY: { 1864 if (convertToString(Record, 1, ValueName)) 1865 return error("Invalid record"); 1866 BasicBlock *BB = getBasicBlock(Record[0]); 1867 if (!BB) 1868 return error("Invalid record"); 1869 1870 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1871 ValueName.clear(); 1872 break; 1873 } 1874 } 1875 } 1876 } 1877 1878 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1879 std::error_code 1880 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1881 if (Record.size() < 2) 1882 return error("Invalid record"); 1883 1884 unsigned Kind = Record[0]; 1885 SmallString<8> Name(Record.begin() + 1, Record.end()); 1886 1887 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1888 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1889 return error("Conflicting METADATA_KIND records"); 1890 return std::error_code(); 1891 } 1892 1893 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1894 1895 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1896 StringRef Blob, 1897 unsigned &NextMetadataNo) { 1898 // All the MDStrings in the block are emitted together in a single 1899 // record. The strings are concatenated and stored in a blob along with 1900 // their sizes. 1901 if (Record.size() != 2) 1902 return error("Invalid record: metadata strings layout"); 1903 1904 unsigned NumStrings = Record[0]; 1905 unsigned StringsOffset = Record[1]; 1906 if (!NumStrings) 1907 return error("Invalid record: metadata strings with no strings"); 1908 if (StringsOffset > Blob.size()) 1909 return error("Invalid record: metadata strings corrupt offset"); 1910 1911 StringRef Lengths = Blob.slice(0, StringsOffset); 1912 SimpleBitstreamCursor R(*StreamFile); 1913 R.jumpToPointer(Lengths.begin()); 1914 1915 // Ensure that Blob doesn't get invalidated, even if this is reading from 1916 // a StreamingMemoryObject with corrupt data. 1917 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1918 1919 StringRef Strings = Blob.drop_front(StringsOffset); 1920 do { 1921 if (R.AtEndOfStream()) 1922 return error("Invalid record: metadata strings bad length"); 1923 1924 unsigned Size = R.ReadVBR(6); 1925 if (Strings.size() < Size) 1926 return error("Invalid record: metadata strings truncated chars"); 1927 1928 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1929 NextMetadataNo++); 1930 Strings = Strings.drop_front(Size); 1931 } while (--NumStrings); 1932 1933 return std::error_code(); 1934 } 1935 1936 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1937 /// module level metadata. 1938 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1939 IsMetadataMaterialized = true; 1940 unsigned NextMetadataNo = MetadataList.size(); 1941 1942 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1943 return error("Invalid metadata: fwd refs into function blocks"); 1944 1945 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1946 return error("Invalid record"); 1947 1948 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1949 SmallVector<uint64_t, 64> Record; 1950 1951 auto getMD = [&](unsigned ID) -> Metadata * { 1952 return MetadataList.getMetadataFwdRef(ID); 1953 }; 1954 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1955 if (ID) 1956 return getMD(ID - 1); 1957 return nullptr; 1958 }; 1959 auto getMDString = [&](unsigned ID) -> MDString *{ 1960 // This requires that the ID is not really a forward reference. In 1961 // particular, the MDString must already have been resolved. 1962 return cast_or_null<MDString>(getMDOrNull(ID)); 1963 }; 1964 1965 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1966 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1967 1968 // Read all the records. 1969 while (1) { 1970 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1971 1972 switch (Entry.Kind) { 1973 case BitstreamEntry::SubBlock: // Handled for us already. 1974 case BitstreamEntry::Error: 1975 return error("Malformed block"); 1976 case BitstreamEntry::EndBlock: 1977 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 1978 for (auto CU_SP : CUSubprograms) 1979 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 1980 for (auto &Op : SPs->operands()) 1981 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 1982 SP->replaceOperandWith(7, CU_SP.first); 1983 1984 MetadataList.tryToResolveCycles(); 1985 return std::error_code(); 1986 case BitstreamEntry::Record: 1987 // The interesting case. 1988 break; 1989 } 1990 1991 // Read a record. 1992 Record.clear(); 1993 StringRef Blob; 1994 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1995 bool IsDistinct = false; 1996 switch (Code) { 1997 default: // Default behavior: ignore. 1998 break; 1999 case bitc::METADATA_NAME: { 2000 // Read name of the named metadata. 2001 SmallString<8> Name(Record.begin(), Record.end()); 2002 Record.clear(); 2003 Code = Stream.ReadCode(); 2004 2005 unsigned NextBitCode = Stream.readRecord(Code, Record); 2006 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2007 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2008 2009 // Read named metadata elements. 2010 unsigned Size = Record.size(); 2011 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2012 for (unsigned i = 0; i != Size; ++i) { 2013 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2014 if (!MD) 2015 return error("Invalid record"); 2016 NMD->addOperand(MD); 2017 } 2018 break; 2019 } 2020 case bitc::METADATA_OLD_FN_NODE: { 2021 // FIXME: Remove in 4.0. 2022 // This is a LocalAsMetadata record, the only type of function-local 2023 // metadata. 2024 if (Record.size() % 2 == 1) 2025 return error("Invalid record"); 2026 2027 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2028 // to be legal, but there's no upgrade path. 2029 auto dropRecord = [&] { 2030 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2031 }; 2032 if (Record.size() != 2) { 2033 dropRecord(); 2034 break; 2035 } 2036 2037 Type *Ty = getTypeByID(Record[0]); 2038 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2039 dropRecord(); 2040 break; 2041 } 2042 2043 MetadataList.assignValue( 2044 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2045 NextMetadataNo++); 2046 break; 2047 } 2048 case bitc::METADATA_OLD_NODE: { 2049 // FIXME: Remove in 4.0. 2050 if (Record.size() % 2 == 1) 2051 return error("Invalid record"); 2052 2053 unsigned Size = Record.size(); 2054 SmallVector<Metadata *, 8> Elts; 2055 for (unsigned i = 0; i != Size; i += 2) { 2056 Type *Ty = getTypeByID(Record[i]); 2057 if (!Ty) 2058 return error("Invalid record"); 2059 if (Ty->isMetadataTy()) 2060 Elts.push_back(getMD(Record[i + 1])); 2061 else if (!Ty->isVoidTy()) { 2062 auto *MD = 2063 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2064 assert(isa<ConstantAsMetadata>(MD) && 2065 "Expected non-function-local metadata"); 2066 Elts.push_back(MD); 2067 } else 2068 Elts.push_back(nullptr); 2069 } 2070 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2071 break; 2072 } 2073 case bitc::METADATA_VALUE: { 2074 if (Record.size() != 2) 2075 return error("Invalid record"); 2076 2077 Type *Ty = getTypeByID(Record[0]); 2078 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2079 return error("Invalid record"); 2080 2081 MetadataList.assignValue( 2082 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2083 NextMetadataNo++); 2084 break; 2085 } 2086 case bitc::METADATA_DISTINCT_NODE: 2087 IsDistinct = true; 2088 // fallthrough... 2089 case bitc::METADATA_NODE: { 2090 SmallVector<Metadata *, 8> Elts; 2091 Elts.reserve(Record.size()); 2092 for (unsigned ID : Record) 2093 Elts.push_back(getMDOrNull(ID)); 2094 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2095 : MDNode::get(Context, Elts), 2096 NextMetadataNo++); 2097 break; 2098 } 2099 case bitc::METADATA_LOCATION: { 2100 if (Record.size() != 5) 2101 return error("Invalid record"); 2102 2103 unsigned Line = Record[1]; 2104 unsigned Column = Record[2]; 2105 Metadata *Scope = getMD(Record[3]); 2106 Metadata *InlinedAt = getMDOrNull(Record[4]); 2107 MetadataList.assignValue( 2108 GET_OR_DISTINCT(DILocation, Record[0], 2109 (Context, Line, Column, Scope, InlinedAt)), 2110 NextMetadataNo++); 2111 break; 2112 } 2113 case bitc::METADATA_GENERIC_DEBUG: { 2114 if (Record.size() < 4) 2115 return error("Invalid record"); 2116 2117 unsigned Tag = Record[1]; 2118 unsigned Version = Record[2]; 2119 2120 if (Tag >= 1u << 16 || Version != 0) 2121 return error("Invalid record"); 2122 2123 auto *Header = getMDString(Record[3]); 2124 SmallVector<Metadata *, 8> DwarfOps; 2125 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2126 DwarfOps.push_back(getMDOrNull(Record[I])); 2127 MetadataList.assignValue( 2128 GET_OR_DISTINCT(GenericDINode, Record[0], 2129 (Context, Tag, Header, DwarfOps)), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBRANGE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubrange, Record[0], 2139 (Context, Record[1], unrotateSign(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 case bitc::METADATA_ENUMERATOR: { 2144 if (Record.size() != 3) 2145 return error("Invalid record"); 2146 2147 MetadataList.assignValue( 2148 GET_OR_DISTINCT( 2149 DIEnumerator, Record[0], 2150 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2151 NextMetadataNo++); 2152 break; 2153 } 2154 case bitc::METADATA_BASIC_TYPE: { 2155 if (Record.size() != 6) 2156 return error("Invalid record"); 2157 2158 MetadataList.assignValue( 2159 GET_OR_DISTINCT(DIBasicType, Record[0], 2160 (Context, Record[1], getMDString(Record[2]), 2161 Record[3], Record[4], Record[5])), 2162 NextMetadataNo++); 2163 break; 2164 } 2165 case bitc::METADATA_DERIVED_TYPE: { 2166 if (Record.size() != 12) 2167 return error("Invalid record"); 2168 2169 MetadataList.assignValue( 2170 GET_OR_DISTINCT(DIDerivedType, Record[0], 2171 (Context, Record[1], getMDString(Record[2]), 2172 getMDOrNull(Record[3]), Record[4], 2173 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2174 Record[7], Record[8], Record[9], Record[10], 2175 getMDOrNull(Record[11]))), 2176 NextMetadataNo++); 2177 break; 2178 } 2179 case bitc::METADATA_COMPOSITE_TYPE: { 2180 if (Record.size() != 16) 2181 return error("Invalid record"); 2182 2183 // If we have a UUID and this is not a forward declaration, lookup the 2184 // mapping. 2185 bool IsDistinct = Record[0]; 2186 unsigned Tag = Record[1]; 2187 MDString *Name = getMDString(Record[2]); 2188 Metadata *File = getMDOrNull(Record[3]); 2189 unsigned Line = Record[4]; 2190 Metadata *Scope = getMDOrNull(Record[5]); 2191 Metadata *BaseType = getMDOrNull(Record[6]); 2192 uint64_t SizeInBits = Record[7]; 2193 uint64_t AlignInBits = Record[8]; 2194 uint64_t OffsetInBits = Record[9]; 2195 unsigned Flags = Record[10]; 2196 Metadata *Elements = getMDOrNull(Record[11]); 2197 unsigned RuntimeLang = Record[12]; 2198 Metadata *VTableHolder = getMDOrNull(Record[13]); 2199 Metadata *TemplateParams = getMDOrNull(Record[14]); 2200 auto *Identifier = getMDString(Record[15]); 2201 DICompositeType *CT = nullptr; 2202 if (Identifier) 2203 CT = DICompositeType::buildODRType( 2204 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2205 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2206 VTableHolder, TemplateParams); 2207 2208 // Create a node if we didn't get a lazy ODR type. 2209 if (!CT) 2210 CT = GET_OR_DISTINCT(DICompositeType, IsDistinct, 2211 (Context, Tag, Name, File, Line, Scope, BaseType, 2212 SizeInBits, AlignInBits, OffsetInBits, Flags, 2213 Elements, RuntimeLang, VTableHolder, 2214 TemplateParams, Identifier)); 2215 2216 MetadataList.assignValue(CT, NextMetadataNo++); 2217 break; 2218 } 2219 case bitc::METADATA_SUBROUTINE_TYPE: { 2220 if (Record.size() != 3) 2221 return error("Invalid record"); 2222 2223 MetadataList.assignValue( 2224 GET_OR_DISTINCT(DISubroutineType, Record[0], 2225 (Context, Record[1], getMDOrNull(Record[2]))), 2226 NextMetadataNo++); 2227 break; 2228 } 2229 2230 case bitc::METADATA_MODULE: { 2231 if (Record.size() != 6) 2232 return error("Invalid record"); 2233 2234 MetadataList.assignValue( 2235 GET_OR_DISTINCT(DIModule, Record[0], 2236 (Context, getMDOrNull(Record[1]), 2237 getMDString(Record[2]), getMDString(Record[3]), 2238 getMDString(Record[4]), getMDString(Record[5]))), 2239 NextMetadataNo++); 2240 break; 2241 } 2242 2243 case bitc::METADATA_FILE: { 2244 if (Record.size() != 3) 2245 return error("Invalid record"); 2246 2247 MetadataList.assignValue( 2248 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2249 getMDString(Record[2]))), 2250 NextMetadataNo++); 2251 break; 2252 } 2253 case bitc::METADATA_COMPILE_UNIT: { 2254 if (Record.size() < 14 || Record.size() > 16) 2255 return error("Invalid record"); 2256 2257 // Ignore Record[0], which indicates whether this compile unit is 2258 // distinct. It's always distinct. 2259 auto *CU = DICompileUnit::getDistinct( 2260 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2261 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2262 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2263 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2264 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2265 Record.size() <= 14 ? 0 : Record[14]); 2266 2267 MetadataList.assignValue(CU, NextMetadataNo++); 2268 2269 // Move the Upgrade the list of subprograms. 2270 if (Metadata *SPs = getMDOrNull(Record[11])) 2271 CUSubprograms.push_back({CU, SPs}); 2272 break; 2273 } 2274 case bitc::METADATA_SUBPROGRAM: { 2275 if (Record.size() != 18 && Record.size() != 19) 2276 return error("Invalid record"); 2277 2278 // Version 1 has a Function as Record[15]. 2279 // Version 2 has removed Record[15]. 2280 // Version 3 has the Unit as Record[15]. 2281 Metadata *CUorFn = getMDOrNull(Record[15]); 2282 unsigned Offset = Record.size() == 19 ? 1 : 0; 2283 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2284 bool HasCU = Offset && !HasFn; 2285 DISubprogram *SP = GET_OR_DISTINCT( 2286 DISubprogram, 2287 Record[0] || Record[8], // All definitions should be distinct. 2288 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2289 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2290 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2291 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2292 Record[14], HasCU ? CUorFn : nullptr, 2293 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2294 getMDOrNull(Record[17 + Offset]))); 2295 MetadataList.assignValue(SP, NextMetadataNo++); 2296 2297 // Upgrade sp->function mapping to function->sp mapping. 2298 if (HasFn) { 2299 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2300 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2301 if (F->isMaterializable()) 2302 // Defer until materialized; unmaterialized functions may not have 2303 // metadata. 2304 FunctionsWithSPs[F] = SP; 2305 else if (!F->empty()) 2306 F->setSubprogram(SP); 2307 } 2308 } 2309 break; 2310 } 2311 case bitc::METADATA_LEXICAL_BLOCK: { 2312 if (Record.size() != 5) 2313 return error("Invalid record"); 2314 2315 MetadataList.assignValue( 2316 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2317 (Context, getMDOrNull(Record[1]), 2318 getMDOrNull(Record[2]), Record[3], Record[4])), 2319 NextMetadataNo++); 2320 break; 2321 } 2322 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2323 if (Record.size() != 4) 2324 return error("Invalid record"); 2325 2326 MetadataList.assignValue( 2327 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2328 (Context, getMDOrNull(Record[1]), 2329 getMDOrNull(Record[2]), Record[3])), 2330 NextMetadataNo++); 2331 break; 2332 } 2333 case bitc::METADATA_NAMESPACE: { 2334 if (Record.size() != 5) 2335 return error("Invalid record"); 2336 2337 MetadataList.assignValue( 2338 GET_OR_DISTINCT(DINamespace, Record[0], 2339 (Context, getMDOrNull(Record[1]), 2340 getMDOrNull(Record[2]), getMDString(Record[3]), 2341 Record[4])), 2342 NextMetadataNo++); 2343 break; 2344 } 2345 case bitc::METADATA_MACRO: { 2346 if (Record.size() != 5) 2347 return error("Invalid record"); 2348 2349 MetadataList.assignValue( 2350 GET_OR_DISTINCT(DIMacro, Record[0], 2351 (Context, Record[1], Record[2], 2352 getMDString(Record[3]), getMDString(Record[4]))), 2353 NextMetadataNo++); 2354 break; 2355 } 2356 case bitc::METADATA_MACRO_FILE: { 2357 if (Record.size() != 5) 2358 return error("Invalid record"); 2359 2360 MetadataList.assignValue( 2361 GET_OR_DISTINCT(DIMacroFile, Record[0], 2362 (Context, Record[1], Record[2], 2363 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2364 NextMetadataNo++); 2365 break; 2366 } 2367 case bitc::METADATA_TEMPLATE_TYPE: { 2368 if (Record.size() != 3) 2369 return error("Invalid record"); 2370 2371 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2372 Record[0], 2373 (Context, getMDString(Record[1]), 2374 getMDOrNull(Record[2]))), 2375 NextMetadataNo++); 2376 break; 2377 } 2378 case bitc::METADATA_TEMPLATE_VALUE: { 2379 if (Record.size() != 5) 2380 return error("Invalid record"); 2381 2382 MetadataList.assignValue( 2383 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2384 (Context, Record[1], getMDString(Record[2]), 2385 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2386 NextMetadataNo++); 2387 break; 2388 } 2389 case bitc::METADATA_GLOBAL_VAR: { 2390 if (Record.size() != 11) 2391 return error("Invalid record"); 2392 2393 MetadataList.assignValue( 2394 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2395 (Context, getMDOrNull(Record[1]), 2396 getMDString(Record[2]), getMDString(Record[3]), 2397 getMDOrNull(Record[4]), Record[5], 2398 getMDOrNull(Record[6]), Record[7], Record[8], 2399 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2400 NextMetadataNo++); 2401 break; 2402 } 2403 case bitc::METADATA_LOCAL_VAR: { 2404 // 10th field is for the obseleted 'inlinedAt:' field. 2405 if (Record.size() < 8 || Record.size() > 10) 2406 return error("Invalid record"); 2407 2408 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2409 // DW_TAG_arg_variable. 2410 bool HasTag = Record.size() > 8; 2411 MetadataList.assignValue( 2412 GET_OR_DISTINCT(DILocalVariable, Record[0], 2413 (Context, getMDOrNull(Record[1 + HasTag]), 2414 getMDString(Record[2 + HasTag]), 2415 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2416 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2417 Record[7 + HasTag])), 2418 NextMetadataNo++); 2419 break; 2420 } 2421 case bitc::METADATA_EXPRESSION: { 2422 if (Record.size() < 1) 2423 return error("Invalid record"); 2424 2425 MetadataList.assignValue( 2426 GET_OR_DISTINCT(DIExpression, Record[0], 2427 (Context, makeArrayRef(Record).slice(1))), 2428 NextMetadataNo++); 2429 break; 2430 } 2431 case bitc::METADATA_OBJC_PROPERTY: { 2432 if (Record.size() != 8) 2433 return error("Invalid record"); 2434 2435 MetadataList.assignValue( 2436 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2437 (Context, getMDString(Record[1]), 2438 getMDOrNull(Record[2]), Record[3], 2439 getMDString(Record[4]), getMDString(Record[5]), 2440 Record[6], getMDOrNull(Record[7]))), 2441 NextMetadataNo++); 2442 break; 2443 } 2444 case bitc::METADATA_IMPORTED_ENTITY: { 2445 if (Record.size() != 6) 2446 return error("Invalid record"); 2447 2448 MetadataList.assignValue( 2449 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2450 (Context, Record[1], getMDOrNull(Record[2]), 2451 getMDOrNull(Record[3]), Record[4], 2452 getMDString(Record[5]))), 2453 NextMetadataNo++); 2454 break; 2455 } 2456 case bitc::METADATA_STRING_OLD: { 2457 std::string String(Record.begin(), Record.end()); 2458 2459 // Test for upgrading !llvm.loop. 2460 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2461 2462 Metadata *MD = MDString::get(Context, String); 2463 MetadataList.assignValue(MD, NextMetadataNo++); 2464 break; 2465 } 2466 case bitc::METADATA_STRINGS: 2467 if (std::error_code EC = 2468 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2469 return EC; 2470 break; 2471 case bitc::METADATA_KIND: { 2472 // Support older bitcode files that had METADATA_KIND records in a 2473 // block with METADATA_BLOCK_ID. 2474 if (std::error_code EC = parseMetadataKindRecord(Record)) 2475 return EC; 2476 break; 2477 } 2478 } 2479 } 2480 #undef GET_OR_DISTINCT 2481 } 2482 2483 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2484 std::error_code BitcodeReader::parseMetadataKinds() { 2485 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2486 return error("Invalid record"); 2487 2488 SmallVector<uint64_t, 64> Record; 2489 2490 // Read all the records. 2491 while (1) { 2492 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2493 2494 switch (Entry.Kind) { 2495 case BitstreamEntry::SubBlock: // Handled for us already. 2496 case BitstreamEntry::Error: 2497 return error("Malformed block"); 2498 case BitstreamEntry::EndBlock: 2499 return std::error_code(); 2500 case BitstreamEntry::Record: 2501 // The interesting case. 2502 break; 2503 } 2504 2505 // Read a record. 2506 Record.clear(); 2507 unsigned Code = Stream.readRecord(Entry.ID, Record); 2508 switch (Code) { 2509 default: // Default behavior: ignore. 2510 break; 2511 case bitc::METADATA_KIND: { 2512 if (std::error_code EC = parseMetadataKindRecord(Record)) 2513 return EC; 2514 break; 2515 } 2516 } 2517 } 2518 } 2519 2520 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2521 /// encoding. 2522 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2523 if ((V & 1) == 0) 2524 return V >> 1; 2525 if (V != 1) 2526 return -(V >> 1); 2527 // There is no such thing as -0 with integers. "-0" really means MININT. 2528 return 1ULL << 63; 2529 } 2530 2531 /// Resolve all of the initializers for global values and aliases that we can. 2532 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2533 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2534 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2535 IndirectSymbolInitWorklist; 2536 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2537 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2538 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2539 2540 GlobalInitWorklist.swap(GlobalInits); 2541 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2542 FunctionPrefixWorklist.swap(FunctionPrefixes); 2543 FunctionPrologueWorklist.swap(FunctionPrologues); 2544 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2545 2546 while (!GlobalInitWorklist.empty()) { 2547 unsigned ValID = GlobalInitWorklist.back().second; 2548 if (ValID >= ValueList.size()) { 2549 // Not ready to resolve this yet, it requires something later in the file. 2550 GlobalInits.push_back(GlobalInitWorklist.back()); 2551 } else { 2552 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2553 GlobalInitWorklist.back().first->setInitializer(C); 2554 else 2555 return error("Expected a constant"); 2556 } 2557 GlobalInitWorklist.pop_back(); 2558 } 2559 2560 while (!IndirectSymbolInitWorklist.empty()) { 2561 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2562 if (ValID >= ValueList.size()) { 2563 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2564 } else { 2565 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2566 if (!C) 2567 return error("Expected a constant"); 2568 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2569 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2570 return error("Alias and aliasee types don't match"); 2571 GIS->setIndirectSymbol(C); 2572 } 2573 IndirectSymbolInitWorklist.pop_back(); 2574 } 2575 2576 while (!FunctionPrefixWorklist.empty()) { 2577 unsigned ValID = FunctionPrefixWorklist.back().second; 2578 if (ValID >= ValueList.size()) { 2579 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2580 } else { 2581 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2582 FunctionPrefixWorklist.back().first->setPrefixData(C); 2583 else 2584 return error("Expected a constant"); 2585 } 2586 FunctionPrefixWorklist.pop_back(); 2587 } 2588 2589 while (!FunctionPrologueWorklist.empty()) { 2590 unsigned ValID = FunctionPrologueWorklist.back().second; 2591 if (ValID >= ValueList.size()) { 2592 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2593 } else { 2594 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2595 FunctionPrologueWorklist.back().first->setPrologueData(C); 2596 else 2597 return error("Expected a constant"); 2598 } 2599 FunctionPrologueWorklist.pop_back(); 2600 } 2601 2602 while (!FunctionPersonalityFnWorklist.empty()) { 2603 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2604 if (ValID >= ValueList.size()) { 2605 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2606 } else { 2607 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2608 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2609 else 2610 return error("Expected a constant"); 2611 } 2612 FunctionPersonalityFnWorklist.pop_back(); 2613 } 2614 2615 return std::error_code(); 2616 } 2617 2618 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2619 SmallVector<uint64_t, 8> Words(Vals.size()); 2620 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2621 BitcodeReader::decodeSignRotatedValue); 2622 2623 return APInt(TypeBits, Words); 2624 } 2625 2626 std::error_code BitcodeReader::parseConstants() { 2627 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2628 return error("Invalid record"); 2629 2630 SmallVector<uint64_t, 64> Record; 2631 2632 // Read all the records for this value table. 2633 Type *CurTy = Type::getInt32Ty(Context); 2634 unsigned NextCstNo = ValueList.size(); 2635 while (1) { 2636 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2637 2638 switch (Entry.Kind) { 2639 case BitstreamEntry::SubBlock: // Handled for us already. 2640 case BitstreamEntry::Error: 2641 return error("Malformed block"); 2642 case BitstreamEntry::EndBlock: 2643 if (NextCstNo != ValueList.size()) 2644 return error("Invalid constant reference"); 2645 2646 // Once all the constants have been read, go through and resolve forward 2647 // references. 2648 ValueList.resolveConstantForwardRefs(); 2649 return std::error_code(); 2650 case BitstreamEntry::Record: 2651 // The interesting case. 2652 break; 2653 } 2654 2655 // Read a record. 2656 Record.clear(); 2657 Value *V = nullptr; 2658 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2659 switch (BitCode) { 2660 default: // Default behavior: unknown constant 2661 case bitc::CST_CODE_UNDEF: // UNDEF 2662 V = UndefValue::get(CurTy); 2663 break; 2664 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2665 if (Record.empty()) 2666 return error("Invalid record"); 2667 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2668 return error("Invalid record"); 2669 CurTy = TypeList[Record[0]]; 2670 continue; // Skip the ValueList manipulation. 2671 case bitc::CST_CODE_NULL: // NULL 2672 V = Constant::getNullValue(CurTy); 2673 break; 2674 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2675 if (!CurTy->isIntegerTy() || Record.empty()) 2676 return error("Invalid record"); 2677 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2678 break; 2679 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2680 if (!CurTy->isIntegerTy() || Record.empty()) 2681 return error("Invalid record"); 2682 2683 APInt VInt = 2684 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2685 V = ConstantInt::get(Context, VInt); 2686 2687 break; 2688 } 2689 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2690 if (Record.empty()) 2691 return error("Invalid record"); 2692 if (CurTy->isHalfTy()) 2693 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2694 APInt(16, (uint16_t)Record[0]))); 2695 else if (CurTy->isFloatTy()) 2696 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2697 APInt(32, (uint32_t)Record[0]))); 2698 else if (CurTy->isDoubleTy()) 2699 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2700 APInt(64, Record[0]))); 2701 else if (CurTy->isX86_FP80Ty()) { 2702 // Bits are not stored the same way as a normal i80 APInt, compensate. 2703 uint64_t Rearrange[2]; 2704 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2705 Rearrange[1] = Record[0] >> 48; 2706 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2707 APInt(80, Rearrange))); 2708 } else if (CurTy->isFP128Ty()) 2709 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2710 APInt(128, Record))); 2711 else if (CurTy->isPPC_FP128Ty()) 2712 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2713 APInt(128, Record))); 2714 else 2715 V = UndefValue::get(CurTy); 2716 break; 2717 } 2718 2719 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2720 if (Record.empty()) 2721 return error("Invalid record"); 2722 2723 unsigned Size = Record.size(); 2724 SmallVector<Constant*, 16> Elts; 2725 2726 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2727 for (unsigned i = 0; i != Size; ++i) 2728 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2729 STy->getElementType(i))); 2730 V = ConstantStruct::get(STy, Elts); 2731 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2732 Type *EltTy = ATy->getElementType(); 2733 for (unsigned i = 0; i != Size; ++i) 2734 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2735 V = ConstantArray::get(ATy, Elts); 2736 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2737 Type *EltTy = VTy->getElementType(); 2738 for (unsigned i = 0; i != Size; ++i) 2739 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2740 V = ConstantVector::get(Elts); 2741 } else { 2742 V = UndefValue::get(CurTy); 2743 } 2744 break; 2745 } 2746 case bitc::CST_CODE_STRING: // STRING: [values] 2747 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2748 if (Record.empty()) 2749 return error("Invalid record"); 2750 2751 SmallString<16> Elts(Record.begin(), Record.end()); 2752 V = ConstantDataArray::getString(Context, Elts, 2753 BitCode == bitc::CST_CODE_CSTRING); 2754 break; 2755 } 2756 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2757 if (Record.empty()) 2758 return error("Invalid record"); 2759 2760 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2761 if (EltTy->isIntegerTy(8)) { 2762 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2763 if (isa<VectorType>(CurTy)) 2764 V = ConstantDataVector::get(Context, Elts); 2765 else 2766 V = ConstantDataArray::get(Context, Elts); 2767 } else if (EltTy->isIntegerTy(16)) { 2768 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2769 if (isa<VectorType>(CurTy)) 2770 V = ConstantDataVector::get(Context, Elts); 2771 else 2772 V = ConstantDataArray::get(Context, Elts); 2773 } else if (EltTy->isIntegerTy(32)) { 2774 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2775 if (isa<VectorType>(CurTy)) 2776 V = ConstantDataVector::get(Context, Elts); 2777 else 2778 V = ConstantDataArray::get(Context, Elts); 2779 } else if (EltTy->isIntegerTy(64)) { 2780 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2781 if (isa<VectorType>(CurTy)) 2782 V = ConstantDataVector::get(Context, Elts); 2783 else 2784 V = ConstantDataArray::get(Context, Elts); 2785 } else if (EltTy->isHalfTy()) { 2786 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2787 if (isa<VectorType>(CurTy)) 2788 V = ConstantDataVector::getFP(Context, Elts); 2789 else 2790 V = ConstantDataArray::getFP(Context, Elts); 2791 } else if (EltTy->isFloatTy()) { 2792 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2793 if (isa<VectorType>(CurTy)) 2794 V = ConstantDataVector::getFP(Context, Elts); 2795 else 2796 V = ConstantDataArray::getFP(Context, Elts); 2797 } else if (EltTy->isDoubleTy()) { 2798 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2799 if (isa<VectorType>(CurTy)) 2800 V = ConstantDataVector::getFP(Context, Elts); 2801 else 2802 V = ConstantDataArray::getFP(Context, Elts); 2803 } else { 2804 return error("Invalid type for value"); 2805 } 2806 break; 2807 } 2808 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2809 if (Record.size() < 3) 2810 return error("Invalid record"); 2811 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2812 if (Opc < 0) { 2813 V = UndefValue::get(CurTy); // Unknown binop. 2814 } else { 2815 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2816 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2817 unsigned Flags = 0; 2818 if (Record.size() >= 4) { 2819 if (Opc == Instruction::Add || 2820 Opc == Instruction::Sub || 2821 Opc == Instruction::Mul || 2822 Opc == Instruction::Shl) { 2823 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2824 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2825 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2826 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2827 } else if (Opc == Instruction::SDiv || 2828 Opc == Instruction::UDiv || 2829 Opc == Instruction::LShr || 2830 Opc == Instruction::AShr) { 2831 if (Record[3] & (1 << bitc::PEO_EXACT)) 2832 Flags |= SDivOperator::IsExact; 2833 } 2834 } 2835 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2836 } 2837 break; 2838 } 2839 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2840 if (Record.size() < 3) 2841 return error("Invalid record"); 2842 int Opc = getDecodedCastOpcode(Record[0]); 2843 if (Opc < 0) { 2844 V = UndefValue::get(CurTy); // Unknown cast. 2845 } else { 2846 Type *OpTy = getTypeByID(Record[1]); 2847 if (!OpTy) 2848 return error("Invalid record"); 2849 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2850 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2851 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2852 } 2853 break; 2854 } 2855 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2856 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2857 unsigned OpNum = 0; 2858 Type *PointeeType = nullptr; 2859 if (Record.size() % 2) 2860 PointeeType = getTypeByID(Record[OpNum++]); 2861 SmallVector<Constant*, 16> Elts; 2862 while (OpNum != Record.size()) { 2863 Type *ElTy = getTypeByID(Record[OpNum++]); 2864 if (!ElTy) 2865 return error("Invalid record"); 2866 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2867 } 2868 2869 if (PointeeType && 2870 PointeeType != 2871 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2872 ->getElementType()) 2873 return error("Explicit gep operator type does not match pointee type " 2874 "of pointer operand"); 2875 2876 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2877 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2878 BitCode == 2879 bitc::CST_CODE_CE_INBOUNDS_GEP); 2880 break; 2881 } 2882 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2883 if (Record.size() < 3) 2884 return error("Invalid record"); 2885 2886 Type *SelectorTy = Type::getInt1Ty(Context); 2887 2888 // The selector might be an i1 or an <n x i1> 2889 // Get the type from the ValueList before getting a forward ref. 2890 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2891 if (Value *V = ValueList[Record[0]]) 2892 if (SelectorTy != V->getType()) 2893 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2894 2895 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2896 SelectorTy), 2897 ValueList.getConstantFwdRef(Record[1],CurTy), 2898 ValueList.getConstantFwdRef(Record[2],CurTy)); 2899 break; 2900 } 2901 case bitc::CST_CODE_CE_EXTRACTELT 2902 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2903 if (Record.size() < 3) 2904 return error("Invalid record"); 2905 VectorType *OpTy = 2906 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2907 if (!OpTy) 2908 return error("Invalid record"); 2909 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2910 Constant *Op1 = nullptr; 2911 if (Record.size() == 4) { 2912 Type *IdxTy = getTypeByID(Record[2]); 2913 if (!IdxTy) 2914 return error("Invalid record"); 2915 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2916 } else // TODO: Remove with llvm 4.0 2917 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2918 if (!Op1) 2919 return error("Invalid record"); 2920 V = ConstantExpr::getExtractElement(Op0, Op1); 2921 break; 2922 } 2923 case bitc::CST_CODE_CE_INSERTELT 2924 : { // CE_INSERTELT: [opval, opval, opty, opval] 2925 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2926 if (Record.size() < 3 || !OpTy) 2927 return error("Invalid record"); 2928 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2929 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2930 OpTy->getElementType()); 2931 Constant *Op2 = nullptr; 2932 if (Record.size() == 4) { 2933 Type *IdxTy = getTypeByID(Record[2]); 2934 if (!IdxTy) 2935 return error("Invalid record"); 2936 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2937 } else // TODO: Remove with llvm 4.0 2938 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2939 if (!Op2) 2940 return error("Invalid record"); 2941 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2942 break; 2943 } 2944 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2945 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2946 if (Record.size() < 3 || !OpTy) 2947 return error("Invalid record"); 2948 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2949 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2950 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2951 OpTy->getNumElements()); 2952 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2953 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2954 break; 2955 } 2956 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2957 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2958 VectorType *OpTy = 2959 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2960 if (Record.size() < 4 || !RTy || !OpTy) 2961 return error("Invalid record"); 2962 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2963 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2964 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2965 RTy->getNumElements()); 2966 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2967 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2968 break; 2969 } 2970 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2971 if (Record.size() < 4) 2972 return error("Invalid record"); 2973 Type *OpTy = getTypeByID(Record[0]); 2974 if (!OpTy) 2975 return error("Invalid record"); 2976 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2977 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2978 2979 if (OpTy->isFPOrFPVectorTy()) 2980 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2981 else 2982 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2983 break; 2984 } 2985 // This maintains backward compatibility, pre-asm dialect keywords. 2986 // FIXME: Remove with the 4.0 release. 2987 case bitc::CST_CODE_INLINEASM_OLD: { 2988 if (Record.size() < 2) 2989 return error("Invalid record"); 2990 std::string AsmStr, ConstrStr; 2991 bool HasSideEffects = Record[0] & 1; 2992 bool IsAlignStack = Record[0] >> 1; 2993 unsigned AsmStrSize = Record[1]; 2994 if (2+AsmStrSize >= Record.size()) 2995 return error("Invalid record"); 2996 unsigned ConstStrSize = Record[2+AsmStrSize]; 2997 if (3+AsmStrSize+ConstStrSize > Record.size()) 2998 return error("Invalid record"); 2999 3000 for (unsigned i = 0; i != AsmStrSize; ++i) 3001 AsmStr += (char)Record[2+i]; 3002 for (unsigned i = 0; i != ConstStrSize; ++i) 3003 ConstrStr += (char)Record[3+AsmStrSize+i]; 3004 PointerType *PTy = cast<PointerType>(CurTy); 3005 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3006 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3007 break; 3008 } 3009 // This version adds support for the asm dialect keywords (e.g., 3010 // inteldialect). 3011 case bitc::CST_CODE_INLINEASM: { 3012 if (Record.size() < 2) 3013 return error("Invalid record"); 3014 std::string AsmStr, ConstrStr; 3015 bool HasSideEffects = Record[0] & 1; 3016 bool IsAlignStack = (Record[0] >> 1) & 1; 3017 unsigned AsmDialect = Record[0] >> 2; 3018 unsigned AsmStrSize = Record[1]; 3019 if (2+AsmStrSize >= Record.size()) 3020 return error("Invalid record"); 3021 unsigned ConstStrSize = Record[2+AsmStrSize]; 3022 if (3+AsmStrSize+ConstStrSize > Record.size()) 3023 return error("Invalid record"); 3024 3025 for (unsigned i = 0; i != AsmStrSize; ++i) 3026 AsmStr += (char)Record[2+i]; 3027 for (unsigned i = 0; i != ConstStrSize; ++i) 3028 ConstrStr += (char)Record[3+AsmStrSize+i]; 3029 PointerType *PTy = cast<PointerType>(CurTy); 3030 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3031 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3032 InlineAsm::AsmDialect(AsmDialect)); 3033 break; 3034 } 3035 case bitc::CST_CODE_BLOCKADDRESS:{ 3036 if (Record.size() < 3) 3037 return error("Invalid record"); 3038 Type *FnTy = getTypeByID(Record[0]); 3039 if (!FnTy) 3040 return error("Invalid record"); 3041 Function *Fn = 3042 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3043 if (!Fn) 3044 return error("Invalid record"); 3045 3046 // If the function is already parsed we can insert the block address right 3047 // away. 3048 BasicBlock *BB; 3049 unsigned BBID = Record[2]; 3050 if (!BBID) 3051 // Invalid reference to entry block. 3052 return error("Invalid ID"); 3053 if (!Fn->empty()) { 3054 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3055 for (size_t I = 0, E = BBID; I != E; ++I) { 3056 if (BBI == BBE) 3057 return error("Invalid ID"); 3058 ++BBI; 3059 } 3060 BB = &*BBI; 3061 } else { 3062 // Otherwise insert a placeholder and remember it so it can be inserted 3063 // when the function is parsed. 3064 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3065 if (FwdBBs.empty()) 3066 BasicBlockFwdRefQueue.push_back(Fn); 3067 if (FwdBBs.size() < BBID + 1) 3068 FwdBBs.resize(BBID + 1); 3069 if (!FwdBBs[BBID]) 3070 FwdBBs[BBID] = BasicBlock::Create(Context); 3071 BB = FwdBBs[BBID]; 3072 } 3073 V = BlockAddress::get(Fn, BB); 3074 break; 3075 } 3076 } 3077 3078 ValueList.assignValue(V, NextCstNo); 3079 ++NextCstNo; 3080 } 3081 } 3082 3083 std::error_code BitcodeReader::parseUseLists() { 3084 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3085 return error("Invalid record"); 3086 3087 // Read all the records. 3088 SmallVector<uint64_t, 64> Record; 3089 while (1) { 3090 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3091 3092 switch (Entry.Kind) { 3093 case BitstreamEntry::SubBlock: // Handled for us already. 3094 case BitstreamEntry::Error: 3095 return error("Malformed block"); 3096 case BitstreamEntry::EndBlock: 3097 return std::error_code(); 3098 case BitstreamEntry::Record: 3099 // The interesting case. 3100 break; 3101 } 3102 3103 // Read a use list record. 3104 Record.clear(); 3105 bool IsBB = false; 3106 switch (Stream.readRecord(Entry.ID, Record)) { 3107 default: // Default behavior: unknown type. 3108 break; 3109 case bitc::USELIST_CODE_BB: 3110 IsBB = true; 3111 // fallthrough 3112 case bitc::USELIST_CODE_DEFAULT: { 3113 unsigned RecordLength = Record.size(); 3114 if (RecordLength < 3) 3115 // Records should have at least an ID and two indexes. 3116 return error("Invalid record"); 3117 unsigned ID = Record.back(); 3118 Record.pop_back(); 3119 3120 Value *V; 3121 if (IsBB) { 3122 assert(ID < FunctionBBs.size() && "Basic block not found"); 3123 V = FunctionBBs[ID]; 3124 } else 3125 V = ValueList[ID]; 3126 unsigned NumUses = 0; 3127 SmallDenseMap<const Use *, unsigned, 16> Order; 3128 for (const Use &U : V->materialized_uses()) { 3129 if (++NumUses > Record.size()) 3130 break; 3131 Order[&U] = Record[NumUses - 1]; 3132 } 3133 if (Order.size() != Record.size() || NumUses > Record.size()) 3134 // Mismatches can happen if the functions are being materialized lazily 3135 // (out-of-order), or a value has been upgraded. 3136 break; 3137 3138 V->sortUseList([&](const Use &L, const Use &R) { 3139 return Order.lookup(&L) < Order.lookup(&R); 3140 }); 3141 break; 3142 } 3143 } 3144 } 3145 } 3146 3147 /// When we see the block for metadata, remember where it is and then skip it. 3148 /// This lets us lazily deserialize the metadata. 3149 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3150 // Save the current stream state. 3151 uint64_t CurBit = Stream.GetCurrentBitNo(); 3152 DeferredMetadataInfo.push_back(CurBit); 3153 3154 // Skip over the block for now. 3155 if (Stream.SkipBlock()) 3156 return error("Invalid record"); 3157 return std::error_code(); 3158 } 3159 3160 std::error_code BitcodeReader::materializeMetadata() { 3161 for (uint64_t BitPos : DeferredMetadataInfo) { 3162 // Move the bit stream to the saved position. 3163 Stream.JumpToBit(BitPos); 3164 if (std::error_code EC = parseMetadata(true)) 3165 return EC; 3166 } 3167 DeferredMetadataInfo.clear(); 3168 return std::error_code(); 3169 } 3170 3171 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3172 3173 /// When we see the block for a function body, remember where it is and then 3174 /// skip it. This lets us lazily deserialize the functions. 3175 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3176 // Get the function we are talking about. 3177 if (FunctionsWithBodies.empty()) 3178 return error("Insufficient function protos"); 3179 3180 Function *Fn = FunctionsWithBodies.back(); 3181 FunctionsWithBodies.pop_back(); 3182 3183 // Save the current stream state. 3184 uint64_t CurBit = Stream.GetCurrentBitNo(); 3185 assert( 3186 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3187 "Mismatch between VST and scanned function offsets"); 3188 DeferredFunctionInfo[Fn] = CurBit; 3189 3190 // Skip over the function block for now. 3191 if (Stream.SkipBlock()) 3192 return error("Invalid record"); 3193 return std::error_code(); 3194 } 3195 3196 std::error_code BitcodeReader::globalCleanup() { 3197 // Patch the initializers for globals and aliases up. 3198 resolveGlobalAndIndirectSymbolInits(); 3199 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3200 return error("Malformed global initializer set"); 3201 3202 // Look for intrinsic functions which need to be upgraded at some point 3203 for (Function &F : *TheModule) { 3204 Function *NewFn; 3205 if (UpgradeIntrinsicFunction(&F, NewFn)) 3206 UpgradedIntrinsics[&F] = NewFn; 3207 } 3208 3209 // Look for global variables which need to be renamed. 3210 for (GlobalVariable &GV : TheModule->globals()) 3211 UpgradeGlobalVariable(&GV); 3212 3213 // Force deallocation of memory for these vectors to favor the client that 3214 // want lazy deserialization. 3215 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3216 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3217 IndirectSymbolInits); 3218 return std::error_code(); 3219 } 3220 3221 /// Support for lazy parsing of function bodies. This is required if we 3222 /// either have an old bitcode file without a VST forward declaration record, 3223 /// or if we have an anonymous function being materialized, since anonymous 3224 /// functions do not have a name and are therefore not in the VST. 3225 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3226 Stream.JumpToBit(NextUnreadBit); 3227 3228 if (Stream.AtEndOfStream()) 3229 return error("Could not find function in stream"); 3230 3231 if (!SeenFirstFunctionBody) 3232 return error("Trying to materialize functions before seeing function blocks"); 3233 3234 // An old bitcode file with the symbol table at the end would have 3235 // finished the parse greedily. 3236 assert(SeenValueSymbolTable); 3237 3238 SmallVector<uint64_t, 64> Record; 3239 3240 while (1) { 3241 BitstreamEntry Entry = Stream.advance(); 3242 switch (Entry.Kind) { 3243 default: 3244 return error("Expect SubBlock"); 3245 case BitstreamEntry::SubBlock: 3246 switch (Entry.ID) { 3247 default: 3248 return error("Expect function block"); 3249 case bitc::FUNCTION_BLOCK_ID: 3250 if (std::error_code EC = rememberAndSkipFunctionBody()) 3251 return EC; 3252 NextUnreadBit = Stream.GetCurrentBitNo(); 3253 return std::error_code(); 3254 } 3255 } 3256 } 3257 } 3258 3259 std::error_code BitcodeReader::parseBitcodeVersion() { 3260 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3261 return error("Invalid record"); 3262 3263 // Read all the records. 3264 SmallVector<uint64_t, 64> Record; 3265 while (1) { 3266 BitstreamEntry Entry = Stream.advance(); 3267 3268 switch (Entry.Kind) { 3269 default: 3270 case BitstreamEntry::Error: 3271 return error("Malformed block"); 3272 case BitstreamEntry::EndBlock: 3273 return std::error_code(); 3274 case BitstreamEntry::Record: 3275 // The interesting case. 3276 break; 3277 } 3278 3279 // Read a record. 3280 Record.clear(); 3281 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3282 switch (BitCode) { 3283 default: // Default behavior: reject 3284 return error("Invalid value"); 3285 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3286 // N] 3287 convertToString(Record, 0, ProducerIdentification); 3288 break; 3289 } 3290 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3291 unsigned epoch = (unsigned)Record[0]; 3292 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3293 return error( 3294 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3295 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3296 } 3297 } 3298 } 3299 } 3300 } 3301 3302 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3303 bool ShouldLazyLoadMetadata) { 3304 if (ResumeBit) 3305 Stream.JumpToBit(ResumeBit); 3306 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3307 return error("Invalid record"); 3308 3309 SmallVector<uint64_t, 64> Record; 3310 std::vector<std::string> SectionTable; 3311 std::vector<std::string> GCTable; 3312 3313 // Read all the records for this module. 3314 while (1) { 3315 BitstreamEntry Entry = Stream.advance(); 3316 3317 switch (Entry.Kind) { 3318 case BitstreamEntry::Error: 3319 return error("Malformed block"); 3320 case BitstreamEntry::EndBlock: 3321 return globalCleanup(); 3322 3323 case BitstreamEntry::SubBlock: 3324 switch (Entry.ID) { 3325 default: // Skip unknown content. 3326 if (Stream.SkipBlock()) 3327 return error("Invalid record"); 3328 break; 3329 case bitc::BLOCKINFO_BLOCK_ID: 3330 if (Stream.ReadBlockInfoBlock()) 3331 return error("Malformed block"); 3332 break; 3333 case bitc::PARAMATTR_BLOCK_ID: 3334 if (std::error_code EC = parseAttributeBlock()) 3335 return EC; 3336 break; 3337 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3338 if (std::error_code EC = parseAttributeGroupBlock()) 3339 return EC; 3340 break; 3341 case bitc::TYPE_BLOCK_ID_NEW: 3342 if (std::error_code EC = parseTypeTable()) 3343 return EC; 3344 break; 3345 case bitc::VALUE_SYMTAB_BLOCK_ID: 3346 if (!SeenValueSymbolTable) { 3347 // Either this is an old form VST without function index and an 3348 // associated VST forward declaration record (which would have caused 3349 // the VST to be jumped to and parsed before it was encountered 3350 // normally in the stream), or there were no function blocks to 3351 // trigger an earlier parsing of the VST. 3352 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3353 if (std::error_code EC = parseValueSymbolTable()) 3354 return EC; 3355 SeenValueSymbolTable = true; 3356 } else { 3357 // We must have had a VST forward declaration record, which caused 3358 // the parser to jump to and parse the VST earlier. 3359 assert(VSTOffset > 0); 3360 if (Stream.SkipBlock()) 3361 return error("Invalid record"); 3362 } 3363 break; 3364 case bitc::CONSTANTS_BLOCK_ID: 3365 if (std::error_code EC = parseConstants()) 3366 return EC; 3367 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3368 return EC; 3369 break; 3370 case bitc::METADATA_BLOCK_ID: 3371 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3372 if (std::error_code EC = rememberAndSkipMetadata()) 3373 return EC; 3374 break; 3375 } 3376 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3377 if (std::error_code EC = parseMetadata(true)) 3378 return EC; 3379 break; 3380 case bitc::METADATA_KIND_BLOCK_ID: 3381 if (std::error_code EC = parseMetadataKinds()) 3382 return EC; 3383 break; 3384 case bitc::FUNCTION_BLOCK_ID: 3385 // If this is the first function body we've seen, reverse the 3386 // FunctionsWithBodies list. 3387 if (!SeenFirstFunctionBody) { 3388 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3389 if (std::error_code EC = globalCleanup()) 3390 return EC; 3391 SeenFirstFunctionBody = true; 3392 } 3393 3394 if (VSTOffset > 0) { 3395 // If we have a VST forward declaration record, make sure we 3396 // parse the VST now if we haven't already. It is needed to 3397 // set up the DeferredFunctionInfo vector for lazy reading. 3398 if (!SeenValueSymbolTable) { 3399 if (std::error_code EC = 3400 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3401 return EC; 3402 SeenValueSymbolTable = true; 3403 // Fall through so that we record the NextUnreadBit below. 3404 // This is necessary in case we have an anonymous function that 3405 // is later materialized. Since it will not have a VST entry we 3406 // need to fall back to the lazy parse to find its offset. 3407 } else { 3408 // If we have a VST forward declaration record, but have already 3409 // parsed the VST (just above, when the first function body was 3410 // encountered here), then we are resuming the parse after 3411 // materializing functions. The ResumeBit points to the 3412 // start of the last function block recorded in the 3413 // DeferredFunctionInfo map. Skip it. 3414 if (Stream.SkipBlock()) 3415 return error("Invalid record"); 3416 continue; 3417 } 3418 } 3419 3420 // Support older bitcode files that did not have the function 3421 // index in the VST, nor a VST forward declaration record, as 3422 // well as anonymous functions that do not have VST entries. 3423 // Build the DeferredFunctionInfo vector on the fly. 3424 if (std::error_code EC = rememberAndSkipFunctionBody()) 3425 return EC; 3426 3427 // Suspend parsing when we reach the function bodies. Subsequent 3428 // materialization calls will resume it when necessary. If the bitcode 3429 // file is old, the symbol table will be at the end instead and will not 3430 // have been seen yet. In this case, just finish the parse now. 3431 if (SeenValueSymbolTable) { 3432 NextUnreadBit = Stream.GetCurrentBitNo(); 3433 return std::error_code(); 3434 } 3435 break; 3436 case bitc::USELIST_BLOCK_ID: 3437 if (std::error_code EC = parseUseLists()) 3438 return EC; 3439 break; 3440 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3441 if (std::error_code EC = parseOperandBundleTags()) 3442 return EC; 3443 break; 3444 } 3445 continue; 3446 3447 case BitstreamEntry::Record: 3448 // The interesting case. 3449 break; 3450 } 3451 3452 // Read a record. 3453 auto BitCode = Stream.readRecord(Entry.ID, Record); 3454 switch (BitCode) { 3455 default: break; // Default behavior, ignore unknown content. 3456 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3457 if (Record.size() < 1) 3458 return error("Invalid record"); 3459 // Only version #0 and #1 are supported so far. 3460 unsigned module_version = Record[0]; 3461 switch (module_version) { 3462 default: 3463 return error("Invalid value"); 3464 case 0: 3465 UseRelativeIDs = false; 3466 break; 3467 case 1: 3468 UseRelativeIDs = true; 3469 break; 3470 } 3471 break; 3472 } 3473 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3474 std::string S; 3475 if (convertToString(Record, 0, S)) 3476 return error("Invalid record"); 3477 TheModule->setTargetTriple(S); 3478 break; 3479 } 3480 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3481 std::string S; 3482 if (convertToString(Record, 0, S)) 3483 return error("Invalid record"); 3484 TheModule->setDataLayout(S); 3485 break; 3486 } 3487 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3488 std::string S; 3489 if (convertToString(Record, 0, S)) 3490 return error("Invalid record"); 3491 TheModule->setModuleInlineAsm(S); 3492 break; 3493 } 3494 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3495 // FIXME: Remove in 4.0. 3496 std::string S; 3497 if (convertToString(Record, 0, S)) 3498 return error("Invalid record"); 3499 // Ignore value. 3500 break; 3501 } 3502 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3503 std::string S; 3504 if (convertToString(Record, 0, S)) 3505 return error("Invalid record"); 3506 SectionTable.push_back(S); 3507 break; 3508 } 3509 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3510 std::string S; 3511 if (convertToString(Record, 0, S)) 3512 return error("Invalid record"); 3513 GCTable.push_back(S); 3514 break; 3515 } 3516 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3517 if (Record.size() < 2) 3518 return error("Invalid record"); 3519 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3520 unsigned ComdatNameSize = Record[1]; 3521 std::string ComdatName; 3522 ComdatName.reserve(ComdatNameSize); 3523 for (unsigned i = 0; i != ComdatNameSize; ++i) 3524 ComdatName += (char)Record[2 + i]; 3525 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3526 C->setSelectionKind(SK); 3527 ComdatList.push_back(C); 3528 break; 3529 } 3530 // GLOBALVAR: [pointer type, isconst, initid, 3531 // linkage, alignment, section, visibility, threadlocal, 3532 // unnamed_addr, externally_initialized, dllstorageclass, 3533 // comdat] 3534 case bitc::MODULE_CODE_GLOBALVAR: { 3535 if (Record.size() < 6) 3536 return error("Invalid record"); 3537 Type *Ty = getTypeByID(Record[0]); 3538 if (!Ty) 3539 return error("Invalid record"); 3540 bool isConstant = Record[1] & 1; 3541 bool explicitType = Record[1] & 2; 3542 unsigned AddressSpace; 3543 if (explicitType) { 3544 AddressSpace = Record[1] >> 2; 3545 } else { 3546 if (!Ty->isPointerTy()) 3547 return error("Invalid type for value"); 3548 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3549 Ty = cast<PointerType>(Ty)->getElementType(); 3550 } 3551 3552 uint64_t RawLinkage = Record[3]; 3553 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3554 unsigned Alignment; 3555 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3556 return EC; 3557 std::string Section; 3558 if (Record[5]) { 3559 if (Record[5]-1 >= SectionTable.size()) 3560 return error("Invalid ID"); 3561 Section = SectionTable[Record[5]-1]; 3562 } 3563 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3564 // Local linkage must have default visibility. 3565 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3566 // FIXME: Change to an error if non-default in 4.0. 3567 Visibility = getDecodedVisibility(Record[6]); 3568 3569 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3570 if (Record.size() > 7) 3571 TLM = getDecodedThreadLocalMode(Record[7]); 3572 3573 bool UnnamedAddr = false; 3574 if (Record.size() > 8) 3575 UnnamedAddr = Record[8]; 3576 3577 bool ExternallyInitialized = false; 3578 if (Record.size() > 9) 3579 ExternallyInitialized = Record[9]; 3580 3581 GlobalVariable *NewGV = 3582 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3583 TLM, AddressSpace, ExternallyInitialized); 3584 NewGV->setAlignment(Alignment); 3585 if (!Section.empty()) 3586 NewGV->setSection(Section); 3587 NewGV->setVisibility(Visibility); 3588 NewGV->setUnnamedAddr(UnnamedAddr); 3589 3590 if (Record.size() > 10) 3591 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3592 else 3593 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3594 3595 ValueList.push_back(NewGV); 3596 3597 // Remember which value to use for the global initializer. 3598 if (unsigned InitID = Record[2]) 3599 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3600 3601 if (Record.size() > 11) { 3602 if (unsigned ComdatID = Record[11]) { 3603 if (ComdatID > ComdatList.size()) 3604 return error("Invalid global variable comdat ID"); 3605 NewGV->setComdat(ComdatList[ComdatID - 1]); 3606 } 3607 } else if (hasImplicitComdat(RawLinkage)) { 3608 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3609 } 3610 break; 3611 } 3612 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3613 // alignment, section, visibility, gc, unnamed_addr, 3614 // prologuedata, dllstorageclass, comdat, prefixdata] 3615 case bitc::MODULE_CODE_FUNCTION: { 3616 if (Record.size() < 8) 3617 return error("Invalid record"); 3618 Type *Ty = getTypeByID(Record[0]); 3619 if (!Ty) 3620 return error("Invalid record"); 3621 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3622 Ty = PTy->getElementType(); 3623 auto *FTy = dyn_cast<FunctionType>(Ty); 3624 if (!FTy) 3625 return error("Invalid type for value"); 3626 auto CC = static_cast<CallingConv::ID>(Record[1]); 3627 if (CC & ~CallingConv::MaxID) 3628 return error("Invalid calling convention ID"); 3629 3630 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3631 "", TheModule); 3632 3633 Func->setCallingConv(CC); 3634 bool isProto = Record[2]; 3635 uint64_t RawLinkage = Record[3]; 3636 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3637 Func->setAttributes(getAttributes(Record[4])); 3638 3639 unsigned Alignment; 3640 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3641 return EC; 3642 Func->setAlignment(Alignment); 3643 if (Record[6]) { 3644 if (Record[6]-1 >= SectionTable.size()) 3645 return error("Invalid ID"); 3646 Func->setSection(SectionTable[Record[6]-1]); 3647 } 3648 // Local linkage must have default visibility. 3649 if (!Func->hasLocalLinkage()) 3650 // FIXME: Change to an error if non-default in 4.0. 3651 Func->setVisibility(getDecodedVisibility(Record[7])); 3652 if (Record.size() > 8 && Record[8]) { 3653 if (Record[8]-1 >= GCTable.size()) 3654 return error("Invalid ID"); 3655 Func->setGC(GCTable[Record[8]-1].c_str()); 3656 } 3657 bool UnnamedAddr = false; 3658 if (Record.size() > 9) 3659 UnnamedAddr = Record[9]; 3660 Func->setUnnamedAddr(UnnamedAddr); 3661 if (Record.size() > 10 && Record[10] != 0) 3662 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3663 3664 if (Record.size() > 11) 3665 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3666 else 3667 upgradeDLLImportExportLinkage(Func, RawLinkage); 3668 3669 if (Record.size() > 12) { 3670 if (unsigned ComdatID = Record[12]) { 3671 if (ComdatID > ComdatList.size()) 3672 return error("Invalid function comdat ID"); 3673 Func->setComdat(ComdatList[ComdatID - 1]); 3674 } 3675 } else if (hasImplicitComdat(RawLinkage)) { 3676 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3677 } 3678 3679 if (Record.size() > 13 && Record[13] != 0) 3680 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3681 3682 if (Record.size() > 14 && Record[14] != 0) 3683 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3684 3685 ValueList.push_back(Func); 3686 3687 // If this is a function with a body, remember the prototype we are 3688 // creating now, so that we can match up the body with them later. 3689 if (!isProto) { 3690 Func->setIsMaterializable(true); 3691 FunctionsWithBodies.push_back(Func); 3692 DeferredFunctionInfo[Func] = 0; 3693 } 3694 break; 3695 } 3696 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3697 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3698 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3699 case bitc::MODULE_CODE_IFUNC: 3700 case bitc::MODULE_CODE_ALIAS: 3701 case bitc::MODULE_CODE_ALIAS_OLD: { 3702 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3703 if (Record.size() < (3 + (unsigned)NewRecord)) 3704 return error("Invalid record"); 3705 unsigned OpNum = 0; 3706 Type *Ty = getTypeByID(Record[OpNum++]); 3707 if (!Ty) 3708 return error("Invalid record"); 3709 3710 unsigned AddrSpace; 3711 if (!NewRecord) { 3712 auto *PTy = dyn_cast<PointerType>(Ty); 3713 if (!PTy) 3714 return error("Invalid type for value"); 3715 Ty = PTy->getElementType(); 3716 AddrSpace = PTy->getAddressSpace(); 3717 } else { 3718 AddrSpace = Record[OpNum++]; 3719 } 3720 3721 auto Val = Record[OpNum++]; 3722 auto Linkage = Record[OpNum++]; 3723 GlobalIndirectSymbol *NewGA; 3724 if (BitCode == bitc::MODULE_CODE_ALIAS || 3725 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3726 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3727 "", TheModule); 3728 else 3729 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3730 "", nullptr, TheModule); 3731 // Old bitcode files didn't have visibility field. 3732 // Local linkage must have default visibility. 3733 if (OpNum != Record.size()) { 3734 auto VisInd = OpNum++; 3735 if (!NewGA->hasLocalLinkage()) 3736 // FIXME: Change to an error if non-default in 4.0. 3737 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3738 } 3739 if (OpNum != Record.size()) 3740 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3741 else 3742 upgradeDLLImportExportLinkage(NewGA, Linkage); 3743 if (OpNum != Record.size()) 3744 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3745 if (OpNum != Record.size()) 3746 NewGA->setUnnamedAddr(Record[OpNum++]); 3747 ValueList.push_back(NewGA); 3748 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3749 break; 3750 } 3751 /// MODULE_CODE_PURGEVALS: [numvals] 3752 case bitc::MODULE_CODE_PURGEVALS: 3753 // Trim down the value list to the specified size. 3754 if (Record.size() < 1 || Record[0] > ValueList.size()) 3755 return error("Invalid record"); 3756 ValueList.shrinkTo(Record[0]); 3757 break; 3758 /// MODULE_CODE_VSTOFFSET: [offset] 3759 case bitc::MODULE_CODE_VSTOFFSET: 3760 if (Record.size() < 1) 3761 return error("Invalid record"); 3762 VSTOffset = Record[0]; 3763 break; 3764 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3765 case bitc::MODULE_CODE_SOURCE_FILENAME: 3766 SmallString<128> ValueName; 3767 if (convertToString(Record, 0, ValueName)) 3768 return error("Invalid record"); 3769 TheModule->setSourceFileName(ValueName); 3770 break; 3771 } 3772 Record.clear(); 3773 } 3774 } 3775 3776 /// Helper to read the header common to all bitcode files. 3777 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3778 // Sniff for the signature. 3779 if (Stream.Read(8) != 'B' || 3780 Stream.Read(8) != 'C' || 3781 Stream.Read(4) != 0x0 || 3782 Stream.Read(4) != 0xC || 3783 Stream.Read(4) != 0xE || 3784 Stream.Read(4) != 0xD) 3785 return false; 3786 return true; 3787 } 3788 3789 std::error_code 3790 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3791 Module *M, bool ShouldLazyLoadMetadata) { 3792 TheModule = M; 3793 3794 if (std::error_code EC = initStream(std::move(Streamer))) 3795 return EC; 3796 3797 // Sniff for the signature. 3798 if (!hasValidBitcodeHeader(Stream)) 3799 return error("Invalid bitcode signature"); 3800 3801 // We expect a number of well-defined blocks, though we don't necessarily 3802 // need to understand them all. 3803 while (1) { 3804 if (Stream.AtEndOfStream()) { 3805 // We didn't really read a proper Module. 3806 return error("Malformed IR file"); 3807 } 3808 3809 BitstreamEntry Entry = 3810 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3811 3812 if (Entry.Kind != BitstreamEntry::SubBlock) 3813 return error("Malformed block"); 3814 3815 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3816 parseBitcodeVersion(); 3817 continue; 3818 } 3819 3820 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3821 return parseModule(0, ShouldLazyLoadMetadata); 3822 3823 if (Stream.SkipBlock()) 3824 return error("Invalid record"); 3825 } 3826 } 3827 3828 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3829 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3830 return error("Invalid record"); 3831 3832 SmallVector<uint64_t, 64> Record; 3833 3834 std::string Triple; 3835 // Read all the records for this module. 3836 while (1) { 3837 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3838 3839 switch (Entry.Kind) { 3840 case BitstreamEntry::SubBlock: // Handled for us already. 3841 case BitstreamEntry::Error: 3842 return error("Malformed block"); 3843 case BitstreamEntry::EndBlock: 3844 return Triple; 3845 case BitstreamEntry::Record: 3846 // The interesting case. 3847 break; 3848 } 3849 3850 // Read a record. 3851 switch (Stream.readRecord(Entry.ID, Record)) { 3852 default: break; // Default behavior, ignore unknown content. 3853 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3854 std::string S; 3855 if (convertToString(Record, 0, S)) 3856 return error("Invalid record"); 3857 Triple = S; 3858 break; 3859 } 3860 } 3861 Record.clear(); 3862 } 3863 llvm_unreachable("Exit infinite loop"); 3864 } 3865 3866 ErrorOr<std::string> BitcodeReader::parseTriple() { 3867 if (std::error_code EC = initStream(nullptr)) 3868 return EC; 3869 3870 // Sniff for the signature. 3871 if (!hasValidBitcodeHeader(Stream)) 3872 return error("Invalid bitcode signature"); 3873 3874 // We expect a number of well-defined blocks, though we don't necessarily 3875 // need to understand them all. 3876 while (1) { 3877 BitstreamEntry Entry = Stream.advance(); 3878 3879 switch (Entry.Kind) { 3880 case BitstreamEntry::Error: 3881 return error("Malformed block"); 3882 case BitstreamEntry::EndBlock: 3883 return std::error_code(); 3884 3885 case BitstreamEntry::SubBlock: 3886 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3887 return parseModuleTriple(); 3888 3889 // Ignore other sub-blocks. 3890 if (Stream.SkipBlock()) 3891 return error("Malformed block"); 3892 continue; 3893 3894 case BitstreamEntry::Record: 3895 Stream.skipRecord(Entry.ID); 3896 continue; 3897 } 3898 } 3899 } 3900 3901 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3902 if (std::error_code EC = initStream(nullptr)) 3903 return EC; 3904 3905 // Sniff for the signature. 3906 if (!hasValidBitcodeHeader(Stream)) 3907 return error("Invalid bitcode signature"); 3908 3909 // We expect a number of well-defined blocks, though we don't necessarily 3910 // need to understand them all. 3911 while (1) { 3912 BitstreamEntry Entry = Stream.advance(); 3913 switch (Entry.Kind) { 3914 case BitstreamEntry::Error: 3915 return error("Malformed block"); 3916 case BitstreamEntry::EndBlock: 3917 return std::error_code(); 3918 3919 case BitstreamEntry::SubBlock: 3920 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3921 if (std::error_code EC = parseBitcodeVersion()) 3922 return EC; 3923 return ProducerIdentification; 3924 } 3925 // Ignore other sub-blocks. 3926 if (Stream.SkipBlock()) 3927 return error("Malformed block"); 3928 continue; 3929 case BitstreamEntry::Record: 3930 Stream.skipRecord(Entry.ID); 3931 continue; 3932 } 3933 } 3934 } 3935 3936 /// Parse metadata attachments. 3937 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3938 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3939 return error("Invalid record"); 3940 3941 SmallVector<uint64_t, 64> Record; 3942 while (1) { 3943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3944 3945 switch (Entry.Kind) { 3946 case BitstreamEntry::SubBlock: // Handled for us already. 3947 case BitstreamEntry::Error: 3948 return error("Malformed block"); 3949 case BitstreamEntry::EndBlock: 3950 return std::error_code(); 3951 case BitstreamEntry::Record: 3952 // The interesting case. 3953 break; 3954 } 3955 3956 // Read a metadata attachment record. 3957 Record.clear(); 3958 switch (Stream.readRecord(Entry.ID, Record)) { 3959 default: // Default behavior: ignore. 3960 break; 3961 case bitc::METADATA_ATTACHMENT: { 3962 unsigned RecordLength = Record.size(); 3963 if (Record.empty()) 3964 return error("Invalid record"); 3965 if (RecordLength % 2 == 0) { 3966 // A function attachment. 3967 for (unsigned I = 0; I != RecordLength; I += 2) { 3968 auto K = MDKindMap.find(Record[I]); 3969 if (K == MDKindMap.end()) 3970 return error("Invalid ID"); 3971 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3972 if (!MD) 3973 return error("Invalid metadata attachment"); 3974 F.setMetadata(K->second, MD); 3975 } 3976 continue; 3977 } 3978 3979 // An instruction attachment. 3980 Instruction *Inst = InstructionList[Record[0]]; 3981 for (unsigned i = 1; i != RecordLength; i = i+2) { 3982 unsigned Kind = Record[i]; 3983 DenseMap<unsigned, unsigned>::iterator I = 3984 MDKindMap.find(Kind); 3985 if (I == MDKindMap.end()) 3986 return error("Invalid ID"); 3987 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3988 if (isa<LocalAsMetadata>(Node)) 3989 // Drop the attachment. This used to be legal, but there's no 3990 // upgrade path. 3991 break; 3992 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3993 if (!MD) 3994 return error("Invalid metadata attachment"); 3995 3996 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3997 MD = upgradeInstructionLoopAttachment(*MD); 3998 3999 Inst->setMetadata(I->second, MD); 4000 if (I->second == LLVMContext::MD_tbaa) { 4001 InstsWithTBAATag.push_back(Inst); 4002 continue; 4003 } 4004 } 4005 break; 4006 } 4007 } 4008 } 4009 } 4010 4011 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4012 LLVMContext &Context = PtrType->getContext(); 4013 if (!isa<PointerType>(PtrType)) 4014 return error(Context, "Load/Store operand is not a pointer type"); 4015 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4016 4017 if (ValType && ValType != ElemType) 4018 return error(Context, "Explicit load/store type does not match pointee " 4019 "type of pointer operand"); 4020 if (!PointerType::isLoadableOrStorableType(ElemType)) 4021 return error(Context, "Cannot load/store from pointer"); 4022 return std::error_code(); 4023 } 4024 4025 /// Lazily parse the specified function body block. 4026 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4027 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4028 return error("Invalid record"); 4029 4030 // Unexpected unresolved metadata when parsing function. 4031 if (MetadataList.hasFwdRefs()) 4032 return error("Invalid function metadata: incoming forward references"); 4033 4034 InstructionList.clear(); 4035 unsigned ModuleValueListSize = ValueList.size(); 4036 unsigned ModuleMetadataListSize = MetadataList.size(); 4037 4038 // Add all the function arguments to the value table. 4039 for (Argument &I : F->args()) 4040 ValueList.push_back(&I); 4041 4042 unsigned NextValueNo = ValueList.size(); 4043 BasicBlock *CurBB = nullptr; 4044 unsigned CurBBNo = 0; 4045 4046 DebugLoc LastLoc; 4047 auto getLastInstruction = [&]() -> Instruction * { 4048 if (CurBB && !CurBB->empty()) 4049 return &CurBB->back(); 4050 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4051 !FunctionBBs[CurBBNo - 1]->empty()) 4052 return &FunctionBBs[CurBBNo - 1]->back(); 4053 return nullptr; 4054 }; 4055 4056 std::vector<OperandBundleDef> OperandBundles; 4057 4058 // Read all the records. 4059 SmallVector<uint64_t, 64> Record; 4060 while (1) { 4061 BitstreamEntry Entry = Stream.advance(); 4062 4063 switch (Entry.Kind) { 4064 case BitstreamEntry::Error: 4065 return error("Malformed block"); 4066 case BitstreamEntry::EndBlock: 4067 goto OutOfRecordLoop; 4068 4069 case BitstreamEntry::SubBlock: 4070 switch (Entry.ID) { 4071 default: // Skip unknown content. 4072 if (Stream.SkipBlock()) 4073 return error("Invalid record"); 4074 break; 4075 case bitc::CONSTANTS_BLOCK_ID: 4076 if (std::error_code EC = parseConstants()) 4077 return EC; 4078 NextValueNo = ValueList.size(); 4079 break; 4080 case bitc::VALUE_SYMTAB_BLOCK_ID: 4081 if (std::error_code EC = parseValueSymbolTable()) 4082 return EC; 4083 break; 4084 case bitc::METADATA_ATTACHMENT_ID: 4085 if (std::error_code EC = parseMetadataAttachment(*F)) 4086 return EC; 4087 break; 4088 case bitc::METADATA_BLOCK_ID: 4089 if (std::error_code EC = parseMetadata()) 4090 return EC; 4091 break; 4092 case bitc::USELIST_BLOCK_ID: 4093 if (std::error_code EC = parseUseLists()) 4094 return EC; 4095 break; 4096 } 4097 continue; 4098 4099 case BitstreamEntry::Record: 4100 // The interesting case. 4101 break; 4102 } 4103 4104 // Read a record. 4105 Record.clear(); 4106 Instruction *I = nullptr; 4107 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4108 switch (BitCode) { 4109 default: // Default behavior: reject 4110 return error("Invalid value"); 4111 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4112 if (Record.size() < 1 || Record[0] == 0) 4113 return error("Invalid record"); 4114 // Create all the basic blocks for the function. 4115 FunctionBBs.resize(Record[0]); 4116 4117 // See if anything took the address of blocks in this function. 4118 auto BBFRI = BasicBlockFwdRefs.find(F); 4119 if (BBFRI == BasicBlockFwdRefs.end()) { 4120 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4121 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4122 } else { 4123 auto &BBRefs = BBFRI->second; 4124 // Check for invalid basic block references. 4125 if (BBRefs.size() > FunctionBBs.size()) 4126 return error("Invalid ID"); 4127 assert(!BBRefs.empty() && "Unexpected empty array"); 4128 assert(!BBRefs.front() && "Invalid reference to entry block"); 4129 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4130 ++I) 4131 if (I < RE && BBRefs[I]) { 4132 BBRefs[I]->insertInto(F); 4133 FunctionBBs[I] = BBRefs[I]; 4134 } else { 4135 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4136 } 4137 4138 // Erase from the table. 4139 BasicBlockFwdRefs.erase(BBFRI); 4140 } 4141 4142 CurBB = FunctionBBs[0]; 4143 continue; 4144 } 4145 4146 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4147 // This record indicates that the last instruction is at the same 4148 // location as the previous instruction with a location. 4149 I = getLastInstruction(); 4150 4151 if (!I) 4152 return error("Invalid record"); 4153 I->setDebugLoc(LastLoc); 4154 I = nullptr; 4155 continue; 4156 4157 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4158 I = getLastInstruction(); 4159 if (!I || Record.size() < 4) 4160 return error("Invalid record"); 4161 4162 unsigned Line = Record[0], Col = Record[1]; 4163 unsigned ScopeID = Record[2], IAID = Record[3]; 4164 4165 MDNode *Scope = nullptr, *IA = nullptr; 4166 if (ScopeID) { 4167 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4168 if (!Scope) 4169 return error("Invalid record"); 4170 } 4171 if (IAID) { 4172 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4173 if (!IA) 4174 return error("Invalid record"); 4175 } 4176 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4177 I->setDebugLoc(LastLoc); 4178 I = nullptr; 4179 continue; 4180 } 4181 4182 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4183 unsigned OpNum = 0; 4184 Value *LHS, *RHS; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4186 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4187 OpNum+1 > Record.size()) 4188 return error("Invalid record"); 4189 4190 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4191 if (Opc == -1) 4192 return error("Invalid record"); 4193 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4194 InstructionList.push_back(I); 4195 if (OpNum < Record.size()) { 4196 if (Opc == Instruction::Add || 4197 Opc == Instruction::Sub || 4198 Opc == Instruction::Mul || 4199 Opc == Instruction::Shl) { 4200 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4201 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4202 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4203 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4204 } else if (Opc == Instruction::SDiv || 4205 Opc == Instruction::UDiv || 4206 Opc == Instruction::LShr || 4207 Opc == Instruction::AShr) { 4208 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4209 cast<BinaryOperator>(I)->setIsExact(true); 4210 } else if (isa<FPMathOperator>(I)) { 4211 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4212 if (FMF.any()) 4213 I->setFastMathFlags(FMF); 4214 } 4215 4216 } 4217 break; 4218 } 4219 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4220 unsigned OpNum = 0; 4221 Value *Op; 4222 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4223 OpNum+2 != Record.size()) 4224 return error("Invalid record"); 4225 4226 Type *ResTy = getTypeByID(Record[OpNum]); 4227 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4228 if (Opc == -1 || !ResTy) 4229 return error("Invalid record"); 4230 Instruction *Temp = nullptr; 4231 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4232 if (Temp) { 4233 InstructionList.push_back(Temp); 4234 CurBB->getInstList().push_back(Temp); 4235 } 4236 } else { 4237 auto CastOp = (Instruction::CastOps)Opc; 4238 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4239 return error("Invalid cast"); 4240 I = CastInst::Create(CastOp, Op, ResTy); 4241 } 4242 InstructionList.push_back(I); 4243 break; 4244 } 4245 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4246 case bitc::FUNC_CODE_INST_GEP_OLD: 4247 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4248 unsigned OpNum = 0; 4249 4250 Type *Ty; 4251 bool InBounds; 4252 4253 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4254 InBounds = Record[OpNum++]; 4255 Ty = getTypeByID(Record[OpNum++]); 4256 } else { 4257 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4258 Ty = nullptr; 4259 } 4260 4261 Value *BasePtr; 4262 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4263 return error("Invalid record"); 4264 4265 if (!Ty) 4266 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4267 ->getElementType(); 4268 else if (Ty != 4269 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4270 ->getElementType()) 4271 return error( 4272 "Explicit gep type does not match pointee type of pointer operand"); 4273 4274 SmallVector<Value*, 16> GEPIdx; 4275 while (OpNum != Record.size()) { 4276 Value *Op; 4277 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4278 return error("Invalid record"); 4279 GEPIdx.push_back(Op); 4280 } 4281 4282 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4283 4284 InstructionList.push_back(I); 4285 if (InBounds) 4286 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4287 break; 4288 } 4289 4290 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4291 // EXTRACTVAL: [opty, opval, n x indices] 4292 unsigned OpNum = 0; 4293 Value *Agg; 4294 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4295 return error("Invalid record"); 4296 4297 unsigned RecSize = Record.size(); 4298 if (OpNum == RecSize) 4299 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4300 4301 SmallVector<unsigned, 4> EXTRACTVALIdx; 4302 Type *CurTy = Agg->getType(); 4303 for (; OpNum != RecSize; ++OpNum) { 4304 bool IsArray = CurTy->isArrayTy(); 4305 bool IsStruct = CurTy->isStructTy(); 4306 uint64_t Index = Record[OpNum]; 4307 4308 if (!IsStruct && !IsArray) 4309 return error("EXTRACTVAL: Invalid type"); 4310 if ((unsigned)Index != Index) 4311 return error("Invalid value"); 4312 if (IsStruct && Index >= CurTy->subtypes().size()) 4313 return error("EXTRACTVAL: Invalid struct index"); 4314 if (IsArray && Index >= CurTy->getArrayNumElements()) 4315 return error("EXTRACTVAL: Invalid array index"); 4316 EXTRACTVALIdx.push_back((unsigned)Index); 4317 4318 if (IsStruct) 4319 CurTy = CurTy->subtypes()[Index]; 4320 else 4321 CurTy = CurTy->subtypes()[0]; 4322 } 4323 4324 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 4329 case bitc::FUNC_CODE_INST_INSERTVAL: { 4330 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4331 unsigned OpNum = 0; 4332 Value *Agg; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4334 return error("Invalid record"); 4335 Value *Val; 4336 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4337 return error("Invalid record"); 4338 4339 unsigned RecSize = Record.size(); 4340 if (OpNum == RecSize) 4341 return error("INSERTVAL: Invalid instruction with 0 indices"); 4342 4343 SmallVector<unsigned, 4> INSERTVALIdx; 4344 Type *CurTy = Agg->getType(); 4345 for (; OpNum != RecSize; ++OpNum) { 4346 bool IsArray = CurTy->isArrayTy(); 4347 bool IsStruct = CurTy->isStructTy(); 4348 uint64_t Index = Record[OpNum]; 4349 4350 if (!IsStruct && !IsArray) 4351 return error("INSERTVAL: Invalid type"); 4352 if ((unsigned)Index != Index) 4353 return error("Invalid value"); 4354 if (IsStruct && Index >= CurTy->subtypes().size()) 4355 return error("INSERTVAL: Invalid struct index"); 4356 if (IsArray && Index >= CurTy->getArrayNumElements()) 4357 return error("INSERTVAL: Invalid array index"); 4358 4359 INSERTVALIdx.push_back((unsigned)Index); 4360 if (IsStruct) 4361 CurTy = CurTy->subtypes()[Index]; 4362 else 4363 CurTy = CurTy->subtypes()[0]; 4364 } 4365 4366 if (CurTy != Val->getType()) 4367 return error("Inserted value type doesn't match aggregate type"); 4368 4369 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4370 InstructionList.push_back(I); 4371 break; 4372 } 4373 4374 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4375 // obsolete form of select 4376 // handles select i1 ... in old bitcode 4377 unsigned OpNum = 0; 4378 Value *TrueVal, *FalseVal, *Cond; 4379 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4380 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4381 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4382 return error("Invalid record"); 4383 4384 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4385 InstructionList.push_back(I); 4386 break; 4387 } 4388 4389 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4390 // new form of select 4391 // handles select i1 or select [N x i1] 4392 unsigned OpNum = 0; 4393 Value *TrueVal, *FalseVal, *Cond; 4394 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4395 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4396 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4397 return error("Invalid record"); 4398 4399 // select condition can be either i1 or [N x i1] 4400 if (VectorType* vector_type = 4401 dyn_cast<VectorType>(Cond->getType())) { 4402 // expect <n x i1> 4403 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4404 return error("Invalid type for value"); 4405 } else { 4406 // expect i1 4407 if (Cond->getType() != Type::getInt1Ty(Context)) 4408 return error("Invalid type for value"); 4409 } 4410 4411 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4412 InstructionList.push_back(I); 4413 break; 4414 } 4415 4416 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4417 unsigned OpNum = 0; 4418 Value *Vec, *Idx; 4419 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4420 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4421 return error("Invalid record"); 4422 if (!Vec->getType()->isVectorTy()) 4423 return error("Invalid type for value"); 4424 I = ExtractElementInst::Create(Vec, Idx); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 4429 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4430 unsigned OpNum = 0; 4431 Value *Vec, *Elt, *Idx; 4432 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4433 return error("Invalid record"); 4434 if (!Vec->getType()->isVectorTy()) 4435 return error("Invalid type for value"); 4436 if (popValue(Record, OpNum, NextValueNo, 4437 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4438 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4439 return error("Invalid record"); 4440 I = InsertElementInst::Create(Vec, Elt, Idx); 4441 InstructionList.push_back(I); 4442 break; 4443 } 4444 4445 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4446 unsigned OpNum = 0; 4447 Value *Vec1, *Vec2, *Mask; 4448 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4449 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4450 return error("Invalid record"); 4451 4452 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4453 return error("Invalid record"); 4454 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4455 return error("Invalid type for value"); 4456 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 4461 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4462 // Old form of ICmp/FCmp returning bool 4463 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4464 // both legal on vectors but had different behaviour. 4465 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4466 // FCmp/ICmp returning bool or vector of bool 4467 4468 unsigned OpNum = 0; 4469 Value *LHS, *RHS; 4470 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4471 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4472 return error("Invalid record"); 4473 4474 unsigned PredVal = Record[OpNum]; 4475 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4476 FastMathFlags FMF; 4477 if (IsFP && Record.size() > OpNum+1) 4478 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4479 4480 if (OpNum+1 != Record.size()) 4481 return error("Invalid record"); 4482 4483 if (LHS->getType()->isFPOrFPVectorTy()) 4484 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4485 else 4486 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4487 4488 if (FMF.any()) 4489 I->setFastMathFlags(FMF); 4490 InstructionList.push_back(I); 4491 break; 4492 } 4493 4494 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4495 { 4496 unsigned Size = Record.size(); 4497 if (Size == 0) { 4498 I = ReturnInst::Create(Context); 4499 InstructionList.push_back(I); 4500 break; 4501 } 4502 4503 unsigned OpNum = 0; 4504 Value *Op = nullptr; 4505 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4506 return error("Invalid record"); 4507 if (OpNum != Record.size()) 4508 return error("Invalid record"); 4509 4510 I = ReturnInst::Create(Context, Op); 4511 InstructionList.push_back(I); 4512 break; 4513 } 4514 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4515 if (Record.size() != 1 && Record.size() != 3) 4516 return error("Invalid record"); 4517 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4518 if (!TrueDest) 4519 return error("Invalid record"); 4520 4521 if (Record.size() == 1) { 4522 I = BranchInst::Create(TrueDest); 4523 InstructionList.push_back(I); 4524 } 4525 else { 4526 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4527 Value *Cond = getValue(Record, 2, NextValueNo, 4528 Type::getInt1Ty(Context)); 4529 if (!FalseDest || !Cond) 4530 return error("Invalid record"); 4531 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4532 InstructionList.push_back(I); 4533 } 4534 break; 4535 } 4536 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4537 if (Record.size() != 1 && Record.size() != 2) 4538 return error("Invalid record"); 4539 unsigned Idx = 0; 4540 Value *CleanupPad = 4541 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4542 if (!CleanupPad) 4543 return error("Invalid record"); 4544 BasicBlock *UnwindDest = nullptr; 4545 if (Record.size() == 2) { 4546 UnwindDest = getBasicBlock(Record[Idx++]); 4547 if (!UnwindDest) 4548 return error("Invalid record"); 4549 } 4550 4551 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4552 InstructionList.push_back(I); 4553 break; 4554 } 4555 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4556 if (Record.size() != 2) 4557 return error("Invalid record"); 4558 unsigned Idx = 0; 4559 Value *CatchPad = 4560 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4561 if (!CatchPad) 4562 return error("Invalid record"); 4563 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4564 if (!BB) 4565 return error("Invalid record"); 4566 4567 I = CatchReturnInst::Create(CatchPad, BB); 4568 InstructionList.push_back(I); 4569 break; 4570 } 4571 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4572 // We must have, at minimum, the outer scope and the number of arguments. 4573 if (Record.size() < 2) 4574 return error("Invalid record"); 4575 4576 unsigned Idx = 0; 4577 4578 Value *ParentPad = 4579 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4580 4581 unsigned NumHandlers = Record[Idx++]; 4582 4583 SmallVector<BasicBlock *, 2> Handlers; 4584 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4585 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4586 if (!BB) 4587 return error("Invalid record"); 4588 Handlers.push_back(BB); 4589 } 4590 4591 BasicBlock *UnwindDest = nullptr; 4592 if (Idx + 1 == Record.size()) { 4593 UnwindDest = getBasicBlock(Record[Idx++]); 4594 if (!UnwindDest) 4595 return error("Invalid record"); 4596 } 4597 4598 if (Record.size() != Idx) 4599 return error("Invalid record"); 4600 4601 auto *CatchSwitch = 4602 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4603 for (BasicBlock *Handler : Handlers) 4604 CatchSwitch->addHandler(Handler); 4605 I = CatchSwitch; 4606 InstructionList.push_back(I); 4607 break; 4608 } 4609 case bitc::FUNC_CODE_INST_CATCHPAD: 4610 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4611 // We must have, at minimum, the outer scope and the number of arguments. 4612 if (Record.size() < 2) 4613 return error("Invalid record"); 4614 4615 unsigned Idx = 0; 4616 4617 Value *ParentPad = 4618 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4619 4620 unsigned NumArgOperands = Record[Idx++]; 4621 4622 SmallVector<Value *, 2> Args; 4623 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4624 Value *Val; 4625 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4626 return error("Invalid record"); 4627 Args.push_back(Val); 4628 } 4629 4630 if (Record.size() != Idx) 4631 return error("Invalid record"); 4632 4633 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4634 I = CleanupPadInst::Create(ParentPad, Args); 4635 else 4636 I = CatchPadInst::Create(ParentPad, Args); 4637 InstructionList.push_back(I); 4638 break; 4639 } 4640 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4641 // Check magic 4642 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4643 // "New" SwitchInst format with case ranges. The changes to write this 4644 // format were reverted but we still recognize bitcode that uses it. 4645 // Hopefully someday we will have support for case ranges and can use 4646 // this format again. 4647 4648 Type *OpTy = getTypeByID(Record[1]); 4649 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4650 4651 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4652 BasicBlock *Default = getBasicBlock(Record[3]); 4653 if (!OpTy || !Cond || !Default) 4654 return error("Invalid record"); 4655 4656 unsigned NumCases = Record[4]; 4657 4658 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4659 InstructionList.push_back(SI); 4660 4661 unsigned CurIdx = 5; 4662 for (unsigned i = 0; i != NumCases; ++i) { 4663 SmallVector<ConstantInt*, 1> CaseVals; 4664 unsigned NumItems = Record[CurIdx++]; 4665 for (unsigned ci = 0; ci != NumItems; ++ci) { 4666 bool isSingleNumber = Record[CurIdx++]; 4667 4668 APInt Low; 4669 unsigned ActiveWords = 1; 4670 if (ValueBitWidth > 64) 4671 ActiveWords = Record[CurIdx++]; 4672 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4673 ValueBitWidth); 4674 CurIdx += ActiveWords; 4675 4676 if (!isSingleNumber) { 4677 ActiveWords = 1; 4678 if (ValueBitWidth > 64) 4679 ActiveWords = Record[CurIdx++]; 4680 APInt High = readWideAPInt( 4681 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4682 CurIdx += ActiveWords; 4683 4684 // FIXME: It is not clear whether values in the range should be 4685 // compared as signed or unsigned values. The partially 4686 // implemented changes that used this format in the past used 4687 // unsigned comparisons. 4688 for ( ; Low.ule(High); ++Low) 4689 CaseVals.push_back(ConstantInt::get(Context, Low)); 4690 } else 4691 CaseVals.push_back(ConstantInt::get(Context, Low)); 4692 } 4693 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4694 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4695 cve = CaseVals.end(); cvi != cve; ++cvi) 4696 SI->addCase(*cvi, DestBB); 4697 } 4698 I = SI; 4699 break; 4700 } 4701 4702 // Old SwitchInst format without case ranges. 4703 4704 if (Record.size() < 3 || (Record.size() & 1) == 0) 4705 return error("Invalid record"); 4706 Type *OpTy = getTypeByID(Record[0]); 4707 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4708 BasicBlock *Default = getBasicBlock(Record[2]); 4709 if (!OpTy || !Cond || !Default) 4710 return error("Invalid record"); 4711 unsigned NumCases = (Record.size()-3)/2; 4712 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4713 InstructionList.push_back(SI); 4714 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4715 ConstantInt *CaseVal = 4716 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4717 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4718 if (!CaseVal || !DestBB) { 4719 delete SI; 4720 return error("Invalid record"); 4721 } 4722 SI->addCase(CaseVal, DestBB); 4723 } 4724 I = SI; 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4728 if (Record.size() < 2) 4729 return error("Invalid record"); 4730 Type *OpTy = getTypeByID(Record[0]); 4731 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4732 if (!OpTy || !Address) 4733 return error("Invalid record"); 4734 unsigned NumDests = Record.size()-2; 4735 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4736 InstructionList.push_back(IBI); 4737 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4738 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4739 IBI->addDestination(DestBB); 4740 } else { 4741 delete IBI; 4742 return error("Invalid record"); 4743 } 4744 } 4745 I = IBI; 4746 break; 4747 } 4748 4749 case bitc::FUNC_CODE_INST_INVOKE: { 4750 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4751 if (Record.size() < 4) 4752 return error("Invalid record"); 4753 unsigned OpNum = 0; 4754 AttributeSet PAL = getAttributes(Record[OpNum++]); 4755 unsigned CCInfo = Record[OpNum++]; 4756 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4757 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4758 4759 FunctionType *FTy = nullptr; 4760 if (CCInfo >> 13 & 1 && 4761 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4762 return error("Explicit invoke type is not a function type"); 4763 4764 Value *Callee; 4765 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4766 return error("Invalid record"); 4767 4768 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4769 if (!CalleeTy) 4770 return error("Callee is not a pointer"); 4771 if (!FTy) { 4772 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4773 if (!FTy) 4774 return error("Callee is not of pointer to function type"); 4775 } else if (CalleeTy->getElementType() != FTy) 4776 return error("Explicit invoke type does not match pointee type of " 4777 "callee operand"); 4778 if (Record.size() < FTy->getNumParams() + OpNum) 4779 return error("Insufficient operands to call"); 4780 4781 SmallVector<Value*, 16> Ops; 4782 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4783 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4784 FTy->getParamType(i))); 4785 if (!Ops.back()) 4786 return error("Invalid record"); 4787 } 4788 4789 if (!FTy->isVarArg()) { 4790 if (Record.size() != OpNum) 4791 return error("Invalid record"); 4792 } else { 4793 // Read type/value pairs for varargs params. 4794 while (OpNum != Record.size()) { 4795 Value *Op; 4796 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4797 return error("Invalid record"); 4798 Ops.push_back(Op); 4799 } 4800 } 4801 4802 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4803 OperandBundles.clear(); 4804 InstructionList.push_back(I); 4805 cast<InvokeInst>(I)->setCallingConv( 4806 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4807 cast<InvokeInst>(I)->setAttributes(PAL); 4808 break; 4809 } 4810 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4811 unsigned Idx = 0; 4812 Value *Val = nullptr; 4813 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4814 return error("Invalid record"); 4815 I = ResumeInst::Create(Val); 4816 InstructionList.push_back(I); 4817 break; 4818 } 4819 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4820 I = new UnreachableInst(Context); 4821 InstructionList.push_back(I); 4822 break; 4823 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4824 if (Record.size() < 1 || ((Record.size()-1)&1)) 4825 return error("Invalid record"); 4826 Type *Ty = getTypeByID(Record[0]); 4827 if (!Ty) 4828 return error("Invalid record"); 4829 4830 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4831 InstructionList.push_back(PN); 4832 4833 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4834 Value *V; 4835 // With the new function encoding, it is possible that operands have 4836 // negative IDs (for forward references). Use a signed VBR 4837 // representation to keep the encoding small. 4838 if (UseRelativeIDs) 4839 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4840 else 4841 V = getValue(Record, 1+i, NextValueNo, Ty); 4842 BasicBlock *BB = getBasicBlock(Record[2+i]); 4843 if (!V || !BB) 4844 return error("Invalid record"); 4845 PN->addIncoming(V, BB); 4846 } 4847 I = PN; 4848 break; 4849 } 4850 4851 case bitc::FUNC_CODE_INST_LANDINGPAD: 4852 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4853 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4854 unsigned Idx = 0; 4855 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4856 if (Record.size() < 3) 4857 return error("Invalid record"); 4858 } else { 4859 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4860 if (Record.size() < 4) 4861 return error("Invalid record"); 4862 } 4863 Type *Ty = getTypeByID(Record[Idx++]); 4864 if (!Ty) 4865 return error("Invalid record"); 4866 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4867 Value *PersFn = nullptr; 4868 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4869 return error("Invalid record"); 4870 4871 if (!F->hasPersonalityFn()) 4872 F->setPersonalityFn(cast<Constant>(PersFn)); 4873 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4874 return error("Personality function mismatch"); 4875 } 4876 4877 bool IsCleanup = !!Record[Idx++]; 4878 unsigned NumClauses = Record[Idx++]; 4879 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4880 LP->setCleanup(IsCleanup); 4881 for (unsigned J = 0; J != NumClauses; ++J) { 4882 LandingPadInst::ClauseType CT = 4883 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4884 Value *Val; 4885 4886 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4887 delete LP; 4888 return error("Invalid record"); 4889 } 4890 4891 assert((CT != LandingPadInst::Catch || 4892 !isa<ArrayType>(Val->getType())) && 4893 "Catch clause has a invalid type!"); 4894 assert((CT != LandingPadInst::Filter || 4895 isa<ArrayType>(Val->getType())) && 4896 "Filter clause has invalid type!"); 4897 LP->addClause(cast<Constant>(Val)); 4898 } 4899 4900 I = LP; 4901 InstructionList.push_back(I); 4902 break; 4903 } 4904 4905 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4906 if (Record.size() != 4) 4907 return error("Invalid record"); 4908 uint64_t AlignRecord = Record[3]; 4909 const uint64_t InAllocaMask = uint64_t(1) << 5; 4910 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4911 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4912 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4913 SwiftErrorMask; 4914 bool InAlloca = AlignRecord & InAllocaMask; 4915 bool SwiftError = AlignRecord & SwiftErrorMask; 4916 Type *Ty = getTypeByID(Record[0]); 4917 if ((AlignRecord & ExplicitTypeMask) == 0) { 4918 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4919 if (!PTy) 4920 return error("Old-style alloca with a non-pointer type"); 4921 Ty = PTy->getElementType(); 4922 } 4923 Type *OpTy = getTypeByID(Record[1]); 4924 Value *Size = getFnValueByID(Record[2], OpTy); 4925 unsigned Align; 4926 if (std::error_code EC = 4927 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4928 return EC; 4929 } 4930 if (!Ty || !Size) 4931 return error("Invalid record"); 4932 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4933 AI->setUsedWithInAlloca(InAlloca); 4934 AI->setSwiftError(SwiftError); 4935 I = AI; 4936 InstructionList.push_back(I); 4937 break; 4938 } 4939 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4940 unsigned OpNum = 0; 4941 Value *Op; 4942 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4943 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4944 return error("Invalid record"); 4945 4946 Type *Ty = nullptr; 4947 if (OpNum + 3 == Record.size()) 4948 Ty = getTypeByID(Record[OpNum++]); 4949 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4950 return EC; 4951 if (!Ty) 4952 Ty = cast<PointerType>(Op->getType())->getElementType(); 4953 4954 unsigned Align; 4955 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4956 return EC; 4957 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4958 4959 InstructionList.push_back(I); 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4963 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4964 unsigned OpNum = 0; 4965 Value *Op; 4966 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4967 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4968 return error("Invalid record"); 4969 4970 Type *Ty = nullptr; 4971 if (OpNum + 5 == Record.size()) 4972 Ty = getTypeByID(Record[OpNum++]); 4973 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4974 return EC; 4975 if (!Ty) 4976 Ty = cast<PointerType>(Op->getType())->getElementType(); 4977 4978 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4979 if (Ordering == AtomicOrdering::NotAtomic || 4980 Ordering == AtomicOrdering::Release || 4981 Ordering == AtomicOrdering::AcquireRelease) 4982 return error("Invalid record"); 4983 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4984 return error("Invalid record"); 4985 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4986 4987 unsigned Align; 4988 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4989 return EC; 4990 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4991 4992 InstructionList.push_back(I); 4993 break; 4994 } 4995 case bitc::FUNC_CODE_INST_STORE: 4996 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4997 unsigned OpNum = 0; 4998 Value *Val, *Ptr; 4999 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5000 (BitCode == bitc::FUNC_CODE_INST_STORE 5001 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5002 : popValue(Record, OpNum, NextValueNo, 5003 cast<PointerType>(Ptr->getType())->getElementType(), 5004 Val)) || 5005 OpNum + 2 != Record.size()) 5006 return error("Invalid record"); 5007 5008 if (std::error_code EC = 5009 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5010 return EC; 5011 unsigned Align; 5012 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5013 return EC; 5014 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5015 InstructionList.push_back(I); 5016 break; 5017 } 5018 case bitc::FUNC_CODE_INST_STOREATOMIC: 5019 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5020 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5021 unsigned OpNum = 0; 5022 Value *Val, *Ptr; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5024 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5025 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5026 : popValue(Record, OpNum, NextValueNo, 5027 cast<PointerType>(Ptr->getType())->getElementType(), 5028 Val)) || 5029 OpNum + 4 != Record.size()) 5030 return error("Invalid record"); 5031 5032 if (std::error_code EC = 5033 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5034 return EC; 5035 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5036 if (Ordering == AtomicOrdering::NotAtomic || 5037 Ordering == AtomicOrdering::Acquire || 5038 Ordering == AtomicOrdering::AcquireRelease) 5039 return error("Invalid record"); 5040 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5041 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5042 return error("Invalid record"); 5043 5044 unsigned Align; 5045 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5046 return EC; 5047 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5048 InstructionList.push_back(I); 5049 break; 5050 } 5051 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5052 case bitc::FUNC_CODE_INST_CMPXCHG: { 5053 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5054 // failureordering?, isweak?] 5055 unsigned OpNum = 0; 5056 Value *Ptr, *Cmp, *New; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5058 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5059 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5060 : popValue(Record, OpNum, NextValueNo, 5061 cast<PointerType>(Ptr->getType())->getElementType(), 5062 Cmp)) || 5063 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5064 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5065 return error("Invalid record"); 5066 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5067 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5068 SuccessOrdering == AtomicOrdering::Unordered) 5069 return error("Invalid record"); 5070 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5071 5072 if (std::error_code EC = 5073 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5074 return EC; 5075 AtomicOrdering FailureOrdering; 5076 if (Record.size() < 7) 5077 FailureOrdering = 5078 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5079 else 5080 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5081 5082 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5083 SynchScope); 5084 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5085 5086 if (Record.size() < 8) { 5087 // Before weak cmpxchgs existed, the instruction simply returned the 5088 // value loaded from memory, so bitcode files from that era will be 5089 // expecting the first component of a modern cmpxchg. 5090 CurBB->getInstList().push_back(I); 5091 I = ExtractValueInst::Create(I, 0); 5092 } else { 5093 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5094 } 5095 5096 InstructionList.push_back(I); 5097 break; 5098 } 5099 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5100 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5101 unsigned OpNum = 0; 5102 Value *Ptr, *Val; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5104 popValue(Record, OpNum, NextValueNo, 5105 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5106 OpNum+4 != Record.size()) 5107 return error("Invalid record"); 5108 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5109 if (Operation < AtomicRMWInst::FIRST_BINOP || 5110 Operation > AtomicRMWInst::LAST_BINOP) 5111 return error("Invalid record"); 5112 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5113 if (Ordering == AtomicOrdering::NotAtomic || 5114 Ordering == AtomicOrdering::Unordered) 5115 return error("Invalid record"); 5116 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5117 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5118 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5119 InstructionList.push_back(I); 5120 break; 5121 } 5122 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5123 if (2 != Record.size()) 5124 return error("Invalid record"); 5125 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5126 if (Ordering == AtomicOrdering::NotAtomic || 5127 Ordering == AtomicOrdering::Unordered || 5128 Ordering == AtomicOrdering::Monotonic) 5129 return error("Invalid record"); 5130 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5131 I = new FenceInst(Context, Ordering, SynchScope); 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_CALL: { 5136 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5137 if (Record.size() < 3) 5138 return error("Invalid record"); 5139 5140 unsigned OpNum = 0; 5141 AttributeSet PAL = getAttributes(Record[OpNum++]); 5142 unsigned CCInfo = Record[OpNum++]; 5143 5144 FastMathFlags FMF; 5145 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5146 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5147 if (!FMF.any()) 5148 return error("Fast math flags indicator set for call with no FMF"); 5149 } 5150 5151 FunctionType *FTy = nullptr; 5152 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5153 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5154 return error("Explicit call type is not a function type"); 5155 5156 Value *Callee; 5157 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5158 return error("Invalid record"); 5159 5160 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5161 if (!OpTy) 5162 return error("Callee is not a pointer type"); 5163 if (!FTy) { 5164 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5165 if (!FTy) 5166 return error("Callee is not of pointer to function type"); 5167 } else if (OpTy->getElementType() != FTy) 5168 return error("Explicit call type does not match pointee type of " 5169 "callee operand"); 5170 if (Record.size() < FTy->getNumParams() + OpNum) 5171 return error("Insufficient operands to call"); 5172 5173 SmallVector<Value*, 16> Args; 5174 // Read the fixed params. 5175 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5176 if (FTy->getParamType(i)->isLabelTy()) 5177 Args.push_back(getBasicBlock(Record[OpNum])); 5178 else 5179 Args.push_back(getValue(Record, OpNum, NextValueNo, 5180 FTy->getParamType(i))); 5181 if (!Args.back()) 5182 return error("Invalid record"); 5183 } 5184 5185 // Read type/value pairs for varargs params. 5186 if (!FTy->isVarArg()) { 5187 if (OpNum != Record.size()) 5188 return error("Invalid record"); 5189 } else { 5190 while (OpNum != Record.size()) { 5191 Value *Op; 5192 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5193 return error("Invalid record"); 5194 Args.push_back(Op); 5195 } 5196 } 5197 5198 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5199 OperandBundles.clear(); 5200 InstructionList.push_back(I); 5201 cast<CallInst>(I)->setCallingConv( 5202 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5203 CallInst::TailCallKind TCK = CallInst::TCK_None; 5204 if (CCInfo & 1 << bitc::CALL_TAIL) 5205 TCK = CallInst::TCK_Tail; 5206 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5207 TCK = CallInst::TCK_MustTail; 5208 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5209 TCK = CallInst::TCK_NoTail; 5210 cast<CallInst>(I)->setTailCallKind(TCK); 5211 cast<CallInst>(I)->setAttributes(PAL); 5212 if (FMF.any()) { 5213 if (!isa<FPMathOperator>(I)) 5214 return error("Fast-math-flags specified for call without " 5215 "floating-point scalar or vector return type"); 5216 I->setFastMathFlags(FMF); 5217 } 5218 break; 5219 } 5220 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5221 if (Record.size() < 3) 5222 return error("Invalid record"); 5223 Type *OpTy = getTypeByID(Record[0]); 5224 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5225 Type *ResTy = getTypeByID(Record[2]); 5226 if (!OpTy || !Op || !ResTy) 5227 return error("Invalid record"); 5228 I = new VAArgInst(Op, ResTy); 5229 InstructionList.push_back(I); 5230 break; 5231 } 5232 5233 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5234 // A call or an invoke can be optionally prefixed with some variable 5235 // number of operand bundle blocks. These blocks are read into 5236 // OperandBundles and consumed at the next call or invoke instruction. 5237 5238 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5239 return error("Invalid record"); 5240 5241 std::vector<Value *> Inputs; 5242 5243 unsigned OpNum = 1; 5244 while (OpNum != Record.size()) { 5245 Value *Op; 5246 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5247 return error("Invalid record"); 5248 Inputs.push_back(Op); 5249 } 5250 5251 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5252 continue; 5253 } 5254 } 5255 5256 // Add instruction to end of current BB. If there is no current BB, reject 5257 // this file. 5258 if (!CurBB) { 5259 delete I; 5260 return error("Invalid instruction with no BB"); 5261 } 5262 if (!OperandBundles.empty()) { 5263 delete I; 5264 return error("Operand bundles found with no consumer"); 5265 } 5266 CurBB->getInstList().push_back(I); 5267 5268 // If this was a terminator instruction, move to the next block. 5269 if (isa<TerminatorInst>(I)) { 5270 ++CurBBNo; 5271 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5272 } 5273 5274 // Non-void values get registered in the value table for future use. 5275 if (I && !I->getType()->isVoidTy()) 5276 ValueList.assignValue(I, NextValueNo++); 5277 } 5278 5279 OutOfRecordLoop: 5280 5281 if (!OperandBundles.empty()) 5282 return error("Operand bundles found with no consumer"); 5283 5284 // Check the function list for unresolved values. 5285 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5286 if (!A->getParent()) { 5287 // We found at least one unresolved value. Nuke them all to avoid leaks. 5288 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5289 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5290 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5291 delete A; 5292 } 5293 } 5294 return error("Never resolved value found in function"); 5295 } 5296 } 5297 5298 // Unexpected unresolved metadata about to be dropped. 5299 if (MetadataList.hasFwdRefs()) 5300 return error("Invalid function metadata: outgoing forward refs"); 5301 5302 // Trim the value list down to the size it was before we parsed this function. 5303 ValueList.shrinkTo(ModuleValueListSize); 5304 MetadataList.shrinkTo(ModuleMetadataListSize); 5305 std::vector<BasicBlock*>().swap(FunctionBBs); 5306 return std::error_code(); 5307 } 5308 5309 /// Find the function body in the bitcode stream 5310 std::error_code BitcodeReader::findFunctionInStream( 5311 Function *F, 5312 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5313 while (DeferredFunctionInfoIterator->second == 0) { 5314 // This is the fallback handling for the old format bitcode that 5315 // didn't contain the function index in the VST, or when we have 5316 // an anonymous function which would not have a VST entry. 5317 // Assert that we have one of those two cases. 5318 assert(VSTOffset == 0 || !F->hasName()); 5319 // Parse the next body in the stream and set its position in the 5320 // DeferredFunctionInfo map. 5321 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5322 return EC; 5323 } 5324 return std::error_code(); 5325 } 5326 5327 //===----------------------------------------------------------------------===// 5328 // GVMaterializer implementation 5329 //===----------------------------------------------------------------------===// 5330 5331 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5332 5333 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5334 if (std::error_code EC = materializeMetadata()) 5335 return EC; 5336 5337 Function *F = dyn_cast<Function>(GV); 5338 // If it's not a function or is already material, ignore the request. 5339 if (!F || !F->isMaterializable()) 5340 return std::error_code(); 5341 5342 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5343 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5344 // If its position is recorded as 0, its body is somewhere in the stream 5345 // but we haven't seen it yet. 5346 if (DFII->second == 0) 5347 if (std::error_code EC = findFunctionInStream(F, DFII)) 5348 return EC; 5349 5350 // Move the bit stream to the saved position of the deferred function body. 5351 Stream.JumpToBit(DFII->second); 5352 5353 if (std::error_code EC = parseFunctionBody(F)) 5354 return EC; 5355 F->setIsMaterializable(false); 5356 5357 if (StripDebugInfo) 5358 stripDebugInfo(*F); 5359 5360 // Upgrade any old intrinsic calls in the function. 5361 for (auto &I : UpgradedIntrinsics) { 5362 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5363 UI != UE;) { 5364 User *U = *UI; 5365 ++UI; 5366 if (CallInst *CI = dyn_cast<CallInst>(U)) 5367 UpgradeIntrinsicCall(CI, I.second); 5368 } 5369 } 5370 5371 // Finish fn->subprogram upgrade for materialized functions. 5372 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5373 F->setSubprogram(SP); 5374 5375 // Bring in any functions that this function forward-referenced via 5376 // blockaddresses. 5377 return materializeForwardReferencedFunctions(); 5378 } 5379 5380 std::error_code BitcodeReader::materializeModule() { 5381 if (std::error_code EC = materializeMetadata()) 5382 return EC; 5383 5384 // Promise to materialize all forward references. 5385 WillMaterializeAllForwardRefs = true; 5386 5387 // Iterate over the module, deserializing any functions that are still on 5388 // disk. 5389 for (Function &F : *TheModule) { 5390 if (std::error_code EC = materialize(&F)) 5391 return EC; 5392 } 5393 // At this point, if there are any function bodies, parse the rest of 5394 // the bits in the module past the last function block we have recorded 5395 // through either lazy scanning or the VST. 5396 if (LastFunctionBlockBit || NextUnreadBit) 5397 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5398 : NextUnreadBit); 5399 5400 // Check that all block address forward references got resolved (as we 5401 // promised above). 5402 if (!BasicBlockFwdRefs.empty()) 5403 return error("Never resolved function from blockaddress"); 5404 5405 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5406 // to prevent this instructions with TBAA tags should be upgraded first. 5407 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5408 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5409 5410 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5411 // delete the old functions to clean up. We can't do this unless the entire 5412 // module is materialized because there could always be another function body 5413 // with calls to the old function. 5414 for (auto &I : UpgradedIntrinsics) { 5415 for (auto *U : I.first->users()) { 5416 if (CallInst *CI = dyn_cast<CallInst>(U)) 5417 UpgradeIntrinsicCall(CI, I.second); 5418 } 5419 if (!I.first->use_empty()) 5420 I.first->replaceAllUsesWith(I.second); 5421 I.first->eraseFromParent(); 5422 } 5423 UpgradedIntrinsics.clear(); 5424 5425 UpgradeDebugInfo(*TheModule); 5426 return std::error_code(); 5427 } 5428 5429 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5430 return IdentifiedStructTypes; 5431 } 5432 5433 std::error_code 5434 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5435 if (Streamer) 5436 return initLazyStream(std::move(Streamer)); 5437 return initStreamFromBuffer(); 5438 } 5439 5440 std::error_code BitcodeReader::initStreamFromBuffer() { 5441 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5442 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5443 5444 if (Buffer->getBufferSize() & 3) 5445 return error("Invalid bitcode signature"); 5446 5447 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5448 // The magic number is 0x0B17C0DE stored in little endian. 5449 if (isBitcodeWrapper(BufPtr, BufEnd)) 5450 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5451 return error("Invalid bitcode wrapper header"); 5452 5453 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5454 Stream.init(&*StreamFile); 5455 5456 return std::error_code(); 5457 } 5458 5459 std::error_code 5460 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5461 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5462 // see it. 5463 auto OwnedBytes = 5464 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5465 StreamingMemoryObject &Bytes = *OwnedBytes; 5466 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5467 Stream.init(&*StreamFile); 5468 5469 unsigned char buf[16]; 5470 if (Bytes.readBytes(buf, 16, 0) != 16) 5471 return error("Invalid bitcode signature"); 5472 5473 if (!isBitcode(buf, buf + 16)) 5474 return error("Invalid bitcode signature"); 5475 5476 if (isBitcodeWrapper(buf, buf + 4)) { 5477 const unsigned char *bitcodeStart = buf; 5478 const unsigned char *bitcodeEnd = buf + 16; 5479 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5480 Bytes.dropLeadingBytes(bitcodeStart - buf); 5481 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5482 } 5483 return std::error_code(); 5484 } 5485 5486 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5487 const Twine &Message) { 5488 return ::error(DiagnosticHandler, make_error_code(E), Message); 5489 } 5490 5491 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5492 return ::error(DiagnosticHandler, 5493 make_error_code(BitcodeError::CorruptedBitcode), Message); 5494 } 5495 5496 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5497 return ::error(DiagnosticHandler, make_error_code(E)); 5498 } 5499 5500 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5501 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5502 bool CheckGlobalValSummaryPresenceOnly) 5503 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5504 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5505 5506 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5507 DiagnosticHandlerFunction DiagnosticHandler, 5508 bool CheckGlobalValSummaryPresenceOnly) 5509 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5510 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5511 5512 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5513 5514 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5515 5516 GlobalValue::GUID 5517 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5518 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5519 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5520 return VGI->second; 5521 } 5522 5523 GlobalValueInfo * 5524 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5525 auto I = SummaryOffsetToInfoMap.find(Offset); 5526 assert(I != SummaryOffsetToInfoMap.end()); 5527 return I->second; 5528 } 5529 5530 // Specialized value symbol table parser used when reading module index 5531 // blocks where we don't actually create global values. 5532 // At the end of this routine the module index is populated with a map 5533 // from global value name to GlobalValueInfo. The global value info contains 5534 // the function block's bitcode offset (if applicable), or the offset into the 5535 // summary section for the combined index. 5536 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5537 uint64_t Offset, 5538 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5539 assert(Offset > 0 && "Expected non-zero VST offset"); 5540 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5541 5542 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5543 return error("Invalid record"); 5544 5545 SmallVector<uint64_t, 64> Record; 5546 5547 // Read all the records for this value table. 5548 SmallString<128> ValueName; 5549 while (1) { 5550 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5551 5552 switch (Entry.Kind) { 5553 case BitstreamEntry::SubBlock: // Handled for us already. 5554 case BitstreamEntry::Error: 5555 return error("Malformed block"); 5556 case BitstreamEntry::EndBlock: 5557 // Done parsing VST, jump back to wherever we came from. 5558 Stream.JumpToBit(CurrentBit); 5559 return std::error_code(); 5560 case BitstreamEntry::Record: 5561 // The interesting case. 5562 break; 5563 } 5564 5565 // Read a record. 5566 Record.clear(); 5567 switch (Stream.readRecord(Entry.ID, Record)) { 5568 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5569 break; 5570 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5571 if (convertToString(Record, 1, ValueName)) 5572 return error("Invalid record"); 5573 unsigned ValueID = Record[0]; 5574 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5575 llvm::make_unique<GlobalValueInfo>(); 5576 assert(!SourceFileName.empty()); 5577 auto VLI = ValueIdToLinkageMap.find(ValueID); 5578 assert(VLI != ValueIdToLinkageMap.end() && 5579 "No linkage found for VST entry?"); 5580 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5581 ValueName, VLI->second, SourceFileName); 5582 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5583 if (PrintSummaryGUIDs) 5584 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5585 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5586 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5587 ValueName.clear(); 5588 break; 5589 } 5590 case bitc::VST_CODE_FNENTRY: { 5591 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5592 if (convertToString(Record, 2, ValueName)) 5593 return error("Invalid record"); 5594 unsigned ValueID = Record[0]; 5595 uint64_t FuncOffset = Record[1]; 5596 std::unique_ptr<GlobalValueInfo> FuncInfo = 5597 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5598 assert(!SourceFileName.empty()); 5599 auto VLI = ValueIdToLinkageMap.find(ValueID); 5600 assert(VLI != ValueIdToLinkageMap.end() && 5601 "No linkage found for VST entry?"); 5602 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5603 ValueName, VLI->second, SourceFileName); 5604 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5605 if (PrintSummaryGUIDs) 5606 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5607 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5608 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5609 5610 ValueName.clear(); 5611 break; 5612 } 5613 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5614 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5615 unsigned ValueID = Record[0]; 5616 uint64_t GlobalValSummaryOffset = Record[1]; 5617 GlobalValue::GUID GlobalValGUID = Record[2]; 5618 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5619 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5620 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5621 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5622 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5623 break; 5624 } 5625 case bitc::VST_CODE_COMBINED_ENTRY: { 5626 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5627 unsigned ValueID = Record[0]; 5628 GlobalValue::GUID RefGUID = Record[1]; 5629 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5630 break; 5631 } 5632 } 5633 } 5634 } 5635 5636 // Parse just the blocks needed for building the index out of the module. 5637 // At the end of this routine the module Index is populated with a map 5638 // from global value name to GlobalValueInfo. The global value info contains 5639 // the parsed summary information (when parsing summaries eagerly). 5640 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5641 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5642 return error("Invalid record"); 5643 5644 SmallVector<uint64_t, 64> Record; 5645 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5646 unsigned ValueId = 0; 5647 5648 // Read the index for this module. 5649 while (1) { 5650 BitstreamEntry Entry = Stream.advance(); 5651 5652 switch (Entry.Kind) { 5653 case BitstreamEntry::Error: 5654 return error("Malformed block"); 5655 case BitstreamEntry::EndBlock: 5656 return std::error_code(); 5657 5658 case BitstreamEntry::SubBlock: 5659 if (CheckGlobalValSummaryPresenceOnly) { 5660 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5661 SeenGlobalValSummary = true; 5662 // No need to parse the rest since we found the summary. 5663 return std::error_code(); 5664 } 5665 if (Stream.SkipBlock()) 5666 return error("Invalid record"); 5667 continue; 5668 } 5669 switch (Entry.ID) { 5670 default: // Skip unknown content. 5671 if (Stream.SkipBlock()) 5672 return error("Invalid record"); 5673 break; 5674 case bitc::BLOCKINFO_BLOCK_ID: 5675 // Need to parse these to get abbrev ids (e.g. for VST) 5676 if (Stream.ReadBlockInfoBlock()) 5677 return error("Malformed block"); 5678 break; 5679 case bitc::VALUE_SYMTAB_BLOCK_ID: 5680 // Should have been parsed earlier via VSTOffset, unless there 5681 // is no summary section. 5682 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5683 !SeenGlobalValSummary) && 5684 "Expected early VST parse via VSTOffset record"); 5685 if (Stream.SkipBlock()) 5686 return error("Invalid record"); 5687 break; 5688 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5689 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5690 assert(!SeenValueSymbolTable && 5691 "Already read VST when parsing summary block?"); 5692 if (std::error_code EC = 5693 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5694 return EC; 5695 SeenValueSymbolTable = true; 5696 SeenGlobalValSummary = true; 5697 if (std::error_code EC = parseEntireSummary()) 5698 return EC; 5699 break; 5700 case bitc::MODULE_STRTAB_BLOCK_ID: 5701 if (std::error_code EC = parseModuleStringTable()) 5702 return EC; 5703 break; 5704 } 5705 continue; 5706 5707 case BitstreamEntry::Record: { 5708 Record.clear(); 5709 auto BitCode = Stream.readRecord(Entry.ID, Record); 5710 switch (BitCode) { 5711 default: 5712 break; // Default behavior, ignore unknown content. 5713 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5714 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5715 SmallString<128> ValueName; 5716 if (convertToString(Record, 0, ValueName)) 5717 return error("Invalid record"); 5718 SourceFileName = ValueName.c_str(); 5719 break; 5720 } 5721 /// MODULE_CODE_HASH: [5*i32] 5722 case bitc::MODULE_CODE_HASH: { 5723 if (Record.size() != 5) 5724 return error("Invalid hash length " + Twine(Record.size()).str()); 5725 if (!TheIndex) 5726 break; 5727 if (TheIndex->modulePaths().empty()) 5728 // Does not have any summary emitted. 5729 break; 5730 if (TheIndex->modulePaths().size() != 1) 5731 return error("Don't expect multiple modules defined?"); 5732 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5733 int Pos = 0; 5734 for (auto &Val : Record) { 5735 assert(!(Val >> 32) && "Unexpected high bits set"); 5736 Hash[Pos++] = Val; 5737 } 5738 break; 5739 } 5740 /// MODULE_CODE_VSTOFFSET: [offset] 5741 case bitc::MODULE_CODE_VSTOFFSET: 5742 if (Record.size() < 1) 5743 return error("Invalid record"); 5744 VSTOffset = Record[0]; 5745 break; 5746 // GLOBALVAR: [pointer type, isconst, initid, 5747 // linkage, alignment, section, visibility, threadlocal, 5748 // unnamed_addr, externally_initialized, dllstorageclass, 5749 // comdat] 5750 case bitc::MODULE_CODE_GLOBALVAR: { 5751 if (Record.size() < 6) 5752 return error("Invalid record"); 5753 uint64_t RawLinkage = Record[3]; 5754 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5755 ValueIdToLinkageMap[ValueId++] = Linkage; 5756 break; 5757 } 5758 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5759 // alignment, section, visibility, gc, unnamed_addr, 5760 // prologuedata, dllstorageclass, comdat, prefixdata] 5761 case bitc::MODULE_CODE_FUNCTION: { 5762 if (Record.size() < 8) 5763 return error("Invalid record"); 5764 uint64_t RawLinkage = Record[3]; 5765 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5766 ValueIdToLinkageMap[ValueId++] = Linkage; 5767 break; 5768 } 5769 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5770 // dllstorageclass] 5771 case bitc::MODULE_CODE_ALIAS: { 5772 if (Record.size() < 6) 5773 return error("Invalid record"); 5774 uint64_t RawLinkage = Record[3]; 5775 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5776 ValueIdToLinkageMap[ValueId++] = Linkage; 5777 break; 5778 } 5779 } 5780 } 5781 continue; 5782 } 5783 } 5784 } 5785 5786 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5787 // objects in the index. 5788 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5789 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5790 return error("Invalid record"); 5791 5792 SmallVector<uint64_t, 64> Record; 5793 5794 bool Combined = false; 5795 while (1) { 5796 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5797 5798 switch (Entry.Kind) { 5799 case BitstreamEntry::SubBlock: // Handled for us already. 5800 case BitstreamEntry::Error: 5801 return error("Malformed block"); 5802 case BitstreamEntry::EndBlock: 5803 // For a per-module index, remove any entries that still have empty 5804 // summaries. The VST parsing creates entries eagerly for all symbols, 5805 // but not all have associated summaries (e.g. it doesn't know how to 5806 // distinguish between VST_CODE_ENTRY for function declarations vs global 5807 // variables with initializers that end up with a summary). Remove those 5808 // entries now so that we don't need to rely on the combined index merger 5809 // to clean them up (especially since that may not run for the first 5810 // module's index if we merge into that). 5811 if (!Combined) 5812 TheIndex->removeEmptySummaryEntries(); 5813 return std::error_code(); 5814 case BitstreamEntry::Record: 5815 // The interesting case. 5816 break; 5817 } 5818 5819 // Read a record. The record format depends on whether this 5820 // is a per-module index or a combined index file. In the per-module 5821 // case the records contain the associated value's ID for correlation 5822 // with VST entries. In the combined index the correlation is done 5823 // via the bitcode offset of the summary records (which were saved 5824 // in the combined index VST entries). The records also contain 5825 // information used for ThinLTO renaming and importing. 5826 Record.clear(); 5827 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5828 auto BitCode = Stream.readRecord(Entry.ID, Record); 5829 switch (BitCode) { 5830 default: // Default behavior: ignore. 5831 break; 5832 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5833 // n x (valueid, callsitecount)] 5834 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5835 // numrefs x valueid, 5836 // n x (valueid, callsitecount, profilecount)] 5837 case bitc::FS_PERMODULE: 5838 case bitc::FS_PERMODULE_PROFILE: { 5839 unsigned ValueID = Record[0]; 5840 uint64_t RawLinkage = Record[1]; 5841 unsigned InstCount = Record[2]; 5842 unsigned NumRefs = Record[3]; 5843 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5844 getDecodedLinkage(RawLinkage), InstCount); 5845 // The module path string ref set in the summary must be owned by the 5846 // index's module string table. Since we don't have a module path 5847 // string table section in the per-module index, we create a single 5848 // module path string table entry with an empty (0) ID to take 5849 // ownership. 5850 FS->setModulePath( 5851 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5852 static int RefListStartIndex = 4; 5853 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5854 assert(Record.size() >= RefListStartIndex + NumRefs && 5855 "Record size inconsistent with number of references"); 5856 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5857 unsigned RefValueId = Record[I]; 5858 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5859 FS->addRefEdge(RefGUID); 5860 } 5861 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5862 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5863 ++I) { 5864 unsigned CalleeValueId = Record[I]; 5865 unsigned CallsiteCount = Record[++I]; 5866 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5867 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5868 FS->addCallGraphEdge(CalleeGUID, 5869 CalleeInfo(CallsiteCount, ProfileCount)); 5870 } 5871 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5872 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5873 assert(!Info->summary() && "Expected a single summary per VST entry"); 5874 Info->setSummary(std::move(FS)); 5875 break; 5876 } 5877 // FS_ALIAS: [valueid, linkage, valueid] 5878 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5879 // they expect all aliasee summaries to be available. 5880 case bitc::FS_ALIAS: { 5881 unsigned ValueID = Record[0]; 5882 uint64_t RawLinkage = Record[1]; 5883 unsigned AliaseeID = Record[2]; 5884 std::unique_ptr<AliasSummary> AS = 5885 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5886 // The module path string ref set in the summary must be owned by the 5887 // index's module string table. Since we don't have a module path 5888 // string table section in the per-module index, we create a single 5889 // module path string table entry with an empty (0) ID to take 5890 // ownership. 5891 AS->setModulePath( 5892 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5893 5894 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5895 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5896 if (!AliaseeInfo->summary()) 5897 return error("Alias expects aliasee summary to be parsed"); 5898 AS->setAliasee(AliaseeInfo->summary()); 5899 5900 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5901 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5902 assert(!Info->summary() && "Expected a single summary per VST entry"); 5903 Info->setSummary(std::move(AS)); 5904 break; 5905 } 5906 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5907 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5908 unsigned ValueID = Record[0]; 5909 uint64_t RawLinkage = Record[1]; 5910 std::unique_ptr<GlobalVarSummary> FS = 5911 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5912 FS->setModulePath( 5913 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5914 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5915 unsigned RefValueId = Record[I]; 5916 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5917 FS->addRefEdge(RefGUID); 5918 } 5919 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5920 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5921 assert(!Info->summary() && "Expected a single summary per VST entry"); 5922 Info->setSummary(std::move(FS)); 5923 break; 5924 } 5925 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5926 // n x (valueid, callsitecount)] 5927 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5928 // numrefs x valueid, 5929 // n x (valueid, callsitecount, profilecount)] 5930 case bitc::FS_COMBINED: 5931 case bitc::FS_COMBINED_PROFILE: { 5932 uint64_t ModuleId = Record[0]; 5933 uint64_t RawLinkage = Record[1]; 5934 unsigned InstCount = Record[2]; 5935 unsigned NumRefs = Record[3]; 5936 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5937 getDecodedLinkage(RawLinkage), InstCount); 5938 FS->setModulePath(ModuleIdMap[ModuleId]); 5939 static int RefListStartIndex = 4; 5940 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5941 assert(Record.size() >= RefListStartIndex + NumRefs && 5942 "Record size inconsistent with number of references"); 5943 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5944 unsigned RefValueId = Record[I]; 5945 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5946 FS->addRefEdge(RefGUID); 5947 } 5948 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5949 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5950 ++I) { 5951 unsigned CalleeValueId = Record[I]; 5952 unsigned CallsiteCount = Record[++I]; 5953 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5954 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5955 FS->addCallGraphEdge(CalleeGUID, 5956 CalleeInfo(CallsiteCount, ProfileCount)); 5957 } 5958 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5959 assert(!Info->summary() && "Expected a single summary per VST entry"); 5960 Info->setSummary(std::move(FS)); 5961 Combined = true; 5962 break; 5963 } 5964 // FS_COMBINED_ALIAS: [modid, linkage, offset] 5965 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5966 // they expect all aliasee summaries to be available. 5967 case bitc::FS_COMBINED_ALIAS: { 5968 uint64_t ModuleId = Record[0]; 5969 uint64_t RawLinkage = Record[1]; 5970 uint64_t AliaseeSummaryOffset = Record[2]; 5971 std::unique_ptr<AliasSummary> AS = 5972 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5973 AS->setModulePath(ModuleIdMap[ModuleId]); 5974 5975 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 5976 if (!AliaseeInfo->summary()) 5977 return error("Alias expects aliasee summary to be parsed"); 5978 AS->setAliasee(AliaseeInfo->summary()); 5979 5980 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5981 assert(!Info->summary() && "Expected a single summary per VST entry"); 5982 Info->setSummary(std::move(AS)); 5983 Combined = true; 5984 break; 5985 } 5986 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5987 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5988 uint64_t ModuleId = Record[0]; 5989 uint64_t RawLinkage = Record[1]; 5990 std::unique_ptr<GlobalVarSummary> FS = 5991 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5992 FS->setModulePath(ModuleIdMap[ModuleId]); 5993 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5994 unsigned RefValueId = Record[I]; 5995 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5996 FS->addRefEdge(RefGUID); 5997 } 5998 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5999 assert(!Info->summary() && "Expected a single summary per VST entry"); 6000 Info->setSummary(std::move(FS)); 6001 Combined = true; 6002 break; 6003 } 6004 } 6005 } 6006 llvm_unreachable("Exit infinite loop"); 6007 } 6008 6009 // Parse the module string table block into the Index. 6010 // This populates the ModulePathStringTable map in the index. 6011 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6012 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6013 return error("Invalid record"); 6014 6015 SmallVector<uint64_t, 64> Record; 6016 6017 SmallString<128> ModulePath; 6018 ModulePathStringTableTy::iterator LastSeenModulePath; 6019 while (1) { 6020 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6021 6022 switch (Entry.Kind) { 6023 case BitstreamEntry::SubBlock: // Handled for us already. 6024 case BitstreamEntry::Error: 6025 return error("Malformed block"); 6026 case BitstreamEntry::EndBlock: 6027 return std::error_code(); 6028 case BitstreamEntry::Record: 6029 // The interesting case. 6030 break; 6031 } 6032 6033 Record.clear(); 6034 switch (Stream.readRecord(Entry.ID, Record)) { 6035 default: // Default behavior: ignore. 6036 break; 6037 case bitc::MST_CODE_ENTRY: { 6038 // MST_ENTRY: [modid, namechar x N] 6039 uint64_t ModuleId = Record[0]; 6040 6041 if (convertToString(Record, 1, ModulePath)) 6042 return error("Invalid record"); 6043 6044 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6045 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6046 6047 ModulePath.clear(); 6048 break; 6049 } 6050 /// MST_CODE_HASH: [5*i32] 6051 case bitc::MST_CODE_HASH: { 6052 if (Record.size() != 5) 6053 return error("Invalid hash length " + Twine(Record.size()).str()); 6054 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6055 return error("Invalid hash that does not follow a module path"); 6056 int Pos = 0; 6057 for (auto &Val : Record) { 6058 assert(!(Val >> 32) && "Unexpected high bits set"); 6059 LastSeenModulePath->second.second[Pos++] = Val; 6060 } 6061 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6062 LastSeenModulePath = TheIndex->modulePaths().end(); 6063 break; 6064 } 6065 } 6066 } 6067 llvm_unreachable("Exit infinite loop"); 6068 } 6069 6070 // Parse the function info index from the bitcode streamer into the given index. 6071 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6072 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6073 TheIndex = I; 6074 6075 if (std::error_code EC = initStream(std::move(Streamer))) 6076 return EC; 6077 6078 // Sniff for the signature. 6079 if (!hasValidBitcodeHeader(Stream)) 6080 return error("Invalid bitcode signature"); 6081 6082 // We expect a number of well-defined blocks, though we don't necessarily 6083 // need to understand them all. 6084 while (1) { 6085 if (Stream.AtEndOfStream()) { 6086 // We didn't really read a proper Module block. 6087 return error("Malformed block"); 6088 } 6089 6090 BitstreamEntry Entry = 6091 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6092 6093 if (Entry.Kind != BitstreamEntry::SubBlock) 6094 return error("Malformed block"); 6095 6096 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6097 // building the function summary index. 6098 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6099 return parseModule(); 6100 6101 if (Stream.SkipBlock()) 6102 return error("Invalid record"); 6103 } 6104 } 6105 6106 // Parse the summary information at the given offset in the buffer into 6107 // the index. Used to support lazy parsing of summaries from the 6108 // combined index during importing. 6109 // TODO: This function is not yet complete as it won't have a consumer 6110 // until ThinLTO function importing is added. 6111 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6112 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6113 size_t SummaryOffset) { 6114 TheIndex = I; 6115 6116 if (std::error_code EC = initStream(std::move(Streamer))) 6117 return EC; 6118 6119 // Sniff for the signature. 6120 if (!hasValidBitcodeHeader(Stream)) 6121 return error("Invalid bitcode signature"); 6122 6123 Stream.JumpToBit(SummaryOffset); 6124 6125 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6126 6127 switch (Entry.Kind) { 6128 default: 6129 return error("Malformed block"); 6130 case BitstreamEntry::Record: 6131 // The expected case. 6132 break; 6133 } 6134 6135 // TODO: Read a record. This interface will be completed when ThinLTO 6136 // importing is added so that it can be tested. 6137 SmallVector<uint64_t, 64> Record; 6138 switch (Stream.readRecord(Entry.ID, Record)) { 6139 case bitc::FS_COMBINED: 6140 case bitc::FS_COMBINED_PROFILE: 6141 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6142 default: 6143 return error("Invalid record"); 6144 } 6145 6146 return std::error_code(); 6147 } 6148 6149 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6150 std::unique_ptr<DataStreamer> Streamer) { 6151 if (Streamer) 6152 return initLazyStream(std::move(Streamer)); 6153 return initStreamFromBuffer(); 6154 } 6155 6156 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6157 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6158 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6159 6160 if (Buffer->getBufferSize() & 3) 6161 return error("Invalid bitcode signature"); 6162 6163 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6164 // The magic number is 0x0B17C0DE stored in little endian. 6165 if (isBitcodeWrapper(BufPtr, BufEnd)) 6166 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6167 return error("Invalid bitcode wrapper header"); 6168 6169 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6170 Stream.init(&*StreamFile); 6171 6172 return std::error_code(); 6173 } 6174 6175 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6176 std::unique_ptr<DataStreamer> Streamer) { 6177 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6178 // see it. 6179 auto OwnedBytes = 6180 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6181 StreamingMemoryObject &Bytes = *OwnedBytes; 6182 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6183 Stream.init(&*StreamFile); 6184 6185 unsigned char buf[16]; 6186 if (Bytes.readBytes(buf, 16, 0) != 16) 6187 return error("Invalid bitcode signature"); 6188 6189 if (!isBitcode(buf, buf + 16)) 6190 return error("Invalid bitcode signature"); 6191 6192 if (isBitcodeWrapper(buf, buf + 4)) { 6193 const unsigned char *bitcodeStart = buf; 6194 const unsigned char *bitcodeEnd = buf + 16; 6195 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6196 Bytes.dropLeadingBytes(bitcodeStart - buf); 6197 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6198 } 6199 return std::error_code(); 6200 } 6201 6202 namespace { 6203 class BitcodeErrorCategoryType : public std::error_category { 6204 const char *name() const LLVM_NOEXCEPT override { 6205 return "llvm.bitcode"; 6206 } 6207 std::string message(int IE) const override { 6208 BitcodeError E = static_cast<BitcodeError>(IE); 6209 switch (E) { 6210 case BitcodeError::InvalidBitcodeSignature: 6211 return "Invalid bitcode signature"; 6212 case BitcodeError::CorruptedBitcode: 6213 return "Corrupted bitcode"; 6214 } 6215 llvm_unreachable("Unknown error type!"); 6216 } 6217 }; 6218 } // end anonymous namespace 6219 6220 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6221 6222 const std::error_category &llvm::BitcodeErrorCategory() { 6223 return *ErrorCategory; 6224 } 6225 6226 //===----------------------------------------------------------------------===// 6227 // External interface 6228 //===----------------------------------------------------------------------===// 6229 6230 static ErrorOr<std::unique_ptr<Module>> 6231 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6232 BitcodeReader *R, LLVMContext &Context, 6233 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6234 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6235 M->setMaterializer(R); 6236 6237 auto cleanupOnError = [&](std::error_code EC) { 6238 R->releaseBuffer(); // Never take ownership on error. 6239 return EC; 6240 }; 6241 6242 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6243 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6244 ShouldLazyLoadMetadata)) 6245 return cleanupOnError(EC); 6246 6247 if (MaterializeAll) { 6248 // Read in the entire module, and destroy the BitcodeReader. 6249 if (std::error_code EC = M->materializeAll()) 6250 return cleanupOnError(EC); 6251 } else { 6252 // Resolve forward references from blockaddresses. 6253 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6254 return cleanupOnError(EC); 6255 } 6256 return std::move(M); 6257 } 6258 6259 /// \brief Get a lazy one-at-time loading module from bitcode. 6260 /// 6261 /// This isn't always used in a lazy context. In particular, it's also used by 6262 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6263 /// in forward-referenced functions from block address references. 6264 /// 6265 /// \param[in] MaterializeAll Set to \c true if we should materialize 6266 /// everything. 6267 static ErrorOr<std::unique_ptr<Module>> 6268 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6269 LLVMContext &Context, bool MaterializeAll, 6270 bool ShouldLazyLoadMetadata = false) { 6271 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6272 6273 ErrorOr<std::unique_ptr<Module>> Ret = 6274 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6275 MaterializeAll, ShouldLazyLoadMetadata); 6276 if (!Ret) 6277 return Ret; 6278 6279 Buffer.release(); // The BitcodeReader owns it now. 6280 return Ret; 6281 } 6282 6283 ErrorOr<std::unique_ptr<Module>> 6284 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6285 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6286 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6287 ShouldLazyLoadMetadata); 6288 } 6289 6290 ErrorOr<std::unique_ptr<Module>> 6291 llvm::getStreamedBitcodeModule(StringRef Name, 6292 std::unique_ptr<DataStreamer> Streamer, 6293 LLVMContext &Context) { 6294 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6295 BitcodeReader *R = new BitcodeReader(Context); 6296 6297 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6298 false); 6299 } 6300 6301 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6302 LLVMContext &Context) { 6303 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6304 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6305 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6306 // written. We must defer until the Module has been fully materialized. 6307 } 6308 6309 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6310 LLVMContext &Context) { 6311 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6312 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6313 ErrorOr<std::string> Triple = R->parseTriple(); 6314 if (Triple.getError()) 6315 return ""; 6316 return Triple.get(); 6317 } 6318 6319 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6320 LLVMContext &Context) { 6321 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6322 BitcodeReader R(Buf.release(), Context); 6323 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6324 if (ProducerString.getError()) 6325 return ""; 6326 return ProducerString.get(); 6327 } 6328 6329 // Parse the specified bitcode buffer, returning the function info index. 6330 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6331 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6332 DiagnosticHandlerFunction DiagnosticHandler) { 6333 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6334 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6335 6336 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6337 6338 auto cleanupOnError = [&](std::error_code EC) { 6339 R.releaseBuffer(); // Never take ownership on error. 6340 return EC; 6341 }; 6342 6343 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6344 return cleanupOnError(EC); 6345 6346 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6347 return std::move(Index); 6348 } 6349 6350 // Check if the given bitcode buffer contains a global value summary block. 6351 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6352 DiagnosticHandlerFunction DiagnosticHandler) { 6353 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6354 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6355 6356 auto cleanupOnError = [&](std::error_code EC) { 6357 R.releaseBuffer(); // Never take ownership on error. 6358 return false; 6359 }; 6360 6361 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6362 return cleanupOnError(EC); 6363 6364 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6365 return R.foundGlobalValSummary(); 6366 } 6367